-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
175 lines (133 loc) · 6.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import asyncio
import os
import pickle
from datetime import datetime
import cv2
import cvzone
import face_recognition
import firebase_admin
import numpy as np
from firebase_admin import credentials
from firebase_admin import db
from firebase_admin import storage
cred = credentials.Certificate("serviceAccountKey.json")
firebase_admin.initialize_app(cred, {
'databaseURL': "#place your database URL",
'storageBucket': "#place your storage bucket address"
})
bucket = storage.bucket()
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
# importing images into a list
folderPath = 'Customize_dashboard/bulk-image-crop'
pathList = os.listdir(folderPath)
imgModeList = []
for path in pathList:
imgModeList.append(cv2.imread(os.path.join(folderPath, path)))
# load the encording file
file = open("EncodeFile.p", 'rb')
encodeListknownWithIds = pickle.load(file)
file.close()
encodeListknown, studentsIds = encodeListknownWithIds
print("Encode File Loaded")
async def fetch_student_info_from_db(id):
# Fetching student details from the database
studentInfo = db.reference(f'Students/{id}').get()
return studentInfo
async def download_student_image_from_storage(id):
# Image download from the database
blob = bucket.get_blob(f'Images/{id}.png')
array = np.frombuffer(blob.download_as_string(), np.uint8)
imgStudent = cv2.imdecode(array, cv2.COLOR_BGRA2BGR)
return imgStudent
def draw(imgBackground, studentInfo):
cv2.putText(imgBackground, str(studentInfo['total_attendance']), (1020, 659),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['major']), (1020, 538),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['year']), (1013, 392),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['student_no']), (1020, 478),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['last_attendance_time']), (1020, 602),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
(w, h), _ = cv2.getTextSize(studentInfo['name'], cv2.FONT_HERSHEY_COMPLEX, 1, 1)
offset = (414 - w) // 2
cv2.putText(imgBackground, str(studentInfo['name']), (810 + offset, 337),
cv2.FONT_HERSHEY_COMPLEX, 1, (50, 50, 50), 1)
async def main():
id = -1
counter = 0
modeType = 0
imgStudent = []
imgBackground = cv2.imread('Customize_dashboard/main.png')
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
faceCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, faceCurFrame)
imgBackground[140:140 + 480, 70:70 + 640] = img
imgBackground[0:0 + 707, 770:770 + 503] = imgModeList[modeType]
if faceCurFrame:
for encodeFace, faceLoc in zip(encodeCurFrame, faceCurFrame):
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
bbox = 55 + x1, 162 + y1, (x2 - x1), (y2 - y1)
imgBackground = cvzone.cornerRect(imgBackground, bbox, rt=0)
id = studentsIds[matchIndex]
if counter == 0:
cvzone.putTextRect(imgBackground, "Loading", (275, 400))
cv2.imshow("Display", imgBackground)
cv2.waitKey(2)
counter = 1
modeType = 1
if counter != 0:
if counter == 1:
# Asynchronously fetch student info from the database
studentInfo = await fetch_student_info_from_db(id)
# Asynchronously download the student image
imgStudent = await download_student_image_from_storage(id)
# update the datetime
dateTimeObject = datetime.strptime(studentInfo['last_attendance_time'], "%Y-%m-%d %H:%M:%S")
secondsElapsed = (datetime.now() - dateTimeObject).total_seconds()
if secondsElapsed > 30:
# Update the attendance
ref = db.reference(f'Students/{id}')
studentInfo['total_attendance'] += 1
ref.child('total_attendance').set(studentInfo['total_attendance'])
ref.child('last_attendance_time').set(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
else:
modeType = 3
counter = 0
imgBackground[0:0 + 707, 770:770 + 503] = imgModeList[modeType]
if modeType != 3:
if 10 < counter < 20:
modeType = 2
imgBackground[0:0 + 707, 770:770 + 503] = imgModeList[modeType]
if counter <= 10:
draw(imgBackground, studentInfo)
imgBackground[67:67 + 216, 913:913 + 216] = imgStudent
counter += 1
if counter >= 20:
counter = 0
modeType = 0
studentInfo = []
imgStudent = []
imgBackground[0:0 + 707, 770:770 + 503] = imgModeList[modeType]
else:
modeType = 0
counter = 0
cv2.imshow("Display", imgBackground)
key = cv2.waitKey(1)
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
asyncio.run(main())