From d44f5e65af9a2e92e8062609eef617c048c93934 Mon Sep 17 00:00:00 2001 From: kidaufo Date: Sat, 6 Jul 2019 11:09:33 +0900 Subject: [PATCH] Add files via upload --- Central Limit Theorem.ipynb | 153 ++++++++++++++++++++++++ ProbabilityDistribution.ipynb | 216 ++++++++++++++++++++++++++++++++++ 2 files changed, 369 insertions(+) create mode 100644 Central Limit Theorem.ipynb create mode 100644 ProbabilityDistribution.ipynb diff --git a/Central Limit Theorem.ipynb b/Central Limit Theorem.ipynb new file mode 100644 index 0000000..8b7180d --- /dev/null +++ b/Central Limit Theorem.ipynb @@ -0,0 +1,153 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 中心極限定理\n", + "平均$\\mu$、分散$\\sigma^2$の任意の確率分布に従う母集団から抽出した標本において、サンプルサイズが大きくなるにつれて標本平均の分布は平均$\\mu$、分散$\\sigma^2/n$の正規分布に近づく。  \n", + "\n", + "sample from aribitrary probability distribution, sample mean" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "import scipy as sp\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import cm\n", + "import seaborn as sns\n", + "from tqdm import tqdm_notebook\n", + "from scipy.stats import norm, poisson, gamma, uniform\n", + "\n", + "sns.set_style('white')\n", + "sns.set_context('talk')\n", + "\n", + "np.random.seed(123)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import stats" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "mu = 3.0\n", + "n_sample = 100\n", + "\n", + "def poisson_means(n_sample):\n", + " means = []\n", + " for _ in range(1000):\n", + " data = poisson.rvs(mu=mu, size=n_sample)\n", + " means.append(data.mean())\n", + "\n", + " means = np.array(means)\n", + " plt.figure()\n", + " plt.hist(means)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEMCAYAAADTfFGvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEgBJREFUeJzt3X+sX3V9x/HnLW2Vwr0Vq0yWkErpfANOi66LDSLRuDTMiDAxUDLBbZKyiD+WDrTGbR0gEBEYCsTZ6OycSsE6cCBDBgh2Q4zELExL37OKIzRdBdTei1QsbffHOTdev7vtvZ97v/ece+/3+Uiaw/ecz7mf97dJed3P+ZzPOX379+9HkqTxmtN2AZKkmcXgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVmdt2ARMVEc9TBd9g27VI0gwyAOzLzAn//3/GBgdVaPT19/cvbLsQSZophoaGYJJXm2ZycAz29/cvfPjhh9uuQ5JmjOXLlzM0NDSpKzXOcUiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKjKTFwBK09rg7j1s2dHsE3FOOGqAgUPnNdqneo/BIU2RLTsGWbX+oUb73Lh6BSuWLGq0T/UeL1VJkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmI7+PoIW28WAh8uZA02xgcPaSNFwuBLxeSZhsvVUmSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKnIuNZxRMQcYDXwHmAJsBP4KrAuM4fqNsuBq4HlwCCwoT6+Z8TP+R3gWuANwPPAl4EPDv8MSdL0N94FgB8EPgp8HLgXeAVwGXACcGpELK33PwicBRwPXA4MAO8FiIgjgPuAHcB5wG8BVwFHA2/tzteRJE21MYMjIvqoguPTmfnhevc9EfE0sDEiTqQKh13A6Zn5K+DOiHgWuD4irszM7cCFwBHAiZn5dP2zn6jbvi4zv931bydJ6rrxzHH0A18AvtSxf2u9PRZYCdxeh8awTcAh9THq7QPDoVG7GxgC3lJYtySpJWOOODJzEHj/KIfOqLePUl1uyo7znoyIQSDqXcdRBdDINnsj4rERbSRJ09yE7qqKiNcBa4HbgJ/Vu0d77OoQ1TwHwMJxtJEkTXPFwRERrwfuAh4Dzgf6xjhlX709WLt9BzkmSZpGioIjIs4G7gEeB95cz1cMjyL6RzllgGrSnHo7VhtJ0jQ37uCIiDXATcC3gFMycwdAZj4DbAeWdrQ/kioohuc+cpQ2hwDH0DE/IkmavsYVHBHxbuAa4Bbg1MzsHCHcDZwWEfNH7DsT2AvcP6LNmyLixSParAQOpxrFSJJmgPGs4zgS+CTwY+AG4LURv3ET1DaqhXznUK3JuI5qgeAVwPrMfLxu9yngfcC9EXEpsKg+718z88GufBtJ0pQbz4jjVGAB8HJgM9WlqpF/Ts3Mrfx69LAJWEP1aJEPDP+QzHwSeBPwNPBFqpXltwBnd+erSJKaMJ51HJ8HPj+OdpuBFWO0+R7wB+OuTpI07fh0XElSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDU27xogVtlyCpi8Z8rLo0WYfNn8vg7j1s2TE4duMuOuGoAQYOnddon1IvMDjUiC07Blm1/qFG+9y4egUrlixqtE+pF3ipSpJUxOCQJBUxOCRJRQwOSVIRg0OSVMTg0Kzl+hFpang7rmatttaPACxffETjfUpNMTg0q7WxfgTgkXUrG+9TaoqXqiRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklSkeB1HRJwIfAc4JjOfGLF/G3DsKKe8NDOfqtssB64GlgODwAZgXWbuKS9dktSGouCIiOOAOzrPi4jDgSXAWuCBjtN+XrdZCtwLPAicBRwPXA4MAO+dQO2SpBaMKzgiYi5wAXAlMNro4NVAH/DVzNx6gB+zFtgFnJ6ZvwLujIhngesj4srM3F5cvSSpceOd4zgZ+BhwDfChUY6fCOwGfnCQn7ESuL0OjWGbgEPqY5KkGWC8wfEosCQzLwGeH+X4MuCnwE0R8fOIeCYiNkbEywAiYgFwNJAjT8rMJ6nmOmKiX0CS1KxxXarKzJ1jNFkGvAz4PnA9cBxwKfCNiHgtsLBuN9pjSoeo5jkkSTNAt56O+z5gTmZ+u/68OSK2AP8OvBP42hjn7+tSHZKkKdaVdRyZ+Z0RoTG87z+oJsOX8euRRv8opw/U7SRJM8CkgyMiDouIP42IZR375wDzgacy8xlgO7C0o82RVGHyG3MfkqTpqxsjjl8C1wLrOva/DTgUuL/+fDdwWkTMH9HmTGDviDaSpGlu0nMcmbk3Ii4DromITwL/AvwucAnVuo7766ZXAedQrd+4DngFcAWwPjMfn2wdkqRmdGuO41rgfOCNVMFxEfD3VEEx3GYr1XqNw6nWb6yhGql8oBs1SJKaUTziyMwNVM+Y6tz/WeCzY5y7GVhR2qckafrw6biSpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqMrf0hIg4EfgOcExmPjFi/0rgcuCVwE7ghsy8puPc5cDVwHJgENgArMvMPRP9ApKkZhWNOCLiOOAOOgInIk6q928F3g58Efh4RFw0os1S4F5gN3AWcA2wBvi7SdQvSWrYuEYcETEXuAC4EhhtdHAp8N3MPLf+fFdEzAM+EhHXZ+ZzwFpgF3B6Zv4KuDMingWuj4grM3P7ZL+MJGnqjXfEcTLwMapRwodGHoiIFwKnAF/pOGcT8CLgpPrzSuD2OjRGtjmkPiZJmgHGGxyPAksy8xLg+Y5jS4B5QHbs31ZvIyIWAEd3tsnMJ6nmOqKkaElSe8Z1qSozdx7k8MJ6O9ixf6jeDhykzXC7gfHUIUlqXzdux+0b4/i+cbaRJM0A3QiOXfW2v2P/wIjjgwdoM9xu1yj7JUnTUDeC44fAXmBpx/7hz5mZzwDbO9tExJFUYdI5PyJJmqYmHRyZ+Uvgm8DbI2LkJakzqUYSD9ef7wZOi4j5HW32AvdPtg5JUjOKV44fwEeBe4CNEbGB6hbci4G1mfls3eYq4Byq9RvXAa8ArgDWZ+bjXapDkjTFuvKsqsy8j2r0cDxwG/DHwMWZedWINlup1mscTrV+Yw1wLfCBbtQgSWpG8YgjMzdQPWOqc/+twK1jnLsZWFHapyRp+vDpuJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhzSKLFy1ouwT1gOJ3jkuavg6bP5fB3XvYsmOw0X5POGqAgUPnNdqn2mNwSLPMlh2DrFr/UKN9bly9ghVLFjXap9rjpSpJUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklSka48ciYi5wBDwwo5Dv8jMw+s2K4HLgVcCO4EbMvOabtUgSZp63XxWVVCFxruA/x6xfy9ARJwE3AHcDPw1cDLw8Yjoy8yru1iHJGkKdTM4lgH7gE2Z+ewoxy8FvpuZ59af74qIecBHIuL6zHyui7VIkqZIN+c4TgR+OFpoRMQLgVOAr3Qc2gS8CDipi3VIkqZQt0ccz0XEXVSXofYAtwAXAUcD84DsOGdbvQ3gG12sRZI0Rbo54lgGHAvcCbwFuAw4B7gdWFi36Xy7zFC9HehiHZKkKdTNEcfZwE8z87/qz9+MiJ3AF4CVY5y7r4t1SJKmUNeCIzMfGGX31zo+93d8Hh5p7OpWHZKkqdWV4IiII4G3Afdl5o9GHDq03u6kui13acepw5875z4kzSCLFy1ouwQ1qFsjjn3Ap4FPAGtG7D+bKjDuAb4JvD0irsvM/fXxM6lGGw93qQ5JLThs/lwGd+9hy47Oacypd8JRAwwcOq/xfntZV4IjM5+KiBuB90fEILAZeD3wEarV4dsi4qNUAbIxIjZQ3YJ7MbD2AOs+JM0gW3YMsmr9Q433u3H1ClYsWdR4v72sm5Pjfwk8AfwZsBbYDqwDrgLIzPsi4kzgEuC2+vjFvfjIkTZ+M1u++IhG+5M0e3VzcnwPVUhcdZA2twK3dqvPmaqN38weWTfWjW2SND4+HVeSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ9KMtnjRgrZL6Dlz2y6gLYO797Blx2Dj/S5ffETjfUqz2WHz57by7/mEowYYOHReo31OFz0bHFt2DLJq/UON9/vIupWN9ynNdm38e964egUrlixqtM/pwktVkqQiBockqYjBIUkqYnBIkooYHJI0Ab18G3DP3lUlSZPR1m3A0P6twAaHJE1QW7f1t30rsJeqJElFGh9xRMQ5wF8BS4AfA1dm5uebrkOSNDGNjjgi4izgi8DXgTOA+4F/jIh3NFmHJGnimh5xXAHckplr6s9fj4gXA5cBmxquRZI0AY2NOCJiCXAs8JWOQ5uA4yLimKZqkSRNXN/+/fsb6Sgi3gJ8DViWmY+M2P8a4LvAH2bmXQU/bx/Q19/fP6F69u+HfQ1995EOmdPXSt9t9dtm337n2d9vm323+Z3n9PXR1zexc4eGhgD2Z+aEBw5NXqpaWG87b3oeqrcDhT9vHzBnaGio+ZuoJWnmGqD6/+eENRkcY+Vj0RfJTNegSFILmryrale97by2NNBxXJI0jTUZHFlvl3bsX9pxXJI0jTUWHJm5DXgM6FyzcSbwg8x8vKlaJEkT1/Q8waXA5yLiZ8AdwOnAWcCqhuuQJE1QY7fjDouIC4CLgKOBH1E9cuSfGi1CkjRhjQeHJGlm8+m4kqQiBockqYjBIUkqYnBIkooYHJKkIj33vCffQDg1ImIOsBp4D9Xf7U7gq8C6zBw62LkqExH/DLw6MzufwqAJiIhTqN4V9Frg51SvfvhwZj7TamHTWE+NOHwD4ZT6IHAD1aPzzwCuAd4FfLnNomabiHgn8Edt1zFbRMQK4N+A/wXeRrVI+Z3AZ9qsa7rrqXUcEbENeDgzV43YdzPVb2/Ht1fZzBYRfcDTwE2ZeeGI/WcDG4HXZOZ/tlXfbBERvw18D/gF8JwjjsmLiAfq/3xjZu6v910IrAFelZnPtlbcNNYzIw7fQDil+oEvAF/q2L+13h7bbDmz1meAu4F72y5kNoiIlwBvAD41HBoAmXljZh5raBxYL81xHFdvO5/Cu63eBtVDGFUoMweB949y6Ix6+/0Gy5mVIuJ84PeAVwJXt1zObPEqqvcE/bS+8vBW4HmqX4DWZObuNoubznpmxEH330Cog4iI1wFrgdsyc+tY7XVgEbEYuBZ4T2Y+1XY9s8hL6+0G4CngNOBvgfOAT7VT0szQSyOOrr6BUAcWEa+nevrxY8D5LZczo9XzR/8A3JmZnZdZNTnz6+2DI+bm7qv/zq+OiEsz80ct1Tat9dKIwzcQNqCeEL8HeBx4c2Y+3XJJM92FwKuBv4iIuRExl/qXoPrzWL8Q6cCGrzbc2bH/61R/x69qtpyZo5eCwzcQTrGIWAPcBHwLOCUzd7Rc0mzwDuAlwA5gT/3nPKobDvZQ3fKsiflBvX1Bx/7hkUjv3HJaqGeCwzcQTq2IeDfV2o1bgFMz0xFcd1wA/H7HnzuAJ+r/vr290ma8R4H/4f+/SG54kvxbjVc0Q/TaOo4/AT4H3Miv30D458CqzLy5xdJmtIg4kiqUfwKcS/WPbqRtTup2T0RsAE52Hcfk1ZdWb6K6k2oD1Z1rlwI3ZuaaFkub1nppcpzM3BARL6B6A+H5VG8gPM/QmLRTgQXAy4HNoxw/l2qdhzStZObNEfEc8DdUv0z+hCo4rmy1sGmup0YckqTJ65k5DklSdxgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKK/B+hL4QdzRWdYQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEMCAYAAADTfFGvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEPBJREFUeJzt3X+sX3V9x/HnLS2Rwr0IXbphQiq1862YCW5drIAaI2mY04lg+DHHjL9KhiKzAwZxs1ERAgISIRobM4ta7RAnhh9DBFZhcRgJWcDVvh1aQ+w6hsz1XqVCabs/zrl6/aZyv+/b2/O9t/f5SJrD93w+53w+h7T3dT+fzznnO7Rnzx4kSerXvEF3QJI0uxgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSub3UykihoALgPOAo4EfAFdm5pcm1FkJfAx4GfA4cENmXtNznuXA1cByYBRYB6zJzJ37fCWSpE70O+K4lOYH/o3AG4FvAusj4gyAiDgBuA3YDJwGrAc+HhEXjp8gIpYB9wA7gDOAa4DVwCem5UokSZ0Ymuy16hGxgGYEsT4zz5+wfyNwUGa+OiLuBg7LzBUTyq8EVgG/l5lPR8RngZXAssx8pq3zV8D1wJLM3FrpeEQ8SxN8o5XjJGmOGwF2Z2ZfM05708+Bu4DXAk/27H8GOCIinge8BvhgT/nNwMXACcC/0ITGreOhMaHOp9qyzxX7Pg8YGh4ePrx4nCTNWWNjY7CP69uTBkdm7gYegV+tdSwG3gGcDJwLLAUWANlz6KPtNiLiOzRrI79RJzOfiIhRIKbQ99Hh4eHDH3zwwSkcKklz0/LlyxkbG9unmZrqUOU0mlECwO3AF4Hj28+9HRlrtyPA4b+lzni9kWI/JEkDUh2uPEQzbXU+cCJNeEx2jt3AUB91JEmzQGnEkZlbgC3Afe0U040Tiod7qo+PIrbz65FGb53xetsr/ZAkDc6kI46IODIizomIF/QUPdRuj6FZQF/WUz7+OTPz58DW3joRsZgmTHrXRyRJM1Q/U1XzaEYW5/bsX9luvwvcB5zWLp6PO51mJDG+en0X8KaIOLinzi5gY63bkqRB6eeuqp9GxKeASyLiKZogOInmocDPZmZGxGXA3cCGiFhHcwvuRcAlmflUe6qrgLOBOyLiOuDFwOXA2sx8bJqvS5K0n/S7OP4B4O+Bd9IsiJ8DfIh2FJKZ99KMHl4K3AK8DbgoM68aP0FmbqYZpRxGc2fWauBamleZSJJmiUmfHJ+pIuL/fI5Dkmra5zi2Z+bzp3qOKT9yLs0Gozt2smlb92+lOfaoEUYOWdB5u1IXDA4d0DZtG+WstQ903u6GVStYsXRR5+1KXfD7OCRJJQaHJKnE4JAklRgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqQSg0PaD5YsWjjoLkj7zfxBd0A6EB168HxGd+xk07bRTts99qgRRg5Z0GmbmnsMDmk/2bRtlLPWPtBpmxtWrWDF0kWdtqm5x6kqSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVLJ/H4qRcQ8YBVwHrAUeBz4OrAmM8faOsuBq4HlwCiwri3fOeE8vw9cC7waeBb4CnDx+DkkSTNfX8EBXAxcBnwcuAd4MfBR4FjglIhY1u7/NnAG8FLgY8AI8D6AiDgCuBfYBvwl8LvAVcDRwBun53IkSfvbpMEREUM0wfGZzLy03X13RDwJbIiI42nCYTvw5sx8BrgjIp4Cro+IKzJzK/Be4Ajg+Mx8sj33T9q6r8zM70z71UmSpl0/axzDwBeBL/Xs39xuXwSsBG5tQ2PczcBBbRnt9lvjodG6CxgD3lDstyRpQCYdcWTmKPD+vRSd2m6/TzPdlD3HPRERo0C0u15CE0AT6+yKiC0T6kiSZrgp3VUVEa8ELgFuAX7W7h7dS9UxmnUOgMP7qCNJmuHKwRERJwJ3AluAdwNDkxyyu90+V73dz1EmSZpBSsEREWcCdwOPAa9v1yvGRxHDezlkhGbRnHY7WR1J0gzXd3BExGrgy8C/Aa/JzG0AmflzYCuwrKf+YpqgGF/7yL3UOQg4hp71EUnSzNVXcETEu4BrgJuAUzKzd4RwF/CmiDh4wr7TgV3Axgl1XhcRR06osxI4jGYUI0maBfp5jmMx8Engx8ANwB9G/MZNUI/SPMh3Ns0zGdfRPCB4ObA2Mx9r630aOB+4JyI+Aixqj/vnzPz2tFyNJGm/62fEcQqwEHghcD/NVNXEP6dk5mZ+PXq4GVhN82qRC8ZPkplPAK8DngTW0zxZfhNw5vRciiSpC/08x/F54PN91LsfWDFJne8BJ/fdO0nSjOPbcSVJJQaHJKnE4JAklRgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVLJ/EF3QHPD6I6dbNo22mmby5cc0Wl70lxhcKgTm7aNctbaBzpt8+E1KzttT5ornKqSJJUYHJKkEoNDklRicEiSSgwOSVKJwSFJKjE4JEklBockqcTgkA4gSxYtHHQXNAf45Lh0ADn04PkDeb3LsUeNMHLIgk7b1OAYHNIBZhCvd9mwagUrli7qtE0NjlNVkqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySppPwcR0QcD3wXOCYzfzJh/0rgY8DLgMeBGzLzmp5jlwNXA8uBUWAdsCYzd071AiRJ3SqNOCLiJcBt9ARORJzQ7t8MnAasBz4eERdOqLMMuAfYAZwBXAOsBj6xD/2XJHWsrxFHRMwHzgWuAPY2OvgI8FBmntN+vjMiFgAfjIjrM/Np4BJgO/DmzHwGuCMingKuj4grMnPrvl6MJGn/63fEcRJwJc0o4W8nFkTE84DXAF/tOeZm4PnACe3nlcCtbWhMrHNQWyZJmgX6DY7vA0sz88PAsz1lS4EFQPbsf7TdRkQsBI7urZOZT9CsdUSl05KkwelrqiozH3+O4sPbbe/rOMfa7chz1BmvN9JPPyRJgzcdb8cdmqR8d591tJ8N4nXbAMuXHNF5m5L2n+kIju3tdrhn/8iE8tHfUme83va97Nc0G8TrtgEeXuMSlnQgmY4HAH8I7AKW9ewf/5yZ+XNga2+diFhMEya96yOSpBlqn4MjM38J3AecFhETp6ROpxlJPNh+vgt4U0Qc3FNnF7BxX/shSerGdH0D4GXA3cCGiFhHcwvuRcAlmflUW+cq4Gya5zeuA14MXA6szczHpqkfkqT9bFreVZWZ99KMHl4K3AK8DbgoM6+aUGczzfMah9E8v7EauBa4YDr6IEnqRnnEkZnraN4x1bv/a8DXJjn2fmBFtU1J0szh23ElSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhaZ8tWbRw0F1Qh6brq2MlzWGHHjyf0R072bRttPO2jz1qhJFDFnTe7lxmcEiaFpu2jXLW2gc6b3fDqhWsWLqo83bnMqeqJEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqQSg0OSVGJwSJJKDA5JUonBIUkqMTgkSSUGhySpxOCQJJUYHJKkEoNDklRicEiSSgwOSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSicEhSSoxOCTNaksWLRx0F+ac+YPugCTti0MPns/ojp1s2jbaabvHHjXCyCELOm1zpjA4JM16m7aNctbaBzptc8OqFaxYuqjTNmcKp6okSSUGhySpxOCQJJW4xjEAg1jIW77kiE7bk3TgMjgGYBALeQ+vWdlpe9KBbi7fBmxwSNIUDOo2YBj8rcCdB0dEnA38HbAU+DFwRWZ+vut+SNK+GsTsAQz+VuBOF8cj4gxgPfAN4FRgI3BjRLy1y35Ikqau6xHH5cBNmbm6/fyNiDgS+Chwc8d9kSRNQWfBERFLgRcBl/YU3QycERHHZOaWrvozqLlJ726SNNsN7dmzp5OGIuINwO3AcZn58IT9rwAeAv4kM+8snG83MDQ8PDyl/uzZA7s7uvaJDpo3NJC2B9XuINv2mg/8dgfZ9iCved7QEENDUzt2bGwMYE9mTnmposupqsPbbe+v+WPtdqR4vt3AvLGxse6HDZI0e43Q/Pycsi6DY7J8LF1IZnorsSQNQJd3VW1vt71zSyM95ZKkGazL4Mh2u6xn/7KecknSDNZZcGTmo8AWoPeZjdOB/8zMx7rqiyRp6rpeJ/gI8LmI+BlwG/Bm4AzgrI77IUmaos5uxx0XEecCFwJHAz+ieeXIFzrthCRpyjoPDknS7OYXOUmSSgwOSVKJwSFJKjE4JEklBockqcT3Pc1BETEPWAWcR/NNjI8DXwfWZObYcx2r3xQRQ8AFNP8vjwZ+AFyZmV8aaMdmsYj4J+Dlmdn7lglNIiLm07w49nk9Rb/IzMOmqx1HHHPTxcANNK+5PxW4Bng78JVBdmqWuhS4GrgReCPwTWB9+22XKoqIvwDeMuh+zGJBExpvB1414c/rprMRn+OYY9rfkJ8EvpyZ752w/0xgA/CKzPz3QfVvNomIBTSjtfWZef6E/RuBgzLz1YPq22wUES8Avgf8AnjaEUddRPw58AVgODOf2l/tOFU19wwDXwT+sWf/5nb7IsDg6M8u4LU0QTzRM4Bf9Vj3WeAu4JfASQPuy2x1PPDD/RkaYHDMOZk5Crx/L0Wnttv/6LA7s1pm7gYegV+N5BYD7wBOBs4dYNdmnYh4N/BHwMtopv40NccBT0fEnTThuxO4CbhwOtcvXeMQEfFK4BLglszcPFl97dVpwH8DVwB30Izq1IeIWAJcC5yXmT8ddH9mueNoZg3uAN4AfBQ4G7i1/eVmWjjimOMi4kSaNxVvAd494O7MZg/RTFu9nOYf6+0R8frMdBHxObQ/zP4BuCMzvzro/hwAzgT+NzMfaT/fFxGP0/wiczLNzRv7zOCYw9oF8XU0t5Cekpm9c/XqU2ZuoQnf+yJilOYuq1cB3x5ox2a+99KE7R+0t5JC+zXT7eddhm//MvNbe9l9e7s9DoND+yIiVtPMJW8E3pKZfnVvUUQcCfwpcE9m/teEoofa7Qu679Ws81bgd4BteynbSbNmtK7LDs1WEbEY+DPg3sz80YSiQ9rttE0DusYxB0XEu2ie3biJZqRhaEzNPJqRRe9C+Mp2+wiazLnAH/f8uQ34Sfvftw6ua7PObuAzwPt69p9Jcwfgv05XQz7HMce0v5VsAf4HOAd4tqfKoy5Q9i8ibgDeA3wIeJDmTpZLgS9k5nsG2bfZKiLWASf5HEddRHyS5i0GlwH3AycCHwQ+nZl/PV3tOFU195wCLAReSPMXq9c5eEdQxQeAx4B3AR+m+U35Q3hLqQbjb2j+Dr6T5k7JrcAa4KrpbMQRhySpxDUOSVKJwSFJKjE4JEklBockqcTgkCSVGBySpBKDQ5JUYnBIkkoMDklSyf8DP90Wa0mXBoAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEMCAYAAADTfFGvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGP9JREFUeJzt3X+0XWV95/F3QkCD5CJQUTpDkRD9IlUSWZkhKjJltFkRfyF0CFbRdrCwqiA2CqK0Rvkhw09/QKfKsjVF0RSxSBWklN8o4shQF2rIV4OoAytFQMy9CkJIMn88+5LD4SQ5z73nnnNv8n6tlXVy93722c+TnXs+59nPfvaetmHDBiRJ6tb0QVdAkjS1GBySpCoGhySpisEhSapicEiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCozBl2BsYqIJynBNzzoukjSFDIErM/MMX/+T9ngoITGtFmzZu086IpI0lQxMjIC4zzbNJWDY3jWrFk733HHHYOuhyRNGfPnz2dkZGRcZ2oc45AkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVGUqTwCUtmj4sbWsWN3/u9Lst8cQQzO37/t+pX4wOLRVW7F6mKMuvr3v+11+7AIWzN6t7/uV+sFTVZKkKgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqXc0cj4jpwLHAu4HZwAPAlcDSzBxpylwHvKbD5v8lM+9oyrwIuAB4NfAk8BXg5NH3kCRNft3ecuRk4AzgXOB64MXA6cB+wKKmzFzgU8Dytm3vBoiIXYAbgNXAO4DnA+cAewJvGHMLJEl9tcXgiIhplOD4bGZ+qFl8XUQ8DCyPiHnAL4HfA67JzE3dGOg9wC7AvMx8uHnv+4CrI+LAzPzuONsiSeqDbsY4ZgFfBL7Utnxl87oPMK/5+12beZ+FwM2jodG4FhgBDu2iHpKkSWCLPY7MHAbe22HVYc3rj4C3AI8Dp0XEYcBOlNNS78vMHzfl9qUEUOt7r4uIe4EYW/UlSf02pquqIuJA4BTga5m5kjK+8SzgMeBw4BhgDnBrRLyg2WxnoNODEUaAobHUQ5LUf9XP44iIVwHfAO4F3tUsPoMyBnJjS7nvUAbGTwBOBaZt5m3X19ZDkjQYVcEREYuBZcCPgUWj4xWZ+cP2spn504i4m9IbAVhDGS9pNwT8vKYekqTB6fpUVUQsAb4MfAc4ODNXN8unRcTREfHqDpvNBB5q/p6U01et77kdsHezTpI0BXQVHBFxDHA+cBmlp7FmdF1mbgBOAj7RTBQc3eYASlDc1Cy6FjgkInZteeuFlIH068bRBklSH3Uzj2N34NPAz4CLgAMinnYR1CrgY8DlwKUR8Q/AH1AmCP478IWm3N9Rxjuuj4jTgN0oEwC/mZm39aIxkqSJ102PYxGwI/BC4FbKqarWP4sy86uUy3P3Aa4AzgK+DizMzHUAmfkgcAjwMHApcCalB7O4d82RJE20buZxXAJc0kW5Kyn3r9pcmR8Cr+26dpKkSce740qSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgc0gTYa7cdB10FacJUPXNcUnees8MMhh9by4rVw33d7357DDE0c/u+7lPbHoNDmiArVg9z1MW393Wfy49dwILZu/V1n9r2eKpKklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVZzHob4YxGS4+Xvt0tf9SdsKg0N9MYjJcHctXdjX/Unbiq6CIyKmA8cC7wZmAw8AVwJLM3OkKTMfOA+YDwwDy5r1a1ve50XABcCrgSeBrwAnj76HJGny67bHcTJwBnAucD3wYuB0YD9gUUTMaZbfBhwJvAQ4ExgCjgeIiF2AG4DVwDuA5wPnAHsCb+hNcyRJE22LwRER0yjB8dnM/FCz+LqIeBhYHhHzKOGwBnhzZj4BXB0RjwIXRsRZmXk/8B5gF2BeZj7cvPd9TdkDM/O7PW+dJKnnurmqahbwReBLbctXNq/7AAuBrzehMepyYLtmHc3rzaOh0bgWGAEOray3JGlAttjjyMxh4L0dVh3WvN5NOd2Ubds9GBHDQDSL9qUEUGuZdRFxb0sZSdIkN6Z5HBFxIHAK8DXgkWZxp2stRyjjHAA7d1FGkjTJVQdHRLwKuAa4F3gXMG0Lm6xvXjdXbv1m1kmSJpGq4IiIxcB1wC+A1zTjFaO9iFkdNhmiDJrTvG6pjCRpkus6OCJiCfBl4DvAwZm5GiAzfwPcD8xpK787JShGxz6yQ5ntgL1pGx+RJE1eXQVHRBwDnA9cBizKzPYewrXAGyNih5ZlRwDrgJtayhwSEbu2lFkI7ETpxUiSpoBu5nHsDnwa+BlwEXBAxNMuglpFmcj3VsqcjE9SJgh+HLg4M3/RlPs74ATg+og4Ddit2e6bmXlbT1ojSZpw3fQ4FgE7Ai8EbqWcqmr9sygzV7Kx93A5sIRya5ETR98kMx8EDgEeBi6lzCy/DFjcm6ZIkvqhm3kclwCXdFHuVmDBFsr8EHht17WTJE06Po9DklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklRlRu0GETEP+B6wd2be17J8FbBPh02el5kPNWXmA+cB84FhYBmwNDPX1lddkjQIVcEREfsC32jfLiJ2AmYDpwA3t23266bMHOB64DbgSOAlwJnAEHD8GOouSRqAroIjImYAxwFnAZ16B/sD04ArM3PlJt7mFGAN8ObMfAK4OiIeBS6MiLMy8/7q2kuS+q7bMY6DgLOB84EPdlg/D3gM+Mlm3mMh8PUmNEZdDmzXrJMkTQHdBsfdwOzM/BjwZIf1c4FfAV+OiF9HxG8iYnlEvAAgInYE9gSydaPMfJAy1hFjbYAkqb+6OlWVmQ9sochc4AXAj4ALgX2B04AbI+IAYOem3HCHbUco4xySpCmg+qqqTTgBmJ6Z321+vjUiVgDfAt4OXLWF7df3qB6SpAnWk3kcmfm9ltAYXfZtymD4XDb2NGZ12HyoKSdJmgLGHRwR8ZyI+POImNu2fDqwA/BQZv4GuB+Y01Zmd0qYPG3sQ5I0efWix/E74AJgadvyNwEzgZuan68F3hgRO7SUOQJY11JGkjTJjXuMIzPXRcTpwPkR8WngX4CXAh+jzOu4qSl6DvBWyvyNTwIvBj4OXJyZvxhvPSRJ/dGrMY4LgHcBf0QJjg8An6EExWiZlZT5GjtR5m8sofRUTuxFHSRJ/VHd48jMZZR7TLUv/3vg77ew7a3Agtp9SurOXrvtOOgqaBvQq8txJU0Cz9lhBsOPrWXF6k5TpibOfnsMMTRz+77uU4NjcEhbmRWrhznq4tv7us/lxy5gwezd+rpPDY7P45AkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklRlRu0GETEP+B6wd2be17J8IXAm8IfAA8BFmXl+27bzgfOA+cAwsAxYmplrx9oASVJ/VfU4ImJf4Bu0BU5EvLJZvhI4HLgUODciPtBSZg5wPfAYcCRwPrAE+MQ46i9J6rOuehwRMQM4DjgL6NQ7OA24MzOPbn6+JiK2B06NiAsz83HgFGAN8ObMfAK4OiIeBS6MiLMy8/7xNkaSNPG67XEcBJxN6SV8sHVFRDwbOBj4ats2lwPPBV7Z/LwQ+HoTGq1ltmvWSZKmgG6D425gdmZ+DHiybd1sYHsg25aval4jInYE9mwvk5kPUsY6oqbSkqTB6epUVWY+sJnVOzevw23LR5rXoc2UGS031E09JEmD14vLcadtYf36LstIkqaAXgTHmuZ1VtvyoZb1w5soM1puTYflkqRJqBfBcQ+wDpjTtnz058zM3wD3t5eJiN0pYdI+PiJJmqTGHRyZ+TvgFuDwiGg9JXUEpSdxR/PztcAbI2KHtjLrgJvGWw9JUn9UzxzfhDOA64DlEbGMcgnuScApmfloU+Yc4K2U+RufBF4MfBy4ODN/0aN6SJImWE/uVZWZN1B6Dy8Bvga8DTgpM89pKbOSMl9jJ8r8jSXABcCJvaiDJKk/qnscmbmMco+p9uVXAFdsYdtbgQW1+5QkTR7eHVeSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVXp1d1xNAcOPrWXF6k5P751Y8/fape/7lDRxDI5tyIrVwxx18e193+9dSxf2fZ+SJo6nqiRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFXp2U0OI2IGMAI8u23VbzNzp6bMQuBM4A+BB4CLMvP8XtVBkjTxenl33KCExjuBH7csXwcQEa8EvgH8E/A3wEHAuRExLTPP62E9JEkTqJfBMRdYD1yemY92WH8acGdmHt38fE1EbA+cGhEXZubjPayLJGmC9HKMYx5wT6fQiIhnAwcDX21bdTnwXOCVPayHJGkC9brH8XhEXEM5DbUWuAz4ALAnsD2Qbdusal4DuLGHdZEkTZBe9jjmAvsAVwOHAqcDbwW+DuzclGl/bulI8zrUw3pIkiZQL3sci4FfZeYPmp9viYgHgC8CW3p26Poe1kOSNIF6FhyZeXOHxVe1/Tyr7efRnsaaXtVDkjSxehIcEbE78Cbghsz8acuqmc3rA5TLcue0bTr6c/vYhyRpkurVGMd64LPA8W3LF1MC4zrgFuDwiJjWsv4ISm/jjh7VQ5I0wXrS48jMhyLib4H3RsQwcCvwKuBUyuzwVRFxBiVAlkfEMsoluCcBp2xi3ockaRLq5VVV7wc+DBxFGdt4J7AUWAKQmTdQehgvAb4GvA04KTPP6WEdJEkTrJeD42uBc5o/mypzBXBFr/YpSeo/744rSapicEiSqhgckqQqBockqYrBIWnc9tptx0FXQX3Uy3tVSdpGPWeHGQw/tpYVq9vvYzrx9ttjiKGZ2/d9v9syg0NST6xYPcxRF9/e9/0uP3YBC2bv1vf9bss8VSVJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqzuMYgEFMlJq/1y593Z+krZfBMQCDmCh119KFfd2fpK2Xp6okSVUMDklSFYNDklTF4JA0pXlL9/5zcFzSlDaoW7pvy7dzNzgkTXmDuFJxW76du6eqJElVDA5JUhWDQ5JUpe9jHBHxVuCvgdnAz4CzMvOSftdjUM9H9tYfkqa6vgZHRBwJXAp8EvhX4DDgHyPi0cy8vJ91GdTzkb31h6Sprt89jo8Dl2Xmkubnf42IXYHTgb4GhySNx7Y8f6RvwRERs4F9gA+1rbocODIi9s7Me/tVH0kaj0HNH4HBzyGZtmHDhr7sKCIOBa4C5mbmXS3LXw7cCbwuM6+peL/1wLRZs2aNqT4bNsD6PrW91XbTpw1k34Pa7yD3bZu3/v0Oct+DbPP0adOYNm1s246MjABsyMwxXxzVz1NVOzev7fE80rwOVb7femD6yMhI/+NekqauIcrn55j1Mzi2lI9VDclMZ71L0gD0cx7Hmua1/dzSUNt6SdIk1s/gyOZ1TtvyOW3rJUmTWN+CIzNXAfcCf9K26gjgJ5n5i37VRZI0dv0eJzgN+HxEPAJ8A3gzcCRwVJ/rIUkao75djjsqIo4DPgDsCfyUcsuRL/S1EpKkMet7cEiSpjbvjitJqmJwSJKqGBySpCoGhySpisEhSari/Z4aETEdOBZ4N+XphA8AVwJLM3NkE9scBNzaYdVVmfmGlnInAicA/wm4Gzg1M7/Z2xaMXW3bI+KjwNLNvOULM/PnEfGfgf/XYf2PMvOl4654j0TENOBESvv3BH4MnJ2ZX9rMNjsBZ1MmsO4E3AKcmJk/aSkzg/Lv9GfAbsD/Bd6fmf9nYlpSb4xtfwHlGToLKe1a2WzzlZYyW/OxfzvQaQrB32bm8U2ZSX/sx8Mex0YnAxdRbv1+GHA+8E7gK5vZZi7wW+AVbX/eP1ogIk5q3msZcDhl7sq/RMSCnrdg7Grb/jme2eY3AI8BVwOjdwGY27wubCv7pz1vwfh8CDgP+EdKO/4NuLR5YuWm/BPwP4APAu+gfCm4MSJ2binzKWAJJWAWA08C1zXPppksqtoeEc8CrgH+GPgI8BbKh+JlzWOhR23Nx34usIpn/g6c11JmKhz7MXMeB09963gY+HJmvqdl+WJgOfDyzPx+h+0uBvbPzI4hEBHPAe4HPpOZp7Ts6zbg15n5up43ptJY297hfa4A5gMvy8xfN8s+DLw3M18wIZXvgYjYntLDujQzT2hZfhOwXWa+usM2oz3Np54hExHPo9xS5/TMPDsiXkj5cDk+Mz/TlHkW5Rvt1Zn5lxPasC6Mse2HAVcA/zUzv9ey/JvAHpk5r/l5qzz2zfprgV9lZsc7XkyFYz9e9jiKWcAXgfbu6crmdZ9NbDcPuGsT6wAOpDyH5KujCzJzA/DPwGsjYocx1ba3xtr2p0TE6yk9lb8aDY3Glv59JoN1wH8Dzmpb/gTw7E1ss5DyHJl/G12QmQ8CNwOHNov+O7AdTz/2j1NutXMok8NY2j4MfBa4o235Sp7+f2VrPfZQehyba9tUOPbj4hgHkJnDwHs7rDqsef1R+4qI2A54KfBQRNzZ/P0/KF3UC5qA2Hd0F22br6L8289m4wf0QIyl7a2aHsu5wM2Z2f7c+LnALyPiW5TeyBrgH4CPZObacVW8RzJzPfADeKotuwN/DrwWOG4Tm+0LrMrMdW3LV1FOS4yWeaQJlPYyfxARMzPzsR40YczG0vbMvAG4oXVZ88399Tz9/8pWeewjYo+m3MsjYjQsfwqc0XLrpEl/7MfL4NiEiDgQOAX4WmZ2+nB/ETATCODDwIOUmzaeS3nGyFI2PvWwfYB5rE897Isu2t7qjcBLKIP/re+xI+WW+btSxlBOpXwTOwX4fcoYymRzODAafldRemKd7Mwzn2QJ5bgOdVEGSk9vMn14dNv2Ts6h/D4cBlv9sR8du5lNadvvKGNcl0TEjMz8PFPv2FczODqIiFdRupX3Au/aRLH7gdcB38/M/2iW3dD80nwwIs6jx0897Icu297qeODOzLy+bfmTlFM6P8vMe5plN0fEE8AZEXFG6xVIk8SdlFMX+1OuGroqIl7T9B5bbe64ru+iTGu5yaLbtj+l+ZZ+NvA+4NzMvLJZtTUf+zsoX5Zubrni8NqIeH6z3eeZese+msHRphkUXkYZyFqUmQ93Ktf8p7mmw6qrKB+4wcanGu7E03sdk/Kph922vaX8rsAhlG9eT5OZTwDtYQLl3+cMyje3SfXhkZn3UgLzlogYplxp8wrKxQyt1lC+cbYbYuMxXcMzn3Y5WgY6fyMdmIq2A08N9i6jPBLh3Mx86v/A1nzsM/MhyherdldRxi1/jyl27MfCwfEWEbEE+DLwHeDgzFy9mbIvi4i/bM7vtprZvD7E5p96+Djw8/HXujdq2t5iEeXLx2Ud3m/viDi2+UVq1frvM3ARsWtEHB0Rv9+26s7mtX05lOM6u/nG3WoOG495ArtGxC4dytzbfLgO1BjbTkQMUS4MOBJ4X2toNOu32mMfEa+IiGM6vN1MSk9rDVPg2I+XwdFo/jOcT/kQXJSZW+oNvAj435TTVa0WU765/JzybeW3tDz1sPmwORy4ZbL8BxpD20ctoJyOuL/Dul0oV9+0X7e/mPLL9e9jrG6vTad8u2wfDF3YvP6gwzbXAs+lDKICT12OezBwXbNo9Iqr1mP/LMpcgdEyg1bd9uaikCspx35xZn6qw/tuzcf+FcDnImL/0QXNBNo/Ab7dDPxPhWM/Ls7jACJid8qH/S+BoynfHFqtolyitx9wT2Y+2FxKextltumplFmybwPeDhyRmVc07/1R4G8oXfTbgf9JGUT8o8z89sS2bMvG0vaWbW8EHs3M12/iva8EXkNp/w8plyKeCCzJzE/2uCljFhEXAX9BmdB2B3AQZWLYFzLzL5pQ2AdY0VyFNtr2/Smn6X4FfJQyQ/hlmflIU2YZ5cPyw5RTM0soVxgd0DxKeeBq2x4R76FMFv0s5VRVqw2Z+d3mfbfKY9/0Ir5P+T35a8op6HdT2npwS/uXMcmP/Xg4xlEsAnYEXkjnW4gcDdwH3Ei5XG9ZZj4REYuAMylXUD2P8gvylpZBQiiPy32SckuPk4EVwJsmQ2g0qtvesu75bOzWd/KnlA+OEyjd/nuAYzPzc+OtdI/9FWW2+zHAxyjt/QgbZwK/njLoeQhwU7PscOCCpsx04FvAkaOh0TgOeIRyNdFOlBnWfzzJPjhq235Es/w4nvlNfR0bP1O2ymOfmY9ExMHA/wI+QRm3uAN4zWhoNKbCsR8zexySpCqOcUiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKq/H/4B+1hJonpEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEMCAYAAADTfFGvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFzZJREFUeJzt3XuwXWWZ5/HvCQTlkhNDphGmh46E6IP0dBOZzJAWpIuSSaUZLwjdXOxBqwsaqlSEYQSxmTHNvQiXVmGqm9R0G1E0YixguEjT3LERRoaxUEMejeAwMKkIqDnHBjEkmT/WOrrZvZOz35199iXn+6lKrex3vWuvd6865/z2+671rjWydetWJElq14x+N0CSNFwMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSkV373YBORcRrVME31u+2SNIQGQW2ZGbHf/+HNjioQmNk1qxZs/vdEEkaFuPj47CDo03DHBxjs2bNmv3444/3ux2SNDQWLVrE+Pj4Do3UeI5DklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVKRYZ4AKE1q7JVNrFnf+7vSHLzfKKO7z+z5fqVeMDi0U1uzfoyTVjza8/2uOn0xi+fP7fl+pV5oKzgiYgZwOvARYD6wAbgVWJaZ43Wde4B3t9j832bm43WdtwLXAO8CXgO+Bpw38R6SpMHXbo/jPOAS4ErgXuBtwMXAwcDSus4hwGeBVU3bPgUQEXOA+4D1wIeANwPLgf2B93T8CSRJPTVpcETECFVwXJ+Zn6qL74mIl4BVEbEQ+AnwL4C7MnNb4wIfBeYACzPzpfq9nwPujIjDMvOxHfwskqQeaOeqqlnAl4AvN5WvrZcHAgvr/z+5nfdZAjw4ERq1u4Fx4Jg22iFJGgCT9jgycwz4eItVx9bL7wMfAF4FLoqIY4G9qIalzs7MH9T1DqIKoMb33hwRzwDRWfMlSb3W0TyOiDgMOB+4JTPXUp3feAPwCnAccCqwAHg4IvatN5tN66f1jVM9kUqSNASKL8eNiMOB24FngNPq4kuozoHc31DvW1Qnxs8ELgBGtvO2W0rbIUnqj6LgiIgTgZXAD4ClE+crMvN7zXUz8+mIeIqqNwKwkep8SbNR4P+UtEOS1D9tD1VFxDnAV4BvAUdm5vq6fCQiTomId7XYbHfgxfr/STV81fieuwAH1OskSUOgreCIiFOBq4GbqHoaGyfWZeZW4Fzgr+qJghPbHEoVFA/URXcDR0XE3g1vvYTqRPo9O/AZJEk91M48jn2AzwE/Bq4DDo143UVQ64ALgdXAjRHxd8DvUE0Q/N/AF+t6f011vuPeiLgImEs1AfAbmflINz6MJGnqtdPjWArsAbwFeJhqqKrx39LM/DrV5bkHAjcDlwO3AUsyczNAZr4AHAW8BNwIXErVgzmxex9HkjTV2pnHcQNwQxv1bqW6f9X26nwPOLrt1kmSBo7P45AkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOaQrMm7tHv5sgTZniu+NKmtyeu+3K2CubWLO+1ZMEps7B+40yuvvMnu5T04/BIU2RNevHOGnFtp6kPDVWnb6YxfPn9nSfmn4cqpIkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRdp6dGxEzABOBz4CzAc2ALcCyzJzvK6zCLgKWASMASvr9Zsa3uetwDXAu4DXgK8B5028hyRp8LX7zPHzgEuAK4F7gbcBFwMHA0sjYkFd/ghwAvB24FJgFPgYQETMAe4D1gMfAt4MLAf2B97TnY8jSZpqkwZHRIxQBcf1mfmpuvieiHgJWBURC6nCYSPw/sz8FXBnRLwMXBsRl2fm88BHgTnAwsx8qX7v5+q6h2XmY13/dJKkrmvnHMcs4EvAl5vK19bLA4ElwG11aExYDexSr6NePjgRGrW7gXHgmMJ2S5L6ZNIeR2aOAR9vserYevkU1XBTNm33QkSMAVEXHUQVQI11NkfEMw11JEkDrqOrqiLiMOB84BbgZ3XxWIuq41TnOQBmt1FHkjTgioMjIg4H7gKeAU4DRibZZEu93F69LdtZJ0kaIEXBEREnAvcAzwLvrs9XTPQiZrXYZJTqpDn1crI6kqQB13ZwRMQ5wFeAbwFHZuZ6gMz8BfA8sKCp/j5UQTFx7iNb1NkFOICm8yOSpMHVVnBExKnA1cBNwNLMbO4h3A28NyJ2ayg7HtgMPNBQ56iI2LuhzhJgL6pejCRpCLQzj2Mf4HPAj4HrgEMjXncR1DqqiXwnU83J+AzVBMHLgBWZ+Wxd76+BM4F7I+IiYG693Tcy85GufBpJ0pRrp8exFNgDeAvwMNVQVeO/pZm5lt/0HlYD51DdWuSsiTfJzBeAo4CXgBupZpbfBJzYnY8iSeqFduZx3ADc0Ea9h4HFk9T5HnB0262TJA0c744rSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGh7QTmTd3j343QdPApDc5lDQ89txtV8Ze2cSa9WOTV+6ig/cbZXT3mT3dp/rH4JB2MmvWj3HSikd7us9Vpy9m8fy5Pd2n+sehKklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSkeK740bEQuDbwAGZ+VxD+TrgwBab/FZmvljXWQRcBSwCxoCVwLLM3FTedElSPxQFR0QcBNzevF1E7AXMB84HHmza7Od1nQXAvcAjwAnA24FLgVHgYx20XZLUB20FR0TsCpwBXA606h38PjAC3JqZa7fxNucDG4H3Z+avgDsj4mXg2oi4PDOfL269JKnn2j3HcQRwBXA18MkW6xcCrwA/3M57LAFuq0Njwmpgl3qdJGkItBscTwHzM/NC4LUW6w8Bfgp8JSJ+HhG/iIhVEbEvQETsAewPZONGmfkC1bmO6PQDSJJ6q62hqszcMEmVQ4B9ge8D1wIHARcB90fEocDsul6rByGPU53nkCQNgW49c/xMYEZmPla/fjgi1gDfBP4jcMck22/pUjskSVOsK/M4MvPbDaExUfaPVCfDD+E3PY1ZLTYfretJkobADgdHROwZEX8WEYc0lc8AdgNezMxfAM8DC5rq7EMVJq879yFJGlzd6HH8ErgGWNZU/j5gd+CB+vXdwHsjYreGOscDmxvqSJIG3A6f48jMzRFxMXB1RHwO+B/AvwYupJrX8UBddTlwMtX8jc8AbwMuA1Zk5rM72g5JUm905eR4Zl4TERuBs4DTqC7N/RvgLxvqrI2IJcCVVPM3XqR1T0U7obFXNrFmfauL6qbOonlzero/abooDo7MXEl1j6nm8r8F/naSbR8GFpfuU8NvzfoxTlrxaE/3+eQy55VKU8G740qSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqciupRtExELg28ABmflcQ/kS4FLgd4ENwHWZeXXTtouAq4BFwBiwEliWmZs6/QCSpN4q6nFExEHA7TQFTkS8sy5fCxwH3AhcGRGfaKizALgXeAU4AbgaOAf4qx1ovySpx9rqcUTErsAZwOVAq97BRcATmXlK/fquiJgJXBAR12bmq8D5wEbg/Zn5K+DOiHgZuDYiLs/M53f0w0iSpl67PY4jgCuoegmfbFwREW8EjgS+3rTNauBNwDvr10uA2+rQaKyzS71OkjQE2g2Op4D5mXkh8FrTuvnATCCbytfVy4iIPYD9m+tk5gtU5zqipNGSpP5pa6gqMzdsZ/XsejnWVD5eL0e3U2ei3mg77ZAk9V83LscdmWT9ljbrSJKGQDeCY2O9nNVUPtqwfmwbdSbqbWxRLkkaQN0Ijh8Bm4EFTeUTrzMzfwE831wnIvahCpPm8yOSpAG1w8GRmb8EHgKOi4jGIanjqXoSj9ev7wbeGxG7NdXZDDywo+2QJPVG8czxbbgEuAdYFRErqS7BPRc4PzNfrussB06mmr/xGeBtwGXAisx8tkvtkCRNsa7cqyoz76PqPbwduAX4U+DczFzeUGct1XyNvajmb5wDXAOc1Y02SJJ6o7jHkZkrqe4x1Vx+M3DzJNs+DCwu3ackaXB4d1xJUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgk7bB5c/fodxPUQ9265YikaWzP3XZl7JVNrFnf6pE7U+vg/UYZ3X1mz/c7nRkckrpizfoxTlrxaM/3u+r0xSyeP7fn+53OHKqSJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRbyt+jTSr+clLJo3p+f7lDR1DI5ppF/PS3hy2ZKe71PS1HGoSpJUpGs9jojYFRgH3ti06p8yc6+6zhLgUuB3gQ3AdZl5dbfaIEmaet0cqgqq0Pgw8IOG8s0AEfFO4Hbgq8B/BY4AroyIkcy8qovtkCRNoW4GxyHAFmB1Zr7cYv1FwBOZeUr9+q6ImAlcEBHXZuarXWyLJGmKdPMcx0LgR61CIyLeCBwJfL1p1WrgTcA7u9gOSdIU6naP49WIuItqGGoTcBPwCWB/YCaQTdusq5cB3N/FtkiSpkg3exyHAAcCdwLHABcDJwO3AbPrOs2TCMbr5WgX2yFJmkLd7HGcCPw0M79bv34oIjYAXwImu5B/SxfbIUmaQl0Ljsx8sEXxHU2vZzW9nuhpbOxWOyRJU6srwRER+wDvA+7LzKcbVu1eLzdQXZa7oGnTidfN5z4kSQOqW+c4tgDXAx9rKj+RKjDuAR4CjouIkYb1x1P1Nh7vUjskSVOsKz2OzHwxIv4b8PGIGAMeBg4HLqCaHb4uIi6hCpBVEbGS6hLcc4HztzHvQ5I0gLp5VdV/Bv4COInq3MaHgWXAOQCZeR9VD+PtwC3AnwLnZubyLrZBkjTFunlyfBOwvP63rTo3Azd3a5+SpN7z7riSpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpSNduq672jb2yiTXrx3q6z0Xz5vR0f5J2XgZHH6xZP8ZJKx7t6T6fXLakp/uTtPNyqEqSVMTgkCQVMTgkSUUMDklDbd7cPfrdhGnHk+OShtqeu+3alysVD95vlNHdZ/Z0n4PC4JA09PpxpeKq0xezeP7cnu5zUDhUJUkqYnBIkooYHJKkIgaHJKmIwSFJKtLzq6oi4mTgvwDzgR8Dl2fmDb1uhyTtiOk8f6SnwRERJwA3Ap8B/h44FvhCRLycmat72ZZ+XPcN3qVW2ln0a/4I9H8OSa97HJcBN2XmOfXrv4+IvYGLgZ4GRz+u+wbvUivtTPr1d6Tfc0h6do4jIuYDBwJfb1q1GjgoIg7oVVskSZ0b2bp1a092FBHHAHcAh2Tmkw3l7wCeAP4oM+8qeL8twMisWbM6as/WrbClR5+90S4zRvqy737tt5/79jPv/Pvt5777+ZlnjIwwMtLZtuPj4wBbM7PjjkMvh6pm18vmAcHxejla+H5bgBnj4+O9H2CUpOE1SvX3s2O9DI7J8rHog2Sm99mSpD7o5TyOjfWyeWxptGm9JGmA9TI4sl4uaCpf0LRekjTAehYcmbkOeAb446ZVxwM/zMxne9UWSVLnen2e4CLg8xHxM+B24P3ACcBJPW6HJKlDPbscd0JEnAF8AtgfeJrqliNf7GkjJEkd63lwSJKGm3fHlSQVMTgkSUUMDklSEYNDklTE4JAkFRnK+z1FxAzgdOAjVE8S3ADcCizLzPFtbLMX1XM/jgPmUN2R99zM/HZPGj1gOjyG84CrgH9fFz0AnJ+Za6e8wQMoIkaAs6iO4f7AD4ArMvPL29lmL+AKqomvewEPAWdl5g+nvsWDpZPj17T9lcA7MvPoqWvlYOvwZ3Bfqr+FS4C5wNp6m6+1u99h7XGcB1xHdZv2Y4GrgQ8D2/vgK4DTgOVUs9dfBe6rnxMyHRUdw4iYA3wTOAI4FzgReBl4ZBofw09RBekXgPcA/wDcWD/pclu+CvwJ8EngQ8BvA/dHxOztbLOz6uT4ARARZ1LNB5vuio5hRLwBuIvqy9+ngQ8A/wu4qX6sd1uGbh5HnbAvAV/JzI82lJ8IrKL6BvKdpm12p7p9+0WZeVFdthfwE6qkvbBX7R8EHR7Dc6jC5d9N9NLq9/kW8HRmfrBX7R8EETGTqpd2Y2ae2VD+ALBLZr6rxTZHAA/T8OyZiPgtqlvxXJyZV/Si7YOgk+NXr/9t4EqqLy7jwOPTtcfR4c/gscDNNPwe1+XfAPbLzIXt7HsYexyzgC8BzV2xieGSA1tssxvVZ20cgvkn4JdUXbXpppNjGMBPGn/YMnMr1R/CY6aikQNuM/CHwOVN5b8C3riNbZZQ/Qz+w0RBZr4APMj0O4adHD+AS4F3AEcD39lOvemgk2M4BlwPPN5UvpbWv/ctDd05jswcAz7eYtWx9fL7LbbZGBFfAM6OiG8C66iGCmZRfcOeVjo5hsCzwJyIGK23nzAfmB0Re2fmT7vc1IGVmVuA78Kve177AH9G9QftjG1sdhCwLjM3N5Wvo/oGPW10ePygGmpem5lbImLZlDd0gHVyDDPzPuC+xrK65/IfaP1739LQBUcrEXEYcD5wy3ZO1P4FcCfwP+vXW4HTMvORHjRx4LVxDG8CLgC+GhFnAy8AHwT+qF6/JzBtgqPJccDq+v93UPXmWpnNP38CJlS9kNInYO5M2j1+ZOaanrRo+LR9DFtYDryV33xxnNQwDlW9TkQcTnWy5xmqk9+t6uwDPEZ1FcsHgXcDfwOsaOdE3M6unWNYX/Xzx8DvUXVrX6pfX1ZXeXnqWzqwnqAaMjgTOBy4o/4G2Gx7T8HcoUd5Drl2j5+2rfgYRsRIRCwHzgauzMxb293ZUPc46pO5K6kuQVuamS9to+ppwL8CFmTm03XZfRHxJuC6iPhaPV4/7RQcQzLzzojYHzgA2JSZ/zciPk31R+/nvWjvIMrMZ6hC96GIGKO6wuUPgObe7Eaqob1mo0zjJ2AWHD9tQ+kxrK+uWkn1SIsrM/O8kv0NbXDUV/lcRTWX4AOZub1fvHnA+obQmPAQcDLV2OCGqWjnICs5hhHxO1SX8H2h6TgeCjzZYtx+pxYRe1ONC9+bmf+vYdUT9fJfttgsgaMjYqTpi8oCptkTMDs8fmrQ6TGMiFGq5yEdDpydmZ8t3fdQDlVFxKlUl4beRPUtebJvawnsGxHNj639A6ox52k3Nt/BMXwz8N+BX1/iFxFBdTXQLVPVzgE2g+pbXfNJyCX18rsttrkbeBPVyUvg15fjHgncMwVtHGSdHD+9XvExjIhdqCb6LgZO7CQ0YDjncexD1SX7CXAK8FpTlXVUl6MdDPwoM1+oJ1d9B9gE/GW97fuoxgM/mZnLe9P6wdDhMZwB/CPV5cvnAjOprqffDPybNoJnpxMR1wF/TjWR6nGqyZGfAr6YmX9eh8KBwJqJK9Ei4n7g96kmYP6U6udxLvB7mfmznn+IPurk+DVt/wDw2nSdxwHlxzAiPko18fd6qqGqRlsz87F29juMQ1VLgT2At1DNIWh2CvAccD/VpWkr68txj6C61cO1wBuAp4CTM3PaXY5LZ8dwS0QcB3wW+DxVYNxFdcuRaRcatf9EdZnyqcCFVMfs01TDf1ANI3weOIpqOBCqq1+uqevMoJqNf8J0C41aJ8dPr1d6DI+vy8/gn/dUNtNmJgxdj0OS1F9DeY5DktQ/BockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCL/H9nG4NHeBVW1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for i in [2, 10, 100, 1000]:\n", + " poisson_means(i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/ProbabilityDistribution.ipynb b/ProbabilityDistribution.ipynb new file mode 100644 index 0000000..826a900 --- /dev/null +++ b/ProbabilityDistribution.ipynb @@ -0,0 +1,216 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import numpy.random as rnd\n", + "from scipy import stats\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### t distribution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### geometric distribution\n", + "確率pで成功する試行が初めて成功するまでの試行回数nが従う確率分布。" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFHdJREFUeJzt3X+s3fV93/Hna5TQKkkFlDvL9Y8ZIqcTRJ1DXGDKD2XNSoxXxWSqmCEKTobqZAWpUTs10E6DpUPKupIsUTsiJ3jAFiC0hGJVbhOHZkWVhsEmjjEQiiH8sOXYDrQhXSpW4L0/zueGE+fe63vPOb7n2t/nQzq63/P+fs/3vM/Xun7d7+f7Pd9vqgpJUjf9o3E3IEkaH0NAkjrMEJCkDjMEJKnDDAFJ6jBDQJI6zBCQpA4zBCSpwwwBSeqwnxh3A0dzxhln1IoVK8bdhiQdN3bu3PndqpqYzbILPgRWrFjBjh07xt2GJB03kjwz22UdDpKkDjMEJKnDDAFJ6jBDQJI6zBCQpA4zBCSpwwwBSeowQ0CSOswQkKQOO+o3hpMsA24FFgEFbKqqzyQ5HfgSsAJ4Grikqv4mSYDPAGuBHwAfqqqH2ro2AP+hrfo/V9Uto/04c3Pb9mennXfZ+cvnsRNJGo/Z7Am8DPxmVZ0NXABcmeRs4Grg3qpaCdzbngNcBKxsj43AjQAtNK4FzgfOA65NctoIP4skaY6OGgJVdWDyL/mq+j7wGLAEWAdM/iV/C3Bxm14H3Fo99wOnJlkMvBfYVlUvVNXfANuANSP9NJKkOZnTMYEkK4C3AtuBRVV1oM36Dr3hIugFxHN9L9vXatPVp3qfjUl2JNlx+PDhubQoSZqDWYdAkjcAdwEfq6oX++dVVdE7XjASVbWpqlZX1eqJiVldDVWSNIBZhUCSk+kFwBer6sutfLAN89B+Hmr1/cCyvpcvbbXp6pKkMTlqCLSzfW4CHquqT/XN2gJsaNMbgHv66pen5wLge23Y6CvAhUlOaweEL2w1SdKYzOamMm8HPgg8nGRXq/028EngziRXAM8Al7R5W+mdHrqX3imiHwaoqheS/C7wYFvuE1X1wkg+hSRpIEcNgar6KyDTzH7PFMsXcOU069oMbJ5Lg5KkY8dvDEtShxkCktRhhoAkdZghIEkdZghIUocZApLUYYaAJHWYISBJHWYISFKHGQKS1GGGgCR1mCEgSR1mCEhShxkCktRhhoAkdZghIEkdNpvbS25OcijJnr7al5Lsao+nJ+84lmRFkr/vm/e5vte8LcnDSfYm+Wy7baUkaYxmc3vJm4E/AG6dLFTVv5mcTnID8L2+5Z+sqlVTrOdG4FeB7fRuQbkG+LO5tyxJGpWj7glU1X3AlPcCbn/NXwLcPtM6kiwGfrqq7m+3n7wVuHju7UqSRmnYYwLvBA5W1RN9tTOTfCPJXyZ5Z6stAfb1LbOv1SRJYzSb4aCZXMqP7gUcAJZX1fNJ3gb8SZJz5rrSJBuBjQDLly8fskVJ0nQG3hNI8hPAvwa+NFmrqpeq6vk2vRN4EngzsB9Y2vfypa02paraVFWrq2r1xMTEoC1Kko5imOGgfwl8q6p+OMyTZCLJSW36LGAl8FRVHQBeTHJBO45wOXDPEO8tSRqB2Zwiejvwf4CfS7IvyRVt1np+/IDwu4Dd7ZTRPwY+WlWTB5V/DfgCsJfeHoJnBknSmB31mEBVXTpN/UNT1O4C7ppm+R3AW+bYnyTpGPIbw5LUYYaAJHWYISBJHWYISFKHGQKS1GGGgCR1mCEgSR1mCEhShxkCktRhhoAkdZghIEkdZghIUocNe1OZE9Zt25+dcf5l53uzG0nHP/cEJKnDDAFJ6jBDQJI6bDZ3Ftuc5FCSPX2165LsT7KrPdb2zbsmyd4kjyd5b199TavtTXL16D+KJGmuZrMncDOwZor6p6tqVXtsBUhyNr3bTp7TXvPfk5zU7jv8h8BFwNnApW1ZSdIYzeb2kvclWTHL9a0D7qiql4BvJ9kLnNfm7a2qpwCS3NGWfXTOHUuSRmaYYwJXJdndhotOa7UlwHN9y+xrtenqkqQxGjQEbgTeBKwCDgA3jKwjIMnGJDuS7Dh8+PAoVy1J6jNQCFTVwap6papeBT7Pa0M++4FlfYsubbXp6tOtf1NVra6q1RMTE4O0KEmahYFCIMnivqfvBybPHNoCrE9ySpIzgZXAA8CDwMokZyZ5Hb2Dx1sGb1uSNApHPTCc5Hbg3cAZSfYB1wLvTrIKKOBp4CMAVfVIkjvpHfB9Gbiyql5p67kK+ApwErC5qh4Z+aeRJM3JbM4OunSK8k0zLH89cP0U9a3A1jl1J0k6pvzGsCR1mCEgSR1mCEhShxkCktRhhoAkdZghIEkdZghIUocZApLUYYaAJHWYISBJHWYISFKHGQKS1GGGgCR1mCEgSR121EtJa2q3bX92xvmXnb98njqRpMG5JyBJHWYISFKHHTUEkmxOcijJnr7af03yrSS7k9yd5NRWX5Hk75Psao/P9b3mbUkeTrI3yWeT5Nh8JEnSbM1mT+BmYM0RtW3AW6rq54G/Bq7pm/dkVa1qj4/21W8EfpXezedXTrFOSdI8O2oIVNV9wAtH1L5aVS+3p/cDS2daR5LFwE9X1f1VVcCtwMWDtSxJGpVRHBP4t8Cf9T0/M8k3kvxlkne22hJgX98y+1pNkjRGQ50imuR3gJeBL7bSAWB5VT2f5G3AnyQ5Z4D1bgQ2Aixf7qmWknSsDLwnkORDwC8DH2hDPFTVS1X1fJveCTwJvBnYz48OGS1ttSlV1aaqWl1VqycmJgZtUZJ0FAOFQJI1wG8B76uqH/TVJ5Kc1KbPoncA+KmqOgC8mOSCdlbQ5cA9Q3cvSRrKUYeDktwOvBs4I8k+4Fp6ZwOdAmxrZ3re384EehfwiST/ALwKfLSqJg8q/xq9M41+it4xhP7jCJKkMThqCFTVpVOUb5pm2buAu6aZtwN4y5y6kyQdU35jWJI6zBCQpA4zBCSpwwwBSeowQ0CSOswQkKQOMwQkqcMMAUnqMENAkjrMEJCkDjMEJKnDDAFJ6jBDQJI6zBCQpA4zBCSpwwwBSeqwWYVAks1JDiXZ01c7Pcm2JE+0n6e1epJ8NsneJLuTnNv3mg1t+SeSbBj9x5EkzcVs9wRuBtYcUbsauLeqVgL3tucAF9G7t/BKYCNwI/RCg96tKc8HzgOunQwOSdJ4HPX2kgBVdV+SFUeU19G79zDALcD/Bj7e6rdWVQH3Jzk1yeK27LbJew4n2UYvWG4f6hMsULdtf3bG+Zedv3yeOpGk6Q1zTGBRVR1o098BFrXpJcBzfcvta7Xp6pKkMRnJgeH2V3+NYl0ASTYm2ZFkx+HDh0e1WknSEYYJgYNtmIf281Cr7weW9S23tNWmq/+YqtpUVauravXExMQQLUqSZjJMCGwBJs/w2QDc01e/vJ0ldAHwvTZs9BXgwiSntQPCF7aaJGlMZnVgOMnt9A7snpFkH72zfD4J3JnkCuAZ4JK2+FZgLbAX+AHwYYCqeiHJ7wIPtuU+MXmQWJI0HrM9O+jSaWa9Z4plC7hymvVsBjbPujtJ0jHlN4YlqcMMAUnqMENAkjrMEJCkDjMEJKnDDAFJ6jBDQJI6zBCQpA4zBCSpwwwBSeowQ0CSOswQkKQOMwQkqcMMAUnqMENAkjrMEJCkDpvVTWU0erdtf3bG+Zedv3yeOpHUZQPvCST5uSS7+h4vJvlYkuuS7O+rr+17zTVJ9iZ5PMl7R/MRJEmDGnhPoKoeB1YBJDkJ2A/cTe+ewp+uqt/vXz7J2cB64BzgZ4GvJXlzVb0yaA+SpOGM6pjAe4Anq+qZGZZZB9xRVS9V1bfp3Yj+vBG9vyRpAKMKgfXA7X3Pr0qyO8nmJKe12hLgub5l9rXaj0myMcmOJDsOHz48ohYlSUcaOgSSvA54H/BHrXQj8CZ6Q0UHgBvmus6q2lRVq6tq9cTExLAtSpKmMYo9gYuAh6rqIEBVHayqV6rqVeDzvDbksx9Y1ve6pa0mSRqTUYTApfQNBSVZ3Dfv/cCeNr0FWJ/klCRnAiuBB0bw/pKkAQ31PYEkrwd+CfhIX/n3kqwCCnh6cl5VPZLkTuBR4GXgSs8MkqTxGioEqur/Aj9zRO2DMyx/PXD9MO8pSRodLxshSR1mCEhShxkCktRhhoAkdZghIEkd5qWkF6iZLjXtZaYljYp7ApLUYYaAJHWYISBJHWYISFKHGQKS1GGGgCR1mCEgSR1mCEhShxkCktRhhoAkddgobjT/dJKHk+xKsqPVTk+yLckT7edprZ4kn02yN8nuJOcO+/6SpMGN6tpB/6Kqvtv3/Grg3qr6ZJKr2/OP07sp/cr2OB+4sf3UHMx0XSHw2kKSZu9YDQetA25p07cAF/fVb62e+4FTj7gxvSRpHo0iBAr4apKdSTa22qKqOtCmvwMsatNLgOf6Xruv1SRJYzCK4aB3VNX+JP8Y2JbkW/0zq6qS1FxW2MJkI8Dy5Q5tSNKxMvSeQFXtbz8PAXcD5wEHJ4d52s9DbfH9wLK+ly9ttSPXuamqVlfV6omJiWFblCRNY6gQSPL6JG+cnAYuBPYAW4ANbbENwD1tegtweTtL6ALge33DRpKkeTbscNAi4O4kk+u6rar+PMmDwJ1JrgCeAS5py28F1gJ7gR8AHx7y/SVJQxgqBKrqKeCfTVF/HnjPFPUCrhzmPSVJo+M3hiWpwwwBSeowQ0CSOswQkKQOMwQkqcNGdQE5LSBeYE7SbLknIEkdZghIUocZApLUYYaAJHWYISBJHebZQR3k2UOSJrknIEkdZghIUocZApLUYR4T0I/xmIHUHe4JSFKHDRwCSZYl+XqSR5M8kuTXW/26JPuT7GqPtX2vuSbJ3iSPJ3nvKD6AJGlwwwwHvQz8ZlU91G42vzPJtjbv01X1+/0LJzkbWA+cA/ws8LUkb66qV4boQZI0hIH3BKrqQFU91Ka/DzwGLJnhJeuAO6rqpar6Nr2bzZ836PtLkoY3kmMCSVYAbwW2t9JVSXYn2ZzktFZbAjzX97J9TBMaSTYm2ZFkx+HDh0fRoiRpCkOHQJI3AHcBH6uqF4EbgTcBq4ADwA1zXWdVbaqq1VW1emJiYtgWJUnTGCoEkpxMLwC+WFVfBqiqg1X1SlW9Cnye14Z89gPL+l6+tNUkSWMyzNlBAW4CHquqT/XVF/ct9n5gT5veAqxPckqSM4GVwAODvr8kaXjDnB30duCDwMNJdrXabwOXJlkFFPA08BGAqnokyZ3Ao/TOLLrSM4OOTzN9mcwvkknHl4FDoKr+CsgUs7bO8JrrgesHfU9J0mj5jWFJ6jBDQJI6zAvIaaS8+Jx0fHFPQJI6zBCQpA4zBCSpwzwmoHnlMQNpYXFPQJI6zBCQpA5zOEgLisNF0vxyT0CSOsw9AR1X3FOQRssQ0AnFK5xKc+NwkCR1mHsCUuNQk7rIEJBmyZDQiWjeQyDJGuAzwEnAF6rqk/Pdg7rpaP+JS100r8cEkpwE/CFwEXA2vVtRnj2fPUiSXjPfewLnAXur6imAJHcA6+jdd1g6rh3LPY2jDTU5VKVBzXcILAGe63u+Dzh/nnuQjjvDBsywITHM+x/rADpeTwteKMG9IA8MJ9kIbGxP/y7J4wOu6gzgu6PpauTsbTD2NpgZe/vAMXzjWaz7mG23EXyusf2bDrnd/sls32e+Q2A/sKzv+dJW+xFVtQnYNOybJdlRVauHXc+xYG+DsbfB2NtgutDbfH9Z7EFgZZIzk7wOWA9smeceJEnNvO4JVNXLSa4CvkLvFNHNVfXIfPYgSXrNvB8TqKqtwNZ5eruhh5SOIXsbjL0Nxt4Gc8L3lqoaxXokScchLyAnSR12QoZAkjVJHk+yN8nV4+6nX5KnkzycZFeSHQugn81JDiXZ01c7Pcm2JE+0n6ctoN6uS7K/bb9dSdaOoa9lSb6e5NEkjyT59VYf+3abobeFsN1+MskDSb7ZevtPrX5mku3t9/VL7aSRhdLbzUm+3bfdVs13b309npTkG0n+tD0fzXarqhPqQe+A85PAWcDrgG8CZ4+7r77+ngbOGHcfff28CzgX2NNX+z3g6jZ9NfBfFlBv1wH/fszbbDFwbpt+I/DX9C6DMvbtNkNvC2G7BXhDmz4Z2A5cANwJrG/1zwH/bgH1djPwK+Pcbn09/gZwG/Cn7flIttuJuCfww0tTVNX/AyYvTaEpVNV9wAtHlNcBt7TpW4CL57WpZprexq6qDlTVQ236+8Bj9L4NP/btNkNvY1c9f9eentweBfwi8MetPq7tNl1vC0KSpcC/Ar7QnocRbbcTMQSmujTFgvglaAr4apKd7ZvRC9GiqjrQpr8DLBpnM1O4KsnuNlw0lqGqSUlWAG+l95fjgtpuR/QGC2C7tSGNXcAhYBu9vfa/raqX2yJj+309sreqmtxu17ft9ukkp4yjN+C/Ab8FvNqe/wwj2m4nYggsdO+oqnPpXUn1yiTvGndDM6nevuaC+YsIuBF4E7AKOADcMK5GkrwBuAv4WFW92D9v3Nttit4WxHarqleqahW9qwWcB/zTcfQxlSN7S/IW4Bp6Pf4CcDrw8fnuK8kvA4eqauexWP+JGAKzujTFuFTV/vbzEHA3vV+EheZgksUA7eehMffzQ1V1sP2yvgp8njFtvyQn0/tP9otV9eVWXhDbbareFsp2m1RVfwt8HfjnwKlJJr+zNPbf177e1rThtaqql4D/wXi229uB9yV5mt7w9i/SuyfLSLbbiRgCC/bSFElen+SNk9PAhcCemV81FluADW16A3DPGHv5EZP/yTbvZwzbr43H3gQ8VlWf6ps19u02XW8LZLtNJDm1Tf8U8Ev0jll8HfiVtti4tttUvX2rL9RDb8x93rdbVV1TVUuragW9/8/+oqo+wKi227iPeB+LB7CW3lkRTwK/M+5++vo6i97ZSt8EHlkIvQG30xse+Ad644pX0BtvvBd4AvgacPoC6u1/Ag8Du+n9p7t4DH29g95Qz25gV3usXQjbbYbeFsJ2+3ngG62HPcB/bPWzgAeAvcAfAacsoN7+om23PcD/op1BNK4H8G5eOztoJNvNbwxLUoediMNBkqRZMgQkqcMMAUnqMENAkjrMEJCkDjMEJKnDDAFJ6jBDQJI67P8D3suuMEa84a4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s = rnd.geometric(p=0.2, size=10000)\n", + "sns.distplot(s, kde=False, bins=np.arange(max(s)+1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### exponential distribution\n", + "ある期間に平均してラムダ回起こる現象が次に起きるまでの期間Xが従う確率分布。幾何分布の連続変数バージョン。\n", + " \n", + "例) 機械が故障してから次に故障するまでの期間  \n", + " \n", + "$$f\\left( x\\right) =\\dfrac {1}{\\mu }\\exp \\left( -\\dfrac {x}{\\mu }\\right) $$\n", + "$\\mu$: scale parameter" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAET9JREFUeJzt3X/MnWV9x/H3ZwXdomaAPGtYf6xMuyw1mXV5Ahj9g2GEwpYVE0NAp50h6f6ABBOXBfyHqWNxySabiZKw0VgXERuV0Zhm2CGJ2x8WWmVKYYRnCNKm0jrwV0xYit/9ca5uZ7Xtc54+53lOe673Kzk59/29r/s+1xUOz+fcP5uqQpLUn1+adAckSZNhAEhSpwwASeqUASBJnTIAJKlTBoAkdWreAEjyy0keSfLvSfYn+UirX5xkT5K5JF9I8qpWf3Wbn2vL1w1t67ZWfyrJVUs1KEnS/EbZA3gZuKKq3gxsBDYluQz4K+DOqnoj8BJwY2t/I/BSq9/Z2pFkA3A98CZgE/DpJCvGORhJ0ujmDYAa+GmbPbe9CrgC+GKrbweubdOb2zxt+TuSpNXvq6qXq+q7wBxwyVhGIUlasHNGadR+qe8D3gh8CvhP4IdVdbQ1OQCsatOrgOcBqupokh8Br2/1bwxtdnidE7rwwgtr3bp1Iw1EkjSwb9++H1TVzHztRgqAqnoF2JjkPOB+4LcX2b+TSrIV2Aqwdu1a9u7du1QfJUlTKclzo7Rb0FVAVfVD4GHgrcB5SY4FyGrgYJs+CKxpnTgH+FXgv4brJ1hn+DPurqrZqpqdmZk3wCRJp2mUq4Bm2i9/kvwK8E7gSQZB8O7WbAvwQJve2eZpy79WgyfO7QSub1cJXQysBx4Z10AkSQszyiGgi4Dt7TzALwE7quorSZ4A7kvyF8C3gHta+3uAf0wyB7zI4Mofqmp/kh3AE8BR4KZ2aEmSNAE5kx8HPTs7W54DkKSFSbKvqmbna+edwJLUKQNAkjplAEhSpwwASeqUASBJnRrpTuCz1b17vjdSu/dcunaJeyJJZx73ACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6NW8AJFmT5OEkTyTZn+SWVv/zJAeTPNZe1wytc1uSuSRPJblqqL6p1eaS3Lo0Q5IkjeKcEdocBT5UVd9M8jpgX5LdbdmdVfXXw42TbACuB94E/DrwL0l+qy3+FPBO4ADwaJKdVfXEOAYiSVqYeQOgqg4Bh9r0T5I8Caw6xSqbgfuq6mXgu0nmgEvasrmqegYgyX2trQEgSROwoHMASdYBbwH2tNLNSb6dZFuS81ttFfD80GoHWu1kdUnSBIwcAEleC3wJ+GBV/Ri4C3gDsJHBHsLfjKNDSbYm2Ztk75EjR8axSUnSCYwUAEnOZfDH/3NV9WWAqnqhql6pqp8Df8//HeY5CKwZWn11q52s/v9U1d1VNVtVszMzMwsdjyRpRKNcBRTgHuDJqvrEUP2ioWbvAh5v0zuB65O8OsnFwHrgEeBRYH2Si5O8isGJ4p3jGYYkaaFGuQrobcD7gO8keazVPgzckGQjUMCzwJ8AVNX+JDsYnNw9CtxUVa8AJLkZeBBYAWyrqv1jHIskaQFGuQro34CcYNGuU6xzB3DHCeq7TrWeJGn5eCewJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ06Z9IdOBPcu+d7I7V7z6Vrl7gnkrR83AOQpE4ZAJLUKQNAkjplAEhSp+YNgCRrkjyc5Ikk+5Pc0uoXJNmd5On2fn6rJ8knk8wl+XaS3x3a1pbW/ukkW5ZuWJKk+YyyB3AU+FBVbQAuA25KsgG4FXioqtYDD7V5gKuB9e21FbgLBoEB3A5cClwC3H4sNCRJy2/eAKiqQ1X1zTb9E+BJYBWwGdjemm0Hrm3Tm4HP1sA3gPOSXARcBeyuqher6iVgN7BprKORJI1sQecAkqwD3gLsAVZW1aG26PvAyja9Cnh+aLUDrXay+vGfsTXJ3iR7jxw5spDuSZIWYOQASPJa4EvAB6vqx8PLqqqAGkeHquruqpqtqtmZmZlxbFKSdAIjBUCScxn88f9cVX25lV9oh3Zo74db/SCwZmj11a12srokaQJGuQoowD3Ak1X1iaFFO4FjV/JsAR4Yqr+/XQ10GfCjdqjoQeDKJOe3k79XtpokaQJGeRbQ24D3Ad9J8lirfRj4OLAjyY3Ac8B1bdku4BpgDvgZ8AGAqnoxyceAR1u7j1bVi2MZhSRpweYNgKr6NyAnWfyOE7Qv4KaTbGsbsG0hHZQkLQ3vBJakThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOjVvACTZluRwkseHan+e5GCSx9rrmqFltyWZS/JUkquG6ptabS7JreMfiiRpIUbZA/gMsOkE9TuramN77QJIsgG4HnhTW+fTSVYkWQF8Crga2ADc0NpKkibknPkaVNXXk6wbcXubgfuq6mXgu0nmgEvasrmqegYgyX2t7RML7rEkaSwWcw7g5iTfboeIzm+1VcDzQ20OtNrJ6r8gydYke5PsPXLkyCK6J0k6ldMNgLuANwAbgUPA34yrQ1V1d1XNVtXszMzMuDYrSTrOvIeATqSqXjg2neTvga+02YPAmqGmq1uNU9TPGvfu+d5I7d5z6dol7okkLd5p7QEkuWho9l3AsSuEdgLXJ3l1kouB9cAjwKPA+iQXJ3kVgxPFO0+/25KkxZp3DyDJ54HLgQuTHABuBy5PshEo4FngTwCqan+SHQxO7h4FbqqqV9p2bgYeBFYA26pq/9hHI0ka2ShXAd1wgvI9p2h/B3DHCeq7gF0L6p0kacl4J7AkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1Kl5AyDJtiSHkzw+VLsgye4kT7f381s9ST6ZZC7Jt5P87tA6W1r7p5NsWZrhSJJGNcoewGeATcfVbgUeqqr1wENtHuBqYH17bQXugkFgALcDlwKXALcfCw1J0mTMGwBV9XXgxePKm4HtbXo7cO1Q/bM18A3gvCQXAVcBu6vqxap6CdjNL4aKJGkZne45gJVVdahNfx9Y2aZXAc8PtTvQaier/4IkW5PsTbL3yJEjp9k9SdJ8Fn0SuKoKqDH05dj27q6q2aqanZmZGddmJUnHOd0AeKEd2qG9H271g8CaoXarW+1kdUnShJxzmuvtBLYAH2/vDwzVb05yH4MTvj+qqkNJHgT+cujE75XAbaff7TPbvXu+N1K791y6dol7IkknN28AJPk8cDlwYZIDDK7m+TiwI8mNwHPAda35LuAaYA74GfABgKp6McnHgEdbu49W1fEnliVJy2jeAKiqG06y6B0naFvATSfZzjZg24J6J0laMt4JLEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROne7joDUGPjZa0iS5ByBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOrWox0EneRb4CfAKcLSqZpNcAHwBWAc8C1xXVS8lCfB3wDXAz4A/rqpvLubzezHqY6PBR0dLGt049gB+r6o2VtVsm78VeKiq1gMPtXmAq4H17bUVuGsMny1JOk1LcQhoM7C9TW8Hrh2qf7YGvgGcl+SiJfh8SdIIFhsABXw1yb4kW1ttZVUdatPfB1a26VXA80PrHmg1SdIELPafhHx7VR1M8mvA7iT/MbywqipJLWSDLUi2Aqxd6/FsSVoqi9oDqKqD7f0wcD9wCfDCsUM77f1wa34QWDO0+upWO36bd1fVbFXNzszMLKZ7kqRTOO0ASPKaJK87Ng1cCTwO7AS2tGZbgAfa9E7g/Rm4DPjR0KEiSdIyW8whoJXA/YOrOzkHuLeq/jnJo8COJDcCzwHXtfa7GFwCOsfgMtAPLOKzJUmLdNoBUFXPAG8+Qf2/gHecoF7ATaf7eZKk8fJOYEnqlAEgSZ0yACSpU4u9D0BnmFGfG+QzgyS5ByBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlDeCdcobxiS5ByBJnTIAJKlTBoAkdcpzADolzxVI08s9AEnqlAEgSZ0yACSpUwaAJHXKk8AaC08WS2cf9wAkqVMGgCR1ykNAWlYeKpLOHO4BSFKn3APQGck9BWnpLXsAJNkE/B2wAviHqvr4cvdB02PUoADDQjresgZAkhXAp4B3AgeAR5PsrKonlrMf6pN7FdL/t9x7AJcAc1X1DECS+4DNgAGgs46BorPdcgfAKuD5ofkDwKXL3AfplBZyWGkS2zNQNC5n3EngJFuBrW32p0meWsTmLgR+sPhenRUc63T6hbG+d0IdWQZd/3cds98YpdFyB8BBYM3Q/OpW+19VdTdw9zg+LMneqpodx7bOdI51OjnW6XSmjHW57wN4FFif5OIkrwKuB3Yucx8kSSzzHkBVHU1yM/Agg8tAt1XV/uXsgyRpYNnPAVTVLmDXMn3cWA4lnSUc63RyrNPpjBhrqmrSfZAkTYDPApKkTk1lACTZlOSpJHNJbp10f8YtybYkh5M8PlS7IMnuJE+39/Mn2cdxSLImycNJnkiyP8ktrT6NY/3lJI8k+fc21o+0+sVJ9rTv8hfaxRNTIcmKJN9K8pU2P81jfTbJd5I8lmRvq038ezx1ATD0uImrgQ3ADUk2TLZXY/cZYNNxtVuBh6pqPfBQmz/bHQU+VFUbgMuAm9p/y2kc68vAFVX1ZmAjsCnJZcBfAXdW1RuBl4AbJ9jHcbsFeHJofprHCvB7VbVx6PLPiX+Ppy4AGHrcRFX9N3DscRNTo6q+Drx4XHkzsL1NbweuXdZOLYGqOlRV32zTP2Hwx2IV0znWqqqfttlz26uAK4AvtvpUjBUgyWrg94F/aPNhSsd6ChP/Hk9jAJzocROrJtSX5bSyqg616e8DKyfZmXFLsg54C7CHKR1rOyTyGHAY2A38J/DDqjramkzTd/lvgT8Dft7mX8/0jhUGYf7VJPva0w7gDPgen3GPgtDiVVUlmZrLu5K8FvgS8MGq+vHgx+LANI21ql4BNiY5D7gf+O0Jd2lJJPkD4HBV7Uty+aT7s0zeXlUHk/wasDvJfwwvnNT3eBr3AOZ93MSUeiHJRQDt/fCE+zMWSc5l8Mf/c1X15VaeyrEeU1U/BB4G3gqcl+TYD7Vp+S6/DfjDJM8yOER7BYN/I2QaxwpAVR1s74cZhPslnAHf42kMgF4fN7ET2NKmtwAPTLAvY9GOC98DPFlVnxhaNI1jnWm//EnyKwz+zYwnGQTBu1uzqRhrVd1WVaurah2D/z+/VlXvZQrHCpDkNUled2wauBJ4nDPgezyVN4IluYbBMcZjj5u4Y8JdGqsknwcuZ/BEwReA24F/AnYAa4HngOuq6vgTxWeVJG8H/hX4Dv93rPjDDM4DTNtYf4fBicAVDH6Y7aiqjyb5TQa/ki8AvgX8UVW9PLmejlc7BPSnVfUH0zrWNq772+w5wL1VdUeS1zPh7/FUBoAkaX7TeAhIkjQCA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE79D3CZ+diipAhcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s = rnd.exponential(scale=5.0, size=10000)\n", + "sns.distplot(s, kde=False, bins=30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### poisson distribution\n", + "一定期間においてある事象が発生する回数が従う確率分布\n", + "\n", + "* probability of a given number of events occurring in a fixed interval of time \n", + "\n", + "if these events occur\n", + "* with a known constant rate\n", + "* independently of the time since the last event \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### negative binomial distribution\n", + "\n", + "成功確率pの試行がk回成功するまでに必要な試行回数xが従う確率分布。 \n", + " \n", + "numpyの場合、成功回数 n、成功確率pとした場合の失敗回数が従う確率分布となる。 \n", + "この場合平均は$n(1-p)/p$、分散$n(1-p)/p^2$\n", + "\n", + "$$p\\left( x\\right) =\\begin{pmatrix} x-1 \\\\ k-1 \\end{pmatrix} {p^{k}\\left( 1-p\\right) ^{x-k}}$$" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEAJJREFUeJzt3X+s3XV9x/Hna8W5BU2A9Y40QFcg6DKNq3oDW6aG6XRIjMiyMIpzuJkVEkk0WzLRJYOZmBgnuixumBIaIJECs6L8wTYbY2Qmo9pirQVEgRVsU9tKp8hc2ID3/rjf6rHe23vu+Z7Dvefj85GcnO/5nO+P94cv93W+/Zzv93tSVUiS2vULy12AJGmyDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS405Y7gIAVq9eXevWrVvuMiRpquzcufN7VTWz2HwrIujXrVvHjh07lrsMSZoqSR4bZj6HbiSpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEr4srYvm7d/vhQ81123toJVyJJK49H9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIat+gtEJJsBt4CHKqql3dttwMv7WY5Cfh+Va1Psg54EHioe+/eqrpy3EWPylslSPp5NMy9bm4CPgHccrShqv7o6HSS64AfDMz/SFWtH1eBkqR+Fg36qrqnO1L/GUkCXAK8frxlSZLGpe8Y/WuBg1X17YG2M5N8LcmXkry25/olST31vU3xBmDLwOsDwNqqeiLJq4HPJnlZVT157IJJNgIbAdaudUxckiZl5CP6JCcAfwDcfrStqp6uqie66Z3AI8BL5lu+qjZV1WxVzc7MzIxahiRpEX2Gbn4P+GZV7TvakGQmyapu+izgHODRfiVKkvpYNOiTbAH+A3hpkn1J3tW9dSk/PWwD8Dpgd5JdwKeBK6vqyDgLliQtzTBn3WxYoP2d87RtBbb2L0uSNC5eGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1bpgfB9+c5FCSPQNt1ybZn2RX97hw4L33J3k4yUNJfn9ShUuShjPMEf1NwAXztH+8qtZ3j7sBkvwGcCnwsm6Zf0qyalzFSpKWbtGgr6p7gCNDru8i4Laqerqq/hN4GDi3R32SpJ76jNFflWR3N7Rzctd2GvCdgXn2dW0/I8nGJDuS7Dh8+HCPMiRJxzNq0F8PnA2sBw4A1y11BVW1qapmq2p2ZmZmxDIkSYsZKeir6mBVPVtVzwE38JPhmf3AGQOznt61SZKWyUhBn2TNwMuLgaNn5NwFXJrkhUnOBM4BvtKvRElSHycsNkOSLcD5wOok+4BrgPOTrAcK2AtcAVBV9ye5A3gAeAZ4d1U9O5nSJUnDWDToq2rDPM03Hmf+DwEf6lOUJGl8vDJWkhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjFg36JJuTHEqyZ6Dt75J8M8nuJHcmOalrX5fkf5Ls6h6fnGTxkqTFDXNEfxNwwTFt24CXV9UrgG8B7x9475GqWt89rhxPmZKkUS0a9FV1D3DkmLbPV9Uz3ct7gdMnUJskaQzGMUb/Z8C/DLw+M8nXknwpyWvHsH5JUg8n9Fk4yV8DzwCf6poOAGur6okkrwY+m+RlVfXkPMtuBDYCrF27tk8ZkqTjGPmIPsk7gbcAb6+qAqiqp6vqiW56J/AI8JL5lq+qTVU1W1WzMzMzo5YhSVrESEGf5ALgr4C3VtWPBtpnkqzqps8CzgEeHUehkqTRLDp0k2QLcD6wOsk+4BrmzrJ5IbAtCcC93Rk2rwM+mOT/gOeAK6vqyLwrliQ9LxYN+qraME/zjQvMuxXY2reo5Xbr9seHmu+y8/xuQdLK55WxktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOGCvokm5McSrJnoO2UJNuSfLt7PrlrT5J/SPJwkt1JXjWp4iVJi1v0x8E7NwGfAG4ZaLsa+EJVfTjJ1d3r9wFvBs7pHucB13fPzfFHxCVNg6GO6KvqHuDIMc0XATd30zcDbxtov6Xm3AuclGTNOIqVJC1dnzH6U6vqQDf9XeDUbvo04DsD8+3r2n5Kko1JdiTZcfjw4R5lSJKOZyxfxlZVAbXEZTZV1WxVzc7MzIyjDEnSPPoE/cGjQzLd86GufT9wxsB8p3dtkqRl0Cfo7wIu76YvBz430P4n3dk3vwX8YGCIR5L0PBvqrJskW4DzgdVJ9gHXAB8G7kjyLuAx4JJu9ruBC4GHgR8BfzrmmiVJSzBU0FfVhgXeesM88xbw7j5FSZLGxytjJalxw14wpR68sErScvKIXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuJF/eCTJS4HbB5rOAv4GOAn4c+Bw1/6Bqrp75AolSb2MHPRV9RCwHiDJKmA/cCdzPwb+8ar66FgqlCT1Mq6hmzcAj1TVY2NanyRpTMYV9JcCWwZeX5Vkd5LNSU4e0zYkSSPoHfRJfhF4K/DPXdP1wNnMDescAK5bYLmNSXYk2XH48OH5ZpEkjcE4jujfDNxXVQcBqupgVT1bVc8BNwDnzrdQVW2qqtmqmp2ZmRlDGZKk+Ywj6DcwMGyTZM3AexcDe8awDUnSiEY+6wYgyYnAG4ErBpo/kmQ9UMDeY96TJD3PegV9Vf038CvHtL2jV0WSpLHqFfQar1u3Pz7UfJedt3bClUhqibdAkKTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMb1/oWpJHuBHwLPAs9U1WySU4DbgXXM/W7sJVX1X323JUlaunEd0f9uVa2vqtnu9dXAF6rqHOAL3WtJ0jKY1NDNRcDN3fTNwNsmtB1J0iLGEfQFfD7JziQbu7ZTq+pAN/1d4NQxbEeSNILeY/TAa6pqf5JfBbYl+ebgm1VVSerYhboPhY0Aa9euHUMZkqT59D6ir6r93fMh4E7gXOBgkjUA3fOheZbbVFWzVTU7MzPTtwxJ0gJ6BX2SE5O8+Og08CZgD3AXcHk32+XA5/psR5I0ur5DN6cCdyY5uq5bq+pfk3wVuCPJu4DHgEt6bkeSNKJeQV9VjwK/OU/7E8Ab+qxb43Hr9seHmu+y8/yeRGqVV8ZKUuMMeklqnEEvSY0z6CWpcQa9JDVuHFfG6nk27Jk0kgQe0UtS8wx6SWqcQzcCvLBKaplH9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaN3LQJzkjyReTPJDk/iTv6dqvTbI/ya7uceH4ypUkLVWfe908A/xlVd2X5MXAziTbuvc+XlUf7V+eJKmvkYO+qg4AB7rpHyZ5EDhtXIVJksZjLGP0SdYBrwS2d01XJdmdZHOSkxdYZmOSHUl2HD58eBxlSJLm0Tvok7wI2Aq8t6qeBK4HzgbWM3fEf918y1XVpqqararZmZmZvmVIkhbQK+iTvIC5kP9UVX0GoKoOVtWzVfUccANwbv8yJUmj6nPWTYAbgQer6mMD7WsGZrsY2DN6eZKkvvqcdfM7wDuAbyTZ1bV9ANiQZD1QwF7gil4VSpJ66XPWzZeBzPPW3aOXo5XOnxyUpo+/Gatl5QeHNHneAkGSGmfQS1LjHLrRRAw7JCNp8jyil6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY3z9Eo1ZSmndXq1rX5eeEQvSY3ziF5TYRouwPK+PVqpPKKXpMYZ9JLUOIdupBXKoSCNi0Gvn1sG6cL8b9MWh24kqXETC/okFyR5KMnDSa6e1HYkScc3kaGbJKuAfwTeCOwDvprkrqp6YBLbkyZppZ/a6TCLFjOpMfpzgYer6lGAJLcBFwEGvdSQcX8IDvthNA0fbiupxkkF/WnAdwZe7wPOm9C2pKmyXP9CWOn/MllOrd86Y9nOukmyEdjYvXwqyUM9Vrca+F7/qpZdK/0A+7ISrfh+vH34WYfqyxLWN7Rxr/Pt/fbLrw0z06SCfj9wxsDr07u2H6uqTcCmcWwsyY6qmh3HupZTK/0A+7IStdIPsC9LNamzbr4KnJPkzCS/CFwK3DWhbUmSjmMiR/RV9UySq4B/A1YBm6vq/klsS5J0fBMbo6+qu4G7J7X+Y4xlCGgFaKUfYF9Wolb6AfZlSVJVk96GJGkZeQsESWrcVAd9S7dZSLI3yTeS7EqyY7nrWYokm5McSrJnoO2UJNuSfLt7Pnk5axzGAv24Nsn+br/sSnLhctY4rCRnJPlikgeS3J/kPV37NO6XhfoyVfsmyS8l+UqSr3f9+Nuu/cwk27scu707gWW8257WoZvuNgvfYuA2C8CGab3NQpK9wGxVrejznOeT5HXAU8AtVfXyru0jwJGq+nD3IXxyVb1vOetczAL9uBZ4qqo+upy1LVWSNcCaqrovyYuBncDbgHcyfftlob5cwhTtmyQBTqyqp5K8APgy8B7gL4DPVNVtST4JfL2qrh/ntqf5iP7Ht1moqv8Fjt5mQc+zqroHOHJM80XAzd30zcz9Ya5oC/RjKlXVgaq6r5v+IfAgc1esT+N+WagvU6XmPNW9fEH3KOD1wKe79onsk2kO+vluszB1O39AAZ9PsrO7anjanVpVB7rp7wKnLmcxPV2VZHc3tLPihzqOlWQd8EpgO1O+X47pC0zZvkmyKsku4BCwDXgE+H5VPdPNMpEcm+agb81rqupVwJuBd3fDCE2oufHB6RwjhOuBs4H1wAHguuUtZ2mSvAjYCry3qp4cfG/a9ss8fZm6fVNVz1bVeubuFnAu8OvPx3anOegXvc3CNKmq/d3zIeBO5v4nmGYHu7HVo2Osh5a5npFU1cHuj/M54AamaL9048BbgU9V1We65qncL/P1ZZr3TVV9H/gi8NvASUmOXtM0kRyb5qBv5jYLSU7svmQiyYnAm4A9x19qxbsLuLybvhz43DLWMrKjodi5mCnZL90XfzcCD1bVxwbemrr9slBfpm3fJJlJclI3/cvMnUjyIHOB/4fdbBPZJ1N71g1AdzrV3/OT2yx8aJlLGkmSs5g7ioe5q5Vvnaa+JNkCnM/cXfgOAtcAnwXuANYCjwGXVNWK/qJzgX6cz9zQQAF7gSsGxrhXrCSvAf4d+AbwXNf8AebGtqdtvyzUlw1M0b5J8grmvmxdxdxB9h1V9cHu7/824BTga8AfV9XTY932NAe9JGlx0zx0I0kagkEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Lj/h+6TLvOFAaE8AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s = rnd.negative_binomial(n=1.0, p=0.2, size=1000)\n", + "sns.distplot(s, kde=False, bins=np.arange(max(s)+1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### gamma distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}