-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
309 lines (251 loc) · 11.1 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from collections import OrderedDict
from torch.nn import init
import torch.nn as nn
import torch.nn.functional as F
import torch
from torchvision import models
from torch import optim
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(3 * 32 * 32, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, 10)
def forward(self, x):
x = x.view(-1, 3 * 32 * 32)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# self.conv1 = nn.Conv2d(3, 64, 3)
# self.conv1 = nn.Conv2d(3, 96, 3)
self.conv1 = nn.Conv2d(3, 32, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, 3)
self.conv3 = nn.Conv2d(64, 64, 3)
self.fc1 = nn.Linear(64 * 4 * 4, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = x.view(-1, 64 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# todo Bottleneck
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(num_features=out_channel)
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1)
self.bn2 = nn.BatchNorm2d(num_features=out_channel)
self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(num_features=out_channel*self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
if self.downsample is not None:
identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, block_num, num_classes=1000):
super(ResNet, self).__init__()
self.in_channel = 64
self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block=block, channel=64, block_num=block_num[0], stride=1)
self.layer2 = self._make_layer(block=block, channel=128, block_num=block_num[1], stride=2)
self.layer3 = self._make_layer(block=block, channel=256, block_num=block_num[2], stride=2)
self.layer4 = self._make_layer(block=block, channel=512, block_num=block_num[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc1 = nn.Linear(in_features=512*block.expansion, out_features=num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None
if stride != 1 or self.in_channel != channel*block.expansion:
downsample = nn.Sequential(
nn.Conv2d(in_channels=self.in_channel, out_channels=channel*block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(num_features=channel*block.expansion))
layers = []
layers.append(block(in_channel=self.in_channel, out_channel=channel, downsample=downsample, stride=stride))
self.in_channel = channel*block.expansion
for _ in range(1, block_num):
layers.append(block(in_channel=self.in_channel, out_channel=channel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
return x
class VGGnet(nn.Module):
def __init__(self,feature_extract=True,num_classes=5):
super(VGGnet, self).__init__()
model = models.vgg16(pretrained=False)
pretrained_state_dict = torch.load("vgg16-397923af.pth")
model.load_state_dict(pretrained_state_dict, strict=False)
print('use VGG16 pretrained!')
self.features = model.features
set_parameter_requires_grad(self.features, feature_extract)#固定特征提取层参数
self.avgpool=model.avgpool
self.classifier = nn.Sequential(
nn.Linear(512*7*7 , 1024),
nn.ReLU(),
nn.Linear(1024, 1024),
nn.ReLU(),
nn.Linear(1024, num_classes)
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), 512*7*7)
out=self.classifier(x)
return out
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
class AlexNet(nn.Module):
def __init__(self,args):
super(AlexNet, self).__init__()
alexnet_fetExtrac = feature_extractor(optim.SGD, args.lr0, args.momentum, args.weight_dec)
state_dict = torch.load("models/alexnet_caffe.pth.tar")
del state_dict["classifier.fc8.weight"]
del state_dict["classifier.fc8.bias"]
alexnet_fetExtrac.load_state_dict(state_dict)
alexnet__classifier = task_classifier(args.hidden_size, optim.SGD, args.lr0, args.momentum, args.weight_dec,
class_num=args.classes)
self.net = nn.Sequential(alexnet_fetExtrac,alexnet__classifier)
def forward(self, x):
return self.net(x)
# def Alexnet(args):
# alexnet= models.alexnet(pretrained=True)
# num_fc = alexnet.classifier[6].in_features
# alexnet.classifier[6] = torch.nn.Linear(in_features=num_fc, out_features=args.classes)
# return alexnet
class feature_extractor(nn.Module):
def __init__(self, optimizer,lr,momentum,weight_decay, num_classes=5):
super(feature_extractor,self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(OrderedDict([
("conv1",nn.Conv2d(3,96,kernel_size=11,stride=4)),
("relu1",nn.ReLU(inplace=True)),
("pool1",nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)),
("norm1",nn.LocalResponseNorm(5,1.e-4,0.75)),
("conv2",nn.Conv2d(96,256,kernel_size=5,padding=2,groups=2)),
("relu2",nn.ReLU(inplace=True)),
("pool2",nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)),
("norm2",nn.LocalResponseNorm(5,1.e-4,0.75)),
("conv3",nn.Conv2d(256,384,kernel_size=3,padding=1)),
("relu3",nn.ReLU(inplace=True)),
("conv4",nn.Conv2d(384,384,kernel_size=3,padding=1,groups=2)),
("relu4",nn.ReLU(inplace=True)),
("conv5",nn.Conv2d(384,256,kernel_size=3,padding=1,groups=2)),
("relu5",nn.ReLU(inplace=True)),
("pool5",nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True))
]))
self.classifier = nn.Sequential(OrderedDict([
("fc6", nn.Linear(256 * 6 * 6, 4096)),
("relu6", nn.ReLU(inplace=True)),
("drop6", nn.Dropout()),
("fc7", nn.Linear(4096, 4096)),
("relu7", nn.ReLU(inplace=True)),
("drop7", nn.Dropout())
]))
self.optimizer = optimizer(list(self.features.parameters())+list(self.classifier.parameters()), lr=lr, momentum=momentum, weight_decay=weight_decay)
self.initial_params()
def initial_params(self):
for layer in self.modules():
if isinstance(layer,torch.nn.Linear):
init.xavier_uniform_(layer.weight,0.1)
layer.bias.data.zero_()
def forward(self, x):
x = self.features(x*57.6)
x = x.view((x.size(0),256*6*6))
x = self.classifier(x)
return x
# classifier
class task_classifier(nn.Module):
def __init__(self, hidden_size, optimizer, lr, momentum, weight_decay, class_num=5):
super(task_classifier,self).__init__()
self.task_classifier = nn.Sequential()
self.task_classifier.add_module('t1_fc1', nn.Linear(hidden_size, hidden_size))
self.task_classifier.add_module('t1_fc2', nn.Linear(hidden_size, class_num))
self.optimizer = optimizer(self.task_classifier.parameters(),
lr=lr, momentum=momentum, weight_decay=weight_decay)
self.initialize_paras()
def initialize_paras(self):
for layer in self.modules():
if isinstance(layer,torch.nn.Conv2d):
init.kaiming_normal_(layer.weight,a=0,mode='fan-out')
elif isinstance(layer,torch.nn.Linear):
init.kaiming_normal_(layer.weight)
elif isinstance(layer,torch.nn.BatchNorm2d) or isinstance(layer,torch.nn.BatchNorm1d):
layer.weight.data.fill_(1)
layer.bias.data.zero_()
def forward(self, x):
x = torch.flatten(x, 1)
y = self.task_classifier(x)
return y
def ResNet50(args):
model = ResNet(block=Bottleneck, block_num=[3, 4, 6, 3], num_classes=args.classes)
if args.pretrained:
pretrained_state_dict = torch.load("models/resnet50-19c8e357.pth")
model.load_state_dict(pretrained_state_dict, strict=False)
print('use resnet50 pretrained!')
return model
def ResNet18(args):
model= models.resnet18(pretrained=True)
num_features=model.fc.in_features
model.fc=nn.Linear(num_features,args.classes)
return model
## as baseline
def Alexnet(args):
return AlexNet(args)
def VGG16(args):
model = VGGnet(feature_extract=True,num_classes=args.classes)
return model