-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
454 lines (421 loc) · 19.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from scipy.spatial import distance_matrix
import numpy as np
import cv2
import os
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.cluster import KMeans
import scipy.io
from PIL import Image
import math
from skimage import color
from skimage.future import graph
from random import randint
def readImagesPath(path):
dataName = path
dataDir = "" + dataName
trainData = []
for ImageName in os.listdir(dataDir):
ImagePath = os.path.join(dataDir, ImageName)
trainData += [ImagePath]
# return all images paths
return trainData
#########################################################################################################################################################
def imgRGBread(images):
rgbImages = [] # 3D images
vectorizedImages = []
for i in range(0, len(images)):
image = mpimg.imread(images[i])
rgbImages.append(image)
# Blur image to reduce the edge content and makes the transition form one color to the other very smooth.
# Check video:https://www.youtube.com/watch?list=PLQVvvaa0QuDdttJXlLtAJxJetJcqmqlQq&v=sARklx6sgDk
image = cv2.GaussianBlur(rgbImages[i], (7, 7), 0)
# convert image to (M*N)*3 Matrix
vectorizedImages.append(image.reshape(-1, 3))
return rgbImages, vectorizedImages
#########################################################################################################################################################
def imgRGBreadOneImage(imagePath):
rgbImages = [] # 3D images
vectorizedImage = []
image = mpimg.imread(imagePath)
rgbImages.append(image)
# Blur image to reduce the edge content and makes the transition form one color to the other very smooth.
# Check video:https://www.youtube.com/watch?list=PLQVvvaa0QuDdttJXlLtAJxJetJcqmqlQq&v=sARklx6sgDk
image = cv2.GaussianBlur(image, (7, 7), 0)
# convert image to (M*N)*3 Matrix
vectorizedImage.append(image.reshape(-1, 3))
return rgbImages, vectorizedImage
#########################################################################################################################################################
def kmeans(dataSet, k):
# I/p one of the images of vectorized Images list
numOfPoints = len(dataSet)
# k random initial points
randomIndeces = np.random.choice(numOfPoints, k, replace=False)
centers = []
for i in range(0, len(randomIndeces)):
centers.append(dataSet[randomIndeces[i]])
centersOld = [0] * k
clusterAssignment = [0] * len(dataSet)
start = 0
while (1):
flag = 0
if start != 0:
for i in range(0, k):
if centersOld[i] != centers[i]:
centersOld[i] = centers[i]
else:
flag += 1
start = 1
if flag == k:
return (centers, clusterAssignment)
# distance between points and centers matrix
distMatrix = distance_matrix(dataSet, centers, p=2)
for i in range(0, numOfPoints):
# closest center
d = distMatrix[i]
closestCenter = (np.where(d == np.min(d)))[0][0]
# associate point to closest center
clusterAssignment[i] = closestCenter
# new centers
for i in range(0, k):
sumX = 0
sumY = 0
sumZ = 0
count = 0
for j in range(0, numOfPoints):
if (clusterAssignment[j] == i):
sumX += (dataSet[j])[0]
sumY += (dataSet[j])[1]
sumZ += (dataSet[j])[2]
count += 1
centers[i] = (sumX / count, sumY / count, sumZ / count)
return (centers, clusterAssignment)
#########################################################################################################################################################
def __extractGrondTruthMatrix(mat):
_groundTruthLabelVectorList = []
_groundTruthMatrixes = []
for _groundTruthMatrix in mat["groundTruth"][0]:
_groundTruthMatrix = _groundTruthMatrix[0][0][0]
_groundTruthMatrixes.append(_groundTruthMatrix)
tempList = []
for row in _groundTruthMatrix:
tempList.extend(row.tolist())
_groundTruthLabelVectorList.append(tempList)
return _groundTruthMatrixes,_groundTruthLabelVectorList
#########################################################################################################################################################
def __getGroundTruthLabels(groundTruthMatrix,image):
_labelsDict = {}
i = -1
for row in groundTruthMatrix:
i += 1
j = -1
for key in row:
j += 1
if key not in _labelsDict:
ima = image[i][j]
_labelsDict.update({key:[ima[2],ima[1],ima[0]]})
return _labelsDict
#########################################################################################################################################################
def getGroundTruthLabelsAndGenerateImage(matPath,imagePath):
image = cv2.imread(imagePath)
mat = scipy.io.loadmat(matPath)
_groundTruthMatrixes,_groundTruthLabelVectorList = __extractGrondTruthMatrix(mat)
for z in range(len(_groundTruthMatrixes)):
groundTruthMatrix = _groundTruthMatrixes[z]
labelsDict = __getGroundTruthLabels(groundTruthMatrix,image)
rowsNumber = len(groundTruthMatrix)
colsNumber = len(groundTruthMatrix[0])
rgbArray = np.zeros((rowsNumber, colsNumber, 3), 'uint8')
for i in range(rowsNumber):
for j in range(colsNumber):
rgbArray[i][j] = labelsDict[groundTruthMatrix[i][j]]
img = Image.fromarray(rgbArray)
img.save('groundTruth#'+str(z)+'.jpg')
return _groundTruthLabelVectorList
#########################################################################################################################################################
def purityOfEachClass(labels, groundTruth2, k=3, sorted=True):
groundTruthLabesNumber = 0
for i in range(len(groundTruth2)):
if groundTruthLabesNumber < groundTruth2[i]:
groundTruthLabesNumber = groundTruth2[i]
groundTruthLabesNumber += 1
dataInClusterindexies = []
for i in range(k):
dataInClusterindexies.append([])
for i in range(len(groundTruth2)):
dataInClusterindexies[labels[i]].append(i)
listNij = []
for i in range(k):
list = [0] * (groundTruthLabesNumber)
listNij.append(list)
for i in range(k):
for j in range(len(dataInClusterindexies[i])):
listNij[i][groundTruth2[dataInClusterindexies[i][j]]] += 1
finalListNij = []
for i in range(k):
list = [0] * (groundTruthLabesNumber)
finalListNij.append(list)
for i in range(k):
for j in range(groundTruthLabesNumber):
finalListNij[i][j] = (listNij[i][j], j + 1)
groundtruthList = [0] * (groundTruthLabesNumber)
for j in range(groundTruthLabesNumber):
sum = 0
for i in range(k):
sum += finalListNij[i][j][0]
groundtruthList[j] = sum
if sorted == True:
for i in range(k):
finalListNij[i].sort(reverse=True)
return finalListNij, groundtruthList, groundTruthLabesNumber
#########################################################################################################################################################
def calculatePurity(labels, groundTruth, k=3):
listNij, groundtruthList, groundTruthLabesNumber = purityOfEachClass(labels, groundTruth, k)
sum = 0
for i in range(k):
sum += listNij[i][0]
purity = sum / len(labels)
return purity
#########################################################################################################################################################
def calculateF_Measure(labels, groundTruth, k=3):
listNij, groundtruthList, groundTruthLabesNumber = purityOfEachClass(labels, groundTruth, k)
NumberOfElementsInEachCluster = [0] * k
for i in range(k):
for j in range(len(listNij[i])):
NumberOfElementsInEachCluster[i] += listNij[i][j][0]
listF_measure = [0]*k
for i in range(k):
if NumberOfElementsInEachCluster[i] == 0:
listF_measure[i] = 0
else:
if i > (len(groundtruthList) - 1):
listF_measure[i] = ((2 * listNij[i][0][0]) / (NumberOfElementsInEachCluster[i]))
else:
listF_measure[i] = ((2 * listNij[i][0][0]) / (NumberOfElementsInEachCluster[i] + groundtruthList[listNij[i][0][1]-1]))
sum = 0
for i in range(k):
sum += listF_measure[i]
f_Measure = sum / k
return f_Measure
#########################################################################################################################################################
def calculateConditionalEntropy(labels, groundTruth, k=3):
listNij, groundtruthList, groundTruthLabesNumber = purityOfEachClass(labels, groundTruth, k, sorted=False)
sizeOfData = len(groundTruth)
numberOfElementsInEachCluster = [0] * k
entropyOfEachCluster = [0] * k
for i in range(k):
for j in range(groundTruthLabesNumber):
numberOfElementsInEachCluster[i] += listNij[i][j][0]
for i in range(k):
for j in range(groundTruthLabesNumber):
if numberOfElementsInEachCluster[i] != 0:
tempValue = listNij[i][j][0] / numberOfElementsInEachCluster[i]
if tempValue != 0:
entropyOfEachCluster[i] += (-tempValue) * math.log2((tempValue))
entropy = 0
for i in range(k):
entropy += (numberOfElementsInEachCluster[i] / sizeOfData) * entropyOfEachCluster[i]
return entropy
#########################################################################################################################################################
def calculateEntropyAndF_measure(clustersLabels,groundTruthLabelsVectorList , k=3):
entropySum = 0
f_measureSum = 0
i = -1
maxEntropy = 99999
maxF_measure = 0
bestGroundTruthLabels = 0
for groundTruthLabelVector in groundTruthLabelsVectorList:
i += 1
condEntropy = calculateConditionalEntropy(clustersLabels, groundTruthLabelVector, k=k)
fMeasure = calculateF_Measure(clustersLabels, groundTruthLabelVector, k=k)
entropySum += condEntropy
f_measureSum += fMeasure
if condEntropy < maxEntropy and fMeasure > maxF_measure:
bestGroundTruthLabels = groundTruthLabelVector
avgEntropy = entropySum/i
avgf_measure = f_measureSum/i
return avgEntropy,(1-avgf_measure),bestGroundTruthLabels
#########################################################################################################################################################
def normalizedCut(testRGBImage,imagePath,clustersLabels,groundTruthLabelVector,k):
image = mpimg.imread(imagePath)
#Compute the Region Adjacency Graph
g = graph.rag_mean_color(testRGBImage, np.reshape(clustersLabels,(nrows,ncols)), mode='similarity')
#Perform Normalized Graph cut on the Region Adjacency Graph.
labels = graph.cut_normalized(np.reshape(clustersLabels,(nrows,ncols)), g)
#return labels
return labels
#########################################################################################################################################################
def resShape_2D_ListTo_1D(inputlist):
listToReturn = []
for row in inputlist:
listToReturn.extend(row)
return listToReturn
#########################################################################################################################################################
#Bounus
def eklidianDistance(x,y,xCor,yCor):
result = 0
for i in range(len(x)):
result += (x[i]-y[i])*(x[i]-y[i])
for i in range(len(xCor)):
result += (xCor[i]-yCor[i])*(xCor[i]-yCor[i])
return math.sqrt(result)
#########################################################################################################################################################
def k_meanAlgUsingRBGAndPixelPosition(dataMatrix,imageWidth,k=1,prevCenters=[]):
if len(dataMatrix) < k:
return "error k must be equal number of clusters"
thereIsChange = True
centers = []
centersCoordinate = []
for i in range(k):
index = randint(0, (len(dataMatrix)-1))
newcenter = dataMatrix[index].tolist()
centerCoordinate = [(index//imageWidth),(index%imageWidth)]
while newcenter in centers or centerCoordinate in centersCoordinate :
index = randint(0, (len(dataMatrix) - 1))
newcenter = dataMatrix[index].tolist()
centerCoordinate = [(index // imageWidth), (index % imageWidth)]
centersCoordinate.append(centerCoordinate)
centers.append(newcenter)
loops = 0
while thereIsChange and loops < 20:
# print(loops)
loops +=1
labels = []
distances = []
prevCentersInLoop = []
prevCentersCoordiantesInLoop = []
for i in range(k):
list = []
for j in range(len(dataMatrix)):
dataCoordinate = [(j // imageWidth), (j % imageWidth)]
list.append((eklidianDistance(centers[i],dataMatrix[j],centersCoordinate[i],dataCoordinate),j))
distances.append(list)
#calculate new centers
for i in range(len(centers)):
prevCentersInLoop.append(centers[i])
prevCentersCoordiantesInLoop.append(centersCoordinate[i])
for i in range(len(distances[0])):
min = 99999999
minLabel = 1
for j in range(len(centers)):
if min > distances[j][i][0]:
min = distances[j][i][0]
minLabel = j
labels.append(minLabel)
for i in range(0,k):
counter =0
calculateNewCenters = []
calculateNewCentersCoordinate = []
for j in range(len(centers[0])):
calculateNewCenters.append(0)
for j in range(len(centersCoordinate[0])):
calculateNewCentersCoordinate.append(0)
for j in range(len(labels)):
if labels[j] == i :
counter +=1
for z in range(len(centers[0])):
calculateNewCenters[z] += dataMatrix[j][z]
calculateNewCentersCoordinate[0] = (j // imageWidth)
calculateNewCentersCoordinate[1] = (j % imageWidth)
if counter > 0:
for z in range(len(centers[0])):
calculateNewCenters[z] = calculateNewCenters[z]/counter
for z in range(len(centersCoordinate[0])):
calculateNewCentersCoordinate[z] = calculateNewCentersCoordinate[z]/counter
del centers[i]
centers.insert(i,calculateNewCenters)
del centersCoordinate[i]
centersCoordinate.insert(i, calculateNewCentersCoordinate)
thereIsChange = False
for i in range(len(centers)):
for j in range(len(centers[0])):
if centers[j] != prevCentersInLoop[j]:
thereIsChange = True
return centers,labels
#########################################################################################################################################################
if __name__ == '__main__':
trainImages = readImagesPath("data/images/train")
graundTruthImages = readImagesPath("data/groundTruth/train")
######################################
#The only values to change in the code
kValues = [3,5,7,9]
imageIndex=79
######################################
matPath = graundTruthImages[imageIndex]
imagePath=trainImages[imageIndex]
groundTruthLabelsVectorList = getGroundTruthLabelsAndGenerateImage (matPath,imagePath)
rgbImages, vectorizedImages = imgRGBread(trainImages)
nrows = len(rgbImages[imageIndex])
ncols = len(rgbImages[imageIndex][0])
testRGBImage = rgbImages[imageIndex]
testImage = vectorizedImages[imageIndex]
i =-1
outList = []
normalizedOutList = []
specitalRGBOutList = []
for k in kValues:
bestTruthLabel=0
i += 1
print('K value = ',k)
finalCenters, clustersLabels = kmeans(testImage, k)
out = color.label2rgb(np.reshape(clustersLabels,(nrows,ncols)), testRGBImage, kind='avg')
outList.append(out)
print("Manually Implemented Kmeans")
entropy, f_measure,bestTruthLabel = calculateEntropyAndF_measure(clustersLabels, groundTruthLabelsVectorList, k=k)
print("ConditionalEntropy of k = ", k, " = ", entropy)
print("F_Measure of k =", k, " = ", f_measure, "\n")
print('*****************************************************************')
print('Sickit learn KMeans:')
#usage for sickit learn Kmeans
testKMeansSickitLearn = KMeans(n_clusters=k).fit(testImage)
entropy, f_measure, neglect = calculateEntropyAndF_measure(testKMeansSickitLearn.labels_, groundTruthLabelsVectorList, k=k)
print("ConditionalEntropy of k = ", k, " = ", entropy)
print("F_Measure of k =", k, " = ", f_measure, "\n")
print('*****************************************************************')
print("Normalized Cut:")
labels = normalizedCut(testRGBImage,imagePath,clustersLabels,bestTruthLabel,k)
clustersLabels = resShape_2D_ListTo_1D(labels)
entropy, f_measure, neglect = calculateEntropyAndF_measure(clustersLabels,groundTruthLabelsVectorList, k=k)
print("ConditionalEntropy of k = ", k, " = ", entropy)
print("F_Measure of k =", k, " = ", f_measure, "\n")
out = color.label2rgb(labels, testRGBImage, kind='avg')
normalizedOutList.append(out)
print('*****************************************************************')
print("specital RGB Kmean Cut:")
finalCenters, clustersLabels = k_meanAlgUsingRBGAndPixelPosition(testImage, ncols, k)
entropy, f_measure,bestTruthLabel = calculateEntropyAndF_measure(clustersLabels, groundTruthLabelsVectorList, k=k)
print("ConditionalEntropy of k = ", k, " = ", entropy)
print("F_Measure of k =", k, " = ", f_measure, "\n")
out = color.label2rgb(np.reshape(clustersLabels, (nrows, ncols)), testRGBImage, kind='avg')
specitalRGBOutList.append(out)
print('*****************************************************************')
nrows = 3
ncols = math.ceil((len(specitalRGBOutList)+1)/2)
fig, ax = plt.subplots(nrows= nrows,ncols= ncols, figsize=(6, 8))
ax[0][0].imshow(mpimg.imread(imagePath))
for i in range(nrows):
for j in range(ncols):
if i == 0:
j = 1
ax[i][j].imshow(outList[i])
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(nrows= nrows,ncols= ncols , figsize=(6, 8))
ax[0][0].imshow(mpimg.imread(imagePath))
for i in range(ncols):
for j in range(ncols):
if i == 0:
j = 1
ax[i][j].imshow(normalizedOutList[i])
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(6, 8))
ax[0][0].imshow(mpimg.imread(imagePath))
for i in range(nrows):
for j in range(ncols):
if i == 0:
j = 1
ax[i][j].imshow(specitalRGBOutList[i])
plt.tight_layout()
plt.show()
#..........................................................................................