-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1009 lines (861 loc) · 38.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
import numpy as np
import timeit
import saverloader
from nets.pips2 import Pips, Pips2
import utils.improc
import utils.geom
import utils.misc
import random
from utils.basic import print_, print_stats
from datasets.exportdataset import ExportDataset, ExportDataset_Masks, ExportDataset_Mask_Contours
from datasets.pointodysseydataset_fullseq import PointOdysseyDataset
from datasets.tapviddataset_fullseq import TapVidDavis
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import torch.nn.functional as F
from fire import Fire
import sys
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
from torch.utils.data import Dataset, DataLoader
import os
import cv2
#import dill as pickle
def create_pools(n_pool=1000):
pools = {}
pool_names = [
'l1',
'd_1',
'd_2',
'd_4',
'd_8',
'd_16',
'd_avg',
'l1_vis',
'ate_all',
'ate_vis',
'ate_occ',
'median_l2',
'survival',
'total_loss',
'io_loss'
]
for pool_name in pool_names:
pools[pool_name] = utils.misc.SimplePool(n_pool, version='np')
return pools
def requires_grad(parameters, flag=True):
for p in parameters:
p.requires_grad = flag
def fetch_optimizer(lr, wdecay, epsilon, num_steps, params):
optimizer = torch.optim.AdamW(params, lr=lr, weight_decay=wdecay, eps=epsilon)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, lr, num_steps+100, pct_start=0.1, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
def val_model(model, d, device, iters=8, sw=None, is_train=False):
metrics = {}
rgbs = d['rgbs'].float().to(device) # B,S,C,H,W
#for ExportDataset
track_g = d['track_g'].float().to(device) # B,S,N,8
trajs_g = track_g[:,:,:,:2]
vis_g = track_g[:,:,:,2]
valids = track_g[:,:,:,3]
#for masks
masks = d['masks'].float().to(device) #B,S,H,W
#for full size PointOdysseyDataset
#trajs_g = d['trajs'].float().to(device)
#vis_g = d['visibs'].float().to(device)
#valids = d['valids'].float().to(device)
B, S, C, H, W = rgbs.shape
B, S, N, D = trajs_g.shape
assert(D==2)
# zero-vel init
trajs_e0 = trajs_g[:,0:1].repeat(1,S,1,1)
preds, preds_anim, _, _, _ = model(trajs_e0, rgbs, masks, iters=iters)
trajs_e = preds[-1]
l1_dists = torch.abs(trajs_e - trajs_g).sum(dim=-1) # B,S,N
l1_loss = utils.basic.reduce_masked_mean(l1_dists, valids)
l1_vis = utils.basic.reduce_masked_mean(l1_dists, valids*vis_g)
ate = torch.norm(trajs_e - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2])
ate_vis = utils.basic.reduce_masked_mean(ate, valids*vis_g)
ate_occ = utils.basic.reduce_masked_mean(ate, valids*(1.0-vis_g))
metrics['l1'] = l1_loss.mean().item()
metrics['l1_vis'] = l1_vis.mean().item()
metrics['ate_all'] = ate_all.mean().item()
metrics['ate_vis'] = ate_vis.item()
metrics['ate_occ'] = ate_occ.item()
if sw is not None and sw.save_this:
prep_rgbs = utils.improc.preprocess_color(rgbs)
prep_grays = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_grays[0:1].mean(dim=1), valids=valids[0:1], cmap='winter', only_return=True))
rgb_vis = []
for tre in preds_anim:
ate = torch.norm(tre - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2]) # B
rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valids[0:1], only_return=True, cmap='spring', frame_id=ate_all[0]))
sw.summ_rgbs('3_test/animated_trajs_on_rgb', rgb_vis)
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().cuda()
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
sur_thr = 16
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True) # B*N
metrics['median_l2'] = median_l2.mean().item()
return metrics
def run_model(model, d, device, iters=8, sw=None, is_train=True, use_augs=True):
total_loss = torch.tensor(0.0, requires_grad=True).to(device)
total_io_loss = torch.tensor(0.0).to(device)
metrics = {}
#d = d[0]
rgbs = d['rgbs'].float().to(device) # B,S,C,H,W
#for export dataset
track_g = d['track_g'].float().to(device) # B,S,N,8
trajs_g = track_g[:,:,:,:2]
vis_g = track_g[:,:,:,2]
valids = track_g[:,:,:,3]
#for masks
masks = d['masks'].float().to(device) #B,S,H,W
#contours = d['contours'].float().to(device) #B,S,N,100,3
#for full size PointOdysseyDataset
#trajs_g = d['trajs'].float().to(device)
#vis_g = d['visibs'].float().to(device)
#valids = d['valids'].float().to(device)
if use_augs and np.random.rand() < 0.5: # rot90 aug
rgbs = rgbs.permute(0,1,2,4,3) # swap xy
masks = masks.permute(0,1,3,2)
trajs_g = trajs_g.flip([3]) # swap xy
#contours_ = contours[:,:,:,:,:2].flip([4]) #swap xy
#contours[:,:,:,:,:2] = contours_
B, S, C, H, W = rgbs.shape
assert(C==3)
B, S, N, D = trajs_g.shape
assert(D==2)
# full random
x = torch.from_numpy(np.random.uniform(0, W-1, (B,S,N))).float().to(trajs_g.device)
y = torch.from_numpy(np.random.uniform(0, H-1, (B,S,N))).float().to(trajs_g.device)
trajs_e0 = torch.stack([x,y], dim=-1) # B,S,N,2
# mix with gt a random amount
coeff = torch.from_numpy(np.random.uniform(0, 1, (B,1,N,1))).float().to(trajs_g.device)
trajs_e0 = trajs_e0*coeff + trajs_g*(1-coeff)
# use zero-velocity init for some
trajs_z = trajs_g[:,0:1].repeat(1,S,1,1)
mask = (torch.from_numpy(np.random.uniform(0, 1, (B,1,N,1))).float().to(trajs_g.device)>0.5).float()
trajs_e0 = trajs_e0*mask + trajs_z*(1-mask)
# reset zeroth on all
trajs_e0[:,0:1] = trajs_g[:,0:1]
# measure our initial distance, so we can check our improvement
ate0 = torch.norm(trajs_e0 - trajs_g, dim=-1) # B,S,N
ate0_all = utils.basic.reduce_masked_mean(ate0, valids, dim=[1,2])
start = time.time()
preds, preds_anim, _, loss, io_loss = model(trajs_e0, rgbs, masks, iters=iters, trajs_g=trajs_g, vis_g=vis_g, valids=valids, is_train=is_train)
#preds, preds_anim, _, loss, io_loss = model(trajs_e0, rgbs, masks, contours, iters=iters, trajs_g=trajs_g, vis_g=vis_g, valids=valids, is_train=is_train)
#print("model run time", time.time()-start)
trajs_e = preds[-1]
#print(loss)
total_loss += loss.mean()
total_io_loss+=io_loss.mean()
# collect stats
l1_dists = torch.abs(trajs_e - trajs_g).sum(dim=-1) # B,S,N
l1_loss = utils.basic.reduce_masked_mean(l1_dists, valids)
l1_vis = utils.basic.reduce_masked_mean(l1_dists, valids*vis_g)
ate = torch.norm(trajs_e - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2])
ate_vis = utils.basic.reduce_masked_mean(ate, valids*vis_g)
ate_occ = utils.basic.reduce_masked_mean(ate, valids*(1.0-vis_g))
metrics['l1'] = l1_loss.mean().item()
metrics['l1_vis'] = l1_vis.mean().item()
metrics['ate_all'] = ate_all.mean().item()
metrics['ate_vis'] = ate_vis.item()
metrics['ate_occ'] = ate_occ.item()
metrics['total_loss'] = total_loss.sum().item()
metrics['io_loss'] = total_io_loss.item()
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().to(device)
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
sur_thr = 16
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
val_ok = valids_[:,0] > 0 # get rid of the ones we padded in
dists_ = dists_[val_ok]
valids_ = valids_[val_ok]
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True) # B*N
metrics['median_l2'] = median_l2.mean().item()
if sw is not None and sw.save_this:
prep_rgbs = utils.improc.preprocess_color(rgbs)
prep_grays = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
rgb0 = sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_rgbs[0:1,0], valids=valids[0:1], cmap='winter', linewidth=2, only_return=True)
sw.summ_traj2ds_on_rgb('0_inputs/trajs_e0_on_rgb0', trajs_e0[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=ate0_all[0].mean().item())
sw.summ_traj2ds_on_rgb('2_outputs/trajs_e_on_rgb0', trajs_e[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=ate_all[0].mean().item())
sw.summ_traj2ds_on_rgbs2('0_inputs/trajs_g_on_rgbs2', trajs_g[0:1,::4], vis_g[0:1,::4], prep_rgbs[0:1,::4], valids=valids[0:1,::4], frame_ids=list(range(0,S,4)))
# in the kp vis, clamp so that we can see everything
trajs_g_clamp = trajs_g.clone()
trajs_g_clamp[:,:,:,0] = trajs_g_clamp[:,:,:,0].clip(0,W-1)
trajs_g_clamp[:,:,:,1] = trajs_g_clamp[:,:,:,1].clip(0,H-1)
trajs_e_clamp = trajs_e.clone()
trajs_e_clamp[:,:,:,0] = trajs_e_clamp[:,:,:,0].clip(0,W-1)
trajs_e_clamp[:,:,:,1] = trajs_e_clamp[:,:,:,1].clip(0,H-1)
gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_grays[0:1].mean(dim=1), valids=valids[0:1], cmap='winter', only_return=True))
rgb_vis = []
for tre in preds_anim:
ate = torch.norm(tre - trajs_g, dim=-1) # B,S,N
ate_all = utils.basic.reduce_masked_mean(ate, valids, dim=[1,2]) # B
rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valids[0:1], only_return=True, cmap='spring', frame_id=ate_all[0]))
sw.summ_rgbs('3_test/animated_trajs_on_rgb', rgb_vis)
outs = sw.summ_pts_on_rgbs(
'',
trajs_g_clamp[0:1,::4],
prep_grays[0:1,::4],
valids=valids[0:1,::4],
cmap='winter', linewidth=3, only_return=True)
sw.summ_pts_on_rgbs(
'0_inputs/kps_gv_on_rgbs',
trajs_g_clamp[0:1,::4],
utils.improc.preprocess_color(outs),
valids=valids[0:1,::4]*vis_g[0:1,::4],
cmap='spring', linewidth=2)
outs = sw.summ_pts_on_rgbs(
'',
trajs_g_clamp[0:1,::4],
prep_grays[0:1,::4],
valids=valids[0:1,::4],
cmap='winter', linewidth=3, only_return=True)
sw.summ_pts_on_rgbs(
'2_outputs/kps_eg_on_rgbs',
trajs_e_clamp[0:1,::4],
utils.improc.preprocess_color(outs),
valids=valids[0:1,::4],
cmap='spring', linewidth=2)
return total_loss, metrics
def test_on_fullseq_tap(model, d, sw, iters=8, S_max=8, image_size=(384,512)):
metrics = {}
rgbs = d['rgbs'].cuda().float() # B,S,C,H,W
trajs_g = d['trajs'].cuda().float() # B,S,N,2
valids = d['valids'].cuda().float() # B,S,N
B, S, C, H, W = rgbs.shape
B, S, N, D = trajs_g.shape
assert(D==2)
assert(B==1)
# print('this video is %d frames long' % S)
rgbs_ = rgbs.reshape(B*S, C, H, W)
H_, W_ = image_size
sy = H_/H
sx = W_/W
rgbs_ = F.interpolate(rgbs_, (H_, W_), mode='bilinear')
rgbs = rgbs_.reshape(B, S, 3, H_, W_)
trajs_g[:,:,:,0] *= sx
trajs_g[:,:,:,1] *= sy
H, W = H_, W_
# zero-vel init
trajs_e = trajs_g[:,0].repeat(1,S,1,1)
cur_frame = 0
done = False
feat_init = None
while not done:
end_frame = cur_frame + S_max
if end_frame > S:
diff = end_frame-S
end_frame = end_frame-diff
cur_frame = max(cur_frame-diff,0)
print('working on subseq %d:%d' % (cur_frame, end_frame))
traj_seq = trajs_e[:, cur_frame:end_frame]
rgb_seq = rgbs[:, cur_frame:end_frame]
S_local = rgb_seq.shape[1]
if feat_init is not None:
feat_init = [fi[:,:S_local] for fi in feat_init]
preds, preds_anim, feat_init, _, _, = model(traj_seq, rgb_seq,None,iters=iters, feat_init=feat_init, is_train=False)
trajs_e[:, cur_frame:end_frame] = preds[-1][:, :S_local]
trajs_e[:, end_frame:] = trajs_e[:, end_frame-1:end_frame] # update the future with new zero-vel
#if sw is not None and sw.save_this:
# traj_seq_e = preds[-1]
# traj_seq_g = trajs_g[:,cur_frame:end_frame]
# valid_seq = valids[:,cur_frame:end_frame]
# prep_rgbs = utils.improc.preprocess_color(rgb_seq)
# gray_rgbs = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
# gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', traj_seq_g, gray_rgbs[0:1].mean(dim=1), valids=valid_seq, cmap='winter', only_return=True))
# rgb_vis = []
# for tre in preds_anim:
# ate = torch.norm(tre - traj_seq_g, dim=-1) # B,S,N
# ate_all = utils.basic.reduce_masked_mean(ate, valid_seq, dim=[1,2]) # B
# rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valid_seq, only_return=True, cmap='spring', frame_id=ate_all[0]))
# sw.summ_rgbs('3_test/animated_trajs_on_rgb_cur%02d' % cur_frame, rgb_vis)
if end_frame >= S:
done = True
else:
cur_frame = cur_frame + S_max - 1
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().cuda()
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
sur_thr = 16
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True)
metrics['median_l2'] = median_l2.mean().item()
#if sw is not None and sw.save_this:
# prep_rgbs = utils.improc.preprocess_color(rgbs)
# rgb0 = sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_rgbs[0:1,0], valids=valids[0:1], cmap='winter', linewidth=2, only_return=True)
# sw.summ_traj2ds_on_rgb('2_outputs/trajs_e_on_rgb0', trajs_e[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=d_avg)
# st = 4
# sw.summ_traj2ds_on_rgbs2('2_outputs/trajs_e_on_rgbs2', trajs_e[0:1,::st], valids[0:1,::st], prep_rgbs[0:1,::st], valids=valids[0:1,::st], frame_ids=list(range(0,S,st)))
return metrics, 0
def test_on_fullseq_pod(model, d, sw, iters=8, S_max=8, image_size=(384,512)):
metrics = {}
window_metrics = {}
window_metrics['d_avg'] = []
seq = str(d['seq'][0])
print('seq', seq.split("/"))
trajs_g = d['trajs'].cuda().float()[:,:,:,:] # B,S,N,2
#trajs_g = trajs_g[motion]
#print("GT Traj", trajs_g[:,10,:5])
visibs = d['visibs'].cuda().float()[:,:,:] # B,S,N
valids = d['valids'].cuda().float()[:,:,:] # B,S,N
#print(valids[:,::10,::4])
#valids = valids*visibs
B, S, N, D = trajs_g.shape
assert(D==2)
assert(B==1)
print('this video is %d frames long' % S)
# load one to check H,W
rgb_path0 = os.path.join(seq, 'rgbs', 'rgb_%05d.jpg' % (0))
rgb0_bak = cv2.imread(rgb_path0)
H_bak, W_bak = rgb0_bak.shape[:2]
H, W = image_size
sy = H/H_bak
sx = W/W_bak
trajs_g[:,:,:,0] *= sx
trajs_g[:,:,:,1] *= sy
rgb0_bak = cv2.resize(rgb0_bak, (W, H), interpolation=cv2.INTER_LINEAR)
rgb0_bak = torch.from_numpy(rgb0_bak[:,:,::-1].copy()).permute(2,0,1) # 3,H,W
rgb0_bak = rgb0_bak.unsqueeze(0).to(trajs_g.device) # 1,3,H,W
#if sw is not None and sw.save_this:
# prep_rgb0 = utils.improc.preprocess_color(rgb0_bak)
# sw.summ_traj2ds_on_rgb('0_inputs/trajs_g_on_rgb0', trajs_g[0:1], prep_rgb0, valids=valids[0:1], cmap='winter', linewidth=1)
# zero-vel init
trajs_e = trajs_g[:,0].repeat(1,S,1,1)
cur_frame = 0
done = False
feat_init = None
#motion_feat = None
while not done:
end_frame = cur_frame + S_max
if end_frame > S:
diff = end_frame-S
end_frame = end_frame-diff
cur_frame = max(cur_frame-diff,0)
print('working on subseq %d:%d' % (cur_frame, end_frame))
traj_seq = trajs_e[:, cur_frame:end_frame]
idx_seq = np.arange(cur_frame, end_frame)
rgb_paths_seq = [os.path.join(seq, 'rgbs', 'rgb_%05d.jpg' % (idx)) for idx in idx_seq]
rgbs = [cv2.imread(rgb_path) for rgb_path in rgb_paths_seq]
rgbs = [rgb[:,:,::-1] for rgb in rgbs] # BGR->RGB
H_load, W_load = rgbs[0].shape[:2]
assert(H_load==H_bak and W_load==W_bak)
rgbs = [cv2.resize(rgb, (W, H), interpolation=cv2.INTER_LINEAR) for rgb in rgbs]
rgb_seq = torch.from_numpy(np.stack(rgbs, 0)).permute(0,3,1,2) # S,3,H,W
rgb_seq = rgb_seq.unsqueeze(0).to(traj_seq.device) # 1,S,3,H,W
S_local = rgb_seq.shape[1]
if feat_init is not None:
feat_init = [fi[:,:S_local] for fi in feat_init]
#with torch.amp.autocast(device_type="cuda", dtype=torch.float16):
preds, preds_anim, feat_init, _, _, = model(traj_seq, rgb_seq, None,iters=iters, feat_init=feat_init, is_train=False)
#print(delta_coord_itr1)
#delta_1.append(delta_coord_itr1)
#delta_2.append(delta_coord_itr2)
trajs_e[:, cur_frame:end_frame] = preds[-1][:, :S_local]
trajs_e[:, end_frame:] = trajs_e[:, end_frame-1:end_frame] # update the future with new zero-vel
#trajs_e[:, end_frame:] = trajs_g[:,end_frame-1:end_frame] #only to check window performance, change later
# if sw is not None and sw.save_this:
# traj_seq_e = preds[-1]
# traj_seq_g = trajs_g[:,cur_frame:end_frame]
# valid_seq = valids[:,cur_frame:end_frame]
# prep_rgbs = utils.improc.preprocess_color(rgb_seq)
# gray_rgbs = torch.mean(prep_rgbs, dim=2, keepdim=True).repeat(1, 1, 3, 1, 1)
# gt_rgb = utils.improc.preprocess_color(sw.summ_traj2ds_on_rgb('', traj_seq_g, gray_rgbs[0:1].mean(dim=1), valids=valid_seq, cmap='winter', only_return=True))
# rgb_vis = []
# for tre in preds_anim:
# ate = torch.norm(tre - traj_seq_g, dim=-1) # B,S,N
# ate_all = utils.basic.reduce_masked_mean(ate, valid_seq, dim=[1,2]) # B
# rgb_vis.append(sw.summ_traj2ds_on_rgb('', tre[0:1], gt_rgb, valids=valid_seq, only_return=True, cmap='spring', frame_id=ate_all[0]))
# sw.summ_rgbs('3_test/animated_trajs_on_rgb_cur%02d' % cur_frame, rgb_vis)
#print(H,W, H_bak, W_bak)
#Compute Windowed Metric
#d_sum = 0.0
#thrs = [1,2,4,8,16]
#sx_ = W / 256.0
#sy_ = H / 256.0
#sc_py = np.array([sx_, sy_]).reshape([1,1,2])
#sc_pt = torch.from_numpy(sc_py).float().cuda()
#for thr in thrs:
# # note we exclude timestep0 from this eval
# d_ = (torch.norm(trajs_e[:,35:64]/sc_pt - trajs_g[:,35:64]/sc_pt, dim=-1) < thr).float() # B,S-1,N
# d_ = utils.basic.reduce_masked_mean(d_, valids[:,35:64]).item()*100.0
# d_sum += d_
# window_metrics['d_%d' % thr] = d_
#d_avg = d_sum / len(thrs)
#if cur_frame==9*(S_max-1):
# print(window_metrics)
#break
#if end_frame==71:
# window_metrics['d_avg'].append(d_avg)
if end_frame >= S:
done = True
else:
cur_frame = cur_frame + S_max - 1
#if end_frame==71:
# done=True
#k = trajs_e[:,:,:,0]<0
##print(k.shape)
#trajs_e[trajs_e[:,:,:,0]<0]=0
#trajs_e[trajs_e[:,:,:,0]>W-1]=W+5
#trajs_e[trajs_e[:,:,:,1]<0]=0
#trajs_e[trajs_e[:,:,:,1]>H-1]=H+5
d_sum = 0.0
thrs = [1,2,4,8,16]
sx_ = W / 256.0
sy_ = H / 256.0
sc_py = np.array([sx_, sy_]).reshape([1,1,2])
sc_pt = torch.from_numpy(sc_py).float().cuda()
for thr in thrs:
# note we exclude timestep0 from this eval
d_ = (torch.norm(trajs_e[:,1:]/sc_pt - trajs_g[:,1:]/sc_pt, dim=-1) < thr).float() # B,S-1,N
d_ = utils.basic.reduce_masked_mean(d_, valids[:,1:]).item()*100.0
d_sum += d_
metrics['d_%d' % thr] = d_
d_avg = d_sum / len(thrs)
metrics['d_avg'] = d_avg
#print(trajs_e[:,::10,::4])
#print(trajs_g[:,::10,::4])
sur_thr = 50
dists = torch.norm(trajs_e/sc_pt - trajs_g/sc_pt, dim=-1) # B,S,N
dist_ok = 1 - (dists > sur_thr).float() * valids # B,S,N
survival = torch.cumprod(dist_ok, dim=1) # B,S,N
metrics['survival'] = torch.mean(survival).item()*100.0
# get the median l2 error for each trajectory
dists_ = dists.permute(0,2,1).reshape(B*N,S)
valids_ = valids.permute(0,2,1).reshape(B*N,S)
median_l2 = utils.basic.reduce_masked_median(dists_, valids_, keep_batch=True)
#idx_seq = np.arange(0, S)
#rgb_paths_seq = [os.path.join(seq, 'rgbs', 'rgb_%05d.jpg' % (idx)) for idx in idx_seq]
#rgbs = [cv2.imread(rgb_path) for rgb_path in rgb_paths_seq]
#rgbs = [rgb[:,:,::-1] for rgb in rgbs]
#rgbs = [cv2.resize(rgb, (W, H), interpolation=cv2.INTER_LINEAR) for rgb in rgbs]
#rgb_seq = torch.from_numpy(np.stack(rgbs, 0)).permute(0,3,1,2) # S,3,H,W
#rgb_seq = rgb_seq.unsqueeze(0)
#print(rgb_seq.shape)
#
#prep_rgb0 = utils.improc.preprocess_color(rgb_seq[0:1])
##print(prep_rgb0.shape)
#print("start giff generation")
#giff_pred = sw.summ_traj2ds_on_rgbs('0_inputs/trajs_g_on_rgbs2', trajs_e[0:1], prep_rgb0,valids=valids[0:1], frame_ids=list(range(0,S)), only_return=False)
##giff_gt = sw.summ_traj2ds_on_rgbs('0_inputs/trajs_g_on_rgbs2', trajs_g[0:1], prep_rgb0, valids=valids[0:1], frame_ids=list(range(0,S)), only_return=False)
#print(giff_pred.shape)
#make_video(seq.split('/')[-2],giff_pred, pred=True)
#make_video(seq.split('/')[-2],giff_gt, pred=False)
#rgb0 = sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_rgb0, valids=valids[0:1], cmap='winter', linewidth=2, only_return=True)
#giff = sw.summ_traj2ds_on_rgb('2_outputs/trajs_e_on_rgb0', trajs_e[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=d_avg, only_return=True)
metrics['median_l2'] = median_l2.mean().item()
#if sw is not None and sw.save_this:
# rgb0 = sw.summ_traj2ds_on_rgb('', trajs_g[0:1], prep_rgb0, valids=valids[0:1], cmap='winter', linewidth=2, only_return=True)
# sw.summ_traj2ds_on_rgb('2_outputs/trajs_e_on_rgb0', trajs_e[0:1], utils.improc.preprocess_color(rgb0), valids=valids[0:1], cmap='spring', linewidth=2, frame_id=d_avg)
return metrics, 0#sum(window_metrics['d_avg'])/len(window_metrics['d_avg'])
import time
def main(
B=2, # batchsize
S=24, # seqlen
N=128, # number of points per clip
stride=8, # spatial stride of the model
iters=6, # inference steps of the model
crop_size=(384,512), # raw flt data is 540,960
use_augs=True, # resizing/jittering/color/blur augs
shuffle=True, # dataset shuffling
cache_len=0, # how many samples to cache into ram (for overfitting/debug)
cache_freq=0, # how often to add a new sample to cache
dataset_location='/home/boote/TrackingTRI/pod_export/masked_clips/ae_36_128_384x512', # where we exported the data
dataset_version='ae_36_128_384x512', # export version
n_pool=1000, # size of running avg for stats
quick=False, # debug
# optimization
lr=5e-3,
grad_acc=1,
use_scheduler=True,
max_iters=1000000,
# summaries
log_dir='./logs_train',
log_freq=1000,
val_freq=100,
# saving/loading
ckpt_dir='./checkpoints',
save_freq=1000,
keep_latest=10,
init_dir='',
load_optimizer=True,
load_step=True,
ignore_load=None,
device_ids=[0,1],
):
device = 'cuda:%d' % device_ids[0]
# the idea in this file is:
# train from scratch on pointodyssey.
# on val steps, unroll the inference.
exp_name = 'aa00' # copy from dev repo
exp_name = 'aa01' # clean up
#scaler = torch.cuda.amp.GradScaler()
test_freq = 2000
if quick: # (debug)
B = 1
log_freq = 100
max_iters = 1000
shuffle = False
val_freq = 10
n_pool = 100
use_augs = False
cache_len = 0 # overfit on this many
cache_freq = 0
save_freq = 99999999
if init_dir:
init_dir = '%s/%s' % (ckpt_dir, init_dir)
assert(crop_size[0] % 32 == 0)
assert(crop_size[1] % 32 == 0)
# autogen a descriptive name
model_name = "%d_%d_%d" % (B,S,N)
model_name += "_i%d" % (iters)
if grad_acc > 1:
model_name += "x%d" % grad_acc
lrn = "%.1e" % lr # e.g., 5.0e-04
lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4
model_name += "_%s" % lrn
if use_scheduler:
model_name += "s"
if cache_len:
model_name += "_c%d_f%d" % (cache_len, cache_freq)
if use_augs:
model_name += "_A"
model_name += "_%s" % exp_name
import datetime
model_date = datetime.datetime.now().strftime('%H%M%S')
model_name = model_name + '_' + model_date
print('model_name', model_name)
ckpt_path = '%s/%s' % (ckpt_dir, model_name)
writer_t = SummaryWriter(log_dir + '/' + model_name + '/t', max_queue=10, flush_secs=60)
if val_freq:
writer_v = SummaryWriter(log_dir + '/' + model_name + '/v', max_queue=10, flush_secs=60)
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
#cropped training
#dataset_t = ExportDataset(
# dataset_location=dataset_location,
# dataset_version=dataset_version,
# S=S,
# crop_size=crop_size,
# use_augs=use_augs)
# training with masks
#start = time.time()
dataset_t = ExportDataset_Masks(
dataset_location=dataset_location,
dataset_version=dataset_version,
S=S,
crop_size=crop_size,
use_augs=use_augs)
#finetune to full size
#dataset_t = PointOdysseyDataset(
# dataset_location="/home/boote/PointOdyssey/",
# dset='train',
# use_augs=use_augs,
# crop_size=crop_size,
# verbose=True,
# S=S,
# N=N
#)
dataloader_t = DataLoader(
dataset_t,
batch_size=B,
shuffle=shuffle,
num_workers=10,
worker_init_fn=worker_init_fn,
drop_last=True,
persistent_workers=True)
iterloader_t = iter(dataloader_t)
if cache_len:
sample_pool_t = utils.misc.SimplePool(cache_len, version='np')
model = Pips(stride=stride).to(device)
model = torch.nn.DataParallel(model, device_ids=device_ids)
#model.to(device)
parameters = list(model.parameters())
weight_decay = 1e-6
#use_scheduler=False
print(max_iters)
if use_scheduler:
optimizer, scheduler = fetch_optimizer(lr, weight_decay, 1e-8, max_iters, model.parameters())
else:
optimizer = torch.optim.AdamW(parameters, lr=lr, weight_decay=weight_decay)
scheduler = None
utils.misc.count_parameters(model)
global_step = 0
#load_optimizer=False
if init_dir:
if load_step and load_optimizer:
global_step = saverloader.load(init_dir, model.module, optimizer=optimizer, scheduler=scheduler, ignore_load=ignore_load, step=000)
elif load_step:
global_step = saverloader.load(init_dir, model.module, ignore_load=ignore_load)
else:
_ = saverloader.load(init_dir, model.module, ignore_load=ignore_load)
global_step = 0
scheduler.step_size = max_iters+100
requires_grad(parameters, True)
model.train()
pools_t = create_pools(n_pool)
pools_pod = create_pools(n_pool)
pools_tap = create_pools(n_pool)
if val_freq:
pools_v = create_pools(n_pool)
#global_step=0
writer_pod = SummaryWriter(log_dir + '/' + model_name + '/x', max_queue=10, flush_secs=60)
#dataset_pod = PointOdysseyDataset(
# dataset_location='/home/boote/PointOdyssey_v1/',
# dset='test',
# N=256,
# verbose=True,
#)
#dataloader_pod = DataLoader(
# dataset_pod,
# batch_size=1,
# shuffle=False,
# num_workers=0,
# drop_last=True)
#dataset_tap = TapVidDavis(
# dataset_location='./tapvid_davis',
#)
#dataloader_tap = DataLoader(
# dataset_tap,
# batch_size=1,
# shuffle=False,
# num_workers=1)
#iterloader_tap = iter(dataloader_tap)
#iterloader_pod = iter(dataloader_pod)
while global_step < max_iters:
global_step += 1
print(global_step)
iter_start_time = time.time()
iter_rtime = 0.0
for internal_step in range(grad_acc):
read_start_time = time.time()
if internal_step==grad_acc-1:
sw_t = utils.improc.Summ_writer(
writer=writer_t,
global_step=global_step,
log_freq=log_freq,
fps=min(S,8),
scalar_freq=log_freq//4,
just_gif=True)
else:
sw_t = None
read_new = True # read something from the dataloder
if cache_len:
read_new = False
if len(sample_pool_t) < cache_len:
read_new = True
if cache_freq > 0 and global_step % cache_freq == 0:
read_new = True
if read_new:
try:
sample = next(iterloader_t)
except StopIteration:
iterloader_t = iter(dataloader_t)
sample = next(iterloader_t)
if cache_len:
sample_pool_t.update([sample])
print('cached a new sample into sample_pool (len %d)' % (len(sample_pool_t)))
if cache_len:
sample = sample_pool_t.sample()
iter_rtime += time.time()-read_start_time
#print("time after loading",iter_rtime)
#while not sample[1]:
# sample = next(iterloader_t)
#
#sample=sample[0]
#with torch.cuda.amp.autocast(dtype=torch.float16):
# torch.autograd.set_detect_anomaly(True)
total_loss, metrics = run_model(
model, sample, device,
iters=iters,
sw=sw_t,
is_train=True,
use_augs=use_augs)
if torch.any(torch.isnan(total_loss)):
print('nan in loss; quitting')
return False
#optimizer.zero_grad()
#break
total_loss /= grad_acc
total_loss.backward()
#print("time after model", time.time()-read_start_time)
#scaler.scale(total_loss).backward()
sw_t.summ_scalar('total_loss', metrics['total_loss'])
for key in list(pools_t.keys()):
if key in metrics:
pools_t[key].update([metrics[key]])
sw_t.summ_scalar('_/%s' % (key), pools_t[key].mean())
sw_t.summ_scalar('_/pod_%s' % (key), pools_pod[key].mean())
sw_t.summ_scalar('_/tap_%s' % (key), pools_tap[key].mean())
current_lr = optimizer.param_groups[0]['lr']
sw_t.summ_scalar('_/current_lr', current_lr)
torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
#scaler.step(optimizer)
if use_scheduler:
scheduler.step()
#
#sw_tap = utils.improc.Summ_writer(
# writer=writer_tap,
# global_step=global_step,
# log_freq=log_freq,
# fps=min(S,8),
# scalar_freq=1,
# just_gif=True)
#
optimizer.zero_grad()
#scaler.update()
if np.mod(global_step, save_freq)==0:
saverloader.save(ckpt_path, optimizer, model.module, global_step, scheduler=scheduler, keep_latest=keep_latest)
if val_freq and (global_step) % val_freq == 0:
model.eval()
del sample
with torch.no_grad():
torch.cuda.empty_cache()
sw_v = utils.improc.Summ_writer(
writer=writer_v,
global_step=global_step,
log_freq=log_freq,
fps=min(S,8),
scalar_freq=log_freq//4,
just_gif=True)
if cache_len:
sample = sample_pool_t.sample()
else:
try:
sample = next(iterloader_t)
except StopIteration:
iterloader_t = iter(dataloader_t)
sample = next(iterloader_t)
#while not sample[1]:
# sample = next(iterloader_t)
#
#sample=sample[0]
with torch.no_grad():
metrics = val_model(
model, sample, device,
iters=iters*2,
sw=sw_v,
is_train=False)
for key in list(pools_v.keys()):
if key in metrics:
pools_v[key].update([metrics[key]])
sw_v.summ_scalar('_/%s' % (key), pools_v[key].mean())
model.train()
#if test_freq and (global_step)%test_freq==0 and global_step>220000:
# model.eval()
# pools_pod = create_pools(n_pool)
# pools_tap = create_pools(n_pool)
# sw_pod = utils.improc.Summ_writer(
# writer=writer_pod,
# global_step=global_step,
# log_freq=log_freq,
# fps=min(S,8),
# scalar_freq=1,
# just_gif=True)
# with torch.no_grad():
# torch.cuda.empty_cache()
# model_ = model.module
# for idx,sample_x in enumerate(dataloader_pod):
#
# with torch.no_grad():
# metrics, _ = test_on_fullseq_pod(model_, sample_x, sw_pod, iters=16, S_max=36, image_size=(512,896))
# for key in list(pools_pod.keys()):
# #print(key)
# if key in metrics:
# #print(key, metrics[key])
# pools_pod[key].update([metrics[key]])
# #sw_t.summ_scalar('_/pod_%s' % (key), pools_pod[key].mean())
#
# for idx,sample_x in enumerate(dataloader_tap):
#
# with torch.no_grad():
# metrics, _ = test_on_fullseq_tap(model_, sample_x, sw_pod, iters=16, S_max=36, image_size=(512,896))
# for key in list(pools_tap.keys()):
# #print(key)
#
# if key in metrics:
# #print(key, metrics[key])
# #print(len(pools_tap[key]))
# pools_tap[key].update([metrics[key]])
#
# #sw_t.summ_scalar('_/tap_%s' % (key), pools_tap[key].mean())
#model = torch.nn.DataParallel(model, device_ids=device_ids)
model.train()
iter_itime = time.time()-iter_start_time
if val_freq:
print('%s; step %06d/%d; rtime %.2f; itime %.2f; loss %.3f; loss_t %.2f; d_t %.1f; d_v %.1f; io_t %.1f ' % (
model_name, global_step, max_iters, iter_rtime, iter_itime,
total_loss.mean().item(), pools_t['total_loss'].mean(), pools_t['d_avg'].mean(),
pools_v['d_avg'].mean(), pools_t['io_loss'].mean()))
else:
print('%s; step %06d/%d; rtime %.2f; itime %.2f; loss %.3f; loss_t %.2f; d_t %.1f; io_t %.1f' % (
model_name, global_step, max_iters, iter_rtime, iter_itime,