-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_uqgan.py
260 lines (220 loc) · 6.97 KB
/
train_uqgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from logging import Logger
import matplotlib
from pytorch_lightning import Trainer
from sacred import Experiment
from sacred.config.config_dict import ConfigDict
from sacred.run import Run
from torch.utils.data import DataLoader
matplotlib.use("Agg")
from copy import deepcopy
from pytorch_lightning.callbacks import ModelCheckpoint
from cae_models import cae_models, load_cae_model
from cae_models.identity import IdentityCAE
from cls_models import cls_models, load_cls_model
from cls_models.base import BaseClassifier
from config import Config
from datasets import datasets, load_data
from gan_models import gan_models, load_gan_model
from logging_utils import log_config
from logging_utils.lightning_sacred import SacredLogger
from options import print_options
from uqgan import UQGAN, CustomCheckpointIO
from utils import (
AVAILABLE_REG_TYPES,
TimeEstimator,
get_accelerator_device,
init_experiment,
register_exp_folder,
)
ex = Experiment(
"train_uqgan",
ingredients=[datasets, gan_models, cls_models, cae_models],
)
init_experiment(ex)
sacred_logger = SacredLogger(ex)
xymin = None
xymax = None
@cls_models.config
def cls_models_config_update(cfg):
cfg["method"] = "uqgan"
@datasets.config
def dataset_config_update(cfg):
cfg["static"] = False
cfg["mode"] = "train"
@ex.config
def config(dataset, cls_model):
tags = [dataset["cfg"]["name"]] # noqa: F841
args = dict( # noqa: F841
iterations=10000, # Total generator iterations
batch_size=256,
discriminator_iterations=5,
classifier_iterations=5,
gpu=0,
lambda_gp=10,
lambda_reg_loss=32,
lambda_cl_loss=2,
lambda_real_ood=0.6,
reg_type="logcosine",
save_folder=Config.root_save_folder,
num_workers=8,
val_check_interval=2,
ood_datasets=None, # datasets to use for evaluating ood detection performance
)
opt = dict( # noqa: F841
lr=2e-4,
lr_cls=1e-3,
min_lr=1e-5,
weight_decay=0,
)
if cls_model["cfg"].get("mc_dropout", 0.0) > 0:
args["mc_samples"] = 5
if "reg_weight" in args:
if len(args["reg_type"].split(",")) != len(
args["reg_weight"]
) or not isinstance( # type: ignore
args["reg_weight"], list
):
raise ValueError(
(
"Invalid 'reg_weight' config. "
"'reg_weight' should be a comma separated list of numers "
"with the same length as 'reg_type'. "
f"Got 'reg_type': {args['reg_type']} and "
f"'reg_weight': {args['reg_weight']}"
)
)
for reg_t in args["reg_type"].split(","): # type: ignore
if reg_t not in AVAILABLE_REG_TYPES:
raise ValueError(f"Unknown regularization type '{reg_t}'")
del reg_t
@ex.command(unobserved=True)
def options(args, opt, dataset, cls_model, cae_model):
used_options = set(
[
"enable_progress_bar",
"lr_disc",
"lr_gen",
"mc_samples",
"min_lr_cls",
"min_lr_disc",
"min_lr_gen",
"weight_decay_cls",
"weight_decay_disc",
"weight_decay_gen",
"cls_models",
"datasets",
]
)
used_options = used_options.union(
set(
list(args.keys())
+ list(opt.keys())
+ list(dataset["cfg"].keys())
+ list(cls_model["cfg"].keys())
+ list(cae_model["cfg"].keys())
)
)
print_options(used_options)
@ex.automain
def main( # type: ignore
args: ConfigDict,
opt: ConfigDict,
gan_model: ConfigDict,
cae_model: ConfigDict,
dataset: ConfigDict,
_run: Run,
_log: Logger,
):
log_config(_run, _log)
exp_folder = register_exp_folder(args["save_folder"], _run)
########################################
# Set devices
########################################
accelerator, devices = get_accelerator_device(args["gpu"])
########################################
# Load dataset and model
########################################
traindat, sampler = load_data()
valdat, _ = load_data(static=True, mode="eval")
trainloader = DataLoader(
traindat,
batch_size=args["batch_size"],
shuffle=True if sampler is None else False,
sampler=sampler,
num_workers=args["num_workers"],
drop_last=True,
)
valloader = DataLoader(
valdat,
batch_size=args["batch_size"],
shuffle=False,
num_workers=args["num_workers"],
)
classifier = load_cls_model(cl_dim=dataset["cfg"]["cl_dim"]) # type: BaseClassifier
classifier.compute_rel_class_frequencies(trainloader)
if dataset["cfg"]["name"].lower().startswith("toy"):
overwrite_gan_cfg = dict(
name="toy", output_size=2, input_size=2, cl_dim=traindat.CL_DIM
)
else:
overwrite_gan_cfg = dict(
name="toy",
output_size=cae_model["cfg"]["latent_dim"],
input_size=cae_model["cfg"]["latent_dim"],
cl_dim=dataset["cfg"]["cl_dim"],
)
generator, discriminator = load_gan_model(**overwrite_gan_cfg)
gen_config = deepcopy(gan_model)
gen_config.update(overwrite_gan_cfg)
if dataset["cfg"]["name"].lower().startswith("toy"):
cae = IdentityCAE()
else:
cae = load_cae_model()
uqgan = UQGAN(
classifier=classifier,
generator=generator,
discriminator=discriminator,
cae=cae,
args=args,
dataset=dataset,
opt=opt,
)
checkpoint_callback = ModelCheckpoint(
exp_folder,
monitor="val_acc",
mode="max",
save_last=True,
filename="uqgan",
)
time_estimator_callback = TimeEstimator(
max_iterations=args["iterations"],
logger=_log,
interval="step",
divider=1
+ args.get("discriminator_iterations", 1)
+ args.get("classifier_iterations", 1),
)
custom_checkpoint_io = CustomCheckpointIO()
trainer = Trainer(
default_root_dir=exp_folder,
logger=sacred_logger,
accelerator=accelerator,
devices=devices,
callbacks=[checkpoint_callback, time_estimator_callback],
plugins=[custom_checkpoint_io],
max_steps=args["iterations"]
* (
1
+ args.get("discriminator_iterations", 1)
+ args.get("classifier_iterations", 1)
),
max_epochs=-1,
enable_progress_bar=args.get("enable_progress_bar", False),
log_every_n_steps=5,
check_val_every_n_epoch=None,
val_check_interval=args.get("val_check_interval"),
)
########################################
# Training
########################################
trainer.fit(uqgan, train_dataloaders=trainloader, val_dataloaders=valloader)