-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adopt glm into config
- Loading branch information
Showing
1 changed file
with
20 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,76 +1,46 @@ | ||
import osl | ||
import os | ||
import numpy as np | ||
import glmtools as glm | ||
import glmtools | ||
import matplotlib.pyplot as plt | ||
from dask.distributed import Client | ||
from osl_ephys import preprocessing, glm | ||
|
||
def first_level(dataset, userargs): | ||
DC = glm.design.DesignConfig() | ||
DC.add_regressor(name="famous", rtype="Categorical", codes=[5,6,7]) | ||
DC.add_regressor(name="unfamiliar", rtype="Categorical", codes=[13,14,15]) | ||
DC.add_regressor(name="scrambled", rtype="Categorical", codes=[17,18,19]) | ||
DC.add_contrast(name="Mean", values={"famous": 1/3, "unfamiliar": 1/3, "scrambled": 1/3}) | ||
DC.add_contrast(name="Faces - Scrambled", values={"famous": 1, "unfamiliar": 1, "scrambled": -2}) | ||
dataset['glm'] = osl.glm.glm_epochs(DC, dataset['epochs']) | ||
dataset['glm'].design.plot_summary(savepath=os.path.join( | ||
os.path.dirname(dataset['raw'].filenames[0]), 'subject_design.png')) | ||
return dataset | ||
|
||
def second_level(dataset, userargs): | ||
firstlevel_contrast = userargs.get('firstlevel_contrast', 'Faces - Scrambled') | ||
group_contrast = userargs.get('group_contrast', 'Mean') | ||
tmin = userargs.get('tmin', -np.Inf) | ||
tmax = userargs.get('tmax', np.Inf) | ||
|
||
groupDC = glm.design.DesignConfig() | ||
info = {"Subject": np.repeat(np.arange(1, 20), 6)} | ||
for i in range(19): | ||
# Add subject mean regressors | ||
groupDC.add_regressor(name=f"Subj{i+1}", rtype="Categorical", datainfo="Subject", codes=[i+1]) | ||
|
||
# add group contrast | ||
groupDC.add_contrast(name='Mean', values={f"Subj{i+1}": 1/19 for i in range(19)}) | ||
|
||
# group level model | ||
dataset['group_glm'] = osl.glm.group_glm_epochs(dataset['glm'], groupDC) | ||
dataset['group_glm'].design.plot_summary(savepath=os.path.join(userargs['figdir'], 'group_design.png')) | ||
|
||
# max stat permutation test | ||
dataset['group_glm_perm'] = osl.glm.glm_base.SensorMaxStatPerm(dataset['group_glm'], dataset['group_glm'].contrast_names.index(group_contrast), | ||
dataset['group_glm'].fl_contrast_names.index(firstlevel_contrast), tmin=tmin, tmax=tmax) | ||
dataset['group_glm_perm'].plot_sig_clusters(99) | ||
plt.savefig(os.path.join(userargs['figdir'], f'group_contrast-{firstlevel_contrast}-significance.png')) | ||
return dataset | ||
|
||
|
||
if __name__ == "__main__": | ||
client = Client(n_workers=16, threads_per_worker=1) | ||
|
||
config = """ | ||
preproc: | ||
- read_dataset: {ftype: sflip_parc-raw} | ||
- epochs: {picks: misc, tmin: -0.2, tmax: 0.5} | ||
- first_level: {} | ||
- epochs: {picks: misc, tmin: -0.2, tmax: 0.3} | ||
- glm_add_regressor: {name: famous, rtype: Categorical, codes: [5 6 7]} | ||
- glm_add_regressor: {name: unfamiliar, rtype: Categorical, codes: [13 14 15]} | ||
- glm_add_regressor: {name: scrambled, rtype: Categorical, codes: [17 18 19]} | ||
- glm_add_contrast: {name: Mean, values: {famous: 1/3, unfamiliar: 1/3, scrambled: 1/3}} | ||
- glm_add_contrast: {name: Faces-Scrambled, values: {famous: 1, unfamiliar: 1, scrambled: -2}} | ||
- glm_fit: {target: epochs, method: glm_epochs} | ||
group: | ||
- second_level: {tmin: 0.05, tmax: 0.3, figdir: ds117/figures} | ||
""" | ||
|
||
- glm_add_regressor: {name: Subject, rtype: Categorical, key: Subject, codes: unique} | ||
- glm_add_contrast: {name: Mean, values: unique, key: Subject} | ||
- glm_fit: {method: epochs, tmin: 0.05, tmax: 0.3} | ||
- glm_permutations: {method: epochs, target: group_glm, contrast: Mean, type: max, nperms: 1000, threshold: 0.99} | ||
""" | ||
proc_dir = "ds117/processed" | ||
src_files = sorted(osl.utils.Study(os.path.join(proc_dir, "sub{sub_id}-run{run_id}", "sub{sub_id}-run{run_id}_sflip_parc-raw.fif")).get()) | ||
src_files = sorted(utils.Study(os.path.join(proc_dir, | ||
"sub{sub_id}-run{run_id}", "sub{sub_id}-run{run_id}_sflip_parc-raw.fif")).get()) | ||
subjects = [f"sub{i+1:03d}-run{j+1:02d}" for i in range(19) for j in range(6)] | ||
|
||
osl.preprocessing.run_proc_batch( | ||
covs = [f"Subject": [sub.split("-")[0]for sub in subjects] | ||
|
||
preprocessing.run_proc_batch( | ||
config, | ||
src_files, | ||
subjects, | ||
outdir=proc_dir, | ||
ftype='raw', | ||
extra_funcs=[first_level, second_level], | ||
covs=covs, | ||
dask_client=True, | ||
overwrite=True, | ||
gen_report=False, | ||
skip_save=['events', 'raw', 'ica', 'event_id', 'sflip_parc-raw'], | ||
random_seed=3557485304, | ||
) | ||
|