-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
186 lines (151 loc) · 6.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/python
# encoding: utf-8
import sys
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Logger(object):
def __init__(self, filename = "train.log"):
self.terminal =sys.stdout
self.log = open(filename,"w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res
""" utils for fawa """
def tensor2np(img):
trans = transforms.Grayscale(1)
img = trans(img).squeeze(0)
return img.detach().cpu().numpy()
def np2tensor(img: np.array):
if len(img.shape) == 2:
img_tensor = torch.from_numpy(img).float() # bool to float
img_tensor = img_tensor.unsqueeze_(0).repeat(3, 1, 1)
if len(img.shape) == 3:
img_tensor = torch.from_numpy(img).float()
img_tensor = img_tensor.permute(2,0,1)
if torch.max(img_tensor) <= 1:
img_tensor = img_tensor * 255
img_tensor = img_tensor / 255.
return img_tensor.unsqueeze_(0).to(device) # add batch dim
def get_text_mask(img: np.array):
if img.max() <= 1:
return img < 1 / 1.25
else:
return img < 255 / 1.25
def cvt2Image(array):
if array.max() <= 0.5:
return Image.fromarray(((array + 0.5) * 255).astype('uint8'))
elif array.max() <= 1:
return Image.fromarray((array * 255).astype('uint8'))
elif array.max() <= 255:
return Image.fromarray(array.astype('uint8'))
def RGB2Hex(RGB): # RGB is a 3-tuple
color = '#'
for num in RGB:
color += str(hex(num))[-2:].replace('x', '0').upper()
return color
def color_map(grayscale):
gray_map = (grayscale - 255*0.299 - 0*0.114) / 0.587
return int(gray_map)
class CTCLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
dict_character = list(character)
self.dict = {}
for i, char in enumerate(dict_character):
# NOTE: 0 is reserved for 'CTCblank' token required by CTCLoss
self.dict[char] = i + 1
self.character = ['[CTCblank]'] + dict_character # dummy '[CTCblank]' token for CTCLoss (index 0)
def encode(self, text, batch_max_length=25):
"""convert text-label into text-index.
input:
text: text labels of each image. Note:in our dataset,label is list, and len=batch_size
batch_max_length: max length of text label in the batch. 25 by default
output:
text: text index for CTCLoss. [batch_size, batch_max_length]
length: length of each text. [batch_size]
"""
length = [len(s) for s in text]
# The index used for padding (=0) would not affect the CTC loss calculation.
batch_text = torch.LongTensor(len(text), batch_max_length).fill_(0)
for i, t in enumerate(text):
text = list(t)
text = [self.dict[char] for char in text] #index of char in text, shape=[len(text)]单词长度
batch_text[i][:len(text)] = torch.LongTensor(text)
return (batch_text.to(device), torch.IntTensor(length).to(device)) # [b, 25], list:b(16)
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
index = 0
for l in length:
t = text_index[index:index + l]
char_list = []
for i in range(l):
if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank.
char_list.append(self.character[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts
class AttnLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
list_token = ['[GO]', '[s]'] # ['[s]','[UNK]','[PAD]','[GO]']
list_character = list(character)
self.character = list_token + list_character
self.dict = {}
for i, char in enumerate(self.character):
# print(i, char)
self.dict[char] = i
def encode(self, text, batch_max_length=25):
""" convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
batch_max_length: max length of text label in the batch. 25 by default
output:
text : the input of attention decoder. [batch_size x (max_length+2)] +1 for [GO] token and +1 for [s] token.
text[:, 0] is [GO] token and text is padded with [GO] token after [s] token.
length : the length of output of attention decoder, which count [s] token also. [3, 7, ....] [batch_size]
"""
length = [len(s) + 1 for s in text] # +1 for [s] at end of sentence.
# batch_max_length = max(length) # this is not allowed for multi-gpu setting
batch_max_length += 1
# additional +1 for [GO] at first step. batch_text is padded with [GO] token after [s] token.
batch_text = torch.LongTensor(len(text), batch_max_length + 1).fill_(0)
for i, t in enumerate(text):
text = list(t)
text.append('[s]')
text = [self.dict[char] for char in text]
batch_text[i][1:1 + len(text)] = torch.LongTensor(text) # batch_text[:, 0] = [GO] token
return (batch_text.to(device), torch.IntTensor(length).to(device))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts