-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom.xml
458 lines (265 loc) · 20.5 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Cape of Good Hope</title>
<subtitle>I miss you</subtitle>
<link href="/atom.xml" rel="self"/>
<link href="https://imbowei.com/"/>
<updated>2019-09-10T06:57:03.465Z</updated>
<id>https://imbowei.com/</id>
<author>
<name>Christmas</name>
</author>
<generator uri="http://hexo.io/">Hexo</generator>
<entry>
<title>【阅读笔记】项亮前辈的《推荐系统实战》</title>
<link href="https://imbowei.com/2019/05/11/Recommended-system/"/>
<id>https://imbowei.com/2019/05/11/Recommended-system/</id>
<published>2019-05-11T02:15:41.000Z</published>
<updated>2019-09-10T06:57:03.465Z</updated>
<summary type="html">
<p>推荐系统是个有意思的方向。项亮前辈的《推荐系统实战》来当作入门的第一本书还是很合适的,这段时间断断续续的抽空阅读了一遍。本书写的浅显易懂,很好的勾勒出了推荐引擎十年前的主流算法,以及工业推荐系统是如何打磨的。从这个角度讲,项亮前辈很好地完成了”让学生了解如何将自己了解的算法实现到一个工业系统中去“这一写作目标。</p>
<p>看书的过程中简单记录了一些内容,夹杂着自己突然产生的一些想法。用以过段时间后的来重新复习消化本书。</p>
</summary>
<category term="Recommend-system" scheme="https://imbowei.com/categories/Recommend-system/"/>
<category term="UserCF" scheme="https://imbowei.com/tags/UserCF/"/>
<category term="ItemCF" scheme="https://imbowei.com/tags/ItemCF/"/>
<category term="Collaborative-filtering" scheme="https://imbowei.com/tags/Collaborative-filtering/"/>
<category term="Social-recommendation" scheme="https://imbowei.com/tags/Social-recommendation/"/>
</entry>
<entry>
<title>Python3复习总结</title>
<link href="https://imbowei.com/2019/01/19/python3-tips/"/>
<id>https://imbowei.com/2019/01/19/python3-tips/</id>
<published>2019-01-19T11:59:45.000Z</published>
<updated>2019-09-02T14:55:41.587Z</updated>
<summary type="html">
<p>抽空复习了一下python的语言特性,其中容易忘记、混淆的点特地记录如下。</p>
</summary>
<category term="Programming_language" scheme="https://imbowei.com/categories/Programming-language/"/>
<category term="Python3" scheme="https://imbowei.com/categories/Programming-language/Python3/"/>
<category term="File_operations" scheme="https://imbowei.com/tags/File-operations/"/>
<category term="Python3" scheme="https://imbowei.com/tags/Python3/"/>
<category term="Deepcopy" scheme="https://imbowei.com/tags/Deepcopy/"/>
<category term="Copy" scheme="https://imbowei.com/tags/Copy/"/>
<category term="Generator" scheme="https://imbowei.com/tags/Generator/"/>
<category term="Iterator" scheme="https://imbowei.com/tags/Iterator/"/>
</entry>
<entry>
<title>无名之辈不无名(A Cool Fish)</title>
<link href="https://imbowei.com/2018/11/16/an-unknown-person-is-not-unknown/"/>
<id>https://imbowei.com/2018/11/16/an-unknown-person-is-not-unknown/</id>
<published>2018-11-16T12:41:16.000Z</published>
<updated>2018-11-17T12:26:16.000Z</updated>
<summary type="html">
<p>感谢影片Cast阵容中的一个个“无名之辈”, 让我们置身于一个西南小城中,陪着一个个无名之辈度过了生命中的<strong>荒诞</strong>一天。 </p>
</summary>
<category term="Movie" scheme="https://imbowei.com/categories/Movie/"/>
<category term="Absurd-comedy" scheme="https://imbowei.com/categories/Movie/Absurd-comedy/"/>
<category term="Movie" scheme="https://imbowei.com/tags/Movie/"/>
<category term="Absurd" scheme="https://imbowei.com/tags/Absurd/"/>
<category term="Comedy" scheme="https://imbowei.com/tags/Comedy/"/>
<category term="Multithreading" scheme="https://imbowei.com/tags/Multithreading/"/>
<category term="A-Cool-Fish" scheme="https://imbowei.com/tags/A-Cool-Fish/"/>
</entry>
<entry>
<title>BERT:From Transformer Architecture to Transfer Learning</title>
<link href="https://imbowei.com/2018/10/27/From-transformer-architecture-to-transfer-learning/"/>
<id>https://imbowei.com/2018/10/27/From-transformer-architecture-to-transfer-learning/</id>
<published>2018-10-27T12:07:40.000Z</published>
<updated>2019-04-15T01:22:50.538Z</updated>
<summary type="html">
<p>半个月前BERT横空出世,在数十个数据集上屠榜,一时风头无两。外加国内一些科技自媒体的“UC式”标题推波助澜,也给这篇文章博得了更多的关注。为了更好的理解BERT,我们需要先理解Attention和Transformer结构。然后可以集中精力从Transfer Learning的角度来比较ELMo,GPT,BERT这三篇文章的优劣异同。 </p>
</summary>
<category term="Deep-learning" scheme="https://imbowei.com/categories/Deep-learning/"/>
<category term="Pre-training" scheme="https://imbowei.com/categories/Deep-learning/Pre-training/"/>
<category term="Deep-learning" scheme="https://imbowei.com/tags/Deep-learning/"/>
<category term="Transformer" scheme="https://imbowei.com/tags/Transformer/"/>
<category term="Attention" scheme="https://imbowei.com/tags/Attention/"/>
<category term="Transfer-learning" scheme="https://imbowei.com/tags/Transfer-learning/"/>
<category term="BERT" scheme="https://imbowei.com/tags/BERT/"/>
<category term="GNMT" scheme="https://imbowei.com/tags/GNMT/"/>
<category term="Self-attention" scheme="https://imbowei.com/tags/Self-attention/"/>
<category term="Multi-head-attention" scheme="https://imbowei.com/tags/Multi-head-attention/"/>
<category term="Positional-encoding" scheme="https://imbowei.com/tags/Positional-encoding/"/>
<category term="ELMo" scheme="https://imbowei.com/tags/ELMo/"/>
<category term="Semi-supervised-learning" scheme="https://imbowei.com/tags/Semi-supervised-learning/"/>
<category term="Pre-training" scheme="https://imbowei.com/tags/Pre-training/"/>
</entry>
<entry>
<title>如何写好学术论文?</title>
<link href="https://imbowei.com/2018/09/29/How-to-write-a-great-paper/"/>
<id>https://imbowei.com/2018/09/29/How-to-write-a-great-paper/</id>
<published>2018-09-29T12:09:59.000Z</published>
<updated>2018-10-14T07:12:16.000Z</updated>
<summary type="html">
<p>Since the last submission was rejected, I studied how to write English papers. The details are summarized as follows.</p>
</summary>
<category term="Academic" scheme="https://imbowei.com/categories/Academic/"/>
<category term="Writing" scheme="https://imbowei.com/categories/Academic/Writing/"/>
<category term="Write-a-paper" scheme="https://imbowei.com/tags/Write-a-paper/"/>
<category term="Conference-papers" scheme="https://imbowei.com/tags/Conference-papers/"/>
</entry>
<entry>
<title>配置便捷的开发环境(PyCharm & Jupyter)</title>
<link href="https://imbowei.com/2018/09/17/Configuring-the-best-development-environment-with-pycharm-and-jupyter-notebook/"/>
<id>https://imbowei.com/2018/09/17/Configuring-the-best-development-environment-with-pycharm-and-jupyter-notebook/</id>
<published>2018-09-17T11:39:43.000Z</published>
<updated>2018-09-20T14:51:20.000Z</updated>
<summary type="html">
<p>由于在PyCharm中进行统计整理数据、画图等操作有诸多的不便。在本地的jupyter notebook进行处理又显得步骤繁琐(传输文件),故萌生在服务器搭建jupyter notebook的想法。两种工具优势互补,从而最大程度上集中注意力在项目本身,提升开发效率。</p>
</summary>
<category term="Tool" scheme="https://imbowei.com/categories/Tool/"/>
<category term="Server" scheme="https://imbowei.com/categories/Tool/Server/"/>
<category term="PyCharm" scheme="https://imbowei.com/tags/PyCharm/"/>
<category term="Jupyter" scheme="https://imbowei.com/tags/Jupyter/"/>
</entry>
<entry>
<title>Win10平台下的常用软件</title>
<link href="https://imbowei.com/2018/09/09/win10-software/"/>
<id>https://imbowei.com/2018/09/09/win10-software/</id>
<published>2018-09-09T07:56:09.000Z</published>
<updated>2018-10-14T03:14:16.000Z</updated>
<summary type="html">
<p>由于电脑系统最近崩溃两次,让我有了备份常用软件清单的想法。工欲善其事必先利其器,不断追求效率的提升是一件很幸福的事情。清单不定期更新。</p>
</summary>
<category term="Operating-system" scheme="https://imbowei.com/categories/Operating-system/"/>
<category term="Win10" scheme="https://imbowei.com/categories/Operating-system/Win10/"/>
<category term="Flux" scheme="https://imbowei.com/tags/Flux/"/>
<category term="Shadowsocks" scheme="https://imbowei.com/tags/Shadowsocks/"/>
<category term="Pycharm" scheme="https://imbowei.com/tags/Pycharm/"/>
<category term="Teamviwer" scheme="https://imbowei.com/tags/Teamviwer/"/>
<category term="Tpyora" scheme="https://imbowei.com/tags/Tpyora/"/>
</entry>
<entry>
<title>双网卡配置:同时使用公司(学校/实验室)内网和外网</title>
<link href="https://imbowei.com/2018/09/07/Dual-NIC-configuration/"/>
<id>https://imbowei.com/2018/09/07/Dual-NIC-configuration/</id>
<published>2018-09-07T13:37:09.000Z</published>
<updated>2019-09-25T06:19:57.349Z</updated>
<summary type="html">
<p>没有一个好用的网络根本是没有办法好好工作的呀。最近通过改变路由表、调整网卡优先级,实现了内外网络的同时使用,终于可以愉快的上网了。</p>
</summary>
<category term="Tool" scheme="https://imbowei.com/categories/Tool/"/>
<category term="Computer-network" scheme="https://imbowei.com/categories/Tool/Computer-network/"/>
<category term="Hop-number" scheme="https://imbowei.com/tags/Hop-number/"/>
<category term="Routing-table" scheme="https://imbowei.com/tags/Routing-table/"/>
</entry>
<entry>
<title>算法的时间复杂度和空间复杂度</title>
<link href="https://imbowei.com/2018/08/17/Summary-of-time-complexity-and-space-complexity/"/>
<id>https://imbowei.com/2018/08/17/Summary-of-time-complexity-and-space-complexity/</id>
<published>2018-08-17T10:37:34.000Z</published>
<updated>2019-04-22T08:30:39.163Z</updated>
<summary type="html">
<p>趁假期复习了算法基础的时间复杂度和空间复杂度,整理一遍。</p>
</summary>
<category term="Algorithm" scheme="https://imbowei.com/categories/Algorithm/"/>
<category term="Time-complexity" scheme="https://imbowei.com/tags/Time-complexity/"/>
<category term="Space-complexity" scheme="https://imbowei.com/tags/Space-complexity/"/>
</entry>
<entry>
<title>AI发电厂——数据标注公司(国内数据标注公司服务调研)</title>
<link href="https://imbowei.com/2018/08/07/Investigate-domestic-data-labeling-companies/"/>
<id>https://imbowei.com/2018/08/07/Investigate-domestic-data-labeling-companies/</id>
<published>2018-08-07T11:07:28.000Z</published>
<updated>2018-09-04T10:19:20.000Z</updated>
<summary type="html">
<p>众所周知,深度学习需要大量的标记数据和高效的运算来做支撑。<br>计算资源只要从黄老板的公司订购就可以了,但大规模的高质量有标记数据却不是那么容易获得,让科研人员头疼不已。<br>应用时代而生的就是一大批数据众包公司和平台。正好借着一个数据众包任务,对于国内的数据标注公司服务有了更深一步的了解。</p>
</summary>
<category term="Machine-learning" scheme="https://imbowei.com/categories/Machine-learning/"/>
<category term="Data-labeling" scheme="https://imbowei.com/categories/Machine-learning/Data-labeling/"/>
<category term="Machine-learning" scheme="https://imbowei.com/tags/Machine-learning/"/>
<category term="Data-labeling" scheme="https://imbowei.com/tags/Data-labeling/"/>
<category term="Crowdsourcing" scheme="https://imbowei.com/tags/Crowdsourcing/"/>
</entry>
<entry>
<title>用Github和Coding双线绑定自定义域名</title>
<link href="https://imbowei.com/2018/07/29/Github-and-Coding-bulid-blog/"/>
<id>https://imbowei.com/2018/07/29/Github-and-Coding-bulid-blog/</id>
<published>2018-07-29T09:26:57.000Z</published>
<updated>2018-10-29T02:21:36.000Z</updated>
<summary type="html">
<p>本来博客已经搭建好了,可是总觉得用Github一个二级域名怪怪的,非要折腾自己来绑定自己的域名,并申请SSL(就是喜欢看那个小绿锁!)前前后后花了不少时间,走了不少弯路,将踩过的坑记录下来。</p>
</summary>
<category term="blog" scheme="https://imbowei.com/categories/blog/"/>
<category term="Github-pages" scheme="https://imbowei.com/tags/Github-pages/"/>
<category term="Coding-pages" scheme="https://imbowei.com/tags/Coding-pages/"/>
<category term="DNSpod" scheme="https://imbowei.com/tags/DNSpod/"/>
<category term="SSL" scheme="https://imbowei.com/tags/SSL/"/>
<category term="Domain" scheme="https://imbowei.com/tags/Domain/"/>
</entry>
<entry>
<title>Linux服务器命令行上传数据到百度云盘</title>
<link href="https://imbowei.com/2018/07/26/linux-uploading-baiduyunpan/"/>
<id>https://imbowei.com/2018/07/26/linux-uploading-baiduyunpan/</id>
<published>2018-07-25T23:25:35.000Z</published>
<updated>2018-09-04T10:19:50.000Z</updated>
<summary type="html">
<p>每次想把服务器上的数据上传到百度云盘都要先下载到本地,然后再上传百度云。<br>这一点都不优雅,既浪费时间,还占用电脑本来的带宽。<br>如果Linux命令行能够直接上传百度云盘岂不美哉?说干就干,磨刀不误砍柴工!</p>
</summary>
<category term="Linux" scheme="https://imbowei.com/categories/Linux/"/>
<category term="Shell" scheme="https://imbowei.com/tags/Shell/"/>
<category term="Bypy" scheme="https://imbowei.com/tags/Bypy/"/>
</entry>
<entry>
<title>wikipedia 训练繁(简)体中文 embedding(word2vec)模型</title>
<link href="https://imbowei.com/2018/07/22/wikipedia-train-traditional-chinese-embedding%EF%BC%88word2vec%EF%BC%89model/"/>
<id>https://imbowei.com/2018/07/22/wikipedia-train-traditional-chinese-embedding(word2vec)model/</id>
<published>2018-07-22T14:52:39.000Z</published>
<updated>2018-09-25T08:53:00.000Z</updated>
<summary type="html">
<p>由于课题任务需要一个繁体中文的word3vec, 折腾经过记录在此。希望以后少掉几个坑。<br>训练好的embedding放在<a href="https://pan.baidu.com/s/1DB_Sft8N9XMyDP9cpVMpBw" target="_blank" rel="noopener">网盘</a>中, 密码:<code>2um0</code><br>后来又按照这个方法训练了简体中文维度分别为50、100、200、300的embedding,一并放出来<a href="https://pan.baidu.com/s/1JgjRBWwwrcJSy4taPFtLhA" target="_blank" rel="noopener">网盘链接</a> 密码:<code>751d</code></p>
</summary>
<category term="NLP" scheme="https://imbowei.com/categories/NLP/"/>
<category term="Word2vex" scheme="https://imbowei.com/categories/NLP/Word2vex/"/>
<category term="Wikipedia" scheme="https://imbowei.com/tags/Wikipedia/"/>
<category term="Gensim" scheme="https://imbowei.com/tags/Gensim/"/>
<category term="Embedding" scheme="https://imbowei.com/tags/Embedding/"/>
<category term="Opencc" scheme="https://imbowei.com/tags/Opencc/"/>
</entry>
<entry>
<title>linux 常用命令备忘</title>
<link href="https://imbowei.com/2018/07/20/Use-linux-well/"/>
<id>https://imbowei.com/2018/07/20/Use-linux-well/</id>
<published>2018-07-20T11:56:19.000Z</published>
<updated>2019-05-07T11:26:42.502Z</updated>
<summary type="html">
<p>经常会有一些的Linux命令记不牢,持续整理更新,以便查找。</p>
</summary>
<category term="Linux" scheme="https://imbowei.com/categories/Linux/"/>
<category term="Linux" scheme="https://imbowei.com/tags/Linux/"/>
</entry>
<entry>
<title>Hexo_Next_博客搭建记</title>
<link href="https://imbowei.com/2018/07/14/Hexo_Next_%E5%8D%9A%E5%AE%A2%E6%90%AD%E5%BB%BA%E8%AE%B0/"/>
<id>https://imbowei.com/2018/07/14/Hexo_Next_博客搭建记/</id>
<published>2018-07-14T04:43:07.000Z</published>
<updated>2019-05-01T09:15:13.411Z</updated>
<summary type="html">
<p>与我而言,建立个人博客存在的意义有两个。<br>一方面,当作自己的备忘录,记录零散的知识点,避免重复的搜索工作;<br>另一方面,可以更好的分享一些自己的心得,方便与大家交流。<br>选择<code>GitHub Hexo Next</code>的组合的主要原因就是方便、便宜、简单,为从来没有接触过前端的自己降低难度。<br>为了能让博客漂亮一点,这几天来的折腾过程记录整理在此,以备遗忘。</p>
</summary>
<category term="blog" scheme="https://imbowei.com/categories/blog/"/>
<category term="Github-pages" scheme="https://imbowei.com/tags/Github-pages/"/>
<category term="Hexo" scheme="https://imbowei.com/tags/Hexo/"/>
<category term="Next" scheme="https://imbowei.com/tags/Next/"/>
<category term="Web-design" scheme="https://imbowei.com/tags/Web-design/"/>
</entry>
<entry>
<title>【NLP competition】中文信息学会 文本溯源技术评测(SMP ETST)Ranking First</title>
<link href="https://imbowei.com/2018/07/09/%E3%80%90NLP%E6%AF%94%E8%B5%9B%E3%80%91%E4%B8%AD%E5%9B%BD%E4%B8%AD%E6%96%87%E4%BF%A1%E6%81%AF%E5%AD%A6%E4%BC%9A%E6%96%87%E6%9C%AC%E6%BA%AF%E6%BA%90%E6%8A%80%E6%9C%AF%E8%AF%84%E6%B5%8B%EF%BC%88SMP-ETST%EF%BC%89Ranking-First/"/>
<id>https://imbowei.com/2018/07/09/【NLP比赛】中国中文信息学会文本溯源技术评测(SMP-ETST)Ranking-First/</id>
<published>2018-07-09T00:10:43.000Z</published>
<updated>2018-09-30T01:36:16.000Z</updated>
<summary type="html">
<p>此次的文本溯源项目我们以n-gram为核心思想,构建候选句子对的评测标准。<br>用TF-IDF和词袋模型的的思想来预筛选候选句子对,大大提升算法效率。<br>最后用了两种切词方式的模型融合和规则后处理(提升很小)。<br><a href="https://biendata.com/competition/smpetst2018/final-leaderboard/" target="_blank" rel="noopener">Final-Leaderboard Ranking First</a></p>
</summary>
<category term="NLP" scheme="https://imbowei.com/categories/NLP/"/>
<category term="Competition" scheme="https://imbowei.com/categories/NLP/Competition/"/>
<category term="Paraphrase" scheme="https://imbowei.com/tags/Paraphrase/"/>
<category term="N-gram" scheme="https://imbowei.com/tags/N-gram/"/>
<category term="Segment" scheme="https://imbowei.com/tags/Segment/"/>
<category term="Information-retrieval" scheme="https://imbowei.com/tags/Information-retrieval/"/>
<category term="BoW" scheme="https://imbowei.com/tags/BoW/"/>
<category term="Inverted-index" scheme="https://imbowei.com/tags/Inverted-index/"/>
</entry>
</feed>