-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
295 lines (187 loc) · 7.91 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# EXPERIMENT FUNCTION
#IMPORT
from Algortihms import *
from utils import *
from Kernels import *
from tqdm import tqdm
#######################################
#######################################
############# ONE VS ONE #############
#######################################
#######################################
# Hyperparameter tuning with SVM (One v one)
def onevone_test_param_SVM(X,Y,list_C,list_param,ker):
"""
Return the accuracy of SVM onevone method for a list of parameters
"""
y_preds=[]
accuracys=[]
Models={}
K=10
nbre_modele=int(K*(K-1)/2)
x_train,y_train,x_test,y_test = create_test_set(X,Y,nbre=500)
for C in list_C :
for param in list_param :
#TRAIN
for i in range(K):
for j in range(i+1,K):
print(i,j)
x,y = create_dataset_onevone(x_train,y_train,i,j)
if ker == 'RBF':
kernel = RBF(sigma=param).kernel
elif ker == 'poly':
kernel = polynomial(d=param).kernel
mod = KernelSVC(C = C,kernel = kernel)
mod.fit(x,y)
Models[(i, j)] = mod
#TEST
votes = np.zeros((len(x_test), K))
for (class1,class2), model in Models.items():
predictions = model.predict(x_test)
for i, prediction in enumerate(predictions):
if prediction == 1:
votes[i, class1] += 1 # La première classe du tuple reçoit un vote
else:
votes[i, class2] += 1 # La seconde classe du tuple reçoit un vote
final_classes = np.argmax(votes,axis=1)
y_preds.append(final_classes)
acc = accuracy(final_classes,y_test)
if ker == 'RBF':
print(f'Accuracy : {acc} | C = {C} | sigma = {param}')
elif ker == 'poly':
print(f'Accuracy : {acc} | C = {C} | d = {param}')
accuracys.append(acc)
return accuracys,y_preds
# Hyperparameter tuning with Polynomial Kernel and Logistic Regression (One v one)
def onevone_test_param_log(X,Y,list_C,list_param,ker):
"""
Return the accuracy of the Logistic reg onevone method for a list of parameters
"""
y_preds=[]
accuracys=[]
Models={}
K=10
nbre_modele=int(K*(K-1)/2)
x_train,y_train,x_test,y_test = create_test_set(X,Y,nbre=500)
for C in list_C :
for param in list_param :
#TRAIN
for i in range(K):
for j in range(i+1,K):
print(i,j)
x,y = create_dataset_onevone(x_train,y_train,i,j)
if ker == 'RBF':
kernel = RBF(sigma=param).kernel
elif ker == 'poly':
kernel = polynomial(d=param).kernel
mod = KernelLogisticRegression(kernel,reg_param=C)
mod.fit(x,y)
Models[(i, j)] = mod
#TEST
votes = np.zeros((len(x_test), K))
for (class1,class2), model in Models.items():
predictions = model.predict(x_test)
predictions[predictions>0.5]=1
for i, prediction in enumerate(predictions):
if prediction == 1:
votes[i, class1] += 1 # La première classe du tuple reçoit un vote
else:
votes[i, class2] += 1 # La seconde classe du tuple reçoit un vote
final_classes = np.argmax(votes,axis=1)
y_preds.append(final_classes)
acc = accuracy(final_classes,y_test)
if ker == 'RBF':
print(f'Accuracy : {acc} | C = {C} | sigma = {param}')
elif ker == 'poly':
print(f'Accuracy : {acc} | C = {C} | d = {param}')
accuracys.append(acc)
return accuracys,y_preds
# PCA + SVM
def onevone_test_param_PCA_SVM(X,Y,list_C,list_param,ker,dim):
"""
Return the accuracy of the SVM combined with the PCA onevone method for a list of parameters
"""
y_preds=[]
accuracys=[]
Models={}
K=10
nbre_modele=int(K*(K-1)/2)
kernel=RBF().kernel
PCA=KernelPCA(kernel=kernel,r=500)
PCA.compute_PCA(X) # We choose the most dim of X
Xtrans=PCA.transform(X)
x_train,y_train,x_test,y_test = create_test_set(Xtrans,Y,nbre=dim)
for C in list_C :
for param in list_param :
#TRAIN
for i in range(K):
for j in range(i+1,K):
print(i,j)
x,y = create_dataset_onevone(x_train,y_train,i,j)
if ker == 'RBF':
kernel = RBF(sigma=param).kernel
elif ker == 'poly':
kernel = polynomial(d=param).kernel
mod = KernelSVC(C = C,kernel = kernel)
mod.fit(x,y)
Models[(i, j)] = mod
#TEST
votes = np.zeros((len(x_test), K))
for (class1,class2), model in Models.items():
predictions = model.predict(x_test)
for i, prediction in enumerate(predictions):
if prediction == 1:
votes[i, class1] += 1 # La première classe du tuple reçoit un vote
else:
votes[i, class2] += 1 # La seconde classe du tuple reçoit un vote
final_classes = np.argmax(votes,axis=1)
y_preds.append(final_classes)
acc = accuracy(final_classes,y_test)
if ker == 'RBF':
print(f'Accuracy : {acc} | C = {C} | sigma = {param}')
elif ker == 'poly':
print(f'Accuracy : {acc} | C = {C} | d = {param}')
accuracys.append(acc)
return accuracys,y_preds
#######################################
#######################################
############# ONE VS ALL #############
#######################################
#######################################
def onevall_test_param_svm(X,Y,list_C,list_param,ker):
"""
Return the accuracy of the SVM onevall method for a list of parameters
"""
y_preds=[]
accuracys=[]
Models = []
x_train,y_train,x_test,y_test = create_test_set(X,Y,nbre=2000)
for C in list_C :
for param in list_param :
#TRAIN
for j in tqdm(range(10)):
y = create_dataset_onevsall(y_train,k=j)
if ker == 'RBF':
kernel = RBF(sigma=param).kernel
elif ker == 'poly':
kernel = polynomial(d=param).kernel
classifier=KernelSVC(C=0.08,kernel=kernel)
classifier.fit(x_train,y)
# Stocker le modèle SVM entraîné
Models.append(classifier)
scores = np.zeros((10,x_test.shape[0]))
# TEST
for j, log_model in enumerate(Models):
# Prédire le score pour la classe actuelle
score = log_model.separating_function(x_test)
# Stocker le score pour la classe actuelle
scores[j] = score
final_classes = np.argmax(scores,axis=0)
y_preds.append(final_classes)
acc=accuracy(final_classes,y_test)
if ker == 'RBF':
print(f'Accuracy : {acc} | C = {C} | sigma = {param}')
elif ker == 'poly':
print(f'Accuracy : {acc} | C = {C} | d = {param}')
accuracys.append(acc)
return accuracys,y_preds