-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
OrestisAlpos
committed
Apr 27, 2017
1 parent
e8f9303
commit 32f5c42
Showing
22 changed files
with
344 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import keras.utils | ||
from keras.models import Sequential, model_from_json, load_model | ||
from keras.layers import Dense, Activation, SimpleRNN, LSTM | ||
from keras.utils.vis_utils import plot_model | ||
import keras.utils.np_utils | ||
from keras.utils.np_utils import to_categorical | ||
|
||
import os | ||
import numpy as np | ||
import datetime | ||
import random | ||
from reader import Reader | ||
from sklearn import metrics | ||
import matplotlib.pyplot as plt | ||
from sklearn import metrics | ||
|
||
def MyMetrics(y_true, y_pred): | ||
y_pred[y_pred<0.5] = 0.0 | ||
y_pred[y_pred>=0.5] = 1.0 | ||
y_true[y_true<0.5] = 0.0 | ||
y_true[y_true>=0.5] = 1.0 | ||
|
||
if np.count_nonzero(y_pred == 1.0) == y_pred.shape[0]: | ||
y_pred[0]=0.0 | ||
if np.count_nonzero(y_pred == 0.0) == y_pred.shape[0]: | ||
y_pred[0]= 1.0 | ||
if np.count_nonzero(y_true == 1.0) == y_true.shape[0]: | ||
y_true[0]=0.0 | ||
if np.count_nonzero(y_true == 0.0) == y_true.shape[0]: | ||
y_true[0]= 1.0 | ||
confusion = metrics.confusion_matrix(y_true, y_pred) | ||
TP = confusion[1, 1] | ||
TN = confusion[0, 0] | ||
FP = confusion[0, 1] | ||
FN = confusion[1, 0] | ||
precision = TP / (TP + FP) | ||
recall = TP / (TP + FN) | ||
fscore = 2 * precision * recall / ( precision + recall) | ||
return (precision, recall, fscore) | ||
|
||
|
||
class LSTMHandler: | ||
|
||
results_directory = './LSTMresults' | ||
models_directory = './LSTMmodels' | ||
|
||
def __init__(self, model_name, num_categories, loss, optimizer): | ||
# GET THE MODEL | ||
fp_model = open(os.path.join(self.models_directory, model_name + '.json'), 'r') | ||
model_str = fp_model.read() | ||
self.model = model_from_json(model_str) | ||
self.model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) | ||
fp_model.close() | ||
|
||
self.model_name = model_name | ||
self.num_categories = num_categories | ||
self.loss = loss | ||
self.optimizer = optimizer | ||
|
||
|
||
def fit_and_eval(self, x_train, y_train, x_test, y_test, nb_epoch, dataset_name): #batch_size is always 1 and shuffle is always False, so we don't pass them as parameters | ||
self.results_file = os.path.join(self.results_directory, dataset_name + '.' + self.model_name) | ||
self.write_result(self.model_name + ' ' + dataset_name + ' Loss:' + self.loss + ' Optimizer:' + self.optimizer + ' Dropout:No') | ||
self.write_result('Epoch|Loss|Accuracy|Precision|Recall|Fscore') | ||
res_loss = [] | ||
res_accuracy = [] | ||
res_precision = [] | ||
res_recall = [] | ||
res_fscore = [] | ||
x_train = x_train.reshape(x_train.shape[0], 1, -1) | ||
x_test = x_test.reshape(x_test.shape[0], 1, -1) | ||
if self.num_categories > 2: | ||
y_train = to_categorical(y_train, self.num_categories) | ||
y_test = to_categorical(y_test, self.num_categories) | ||
for i in range(1, nb_epoch+1): | ||
self.model.fit(x_train, y_train, batch_size=1, epochs=1, shuffle=False) | ||
self.model.reset_states() | ||
(loss, accuracy) = self.model.evaluate(x_test, y_test, batch_size=1) | ||
self.model.reset_states() | ||
res_loss.append(loss) | ||
res_accuracy.append(accuracy) | ||
(precision, recall, fscore) = (0,0,0) | ||
if self.num_categories == 2: | ||
y_pred = self.model.predict(x_test, batch_size=1) | ||
self.model.reset_states() | ||
(precision, recall, fscore) = MyMetrics(y_test, y_pred) | ||
res_precision.append(precision) | ||
res_recall.append(recall) | ||
res_fscore.append(fscore) | ||
self.write_result(str(i) +'|'+ str(loss) +'|'+ str(accuracy) +'|'+ str(precision) +'|'+ str(recall) +'|'+ str(fscore)) | ||
|
||
return (res_loss, res_accuracy, res_precision, res_recall, res_fscore) | ||
|
||
|
||
def write_result(self, text): | ||
fp = open(self.results_file, 'a') | ||
fp.write(text + '\n') | ||
fp.close() | ||
|
||
# def save_weights(): | ||
|
||
|
||
|
||
@staticmethod | ||
def plot_results(title, metric, results): | ||
lns = [] | ||
for k in results.keys(): | ||
result = results[k] | ||
myplot = plt.subplot() | ||
myplot.grid(True) | ||
myplot.set_xlabel("Epoch Number") | ||
myplot.set_ylabel(metric) | ||
x_Axis = np.arange(1, len(result)+1) | ||
#myplot.xaxis.set_ticks(x_Axis)#np.arange( 1, len(x_Axis)+1, 1)) | ||
#myplot.set_xticklabels(x_Axis, rotation=0) | ||
tokens = k.split('|') | ||
loss = tokens[0] | ||
if loss=='categorical_crossentropy' or loss=='binary_crossentropy': | ||
loss = 'crossentropy' | ||
optimizer = tokens[1] | ||
line = myplot.plot(x_Axis, result, label = 'loss:' + loss + ' opt:' + optimizer) | ||
lns = lns + line | ||
box = myplot.get_position() | ||
myplot.set_position([box.x0, box.y0 + box.height * 0.25, box.width, box.height * 0.75]) | ||
labs = [l.get_label() for l in lns] | ||
plt.title(title) | ||
lgd = plt.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=2) | ||
plt.savefig('./LSTMresults/' + title + '.png') | ||
plt.clf() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Dense, Activation, LSTM | ||
from keras.utils.vis_utils import plot_model | ||
import os | ||
import numpy as np | ||
from reader import Reader | ||
|
||
|
||
length = Reader.getInputShape() | ||
|
||
model = Sequential() | ||
|
||
#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length | ||
|
||
#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) | ||
model.add(LSTM(units=50, input_shape=(1,length), batch_input_shape=(1,1,length), recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', stateful=True)) | ||
model.add(Dense(1, kernel_initializer='random_uniform', activation = 'sigmoid')) | ||
|
||
|
||
model.summary() | ||
plot_model(model, to_file='./LSTMmodels/LSTM_1.2A.png', show_shapes=True) | ||
fp = open('./LSTMmodels/LSTM_1.2A.json', 'w') | ||
fp.write(model.to_json()) | ||
fp.close() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Dense, Activation, LSTM | ||
from keras.utils.vis_utils import plot_model | ||
import os | ||
import numpy as np | ||
from reader import Reader | ||
|
||
|
||
length = Reader.getInputShape() | ||
|
||
model = Sequential() | ||
|
||
#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length | ||
|
||
#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) | ||
model.add(LSTM(units=50, input_shape=(1,length), batch_input_shape=(1,1,length), recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', return_sequences=True, stateful=True)) | ||
model.add(LSTM(units=50, recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', stateful=True)) | ||
model.add(Dense(1, kernel_initializer='random_uniform', activation = 'sigmoid')) | ||
|
||
|
||
model.summary() | ||
plot_model(model, to_file='./LSTMmodels/LSTM_2.2A.png', show_shapes=True) | ||
fp = open('./LSTMmodels/LSTM_2.2A.json', 'w') | ||
fp.write(model.to_json()) | ||
fp.close() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Dense, Activation, LSTM | ||
from keras.utils.vis_utils import plot_model | ||
import os | ||
import numpy as np | ||
from reader import Reader | ||
|
||
|
||
length = Reader.getInputShape() | ||
|
||
model = Sequential() | ||
|
||
#EXPECTS INPUT AS (nb_sample, timesteps, nb_features), where nb_sample=1 (batch_size = 1), timesteps = 1 and nb_features = length | ||
|
||
#model.add(Dense(40, input_dim = 12, init='uniform', activation='relu')) | ||
model.add(LSTM(units=50, input_shape=(1,length), batch_input_shape=(1,1,length), recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', return_sequences=True, stateful=True)) | ||
model.add(LSTM(units=40, recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', stateful=True, return_sequences=True)) | ||
model.add(LSTM(units=30, recurrent_initializer='random_uniform', kernel_initializer='random_uniform', activation='sigmoid', stateful=True)) | ||
model.add(Dense(1, kernel_initializer='random_uniform', activation = 'sigmoid')) | ||
|
||
|
||
model.summary() | ||
plot_model(model, to_file='./LSTMmodels/LSTM_3.2A.png', show_shapes=True) | ||
fp = open('./LSTMmodels/LSTM_3.2A.json', 'w') | ||
fp.write(model.to_json()) | ||
fp.close() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import keras.utils | ||
from keras.models import Sequential, model_from_json, load_model | ||
from keras.layers import Dense, Activation, SimpleRNN, LSTM | ||
from keras.utils.vis_utils import plot_model | ||
import keras.utils.np_utils | ||
from keras.utils.np_utils import to_categorical | ||
|
||
import os | ||
import numpy as np | ||
import datetime | ||
import random | ||
from reader import Reader | ||
from sklearn import metrics | ||
import matplotlib.pyplot as plt | ||
from sklearn import metrics | ||
import LSTMHandler | ||
|
||
|
||
#(1, 'Dataset1', 2, 'RNN_1A') | ||
#(2, 'Dataset2', 2, 'RNN_1A') | ||
#(3, 'Dataset3', 2, 'RNN_1A') | ||
#(4, 'Dataset4', 2, 'RNN_1A') | ||
#(5, 'Dataset5', 3, 'RNN_1B') | ||
#(6, 'Dataset0', 5, 'RNN_1C') | ||
dataset_id = 3 | ||
dataset_name = 'Dataset3' | ||
num_classes = 2 | ||
#RNN_name = 'RNN_1A' | ||
|
||
num_epochs = 10 | ||
|
||
(x_train, y_train), (x_test, y_test) = Reader.getDataset(dataset_id) | ||
#x_train = x_train[0:1000,:] | ||
#y_train = y_train[0:1000] | ||
#x_test = x_test[0:1000,:] | ||
#y_test = y_test[0:1000] | ||
|
||
for LSTM_name in ['LSTM_1.2A','LSTM_2.2A', 'LSTM_3.2A']: | ||
results = {} | ||
for loss,optimizer in [('binary_crossentropy','rmsprop')]: #categorical_crossentropy | ||
#for optimizer in ['sgd', 'rmsprop']: | ||
LSTMmodel = LSTMHandler.LSTMHandler(LSTM_name, num_classes, loss, optimizer) | ||
(res_loss, res_accuracy, res_precision, res_recall, res_fscore) = LSTMmodel.fit_and_eval(x_train, y_train, x_test, y_test, num_epochs, dataset_name) | ||
if num_classes == 2: | ||
results[loss + '|' + optimizer] = res_fscore | ||
else: | ||
results[loss + '|' + optimizer] = res_accuracy | ||
|
||
title = dataset_name + '.' + LSTM_name | ||
metric = 'accuracy' | ||
if num_classes == 2: | ||
metric = 'fscore' | ||
LSTMHandler.LSTMHandler.plot_results(title, metric, results) | ||
|
||
|
||
|
||
#(6, 'Dataset0', 5, 'RNN_1C') +categorical | ||
#dataset_id = 6 | ||
#dataset_name = 'Dataset0' | ||
#num_classes = 5 | ||
#RNN_name = 'RNN_1C' | ||
# | ||
#num_epochs = 10 | ||
## | ||
#fp_logfile = open('./debug/logfile', "a") | ||
#reader = Reader(fp_logfile, False) | ||
#(x_train, y_train), (x_test, y_test) = reader.getDataNormalized() | ||
#x_train = x_train[0:1000,:] | ||
#y_train = y_train[0:1000] | ||
#x_test = x_test[0:1000,:] | ||
#y_test = y_test[0:1000] | ||
#results = {} | ||
#for loss in ['mse', 'categorical_crossentropy']: | ||
#for optimizer in ['sgd','adagrad', 'rmsprop']: | ||
# RNNmodel = RNNHandler.RNNHandler(RNN_name, num_classes, loss, optimizer) | ||
# #(res_loss, res_accuracy, res_precision, res_recall, res_fscore) = RNNmodel.fit_and_eval(x_train, y_train, x_test, y_test, num_epochs, #dataset_name) | ||
#if num_classes == 2: | ||
# results[loss + '|' + optimizer] = res_fscore | ||
#else: | ||
# results[loss + '|' + optimizer] = res_accuracy | ||
# | ||
#title = dataset_name + '.' + RNN_name | ||
#metric = 'accuracy' | ||
#if num_classes == 2: | ||
#metric = 'fscore' | ||
#RNNHandler.RNNHandler.plot_results(title, metric, results) | ||
# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"class_name": "Sequential", "config": [{"class_name": "LSTM", "config": {"name": "lstm_1", "recurrent_regularizer": null, "recurrent_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "seed": null, "maxval": 0.05}}, "go_backwards": false, "kernel_constraint": null, "kernel_regularizer": null, "recurrent_activation": "hard_sigmoid", "trainable": true, "unroll": false, "batch_input_shape": [1, 1, 79], "return_sequences": false, "implementation": 0, "kernel_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "seed": null, "maxval": 0.05}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "activation": "sigmoid", "recurrent_dropout": 0.0, "stateful": true, "unit_forget_bias": true, "dtype": "float32", "activity_regularizer": null, "bias_regularizer": null, "dropout": 0.0, "use_bias": true, "recurrent_constraint": null, "bias_constraint": null, "units": 50}}, {"class_name": "Dense", "config": {"name": "dense_1", "kernel_initializer": {"class_name": "RandomUniform", "config": {"minval": -0.05, "seed": null, "maxval": 0.05}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "activation": "sigmoid", "use_bias": true, "activity_regularizer": null, "kernel_regularizer": null, "bias_regularizer": null, "trainable": true, "kernel_constraint": null, "units": 1, "bias_constraint": null}}], "keras_version": "2.0.3", "backend": "theano"} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"config": [{"config": {"recurrent_regularizer": null, "batch_input_shape": [1, 1, 79], "implementation": 0, "recurrent_activation": "hard_sigmoid", "name": "lstm_1", "return_sequences": false, "use_bias": true, "activation": "relu", "go_backwards": false, "kernel_constraint": null, "trainable": true, "kernel_regularizer": null, "bias_initializer": {"config": {}, "class_name": "Zeros"}, "unroll": false, "dropout": 0.0, "kernel_initializer": {"config": {"minval": -0.05, "seed": null, "maxval": 0.05}, "class_name": "RandomUniform"}, "activity_regularizer": null, "recurrent_initializer": {"config": {"minval": -0.05, "seed": null, "maxval": 0.05}, "class_name": "RandomUniform"}, "units": 50, "stateful": true, "bias_constraint": null, "recurrent_constraint": null, "bias_regularizer": null, "unit_forget_bias": true, "dtype": "float32", "recurrent_dropout": 0.0}, "class_name": "LSTM"}, {"config": {"bias_initializer": {"config": {}, "class_name": "Zeros"}, "kernel_initializer": {"config": {"minval": -0.05, "seed": null, "maxval": 0.05}, "class_name": "RandomUniform"}, "activity_regularizer": null, "bias_constraint": null, "units": 1, "name": "dense_1", "use_bias": true, "kernel_constraint": null, "trainable": true, "bias_regularizer": null, "kernel_regularizer": null, "activation": "sigmoid"}, "class_name": "Dense"}], "keras_version": "2.0.3", "backend": "theano", "class_name": "Sequential"} | ||
{"class_name": "Sequential", "config": [{"class_name": "LSTM", "config": {"recurrent_initializer": {"class_name": "RandomUniform", "config": {"seed": null, "maxval": 0.05, "minval": -0.05}}, "recurrent_constraint": null, "activity_regularizer": null, "unit_forget_bias": true, "kernel_constraint": null, "units": 50, "kernel_regularizer": null, "go_backwards": false, "implementation": 0, "bias_regularizer": null, "trainable": true, "unroll": false, "name": "lstm_1", "recurrent_regularizer": null, "dropout": 0.0, "activation": "relu", "return_sequences": false, "kernel_initializer": {"class_name": "RandomUniform", "config": {"seed": null, "maxval": 0.05, "minval": -0.05}}, "use_bias": true, "batch_input_shape": [1, 1, 79], "recurrent_dropout": 0.0, "recurrent_activation": "hard_sigmoid", "bias_constraint": null, "stateful": true, "dtype": "float32", "bias_initializer": {"class_name": "Zeros", "config": {}}}}, {"class_name": "Dense", "config": {"name": "dense_1", "activity_regularizer": null, "kernel_constraint": null, "use_bias": true, "units": 1, "kernel_regularizer": null, "activation": "sigmoid", "kernel_initializer": {"class_name": "RandomUniform", "config": {"seed": null, "maxval": 0.05, "minval": -0.05}}, "bias_regularizer": null, "trainable": true, "bias_constraint": null, "bias_initializer": {"class_name": "Zeros", "config": {}}}}], "backend": "theano", "keras_version": "2.0.3"} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"keras_version": "2.0.3", "config": [{"class_name": "LSTM", "config": {"dtype": "float32", "kernel_regularizer": null, "unit_forget_bias": true, "bias_initializer": {"class_name": "Zeros", "config": {}}, "go_backwards": false, "unroll": false, "recurrent_constraint": null, "return_sequences": true, "trainable": true, "stateful": true, "name": "lstm_1", "kernel_constraint": null, "recurrent_initializer": {"class_name": "RandomUniform", "config": {"maxval": 0.05, "minval": -0.05, "seed": null}}, "recurrent_regularizer": null, "dropout": 0.0, "bias_constraint": null, "recurrent_dropout": 0.0, "batch_input_shape": [1, 1, 79], "activation": "sigmoid", "units": 50, "implementation": 0, "activity_regularizer": null, "use_bias": true, "bias_regularizer": null, "kernel_initializer": {"class_name": "RandomUniform", "config": {"maxval": 0.05, "minval": -0.05, "seed": null}}, "recurrent_activation": "hard_sigmoid"}}, {"class_name": "LSTM", "config": {"kernel_regularizer": null, "unit_forget_bias": true, "bias_initializer": {"class_name": "Zeros", "config": {}}, "go_backwards": false, "unroll": false, "recurrent_constraint": null, "return_sequences": false, "trainable": true, "stateful": true, "name": "lstm_2", "kernel_constraint": null, "recurrent_initializer": {"class_name": "RandomUniform", "config": {"maxval": 0.05, "minval": -0.05, "seed": null}}, "recurrent_regularizer": null, "dropout": 0.0, "bias_constraint": null, "recurrent_dropout": 0.0, "activation": "sigmoid", "units": 50, "implementation": 0, "activity_regularizer": null, "use_bias": true, "bias_regularizer": null, "kernel_initializer": {"class_name": "RandomUniform", "config": {"maxval": 0.05, "minval": -0.05, "seed": null}}, "recurrent_activation": "hard_sigmoid"}}, {"class_name": "Dense", "config": {"bias_constraint": null, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "activation": "sigmoid", "units": 1, "activity_regularizer": null, "use_bias": true, "bias_regularizer": null, "trainable": true, "kernel_initializer": {"class_name": "RandomUniform", "config": {"maxval": 0.05, "minval": -0.05, "seed": null}}, "kernel_constraint": null, "name": "dense_1"}}], "backend": "theano", "class_name": "Sequential"} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.