-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
494a82d
commit 3995a2c
Showing
3 changed files
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
--- | ||
title: OCR | ||
emoji: 🍍 | ||
colorFrom: blue | ||
colorTo: yellow | ||
sdk: gradio | ||
sdk_version: 5.13.1 | ||
app_file: app.py | ||
pinned: true | ||
license: creativeml-openrail-m | ||
short_description: Qwen VL 2B | ||
--- | ||
|
||
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import gradio as gr | ||
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | ||
from transformers.image_utils import load_image | ||
from threading import Thread | ||
import time | ||
import torch | ||
import spaces | ||
|
||
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ] | ||
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | ||
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | ||
model = Qwen2VLForConditionalGeneration.from_pretrained( | ||
MODEL_ID, | ||
trust_remote_code=True, | ||
torch_dtype=torch.float16 | ||
).to("cuda").eval() | ||
|
||
@spaces.GPU | ||
def model_inference(input_dict, history): | ||
text = input_dict["text"] | ||
files = input_dict["files"] | ||
|
||
# Load images if provided | ||
if len(files) > 1: | ||
images = [load_image(image) for image in files] | ||
elif len(files) == 1: | ||
images = [load_image(files[0])] | ||
else: | ||
images = [] | ||
|
||
# Validate input | ||
if text == "" and not images: | ||
gr.Error("Please input a query and optionally image(s).") | ||
return | ||
if text == "" and images: | ||
gr.Error("Please input a text query along with the image(s).") | ||
return | ||
|
||
# Prepare messages for the model | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
*[{"type": "image", "image": image} for image in images], | ||
{"type": "text", "text": text}, | ||
], | ||
} | ||
] | ||
|
||
# Apply chat template and process inputs | ||
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | ||
inputs = processor( | ||
text=[prompt], | ||
images=images if images else None, | ||
return_tensors="pt", | ||
padding=True, | ||
).to("cuda") | ||
|
||
# Set up streamer for real-time output | ||
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | ||
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | ||
|
||
# Start generation in a separate thread | ||
thread = Thread(target=model.generate, kwargs=generation_kwargs) | ||
thread.start() | ||
|
||
# Stream the output | ||
buffer = "" | ||
yield "Thinking..." | ||
for new_text in streamer: | ||
buffer += new_text | ||
# Remove <|im_end|> or similar tokens from the output | ||
buffer = buffer.replace("<|im_end|>", "") | ||
time.sleep(0.01) | ||
yield buffer | ||
|
||
# Example inputs | ||
examples = [ | ||
|
||
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}], | ||
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | ||
[{"text": "Describe the photo", "files": ["examples/3.png"]}], | ||
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | ||
[{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}], | ||
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | ||
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | ||
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | ||
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | ||
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | ||
|
||
] | ||
|
||
demo = gr.ChatInterface( | ||
fn=model_inference, | ||
description="# **Multimodal OCR**", | ||
examples=examples, | ||
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | ||
stop_btn="Stop Generation", | ||
multimodal=True, | ||
cache_examples=False, | ||
) | ||
|
||
demo.launch(debug=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
gradio_client==1.3.0 | ||
qwen-vl-utils==0.0.2 | ||
transformers-stream-generator==0.0.4 | ||
torch==2.4.0 | ||
torchvision==0.19.0 | ||
git+https://github.com/huggingface/transformers.git | ||
accelerate | ||
av |