-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDrug related hospital stays.R
executable file
·142 lines (119 loc) · 7.21 KB
/
Drug related hospital stays.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# ScotPHO indicators: Drug-related hospital admissions for all and for 11-25.
# Part 1 - Extract data from SMRA.
# Part 2 - Create the different geographies basefiles
# Part 3 - Run analysis functions
###############################################.
## Packages/Filepaths/Functions ----
###############################################.
source("1.indicator_analysis.R") #Normal indicator functions
source("2.deprivation_analysis.R") # deprivation function
source("//PHI_conf/ScotPHO/Profiles/Code/stat_disclosure_drug_stays.R") # statistical disclosure methodology - confidential - do not share
###############################################.
## Part 1 - Extract data from SMRA ----
###############################################.
# SMRA login information
channel <- suppressWarnings(dbConnect(odbc(), dsn="SMRA",
uid=.rs.askForPassword("SMRA Username:"),
pwd=.rs.askForPassword("SMRA Password:")))
# Extract drug stay CIS data: provides figures that match the methodology used by ISD drug
# team who publish national statistics for drug related stays
# ScotPHO should not publish updated indicator until after the national
# statistics publication has been released.
# Diagnostic codes should match those use by the ISD DRHS publication.
# SMRA extraction returns all episodes within a continuous inpatient stay
# where an individual has an episode with one or more drug
# related ICD10 diagnosis codes (in any position)
# This indicator only uses general acute admissions and no psychiatric ones (SMR04)
# Date restrictions are based on financial year of hospital discharge (not episode discharge)
# therefore date filters in extract are set to a few
# years before desired data to make sure to capture all CIS that end in 2002/03
# Sorting is done to replicate their methodology
# No need to include codes T402, T404, T423, T424, T436, T52 in the list below
# because they are only included if in the same hospital stay at least one of the
# ICD-10 Mental and Behavioural Disorder codes F11-F16, F18 or F19 is present.
drug_diag <- "^F1[1-689]|^T40[0135-9]" #drug-related diagnosis
drug_hosp <- as_tibble(dbGetQuery(channel, statement= paste0(
"SELECT link_no, cis_marker, AGE_IN_YEARS age, DR_POSTCODE pc7, SEX sex_grp,
CASE WHEN extract(month from discharge_date) > 3 THEN extract(year from discharge_date)
ELSE extract(year from discharge_date) -1 END as year
FROM ANALYSIS.SMR01_PI z
WHERE discharge_date between '1 April 2002' and '31 March 2023'
AND sex <> 9 AND sex <> 0
AND exists (
SELECT *
FROM ANALYSIS.SMR01_PI
WHERE link_no=z.link_no and cis_marker=z.cis_marker
AND discharge_date between '1 April 1997' and '31 March 2023'
AND (regexp_like(main_condition, '", drug_diag ,"')
OR regexp_like(other_condition_1,'", drug_diag ,"')
OR regexp_like(other_condition_2,'", drug_diag ,"')
OR regexp_like(other_condition_3,'", drug_diag ,"')
OR regexp_like(other_condition_4,'", drug_diag ,"')
OR regexp_like(other_condition_5,'", drug_diag ,"')))
ORDER BY link_no, admission_date, cis_marker, discharge_date, admission, discharge, uri"))) %>%
setNames(tolower(names(.))) #variables to lower case
# Group episode level drug data into hospital stays
drug_hosp %<>%
group_by(link_no,cis_marker) %>%
summarise(age=first(age), #age, sex, postcode on hospital admission
sex_grp=first(sex_grp),
pc7=first(pc7),
year=max(year)) %>% ungroup() %>% #select last discharge episode date
create_agegroups() # Creating age groups for standardization.
# Bringing CA and datazone info.
postcode_lookup <- readRDS('/conf/linkage/output/lookups/Unicode/Geography/Scottish Postcode Directory/Scottish_Postcode_Directory_2024_2.rds') %>%
setNames(tolower(names(.))) %>% #variables to lower case
select(pc7, datazone2001, datazone2011, ca2019)
# Match geography information (datazone) to stays data
drug_hosp <- left_join(drug_hosp, postcode_lookup, "pc7") %>%
subset(!(is.na(datazone2011))) #select out non-scottish
###############################################.
## Part 2 - Create the different geographies basefiles ----
###############################################.
###############################################.
# Datazone2011
drug_hosp_dz11 <- drug_hosp %>% group_by(year, datazone2011, sex_grp, age_grp) %>%
summarize(numerator = n()) %>% ungroup() %>% rename(datazone = datazone2011)
saveRDS(drug_hosp_dz11, file=paste0(data_folder, 'Prepared Data/drug_stays_dz11_raw.rds'))
###############################################.
#Deprivation basefile
# DZ 2001 data needed up to 2013 to enable matching to advised SIMD
dz01_dep <- drug_hosp %>% group_by(year, datazone2001, sex_grp, age_grp) %>%
summarize(numerator = n()) %>% ungroup() %>% rename(datazone = datazone2001) %>%
subset(year<=2013)
dep_file <- rbind(dz01_dep, drug_hosp_dz11 %>% subset(year>=2014)) #joing dz01 and dz11
saveRDS(dep_file, file=paste0(data_folder, 'Prepared Data/drug_stays_depr_raw.rds'))
###############################################.
# CA (council area) file for separate indicator in CYP profile for those aged 11 to 25 years
# Drugs publication publishes 0-14, 15-24, 25-34 only for Scotland
drugstays_11to25 <- drug_hosp %>%
subset(age>=11 & age<=25) %>%
group_by(year, ca2019, sex_grp, age_grp) %>%
summarize(numerator = n()) %>% ungroup() %>%
rename(ca = ca2019)
saveRDS(drugstays_11to25, file=paste0(data_folder, 'Prepared Data/drug_stays_11to25_raw.rds'))
###############################################.
## Part 3 - Run analysis functions ----
###############################################.
##Run macros to generate HWB and Drug Profile indicator data
analyze_first(filename = "drug_stays_dz11", geography = "datazone11", measure = "stdrate",
pop = "DZ11_pop_allages", yearstart = 2002, yearend = 2022,
adp = TRUE, time_agg = 3, epop_age = "normal")
analyze_second(filename = "drug_stays_dz11", measure = "stdrate", time_agg = 3,
epop_total = 200000, ind_id = 20205, year_type = "financial")
apply_stats_disc("drug_stays_dz11_shiny") # statistical disclosure applied to final values
#Deprivation analysis function
analyze_deprivation(filename="drug_stays_depr", measure="stdrate", time_agg=3,
yearstart= 2002, yearend=2020, year_type = "financial",
pop = "depr_pop_allages", epop_age="normal",
epop_total =200000, ind_id = 20205)
apply_stats_disc("drug_stays_depr_ineq") # statistical disclosure applied to final values
###############################################.
##Run macros again to generate Drug related admissions in 11 to 25 year olds
analyze_first(filename = "drug_stays_11to25", geography = "council", measure = "stdrate",
pop = "CA_pop_11to25", yearstart = 2002, yearend = 2022,
time_agg = 3, epop_age = '11to25')
analyze_second(filename = "drug_stays_11to25", measure = "stdrate", time_agg = 3,
epop_total = 34200, ind_id = 13025, year_type = "financial")
apply_stats_disc("drug_stays_11to25_shiny") # statistical disclosure applied to final values
##END