-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Thomas Morris
committed
Jul 7, 2024
1 parent
ef729c7
commit 2b05f34
Showing
6 changed files
with
273 additions
and
128 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .beamline import Beamline, Detector # noqa |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import itertools | ||
from collections import deque | ||
from datetime import datetime | ||
from pathlib import Path | ||
|
||
import h5py | ||
import numpy as np | ||
import scipy as sp | ||
from area_detector_handlers.handlers import HandlerBase | ||
from event_model import compose_resource | ||
from ophyd import Component as Cpt | ||
from ophyd import Device, Signal | ||
from ophyd.sim import NullStatus, new_uid | ||
from ophyd.utils import make_dir_tree | ||
|
||
from ..utils import get_beam_stats | ||
|
||
|
||
class HDF5Handler(HandlerBase): | ||
specs = {"HDF5"} | ||
|
||
def __init__(self, filename): | ||
self._name = filename | ||
|
||
def __call__(self, frame): | ||
with h5py.File(self._name, "r") as f: | ||
entry = f["/entry/image"] | ||
return entry[frame] | ||
|
||
|
||
class ExternalFileReference(Signal): | ||
""" | ||
A pure software Signal that describe()s an image in an external file. | ||
""" | ||
|
||
def describe(self): | ||
resource_document_data = super().describe() | ||
resource_document_data[self.name].update( | ||
dict( | ||
external="FILESTORE:", | ||
dtype="array", | ||
) | ||
) | ||
return resource_document_data | ||
|
||
|
||
class Detector(Device): | ||
sum = Cpt(Signal, kind="hinted") | ||
max = Cpt(Signal, kind="normal") | ||
area = Cpt(Signal, kind="normal") | ||
cen_x = Cpt(Signal, kind="hinted") | ||
cen_y = Cpt(Signal, kind="hinted") | ||
wid_x = Cpt(Signal, kind="hinted") | ||
wid_y = Cpt(Signal, kind="hinted") | ||
image = Cpt(ExternalFileReference, kind="normal") | ||
image_shape = Cpt(Signal, value=(300, 400), kind="normal") | ||
noise = Cpt(Signal, kind="normal") | ||
|
||
def __init__(self, root_dir: str = "/tmp/blop/sim", verbose: bool = True, noise: bool = True, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
|
||
_ = make_dir_tree(datetime.now().year, base_path=root_dir) | ||
|
||
self._root_dir = root_dir | ||
self._verbose = verbose | ||
|
||
# Used for the emulated cameras only. | ||
self._img_dir = None | ||
|
||
# Resource/datum docs related variables. | ||
self._asset_docs_cache = deque() | ||
self._resource_document = None | ||
self._datum_factory = None | ||
|
||
self.noise.put(noise) | ||
|
||
def trigger(self): | ||
super().trigger() | ||
raw_image = self.generate_beam(noise=self.noise.get()) | ||
|
||
current_frame = next(self._counter) | ||
|
||
self._dataset.resize((current_frame + 1, *self.image_shape.get())) | ||
|
||
self._dataset[current_frame, :, :] = raw_image | ||
|
||
datum_document = self._datum_factory(datum_kwargs={"frame": current_frame}) | ||
self._asset_docs_cache.append(("datum", datum_document)) | ||
|
||
stats = get_beam_stats(raw_image) | ||
self.image.put(datum_document["datum_id"]) | ||
|
||
for attr in ["max", "sum", "cen_x", "cen_y", "wid_x", "wid_y"]: | ||
getattr(self, attr).put(stats[attr]) | ||
|
||
super().trigger() | ||
|
||
return NullStatus() | ||
|
||
def stage(self): | ||
super().stage() | ||
date = datetime.now() | ||
self._assets_dir = date.strftime("%Y/%m/%d") | ||
data_file = f"{new_uid()}.h5" | ||
|
||
self._resource_document, self._datum_factory, _ = compose_resource( | ||
start={"uid": "needed for compose_resource() but will be discarded"}, | ||
spec="HDF5", | ||
root=self._root_dir, | ||
resource_path=str(Path(self._assets_dir) / Path(data_file)), | ||
resource_kwargs={}, | ||
) | ||
|
||
self._data_file = str(Path(self._resource_document["root"]) / Path(self._resource_document["resource_path"])) | ||
|
||
# now discard the start uid, a real one will be added later | ||
self._resource_document.pop("run_start") | ||
self._asset_docs_cache.append(("resource", self._resource_document)) | ||
|
||
self._h5file_desc = h5py.File(self._data_file, "x") | ||
group = self._h5file_desc.create_group("/entry") | ||
self._dataset = group.create_dataset( | ||
"image", | ||
data=np.full(fill_value=np.nan, shape=(1, *self.image_shape.get())), | ||
maxshape=(None, *self.image_shape.get()), | ||
chunks=(1, *self.image_shape.get()), | ||
dtype="float64", | ||
compression="lzf", | ||
) | ||
self._counter = itertools.count() | ||
|
||
def unstage(self): | ||
super().unstage() | ||
del self._dataset | ||
self._h5file_desc.close() | ||
self._resource_document = None | ||
self._datum_factory = None | ||
|
||
def collect_asset_docs(self): | ||
items = list(self._asset_docs_cache) | ||
self._asset_docs_cache.clear() | ||
for item in items: | ||
yield item | ||
|
||
def generate_beam(self, noise: bool = True): | ||
nx, ny = self.image_shape.get() | ||
|
||
x = np.linspace(-10, 10, ny) | ||
y = np.linspace(-10, 10, nx) | ||
X, Y = np.meshgrid(x, y) | ||
|
||
x0 = self.parent.kbh_ush.get() - self.parent.kbh_dsh.get() | ||
y0 = self.parent.kbv_usv.get() - self.parent.kbv_dsv.get() | ||
x_width = np.sqrt(0.5 + 5e-1 * (self.parent.kbh_ush.get() + self.parent.kbh_dsh.get() - 1) ** 2) | ||
y_width = np.sqrt(0.25 + 5e-1 * (self.parent.kbv_usv.get() + self.parent.kbv_dsv.get() - 2) ** 2) | ||
|
||
beam = np.exp(-0.5 * (((X - x0) / x_width) ** 4 + ((Y - y0) / y_width) ** 4)) / ( | ||
np.sqrt(2 * np.pi) * x_width * y_width | ||
) | ||
|
||
mask = X > self.parent.ssa_inboard.get() | ||
mask &= X < self.parent.ssa_outboard.get() | ||
mask &= Y > self.parent.ssa_lower.get() | ||
mask &= Y < self.parent.ssa_upper.get() | ||
mask = sp.ndimage.gaussian_filter(mask.astype(float), sigma=1) | ||
|
||
image = beam * mask | ||
|
||
if noise: | ||
kx = np.fft.fftfreq(n=len(x), d=0.1) | ||
ky = np.fft.fftfreq(n=len(y), d=0.1) | ||
KX, KY = np.meshgrid(kx, ky) | ||
|
||
power_spectrum = 1 / (1e-2 + KX**2 + KY**2) | ||
|
||
white_noise = 5e-3 * np.random.standard_normal(size=X.shape) | ||
pink_noise = 5e-3 * np.real(np.fft.ifft2(power_spectrum * np.fft.fft2(np.random.standard_normal(size=X.shape)))) | ||
# background = 5e-3 * (X - Y) / X.max() | ||
|
||
image += white_noise + pink_noise | ||
|
||
return image | ||
|
||
|
||
class Beamline(Device): | ||
det = Cpt(Detector) | ||
|
||
kbh_ush = Cpt(Signal, kind="hinted") | ||
kbh_dsh = Cpt(Signal, kind="hinted") | ||
kbv_usv = Cpt(Signal, kind="hinted") | ||
kbv_dsv = Cpt(Signal, kind="hinted") | ||
|
||
ssa_inboard = Cpt(Signal, value=-5.0, kind="hinted") | ||
ssa_outboard = Cpt(Signal, value=5.0, kind="hinted") | ||
ssa_lower = Cpt(Signal, value=-5.0, kind="hinted") | ||
ssa_upper = Cpt(Signal, value=5.0, kind="hinted") | ||
|
||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import numpy as np | ||
|
||
from blop import DOF, Agent, Objective | ||
from blop.sim import Beamline | ||
|
||
|
||
def test_kb_simulation(RE, db): | ||
beamline = Beamline(name="bl") | ||
beamline.det.noise.put(False) | ||
|
||
dofs = [ | ||
DOF(description="KBV downstream", device=beamline.kbv_dsv, search_domain=(-5.0, 5.0)), | ||
DOF(description="KBV upstream", device=beamline.kbv_usv, search_domain=(-5.0, 5.0)), | ||
DOF(description="KBH downstream", device=beamline.kbh_dsh, search_domain=(-5.0, 5.0)), | ||
DOF(description="KBH upstream", device=beamline.kbh_ush, search_domain=(-5.0, 5.0)), | ||
] | ||
|
||
objectives = [ | ||
Objective(name="bl_det_sum", target="max", transform="log", trust_domain=(1, np.inf)), | ||
Objective(name="bl_det_wid_x", target="min", transform="log"), # , latent_groups=[("x1", "x2")]), | ||
Objective(name="bl_det_wid_y", target="min", transform="log"), # , latent_groups=[("x1", "x2")])] | ||
] | ||
|
||
agent = Agent( | ||
dofs=dofs, | ||
objectives=objectives, | ||
dets=[beamline.det], | ||
verbose=True, | ||
db=db, | ||
tolerate_acquisition_errors=False, | ||
train_every=3, | ||
) | ||
|
||
RE(agent.learn("qr", n=32)) | ||
RE(agent.learn("qei", n=4, iterations=4)) |
Oops, something went wrong.