https://polybox.ethz.ch/index.php/s/RKFzqX2ubVlIgmQ
This project performs binary classification of steel beam bars by combining machine vision techniques with deep learning model. First task involves data cleaning using machine vision approaches. Next, a convolution-deconvolution architecture is employed for key corner detection, followed by an image classifier. Both corner detection and classification utilize pre-trained models from TorchVision.
For running tests you just need to executeinference.py
that takes an argument -s path/to/dataset
to specify the data directory.
You can install all required dependencies with:
python /teamspace/studios/this_studio/inference.py -s path_to_dataset
To run this project, you will need Python and all the dependecies in requirements.txt
You can install all required dependencies with:
pip install -r requirements.txt
THIS_STUDIO/
├── .lightning_studio/
│ ├── on_start.sh
│ └── on_stop.sh
├── dataset/
│ ├── export1.csv
│ ├── export2.csv
│ ├── export3.csv
│ └── test_set.csv
├── lightning_logs/
│ └── performance_final/
│ └── events.out.tfevents.1730021584.ip-10-19-90-222
├── models/
│ ├── Final_classifier.pth
│ └── gaussian_points_finder.pth
├── plots/
│ ├── confusion_matrix.png
│ ├── Filtered.jpg
│ ├── Filtered2.jpg
│ ├── rgb.jpg
│ └── test.jpg
├── .gitignore
├── config.py
├── dataloader.py
├── dataset_access.txt
├── gaussian_point_finder.py
├── guidelines.pdf
├── inference.py
├── LICENSE.md
├── patch_classifier.py
├── point_finder_training.ipynb
├── predictor.py
├── Project_Proposal_Duferco.pdf
├── README.md
└── requirements.txt