-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_model-final2.py
62 lines (30 loc) · 945 Bytes
/
ML_model-final2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# coding: utf-8
# In[16]:
#importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as pt
#importing dataset
data = pd.read_csv('covid-19 in india.csv')
x_data=data.iloc[:,1:2].values
y_data=data.iloc[:,2:3].values
#scaling the data
from sklearn.preprocessing import StandardScaler
scale=StandardScaler()
x_data=scale.fit_transform(x_data)
y_data=scale.fit_transform(y_data)
# spliting data
from sklearn.cross_validation import train_test_split
x_traning,x_test,y_training,y_test=train_test_split(x_data,y_data,test_size=0.50,random_state=0)
# training model
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(x_traning,y_training)
t=regressor.predict(x_test)
#saving object
from sklearn.externals import joblib
joblib.dump(regressor,'corona_model-final.pkl')
m=joblib.load('corona_model-final.pkl')
# In[13]:
p=regressor.predict([[1]])
p