forked from hyphanet/lib-CppFCPLib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha256.cc
executable file
·241 lines (175 loc) · 5.69 KB
/
sha256.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
* Implementation of SHA-256, based on Adam Back's sha-1 implementation.
*/
#include "sha256.h"
#include <string.h>
#define min( x, y ) ( ( x ) < ( y ) ? ( x ) : ( y ) )
#define S(x,n) ( ((x)>>(n)) | ((x)<<(32-(n))) )
#define R(x,n) ( (x)>>(n) )
#define Ch(x,y,z) ( ((x) & (y)) | (~(x) & (z)) )
#define Maj(x,y,z) ( ( (x) & (y) ) | ( (x) & (z) ) | ( (y) & (z) ) )
#define SIG0(x) ( S(x, 2) ^ S(x,13) ^ S(x,22) )
#define SIG1(x) ( S(x, 6) ^ S(x,11) ^ S(x,25) )
#define sig0(x) ( S(x, 7) ^ S(x,18) ^ R(x, 3) )
#define sig1(x) ( S(x,17) ^ S(x,19) ^ R(x,10) )
static word32 K[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define H1 0x6a09e667
#define H2 0xbb67ae85
#define H3 0x3c6ef372
#define H4 0xa54ff53a
#define H5 0x510e527f
#define H6 0x9b05688c
#define H7 0x1f83d9ab
#define H8 0x5be0cd19
word32 H[ 8 ] = { H1, H2, H3, H4, H5, H6, H7, H8 };
/* convert to big endian where needed */
static void convert_to_bigendian( void* data, int len )
{
/* test endianness */
word32 test_value = 0x01;
byte* test_as_bytes = (byte*) &test_value;
int little_endian = test_as_bytes[ 0 ];
word32 temp;
byte* temp_as_bytes = (byte*) &temp;
word32* data_as_words = (word32*) data;
byte* data_as_bytes;
int i;
if ( little_endian )
{
len /= 4;
for ( i = 0; i < len; i++ )
{
temp = data_as_words[ i ];
data_as_bytes = (byte*) &( data_as_words[ i ] );
data_as_bytes[ 0 ] = temp_as_bytes[ 3 ];
data_as_bytes[ 1 ] = temp_as_bytes[ 2 ];
data_as_bytes[ 2 ] = temp_as_bytes[ 1 ];
data_as_bytes[ 3 ] = temp_as_bytes[ 0 ];
}
}
/* on big endian machines do nothing as the CPU representation
automatically does the right thing for SHA1 */
}
void SHA256_init( SHA256_ctx* ctx )
{
memcpy( ctx->H, H, 8 * sizeof( word32 ) );
ctx->lbits = 0;
ctx->hbits = 0;
ctx->mlen = 0;
}
static void SHA256_transform( SHA256_ctx* ctx )
{
int t;
word32 A = ctx->H[ 0 ];
word32 B = ctx->H[ 1 ];
word32 C = ctx->H[ 2 ];
word32 D = ctx->H[ 3 ];
word32 E = ctx->H[ 4 ];
word32 F = ctx->H[ 5 ];
word32 G = ctx->H[ 6 ];
word32 H = ctx->H[ 7 ];
word32 T1, T2;
word32 W[ 64 ];
memcpy( W, ctx->M, 64 );
for ( t = 16; t < 64; t++ )
{
W[ t ] = sig1(W[t-2]) + W[t-7] + sig0(W[t-15]) + W[t-16];
}
for ( t = 0; t < 64; t++ )
{
//printf ("i = %2d ", t);
//printf ("%08x %08x %08x %08x %08x %08x %08x %08x\n", A,B,C,D,E,F,G,H);
T1 = H + SIG1(E) + Ch(E,F,G) + K[t] + W[t];
T2 = SIG0(A) + Maj(A,B,C);
H = G;
G = F;
F = E;
E = D + T1;
D = C;
C = B;
B = A;
A = T1 + T2;
}
//printf ("i = %2d ", t);
//printf ("%08x %08x %08x %08x %08x %08x %08x %08x\n", A,B,C,D,E,F,G,H);
ctx->H[ 0 ] += A;
ctx->H[ 1 ] += B;
ctx->H[ 2 ] += C;
ctx->H[ 3 ] += D;
ctx->H[ 4 ] += E;
ctx->H[ 5 ] += F;
ctx->H[ 6 ] += G;
ctx->H[ 7 ] += H;
}
void SHA256_update( SHA256_ctx* ctx, const byte* data, word32 data_len )
{
word32 use;
word32 low_bits;
/* convert data_len to bits and add to the 64 bit word formed by lbits
and hbits */
ctx->hbits += data_len >> 29;
low_bits = data_len << 3;
ctx->lbits += low_bits;
if ( ctx->lbits < low_bits ) { ctx->hbits++; }
/* deal with first block */
use = min( ((unsigned )64) - ctx->mlen, data_len );
memcpy( ctx->M + ctx->mlen, data, use );
ctx->mlen += use;
data_len -= use;
data += use;
while ( ctx->mlen == 64 )
{
convert_to_bigendian( (word32*)ctx->M, 64 );
SHA256_transform( ctx );
use = min( 64, data_len );
memcpy( ctx->M, data, use );
ctx->mlen = use;
data_len -= use;
data += use; /* was missing */
}
}
void SHA256_final( SHA256_ctx* ctx )
{
if ( ctx->mlen < 56 )
{
ctx->M[ ctx->mlen ] = 0x80; ctx->mlen++;
memset( ctx->M + ctx->mlen, 0x00, 56 - ctx->mlen );
convert_to_bigendian( ctx->M, 56 );
}
else
{
ctx->M[ ctx->mlen ] = 0x80;
ctx->mlen++;
memset( ctx->M + ctx->mlen, 0x00, 64 - ctx->mlen );
convert_to_bigendian( ctx->M, 64 );
SHA256_transform( ctx );
memset( ctx->M, 0x00, 56 );
}
memcpy( ctx->M + 56, (void*)(&(ctx->hbits)), 8 );
SHA256_transform( ctx );
}
void SHA256_digest( SHA256_ctx* ctx, byte* digest )
{
if ( digest )
{
memcpy( digest, ctx->H, 8 * sizeof( word32 ) );
convert_to_bigendian( digest, 8 * sizeof( word32 ) );
}
}