-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_intel_init_sync.py
56 lines (43 loc) · 1.7 KB
/
benchmark_intel_init_sync.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gc
from pathlib import Path
from openvino.inference_engine import IECore
import os.path
import numpy as np
import time
import csv
import common_benchmark_definitions as common
infCore=IECore()
measurements_openvino="OpenVINO-Measurements"
if not os.path.isdir(measurements_openvino): os.mkdir(measurements_openvino)
iterations=common.iterations
#350-> python braucht 10 GB RAm
global_iterations=common.global_iterations
nets_to_run=common.tf_net_names #[:12] #memory problems in many_conv2d, at least at the CPU
#openvino_nets=[startNet(x) for x in nets_to_run]
for target in ["GPU","CPU"]:#"GPU","CPU",,"MYRIAD"
measurements=dict()
shapes=dict()
input_names=dict()
for name in nets_to_run:
measurements[name]=[]
loaded_net=common.startOpenvinoNet(name,infCore,target)
network_input=next(iter(loaded_net.input_info))
data_format=loaded_net.input_info[network_input].tensor_desc.dims
shapes[name]=data_format
input_names[name]=network_input
loaded_net=None
gc.collect()
for l in range(common.iterations_single):
for i in range(len(nets_to_run)):
input_name=input_names[nets_to_run[i]]
data=common.getOpenvinoExampelData(shapes[nets_to_run[i]])
start=time.perf_counter()
infCore2=IECore()
loaded_net=common.startOpenvinoNet(nets_to_run[i],infCore2,target)
loaded_net.infer({input_name:data})
end=time.perf_counter()
data=None
gc.collect()
measurements[nets_to_run[i]].append(end-start)
print(nets_to_run[i])
common.writeResults(target,measurements,"init","openvino","sync")