-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceid.py
146 lines (121 loc) · 5.66 KB
/
faceid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import pickle
import numpy as np
import cv2
import face_recognition
import cvzone
import firebase_admin
from firebase_admin import credentials
from firebase_admin import db
from firebase_admin import storage
from datetime import datetime
cred = credentials.Certificate("serviceAccountKey.json")
firebase_admin.initialize_app(cred, {
'databaseURL': "/",
'storageBucket': "/"
})
bucket = storage.bucket()
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
imgBackground = cv2.imread('Resources/background.png')
folderModePath = 'Resources/Modes'
modePathList = os.listdir(folderModePath)
imgModeList = []
for path in modePathList:
imgModeList.append(cv2.imread(os.path.join(folderModePath, path)))
#print(len(imgModeList))
print("Loading Encode File ...")
file = open('EncodeFile.p', 'rb')
encodeListKnownWithIds = pickle.load(file)
file.close()
encodeListKnown, studentIds = encodeListKnownWithIds
#print(studentIds)
print("Encode File Loaded")
modeType = 0
counter = 0
id = -1
imgStudent = []
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0,0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
faceCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, faceCurFrame)
imgBackground[162:162+480, 55:55+640] = img
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if faceCurFrame:
for encodeFace, faceLoc in zip(encodeCurFrame, faceCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
#print("matches", matches)
#print("faceDis", faceDis)
matchIndex = np.argmin(faceDis)
#print("Match Index", matchIndex)
if matches[matchIndex]:
#print("Known Face Detected")
#print(studentIds[matchIndex])
y1,x2,y2,x1 = faceLoc
y1, x2, y2, x1 =y1*4,x2*4,y2*4,x1*4
bbox = 55 + x1, 162 +y1,x2-x1, y2-y1
imgBackground = cvzone.cornerRect(imgBackground, bbox, rt=0)
id = studentIds[matchIndex]
if counter == 0:
cv2.waitKey(1)
counter = 1
modeType = 1
if counter != 0:
if counter == 1:
studentInfo = db.reference(f'Students/{id}').get()
print(studentInfo)
blob = bucket.get_blob(f'Images/{id}.png')
array = np.frombuffer(blob.download_as_string(), np.uint8)
imgStudent = cv2.imdecode(array,cv2.COLOR_BGRA2BGR)
dateTimeObject = datetime.strptime(studentInfo['last_attendance_time'],
"%Y-%m-%d %H:%M:%S")
secondsElapsed = (datetime.now()-dateTimeObject).total_seconds()
print(secondsElapsed)
if secondsElapsed > 30:
ref = db.reference(f'Students/{id}')
studentInfo['total_attendance'] += 1
ref.child('total_attendance').set(studentInfo['total_attendance'])
ref.child('last_attendance_time').set(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
else:
modeType = 3
counter = 0
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if modeType != 3:
if 10<counter<20:
modeType = 2
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if counter<=10:
cv2.putText(imgBackground, str(studentInfo['total_attendance']), (861, 125),
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['major']), (1006, 550),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(id), (1006, 493),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['standing']), (910, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['year']), (1025, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['starting_year']), (1125, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
(w, h), _ = cv2.getTextSize(studentInfo['name'], cv2.FONT_HERSHEY_COMPLEX, 1, 1)
offset = (414 - w) // 2
cv2.putText(imgBackground, str(studentInfo['name']), (808 + offset, 445),
cv2.FONT_HERSHEY_COMPLEX, 1, (50, 50, 50), 1)
imgBackground[175:175+216, 909:909+216] = imgStudent
counter += 1
if counter >=20:
counter = 0
modeType = 0
studentInfo = []
imgStudent = []
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
else:
modeType = 0
counter = 0
#cv2.imshow("Webcam", img)
cv2.imshow("Face Attendance", imgBackground)
cv2.waitKey(1)