-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathROMSOC.m
165 lines (136 loc) · 5.58 KB
/
ROMSOC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% ------------------------------------------------------------------------------
% Reduced Order Multirate Simulation Of Circuits BDF-1
%
%
% This script parses a netlist *.cir file into matrices and function
% vectors and casts them in the form:
%
% F = @(x_p,x,t) A*x + E*x_p + func_p(x) + func_r(t);
%
%
%
% Copyright 2021 Marcus Bannenberg (BUW, bannenberg@uni-wuppertal.de)
% ------------------------------------------------------------------------------
clear all
% Add parser m_files
addpath(genpath('Parser'));
% Add components m_files
addpath(genpath('Components'));
% Add numerical m_files
addpath(genpath('Numerical'));
% Add circuits
addpath(genpath('Circuits'));
% Select circuit
% fname = 'multirate_example_long_nonlin.cir';
fname = 'multirate_example.cir';
% Parse the netlist to matrices and function vectors
[E, A, func_p, func_r, x0] = parse_netlist(fname);
% Set simulation parameters
t_0 = 0; t_end = 0.004;
N = 100; m = 20;
t = linspace(t_0,t_end,m*N+1);
tol = 1e-8;
M = numel(x0);
idx_A = [1:3 M]';
idx_L = [4:M-1]';
% Compute reference solution
try
B = strcat(regexprep(cellfun(@func2str, func_p, 'uni', 0), {'^@\(x\)','\s'}, ''), ';');
func_p_ode = str2func(strcat('@(x) [', B{:}, ']'));
B = strcat(regexprep(cellfun(@func2str, func_r, 'uni', 0), {'^@\(t\)','\s'}, ''), ';');
func_r_ode = str2func(strcat('@(t) [', B{:}, ']'));
f = @(t,x) -A*x - func_p_ode(x) - func_r_ode(t);
opts = odeset('Mass',E,'RelTol',1e-13);
disp('Solving the circuit with ode15s');
tic
[t_ref,y_ref] = ode15s(f,t,x0,opts);
toc
y_ref = y_ref';
Y = zeros(size(y_ref));
for i = 1:numel(t)
Y(:,i) = func_p_ode(y_ref(:,i));
end
X = Y;
X_diff = X(:,2:end)-X(:,1:end-1);
epsilon = epsilon_procedure(X_diff);
mor_object.U_gap = mess(X_diff,0.1);
mor_object.g = size(mor_object.U_gap,2);
[mor_object.S, mor_object.M, mor_object.U_gap_S, mor_object.idx] = gappypod(mor_object.U_gap);
X = Y;
X_diff = y_ref(idx_L,2:end) - y_ref(idx_L,1:end-1);
epsilon = epsilon_procedure(X_diff);
u = mess(X_diff,epsilon);
r_mess = size(u,2);
mor_object.r = r_mess;
mor_object.dim_org = size(y_ref,2);
mor_object.U_r = u;
mor_object.Phi = mor_object.U_r.';
mor_object.dim_A = numel(idx_A); mor_object.dim_L = numel(idx_L);
Phi_full = zeros(mor_object.r+numel(idx_A),numel(idx_A)+numel(idx_L));
Phi_full(idx_A(idx_A < idx_L(1)),idx_A(idx_A < idx_L(1))) = eye(size(idx_A(idx_A<idx_L(1)),1));
Phi_full(idx_L(1):idx_L(1) + mor_object.r-1,idx_L(1):idx_L(1) + numel(idx_L)-1) = mor_object.Phi;
% second block starting point
sbsp = numel(idx_A(idx_A < idx_L(1))) + mor_object.r + 1;
Phi_full(sbsp:end,idx_A(idx_A>idx_L(end))) = eye(numel(idx_A(idx_A>idx_L(end))));
mor_object.Phi = Phi_full;
U_r_full = zeros(numel(idx_A)+numel(idx_L),mor_object.r+numel(idx_A));
U_r_full(idx_A(idx_A < idx_L(1)),idx_A(idx_A < idx_L(1))) = eye(size(idx_A(idx_A<idx_L(1)),1));
U_r_full(idx_L(1):idx_L(1) + numel(idx_L)-1,idx_L(1):idx_L(1) + mor_object.r-1) = mor_object.U_r;
% second block starting point
sbsp = numel(idx_A(idx_A < idx_L(1))) + mor_object.r + 1;
U_r_full(idx_A(idx_A>idx_L(end)),sbsp:end) = eye(numel(idx_A(idx_A>idx_L(end))));
mor_object.U_r = U_r_full;
catch
disp('Reference solver failed');
end
% Array of the number of time steps mulitplied by a factor 2
N_list = N*2.^[0:3];
for i = 1:numel(N_list)
N = N_list(i);
t_mr = linspace(t_0,t_end,m*N+1);
t = linspace(t_0,t_end,N+1);
tol = 1e-8;
disp('Solving the circuit with ROMRBDF-1');
tic
[t_mr, y_romrbdf] = ROMRBDF(E, A, func_p, func_r, x0,t_mr,1,tol,m,mor_object);
romr_timer(i) = toc
disp('Solving the circuit with MRBDF-1');
tic
[t_mr, y_mrbdf] = MRBDF(E, A, func_p, func_r, x0,t_mr,1,tol,m);
mr_timer(i) = toc
disp('Solving the circuit with BDF-1');
tic
[t_bdf, y_bdf] = BDF(E, A, func_p, func_r, x0,t,1,tol);
timer(i) = toc
error_ROMRBDF(:,i) = abs(y_romrbdf(:,end) - y_ref(:,end));
error_MRBDF(:,i) = abs(y_mrbdf(:,end) - y_ref(:,end));
error_BDF(:,i) = abs(y_bdf(:,end) - y_ref(:,end));
end
% Set colors for plotting
color_blue = [0, 0.4470, 0.7410];
color_red = [0.8500, 0.3250, 0.0980];
color_yellow = [0.9290, 0.6940, 0.1250];
% Create figure
h = figure();
loglog(N_list,error_BDF(3,:)','o-','LineWidth',2,'Color',color_blue,'MarkerSize',8); hold on;
loglog(N_list,(error_BDF(3,1)./(2.^[1:numel(N_list)]))','LineWidth',2,'color','black');
loglog(N_list,error_ROMRBDF(3,:)','+-','LineWidth',2,'Color',color_red,'MarkerSize',8);
legend('BDF','O(H)','ROMR');
grid on;
title('Convergence of the error');
xlabel('Number of macro steps');
ylabel('|u^{ref}_{3} - u_3|');
axis([N_list(1)*0.9 N_list(end)*1.1 error_ROMRBDF(3,end)*0.5 error_BDF(3,1)*1.5]);
set(gca, 'FontName', 'Times New Roman','FontSize',14);
figure()
loglog(timer,error_BDF(3,:)','o-','LineWidth',2,'Color',color_blue,'MarkerSize',8); hold on;
loglog(1e2*(2.^[0:numel(timer)-1]),(6e-5./(2.^[0:numel(timer)-1]))','LineWidth',2,'color','black');
loglog(mr_timer,error_MRBDF(3,:)','o-','LineWidth',2,'Color',color_yellow,'MarkerSize',8);
loglog(romr_timer,error_ROMRBDF(3,:)','+-','LineWidth',2,'Color',color_red,'MarkerSize',8);
grid on;
title('Computation time vs the error');
xlabel('Computation time in seconds');
ylabel('|u^{ref}_{3} - u_3|');
axis([romr_timer(1)*0.9 mr_timer(end)*1.1 error_ROMRBDF(3,end)*0.5 error_BDF(3,1)*1.5]);
set(gca, 'FontName', 'Times New Roman','FontSize',14);
legend('BDF','O(H)','MR','ROMR');