-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_c3d_lstm.py
153 lines (116 loc) · 5.14 KB
/
train_c3d_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Author: Paritosh Parmar (https://github.com/ParitoshParmar)
#
# Code for C3D-LSTM used in:
# [1] @inproceedings{parmar2017learning,
# title={Learning to score olympic events},
# author={Parmar, Paritosh and Morris, Brendan Tran},
# booktitle={Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on},
# pages={76--84},
# year={2017},
# organization={IEEE}}
#
# [2] @article{parmar2018action,
# title={Action Quality Assessment Across Multiple Actions},
# author={Parmar, Paritosh and Morris, Brendan Tran},
# journal={arXiv preprint arXiv:1812.06367},
# year={2018}}
import os
import torch
from torch.utils.data import DataLoader
from data_loader import VideoDataset
import numpy as np
import random
from models.C3D import C3D
import scipy.stats as stats
import torch.optim as optim
import torch.nn as nn
from models.LSTM_anno import LSTM_anno
from opts import *
torch.manual_seed(randomseed); torch.cuda.manual_seed_all(randomseed); random.seed(randomseed); np.random.seed(randomseed)
torch.backends.cudnn.deterministic=True
def save_model(model, model_name, epoch, path):
model_path = os.path.join(path, '%s_%d.pth' % (model_name, epoch))
torch.save(model.state_dict(), model_path)
def train_phase(train_dataloader, optimizer, criterion, epoch):
model_CNN.eval()
model_lstm.train()
iteration = 0
for data in train_dataloader:
with torch.no_grad():
true_final_score = data['label_final_score'].unsqueeze_(1).type(torch.FloatTensor).cuda()
video = data['video'].transpose_(1, 2).cuda()
batch_size, C, frames, H, W = video.shape
clip_feats = torch.Tensor([]).cuda()
for i in np.arange(0, frames - 17, 16):
clip = video[:, :, i:i + 16, :, :]
clip_feats_temp = model_CNN(clip)
clip_feats_temp.unsqueeze_(0)
clip_feats_temp.transpose_(0, 1)
clip_feats = torch.cat((clip_feats, clip_feats_temp), 1)
pred_final_score = model_lstm(clip_feats)
loss = criterion(pred_final_score, true_final_score)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iteration % 20 == 0:
print('Epoch: ', epoch, ' Iter: ', iteration, ' Loss: ', loss, end="")
print(' ')
iteration += 1
def test_phase(test_dataloader):
with torch.no_grad():
pred_scores = []; true_scores = []
model_CNN.eval()
model_lstm.eval()
for data in test_dataloader:
true_scores.extend(data['label_final_score'].data.numpy())
video = data['video'].transpose_(1, 2).cuda()
batch_size, C, frames, H, W = video.shape
clip_feats = torch.Tensor([]).cuda()
for i in np.arange(0, frames - 17, 16):
clip = video[:, :, i:i + 16, :, :]
clip_feats_temp = model_CNN(clip)
clip_feats_temp.unsqueeze_(0)
clip_feats_temp.transpose_(0, 1)
clip_feats = torch.cat((clip_feats, clip_feats_temp), 1)
temp_final_score = model_lstm(clip_feats)
pred_scores.extend([element[0] for element in temp_final_score.data.cpu().numpy()])
rho, p = stats.spearmanr(pred_scores, true_scores)
print('Predicted scores: ', pred_scores)
print('True scores: ', true_scores)
print('Correlation: ', rho)
def main():
parameters_2_optimize = (list(model_lstm.parameters()))
optimizer = optim.Adam(parameters_2_optimize, lr=0.0001)
criterion = nn.MSELoss()
train_dataset = VideoDataset('train')
test_dataset = VideoDataset('test')
train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)
# actual training, testing loops
for epoch in range(10):
saving_dir = '...'
if epoch == 0: # save models every 5 epochs
save_model(model_lstm, 'model_my_lstm', epoch, saving_dir)
print('-------------------------------------------------------------------------------------------------------')
train_phase(train_dataloader, optimizer, criterion, epoch)
test_phase(test_dataloader)
if (epoch+1) % model_ckpt_interval == 0: # save models every 5 epochs
save_model(model_lstm, 'model_my_lstm', epoch, saving_dir)
# lr updates
if (epoch + 1) % global_lr_stepsize == 0:
learning_rate = learning_rate * global_lr_gamma
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
if __name__ == '__main__':
# loading the altered C3D (ie C3D upto before fc-6)
model_CNN_pretrained_dict = torch.load('c3d.pickle')
model_CNN = C3D()
model_CNN_dict = model_CNN.state_dict()
model_CNN_pretrained_dict = {k: v for k, v in model_CNN_pretrained_dict.items() if k in model_CNN_dict}
model_CNN_dict.update(model_CNN_pretrained_dict)
model_CNN.load_state_dict(model_CNN_dict)
model_CNN = model_CNN.cuda()
# lstm
model_lstm = LSTM_anno()
model_lstm = model_lstm.cuda()
main()