-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVoter model networks.jl
431 lines (225 loc) · 7.44 KB
/
Voter model networks.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
using Plots
using Statistics
using StatsBase
using LightGraphs
using GraphPlot
function set_node_states(N, qs)
node_type = []
for i in 1 : N
state = rand(qs)
append!(node_type, [(i, state)])
end
node_dict = Dict(node_type)
return node_dict
end
function init_BA(N, n0, k)
G = barabasi_albert(N, n0, k)
return G
end
function init_ER(N, p)
G = erdos_renyi(N, p)
return G
end
function init_WS(N, k, beta)
G = watts_strogatz(N, k, beta)
return G
end
function random_imitation(G, node_dic)
#Run for all nodes
for node in vertices(G)
#Neighbours of the current node
node_neighbours = neighbors(G, node)
#State of the current node
node_state = get(node_dic, node, 2)
#Select a random neighbour of the current node
nn = rand(node_neighbours)
#State of the selected neighbour
nn_state = get(node_dic, nn, 2)
#Imitate the selected neighbour
if node_state != nn_state
merge!(node_dic, Dict(node => nn_state))
end
end
return node_dic
end
function compute_observables(G, node_dic)
different_links = 0.
#Run for all nodes
for node in vertices(G)
#Neighbours of the current node
node_neighbours = neighbors(G, node)
#State of the current node
node_state = get(node_dic, node, 2)
for nn in node_neighbours
#State of the selected neighbour
nn_state = get(node_dic, nn, 2)
if node_state != nn_state
different_links += 1
end
end
end
different_links = different_links / 2 #Each link has been counted twice
return different_links
end
function simulation(G, node_dic, t)
density_t = zeros(t)
@inbounds for k in 1 : t
node_dic = random_imitation(G, node_dic)
density_t[k] = compute_observables(G, node_dic)
if density_t[k] == 0
break
end
end
return G, density_t / ne(G)
end
function Voter_model_ER(N, p, qs, t)
G = init_ER(N, p)
while ! is_connected(G)
G = init_ER(N, p)
end
node_dic = set_node_states(N, qs)
G, density = simulation(G, node_dic, t)
return G, density
end
function Voter_model_BA(N, n0, k, qs, t)
G = init_BA(N, n0, k)
node_dic = set_node_states(N, qs)
G, density = simulation(G, node_dic, t)
return G, density
end
function Voter_model_WS(N, k, beta, qs, t)
G = init_WS(N, k, beta)
node_dic = set_node_states(N, qs)
G, density = simulation(G, node_dic, t)
return G, density
end
function compute_avg_ER(N, p, qs, t, times)
taus = zeros(times)
avg_density = zeros(t)
@inbounds for k in 1 : times
G, density = Voter_model_ER(N, p, qs, t)
avg_density += density
taus[k] = length(density[density .> 0])
end
return avg_density / times, taus
end
function compute_avg_BA(N, n0, k, qs, t, times)
taus = zeros(times)
avg_density = zeros(t)
@inbounds for j in 1 : times
G, density = Voter_model_BA(N, n0, k, qs, t)
avg_density += density
taus[j] = length(density[density .> 0])
end
return avg_density ./ times, taus
end
function compute_avg_WS(N, k, beta, qs, t, times)
taus = zeros(times)
avg_density = zeros(t)
@inbounds for j in 1 : times
G, density = Voter_model_WS(N, k, beta, qs, t)
avg_density += density
taus[j] = length(density[density .> 0])
end
return avg_density ./ times, taus
end
function N_study_ER(Ns, avg_deg, qs, t, times)
f_tau = open("tau_N_ER.txt", "w")
println(f_tau, "#N\t<tau>")
for N in Ns
p = avg_deg / N
density, taus = @time compute_avg_ER(N, p, qs, t, times)
avg_tau = mean(taus)
f = open("results_ER_N_$N.txt", "w")
println(f, "#rho_t")
@inbounds for i in 1 : t
println(f, density[i])
end
close(f)
println(f_tau, N, "\t", avg_tau)
end
close(f_tau)
end
function N_study_BA(Ns, n0, k, qs, t, times)
f_tau = open("tau_N_BA.txt", "w")
println(f_tau, "#N\t<tau>")
for N in Ns
density, taus = @time compute_avg_BA(N, n0, k, qs, t, times)
avg_tau = mean(taus)
f = open("results_BA_N_$N.txt", "w")
println(f, "#rho_t")
for i in 1 : t
println(f, density[i])
end
close(f)
println(f_tau, N, "\t", avg_tau)
end
close(f_tau)
end
function N_study_WS(Ns, k, beta, qs, t, times)
f_tau = open("tau_N_WS.txt", "w")
println(f_tau, "#N\t<tau>")
for N in Ns
density, taus = @time compute_avg_WS(N, k, beta, qs, t, times)
avg_tau = mean(taus)
f = open("results_WS_N_$N.txt", "w")
println(f, "#rho_t")
for i in 1 : t
println(f, density[i])
end
close(f)
println(f_tau, N, "\t", avg_tau)
end
close(f_tau)
end
function avg_degree_study_ER(avg_ks, N, qs, t, times)
plateau_k = zeros(length(avg_ks))
i = 0
@inbounds for avg_k in avg_ks
i += 1
plateau = zeros(t)
p = avg_k / N
@inbounds for k in 1 : times
G, density = Voter_model_ER(N, p, qs, t)
if all(density != 0)
plateau += density
end
end
#println(mean(plateau ./ times))
plateau_k[i] = mean(plateau ./ times)
end
return plateau_k
end
function avg_degree_study_BA(avg_ks, N, qs, t, times)
@inbounds for avg_k in avg_ks
n0 = Int(floor(avg_k / 2))
deg = n0
density, taus = compute_avg_BA(N, n0, deg, qs, t, times)
f = open("results_BA_k_$avg_k.txt", "w")
println(f, "#rho_t")
for i in 1 : t
println(f, density[i])
end
close(f)
end
end
function avg_degree_study_BA(avg_ks, beta, N, qs, t, times)
@inbounds for avg_k in avg_ks
n0 = Int(floor(avg_k / 2))
deg = n0
density, taus = compute_avg_WS(N, k, beta, qs, t, times)
f = open("results_BA_k_$avg_k.txt", "w")
println(f, "#rho_t")
for i in 1 : t
println(f, density[i])
end
close(f)
end
end
qs = [1, 2]
t = 5*10^5
times = 10^3
k = 4
beta = 0.05
Ns = [800, 1600, 3200]
@time N_study_WS(Ns, k, beta, qs, t, times)