-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_cnn.py
216 lines (177 loc) · 7.58 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (C) 2020 Daniel Vossen
# see COPYING for further details
from pathlib import Path
import cv2
import sys
import random
import image_processing as imp
import dict_creator
import cnn
import printer
import names
from colorama import Fore, Style
from functools import reduce
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
# splits list l in 2 by filter parameter p
def partition(l, p):
return reduce(lambda x, y: x[0].append(y) or x if p(y) else x[1].append(y) or x, l, ([], []))
# get relevant .webm file
def get_video_file(user, webpage, settings):
video_file_name = webpage + '.webm'
video_file = settings['data_folder'] / 'Dataset_visual_change' / user / video_file_name
return str(video_file)
# prepare shuffled obs for next epoch, rotating through lists for balanced mode
def prepare_next_observations(os1, os2, settings):
if settings['balanced']:
next_obs = os1[:min(len(os1), len(os2))] + os2[:min(len(os1), len(os2))]
os1 = os1[min(len(os1), len(os2)):] + os1[:min(len(os1), len(os2))]
os2 = os2[min(len(os1), len(os2)):] + os2[:min(len(os1), len(os2))]
else:
next_obs = os1 + os2
random.shuffle(next_obs)
return os1, os2, next_obs
# where the magic happens
def train(arguments):
# print help information
if 'help' in arguments:
printer.print_help()
sys.exit()
else:
printer.print_help_notice()
# create settings from arguments
settings = {'data_folder': Path(arguments[1]),
'masked': ('masked' in arguments),
'scrolling': ('scrolling' in arguments),
'has_cuda': ('cuda' in arguments),
'root': ('root' in arguments),
'balanced': ('balanced' in arguments),
'overlap': ('overlap' in arguments),
'model_name': arguments[2]}
# filter users and webpages to use
users = names.get_all_users()
users_to_use = list(set(users) & set(arguments))
if users_to_use:
users = users_to_use
else:
users = users[1:]
webpages = names.get_all_webpages()
webpages_to_use = list(set(webpages) & set(arguments))
if webpages_to_use:
webpages = webpages_to_use
# print settings
printer.print_settings(settings, users, users_to_use, webpages, webpages_to_use)
# create dict from CSV files
csv_dict = dict_creator.create_dict(users, webpages, settings)
# CNN
net = cnn.Net()
criterion = nn.BCEWithLogitsLoss()
if 'load' in arguments:
state_file = settings['model_name'] + '.pth'
net.load_state_dict(torch.load(settings['data_folder'] / state_file))
print('Model loaded successfully')
if 'loadautosave' in arguments:
state_file = 'autosave.pth'
net.load_state_dict(torch.load(settings['data_folder'] / state_file))
print('Model loaded successfully')
if settings['has_cuda']:
device = torch.device("cuda")
net = net.cuda()
criterion = criterion.cuda()
optimizer = optim.Adam(net.parameters(), lr=0.0001)
i = 0
vids = {}
for user in users:
vids[user] = {}
for webpage in webpages:
vids[user][webpage] = cv2.VideoCapture(get_video_file(user, webpage, settings))
torch.cuda.empty_cache()
# check if the observations are getting ORed or are separate by layers and their masks
if settings['masked'] or settings['scrolling'] or settings['root'] or settings['overlap']:
all_obs = [ob for user in users for webpage in webpages for ob in csv_dict[user][webpage]['features_meta']]
else:
all_obs = [ob for user in users for webpage in webpages for ob in csv_dict[user][webpage]['labeled_obs']]
if settings['overlap']:
all_obs = list(filter(lambda o: (int(o['overlap_height']) > 32) and (int(o['overlap_width']) > 32), all_obs))
# split obs into training data and testing data
# random_seed is used so test_cnn.py will have the same list to work with
split_percentage = int(next((s for s in arguments if 'split' in s), 'split=0').split('=')[-1])
if split_percentage:
if split_percentage > 99 or split_percentage < 1:
print('Percentage has to be between 0 and 100, splitting aborted')
else:
print('Splitting data:')
print(str(len(all_obs)) + ' observations total')
random_seed = next((s for s in arguments if 'seed' in s), 'seed=' + settings['model_name']).split('=')[-1]
random.Random(random_seed).shuffle(all_obs)
all_obs = all_obs[:int(len(all_obs) * split_percentage / 100)]
print(str(len(all_obs)) + ' observations kept')
# training parameters
batch_size = int(next((s for s in arguments if 'batch_size' in s), 'batch_size=10').split('=')[-1])
epochs = int(next((s for s in arguments if 'epochs' in s), 'epochs=5').split('=')[-1])
running_loss = 0.0
inputs = []
targets = []
# split obs between labels
obs1, obs2 = partition(all_obs, lambda x: x.get('label') > 0)
random.shuffle(obs1)
random.shuffle(obs2)
# start training
printer.print_training_start(obs1, obs2, batch_size, settings)
for epoch in range(epochs): # loop over the dataset multiple times
print('Epoch ' + Fore.YELLOW + str(epoch + 1) + '/' + str(epochs) + Style.RESET_ALL + ' started')
obs1, obs2, next_obs = prepare_next_observations(obs1, obs2, settings)
for ob in next_obs:
input_frame = imp.get_merged_frame_pair(vids[ob['user']][ob['webpage']], ob, settings)
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
input_frame = torch.from_numpy(input_frame.transpose((2, 0, 1)))
inputs.append(input_frame)
targets.append([min(1, ob['label'])])
if len(inputs) >= batch_size:
inputs = torch.stack(inputs, dim=0)
# print(inputs.shape)
# inputs = torch.from_numpy(inputs)
targets = torch.Tensor(targets)
if settings['has_cuda']:
inputs = inputs.cuda()
targets = targets.cuda()
# forward + backward + optimize
output = net(inputs)
loss = criterion(output, targets)
# zero the parameter gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Clean up GPU memory
del inputs
del targets
torch.cuda.empty_cache()
# current loss
running_loss += loss.item() * batch_size
inputs = []
targets = []
# print statistics
if i % 200 == 199:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
i += 1
autosave_path = settings['data_folder'] / 'autosave.pth'
torch.save(net.state_dict(), autosave_path)
print('Autosave')
if ('saveall' in arguments) and (epoch < (epochs - 1)):
file_name = settings['model_name'] + '_afterEpoch' + str(epoch + 1) + '.pth'
PATH = settings['data_folder'] / file_name
torch.save(net.state_dict(), PATH)
print('Finished Training')
file_name = settings['model_name'] + '.pth'
PATH = settings['data_folder'] / file_name
torch.save(net.state_dict(), PATH)
print('Saved as ' + file_name)
# when called as main
if __name__ == '__main__':
train(sys.argv)