-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrainer.py
179 lines (136 loc) · 6.16 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
from networks.discriminator import Discriminator
from networks.generator import Generator
import torch.nn.functional as F
from torch import nn, optim
import os
from vgg19 import VGGLoss
from torch.nn.parallel import DistributedDataParallel as DDP
def requires_grad(net, flag=True):
for p in net.parameters():
p.requires_grad = flag
class Trainer(nn.Module):
def __init__(self, args, device, rank):
super(Trainer, self).__init__()
self.args = args
self.batch_size = args.batch_size
self.gen = Generator(args.size, args.latent_dim_style, args.latent_dim_motion, args.channel_multiplier).to(
device)
self.dis = Discriminator(args.size, args.channel_multiplier).to(device)
# self.dis_dir = Discriminator_dir().to(device)
# distributed computing
self.gen = DDP(self.gen, device_ids=[rank], find_unused_parameters=True)
self.dis = DDP(self.dis, device_ids=[rank], find_unused_parameters=True)
# self.dis_dir = DDP(self.dis_dir, device_ids=[rank], find_unused_parameters=True)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
d_dir_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
self.g_optim = optim.Adam(
self.gen.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio)
)
self.d_optim = optim.Adam(
self.dis.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio)
)
self.criterion_vgg = VGGLoss().to(rank)
def g_nonsaturating_loss(self, fake_pred):
return F.softplus(-fake_pred).mean()
def d_nonsaturating_loss(self, fake_pred, real_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def gen_update(self, img_source, img_target):
self.gen.train()
self.gen.zero_grad()
requires_grad(self.gen, True)
requires_grad(self.dis, False)
final_output = self.gen(img_source, img_target)
fake_poseB2A = final_output['fake_poseB2A']
fake_pose_expB2A = final_output['fake_pose_expB2A']
fake_expA2B = final_output['fake_expA2B']
fake_exp_poseA2B = final_output['fake_exp_poseA2B']
fake_selfpose = final_output['fake_selfpose']
fake_selfexp = final_output['fake_selfexp']
img_recon_B2A = self.dis(fake_pose_expB2A)
img_recon_A2B = self.dis(fake_exp_poseA2B)
vgg_loss = self.criterion_vgg(fake_pose_expB2A, img_target).mean()
vgg_loss += self.criterion_vgg(fake_exp_poseA2B, img_source).mean()
vgg_loss_mid = self.criterion_vgg(fake_poseB2A, fake_expA2B).mean()*2
rec_loss = self.criterion_vgg(fake_selfpose, img_source).mean()*2
rec_loss += self.criterion_vgg(fake_selfexp, img_source).mean()*2
l1_loss = F.l1_loss(fake_pose_expB2A, img_target)*2
l1_loss += F.l1_loss(fake_exp_poseA2B, img_source)*2 + F.l1_loss(fake_poseB2A, fake_expA2B)
rec_loss += F.l1_loss(fake_selfpose, img_source)
rec_loss += F.l1_loss(fake_selfexp, img_source)
gan_g_loss = self.g_nonsaturating_loss(img_recon_B2A) + self.g_nonsaturating_loss(img_recon_A2B)
g_loss = vgg_loss + l1_loss + gan_g_loss + vgg_loss_mid + rec_loss
g_loss.backward()
self.g_optim.step()
return vgg_loss, l1_loss, gan_g_loss, vgg_loss_mid, rec_loss, fake_poseB2A, fake_pose_expB2A, fake_expA2B, fake_exp_poseA2B
def dis_update(self, img_target, img_source, fake_pose_expB2A, fake_exp_poseA2B):
self.dis.zero_grad()
requires_grad(self.gen, False)
requires_grad(self.dis, True)
# d_loss = d_dir_loss
real_img_pred = self.dis(img_target)
recon_img_pred = self.dis(fake_pose_expB2A.detach())
d_loss = self.d_nonsaturating_loss(recon_img_pred, real_img_pred)
real_img_pred = self.dis(img_source)
recon_img_pred = self.dis(fake_exp_poseA2B.detach())
d_loss += self.d_nonsaturating_loss(recon_img_pred, real_img_pred)
d_loss = d_loss*10
d_loss.backward()
self.d_optim.step()
return d_loss
def sample(self, img_source, img_target):
with torch.no_grad():
self.gen.eval()
final_output = self.gen(img_source, img_target, 'both')
final_output1 = final_output
return final_output, final_output1
def resume(self, resume_ckpt, mo='no'):
print("load model:", resume_ckpt)
ckpt = torch.load(resume_ckpt)
ckpt_name = os.path.basename(resume_ckpt)
start_iter = os.path.splitext(ckpt_name)[0]
if start_iter == 'vox':
start_iter = 800000
else:
start_iter = int(start_iter)
if start_iter == 800000:
a = ckpt["gen"]
dic = {}
for k,v in ckpt["gen"].items():
if 'enc.net_app' in k:
dic[k[12:]] = v
self.gen.module.enc.net_app.load_state_dict(dic)
dic = {}
for k,v in ckpt["gen"].items():
if 'enc.fc' in k:
dic[k[7:]] = v
self.gen.module.mlp.load_state_dict(dic)
dic = {}
for k,v in ckpt["gen"].items():
if 'dec.direction' in k:
dic[k[14:]] = v
self.gen.module.dir.load_state_dict(dic)
else:
self.gen.module.load_state_dict(ckpt["gen"])
self.dis.module.load_state_dict(ckpt["dis"])
self.g_optim.load_state_dict(ckpt["g_optim"])
self.d_optim.load_state_dict(ckpt["d_optim"])
return start_iter
def save(self, idx, checkpoint_path):
torch.save(
{
"gen": self.gen.module.state_dict(),
"dis": self.dis.module.state_dict(),
"g_optim": self.g_optim.state_dict(),
"d_optim": self.d_optim.state_dict(),
"args": self.args
},
f"{checkpoint_path}/{str(idx).zfill(6)}.pt"
)