-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathChildTuningD.py
501 lines (430 loc) · 22.6 KB
/
ChildTuningD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import torch
from transformers import Trainer
from transformers.utils import logging
from transformers.file_utils import WEIGHTS_NAME, is_sagemaker_dp_enabled, is_apex_available, is_torch_tpu_available
from torch.utils.data.dataloader import DataLoader
from transformers.optimization import get_scheduler
from transformers.modeling_utils import PreTrainedModel
from transformers.integrations import hp_params
from transformers.deepspeed import deepspeed_init
from transformers.trainer_callback import TrainerState
from transformers.file_utils import is_torch_tpu_available
from transformers.integrations import is_fairscale_available
from torch.utils.data.distributed import DistributedSampler
from transformers.trainer_utils import speed_metrics, TrainOutput, set_seed
if is_fairscale_available():
from fairscale.optim import OSS
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
if is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.distributed as dist
from smdistributed.dataparallel.torch.parallel.distributed import DistributedDataParallel as DDP
else:
import torch.distributed as dist
if is_apex_available():
from apex import amp
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from tqdm import tqdm
import numpy as np
import warnings
import os
import math
import time
import collections
from ChildTuningOptimizer import ChildTuningAdamW
logger = logging.get_logger(__name__)
class ChildTuningDtrainer(Trainer):
def __init__(self, **kwargs):
self.reserve_p = kwargs.pop('reserve_p')
self.mode = kwargs.pop('mode')
super().__init__(**kwargs)
def calculate_fisher(self):
'''
Calculate Fisher Information for different parameters
'''
gradient_mask = dict()
model = self.model
model.train()
for name, params in model.named_parameters():
if 'layer' in name:
gradient_mask[params] = params.new_zeros(params.size())
# Now begin
train_dataloader = DataLoader(
self.train_dataset,
batch_size=self.args.per_device_train_batch_size,
shuffle=True,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
N = len(train_dataloader)
for inputs in tqdm(train_dataloader):
inputs.pop('idx')
inputs = self._prepare_inputs(inputs)
outputs = model(**inputs)
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
loss.backward()
for name, params in model.named_parameters():
if 'layer' in name:
torch.nn.utils.clip_grad_norm_(params, self.args.max_grad_norm)
gradient_mask[params] += (params.grad ** 2) / N
model.zero_grad()
print('Calculate Fisher Information')
# Numpy
r = None
for k, v in gradient_mask.items():
v = v.view(-1).cpu().numpy()
if r is None:
r = v
else:
r = np.append(r, v)
polar = np.percentile(r, (1-self.reserve_p)*100)
for k in gradient_mask:
gradient_mask[k] = gradient_mask[k] >= polar
print('Polar => {}'.format(polar))
# TODO: pytorch: torch.kthvalue
return gradient_mask
def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
"""
if self.optimizer is None:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer_cls = ChildTuningAdamW
optimizer_kwargs = {
"betas": (self.args.adam_beta1, self.args.adam_beta2),
"eps": self.args.adam_epsilon,
}
optimizer_kwargs["lr"] = self.args.learning_rate
self.optimizer = optimizer_cls(optimizer_grouped_parameters, mode=self.mode, **optimizer_kwargs)
if self.lr_scheduler is None:
self.lr_scheduler = get_scheduler(
self.args.lr_scheduler_type,
self.optimizer,
num_warmup_steps=self.args.warmup_steps,
num_training_steps=num_training_steps,
)
def train(
self,
resume_from_checkpoint: Optional[str] = None,
trial: Union["optuna.Trial", Dict[str, Any]] = None,
**kwargs,
):
"""
Main training entry point.
Args:
resume_from_checkpoint (:obj:`str`, `optional`):
Local path to a saved checkpoint as saved by a previous instance of :class:`~transformers.Trainer`. If
present, training will resume from the model/optimizer/scheduler states loaded here.
trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
The trial run or the hyperparameter dictionary for hyperparameter search.
kwargs:
Additional keyword arguments used to hide deprecated arguments
"""
if "model_path" in kwargs:
resume_from_checkpoint = kwargs.pop("model_path")
warnings.warn(
"`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` "
"instead.",
FutureWarning,
)
if len(kwargs) > 0:
raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.")
# This might change the seed so needs to run first.
self._hp_search_setup(trial)
# Model re-init
model_reloaded = False
if self.model_init is not None:
# Seed must be set before instantiating the model when using model_init.
set_seed(self.args.seed)
self.model = self.call_model_init(trial)
model_reloaded = True
# Reinitializes optimizer and scheduler
self.optimizer, self.lr_scheduler = None, None
# Load potential model checkpoint
if resume_from_checkpoint is not None and os.path.isfile(os.path.join(resume_from_checkpoint, WEIGHTS_NAME)):
logger.info(f"Loading model from {resume_from_checkpoint}).")
if isinstance(self.model, PreTrainedModel):
self.model = self.model.from_pretrained(resume_from_checkpoint)
model_reloaded = True
else:
state_dict = torch.load(os.path.join(resume_from_checkpoint, WEIGHTS_NAME))
self.model.load_state_dict(state_dict)
# If model was re-initialized, put it on the right device and update self.model_wrapped
if model_reloaded:
if not self.is_model_parallel:
self.model = self.model.to(self.args.device)
self.model_wrapped = self.model
# Keeping track whether we can can len() on the dataset or not
train_dataset_is_sized = isinstance(self.train_dataset, collections.abc.Sized)
# Data loader and number of training steps
train_dataloader = self.get_train_dataloader()
# Setting up training control variables:
# number of training epochs: num_train_epochs
# number of training steps per epoch: num_update_steps_per_epoch
# total number of training steps to execute: max_steps
if train_dataset_is_sized:
num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
if self.args.max_steps > 0:
max_steps = self.args.max_steps
num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
self.args.max_steps % num_update_steps_per_epoch > 0
)
else:
max_steps = math.ceil(self.args.num_train_epochs * num_update_steps_per_epoch)
num_train_epochs = math.ceil(self.args.num_train_epochs)
else:
# see __init__. max_steps is set when the dataset has no __len__
max_steps = self.args.max_steps
num_train_epochs = 1
num_update_steps_per_epoch = max_steps
if self.args.deepspeed:
model, optimizer, lr_scheduler = deepspeed_init(self, num_training_steps=max_steps)
self.model = model.module
self.model_wrapped = model # will get further wrapped in DDP
self.deepspeed = model # DeepSpeedEngine object
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
else:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
self.state = TrainerState()
self.state.is_hyper_param_search = trial is not None
# Check if saved optimizer or scheduler states exist
self._load_optimizer_and_scheduler(resume_from_checkpoint)
model = self.model_wrapped
# Mixed precision training with apex (torch < 1.6)
if self.use_apex:
model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
# Multi-gpu training (should be after apex fp16 initialization)
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if self.sharded_ddp:
model = ShardedDDP(model, self.optimizer)
elif is_sagemaker_dp_enabled():
model = DDP(model, device_ids=[dist.get_local_rank()], broadcast_buffers=False)
elif self.args.local_rank != -1:
if self.args.ddp_find_unused_parameters is not None:
find_unused_parameters = self.args.ddp_find_unused_parameters
elif isinstance(model, PreTrainedModel):
# find_unused_parameters breaks checkpointing as per
# https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
find_unused_parameters = not getattr(model.config, "gradient_checkpointing", False)
else:
find_unused_parameters = True
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[self.args.local_rank],
output_device=self.args.local_rank,
find_unused_parameters=find_unused_parameters,
)
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), DDP(Deepspeed(Transformers Model)), etc.
# Train!
if is_torch_tpu_available():
world_size = xm.xrt_world_size()
elif self.args.local_rank != -1:
world_size = dist.get_world_size()
else:
world_size = 1
total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps * world_size
num_examples = (
self.num_examples(train_dataloader)
if train_dataset_is_sized
else total_train_batch_size * self.args.max_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_steps}")
self.state.epoch = 0
start_time = time.time()
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if resume_from_checkpoint is not None and os.path.isfile(
os.path.join(resume_from_checkpoint, "trainer_state.json")
):
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, "trainer_state.json"))
epochs_trained = self.state.global_step // num_update_steps_per_epoch
if not self.args.ignore_data_skip:
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch)
steps_trained_in_current_epoch *= self.args.gradient_accumulation_steps
else:
steps_trained_in_current_epoch = 0
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {self.state.global_step}")
if not self.args.ignore_data_skip:
logger.info(
f" Will skip the first {epochs_trained} epochs then the first {steps_trained_in_current_epoch} "
"batches in the first epoch."
)
# Update the references
self.callback_handler.model = self.model
self.callback_handler.optimizer = self.optimizer
self.callback_handler.lr_scheduler = self.lr_scheduler
self.callback_handler.train_dataloader = train_dataloader
self.state.trial_name = self.hp_name(trial) if self.hp_name is not None else None
self.state.trial_params = hp_params(trial) if trial is not None else None
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
# to set this after the load.
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
tr_loss = torch.tensor(0.0).to(self.args.device)
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
self._total_loss_scalar = 0.0
self._globalstep_last_logged = self.state.global_step
self._total_flos = self.state.total_flos
model.zero_grad()
self.control = self.callback_handler.on_train_begin(self.args, self.state, self.control)
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
if not self.args.ignore_data_skip:
for epoch in range(epochs_trained):
# We just need to begin an iteration to create the randomization of the sampler.
for _ in train_dataloader:
break
# =================== HACK BEGIN =====================
if self.mode == 'ChildTuning-D':
gradient_mask = self.calculate_fisher()
self.optimizer.set_gradient_mask(gradient_mask)
# =================== HACK END =======================
for epoch in range(epochs_trained, num_train_epochs):
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
if is_torch_tpu_available():
parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
self.args.device
)
epoch_iterator = parallel_loader
else:
epoch_iterator = train_dataloader
# Reset the past mems state at the beginning of each epoch if necessary.
if self.args.past_index >= 0:
self._past = None
steps_in_epoch = (
len(epoch_iterator)
if train_dataset_is_sized
else self.args.max_steps * self.args.gradient_accumulation_steps
)
self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)
for step, inputs in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
if (step + 1) % self.args.gradient_accumulation_steps == 0:
self.control = self.callback_handler.on_step_begin(self.args, self.state, self.control)
if ((step + 1) % self.args.gradient_accumulation_steps != 0) and self.args.local_rank != -1:
# Avoid unnecessary DDP synchronization since there will be no backward pass on this example.
with model.no_sync():
tr_loss += self.training_step(model, inputs)
else:
tr_loss += self.training_step(model, inputs)
self._total_flos += self.floating_point_ops(inputs)
if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
steps_in_epoch <= self.args.gradient_accumulation_steps
and (step + 1) == steps_in_epoch
):
# Gradient clipping
if self.args.max_grad_norm is not None and self.args.max_grad_norm > 0 and not self.deepspeed:
# deepspeed does its own clipping
if self.use_amp:
# AMP: gradients need unscaling
self.scaler.unscale_(self.optimizer)
if hasattr(self.optimizer, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.optimizer.clip_grad_norm(self.args.max_grad_norm)
else:
# Revert to normal clipping otherwise, handling Apex or full precision
torch.nn.utils.clip_grad_norm_(
amp.master_params(self.optimizer) if self.use_apex else model.parameters(),
self.args.max_grad_norm,
)
# Optimizer step
if self.deepspeed:
self.deepspeed.step()
elif is_torch_tpu_available():
xm.optimizer_step(self.optimizer)
elif self.use_amp:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
self.lr_scheduler.step()
model.zero_grad()
self.state.global_step += 1
self.state.epoch = epoch + (step + 1) / steps_in_epoch
self.control = self.callback_handler.on_step_end(self.args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
self.control = self.callback_handler.on_epoch_end(self.args, self.state, self.control)
self._maybe_log_save_evaluate(tr_loss, model, trial, epoch)
if self.args.tpu_metrics_debug or self.args.debug:
if is_torch_tpu_available():
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
else:
logger.warning(
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
"configured. Check your training configuration if this is unexpected."
)
if self.control.should_training_stop:
break
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
if self.args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
logger.info(
f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric})."
)
if isinstance(self.model, PreTrainedModel):
self.model = self.model.from_pretrained(self.state.best_model_checkpoint)
if not self.is_model_parallel:
self.model = self.model.to(self.args.device)
else:
state_dict = torch.load(os.path.join(self.state.best_model_checkpoint, WEIGHTS_NAME))
self.model.load_state_dict(state_dict)
if self.deepspeed:
self.deepspeed.load_checkpoint(
self.state.best_model_checkpoint, load_optimizer_states=False, load_lr_scheduler_states=False
)
metrics = speed_metrics("train", start_time, self.state.max_steps)
if self._total_flos is not None:
self.store_flos()
metrics["total_flos"] = self.state.total_flos
self.log(metrics)
self.control = self.callback_handler.on_train_end(self.args, self.state, self.control)
# add remaining tr_loss
self._total_loss_scalar += tr_loss.item()
return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics)