-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_noisy_labels.py
121 lines (92 loc) · 3.45 KB
/
create_noisy_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import dill
import h5py
import numpy as np
import torch
import argparse
from tqdm import tqdm
from model.von_mises_stiefel import VonMisesFisherStiefel
from data_loader.data_loader import ArticulationDataset
#### Create noisy labels
def generate_noisy_samples(data_file, conc, n_samples=16, batch_size=10):
# load the dataset file and extract all Mu (or GT labels) from the dataset
# raw_labels = []
# labels_data = h5py.File(data_file, "r")
# print("Loading GT lables...")
# for obj in tqdm(labels_data.keys()):
# raw_labels.append(np.array(labels_data[obj][label_type])[0, :6])
# M = torch.tensor(raw_labels).float()
# M = M.view(-1, 2, 3).transpose(-1, -2)
# Take input pre-specified K matrix
D_ = conc.unsqueeze(dim=0).repeat(batch_size, 1)
with h5py.File(data_file, "r") as f:
data_len = len(f)
dataset_config = {
"data_file": data_file,
"nsample": data_len,
}
data_set = ArticulationDataset(**dataset_config)
dataset_loader = torch.utils.data.DataLoader(
data_set,
batch_size=batch_size,
shuffle=True,
num_workers=8,
pin_memory=True,
)
print("\nGenerating samples...")
samples = torch.empty(0)
for X in tqdm(dataset_loader):
M = X["label"][:, 0, :6].view(-1, 2, 3).transpose(-1, -2).to(D_.device)
vmst = VonMisesFisherStiefel(loc=M, Diag=D_)
samples = torch.cat((samples, vmst.sample((n_samples,))), dim=1)
return samples.cpu()
def save_samples(savepath, samples):
dill.dump(samples, open(savepath, "wb"))
print("Stored noisy_lables at: {}".format(savepath))
def identity_direction_samples(conc_diag, num_samples=1000):
D_ = conc_diag.unsqueeze(0)
I_ = torch.eye(3, 2).unsqueeze(0).float().to(D_.device)
vm = VonMisesFisherStiefel(loc=I_, Diag=D_)
samples = vm.sample((num_samples,))
return samples.cpu()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Noisy label creator")
parser.add_argument("--data-file", type=str, default="complete_data.hdf5")
parser.add_argument(
"--K-diag",
"-K",
type=float,
nargs="+",
help="Diagonal values of K matrix",
required=True,
)
parser.add_argument("--n-samples", "-ns", type=int, default=16, help="# of samples")
parser.add_argument("--batch-size", type=int, default=100)
parser.add_argument("--device", type=int, default=0, help="cuda device")
args = parser.parse_args()
# setup trainer
if torch.cuda.is_available():
device = torch.device(args.device)
else:
device = torch.device("cpu")
# conc = torch.tensor(args.K_diag).reshape(2, 2).float().to(device)
conc_diag = torch.tensor(args.K_diag).float().to(device)
# samples = generate_noisy_samples(
# args.data_file, conc_diag, args.n_samples, args.batch_size
# )
# fname = os.path.join(
# os.path.dirname(args.data_file),
# "noisy_labels_K_{}_{}.dill".format(args.K_diag[0], args.K_diag[-1]),
# )
samples = identity_direction_samples(conc_diag, args.n_samples)
samples = samples.squeeze() # removing redundant dims
import pdb
pdb.set_trace()
fname = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"data",
"identity_noisy_labels_K_{}_{}_ns_{}.dill".format(
args.K_diag[0], args.K_diag[-1], args.n_samples
),
)
save_samples(fname, samples)