-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEPIC.py
48 lines (41 loc) · 1.26 KB
/
EPIC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import matplotlib.pyplot as plt
import h5py
import fitsio
from SIP import SIP, eval_freq
def EPICSIP(EPIC, C, periods, nELC=150, plot=False):
'''
Given an EPIC ID, campaign number and period array,
produce a sip.
'''
fname = "ktwo%s-c%s_lpd-lc.fits" % (str(int(EPIC)), str(int(C)).zfill(2))
print fname, "found"
# load the data
data = fitsio.read(fname)
aps = fitsio.read(fname, 2)
y = data["flux"][:, np.argmin(aps["cdpp6"])]
x = data["time"]
q = data["quality"]
m = np.isfinite(y) * np.isfinite(x) * (q==0)
y, x = y[m], x[m]
y = y / np.median(y) - 1
nELC = 150
with h5py.File("c%s.h5" % C, "r") as f:
basis = f["basis"][:nELC, m]
if plot:
plt.clf()
plt.plot(x, y, "k")
plt.xlabel("BJD - 2454833 (days)")
plt.ylabel("Normalised Flux")
plt.savefig("%s_lc" % EPIC)
freqs = 1./periods
s2n, amp2s, w = SIP(x, y, basis, freqs)
if plot:
plt.clf()
plt.plot(periods, amp2s/max(amp2s), "r", label="amp2s")
plt.plot(periods, s2n/max(s2n), "k", label="s2n")
plt.legend()
plt.xlabel("Period (days)")
plt.ylabel("Relative (S/N)^2")
plt.savefig("%s_sip" % EPIC)
return x, y, s2n, amp2s, w