-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathInceptionV3.py
259 lines (182 loc) · 11.7 KB
/
InceptionV3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import keras
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import Dense, BatchNormalization, Activation
from keras.layers import Flatten, Input, concatenate, Dropout
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
class Inceptionv3_builder():
def __init__(self, input_shape = (299,299,3), output_units = 1000, init_strides = (2,2),
regularizer = l2(1e-4), initializer = "he_normal", init_maxpooling = True):
'''
:param input_shape: input shape of dataset
:param output_units: output result dimension
:param init_strides: The strides for first convolution layer
:param regularizer: regularizer for all the convolution layers in whole NN
:param initializer: weight/parameters initializer for all convolution & fc layers in whole NN
:param init_maxpooling: Do the maxpooling after first two convolution layers or not
'''
assert len(input_shape) == 3, "input shape should be dim 3 ( row, col, channel or channel row col )"
self.input_shape = input_shape
self.output_units = output_units
self.init_strides = init_strides
self.regularizer = regularizer
self.initializer = initializer
self.init_maxpooling = init_maxpooling
if K.image_dim_ordering() == "tf":
self.row_axis = 1
self.col_axis = 2
self.channel_axis = 3
else:
self.row_axis = 2
self.col_axis = 3
self.channel_axis = 1
def _cn_bn_relu(self, filters = 32, kernel_size = (3,3), strides = (1,1), padding = "same"):
'''
convenient function to build convolution -> batch_nromalization -> relu activation layers
'''
def f(input_x):
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding,
kernel_regularizer=self.regularizer,kernel_initializer=self.initializer)(input_x)
x = BatchNormalization(axis=self.channel_axis)(x)
x = Activation("relu")(x)
return x
return f
def _auxiliary(self, name = "auxiliary_1"):
'''
In author's explanation:
" The auxiliary classifier will encourage discrimination in lower stages in the classifier,
increase the gradient signal that gets propagated back, and provide additional regularization"
:return: An output layer of auxiliary classifier
'''
def f(input_x):
x = AveragePooling2D(pool_size=(5,5), strides = (3,3), padding = "same")(input_x)
x = self._cn_bn_relu(filters = 128, kernel_size = (5,5), strides = (1,1), padding = "same")(x)
x = Flatten()(x)
x = Dense(units = 1024, kernel_initializer = self.initializer)(x)
x = BatchNormalization(axis = 1)(x)
x = Activation("relu")(x)
x = Dropout(0.7)(x)
return Dense(units = self.output_units , activation = "softmax", kernel_initializer=self.initializer, name = name)(x)
return f
def _inception_block35x35(self,_1x1 = 64, _3x3r = 48, _3x3 = 64, _d3x3r = 64, _d3x3 = 96, _pool = 64, name = "inception_fig5_1"):
'''
A function for building inception block of figure5 in original article,
'''
def f(input_x):
branch1x1 = self._cn_bn_relu(filters = _1x1, kernel_size = (1,1))(input_x)
branchpooling = AveragePooling2D(pool_size=(3,3), strides = (1,1), padding = "same")(input_x)
branchpooling = self._cn_bn_relu(filters = _pool, kernel_size = (1,1))(branchpooling)
branch3x3 = self._cn_bn_relu(filters = _3x3r, kernel_size = (1,1))(input_x)
branch3x3 = self._cn_bn_relu(filters = _3x3, kernel_size = (3,3))(branch3x3)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3r, kernel_size = (1,1))(input_x)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,3))(dbranch3x3)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,3))(dbranch3x3)
return concatenate([branch1x1, branchpooling, branch3x3, dbranch3x3], axis = self.channel_axis, name = name)
return f
def _GridSizeReduction35x35(self, _3x3r = 288, _3x3 = 384, _d3x3r = 64, _d3x3 = 96):
'''
A function for dimension reducing from 35x35 -> 17x17
'''
def f(input_x):
branchpool = AveragePooling2D(pool_size=(3,3), strides = (2,2), padding = "valid")(input_x)
branch3x3 = self._cn_bn_relu(filters = _3x3r, kernel_size = (1,1))(input_x)
branch3x3 = self._cn_bn_relu(filters = _3x3, kernel_size = (3,3), strides = (2,2), padding = "valid")(branch3x3)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3r, kernel_size = (1,1))(input_x)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,3))(dbranch3x3)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,3), strides = (2,2), padding = "valid")(dbranch3x3)
return concatenate([branchpool, branch3x3, dbranch3x3], axis = self.channel_axis)
return f
def _inception_block17x17(self, _1x1 = 192, _7x7r = 128, _7x7 = 192, _d7x7r = 128, _d7x7 = 192, _pool = 192, name = "inception_fig6_1"):
'''
A function for building inception block of figure6 in original article,
'''
def f(input_x):
branch1x1 = self._cn_bn_relu(filters=_1x1, kernel_size=(1, 1))(input_x)
branchpooling = AveragePooling2D(pool_size = (3,3), strides = (1,1), padding = "same")(input_x)
branchpooling = self._cn_bn_relu(filters = _pool, kernel_size = (1,1))(branchpooling)
branch7x7 = self._cn_bn_relu(filters = _7x7r, kernel_size = (1,1))(input_x)
branch7x7 = self._cn_bn_relu(filters = _7x7r, kernel_size = (7,1))(branch7x7)
branch7x7 = self._cn_bn_relu(filters = _7x7, kernel_size=(1, 7))(branch7x7)
dbranch7x7 = self._cn_bn_relu(filters = _d7x7r, kernel_size = (1,1))(input_x)
for i in range(2):
dbranch7x7 = self._cn_bn_relu(filters = _d7x7r, kernel_size=(7, 1))(branch7x7)
if i == 0:
dbranch7x7 = self._cn_bn_relu(filters=_d7x7r, kernel_size=(1, 7))(branch7x7)
else :
dbranch7x7 = self._cn_bn_relu(filters=_d7x7, kernel_size=(1, 7))(branch7x7)
return concatenate([branch1x1, branchpooling, branch7x7, dbranch7x7], axis = self.channel_axis, name = name)
return f
def _GridSizeReduction17x17(self, _3x3r = 192, _3x3 =320, _d7x7x3r = 192, _d7x7x3 = 192):
'''
A function for dimension reducing from 17x17 -> 8x8
'''
def f(input_x):
branchpool = AveragePooling2D(pool_size = (3,3), strides = (2,2), padding = "valid")(input_x)
branch7x7 = self._cn_bn_relu(filters = _3x3r, kernel_size = (1,1))(input_x)
branch7x7 = self._cn_bn_relu(filters = _3x3 , kernel_size = (3,3), strides = (2,2), padding = "valid")(branch7x7)
dbranch7x7 = self._cn_bn_relu(filters = _d7x7x3r, kernel_size = (1, 1))(input_x)
dbranch7x7 = self._cn_bn_relu(filters = _d7x7x3, kernel_size = (7, 1))(dbranch7x7)
dbranch7x7 = self._cn_bn_relu(filters = _d7x7x3, kernel_size = (1, 7))(dbranch7x7)
dbranch7x7 = self._cn_bn_relu(filters = _d7x7x3, kernel_size = (3, 3), strides = (2, 2), padding = "valid")(dbranch7x7)
return concatenate([branchpool, branch7x7, dbranch7x7], axis = self.channel_axis)
return f
def _inception_block8x8(self, _1x1 = 320, _pool = 192, _3x3r = 384, _3x3 = 384, _d3x3r = 448, _d3x3 = 384, name = "inception_fig7_1"):
'''
A function for building inception block of figure7 in original article,
'''
def f(input_x):
branch1x1 = self._cn_bn_relu(filters = _1x1, kernel_size = (1,1))(input_x)
branchpool = AveragePooling2D(pool_size = (3,3), strides = (1,1), padding = "same")(input_x)
branchpool = self._cn_bn_relu(filters = _pool, kernel_size = (1,1))(branchpool)
branch3x3 = self._cn_bn_relu(filters = _3x3r, kernel_size = (1,1))(input_x)
branch3x3_1 = self._cn_bn_relu(filters = _3x3, kernel_size = (3,1))(branch3x3)
branch3x3_2 = self._cn_bn_relu(filters = _3x3, kernel_size = (1,3))(branch3x3)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3r, kernel_size = (1,1))(input_x)
dbranch3x3 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,3))(dbranch3x3)
dbranch3x3_1 = self._cn_bn_relu(filters = _d3x3, kernel_size = (3,1))(dbranch3x3)
dbranch3x3_2 = self._cn_bn_relu(filters = _d3x3, kernel_size = (1,3))(dbranch3x3)
return concatenate([branch1x1, branchpool, branch3x3_1, branch3x3_2, dbranch3x3_1, dbranch3x3_2], axis = self.channel_axis, name = name)
return f
def build_inception(self):
'''
Main function for building inceptionV3 nn
:return: An inceptionV3 nn
'''
input_x = Input(self.input_shape)
#Few traditional convolutional layers at lower layers
#Which are factorized by original 7x7 convolution layer
x = self._cn_bn_relu(filters = 32, kernel_size = (3,3), strides = self.init_strides, padding = "valid")(input_x)
x = self._cn_bn_relu(filters = 32, kernel_size = (3,3), strides = (1,1), padding = "valid")(x)
x = self._cn_bn_relu(filters = 64, kernel_size = (3,3), strides=(1,1), padding="same")(x)
if self.init_maxpooling:
x = MaxPooling2D(pool_size = (3,3), strides = (2,2), padding = "valid")(x)
x = self._cn_bn_relu(filters = 80, kernel_size = (3,3), strides=(1,1), padding = "valid")(x)
x = self._cn_bn_relu(filters = 192, kernel_size = (3,3), strides = self.init_strides, padding = "valid")(x)
x = self._cn_bn_relu(filters = 288, kernel_size = (3,3), strides = (1,1), padding = "same")(x)
#First 3 inception block, which are using architecture of figure5 in original article
for i in range(3):
x = self._inception_block35x35(_1x1=64,_3x3r=48,_3x3=64,_d3x3r=64,_d3x3=96, name = "inception_fig5_"+str(i+1))(x)
#Dimension reducing #1 (from 35x35 -> 17x17 in original article)
x = self._GridSizeReduction35x35( _3x3r = 288, _3x3 = 384, _d3x3r = 64, _d3x3 = 96)(x)
# 5 inception block, which are using architecture of figure6 in original article
for i in range(5):
x = self._inception_block17x17(_1x1=192,_7x7r=128,_7x7=192,_d7x7r=128,_d7x7=192,_pool=192, name = "inception_fig6_"+str(i+1))(x)
# auxiliary classifier
auxiliary = self._auxiliary(name = "auxiliary_1")(x)
#Dimension reducing #2 (from 17x17 -> 8x8 in original article)
x = self._GridSizeReduction17x17(_3x3r=192,_3x3=320,_d7x7x3r=192,_d7x7x3=192)(x)
for i in range(2):
x = self._inception_block8x8(_1x1 = 320, _pool = 192, _3x3r = 384, _3x3 = 384, _d3x3r = 448, _d3x3 = 384, name = "inception_fig7_"+str(i+1))(x)
x_shape = K.int_shape(x)
x = AveragePooling2D(pool_size = (x_shape[self.row_axis], x_shape[self.col_axis]), strides = (1,1))(x)
x = Flatten()(x)
x = Dense(units = 2048, kernel_initializer=self.initializer)(x)
x = BatchNormalization(axis = 1)(x)
x = Activation("relu")(x)
output_x = Dense(units = self.output_units, activation = "softmax", kernel_initializer=self.initializer,name = "main_output")(x)
inceptionv3_model = Model(inputs = [input_x], outputs = [output_x,auxiliary])
return inceptionv3_model
inception_builder = Inceptionv3_builder()
model = inception_builder.build_inception()
model.summary()