forked from emolch/kiwi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler.f90
69 lines (54 loc) · 2.13 KB
/
euler.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
!
! Copyright 2011 Sebastian Heimann
!
! Licensed under the Apache License, Version 2.0 (the "License");
! you may not use this file except in compliance with the License.
! You may obtain a copy of the License at
!
! http://www.apache.org/licenses/LICENSE-2.0
!
! Unless required by applicable law or agreed to in writing, software
! distributed under the License is distributed on an "AS IS" BASIS,
! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
! See the License for the specific language governing permissions and
! limitations under the License.
!
module euler
! this module only provides a single method to initialize a rotation matrix
! given eulerian angles
implicit none
public init_euler
contains
pure subroutine init_euler( alpha, beta, gamma, mat )
! given the euler angles alpha,beta,gamma,
! make matrix mat a rotation matrix
! given coordinate system (x,y,z) and rotated system (xs,ys,zs)
! the line of nodes is the intersection between the x-y and the xs-ys
! planes.
! alpha is the angle between the z-axis and the zs-axis.
! beta is the angle between the x-axis and the line of nodes.
! gamma is the angle between the line of nodes and the xs-axis.
! Usage for moment tensors:
! real, dimension(3,3) :: m_unrot = reshape((/0,0,-1,0,0,0,-1,0,0/),(/3,3/))
! call init_euler(dip,strike,-rake, rotmat)
! m = matmul( rotmat, matmul( m_unrot, transpose(rotmat) ) )
real, intent(in) :: alpha, beta, gamma
real, intent(out), dimension(3,3) :: mat
real :: ca,cb,cg,sa,sb,sg
ca = cos(alpha)
cb = cos(beta)
cg = cos(gamma)
sa = sin(alpha)
sb = sin(beta)
sg = sin(gamma)
mat(1,1) = cb*cg-ca*sb*sg
mat(2,1) = sb*cg+ca*cb*sg
mat(3,1) = sa*sg
mat(1,2) = -cb*sg-ca*sb*cg
mat(2,2) = -sb*sg+ca*cb*cg
mat(3,2) = sa*cg
mat(1,3) = sa*sb
mat(2,3) = -sa*cb
mat(3,3) = ca
end subroutine
end module