-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTesting.py
43 lines (30 loc) · 1.28 KB
/
Testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#This file will be used for testing purposes.
from Model import Model
#from RandomForestModel import RandomForestModel
#from DecisionTreeModel import DecisionTreeModel
import NBADataService
import numpy as np
print(type(NBADataService.get_x_test('Heat', 'Lakers', '2008-09')))
#print(type(NBADataService.to_team_name('CHA', '2013-14')))
#test_tree_model = DecisionTreeModel()
#test_tree_model.train()
#test_tree_model.save_model('decision_tree_model')
#test_model.analyze_training()
#print(test_model.analyze_training())
#test_tree_model = DecisionTreeModel()
#test_tree_model.load_model('decision_tree_model')
#print(test_tree_model.make_prediction('Warriors', 'Cavaliers', '2015-16'))
#model = Model()
#model.load_model('test_model_trained_with_all_13_seasons')
#print(model.make_prediction('Pacers', 'Heat', '2012-13'))
#model.load_model('test_model_trained_with_all_13_seasons')
#print(model.test_model())
#test_tree_model = DecisionTreeModel()
#test_tree_model.load_model('decision_tree_model')
#print(test_tree_model.test_model())
#random_forest_model = RandomForestModel()
#random_forest_model.train()
#random_forest_model.save_model('random_forest_model')
#random_forest_model = RandomForestModel()
#random_forest_model.load_model('random_forest_model')
#print(random_forest_model.test_model())