-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSLR2.py
executable file
·408 lines (305 loc) · 9.78 KB
/
SLR2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import elasticNetLinReg as enet
from glmnet import glmnet
import numpy as np
import cvTools as st
import regStat
class SLR(object):
"""Object that has properties and methods
to run sparse linear regression using
lasso or elastic nets.
"""
def __init__(self,X,y):
self._X = X
self._y = y
def fit(self,nSamp=100,alphaList=np.array([1])):
#np.arange(.1,1.1,.1)
X = self._X
y = self._y
nObs,nRegs = X.shape
sdY = np.sqrt(np.var(y))
self._sdY = sdY
# selection via bootstrap
bestMin = 1E10
for a in alphaList:
tmpErr,tmpEnm,allVals = fitSampling(X,y,a,nSamp,method='bs')
tmpErrV = tmpErr.mErr
tmpMin = np.min(tmpErrV)
if tmpMin < bestMin:
bestMin = tmpMin
modelIndex = np.argmin(tmpErrV)
enm = tmpEnm
err = tmpErr
alpha = a
# important values
self._lam = enm.lambdas[modelIndex]
self._yHat = enm.predict(X)[:,modelIndex]
self._intercept = enm.intercept[modelIndex]
self._globalCoef = enm.coef[np.abs(enm.coef[:,modelIndex])>1E-21,modelIndex]
coefIndex = enm.indices[np.abs(enm.coef[:,modelIndex])>1E-21]
self._coefIndex = coefIndex
self._notEmpty = len(coefIndex) > 0
self._alpha = alpha
def estStErr(self,nSamp=100):
X = self._X
y = self._y
nObs,nRegs = X.shape
lam = self._lam
yHat = self._yHat
intercept= self._intercept
globalCoef = self._globalCoef
coefIndex = self._coefIndex
notEmpty = self._notEmpty
alpha = self._alpha
# get the bootstrap residual response samples
res = y - yHat
resCent = res-np.mean(res)
ySample = np.zeros((nObs,nSamp))
self._ySample = ySample
for i in range(nSamp):
resSample = st.sampleWR(resCent)
ySample[:,i] = yHat+resSample
if notEmpty:
# working on subset now
Xhat = X[:,coefIndex]
self._Xhat = Xhat
nObs,nRegsHat = Xhat.shape
sdXhat = np.sqrt(np.var(Xhat,0))
self._sdXhat = sdXhat
# residual bs time
sumErr = 0
sumSqErr = 0
sumNullErr = 0
sumSqNullErr = 0
sc = np.zeros(nRegsHat)
sSqc = np.zeros(nRegsHat)
sumSup = np.zeros(nRegsHat)
for i in range(nSamp):
# cv to get the errors
err,tmpEnm,tmpallVals = fitSampling(Xhat,ySample[:,i],alpha,10,method='cv',lambdas=[lam])
sumErr = err.mErr[0] + sumErr
sumSqErr = err.mErr[0]**2 + sumSqErr
# cv over this thing to get the null model errors
nullErr,a = fitSamplingNull(ySample[:,i],10, method='cv')
sumNullErr = sumNullErr + nullErr
sumSqNullErr = sumSqNullErr + nullErr**2
# need the coef
# they change so we need to map the back to the original
tmpEnm = enet.fit(Xhat,ySample[:,i], alpha,lambdas=[lam])
sc[tmpEnm.indices] = sc[tmpEnm.indices] + tmpEnm.coef[:,0]
sSqc[tmpEnm.indices] = sSqc[tmpEnm.indices] + tmpEnm.coef[:,0]**2
# find supports
occur = np.zeros(len(tmpEnm.coef[:,0]))
occur[abs(tmpEnm.coef[:,0])>1E-25] = 1.0
sumSup[tmpEnm.indices] = sumSup[tmpEnm.indices] + occur
# get averages and variances
aveErr = sumErr/nSamp
self._aveErr = aveErr
self._sdErr = np.sqrt(sumSqErr/nSamp - aveErr**2)
aveNullErr = sumNullErr/nSamp
self._aveNullErr=aveNullErr
self._sdNullErr = np.sqrt(sumSqNullErr/nSamp - aveNullErr**2)
aveCoef = sc/nSamp
self._aveCoef = aveCoef
self._sdCoef = np.sqrt(sSqc/nSamp - aveCoef**2)
self._pSup = sumSup/nSamp
else:
# residual bs time
sumNullErr = 0
sumSqNullErr = 0
for i in range(nSamp):
# cv over this thing to get the null model errors
nullErr,a = fitSamplingNull(ySample[:,i],10, method='cv')
sumNullErr = sumNullErr + nullErr
sumSqNullErr = sumSqNullErr + nullErr**2
# get averages and variances
aveNullErr = sumNullErr/nSamp
sdNullErr = np.sqrt(sumSqNullErr/nSamp - aveNullErr**2)
self._aveNullErr = aveNullErr
self._sdNullErr = sdNullErr
self._aveErr = aveNullErr
self._sdErr = sdNullErr
def estImp(self):
Xhat = self._Xhat
nObs,nRegsHat = Xhat.shape
ySample = self._ySample
_, nSamp = ySample.shape
y = self._y
lam = self._lam
yHat = self._yHat
intercept= self._intercept
globalCoef = self._globalCoef
coefIndex = self._coefIndex
notEmpty = self._notEmpty
alpha = self._alpha
if notEmpty:
# let do the leave one out importance deal
codN = np.zeros(nRegsHat)
if nRegsHat>1:
for j in range(nRegsHat):
Xprime = np.delete(Xhat,j,axis=1)
# residual bs time
sumErr = 0
sumSqErr = 0
for i in range(nSamp):
# cv to get the errors
err,tmpenm,tmpallVals = fitSampling(Xprime,ySample[:,i],alpha,10,method='cv',lambdas=[lam])
sumErr = err.mErr[0] + sumErr
sumSqErr = err.mErr[0]**2 + sumSqErr
codN[j] = sumErr/nSamp
elif nRegsHat==1:
codN[0] = self._aveNullErr
self._codN = codN
# lets do leave only one
cod1 = np.zeros(nRegsHat)
for j in range(nRegsHat):
Xprime = np.zeros((nObs,1))
Xprime[:,0] = Xhat[:,j]
# residual bs time
sumErr = 0
sumSqErr = 0
for i in range(nSamp):
# cv to get the errors
err,tmpenm,tmpallVals = fitSampling(Xprime,ySample[:,i],alpha,10,method='cv',lambdas=[lam])
sumErr = err.mErr[0] + sumErr
sumSqErr = err.mErr[0]**2 + sumSqErr
cod1[j] = sumErr/nSamp
self._cod1 = cod1
def save(self,name):
# we have it all, lets print it
f = open('SLR2run_'+name+'.dat','w')
self._lam.tofile(f,sep="\t")
f.write("\n")
self._alpha.tofile(f,sep="\t")
f.write("\n")
self._intercept.tofile(f,sep="\t")
f.write("\n")
self._aveErr.tofile(f,sep="\t")
f.write("\n")
self._sdErr.tofile(f,sep="\t")
f.write("\n")
self._aveNullErr.tofile(f,sep="\t")
f.write("\n")
self._sdNullErr.tofile(f,sep="\t")
f.write("\n")
self._sdY.tofile(f,sep="\t")
f.write("\n")
if self._notEmpty:
self._coefIndex.tofile(f,sep="\t")
f.write("\n")
self._sdXhat.tofile(f,sep="\t")
f.write("\n")
self._globalCoef.tofile(f,sep="\t")
f.write("\n")
self._aveCoef.tofile(f,sep="\t")
f.write("\n")
self._sdCoef.tofile(f,sep="\t")
f.write("\n")
self._pSup.tofile(f,sep="\t")
f.write("\n")
self._codN.tofile(f,sep="\t")
f.write("\n")
self._cod1.tofile(f,sep="\t")
f.write("\n")
f.close()
def fitSampling(regressors, response, alpha, nSamp, method='cv',
memlimit=None, largest=None, **kwargs):
"""Performs an elastic net constrained linear regression,
see fit, with selected sampleing method to estimate errors
using nSamp number of sampleings.
methods:
'cv' cross validation with nSamp number of folds
'bs' bootstrap
'bs632' boostrap 632 (weighted average of bs and training error)
Returns a TrainingError object (cvTools) and an
ENetModel object for the full fit (err,enm).
Function requires cvTools
"""
nObs,nRegs = regressors.shape
# get the full model fit
fullEnm = enet.fit(regressors, response, alpha, memlimit,
largest, **kwargs)
# get the lambda values determined in the full fit (going to force these lambdas for all cv's)
lam = fullEnm.lambdas
# the lambdas may have been user defined, don't want it defined twice
if kwargs.has_key('lambdas'):
del kwargs['lambdas']
# lets partition the data via our sampling method
if method=='cv':
t,v = st.kFoldCV(range(nObs),nSamp,randomise=True)
elif (method=='bs') or (method=='bs632'):
t,v = st.kRoundBS(range(nObs),nSamp)
else:
raise ValueError('Sampling method not correct')
# lets consider many versions of errors
# with our error being mean squared error
# we want the epected mean squared error
# and the corisponding variance over the diffrent versions
nModels = len(lam)
smse = np.zeros(nModels)
sSqmse = np.zeros(nModels)
allVals = np.zeros((nModels,nSamp))
# loop through the folds
for i in range(nSamp):
# get the training values
X = regressors[t[i]]
y = response[t[i]]
enm = enet.fit(X, y, alpha, memlimit,
largest, lambdas=lam, **kwargs)
# get the validation values
Xval = regressors[v[i]]
Yval = response[v[i]]
nVal = float(len(Yval))
# get the predicted responses from validation regressors
Yhat = enm.predict(Xval)
# what is the mean squared error?
# notice the T was necassary to do the subtraction
# the rows are the models and the cols are the observations
mse = np.sum((Yhat.T-Yval)**2,1)/nVal
# sum the rows (errors for given model)
smse = smse + mse
sSqmse = sSqmse + mse**2
allVals[:,i] = mse
# now it is time to average and send back
# I am putting the errors in a container
nSampFlt = float(nSamp)
meanmse = smse/nSampFlt
varmse = sSqmse/nSampFlt - meanmse**2
if method=='bs632':
yhat = fullEnm.predict(regressors)
resubmse = np.sum((yhat.T-response)**2,1)/float(nObs)
meanmse = 0.632*meanmse+(1-0.632)*resubmse
err = enet.ENetTrainError(lam,nSamp,meanmse,varmse,[0],[0],alpha)
err.setParamName('lambda')
fullEnm.setErrors(err.mErr)
return err, fullEnm, allVals
def fitSamplingNull(response,nSamp, method='cv',
memlimit=None, largest=None, **kwargs):
nObs = len(response)
# lets partition the data via our sampling method
if method=='cv':
t,v = st.kFoldCV(range(nObs),nSamp,randomise=True)
elif (method=='bs') or (method=='bs632'):
t,v = st.kRoundBS(range(nObs),nSamp)
else:
raise ValueError('Sampling method not correct')
smse = 0
sSqmse = 0
for i in range(nSamp):
# get the training values
y = response[t[i]]
Yval = response[v[i]]
nVal = float(len(Yval))
mse = np.sum((Yval-np.mean(y))**2)/nVal
# sum the rows (errors for given model)
smse = smse + mse
sSqmse = sSqmse + mse**2
# now it is time to average and send back
# I am putting the errors in a container
nSampFlt = float(nSamp)
meanmse = smse/nSampFlt
varmse = sSqmse/nSampFlt - meanmse**2
if method=='bs632':
yhat = fullEnm.predict(regressors)
resubmse = np.sum((yhat.T-response)**2,1)/float(nObs)
meanmse = 0.632*meanmse+(1-0.632)*resubmse
return meanmse, varmse