diff --git a/RNNHandler.py b/RNNHandler.py new file mode 100644 index 0000000..75a5227 --- /dev/null +++ b/RNNHandler.py @@ -0,0 +1,126 @@ +import keras.utils +from keras.models import Sequential, model_from_json, load_model +from keras.layers import Dense, Activation, SimpleRNN +from keras.utils.visualize_util import plot +import keras.utils.np_utils +from keras.utils.np_utils import to_categorical + +import os +import numpy as np +import datetime +import random +from reader import Reader +from sklearn import metrics +import matplotlib.pyplot as plt +from sklearn import metrics + +def MyMetrics(y_true, y_pred): + y_pred[y_pred<0.5] = 0 + y_pred[y_pred>=0.5] = 1 + if np.count_nonzero(y_pred == 1) == y_pred.shape[0]: + y_pred[0]=0 + if np.count_nonzero(y_pred == 0) == y_pred.shape[0]: + y_pred[0]= 1 + if np.count_nonzero(y_true == 1) == y_true.shape[0]: + y_true[0]=0 + if np.count_nonzero(y_true == 0) == y_true.shape[0]: + y_true[0]= 1 + confusion = metrics.confusion_matrix(y_true, y_pred) + TP = confusion[1, 1] + TN = confusion[0, 0] + FP = confusion[0, 1] + FN = confusion[1, 0] + precision = TP / (TP + FP) + recall = TP / (TP + FN) + fscore = 2 * precision * recall / ( precision + recall) + return (precision, recall, fscore) + + +class RNNHandler: + + results_directory = '/home/orestis/net/RNNresults' + models_directory = '/home/orestis/net/RNNmodels' + + def __init__(self, model_name, num_categories, loss, optimizer): + # GET THE MODEL + fp_model = open(os.path.join(self.models_directory, model_name + '.json'), 'r') + model_str = fp_model.read() + self.model = model_from_json(model_str) + self.model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) + fp_model.close() + + self.model_name = model_name + self.num_categories = num_categories + self.loss = loss + self.optimizer = optimizer + + + def fit_and_eval(self, x_train, y_train, x_test, y_test, nb_epoch, dataset_name): #batch_size is always 1 and shuffle is always False, so we don't pass them as parameters + self.results_file = os.path.join(self.results_directory, self.model_name + '.' + dataset_name) + self.write_result('Model:' + self.model_name + ' Dataset:' + dataset_name + ' Loss:' + self.loss + ' Optimizer:' + self.optimizer + ' Dropout:No') + self.write_result('Epoch|Loss|Accuracy|Precision|Recall|Fscore') + res_loss = [] + res_accuracy = [] + res_precision = [] + res_recall = [] + res_fscore = [] + x_train = x_train.reshape(x_train.shape[0], 1, -1) + x_test = x_test.reshape(x_test.shape[0], 1, -1) + if self.num_categories > 2: + y_train = to_categorical(y_train, self.num_categories) + y_test = to_categorical(y_test, self.num_categories) + for i in range(1, nb_epoch+1): + self.model.fit(x_train, y_train, batch_size=1, nb_epoch=1, shuffle=False) + self.model.reset_states() + (loss, accuracy) = self.model.evaluate(x_test, y_test, batch_size=1) + self.model.reset_states() + res_loss.append(loss) + res_accuracy.append(accuracy) + (precision, recall, fscore) = (0,0,0) + if self.num_categories == 2: + y_pred = self.model.predict(x_test, batch_size=1) + self.model.reset_states() + (precision, recall, fscore) = MyMetrics(y_test, y_pred) + res_precision.append(precision) + res_recall.append(recall) + res_fscore.append(fscore) + self.write_result(str(i) +'|'+ str(loss) +'|'+ str(accuracy) +'|'+ str(precision) +'|'+ str(recall) +'|'+ str(fscore)) + + return (res_loss, res_accuracy, res_precision, res_recall, res_fscore) + + + def write_result(self, text): + fp = open(self.results_file, 'a') + fp.write(text + '\n') + fp.close() + +# def save_weights(): + + + + @staticmethod + def plot_results(title, metric, results): + lns = [] + for k in results.keys(): + result = results[k] + myplot = plt.subplot() + myplot.grid(True) + myplot.set_xlabel("Epoch Number") + myplot.set_ylabel(metric) + x_Axis = np.arange(1, len(result)+1) + #myplot.xaxis.set_ticks(x_Axis)#np.arange( 1, len(x_Axis)+1, 1)) + #myplot.set_xticklabels(x_Axis, rotation=0) + tokens = k.split('|') + loss = tokens[0] + if loss=='categorical_crossentropy' or loss=='binary_crossentropy': + loss = 'crossentropy' + optimizer = tokens[1] + line = myplot.plot(x_Axis, result, label = 'loss:' + loss + ' opt:' + optimizer) + lns = lns + line + box = myplot.get_position() + myplot.set_position([box.x0, box.y0 + box.height * 0.30, box.width, box.height * 0.70]) + labs = [l.get_label() for l in lns] + plt.title(title) + lgd = plt.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, -0.12), fancybox=True, shadow=True, ncol=2) + plt.savefig('/home/orestis/net/RNNresults/' + title + '.png') + plt.clf() diff --git a/RNN_1A.py b/RNN_1A.py new file mode 100644 index 0000000..924227c --- /dev/null +++ b/RNN_1A.py @@ -0,0 +1,26 @@ + +from keras.models import Sequential +from keras.layers import Dense, Activation, SimpleRNN +from keras.utils.visualize_util import plot +import os +import numpy as np +from reader import Reader + + +length = Reader.getInputShape() + +model = Sequential() + +#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length + +#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) +model.add(SimpleRNN(output_dim=50, input_shape=(1,length), batch_input_shape=(1,1,length), init='uniform', inner_init='uniform', activation='relu', stateful=True)) +model.add(Dense(1, init='uniform', activation = 'sigmoid')) + + +model.summary() +plot(model, to_file='/home/orestis/net/RNNmodels/RNN_1A.png') +fp = open('/home/orestis/net/RNNmodels/RNN_1A.json', 'w') +fp.write(model.to_json()) +fp.close() + diff --git a/RNN_1B.py b/RNN_1B.py new file mode 100644 index 0000000..dd51820 --- /dev/null +++ b/RNN_1B.py @@ -0,0 +1,26 @@ + +from keras.models import Sequential +from keras.layers import Dense, Activation, SimpleRNN +from keras.utils.visualize_util import plot +import os +import numpy as np +from reader import Reader + + +length = Reader.getInputShape() + +model = Sequential() + +#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length + +#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) +model.add(SimpleRNN(output_dim=50, input_shape=(1,length), batch_input_shape=(1,1,length), init='uniform', inner_init='uniform', activation='relu', stateful=True)) +model.add(Dense(3, init='uniform', activation = 'softmax')) + + +model.summary() +plot(model, to_file='/home/orestis/net/RNNmodels/RNN_1B.png') +fp = open('/home/orestis/net/RNNmodels/RNN_1B.json', 'w') +fp.write(model.to_json()) +fp.close() + diff --git a/RNN_1C.py b/RNN_1C.py new file mode 100644 index 0000000..46f0918 --- /dev/null +++ b/RNN_1C.py @@ -0,0 +1,26 @@ + +from keras.models import Sequential +from keras.layers import Dense, Activation, SimpleRNN +from keras.utils.visualize_util import plot +import os +import numpy as np +from reader import Reader + + +length = Reader.getInputShape() + +model = Sequential() + +#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length + +#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) +model.add(SimpleRNN(output_dim=50, input_shape=(1,length), batch_input_shape=(1,1,length), init='uniform', inner_init='uniform', activation='relu', stateful=True)) +model.add(Dense(5, init='uniform', activation = 'softmax')) + + +model.summary() +plot(model, to_file='/home/orestis/net/RNNmodels/RNN_1C.png') +fp = open('/home/orestis/net/RNNmodels/RNN_1C.json', 'w') +fp.write(model.to_json()) +fp.close() + diff --git a/RNN_plot_all.py b/RNN_plot_all.py new file mode 100644 index 0000000..3d2f9b7 --- /dev/null +++ b/RNN_plot_all.py @@ -0,0 +1,85 @@ +import keras.utils +from keras.models import Sequential, model_from_json, load_model +from keras.layers import Dense, Activation, SimpleRNN +from keras.utils.visualize_util import plot +import keras.utils.np_utils +from keras.utils.np_utils import to_categorical + +import os +import numpy as np +import datetime +import random +from reader import Reader +from sklearn import metrics +import matplotlib.pyplot as plt +from sklearn import metrics +import RNNHandler + + +#(1, 'Dataset1', 2, 'RNN_1A') +#(2, 'Dataset2', 2, 'RNN_1A') +#(3, 'Dataset3', 2, 'RNN_1A') !! grafiki +#(4, 'Dataset4', 2, 'RNN_1A') !!! mixed type binary and continous +#(5, 'Dataset5', 3, 'RNN_1B') +categorical +dataset_id = 5 +dataset_name = 'Dataset5' +num_classes = 3 +RNN_name = 'RNN_1B' + +num_epochs = 10 + +(x_train, y_train), (x_test, y_test) = Reader.getDataset(dataset_id) +x_train = x_train[0:1000,:] +y_train = y_train[0:1000] +x_test = x_test[0:1000,:] +y_test = y_test[0:1000] + +results = {} +for loss in ['mae', 'mse', 'categorical_crossentropy']: #categorical_crossentropy + for optimizer in ['sgd','adagrad', 'rmsprop']: + RNNmodel = RNNHandler.RNNHandler(RNN_name, num_classes, loss, optimizer) + (res_loss, res_accuracy, res_precision, res_recall, res_fscore) = RNNmodel.fit_and_eval(x_train, y_train, x_test, y_test, num_epochs, dataset_name) + if num_classes == 2: + results[loss + '|' + optimizer] = res_fscore + else: + results[loss + '|' + optimizer] = res_accuracy + +title = 'Dataset ' + dataset_name + ', ' + 'Model ' + RNN_name +metric = 'accuracy' +if num_classes == 2: + metric = 'fscore' +RNNHandler.RNNHandler.plot_results(title, metric, results) + + + +#(6, 'Dataset0', 5, 'RNN_1C') +categorical +dataset_id = 6 +dataset_name = 'Dataset0' +num_classes = 5 +RNN_name = 'RNN_1C' + +num_epochs = 10 + +fp_logfile = open('/home/orestis/net/debug/logfile', "a") +reader = Reader(fp_logfile, False) +(x_train, y_train), (x_test, y_test) = reader.getDataNormalized() +x_train = x_train[0:1000,:] +y_train = y_train[0:1000] +x_test = x_test[0:1000,:] +y_test = y_test[0:1000] +results = {} +for loss in ['mae', 'mse', 'categorical_crossentropy']: + for optimizer in ['sgd','adagrad', 'rmsprop']: + RNNmodel = RNNHandler.RNNHandler(RNN_name, num_classes, loss, optimizer) + (res_loss, res_accuracy, res_precision, res_recall, res_fscore) = RNNmodel.fit_and_eval(x_train, y_train, x_test, y_test, num_epochs, dataset_name) + if num_classes == 2: + results[loss + '|' + optimizer] = res_fscore + else: + results[loss + '|' + optimizer] = res_accuracy + +title = 'Dataset: ' + dataset_name + ', ' + 'Model: ' + RNN_name +metric = 'accuracy' +if num_classes == 2: + metric = 'fscore' +RNNHandler.RNNHandler.plot_results(title, metric, results) + diff --git a/RNNmodels/RNN_1.json b/RNNmodels/RNN_1.json new file mode 100644 index 0000000..2d9ab94 --- /dev/null +++ b/RNNmodels/RNN_1.json @@ -0,0 +1 @@ +{"class_name": "Sequential", "config": [{"class_name": "SimpleRNN", "config": {"b_regularizer": null, "U_regularizer": null, "W_regularizer": null, "activation": "relu", "go_backwards": false, "init": "uniform", "inner_init": "uniform", "dropout_U": 0.0, "input_dtype": "float32", "batch_input_shape": [1, 1, 79], "name": "simplernn_1", "return_sequences": false, "dropout_W": 0.0, "unroll": false, "trainable": true, "stateful": true, "consume_less": "cpu", "output_dim": 50}}, {"class_name": "Dense", "config": {"b_regularizer": null, "W_regularizer": null, "activation": "softmax", "activity_regularizer": null, "b_constraint": null, "init": "uniform", "bias": true, "W_constraint": null, "input_dim": null, "output_dim": 3, "trainable": true, "name": "dense_1"}}], "keras_version": "1.1.1"} \ No newline at end of file diff --git a/RNNmodels/RNN_1.png b/RNNmodels/RNN_1.png new file mode 100644 index 0000000..9f62edb Binary files /dev/null and b/RNNmodels/RNN_1.png differ diff --git a/RNNmodels/RNN_1A.json b/RNNmodels/RNN_1A.json new file mode 100644 index 0000000..f2447e1 --- /dev/null +++ b/RNNmodels/RNN_1A.json @@ -0,0 +1 @@ +{"keras_version": "1.1.1", "config": [{"config": {"dropout_U": 0.0, "name": "simplernn_1", "stateful": true, "input_dtype": "float32", "unroll": false, "U_regularizer": null, "init": "uniform", "inner_init": "uniform", "dropout_W": 0.0, "output_dim": 50, "batch_input_shape": [1, 1, 79], "return_sequences": false, "trainable": true, "W_regularizer": null, "go_backwards": false, "b_regularizer": null, "consume_less": "cpu", "activation": "relu"}, "class_name": "SimpleRNN"}, {"config": {"name": "dense_1", "activity_regularizer": null, "trainable": true, "output_dim": 1, "b_constraint": null, "bias": true, "activation": "sigmoid", "input_dim": null, "init": "uniform", "W_regularizer": null, "W_constraint": null, "b_regularizer": null}, "class_name": "Dense"}], "class_name": "Sequential"} \ No newline at end of file diff --git a/RNNmodels/RNN_1A.png b/RNNmodels/RNN_1A.png new file mode 100644 index 0000000..9f62edb Binary files /dev/null and b/RNNmodels/RNN_1A.png differ diff --git a/RNNmodels/RNN_1B.json b/RNNmodels/RNN_1B.json new file mode 100644 index 0000000..5df4f11 --- /dev/null +++ b/RNNmodels/RNN_1B.json @@ -0,0 +1 @@ +{"class_name": "Sequential", "keras_version": "1.1.1", "config": [{"class_name": "SimpleRNN", "config": {"consume_less": "cpu", "inner_init": "uniform", "return_sequences": false, "output_dim": 50, "W_regularizer": null, "go_backwards": false, "batch_input_shape": [1, 1, 79], "trainable": true, "b_regularizer": null, "stateful": true, "unroll": false, "U_regularizer": null, "activation": "relu", "input_dtype": "float32", "name": "simplernn_1", "dropout_U": 0.0, "dropout_W": 0.0, "init": "uniform"}}, {"class_name": "Dense", "config": {"activity_regularizer": null, "output_dim": 3, "W_regularizer": null, "W_constraint": null, "b_constraint": null, "activation": "softmax", "trainable": true, "b_regularizer": null, "bias": true, "input_dim": null, "name": "dense_1", "init": "uniform"}}]} \ No newline at end of file diff --git a/RNNmodels/RNN_1B.png b/RNNmodels/RNN_1B.png new file mode 100644 index 0000000..9f62edb Binary files /dev/null and b/RNNmodels/RNN_1B.png differ diff --git a/RNNmodels/RNN_1C.json b/RNNmodels/RNN_1C.json new file mode 100644 index 0000000..62c13c6 --- /dev/null +++ b/RNNmodels/RNN_1C.json @@ -0,0 +1 @@ +{"keras_version": "1.1.1", "class_name": "Sequential", "config": [{"class_name": "SimpleRNN", "config": {"trainable": true, "go_backwards": false, "input_dtype": "float32", "activation": "relu", "unroll": false, "U_regularizer": null, "init": "uniform", "b_regularizer": null, "batch_input_shape": [1, 1, 79], "name": "simplernn_1", "consume_less": "cpu", "inner_init": "uniform", "stateful": true, "output_dim": 50, "dropout_U": 0.0, "return_sequences": false, "dropout_W": 0.0, "W_regularizer": null}}, {"class_name": "Dense", "config": {"trainable": true, "input_dim": null, "activation": "softmax", "W_constraint": null, "activity_regularizer": null, "b_constraint": null, "init": "uniform", "b_regularizer": null, "name": "dense_1", "output_dim": 5, "bias": true, "W_regularizer": null}}]} \ No newline at end of file diff --git a/RNNmodels/RNN_1C.png b/RNNmodels/RNN_1C.png new file mode 100644 index 0000000..9f62edb Binary files /dev/null and b/RNNmodels/RNN_1C.png differ diff --git a/RNNresults/Dataset Dataset0, Model RNN_1C.png b/RNNresults/Dataset Dataset0, Model RNN_1C.png new file mode 100644 index 0000000..48d54c7 Binary files /dev/null and b/RNNresults/Dataset Dataset0, Model RNN_1C.png differ diff --git a/RNNresults/Dataset Dataset1, RNN RNN_1A.png b/RNNresults/Dataset Dataset1, RNN RNN_1A.png new file mode 100644 index 0000000..a727bdc Binary files /dev/null and b/RNNresults/Dataset Dataset1, RNN RNN_1A.png differ diff --git a/RNNresults/Dataset Dataset2, RNN RNN_1A.png b/RNNresults/Dataset Dataset2, RNN RNN_1A.png new file mode 100644 index 0000000..cbb216b Binary files /dev/null and b/RNNresults/Dataset Dataset2, RNN RNN_1A.png differ diff --git a/RNNresults/Dataset Dataset3, RNN RNN_1A.png b/RNNresults/Dataset Dataset3, RNN RNN_1A.png new file mode 100644 index 0000000..3821e84 Binary files /dev/null and b/RNNresults/Dataset Dataset3, RNN RNN_1A.png differ diff --git a/RNNresults/Dataset: Dataset5, Model RNN_1B.png b/RNNresults/Dataset: Dataset5, Model RNN_1B.png new file mode 100644 index 0000000..e369209 Binary files /dev/null and b/RNNresults/Dataset: Dataset5, Model RNN_1B.png differ diff --git a/RNNresults/OLD/RNNresultsDataset2 b/RNNresults/OLD/RNNresultsDataset2 new file mode 100644 index 0000000..4537eb2 --- /dev/null +++ b/RNNresults/OLD/RNNresultsDataset2 @@ -0,0 +1,45 @@ +RNN:: Loss Function:binary_crossentropy, Optimizer:adagrad, Batch Size:1, Dropout Rate:No +Loss Function: binary_crossentropy Epoch: 0 Prec: 0.995253584705 Rec: 0.9995 F: 0.997372272485 +Loss Function: binary_crossentropy Epoch: 1 Prec: 0.995452181514 Rec: 0.999577777778 F: 0.99751071391 +Loss Function: binary_crossentropy Epoch: 2 Prec: 0.9956066089 Rec: 0.999622222222 F: 0.997610374633 +Loss Function: binary_crossentropy Epoch: 3 Prec: 0.995760976636 Rec: 0.999644444444 F: 0.997698931528 +Loss Function: binary_crossentropy Epoch: 4 Prec: 0.995838175881 Rec: 0.999655555556 F: 0.997743214395 +Loss Function: binary_crossentropy Epoch: 5 Prec: 0.995926454798 Rec: 0.999677777778 F: 0.997798590432 +Loss Function: binary_crossentropy Epoch: 6 Prec: 0.99594877301 Rec: 0.999744444444 F: 0.997842999174 +Loss Function: binary_crossentropy Epoch: 7 Prec: 0.99601487779 Rec: 0.999733333333 F: 0.997870641469 +Loss Function: binary_crossentropy Epoch: 8 Prec: 0.9960700962 Rec: 0.999755555556 F: 0.997909423123 +Loss Function: binary_crossentropy Epoch: 9 Prec: 0.99611420474 Rec: 0.999755555556 F: 0.997931558429 +Loss Function: binary_crossentropy Epoch: 10 Prec: 0.996136388797 Rec: 0.999788888889 F: 0.997959296845 +Loss Function: binary_crossentropy Epoch: 11 Prec: 0.996191530584 Rec: 0.999788888889 F: 0.997986967974 +Loss Function: binary_crossentropy Epoch: 12 Prec: 0.99623564841 Rec: 0.999788888889 F: 0.998009105983 +Loss Function: binary_crossentropy Epoch: 13 Prec: 0.996323936488 Rec: 0.9998 F: 0.998058941624 +Loss Function: binary_crossentropy Epoch: 14 Prec: 0.996357073257 Rec: 0.999811111111 F: 0.998081103864 +Loss Function: binary_crossentropy Epoch: 15 Prec: 0.996379058334 Rec: 0.999788888889 F: 0.998081061295 +Loss Function: binary_crossentropy Epoch: 16 Prec: 0.996434226991 Rec: 0.999788888889 F: 0.998108739178 +Loss Function: binary_crossentropy Epoch: 17 Prec: 0.996467331118 Rec: 0.999788888889 F: 0.998125346644 +Loss Function: binary_crossentropy Epoch: 18 Prec: 0.996478288315 Rec: 0.999766666667 F: 0.998119769048 +Loss Function: binary_crossentropy Epoch: 19 Prec: 0.996522432525 Rec: 0.999766666667 F: 0.998141913441 +Loss Function: binary_crossentropy Epoch: 20 Prec: 0.99655554325 Rec: 0.999766666667 F: 0.998158522381 +RNN:: Loss Function:mse, Optimizer:adagrad, Batch Size:1, Dropout Rate:No +Loss Function: mse Epoch: 0 Prec: 0.996677004874 Rec: 0.999777777778 F: 0.998224983359 +Loss Function: mse Epoch: 1 Prec: 0.996732098547 Rec: 0.999744444444 F: 0.998235998935 +Loss Function: mse Epoch: 2 Prec: 0.996765188107 Rec: 0.999733333333 F: 0.998247054386 +Loss Function: mse Epoch: 3 Prec: 0.996798245128 Rec: 0.999711111111 F: 0.998252553214 +Loss Function: mse Epoch: 4 Prec: 0.996809182464 Rec: 0.999677777778 F: 0.998241419291 +Loss Function: mse Epoch: 5 Prec: 0.996809111759 Rec: 0.999655555556 F: 0.99823030451 +Loss Function: mse Epoch: 6 Prec: 0.996819979834 Rec: 0.9996 F: 0.998208054324 +Loss Function: mse Epoch: 7 Prec: 0.996842000288 Rec: 0.999577777778 F: 0.998208014558 +Loss Function: mse Epoch: 8 Prec: 0.996864057444 Rec: 0.999566666667 F: 0.998213532767 +Loss Function: mse Epoch: 9 Prec: 0.996886047053 Rec: 0.999533333333 F: 0.99820793502 +Loss Function: mse Epoch: 10 Prec: 0.99689699119 Rec: 0.9995 F: 0.998196798624 +Loss Function: mse Epoch: 11 Prec: 0.996885909015 Rec: 0.999488888889 F: 0.998185702 +Loss Function: mse Epoch: 12 Prec: 0.996918916523 Rec: 0.999444444444 F: 0.998180083006 +Loss Function: mse Epoch: 13 Prec: 0.996940777442 Rec: 0.999366666667 F: 0.998152248098 +Loss Function: mse Epoch: 14 Prec: 0.9969406418 Rec: 0.999322222222 F: 0.998130011375 +Loss Function: mse Epoch: 15 Prec: 0.996940540061 Rec: 0.999288888889 F: 0.998113333185 +Loss Function: mse Epoch: 16 Prec: 0.996929318907 Rec: 0.999233333333 F: 0.998079996449 +Loss Function: mse Epoch: 17 Prec: 0.996940336563 Rec: 0.999222222222 F: 0.99807997514 +Loss Function: mse Epoch: 18 Prec: 0.996929216784 Rec: 0.9992 F: 0.998063316778 +Loss Function: mse Epoch: 19 Prec: 0.996918062592 Rec: 0.999166666667 F: 0.998041098095 +Loss Function: mse Epoch: 20 Prec: 0.996929046563 Rec: 0.999144444444 F: 0.998035516093 + diff --git a/RNNresults/OLD/RNNresultsDataset4 b/RNNresults/OLD/RNNresultsDataset4 new file mode 100644 index 0000000..e69de29 diff --git a/RNNresults/OLD/RNNresultsDataset5 b/RNNresults/OLD/RNNresultsDataset5 new file mode 100644 index 0000000..cfb539c --- /dev/null +++ b/RNNresults/OLD/RNNresultsDataset5 @@ -0,0 +1,45 @@ +RNN Dataset 5 Loss Function:categorical_crossentropy, Optimizer:sgd, Batch Size:1, Dropout Rate:No +Loss Function: categorical_crossentropy Epoch: 0 Prec: 0.954327956989 +Loss Function: categorical_crossentropy Epoch: 1 Prec: 0.951948924731 +Loss Function: categorical_crossentropy Epoch: 2 Prec: 0.94686827957 +Loss Function: categorical_crossentropy Epoch: 3 Prec: 0.962668010753 +Loss Function: categorical_crossentropy Epoch: 4 Prec: 0.894670698925 +Loss Function: categorical_crossentropy Epoch: 5 Prec: 0.945329301075 +Loss Function: categorical_crossentropy Epoch: 6 Prec: 0.872909946237 +Loss Function: categorical_crossentropy Epoch: 7 Prec: 0.919220430108 +Loss Function: categorical_crossentropy Epoch: 8 Prec: 0.913313172043 +Loss Function: categorical_crossentropy Epoch: 9 Prec: 0.871142473118 +Loss Function: categorical_crossentropy Epoch: 10 Prec: 0.905241935484 +Loss Function: categorical_crossentropy Epoch: 11 Prec: 0.96063844086 +Loss Function: categorical_crossentropy Epoch: 12 Prec: 0.932043010753 +Loss Function: categorical_crossentropy Epoch: 13 Prec: 0.915887096774 +Loss Function: categorical_crossentropy Epoch: 14 Prec: 0.911041666667 +Loss Function: categorical_crossentropy Epoch: 15 Prec: 0.883877688172 +Loss Function: categorical_crossentropy Epoch: 16 Prec: 0.910766129032 +Loss Function: categorical_crossentropy Epoch: 17 Prec: 0.90061155914 +Loss Function: categorical_crossentropy Epoch: 18 Prec: 0.931424731183 +Loss Function: categorical_crossentropy Epoch: 19 Prec: 0.957392473118 +Loss Function: categorical_crossentropy Epoch: 20 Prec: 0.820053763441 +RNN Dataset 5 Loss Function:mse, Optimizer:sgd, Batch Size:1, Dropout Rate:No +Loss Function: mse Epoch: 0 Prec: 0.965194892473 +Loss Function: mse Epoch: 1 Prec: 0.965712365591 +Loss Function: mse Epoch: 2 Prec: 0.957889784946 +Loss Function: mse Epoch: 3 Prec: 0.944932795699 +Loss Function: mse Epoch: 4 Prec: 0.936532258065 +Loss Function: mse Epoch: 5 Prec: 0.923501344086 +Loss Function: mse Epoch: 6 Prec: 0.921955645161 +Loss Function: mse Epoch: 7 Prec: 0.925181451613 +Loss Function: mse Epoch: 8 Prec: 0.930739247312 +Loss Function: mse Epoch: 9 Prec: 0.93624327957 +Loss Function: mse Epoch: 10 Prec: 0.917318548387 +Loss Function: mse Epoch: 11 Prec: 0.930080645161 +Loss Function: mse Epoch: 12 Prec: 0.94377016129 +Loss Function: mse Epoch: 13 Prec: 0.947607526882 +Loss Function: mse Epoch: 14 Prec: 0.947130376344 +Loss Function: mse Epoch: 15 Prec: 0.948965053763 +Loss Function: mse Epoch: 16 Prec: 0.949106182796 +Loss Function: mse Epoch: 17 Prec: 0.948427419355 +Loss Function: mse Epoch: 18 Prec: 0.957634408602 +Loss Function: mse Epoch: 19 Prec: 0.949415322581 +Loss Function: mse Epoch: 20 Prec: 0.963420698925 + diff --git a/RNNresults/OLD/RNNresultsDataset6 b/RNNresults/OLD/RNNresultsDataset6 new file mode 100644 index 0000000..9279cb0 --- /dev/null +++ b/RNNresults/OLD/RNNresultsDataset6 @@ -0,0 +1,5 @@ +Dataset6 RNN:: Loss Function: mse, Optimizer: adagrad, Batch Size:1, Dropout Rate:No +Loss Function: mse Epoch: Prec: 0.988579921967 Rec: 0.995633895937 F: 0.992094370346 +Loss Function: mse Epoch: 1 Prec: 0.988579921967 Rec: 0.995633895937 F: 0.992094370346 +Loss Function: mse Epoch: 2 Prec: 0.989636663402 Rec: 0.995883387598 F: 0.992750198965 +Loss Function: mse Epoch: 2 Prec: 0.987699513157 Rec: 0.999675660841 F: 0.993651502188 diff --git a/RNNresults/OLD/Z.RNN Dataset 2 Losses: Binary-Crossentropy, MSE Opt: adagrad.png b/RNNresults/OLD/Z.RNN Dataset 2 Losses: Binary-Crossentropy, MSE Opt: adagrad.png new file mode 100644 index 0000000..584773a Binary files /dev/null and b/RNNresults/OLD/Z.RNN Dataset 2 Losses: Binary-Crossentropy, MSE Opt: adagrad.png differ diff --git a/RNNresults/OLD/Z.RNN Dataset 5 Losses: Crossentropy, MSE Opt: sgd.png b/RNNresults/OLD/Z.RNN Dataset 5 Losses: Crossentropy, MSE Opt: sgd.png new file mode 100644 index 0000000..1cdd290 Binary files /dev/null and b/RNNresults/OLD/Z.RNN Dataset 5 Losses: Crossentropy, MSE Opt: sgd.png differ diff --git a/RNNresults/OLD/Z.RNN Dataset 6 Loss: MSE Opt: adagrad.png b/RNNresults/OLD/Z.RNN Dataset 6 Loss: MSE Opt: adagrad.png new file mode 100644 index 0000000..e66445d Binary files /dev/null and b/RNNresults/OLD/Z.RNN Dataset 6 Loss: MSE Opt: adagrad.png differ diff --git a/RNNresults/RNN_1A.Dataset1 b/RNNresults/RNN_1A.Dataset1 new file mode 100644 index 0000000..a0de725 --- /dev/null +++ b/RNNresults/RNN_1A.Dataset1 @@ -0,0 +1,217 @@ +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.27217541182|0.928|0.874125874126|1.0|0.932835820896 +2|0.0419483531476|0.997|0.994035785288|1.0|0.997008973081 +3|0.0192993114126|1.0|1.0|1.0|1.0 +4|0.0120467033392|1.0|1.0|1.0|1.0 +5|0.00852892059516|0.999|0.998003992016|1.0|0.999000999001 +6|0.00663071068552|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.500874960481|0.5|nan|0.0|nan +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.226321996421|0.987|0.974658869396|1.0|0.987166831194 +2|0.0396751123704|0.997|0.994035785288|1.0|0.997008973081 +3|0.0199277004448|1.0|1.0|1.0|1.0 +4|0.0125076925369|1.0|1.0|1.0|1.0 +5|0.00878011060897|0.998|0.996015936255|1.0|0.998003992016 +6|0.0067885634983|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0212864208655|1.0|1.0|1.0|1.0 +2|0.0125278775205|1.0|1.0|1.0|1.0 +3|0.00857428762691|1.0|1.0|1.0|1.0 +4|0.00639353147987|1.0|1.0|1.0|1.0 +5|0.0050610439586|1.0|1.0|1.0|1.0 +6|0.0041947777895|1.0|1.0|1.0|1.0 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0146710907442|0.997|0.994035785288|1.0|0.997008973081 +2|0.0032516931921|0.999|0.998003992016|1.0|0.999000999001 +3|0.00206779985995|0.999|0.998003992016|1.0|0.999000999001 +4|0.00183539554915|0.998|0.998|0.998|0.998 +5|0.00242123537257|0.997|0.994035785288|1.0|0.997008973081 +6|0.0022028519602|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.11282326106|0.977|0.956022944551|1.0|0.977517106549 +2|0.0183457814367|0.997|0.994035785288|1.0|0.997008973081 +3|0.00926305155794|1.0|1.0|1.0|1.0 +4|0.00580813262537|0.999|0.998003992016|1.0|0.999000999001 +5|0.00418871423786|0.998|0.996015936255|1.0|0.998003992016 +6|0.00333216788031|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00555417128769|1.0|1.0|1.0|1.0 +2|0.00302195425023|1.0|1.0|1.0|1.0 +3|0.00204649192547|1.0|1.0|1.0|1.0 +4|0.00155100670725|0.999|0.998003992016|1.0|0.999000999001 +5|0.00126465564738|0.999|0.998003992016|1.0|0.999000999001 +6|0.00108725838747|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00317029752331|0.999|0.998003992016|1.0|0.999000999001 +2|0.000738143724928|0.999|0.998003992016|1.0|0.999000999001 +3|0.000740886563754|0.999|0.998003992016|1.0|0.999000999001 +4|0.000848890815514|0.999|0.998003992016|1.0|0.999000999001 +5|0.00126848833919|0.999|0.998003992016|1.0|0.999000999001 +6|0.00202674920985|0.997|0.994035785288|1.0|0.997008973081 +Model:RNN_1A Dataset:Dataset1 Loss:categorical_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.227167929962|0.962|0.92936802974|1.0|0.963391136802 +2|0.0391965886557|0.997|0.994035785288|1.0|0.997008973081 +3|0.0192875620797|1.0|1.0|1.0|1.0 +4|0.0120902967854|1.0|1.0|1.0|1.0 +5|0.00852546518815|0.999|0.998003992016|1.0|0.999000999001 +6|0.00662239622843|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0183688909953|1.0|1.0|1.0|1.0 +2|0.0101230356989|1.0|1.0|1.0|1.0 +3|0.00714074342779|1.0|1.0|1.0|1.0 +4|0.00540353864088|1.0|1.0|1.0|1.0 +5|0.00432211198631|1.0|1.0|1.0|1.0 +6|0.00360471337203|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0131138948497|0.997|0.994035785288|1.0|0.997008973081 +2|0.0022528526906|0.999|0.998003992016|1.0|0.999000999001 +3|0.00113505070793|0.999|0.998003992016|1.0|0.999000999001 +4|0.00120193922905|0.999|0.998003992016|1.0|0.999000999001 +5|0.00104698447558|0.999|0.998003992016|1.0|0.999000999001 +6|0.00118081037481|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.110679095142|0.986|0.972762645914|1.0|0.986193293886 +2|0.017694292252|0.997|0.994035785288|1.0|0.997008973081 +3|0.00884300011082|0.999|0.998003992016|1.0|0.999000999001 +4|0.00565075502825|0.998|0.996015936255|1.0|0.998003992016 +5|0.0041702277416|0.998|0.996015936255|1.0|0.998003992016 +6|0.00338408249904|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00582260105601|1.0|1.0|1.0|1.0 +2|0.00321129900365|1.0|1.0|1.0|1.0 +3|0.00213683597205|1.0|1.0|1.0|1.0 +4|0.00158551350906|1.0|1.0|1.0|1.0 +5|0.00126606668131|1.0|1.0|1.0|1.0 +6|0.0010675778917|1.0|1.0|1.0|1.0 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00310717387467|0.999|0.998003992016|1.0|0.999000999001 +2|0.000666832010265|0.999|0.998003992016|1.0|0.999000999001 +3|0.00109820591866|0.999|0.998003992016|1.0|0.999000999001 +4|0.000609260196693|0.999|0.998003992016|1.0|0.999000999001 +5|0.000711018829898|0.999|0.998003992016|1.0|0.999000999001 +6|0.00114193155961|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.066592183915|0.997|0.994035785288|1.0|0.997008973081 +2|0.0234933371256|1.0|1.0|1.0|1.0 +3|0.0134420820984|1.0|1.0|1.0|1.0 +4|0.0093750679581|0.998|0.996015936255|1.0|0.998003992016 +5|0.00748813748587|0.998|0.996015936255|1.0|0.998003992016 +6|0.0065276356508|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0415063531269|0.998|0.996015936255|1.0|0.998003992016 +2|0.0214204211729|1.0|1.0|1.0|1.0 +3|0.0134652488659|1.0|1.0|1.0|1.0 +4|0.00954230818904|0.999|0.998003992016|1.0|0.999000999001 +5|0.00783514435727|0.999|0.998003992016|1.0|0.999000999001 +6|0.00660118782402|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0162422141817|1.0|1.0|1.0|1.0 +2|0.00307897194079|0.999|0.998003992016|1.0|0.999000999001 +3|0.00372211121709|0.999|0.998003992016|1.0|0.999000999001 +4|0.00421627859261|0.999|0.998003992016|1.0|0.999000999001 +5|0.0136286041544|0.996|0.992063492063|1.0|0.996015936255 +6|0.00333451359286|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.189609860152|0.956|0.919117647059|1.0|0.95785440613 +2|0.0384124780361|0.997|0.994035785288|1.0|0.997008973081 +3|0.0197211649245|1.0|1.0|1.0|1.0 +4|0.0125759543237|1.0|1.0|1.0|1.0 +5|0.00892382730719|0.998|0.996015936255|1.0|0.998003992016 +6|0.00693168768667|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0181725211229|1.0|1.0|1.0|1.0 +2|0.0105247569788|1.0|1.0|1.0|1.0 +3|0.00720328102259|1.0|1.0|1.0|1.0 +4|0.00540503132327|1.0|1.0|1.0|1.0 +5|0.00429908872564|1.0|1.0|1.0|1.0 +6|0.00356712109341|1.0|1.0|1.0|1.0 +Model:RNN_1A Dataset:Dataset1 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0117345524773|0.995|0.990099009901|1.0|0.995024875622 +2|0.00296888438304|0.999|0.998003992016|1.0|0.999000999001 +3|0.00143563692473|0.999|0.998003992016|1.0|0.999000999001 +4|0.00144988820385|0.999|0.998003992016|1.0|0.999000999001 +5|0.00196386442172|0.998|0.996015936255|1.0|0.998003992016 +6|0.00208874012206|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0888121894076|0.982|0.965250965251|1.0|0.98231827112 +2|0.0179555182909|0.997|0.994035785288|1.0|0.997008973081 +3|0.00904757790721|0.999|0.998003992016|1.0|0.999000999001 +4|0.00578965376667|0.998|0.996015936255|1.0|0.998003992016 +5|0.00428028540192|0.998|0.996015936255|1.0|0.998003992016 +6|0.00347508132312|0.997|0.994035785288|1.0|0.997008973081 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00640067315864|1.0|1.0|1.0|1.0 +2|0.00340981556942|1.0|1.0|1.0|1.0 +3|0.00233331428543|1.0|1.0|1.0|1.0 +4|0.00174848726792|1.0|1.0|1.0|1.0 +5|0.00140064503817|0.999|0.998003992016|1.0|0.999000999001 +6|0.00118423646728|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00429901678899|1.0|1.0|1.0|1.0 +2|0.000831232460678|0.999|0.998003992016|1.0|0.999000999001 +3|0.000818787679001|0.999|0.998003992016|1.0|0.999000999001 +4|0.00112579185018|0.999|0.998003992016|1.0|0.999000999001 +5|0.00118049989595|0.999|0.998003992016|1.0|0.999000999001 +6|0.0011277411167|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0700609523277|0.997|0.994035785288|1.0|0.997008973081 +2|0.0237764141481|1.0|1.0|1.0|1.0 +3|0.013446193388|1.0|1.0|1.0|1.0 +4|0.00929553388188|0.998|0.996015936255|1.0|0.998003992016 +5|0.00738171943929|0.998|0.996015936255|1.0|0.998003992016 +6|0.00641020268091|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.037881562763|1.0|1.0|1.0|1.0 +2|0.0202241999793|1.0|1.0|1.0|1.0 +3|0.0145777964831|1.0|1.0|1.0|1.0 +4|0.00933628657007|1.0|1.0|1.0|1.0 +5|0.00755264579274|1.0|1.0|1.0|1.0 +6|0.0063438233579|0.999|0.998003992016|1.0|0.999000999001 +Model:RNN_1A Dataset:Dataset1 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0178695219376|1.0|1.0|1.0|1.0 +2|0.00174207979748|0.999|0.998003992016|1.0|0.999000999001 +3|0.00104147204825|0.999|0.998003992016|1.0|0.999000999001 +4|0.00287536002184|0.999|0.998003992016|1.0|0.999000999001 +5|0.000767268353506|0.999|0.998003992016|1.0|0.999000999001 +6|0.0013445660986|0.999|0.998003992016|1.0|0.999000999001 diff --git a/RNNresults/RNN_1A.Dataset2 b/RNNresults/RNN_1A.Dataset2 new file mode 100644 index 0000000..cbec0b4 --- /dev/null +++ b/RNNresults/RNN_1A.Dataset2 @@ -0,0 +1,144 @@ +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.377747594446|0.773|0.687757909216|1.0|0.81499592502 +2|0.106800073247|0.927|0.896103896104|0.966|0.929740134745 +3|0.0619023300644|0.968|0.93984962406|1.0|0.968992248062 +4|0.0450360807332|0.974|0.950570342205|1.0|0.974658869396 +5|0.03519027031|0.979|0.959692898273|1.0|0.979431929481 +6|0.0289734979511|0.98|0.961538461538|1.0|0.980392156863 +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0625287355388|0.976|0.954198473282|1.0|0.9765625 +2|0.0369267185817|0.976|0.954198473282|1.0|0.9765625 +3|0.0282753684097|0.982|0.965250965251|1.0|0.98231827112 +4|0.0237051222898|0.986|0.972762645914|1.0|0.986193293886 +5|0.0207900508571|0.987|0.974658869396|1.0|0.987166831194 +6|0.0187302961703|0.99|0.980392156863|1.0|0.990099009901 +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0650791488478|0.967|0.93808630394|1.0|0.968054211036 +2|0.0396882604253|0.958|0.922509225092|1.0|0.959692898273 +3|0.0301225594319|0.974|0.950570342205|1.0|0.974658869396 +4|0.0300425492405|0.969|0.941619585687|1.0|0.969932104753 +5|0.0294087932911|0.971|0.945179584121|1.0|0.971817298348 +6|0.0297330120692|0.972|0.94696969697|1.0|0.972762645914 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.191974764012|0.776|0.690607734807|1.0|0.816993464052 +2|0.0691287218444|0.938|0.889679715302|1.0|0.941619585687 +3|0.0359318422242|0.973|0.948766603416|1.0|0.973709834469 +4|0.0251890699168|0.975|0.952380952381|1.0|0.975609756098 +5|0.0196979209921|0.979|0.959692898273|1.0|0.979431929481 +6|0.0163959968814|0.98|0.961538461538|1.0|0.980392156863 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0262378091954|0.976|0.954198473282|1.0|0.9765625 +2|0.0160960768165|0.98|0.961538461538|1.0|0.980392156863 +3|0.0122247507541|0.987|0.974658869396|1.0|0.987166831194 +4|0.0101014009329|0.988|0.9765625|1.0|0.98814229249 +5|0.0087299845785|0.993|0.986193293886|1.0|0.993048659384 +6|0.00776110408369|0.995|0.990099009901|1.0|0.995024875622 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0231606271591|0.969|0.941619585687|1.0|0.969932104753 +2|0.0150598505074|0.981|0.963391136802|1.0|0.981354268891 +3|0.0146300712453|0.976|0.954198473282|1.0|0.9765625 +4|0.0107698901831|0.981|0.963391136802|1.0|0.981354268891 +5|0.0050520988155|0.996|0.992063492063|1.0|0.996015936255 +6|0.00375492227608|0.998|0.996015936255|1.0|0.998003992016 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.199337044824|0.944|0.89928057554|1.0|0.94696969697 +2|0.0845595251565|0.974|0.950570342205|1.0|0.974658869396 +3|0.0541381883|0.981|0.963391136802|1.0|0.981354268891 +4|0.0410366149703|0.985|0.970873786408|1.0|0.985221674877 +5|0.0336838720829|0.986|0.972762645914|1.0|0.986193293886 +6|0.0288446413898|0.988|0.9765625|1.0|0.98814229249 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.104546684219|0.977|0.956022944551|1.0|0.977517106549 +2|0.0641593372675|0.983|0.967117988395|1.0|0.983284169125 +3|0.0474001060681|0.984|0.968992248062|1.0|0.984251968504 +4|0.038401312762|0.986|0.972762645914|1.0|0.986193293886 +5|0.0327547287168|0.987|0.974658869396|1.0|0.987166831194 +6|0.0288684219535|0.987|0.974658869396|1.0|0.987166831194 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.110687843674|0.959|0.924214417745|1.0|0.960614793468 +2|0.066869454174|0.975|0.952380952381|1.0|0.975609756098 +3|0.0658065313685|0.973|0.948766603416|1.0|0.973709834469 +4|0.04877255463|0.978|0.95785440613|1.0|0.978473581213 +5|0.0298995051779|0.988|0.9765625|1.0|0.98814229249 +6|0.0197408971398|0.994|0.98814229249|1.0|0.994035785288 +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.383146877885|0.699|0.624219725343|1.0|0.768639508071 +2|0.113656142011|0.926|0.891544117647|0.97|0.929118773946 +3|0.0639203492497|0.967|0.93808630394|1.0|0.968054211036 +4|0.0462107073822|0.971|0.945179584121|1.0|0.971817298348 +5|0.0359971404236|0.978|0.95785440613|1.0|0.978473581213 +6|0.0296148429333|0.98|0.961538461538|1.0|0.980392156863 +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0686368738168|0.974|0.950570342205|1.0|0.974658869396 +2|0.0418647100022|0.977|0.956022944551|1.0|0.977517106549 +3|0.0320179507377|0.979|0.959692898273|1.0|0.979431929481 +4|0.0267228262588|0.984|0.968992248062|1.0|0.984251968504 +5|0.0233672731534|0.985|0.970873786408|1.0|0.985221674877 +6|0.0210324709242|0.988|0.9765625|1.0|0.98814229249 +Model:RNN_1A Dataset:Dataset2 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0673780469443|0.956|0.919117647059|1.0|0.95785440613 +2|0.045015385403|0.957|0.920810313076|1.0|0.958772770853 +3|0.0335312983909|0.964|0.932835820896|1.0|0.965250965251 +4|0.0323512320218|0.968|0.93984962406|1.0|0.968992248062 +5|0.0305677490983|0.971|0.945179584121|1.0|0.971817298348 +6|0.0284967916381|0.972|0.94696969697|1.0|0.972762645914 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.188898625106|0.866|0.788643533123|1.0|0.881834215168 +2|0.0601638681367|0.958|0.922509225092|1.0|0.959692898273 +3|0.0343229533256|0.973|0.948766603416|1.0|0.973709834469 +4|0.0243627264271|0.976|0.954198473282|1.0|0.9765625 +5|0.0190147449005|0.982|0.965250965251|1.0|0.98231827112 +6|0.0157507972663|0.985|0.970873786408|1.0|0.985221674877 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0233828094922|0.978|0.95785440613|1.0|0.978473581213 +2|0.0140391264066|0.982|0.965250965251|1.0|0.98231827112 +3|0.0105963866321|0.987|0.974658869396|1.0|0.987166831194 +4|0.00875526780694|0.995|0.990099009901|1.0|0.995024875622 +5|0.00759526559382|0.995|0.990099009901|1.0|0.995024875622 +6|0.00678498406197|0.996|0.992063492063|1.0|0.996015936255 +Model:RNN_1A Dataset:Dataset2 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0225317217468|0.972|0.94696969697|1.0|0.972762645914 +2|0.0154641615403|0.976|0.954198473282|1.0|0.9765625 +3|0.0152435779126|0.976|0.954198473282|1.0|0.9765625 +4|0.00967729578245|0.985|0.970873786408|1.0|0.985221674877 +5|0.00636785466466|0.994|0.98814229249|1.0|0.994035785288 +6|0.00649192125729|0.994|0.98814229249|1.0|0.994035785288 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.219525096755|0.932|0.880281690141|1.0|0.936329588015 +2|0.0852461810242|0.976|0.954198473282|1.0|0.9765625 +3|0.0541084285156|0.982|0.965250965251|1.0|0.98231827112 +4|0.0409071020193|0.985|0.970873786408|1.0|0.985221674877 +5|0.0334927361979|0.987|0.974658869396|1.0|0.987166831194 +6|0.0286289837653|0.988|0.9765625|1.0|0.98814229249 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.115072413822|0.974|0.950570342205|1.0|0.974658869396 +2|0.0737210123093|0.977|0.956022944551|1.0|0.977517106549 +3|0.056702816851|0.978|0.95785440613|1.0|0.978473581213 +4|0.0469326916503|0.98|0.961538461538|1.0|0.980392156863 +5|0.0405558966795|0.985|0.970873786408|1.0|0.985221674877 +6|0.0359795311008|0.987|0.974658869396|1.0|0.987166831194 +Model:RNN_1A Dataset:Dataset2 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.104056815082|0.961|0.927643784787|1.0|0.962463907603 +2|0.0860237835099|0.959|0.924214417745|1.0|0.960614793468 +3|0.0634022794076|0.97|0.943396226415|1.0|0.970873786408 +4|0.0626246238794|0.971|0.945179584121|1.0|0.971817298348 +5|0.0504154382271|0.975|0.952380952381|1.0|0.975609756098 +6|0.0295439553615|0.99|0.980392156863|1.0|0.990099009901 diff --git a/RNNresults/RNN_1A.Dataset3 b/RNNresults/RNN_1A.Dataset3 new file mode 100644 index 0000000..6d2044b --- /dev/null +++ b/RNNresults/RNN_1A.Dataset3 @@ -0,0 +1,144 @@ +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.50058988592|0.496|0.0|0.0|nan +2|0.506296645385|0.5|0.0|0.0|nan +3|0.507883972828|0.497|0.0|0.0|nan +4|0.50877714545|0.496|0.0|0.0|nan +5|0.507811402978|0.496|0.0|0.0|nan +6|0.506921213188|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.511891267207|0.497|0.2|0.002|0.0039603960396 +2|0.510136637388|0.496|0.0|0.0|nan +3|0.508480044661|0.496|0.0|0.0|nan +4|0.507393837287|0.496|0.0|0.0|nan +5|0.506766362811|0.496|0.0|0.0|nan +6|0.506367664599|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.524798675289|0.495|0.142857142857|0.002|0.00394477317554 +2|0.506134653951|0.496|0.0|0.0|nan +3|0.503994754391|0.496|0.0|0.0|nan +4|0.503904881829|0.496|0.0|0.0|nan +5|0.503991544856|0.496|0.0|0.0|nan +6|0.503993995277|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.252988466322|0.494|0.0|0.0|nan +2|0.327640216038|0.496|0.0|0.0|nan +3|0.430162218974|0.497|0.0|0.0|nan +4|0.446708267141|0.496|0.0|0.0|nan +5|0.457335546589|0.496|0.0|0.0|nan +6|0.464767147289|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.426876651131|0.496|0.0|0.0|nan +2|0.448305015794|0.496|0.0|0.0|nan +3|0.458941169391|0.496|0.0|0.0|nan +4|0.465335760254|0.496|0.0|0.0|nan +5|0.469822874723|0.496|0.0|0.0|nan +6|0.473269270881|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.437171928487|0.496|0.0|0.0|nan +2|0.493084128891|0.496|0.0|0.0|nan +3|0.503487639617|0.496|0.0|0.0|nan +4|0.503961811118|0.496|0.0|0.0|nan +5|0.503988810218|0.496|0.0|0.0|nan +6|0.503993721116|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.91130969353|0.497|0.0|0.0|nan +2|2.05890350603|0.496|0.0|0.0|nan +3|2.50962440998|0.496|0.0|0.0|nan +4|2.78466197127|0.496|0.0|0.0|nan +5|2.98073099104|0.496|0.0|0.0|nan +6|3.13360058365|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|1.49960088596|0.497|0.0|0.0|nan +2|1.78975889865|0.496|0.0|0.0|nan +3|2.00904154341|0.496|0.0|0.0|nan +4|2.17954974784|0.496|0.0|0.0|nan +5|2.31897503253|0.496|0.0|0.0|nan +6|2.43618526993|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|1.78171199336|0.496|0.0|0.0|nan +2|2.67403193355|0.496|0.0|0.0|nan +3|3.77649274116|0.496|0.0|0.0|nan +4|4.94209835504|0.496|0.0|0.0|nan +5|6.31001176306|0.496|0.0|0.0|nan +6|7.97950822274|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.502568225354|0.496|0.0|0.0|nan +2|0.516364194408|0.497|0.0|0.0|nan +3|0.509399729004|0.497|0.0|0.0|nan +4|0.510707621181|0.496|0.0|0.0|nan +5|0.509130648957|0.496|0.0|0.0|nan +6|0.507772420687|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.509593511598|0.497|0.2|0.002|0.0039603960396 +2|0.508120514919|0.496|0.0|0.0|nan +3|0.506712274955|0.496|0.0|0.0|nan +4|0.506039836832|0.496|0.0|0.0|nan +5|0.505687242136|0.496|0.0|0.0|nan +6|0.505463882799|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.513528084744|0.498|0.25|0.002|0.00396825396825 +2|0.506483567777|0.496|0.0|0.0|nan +3|0.504078777613|0.496|0.0|0.0|nan +4|0.504081894586|0.496|0.0|0.0|nan +5|0.504110220562|0.496|0.0|0.0|nan +6|0.503832180075|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.25214862062|0.495|0.0|0.0|nan +2|0.321927395403|0.496|0.0|0.0|nan +3|0.433312433363|0.496|0.0|0.0|nan +4|0.449823088134|0.496|0.0|0.0|nan +5|0.45998760487|0.496|0.0|0.0|nan +6|0.466925783104|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.41995672678|0.496|0.0|0.0|nan +2|0.444305191117|0.496|0.0|0.0|nan +3|0.45823361318|0.496|0.0|0.0|nan +4|0.465532778376|0.496|0.0|0.0|nan +5|0.470618498602|0.496|0.0|0.0|nan +6|0.474316717547|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.436451639882|0.496|0.166666666667|0.002|0.00395256916996 +2|0.49257252978|0.496|0.0|0.0|nan +3|0.50245488952|0.496|0.0|0.0|nan +4|0.50385876287|0.496|0.0|0.0|nan +5|0.503982321926|0.496|0.0|0.0|nan +6|0.503992079763|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|1.13359761184|0.497|0.0|0.0|nan +2|2.09667728216|0.496|0.0|0.0|nan +3|2.51316003093|0.496|0.0|0.0|nan +4|2.77732622407|0.496|0.0|0.0|nan +5|2.96941075154|0.496|0.0|0.0|nan +6|3.12112934733|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|1.51456285877|0.497|0.0|0.0|nan +2|1.70115559801|0.496|0.0|0.0|nan +3|1.83094964803|0.496|0.0|0.0|nan +4|1.92533153342|0.496|0.0|0.0|nan +5|1.99827050622|0.496|0.0|0.0|nan +6|2.05808229163|0.496|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset3 Loss:binary_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|1.54991590521|0.496|0.166666666667|0.002|0.00395256916996 +2|2.59727657265|0.496|0.0|0.0|nan +3|3.86133283938|0.496|0.0|0.0|nan +4|5.25267163571|0.496|0.0|0.0|nan +5|7.16203945793|0.496|0.0|0.0|nan +6|8.11581754447|0.496|0.0|0.0|nan diff --git a/RNNresults/RNN_1A.Dataset4 b/RNNresults/RNN_1A.Dataset4 new file mode 100644 index 0000000..ad34e28 --- /dev/null +++ b/RNNresults/RNN_1A.Dataset4 @@ -0,0 +1,40 @@ +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0276876626564|1.0|1.0|1.0|1.0 +2|0.0044613689105|0.999|1.0|1.0|1.0 +3|0.00334507353636|0.999|1.0|1.0|1.0 +4|0.00456086230645|0.999|1.0|1.0|1.0 +5|0.00583235946379|0.999|1.0|1.0|1.0 +6|0.00512594084836|0.999|1.0|1.0|1.0 +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0345849875677|1.0|1.0|1.0|1.0 +2|0.00621722448443|0.999|1.0|1.0|1.0 +3|0.0070286212801|0.999|1.0|1.0|1.0 +4|0.00569036448422|0.999|1.0|1.0|1.0 +5|0.0095663936566|0.999|1.0|1.0|1.0 +6|0.0147276567105|0.994|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0375098753553|1.0|1.0|1.0|1.0 +2|0.00563534886693|0.999|1.0|1.0|1.0 +3|0.00528025379166|0.999|1.0|1.0|1.0 +4|0.00605825420233|0.999|1.0|1.0|1.0 +5|0.00564406192375|0.999|1.0|1.0|1.0 +6|0.00691496355015|0.999|1.0|1.0|1.0 +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0357329556849|1.0|1.0|1.0|1.0 +2|0.00608724322426|0.999|1.0|1.0|1.0 +3|0.00689868336578|0.999|1.0|1.0|1.0 +4|0.00577194050269|0.999|1.0|1.0|1.0 +5|0.00630543131611|0.999|1.0|1.0|1.0 +6|0.0129326288507|0.996|0.0|0.0|nan +Model:RNN_1A Dataset:Dataset4 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore diff --git a/RNNresults/RNN_1B.Dataset5 b/RNNresults/RNN_1B.Dataset5 new file mode 100644 index 0000000..f686aab --- /dev/null +++ b/RNNresults/RNN_1B.Dataset5 @@ -0,0 +1,288 @@ +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.145031460188|1.0|0|0|0 +2|0.00976190251228|1.0|0|0|0 +3|0.00339465687535|1.0|0|0|0 +4|0.00261835987517|1.0|0|0|0 +5|0.0035368938639|1.0|0|0|0 +6|0.00492952826849|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00100542886657|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0818018637821|1.0|0|0|0 +2|0.0335801451672|1.0|0|0|0 +3|0.0142569411848|1.0|0|0|0 +4|0.00888622078083|1.0|0|0|0 +5|0.00629438635195|1.0|0|0|0 +6|0.00495577604913|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0115138339272|0.989|0|0|0 +2|0.0128968408749|0.982|0|0|0 +3|0.00936243212615|0.982|0|0|0 +4|0.00671616539625|0.984|0|0|0 +5|0.0109657419367|0.978|0|0|0 +6|0.00950938676813|0.979|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0571849985863|1.0|0|0|0 +2|0.0545641690276|0.996|0|0|0 +3|0.0522596172915|0.991|0|0|0 +4|0.0514062820948|0.988|0|0|0 +5|0.0587523480595|0.985|0|0|0 +6|0.0618010865787|0.981|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0696751659375|0.99|0|0|0 +2|0.0486732463903|0.984|0|0|0 +3|0.0612737499776|0.98|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.115717513651|1.0|0|0|0 +2|0.00746367261908|1.0|0|0|0 +3|0.00275493388047|1.0|0|0|0 +4|0.00198092210817|1.0|0|0|0 +5|0.00214232530582|1.0|0|0|0 +6|0.00372920926745|1.0|0|0|0 +7|0.00514224697067|1.0|0|0|0 +8|0.00353752190022|1.0|0|0|0 +9|0.00306687658343|1.0|0|0|0 +10|0.00307320806318|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0832318756059|1.0|0|0|0 +2|0.0371016534083|1.0|0|0|0 +3|0.0177756639005|1.0|0|0|0 +4|0.00963010378359|1.0|0|0|0 +5|0.00637302074003|1.0|0|0|0 +6|0.00565560268775|1.0|0|0|0 +7|0.00561758703779|1.0|0|0|0 +8|0.00646091890186|0.998|0|0|0 +9|0.00767252629198|0.995|0|0|0 +10|0.00865351721879|0.993|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0126490416592|0.984|0|0|0 +2|0.00722696768265|0.985|0|0|0 +3|0.00792029268848|0.982|0|0|0 +4|0.0617031428285|0.882|0|0|0 +5|0.0101501991279|0.98|0|0|0 +6|0.0227193763965|0.955|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0683047031199|1.0|0|0|0 +2|0.0540834993885|0.996|0|0|0 +3|0.0519524338637|0.991|0|0|0 +4|0.0514093326471|0.988|0|0|0 +5|0.0584037021525|0.987|0|0|0 +6|0.0635247824019|0.982|0|0|0 +7|0.0660818758121|0.983|0|0|0 +8|0.0647142234678|0.983|0|0|0 +9|0.0623126870643|0.986|0|0|0 +10|0.05939334863|0.987|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0019713893911|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.13483970537|1.0|0|0|0 +2|0.00992461555381|1.0|0|0|0 +3|0.00370393148781|1.0|0|0|0 +4|0.00293392593606|1.0|0|0|0 +5|0.00407249586954|1.0|0|0|0 +6|0.00519411412251|1.0|0|0|0 +7|0.00381389997003|1.0|0|0|0 +8|0.00340458013185|1.0|0|0|0 +9|0.00385008838574|1.0|0|0|0 +10|0.00214674948248|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0814915379211|1.0|0|0|0 +2|0.0334279666115|1.0|0|0|0 +3|0.0147932986249|1.0|0|0|0 +4|0.00905371807951|1.0|0|0|0 +5|0.00640005423932|1.0|0|0|0 +6|0.00543209626912|1.0|0|0|0 +7|0.00514960786653|1.0|0|0|0 +8|0.00586322671729|0.998|0|0|0 +9|0.00682489221786|0.997|0|0|0 +10|0.00764595785598|0.994|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.000374601675307|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.067757630964|1.0|0|0|0 +2|0.0529181630252|0.996|0|0|0 +3|0.0542888000888|0.991|0|0|0 +4|0.0509953980289|0.99|0|0|0 +5|0.0521964032504|0.988|0|0|0 +6|0.0550651303335|0.986|0|0|0 +7|0.0568292613548|0.983|0|0|0 +8|0.0581892355635|0.984|0|0|0 +9|0.0592586867471|0.983|0|0|0 +10|0.0585632544551|0.985|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 +Model:RNN_1B Dataset:Dataset5 Loss:categorical_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00212859313776|1.0|0|0|0 +2|nan|1.0|0|0|0 +3|nan|1.0|0|0|0 +4|nan|1.0|0|0|0 +5|nan|1.0|0|0|0 +6|nan|1.0|0|0|0 +7|nan|1.0|0|0|0 +8|nan|1.0|0|0|0 +9|nan|1.0|0|0|0 +10|nan|1.0|0|0|0 diff --git a/RNNresults/RNN_1C.Dataset0 b/RNNresults/RNN_1C.Dataset0 new file mode 100644 index 0000000..c76eda4 --- /dev/null +++ b/RNNresults/RNN_1C.Dataset0 @@ -0,0 +1,108 @@ +Model:RNN_1C Dataset:Dataset0 Loss:mae Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0954684601948|1.0|0|0|0 +2|0.00128710299422|1.0|0|0|0 +3|0.000449766602425|1.0|0|0|0 +4|0.000261537661514|1.0|0|0|0 +5|0.000185096134999|1.0|0|0|0 +6|0.000145018334428|1.0|0|0|0 +7|0.000120739550875|1.0|0|0|0 +8|0.000104592295025|1.0|0|0|0 +9|9.31263676939e-05|1.0|0|0|0 +10|8.45795241603e-05|1.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:mae Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|0.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:mae Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|0.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:mse Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.0627103240564|1.0|0|0|0 +2|0.00244451830117|1.0|0|0|0 +3|0.000686242900614|1.0|0|0|0 +4|0.000351393603283|1.0|0|0|0 +5|0.00022496210142|1.0|0|0|0 +6|0.000161490891966|1.0|0|0|0 +7|0.000124227232409|1.0|0|0|0 +8|0.000100071595258|1.0|0|0|0 +9|8.33061667072e-05|1.0|0|0|0 +10|7.10744394237e-05|1.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:mse Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|0.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:mse Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.000373283533094|1.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:categorical_crossentropy Optimizer:sgd Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.000953187739942|1.0|0|0|0 +2|0.000382058494419|1.0|0|0|0 +3|0.000251200921928|1.0|0|0|0 +4|0.0001953934956|1.0|0|0|0 +5|0.000164547288583|1.0|0|0|0 +6|0.000144831852915|1.0|0|0|0 +7|0.000130999293693|1.0|0|0|0 +8|0.000120645522364|1.0|0|0|0 +9|0.000112519634415|1.0|0|0|0 +10|0.000105912681531|1.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:categorical_crossentropy Optimizer:adagrad Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|nan|0.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0 +Model:RNN_1C Dataset:Dataset0 Loss:categorical_crossentropy Optimizer:rmsprop Dropout:No +Epoch|Loss|Accuracy|Precision|Recall|Fscore +1|0.00411484011655|1.0|0|0|0 +2|nan|0.0|0|0|0 +3|nan|0.0|0|0|0 +4|nan|0.0|0|0|0 +5|nan|0.0|0|0|0 +6|nan|0.0|0|0|0 +7|nan|0.0|0|0|0 +8|nan|0.0|0|0|0 +9|nan|0.0|0|0|0 +10|nan|0.0|0|0|0