-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperations.py
200 lines (175 loc) · 6.85 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
OPS = {
'none' : lambda C, stride, affine: Zero(stride),
'avg_pool_3x3' : lambda C, stride, affine: AvgPool2d(stride),
'max_pool_3x3' : lambda C, stride, affine: MaxPool2d(stride),
'skip_connect' : lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
'sep_conv_3x3' : lambda C, stride, affine: SepConv3(C, C, 3, stride, 1, affine=affine),
'sep_conv_5x5' : lambda C, stride, affine: SepConv5(C, C, 5, stride, 2, affine=affine),
'sep_conv_7x7' : lambda C, stride, affine: SepConv7(C, C, 7, stride, 3, affine=affine),
'dil_conv_3x3' : lambda C, stride, affine: DilConv3(C, C, 3, stride, 2, 2, affine=affine),
'dil_conv_5x5' : lambda C, stride, affine: DilConv5(C, C, 5, stride, 4, 2, affine=affine),
'conv_7x1_1x7' : lambda C, stride, affine: Conv7(C,C,(1,7),stride,3,affine=affine),
}
class AvgPool2d(nn.Module):
def __init__(self, stride):
super(AvgPool2d, self).__init__()
self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
self.count = 0
self.pre_grads = []
self.avg = 0
def forward(self, x):
return self.op(x)
class MaxPool2d(nn.Module):
def __init__(self, stride):
super(MaxPool2d, self).__init__()
self.op = nn.MaxPool2d(3, stride=stride, padding=1)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class DilConv3(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
super(DilConv3, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class DilConv5(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
super(DilConv5, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class SepConv3(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(SepConv3, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class SepConv5(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(SepConv5, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class SepConv7(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
super(SepConv7, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, stride):
super(Zero, self).__init__()
self.stride = stride
self.count = 0
self.pre_grads=[]
def forward(self, x):
if self.stride == 1:
return x.mul(0.)
return x[:,:,::self.stride,::self.stride].mul(0.)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, affine=True):
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out, affine=affine)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
x = self.relu(x)
out = torch.cat([self.conv_1(x), self.conv_2(x[:,:,1:,1:])], dim=1)
out = self.bn(out)
return out
class Conv7(nn.Module):
def __init__(self, C_in, C_out, stride, affine=True):
super(Conv7, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, (1,7), stride=(1, stride), padding=(0, 3), bias=False),
nn.Conv2d(C_in, C_out, (7,1), stride=(stride, 1), padding=(3, 0), bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
self.count = 0
self.pre_grads=[]
self.avg = 0
def forward(self, x):
return self.op(x)