-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathcrop_video.py
116 lines (104 loc) · 3.98 KB
/
crop_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import face_detection
import cv2
from PIL import Image
import numpy as np
import os
import os.path
from tqdm import tqdm
def face_detect(image_size, full_frames, na):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda')
batch_size = 10
ori_images = []
ori_images = full_frames
H,W = full_frames[0].shape[0],full_frames[0].shape[1]
images = ori_images
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = [0,0,0,0]
x11,x21,x31,x41 = 1000,1000,-1,-1
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
exit("error")
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
a,b,c,d = -50,-50,50,50
x1 = max(x1 + a, 0)
y1 = max(y1 + b, 0)
x2 = min(x2 + c, image.shape[1])
y2 = min(y2 + d, image.shape[0])
results.append([x1, y1, x2, y2])
break
p = results[0]
results = []
for i in range(len(images)):
results.append(p)
boxes = np.array(results)
results = [image[y1: y2, x1:x2] for image, (x1, y1, x2, y2) in zip(images, boxes)]
pp = os.path.join('./data/crop_img/',na.split('.')[0])
if not os.path.exists(pp):
os.makedirs(pp)
for i in range(len(results)):
im = results[i]
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = Image.fromarray(im)
im = im.resize((image_size, image_size),Image.ANTIALIAS)
im.save(os.path.join(pp,str(i)+'.jpg'))
res = []
quad = []
if not os.path.exists('./data/crop_video'):
os.makedirs('./data/crop_video')
crop_vi = os.path.join('./data/crop_video', na)
out_edit_crop = cv2.VideoWriter(crop_vi, cv2.VideoWriter_fourcc(*'mp4v'), 25, (image_size, image_size))
for i in range(0,len(results)):
im = results[i]
im = cv2.resize(im,(image_size,image_size),cv2.INTER_AREA)
out_edit_crop.write(im)
out_edit_crop.release()
del detector
pa = os.path.join('./data/crop_'+na.split('.')[0]+ '.txt')
with open(pa, 'w') as f:
line = str(H) + ' ' + str(W)
f.write(line)
f.write("\n")
for (x1, y1, x2, y2) in boxes:
line = str(x1) + ' ' + str(y1) + ' ' + str(x2) + ' ' + str(y2)
f.write(line)
f.write("\n")
if __name__ == '__main__':
pa = './data/full_video/'
na = os.listdir(pa)
for i in na:
path_video = os.path.join(pa,i)
video_stream = cv2.VideoCapture(path_video)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames...')
resize_factor = 1
full_frames = []
img_path = os.path.join('./data/full_img/',i.split('.')[0])
os.makedirs(img_path,exist_ok=True)
c = 0
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
full_frames.append(frame)
cv2.imwrite(os.path.join(img_path,str(c)+'.jpg'),frame)
c += 1
print ("Number of frames available for inference: "+str(len(full_frames)))
face_detect(256, full_frames, i)