-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
177 lines (135 loc) · 5.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from tqdm import tqdm
import time
import random
import os
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from transformers import BertTokenizer, RobertaTokenizer, AutoTokenizer, pipeline
from misc import extract_json_data
from misc import iob_tagging, f1_score
import copy
class UnitAlphabet(object):
CLS_SIGN, SEP_SIGN = "[CLS]", "[SEP]"
PAD_SIGN, UNK_SIGN = "[PAD]", "[UNK]"
def __init__(self, bert_name):
if 'roberta' in bert_name:
self._tokenizer = RobertaTokenizer.from_pretrained('resource/roberta-base', do_lower_case=False)
elif 'bio' in bert_name:
self._tokenizer = AutoTokenizer.from_pretrained('resource/biobert-base-cased-v1.1')
elif 'chinese' in bert_name:
self._tokenizer = AutoTokenizer.from_pretrained('resource/bert-base-chinese')
else:
self._tokenizer = AutoTokenizer.from_pretrained('resource/bert-base-cased',)
def tokenize(self, item):
return self._tokenizer.tokenize(item)
def index(self, items):
return self._tokenizer.convert_tokens_to_ids(items)
class LabelAlphabet(object):
def __init__(self):
super(LabelAlphabet, self).__init__()
self._idx_to_item = []
self._item_to_idx = {}
def add(self, item):
if item not in self._item_to_idx:
self._item_to_idx[item] = len(self._idx_to_item)
self._idx_to_item.append(item)
def get(self, idx):
return self._idx_to_item[idx]
def index(self, item):
return self._item_to_idx[item]
def __str__(self):
return str(self._item_to_idx)
def __len__(self):
return len(self._idx_to_item)
def corpus_to_iterator(file_path, batch_size, if_shuffle, label_vocab=None, AUG=False):
material = extract_json_data(file_path)
instances = [(eval(e["sentence"]), eval(e["labeled entities"])) for e in material]
if label_vocab is not None:
label_vocab.add("O")
for _, u in instances:
for _, _, l in u:
label_vocab.add(l)
class _DataSet(Dataset):
def __init__(self, elements):
self._elements = elements
def __getitem__(self, item):
return self._elements[item]
def __len__(self):
return len(self._elements)
def distribute(elements):
sentences, entities = [], []
for s, e in elements:
sentences.append(s)
entities.append(e)
return sentences, entities
wrap_data = _DataSet(instances)
return DataLoader(wrap_data, batch_size, if_shuffle, collate_fn=distribute)
class Procedure(object):
@staticmethod
def train(model, dataset, optimizer,scheduler, label_vocab, softlabel_matrix):
model.train()
time_start, total_penalties = time.time(), 0.0
dict_result = {}
flag_num = 0
dict_index = 0
entity_num = 0
O_num = 0
for batch in tqdm(dataset, ncols=50):
loss, dict_knn, softmax_score, target_s = model.estimate_CL(*batch, softlabel_matrix)
softlabel_matrix_new = torch.eye(len(label_vocab)).cuda()
softlabel_matrix_new = torch.zeros_like(softlabel_matrix_new)
for index_instance in range(0, softmax_score.size()[0]):
if torch.max(softmax_score[index_instance], 0)[1] == target_s[index_instance]:
softlabel_matrix_new[target_s[index_instance]] = softlabel_matrix_new[target_s[index_instance]] + softmax_score[index_instance]
else:
pass
softlabel_matrix_new = torch.softmax(softlabel_matrix_new, dim=1)
for tensor_index, tensor_value in dict_knn.items():
tensor_label = tensor_value[1][0]
O_index = label_vocab.index('O')
if tensor_label == O_index:
O_num = O_num + 1
else:
entity_num = entity_num + 1
random.seed(1024)
pick_list = random.sample(range(0, O_num), int(O_num * 0.00))
O_put_into_dict_num = 0
for tensor_index, tensor_value in dict_knn.items():
tensor_label = tensor_value[1][0]
O_index = label_vocab.index('O')
if tensor_label != O_index:
dict_result[dict_index] = tensor_value
dict_index = dict_index + 1
else:
pass
if O_put_into_dict_num in pick_list:
dict_result[dict_index] = tensor_value
dict_index = dict_index + 1
else:
pass
O_put_into_dict_num = O_put_into_dict_num + 1
flag_num = flag_num + 1
total_penalties += loss.cpu().item()
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.5) # ori
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # onto
optimizer.step()
scheduler.step()
time_con = time.time() - time_start
return total_penalties, time_con, dict_result, softlabel_matrix_new
@staticmethod
def test(model, dataset, eval_path, dict_center, knn=False, theorhold=0 ,k=64):
model.eval()
time_start = time.time()
seqs, outputs, oracles = [], [], []
for sentences, segments in tqdm(dataset, ncols=50):
with torch.no_grad():
predictions = model.inference(sentences, dict_center, knn, theorhold, k)
seqs.extend(sentences)
outputs.extend([iob_tagging(e, len(u)) for e, u in zip(predictions, sentences)])
oracles.extend([iob_tagging(e, len(u)) for e, u in zip(segments, sentences)])
out_f1, out_precision, out_recall = f1_score(seqs, outputs, oracles, eval_path)
return out_f1, out_precision, out_recall, time.time() - time_start