-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdt.R
22 lines (18 loc) · 777 Bytes
/
dt.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Load libraries
library(rpart)
# Load CSV
data.train = read.csv('training.csv', TRUE, ';')
data.test = read.csv('test.csv', TRUE, ';')
data.train$STATUS <- as.factor(data.train$STATUS)
# Simple Decision Tree
model.dt <- rpart(STATUS ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 +
X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X19 +
X20 + X21 + X22 + X23 + X24 + X25 + X26 + X27 + X28 +
X29 + X30, data = data.train, method="class")
prediction.dt <- predict(model.dt,data.test,type="class")
out <- "dt.out"
if (file.exists(out)) file.remove(out)
write("Id,STATUS", file = out, append=TRUE)
for(i in 1:length(prediction.dt)) {
write(paste(i, prediction.dt[i], sep = ","), file = out, append=TRUE)
}