-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdiffpure_ddpm.py
142 lines (111 loc) · 5.23 KB
/
diffpure_ddpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for DiffPure. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import os
import random
import numpy as np
import torch
import torchvision.utils as tvu
from ddpm.unet_ddpm import Model
def get_beta_schedule(*, beta_start, beta_end, num_diffusion_timesteps):
betas = np.linspace(beta_start, beta_end,
num_diffusion_timesteps, dtype=np.float64)
assert betas.shape == (num_diffusion_timesteps,)
return betas
def extract(a, t, x_shape):
"""Extract coefficients from a based on t and reshape to make it
broadcastable with x_shape."""
bs, = t.shape
assert x_shape[0] == bs
out = torch.gather(torch.tensor(a, dtype=torch.float, device=t.device), 0, t.long())
assert out.shape == (bs,)
out = out.reshape((bs,) + (1,) * (len(x_shape) - 1))
return out
def image_editing_denoising_step_flexible_mask(x, t, *, model, logvar, betas):
"""
Sample from p(x_{t-1} | x_t)
"""
alphas = 1.0 - betas
alphas_cumprod = alphas.cumprod(dim=0)
model_output = model(x, t)
weighted_score = betas / torch.sqrt(1 - alphas_cumprod)
mean = extract(1 / torch.sqrt(alphas), t, x.shape) * (x - extract(weighted_score, t, x.shape) * model_output)
logvar = extract(logvar, t, x.shape)
noise = torch.randn_like(x)
mask = 1 - (t == 0).float()
mask = mask.reshape((x.shape[0],) + (1,) * (len(x.shape) - 1))
sample = mean + mask * torch.exp(0.5 * logvar) * noise
sample = sample.float()
return sample
class Diffusion(torch.nn.Module):
def __init__(self, args, config, device=None):
super().__init__()
self.args = args
self.config = config
if device is None:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.device = device
print("Loading model")
if self.config.data.dataset == "CelebA_HQ":
url = "https://image-editing-test-12345.s3-us-west-2.amazonaws.com/checkpoints/celeba_hq.ckpt"
else:
raise ValueError
model = Model(self.config)
ckpt = torch.hub.load_state_dict_from_url(url, map_location='cpu')
model.load_state_dict(ckpt)
model.eval()
self.model = model
self.model_var_type = config.model.var_type
betas = get_beta_schedule(
beta_start=config.diffusion.beta_start,
beta_end=config.diffusion.beta_end,
num_diffusion_timesteps=config.diffusion.num_diffusion_timesteps
)
self.betas = torch.from_numpy(betas).float()
self.num_timesteps = betas.shape[0]
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
posterior_variance = betas * \
(1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
if self.model_var_type == "fixedlarge":
self.logvar = np.log(np.append(posterior_variance[1], betas[1:]))
elif self.model_var_type == 'fixedsmall':
self.logvar = np.log(np.maximum(posterior_variance, 1e-20))
def image_editing_sample(self, img=None, bs_id=0, tag=None):
assert isinstance(img, torch.Tensor)
batch_size = img.shape[0]
with torch.no_grad():
if tag is None:
tag = 'rnd' + str(random.randint(0, 10000))
out_dir = os.path.join(self.args.log_dir, 'bs' + str(bs_id) + '_' + tag)
assert img.ndim == 4, img.ndim
x0 = img
if bs_id < 2:
os.makedirs(out_dir, exist_ok=True)
tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'original_input.png'))
xs = []
for it in range(self.args.sample_step):
e = torch.randn_like(x0)
total_noise_levels = self.args.t
a = (1 - self.betas).cumprod(dim=0).to(x0.device)
x = x0 * a[total_noise_levels - 1].sqrt() + e * (1.0 - a[total_noise_levels - 1]).sqrt()
if bs_id < 2:
tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'init_{it}.png'))
for i in reversed(range(total_noise_levels)):
t = torch.tensor([i] * batch_size, device=img.device)
x = image_editing_denoising_step_flexible_mask(x, t=t, model=self.model,
logvar=self.logvar,
betas=self.betas.to(img.device))
# added intermediate step vis
if (i - 49) % 50 == 0 and bs_id < 2:
tvu.save_image((x + 1) * 0.5, os.path.join(out_dir, f'noise_t_{i}_{it}.png'))
x0 = x
if bs_id < 2:
torch.save(x0, os.path.join(out_dir, f'samples_{it}.pth'))
tvu.save_image((x0 + 1) * 0.5, os.path.join(out_dir, f'samples_{it}.png'))
xs.append(x0)
return torch.cat(xs, dim=0)