-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitness
114 lines (90 loc) · 3.05 KB
/
fitness
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pickle
from sklearn import manifold
from os import makedirs, path
import os
# beta-1/sim-20180511-163319
# beta-10/sim-20180512-105824
# beta-0-1/sim-20180512-105719
# loadfile = 'beta_experiment/beta-0-1/sim-20180512-105719'
#os.chdir('D:\Masterarbeit_ausgelagert')
loadfile = 'sim-20191114-000009_server'
# iter = 2000
iter_list = np.arange(0, 2000, 1)
numAgents = 150
saveFigBool = True
energy_model = True
def upper_tri_masking(A):
m = A.shape[0]
r = np.arange(m)
mask = r[:, None] < r
return A[mask]
folder = 'save/' + loadfile
folder2 = folder + '/figs/fitness/'
fname2 = folder2 + 'fitness-' + \
str(iter_list[0]) + '-' + str(iter_list[1] - iter_list[0]) + '-' + str(iter_list[-1]) + \
'.npz'
# filename = 'save/' + loadfile + '/isings/gen[' + iter + ']-isings.pickle'
# startstr = 'Loading simulation:' + filename
# print(startstr)
# isings = pickle.load(open(filename, 'rb'))
FOOD = np.zeros((len(iter_list), numAgents))
for ii, iter in enumerate(iter_list):
filename = 'save/' + loadfile + '/isings/gen[' + str(iter) + ']-isings.pickle'
startstr = 'Loading simulation:' + filename
print(startstr)
isings = pickle.load(open(filename, 'rb'))
food = []
if energy_model:
for i, I in enumerate(isings):
food.append(I.energy)
else:
for i, I in enumerate(isings):
food.append(I.fitness)
# food = np.divide(food, 6)
FOOD[ii, :] = food
# TODO: fix font glitches?!
# plt.rc('text', usetex=True)
# font = {'family': 'serif', 'size': 28, 'serif': ['computer modern roman']}
# plt.rc('font', **font)
plt.rc('legend', **{'fontsize': 20})
fig, ax = plt.subplots(1, 1, figsize=(19, 10))
fig.text(0.51, 0.035, r'$Generation$', ha='center', fontsize=20)
fig.text(0.07, 0.5, r'$Fitness$', va='center', rotation='vertical', fontsize=20)
title = 'Food consumed per organism'
fig.suptitle(title)
## SCATTER
for i in range(0, numAgents):
ax.scatter(iter_list, FOOD[:, i], color=[0, 0, 0], alpha=0.05, s=10)
## MEAN + STD
# muF = np.mean(FOOD, axis=1)
# ax.plot(iter_list, muF, color=[0, 0, 0])
#
# maxF = np.max(FOOD, axis=1)
# minF = np.min(FOOD, axis=1)
# ax.fill_between(iter_list, maxF, minF,
# color=[0.9, 0.9, 0.9])
#
# sigmaF = FOOD.std(axis=1)
# ax.fill_between(iter_list, muF + sigmaF, muF - sigmaF,
# color=[0.6, 0.6, 0.6]
# )
yticks = np.arange(0, 100, 20)
ax.set_yticks(yticks)
# xticks = [0.1, 0.5, 1, 2, 4, 10, 50, 100, 200, 500, 1000, 2000]
# ax.set_xscale("log", nonposx='clip')
# ax.set_xticks(xticks)
# ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
savefolder = folder + '/figs/fitness/'
savefilename = savefolder + 'fitness_gen_' + str(iter_list[0]) + '-' + str(iter_list[-1]) + '.png'
if not path.exists(savefolder):
makedirs(savefolder)
if saveFigBool:
plt.savefig(savefilename, bbox_inches='tight', dpi=150)
# plt.close()
savemsg = 'Saving ' + savefilename
print(savemsg)
plt.show()