-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN_w2v.py
336 lines (281 loc) · 11.7 KB
/
CNN_w2v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import optuna
import numpy as np
import pandas as pd
import seaborn as sns
from time import time
import tensorflow as tf
from tensorflow import keras
from keras import backend as K
from keras.regularizers import l2
from gensim.models import FastText
from keras.models import Sequential
from matplotlib import pyplot as plt
from keras.initializers import Constant
from nltk.tokenize import word_tokenize
from keras.layers import Dropout, Activation
from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import LabelEncoder
from keras.utils.np_utils import to_categorical
from keras.layers import Conv1D, GlobalMaxPooling1D
from sklearn.model_selection import train_test_split
from keras.preprocessing.sequence import pad_sequences
from gensim.test.utils import common_texts, get_tmpfile
from sklearn.metrics import classification_metrics, f1_score
from keras.layers import Dense, Embedding, LSTM, SpatialDropout1D
from keras.optimizers import Adam, RMSprop, Adadelta, Adagrad, SGD
train = pd.read_csv("data/train.csv")
dev = pd.read_csv("data/dev.csv")
test = pd.read_csv("data/test.csv")
le = LabelEncoder()
le = le.fit(train.label.unique().tolist())
#save encodings to a file
with open("label_encoding.txt","w") as f:
f.write(str({class_:value for value,class_ in enumerate(le.classes_)}))
train_x = train.text.tolist()
train_y = le.transform(train.label.tolist())
valid_x = dev.text.tolist()
valid_y = le.transform(dev.label.tolist())
test_x = test.label.tolist()
tokenizer_obj = Tokenizer()
texts = []
lines = []
lines.extend(train_x)
lines.extend(valid_x)
lines.extend(test_x)
for line in lines:
texts.append(word_tokenize(line))
trainX_token = []
for x in train_x:
trainX_token.append(x)
validX_token = []
for x in valid_x:
validX_token.append(x)
testX_token = []
for x in test_x:
testX_token.append(x)
tokenizer_obj.fit_on_texts(texts)
word_index = tokenizer_obj.word_index
train_seq = tokenizer_obj.texts_to_sequences(trainX_token)
valid_seq = tokenizer_obj.texts_to_sequences(validX_token)
test_seq = tokenizer_obj.texts_to_sequences(testX_token)
w2v_file = set()
target_name = le.classes_.tolist()
print('Found {} unique tokens.'.format(len(word_index)))
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def plot_confusion_matrix(cm,
trial_no,
target_names,
title='Confusion matrix',
cmap=None,
normalize=True):
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Set2')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.5f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.5f}; misclass={:0.5f}'.format(accuracy, misclass))
plt.savefig(f"results/Trial{trial_no}/confusion_matrix.png")
def objective(trial):
try:
os.mkdir(f"results/fastText/Trial{trial.number}"))
except FileExistsError :
pass
embed_size = trial.suggest_categorical("vec_size",[100,200,300])
max_seq_len = trial.suggest_categorical("max_seq_len",[32,64])
w2v_epochs = trial.suggest_categorical("w2v_epochs",[5,10,15,20,25])
win_size = trial.suggest_categorical("win_size",[2,3,4,5,6,7,8,9,10])
sg = trial.suggest_categorical("model_type",[0,1])
batch_size = trial.suggest_categorical("batch_size", [32, 64, 128, 256])
epochs = trial.suggest_categorical("epochs", [30, 40, 50, 60])
fname = f"w2v_{embed_size}_{w2v_epochs}_{win_size}_{sg}.txt"
if fname not in w2v_file:
model = Word2Vec(texts, size=embed_size, window=win_size, min_count=1, workers=6,epochs=w2v_epochs)
model.wv.save_word2vec_format(fname,binary=False)
w2v_file.add(fname)
del model
embeddings_index = {}
with open(fname) as f:
for line in f:
values = line.split().strip("\n")
word = values[0]
coefs = np.asarray(values[1:],dtype="float32")
embeddings_index[word] = coefs
X_train = pad_sequences(train_seq,maxlen=max_seq_len,padding="post",truncating="post")
X_valid = pad_sequences(valid_seq,maxlen=max_seq_len,padding="post",truncating="post")
X_test = pad_sequences(test_seq,maxlen=max_seq_len,padding="post",truncating="post")
num_words = len(word_index) + 1
embedding_matrix = np.zeros((num_words, embed_size))
for word, i in word_index.items():
if i > num_words:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
start = time()
EMBEDDING_DIM = embed_size
num_classes = 3
filters = 256
kernel_size = 1
dp1 = trial.suggest_uniform('dropout_rate1', 0.0, 1.0)
l2_11 = l2(trial.suggest_uniform('l2_11', 0.0, 1.0))
l2_12 = l2(trial.suggest_uniform('l2_12', 0.0, 1.0))
act1 = trial.suggest_categorical('activation1', ['relu', 'elu','selu'])
dp2 = trial.suggest_uniform('dropout_rate2', 0.0, 1.0)
l2_21 = l2(trial.suggest_uniform('l2_21', 0.0, 1.0))
l2_22 = l2(trial.suggest_uniform('l2_22', 0.0, 1.0))
dp3 = trial.suggest_uniform('dropout_rate3', 0.0, 1.0)
act2 = trial.suggest_categorical('activation2', ['relu', 'elu','selu']))
l2_31 = l2(trial.suggest_uniform('l2_31', 0.0, 1.0))
l2_32 = l2(trial.suggest_uniform('l2_32', 0.0, 1.0))
model = Sequential()
model.add(Embedding(num_words,
EMBEDDING_DIM,
embeddings_initializer=Constant(embedding_matrix),
input_length=max_length,
trainable=False))
model.add(SpatialDropout1D(dp1))
model.add(Conv1D(filters,
kernel_size,
padding='valid',
kernel_regularizer=l2_11,
bias_regularizer=l2_12,
activation=act1,
strides=1))
model.add(GlobalMaxPooling1D())
model.add(Dropout(dp2))
model.add(Dense(units = 256,
kernel_regularizer=l2_21,
bias_regularizer=l2_22))
model.add(Dropout(dp3))
model.add(Activation(act2))
model.add(Dense(num_classes,
kernel_regularizer=l2_31,
bias_regularizer=l2_32))
model.add(Activation('softmax'))
lr = trial.suggest_loguniform("lr", 1e-5, 10e-3)),
optimizer_dict = {
'Adagrad': Adagrad(learning_rate = lr),
'Adadelta': Adadelta(learning_rate = lr),
'Adam': Adam(learning_rate = lr),
'RMSprop': RMSprop(learning_rate = lr),
'SGD': SGD(learning_rate = lr, nesterov=True)
}
optim = trial.suggest_categorical('Optimizer', list(optimizer_dict.keys()))
model.compile(loss='categorical_crossentropy',
optimizer = optimizer_dict[optim],
metrics=['accuracy', f1_m])
history = model.fit(X_train, Y_train,batch_size = batch_size,
epochs = epochs,
validation_data = (X_valid, Y_valid),
verbose=2)
end = time()
history = history.history
valid_pred = np.argmax(model.predict(X_valid),axis=1)
conf_mat = confusion_matrix(valid_y,valid_pred)
f1 = f1_score(valid_y,valid_pred,average='weighted')
with open(f"results/Trial{trial.number}/results.txt","w") as f:
report = classification_report(valid_y,valid_pred,target_names=target_name,digits=6)
f.write(report)
f.write("\nClasswise accuracy:\n")
class_acc = [] #calculate class wise accuracy
for i in range(len(conf_mat)):
class_acc.append(conf_mat[i][i]/conf_mat[i].sum()*100)
f.write(str(class_acc)+"\n")
f.write(f"weighted f1 score: {f_score}\n")
# save hyper -parameters in same file
f.write("------------------HyperParameters------------------\n")
f.write(f"Learning rate: {lr}\n")
f.write(f"Epochs: {epochs}\n")
f.write(f"Optimizer: {optim}\n")
f.write(f"Batch Size: {batch_size}\n")
f.write(f"Max seq len: {max_seq_len}\n")
f.write(f"Embedding size: {embed_size}\n")
f.write(f"w2v epochs:{w2v_epochs}\n")
f.write(f"window size; {win_size}\n")
f.write(f"Different activations: {act1}, {act2}\n")
f.write(f"Layerwise l2 : {l2_11,l2_12}, {l2_21,l2_21}, {l2_31},{l2_32}\n")
f.write(f"Dropout : {dp1},{dp2},{dp3}\n")
f.write(f"Time Taken: {(end_time-start_time)//60} min {(end_time-start_time)%60} secs\n\n")
#plot accuracy and loss
fig = plt.figure()
plt.plot(history["loss"])
plt.plot(history["val_loss"])
plt.title("Model loss")
plt.xlabel("epoch ===>")
plt.ylabel("Loss")
plt.legend(['train data','validation data'],loc="upper right")
plt.savefig(f"results/Trial{trial.number}/loss.png")
fig.clear()
plt.close(fig)
fig = plt.figure()
plt.plot(history["accuracy"])
plt.plot(history["val_accuracy"])
plt.title("Model accuracy")
plt.xlabel("epoch ===>")
plt.ylabel("Accuracy")
plt.legend(['train data','validation data'],loc="upper right")
plt.savefig(f"results/Trial{trial.number}/accuracy.png")
fig.clear()
plt.close(fig)
plot_confusion_matrix(cm = np.array(conf_mat),
trial_no = trial.number,
target_names = target_name,
normalize = True,
title = "Confusion Matrix")
test_pred = model.predict(X_test)
test_pred = np.argmax(test_pred,axis=1).tolist()
test_pred_label = []
for i in test_pred:
test_pred_label.append(target_name[i])
result = pd.DataFrame({"text":test_text,"label":test_pred_label})
result.to_csv(f"results/Trial{trial.number}/result.csv")
del model
return f1
try:
os.mkdir(f"results")
except FileExistsError :
pass
start_time = time() #ending time for all tials
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=10, timeout=200000)
end_time = time() # ending time for all trials
with open(f"results/best_trial_det.txt","w") as f:
f.write(f"Best Trial: {study.best_trial.number}\n")
for k, v in study.best_trial.params.items():
f.write(f"{k}: {v}\n")
f.write(f"Time taken for all trials: {(end_time-start_time)//60} min {(end_time-start_time)%60} secs\n\n")