-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_extractors.py
430 lines (356 loc) · 16.2 KB
/
feature_extractors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from datetime import datetime
import numpy as np
import pywt
import umap
import tensorflow as tf
from PIL import Image
from abc import ABC, abstractmethod
from img2vec_pytorch import Img2Vec
from tensorflow import saved_model
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Model
from tensorflow.keras.utils import Sequence
from keras.applications.resnet50 import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras.applications.vgg16 import preprocess_input as preprocess_input_vgg16
from pathlib import Path
import tensorflow_hub as hub
class FeatureExtractor(ABC):
@abstractmethod
def extract_features_from_generator(self, generator: Sequence) -> np.ndarray:
"""
Extracts features from TF Generator
Args:
generator: TF Generator
"""
pass
@abstractmethod
def extract_features_from_batch(self, batch: np.ndarray) -> np.ndarray:
"""
Extracts features from a single batch of items
Args:
batch: nparray of items
"""
pass
@abstractmethod
def fit(self, data: np.ndarray) -> None:
"""
Fits the extractor to given data
Args:
data: Data for fitting the extractor
"""
pass
@abstractmethod
def extract_feature(self, data: np.ndarray) -> np.ndarray:
"""
Fits the extractor to given data
Args:
data: Data for fitting the extractor
"""
pass
class Img2VecExtractor(FeatureExtractor):
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def __init__(self):
"""
Initializes Img2Vec extractor
"""
self.extractor = Img2Vec(cuda=True)
def extract_features_from_batch(self, batch):
batch_features = []
for input in batch:
npy_img = ((input + 1) * 127.5).astype('uint8')
img = Image.fromarray(npy_img, 'RGB')
vec = self.extractor.get_vec(img)
batch_features.append(vec)
return batch_features
def extract_features_from_generator(self, generator):
generator_features = []
for batch, label in generator:
batch_features = self.extract_features_from_batch(batch)
generator_features.extend(batch_features)
return generator_features
def extract_feature(self, data: np.ndarray) -> np.ndarray:
img = Image.fromarray(data, 'RGB')
vec = self.extractor.get_vec(img)
return vec
class Vgg16 (FeatureExtractor):
def __init__(self):
"""
Creates a feature extractor based on pretrained TF network
Args:
config: Config file used in main program
conv_network: TF network defined in tensorflow.keras.applications
"""
config_path = Path('src/anonymity/utils/config')
model = load_model(config_path)
model = Model(inputs=model.inputs, outputs=model.get_layer(index=2).output)
self.model = model
def extract_features_from_generator(self, generator):
slide_features = self.model.predict_generator(generator=generator, verbose=1, max_queue_size=6, workers=8,
use_multiprocessing=True)
return slide_features
def extract_features_from_batch(self, batch):
batch_features = self.model.predict_on_batch(batch)
return batch_features
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
# data = (data-128)/128
data = data/256
result = self.model.predict(np.expand_dims(data, axis=0))
return result
class SimCLR(FeatureExtractor):
def __init__(self):
tf.compat.v1.disable_eager_execution()
hub_path = '/path/to/simclr/hub'
self.model = hub.Module(hub_path, trainable=False)
def extract_features_from_generator(self, generator):
raise Exception("Not supported for this type of extractor")
def extract_features_from_batch(self, batch):
raise Exception("Not supported for this type of extractor")
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
data = data/255
res = self.model(np.expand_dims(data, axis=0))
return res
class PretrainedTensorflowNetwork(FeatureExtractor):
def __init__(self, config: dict, preprocessing, conv_network=VGG16):
"""
Creates a feature extractor based on pretrained TF network
Args:
config: Config file used in main program
conv_network: TF network defined in tensorflow.keras.applications
"""
self.config = config
self.model = conv_network(weights='imagenet', include_top=False)
def extract_features_from_generator(self, generator):
slide_features = self.model.predict_generator(generator=generator, verbose=1, max_queue_size=6, workers=8,
use_multiprocessing=True)
return slide_features
def extract_features_from_batch(self, batch):
batch_features = self.model.predict_on_batch(batch)
return batch_features
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
return self.model.predict(preprocess_input_vgg16(np.expand_dims(data, axis=0)))
class Vgg16Pretrained(FeatureExtractor):
def __init__(self, config):
"""
Creates a feature extractor using network pretrained on classifying histopathological data
Args:
config: Config file used in main program
"""
self.config = config
pre_model = PretrainedModelAnonymityForEval(config, conv_net=VGG16)
self.model = Model(inputs=pre_model.model.input, outputs=pre_model.model.layers[-2].output)
def extract_features_from_generator(self, generator):
slide_features = self.model.predict_generator(generator=generator, verbose=1, max_queue_size=6, workers=8,
use_multiprocessing=True)
return slide_features
def extract_features_from_batch(self, batch):
batch_features = self.model.predict_on_batch(batch)
return batch_features
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
return self.model.predict(np.expand_dims(data, axis=0))
class DWTFeatureExtractor(FeatureExtractor):
def __init__(self, config: dict, wavelet: str = 'db1') -> None:
"""
Creates a feature extractor that uses DWT
Args:
config: Config file used in main program
wavelet: Wavelet to use
"""
self.config = config
self.wavelet = wavelet
def extract_features_from_generator(self, generator):
generator_features = []
for batch, label in generator:
batch_features = self.extract_features_from_batch(batch)
for feature in batch_features:
generator_features.append(feature)
# feature = pywt.downcoef('d', input[0].flatten(), 'db1')
# slide_features.append(feature)
return generator_features
def extract_features_from_batch(self, batch):
batch_features = []
for input in batch:
rA, (rH, rV, rD) = pywt.dwt2(input[:, :, 0], self.wavelet)
gA, (gH, gV, gD) = pywt.dwt2(input[:, :, 1], self.wavelet)
bA, (bH, bV, bD) = pywt.dwt2(input[:, :, 2], self.wavelet)
if self.config['model']['dwt']['direction'] == 'horizontal':
feature = np.array([rH, gH, bH]).flatten()
if self.config['model']['dwt']['direction'] == 'vertical':
feature = np.array([rV, gV, bV]).flatten()
if self.config['model']['dwt']['direction'] == 'diagonal':
feature = np.array([rD, gD, bD]).flatten()
if self.config['model']['dwt']['direction'] == 'all':
feature = np.array([rH, gH, bH, rV, gV, bV, rD, gD, bD]).flatten()
batch_features.append(feature)
return np.array(batch_features)
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
raise Exception("Not supported for this type of extractor")
class UmapFeatureExtractor(FeatureExtractor):
def fit_predict(self, data):
return self.model.fit_transform(data)
def __init__(self, dim: int = 50, neighbors: int = 15, min_dist: float = 0.1) -> None:
"""
Creates an UMAP feature extractor
Args:
dim: Target dimension number
neighbors: K-nearest neighbor hyperparameter
min_dist: min_dist hyperparameter
"""
self.model = umap.UMAP(n_neighbors=neighbors,
min_dist=min_dist,
n_components=dim
)
def extract_features_from_generator(self, generator):
generator_features = []
for batch, label in generator:
batch_features = self.extract_features_from_batch(batch)
generator_features.extend(batch_features)
return generator_features
def extract_features_from_batch(self, batch):
return self.model.transform(batch)
def fit(self, data):
self.model.fit(data)
def extract_feature(self, data):
raise Exception("Not supported for this type of extractor")
class AutoEncoder(FeatureExtractor):
def __init__(self, config: dict = None, weights_path: str = None, feature_extractor: bool = False) -> None:
"""
Creates a feature extractor with AutoEncoder
Args:
config: Config file used in main program
weights_path: Path to a weight file if using pretrained weights
feature_extractor: Prepare extracting output
"""
self.create_cnn()
if weights_path != None:
self.autoencoder.load_weights(filepath=weights_path)
self.autoencoder.compile(optimizer='adam', loss='mean_squared_error')
self.autoencoder.build(input_shape=(512, 512, 3))
self.autoencoder.summary()
# keras.utils.plot_model(self.autoencoder, to_file='AE.png', show_shapes=True, dpi=1000)
self.encoder = None
if (feature_extractor):
self.get_feature_extractor()
if config is not None:
config['model']['preprocess_function'] = lambda x: x / 255
def create_cnn(self):
"""
Creates an internal model for AutoEncoder
"""
input_img = keras.Input(shape=(512, 512, 3))
x = layers.Conv2D(8, (3, 3), activation='relu', padding='same')(input_img)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
# x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
# x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same', name='encoding')(x)
x = layers.UpSampling2D((2, 2))(x)
# x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
# x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
decoded = layers.Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
self.autoencoder = keras.Model(input_img, decoded)
def get_feature_extractor(self):
"""
Creates a model for encoding features by accesing the encoding layer
"""
new_output = self.autoencoder.get_layer('encoding')
self.encoder = Model(inputs=self.autoencoder.input, outputs=new_output.output, )
def train(self, generator: Sequence, epochs: int = 30, steps_per_epoch: int = 10000) -> None:
"""
Trains an AutoEncoder on a given generator
Args:
generator: TF generator
epochs: epoch number
steps_per_epoch: steps for epoch
"""
self.autoencoder.fit_generator(generator, epochs=epochs, steps_per_epoch=steps_per_epoch)
self.autoencoder.save_weights(
filepath=f"encoder_weights_temp-{datetime.now().strftime('%d-%b-%Y__%H:%M:%S')}.h5")
def test(self, generator: Sequence) -> None:
"""
Creates random 10 images using encoding and decoding input data, useful for testing if autoencoder is doing
something meaningful.
Args:
generator: TF Generator
"""
i = 0
# generator has some random data, so running on first 10 images is OK for brief look if it does something
for data, labels in generator:
predicted = self.autoencoder.predict_on_batch(data)[0]
npy_img = ((data[0]) * 255).astype('uint8')
original_img = Image.fromarray(npy_img, 'RGB')
original_img.save(
f"samples/original-{i}-{datetime.now().strftime('%d-%b-%Y__%H:%M:%S')}.png")
npy_img = ((predicted) * 255).astype('uint8')
predicted_img = Image.fromarray(npy_img, 'RGB')
predicted_img.save(
f"samples/predicted-{i}-{datetime.now().strftime('%d-%b-%Y__%H:%M:%S')}.png")
i += 1
if i == 10:
return
def extract_features_from_generator(self, generator):
slide_features = self.encoder.predict_generator(generator=generator, verbose=1, max_queue_size=6, workers=8,
use_multiprocessing=True)
return slide_features
def extract_features_from_batch(self, batch):
batch_features = self.encoder.predict_on_batch(batch)
return batch_features
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
return self.encoder.predict(np.expand_dims(data, axis=0))
class ResnetExtractor(FeatureExtractor):
def fit_predict(self, data):
raise Exception("Not supported for this type of extractor")
def __init__(self, ) -> None:
"""
Creates an Resnet50 feature extractor
Args:
dim: Target dimension number
neighbors: K-nearest neighbor hyperparameter
min_dist: min_dist hyperparameter
"""
model = ResNet50(weights='imagenet', include_top=True)
model = Model(inputs=model.inputs, outputs=model.get_layer('avg_pool').output)
self.model = model
def extract_features_from_generator(self, generator):
raise Exception("Not supported for this type of extractor")
def extract_features_from_batch(self, batch):
return self.model.transform(batch)
def fit(self, data):
raise Exception("Not supported for this type of extractor")
def extract_feature(self, data):
img = preprocess_input(np.expand_dims(data, axis=0))
return self.model.predict(img)