-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassification.py
174 lines (144 loc) · 5.89 KB
/
Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1N1S8ROzSKeUhb1tI_8LKG2r2CWjMz0sT
"""
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='.', train = True, download = True, transform = transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size = 4, shuffle = True, num_workers = 8)
testset = torchvision.datasets.CIFAR10(root='.', train = False, download = True, transform = transform)
testloader = torch.utils.data.DataLoader(testset, batch_size = 4, shuffle = False, num_workers = 8)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
import matplotlib.pyplot as plt
import numpy as np
def imshow(img):
img = img/2+0.5 # Denormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# Get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# Show images
imshow(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# Define a CNN
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(3, 8, 3)
self.conv2 = nn.Conv2d(8, 32, 2)
self.conv3 = nn.Conv2d(32, 64, 2)
self.fc1 = nn.Linear(64*3*3, 256)
self.fc2 = nn.Linear(256, 84)
self.fc3 = nn.Linear(84, 10)
self.drop = nn.Dropout2d(p=0.5)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64*3*3)
x = self.drop(x)
x = F.relu(self.fc1(x))
x = self.drop(x)
x = F.relu(self.fc2(x))
x = self.drop(x)
x = self.fc3(x)
return x
net = Net()
# Define the loss function: classification cross-entropy loss
# Define the SGD with momentum as optimizer
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr = 0.001, momentum = 0.9)
# Train the network
for epoch in range(50):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# Get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
if epoch==5:
optimizer = optim.SGD(net.parameters(), lr = 0.0001, momentum = 0.9)
elif epoch==20:
optimizer = optim.SGD(net.parameters(), lr = 0.00001, momentum = 0.9)
optimizer.step()
# Print statistics
running_loss += loss.item()
if i%2000 == 1999: # Print every 2000 mini-patches
print('[%d, %5d] loss: %0.3f' %(epoch+1, i+1, running_loss/2000))
running_loss = 0.0
print('Finished Training.')
# Save the network
## Don't forget to change the name of the PATH!!!
# PATH = './cifar_net.pth' # default CNN structure
# PATH = './cifar_net_epoch20.pth' # default CNN structure, epoch=20
# PATH = './cifar_net_dropout_epoch20.pth' # add dropout, epoch=20
# PATH = './cifar_net_dropout2_epoch20.pth' # less dropout, epoch=20
# PATH = './cifar_net_dropout_6layer_epoch30.pth' # 6 layers, epoch=30
# PATH = './cifar_net_dropout_5layer_epoch20.pth' # 5 layers, epoch=20, feature=32*5*5
# PATH = './cifar_net_changed_rl.pth' # rl=0.001 when epoch<5, =0.0001 when epoch>=5, no dropout, epoch=20
PATH = './cifar_net_changed_rl_epoch50.pth' # rl=0.001 (<5), 0.0001 (5-20), 0.00001 (>20), epoch=50
torch.save(net.state_dict(), PATH)
# Reload the network
net = Net()
net.load_state_dict(torch.load(PATH))
# Test the network on the test data
dataiter = iter(testloader)
images, labels = dataiter.next()
# Show the test images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
# Predicted results
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
# To see the performance of the network on the whole training dataset
correct = 0
total = 0
with torch.no_grad():
for data in trainloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the %d training images is: %0.2f %%' % (total, 100*correct/total))
# To see the performance of the network on the whole test dataset
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the %d test images is: %0.2f %%' % (total, 100*correct/total))
# Performace of the network on each class
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s: %2d %%' % (classes[i], 100*class_correct[i]/class_total[i]))