Team12: DragonFruit - Yuanhe Guo, Jianing Zhang, Haotong Wu
Ranked 2nd in 2024 Spring final competition
git clone https://github.com/RicercarG/CSCI-GA-2572-Deep-Learning-Final-Competition-Dragonfruit.git
cd CSCI-GA-2572-Deep-Learning-Final-Competition-Dragonfruit
Put dataset inside dataset
folder, with structure being
CSCI-GA-2572-Deep-Learning-Final-Competition-Dragonfruit
└── dataset
├── hidden
├── train
├── unlabeled
└── val
conda env create -n dfvp -f base_environment.yml
conda activate dfvp
python dfUNet_train.py
Weights will be saved to weights_hub/unet
python dfLabeler.py --dataset_path './dataset/unlabeled' --unet_weight './weights_hub/unet/best_model.pth'
All configurations could be found in dragonfruitvp/custom_configs
. Set test: False
, submission: False
in training config. Adjust gpus
and num_workers
based on your gpu numbers.
python dfMP_train.py --model_config_file 'dragonfruitvp/custom_configs/model_configs/mpl_gsta.yaml' --training_config_file 'dragonfruitvp/custom_configs/training_configs/mptrain_e10lr3oc.yaml'
Weights and logs will be saved to './weights_hub/<training_config>_<model_config>'. If vis_val: True
in training config, then images for visualization during validation and test epochs will be saved to vis_*
folder correspondingly.
Step7: Get prediction results for hidden set
Label the hidden set
python dfLabeler.py --dataset_path './dataset/hidden' --unet_weight './weights_hub/unet/best_model.pth'
Go to the desired training config yaml file ('dragonfruitvp/custom_configs/training_configs/mptrain_e10lr3oc.yaml'
), and set test: True
, submission: True
.
Then run dfMP_train again
python dfMP_train.py --model_config_file 'dragonfruitvp/custom_configs/model_configs/mpl_gsta.yaml' --training_config_file 'dragonfruitvp/custom_configs/training_configs/mptrain_e10lr3oc.yaml'
Result will be saved as team_12.pt
.
weights_hub
: All model weights will be saved here. Could be changed in configuration.lightning_logs
: Logs saved by pytorch lightning during trainingvis_*
: Images and Masks for visualization.
ssh burst
CPU:
srun --partition=interactive --account csci_ga_2572_002-2024sp-x --pty /bin/bash
GPU:
srun --partition=n1s8-v100-1 --gres=gpu:1 --account csci_ga_2572_002-2024sp-x --time=04:00:00 --pty /bin/bash
scp <NetID>@greene-dtn.hpc.nyu.edu:/path/to/files /home/<NetID>/
For sending the whole folder:
scp -r <NetID>@greene-dtn.hpc.nyu.edu:/path/to/folder /home/<NetID>/