forked from ininkevin/GLD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
568 lines (486 loc) · 20.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import argparse
from email.policy import default
import json
import pickle
from collections import defaultdict, Counter
from os.path import dirname, join
import os
from pyexpat import model
import torch
from torchsummary import summary
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import numpy as np
from dataset import Dictionary, VQAFeatureDataset
import utils
import click
import skimage.io as io
import torch
import torch.nn as nn
from collections import OrderedDict
from tensorboardX import SummaryWriter
from attention import Attention, NewAttention, SelfAttention
from language_model import WordEmbedding, QuestionEmbedding
from classifier import SimpleClassifier
from fc import FCNet, MLP
from torch.nn import functional as F
import time
from tqdm import tqdm
import math
import matplotlib.pyplot as plt
import pickle as cPickle
import copy
from PIL import Image, ImageFont, ImageDraw, ImageEnhance
image_dir = 'data/images/mscoco/images/' # path to mscoco/val2014, containing all mscoco val images
name = 'val' # train or val
answer_path = os.path.join('data', 'cp-cache', '%s_target.pkl' % name)
name = "train" if name == "train" else "test"
question_path = os.path.join('data', 'vqacp_v2_%s_questions.json' % name)
with open(question_path) as f:
questions = json.load(f)
with open(answer_path, 'rb') as f:
answers = cPickle.load(f)
questions.sort(key=lambda x: x['question_id'])
answers.sort(key=lambda x: x['question_id'])
def parse_args():
parser = argparse.ArgumentParser("GLD")
parser.add_argument(
'-dataset', default = 'cpv2',
choices=["cpv2", "v2"])
parser.add_argument(
'-mode', default="base",
choices=["base", "gld_joint", "gld_iter", "gld_reg"])
parser.add_argument('-scale',default = "sin",
choices=["sin", "increase", None] )
parser.add_argument('-visual', default = False)
parser.add_argument('-qid', default = 140)
parser.add_argument('-epochs', type=int, default=25)
parser.add_argument('-num_hid', type=int, default=1024)
parser.add_argument('-output', type=str, default='base')
parser.add_argument('-batch_size', type=int, default=512)
parser.add_argument('-seed', type=int, default=1111, help='random seed')
args = parser.parse_args()
return args
def invert_dict(d):
return {v: k for k, v in d.items()}
def expand_batch(*args):
return (t.unsqueeze(0) for t in args)
def todevice(tensor, device):
if isinstance(tensor, list) or isinstance(tensor, tuple):
assert isinstance(tensor[0], torch.Tensor)
return [todevice(t, device) for t in tensor]
elif isinstance(tensor, torch.Tensor):
return tensor.to(device)
def plot_rect(image, boxes):
img = Image.fromarray(np.uint8(image))
draw = ImageDraw.Draw(img)
for k in range(15):
box = boxes[k,:]
drawrect(draw, box, outline='green', width=3)
img = np.asarray(img)
return img
def drawrect(drawcontext, xy, outline=None, width=0):
x1, y1, x2, y2 = xy
points = (x1, y1), (x2, y1), (x2, y2), (x1, y2), (x1, y1)
drawcontext.line(points, fill=outline, width=width)
def _load_image(img_id, dset):
""" Load an image """
if img_id in dset.image_id2ix['train'].keys():
split = 'train'
img_idx = dset.image_id2ix['train'][img_id]
else:
split = 'val'
img_idx = dset.image_id2ix['val'][img_id]
name = (12 - len(str(img_id))) * '0' + str(img_id)
img = io.imread(os.path.join(image_dir, split+'2014', 'COCO_'+split+'2014_' + name + '.jpg'))
bboxes = torch.from_numpy(np.array(dset.spatial[split][img_idx][:, :4]))
return img, bboxes
def plot_attention(img, boxes, att):
white = np.asarray([255, 255, 255])
pixel_peak = np.zeros((img.shape[0], img.shape[1]))
for k in range(36):
for i in range(int(boxes[k][1]), int(boxes[k][3])):
for j in range(int(boxes[k][0]), int(boxes[k][2])):
pixel_peak[i,j] = max(pixel_peak[i,j], att[k])
for i in range(0, img.shape[0]):
for j in range(0, img.shape[1]):
img[i,j] = white * (1-pixel_peak[i,j]) + img[i,j] * pixel_peak[i,j]
if torch.max(att) > 0.5:
red_box = boxes[torch.argmax(att),:]
img = Image.fromarray(np.uint8(img))
draw = ImageDraw.Draw(img)
drawrect(draw, red_box, outline='red', width=4)
img = np.asarray(img)
return img
def get_bias(train_dset,eval_dset):
answer_voc_size = train_dset.num_ans_candidates
question_type_to_probs = defaultdict(Counter)
question_type_to_count = Counter()
for ex in train_dset.entries:
ans = ex["answer"]
q_type = ans["question_type"]
question_type_to_count[q_type] += 1
if ans["labels"] is not None:
for label, score in zip(ans["labels"], ans["scores"]):
question_type_to_probs[q_type][label] += score
question_type_to_prob_array = {}
for q_type, count in question_type_to_count.items():
prob_array = np.zeros(answer_voc_size, np.float32)
for label, total_score in question_type_to_probs[q_type].items():
prob_array[label] += total_score
prob_array /= count
question_type_to_prob_array[q_type] = prob_array
for ds in [train_dset,eval_dset]:
for ex in ds.entries:
q_type = ex["answer"]["question_type"]
ex["bias"] = question_type_to_prob_array[q_type]
def mask_softmax(x,mask):
mask=mask.unsqueeze(2).float()
x2=torch.exp(x-torch.max(x))
x3=x2*mask
epsilon=1e-5
x3_sum=torch.sum(x3,dim=1,keepdim=True)+epsilon
x4=x3/x3_sum.expand_as(x3)
return x4
class BaseModel(nn.Module):
def __init__(self, w_emb, q_emb, v_att, q_att, q_net, q_net_2, v_net, classifier, c_1,c_2):
super(BaseModel, self).__init__()
self.w_emb = w_emb
self.q_emb = q_emb
self.v_att = v_att
self.q_att = q_att
self.q_net = q_net
self.q_net_2 = q_net_2
self.v_net = v_net
self.classifier = classifier
self.c_1=c_1
self.c_2=c_2
self.vision_lin = torch.nn.Linear(1024, 1)
self.question_lin = torch.nn.Linear(1024, 1)
def forward(self, v, q, labels, bias, loss_type = None, weight = 0.9):
# print(v.size())
# print(q.size())
# print(labels.size())
# print(bias.size())
w_emb = self.w_emb(q)
q_emb, _ = self.q_emb(w_emb) # [batch, q_dim]
att = self.v_att(v, q_emb)
att = nn.functional.softmax(att, 1)
v_emb = (att * v).sum(1)
q_repr = self.q_net(q_emb)
v_repr = self.v_net(v_emb)
joint_repr = v_repr * q_repr
logits = self.classifier(joint_repr)
q_pred=self.c_1(q_emb.detach())
q_out=self.c_2(q_pred)
if labels is not None:
if loss_type == 'iter_q':
y_gradient = torch.clamp(labels - bias, min=0, max=1.).detach()
loss = F.binary_cross_entropy_with_logits(q_out, y_gradient)
loss *= labels.size(1)
elif loss_type == 'iter_vq':
ref_logits = torch.sigmoid(q_out) + bias
ref_logits = torch.clamp(ref_logits, min=0., max=1.) * labels
y_gradient = torch.clamp(labels - ref_logits, min=0, max=1.).detach()
loss = F.binary_cross_entropy_with_logits(logits, y_gradient)
loss *= labels.size(1)
elif loss_type == 'joint':
y_gradient = torch.clamp(labels - bias, min=0, max=1.).detach()
loss_q = F.binary_cross_entropy_with_logits(q_out, y_gradient)
ref_logits = torch.sigmoid(q_out) + bias
ref_logits = torch.clamp(ref_logits, min=0., max=1.) * labels
y_gradient = torch.clamp(labels - ref_logits, min=0, max=1.).detach()
loss = F.binary_cross_entropy_with_logits(logits, y_gradient) + loss_q
loss *= labels.size(1)
elif loss_type == 'reg_q':
loss = -(q_out.log_softmax(-1) * labels).mean()
loss *= labels.size(1)
elif loss_type == 'reg_vq':
ref_logits = (q_out.softmax(1) + bias)
ref_logits = torch.clamp(ref_logits, min=0., max=1.) * labels
loss_1 = -(logits.log_softmax(-1) * labels).mean()
loss_2 = -(logits.log_softmax(-1) * ref_logits).mean()
loss = loss_1 - weight * (loss_2)
loss *= labels.size(1)
elif loss_type == 'base':
loss = F.binary_cross_entropy_with_logits(logits, labels, reduction='none').mean(-1).mean(0)
loss *= labels.size(1)
else:
loss = None
return logits, loss, att
def build_baseline0_newatt(dataset, num_hid):
w_emb = WordEmbedding(dataset.dictionary.ntoken, 300, 0.0)
q_emb = QuestionEmbedding(300, num_hid, 1, False, 0.0)
v_att = NewAttention(dataset.v_dim, q_emb.num_hid, num_hid)
q_att = SelfAttention(q_emb.num_hid, num_hid)
q_net = FCNet([q_emb.num_hid, num_hid])
q_net_2 = FCNet([q_emb.num_hid, num_hid])
v_net = FCNet([dataset.v_dim, num_hid])
classifier = SimpleClassifier(
num_hid, num_hid * 2, dataset.num_ans_candidates, 0.5)
c_1=MLP(input_dim=q_emb.num_hid,dimensions=[1024,1024,dataset.num_ans_candidates])
c_2=nn.Linear(dataset.num_ans_candidates,dataset.num_ans_candidates)
return BaseModel(w_emb, q_emb, v_att, q_att, q_net, q_net_2, v_net, classifier, c_1, c_2)
def compute_score_with_logits(logits, labels):
logits = torch.argmax(logits, 1)
one_hots = torch.zeros(*labels.size()).cuda()
one_hots.scatter_(1, logits.view(-1, 1), 1)
scores = (one_hots * labels)
return scores
def train(model, train_loader, eval_loader, qid2type, args, tbx):
num_epochs=args.epochs
run_eval=True
mode = args.mode
optim = torch.optim.Adamax(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
logger = utils.Logger(os.path.join(args.output, 'log.txt'))
total_step = 0
best_eval_score = 0
score_list = []
eval_score_list =[]
loss_list = []
eval_loss_list = []
for epoch in range(num_epochs):
total_loss = 0
train_score = 0
t = time.time()
for i, (v, q, a, b,type_mask,notype_mask,q_mask) in tqdm(enumerate(train_loader), ncols=100,
desc="Epoch %d" % (epoch), total=len(train_loader)):
total_step += 1
v = Variable(v).cuda().requires_grad_()
q = Variable(q).cuda()
q_mask=Variable(q_mask).cuda()
a = Variable(a).cuda()
b = Variable(b).cuda().requires_grad_()
type_mask=Variable(type_mask).float().cuda()
notype_mask=Variable(notype_mask).float().cuda()
if mode == "gld_iter":
pred, loss, _ = model(v, q, a, b, loss_type = 'iter_q')
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
pred, loss, _ = model(v, q, a, b, loss_type = 'iter_vq')
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
elif mode == "gld_joint":
pred, loss, _ = model(v, q, a, b, loss_type = 'joint')
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
elif mode == "gld_reg":
if args.scale == "sin":
scale = math.sin(math.pi/2 * (epoch+30) / (num_epochs+30))
elif args.scale == "increase":
scale = (epoch+50) / (num_epochs+50)
else:
scale = args.scale
pred, loss, _ = model(v, q, a, b, loss_type = 'reg_q', weight = scale)
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
pred, loss, _ = model(v, q, a, b, loss_type = 'reg_vq', weight = scale)
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
elif mode == "base":
pred, loss, _ = model(v, q, a, b, loss_type = 'base')
if (loss != loss).any():
raise ValueError("NaN loss")
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optim.step()
optim.zero_grad()
total_loss += loss.item() * q.size(0)
batch_score = compute_score_with_logits(pred, a.data).sum()
train_score += batch_score
total_loss /= len(train_loader.dataset)
train_score = 100 * train_score / len(train_loader.dataset)
loss_list.append(total_loss)
logger.write('epoch %d, time: %.2f' % (epoch, time.time() - t))
logger.write('\ttrain_loss: %.2f, score: %.2f' % (total_loss, train_score))
if run_eval:
model.train(False)
results = evaluate(model, eval_loader, qid2type)
results["epoch"] = epoch
results["step"] = total_step
results["train_score"] = train_score
model.train(True)
gap = train_score - 100 * results["score"]
record = dict(
score= 100 * results["score"],
score_yesno= 100 * results['score_yesno'],
score_other=100 * results['score_other'],
score_number=100 * results['score_number'],
total_loss = results['total_loss'],
gap = gap
)
results_list = OrderedDict(record)
for k, v in results_list.items():
tbx.add_scalar(f'dev/{k}', v, epoch)
eval_score = results["score"]
bound = results["upper_bound"]
yn = results['score_yesno']
other = results['score_other']
num = results['score_number']
eval_loss = results['total_loss']
eval_score_list.append(100 * eval_score)
eval_loss_list.append(eval_loss)
logger.write('\teval score: %.2f (%.2f)' % (100 * eval_score, 100 * bound))
logger.write('\tyn score: %.2f other score: %.2f num score: %.2f' % (100 * yn, 100 * other, 100 * num))
if eval_score > best_eval_score:
path = 'base_model_%d.pt'% (epoch)
model_path = os.path.join(args.output, path)
torch.save(model.state_dict(), model_path)
best_eval_score = eval_score
model_path = os.path.join(args.output, 'base_model_final.pt')
torch.save(model.state_dict(), model_path)
def evaluate(model, dataloader, qid2type):
score = 0
upper_bound = 0
score_yesno = 0
score_number = 0
score_other = 0
total_yesno = 0
total_number = 0
total_other = 0
total_loss = 0
for v, q, a, b, qids, q_mask in tqdm(dataloader, ncols=100, total=len(dataloader), desc="eval"):
v = Variable(v, requires_grad=False).cuda()
q = Variable(q, requires_grad=False).cuda()
q_mask=Variable(q_mask).cuda()
a = Variable(a).cuda()
b = Variable(b).cuda().requires_grad_()
pred, loss, _ = model(v, q, a, b, loss_type = 'base', weight = 0.)
batch_score = compute_score_with_logits(pred, a.cuda()).cpu().numpy().sum(1)
score += batch_score.sum()
upper_bound += (a.max(1)[0]).sum()
qids = qids.detach().cpu().int().numpy()
total_loss += loss.item() * q.size(0)
for j in range(len(qids)):
qid = qids[j]
typ = qid2type[str(qid)]
if typ == 'yes/no':
score_yesno += batch_score[j]
total_yesno += 1
elif typ == 'other':
score_other += batch_score[j]
total_other += 1
elif typ == 'number':
score_number += batch_score[j]
total_number += 1
else:
print('Hahahahahahahahahahaha')
score = score / len(dataloader.dataset)
upper_bound = upper_bound / len(dataloader.dataset)
score_yesno /= total_yesno
score_other /= total_other
score_number /= total_number
total_loss /= len(dataloader.dataset)
results = dict(
score=score,
upper_bound=upper_bound,
score_yesno=score_yesno,
score_other=score_other,
score_number=score_number,
total_loss = total_loss
)
return results
def visualize(model, index, dset):
question = questions[index]
img_id = question['image_id']
img, bbox = _load_image(img_id, dset)
print(question['question'])
name = 'image/' + str(index) + question['question']+ '_ori.jpg'
im = Image.fromarray(img)
im.save(name)
plot_img = plot_rect(copy.copy(img), bbox)
v, q, a, b, qid, q_mask = dset.__getitem__(index)
utils.assert_eq(question['question_id'], qid)
v = Variable(v, requires_grad=False).cuda()
q = Variable(q, requires_grad=False).cuda()
model.eval()
pred, _,atts = model(v.unsqueeze(0), q.unsqueeze(0), None, None, loss_type = None)
label = torch.argmax(a).data.cpu()
print(dset.label2ans[label])
pred = F.softmax(pred.squeeze(0), dim=0).cpu()
values, indices = pred.topk(5,dim=0, largest=True, sorted=True)
for i in indices:
print(dset.label2ans[i])
name = 'image/' + str(index) + question['question']+ '.jpg'
im = Image.fromarray(plot_img)
im.save(name)
if atts.max() < 0.5:
scale = 0.55 / atts.max()
else:
scale = 1.
plot_img = plot_attention(copy.copy(img), bbox, atts.squeeze(0) * scale)
name = 'debiased_att_vis/' + str(index) + '.jpg'
im = Image.fromarray(plot_img)
im.save(name)
def get_model_size(model):
param_size = 0
param_sum = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
param_sum += param.nelement()
buffer_size = 0
buffer_sum = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
all_size = (param_size + buffer_size)/1024/1024
print('total model size: {:.3f}MB\nparameter_size: {:.3f}B'.format(all_size, param_size))
return(param_size, param_sum, buffer_size, buffer_sum, all_size)
def main():
args = parse_args()
dataset=args.dataset
args.output=os.path.join('logs',args.output)
if not os.path.isdir(args.output):
utils.create_dir(args.output)
else:
if click.confirm('Directory already exists in {}. Erase?'
.format(args.output, default=False)):
os.system('rm -r ' + args.output)
utils.create_dir(args.output)
tbx = SummaryWriter(args.output)
dictionary = Dictionary.load_from_file('data/dictionary.pkl')
print("Building dataset...")
train_dset = VQAFeatureDataset('train', dictionary, dataset=dataset,
cache_image_features=False)
eval_dset = VQAFeatureDataset('val', dictionary, dataset=dataset,
cache_image_features=False)
get_bias(train_dset,eval_dset)
model = build_baseline0_newatt(train_dset, num_hid=1024).cuda()
model.w_emb.init_embedding('data/glove6b_init_300d.npy')
get_model_size(model)
with open('util/qid2type_%s.json'%dataset,'r') as f:
qid2type=json.load(f)
model=model.cuda()
# summary(model.long(), [(512,36,2048), (512,14), (512,2274), (512,2274)])
batch_size = args.batch_size
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = True
train_loader = DataLoader(train_dset, batch_size, shuffle=True, num_workers=0)
eval_loader = DataLoader(eval_dset, batch_size, shuffle=False, num_workers=0)
print("Starting training...")
train(model, train_loader, eval_loader, qid2type, args, tbx)
if args.visual:
dset = VQAFeatureDataset('val', dictionary, dataset='cpv2', cache_image_features=False)
visualize(model, index = args.qid, dset=dset)
if __name__ == '__main__':
main()