-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRegression 3 year data
67 lines (45 loc) · 2.04 KB
/
Regression 3 year data
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#NARROW DOWN COVRIATES TO INCLUDE IN FINAL MODEL
load("Covariates.rda")
all<-all[,c(1,3:12)]
a<-read.csv("draft_ethnicity_brexit_03.csv")
test3<-merge(a,all,all.x=TRUE)
attach(test3)
RegModel.1 <-
lm(Pct_Leave.x~rate_nonUk+age_grp18_24+age_grp25_34+age_grp35_44+age_grp45_54+age_grp55_64+
age_grp65_over+Area.Sq.Km+
Mid.2016.Population+Pct_Turnout.x+Rejected_Ballots+
People.per.Sq.Km, data=test3)
#STEPWISE SIMPLIFICATION
drop1(RegModel.1, test="F")
#At the 3 year level, drop1 proposed dropped variables are Age group 45-54
RegModel.2<-update(RegModel.1,~.-age_grp45_54)
anova(RegModel.1,RegModel.2,test="Chi") #P=0.799
summary(RegModel.2)
#Significant: rate_nonUk, all age bands, Area.sq.km, change10,
#Mid2016 Population, Pct_Turnout.x, change10,Mid.2016.Population,Pct_Turnout.x,Rejected_Ballots,People.per.Sq.Km
#EXPAND ETHNICITY (REPLACE rate_nonUk with ethnicity specific rates)
load("Brexit03Covariates.rda")
RegModel.5<-lm(formula = Pct_Leave.y ~ age_grp18_24 + age_grp25_34 + age_grp35_44 +
age_grp45_54 + age_grp55_64 + age_grp65_over + Area.Sq.Km +
Asian + Black + Mid.2016.Population + Other + Pct_Turnout.y + People.per.Sq.Km +
Rejected_Ballots +
White.British + White.Other, data = threeall)
drop1(RegModel.5, test="F")
RegModel.6<-update(RegModel.5,~.-age_grp45_54)
anova(RegModel.5,RegModel.6,test="Chi") #P=0.7564
RegModel.7<-update(RegModel.6,~.-Other)
anova(RegModel.6,RegModel.7,test="Chi") #P=0.659
drop1(RegModel.7, test="F")
RegModel.8<-update(RegModel.7,~.-Asian)
anova(RegModel.7,RegModel.8,test="Chi") #P=0.2106
RegModel.9<-update(RegModel.8,~.-age_grp25_34)
anova(RegModel.8,RegModel.9,test="Chi") #P=0.215
drop1(RegModel.9, test="F")
RegModel.10<-update(RegModel.9,~.-Black)
anova(RegModel.9,RegModel.10,test="Chi") #P=0.1933
RegModel.11<-update(RegModel.10,~.-White.Other)
anova(RegModel.10,RegModel.11,test="Chi") #P=0.0315 #Cannot be dropped
RegModel.12<-update(RegModel.10,~.-Mid.2016.Population)
anova(RegModel.10,RegModel.12,test="Chi") #P=0.06183
drop1(RegModel.12, test="F")
summary(RegModel.12)