diff --git a/.gitignore b/.gitignore index 3b5a80c3..796061e3 100644 --- a/.gitignore +++ b/.gitignore @@ -21,6 +21,5 @@ examples/NSIDC/data /.venv/ -external/ how-tos/test.nc earthdata-cloud-cookbook.code-workspace diff --git a/_import/assets.json b/_import/assets.json index 9dbe9f26..5059960f 100644 --- a/_import/assets.json +++ b/_import/assets.json @@ -79,22 +79,6 @@ "target": "on-prem_cloud.ipynb", "process": false }, - { - "title": "Zarr Access for NetCDF4 files", - "preamble": "This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.", - "source": "https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/09_Zarr_Access.html", - "url": "https://raw.githubusercontent.com/NASA-Openscapes/2021-Cloud-Hackathon/main/tutorials/09_Zarr_Access.ipynb", - "target": "zarr_access.ipynb", - "process": false - }, - { - "title": "Setup", - "preamble": "This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.", - "source": "https://github.com/NASA-Openscapes/2021-Cloud-Hackathon", - "url": "https://raw.githubusercontent.com/NASA-Openscapes/2021-Cloud-Hackathon/main/tutorials/00_Setup.md", - "target": "setup.md", - "process": false - }, { "title": "ICESat-2 and Landsat in the cloud", "preamble": "This notebook was originally developed by CryoCloud and NSIDC.", diff --git a/external/IS2_cloud_Landsat_integration.ipynb b/external/IS2_cloud_Landsat_integration.ipynb new file mode 100644 index 00000000..7aa9f081 --- /dev/null +++ b/external/IS2_cloud_Landsat_integration.ipynb @@ -0,0 +1,34537 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c0d866ca", + "metadata": {}, + "source": [ + "# ICESat-2 and Landsat in the cloud\n", + "\n", + "imported on: **2024-11-06**\n", + "\n", + "

This notebook was originally developed by CryoCloud and NSIDC.

\n", + "\n", + "> The original source for this document is [https://github.com/CryoInTheCloud/CryoCloudWebsite](https://github.com/CryoInTheCloud/CryoCloudWebsite)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "# ICESat-2 and Landsat cloud access and data integration\n", + "\n", + "This notebook ({nb-download}`download `) builds off of the icepyx [IS2_cloud_data_access.ipynb](https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_cloud_data_access.html) and [ICESat-2 Hackweek Data Integration 1](https://icesat-2.hackweek.io/tutorials/DataIntegration/dataintegration-1.html) tutorials. It illustrates the use of icepyx for accessing ICESat-2 data currently available through the AWS (Amazon Web Services) us-west-2 hub s3 data bucket as well as data integration with Landsat (cloud-optimized geotiff) and ATM (downloaded csv) datasets.\n", + "\n", + "```{admonition} Learning Objectives\n", + "**Goals**\n", + "- Identify and locate ICESat-2 and Landsat data\n", + "- Acquire data from the cloud\n", + "- Open data in `pandas` and `xarray` and basic functioning of DataFrames\n", + "```\n", + "\n", + "```{admonition} Key Takeaway\n", + "By the end of this tutorial, you will be able to visualize Landsat Cloud Optimized Geotiffs with ICESat-2 and ATM data.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Computing environment\n", + "\n", + "We'll be using the following open source Python libraries in this notebook:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Suppress library deprecation warnings\n", + "import logging\n", + "logging.captureWarnings(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import ipyleaflet\n", + "from ipyleaflet import Map, basemaps, basemap_to_tiles, Polyline\n", + "\n", + "import ipywidgets\n", + "import datetime\n", + "import re" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " Bokeh = root.Bokeh;\n", + " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " if (!reloading && (!bokeh_loaded || is_dev)) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib widget\n", + "import pystac_client\n", + "import geopandas as gpd\n", + "import h5py\n", + "import ast\n", + "import pandas as pd\n", + "import geoviews as gv\n", + "import hvplot.pandas\n", + "from ipywidgets import interact\n", + "from IPython.display import display, Image\n", + "import intake # if you've installed intake-STAC, it will automatically import alongside intake\n", + "import intake_stac\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "import boto3\n", + "import rasterio as rio\n", + "from rasterio.session import AWSSession\n", + "from rasterio.plot import show\n", + "import rioxarray as rxr\n", + "from dask.utils import SerializableLock\n", + "import os\n", + "import fiona\n", + "import hvplot.xarray\n", + "import numpy as np\n", + "from pyproj import Proj, transform\n", + "import cartopy.crs as ccrs" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## 1. Identify and acquire the ICESat-2 product(s) of interest" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Download ICESat-2 ATL06 data from desired region" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We are going to use icepyx to download some ICESat-2 ATL06 data over our region of interest." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " Bokeh = root.Bokeh;\n", + " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " if (!reloading && (!bokeh_loaded || is_dev)) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import icepyx as ipx" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Specifying the necessary icepyx parameters\n", + "short_name = 'ATL06'\n", + "spatial_extent = 'hackweek_kml_jakobshavan.kml' # KML polygon centered on Sermeq Kujalleq\n", + "date_range = ['2019-04-01', '2019-04-30']\n", + "rgts = ['338'] # IS-2 RGT of interest" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "You may notice that we specified a RGT track. As seen below, a large number of ICESat-2 overpasses occur for Sermeq Kujalleq (briefly known as Jakobshavn Isbrae). In the interest of time (and computer memory), we are going to look at only one of these tracks." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Open KML file for use\n", + "fiona.drvsupport.supported_drivers['LIBKML'] = 'rw' # enable KML support which is disabled by default\n", + "jk = gpd.read_file(spatial_extent)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Setup the Query object\n", + "region = ipx.Query(short_name, spatial_extent, date_range, tracks=rgts)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " Bokeh = root.Bokeh;\n", + " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " if (!reloading && (!bokeh_loaded || is_dev)) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\", \"https://cdn.jsdelivr.net/npm/@holoviz/geoviews@1.10.1/dist/geoviews.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "\n", + "\n", + "\n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Overlay\n", + " .WMTS.I :WMTS [Longitude,Latitude]\n", + " .Path.I :Path [Longitude,Latitude]" + ] + }, + "execution_count": 8, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1005" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "# Visualize area of interest\n", + "region.visualize_spatial_extent()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Looks good! Now it's time to acquire the data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Get the granule s3 urls\n", + "You must specify `cloud=True` to get the needed s3 urls.\n", + "This function returns a list containing the list of the granule IDs and a list of the corresponding urls." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[['ATL06_20190420093051_03380303_006_02.h5'],\n", + " ['s3://nsidc-cumulus-prod-protected/ATLAS/ATL06/006/2019/04/20/ATL06_20190420093051_03380303_006_02.h5']]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gran_ids = region.avail_granules(ids=True, cloud=True)\n", + "gran_ids" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## Select an s3 url and set up an s3 file system\n", + "icepyx enables users to read ICESat-2 data directly from the cloud into an Xarray dataset.\n", + "However, here we show an alternative approach that instead sets up an s3 file system (essentially mocking the way your local file system works) to access an ICESat-2 granule.\n", + "This latter option requires we do some manual handling of s3 credentials (this all happens behind the scenes with the Xarray approach).\n", + "In both cases, you will be prompted for your Earthdata login if you do not have automatic authentication set up.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import s3fs" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter your Earthdata Login username: icepyx_devteam\n", + "Enter your Earthdata password: ········\n" + ] + } + ], + "source": [ + "# Authenicate using your NASA Earth Data login credentials; enter your user id and password when prompted\n", + "credentials = region.s3login_credentials\n", + "s3 = s3fs.S3FileSystem(key=credentials['accessKeyId'],\n", + " secret=credentials['secretAccessKey'],\n", + " token=credentials['sessionToken'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# the first index, [1], gets us into the list of s3 urls\n", + "# the second index, [0], gets us the first entry in that list.\n", + "s3url = gran_ids[1][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 88.4 ms, sys: 24.1 ms, total: 113 ms\n", + "Wall time: 227 ms\n" + ] + } + ], + "source": [ + "# Open the file\n", + "%time f = h5py.File(s3.open(s3url,'rb'),'r')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['METADATA',\n", + " 'ancillary_data',\n", + " 'gt1l',\n", + " 'gt1r',\n", + " 'gt2l',\n", + " 'gt2r',\n", + " 'gt3l',\n", + " 'gt3r',\n", + " 'orbit_info',\n", + " 'quality_assessment']" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# View its attributes\n", + "list(f.keys())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Reading the file with h5py allows us to open the entire file, but is not super intuitive for later analysis. Let's use h5py with pandas to open the data into DataFrames in a way that is more convenient for our analyses." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlonelev
059.783826-47.173056-9.104559e+00
159.784362-47.173166-2.777765e+00
259.787225-47.1736963.402823e+38
359.787404-47.1737323.402823e+38
459.790085-47.1742863.402823e+38
\n", + "
" + ], + "text/plain": [ + " lat lon elev\n", + "0 59.783826 -47.173056 -9.104559e+00\n", + "1 59.784362 -47.173166 -2.777765e+00\n", + "2 59.787225 -47.173696 3.402823e+38\n", + "3 59.787404 -47.173732 3.402823e+38\n", + "4 59.790085 -47.174286 3.402823e+38" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the ICESat-2 data. We will just look at the central beams (GT2R/L)\n", + "# is2_file = 'processed_ATL06_20190420093051_03380303_005_01_full.h5'\n", + "with h5py.File(s3.open(s3url,'rb'), 'r') as f:\n", + " is2_gt2r = pd.DataFrame(data={'lat': f['gt2r/land_ice_segments/latitude'][:],\n", + " 'lon': f['gt2r/land_ice_segments/longitude'][:],\n", + " 'elev': f['gt2r/land_ice_segments/h_li'][:]})\n", + " is2_gt2l = pd.DataFrame(data={'lat': f['gt2l/land_ice_segments/latitude'][:],\n", + " 'lon': f['gt2l/land_ice_segments/longitude'][:],\n", + " 'elev': f['gt2l/land_ice_segments/h_li'][:]})\n", + " \n", + "is2_gt2r.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We opened this data into a `pandas` DataFrame, which is a handy tool for Earth data exploration and analysis. The column names derive automatically from the first row of the h5 file and each row corresponds to an ICESat-2 measurement.\n", + "\n", + "For a tutorial on how to use `pandas` on this data, check out the [ICESat-2 Hackweek Data Integration I tutorial](https://icesat-2.hackweek.io/tutorials/DataIntegration/dataintegration-1.html). You can learn more about `pandas` from [this cookbook](https://pandas.pydata.org/docs/user_guide/index.html#user-guide)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## 2. Acquire non-cloud data and open: ATM data access" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Now we show how we access Airborne Topographic Mapper (non-AWS) lidar spot measurements to co-register with the ICESat-2 data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "An airborne campaign called Operation IceBridge was flown across Sermeq Kujalleq as validation for ICESat-2. Onboard was the ATM, a lidar that works at both 532 nm (like ICESat-2) and 1064 nm (near-infrared). More information about Operation IceBridge and ATM may be found here: https://nsidc.org/data/icebridge. Because both data sets are rather large, this can be computationally expensive, so we will only consider one flight track with the ATM 532 nm beam.\n", + "\n", + "Operation IceBridge data is not available on the cloud, so this data was downloaded directly from NSIDC. If you are interested in using IceBridge data, NSIDC has a useful data portal here: https://nsidc.org/icebridge/portal/map" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Co-register ICESat-2 with ATM data" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UTC_Seconds_Of_DayLatitude(deg)Longitude(deg)WGS84_Ellipsoid_Height(m)South-to-North_SlopeWest-to-East_SlopeRMS_Fit(cm)Number_Of_ATM_Measurments_UsedNumber_Of_ATM_Measurements_RemovedDistance_Of_Block_To_The_Right_Of_Aircraft(m)Track_Identifier
054969.5069.262002310.351764490.39740.077354-0.069179589.5737235781
154969.5069.262065310.353395500.2330-0.0487770.006024434.12218521142
254969.5069.262128310.355026500.30900.0687980.077559777.8036408-513
354969.5069.262079310.353741498.9152-0.085600-0.111001472.6428181500
454969.7569.261648310.351873487.13170.108085-0.078827520.83375333781
\n", + "
" + ], + "text/plain": [ + " UTC_Seconds_Of_Day Latitude(deg) Longitude(deg) \\\n", + "0 54969.50 69.262002 310.351764 \n", + "1 54969.50 69.262065 310.353395 \n", + "2 54969.50 69.262128 310.355026 \n", + "3 54969.50 69.262079 310.353741 \n", + "4 54969.75 69.261648 310.351873 \n", + "\n", + " WGS84_Ellipsoid_Height(m) South-to-North_Slope West-to-East_Slope \\\n", + "0 490.3974 0.077354 -0.069179 \n", + "1 500.2330 -0.048777 0.006024 \n", + "2 500.3090 0.068798 0.077559 \n", + "3 498.9152 -0.085600 -0.111001 \n", + "4 487.1317 0.108085 -0.078827 \n", + "\n", + " RMS_Fit(cm) Number_Of_ATM_Measurments_Used \\\n", + "0 589.57 3723 \n", + "1 434.12 2185 \n", + "2 777.80 3640 \n", + "3 472.64 2818 \n", + "4 520.83 3753 \n", + "\n", + " Number_Of_ATM_Measurements_Removed \\\n", + "0 5 \n", + "1 21 \n", + "2 8 \n", + "3 15 \n", + "4 33 \n", + "\n", + " Distance_Of_Block_To_The_Right_Of_Aircraft(m) Track_Identifier \n", + "0 78 1 \n", + "1 14 2 \n", + "2 -51 3 \n", + "3 0 0 \n", + "4 78 1 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the ATM data into a DataFrame\n", + "atm_file = 'ILATM2_20190506_151600_smooth_nadir3seg_50pt.csv'\n", + "atm_l2 = pd.read_csv(atm_file)\n", + "\n", + "atm_l2.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "The ATM L2 file contains plenty of information, including surface height estimates and slope of the local topography. It also contains a track identifier - ATM takes measurements from multiple parts of the aircraft, namely starboard, port, and nadir. To keep things simple, we will filter the DataFrame to only look at the nadir track (Track_Identifier = 0)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2123\n" + ] + } + ], + "source": [ + "atm_l2 = atm_l2[atm_l2['Track_Identifier']==0]\n", + "\n", + "# Change the longitudes to be consistent with ICESat-2\n", + "atm_l2['Longitude(deg)'] -= 360\n", + "\n", + "print(atm_l2.size)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Let's take a quick look at where ATM is relative to ICESat-2..." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "17fec0a43d0b4dfb90efbce480e45790", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[69.25, -49.64999999999998], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_ti…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Subset the ICESat-2 data to the ATM latitudes\n", + "is2_gt2r = is2_gt2r[(is2_gt2r['lat']atm_l2['Latitude(deg)'].min())]\n", + "is2_gt2l = is2_gt2l[(is2_gt2l['lat']atm_l2['Latitude(deg)'].min())]\n", + "\n", + "\n", + "# Set up a map with the flight tracks as overlays\n", + "m = Map(\n", + " basemap=basemap_to_tiles(basemaps.Esri.WorldImagery),\n", + " center=(69.25, 310.35-360),\n", + " zoom=10\n", + ")\n", + "\n", + "gt2r_line = Polyline(\n", + " locations=[\n", + " [is2_gt2r['lat'].min(), is2_gt2r['lon'].max()],\n", + " [is2_gt2r['lat'].max(), is2_gt2r['lon'].min()]\n", + " ],\n", + " color=\"green\" ,\n", + " fill=False\n", + ")\n", + "m.add(gt2r_line)\n", + "\n", + "gt2l_line = Polyline(\n", + " locations=[\n", + " [is2_gt2l['lat'].min(), is2_gt2l['lon'].max()],\n", + " [is2_gt2l['lat'].max(), is2_gt2l['lon'].min()]\n", + " ],\n", + " color=\"green\" ,\n", + " fill=False\n", + ")\n", + "m.add(gt2l_line)\n", + "\n", + "atm_line = Polyline(\n", + " locations=[\n", + " [atm_l2['Latitude(deg)'].min(), atm_l2['Longitude(deg)'].max()],\n", + " [atm_l2['Latitude(deg)'].max(), atm_l2['Longitude(deg)'].min()]\n", + " ],\n", + " color=\"orange\" ,\n", + " fill=False\n", + ")\n", + "m.add(atm_line)\n", + "\n", + "m" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Looks like ATM aligns very closely with the left beam (GT2L), so hopefully the two beams will agree. The terrain over this region is quite rough, so we may expect some differences between ATM and GT2R. ICESat-2 also flew over Sermeq Kujalleq 16 days before ATM, so there might be slight differences due to ice movement.\n", + "\n", + "We have looked at how we can quickly access ICESat-2 and airborne lidar data, and process them using `pandas`. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## 3. Search and open (Landsat) raster imagery from the cloud" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Let's now talk about a cloud-optimized approach that requires no downloading to search and access only the subsets of the data we want. Cloud-optimized formats (e.g., [COG](https://www.cogeo.org/), [zarr](https://zarr.readthedocs.io/en/latest/index.html), [parquet](https://parquet.apache.org/)) make reading data two orders of magnitude faster than non-optimized formats." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We will be working with Cloud Optimized GeoTIFF (COG). A COG is a GeoTIFF file with an internal organization that enables more efficient workflows and prevents having to open the entire image (see more at https://www.cogeo.org/)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Here is the [User Manual](https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-2032-Landsat-Commercial-Cloud-Direct-Access-Users-Guide-v2.pdf.pdf) for more information about accessing Landsat S3." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Search for Landsat imagery" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "To explore and access COG's easily we will use a [SpatioTemporal Asset Catalog (STAC)](https://github.com/radiantearth/stac-spec). The STAC provides a common metadata format to make it easier to index and querry S3 buckets for geospatial data." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Sets up AWS credentials for acquiring images through dask/xarray\n", + "os.environ[\"AWS_REQUEST_PAYER\"] = \"requester\"\n", + "\n", + "# Sets up proper AWS credentials for acquiring data through rasterio\n", + "aws_session = AWSSession(boto3.Session(), requester_pays=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Extract geometry bounds are extracted from the ICESat-2 KML file used above so that we can perform the Landsat spatial search." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(-51.3229009069365, 68.84029223511094, -48.20366423696812, 69.61656633135274)\n" + ] + } + ], + "source": [ + "# Extract geometry bounds\n", + "geom = jk.geometry[0]\n", + "print(geom.bounds)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We will search for imagery in STAC catalog using the [pystac_client](https://pystac-client.readthedocs.io/en/stable/usage.html) search tool." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 items\n" + ] + } + ], + "source": [ + "# Search STAC API for Landsat images based on a bounding box, date and other metadata if desired\n", + "\n", + "bbox = (geom.bounds[0], geom.bounds[1], geom.bounds[2], geom.bounds[3]) #(west, south, east, north) \n", + "\n", + "timeRange = '2019-05-06/2019-05-07'\n", + "url = 'https://landsatlook.usgs.gov/stac-server'\n", + "collection = 'landsat-c2l1' # Landsat Collection 2, Level 1\n", + " \n", + "api = pystac_client.Client.open(url)\n", + "\n", + "items = api.search(\n", + " bbox = bbox,\n", + " datetime = timeRange,\n", + " limit = 400, # This line not required\n", + " collections=collection\n", + " ).item_collection()\n", + " \n", + "print(f'{len(items)} items')\n", + "\n", + "# Write a json file that records our search output\n", + "gjson_outfile = f'/tmp/Landsat.geojson'\n", + "items.save_object(gjson_outfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can include property searches, such as path, row, cloud-cover, as well with the `properties` flag in the api.search." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We are given a pystac collection of items (images)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "
    \n", + " \n", + " \n", + " \n", + "
  • \n", + " type\n", + " \"FeatureCollection\"\n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " \n", + " features\n", + " [] 2 items\n", + " \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 0\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"Feature\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " stac_version\n", + " \"1.0.0\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " id\n", + " \"LC08_L1TP_008012_20190507_20200829_02_T1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " properties\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " datetime\n", + " \"2019-05-07T14:54:18.865855Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " eo:cloud_cover\n", + " 0.18\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:sun_azimuth\n", + " 173.85264541\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:sun_elevation\n", + " 38.46360597\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " platform\n", + " \"LANDSAT_8\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " instruments\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " \"OLI\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " \"TIRS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:off_nadir\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:cloud_cover_land\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_type\n", + " \"2\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_path\n", + " \"008\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_row\n", + " \"012\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:scene_id\n", + " \"LC80080122019127LGN00\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:collection_category\n", + " \"T1\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:collection_number\n", + " \"02\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:correction\n", + " \"L1TP\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_x_bias\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_y_bias\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_x_stddev\n", + " 3.431\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_y_stddev\n", + " 3.144\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_rmse\n", + " 4.654\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " proj:epsg\n", + " 32622\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " 8491\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 8431\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 2\n", + " 437085\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 3\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 4\n", + " -30\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 5\n", + " 7701615\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " created\n", + " \"2022-06-28T20:15:52.467Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " updated\n", + " \"2022-06-28T20:15:52.467Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " geometry\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " type\n", + " \"Polygon\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " coordinates\n", + " [] 1 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + "
          • \n", + " \n", + " 0\n", + " [] 5 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 0\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -50.654927278460335\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 69.41548599740054\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 1\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -52.450348972917006\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 67.79611546126523\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 2\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -48.41892432239665\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 67.13075970832166\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 3\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -46.38012875444901\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 68.7124481452754\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 4\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -50.654927278460335\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 69.41548599740054\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " links\n", + " [] 4 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"self\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1/items/LC08_L1TP_008012_20190507_20200829_02_T1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"parent\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"collection\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"root\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"STAC API\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " assets\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " thumbnail\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_thumb_small.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thumbnail image\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_thumb_small.jpeg\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340053e4b3a8bd8bbbdd08292c634cd17225767acf798e3226e243f8ff771decd243ae49441b4e81fada81de7cc0dd4120fec0a9ca7d77844a41f0c3c619be4867e\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"thumbnail\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " reduced_resolution_browse\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_thumb_large.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Reduced resolution browse image\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_thumb_large.jpeg\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13404aa048e1e448e97b25303b45daa71514d982c6d88395fbfda905364e6eeed2e925346e5cdd895c520659d699ca0e4f7d7edf37ef355b95158f197e08a8aac0fa\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"overview\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " index\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-browser/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/html\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"HTML index page\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.json\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File (json)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (json)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.json\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340cdeb22284cc5c6d705c1ae7b17cc4138d4bbf77ab9dc7e0a51276fa19c63ac908e71251ce7e60408ec9dc278255a4e5fb5543d0f3194cfebc5ad7b0c1c063d27\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " coastal\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B1.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Coastal/Aerosol Band (B1)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Coastal/Aerosol Band (B1) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B1\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"coastal\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.44\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B1.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340c03174043d3c94303da08abc2fd78f6e45526c5831056cd1502bdecf514daf079fc05ab02bdd383b7c3e4da6964e1394a5ca4a584eada3cd6909d7c53724ebe7\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " blue\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B2.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Blue Band (B2)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Blue Band (B2) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B2\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"blue\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.48\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B2.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340eda74ede96fa71b87679644ee9addd5ea19d4df78a20c8f000c3031c449f3c6f172c9e78b0e3ee291d3af574360ee260d628b07932ba23cbb7fa674b55ef568b\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " green\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B3.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Green Band (B3)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Green Band (B3) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B3\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"green\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.56\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B3.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13405bc02e5190d2f6d162f803bd59938c24166c428c23f5a2991cb1eb13de91398c5fa3638ee72bb3dd9fb591edc1388bad44e892f5d5c9ff310f5a8a76d26c14a3\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " red\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B4.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Red Band (B4)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Red Band (B4) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B4\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"red\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.66\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B4.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134012c84e81bf929d73b1d4aacb6108ca7c1fff428726320b1ce5fe4fcf7daf6ba43c418670ee4825de1927427c42bade0386dae18b07d14e1a500d2ec25dbcfdff\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " nir08\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B5.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Near Infrared Band 0.8 (B5)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Near Infrared Band 0.8 (B5) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B5\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"nir08\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.87\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B5.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134076277bf855f3f21cd4c25c17dc2db210caa43547b3108df0bac8dfcb65b645083d3bfef96f8335af2144b3a38b001cceec2a3bd6c17127c518b2bf87a4a054f8\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " swir16\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B6.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Short-wave Infrared Band 1.6 (B6)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 1.6 (B6) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B6\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"swir16\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 1.61\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B6.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340688d7d2eeba5767eb1a13a9a0681878bf9d465c68481162d00f2eb3859ca82d05f5d2a71d89dc9c605d5c5e3bfe75d7e762c063718e0c8cd71c51914cb87176a\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " swir22\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B7.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Short-wave Infrared Band 2.2 (B7)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 2.2 (B7) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B7\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"swir22\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 2.2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B7.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134026c0bc77778fb217e70418740499f3037d9d2011d4eed3a9a4a015b32916d0dd719cc4a40a79fcd5356bac2b59b8037efed3161a9eb196757e3df37db666d981\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " pan\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B8.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Panchromatic Band (B8)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Panchromatic Band (B8) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B8\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"pan\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 15\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.59\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B8.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f77a5622dd725a486b05d543f4f3501857fda6abdf11f43102dbdffd7b1476bfeef336aa2ba0e80c52d197e8e22634a58cbf9e33fa110c2a7996f8dbd46f3c7b\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " 16981\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " 16861\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " 15\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " 0\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + " 437092.5\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + " 0\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + " -15\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + " 7701607.5\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " cirrus\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B9.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Cirrus Band (B9)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Cirrus Band (B9) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B9\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 1.37\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B9.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340db743557b1c240b880587754b1276e53a97d53a98228d0ec21fcda4ad24a6f0476f22cfcb9f7625aff9a7b69c290a78e8785f8e5f2729b6982b9a86f805b4d1b\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " lwir11\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B10.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thermal Infrared Band 10.9 (B10)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 10.9 (B10) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B10\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"lwir11\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 100\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 10.9\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B10.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340817216a8ca7622fc5e30e638b61a132eb653aefb603077d7a405bf618eb87d8540346a647cae65a263f878d868cc478b59a283bca0808315732c5377bb621c04\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"temperature\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " lwir12\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B11.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thermal Infrared Band 12.0 (B11)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 12.0 (B11) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B11\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"lwir12\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 100\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 12.01\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_B11.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340822c9200e180feb779a16c57c620cedf316ab2a5f6fed95a86426dd00586b344fb8866e103eda68c201e17e6837ae3f6aaa6c8b0319d1298a79a590c14bd8893\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"temperature\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " qa_pixel\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_QA_PIXEL.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Pixel Quality Assessment Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Pixel Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classification:bitfields\n", + " [] 12 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Corresponding pixels in L1 image bands are fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"L1 image band pixels are not fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"L1 image band pixels are fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"dilated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Dilated cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_dilated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud is not dilated or no cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"dilated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud dilation\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cirrus mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set or low confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud shadow mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 4\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud shadow confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"snow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Snow/Ice mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 5\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_snow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Snow/Ice confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"snow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence snow cover\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 6\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"clear\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud or dilated cloud bits set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 6\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_clear\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud or dilated cloud bits are set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"clear\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud and dilated cloud bits are not set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 7\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"water\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Water mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 7\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Land or cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 8\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cloud_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 8\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"medium\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Medium confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 9\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"shadow_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud shadow confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 10\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 10\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"snow_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Snow/Ice confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 12\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence snow/ice\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence snow/ice\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 11\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cirrus_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cirrus confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 14\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_QA_PIXEL.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340041f2f8b0d68ed7a13c1c9f7f600ac1ecb21622e194863afbfcee9e951e9345e84cb4b2a9c018009ac395f0b159ea13464e78621961c3201b45e1bc26ffa807b\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"cloud\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"cloud-shadow\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + " \"snow-ice\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + " \"water-mask\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " qa_radsat\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_QA_RADSAT.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Radiometric Saturation Quality Assessment Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Radiometric Saturation Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classification:bitfields\n", + " [] 16 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band1\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 1 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 1 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 1 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band2\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 2 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 2 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 2 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band3\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 3 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 3 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 3 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band4\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 4 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 4 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 4 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band5\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 5 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 4\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 5 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 5 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band6\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 6 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 5\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 6 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 6 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 6\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band7\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 7 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 6\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 7 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 7 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 7\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 7\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 8\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band9\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 9 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 8\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 9 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 9 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 9\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 9\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 10\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 10\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 11\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"occlusion\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Terrain not visible from sensor due to intervening terrain\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 11\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Terrain is not occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Terrain is occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 12\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 12\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 13\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 13\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 14\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 14\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 15\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 15\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_QA_RADSAT.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134098013147e3c4295eb92a41e5a265c0dc32054a52247cad869ae20b9efd8fdaaf07f653392042d47f90d13d4441d9af34b52f0ec749f3df4e7c5b690afc95449b\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"saturation\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " ANG.txt\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_ANG.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/plain\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Angle Coefficients File\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Angle Coefficients File (ANG)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_ANG.txt\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340ebbc3d9c8a18169934e8bf8475522b908d27fc5a46c7f7b8110edb871fd1fafc489c39e39475a52fddf77417e7dd765850b90329829f5b5b2726a2aacce23ffa\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " VAA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_VAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Sensor Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_VAA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340a2a690a1525b335469f4c705cbceeaaf3e3b9727af3245f00e82042f668502d5221d0e175148603f1f2fce8ea48f11ee41f546c94fcb854679a3ac167d7009dc\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"azimuth\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " VZA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_VZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Sensor Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_VZA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134098f9201879522069038cf57430d310f50d7e34cac1c547d3b36c36e85f8b2bccacf7dcee0c6061ea5900c891acc9f901ca8f33f13d3fb826669bb8ed496bcf98\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " SAA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_SAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Solar Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Solar Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_SAA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134010e6cf0f7110cd8abeaba4567630fbd7a571a638779a89374819526e33ec5b458da01da9cadb904cfab4218fbb0cdbdffa9676b6e263f3329106bd997dbd8c9a\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"sun-azimuth\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " SZA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_SZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Solar Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Solar Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_SZA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134065525f02b562f8d9d193e89d21d1b028af0ae1503a12ad26848c8c2edaaa9b2fe046c2ddab87735c14af334826b19b989c71bb6521b9dd9351f7433be432c7e7\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.txt\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/plain\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (MTL)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.txt\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340577c688e4c66398fca961abb4450d0a5427f4da8992a5f1afe2ea2163513579d626687c263a3344b11cbe6f67857802aed78268394a5ca839f127953d05a7974\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.xml\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.xml\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/xml\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File (xml)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (xml)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/012/LC08_L1TP_008012_20190507_20200829_02_T1/LC08_L1TP_008012_20190507_20200829_02_T1_MTL.xml\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134049a8e4edcdab491a9cbf015dce99db646983326b7224662b2b8001654c97cff201d146150a5af42086ecbec6adf2412cb1c6d2f82919f0c2d6d5a435c1c5deee\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " bbox\n", + " [] 4 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " -52.450348972917006\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " 67.13075970832166\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " -46.38012875444901\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " 69.41548599740054\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " stac_extensions\n", + " [] 9 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"https://landsat.usgs.gov/stac/landsat-extension/v1.1.1/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"https://stac-extensions.github.io/view/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " \"https://stac-extensions.github.io/projection/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " \"https://stac-extensions.github.io/eo/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 4\n", + " \"https://stac-extensions.github.io/alternate-assets/v1.1.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 5\n", + " \"https://stac-extensions.github.io/storage/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 6\n", + " \"https://stac-extensions.github.io/file/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 7\n", + " \"https://stac-extensions.github.io/accuracy/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 8\n", + " \"https://stac-extensions.github.io/classification/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " collection\n", + " \"landsat-c2l1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 1\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"Feature\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " stac_version\n", + " \"1.0.0\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " id\n", + " \"LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " properties\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " datetime\n", + " \"2019-05-07T14:53:54.970580Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " eo:cloud_cover\n", + " 10.18\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:sun_azimuth\n", + " 175.87744165\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:sun_elevation\n", + " 37.19312658\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " platform\n", + " \"LANDSAT_8\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " instruments\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " \"OLI\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " \"TIRS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " view:off_nadir\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:cloud_cover_land\n", + " 10.3\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_type\n", + " \"2\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_path\n", + " \"008\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:wrs_row\n", + " \"011\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:scene_id\n", + " \"LC80080112019127LGN00\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:collection_category\n", + " \"T1\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:collection_number\n", + " \"02\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " landsat:correction\n", + " \"L1TP\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_x_bias\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_y_bias\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_x_stddev\n", + " 3.409\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_y_stddev\n", + " 4.025\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " accuracy:geometric_rmse\n", + " 5.275\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " proj:epsg\n", + " 32623\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " 8771\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 8741\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 2\n", + " 261285\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 3\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 4\n", + " -30\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 5\n", + " 7855515\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " created\n", + " \"2022-06-28T23:23:03.741Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " updated\n", + " \"2022-06-28T23:23:03.741Z\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " geometry\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " type\n", + " \"Polygon\"\n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " \n", + " coordinates\n", + " [] 1 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + "
          • \n", + " \n", + " 0\n", + " [] 5 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 0\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -48.95109258162108\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 70.75209635973746\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 1\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -50.97097968875044\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 69.14869763125887\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 2\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -46.74022873077202\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 68.44897504333066\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 3\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -44.463480823181705\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 70.00956619107268\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + "
            • \n", + " \n", + " 4\n", + " [] 2 items\n", + " \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 0\n", + " -48.95109258162108\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " 1\n", + " 70.75209635973746\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + " \n", + "
            • \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " links\n", + " [] 4 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"self\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1/items/LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"parent\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"collection\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " rel\n", + " \"root\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"STAC API\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " assets\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " thumbnail\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_small.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thumbnail image\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_small.jpeg\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f87154cc5704dd8859a463daab579507540604454354feaaf7a7f5a724e9756a667edc4a966777f166ff55d46506f30a53f64bfc05aeca656f7f8eed74686ed6\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"thumbnail\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " reduced_resolution_browse\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_large.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Reduced resolution browse image\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_large.jpeg\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13408ff95b52ff690149bc4eda908bd0b845257fbdc35ea5cc279cca7eb197edf470003f2633f8fc188e0e30749feddfe30eb5130025ae69a1c9aca65b1f5d60179d\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"overview\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " index\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-browser/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/html\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"HTML index page\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.json\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File (json)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (json)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.json\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f37f1acff50fc0f76d079ea5da64b87bde30b846bdaddfc22bf8d3ecb358b91c149ba138c4013699bf9a0c008c3098c2d3e0e07622aeaf5a14449ae570867bf1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " coastal\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B1.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Coastal/Aerosol Band (B1)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Coastal/Aerosol Band (B1) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B1\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"coastal\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.44\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B1.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340dcff4cf50bbf402d7cabd6b13ff5c83b031ab339ce61995ae0573fe649edd11cdc852eea1fbb2fbf534d1d69b8a8738b259d6f4daa984f664305cf983832d3b2\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " blue\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Blue Band (B2)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Blue Band (B2) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B2\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"blue\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.48\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f0a602019909fbb3e6bd909443ef7f9adfe7efabc86586f6e5f85e941aab30f03adbde671e000852b535ce627d864c1e6c3b33011a907b9a67fa1b7e595d9f42\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " green\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B3.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Green Band (B3)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Green Band (B3) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B3\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"green\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.56\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B3.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340390ee928fcce762ed559dd7624dac340cb11f494a4a3eaf8a410e07c8dc2efcbc8095b7b8a7753b77cd3ac484a1dc4a820412070da2fbbb26c4a8c84da65c740\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " red\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B4.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Red Band (B4)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Red Band (B4) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B4\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"red\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.66\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B4.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13407ee4ce734a8f1253e88a6ee07115ce1259780593a497277fabea9754224709f9a18f6e24c6f797b5087e139d88eb3623906f78ff346b0aab1ecec9dd74bf5e64\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " nir08\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B5.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Near Infrared Band 0.8 (B5)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Near Infrared Band 0.8 (B5) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B5\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"nir08\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.87\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B5.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13400a93071bb947a66627d3a081edd3d61120eaf1a7ca8ae05246747361c893865456f9632ffa9b71577b7b3be98dcf0126bcc265cfc680869b34a66d670c35012f\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " swir16\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B6.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Short-wave Infrared Band 1.6 (B6)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 1.6 (B6) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B6\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"swir16\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 1.61\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B6.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134062a6c6a75da004aafab56bd32144d3f8771047a5dd70ec0ea95490833d650ad004c785f53d8505f7dd6944b6b427abb464c7b89bb99873d7851c83cfea527bda\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " swir22\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B7.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Short-wave Infrared Band 2.2 (B7)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 2.2 (B7) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B7\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"swir22\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 2.2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B7.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f5a2ec02ecabfbbe1e5c146d0a024a99ba3fe858e7d7f93294a51ee4c6b87109cdad2c59b4e6b7a4f5e42e634a8fef078fb8754ee4cd918c9b4e906bee65a550\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"reflectance\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " pan\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B8.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Panchromatic Band (B8)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Panchromatic Band (B8) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B8\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"pan\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 15\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 0.59\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B8.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340f2a81f05dabed172f1609c89e9ea351f2c756f65fdbd51fb6dd00098d8c7d5663d7d57609a2129c5b3fcf25147ba583738fb518e83834b011f2ffb0008de3ea9\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " 17541\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " 17481\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " 15\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " 0\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + " 261292.5\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + " 0\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + " -15\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + " 7855507.5\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " cirrus\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B9.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Cirrus Band (B9)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Cirrus Band (B9) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B9\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 30\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 1.37\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B9.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13401223a49db734e01483777ca9330c7795753d4f974f237db1b661e371fd64e1eb4ca98f485729b637605c18286f0bd5be20d067690e5484cc8e4d102dd77ba014\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " lwir11\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B10.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thermal Infrared Band 10.9 (B10)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 10.9 (B10) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B10\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"lwir11\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 100\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 10.9\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B10.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134024fd68eddf8df59bd045ba2070ce7a2a07b3670200ee2f637c7c03197956733d12b69213ed4e91d3094f4322ead9e528a3151ece2afd6498763493ff75807285\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"temperature\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " lwir12\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B11.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Thermal Infrared Band 12.0 (B11)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 12.0 (B11) Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"B11\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " common_name\n", + " \"lwir12\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " gsd\n", + " 100\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " center_wavelength\n", + " 12.01\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B11.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340322de4bd2084bda1235c08301b24e9773d102cde9cdef9e568fe308f31f81d3910cac0c1624026561f0c3919d7490511de65b15005f2a2787194aa246e4e870c\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"temperature\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " qa_pixel\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_PIXEL.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Pixel Quality Assessment Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Pixel Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classification:bitfields\n", + " [] 12 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Corresponding pixels in L1 image bands are fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"L1 image band pixels are not fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"L1 image band pixels are fill\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"dilated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Dilated cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_dilated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud is not dilated or no cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"dilated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud dilation\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cirrus mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set or low confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud shadow mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 4\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud shadow confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"snow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Snow/Ice mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 5\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_snow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Snow/Ice confidence is not high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"snow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence snow cover\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 6\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"clear\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud or dilated cloud bits set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 6\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_clear\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud or dilated cloud bits are set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"clear\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Cloud and dilated cloud bits are not set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 7\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"water\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Water mask\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 7\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Land or cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Water\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 8\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cloud_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 8\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"medium\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Medium confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 9\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"shadow_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud shadow confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 10\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 10\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"snow_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Snow/Ice confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 12\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence snow/ice\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence snow/ice\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 11\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cirrus_confidence\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cirrus confidence levels\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 14\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"No confidence level set\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"low\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Low confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 2\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"reserved\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 2\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 3\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"high\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 3\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_PIXEL.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340bd1ba8811b39d3f87b9fbac994e2d8b9cdc68206de261277b72bef13eb8e4941a738af18f99e313afc2d7ecbd16c0283fb7797ed2f524bc8517fc031e25351c5\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"cloud\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + " \"cloud-shadow\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + " \"snow-ice\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + " \"water-mask\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " qa_radsat\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_RADSAT.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Radiometric Saturation Quality Assessment Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Radiometric Saturation Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classification:bitfields\n", + " [] 16 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band1\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 1 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 1 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 1 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band2\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 2 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 2 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 2 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band3\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 3 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 3 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 3 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band4\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 4 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 4 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 4 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 4\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band5\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 5 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 4\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 5 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 5 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 5\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band6\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 6 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 5\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 6 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 6 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 6\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band7\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 7 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 6\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 7 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 7 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 7\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 7\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 8\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"band9\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 9 radiometric saturation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 8\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 9 is not saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Band 9 is saturated\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 9\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 9\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 10\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 10\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 11\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"occlusion\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Terrain not visible from sensor due to intervening terrain\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 11\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"not_occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Terrain is not occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 1\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Terrain is occluded\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 1\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 12\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 12\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 13\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 13\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 14\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 14\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 15\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " offset\n", + " 15\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " length\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
                  \n", + " \n", + " \n", + " \n", + "
                • \n", + " 0\n", + "
                    \n", + " \n", + " \n", + " \n", + "
                  • \n", + " name\n", + " \"unused\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " description\n", + " \"Unused bit\"\n", + "
                  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
                  • \n", + " value\n", + " 0\n", + "
                  • \n", + " \n", + " \n", + " \n", + "
                  \n", + "
                • \n", + " \n", + " \n", + " \n", + "
                \n", + " \n", + "
              • \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_RADSAT.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340c7989f6e2f2452c6d831fa381023a96a6239f2468c1cab822bfeccbb0e81d09ef9e66beb25076a15b5f92e64d37fc9bc7b2a8bd841d4c23f0d5e99b00339dfe8\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"saturation\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " ANG.txt\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_ANG.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/plain\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Angle Coefficients File\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Angle Coefficients File (ANG)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_ANG.txt\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340d62f86775fcb6bf2cf857977a5396da298d39a9fdb52d6629bb3512fd27f9eab1272a2e7bf98bd4ecd8182446840c2778431fd0dd43a1ad78c0643b501e813d7\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " VAA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Sensor Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VAA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"134002d80cf9e82ddb6461f32daa52b6f0849489ba1f6da8766e4c980a0c57f0d660fb8ad1b9af8b2df0b1cf88fc9d413daff597ba9185b83b90a1539906ec9078c5\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"azimuth\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " VZA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Sensor Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VZA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340d7400e77da79fc700141da99b3f99589949ff4ae68c0a3bb42dbd7b8e6589afbed6d96c8feb5495a3358c576605e253043d5e71ad09ec84c433c490171d5ed21\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " SAA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Solar Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Solar Azimuth Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SAA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340aeccc943e32f169f13ed62b3040f9d56c9ef9f3aa4913fb053b2d3d380d383c2e0d70d6d97222ac0dfbab3d847e7af7a8c43dc8d230cf73e2485dd186c06f8bb\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"sun-azimuth\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " SZA\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Solar Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Solar Zenith Angle Band\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SZA.TIF\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"1340b5b25eaf0db0e92b3f8d51c264541aed07204de462db88bec5b14f8f424609038c55e037258eea160000f7bc182e0ac025a141b2ca2928d8426655be194e8855\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"data\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.txt\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"text/plain\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (MTL)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.txt\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13409050479ffcfd16eb8ac7f83ef533308d1ff13833558eeb5f48f2ba8a192fc32885ff28d29163f19200a0525e404965c4af5c48892c763cfb4b9d8b3662fee216\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
        • \n", + " MTL.xml\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.xml\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " type\n", + " \"application/xml\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " title\n", + " \"Product Metadata File (xml)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (xml)\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " alternate\n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " s3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:platform\n", + " \"AWS\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " storage:requester_pays\n", + " True\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.xml\"\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " file:checksum\n", + " \"13407003d50020e48bbf8ab39dd6dc378aa30a2faadedb5ccd9a0655f8012cf6f78f9b2d2046d3c0f7289126db9f70d63d70deddddb529b2e797d9bb495d1a8a9e7f\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + " \"metadata\"\n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " bbox\n", + " [] 4 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " -50.97097968875044\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " 68.44897504333066\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " -44.463480823181705\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " 70.75209635973746\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " stac_extensions\n", + " [] 9 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"https://landsat.usgs.gov/stac/landsat-extension/v1.1.1/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"https://stac-extensions.github.io/view/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " \"https://stac-extensions.github.io/projection/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " \"https://stac-extensions.github.io/eo/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 4\n", + " \"https://stac-extensions.github.io/alternate-assets/v1.1.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 5\n", + " \"https://stac-extensions.github.io/storage/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 6\n", + " \"https://stac-extensions.github.io/file/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 7\n", + " \"https://stac-extensions.github.io/accuracy/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 8\n", + " \"https://stac-extensions.github.io/classification/v1.0.0/schema.json\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " collection\n", + " \"landsat-c2l1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
  • \n", + " \n", + " \n", + "
\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "items" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Load the geojson file into geopandas and inspect the items we want to collect" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
iddatetimeeo:cloud_coverview:sun_azimuthview:sun_elevationplatforminstrumentsview:off_nadirlandsat:cloud_cover_landlandsat:wrs_type...landsat:correctionaccuracy:geometric_x_biasaccuracy:geometric_y_biasaccuracy:geometric_x_stddevaccuracy:geometric_y_stddevaccuracy:geometric_rmseproj:epsgcreatedupdatedgeometry
0LC08_L1TP_008012_20190507_20200829_02_T12019-05-07 14:54:18.866000+00:000.18173.85264538.463606LANDSAT_8[OLI, TIRS]00.02...L1TP003.4313.1444.654326222022-06-28 20:15:52.467000+00:002022-06-28 20:15:52.467000+00:00POLYGON ((-50.65493 69.41549, -52.45035 67.796...
1LC08_L1TP_008011_20190507_20200828_02_T12019-05-07 14:53:54.971000+00:0010.18175.87744237.193127LANDSAT_8[OLI, TIRS]010.32...L1TP003.4094.0255.275326232022-06-28 23:23:03.741000+00:002022-06-28 23:23:03.741000+00:00POLYGON ((-48.95109 70.75210, -50.97098 69.148...
\n", + "

2 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " id datetime \\\n", + "0 LC08_L1TP_008012_20190507_20200829_02_T1 2019-05-07 14:54:18.866000+00:00 \n", + "1 LC08_L1TP_008011_20190507_20200828_02_T1 2019-05-07 14:53:54.971000+00:00 \n", + "\n", + " eo:cloud_cover view:sun_azimuth view:sun_elevation platform \\\n", + "0 0.18 173.852645 38.463606 LANDSAT_8 \n", + "1 10.18 175.877442 37.193127 LANDSAT_8 \n", + "\n", + " instruments view:off_nadir landsat:cloud_cover_land landsat:wrs_type \\\n", + "0 [OLI, TIRS] 0 0.0 2 \n", + "1 [OLI, TIRS] 0 10.3 2 \n", + "\n", + " ... landsat:correction accuracy:geometric_x_bias accuracy:geometric_y_bias \\\n", + "0 ... L1TP 0 0 \n", + "1 ... L1TP 0 0 \n", + "\n", + " accuracy:geometric_x_stddev accuracy:geometric_y_stddev \\\n", + "0 3.431 3.144 \n", + "1 3.409 4.025 \n", + "\n", + " accuracy:geometric_rmse proj:epsg created \\\n", + "0 4.654 32622 2022-06-28 20:15:52.467000+00:00 \n", + "1 5.275 32623 2022-06-28 23:23:03.741000+00:00 \n", + "\n", + " updated \\\n", + "0 2022-06-28 20:15:52.467000+00:00 \n", + "1 2022-06-28 23:23:03.741000+00:00 \n", + "\n", + " geometry \n", + "0 POLYGON ((-50.65493 69.41549, -52.45035 67.796... \n", + "1 POLYGON ((-48.95109 70.75210, -50.97098 69.148... \n", + "\n", + "[2 rows x 25 columns]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the geojson file\n", + "gf = gpd.read_file(gjson_outfile)\n", + "gf.head(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": {}, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], + "text/plain": [ + ":Overlay\n", + " .WMTS.I :WMTS [Longitude,Latitude]\n", + " .Tiles.I :Tiles [x,y]\n", + " .Polygons.I :Polygons [Longitude,Latitude] (landsat:wrs_path,landsat:wrs_row)\n", + " .WMTS.II :WMTS [Longitude,Latitude]" + ] + }, + "execution_count": 24, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1084" + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "# Plot search area of interest and frames on a map using Holoviz Libraries (more on these later)\n", + "cols = gf.loc[:,('id','landsat:wrs_path','landsat:wrs_row','geometry')]\n", + "footprints = cols.hvplot(geo=True, line_color='k', hover_cols=['landsat:wrs_path','landsat:wrs_row'], alpha=0.3, title='Landsat 8 T1',tiles='ESRI')\n", + "tiles = gv.tile_sources.CartoEco.options(width=700, height=500) \n", + "labels = gv.tile_sources.StamenLabels.options(level='annotation')\n", + "tiles * footprints * labels" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Intake all scenes using the intake-STAC library\n", + "`Intake-STAC` facilitates discovering, exploring, and loading spatio-temporal datasets by providing Intake Drivers for STAC catalogs. This provides a simple toolkit for working with STAC catalogs and for loading STAC assets as `xarray` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['LC08_L1TP_008012_20190507_20200829_02_T1',\n", + " 'LC08_L1TP_008011_20190507_20200828_02_T1']" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "catalog = intake_stac.catalog.StacItemCollection(items)\n", + "list(catalog)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Let's explore the metadata and keys for the first scene" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "thumbnail\n", + "reduced_resolution_browse\n", + "index\n", + "MTL.json\n", + "coastal\n", + "blue\n", + "green\n", + "red\n", + "nir08\n", + "swir16\n", + "swir22\n", + "pan\n", + "cirrus\n", + "lwir11\n", + "lwir12\n", + "qa_pixel\n", + "qa_radsat\n", + "ANG.txt\n", + "VAA\n", + "VZA\n", + "SAA\n", + "SZA\n", + "MTL.txt\n", + "MTL.xml\n" + ] + } + ], + "source": [ + "sceneids = list(catalog)\n", + "item3 = catalog[sceneids[1]]\n", + "# item3.metadata\n", + "for keys in item3.keys():\n", + " print (keys)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can explore the metadata for any of these:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'href': 'https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF',\n", + " 'type': 'image/vnd.stac.geotiff; cloud-optimized=true',\n", + " 'title': 'Blue Band (B2)',\n", + " 'description': 'Collection 2 Level-1 Blue Band (B2) Top of Atmosphere Radiance',\n", + " 'eo:bands': [{'name': 'B2',\n", + " 'common_name': 'blue',\n", + " 'gsd': 30,\n", + " 'center_wavelength': 0.48}],\n", + " 'alternate': {'s3': {'storage:platform': 'AWS',\n", + " 'storage:requester_pays': True,\n", + " 'href': 's3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF'}},\n", + " 'file:checksum': '1340f0a602019909fbb3e6bd909443ef7f9adfe7efabc86586f6e5f85e941aab30f03adbde671e000852b535ce627d864c1e6c3b33011a907b9a67fa1b7e595d9f42',\n", + " 'roles': ['data'],\n", + " 'plots': {'geotiff': {'kind': 'image',\n", + " 'x': 'x',\n", + " 'y': 'y',\n", + " 'frame_width': 500,\n", + " 'data_aspect': 1,\n", + " 'rasterize': True,\n", + " 'dynamic': True,\n", + " 'cmap': 'viridis'}},\n", + " 'catalog_dir': ''}" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "item3['blue'].metadata" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "
    \n", + " \n", + " \n", + " \n", + "
  • \n", + " type\n", + " \"Feature\"\n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " stac_version\n", + " \"1.0.0\"\n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " id\n", + " \"LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " properties\n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " datetime\n", + " \"2019-05-07T14:53:54.970580Z\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " eo:cloud_cover\n", + " 10.18\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " view:sun_azimuth\n", + " 175.87744165\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " view:sun_elevation\n", + " 37.19312658\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " platform\n", + " \"LANDSAT_8\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " \n", + " instruments\n", + " [] 2 items\n", + " \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 0\n", + " \"OLI\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 1\n", + " \"TIRS\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " view:off_nadir\n", + " 0\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:cloud_cover_land\n", + " 10.3\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:wrs_type\n", + " \"2\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:wrs_path\n", + " \"008\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:wrs_row\n", + " \"011\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:scene_id\n", + " \"LC80080112019127LGN00\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:collection_category\n", + " \"T1\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:collection_number\n", + " \"02\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " landsat:correction\n", + " \"L1TP\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " accuracy:geometric_x_bias\n", + " 0\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " accuracy:geometric_y_bias\n", + " 0\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " accuracy:geometric_x_stddev\n", + " 3.409\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " accuracy:geometric_y_stddev\n", + " 4.025\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " accuracy:geometric_rmse\n", + " 5.275\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " proj:epsg\n", + " 32623\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 0\n", + " 8771\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 1\n", + " 8741\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 0\n", + " 30\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 1\n", + " 0\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 2\n", + " 261285\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 3\n", + " 0\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 4\n", + " -30\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " 5\n", + " 7855515\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + " \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " created\n", + " \"2022-06-28T23:23:03.741Z\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " updated\n", + " \"2022-06-28T23:23:03.741Z\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " geometry\n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " type\n", + " \"Polygon\"\n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " \n", + " coordinates\n", + " [] 1 items\n", + " \n", + " \n", + "
        \n", + " \n", + " \n", + "
      • \n", + " \n", + " 0\n", + " [] 5 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + "
        • \n", + " \n", + " 0\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " -48.95109258162108\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 70.75209635973746\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + "
        • \n", + " \n", + " 1\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " -50.97097968875044\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 69.14869763125887\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + "
        • \n", + " \n", + " 2\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " -46.74022873077202\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 68.44897504333066\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + "
        • \n", + " \n", + " 3\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " -44.463480823181705\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 70.00956619107268\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + "
        • \n", + " \n", + " 4\n", + " [] 2 items\n", + " \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 0\n", + " -48.95109258162108\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " 1\n", + " 70.75209635973746\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + " \n", + "
        • \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + " \n", + "
    • \n", + " \n", + " \n", + "
    \n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " \n", + " links\n", + " [] 4 items\n", + " \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 0\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " rel\n", + " \"self\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1/items/LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 1\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " rel\n", + " \"parent\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 2\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " rel\n", + " \"collection\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server/collections/landsat-c2l1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 3\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " rel\n", + " \"root\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-server\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"application/json\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"STAC API\"\n", + "
      • \n", + " \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " assets\n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " thumbnail\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_small.jpeg\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/jpeg\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Thumbnail image\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_small.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340f87154cc5704dd8859a463daab579507540604454354feaaf7a7f5a724e9756a667edc4a966777f166ff55d46506f30a53f64bfc05aeca656f7f8eed74686ed6\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"thumbnail\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " reduced_resolution_browse\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_large.jpeg\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/jpeg\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Reduced resolution browse image\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_thumb_large.jpeg\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13408ff95b52ff690149bc4eda908bd0b845257fbdc35ea5cc279cca7eb197edf470003f2633f8fc188e0e30749feddfe30eb5130025ae69a1c9aca65b1f5d60179d\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"overview\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " index\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/stac-browser/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"text/html\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"HTML index page\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"metadata\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " MTL.json\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.json\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"application/json\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Product Metadata File (json)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (json)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.json\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340f37f1acff50fc0f76d079ea5da64b87bde30b846bdaddfc22bf8d3ecb358b91c149ba138c4013699bf9a0c008c3098c2d3e0e07622aeaf5a14449ae570867bf1\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"metadata\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " coastal\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B1.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Coastal/Aerosol Band (B1)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Coastal/Aerosol Band (B1) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"coastal\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.44\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B1.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340dcff4cf50bbf402d7cabd6b13ff5c83b031ab339ce61995ae0573fe649edd11cdc852eea1fbb2fbf534d1d69b8a8738b259d6f4daa984f664305cf983832d3b2\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " blue\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Blue Band (B2)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Blue Band (B2) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B2\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"blue\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.48\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340f0a602019909fbb3e6bd909443ef7f9adfe7efabc86586f6e5f85e941aab30f03adbde671e000852b535ce627d864c1e6c3b33011a907b9a67fa1b7e595d9f42\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " green\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B3.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Green Band (B3)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Green Band (B3) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B3\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"green\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.56\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B3.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340390ee928fcce762ed559dd7624dac340cb11f494a4a3eaf8a410e07c8dc2efcbc8095b7b8a7753b77cd3ac484a1dc4a820412070da2fbbb26c4a8c84da65c740\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " red\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B4.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Red Band (B4)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Red Band (B4) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B4\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"red\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.66\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B4.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13407ee4ce734a8f1253e88a6ee07115ce1259780593a497277fabea9754224709f9a18f6e24c6f797b5087e139d88eb3623906f78ff346b0aab1ecec9dd74bf5e64\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " nir08\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B5.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Near Infrared Band 0.8 (B5)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Near Infrared Band 0.8 (B5) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B5\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"nir08\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.87\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B5.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13400a93071bb947a66627d3a081edd3d61120eaf1a7ca8ae05246747361c893865456f9632ffa9b71577b7b3be98dcf0126bcc265cfc680869b34a66d670c35012f\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"reflectance\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " swir16\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B6.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Short-wave Infrared Band 1.6 (B6)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 1.6 (B6) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B6\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"swir16\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 1.61\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B6.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"134062a6c6a75da004aafab56bd32144d3f8771047a5dd70ec0ea95490833d650ad004c785f53d8505f7dd6944b6b427abb464c7b89bb99873d7851c83cfea527bda\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"reflectance\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " swir22\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B7.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Short-wave Infrared Band 2.2 (B7)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Short-wave Infrared Band 2.2 (B7) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B7\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"swir22\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 2.2\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B7.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340f5a2ec02ecabfbbe1e5c146d0a024a99ba3fe858e7d7f93294a51ee4c6b87109cdad2c59b4e6b7a4f5e42e634a8fef078fb8754ee4cd918c9b4e906bee65a550\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"reflectance\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " pan\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B8.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Panchromatic Band (B8)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Panchromatic Band (B8) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B8\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"pan\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 15\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 0.59\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B8.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340f2a81f05dabed172f1609c89e9ea351f2c756f65fdbd51fb6dd00098d8c7d5663d7d57609a2129c5b3fcf25147ba583738fb518e83834b011f2ffb0008de3ea9\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " proj:shape\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " 17541\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " 17481\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " proj:transform\n", + " [] 6 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " 15\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " 261292.5\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " 0\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 4\n", + " -15\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 5\n", + " 7855507.5\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " cirrus\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B9.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Cirrus Band (B9)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Cirrus Band (B9) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B9\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"cirrus\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 30\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 1.37\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B9.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13401223a49db734e01483777ca9330c7795753d4f974f237db1b661e371fd64e1eb4ca98f485729b637605c18286f0bd5be20d067690e5484cc8e4d102dd77ba014\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " lwir11\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B10.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Thermal Infrared Band 10.9 (B10)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 10.9 (B10) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B10\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"lwir11\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 100\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 10.9\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B10.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"134024fd68eddf8df59bd045ba2070ce7a2a07b3670200ee2f637c7c03197956733d12b69213ed4e91d3094f4322ead9e528a3151ece2afd6498763493ff75807285\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"temperature\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " lwir12\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B11.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Thermal Infrared Band 12.0 (B11)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Thermal Infrared Band 12.0 (B11) Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " eo:bands\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"B11\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " common_name\n", + " \"lwir12\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " gsd\n", + " 100\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " center_wavelength\n", + " 12.01\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B11.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340322de4bd2084bda1235c08301b24e9773d102cde9cdef9e568fe308f31f81d3910cac0c1624026561f0c3919d7490511de65b15005f2a2787194aa246e4e870c\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 2 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"temperature\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " qa_pixel\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_PIXEL.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Pixel Quality Assessment Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Pixel Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " classification:bitfields\n", + " [] 12 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"fill\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Corresponding pixels in L1 image bands are fill\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"L1 image band pixels are not fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"L1 image band pixels are fill\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"dilated\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Dilated cloud\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_dilated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud is not dilated or no cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"dilated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud dilation\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"cirrus\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cirrus mask\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"No confidence level set or low confidence cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"cloud\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cloud mask\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 3\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud confidence is not high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 4\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"shadow\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cloud shadow mask\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 4\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud shadow confidence is not high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 5\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"snow\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Snow/Ice mask\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 5\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_snow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Snow/Ice confidence is not high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"snow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence snow cover\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 6\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"clear\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cloud or dilated cloud bits set\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 6\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_clear\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud or dilated cloud bits are set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"clear\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Cloud and dilated cloud bits are not set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 7\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"water\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Water mask\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 7\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_water\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Land or cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"water\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Water\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 8\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"cloud_confidence\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cloud confidence levels\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 8\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"No confidence level set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"low\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Low confidence cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"medium\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Medium confidence cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cloud\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 9\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"shadow_confidence\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cloud shadow confidence levels\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 10\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"No confidence level set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"low\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Low confidence cloud shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"reserved\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cloud shadow\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 10\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"snow_confidence\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Snow/Ice confidence levels\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 12\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"No confidence level set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"low\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Low confidence snow/ice\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"reserved\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence snow/ice\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 11\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"cirrus_confidence\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Cirrus confidence levels\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 14\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 4 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"No confidence level set\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"low\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Low confidence cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 2\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"reserved\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Reserved - value not used\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 2\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 3\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"high\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"High confidence cirrus\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 3\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_PIXEL.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340bd1ba8811b39d3f87b9fbac994e2d8b9cdc68206de261277b72bef13eb8e4941a738af18f99e313afc2d7ecbd16c0283fb7797ed2f524bc8517fc031e25351c5\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 4 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"cloud\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + " \"cloud-shadow\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + " \"snow-ice\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + " \"water-mask\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " qa_radsat\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_RADSAT.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Radiometric Saturation Quality Assessment Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Radiometric Saturation Quality Assessment Band Top of Atmosphere Radiance\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " classification:bitfields\n", + " [] 16 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band1\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 1 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 0\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 1 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 1 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 1\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band2\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 2 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 2 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 2 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 2\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band3\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 3 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 2\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 3 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 3 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band4\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 4 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 3\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 4 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 4 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 4\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band5\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 5 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 4\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 5 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 5 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 5\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band6\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 6 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 5\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 6 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 6 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 6\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band7\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 7 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 6\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 7 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 7 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 7\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 7\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 8\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"band9\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Band 9 radiometric saturation\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 8\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 9 is not saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Band 9 is saturated\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 9\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 9\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 10\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 10\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 11\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"occlusion\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Terrain not visible from sensor due to intervening terrain\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 11\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 2 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"not_occluded\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Terrain is not occluded\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 1\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"occluded\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Terrain is occluded\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 1\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 12\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 12\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 13\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 13\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 14\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 14\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 15\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " name\n", + " \"unused\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " description\n", + " \"Unused bit\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " offset\n", + " 15\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " length\n", + " 1\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " \n", + " classes\n", + " [] 1 items\n", + " \n", + " \n", + "
              \n", + " \n", + " \n", + " \n", + "
            • \n", + " 0\n", + "
                \n", + " \n", + " \n", + " \n", + "
              • \n", + " name\n", + " \"unused\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " description\n", + " \"Unused bit\"\n", + "
              • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
              • \n", + " value\n", + " 0\n", + "
              • \n", + " \n", + " \n", + " \n", + "
              \n", + "
            • \n", + " \n", + " \n", + " \n", + "
            \n", + " \n", + "
          • \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_QA_RADSAT.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340c7989f6e2f2452c6d831fa381023a96a6239f2468c1cab822bfeccbb0e81d09ef9e66beb25076a15b5f92e64d37fc9bc7b2a8bd841d4c23f0d5e99b00339dfe8\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"saturation\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " ANG.txt\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_ANG.txt\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"text/plain\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Angle Coefficients File\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Angle Coefficients File (ANG)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_ANG.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340d62f86775fcb6bf2cf857977a5396da298d39a9fdb52d6629bb3512fd27f9eab1272a2e7bf98bd4ecd8182446840c2778431fd0dd43a1ad78c0643b501e813d7\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"metadata\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " VAA\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VAA.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Sensor Azimuth Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Azimuth Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"134002d80cf9e82ddb6461f32daa52b6f0849489ba1f6da8766e4c980a0c57f0d660fb8ad1b9af8b2df0b1cf88fc9d413daff597ba9185b83b90a1539906ec9078c5\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"azimuth\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " VZA\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VZA.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Sensor Zenith Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Sensor Zenith Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_VZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340d7400e77da79fc700141da99b3f99589949ff4ae68c0a3bb42dbd7b8e6589afbed6d96c8feb5495a3358c576605e253043d5e71ad09ec84c433c490171d5ed21\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " SAA\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SAA.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Solar Azimuth Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Solar Azimuth Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SAA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340aeccc943e32f169f13ed62b3040f9d56c9ef9f3aa4913fb053b2d3d380d383c2e0d70d6d97222ac0dfbab3d847e7af7a8c43dc8d230cf73e2485dd186c06f8bb\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"sun-azimuth\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " SZA\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SZA.TIF\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"image/vnd.stac.geotiff; cloud-optimized=true\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Solar Zenith Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Solar Zenith Angle Band\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_SZA.TIF\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"1340b5b25eaf0db0e92b3f8d51c264541aed07204de462db88bec5b14f8f424609038c55e037258eea160000f7bc182e0ac025a141b2ca2928d8426655be194e8855\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"data\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " MTL.txt\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.txt\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"text/plain\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Product Metadata File\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (MTL)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.txt\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13409050479ffcfd16eb8ac7f83ef533308d1ff13833558eeb5f48f2ba8a192fc32885ff28d29163f19200a0525e404965c4af5c48892c763cfb4b9d8b3662fee216\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"metadata\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    • \n", + " MTL.xml\n", + "
        \n", + " \n", + " \n", + " \n", + "
      • \n", + " href\n", + " \"https://landsatlook.usgs.gov/data/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.xml\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " type\n", + " \"application/xml\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " title\n", + " \"Product Metadata File (xml)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " description\n", + " \"Collection 2 Level-1 Product Metadata File (xml)\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " alternate\n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " s3\n", + "
            \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:platform\n", + " \"AWS\"\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " storage:requester_pays\n", + " True\n", + "
          • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
          • \n", + " href\n", + " \"s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_MTL.xml\"\n", + "
          • \n", + " \n", + " \n", + " \n", + "
          \n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " file:checksum\n", + " \"13407003d50020e48bbf8ab39dd6dc378aa30a2faadedb5ccd9a0655f8012cf6f78f9b2d2046d3c0f7289126db9f70d63d70deddddb529b2e797d9bb495d1a8a9e7f\"\n", + "
      • \n", + " \n", + " \n", + " \n", + " \n", + "
      • \n", + " \n", + " roles\n", + " [] 1 items\n", + " \n", + " \n", + "
          \n", + " \n", + " \n", + " \n", + "
        • \n", + " 0\n", + " \"metadata\"\n", + "
        • \n", + " \n", + " \n", + " \n", + "
        \n", + " \n", + "
      • \n", + " \n", + " \n", + "
      \n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " \n", + " bbox\n", + " [] 4 items\n", + " \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 0\n", + " -50.97097968875044\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 1\n", + " 68.44897504333066\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 2\n", + " -44.463480823181705\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 3\n", + " 70.75209635973746\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
  • \n", + " \n", + " \n", + " \n", + "
  • \n", + " \n", + " stac_extensions\n", + " [] 9 items\n", + " \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 0\n", + " \"https://landsat.usgs.gov/stac/landsat-extension/v1.1.1/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 1\n", + " \"https://stac-extensions.github.io/view/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 2\n", + " \"https://stac-extensions.github.io/projection/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 3\n", + " \"https://stac-extensions.github.io/eo/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 4\n", + " \"https://stac-extensions.github.io/alternate-assets/v1.1.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 5\n", + " \"https://stac-extensions.github.io/storage/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 6\n", + " \"https://stac-extensions.github.io/file/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 7\n", + " \"https://stac-extensions.github.io/accuracy/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
      \n", + " \n", + " \n", + " \n", + "
    • \n", + " 8\n", + " \"https://stac-extensions.github.io/classification/v1.0.0/schema.json\"\n", + "
    • \n", + " \n", + " \n", + " \n", + "
    \n", + " \n", + "
  • \n", + " \n", + " \n", + " \n", + " \n", + "
  • \n", + " collection\n", + " \"landsat-c2l1\"\n", + "
  • \n", + " \n", + " \n", + " \n", + "
\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "items[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\n", + "s3://usgs-landsat/collection02/level-1/standard/oli-tirs/2019/008/011/LC08_L1TP_008011_20190507_20200828_02_T1/LC08_L1TP_008011_20190507_20200828_02_T1_B2.TIF\n" + ] + } + ], + "source": [ + "# Either of these codes provide the url needed to grab data from the S3 bucket using the intake-STAC catalog\n", + "print(item3.blue.metadata['alternate']['s3']['href']) # must use item asset name (blue)\n", + "print (items[1].assets['blue'].extra_fields['alternate']['s3']['href'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Open and visualize each image using RasterIO " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "913c08c2e8d44c5ba86eadd7ae96ed78", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAMgCAYAAAB7w6zDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRs61nXi3/ebs6qWmvvfc5JRyIhnTSiMUYkXAIBo4Y2RFQavYMugBJFggEUAqi0EQKBCAzx/ry5yeUSwzUIUZAmKIGQEJQbiYo69EquQMgh5DR779VUzTnf5vfH29Ss2mvtc05y+vV8xlhjrVU1a/Zr7/rW8zzfr0opJQRBEARBEARBEIQLh36od0AQBEEQBEEQBEF4aBBBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoCIIgCIIgCIJwQRFBKAiCIAiCIAiCcEERQSgIgiAIgiAIgnBBEUEoPKi89a1v5bM+67N40pOehFKKN73pTfd5HSklvvd7v5eP+IiPoO97nvzkJ/OKV7zi/t9ZQRAEQRAEQXiUYx/qHRAuFicnJzzrWc/ixS9+MX/pL/2lD2gdX/3VX82b3/xmvvd7v5dnPvOZXLt2jTvuuON+3lNBEARBEARBePSjUkrpod4J4WKilOInf/In+ezP/uz22DiOfPM3fzOvf/3ruXr1Kn/sj/0xvvu7v5s//af/NAD/9b/+V/74H//j/OZv/iYf+ZEf+dDsuCAIgiAIgiA8SpCWUeFhxYtf/GLe/va382M/9mP8x//4H/ncz/1cPu3TPo3/9//9fwH4qZ/6KZ7+9Kfz0z/90zztaU/jqU99Kl/+5V/OXXfd9RDvuSAIgiAIgiA88hBBKDxs+K3f+i3e8IY38MY3vpHnPe95POMZz+Drvu7r+MRP/ERe+9rXAvDud7+b3/7t3+aNb3wjP/IjP8LrXvc63vnOd/I5n/M5D/HeC4IgCIIgCMIjD5khFB42/Pt//+9JKfERH/ERO48Pw8BjHvMYAGKMDMPAj/zIj7TlXvOa1/AxH/Mx/Lf/9t+kjVQQBEEQBEEQ7gMiCIWHDTFGjDG8853vxBiz89zh4SEAT3ziE7HW7ojGP/JH/ggAv/M7vyOCUBAEQRAEQRDuAyIIhYcNz372swkh8Ad/8Ac873nPO3OZT/iET8B7z2/91m/xjGc8A4D//t//OwBPecpTHrR9FQRBEARBEIRHA+IyKjyoHB8f8z/+x/8AsgD8vu/7Pp7//Odz22238WEf9mF8wRd8AW9/+9t51atexbOf/WzuuOMOfvEXf5FnPvOZfMZnfAYxRj72Yz+Ww8NDXv3qVxNj5Cu/8iu5fPkyb37zmx/ioxMEQRAEQRCERxYiCIUHlV/6pV/i+c9//g2Pf/EXfzGve93rmKaJ7/iO7+BHfuRH+L3f+z0e85jH8PEf//F867d+K8985jMBeO9738tXfdVX8eY3v5mDgwM+/dM/nVe96lXcdtttD/bhCIIgCIIgCMIjGhGEgiAIgiAIgiAIFxSJnRAEQRAEQRAEQbigiCAUBEEQBEEQBEG4oIjLqPCAE2Pkve99L5cuXUIp9VDvjiAIgiAIwoUlpcTR0RFPetKT0FpqQ4IIQuFB4L3vfS9PfvKTH+rdEARBEARBEAq/+7u/y4d+6Ic+1LshPAwQQSg84Fy6dAnI//Bcvnz5Id4bQRAEQRCEi8v169d58pOf3N6fCYIIQuEBp7aJXr58WQShIAiCIAjCwwAZ4xEqIggFQRAewXzZr38JJ77j1Hf8y+f90EO9O4IgCIIgPMKQSVJBEIRHMEsz0htPZzyf/ba/wQve8rKHepcEQRAEQXgEIYJQEAThEcpL3vmFDNEyRUNMufVHqcSn/fJX8xff/tcf4r0TBEEQBOGRgLSMCoIgPEI59h0+GiKKMVo0Ca3yF8BffsdfY4yGn/iEH36I91QQBEEQhIcrUiEUBEF4BPIF//bLiEkzRsPGOwDGaJoY1Cq13z/tl7+aF/3K33wod1cQBEEQhIcpIggfRTz1qU9FKXXD11d+5Vee+5rXv/71POtZz2K1WvHEJz6RF7/4xdx5553t+de97nVnrnOz2TwYhyQIwjkcTz3XpwVH44IT33EydQzB4qNmCoYxWE59xyZsxeKn/fJX88n/5use4j0XBEEQBOHhhAjCRxG//uu/zu23396+fuEXfgGAz/3czz1z+be97W180Rd9EV/2ZV/Gf/7P/5k3vvGN/Pqv/zpf/uVfvrPc5cuXd9Z7++23s1gsHvDjEQThbD7+zV/PXZsD3n96wN2bJUdDz+nkOJ0cx2PPydRxNPWcTh3XhwVD2J0zfP4vfu1DfASCIAiCIDxckBnCRxGPe9zjdn7/ru/6Lp7xjGfwyZ/8yWcu/2u/9ms89alP5aUvfSkAT3va0/iKr/gKXvnKV+4sp5TiQz7kQx6YnRYE4T6zmSzHwRCiJiXQOqFUQkFrGV1P+Z93oxPOBBSQgJWb8FHzp372Gxkmy3960bc9ZMchCIIgCMJDj1QIH6WM48iP/uiP8qVf+qXnBo8+97nP5T3veQ8/8zM/Q0qJ973vffz4j/84n/mZn7mz3PHxMU95ylP40A/9UF74whfyG7/xGw/GIQiCcAbP/lffxGZ0bAbHOBrGwTEMls3Gsd441oNjMzqGyTEFwzBZRm8ZvM1Ccuw4GTsAOhv4o//i7/NH/8Xff4iPShAEQRCEhwqpED5KedOb3sTVq1f5ki/5knOXee5zn8vrX/96Pv/zP5/NZoP3nhe96EX84A/+YFvmoz7qo3jd617HM5/5TK5fv84//If/kE/4hE/gP/yH/8CHf/iHn7neYRgYhqH9fv369fvtuAThonN8umAaLGnSueSXFJiE0rkyqGxEKQg6gkqQFL7zKAUpwRQMKSmUSpjiSBqT4k/89Dczest/+exveUiPTxAEQRCEBxeVUkoP9U4I9z+f+qmfStd1/NRP/dS5y/yX//Jf+HN/7s/xspe9jE/91E/l9ttv52//7b/Nx37sx/Ka17zmzNfEGPmTf/JP8kmf9En8wA/8wJnLfMu3fAvf+q3fesPj165d4/Llyx/YAQmCwNPf8ArCqGEwqKDAK1SEZBKpS1kA2gQKtAukpCCBcRFj8++6CEdjIlpHjEqEpNr3ym9KK6kgCMKjkuvXr3PlyhV5XyY0RBA+Cvnt3/5tnv70p/MTP/ET/Pk//+fPXe4Lv/AL2Ww2vPGNb2yPve1tb+N5z3se733ve3niE5945uv+6l/9q7znPe/hZ3/2Z898/qwK4ZOf/GT5h0cQPkie8r99D3rQqEmhAygPKIgOQp9IXQQFmAQ2tqqhcRHrAsZEUgKlcoA95O8h6PJz/l2pRIwaZwL/4bO+/SE6WkEQBOGBQAShsI+0jD4Kee1rX8vjH//4G2YB9zk9PcXa3VvAGAPAeZ8TpJR417vexTOf+cxz19v3PX3f38e9FgThZjz1B1+FDhozKPSUH0s6d4wmlYuDBEWyuVKodMJ2gZgUSkesDc1wxuhIiNsR8tpOWkWiUYlI/v1P/PQ3E6IW8xlBEARBeJQipjKPMmKMvPa1r+WLv/iLbxB7L3/5y/miL/qi9vtnfdZn8RM/8RP88A//MO9+97t5+9vfzktf+lKe85zn8KQnPQmAb/3Wb+Xnf/7nefe738273vUuvuzLvox3vetdvOQlL3lQj0sQLjpmo1BBZQFoINr8lWxpGdW5VZQqDGNu/zQmQlKtCmh0zPODOmJNFonOhK1TaRGFzoT2ewI+8p9/Gx/+RqkWCoIgCMKjDakQPsr41//6X/M7v/M7fOmXfukNz91+++38zu/8Tvv9S77kSzg6OuKHfuiH+Nqv/VpuueUW/syf+TN893d/d1vm6tWr/LW/9tf4/d//fa5cucKzn/1s3vrWt/Kc5zznQTkeQRDg6a/6PrCJ6LJYC0lRdBtJATqBhqSKKCzEqDE6bFtHdaR3HqMSPmqUSpwOBl2FXzGbCUmhgGlyGB2JpZqodeIP/7NvJ0bNu//yNz2IZ0AQBEEQhAcKmSEUHnCkV10QPnCe8v/7ntwPqiiGMdk5lKDIfZ1s3Ubrv+Y6m8voLqBMzie0LuCcZ9VNLN3UWkavrRcAhKiz+EsKXdxHQ1KkpIhxW2EMvrSVg4hCQRCERyDyvkzYRyqEgiAID2PM5ZEUFUqBdR6AGDQxKVJtDU2K5NVWFCpQZlZCVImUwHvDZAILm8uIMd34vbaMxuI8GoFYyo5p9rwCnvFj3ynCUBAEQRAe4YggFARBeJjyjB/7zmwEYxIHq4FLi4GQFKdDx+gN02SIURMnDYZtxVClnEeoU46WMAnnPL0NLN3Ewk6kpBiCxZocR+GjJkaN1TmOIkaNNbHtS0q5FJl0EY+xONFEzdPf8AoA3v1XvvFBP0eCIAiCIHxwiCAUBEF4mKJ0ROuEtZGDfmTlRqZoGL1lLK2blOqeMlk4qtJeqnTCuYC1gc56Fs6zsB6rYm4J1ZGIorMhr2eyBCiGMwlnPEs3MQZDTNtu1BB0iafI7aSBCGUe8Q//398BKvE/Pu/vPujnShAEQRCEDwwRhIIgCA9DPvyN3461EWcDq37ksBtYGN/aNvP3LOC0246CK0Cb7CRaq4IH3UhvfF62tHxOweCjzrOCUWN0wpb1mxJYn5LKraM6kVKuFpry+qDzXGFKmsi2kqh14iN+/NswJvJf/8K3PGjnSxAEQRCEDwwRhIIgCA9D/GRa5IMPho13pKQYoyElhdaJlBJah52QeaXIbaIqYU2OlpjHSWiVmIJhCDa3iRaBaU2uFKZScfRRM/jtfxFGJ0JUrY1UlVgLpcD7bbC9KWJUq8Sz/9U30dnAv/3U73pQzpkgCIIgCPcdEYSCIAgPM57yj78HekPQibE8ZrRtoq63udrnW7bgNjai5gxqlTA1b1DHVglce8cUTDalIQtEBS2GArLjaIiKGDVaR1wReUrpFlGhVN522hObdfvOxFZpfP4vfi1OB978p1/9IJ5FQRAEQRDuDSIIBUEQHmaoWbC8c4FVN3HQjRy4EU0ikk1ghmBbfATQIiOqILQq7oi8MRo2s6pfbR9t84GlhbQ9r+PuskVYKoDyXEoKV+YQzex5OxOmVuVlX/grX8XCTPz4c//x/Xm6BEEQBEH4IBBBKAiC8DDiaT/wKnCATlgXWHYTC+vpjafTnk4HInm2r9NZiGkV8ckwBlN+TzvffdREVBOPpgi1WiWsj6cSUaFVIpSoCaPzcqasz+lc+QtRgwk7ItTqiGZbMaztp5VY3Ew/51dfQkyKn/iEH34gT6UgCIIgCPcCEYSCIAgPI2IfwSaUi60NFLJoq3mBVkWcCRzYsb1uHRxWGWLS+KS3AfPkWcKaJeiKUYzVkfXkgFzZq6hZhdDorQmNYiswrYpokzAqZuMZFL2pDqZ5XTFlETqvaOavrq3/U37pb0kbqSAIgiA8xIggFARBeJjwlNe8EvqE0glj444480kzRsvCeHrtWZoJrSJDtKyDa8tV4VfpjG+VxE57xpjNZGwRgT7q5ia66ofmPuqqeUypGNb5wPqYIdGVCmFMCqsinfHb/UizfY+mzTBWcVi3+fFv/vpcqUyKf/dp/+B+PqOCIAiCINwT+p4XEQRBEB4MVBdyoHwRgyFoRm84GTuubxZc3Sw59j0Atoi8Mdr8FQw+mSbQgPZzqyzqSKc9KzuyMFNpQw3Z/KWIPaMjSzfRma17aW0xza8PrVJYhWAVl3VeUM9EZCUmhU+a9eTYeMvp5DgZHadDx+nQcTJ0fPSbvuWBP8mCIAiCIOwgFUJBEISHAU/7p69Alax5UjGIIX8fvSFEzWbK1T3NdgZwHRynvmvzg/O5vagSGxw+5ufq7GF7vvzcKoAq4nSZO9SakBSKrVlMLC6m89dHtV1fzTWswrBWA+v8Yoh5nb6E3fvqdpoUMebvH/UT34qzgf/0om97AM6yIAiCIAj7iCAUBEF4GKCKEKvuogpa8DxAShCC4VQ57tAHRFRrAV17hy/GMFWQxSKyhsBOpW7+c8WoSGcCVgWsjjdUFes8Ymv1nL22VSPJ2+u0b9uZVyp9yjOEeRYStMpCM54hZAH+1M9+Iys38dY/9z0fzGkVBEEQBOEeEEEoCILwEPP0N7yCVmhT+UvpiNaxVegApqQIQbOeLNf1gr7M7E3BMMWtkUxdVZqt0pa20LkLaDOJ0ZGFmViYiTFaOp2F4fHUl/B608TdGE1zEw1JEWeOoqqIxvp8dT/1UTMFQyj7hy75h+WgfdStQlhnCydvuB40f+pnvxGjo4TbC4IgCMIDhAhCQRCEh5Cn/dNXlJ+yoKIIOq0TxkSsCTgTmUI2ZUml1fJk7JisbqHytfKWw+nTnltoRCeFmwXVWxW2lcRSvfPKNKfQTkUWRrPBEVIWdEBr8axmM1V11seBG/IHx5gF5TwzEaoo3DqpxpjzF2NUhGJqE0vF9I/85LdgTOQ3pZVUEARBEO5XRBAKgiA8hNRW0YpWxWXURIxKOBObwYsPpsVP+KCJybaq2lxY+bDbfhm0IpkyL2izOYwtc4Ga1No5IwqrAk5FeuOLUDRMbE1k6ncNRNgReWHWajqPq0jlNSEqtCILV5X3OZbqoPeaGHVumQ0QvCGl0kI7K3U+7fWvQGl491/5xvvvIgiCIAjCBUYEoSAIwkPEH/5n344pRjI1pUEpMCa2FtI6z6dVwprQtFEVZWpvJrCGzVejFgBjZlW9YFs0hSZhddgRenOcDlgdMNpgUoQi/upyaSYAE7l1NT+2nQk0Olcl6376sDWr0SrlVtKgIakm/lJtHw0KgoJyHCSou/iU17wSvfT8f/+rCENBEARB+GAQQSgIgvAQoXXaMY6B/HN9LCRFnCw+6FYBNKXNUqnUguNr9Q1yRESImkQWlylt5/sqRuWZQbhRBNaIiSnm9tFOB0YdAU/UipC2orC2kYZSpfRBt223amVMWL2tBlZjmiqA42x+sO4vlMqgz4JQhVIlrPuqEihFGjue8r+/EtUH/ucXvvz+uzCCIAiCcIEQQSgIgvAQ8Iwf+0602Qq1uRCsv0Op+JXKXK2q1TnBlh2oElrtir4QNT7o3UqdSvTGc+gGbu1OGaNlCJYxmhJNEbEq0mvfqohLM+GTJmpV3EKLSUwNmy+zgZM3zem0ViYpez1vad2K0xo1wc7xJrWtBu6QFCpu14kCAuANTJqnvKYIwy8QYSgIgiAI9wURhIIgCA8BiVwFi4DW20drpUwVc5lq0BJKK2glll9qRU8Xwxint2Yx1QymtpzOA+jXwbV1+WjwSaOLoJuH3vfGM5VZwkie70PDFE0zs6mto7Xytyv8IMZ8jLWyCfVnhVIKrbc5hKBztVMnqO20lGqnAlVnCrOm3BIUaWN46o98F//zi77h/rhEgiAIgnAhEEEoCILwIPP0H/tOoMwBplSqZNuZv1okq4HwSiXUzMHT6DxP2JuAM1m8abLgW5ipGbr4aBi1YSrB9Jrt45vgWragT9moZoyWIRqWdWZRBWLS9EUg1teQctup1THPA9bsw1L5a22fs3bUtF/xq8diciup1qkdf+4OVWDLPGHQbZ4wxZRFYWRXEJYXJq942j99BVcun/KuF37HB3aBBEEQBOECIYJQEAThoSCpPAtXqmrbalo1bMltmtYGDDRjFmdiqQRGnAkti7AKuBwpEYlkURdRN0ZFkKMq5uHxlZg0MVUP0frYdhkft5mERsdcVdSRZPJ2asUzhK2Abe2ge26o+89vDXUS2PyzMTHPJ3pDCIoYDDEoktd5xjCW86jJVUUgec314yXP/Jd/jyvLDW97wSvvhwsmCIIgCI9ORBAKgiA8iPzhf/btaFVEzGzmb+4ymhKzFkpIJos/Z3JVrrcepwML49EqNpGnVaLTIbeNkphK5W/uVBqTwqOx5LbTGjlRZwJPvaPXnqWZ0CrmdZCrh3NhaHUWak7HncdDzDOFWkdi1DstovOcwooCbKlyYrZVRWsiB93ILf2ahZ1yBbM4pI7BcDp1XFsvGEabIyrqeQwly9Br1uuOBHzcz38Dty7W/Nwn/8P76SoKgiAIwqMHEYSCIAgPIkpBYlsR239ufzguxjxnF5QGQgt870xAl7bNKvagxlGUmUKyQNwXc5DD4oE2f+h0ICTNGC1T0hwUBxenIlHFtk6rA5bQRGaPz/OH1Z00GIxOOXqiiMbtAaadfdU6tpxFZwJWRXzS9MazsiML47nFrTmwA05t4zF67ZmS4bpfcNd4wPvXh5xMWfxdXy9YrzuiL3mN3rBRjmsq8cJf+So0iX/5vB+6X66lIAiCIDwaEEEoCILwIPGR//zbmoHMWTN1wI7T6HwWLxY3T0zIrZqkbXuoUs3hE0U2f0klKH4uLvdC42swfa3QVeOYMVrWoUMXUahVZGkmprQNoYdcJdwEh4maoDTOKCYdmaJubarzSAyttiY5te21N57eZgG4NBMhKZZmwqmYMxDJgnfC4FTAqYBRkZUZeKw74qmLO7l2sOTuacWJ73m3eQx3qcRmcGVGcZuBGJOiM55P++WvptNBhKEgCIIgIIJQEAThQUPreMNjaa9yp3baSPfcOqvISypX6opo8qXdE7IYDCnHMphSTVyYCQw7VcR5C2ltPc1mM5YxGE7oOLBjaz/trc/zheQKZEThimD0SoPJ84fVxMbP3EfrPhuVcCbQ6YBSiYXxdMazMBO9DvQ670f+nvd1HRxDyP9VGZVY6hGtEitjODQbFsrzeHedx9pjjsICrRK3u8tcHxZMUbOwngM30ukct9HrvP2I4oW/8lXEpPiZT/qB+/lKC4IgCMIjBxGEgiAIDwJ/9F/8/Vm8RGYu9va/1wgHpXKFK8dL5NdNJTfQ6ohRCVobp8YVodjmCLVmWSp7WkVi0qyD2xGEdV4wlsgKyPmDSzMCuUWz177tt1GRkDTX1QKAk9Bhizgci4NpjaSopja1Gtlb35xQNTkXMbejZiMcWyuIRKaU21pr5XKKhrV2aBJ3ccDSTFy2aw7NwCWz4Yo95Y8fvoenLJdc80uu+wWX7YZb7SlGRTbRMUTL0vQc+QU+5hbZz3jrSwFEGAqCIAgXEhGEgiAIDwJa7faI5my9IgLPWmbmANqiJ8pjMSnWPucIWhVba2etrDkd6LTHqYBNprxGtxbMPC+YK3y14lezB+u8Xl9eX1tOD82muI+CU4FQhB7QltHk/bMq5BiJPcOZTnusjnSlGjh/bUwaH+vPil57hmgZom1Vz5hUqxb6pLk2LbhLr7ilW3PJbrhkNtxqT/iw7g5ipzmJPTFptIo4FRii41pYltcb1sGxCdt220/5pb9FSopfeP73f0DXWBAEQRAeiYggFARBeIB51k/93VbdO48q+OYtpNXJc/6Yni2zCZaFndo/5LFkBFbxhAJDBKXRZf5uZUb66DmN3VaUzYTnQk+s9Eivp/KcJqBwKoAKrWo3xe1/H7WFtDqStv0vwnC+77bNJWbhOieU9tKQihBMmqFUQ+eiU6tEpwJjNPikuTouc/XQODbREZ1mpQdi0lwLS47CgoWecCqwiVlId8VJdeMdcebuE4HPeOtLpVooCIIgXBhEEAqCIDzI7LeHVrSiVAZzy6hWYK3HB0Msi8aUK1pGazSJMRi0yU/WamFMGp8MLm0FlyE2U5aaXThEmyuBOjElk8UjtIraQk0ENEMRUVMyTNFynCynoWMo5jNDcTGtERZxZj5T3Ud3f49ttnBppvZcrWQO0XLiuyz4ihisuYl1bnK+3ojiyPd53rAI1Sv2lClarvklV6fVTmusU7lSujQTgx3RwRYH1a1j6xf82y8D4Ec/7jUf3MUWBEEQhIc5IggFQRAeQJ79r74Jpc42jqmum/tB7RpFZCuirAmEqDHFlCZBns9TiU1wdMUldB1yhmBEEYOim1UAI4almtAkTMkuXMeOKRmWZmpicIqGY/JsoNF5Oac8m+SYkuE0dqyD47pfMkTDGG2usrFt98ymN5EqC+cVyFiEbp4t1GUWMgs0oyCoxBAtm2C5Ni7ZeMsUDD7oNnNpTWRhszupKRXHUDIXrYrc3a+4tTvlFrdu216H7T4OJc+wisx2nlXMURgqttnGl7zzCwH4xx/zf32gt4AgCIIgPKwRQSgIgvAA8TE/803AjZVA2IrB+vyZojBl4VdjGkypYkEWWU5HQtQcTz1WRcZo6HTg0A34MjO4X4GbkmFIlvePhxxNCyKKAzNiS15hXX6yBuMSKz0QyFW/UKp3Q3QM0XDqOzbBsfZuJgJnTqZaAb4cbzkHqpjEqERQCq0iOuW21nmFchMcR0PPyabDe4OfDMnrYrQDugtYGzAmYkwRyknhTOBk6jjue+52qyZCN8Fx5+aAiGI9OcZgmLzB2VAyHRMrN7YoDzsz2Ol04MX/7sVolXjNx77u/rg1BEEQBOFhgwhCQRCEB4jsDlpzBLePz/P4YFtBg63zaBWFtZXRlSpgV+buhpArZxjwXrdQ99OpYxMsnQmtQgg5smFKBiJc90uuTcsskJLi96Nu1TJnckvpoTsgHGie2F1lobJIrHN410uA/anvGIJl8La0seZsQVX2WaeET6aIxG3khm+upwkfDbitYU02s8lRGSkpQsgiMAVFmjQElSukkyZ2+TVKp+bM0/W+CO0F14dc6XQmsLRTM+IZg+Fk0xGCZjM6rA05U9Hn82Znx+B0YGXHnMWoJ77s178EnzT/53P+j/vhDhEEQRCEhx4RhIIgCA8AH/fz34BWuX2yirvKWRVDoIlGzVYUVuFYs/vq7JxPmslbNkPfWjvzOnIr5IEbOVZ9E1pjNFzXC3rtOfI914Ylx2OHD4YQ82ucCRhtmazh2rDgkh14Ync1V8/0wCblllQfTa6wRZPbOUvExBQ0OI/by1usLqh537IRTK0odtpz97jiitswxOyIelt3wtMO7sTqyO+7y0xR44Ph2tESPxlIoG3CdZ4QFDFqKKI6BIUPBm/iTlX1crfhtv6UTbAcjVkoDlP+L7CzAWsCTsd2Lq2KO+c17/92NvLz3vEVbLyTcHtBEAThEY8IQkEQhAeJuRDcN1qJ0NpEYTejEPLMnU65zhaTIlQR5g0TBmsiocQ2GD2rKvrttq6OOXJhCoa1d4zeEGMWZ/OW1VB+PgkdpkRJOBWYkuWKPeWxfZ4jPPV5G+PM9KYepysB8HMDmNy6adr+A6xsbJXMy3ZgKqLrI1e/zzMP3sPVW1cM0XFoNvzO8Bh+9/RWfNoazLx/fci1YcFUZgynYFh2E5f6gQM78pj+BK0ST+ivs9IjUzJc94tSJV2wCW7nGtUZyHpdtkJbE1NseYg5w9Dw/F/8WqZgeNsLXnnfbwhBEARBeBggglAQBOF+5uN+/huAOgtIqxJWtuYq2xlCo1IWSaW9tMZUpOLGOQWTTWVmbqO1Gui9wZjYtjEVc1EfdQ6v15FLbmiviahmUKN1JARDSrmyBoHOwG3LUw7MyLWwZKVzQH11Kf3Q7m5WeuTO/oCr05I7zCHXhwVaJS73m5Y3eMkOLV6izhZOSXPie3zSLM3E4/sjLplN3pcSX6FJDNHRGc8t5hQMrPTAJb3mjy7fw0JPmLK+o7jgt4fHchx6pmS4Ni25ZDf8of4qfVkukGcnr/kVxyG7kfqU22wXezOWYywmNkWYWhXxOpvfeFuqraHMT3rHEAzDZPlj//LvEYLmv/6Fb7mf7iJBEARBeHAQQSgIgvAAkWaVJtjOCs7FYF2utoMmtTtvWIlJoUolr0Y21Bm74DXTZNA6YkxC68joTasY1nU7nefjLJHe5O1uvEUrONkYQrAkYOk8h3bgkttwzS+ZjCEkzRPcdQyRS2bN4+x1Trqeu8IBdywucdd4wBANt3WnTUD22rPQUxNmKz3glOc09pzGHq0il/SGhZ4ISdGpQEAzJYMmchSXHIdFzhZEcRo6Ds3Ah3Z3cYs5xSnPk+zdPNndyZQsAcUmdkUAWk5iz2nsGKLjNHYch56jacE6OMbikOpLhXQeO6FKnmNMijEZiIZBZedTrRJTNJxOjs1kGb3Fe0PwmhA0T3v9K9Am8Vt/+ZsewDtLEARBEO4/RBAKgiDcj3z8m78+xyrsVQVTER1zUThHUyqFOjbhl5KCc+YNYTfMPk6aiCa5iHXZ27PO6fmouet0yUE3sXIjt/RrNIlbujXvW19q+zJ4Qwiak6HDH+aq2OP7IwAWJgu7TlXX0CwMIVcOb7MnOexe+WY+45Rv3wE6VUqXemClhyYA83IwJcsm5ngLgCHmoPnj0HPdL/DRcBcHHIeej1rezoEeiFrj2JrnOOUhWSa2rqqnsePYZzF45Hs2weGjZiozi1MwWZAWQxlTYifmz49JcZpcaUvNM40+6CLIDTEqlAJ0QunIR7/pW/gvn/0tH8gtJAiCIAgPKiIIBUEQ7kcUuatT7wm5yK4orN/3ZwVbmym0aqA9Y32qPGZMROkc20DM+YOp/MuuVaJ3nvXo2IyOYXKsuyxqnnrpTkypGoakWNoDrIrctVmxtBOX7MBluyaiuNWetEiIkDQU8QYQqI6hkZUem4FMFYNGRSKaMVkiHk1kkzoANgkWaiQk15aZkmGIea6vCkOnAn2ZMzQlp/A94208wV3DxV3BmUPvdZuDhJytuI4dJ6HjeOqb0INt6+1Y8g4X1je31TrrOAbD6E1r322VX53QOkdftCqvztVYawJ/6me/kRAVv/GZ33nfbyRBEARBeJAQQSgIgnA/8Ym/8Hfa7N+cJgDL76ZU9cyeG+ec+fL7NcL92UOtE9rk5ZUuOX26ZBeWr60IhetjnqO7xa0Bx2U78MTFdYZo+bCDu4hJ8/Tl+wkoFspzGjtWeiQkMCoSSiYhZNFWhducTXJoldpyMSlGbBZZaIbocCoQVXEHRXMau+3MX7TlXOXohz5loWaIWB0ZouUuf4jTvs0TAq0iWbMTp2gJZIFYz4FREaO257HTAWdCjvEo+zoV85ssFg2jt2ido+1NiaXIFd2t8cwUNDFqnA3t2hqdZ0pTUvy7T/sH515vQRAEQXioEEEoCIJwP7Nfzau/+1gS+c4Qg/stpOfRxF1Zr9YxtyqqhCqpCCEotFbZjMVNHLqRu9YrAA66EaUSm+Do+yO0W3PHcMiH9Ne4ZGBThJpTgVWpvE3JtMiFiSya6qxfFV2VkDRRRRy55bNW7LSKTFHvCMgpGZyq61OtMljXU6n7U8+jIYvEKRmGsLvtWpUMSTNEy2nsGKPNc4MhzwzWa2J1RJPQZsJFy6BtuxZTMEzFyTW375LFngloHXGzWIuaERmiZuNtFoxkIa+A3nqsinziL/wdxmBEGAqCIAgPK0QQCoIg3A88981fj9Xbyt1ZOBMIUWNms4S1ddSo1MSi2qsgxqSYoqYz2wgHH3VpGwVrQ87jK+2bJMU0GZSC47Hjcjdw0I3EpDjsBjrtueKys+dYxNwd0yFX7BqjavXtoLl/HoUFCz2hVczCrgrBZHYqhaa0i1KEWd533b5XMVhNYnKURQ6unwvFuTh2OmDIBjV5u6WimDQB2mO18lhfH5NmHRzrkLfloyaiCEnjoy7nPbAwdSYy7VQGB2/bTGWd51QqEbXCzWI9Op2rgdWQZmGn3OpbcifrtpRKLG12NP1TP/uNpKR452dIK6kgCILw0COCUBAE4X5gXvmrlaz2vcQpxKSgxj3MRM+8gmhUIhTxYao7aKlAWbWNlmjaj22g/TQZYtDNiMZ7zegN3mkWdsLqyKHLgnBpxiLoFL32OW4hGobSYjkl05w9tUqlmheYom3Crwq4eTVPz9o3QxFFZib4qmlMPhd5+aksNxd8tb0zRI3WKUdNpLjTnlqrgHXfa5zENpLDtPNe5wFr5Q9gUrnCqFXKxjFlVrBmPIagiXE7L7gfHTKvBFsV0DrBrHvWx5z36JNGk6+pM4Epajaj41k/9XdRKvGuF37HTe4sQRAEQXhgEUEoCILwQZJzB1Wu2CWFnrWDVoFkVMzB86oIw3nofBFBzoRsPDMTi0bn9sjOBDqd5+jGYPFJY1TOGexMYOMDg8nGKHMRA1m8HLqBS0UM5m1m65p1cNmoJVhOdW6vHILF6sAQs1hae8eT+mtEFEOypcoZWxUQyBU/0rZKWLZRK4qhVOfq8QY0OiW2a9g9FwHNEAxWBwyxnL9EP2tjnUpu4LHv2ATX3END1K1qN4Ys+kLULc+xmsKomagLsYjnUhFs168IQVUMfOpMZosSIceB+GRY6IlOb41tRpU/CBjLzObSTjn70Podt9I/8dPfjDWR/+fTX3Ev7zhBEARBuP8QQSgIgvBBMq8UqZmLaBWDTXiohEoKzVZwRHZnB3VpPaxYFdu6tEosTBYdMSn8rP1xjJajsS9VLkuIilWXq4K98VmolP0Zo+XOqWdhfAuIjyiOpgV9aaFcB8ehGbjul9zWnbT92UTX5vCWZsqZgypi4AaRCLsto5FtK2VMqs0jGm4018mRERpiruRtZvOFRkU20TGUyuBcDA4hi2KtUquKbrxiDLny58M2d7AKPcjzgdX1tbaHGhPbtctCMLuH9ibQG79TMRxnhjSdDlgdsErlyqFKTOWaGh1ZzgTlpribGp1nDJ0JvOXPvOqG8yEIgiAIDxQiCAVBED4IPu7nvwFT9Js9wzW0Cor9NtIm+uo8W20pZdsaumN8Mqu89dpjdcCXFs+6bU1ijIbJGaZg6I3HmcDKjizNxJQ0SzXx/nHBXZsDVm4kRI1dHnNgB1yZEeycJ5ZW0sd1R8UVNLeS+mIM42s8hKPlDtZ9DKgS/bCd26utnuvgWMccO1GPq9e+ZQbOsxoBpqSxyUDcVhYNkSHm+cAhWjbBZcGXNKeT42ToSEnhTGDZTSyspzOBoCNKmRLnsXudtI7opEg6kVIqTq3FNMZmF1JThGEVk3Y24zlvU63X2eqATZqlnZqorM8duBGrAgcut5UCrbr6ol/5mxy6gX/6v/yT+3QvCoIgCMIHgghCQRCED4LehGYCU6kVvSoe5hXEOk/YhE91Da2WlJT2S5VbHjvtm9izOouSWARXb3wRXLnNtJsZpDgdtq9XEatDFlUoPmR5xMnU56qhmXKFMGl6M7T9cjo1AXjdL1teIeTYjLqf1/2CyRhWeiwxEnFHCAI7YvI49PzPo8ew9o7HLo85dFWIVsEccSq2SuI6OMZoWZqpREfo1pI5RMupdwzeMkZTjjuLKu8Nw2A5Ol6yWg0YnbMCrYl0trbNqpb1WE18ErlaWAVfZ3O7rjNhZ4bTzqp8+9THnYo4O9DpwKl3xQzIoMu1tSoCnoWZdtxPAXzSfPG/+1I0idc+57Uf2M0pCIIgCPcCEYSCIAgfIC94y8tY2LTjKglZ9KlZRdCWNsq5gIgpu4LWmUIfNTqx01JZ20RtqaJZvW3HdKWa1Gmfq1IadMrLboJtLZqwFZiHbiCgWemRP37r72UBVWIapriNgqjze1PKWX7v3xzSlbbTq+OSlR25tTtt+7AOLovI0h5ZWzLr+mpVcR06bl9f5rfvvJVx7fiD5SG3HK5ZWI/RkQM3ctltOLADpoinmDSnfjvX6IvwgyyafDK5KhoMzgR661k4T4yaaXKkoDg97fM1mjTKRFaHA1eWG/oaPl8MZ5QqLaOznMeurNPpcEP1ck6rEiqVBV8Rub32LM2E04Fr46KJwUt2aO25QG51TbqJ7U57jEpM0fBX/58vwqnIP/qYH73vN6kgCIIg3AMiCAVBED4APuOtL8UVR8mYsrEIsBMXMZ/9q+2FdY4vV/liiUPQoGmisK6nVhKrGOmLqQzASmeX0D4pJp1bOKdSfVqabXtmFYVWh/Z6pwI9fscttInVlGcMQ8ozhZtgOZp6+mi43G1Ye8f/vOs2blmt+chb/qCJmhg0UU8tHoKUz8t1v8SXSuHR1HPH6QHD1QX6xDD0lvdd77ErT7+Y6N3EeGC4bhas7JjFbtL4aPDR0BnfIjfq/lqVK6GhVNiMilxZbHBmGzbvfX7OK0MKimGwnBrH5cWQW0GTIsyErPJltlGnZupzg5ifXW+guZvWivDC+NZCa3XgksoRHkOw9MZzYIed63lgVBHP2Rm1K2201gROfE9Umpf+xl/hB579hg/shhUEQRCEcxBBKAiC8AEwNw/ZjzfYaRGdmcLUCl9MurWOoiGmRIyljRR22k+3eYVZXDgVODQDC50z7ULSDCmbq+zn+C2N47rv6XXgil3vBLfXLMBKDXOvURS5VdNw1+aA37vjFj7s8Xdx5+aAq+sF02S4/Y4rnI6OP/a421vLZxWwkEXmtWlZTF8sPuZK3jBZCAqzUejR4K+AP3bEoIhLxTUbWLmJO9crnI48fnVEZ/zOua3ns26vidKU21Q1iUvdwMpNLWaitoXWWAlrYqlq1hiP2NxdTRfLOUnlGm/nM+s26v7UltN55VCrRHQ5W7K6pDqd0G7NaGy7jrWiOndmraY9dU5zKvfWFDVxWvDif/dilmaSaqEgCIJwvyGCUBAE4T7ygre8DKW2baKd8a3S59nOgs1bPq0Os9m4WkHMP+a20dCqhJRqVW0lnaLhwIz02nNoBq7YUxYqG7lskuM4LNjg0GlrWBPQHNpjluV1vfJEpXYyAzfR5bm/ImaGaDmaFgzRcn1aEJPisctj7lgc8PvXLhGjZnO9Rx9Z4iJy9/UrvP36ig957DU6E/hDB9ewKmTDmZCrjFpFOh3YBMfKjlgTQUHTTy6CTkSv8VMWjL3Jc3u1RXNhfKk86uZaCkDK57nGcay9K5EetA3UPMeuZDku3bTjCDoFszMDWrdZg+eNjs0pFGATtv9tVufYKirreTQqi80pGqwKWQyqhKNe4217riMQS5uuIXLJbAhacxo7Tnyel7xkxnZObYm1eOlv/BWcCrzqT/yzD+peFgRBEAQRhIIgCPeRiMKQihGIbcYvMSV0is34pLmEFlECuWW0unBCERWpOJRGWuB8FYMxOToTskMosDJDqy455Qnkqt+kTDNyyeuM9Mpz2G1aMDxJE2AnwmFeVTwOfRODg7cYHVkYz0c97n3csT7k9rsvo69b7LHC/oEl9JDuNLz32LF87GkOkb8c2+xbTKo4nU4tIuNxB8fcoa+QXCLc4nEHIzHq7PKpE6tu4vGrI3zUPKY/3TGzIcJU9tuolB+v5yyC0zl2oraUhphnIVNSqLgVkjUDUCsIRXhWfVqvmSqVO6u3BjCdDizs1NZjVRX2+Zr7mVi1ajc+ZJ/aVjup3Ca6Dtl05rbuhIWeuGQ2rPSYq6CkHLFhzNaJVkcWeuLv/6c/j1GRv/fHfure3r6CIAiCsIMIQkEQhPvAc9/89Tijc+h7NTeZOUcC6GIiU4WEm2UA7pOFI03Y6JRaC2pKinWwrVp4NC04NAOX9IYpGYyKLNTIpE0Jajet9dPp0FoRayj8lHJMxc7MILkqOUTHie+5a1hxudu02bxe5+rcyo6cTo73LxekwaCvgfbgFwp7zbBZdYyrDXcNB9zWn9Dr3MbZYjFUJCrF8djnimCXMEvP4WpgCgarI6t+5PGrIz5kcR2fzLatdoaZ7bdRiagSlljMXFITgqEI6tGbli0YUm7jVCq1ymBM21nB+bp3WlOLWUw191maqRkFwTZjcS6Ca1XRMHdQTZgUS0W45jNujYR0EZEhaXrlWZlN+/Bg3tJ7Q1syie/4zRdyt19JxVAQBEG4z4ggFARBuA/U6pNXqXZ+AqCVJqbY5gTPiySIqCI8tnNqmtSqXLXldAq5RXDjLSdjxxQNl9zAeza3tirhFCxXzAkLNRG13hGFmlSqhbl6VcUgZJFWWyOrMJlKhesJyyOGYLm1W2/jK1RgiJYriw0njzvhlAP0aFBeEVaJsIqkKc/VXd0s8VFzudswBsv7Tg/xwdBZz+OW24B7NDgXsCZyeZFjIR6zOOGx/UluA1XZPTWUbL8qmqpxzpnnNm0dWsOe8YuPmhgVUeVw+NommltFt4Jt3zzGp/y6MWbhVc1uDsrcYhbX+Zp3RQT32rPSY7vedeawHrdOqbX1xqSgRIjU9RFz26lJsR2rJuH0xIKpPVYr0bUC7FTgpb/xVwDEfEYQBEG414ggFARBuJc85+deDtBMSoKOOHL1L6qtqGtv4ufiorT+AW22cEq6zNklnIoYkyBYvIr4lNsdhym3QE7eMC0Mj1scc/d00KqOK50NZqZSUZtjihiELAKPQ5/FbDKEqFprJ4DTgStuTUwaa8ey/1vhdWgGPvzy+3nc4pjTx3b8h/gUlM/zeukg4JYTJ5uOtU78/l2XsTagFGzuXqAmTVoE7jg85GA5QFIkk0iJ5gb6mMUJB2ZsMRrb+A3Nke/53aNb8MEweMPCeW5drHnM4qSd41iiI2r1LBSxpxWkIvSUya2h1gS0ooXTt2pgqR6GqKFe4xS3ZjYzI5ulmVjpsW1/Xglc6Glb3Uwa1LYXWBPy42o7r3gaO8aYjYHqhwOb6JoJUKWKvnpdNtExRNuqvjHpZmLzst/4fKyOfM+z3vgB3u2CIAjCRUEEoSAIwn0gi47cZlirUEbn+bIpGDD1H9bYDE5qq+I8F3Au3vZ/96Ut0IecrxeCJqgsHu9eLXnS4ipTNJzGLpuQsGFKtlWjaqvoaezQ5Fm4lt0Xs3OlT7qYscTtPN5Zx5sUGk1QiQMzsFxkk5r1Rzr+v/ffBoBScLja0NnAMFlOg2J8/wEAdlDoEfyBYlQwnnS5IGcS48YxHRgurY44MHleLmca5mqlJrEOjvevD7nz6iF+sKS14chF7uwPueOWFU++fC2b+iSzM8NXxaFSic5GYGueY2ah8i1qovwcS7tpKq81ZaYwlu8+ajbBsg6OlR5Z6bG1c1bqXGY+f3rHRfQsnAqMWE58hzeaJRMxKdZk0588n6qaIOy1z2ZAtWpaHEltea5WJ6dk+Np3fR53jIf8n8/5P266D4IgCMLFRQShIAjCveDjfv4bmIJpgsGHLCySzTl2NX9QxYQ2CZJmDLq0P5ZZvrnoUszMV2jmKXNRExN4r4mhZOyZyCY4NtHl2ImYq0RaRYboOA0dobrSqMix77N40IGFnohGlWqSZgquCdXa6rida6vVOYPVoUVqTBgMkSkZPvYxv81HXnkfd40HHE8918YFf/jyHRz5nv+WHs/V0aDWhrBMJFMcP20klUxAvfAok1iPjlPfcegGNsERjNoKVJXFstUR13lQCbWcCEGTouL60Yr32cDjVidYFVjaLKSCymKwuonW4PuzTF5qOynkym+IOs8bxiomA67ETzgTWuD8jtsp29bQ7bXL26ptoXMBWh+fompCbwgWnzSbccFgLEszMUSL06FkEmrWweF04MCMLM2IU6Fd7ykahmTxKX8isdD5XJyEnqOp55P/zdcRouZtL3jlvbzjBUEQhIuCCEJBEIR7wdyYJIQiGnT+7my4Yfla1dEhG8uYfROSVA1ltmYmcZZvN99mnDlkHrqBq9MSp3q0ipzGDoAhbVsHB5X/aR/L74cMBFVnBUv4eVJsQpeFir3RFbNW65ZM2U2zzr6pUs2McNluODQDYakZomWlR27rTrjyxDV3P2bF+9eHXN/0DJNjHCzL5YgPmvVJT7fwWJurX9eGBbBt3VyaiZg0dw1LtEo8YXnErf1pPq9F6F4fFpyMHYfdyMJM2QE0ecYSYu9MYO0dg7esXF4GZtXXEucxzSqCtfoLuQJsTc5EXNqpzA7W+dBsFFTPE0m31tvaBlrPtVaJgCak3FYKW5FY2z19NOW75tR3rdoZk+LUu1llMsdqdCZw2W04sEO7zie+a8J23Tku2U0TkQAHbmQKhj/7lq/h3zz/++79jS8IgiA86hFBKAiCcA983M9/Q6sIbUWaKj8X85Ggic7Tl9fUimF+cx9aHMVutUjvOJA6HRjjtt3Q6ITWZT4RiitmFhsnoaPTnuPQl3WpHeOYbQxCFgRVqKxDl9syUYxFhABcKuKitiGGlF01p2gIah4KnwXsiGUdOno95XB47ZvQWZoJ059wa3fK0WrRRFqdfbt9dZmUFAvr28xedQf1UYMBnzTvvX6Zk3XPY68cc+tizaEbWJqJpZl4wuJop5pa91mrhC9ifGEm6gVZ2RGnYssyjEm1oPnqEupjjq0I5Zz0xnPgBg7dwGU7sDRjO9eV0yKqq5CvTrOVXZFt2rK1zbNGTvik8Sk7oo7BtPWFqLMrajQcDT0+5N/vdCsudUMWqibnPI4lYmOMlhPbNQFrdeRQD0SrGIPlRb/yN1l7xy88//vv6dYXBEEQLgAiCAVBEO6B2kZY58qAIgoh7bVZtgqRAVXcJH3U2FKhyxUlmriyauskGZOm0wGvPZM2OUTdG7SO9M6z6nIboClh9ye+Z4y2iZp1cDNBqFqVKSSFU7FV/XzUOebBjmx8zr+bC8G6L5WYdM7/S+CUYqwxCSUfr9e+uavOiUlzyW1w5RidCkzJcKXbEJLi0I6sg+PEdyW83mJ1LIHu+ZiPT3vuvH7AZrIcdAueevlOXDlftp23IroUGBVwhDLfqYtLal7O6dAEezb22RVvQ7QcTQtOfa66LuzEgRm5xZ221lvI7ZlTMhyHnhPftxlQqwN98i1uot0/zIRrqUDWWc6T0HE89S0/MUSNM4GQNIO3nIxZ0E/BME0WrSNKQYya0VuObc/STW0ZgDEa1t5hVWRpJzrjW6vrODvej3/z1zN6yzs/4ztvuHaCIAjCxUEEoSAIwk14zs+9nJQ0ocx7pSI+amwB0CqFUzAwQmezgYl2JSOviDNb4iBg7kSas+1i0kSVWkC5MwGjI731nE6Oxy1PuLU/5cCM9Hpiiku0iqyDa22BlVpdqmJxjLa1TJ76Dqu2YesrO2L1VkDV18O2WgigS/VtmEVZ1MgDot0xxpm/zkeDMalJIqcCSzMRkqLTOa+vzsjV9dbtP/HgOr0JXN/0LJynt3k5ZkJuXoGb5xY6FVtltVY1azYgbF1B506w1bDFd6aJ6KUZWZmxrbua+RxNC07Ctk3T6kiX8v712rdcxP19rNXIkBRDNFwdlhyN2yqvD6Y40OZK4WZ0eW7V5w8lrCPHZ0TF6FPOWSzrDkXoa5UY5+eltPzWqugQcpRJzWj8iB//NsaN439+wcsRBEEQLh4iCAVBEG5CFlfb32ulMCWVYyLa4/m5MeV/VoPWLapAqwQBos5tmLk9sRi2lBZGrSJTtE0oLszUBMUTlmVmzAxcsetiJJO4Oq1wKub5s+LK6VNuu8ztiFms+OK4mYWXQuvdytq+QQpsRd1cHDYxW8Rhfl2OVIhhNyx9TnUqZWaCMl93zWXsNfiUmguq1ZHHr464bXGCT4aVHWfV1F2DmCqyYtKceseVbtMqmJpEb4cS2XD2PkIWdVnA+9Yi61RoYnATHSe+5+q05Oq4ZAqmOZbqmIjFEEcnjYOd+2a+jxWjEp0JrTUUwAfN0ZArlFNpAQ0+C0Kl831mbSCWXMW6XFc+QLAlYzGUauHaO4aQ78neeIZguft0yTjlx7SO2bQowVP+91dCVPz2X/vb554jQRAE4dGHCEJBEIRzyLmD80pLIulYxJ9G67jTSppb+RRTMPiYmljwJXhcxywOc9xDNmaprZwkjSkxB50OrQXTqUhvPLfYUw7NgCuOoDVK4sT3TeQM0RBjEWZFjNSqpo8arUw2XzE+O4fuxV1sK3/b16N2A9/rY7XtdW6QQ6I5hJoihvPrSstpcUStosjP4hmqKMxiM3+v7qZWR3TaxmagaUY8+9R9HEJ26jwrE3Ju/NK2P2vxNAqC0q2KWCuDJ77nuu859S5f4xJaX2MlqvgPSeFVrUBu24HrzGP7kACwKhCiZjNZXBGH3uef673FbIZU64Qx2/uu0tvcFqpUYuMdncn3z8bnmcjOBJwpVW7YuXdRCW0TMUVSVDz9Da/AOs9//5y/d+Y5FgRBEB5diCAUBEE4gzONZFq7KFhbBURqb9Trct6X6kxZohqnrNy4U62zJrYq4lQEoVWRoAOHJRy+tlZqlfMEDYlNzG6TCz0x6BwjAdAXoTSpvP2YXHbOREFSjCGbqwA3hNhDEVvcmItYmRvi1IrkVvTlVkdfqlae7ZykIWGBCYiljXW+zHz9cU+A18fz/mWxGqNqomp/DrA3PovvOtOn8s85E1JDOrvdlCIAgRuqmFNyO/tmdcSZkKu+JW5ivq5R5XMxN5ipz+d23YAjz0qO0eLD9j6r6zc6AQGlEtYqJp0/cOidx9lAKILPmdjaRJ0JrQ3W6thMZpT1zSn1VHeEpNhMltFbQtCQFMYGjA2kBMZk0fknfvqbAXjXC7/jhntBEARBePQgglAQBOEMXHmTXY06QtqdH4RcDdQ6C0IFrcYUoyKG3OYXk+KgH7OwiCabfGi/FWbVVKZEFzgd0CqyLOHi6xIrkfchC4ehiKqpRCjM0SScLpWmaMBsZwoBjqYFsGkVpJjUTjVx3kZ6VnWtbeeMx/YFXUwKnRQeCDrglLqxbXImPGvLZ13P7v6oVtlrjqfkvMd5xQ12Yzwglopm/XkrCudxEDEpotpvQ83nN5DFYqc9S7Pdn5gUqh2LJqQcWl8dU2F7r1SR1ulcnfUkNsEyBYM1W+GoVWoxJkrBwnlCcbTVOuJs4KDLERiqtJzWltZqlGPLtcVwpjBVUAQnzS2XlLC2tpvmfR+9JUbFs37q77LqR97xKd99wzUXBEEQHvmIIBQEQdjjE3/h7wDbZtFU3kSrUn3xM9dRyGKwCpJqNpOSIgZVWkh1C0b3UdNpmvmImYWc+6Qhbo1mAhqbQs6pU7a5dMJWKIYi/Gqcwrxi1hmPjvnxMRqsjhyN2UnzEpuWlQhV4GydUGNSxFkERhUzO3ORM84UgzP30trqeeO84ralci4EK3omqOp6t/u73ca2WrltYTWk3HraKpUKnRIes3OeahxEmAnjus0a1aFVZGkmnIp4Fel0IJqpzWqmlHJkiKb9XEVhbR2eYmrVQ8hupTGp9vzoTbt/8r1GMRfKZjOmVCZtMRtq1Wbji3GRyZXambnOyo475yyVc1Yr2TGUGm/UxJhISZOiYuMNxsTSCp0F7sf9/DdgVOJXRRgKgiA8qhBBKAiCcBPqLFc1CElNhOS20SoGlcpOmrq09mkdSUoxTfmNtdF5PrBV75LGNbfJ3PY5RttiKCZrdvZjiLbFGUwpu2CO0TYDlrnbZTWumQurqUQR1NbXMVqsHm9syyzrms+n1fzDuVBye86k+8zXW0XbvCW1sff6+Xbm65n/vuvauVtB3BeG7TrO4ieqOARmLa/bZaeky2xmpNeBI9/jo+bWbk1f5z/JM5CDt81Btub+VVEXillM9JZhsiW+pByHTnTWs3RlJlRHjN4KSABjQqvk1uOu95BVAXRuox1nbbi1jdaXjMlutr9jtCiVZ1vn8SkpZpfcVM5K8LrNiNouYE3MlUiVmKLmE3/h7/C2F7zyjKsuCIIgPBIRQSgIgjDjk//N16HVniCxPr+xLxVBo1MTELEEh+fHUnaXjFn8JCBOhs1sXVq51sZ3NPWsrGqGI2MwRK3QSrfQ9zk1XmKItonBbbj6rN1S71b9qjisAfC1Ulln8vKyuonB+UzcPOvPJ0P0urS5bv/72I9vqMvf8LPa/f088TefVZz/vM9+u2xDMTsnW6HblYrsvGoY2F1HTJoT33F1XALZ7XWMlpOpYxMcT1xe36lkjtEwBUM0gd741sIJ4Mee09GxWXf4yUDMBi5KJ7qFZ9lN9DbnG+Z24dj2OQGLMvtXBf7auzJ/Gvb2eSYG2RoXrWxkUaqa6+A49R0hzavb5XTVruGy3fn4aEqKYbIYHVlY30yDnvvmr2fpJv7N87/v7GsgCIIgPGIQQSgIgjBjHj5vitAxOuZg8JmgqvOFRm8rOCopTKkAhqDB5/Y7P1gGtXXGrAHkRsdSFQyt0jYGTWc8U9LYYm5SW0inZEo1SJfqnGoVoq2AMjnLbpYJqEks7cTg7Y64qg6hdbm4JxTOawuN0eyKkGpkosKOODxPsO23qbaKYdoGxp8r9vbWcU+Pzw1pwNJp31xS2TOPqftRRfZUwuN91Fw9XXJNLQC4rT9p537jLSdDh1GJg37klsWay92GhZ3YeIf3Jt8LMVfiUKBtwtpc/TtwI4d2YIyGTcgREXWfe+NZmKm19loVsglN0q2yep5YXhRznU57nNq6pW68Y1PEfEyw0Y5xcOWclBlZnUhlBhbyBxy2VAhrlbL+/Gm//NUszMSbPvEf3fR6CYIgCA9fRBAKgiAUnv+LX0tMJrsuzow4rIrNoANgiroYc8Qm7GrlBHIwvQ9ZDOK2LXk+amxp7bw+9jgd2/wYlLZGHTnUW8OXOhe4MiMhaa4nxVCyDudibN4yWSMlKlpFLLB0E7q4otZWRJjNDJ4hsiIKnbaGOXW/qnAMSRHIbZJe6e0+sXUAPTug/WzhtjWA2d2LD5QqplqbZzSzmcLU5vi2y4fm2jkF06p1m9HhJ8PvRg23QKd9q7RNk2Uq58CZQKd9E2S9862F1HuN1om+81xaDBx2Ays70htfMinn4nXbJlpnBeftufPYiv1Ijf2KrVYRpwNX3JqlmZiiYRMscIgPhmADwZsWb4HJc5BAFrMzcyWjE7qIwxA1x6HnmJ5P/jdfx5Vuw7983g99wNdKEARBeGgQQSgIglAIszfiUzCMwXCpH4BcrQmqtIcWERFKxW3+BryKQq0T2kQImqhzW978TboPhtEbtMqVmpQUh/2YzUKKQUxtDdUkDs1AC0pXCV/eoGcHyTyH1oTNOXN9vdmawuTjzLmDPuobBNp+5anOxFXiXqslSZFSIrA1UbGzpe8tOR5iNxbjvDnFegz7gujGZcoMXcjGOppEjDUmQ7fZxpr9WGMqcoZfqWbGbBJ0etrzXn2Zxx2cNGFtbcD7XEk8HnrWk2PpJg7cyJXlpgm8ytJNXHLZ6XVpppbb2JmAT6aF1decRz9rf41JtWOwerciWz8M8FET1Vbg1w8rnIo4MzLp/CHDLf0apRLX9CKL35gr21Xsp1i/a6YpR1R0xQG1tlDr2YcLm2D5vHd8BY/tTvhHH/Oj9+p6C4IgCA89IggFQRDIuYMhZtOV3maB5Uw2IqnfY6kaVhv/lBRTLIHyOkLUTTQplbPcAIiqmXl0NjtCKpVIUXM62lmwfTbtAPCdbm/+F2biul82AVcZi6g5K2h9HkMA2yphFVD7y9dKWgT02V2IO0Y185bRRl1l1KDjNsYhbVtf27r2RN4NZjHnZCHuvmY3ruHMfW5Vt1wVq6Y783PpZw6nufU15giJyRKjZtlNdJ1vjpzDZFl7x+V+k2cAZyHyPuiWK9ib/FzFmdBiRxYmzw7Wc1FbdzXpBpOguclPbE6pGp22OZbV6GeKBl0uoNV5nnGKu66qAJvgWPs8z7rqJkLKFc8p6PxhxWRbbApACIqUNFOZz6wVdGtKe2/UDFiOp56lmXjZb3w+Ac0PPPsNN72GgiAIwkOPCEJBEARyxc4Hnd1BIVd+ihtjrVoBrTIDcLlPDN5u5++KOFPFNCbG3CJoTMSYSFfmxuqb/OOhR6lcfZq7Ph6P2+zBA5udQO8aTXvTXytBtXpodY6m8EnvCKMcSH+j8Krfc4UnYmcmNPMZyro/dV1ntZWeZ/qys2wzkzE3LLe/b+fOBt4LgTjf9nYftqIvJM0w2ZbhB1shHOLcSCfk6xo1MWbxc+tqzTWVGCfLPK7QqIg1kRBz+29fXENXbiIlxXpy+NJWrEpFMibHJjgWJofFZ1dQUz4ACBDBl/nGucmPVbFVL/PvJVuRIvTLBwC6zKtWoZiPSzMkzVCqodWY5q6TFVMwdDa3t3Y2lKp1OcigiMGQosbMHE9hN4YlJlXaZQ1HRRQOwfI33vkFLM3Iq/7EP7tX104QBEF48BFBKAjChee5b/76ZvkfE21eKiWFV7pVBK3Obo+2vMm2KoDNrYhQqmJJwWzGCjSd9TvW/U7XSlHgml4wTBZrsqDoTGAM2bnyln7dqjytFbCIhuZkmTSWUATBblUwzipz5wXNx6RaVSrOxGCb+yvL6cQNLqH77IvDuYvpnPOqeTfs2150xrxLNQsjfaYBTXNETbOswvLzFMyO6A0lpN5HXcRhxGPoredwMTBMloX1rNyIM4GTsSNEjSvXcmVHwkIzuZwTaFVsHwjUdYbZtkPUTKXi15nAbYtTDt2Qr2nazoLOr7cm7R672l57gs25iCiMmdo1N2o2h8q2kg3Q60BMkUvdBn+gORk7Rp9bmDsbsCagfP4bUAoowm/Zjy3QvorBWKqiuQKuOJk6DtzQ9vUkdAwxC8MDO/A9z3rjuddeEARBeGgQQSgIwoVnX6CEmKMf9h0Vq8DxpQUvJp0dQrWCCEZt5w+NSkSnmOqb7GIg43Sg04GuOED21nM09je0fi7sRFdcJo3KbX+ercDSKrEwE5sSRdGZgE27QfN5uVkFac8BtFbQ1t4RUZgzBGPdJ6VSE4U3q+TB1ohG7S13lrnMvjjdWc8529h3Sq1b3X+stlrG2XYTu6YtVRxWoWhUFuW98dDnechs+hKxesTpwMa73EKcFBGdz5uBpZ1axbbTIUddmMDJ1LX51CEYhsk2QXptXBBRHNo8I1qFIcCIbe2jZlYdbXOQ1TwoacbATs5irQ4C2VFV5eetqvdCdiLdeMt6dISoubJatwp23d9pskDE2sCym1BsXXJDEYO1wrgZXauQ1tbpdXBZ0FqwMfDS3/grrIPjn/ypHznz2gqCIAgPPiIIBUG40PzZt3wNYNsMnyaH0MekcDruzAtWyeHR7R/PmGbOmiq1N/MtmsIE3KzCuLIjC+M5sCMAR74H4LLbtJnAjXf4pDmwI1M09HpC64QPXakI7rZF5tiJbWbhTpzDrDK4fW43n3CMph3nfN/3USphyCJqXrE6T7jtt5+exb1xHj2zJXWvhfQs4xmtElPSbSZy7oyqi9FKFS5TyKYwtbqXnWW3ofHVzXNhdrMhfcn1mwtwrRK98RyoPP+5MBOnviMmRW80x2ob3xCibvmCeVmPVpGuHI4ucRnz81H35cboj9haRfuy73X5ulxtM+71hI/5gwsfNMPgmCaDc4FbVmsu9QOdCZzqyFAMZY42famM0mYeAXRZps7M3rU5ALLgrOdoiAZ8z7VpgY+az/nVl3DJDrz2Oa+94boJgiAIDy4iCAVBuNBoUjaR8baJPs1ucLpKiqh24xei2gqSWo2plSdT2zdNNpKpM2q5ehSLO2SuMF5x67wOFXl8v2ZKmtu6U4ZgS6Up58jVatC0lwFYQ8tvWrGbVdHmQnDeUgkQkm6xFPNWy31qtbA6jd6sBXR3P3YD59s1mG3nZsdxw/rm0RpzcViOr2YIVsHWshuDabl6tRLWrn05p53xdGyrbjWKotMeOtr13gTXzGhqxXAMOlfj7EivA05FuhIr4ZPmwA34ZFqlbd5+OUaDVVX4xRKV6FsL7H51NIv+LPq8Mjgz7bQZV3qdHWadmjmY1vsg5oiUkAwpwdpZnAn01jOUv4tpsIwbh7ER13mMyWZLWkdiMMSoUQpOR8dUWkiXts5IZiH6B+tLXBsWrNzErf0p16YFf/Htfx2rI//s4/+3e33dBUEQhPsXEYSCIFxYXvgrX0VfZgCdCVkwBNOqWjUa4qDLVaEcpRC3eW1sWzItuXI4RdNEWjP1UMW0hO0beqci14MDDJfsgNOBXk/0kNsHSZzGjqvTMm+H1ARCqGYpKbeW7sca5G3EFrteBeG+GKz7BLlCVqtjN2v3zOs5p5Vzz/RFqd1q6XmcZVZzHvOIhZ11sFtpnIvdkFSZyyxtkMEQEyxcbQWNbcauN760825n8Hw0jMEW85dt267VERsjXsU8b1riHrIAMvRFYGuV6LVnn4hiCLkt1M7cX+s1yi2eEW0SNkW8ynEkNYpiDIYhZMFmdMS7kYiiS5412VjGqog14YbzO0TL0kw86fAaVkeub/p2DwyT431DR4wK7w0pKOJkICj8pPGDQemEcRHrQnYjjZqgI8bm83k89BwPPTHl7EJnAsebvl01rZZtrrK3ns9460v5mU/6gXt1DwiCIAj3LyIIBUG40FgVShB3NvlQZMFVK0ZOF2EUNamIu35P3OQ38lkgDMHmltKZuYhWqc3nte2WytG6zABWYTklw2no6LVvGXkjNlemyEIo7GUA3sy4JQuBfZOZmnEQidG0KllbXtFE4QfCzV53VotoOkcMqh3hfb4APGvdtW1zXuncGubA6A2hGPkolXAzR9lNcMW8p1QFjb9h/dUwpjN+p0KbK4yhteDWVk7dDHm2LbymVBzHaFmXbW4zIm+8x7JRDYzRMgTLenKMZfYRYOMtJ7ZjaScuuw3oQEgGp0s8CdsQe0cgJs0lO3DadZxOjtFbvDeE4iwavSr5kuRbKJfPIeWqZAyKKdntchasy7OGAKO3bMYc5eK9xto8i7gZHb6IzxAVx0PH5cXA573jK7itO+Uff8z/deb9IAiCIDwwiCAUBOFC8mff8jUYZcBkkTXPiyMYfNrmCc4D2TW0FsTm9hi3cQq98W12rjO5da+aw9SqjynGNL3xTCmLvnV5vY+Gteq4xZ0ypfxGfu1dEwo7lbC9KIi6T3ODml1hESHpnRZHzbatdV592xd1czG0L+DqvtXWR9i2gZ5VHbwnIbiz7r3K5Px478nBdDsXGXClZTOVtswT1bV2zY3f/lc4BoPTuR3SqLiTWzg/pmrmAzAES0yKTuc2S6sjnfY7VUzT9mv3gwGgGdRsgmsCUZMdTPePexMcUzQM3rbKcL1Wiu1590nTK08orbNWBVDkllEUQWkCAYJrbbFl/LU5i6IUSscs9qLKN78C3QWsy9EdMSpQmjiV7EXnudQN2bAmWA46x/VNzwbHrYenO/uYAB8cxyeL5ux75+aAF/3K3+QJy+tiPCMIgvAgIYJQEIQLx599y9eUdjXHECy9yUHhmO2b6wQ5aD7qZqsP0NnQqk05lHtbXavtfdvfQxOFVgeWZqLXnm1cgikRALqJxClpHJEpmbZuqwPTvO2zvOGv7Yz7FardQPqbV/lUaYOtIfJzMXhWm2gqLY2VuvxcCJ7lUrrP/nrm7JrF7MZGzF+X0laI7m9rLog1qbWAahVZplzdu7ZZsBldW8cw5QrZop9alSsmxcJ6lnZqYex1PyCL8pphuI67LbmdDqUSrEDPPnDYP14VuWSH5ig7hLCTKVmzB+fXweiITVtTnHROW65p5063czIlU+6vfC4747nUD4SY5yvzXKEidYpQ7v3UK2LI85j9YmTRTTmnsWx/nCwxKlzJ2qxRGp0J+QOH5YYDN7YKKoBPhut60c7f7XdfzrOH/cTR1PM5v/oSrrgNr/nY15177gRBEIQPHhGEgiBcOGpVrMYJVMGmUwQsKeU3rBOUUPHc2tbiClxqwmTu4LgN6a5CLrI0OYpgSroJQkMkoBlmVo1VADjya+YiqsZO1DfwtZXUp71Wz9l3rXRzPdV77arVcKQJCJVQ9zDnB1sRtyPwFC0SoVUn99c/28e5mNrd3xu3XSut+2K0bV9xbovlznZn+Yy59TLPCfbGMwTbqlMnOnFttEzetFbSnB2Yt1dFYTZkydusteHqUlord0OwOB1YmKlUDHOVch4NAbPKoQ5Y8r3UlQ8NfMrrqfhkWnU6FTFY2333xbuPeZ61HvOUNEO05cMEs1P1tipyyQ1MwTDF0PZpDIbNZFtVz0dNjIpFN7FwnhA1RkdWLt+vV9eLHVFudeTU6xzHccYHFQs9YRcBZwJX10uGwTINjuBzNMfJquNSP/AZb30pnfa86RP/0bnXWBAEQfjAEUEoCMKF4gVvedlOtIDVodnjz9sb6zLrqbYGaowOdNZjimmIS4GIpjO+mYJYFVt2XP29154YOgyRlc5tgKexK9VChdYJXaqE9U1zc5CcsS8G/TliYH4s+Y34fDatiMNaMVI3z/7bmflja0ZTz1E+M2rHaGd/v2+WW7hTTeRsUbhvGHMe54lCvSdY67XqunVbp0+aTe/obL4XFjZf0yrIepMzI4EdY5la3aotkFPJ5wtR43V+rjMBHzWdybOlTgd0yvmINSrC7Lcmq8gUHKe+Y4xmR7jW9edrodAKVBGq+XnNydSXOJIclXFgx2Zskz/EyKKwtrb6pDnshh3X07kYNTob59Tn676opJrwBRhK+239sKLToQlynzS6fIhSr0WO2VjjdG5BPV73hJCF52mp3p5qh1GJT/yFv0NIind8ynefew8IgiAI9x0RhIIgXCiu9OsmpObzYbkqp9HBoVViExw+JnA0URhKCyk6opNi7R19yY2zJq+n1zHPBar8hjk/lqMADu3AygxAdnnUKmFMZIiWHhhi3k4VgzUmIRTBMheDNxNG87y9GsreWjlb66lq4qgyny2cs9MiecZ2Izma4yxuKgbZbfk86xiqGNwVuPfd7Ga/Shpn668VNYBbFzUGJG/nwA07Bj01/iEk3cTxWS6p1QRm+9ocHu+Vbq6i+8KwVgWnaNrMY/194y2jt8REM6hRKuHMjaY49XrV7UAWZj4ZluUDCV1alKsgrS3JVexWIbk/OzoU591YhGFnAp3OAu/W/pRrxT20tZIW06Klndq+LIzHllbp1lrbbVjZkeNlz13rFSGWeU9v8NGxcL4IUsVzfu7lKJX4t5/6Xff5PhAEQRBuRAShIAgXhs97x1e0WcGYNK7M9dXKjCttfUOwWBU59j0hanrr0cEwqZJbVyIKiJpJGTod2ATLYamGACxNnUHTBDQrPbLSY8mB06zMWOa4cih8FjxxRwzWmUJf8vT220RvJrZaVa21WybqFJtSueU1kAVKFS43qw7ubJNZ/EMRTtWVdb8FdF6x3DeR2Z893Fm+bq92VKpd8XiWC+dZ+7o9Fg3k46ztuftCzqpc8Z2Lxyrs5sYuIeXW0LlIrfveTF1qpa3ETqAgJoOuzi15d7IgI6H32mhPfNd+noLZaV2NpBblsH+8dfnckhnKhx5ZXGZzGYNTAUNs7a89nqUeWcdupypY2QTH8dgDucU1zY4vpGzSE8nVRqdDFrDFdOf6sOB0dNy6WnPgRsZguNytc7amSs1dtV6HlR2xB5EpGI6nLsdSuFzZHL3BlBsiJcXHv/nrUcCvSsVQEAThg0IEoSAIF4atuUauznQ6vxEOaE58D+RqydJMRfgUp9GQswVNzDNcU6miNJMRVH5/nzRLM7QoiaWZGKLNLqRFxw3RsYmOKRmGaJlSriQatuuqYjBXr3SrCM6rZXBGFMMZoqs9NzeCmb0sFQFxntA6a53nVep2ZgP3Hr+hjXT22rNMaObzjTuGOfcw57i/zv25tbloO3N5FW7YH6tinlecCb9otsLL6IgrbZS10jgGk2fwdKQ3gd74bAQzF5d5Og+IBFRrGbY65CpcEXFDMPiwbdM1+kYX2ZAU0e/+l65VjrWYVyqHaIlKt9lCTcCpQFCaAzW0eJP6YcTKTowxr3fjbbvnlUqEoBkmy3W1oLceb3IF/XTKIu/6ZsF6dGgduft0yaazGJW4Qx3y2MUxkOclr46rnfbnTmdX3ip46zzmFE1rVTU6EqJmiprnvvnr6a3nLX/mVffq3hAEQRB2EUEoCMKF4PPe8RXY9iY6P2ZUIqDptce5XEWpbZtLM5aKnSoVFk2PbxWYSp2P6kxobae9DqxDbiddmpGYdJ4ZjPnNdhWCUzItssJjdipTkSwGmhjcyxDcFzU3CJxi7LJvNlNfOxd0voTca5Wac+ecfSOZ+tqbtXruisPdoPj5cZy1f/vHuS/Q6vHVdZ91fHWZKnx2jme2zblLbH5tvgbVbEirlFs7SThKWHwRdqOubcF5OaPitr0zKmLUDMlyClgTWDrPgRvBgk55fjM7iJYWYJ2jIXI+Ya4674vuKgb3qe2rddZPlWq2tjWG5Ma4i0oon1Y4Fdqc4aRN+zCj03l+coq65Qf2NuBVYjM6pmA46EeiU830Jn/RzuUUDGlQ9M7z+0eXmKLBlBnN+vekVZq1lkYO3ZAFcp8zO6G2Wkecitw9LjmacmTFlW7NC3/lq/jp5/3guccpCIIgnI0IQkEQLgQxqZ05plohrO1zK+OZkiGgm3DptefAjgzBNmEwBMtoTKvgZbMQzyU7cGAHxmg59h2bYOm1xdpc5RijLdU/3bZRhcmUts6ktXI0RcNYW0WTaUHomtp+eLaAmr/t14m27JnGM7PIhLqO2sa5v/x5Vcmz1tt+Zy68dmcBs8FIrW7dKOhSujH+Yl8M1p93chXvhRhs53pPqOZ1GDrl22xprdpV6mzfwkytmla34aNmjDbPmprImHJge0wqz//F7ZqqUKv7ftZ57UwAhlnMxu7+ppTNfBTQmyzQAPSsilfPhSvH44qREmyr0tX1FsComP8mUn5unDnxurLeKjxj2rYfqyrmdJ1Z9HQ6cPdmSWcCvV3nCqNKTEFzx/EBzgaOTheklI9ttRgxq0j0+W/1UA+5Qh4NxiSuuDWPLed8HRwnoeMx5gSAK27NncMBL3jLy3Am8DOf9AMIgiAI9w4RhIIgPOqp1cFOe25xawzVit+0n+ubbkMEta0adTqLgwM7YIgMxrEOjilpTn2HxjTxGJNiCJar44qxtBMuzdTmAE/Ddi4si0LdxGA1D6mCsM6h+ZRbDytzd1G4eRtlJEdCGHW2SUsojpjzNkqtEkmlYnSyreLNIyDuddsm2/N6sxnFM+cgVRa0dS5xp92Texan+9vIP2+F4P5ratVTlwrgXAxuDX52MyDruZ8bt9gYSxtpB3QMk2LyhhA0XqdmAONMQEcNuohXEqAxajsXqNm6cBoVCWX/6/xiYhtboVRi6aYcN1Hulykajqe+uegu80rb7CJKQ4qEcr8HdI4pKfvjVMCqHJVhdKS3HhN1a5uu95SeOZDWvMcxWpZ24sqVNWOwbSYyJMXCeTaTZV1cRKfRolSeETweenpb3HdL+6zVkXVwdNpzWE2ZlOWKWzehG1Pedm89h3bgL779rzNGKxVDQRCEe4EIQkEQHvVcsnmub4wWQ+Sx7hinQpvf20THkGxr5dQqvxnWOgs9pwIrkw1hjsKCpdnO/o0xt/WdhI4T37EwE7d0p4wxG9PU7LchWk5C39pPgSYUI1lI1oojbCtZPmo23rGwUxOJ583q7bMjkKqgSlkQ1Ry7m7mV7rOTCzgTbHNqVeqsWcZ7IyR3WkkVO6Y4AIFdV9Ibqoc7FcvddtCzZjBrW2itms1dQets31wIjsE2Ud6Z0ERLp/OcYI1gqNXDEDU+ZsGkixNo3U6tpo0hGwtZ4o6pS92XLApTcwD11rAJtn2AMAVDKMYzWm3jKzbeMmDZaMcYDaM1LIyn19nlswreIZJ/J4Kmic96j1sdWNmxzRJqUt5+MGzG0ho7Wa6xaPs/BIPTkVsWa8ZgOJ1ydMTSTvnDj2CIsQrKkns4OKbRcniwISTFxucMxKXLsRmxzNbWfT80AwHd/paXJrv55jbXPAv6Ob/6EjbBiTAUBEG4CSIIBUF4VPMN/+EvcdnmCsW1ccHSTByaAWcCvZ4w5Ba5yR/kmb5ksIT2JvXQDFyxpy18PaTtG9DRWu4aLXcNK4ZgefLh3Vwu4jOqyNVxyXW14LLbtBbSoGcti7P20Hn7YiWiOJ06Nt6ycuPOcdXZxbqeszireljFQkwKxbbCNF9WqRvn9uLs5/lz55nY1H28L4LzhtfPXztfTZod+3kvLsvvzxqexdx0pm7Xo3ecP1vsRwmLH7zldNquY+VGbunXLM1ErwN9t2ZhPEs7cX1YsCmGL50JGB2z8DfZwfNo7LE6srRTi3rQKmHZ7tdcQHYltsGXtmKA65ueKZht0D3QO99eE0o7a5snjLRIknp+8rmamMit0/nDDN0cc3XYZjhqFTk22Xk0hOw4GkfH6POMoS/uoCfl/h293RHDWiU6GwgpYkxE68hBPzYn0WxOkz9MWU+Wocv7ftp1HLpsfqNt2ml/7Y3nkvbFuTT/jVWDp89+298gJs2/fN4PnXsfCIIgXFREEAqC8KjmVnfCUFw97xoPmKLhWlhi6owYqVVCfDRFMBmGmDBEoq7VpFhmDQdOQ34jfGAG7mJFSorHLE5anlskV5OubpYApWKUjWaWbMVJbUPcGseUalR5c25VYOVG+jLHNa8O3szhEzh3FrCyL/jOMoiZs99aeTPOmh3c3+ZZ6z7r9/3Zw322rbDncIYOPLfFdraNeevu9vltVl81WKnGKdV5djSlCleqhbf1J6zsyKnPEQpmJtA2wTU30pOx40j1XOqHNqe4smN2JY3biuac3E6ZWyqvb3q8N2BDOyfKG0wX2zH4qNngWnXTzuYKQ6nITsmUltJdIe1UJOrQlo9GYUvF03uN1gprt1ehd745gTodCTrSmcBhN+S8walncFnk9cZz6IZi2BN43+llrg2Ldn2HyeHLuTudHOvecaVbY1TigLE5+N5iT/P+m1y5n7dDdyYQU+RzfvUlxKT4iU/44fPuGEEQhAuHCEJBEB61fMdvvpCVCTgTCC5XOnzMFb4a/ZDnAXNlsJrHQCwtn3m509DjtG9VwspJ6Dn1HU86uMYlu+GO4ZBrY34ja3Xk8asjILesziuB2yrdXAiqHRESUVjyXBqzfMM554m4/QrfPrG0fuozlt2f6ztLCJ7nLnqWEGzi5MyWzrONcWDXLGafuSBt84Sp/n5+vMT++vNjZwfWb49D7xzXXJQrtZ3P9MFw92aJ0z2uiC03E121jXRHcBaBqcp5Wk+WKWicyft0rHuWLlcMe+O53G12zm+tGlo9cnkxZMfPyWLM1lSmzitGFD5YhpDPQx99Nn4xAbRHp9TmFwMaTW4h1SQCW5Oleh61SizslKt8QROjRuuJhfMsbJ67HYLNlXjjWRTDmcctjrlkN7CkndspGo58n91uI/m86UjvPJM3jN4wTpaUwNrYtm91FrKHdsSqwBBtcwnutOfE9626We+VIVhQyIyhIAjCDBGEgiA8aomokvfnWJXWz23uX36jO6VLXB+XDNG09riYNGPUQH5zmV0XdyMATmPHFA1PWBxx2a55/3jIe45vISTFyk08cXUNZ+OOAyZsWzaBHYOSsyIQ5s99wOdgJvBCaXmsnCUc90XUfmXurNfcLP5iv03wvG2d5yAKN7Z7niWOa1U1C9Oz171/LPutovvHVN1dY8rusNWspa2nVPtylqNmMzo2ZJMVZ7I5TW9zpTAHxMdWUdSlGtah6K1vRx2iYvR5uwqaodARuSp96IYdQWRLpuaVbsNmZRkm29xIK6YeZ6lc12PIH0jE9ntbfqdVNeLYbS8NSRWR61l0EyHlmdSl860CCFnY5UzBrRDOLbW+mTBNyfA+fwnIFczj0Ldl58ehVGpt3OvRsXQTp75jDJa7hoP2gcXCZuFtyiylUYkDM2JL1VXT7zi7vvBXvoqTqZMMQ0EQLjQiCAVBeFTyN975BTyu00zF9CXHSySYmboYElfMGtNF3j9eYh2yYOq0p1PZ2fDIL7LbYgkUX4eOXudqR62YHIeeOzaHbHx+M/7Eg+v0OrR5s6DDzr4ZlVrGYBYc+obMwCre5g6fLXbiDM4yWtlZ3547aV1uf9nKWcY1N8wVljfstTp4s/bQ/VbTs5xC9yuQ580n3pPTaRWF+8wrh+etd+5E6mMOWo9k45YhGMKeqc9W8EJSqT1X4zwSMKnc7tjpMGvl1blFUuUKGoDTkSlqRm8Zvc5xDNi2zrv1koWZWJgc6VDNVSC3j17uBk5UYijzep0JLOxUBFnEJ4OrlUW1FanmJhXlHFq/W9W15fA3xrFyUxPEh93A5W7TrvWhG8o6YjvGUP6G1sVxt84p1r+DEDWnwWJ1JNmcf7iecmRHSKpFd1xbL5pAD0mxGR2981zqB5ZFFFody/fQ3INvcacch745w/qYr8Pzf/FrcTrw5j/96jPPgyAIwqMZEYSCIDzq+LJf/xIe1605jR2XzIZeTwzRtYpQTLpZ+EcUTgducadotchOpEWw1TDsKWUHxyO/ICRFry1Oh1aB8NHkoG0dWdhcEakxEkALn4csHG7m7rnfOrojzMqc13mh8Hn9u2/e06wKOW91PC+uYl6RualhzE3E4P5+zIVgXe88kmKfsyIy5uu8pzbS+Tryem7cr4iCpG9oGYVtZbaKwXqsobhpxqSIUaF1FunOBpZuavOBYzCM3uKDxhfDFYDOBpyOTRxqm7AqsbJjE6s5sD0RE6yHDu8N1ua255QUm+BmrqOGsUWU5PuvCikFHLiRy92Gg1Kxm6LBzT6cqNXqKRqCylU/jYbSOprFYI6iqNfAKBhidgy9ZAdGl3MXrd7OJS7NxNJMHNhhe07jNn/z6rQs60qzvM3snFqzN8dgCDFHVDgTOZ4cSiVC0AwbhzaR0dts0BN0O56YFJMzrNzIoRvw0ZTW0XwODu3UugSWZkSrJVZHjqeeTgc+7Ze/mp/75H94wz0hCILwaEYEoSAIjzqOfM9RmR/yTnPZbtpz1VK/io0pmtJWanEqYsxUQri3b5xPfM/d45KTqecxixNcmY+qbYoRxeMWx9zaay6VN8E1bgK2bpuLMs9UoyagCpRITNt2xDQTQPvunnMxeFYr5HkzevckBs8Uh3vb3l/vfG7wZgJwn/PE5lwgnjXLeFZ1b18I7ovM2kaqZudqf3+329qdF1QqB7pXMRiiwgfNNJnsdGoiOLApz7XlylRgEyxHwOgtIapW3UpJEUzJIFSJHmatpKrkWqbcamk1o89XIP+e78ch2NwqGfPMq1WxVY87HbD9psVTVKMWIM8y6nwd670dkmKMNrdH11ZiM2HLDGENqz/rw4sqJg/d0GIkOu2bGFyakYWeCElnAyed/07unlbNHbUaJZ36rjm3jsFwOnTNSKdVAYMmRkUImhQVCU3w2w9aUAmtI9Nk8X2uOA7BcqnsX53DNCpyaAaOQ89jXA6193bEFlfgQzfwwl/5Ki67Df/0f/knNxy3IAjCoxERhIIgPKp4wVtexqUuvyEOSfG+4TJTMk0UTjPhVSsWJ6FnCLYZUMxFRUiKk9Bx+8llepPfSFcr+52Ac7Ilf31uTq0wVSFY59LOWm7OeVW8+tz+z/stoPNMurNMXc5sP93brfls3w0GNGzNXHZWcROxuV/1nD9+1s9nLXfWvOG5y+/Fc5zfLjqfrdsNndcqO2Q6E7iqYK0gRtWE7egN1hicySKnztBtdGQI2RRFFYFZhW3OJ9SzarDeyRX0NZvQRKwJLKwnpVzN3gTLxme30FBMYyyxOY7W1uA6X1iPv2UtMrsXtG+iUZf20bpPlWy+1OV20bKOmDRTqbAeuoFRm9bGqks0BWw/gEHleJfLNreU3jWuGKPFF2F7OrksBEv1tUZZpHItcjRFvrdiVKSoCUFBVOUmVCStSDEx6NxmW1t+V27ER82hG1iH20qgfeA0dnk/ExzYkU3JUOy05/q04DPe+lJiUlIxFAThUY8IQkEQHlV82OHdHPmemLL7IOTWtyHu/nNXBeE6ON6/OeRKtymOo2Wmr7z5NUUU/KHDa7lNr8w7nfpsKtOXeS6tYhMVtoRi7zpKqlmWndmKjlJhvEEM3otZwbbsTVopz3r8ZtERO4+r3bk+PfvaVj/vmftiinPWsjebF7xh2Zu0op69vbNdRFtFUSliuV5GRQ66fE+NPnvOpqQwOgspo/KMZ2cCWmXzF6Ozc23do/mxDGFbRZ5ibksOSZUZwm31a2E9l7qhxF2Y7X6Wfa4fRlQBi6ZUCWMTtMBORiHM5zhjC6mfi7l9kb4ODu+z6cvcvXNppiYq3ez189dOyaF1YqVz5dCpwF3jQYvj2IwOX9xKlcofPphizKNUone+uLnqbLrjt5XmecC9dQFbcg2VSmxKW2mnA9fHJSs78p7pFm7t1q3tOxZhuzCeMRouuYH3rTtCEdaf8kt/iz+0usZrn/Pae31fCYIgPJIQQSgIwqOGF/3K36QzC+4eVu3N7GP7E6Zksi3+3pvdmDRHU46J0CRuX1/meMxveA+7gctuQ9xrVaytfXetVxydLjAmcmW15kq/aSHgNbJiv4pXxWCt4OyLn/n83j61qrafu7ffSrl1LFU7LZ112batM1or97kvs4pn7e/NjqOuf95yek9mMfvMq3/7+32Pry3zmHMROJ+1rOewmglVwl6lz+hIStk8prpy1vZMXz4YqDmS81nEtXdM3nKaipNtqfRRsg23baw0cxSwZX8tiSwU6/nKLZi5eleXzec1nisEqxiqjwYUtfaN0s1t1KnAJbdhaSbWwXESOk58R1ecO9GhuPNu50l91EyYXKWmtHCyjcRYmZG16XbPqU7o2YcpvfNZDJbqrI+akzG/pnc+VwBD/tI6segmrIlNoGuVmMpreuMJUXM09TgdGKPllu4UoxJDsOUabeNdVnbkaFzkuWAzYXXgJe/8QpZ65Puf/X/f4/0lCILwSEIEoSAIjxo647k2LLnzZEWIea7pwI50JVy+zUkVYtJcnxbc0q1ZB0dMilsW6xwIXua6qkioaJVYGJ/foE6GYe3wXqMuw+V+05YZkz3TWbO2CVZBcZZjZV3Hdj/VzjrysdT5RXaW2zd62a8enleB229/raQ9MRTPmUGcsy9e59ysendfxOB9Qe2dy/3ZSp80g7ft2tRKVEwKW+b3qhmMU7kCOJpS0Yu5xXMzWRY2/5da5wI747FFVM7vp01pKx6jabESzoQWSK/V7jmMZdZPk1o7am/8jhnN/PyZUsELpU2ZmRspbOf/dmZZy70ywZmisGJ1QIfEaeiKwc2ETgnI7aJTNKC3Lbhapdxuunfdh2hZB9eOv543Vwx0Vm6iN75VRessYWdCC7yv19WYyEE/ctiNWdipHPcyhu2cYq3mrweX98lrBn+ZK/0aqyJTNGgVOTD5nF5xm3Zeb+3WACz1iNWRl7zzCzn2HT/6ca+5x3tPEAThkYAIQkEQHhX82bd8DU7nWcCh2NSvreP208us7MiVbtPa2irr8oYW4NR35Y17flPu0TviDbZvuDuTw7e1ydWhacz/lNY3qfM36DUqIqJyVSjkN6aUdre54KzL7guY85w8c6J5FobT3gzcPjttnnsCd78yd9OWy6QI6ebVw7NMY/YdQ+u2d/bxnMrefWkBPWtfKvPzWGMhKj7mVsRQWzFLFTcBzmydQashTDUt2Xjb1j14285l/VABRWs9nqLBsg2p3wRHp02rONYK82Sz0KxV1jC7Dxdmm+tXY0+mpBmLiZFPGp1ia93M11czb+6tLdE1FL6u2+mAhVIVN9ldVM3v/4ght1JrEusyx9hyB6sRU6TtWxV+U9IEk3MHfTJcnxbcNay4NizyvKTJc5oHbuRStylt2Imr45KNzxJ15UZC1JxMHeiIVvn6ORM57EaesDxiaaY2N3nd5+xGoxLvW19q5+N0cty6WOdZzagZUzaIOrQDaLjNnXJtWtKZXPm0OnCLWzNEy2W94a54QEyaT/mlv8Xp1PG2F7zyA74/BUEQHg6IIBQE4VHB6eS41EVuW5zgTGiuggsz4VM2rtCzuacqDDoduD4teP/pQXFmHFnaaWcmEOKOcIopm3tcOVxzvO4ZB8d6ss1pcruNTF6XYT250uqX2pv3OqfUhGTxyAgz8TKvJM7NYaqg8UnfEEa+jVe4MWz+LD6gds35uOE5r93PVzxvmzfb9nlOovemNXQ3fkI105axZApWQty2jkIOlwfaDFs9xk57umIutPEuz5Aax8bbdgxTMGyUK8IvL1tzJ+eCvd4vdcavVZQ7dlpVTakwruzIgR1nHyCUdZdq5lhMUbzWuYqtA/UUVRfbuh3YxjTkCI78u1XbCuK8hbTNj6a0W22MmuOp53jq2wccJ2PHFDTO5HN3uRs4KBEQ69KueX1ccDp1GJVYLTatrfbQDk2crkMWnDXD0Jb2zQM3cDQt2v1jiunPZbfJofTk2UOtIneNB8z/fp2p5yxXR+/aHLTrOwbDyo4YlXhif43bhys8tjvm6rRiiJbf31zGd4Z1cFyfFgzBcrTp+SM/+S2Mg+O3/vI33eP9KAiC8HBEBKEgCI94nvVTfxdnq3uo5pLLToa3dmuGaNiE/Ma9msLU2SlfBJ+PGqOy3b/RsQiHvL59h8r6ZrwzgduWpxgdef/gOD5d0NlAX+bamglLdXQkcctivZ0jK+JgXk07q51xX+Ttz+bNZ97OY38d99Wk5Yb11WrfvM003SgK54K2Hk9l7li6Fa/bmcCbzR/eGyF41n5UAVjP+3wbKmvxbGZSRKDRqc2j1f2s11SrxMJO6LAVjnOBTqkWbs6pgtZ7r2uZghpfRGOdYZ3fP1t3zyzghmDR0dJrv1PxG4NBR7PzAcbuhxvbSp5Rqc3IVqdTnxJ6dp2MSZA0MdGEa6dzu2qNmwhJt3t+M1muHi8ZjnvUscGsNXckCMtEujxx+dZTnnLr3TxhecSlSxucCkzJcHVacuo7Tn2HTzksfoymVXWdDlgVWBUBXVtBF2X2r3JoBoZo25dPGl/iOVpMTMrnz0ddqrq5yqhVYhMcfsgfIPmkOfG3sTAT7zt+LDEprg5Lpmi44/iAEDXjYAk+R2E8/Q2vwDrPf/+cv3ef7k9BEISHGhGEgiA84ll0E7qYQ1zu8uzP0ZjNYjodtvl/e2KwihWt0s7837yiZXXMb4hLFSW3lG7fXK/cxGI5Mk05KmAuBufuo2NpzYOtsKktgmeJpvk+6B3hcuMsoFK5anPePOJZ3BtReDMn0pu1cZ4XaL8ffXHWPpxnFDN//X7V72acVZ10JmCTArMVEj5qksuVqLkjqJlVCucuq04HHDmI3erIWASEj7rlXFbRMc3m5JwJrRpmZ22dAJtgyyxbXn82M9m2emqVW4O3Ie67c6qDt6y9a/dTnTHcnx/N9/XufVzbpIm0e1arSAyuOZWa1vabRatVkQnTroNTkccsT1lYz++bS5wOB6hTMBuFPVXE6x0ndzr+020HXLrthI/9kN/liYtrhKC5Oq6yOCtztl0xeJmCwZk8m9jpQK89vfFcLnmfusRZ1L/b3KLaMSXNtWnJGHKLasWUWdD15FgXZ9NUhPswWRZd/rfiTpXnkK+fLkrUhca5PDt8su4ZN47ky/lTCW0j0SuCMvyRn/wWFt3Eb3zmd9703hQEQXi4IIJQEIRHNJ/x1pfSmzwrNAXD3cOKxy2OcSZwPPUcuvzGMc6F3k4bo74haqCS2/DMjkgc2VYtqlvoEy4fcTo5nM6B9QC3LU6yuUzMYdtTLBXHWmGazeAZRasYRmjZazdr4zzz8XvRGnrua/eXOSdcvr5WpRtdTM8SgvtOq2et/97uaz22s4ThnPPOwVyQ6jKvWXFmlld4RqWyOn1WcVSrhNbkrL9OhyYIxxJxUmdQQ1L4YkCjlGXhDAvrS9U6NrFZW1Hb7OkZ52tu1qJVYigzjBG1k+U3BsPUG6zKAqgKOK1irk7G3Qpu+3vQCqvq34bBA9N8hnC2T53xrUroU3ZOtTpy4EY+9JZr3NVP3NFfJt3hMBtQUaE9xGPDsV3yn7sP4f0HhznGZepY2AlmVdYqpK9tstunjxqrA7eqNbd1JzgVMMUQZkr5a+07jnzfWlIrRufrtLIjnQ6MIceGhCIItU5sRs0wWXrnGb1hGBxhY8ErVB+YnEHrSPCGNOlSUk4onTA25i8TOVwMLN3E83/xa3nLn3nVmfeiIAjCwwl9z4sIjxSe+tSnopS64esrv/Irz33N61//ep71rGexWq144hOfyItf/GLuvPPOnWX++T//53z0R380fd/z0R/90fzkT/7kA30ognCv0SpxfdPjTOBo07Oe8tTTZbdpYnCMZvcrGMZg2QRHJAuba8OCO08PdiosQ7A7WXFDCQQfgmXwNhuQlGUPu5HDkhW3cuMNYrC6nk4h78N8/yEHeNdqU61KnSem5o+d93XeubpX5/QexOC+OyoUcXFOlMVOqyV55qu2bM6/7ml/949NzapjbT/SbntofU0VWLUyZ4pQql9O53bhWsFzJtDbbOCysuNOta5mF/pZ27HTgQMzcsnluJLLbsPlbsOVbs3KTdgi9mLUjD6b0RyPPdfGJdfHBT6a0hI5NtOZGt/go85h9MFy6h3Hvs+tjbPMPk3OOvRR44NmPTqOhp7jqWv3dD0fdX51DLmdeox2+xVsrmbP2oJ9qXBvgmMdXPubqOY5vfWt2mnKrONTL93Jn3z87/KRT70d/ZQTxsdEwjIRDe2dxxQ014cs3JwJ7cOUOjMYkmKKulRMY/ub0sWxdUqG09BxGjuu+wV3jQfcOay4e7PirvWK65uek7HjdHIM3pa/1Vz5vNQN3LLcsOwnDlcbLq02LLqpBdoPm45w4mBSEBVpbQkby3Ta5fZiFzF9wC08tvf0i4lbDk95wuWjllUJ8En/+m/znJ97+Q33tiAIwsMJqRA+ivj1X/91Qti2QP3mb/4mL3jBC/jcz/3cM5d/29vexhd90Rfx/d///XzWZ30Wv/d7v8dLXvISvvzLv7yJvne84x18/ud/Pt/+7d/OX/gLf4Gf/Mmf5PM+7/N429vexsd93Mc9KMclCOfxknd+IXetn4TROett1Wdb+OvTojkfVmv9efUnP653hM2lfmDwtpmAwFaQVCfGGhx+OnT5zXCft6HZCpHDbsjVomha5XGnApNUnt0qpiznBbtvq4fpTEOZ89g3vzmL/crjzap1u+2ZmVCqN0afsfdqd503W/f+cdybkPsz17MX7dGMepLadZadnY7z2lZ35j6LQK/rmIupGGaCKW5bKOs8m1YRC2iToISgb4xjms0xTsG04PTBeg7c2O7bLAZnwixt79tQW1Ojbq6nrjigWp1n72JUTL5UJYEDNzYhNZ+frfOL9Zx5pdGlPXNhp+25PeNW0qRSOc0xHGPIYq3Tnl57bnWnPMad8NjFCb91+THcefUQf+Ig5opc5bbFCWO0GKXpTGjV1/nf58JOLEpFMkfE5GNoDr7BcTxll+H15NprB69ZOE8i//34pOlU5HK3YWVHHrs85q7NAT5qbl2suWu9YvTZ+ZWQ28RR5JszZMenMBjcKl+nxSJ/UNC77Dx84EY67Tme+uaOqlTi2f/qm3Am8u8+7R/ceCIFQRAeYkQQPop43OMet/P7d33Xd/GMZzyDT/7kTz5z+V/7tV/jqU99Ki996UsBeNrTnsZXfMVX8MpXbi20X/3qV/OCF7yAl788f8L58pe/nF/+5V/m1a9+NW94wxseoCMRhHvHFA1POrzGgR25e1ixchNLO2Vn0bjbAFHb+SC/CQ5x+6a4srRTe4Nd5wdjytb8R0PPyaZjs+6Ig2FxecCayNLlmaNqFOPK7FNrxZsFr59FbVU9r/1Rq3SmUDpz/m5vHfe1NfSmGYGkndgGdRPBCdwgDM/irJbYuUHJDXEYZ2xv/9zViqCPGl329yxxOhfN++JQq915wflr2rWdtR37UvEd2ZrE1P9caytoTLnqFacuV6h9/sAglirfaHMVubqJ+jMaePYrs/N2z3pvz9tplUrNLKUKQcizikOwLO3U7u/64UVtL63ncD7nunuO8vca8ZBNX+IN99DKjDy2P+b6asHReoEfc7tl3BiO7ILLi4FT37GyI7f1A31pvb1zOGBppxbFcugGDuzA3eOKmDRDhOvjcscYKlfv87mtx9+byMpNrNzI5RI9E5PiwI44HQhJsbITm2CxOrL2js1k83k0RRS6CH52XDFXepfLEWcCl/r8vZrUrHFb86DyYYFW+dp80r/+2xgdpZVUEISHFSIIH6WM48iP/uiP8jVf8zUodfabtuc+97l80zd9Ez/zMz/Dp3/6p/MHf/AH/PiP/zif+Zmf2ZZ5xzvewcte9rKd133qp34qr371qx/I3ReEe+R//bW/Cji6Eob9vtNDDrttoDywYx5TMwJTnenaC5wH8pvwUExHSlUoqpwfeHS6YFg70qRRLqJ1ZD06rAn0ZusAOc+3C7NtnNl6WcTK/izefJmd5Wfi5SyzlJuatZy13Bli8KzlzlrXWUL2TJF4VmVpttq52K2Vx1iEidWRlHbbSc8yztk5t2nXwXRnv+9FXMW+aJwfw36l96x11yqZV7oJqyog6703TJbRG6bJkKJGm3wWnMmCZGG3cRW5kq1nTjcRlVRru6wfbmTx41nN2h5D1ISYGKG1eaakuD72HG96Li83HLqxrYf9im3anq/5vVVnCaeY26H7OltpJiLbquwmOo5jz7VpiS/VTKUTySTwmum44/3dIbes1iyM5/q4LNvI8RLWbiuuRmXjpE6XnNCSHXg89mz8tq07REWMGmsih/3ApS638FZn1QOTj9fqwEqPDNFyi1vjo+Y49FzvFqwnxzQZ9MITR4NZ5NemBMvVyGbd4Vxo5+R0cugyyxmM3s7ZqkQo/yaEqAgxZ6SmpHjOz72cpZv45T/7vefei4IgCA8WIggfpbzpTW/i6tWrfMmXfMm5yzz3uc/l9a9/PZ//+Z/PZrPBe8+LXvQifvD/z96fB9u27Xld4Gd0c8611m7OObd772XzsqNRKbXEwMpEsEpLUIpGCcoyjIqiMVCsUEAsClFAkCZJKLUUqkAtzBAtBaRQKIOykqygBATbKA0R6cl85Mv77rv3nmbvvdaac46u/viNMddca6+9z7nvZfPy5fxF3Dh777XWnGM2a97xHd/v7/v9Hb9jes8XvvAF3nvvvaPPvffee3zhC194cLvDMDAMw/T7zc3Nl34gSy11pn7en/4lpCyTwMZEvrC94uOXF3Rvv5xW+uEwga8TtNNg8tPySTNki0txYiaciays9AdtXUNrpdfs5d2KGAwX3XAknRQ30oO875zccw7qzrFy96SUZ9iZemynks437R98HRg8t9967vI0+T6cwzftT5zvDw7gsEovQw2Gj+bAWHG/VxAOLNi8lDoEvE9xHOphCetDIHrOID4EAk/ff3jdTIxxdRkNSQxLBm8J3hCjJnkt8sk24lw8cpDVOqGVPpJ3Ho85EThEl0hGX0C3BaSM7sixducdrZFMP6MyKSk+enWBv9iLwY0NGJWOzqnEWdTey4hRh8iNKg0Fpr/L2EovIWliLZ+5LRsz8qTZs3vSTAzlTd/y3sUd33DxnJgVf/X2bQCetjs641kZzza0kzTUJ8OH+4spv7OzHqMTMUnPpNZyZ63bkatm4Gm3m2Im9lHkm9vQsLEjTQ6EZBhKdMc7za3cN5tiIGTX7EfHfmjoGs+6HdmVn5+s99z0La0L+GBwJkzX3ieN02mSBofCWM6/NzkzAcVv/a5fRWfDwhgutdRSP6y1AMKv0vo9v+f38Pf//X8/n/nMZx58z5/7c3+OX/pLfym/7tf9On76T//pvP/++/zKX/kr+SW/5Jfwe37P75ned8owyor9wxOjb//2b+c3/Ibf8OUfxFJLPVAhaXZBHARDFhOQr3n7JVYnXg0dTifGaNg0EjIfkr6XiQcyeVMcQJrRCT31HhXWwcsEce08nQ0TyFh3o9jU23DUdyZj0lOPGBziJR4zfJnXvR6/M/1+Zxk9Dozbg8DwgZD3140nZH0EMFJWU3vVuT68T1IVDMZ0PLqUFebBT53fX8pq6m071yt5DpjfB4MVgJ3vakz5vBx57j4bkz6ShsYo/6VUFgh0RplMBnJUhCCfr1EVQZkjIFoBRWWVp5zLwgzKsSYaDSvnyXDU51lzNlsbMDqRgdu+xQdxPJ1YwLLNiSEvgPrcOahMoXz2+FxFNIbDfb+xA1dWeimdirTa45OwfG/bWwA+077iJnS89GsSilvfMSYjhjtaFmkSio/uNmiVUWthqEPU6HKcPhi2NOyGhi/cXtLYSJpdXq3gyWo/hdmLgU9kZUYuzEAwmh9z8UXe61Z80F+y9Q2tCTxp9nzsNtP5D0nz9nrLPrgiPT0A/3q+JeJG2hAr0E6FwTx8l2Rh5W//f/1zaJWXHsOlllrqh6UWQPhVWN/7vd/Ld3/3d/OH/tAfevR93/7t385P/sk/mV/5K38lAH/z3/w3s9ls+Ck/5afwm37Tb+LTn/40n/rUp+6xgV/84hfvsYbz+tW/+lfzK37Fr5h+v7m54eu+7uu+jCNaaqlD/ew/+U+SMJNU7mW/whRjCwCnEx/eXLDuBpyORyYcukgcjU7ErLjrWy664QgQ1B6q+WS8AsQMjMFyt2/JGZ5c7KXnkGNZY4x6igBYNR47cx2s9Zg08xS4VsCpzgDDfDJWM/v9MVYQHmYGz421yhBBJrj1M+YRMPiJgeHJOE57/E7roaxFpbIwj+r4mM9JSR8y1zkFOIcx3l9cqP2o898rGPSF6QSwNk3jOO31s/rgMJuyLHiMyRzlH4akoYLCfDzmQ0yFOKZ2Vu4Fow/xFTXc3ZpIatR07ZyRvr3ae2d0ojXhyGBJQHAScJhPQDgKjkDy/R5MU/9GxikBhdVAp4LHt93tlCn40XhBHw+RGmOyfFxcQwUAZj6625CSYhwccTTkUUNUqFm/X3YZbEI1CdsEjMnsR8eq8Vy0A3vteKvb4rOwhbWeuB0ha65cj1aJlfG0JpScyMRl06NV5kmzL87FFttEXo0ij6X0E9bzW2NvlMllYUBAYc6KlNJ0P/3EP/rP09rAn/5p33H2/ltqqaWW+sGoBRB+FdZ3fud38u677x71Ap6r3W6Htce3gDGyHp+z/E/8W7/1W/ljf+yPHfURftd3fRff9m3f9uB227albdsvdfhLLfVoVRATk+bD7YbtvuWd67tp0m104nLds2nGiXFRKuNLniCAKe97ttnR6Dj1VG3aUdiSWU/gHAgZlem9Zdg7urW8d5Ik5uPQeF0m/Y0NR0BkDnpeZ5pSX58zQnPp2Rz41fceS/7UvYn7nGF8HRCsVY1trD7IAF8H9j6poc283+5N6iEweLr9x+IsTpld+dvjQPCQLajvXcvKHseZTHjOuokMlHv3gzNxcqiUnDyRYt55iZfY+QajE32wKOQ6TNdYqcn8pZrbCDj0U9/cKTjTKk+h9bX/sJ77mA8uqNOxUdw2OQWFTMcaOQBM5uCRAxg05dz6bND5+DzvciNAODVso7iFapWneA2Au6HlZtsRvCFHJVmAQTIV9ajRAVRUzIeRx0yymjwmvDOEJk6grPd2koZfuz1ORSJ6Aqz1Orzb3pKyhN6vjGcfHU6l6feUFbo4sr7VbXnRr0ll0ak+d5SNhGgmMBuCIkZFzoao5fhi1IRgGJ3hb/rD/wIpKf7Hf/DXn70fl1pqqaV+IGsBhF9llVLiO7/zO/n5P//n3wN7v/pX/2o+//nP83t/7+8F4Gf9rJ/FL/7Fv5jf9bt+1yQZ/eW//Jfzk37ST5qkpr/sl/0yfupP/al8x3d8Bz/n5/wc/vAf/sN893d/N3/qT/2pH/JjW2qpv/OP/R9prTj4DdFidObp5U7kb0PDrm+53uwBAYzff7fh7vmaJ2/fsW5HfNITg6YLK5NQtCbSbnaTvG4eFwHHAOKtzY7rVT9JTOvKvtUJc8JGbdpxmiQ/xnQ9BILOuVzO+yDrfmDyGHkUKFWL/vk+H3KPPDtOjkHhfIwPGbk8NI57vysmyW4dl8g/j+vc8Z07f6fvOzZFOS9zlJ658/G8c1awygN9AYeTiQgCkHI+9KjW/EGjxW3Uld/r65WNq3mHrQmTMdKFG0hZ8zzIosYYBPB1LuBqhmI5hhp5UZnEhBirzI8xzcBeHx374KZx1B7Ceo/EGuuQ559XzEFhSOYIxIfp/CYMCp0zJifQoImz8yg9lGY2tljA4Eu/4tZ3vBxX92SyjQ1onaX3sjeooAQARiAVIKikR09lUEn+rhPkqMkeGDXJZIaoiI2mL/2aGzcwNlYMp5JhYyWmI2bFS7/iwsi1qEqD1gQSiqGC8HLNrEpct3tuxo6mXOvey7PKGpGvGpOIUZOTIqWZ03BSxKQYsVgbiVHzLX/gN2Jt4s//3H/h7H251FJLLfUDUQsg/Cqr7/7u7+Zzn/scv+gX/aJ7r73//vt87nOfm37/Bb/gF3B7e8vv/J2/k3/mn/lnePLkCX/33/138x3fcZCqfNu3fRu/7/f9Pn7Nr/k1/Npf+2v55m/+Zn7/7//9SwbhUj8s9f7H13Srkbc2OwA2zUjKitu+Zdc3dK3HR41WSCC8NxNLsR8djY1oncok81AVCM5Znofki/XnUzZLwIv8vveO3eC4WvfErND5vvlJ3c788w+9fsgsPAZL86rg9Gg8Z+SQc1B4OoaH5JOJmbvpI5/5cqr2/dWxq6yO2c4Zuzmvh+I6Tl1d50DQHkkhD3EMj/VTnp5zpSQIPmc1GYjMzYUkLP4A2mv/Xg1dr+OqPWxa5SnCYS7H7aznuu2nHs6UJVfQmViApMSeVKZrbkBTcxTr+CEdgUIfDXtvCdHQusBlO4jpzMnxzo15QtZQTF4q+DsHorVKOGWPjmtyDJ19++ZMqc8CrlbGY7s4sYNjsuyDm3pyVSUsRSFbTngWLycF2QoYVEneKLhToVImRwUOcrYkmzE24qPh+++u2batRHGguAstjQ5YnXAqcUfLNrS02k33yT46+iDAurri1u9XXRSogLv3VvotC7trbSyyUUhJ3q9NIiVFDBpjEutulOzTqPnxf+g3LKBwqaWW+kErlas2cKmlfpDq5uaG6+trXr16xdXV1Q/3cJb6EVqf/b/9NlCgmohxiW41crXqRcrlLWOwOBMZg0ygnIt4b2ibwKrxvNqu6BrPph2PWK18MtGfS/5OwU5Ryk1Ve7QAscMvksIv3lwQo2bdiWz1cuZEeo6Jm0++X+tKegaozuvc6+ekkW9iJnMKCufmJvNSJ8f0GEg8B+rm/XTzfR0dwwn7On///Hjq++aAcOrDK6zg8fnU9/b3ukplsj8mc7SAYHU6AlFxdq6sTmycmBzVMVgtvWlWHbNwkyy6jK/2qI1JjGZqQHvNLJwD3JDM9L567ubHWs9VSJqboWM7NIzBoHVm1XiedvuJxQTojH/wXj2VoqbZuajntV4TXUxcrEpTZmHtaayLK/UzmkyrPRHNre+4DS03Y8ft2Mriz64lbh1q0MWxRcCfEJj5YIKTioQ0cQiYB5IFjMRfqFXEdp7NauTJek9MmraY7ADTuWh0IGQ5r2s7TqZWN0PHdnQ4kyaW3KgsC1KxZjtmQtRHzHot6SFUEyisxjPGZC7X/bT/lBWhAOL/5mf85tfcoUst9Xgt87KlTmthCJdaaqkfGRUrYDIkI4zLbmiwJjF4KzKsrAjBsO5GWheITvK/Xt6t8KMlJcWmFSOLlJUYdGR1D6JUM5AQhDnpGn92SArpR5x6uirrsm3ZXPbs+gZri9vlAyxhrTopPptXeCLvPPfZeb0JuKlMxjmg+FhOH9wPg69jeEwSe8R2PtDbd7q9eQ9l3e/rap7tqE7OHwpSNujZOugcDD4m661jgiIP1AmX41kwVM9Nzf6bJMU60RRJqNWRdurxqyyeLnLNA3gLWU9MWTWv2ZVw+8ZExsbwpNkfgcIjgJUPURBaRcIMLLY2MEYj+0saHwRMtvbAYh5duyKnrCzkOZAdkqGPdjJyirOeU2ciTouZzLpIMvXMG7ceu88Gn7WA5QIeO1O/zwKyeiBoK8+FPFscqICwLhpEJXLSYjSjynOEqIRpHDTJGfrRMdYe4tILeBdaQtKs7TiZxWzHZnIW3nlHTIr90LDLipxB68O9bUyitXJdqpGQ9/boffU+VUo+n7OiaQ5KBqcTzsRJXpuz4mf/yX+SCzfw7/3P/s0H79WlllpqqU9SCyBcaqmlvuLrW37/b0JtDHkokrL1SD86ht7Rdp4YNUqB94ZnV1tM6aMagmF725FG+dzVky1hZqLxUOWsGEfL2DtG49BXic6FB99be6tqhp5tAo0NbF+tsFf95MpZ+wlPGZc5+JlPwM8Z0ZwyiLUmEPcAFjwH9M4Bv0dD2+fjPvn7ORay7vex7T9mJDM31Lm3/xN28MhgpzJT+Xis0zl+4CRZfdpTeJ+lPICrGWCdwJAufXXpCNABExDqjMdN20hHfYvnTIV2oeHj/Zq+BJrXaI5Ugt596Wm7cIOEw6uMRfr2Ur5/P1kdCVFP/W5rJwzgGMxkvhSSnhxGpW+O6ef5uatS0moiUzMTc1kYqd8HU8CQ05ELN9AZP4Hh2lMIh17SMWmG0EzmLTL2NN0LjQ2wgtEkYjBUfK/UsYNrSpqcIAUtwDBossuooMgmC2uoISewVhaY3lrtaHRgTGZyGDUq0+jIX3j+Dv3o8FbGu90306KSQqSfSmeMSfKfyqQsWYT1mlUQGOOBLZzWJ8piQtRyjKaAwSoNbnScFhK0Svxv/4t/lJtxxR/5Kb/z7P281FJLLfWmtQDCpZZa6iu+gjeyyu8SbuXpe0dOssJfX/eDZXPZ05o4gb5+35B2VnwwbOJm2zHuHKvLgat1fxZoAKwKI+hHS9wbbk1H9+RumgrP368KMIjpIAl763pLiAZlE96bCQzOexfPgaAHZZLq8NqcnTvHytVJ9Xx7c4bs6H3cB5YP9eRNjOIZIH0K3E63dU96ezLuOTua8zFwneftHR1LqVO55ykwrGxhrHK8k3N8bnyvq4kprDLgk+gHOR+ygBCynnrRmtlkvgLBiW2bzFyEhavAa2IGS6Zgnp3XmBVjMNyNLVqJc+gcFCZ13xipniNfmEKlMptmpLMHgxxfjFKm8/OAEdFUEyhkkmLXqgzXprCCrTnIMacoCw7xJTWA/i60jNFM8tiUFeM0LjHWaUouaK3KtsVi9pPzgXWD8n2u4DArYRErmztYVpd7vufFU56t9xOYvWwGAK6ans4Fbu9WWCNsb04aYyMpCOCrZjEhmeIYKtL1ygZqnTBazlFI4ihax5fLs2N+7rpi9GNLL2hrAqvSM3oXGnahIaH4GX/il9LowH/0d/5fz9ytSy211FKvrwUQLrXUUl/R9dl/47eD1WAySmd8b8lB49Zewr1VJt053PXA0/V+mqzGpAmjAZfRTSTdOsbegMkMveNlUlxtxC10NzrW7Tj1CKasaF1gtR7ZhY6UNGOwh5BvnSb7/4M87xhoWBNZrUfGQUw73An7BLOw6hMW5x4zNut/AiY53EO9dZUZmwNJYHJIrK891s9Xxzevo/e/RpVa3SHhvBTzHCCe7+9cD+Vjnz0a5wMA7/R44sn5P8fQHW2vAJ9wcinnY5xfk5qzV19zWvL+YglbnxvANAUohmSm/jSrJTh904yH6+ItPpqj6xRK5p1VEcyxgdD8OqWsuPPtZNBSwaZSmbXzrOxBGr0Pbjouc9J3+dC51iphVabRYQJycmxhctzcRzeNzeqIUQdArFVmSIYb3/F8v2Y7NNM9W797FYzNv4Pz4zsnAY9J46OmdYH94KZw+GoKpHUiRcPtrkPrxPd99ATnIjnDx2ywNpW+ZAH5/eCwNgoTOloBhUljXZwiMZSCpDUxGFwTaJtA6+Q81K/zECxD6XmOUXoHp0WupOmDFQCtDr2msSwuSdyFpiuvG5X5R/7zX0zImj/wrf86Sy211FKfpBZAuNRSS31lVyu5YYCwhCah2kjTyuRs+3xF87TnM89eycRvFvh8eb1Hq8zN7QoU2KsRYyPDTcsYNHk9oHTC2TjNmxXCVmRg3Y7kS9i9XHFjOp5dbY+AQ32AHgGZ8q9RmctVz043kxxv7WTCfSoBPQU/D8k2z03Kz0lBq+NoBZKnjpHzSfxDEtSHmMKHwuwPWXWvr3PbPjWFmZ+X123jIQD4JkY6FTzHR0BmzIqkDjElnJF4VofJGv1weh0rK7cLjjFZhhK6LhN+YYy6EmWgVWJMFpKALDGiyey9gCkBEBJbEJtASpqYJXOzs57GxKNYjfnCRe3BC0mC6McgPW0+GJ6s9xMotCjuxgatJC6juqPO5bJnz3l5fW6wA0xuoamMU5O5bvfTteuDmwB0KMcDxYFTybiNTjQ2TvEdc6muVhmVFU5lrErTdyAXZtFoM4HfGisTp0xAjdKZGBWhnONh76Q3MWhGk8le4zdeoiJ2htBGyUJMCq0lMqLfNuSkoPwdIOuMB6yVnsCV81M/YGsDO+8YvMVrMwHV6b5LmiFaWhuIWdHoRKsDKWsiilYH9tHR6sSl63Eqso8Nv/C//IUAfOdP+s4H7+mlllpqqXktgHCppZb6iq0f9//4F1ldZvxoaTuP1qnIRTUpSZ9fcznytW+95OW+Yz80hKDZrEa0TlgTudt1tJ3n4ukd+9Gx37UwanLM3O1bnl1ucfY4CqACqMZE3GZPSprgZUJpykRUJmuGFiZ52amkVKvMZTdw07ds++Yoh27uTln7rKb4iyrNPCOFnNdpT5zOx8xa4gy7yH1msY7n3vYfoAHPuaLWekiGC/ddS88e11zWmo97Fev7526k5+p1pjhH2/sEbqtzUH2aBxlTOrBYBRTOj/HUYbJKRGuofJ/cPZa4j/ZIllrlmCKtFWCYB4cfhTXsTSS0mpXzR2Y2K+unkHVnhKU8ZYJDkmzFCggreByiJloZ4zw3cM7MzSWgKd9ndmtvZUh6kqOGrLkZuwmsAuxCw9qOPGn2dMbzyq3Yjg0pK5yRRZuV80fRHWkuMS49hI2RUPmUFSEbTJJ9DMFimzSBzQqOacRISgxwxJ1YqywKg6jIowadibcO1SbJMvSiWkAfJNw5aAhFjjrFYch16BVonRiCZWX9JIVeO19cSdPkRFpBYcpy7uo9VuWiTnl06bvclHP3xf5yJq21hKT5mX/yn6Iznj/4bb/73j291FJLLTWvBRAutdRSX7GVM4yDrNQ3ViRX1aYdZIJ1fSEsQ+cC+6HBbxte7hpQGdNGnl7tWDnPGGWSZ10gbRR5b+lfdLzUiat1LxlhJ2CmmkU8udjxarsiRE1XwKPPin50mG64Bz8qUDM64VTm2TqJI2FWtHXbCAjUM2Co8+M9hqd1akIj50wdZQUqlY9A4ZuCpdcBpdO+v3NmOPOf3wgMcp7BTLOfXze2TwIGP0mdjqOCuWlM6nBtT8FwZcfGEhsAh+iHIVnWbsRqkYueVgV1Nctw5RRaiaGKn2lXa49azIq9d+IemhTOJELSrKye8g5tkRgaLdtMWmGPFjrslK0I4AtQaU+MlSZp6mT8cv9+PL3GpvTDNVqY0THZic20WtxXr+wg58V67lwLQGf9UfbhmOxBWjtf0CHTFNZVQHcUR1YtDqdxxu5alRiixNVUwJ6zYijPit3Q8Orlmry34DKEAzgkFkMdBckLW0sqYDCDygfGPGeIe8NOtRiVia2aFoBaE3BNxCfDEOwEAE0BytXxNWWNIZX7RONUZMCyDc0kzb3zLT6JQ7Iv22lN5O/5478CTeaP/S/+lXv311JLLbUULIBwqaWW+gqtb/kDvxGlFGlrUYPmxdZBk7BdQOmEtYnLTU9nwySlu97sJW6iyMFaF9g0IkOr7ozGJJQRSShJsbvpUAouugGl8j1gWA1hrjd7cRhMmotmxJk4gcO+ZCDCUdzZBCKUyly2w9HxTfso0rZzZidwzIjVmscpnANcMWtinjE3J3LMuo1zOX4PVf1syPpo4l9B4Zz/OnXffFOQdq9XsI7pDcDx6/bzpiDyTRhDmLOzxzJJrdK994VkGKOZZKLz2pZ76qoZsPaYdZuzcNPPVvbXlHuvMXFi+CrzNUYzyaZ91KTc4KPhohkmlnqD3MOxfE5RpMYFqFZQcsjhiw+C+/m1P5WTjtEenZNJTlvOl9XjdC5XxrMynlZL3MQTtyO1xegmm0kS6bOenIRDMjSmgiZ5bwV/82gVuW8FSIrxjozpsumPxjVG6eHsTOD7o6FZeYYK9myGsZi/1NxDIHt9CCmtIFBnibgooJGsSF6z65vilBppAK8OrKx1abr/qittBfBaJXw2XOgBNOxic2RKtLEj77Z3aJV46VfcjCtxlC2utyEb/oE/9b9fjGeWWmqps7UAwqWWWuorrv6G//DXc7nxOJPYNoG7Dy5kcrU3xFsLKuObTPcZz947MZgok9VqDmNnQEvkbyI7WzeeEAw+NjJ5i5adbskZusbT2JoNd5/l6kcnAM6paSINEKL0NxmVD5nY+b7BheIw8Zw7bVp13hFy7iwK9/vqjoDjjHWrIPJevMbMSOaTgMFzdY8NOiMRfd32TwHgm7KI5z7/ScDgY2Y65sz5mb9ef7Y1O08d5yqGbKYA8VNAXrc7PyZnEiEatr6htUGMYUrV/0FrlaTXTZkJIIyFCdIqQwFHtUzJsANdYg/ktSHaKRy+cYFVARQ+HgxuKiOpZyy3LuzkaUkUBNNxW2KRuropa7HGSlgVsVodSzyRe1+X705l7FZ6ZK1HnI60SsDekC2tClyYgRdhjSsGKwJ4hDWsP0/brb2YMPVC1uN3Jd+wAsNtaAlZc+EGUgGPz1Y7tMpsXWS3bcmpMIQgsRUwMYLyc71Byq9a+hqn17IiBsN+aDB6QNtD/2i931oTJlOeS9ezMn46hpQ1MWuu7Y5WBZwS+e+LYc0YLbaT4wrJsA+OkFs51nLtxmz52X/ynySh+I9/yu+4dz2XWmqpH721AMKlllrqK66GwZGSZtUKi2GuRuLWSc9OUKheJmW3dysALi/2GC3OnlNvW9JHMKBGSShgsxp44VpZ9VcZesMurBi6hqb1XK374x6pAqwuVsPEzNRt7UbHzd2K1WrkenX8uTmQO/3b3HhkMoY5YwAzr3P5iQ8ZqpyGsk/MjXozRmwOZo7Yx6Sxxfzk6Pw8ss2HnClfxxw+xpw+dNzn6ugccybD8dy2zpy/+bhOIzJq9t65SI36b12kcDMwvbL+JNuvALMy3srAVdADh0gKrSQ3EA6mOHOGTqk8xRnMswE748t9mrAV+M2C7+dMuVaSH3h6zU6Z0Apk6zUbs4yzRm4A6JQncHPuGmmVaHUioolodM4kpXAqorOwhEZVYxVFqyNOJfwsyzFkPTGCZJG/1l5Pq9IUe1FD76vr6cp4kV8WRk2rzNvdlmftjj5a3u+uGLzlJRuJrRj1gbmu/0Q1ZRuK91Am13s8KrLXJCAow+gMK6dwJY/RFiMgq6P0fZa8SkNipUd8FrC7j46UN/I8MgNf071kY0a2seE2tBMQf6vbMiaRyrZGVBN9dPTRkbLiZ/7JfwpgAYZLLbUUsADCpZZa6iusPvtv/1a6C7FvN6vMzbYjvmrAZmwXiF6D17gnPU0TSUmxH5rC7h33OGWYJJ9zRVfrAt3THq2Febl7sUbpTIqK/W1Lzop3ru6OgJnRiSerPcBRuH3OijgYRmPR6zwBhVNG6dQVs4IopTKGGbg4AYXnohLqNs8at8z+/ro+xIeYs/nYDQdAA+CI8vqJXPX0Mw/1+z0EBufn6DRb8Nwxnhv3YzU/tofA5EPn86FK3O9rPD1fE+hX93ss50H3MDet0dNrY3SMxUBEJJZpem+eMYO53KM1z2/umiqspLx355vCAOaTcWTSDNhPst/ZuT13nisQO5yvRFfMT6ZcRjJjidrYBwFgrQl0eImRmI5fkwqgDUmTSgZDVBpfzoFTkXWRmbbFKGdIliFZ9tFNfZg1Z3HKeTy5jj5rVmoEQwFZ4ka6tiMdAixD1qyM593ulgs30EfHX0ia7a4lJgXT42YGBCMH3XgFikmuFVGR0USVGb3FtyLNvXADaztO+ZN2dk9UqSzAre/Y2IELPcjxofDZYHXkG5qP2aWGbWhJKFZ6ZJ+a6T4K2eDKtemjYyxA+Wf+yX+KlBV/9Kf+a/eu7VJLLfWjpxZAuNRSS31FVbP2dI1nGzQfP78gl+xAdMbYSNg6VJC8rt1NR44K3USsvS9p89FM+WensQLPLrdi8FDklfttAwpcG3jrcitSuRNgVlmGOehSKqNMJpQA+nYmVa3vmzsFUiby6CRsXWbmHHkfBD2WC3iu3jQr8IjhOwOW7vXzlX0blY7BLfkeyJozaEdjmwGM09dfd2xnwdobyETP5TQ+uL0TCepDTOexVLe8Px/O3ykY1CpB1rO/p3vbmf+u1SG6oo+Ou7Gd3EifrXY0Wnr/Kkiqx1ZD4EPS5GI+UqvKBlNWDMGi7SGWYhqryuSc7xkQTQsUs9OR8n0DHE2e5JZzMJgQ58shWD7erslZsW5HrlvZbmeUOIdm+Z5qNPtsyvYUgypxFclhmiSg0Iz0yXFpenaxodUiJ92nhiFakatmzTY0E8sZy6JL7a3bx+aor7DRkbYwdiFqNkZ6+LahpdWRXWi4XvUMoyz+BG+kfzAhYM9k6TOcmMMMWpjCg/OoIkdxSY7FdbWynU/cniHZCWT7rDGIU2rMSoDvaPlouOBJs+eD4Wo6zjGJ1Pad5pYhWSKaBmFSt6FlHx1WH+Tw859D0vzc/+yfwOq0ZBgutdSP0loA4VJLLfUVU5/9t74DszLCGthEDJqsQLnE5ZMd/eDAK3IrzF7uDahM0npiB31xV6wOilpltqNj8I7WeToXJkYCZI77bLMjllD7EA0bN7ItTMq8dyoWV8gh2Cks/KIdydfFCOKkz6oCCKsTPppJMnjqJEg+lvo9xErdj7Y/H9vw+u08DL7mZjHn9hPzAdxale6BoCMAzf2+yFqP5Rw+JBO9N8YzoPah43ssDuN0u/Ntnkpjz41tMtY5AcY1H49yzg6LBBqrRLJ5bkzz39d25GboGINhGxuciTxtd/elx2UMRiVaJ0DAT/11h17AOlYxj7FH+6vso8oKzTHL/Saut3M58qnhUcqSPxiSxns7AdgaDVGZMZ81o8psQ4MtgexP3K5IJhO72HBhBjQZg/xej2FtRmxKXNrD+V+ZkW1oJwDUVnfTIr9cGV+AorCJt6Hls+vn3IaOz7QvAfjIXwho1Imrtueua+Q4rCW6kgkZlcROABJgeDgngDCHlUmM0ks4eMvaeUI2bEODKxLYpDI+mcmBdWUkh3JjBz7YX9FZj0+GJ24HwF0UJ9YPxwtuwoqNHTCI3PSj8aq4jYaDrBgx3rEFAA/JCDubFf/wn/nHAPh93/pvvP56L7XUUl81tQDCpZZa6iumlM2gJB8w1nDnoNi8vefuriO/alAJWAf621aA1CawuewxWvqp9mPNc4uAwQNaidmM0fcdPU/NV2JS3HmZZIYShg2HLLkxGlKGnXc4E3E6cb06OBXOAdB8QrwqofRDOH7sVgMYXwBirYfAR/3Mg2Av3+9BfF2/3cHN83hfc/bvHEg8Pc66zzloPN3eG43jZPvzYzkFrNPrs5676bNnJY7H5+bR/s4HWNLT81+3ofV9+Wdl6WLW089a5WIeUrd7n7GtAMbqxMaNR5EVp+emLkSI06imUbH0kqV7jG5bjEzqGIdoJwatSlJPvyNiyiRyznN1dJ4UhQ2NRyw5gE8aZ8p+ShxGzJohKMZouHADnQk4FXja7I4Wbq5sj1EJTeZFWJcxygLNyow4FdllYQqrzHJty99tM/UKXtiBC9Oziy0vwhqAZ82OMVnebu/43t0zLk0/XSunIl/fPud7+re4dnv64Hhrs2PvHbEdpe8yagZviVETghHzmXSQdgPyt1hyChPEweBbU5xSNWMyvBxX07WQe0bO3zY2XNqelY58Zv2Kl+OKv/DyXbTKPOu2XLiBkAwrI/mTX+ivsCpx5Xo2dmBMdsp/1KXHsNWRVgdxc1WRm9BNigmnEv/of/UL+Pzumv/k7/pXz17zpZZa6qurFkC41FJLfUXUN/ze3wo6k4ImcJBi6usR7w35VQOpuPvtDLQJc+W5vNiz6wXAVXAnbEiVeQogjEmRi8ztXB9ZBWaNPRjTOH2fk5NtH0+WD7/o2XsOPYJw6KtLWXHTy4r+VTfIZD8ZcSAsjNI8ymAOQk5B0CkQq3UK3h4DhvW45xVn58iSjnINz0kp5+M7ddGcxvSIsycw9VAmHga7545hDs7uSTxnstFzrqr3zG6Qaxazkn66M2D3HCi8Z1JDPiPXFSdZHw1ZZaLShNk1Pr2+1ZAFDtEI++DEFEWJY2YsDqFGJRoTp8WGKi+t24pZ+uPqWKuMWquDs6ePhrUbJ+YoZT1FUNSqrO/8+OWa3b82RyxulrGn8v1yM+fS1oQZe2igHJ9RmUaLk6YuzOdaS4TMtd3zwq956cVUqvb62fLeTsviy6XpcSpyaXqiU+xiy2eaFzgV6Y0jobgwPa/Cmg9Cy1qPXNoBnw1vuS0vwppWB57ZrYB4HVjbkcYEVtZN92tImruxZYyG7dAw9I6YJZswV6ZVgdKZbCh5hTCOltvyLIilL7kzAa0Sa+vZ2IFWB/YlYgIST+yO95obLl3P53dPeN5veFWApFGJCyfxNl/YX/Gk3XPhBnEezXrKn9QI6PRZY4kMyfLE7UVWqsRxVaSrir/j//3PMgbD/+9/9ZtPb+illlrqq6gWQLjUUkt9RVQuDn3KZMLeomxidTHgR8vwohPioUmoUZPbRHc1kJJiDIa2lQngRSeToZg0N9uOYduwuhymIPumCSIj5Ti8nfpzneCXv82BXUBPdvx3g0jGLrvhDDsmE8Q5E1PDpJXKhbUREPBytyKuFFfNQCh/y49INg8GJmdYN3V4H5wHf/M67YPLJ4CkZigGdAFJh+2fA0lzsPC6fZ8CqMM4HjeSeSPZ4pdR8z45nc9LdOcmMjXr8fR45ufhlDGM6eCGqdIBdJ6+DyAkMQzRKvO027Eqhiwgrp6tOWYVV9YTCjs7gcNc3ENLDqfsf6QpcurWBpTKDNGW3rtUXE2l77Heu/UeOV0QSKipf3Iae2EJU85HY1g7kT76aKZQ9q7EKjR6QKsDO1kjJdDQqkCfHD4Zru2eC9NP/YpDsrzyHb4wZCA+rBfmkPvpVKBVmUvd06kKFve8627olMeQeenX+Gz4xtVHfNFf8s3dh3zsN9MxXdu99Cy6npAM166fJKcpK17Zjjsv4E6pzDhaee5kJc+V+j2p7GEW1nDfu2mpZONGQtasCyg0SpxEtcrc+o6EYl/6JZ+4PReXAx+OF3ywu+LON8Sk+XC74aobCEnz4X7DNjTTIkLtgbY6YqOwrR/2F1w3/dT7eRs69tHRB4fVibXztCbyd/1//g+srF8Yw6WW+iqtBRAutdRSP+z12X/7t0LUkNRkamGcyMr2g0WV4GcV5D16FUhJkbMEzXtvcU7YlJwVPhjG3mHayDg40sdiGOOfjlxd7tGm9EqdYdpqZe73uRmdSFF6HNeNn+R1Ndg7ZulBNDrRIrlvrQkiZQ1ukgp++upmmhhXm3+n4r2+uzq2cyyh1WmS8J2TN54DGPPX7gFJxCTxSC6YxQAnzbbvoxHZ38yQJGc1AZH5eN7E/XMOJO+N8/Tzs/7IIzZtBqJPewCnj1bp3hmgfW+/hdmag8K63So7rhP8yoBZdWwmdLo9XRYDOusnSW0F3fU9R1En1YxmNs6uBJjX3sRGh0l2WSMGJsaxMFc1tL6CwaTyNNmv17CCw31wsm1933AGZgD5gfN9+vtYWKYhHnoVN3akV3aS0Pa4cn4ODqo+6+mG9PFgmJKUyJG1EmOZd5pbPhwvJ1C5j45taBicxWcBj6323MaOtRnolOfjeMFGD2Vsml1u0aV38bnfQMHc3zc+5cIOfDxesDbjBEKNS7wMa57YHUPpK7wNHTamcn3lOWTUcTbk/P6LxVSmCg1CMNz0bZEHD1xaAbMic11PkR7b0JSMR/n9U6tbruyA27zkw+GC27GlMQdZ8hgNO+8mAG5LaL0tua0VKDLCK7pJemqV3Kcpq/I3uV/X1vMP/Zl/nJQVf/DbfjdLLbXUV08tgHCppZb64a+sUE0ClcmDQTViKHN328GdJdvC3HkFOqM0jDtHs/YCAEfLqvTzVNno5dUerTIvv3CJUoVdzAcDkJgUPjhaF45C1etEvU7857b+9eduFig9RjPts37O6kQfrDCBKF71HSHqqW+qTsiqZK+WUhmdOcv21cl2NYao20lZUa1sJpOaWZ3rRXwIqCmVJ1D4UJlikOPcQXaYQBiPEwbzISawVgWSp+M9HdP0Wjk3D/VQngODD7KRD0hb62uvk61qFafcvpQld8/WrMMzUuMKChsTCem+pPchIHt6D8z/HooEOiSRjnoTcbr07s0kyqfjqJ+xZWFEehbT5F6adOLURXS+wFBZwgowG30wUwpJ0xgJpK8y0fo9MjqJ7NUGxniIpZDtCqOY1IEZJIHVkSFaGh2IWWIYSMJMXhdQBrCPiW1sSFmVGAnNNrY8sWK88iquivQzsUsiMf/ieMW7zQ13seOJ2/PF4ZLv8W8BMCbD161e0GrPWo/sUsMzu+V52LAxA9d2L5LdbNirA1MIEqkxWDsBcWCKvYkl7xEke7A+O2LSDFGMZLaxodGBuUtqjQYZgmVU8sz5q6Hh7W4rjGGz48r17IJkDQ7RTqZamjw9lxLCHq9MieyIAtobE3k+bOiKgU2j4xR3cukG9tGxC47qgPoz/sQvXaIqllrqq6gWQLjUUkv9sNY3/t9/C6YFlGQFRgV5Lz11M2yE3mtyk8kmU5RoxGC42zkun+4EbEVdAuoTjZW8vKv37rh9tQKv0Ubyv2KZnIaocTbCzPVz8NJPlbNC60TnAo2Jk6mHVnkCizWywugkk+MMdRrto6FpRp7vVgzFgMboNGUjasRkIyo9ATlTXTuLycihR0sdgBfHcRpHPWjFybSO71yv4UNgsG6nhpJXcDcPuD81I2mKlf+0j9l+6wT2oX7Hev4ekoLOpZjzsel8YPAeqlMwOAfs54753jl6BDQfAUWdIImsdn6O0slxpayOwE8F8vW1+XmZ2MlZhMO5MYZsJgawfraG1Bsl94AjHgXXGy1n7Th+I1FzD52JRyznQ2AyIT2xSaup962+tvMNL/sVK+ePxpaBPgj4yEOH0YkLN04y1yFalLJ0RoxOEgpj/JQrCAfG7MIMrPWIIfNuc8O13fMqrHgZ1twVFq2+f4iWjR2oLpqtDtyEjgszMCTL9+7fZhsbtqGh0ZHPb6+xOnHpeoYkfYaVYdQqsTYDCcV77hXPwwUdnk57PtIXNLqb2MrKqlUAVZn/lNX0/LlqxLzmzgs72BnPteslXzAZxmS4GTv64HjWbVlbz9Nux8thRUKxGxt2vqG1gZX1NDowJnsAnCpx3e4ZSwzHJH9Pmq1vJsDok6EzobDK4vg6RksoPap3M2AZsp56Wf/eP/5Psw+OP/X3/raz35WlllrqR04tgHCppZb6YS1lMmk0kiXoItokfEbyvYKWvkKv0KOCURHe8iSvxYRl1KwuBzatmE3MrfVjEse/xkbeeuuObS9mD40LNCWzMCN5Y9XMJRs19f+IHFXT2sjeW0IUC39rDuxeiIYxGNZtLOzawbG0MZFX+27KXJsDuFNwRNKg0/T5iSmclS4sQq2JeSis3hwYUibp0/7OACR4POKh9ozFWYZi7SerctoaMq5VLo6r8QgAVvZzLj+UbWsCwi7NGdFzNd9eBYW1l+2wvYN5zLxOAeDRZ8/s83W9j2ffV0DhZLaCErCUD32Vc9ZZevTyEdP5SUBhfc/8mOzsvk9ZYRTTAgNG3m/ywbQISnwICmYMrVVifDNnT0/B6D2Qbw5/C4Xlut23070qjLJmDJac1RHoHGfxLbGw7SvnaU3gqulLbEbCqURIhisr5jqVFTQq0WrPhelptZ/6/L5/uObD/gKAm9wxJIsuckmAlfHcho6NGflo3BCS5gvbKzIUBldkql8cLri0Q7mGmhdhw9c3H+GTZa0HPuSSTgW+qf0iffp6nIoMxjIkh896AoNQ+igLQKys+Mp4Ltset44MybGP8rkahQGy8DNEy/N+Q+9GnjR71nbk1ktftVaZnXe86jtiUqxcYCzPqups3BiRFjc6Yq08K8eSfwjyPXk5rLhohgIGTXF/tfTBEpOYAV00IxqRuqcsURbORL7tu34VQ7D8Nz9jMZ5ZaqkfqbUAwqWWWuqHrb7h3/l2jANVpGs5Q/BGJusmg4lkoyW3a50gKZRL5N6g14E0GlxxLYxZ0XuLmSEpWYmPWBO53uzJ6356zeiENZHBW24+2kgo/Wak6zzrbqQfHaaMK1R2sLBvurCZRifWrYCgIQpbY80hLuCiHe8xa/N/4+zflNXEFsIxkJu7GRqVaZpxmnBrlQ9mOPm+YygcIhlO/zbvcTrL5ME9sFllq5XhO2IiTcaaOLk9Hu3viD1L8j8fXSS8+cSU5iTuYn7O4Hw/4Jv0K84/O90mr/GpqeziYzLVCmzn53l+nlJWJKUm9vhUJnsKus6BwvLOe/uuf9fIPubblNcTrhysn4GAab/qcO7eJJ/ydP/zv1mdcDphTCJlYbIVRsDeaEhJE6ymbQK5fF/hANRjCWu3q8SrYYUzkUaHib0SIx/Fre/4hvXH3MZuCqdvtWdt5fu2NsMMSAsAu3Z7vudO5KC74IpLq2JjRl6ljotm4GW/opmxlrvQ8GJYT+Yxt6HFXxruQsuleYJPFjR0yrM2A++5V2iV+chfsksNPhtMuWa71BCSYUjCvNVokZANT92OCwZ2seEmdNz6jl1oJjYO5FnzaujYFWavss4haXn+FfnydmiwJjEEcTwdo+G67bE6MSZZPLhq9uyCyGvHZKfe0ZtBzkPOIivdjm76joXSj7h2nnfXt9PCxsp4hmT5YH/Jt33XrwLgT/+073jwPlpqqaW+MmsBhEsttdQPW+WoyVZ6AtvWE4KRfj+gWXv83kETyUGTk4YuwWjAZPJNg8qSLzgvrTKDt1gjgC9EzRBkKr5px8KcFIMQlQla2Bq1NQRriS7Se0MMhtV6pPeW3bbFmMTlxf6Ijamgxc/6COsY5v+eY3dqPxGc9LkVRs7PXBlBJu1tMax4SIr5kPxyOt8n4ziOYjgjmzxhMuds4Rhn4KJMTEEmu3Om8KHtnY495vsOlm9SD4Hdo/2Ufrp6vdL8Wj2AI+fbnYPCc1XlvIbja2J0QuVDb2nd9yTtrC62Z87N2WMpIAfEZTRgju6xc+ObS1WhGMtw3Id6esofktKeO+7p52KCc9XKossYDc6IBDtkSEliGFKUe8hVJi6YqS+1ugHHpCYJuDWJy3aYWMM73/JOd8cuNTgV2WeHUYmIolOSYbjWIz928wUA1nrkL+3f48IMvLe6ISSDzxqnEvvoaG2kM4GQhI1bWc9Vs+dmXPHRfkMG/vz2XVaNsG0f9xveWd3x+f4J37L5EJMtL+MaUyTSnRp5Zu9wqWNXAuNreVWWBIrZDghI/3C8ZB/d1DeYUPTRcju2RyxevX4776Y+5pgVsZjGNFZMeEAWr0iaF3drbvYdV6teQHDSEi9Szn99BjkT2XvH8/0aU5yQnUmMwZR9Z1yR0nYmsLEDK+MxlAgRHfmwv+BubPnW7/pVKBZguNRSP5JqAYRLLbXUD0t99ju/A+USujBqdcIY9wazimLPnhHb9uIyqlfCCtouEEaN2Rme32x4drUtk+oyYeobjEl0jceahB8P0kaR1B0m7o0NPHv3hhfPRWI29A0piIukM5GbmxUpaLrVyKYRgKZUxgA5mmkuXQFoa+LEeNRJ+tQ3WJhF4AiUmDOgICZNH+wkNYX7wGTerwY8KIWEY4Azl4qeZX4eAVinEtNzTJ5I/fLRtiLHpU4+c04Kerq/eg4eO7bXHXsd93y/D237daDwIVA+r4cWBxLCjD4E7ufvPfTuqSNQWEGYsGFFhvqYDDgf8giFgX6kD/Pkc4/VnBVd25HOeHZBjFtudIdSjhAMIQm4sDrhbMRmYbLqvRCzJnhDv2vISaF0xrjI7a5j1Y48txJI/6Jf0ZjI03bHW+0On0VOOmhPq70wd0CnPSlrvrn7kOdhw0+8/F7+Sv8uTkV86cGMaN5pbrlrWp62O2JWfOP6Y/4abzEmw6uhm6TT+9Hx3G+4HVpZrCHzbnfLX+g/Tac9r+KK9+MTXHEBFUZTAJfPwg76wljGrCbwNiRDKn+7GVf0UYLk63d/jHKOJkVBlGcDMIG3ys4qZQgFjDszsh8dMWlebldYk2hdYO8dTVlccjrhk556S0PZlwJWToxyQpT+aJAFho0duLI9rQ6FkR2n+6XRgZANVkV+8X/9v2NlPP/a//Tff/T+WWqppX74awGESy211A95fcPv+JdgrcijJhlDigofFSQFQZNiIu4amqsBv3fkBMpr0p2DJhF6i9lrssloLZOYmNQkF72+2LMbmml/jQ0YnSeGy8wm4QroXOD6yY6XzzfErYGgsE9GxmBIO0vzZOCtix1u1gfoo5nMXQ6mMHmSfIrzppr6D+GQk1i3Ufd/Cqjm4LGySfOq7831M+oQWfA6YFT3cbqtY6no/Z68Ko2sY67HWcc/Z7se2ufUV5cP/XRGHTOuj9U5MPimx1hjJOaOsq9jVOv23kSO+pCc9LHKDwA3OG82U8dTQeHEFhZnUdmovudSO9+HVuV7QDHDiUzmIufqdefn9L1aSbh6DVhPWbEt30VjxElY68TTbo9SEoExREPnAjf7jn7bkHsj7lJR4ZuE19CrFjS49YjWGWsTH2/XPF/vedLuedru2JhRWEorGYHftPqQj/wlQJGRKgmpL/mFAoojazMyJMvXdC/ZR8e12fO3XX2O/059HXC4x/c4YtAMXvrqvp9r7kLLO+0dK+MF7JXsSFfy/kDiN3wyDMlMpi2azI3vsLPrqFWmj5a7sT2wt6Vq3+6q5AICR+ZRlaVzRqSdY7ACFouc1Jo0fWeNTpNc1zQeNzH80Now3Q9OR2yXeNV30/UNSdjVer9c2z1aJXaxYWNGbJtodaDVnpURh9Zf+9//A3zf/inf+ZO+843vpaWWWuqHthZAuNRSS/2QV77ysDfoy0BOkIt5TC2lMjmB/2CFHhWpzahnA+vNSN874tYR14nVOztC0Hz0fU8AuHjvTvLVTCIEjVKGwSuMScQEo2+xNqJbATC+uDSmrGhdwDSJGBVohXWRYXDgMlcbkcFVR8WYND7p0rN4AIM1n6+Ckj5pBu8YR0PbhsPx1+PkvpSygpQ6GTydplfGsf4sk9rjfrBTYHUqFZ2XOtk33AeVc6fT6pB5xEyesF+n461jOJI11h5ILT2QrwNPD437nvnOTHZ6bzyKI1Zu3td4z4H0MWB9hlV9kzHXv52aBj0GBh8GarWHND0I2k4/a3UiJjGOmYONh47ntWA5H/c61r+FrGl0wKjMk3bPq6GbHHm1yqxc4K1uy8aObEPDXWiniIr9viHuLaqEt6tBH7HefuygjYwmY5vAx1kxRMNH+w2fuXhFoyPPxw1fs3rJ9/Rv87a746/u3+bHrT/grw3v8La75QvD9cTYveW2vPBrnrodfSpZodrzkb/kb7v8HJ9rnjEky5Asf1G/yxe8nYyofDS82K14uRJDlruxxZlIawKNjnRWQFF1DK3OnTWaY+ubaVFkiPboGhidJnMYoxONieyrKZCSDMGabVq/VxVEXjYDOyU5hI2Ns5iLNC1qVVfkschN67MtI4tQWknERVulqTO5+JAsBGi1OKy2dVEHcXG9snsuihsryHdpYwd+3p/+JXxxd8mf+F/+9kfvq6WWWuqHvhZAuNRSS/2Q1jf8O98uLEaTSL1FNVFYmyyMAK6sYt9YVAQdQAVFcI7BZOLeQlS4pz0pKfzzDj1qVITt5y9R1yNPnmxZdyNGZ253Lb70BOaoyCvw9mDqUcFAzIrrqy0v/CU5Z4xJ9C9lZXwMBltWzevcNCZ9NLkyJyxLygqnE+t2JOfmaF9w3D82N0mZ9xie1jmZ5xHAmvWLvQn7dSr3fAgEzSWjqlyr+eeOQrcfYfpOQUcuEsbmzFjqsR0Bytk4dGZyZD093nNZjvN93k8J/OT1JqDt3P6n978BoHyzcRyA4fTviWkNHK6hm0maz527h8b/WgZRUZjLWMCJAR1ZGc876y1XzcDGDdO2NnYUJqkJPGn27KPjY7sB4GO9IXpDGgyMGhUUKimyAjUCwZI3AaUgJcWr7YrgDXtvebbeFyMeAaZ+ZfhM+4r3x2ucivy1/Ttc2p6hmLV8OF7yXnvDF4ZrPtW+Yh8d749PADGC+TGrD0hZ8Txc8Ne3T/nsW8+5HVte3K0JwWJM4vl2zcu9PCvaEnfTmMjKea6bPSGZI4OYPlg6G7A6MQQBgjd9O7F41SQLmIBYzS+8HaQvMTr5e1bi7lr7i0GA/8r66fq0LtB7O/1Xn0GNFcknBUhW8FmfQxm4HdoCDs3Uiz0my9qOAr79ZnpuDMlKDiaKIVlaHab7ptWBSzuwaxr+vv/0l6FVXnIMl1rqK6gWQLjUUkv90FdUMmuPkAdxFVX7Mol94km9RbuMSorUQNYZs9UEGtQ6gEukaHBuPEwUM+heEa3jlVmzWo0YHdisBrb7lqTArTyr1uOKe+h9SR1srvcMvWO/awrqgO22w5pIY+MRCKrbOeqHO+nhylkRghHTnCL/VCpjOQ6SrxO/OQNYtzKXl56yi/PXU65ulvf74qbV+hMGEt4MCM6PaZxJZeevnWUbK9hQh/7NUzYuZI0lTUDtHHC8x/opJiOP030mOBtnUVlUsiLnR0DcHHi+QR7hJ2HYHuoxfOwzj43lnKS19hU+NG6rz9//j+370XGdnAtgFjAfeavd4p2Z8gC1kr63OnarItcusDKeC1tcLr2lHx39q5bs1JQ9ikIucG8INhFGeX4kr3mV18XpN3Eztly3PV/cXfIT3/oc7/fX/LiLDwB4v79iVTIOb4MArCu758/ffYqvWb3kpV8D8NxveG43vO1uuTQ9f+uT7+PCDHz/8IQ/qz/NzgtD9/zVBm0SWuej/uSaMeiTmcxgJjYOuGgGiXrIitQqWht4uV9NfZbz/uFhJgHdDQ0fDQ2t8xMDmGGSrKfssCWLMpVnjjOSSRmCIQSN1rKYkkpzYDSJ1gZiNBNozIV1rGY/3hv63rHfWDaNF+ZSxyn6RDIYTXFlPZjkaJVYGc/GDrzTHTIWf+5/9k8wJst//FN+x4P31lJLLfVDUwsgXGqppX7I6rP/1negHIeYhE4cREmK7DKTJ0oC++kd44sOe1NMMLxCvzCkW4NKED890NhIem9H/6pFPXfUOWu8ddz1lnS9Z916LtcDKQs7MWUQZrG5r/mCWiecSZMT6e2NZJYpk8gJdn2LWfeY2r+jMhGOmJY6GZ7Lq5TKdK2YM7x4tcE1gevN/sj98Z4csvx7yiC6E3njm8g954HY5957LsLhnNPnuUn/62STD5mlVHA4317gGBSeqzlDmrJC8uDTWZBVXT816gikz01dTsd2TioL58/zQ2N7Eynpm7xnvt2zYHN2XatBjFUHAFEZw4lBnElpT+Wyp9fidWN9E3a0yhdT1hgViwHJAaRODBgKV45opUdW3cjGjnzQX/Lxfs0LlRmHYgplIilpUtDkvSHtLYRyH7hE3DpusqLtRvxoMU9FAvk/vPo0P/76A/7K7m2+tnvJ9++uMa0Esjc68vGwno7rpV8xJsvGjOyj49L2fH54yoUZeLe54fPDU37C5vvY2IH/+uOv56YX0xljEqn06oViFhOTZpcatqP09IVioKNUZigAbOPEhMfqxIUTN9UKJut33ehEahQ73+CTZtOO7EbH7bbDuSgxE95iTWTlhCnsKc+ocp2zksUYnxU5aUKCFDXaJJSS/s7eW2LU03/Jl+uVZQFPW7mn7nYdPhoxs5mZadGIqUxjIvvo2BZjoXqPrIxIaOdmSAB/33/6y/hP/q5/9ex9tNRSS/3Q1AIIl1pqqR+6SgqyQtlMHjU4RBIWhbnJTSJvLWrUjDcttJFwnbEvrZgqNFnYwKTIveFl3AjbGDSxzehRYa9Gwk0Do2IYHF3j0YqJzQulZwakV2YcLU0TaE2amJPGRoxNxAzZCywYFYRWen/qRNqofDB2KdKrUAK2a1aYVpnWBV682pA+bugvNdeb/eRYOZeJnoKKo0zCM2zgPSDEMWg7cjqdgYcaMXEkGeQACqeewdn2pveiWJfw8Co9fEieeVpHss4zYLgav7wOFB5lA6LOMot1X7Vfr/Y43QOGJ/LX+Xk8jRH5pHUqxXzsesF5ID4f4/z1kDQ+iVNmBQ21d62CQdnnYeL9uliPh3oezy0GPFQhGyzx6Pr6ZERKOEl6j7fpkUdBVBmnIu80tzxxOz5qL/g+94TboRUZpPPcDi2vtiuiixJLYzKMGgYNNpOikr7Uco46G3i+X/OF9koAX1jTWc+LYc1b7Zbb0NJHh9ORl+MhuP6lX9HqwD4KC/jheMGl6Vmbkc8Nb/E3rb6PL15c8r6+Yj86Llc9OSsuW2H8Nm5kjIa7scVHw9BLj2SVM3ideKFX2E3iyvV07ZYxWb5m/RKAbWgJWXNpB26DxE90JrANDSFpnq4D68Zz27eTfL0aUDU2CgNbzrPRiagTMTlyhhQVOYk8X8OUtxqjJgRNGK0oN4L0caIBK4s11kVylvdiEswcSE1wJHP4PgmoFYZwqw4RHL7cj9WltFeZv/eP/9Molfmu//n/+dH7a6mllvrBqQUQLrXUUj8k9Y3/3m/BXmRSUrLy7NJkJqN7ReoyemtQvrBfgyW5THaZuElkncFm1KDJUWFeWZSYFuKvIjwZiaMR6/UgICUFjdEHA5HBW3zJ1aqTIGMSrT3IHwGsiVxe7IlJs912JK9p2jCZYsAxoMkI4zFGw6vtisYFjE6ThbtWGW0SUSGTVw7gax4Of1oHued9sCis0H2gMoE0DgAjn/ls/ftD+XrmCFQcf666G06vF6AxN9Sp5+Z1dQ9sqEN/4JtUBZGncRxH266T4yIjnfclnu7ndWzgqRx4/rlz7/9SweS5/db7OCTNEO0EADLgi8mJMxGnoyxcPGKMc8oSzv/22PjP/V4/NybD7SiRDE/b3dHYq0zQFvdNYW/rtjQeitZX/uJU5NPtK95tb3k+bthHx43vpm3e7Dq5rkmTWyVsYSnvDdokbvctrCTX8OWw4lm743Pbp3zL5Yf81bu3J2By4QbuQsPXbV7w17dPefvyju3QcGUCQ7ITY/iRv+DCDAzJskstf/vV95AuNf/V6rN8bfeSD8dLnI5siqPpXWz5sL9gLAtPcbQCxJImJsvNDMx/enWDKTLWIVlWxk99kNduz5gOx6dVImTDdbPnSbfn4/2afnSkpNl5i3eBy27AlUUCMdCSe2XwVs51vXY6T73QnpqTqCAqVHlWYTJZK7TJxSVW/lOA1mlydx6CnXoda79oH6XfMGXFi3FNSJo+Oi7cgLPDtEijlESW/Lw//Uvoo1tkpEst9UNcCyBcaqmlfkgqR5Fo5qCFFVyJwygaUpMloN6ryTYyA9lmAYKa8n4Fg8RNqIz0ggEqKtTzBpqMv23RYwFEVuIo6iQzZTX1w6SkcAUIpswULn+wZs8YHWHTc/tyjfeGi9UwMWuVcbPFsj1mxccvL4hec/l2L5EVSU/7ePv6jpsmMAwyaapAcD69rlPxe+Yxswl7ldoldTBhOecsGvIhdBqO2a55vyP5fKzCOSnsHEidVh2DKSHwrwOGj4GnKSJiVnOms44hZnU4D0d9k/fzEWW7TOfyjSIsHnjPKeAGjpjNx/oCj4DYCVv3EBirx17/80kiT+LJsaSy7agPQONN3ERP9/km8td7CxNKxtF7CV1fWZEG1kiMylKOMLlvHvWFZg06yIKRUpMTaqc977U3vPRrxmTk+K0hrQZ8MCWYXbPzWp4He8MQFbaNjL2jsVFMVYLjrw3PaE3kf3z5Ka5bCZ9f27GAEk2rw0EloAMfDRvebe/4YFhjOwGyd1FMVv7S/j3+ls3nuDI97jrQZ8fajLTas4std7HlidvjVOLWd5IHGAwxyIIWSREHwy3dJOtc25FPdTcQJJuw1RGyyH41mabEWKSs6LQnFNfR61ZckHVIDAgw3I+Obr2fnI/FGMYKmDOiCIhRg8oYIwyjLjmGyiQyBlSeerRxCesCzsWpvzCBPONMwJX+Rh8NQ2xJKN7qtjRmzy409FHY461vJtDYRzcdTy73SKMFrv7Df+YfY0yGP/STf9ej9+tSSy31A1MLIFxqqaV+0OvH/Ae/Ee1mPSmqSvIgt5GspI8wtQnlNblNYjevgS6JLPRGIiCyyeI6GGSikiuYDArdK/JoDgaOSbHdtzRNmMKbm1XNJFTsh4bb7QrbykQnRi2mM7a6h5ZctYsBM8vxqlUnxVYntvuOsHV0T3pC1NzcrchJcXHRi7MjcLXqia1mDGYChKfbPK3T/q5D/1/pwzrjLHraN3g0eS8T+Ll8Msx6u47eO8MDp3mCp2D0FHgJQFIPgqrTugei5lEGpy6nHEBQTJqsDhmJWuWJZXzIyfNBM5UTdnIO3ubvPWJhZ+BQxnv/es63cQquT8dwei1P+/xi1tNCBOmwx1O2sgbfP8ZA13qdtPXc++u/h34ww83Y0rnA2nluhk4MU5KaQIAzEVMYwoGSA1gMZmIWE5qk8rSAQ4Ieh6GCtAiFbap9da/2nYCSLuB7CyjYG6KCPGpe9pe4y5HgDdomLjc961ZA4KXrCeV8ouGj4YIr17MNLW3JErwJrUhMxxVXds8+NqzMSETzP+y/lm/uvohWGUek1R5DxmdDqwNORbrG81a34eV+JSyh0hyanUUtsb3teNmt0KtMyGK+83zc4PTI83FdznGm1aU/MFrGaLE60qiAVcII344tNwhIy1nRB3H9RMPN0JVzVRYRohajngzByLPxaJFEZTDiYppNRrs0qSpSEgDXuDAteE19giXMfgiWm7HjWbvjyvXc+I4hlOxDLUqC27GdjGtWzk+7vrTCwoZk+Hv++K/gbmz4L376b33tfbzUUkt96bUAwqWWWuoHvXISiaZWmRgzWcukSBmZ6qesICAsg4sywzVZ6LNBY28NyWb0s5F469Bekcvr07+NGEgQIWuFihJXMTxfMdiEXQdW64EUDWNQ9PuGGGTmGQZLiobkNdamCRDOYxSqXb/0rR1XSJpd39Be96y7gecfXqH2htxGwupgDlEZu5A0+21D4wLrdpycCR89h+XfmNV0zrTKSNwEkyFLZS7jI0BgmgRzBkg8wCLNQeQ8uuG0b69WzPeB4DlJYv37Uf/jCXNWGaijbcyuRe3Nqr2Q5/Z12q85B3WP1TmJ5GMg96FYi3O9k/ccYMkPxnbM+ztF6pem91UTo9ovVp0fP0m97rhe91ky3O67KXLhpm+nPtrboRV1QFasGk/Oin0Qx83rpudpu8OoPMUWzKWj9T72WROyZleMSlxhy666gZ2XfL29SYTGEkdNDgrVRvLWSq9hhtgbXgXNvnO80JmLVcfXXr5kTJYLPfByXPE161dsQ0MfLZ0J7ELDVbNnjC371HDjOxKKZ27LTeh4ETZcmB6nIj5Z1lakstLz53Eq8tn1c170a1ENRC1mVF6jbEaZjCorL53xvBxXXLoep6Mw4FlN9sJVSup0ZCiZhocFnsiV69m4FXdjyxCFTb0tPYzbvsF7US0kr8m9yEOT1wxJEbxB6UQupj2y2kaxM84l4kOjlLippiTXvTFxyirUyHOymuTc+ZY739IYAbJDtNN9GpHvYF9A4hAsGzvKz8myC45b33LTC7v6N/yHvx6l4M/9A7/+S7pHl1pqqcdrAYRLLbXUD2r9+D/0G0jZkgaDNtJ7ElUmj4a8M1DcRYkla8yl0rMizKAKitTIe+KdFWZQS1+higrlxaE0k8WcRgMqky1kVZjDO0vsDb3KtJ1ne9vBKyeTnUuPbQPRm4NcNStSlkndUBwOGxsPMsWTyf0YDZvVQOsCd32LurUixVpFNt1Izgof9TSp73snAKZ580m7BGHrImVNxxP4pEnqfMj63DzmVHZZ65yc9JwD6UOA4Z408wHJ4bzf7Fydhs0f9fPlE/asIsQKih+pdAq81MFwZj7OeQ+jvP947PU9p+f3k9QciN9jUCvonclPT8+VUmK8olWejFqyVhNDOWdr3kQi+iZjhYePUxc5YqOlV+3mxZpxtLSt51XfiRRRZbZjQ4yam9s1z5uA1gIs7FWisx4761kdkkGMcYx877NiG1rGAnI641mXnL0+WvrGEZLmQ70hNIG0VpNBirsYUEp63W4/2pBHzRAbTJPobWQXGjoTeDmIfPSvb5/wpN3L8aNoTKDVkdFEPho25Zw2vNfcoFXm/fGap9bx6eYlTgfuYsfb7hafDU5Jr6Qhcd3u2QcnBlWjJbWKrvNcdgMxad5d33JdGEsoCzBZ87TZsY+OMQmYug3t5Nbps5a/T/d14lm7pTOePso56YOj97bETMjiXGUo1Vikul4TmnS4+bxkP07xQKXvOyiDKeH22knvoNUJpyNWp6k/tMpu13ZkFxpCaKbvW+17dTrRezc9a2PS3Jp2uo+3oeF2aLndteLOCiid+DH/wW9Eqcxf/Hm/7ku+r5daaqn7tQDCpZZa6ge1QtCYwgRmIHpNLr0rGGTSASgvgLBSA1kLwKsMIEmhepGDpiaj1kEcSZM6AEMtJjQyeyhgRkPcZNSo8bcNKemDc16WCZLWIouKXpjDnAUApizM5jwAPSY9SSQrONQqT4BRq0zeBBg12sSJMTI6i8NfhrYY1NSqC/FwnnGrE3Nf2E2t8sQsTpP2rPBnZIenTNGcJTt97/1evBnD9obulI+ZkrzO5XJ6/xnwMQdnOasj1pCa7abO9A2eMKHnZKDnxlo/MwfTb8IoPlbz61ndT6vJzRyIz8cLTPff6bWa1zljmIeO8ZPIeB+6nge56PE5V3cWv7WM64ZtE7EuYq3IsYe7FkZNtAbdRoyLkuXHmo0baEwUl1CVpwzDfXSEYkijVebt7g5XgIdTCW/1ZLiytiPP+40A074jZXiy6tEqc+l6vr/xPH+1kT6+JAszu1XDVdOzDQ0f7S+4antuxg6rE6MXQ5RXviMVSes+ONZ25MPxEqsjY7K8CBJb8enmJe+PT7gwPWst0tbb1E3nZ2U9vpU4DqUynQs87fZYJUxpyoprt8epyPv9tbCgWdPqyJUduAktL4sxy9rK9//SioHNPjr66CZ2rsODYQJnN1kRjSZFTagLLkmem3hIUZOt3JBVkq+yqC1QkHtDyKBNorFhWpiqGYTNrP9y3u8q11J6Bq1OtCYyFFBYMxl1+SIPwbIrINFHza5vGXsnz34jULECw2/5A78RaxN//uf+C290Ly+11FKP1wIIl1pqqR+0+hv/o1+P1ho/WJRGelYUKJ3JFSKWyQdZZJ5Zg/aKZMvqdBZzGbKwfSQlxIE/xFUQDj1gNUx+kpwq+T2bLMxjBuMS6WpEG5lo+8GiTMa2AbISWVVOdC6Ak15Ca1IxQzhIDrVimhTFmWOguxhJ0WCM9Co2Nh0BM2cS+9Hd6++aT7YP+8gYYDs6+t4VtkMA4WNVweApqHzoPfN+wHnNmaxTU5cEwkzmBySiJz2Ap7EPrzMtOffeI2Yvz87b7FTO+xqPwG+N03hsv2eiNurx1noI1L7O1fP055qVaB7AZ3NAqk+u071SxxPx0309JO2djimre+froffOewfrzyGXUSWF6RVpVGRn8NeecduILHLUmK0mGy3RB63m5XaFuRBw0ZmALVJQGYvEFozFIdPqRKtjMX+JOBVpswIjZk/Xbo8uAOXT6xtC1liV+L67J6xXnq+9fMmTbs9f+/Atydrzhhe7FWM0AkbLsVfwsvXNxEhKUHwgoURGage2JdS+0YHv2b/FM7vl0vR85C95292y0TIupyJ/lbcBaM0hkmPtPI0OXDc9GzMyJIsh8X5/XeTQGZ+F0cTCnW/RZC7dwMfDBqsi62LQ05pACM3EeGqd6YtEs7MeuvKdTUoAsSmLZ8WpWVjD8uzUTDJVlZDna+nJDM4Q2qJUKOfaqkRTzGtSVsc9yeVerSZXzsRZL2ma+kvHaHi5WxGClh7FpGXxcDS1sXf6f0d9Bmqd+Yl/9J+nsYE/89O+4/53YqmllnrjWgDhUkst9YNS3/L7fxP1EaNNmQAHfZAsCZoQkFZcSFKZ1SeXC0AsDGGTwOvSJ1gmqF6TdUYnhUqQi2M6tkiemoRbeXxvpV9GIZOaqDBN4PJCpJy7vsHYQ4yCNmnqd2xsKAYW8treW/rB4QdLtx65WvfTKvccMKw6T1smp3BsHKMAVGbVeHwJsJ5Pwees3hwAdC5wi4CUau5QmcVzk/Y50Dud7J8Czk9adXvVEOIUdDwU8F7B2FlDlYL/aw/doVexAtD7YHXeB3hO6nrKDh65gj4C3k7rTZnSOqaH5ZWfUF7KMaCbg8HT4PnpMz8ALOY545t7rKuae7/IfXDVDdw2CbU1mKhgUATt5IwFyR8lgwqII2gSRv65gtu+5a5ruWgGrpp+6qutstg+2unYfdbonKaYBKfi9N+73Z1EcmSNLWP91OaGj/oNV03PhRu42vTc7lp8tNy9WLNzrcjZTeKmF4ni9WZPZwP74Eq2Y2RjxtLnt+Yv377Np9c33PqWjR3wyfBnt5/hb9i8j1GJj/wln1q94mVck7KegO58EWjvHaaAqZXxaJW4CavpnErkhRzjx8N6imvYmJGP2ZCy5s4LKO2jpdGRMRs+6jdcFMbVloiYytSlAgrlEmSy0YfnbImVyEqXZyWHh1MFjfmwUHHK/oeTe1EcmKErz6u72DIEK5LTmXz7zju2fcOwd6SxPKsTUHq8ZWFQEKrSCWujAEIlC269t/yt//Gv4b/9mb/pje7xpZZa6n4tgHCppZb6QangDTloWdG1aXJFUTqTg5p6/ZjFQuQmlegJpIcwlL7CqOS9GnEfpUhKkyK1GXMn4FB5BXtDbhLoTAyGvLeYO01yiHvpRWTV+glMOBcZepm0Rm/AiSHHuh2nuVC1UwdomsC6G2ldmIDL3KiksQmjPU6nSRoF94Gb1QfX0grs5kxYlV9VVquzgbYNhGDw3nCnWjbtSFPMbt60r+20b+4xqSKcdwqdb39uvFNfmzuEnvYBTu9RxzLTVMCfVjL5O2UkqzRtno94dDz5+Pf5+OpxnB7XQ6Bwem9++D2n9Sbve8hZdNrGydjPsXt13Cnr49iGk39P+whPGdlPChzPbUcYvFx6xxLPVjs+30WyMYfvuxc3YO0Br0hOflajIhuJodndtmiXSs+bTEtsm6YsvmlhA4VW8vdahsSQ7NRD2+gg5yc29NHQR4cmc+EGvrC9widNawOsYWcSuw83pExhzBS7INmhL/Oad67ueNLthQklsy8xCV3Z/6uxozOB799f86nuhufjhv/u9uv4n1x8no/8BX/dP+NS9+xSg1PSe+dSnCJDQjSM0TBEe9RD2erA3bCZgLbViTGaKeLmo3HDGA0XbiAkwy646fwIoxm4HcXg58INNDpim35iT41O7HQmGEtOkRxFbq1MMY8JSZi5GkwPqNn9Mo8yqdEi8r0tfZc6MiZzFCtRzYFiVngv41Veft8Njn7XkEfpZ1RRTQ/FqWUAYQWNmT17YIqwUCrzE/7IryNGzf/4D/76T3RvL7XUUgsgXGqppX4Q6pv+/d+CUoBN5KjIvUEN5rAKHWeTUZ0Ps/kMuRMZqR41JHEPJYiFfm4SJNCjIjnpcSGBjsCoiF2RQA0atTOCNZO4jSot+81J4aOhnYWrh5cN+tJjm8jb13fEpKf+PK3ECCFETVsC56tN/hgMRmdCmVA1Jk3MRt22ma2kzyWa1RkyZlnh3vWy0r/uBi5nctAqtfrg1SX9XcM7796wG8Rp0RYDkVOWbF6PyQdPQdspE3YqP5yDs1PgOElIK2BQh8tbtz8HazWvcL6vU3aqTiKPeuz0faZwvu05EDoFg1+KycrrGEG4DwbfBGyd60d8kxzD0zE91L95CgofGtdD5+OTAsZLOzBGy+pyYD/qQ29wVof+4FwY3KRQAbIXQxxlMzkqWeyofWUFIA3JcufFbMTq8Whs8/s5ohmiYR8FbPjSczgEi9GJW9/yrNvx/XdXoBMr5zE60V805KjQTp5VqrQYd43nSbfn/dsr3tncTUzsPjg2buCtditATkdSUnxu+4z3Vjfc+o6/vH+Xd5pb/uLuU3zL6ou8627wK1kcej9fyQmLhlyeQXvv+GB/yXWz53bsWFlPYwKvhhVjMlPfb1sUC7e+wxR5ptVRpKRKcgqtjuyCFZY0aWLWXDd71nbknU4kqs5EGhvZjw4fTMkVPHy3YtR4k0mDmZjBHJl6rgE2zShZkzMmF2AbGsYs596qSMimZBNaxmjk2aoTvny3e28ZB0f2GoKe+hehyvzLDaaEHRR33cP3x4ciJ7YRoyS39sf+wX+RnBV/6X/9az/RPbzUUj+aawGESy211A945TKzNTaRtCJ5K/9zt0mAQhTJqLiCHv7nr7oIOpODljSFXheJWekf6YuUyda+F9lGbJCYiQQgElJSYa3qxLaSPjvLLinUtUx8ai6XcZHri70ELFfJIjJhCYXpa53kGYakudl1Ym6iE94bNqsRrcIEamJWR3ESWh27gyqVpwDp/dCQkqJrPc7IRG8I0v8zRsPL2xX+eYd9IhPidSty18x9kHMKjB6qh/ID4TxYubftM7LMKRswHwLj566d53oalcpYEmHWBPgQGMmlP0lz3Ef3WMTCQyzaKZP50Pvndbaf7hFQ/dD4zklQdQHIlXU+eyxfAqv30H5Px3ROyvtJSqvM03bHN739Md/fXLHrG4K3xMGQlSYrLd/LDMzPeWGCxIFYJvwJxZgsRomTamc9N2PHLjSsjD98rwrArODRZy3xFNFgdWSlI7rb8nxYY1WijzLlOXx3M91qZBgKY9UknBOA14+Ol/2KlfPcjS1vr+74YHfJpzc3QLnHyzgv7cCdb9mGlne7W77QX7HSIys90ifH2/aGt+0drGAbG3wy02JHXUh5uV+x8w6jMq+Gjifdnsum59W4Yu+l33jvHUplrjth+7ZFLupmfYmVIeyDm66nLc80TeatdkdjIk5HXulu6mVOZTxiYJSAQNC5RFCIqQxaFB4xSw5m7a20KuGTOMDe+ZYhSnxIXfja+mZ6VqUMtjyXY1J4b6f4HzmAEzComParlLQSAiULUZ7f1XTJFgOwWDIWpYc98Wd/9r/4Jd/XSy31o6UWQLjUUkv9gNY3/77fjNKKFBUpcQijtxInwWDkX5dlVbiySUmYRBIyQezF+GAiQ0q/IRxjvNQlAX9JzGjmisJcGp2yLduJgM3k3rBVnbidDpLj5/eOfRuOjiWWYHul4GI1ACVDcHRYG2lLXmGv8wQW51WloHCYgM8BiTOR1kk2W5U+7UfHbWwZB4drAqt2xLmIeWePKWY0FcRaE4+YzHPA6KFJ/tyk5E3e/9g26udOe/ambRbgdZrRN2cORQY5A2tnJYoKidgQ6dtc5jo/9nOOoA8BnjkofAg8nn7+IYb1dLv1PafjO+p9/AS9jHD/3L5p3uC8H1P+UKSndbxfCthUTFLflBUr43mvu+VJs+f5sOb9myv2zhE6yfhMOyv9amWnql6npHBNwJhEYyOtCdgi00zIoggwxRFUd1MovZSFvTMqszKefRljowOx3D9rNzAmS4gzIJZg041crgZ81Ly62UwsWc5wNzSsGl+MUgyuMHopaz7qL6b7THeZr1m/5MW45vm4ZlWAklORu9jyQbjGJytsnduzCw0774hJT8qDxgZ80jgt8tudb7hwA+90d3yQLwljQ4iaUPqVL9phkpBW5vDwfUy0RiTtTkcaHSQWpLB2QzI0WsLso9Vkr0qGKYCa+pTrgleKhrSKKJ0xNqIQx2McNFrApU+Gu9ByM0gAfWNlf32wbPuGnBXWxknVELJiDJbgjTzb64KdS/J8LwoTTEbbhKp96OnwjMkZTOn5dibK81CLzDbOrvNP+CO/DqMy/93P+o2f6B5faqkfTbUAwqWWWuoHtJROkLRIr5JM9lTp6cujFoMYOMhGY5GDqoy9M+gBdFQkm6XHqEwOssnkpGTup2T1OKks/YdZZKWFIBTvA5dEplaztGplkSTlvUXvy+q3y6i9424whLf2AlB0xnvDeNfQXg6kDKFIR42WiWutTZF41hV8N3MsnIBE0uQTUKFUZu0EDN7sO+5erlA7K0jyyrNai7RLqyKtGq30RWZYrR8PtD8FZ6eAKSl11BdU/342H+9kO0cSzso0oqa+wFPgBPf78k4dPGuMxHy/st3j46nvPxibHIPCe315J4Y2p/WQ3PPLNWeZtjcDww+BwnOg7hyAPcc+nm73sToX+/FYlMZR/+fJ/XPcR5jExCUrAXM68sTtsTrxsl/RB8t+dGzzSp4BcHAGBlQBH6kYFMl/whTW/sQmx+m+3EdHW8LOKYwxyPPA6ciFHbkLDa0O7KPjqunRZG7HjnXjp++uj5qV83zD1cc8Hzbc3q3oGi89sbNzsxsa3o+Gt9ZbPtpfcNEMvBo6OhtwOnLju2KO0vKF7RVfe/GSIVkGLK0OfOQvWeuRtR55y2259R1jY7gDVk7GvrKedbkn1i6xLiHtCcWlG/Alg1HFTO9l6nbRDpNDJ8A+OTZOjG9aG6CcopAMGI8t+ZWtjjQmSK+fNsLMlvM/RZxocC6SM2SbSCWex5iELX3Lcu0VvsSCQDGS0QlXZKG7oaHfi8SdDozL3PWtqB9GSxyN/H8ilgW/JkvEhMmoYhyjyvP7EAFEYTEpQDBNBjpD6bUECEEoRq0z6MRP+CO/jpwV/8PP+Q0P3vNLLfWjtRZAuNRSS/2A1Tf9+7+FXHpeQKIhJifROhEctfQUzYwDSKCTgL+4ymQPqchCs0IcSMvTSmWRjGZbgGXdl8kHJrCsLE/7L6zjga4rDGQhKKcVapPpP14d5KxJoZ6MWJtISU85f1ZlfNT4KMcao5ZJB9DYcDR5jlmiKGJW00QTDpPqCPikaWzg6umOW7WGrSUPht2uZd14UoZhsKSa32UjF91wZO7wmCyx/n4qJ50bwpz28x314M0A3tF2ZsBOqTz1Bd5jHU9lmOrQW3iOyTv+rJQ5ee/Rts6wbKfnY96z+Fg95so63/dDktNpOzz++rkxnu5jXq+T8b6u6rmej2fOYn65FZIh6YhRccoJ/Nr1Sy7swPNhzc42ssCCgINcm/VMxjZxkovuR8feOVIWp8xnzY6NHemjYwiWi06iHGJh6mpplTBkUlRTRmHKmr7k8219Mxm3XLYDrQl8/80VfbB8sLtCqczXvP2S7djwpBl5uVvRj47bbScy0qx4vl9P35n9KAzfu5u7SSr5rN1x4WTbNZLC2ESrA2szMCTHkCwr4ycX0CGIk2iVfVYJbAWEu9CQUKyd/D4qMb0ZgmEIazbtiE9GGFWVuRk6aMGqSDLSL33jO+l1zFp6kmdsvkJU+/XuOvp+63Qwu9LCFhqVS6aqYkyGJmssaTL0WbsRoxMr69n6ZgJwKSpC0NRpZ0pKjMcyh8VBm9AuYV2cwN+BsVVTfmO9n52RxQJnIo2OkwmP0cKSZqMmRlH2KffLj/9Dv4GU1BJuv9RSs1oA4VJLLfUDVnFrZZW39uVtPFofgJu/a8TWvCmT86k/UAmYK6AqFXMY7RXai8uoUgL4cgGQwvwxuY9W8wMVFQxWDGiU/F2lA3iouYZZSfB9MhnlNalJk6ueirKddBG4uJJ+nV0vgfXOSci2Hy3+VSv7A+yznm41YrQACR9k5d2ZQ2h6rZpXWPsUQdhHoxPrq57tfgNR0TRBZKRDg3ORbtOTksbZSGdl+f9eH+BrQM85mWjMB/OW+m9l4R5ywpwAUT4GFufMXep7jkxjymePtj1jsI72M4G/8yDtUWB29L7z9RDYOndez7GM80n0Q3LQh9i2+bbfZEyftObX4RwAh2OTmvmY58f1mCFPZWtDiYOYnHJVnBwonYmsu5EUS/SBqgs24Ac7yf+qZDQkiVR40a8nY6WUJQPwwg0TO3UYg2FEZKu3vqM1QeIpVBYnz2B56+LV9H2Zu3pufSMuqd12+n44G+lHJ463STEMlhg115s9vbesG3EaHaPBJ8N1sy99c7L4s48tfXA8u9oWSaXlI39BSObgygls3MAGuHADu9AIsC75i1ql6Tvo0yHMXf4TM6vd0NCPjstu4KIZJP4haawRqahViX1wfLC7EtawXK8hWvbeMRbVQ0yHfrwYtWT9ze5ppSQ5Vql8lL0qYDFDFnbwqunFLTY6+mDLYlnCWGEX6+JZ/S/rLP3jOqOdLAoYk4SN1MJGalUBYKyPcBTQ2lAY6WJAFOykvDAacpbe5JylV7EeS+13/ubf95sB+Cv/8D//+JdoqaV+FNQCCJdaaqkfkPqW3/Yvo1aG7BI0CWUzcetILknMhC8GMbkwdpqSg5XBZdSo5L8aMaGY3OYAdFCCMzOHvkBdwWcBhSqRk8YERTKK3EVxyKvbigijWEPqTaUgOYDHqCSw+cqjgP2uFeOY3oqhgi+ufDs7jTe1ibbzJfMLRu/w3tA2MgGrAfZzUFFNJeaT9Ju7FbG3mOuRqwvphHr+YsNqM3K5OmSzzVfKT/v4aj00+Z/O50xKecoI1m3NAWv92+m+qplEHYspJhOoQ49iyurQLzYb0ilDpVQ+Aomn4PB1LqGnEszT9z4GnN/ETfTo/Q+M5U1MZU5rDnofYwIfkow+to8vV/r6OlA45SEizFlIZooGkNgIzdhYMTlZyVj60TFmR0xZnH+DJlvp+zKlLy5mzV3fErPClb6z1oZJmjgd32wx4M63RWIa2UfHi2HNVbOnD04eGyrzY6++yBf6K0LSXLTCZuWsuB2Ezfr0+oa/8fJ9/tMPfwy9tzy73PLB8yvIinY1inOpd2yKC6lVka1v+Wh/MV3Hb9x8zF+4fY+f+PRz/Dcvvp73ulu+fvWcjwbpO5TAeJF6Ni5w6QasSqzaLQCv/Kq8r2FMln1w7Lw7WkhyJh5loPbBsnbi/BmyJmRT4jESIYuxy7ZIN2vkRUyHfrsKAmdXfrreRh1MWyjnscZXyHsSrRbZsFGZqBV9dIdnnM5cl+eZD/K8sEZYwEGLDF7C5hPGSs6goj5P8vRccbOoHqcjnQl01k/3Zs1ZhPq8lUmuKDmKNF1XgCtKC4Bv+QO/kRgMf+0f+ee+lK/IUkt9VdQCCJdaaqkfkPLPgoCzIgHKxUKcUXSZKigwRerZiHX41EeUFdkhr6cCDoLESmQNqcnC4LkCAhUHPamXz1NDlDUkJ/vLgGqjRF9kg6LY3QPm0tN1nt1ti9o3qEGTXRYwCGgr/8atJa8CqpgbAJAgt5GMgREwmXG0eGWK1AnaJtDYODESD/bDJU3vZSU9PW+hSTy92hGi5tXLNTkpWieTnroyXmvqtzrTGwaPg8JTIHiODWS2v3Pgp35mLoUVe1g5R5P5yzlgyDEIO8ewPVYPyVJrv5787ZhpnI+7juee2Qrn+/ceZMdmPYKnY6njufeZB47vdWDyk56bs9fzAQbzsX08BgpFtpnKhFzA4FySeGX3WB0Zk6UrMQUvVRaXyGRJCBCRSAGJeNn55iiioLrzamQh5aN+w7N2dxhD6TUUsxJNoxIv+jVvdVveae6461qsTrzb3gJgVeK67SfJ6fe+fIot8kOtMn/u9tNcup7LZz19dHxkLtisBtalvzBneL5ds3Yj2ghQvRlb7nxLZwJDcrzX3aLJrO3I57ZPeeJ29NHyYlhzO7Q0RSI6FOfTSzegs2Jjh8kRNSSJa/DRMJZ4CKU0zqTJ5bcCpLotqxONDnQmTPdhowPJHhYcdLnvlVKTSU299tX9WH4Xhm5+X9XYHR8NRknvXo3WMdS4DxmDVplVO+KjOTwDXaYxkdYG9t5xo1r6vcQCzQ1ijD6AwDlTKQA10ZnA2o5TJuWQ7PS+OkaAMR9McuAQrTHvl0xJ4xV8w7/77eRR872/6Ffd+14stdRXey2AcKmllvqy67O/+7ejkj5o8rQ6SIGSsGgqKTIZlXUxh8lgs4DCIrusVuMqCEuXVOkNbBOqSSibpl69FBU5arLh4GKfmUxicjEpybFsX3HoVdGZuLOMSsKYsyuh9qWnCZtIXuNWntTIeFcXA40VA4P96NjdtmQlEE3vDSMt2IzpIm03Fse7w4r2lDuYZDJWV9tTlr7DPjnyKrJ+sudm2zHuHOwN5voQwv1QnTOBqXU6wT+Vhc7/9lCv3NzB9BwwOjW3SVlNWWSxmH4cWeMzM5Ip9aBs84yM9LE6AmOZqUdy+tuZbZwD1I+Bqmlf+biX8Bwor9LYN+31m9djeYvnIiQeOj/nDG1et9/HQOG85NgPRkU+GbneSpg+ZyJP7Q6jEis9SpC5SmgFt0A0BqUTXedpbZTetAIGqzxx4wRUKCWAI0bNzjQ0JjCWLMBZaknpc0vsQsNNWJGy5sXQ8W57V/IMBeRcNXu+fvWCq2bPX3r5DkOwvL+74nZouWwHnrY79sHx9vUdRmVuixlK60TSeju22E6O82m3R6vMB7sLPtxvWDvP99w9k2zBoeXPvvwMADvvuN115AzWCtN/N7T8mKcfsrEj+9igVaKPjn1wrKxn5524epYqST0i3UScj31xKRaHVjkZGzMeMj5TZlXYtAq0Gx3ZWyfS0XDYfqomLkffmwPQ0if3oFxPMaYJWZOK7LUavYgxliyyrJznskhbhem0xCYIIC9AsDKQVQkx7+s1xWTIapEWt0acZCsgnMtiAZKRPNN6rqdx12PRiTzlG2a8tnz23/6tfO/P/2cf/Y4stdRXWy2AcKmllvryS0PWuRixcKCyMmIg48sMxokhqBL9Fjke2EAUqKEAw9IbmFWRhlZTmleOsIozlhCUS1NY8sQUVilpBYOA6qLgxQxq1GSb8S9b9IXHvr3H7xrUrQWvIGuygmAM6IxtAl3ji1mBONutLwfCSjO86qAv5jXl4GzphZpPqIxOqKwwZeJ6WM2WCUsIBmUyu4/XkxFO7X3Us7n5Q7LHU8nnuZrnBJ69jCcT/jn78NC+9SNAY846JhROxyKrPWNccwZMVcB4FrCdMUeZj0sGVN6bD2zhJ5VQnn7mQfB8Mr5TJu0Hqiew1kOg7lRe+5jb7OnnTt/7OlOcwz4OLGFCFcdRjc4GmyV+odWelfE8aUQ6WPvQ9qNkADZWFlB81KgssQpP2x1aZV4Ma55v18Ss6JxM+EPSXDQDMQsIutL9UXQJQGPClGPYGHEc/XjYFEZRQMpLv+a99pbxyqLJfN/dk8n598635KwEwBRAeL3que1bNu0obOVuw2cuXvFiWBOLq+btzYq8N6gg0Tnm0vORugCkBzl4Q/Sa4OSu8d7w4eqCy8uPGJPl+bCZrkdIAqzWjWcMBmsOWaapmloV6WcqoPDJak9TXFgvbU+jA5d24MW4oo9OQHZxQl5ZjyvmNqEwgzUOI2UB+1rJolU9s/W5UCWj++hodZjA5xgt29BM4fMiFc+TMdRYnECltzRBebbWHsHKRMqxaXmkqzzJ0CsbHLP0QtZny5Xr6Yyfehi1yuWZXxe+Dj8bdcgtzBmsCbQ20rvI0Du+8d/7LRiT+Mv/m1/z4P2/1FJfTbUAwqWWWurLqs/+m79NegD3Br3XkguoEaYtQ2oSqsqVdGEMg4IACjXFRByxfBQgaCWugpJlqPIhyqI2m+VgDs6i9U1HDqYyGclRYbZa3EpVRg/S05iyIykn4PKtQfZx08CFl7BsE7lY94fcK524XvWTVPKlSexerI5cTO1MRnUORMVpgiKAKEQtxhp9WaU3Mvhccr+gxFRwDEROJ/EVZJ2+B84zS6fvmb/vdBunAGzO9p0bT626v2qbD2GaDM6B4dycZr4f4F4Q/b2x5vvjOldzMPda850zcRWv62E8+rw6Pl9vsq95VZbukzKLr1skeJDpewCcz0HhOenoaV9pUuL+GZLBqExIEa8MPlmcisISNpnWiKTwxnZTbEJjIpftwMaOXDV7LuzIEC0f7S+423aSbVr6aSv7LPJBPzF/urCIz1qRaH6xv+Da9fyVm7d5+kRcQD+/vebHXn+Rv3zzDteu56VfEZLmmy8+IqH4cH/BpRt4q93yYlyxtp5WB4ZoeWd1xwf6Eq0yO+8A+Gsv3hJ2KRr2+wZunOSiFhm6fhJJSZQG/V2DaSXTL40GZRMqaj7ertG8xXW758IJg9bowO3YsR0bLtsBkD7H1kR80uU7dXwd96M7+l2rzMYOvCo2zfsgQKnGdhgtkRKtDdjCNM778IDJQKaydU4fnkkh6dKrKGVVYiz3Qo3pqewbQCxMbyxhlE2JsIDyGJ9JhFNWUMaj1MEIKJSIk5AMATMd46UVGfBLv5ruR68M1kRCNDMpbJ7+q32ZjYmsrGdoLK90Rz86coa/5f/5a9m0I3/6p33Hve/MUkt9NdUCCJdaaqkvq5TX0veXkV5BX0xZqvvmnSF2kgmoi3unqv1+6dAjmG0ma3VwDdUUpkxNjKCAzXwAjzpD0NL/1xQGpPYxVoYyHMCogMNUDGtk3yoocpPBJTG3GErPY5mE1MmK0bk43uVp5TtlxdW6p7GR/eAI3mJtnCYeU99MnfDkQ79eXbmugfTWRcIKbFsYkF4mdlP21mx7wOSsl7JYy8esGIMhREPrAl2Jv5gDvC/FYOR1Estz4LPWqbNlTJoBS8piCKFVJpU+pgT3QOFckjnfN9zvrYPHoyVOcxTfxHBnHqUhf3j4vUfH/QAAPHf+H2NYT6WbrwOHR72p+RjUzcc7Pxdvch5et/+EsOpaxSOWUCeD5gBQhCmUBYFW+0k+ug+OkDUrW+IYdMCpxPNxzYt+TR8s2iSUUlx0A++t7+isZxek1/DOt1y4gc4EMWxRiqfNDq0S7++u+czqFU/aPd9794x3V7fcDS2v/EocfKPj437DmAx/09X7NFq+f1+7folWYpQCcp2+/uIFjQ6ETtjDH//0BZ+7e8rtvsOZyH7f0DSBvWmYddUSPlyhn42kQRQHClhdDIRg8F4WSrb7lsZGQtZ8en2DKzEKrZXvso+GlTtIPl2VixZ5qEmZEHMxVoG25AxuQ3O4niqX0HtXQNTINjTiSqoTtVswz559VRVRq4LEea+iUXnq5au9g320YhAUK3N5AF81rqc1AVd6FGN5JlbgVw1zkpIVw8oazr8vrQmsjJe4Cz3is2EowDdlPUXgyLPvcA/XyIq63/q9aW1g4waMTrxQKwZvcTbiTORn/IlfyrN2y7/7d/yes9+BpZb6kV4LIFxqqaW+5Pqmf+VfQmk10UTZCN6aevUU6AGSVYLD0kESqmo2YAV/iskogVSAWmUJK7gb9aSfzE6cTNkptBdzltQmAYN127kAwfJzagrYzEiWYZW5DgdpKas4jSUljd85mqb2pTD1uMjv8hlno6zWx2KKYONR/0utKnuqn1VlcjX6FqUztg1sViO3dyuy17jLgU03TpOmyURGSS8NMPVUxiDmEyFI/1Vnw739w/lJ/UOs0SQVnQGkOYA43bZkqOV7oG6+7dpLmbNMdjX5SEY6N535hMaf947vMVfO03oM/Jwykefe9xiwehPJ6Zswga9jDB+T3077P2H8Hnv93PjehIENSD+xUZkaIKrLQo/TkZYAmgIOI7e+o4+WMdnirum4iZZXY8dN3zIGizGJ1Xrk3c0dV82elRFAeUfLECx3vp0WEO58i1Z5Yh5f+hXvrW743rtnfLq74eZyxc3Y8azb0kfLZSPmMR+Ol3zu9plkFO6v+MbNx4xJpJSrdssQGpGtFkOTGgUxjobt3QqzDhLgfuFJ3pAKSwgQX7mpzzG5xDha2tajVGboHQnNdmh4ttrx+e01n17f0OgwPXue79foLHmEO9+QsmLjRrZeAF1jA9YIK9da6XEMWYuhTFYTcGp05M627INjTEZcRssC1vxneXbcv78kh1GyBzsT2NiRtoDohMKpxJXrCVkfORDL/QHNDNTtg7vHMNd7XKs8AdTqXGx1OsppfOa2PHW7aYHqhV9zGzo5rqwnCWsFoNakI9bz3LOsM4FudStsYbRHfdQpa37hf/kLaU3gd//Ef+fB78FSS/1IrAUQLrXUUl9SfdO//C/Jym2A1BRDmCLRVDmLc6iGuM7osQDCiLiAmmmeCCWL6iAZLf+TTgfwRFSoQUskRDGLUV7DoGXbUdxDVTGZyTVSYsonrMzhbDKbQY9qAqcZJLswS7+hdRHXBHbDCu8tY2+xTWSzGiZDmPmEwpmIW0e6xk8sYpVAnQIzpaSfRpd+mhiKCcR6YLtribcOtADSOoGpn5uGfzKZcTrRFnlpjBI+fWzQf58lPCf7nP99XqcuoI/1lk2vTZfyvmyx9v4IkxGQHDtzT0Yq43s9MnyMnXysP3F+bK+rx953jm07BwQfqjftMTxlDO/t8xPIU980auONmElFaf4tzHU1mNG59BQadPn+RcCUPrAr25etdKSsuRk7kVFnzb5ELdR+vdYGxmjYhQZTGK7WBG51y+3Y0Uc3LS5oxM1S+8wuNKyMZ21HXvoVazvywc0zvvl6x/fdPeEbrz7G6sRHw0b62JR89qVf0weHVoltaHnS7Pmrt2/xrN2xsZ6Phw2tCbzz5I73xyds1gM3L9a8/c4tL15tiBkYFXpU4HXrsAABAABJREFU2K0hWYpjsiFpcSbWOtO0gRgV3hs+2okhzYf9BdfNnmvXs7YjW9vgS+YhFLlmyVncNOOUwbdyXgx1fCMsvC0B7iqi0eKe6nrGJAY69f6pRj71e6OZS9EhotAKhiL9rtfv9D6qjOrGjPRuICZNHwRYdS7gZs+zPsj/BOozro6lqijgoIQwMzA4/677LOdklxpe+RUvhjVjAaJ1gUqrPPVezh1I/Swf1ifNECyNDly7nifNnpfjipClH7EzHq3SxED+wv/yFwLwnT/pOx/9biy11I+UWgDhUkst9SVVajIqFiBVVr6VV+hIkXkK8JMXZu+p7J3KpLbKOIURVKkaypR/sxIX0srCOJGWqlgyC4M6bJMDppyYR1W0owUUzvv8pp+rO2GRvBIUORrseiQEAwn8KI/KXBxCTyfhvbeEYFiViet8ZZukj1a7a9VJTWMiF5seozO7weFftCLDbRMp6IPb4mwSVCfgFTjtvaMxsbAEkZi0sCoqw4nMar7v059P61zPnDCA5ZSdATGnjNlj8kyRtzmSUXSFwQjJHMlI4bhH8FzMw5fi4PnlfO6xOus0+hAr+WXu/03B4CeRtdbXHgP8j33urHQ0Z8ZkMUh/sSGRsiGWL98hXzPSAbe+pQ+WwQs7t248KStu+5bd6Og7R6MjjetpVKIzhmA9t77l+b5h04zc+I4r1+NM5LoAoBozEbLmvfUdKSs+tbnh+7ZPuG72fLS/EIOVaLm0A9vQsA0NGzvyxO35/v0Vz9odYzLc+o53uztufMff9vSv8992X4tWme8rPXCr9cBgLD4o9M4AIpVXQaH2huQiSiuaJpTraIhRcbPtyGtx47xTrVw/dej5q86tKUv2YGMiViW2xXymSi3F1Ve++yvjCdmUHjvFPja0tsd3hg/3FwIs08FEBgCVJ3MZkO/KGCUiZ9X4Ke9QqzQxdBWAlZuOznq6KNewmuPU46msHTCxkudYc1O22ZS+xZQ1ISt0zNyEFUNyDMlK1mJo6KMt0ReHbRmdsBwUFvNFNq0yY7CMwXKHyEb30U09qa0Kk5FNSEaeQdFNn/1H/vNfzJgMf/Dbfvcn/r4stdRXUi2AcKmllvrE9Q3/l//TQZJZ8vpUUhOhV0EdFExW/26LGactPYOuvJgRp9I8Yxqr1BMgKOxtmcxdpcM+TEYlkaSiskRQKNCDovu8YXyS8dczKFa3rzPZCrMISHxEBaDSmMM4iKmAsmJNntAEb+hHh3OhHr6MKRicE+t0H8wk4TK6KFjnvV3l3wq2rE5ctCMxy2QQDRTQm/3BS/8cA1ZLqVyCqcVhb4gCCFOGq2649/7TbZ5KYO/tRzFFJ5zu9yGTmiQndvr5IflmAoZoJwbIqghZH7uR1u3OTsFpvMQpy3nY/gORHLNjmp+D+Xl47Lyc29dDdbrtLxcIvmk9BOrelBm8t70vYdwygZcLpHFEIoY0gcGU1TSBt1qkgFZHaOGVW/H+qytu+lb67UZLSoq7Xct2bPi6qxc8bfY4HVnbkQ/3G273LS/vVlibeLLes3ESvbAxI+/HK8Zkp6iKkMUQRZP5uN/wtRcv+XT3in1seOlXfLC/JGXFW+2Wj8YNnQlcup6/vn1KX87Fs2bHc7/hJz79HP/9q8/wLc8+4ntePePrnrzkr798Qvtu4O7jNSlo9F6yWdWoSHuLKUZYjQ1TaHrOit3g2DQiSb0dpT/R6oRPmSHYSVbpdGJlPXdjS2clpP12bCcW7oPdJU+7Pc+aLVZlnIrSm5gVd7FlZTzX7Z6bsQOg5dj4KiZdchflng1R31sQC8kwlqlko8MkHzWITDU1CqvTZGZTr/lpHExMilwWgowWyfG8X7pGhVQJb1CaoTCBFRDWTMUjd+OspkD7akpztN/ynJRcQiPjJDOW1cz6HOqLnDkVEFzlq9JHmfi5/9k/QR8df/Sn/muf+Duy1FJfCbUAwqWWWuoTl/JKwFcxZanLyllnsiqMXpkzCDE3AxEJYeGMTBJVOvQgUgAdAPO/24x/Fg+/l11kUxSmJb4Cg+jRrCKsM/ZOEdbqeLuVKbSJ3CDbrOY1QQnIzIrkNe1mJFpFGC151NjSIzQMjpwU2iSsTazakcbKREvs34+lgpUByYfhH72espyhrvWEC0PaWpHERkXvLReFEdAFHJ323BiVCTPp1xjsBNaq5Tsc96A95Bw6n0gx3xcHCecpC3gu50+rTM6H++AcYJufgzEbgteTGcbUj6hmEzx1MISZG9vMx3a0XdS946ljOwd0TwHy6TF9UlOeh0DmEUN7Rrr6pUZUvAmr90by2zPbOQcGXwduK2sUs8IqkRP6qCXYvASYVwDhdCREjVOJaycy0l1o0DpN37cwGPCalBwf3TWEqNle3BGy5uW+YwyW1gWyVfSj44PnVzy52rGynmYlLqGNFuMZouWzF895MUqA/fdvr3E68t+//AyNiYTC7PdBpM0SOi9Szre7OwEmWXMThMX7Yv/p6XPXXU9MmotuYAyG1ZOe/W0rmaj1+RMVYTTERnPVDWwK6/bhdsN+aOiD5brt2QeHM3GKUwhGM0YjplEFaKUs/bh9KEZUOjEEK2tbSfMXXr3Hj7v+gM/3T9iYcQJXTkeeNjsaHbnx4vZar2ddpFGYSfJenx8xKba+YWX90b1S3ZNdAV62XEurBFTFpBmTmZ5ZqpyvWIAcSmIiqplM/a6ElGn04Xt7+E5r9oW1C0lP16RKXyczLyXOqJ0JhJlJkC4sqNeZlCBEkY1Kbqr0X9Y+VFnYqNvVpJxoTKCPcv6b4nD70/6/vxyr0wIMl/oRVwsgXGqppT5RffNv/5fFSKb2/hVgmHVG2drLBzXugVyA3QQaC6tYQFrWAsDIhamDEruAvKECtsIiVhfSbAuzmArgA+n/Q8Dm+NYDtBHSf5hDYQXnSKISliZDb9CXMvBQ3nJ1uWPXt4yDJQ0G00VyjqzbcQIqVie0TThzkG7VVXaQyVrdYyxAsE50LrqBEDW7vRVTHaPY71rJPWweDqjXZZJWe590N0wy05otZnSagGEFg0ehz/mEdVP3XUknZ9EHMMA5AHTutfr6ub/tg8NrUwK20z1gOJ8Uzsf8qARy1psk753VA6Dwk9RRP+c8ruJMdMXp+6ZhzF7/coHhKes5P/5zmY5vsq2H6rWgMCtCrs6PjpfjiqY4jTY6gj0wRnXMIWtufcuroSvjLueiLNyooGA0vPzCJXeXHev1IFLpeMi9cy5grcioXw4rvuHiY66bHqMyazvSR8dffPUu27Hhp3zqr/D+7orP3T2lL+ZMn7q4pTOer9285Pu2T3A68mpc8Q0Xz2WRx3isSnw8rAsQNHQmSPC6G/hgf0lrImMwdI1nbC3JZJI1B3XFYPCtKAqerXas7TgxU3LepIf4ZugYop1C2Wtf3tpJv/LGjZNBTGeDSD2TZuU8Oy9GOH/17m0AfGFUQZ4/rRZp6YUdSFZhVcLpOOUqxqQZgjli9AZvp2fdPkiu4dqOAAQlz77a71cXw4Zohd1EZPJGZVKsPcNi1mV0urdYBgIQK/CqQFX6TA1WCdDrykJSKL2AR0qM8vytPZc1g1Jj0M1QwOrhGR2yRqUM2IlVPDXKCmgoTDNQzr/hwoki4x/6M/84f+Bb//VHvztLLfWVVAsgXGqppT5RpaYYtoDENVTQx0HumbWAQlVD6gtgzHZm+KJm7GBSZJcECJoZiFQZlDqYwlB2pTIUqerBK51JfTrNBhxTn2GNuagyUaVkH7m6nGbE4bLGGUbF/rbDrTxkxepJP7nu5SR9QNFr3FvCcMQkDn8AVsEYzCS1GoOZrM5rv4yMoaxSV6YNuFwNhCvDqBox5kmS4QfnAWFIerJr99HgTBT3zjlwUv9/9v401rZ1T++Dfm83mjlXt/c+zT331G2qblWZsmMnSowjhJMQEJYNCASEfIgQRESREQIUZAUUR0QIKSFBdpnQ5QMCEcQHxIcI8SFYJELpFIJjEic2WFUuV3O7c885u1trzWaM8XZ8+L/vmGPNPdfe+5xbFaK68y9trb3mmnP0Y8z3eZ/n/zyHDK/jdQMPtmEJBB9jxurgaLnMYzC4NHN5HzC4XLePMrhty0DP6tqTpo8y8ngDyB6v5131NqbwqzKCD/ZlAfjextz9bvYxHjO1y/NbpbdfBxS+Tz12ThOK12NPYyJ3Y8fzzZqcYd1NPOn26FWi1RFHguKIOUbLLjTlupfKuZwkIxNRatIor4kvWu6Dpl+PjHuHcZF1P+FK0L3TiTEavhguAQFBjYnST2jl3opI5MXvvHzCH//Wb/LXX32DrW8E/KF4ueu56YXpunE7/sqrn+PSDVw3A42JXLv9DKSsSuyj42m742m743NzOV/PMWom6+b9SVGJk3HUjNHySX+HLTLQ2mdnTOJ27Nh5N0sfnYkQzWwkk1S5HxcOmk3pJb7dd1x2I19sL+bIh9YGLuyIVpmx3MJWl+zUMgHTWU8bHKMxTMW5OCVNzpCixns5N13jcQWkXjYDrQnzZIjkUQoQG4JlPzmskcw/qxNDsDMQU4v8QWfig77EOeMxuPkzt6nD2ciTbs/KetZWgNiUxGRm+Zw1xdir9jFWeTKAzonWBmJ57oAAUOkZPDCVS2ayXue2SJVDMmxCO8tNe+uZkuU/86/9d7Eq8X/9u/6Xvwt32LnO9XtbZ0B4rnOd673re3/uV6FhBnhzJERAZu6r7FKVHsEsoDAVECfMYJb3erWIocgHc5eoUEEf2MKFHHUpt5r7DCtdNbOFB+bQ3pUv+FU69DEu3EdVKH2EFVQqAYLZZAGoe8M0GLpne5nlL7lhOWjoJJ5C68R+coyjRSlYdVORVUkeIBxmvytQqmye0fmwn3UTVObJ5Y64Hri974lRz0HuSxA3SyfL7+vmkFGWlZjY1PcfO5zCATAc+vTeHPDUOuWWKb2Bp81HHnP2rHVq+ccsXnUilcFbLIP4VGS5hsAhQHvJxL2tHpO2Lrd72Sf5dYxrZhD8Dvnm8bYcg8+vyw7O23F0Lg/S37LOtwDp91neu967vE61ytxPLXdDi/eGMBn2m5b9lWPtRvpug9MZnQz7Ythx0+xpdOTL/boci0BsBVT5wZKDQk9a5OuxYX/vyCqTtON2tCiTUSUi5mI98Pn+kk/XrzEqczd1NDrytN0Rk+b5eMHKTtys97woTqM+Gl5NPSlrPljtMDpx1Qw8ny541m35yfaKb/T3fNTeF9MUw30QWemN2wMikW1NT8rilLobG1TnHzDz03QYht2HlrWdsK2AyzFa7nyH0wWcZAVloiQqPbP/qeQItkUSmbOit56E4rofZgZs5eIcNzEGidvQKtMZT8qSX6iL5bLIJqP0KTa+sILMuYm6AKzRW4KWfXEm0hRQ7LRkTm5jwy5ITMYp5nvZk+h0EiMac4ixWF5Twg4qRu+IUbMfHb5MtoVWjs8uNDNDmhHDojpxlbO4OteoG9kHg1GJy2bEJ4OPhp13+MK2WpVIi2u+Asl6L1TmUiOy1H1wbPfNDGwB/t7/x5+hNYG/+Pf8s++8d851rv9/1RkQnutc53rvim35QreFGayh8SDMoMqoGihf4iFyBWiGgxRUye+ZBUis3/1hMUitElFVPhuUUISZQ27gDAiPBrcKwkU8LKea1NTtrr2P1fWUw0+V1IPFGXMIU457i3KJ9eUwGw7s9w3BG1wrfT1aZVbtJDPnZSAUoiFEGah4L8vKSaF0xrnqEHqQWCmVub7cE6KeYy6Wg/s6oFyG3aesHpjYaJUfgEOr0wMjldrXc8p45Vju+FUAwal6DLSdAoPzZ5T0mu1CQ2f8PIgTZ8ODYU397IO+wqWM81iu+Q755qlteaweC4B/V9TFY9vy0wDB48/GrEhHkwJLYPiY9LfWT8NeLkFDNRRpbGQLJG9QG8Mmar7oL1lZX5wwBeBYHXEqcdPsedLuuF1JJMW9b3m5XbGJmtAmEmCCRo8KJkWyubjvWrJL6DaCzYxeZKAb30rG4dhJz12UXtt/58c/xweXWwBeDGte73que8kmHKPIBn0yNDrwYlxzYUWSvQkNjQ7c+n4OZr9xO3w2ZXs7tl76AXdjgw+GlBRKgbUSb7HqJskwLWCmAsq70M4SxwpuYgE0rQnzBFMtX0xRGh3R5hBJcdUO88RKBW21l+/FsBa30AIsGxNJi1gLq4StrOczZjUzg8bkOVKnAtyafVhB/bJyrnmASUzAgLZsSy6srfRKBpoCCKE6EWtQEu3T2EiIRpjKAki/2Fyw8015XuiZ6TM6zc6rVYJLLs/PmEhZSz8pVXav2U6OEA0xyXOpK2qLKrNPRSprVWSIbgbqsZjaVHdcHwWoKqCxkZt+z9/3b/43ubTjOariXP+hrDMgPNe5zvVe9d1/7s+R+ySjyCCGJw8MYQr4E9fRPDNyqrB5WR2kpSTINgnbqAogDPrQaxg4gLSl66jlwbLRoMqoVhhEdQCK8s0/r096HQsYVPLZnLIY3hRzm2xFzqrSwoG0j8JqeMlUUxtLvpDQ99aFGVSBAEeteJB1lbIYXOxHyVQLUwGDQcOkoY3YqzjnZFVwVwf3rXsYMP/ADGaxe5oT0s6TMicBhbGweNWZ71SIvRzio3W9Axieklk+Jp9c9tYtGYS6/DqzH5Nmm9oDqFVv9vu9Sw75mJHLY/U+AfDL/Zj//wigWzKqx8d6eb4f9HEebef7so9vc2B9cN4eYUPhzf1/7Hy/q3/wdupnKXNMmhTLfZ4VTJpX256rdiWmKdkwRenDEjmj5Wmz5drtufcdWqVZfjkAIYvrqPKiRKiRNsorcpcxNqHLZMqrXT/LJ3/y8op16Tv83pMXhCCS0Zf7FT4aRm+5uhl4sV8xBcunl7dYHdn4lt9+9YRn6x1/9Nn3+csvvs2uEyDS6EBrAnehZ1tyD78cLrjddwIQChMYo0ZpUU8Yk7AuYBDpqtcCWo3KM3iNxdzGJy3uoaVvzxUAVQ1UKgiq7pdGpxmkAPTWsy+mM8L8CZtXIzQA8GI0szynNZdxPqdJE2OWZ51ONDbS2QOAq8BrHx29kXD3sYCu5TOxMpDrAsTkmSluosd9e8cTVrYwb9kcJLJ7L/vW2jDLQk2R3zY6khDQVp/XA+6ByY0vUT1TsMQod5hWMKk8H3cUuHKutcqkWM+NsIq7sWEKhlSOuS1GY4NX7KxjbS1blfn7/59/GuDcY3iu/1DVGRCe61zner/KQFCoVMFgebmybzV2ooKtCtTcYsDo0oHdqxLR+jMtfqrSz0cBeUswuSyvyPnQK8Iy4H5ZWt6LVrINcylhNaeqS2U2t1FRCXj0imnbYDsBZnkVQWfG0c0z5M5EdC8gsGZcVcDidCLaKNKqoNBGHO2yyiK53Rt2dCgFrfMzhq2VsnqQQVgBxaNxD1k9MJI5BU/qAKsOJuEwWHt04H8EDJfLWoKOtzFcb4CM/IjhyhL0LrY3JcUYodFx7jd6DBSe2vHfjV6+9wWDb2Moj99zCgye+n35+vvmBEo2oCLn/IZc+OH73qx3scGP9QzWgPpQJHjORLZTw250MtDuZKBMEMfeGsY+s9xZFTmjBIE7lbh0A2s7srKem27P/SRs4X5w4gKcxaSFoMBmXBdYr0ZC0uw2LarE2miVWa1Gxsmyupx4Na5o28APXt3QtxMaxfV6z9Y3XLcDuhNGeoiOD7sNv/zsS+6nTmSgbuKH9zf8rR/8iJQ1U9L4JAzei3HNGCybbUfwRiJkyjNRmUwAtBYwdNmNZGDrG4AZoN2PLaO3hZmzXPSjAD2WvZByjdTImc3UcFXkjynLc9aoNMvLY9L0zVhcVBPimKnYeWHGjE509jAJZZU842qfXd94xmBEtKEznQ0z4Lpw49xTl7JiH90cEm90wlkBcq0NM/NYnTtTVrM5jNNixDVEN08SxCzMnwC9TM6yT1U9EaIWR9pgaQpAXV6fVkWcPrB5U3BzrEbKiikYQhQGN0bJfh2BlCHZSKfy3CPa6DgD111o2ETD4C3D5IhRkZNGm0RKsn0ZmIKd2cgpGcZo+RP/yj/CJ6s7/vk/9r976312rnP9B1FnQHiuc53rnfXd/9WfI7uMCgo9CnuWdSY5oLJqYfGBJIAOCjBUzM568qKSb9r6WlIPAN9xXx06U3wTyJmDbNQskQgHJnFeVz68V3FgEBXFzEa2szILcDCvkZFrFjA5adQq0XWevpfw+WFwvPrJFboPKA2uCZjGv2EaY5QYPHSNZxNaMZKYxD4fmOMldqZFX6W570Sr8vkF21iXOf9cAIo6MJyiYTc2pKToGj+7kx73dJ1iD+efJxww3wBCy9/rsT3x91M9evX/76ql/HPJooUsLJM28U1QUtnDE1jmbXEZtU4Zyjy2rW9jBk+xmBXML9//GBj8KvU+x/QYuNdtPN7On1YavCyrI0+7HUO0vPQrcla0rSdnxX6UzJi4s7zMF2y7ia7xNFb6sG7HbjZj+vTqjj9y/SNWeuKj5p7b0PNyWvOk3fFyWBejkeKGGTVaZy66kdZExgJIp2DxJUe0azx+tMS15n6UjMPGhbnX9+PVhtup45evvuAvf/nt2cXzww5WduL7d0/4tfuP+SPXP+Lf51NejGt+bvWaH+5ueNLsCVmzshO/sf1A2MByj4OAQcozTBUZ7dN+N/fIORN5PfTcDy2Tl22O9VhFxcVqLD3K+sTxlgD2fXBsJzcDtotmBJXplGcIB8nslCxb34hyIZpy/Bxb3dC5QGsDqfQFpnwID5rFG2VSZkpmZuKMylB+xqPr0egDMG2KizAwZwh2JtAbjy7GPDXQfoyWqchq67W5vHdDFKBnlZh73Q+tyFBtYN14LpoRq0XqWXsI63Ys78NQXGqdE1Y0FLYvZ8ky1DbPrqJGZYwJ3Hkx/NkNLeNO4lFMG7E20rpAX0x3UlYMwdHUPsvizHppB/7sv/9fAuCf+iP/wk97y53rXF+7zoDwXOc61ztLeQFV7l6TDGQDySHGKwuDFuAQB1EHPbmwhFX6GcRQBi3sHCWbS9X+wEU/Yc55ZhRz7SeEA2OoOJjIgDCLJXh+rqTIddn1jbOzBjBxJHflYC5Tty+JVMqoPJvL7H/nEjcokjOkLpM+lIGCWgxWxOpczfLS3CsG40hNZNo5AYVWRuk5yoArZ3WwYD9ico7B1XHFLLmFw16YhpQUjRVDlmNDGjgM0GbzmUfYx8eAxjHYeRujNb8vv/n6G8CUw8/jZZ4EcYURfGDOot40annbMuZtes99f5cstYKs5T4dr/cYDL6vHPfY0Odd4PpwTHjAFr4hu33Lck4B5VN/r3EDYgYkbMo+uMLgFMdIr1Emy3MhaOIe9r4jXyimIMzKsGtI3mC6wFU3MiZLpyX37ond4ZTcb0N0KJXZTg3ORJ6uxNClyiJXDja65YuhIQaDaT2fXN0xBcMHqy2vhp6+nfjG5T27wtBdNXu+ubplpSeRrkY7x6BsQ8dlO/JJf8cmtliVeDWu+GZ/y5Qs++j4oN3wMq+46EY2tMQuEreWanqVS491U2IxOuNZ24ltkPXrPgsgHCzJG1E3mEz0hv3YsCqxMlOQIZwteX69k+NzO3ZoJUBpE5u5d9AWc5p6riojWVUNsbiH5tLnHDvFqim9vNHMbsb18yEaxqqQUAfH5JAMxoRiVCPX2LI32igJiV/baQZ/SQtjCQe1wta3TMkwBMsUTDmvh95J6T88AM8xGEJ5n7URrQ590scAetmDOecgIjJeZyJGZ3ZjQ4yaqPWD+7lKhKdkpSc8GKbRkgcB7tkmjElctBNXrbjT3vt2VmSs3DSD4de+5yfDFY2O/MN/+b8GwP/mj/4fHr0Pz3Wu36s6A8Jznetcb61f+NU/j1KgBz1jMDLogJgDRPm9OoUucwWrgYuK5e+FFctOQFDt05vH1jXbUC1eAw4h9WW5moVBTfk5L0sGnVUiljPSP7iIwMAAo57x4TzGrX9XmWwKKEwZPWlSWGScmUR+OhFfNKgEelT40UI3PRhgHzM3rQs4KwHcOSl8GZDNu5mVxDOqN/vM1JGM8rgqi1YZwXF06AIs64BvWbMpzXKmPWuciicZp+P+tbf1Gy5loO/jAPo20LRkHo//tgQ0j0laH6vHeue+bj1mXFO36zEQepz9+FXqVE/hY0C1Xh8VTJIPofFvA8jvNOQ5BvFH8SaVQTImsW4lq26nGpFLRo0fLdlrstfs71s5316hvEYpSDbxetfzo9UNq4uJVgVMcbGsy6/nsCmSRMnj83z34iV9AXXtx4EvpwtCMvTFoOjKDfyh68/4t59/h4/7e17oNb/96gm/dB35zftnfNQ3/IGbL/hyuCCh+Hy45Fm7JbWKW99xH1qetVtuJzG9uXIDQ7Q4JaY4f88nv8G/9pPvcdkPfB6uZT9DBYXFOKodeNLsaHVgbab5HN5PLbtdS5pAtQllkxyPpET5biKDt/Isygq9uMdvuj2bqeV+aAF4vevFYKUA0JWbhEHTkctGzHNiowlR4ydLDAKQBi0TWWMQ2WoFTnXSaAqGVC6HYDS7Yh4USlj88rp0JtIWMNiYSGsCra6RMpp9fAjYnEok1Mz+gkzKeUSqCnIPT770J5o051VqnWhtZN1MrNxEo+MMyGofMjC7joaoZ1BZXU9Hbx5MytXPNMU9FWQCbowFrGbAlZlQdVBthKSLyZCan8PV5dbqyP3UzXEa62bik9Ud/9C//Q8C8L/9j/7vOde5/oOqMyA817nO9Wh993/x58EJ+CMLMyhMWnlDdQTVYsRC5GDkorI4idYBYpBBHjXSoSkz5TV0ftlrWGIp5nYkzSHiogK/qOZ1lKjCwiTWL/ayzfEA/GTZZfOSMIC5qW/kwFTWBSr5PSvZptFbUhbW7dmzDbsLx+7FCjXomXGJSdPYMA/L82GVhGjYjY5h18yy1qwztAm8ZnvfiXtpcRutg22j04NBzNxTt5BRVrlYyoqmj0yFyays4zJO4VgiCgeANEZLo+MbIGE5uHuX4coxCFq+Vl8/NoB5zGzlVKWsJHutuiOWcO2U9cwWnpJBPtifBSB+H0OX961Tn3uMGXzfZT2W51jrfeSmj/b7wQwO67aeuj4eW94pILh0ZdQqsXYT+iLzYb9hCA5WMETL/dTyarNi2DbkycBoUKNGlXzQ7BLGZLb7hr/+/GNaE3jqxA30LvR8PlyymVrG4gBcWaSrZuTCjTQ6cGUHAZAqYtrEbei5tnt+uLsRKeu05qbd8+VwwdN2y8eXjs+HS1Z24q9+8U3+2Ce/wx+8+ox/44vvsXITT92WfXT89u1TvrG+59PuNZ+sHNvYcOP2PM9rVmai7QQ0/N3f+Jv8e68+pf0k8uOXV6SkZb5LJ1aN58KN9MbzafuK5/6Sp3bLD4anrN1EvxrZl2OqtABCYxLWiJHLsu9XKelxq9f6VTsQs+J+34kpljqwZNF5YU/tNL+/NWHu8ZN7QsDnFAxGZ3HdLIAKiilVXZ6N+GQYiruoT2aWzaYsMRmhRGM0WkxfAMZkC5ssAL9eL7VckZ6KU/LhXg2xxPcs8hBTUqSoUTrRNZHeeTrrH+zjkh2NSeOTlvzYGegyu6HW/WxsoCmZlsDcE5liI8Y/wco5aSI08tw0Rp7XY7BvuD7X7MgKsH3UJYtS+hC1kvuk0YF/6N/+B7lxO/783/Z/fvQ+PNe5frfqDAjPda5zPV43EzloYqawdAo1ibvozOQlVUAUAqgioCG5LCCvDiqTEnCYKb185afOi5B5VQxnMrmEyutRLMezKxJOhRjD1AB7EGBZewOjKpKsUgXYAQ/6GLNZbFv9o2JmPKGwnVqJm93OML66YN8nVh9u6RrPuptYfdMzeHE7HKeSm2ceGsHU2WKjE7YMHmLU2FeWcBVRg0EFRcoQV/qB1LCCwSU48NHgi4R1WfUz4phnmILY6l8WZqbWsVRwuZ0gg57lOuHtrpPvYtuWoOu98/wWYPexv1fzIdle9eBvb5M/Hu/DMpvv69b7AMi3GdK8bTmPyXFP9S2+bXlvA45vM6p5l9FQHcS/aVQj63vabulXnis7HCYekuPltOK6HfjMXXG/7Yh7C2UCRiZqIE4a2sz9puf/5b/D1UriXu4HYXwqM6YQhtAURnKIjnsv5i9ORa7sUJg7AS/74NiHFa/MirWbeDX0gLhxajLXzcC6FUDzwks2YXXLfD32bIaWjz/4EfvU0JrAl8MFf/CDXwfgy+mSP7L+AX9t+3P8x65+g5QVn4+XOBPZTA33+46LbuSDfotViWu7ZxeFzdulhrUd+bi7xz5JfNmtebVZEaOmaQLrdppdPSUAXYxWloypT4bGeJ71O9neuJpdkuFw3UzJzr9vfMPoLdZFYclgfv98PrMwyxlKf50iGwQ0qjxLIpfXZXU/PS6fDFEptLJzVmA10LIqMmIf5K+a4swq23GQeeaoyFGTtCYHjbKJ0IbZdbRGA/ko5jRVKloBmVZFolqfnWV7OxfmHskLN82y2CE69sFxP7aSS1ve3zRBZLnmoMjYjQ3boSEEkUu3TcCaSO8EzKeyXyEKq6mA55s1MWmu2oGuRJn8mb/y959B4bl+z+sMCM91rnOdrO/88/80psnoxktjfSrAq4fkNQSNHjR6UGSXSW0uYfOCHWtv4ZwBaDIYNfcM4jLKxANLCMICGiXMo0lkK0BQBX0Ips9IRIVKBzOTmruwAJ9zzcCVAxuZSmRGVrMbKqoYyiwBpEbAoAI1CDA1W81OrfBXE+vViC7BzQL6pMdlye6lLGYGdaa4bzzWRG7vV8T+sG0VYC+NV5ZMy7LGKI547cLufcnq5KyK452mLxLS5XuOf3/DHbOAsdnJs5gwLLfruE6G0deZ8cX2v02G+mAbyt/f1Vcn6xUznbcxWm8DT8fA8Hg7T9VXja54LK/wfet9ZKHv2rb3ke8eL++ryFgf9DhWeWrW9MbjCmhsdSiSu4FnzYZXfoVWmc90YmtbJuekF0tneVZMmlRC5se9Y28jGUROWXoRmzbgXCBlYYF2k0jwQhKWCuC6GXjqtozJoe3I2o18uZXQ+y9zAXzOcukGfu3Lj/jD3/iMq3bgB9sb/ujT7+OuEz/eX6FV5qoZMDpx63ueNjvGKLlz/+/b7/B3XP8Ov7P/AK0y3+pe8mN/wx9a/YiX0y/zYbfBqBVG5WJ0EumN54f7J3zS3bINLZftwMpObEPLx/0djQlctwNfbi9QKrNuJpyO8/1YHT7rfdCUKIq7sZsdQ1fdyKDleZAyM/hKWc05idvSLwdgbMTaROvE5MfpxN67mWHMWfoN68RbKjmJPh167cTp2M7sWwVUIUufX6PFnXRbXKKX1441cb5GTclyrVmq0r+XGGCWi+b6nVJqHBzjaJm6Qx7hFA0+GKIWyX817NIq01gBhSkrxtKXedmO9NZjVaKznrWZ2EfHne/Ye8d+coyTTARqnWkayZF1JqKQ59HkLcOmkVYJlwjB0PcT68bzjfUdu9Dwaujn+BAQoHs3SMQOpaPg1nf81//Sf4NGh3N/4bl+z+oMCM91rnOdLLWxpCtPs47kXOQyQwnx7SM5xWKocgCGqcki2az9fRWYLQPs7cMBpmlKTENQYhufFLRR3PlKZlmuy6sAs0kok8S9D5idRGer0EyNs1CmSi31DAiX+YlqAR5zk6BmKtd12QSDmfMUkwWzMYTQ8XqwdBfijigzw3n+aK1l/9ZubDA60brA0+stfj2ILf1d+eZ/MAu+kDweuVm64jy6mxz7saFvJ1aNn9dV1xGtmmfEJQjgqw30l8BMq/wg1P5dn3lQ5aVTTNeyb/CUac7SKOYx2WO9tJauhstlnnIMPRWz8GCT37GfXyVe433r68pUv+oyTgHDk/2bPM4mP3zPwRDksc8kFD6bB4Y4sfSs3jR7wlqzbjy3TcfeNdLHliSvU1tx+K33Rs7F8TIrqAY5STNEjTeJabLc3q543a14ernlwk1MSfrgeuPZhharE9f9QM6KH375ZN533xq+eXOHVeIC+esvPuTz9RVXds+ULL+1fcb3Lp4zRcsuNHzavSY6xYthjVWJMTnuQstf237KL/Rf8tvDB4zJYXVk8h0rK/17Vcq4j05C5McrUlYzQH4+rfm0e02whifNjqtm4Mv9Ba0RIDVEK8dPR0K0+GToSpSD0YkUFMPUzEDjajUwBcO68SUA3hNKCP3o7QEMmkTr5PlhtQCceXJIC6iJUYukNMtkXiiSx2pSNRxJ1ev1NS3YQqsiu9AwJYNfxJOEdicmM0XGbHWSfSgyU4Xc0xXULY3ElE6SS6syxsh9X5lC6XdUqCJ1dSU/sbdyPKxKhKxn19W1m7hpdlzZkd5MtDpwFzp5j2mwJhKtHAet8zwJmLI4tm6HhnHnYCj9hVmTdCa1qjCybenhlIgQENmuT4b7sWU7NfPxmoKltYG1m/jP/ev/HRod+Bf+4//cW+/Jc53rq9YZEJ7rXOd6o37xn/5VjNFEHENWNKuJ9b98wTe+H5iuDHff1uw/zvDUo/pAMga1E9ljNgVYVffPuACFKs9AS2npIYyD5HNpl6CLAgonTW5Sec+iB7CimkGTOxay0cry5QM4rExfVgcW0gjrkM0BMD5gBGtVXOkEeCaryY30sqAhOjGc0a8c471luAysrwfJETRZSL+ZIRGJVUwaW9zroAxqbOTqcsfWRvxoJY6i7qp6M6KAspz7oWXVTmy2HX7r8CtDc3OIYDCqmEF4y35yqFbyEI9B4XGJcc3h/3XdM6gquP6xZcwA8hEQ8S5jmWPwtvwbvLuP8RRIO17esq/x6wK3x9b/09TXAYNLJu7rLOPU8XyXm+iD9ywY3rTIA33YT3iQ6FWTjQGHIeGzIaJZ25GpKYPf4mbpvZ372No28NHlRvqsSg+WM5HNrkUpCiBUhFDcMYMh7S3DzvIS8CsBGykrAZ9Zz/1fH682vFz3DPuGlDTPN2uRfwfLRTPyzas7fuPuA+6GlmFyXPYjt1M/B9n/lnrGynqMTvxoe80QLUN0vJ5WhGzYhIbn4wXADMCMTkxJ9uPl2LCyE7e+49oN/M3NhzxpdzQ68NKveeq2/I3NR9w0Oz5dv2aIbj7+t1OHj4aQ9CxpzVnRFuMYaNgE6a9szcSzficMnIpcu4Fb3829ydVds3OHHr9GR0KWXrsqXY+q9hEKKE9JM00ylFy30xylEbOi1eImmkr/X1xmxpaKSbPzTgBlFGDYWT9nLBqVJP6iXD++xE/U/l+lM8olMRNDei1tcfnMWUn2ZVE8pDL5Z23E2UhrA5fNMBu8pKxn91CrIq2OfLN9Le62KpWfuTiEXrE3B9OZClQfmNNUJUo8zFc2Ns4yVqsjn7bbOa9Rq8xU2Ob7sWE39midGAY3Zxuu+5G+8fyJf+UfAeD//p/4nz16n57rXF+lzoDwXOc61xtVTR2UV+StJX7R8OG/u8H8+AV9CNwoRb664Ms//hHP/1gEl8jrIF+AY8nccukAwiojZ5jBVo5FGqqAqEijQXUR3QVy1ORJZl9p46G3UHEwn/EK1WbQ6UHPYJ0hrv2NOYjsbO491Bx6CTMPXCxnSanN8q8MvNbPdkyTwW+aGZTmpETOOinMC8d2b5ieDlyuD31SdWZ9tiw3BzByiH7IXK5GUj9yd78Sl7+kaYtNPDwEWiBupXUGnqyIg2U3OZo+Ho6DygyTw09ibHDTD/O6ayTDknlbyiZP9qItQIDOBzau9gcuoxPezSipWYo6R148Iq+c1/+I6cnSXOcxCepy++v6v2oQ/U8DAI/355gp/WmYwa/qTHqqjs18ap0C+McgFB4345lK39Z1MyARBJqoZEYhoNnEdmYXdQEM1QXSNH4+5lfdyLNuy4thzd47dt6SkvRlpXQwN9E6k6qJlM4SaRH0bNZxO3YFnOo59H3qDL/49Dm/9eqZ5HaqiVebFS82K25NhzWRu/uV7FVW+MnyUq1omsjNas+PN9fcdHt2vuHldsXL7QprIptdxw/7ay7aCZ80F800X++xmB85E7mfWjoTuB1bvtW/4oVaCXuK4tW44tKKhHTjW8k4VKmAh0RrAmOUffNFQh6yxpRMv2VP8RAsH63uAZHV3heWdG0n9o1j7y2dC1y4aZZSCqOWaU0Qh06K6YoSyWgqfeA5KcZR+pVrj2PN+atAXKssz3wkmN7qhC3htSFrXInEGIIt50gC6rXKdGYioWZZeCz5hNVkRxdlRZ0ccDbO4KxOLMBDmSsII9cVt1N5BgnDalOawfAmtnzsbnEq8NRsWOmJkAy70ByAXZkAqf3dyUScC8ReEWoOJWCdZBNWs5snzZ6P2zsAjBLDoy+GSxIycTIFAfh+71BbS9CZcGUwN1u8lXPyR/9vf5bbTc/f+K/8D9//hj/XuU7UGRCe61znelB/8B/7C1ijmK4yKirUHi5+W6RZ4nuexfnz9p6P/qUR8rd4/ncCTZK+PwVq1NIH5Kouk7l3b2YOvS7SzvJtrWXAkJNB2SSfnfTcf6FcIoc62EPcSr1GtQUEBVle1gjICwIi9aRJRZYqhjVHO1zBY0ZcUFPBiEWyqm2kbzxaJ3LSRK/J6IKcxPwmZTXnMMLS1RNIBwfS2me4BAhGV4fAzM3VjjGY2ZTgsZ6vOnu+Wo3cF8v+3a5l1fh5dt+ojC4yrwosay0Ba8pi1jOv8xFwUGsJZqpUrHf+DTOJU72PS7fMY1fRY9fUU+DuGJTV/qSl66ou53NuDX0E3L6P6czyPJ0ChqeMdb5qfVUw+BjL+thy3gY8H+sJPbUvS6b4XUwuSD7gq6GXIG4jvXIpOnxo2QXJxgtZQsIbE5ii9JuZwjDJPZHoredJt5MesGjYl97Yce/QJmNdKJlzmRAFJMjOQdorYtCEYLj1tmSICnDZjQ1aJ37j8w/46GaDUpmV81y6kdtdz9P1bp700Fc76d0zkUsnpja70HDlBn64uWEIjpgVu00rzyQnzNEmt0xBwuVvjeQd9i6QKT1riPw7IazemBwXbuRHu2su3EhC8dr3pKyYkhUQd8rN1UTux5aYFRfNJGYpxtOZRNPFYqDjuJtEsmp1YoiORgeGKOYtnQu4E8+A2cFX6xmoxKzIGYwVBrdOqoVgmIyhLbESc2RDYQlDcRyt/YNOy/u0Smx9S0jNAzZ5eY01OmBVlKzH4AoTKcYvGbk/bYmJaF2YQbJC8hgP969MHDRFNtsbP8dfhGRwOrK2I04lrI74bPDZ8KEV4LZLLVd2z8e95tW0kus2C0A1ZDCHvvGmkV7MlOS5Zksm7MpONEbW02mPU5EhOUIyTMXwyJnIVZnE894wRvnutC5iTWTtJu7GjttNz3TX8r3/0z/Jk+stf/lP/VNvPgTOda73qDMgPNe5zvWg/EXG7hR2UMQuYzea9Rex9AYWNJUy5ESeJj76Vz9jePZNdn/bHoqcMKuMGo3MjNag+SrvnGMmqvsM8vcKGutM8pJdHA3ZJpTNwvgFJQyehzwYVBvJNj2Ui5Z+kWzzwQVVS2jwzBLOg0dhEwCRs0YF0ZDbQ/yCUZmun/DWMO0dOZjZYVViqRR+1xA6kY+N3rG/70Bl1lcDrgC1vAAuy+ywlBXWxNkopmYRzgDpxAD8ohtpbORu2xGjZr9gCbXKXK0Gci+DkzrIOgaHddmqbtMRkDsGIMe5efmRbTv1WTm8bzJ9xwzfu2r5/jeB5GHdy77HrwvYjmspNT3FnD1Wy3MJX48VfBsD+th7j1/7quv9utLaaqNfw9N762ezkc/uruZ4FmsSl+0oQKCYk1gtMsHrZs+H3YYrO/A3Nx/MuXA5V8k5OCfZesDsjGlMIgTNuLciHS2gZbhvUTbx5MmG1nnutx05aV7cr7m52HE3dPzK9ec0JnBpR27cjh8NN3y+u2TtJj7u7tlHR288H7UbfjJc8tHqnuf7C9nPDGpnyJ1CdYEYDGPSpKTwg8VPlrQecDYyFeDTWQFIKzuxjQ2hOPyGZLgbO+Bwvofo3sj6rMe0MZExWHbecd0KkJCYB4/VcVYq3PuO62bPyk7cTbJ8Z+J8P4asSVGuk9YKmzVFwxDt/Pyoxik1qkGpNMsxU2HvjNZcu/3MVA7RMioBn1anGYQZlfHWsPUCaI8ly1YnmtI3We83H41I4Bs/h87Phl5acg6tTmg3sbeOvXcM3mJtRClonDiCNjrSm4krK8drVBafNU4lnjUbNJlOe3y2DFl6ESOaVgd645lKH2hKqpwzjVEHZ9TGVlDMbGKzchOdkeu1uuDWZ8eYDmxvZ73EtZSJkeFij9GJCzfRW89Vs+d+agmTRLWE2PBaZf6Of/Ef58P1hr/49/yzX/mePdfPdp0B4bnOda65vvfnfpW8EgDX3AnYURHW399h7gfQGtU4cgiQtADD3Z6P/t2R3/wDFt0HafBXiOhpb6RnzxZQaPOhmaKAvwfyTYpBADwwpqmxEnlSAv6SEgBXAGAeTQF4+SABNQJWVGUFVXHy1Iv36cJQLo1lqulNcf1sWpER1UFxCEaksU0SFpQir03AqBlGhzGJ/ase89qiI2xfN9iP9rSdF3ZjcCidWa9GrInoRcYWRTJXJXR1oLwcONTBkkLkV+t+ZCyyuDpoq+YzdYAV0gEKnAIvdd21TmUFwpuS0AfMHG9nm+rfjnsjl+Du+L1LEHPs1HnMIpxi76rE9auCmreZxnxVUKiO9vt9cwhP1bsA3btA9fHxfNdxecxo5o3tUofcwfq5lDRZZTZjyxTNbHCy2XSkyTB0AeciIWoxQSqMb1vMPlZW3ElbHbhuZNAek+b1vpu3H4RlFxdLYYNSVmBhaiLcuVkmKNmmhpfhivZiJAyO7mIE4KKZeLnreTmt+KDd8nxcs7YjIWmedVvup44xWayOfD5c8t31SwCe7y94tevZDwIYcu1TTkrk64hUMGBEvjq5OUZheU87ldjGZmZPpyxZeC/2K550e/bB0VvPvZd4iuouWo9Ja8M8ObMPYspy4cb5XHXGk7JmSoaNF5lqZzwhG6YoQHpfguV9ua9q5l5IenZSDdVpdHFtaJ3RusphRdppdaIzgbWdCFlC61srLF9TJJrm6DlgVKaK3qWvT4x9Lu34gJ2eCtA69XysnxXAJ8BPZKvdfF02NtJbYQcvzMi13WHI3McOp2QLnIp84l5jVGLKlvvYs0stL8OaXWEygQIECxNqRM5bq/YLVuBuyjEZouW+uJVetQMf9/fErOb+0KfdlinZ2fjnabede3Q7K2qMjZfYlepSrbwiTIbNvsXoxN/9L/+jKJX5V/9Tf+7EXX2uc71ZZ0B4rnOd61BZAFRsYbrKXP0mfPhvvSDc9AyfXuHuJvQUUVNAvbojp+LgaVSRSQmgSyCh9C5L0HRUEkafC+u3zLcqbF7t+8lF+skRQJGeIEXeW2EXVQF3GdRUBikuzb2DlF7CvHQ11WIUM68/ifQJr8tgcXEskkL3gVXrCVEzeksIGuci65UMIu+/fyV5aRpyAlyiacqMeBtJjYFJoT34+wbXBFIdKGYlMs+VsHzwECipMiiLRaK1Gdo33ldnomfwdtRzuKzKDL4NAJzq/zsGg8cAcJmFuGQYDwD3cQbxjd66R7atgphT21LrVC8icBJMnqqfpkfwbczgKdD10wbVn9yGrxFl8eh6jgbq8zoeA4Lzv3QYuBYWpHWhmHtIzl3rwjwBlCbDlA7y41TMSxobsAUIJsRY5JP2lmu3n+XSu+I+WeWCTid82W5b2Pj6XNE7Lc+BrMhtQjdRGK3Sg5iz4ocvb+gaz53vuGn2DNHxfLzg2g18PlyydiN3vuOigJNtbLidel7tenwoE0NBo1aRnMF1gZzhYjXKdraeYXDEoKHlQWTMLjRsfcs+CKi8H1rW7UTM4lgZCuDZTDLY33lHNgflgPTKCZgQl0+ZHLqfuhmE1VpZ6YELWaMRt9NG6zmTcIy2BLZrxmDnyaX6HPJFfqkoPZvp4fNoee1MydBn6bFrTESnXFi5QwzJPrrZbbQqDuozpTN+lnVqlQjZzPvQaD3vx3EfcVtY19oXaFWa4ySckW25agY+aDc8cVs+trcYlfnA3pHQ3McepwI3ZseQHa/jil1s2ZR/dV8bHWZ3V6sSTkf20c3Xc8xqVoYc7he5R26HDh8EOL/Qazojy5iSsKUhH6JDaq2dRKg0JXMyZkXTBobOQqxs7aHHMmbFH/uL/xi7yfHX/vP/4zfu3XOda1lnQHiuc50LgF/4878qDF5xAw0reP3LitUXN6x/7Tlf/olvsPl2g90rVIDL7z/j5te3mJdbXvyhBttuxaykWGUrk8U1FBmQqVScOuEhM6g4/EcBQaGajLJRzGUW2YHze2vcRM0YrItY9ghWyWldV2EQc17gzDuLUsIKPnAeBWgjxopEbfSWaXRcXe7m4OHN0OJuNdOHUSSyBfyMg6PvJ2wT8L0hYQSoln7KvvWobpJweW8esHbLAVWVltZ/+8GxCR1Pb7YzyKggyJmE6cc3Bh/Lesw4ZMnaLVm1lPQDxuu479AXUHhsfPPGMudz/Ga0wVJG+VWYr6UZzvE6l+v4KkzcT8PavWt572LijuWkv9v1zmN7YiIATgPD5XY+YGSR62fr3QODobrvXeMP8QQ2kbyRnuGsCVrYM20SyuWZSbx0A9d2z4URmeWrsKZdBTSZl+OKMVqGYGlNLHI8D85zN7TClHceP4h6INsMLs6TSCkactBMu2aegDJGZH9rM3JhR15PPTcXezrjJSbARF5PPVplXo0rOR7AuhN3zX0bGAdH0wYaGwhJckCdTgzBogAfDEbLfeOTZu/d/P9XmxVaZ4Z9w25oZjns66HHliw9Z0RmOQSLr1ERcx/2oQewsozBa6w6hKUnFBd2LBJQAQ6XbgRG7nWL8i0haUI5z/sCNCtITAVo1POv1EHdMEvhy78pWcZkWdtR4j5yU64LjTX+wXUXk7iZzjLYrBmiozMiLW11YEzCQPZ4vDKkwpJWwCxsp8GqOJvF1AgLkbpKLuNFI9tzaQauzZ5GSZ+kU9AVYxlNIqIYkuNVWHMbekIx89Eq0+qAUwJup2RFYqs9usk8NxcP4iOckSzHmKUXtNEBHwxTMIzR8HK/mk1wpmCJSX6mpGZG87r0EwKs7UibDB+v7lHAF0H2v2kCxiSJxCiTJACb1PLd/+P/BKUzv/UP/Nm3PgvO9bNbZ0B4rnOdCwAdxTkzuVzklRAvEz/+44Zv757wzX/xR/zwv/Ap978k/Xr7b8OXf2eP2azhWzvaNuC9QZuINogByyQB09mADpAj0tenlGQJKmYHuLn5SwG3jnTlBVRWBrH+PxUkWeMs9IIFVPnQqxiVLNPKMqt8K2eZyScqlJH1qlQC6tNBYpqTwthETIqu8fTtRGMlkytEw+YnFzQKzKUn7g14i9oZfJTP+b0TwHozoTaOPAoAXHfTLC/SKrPbtYwmseomcQ9dOPwBMzsYXvRklUnXIkU6lm3OQLJ8RvGQFTyeva+vH9eD2fYFUFnKHo3K6BMgYWY4FzJNpTIV9p7ahnraTwGSJRAxLECTehMULnsTaz0Gwo7B11ftrfs6GYWPAanfrfo6PYnqkWvosXoMtMrEgBh+3I4do5d+Mx8Mq3bCqDxHI4jMLaNsIk96vi9jLK8vrqFWBwGDKuJUZKUnVnri+nLPq37F5+MlQ3SE4qpZwVpnPWO0TL3hJ8FInEtiBoMy0ZQl3qaoIrLNbIc1nxVZ34UbWdmJ11NPZwKvxhUfdNu5l25lPRdunI2NrtqBl/sVextobKQtTGZlAkMSWWzKisHbuacMQNdJlsnOPZJ+kGxAs0qo6sYZNT4YXHkOpVkqGWdQ1hRw7MvEXCisa8qKlfP4lGcjH6tEvlhz8Cqr25jIy/1qjgBpbSB5N7O5dS6vqhJqVqAvGYXymjCMd3TiFkoFiQYdHboywItrKiaNK0YxYxCJqlaZtR0x5UnhVMIYPy9PK4nw8MkwRHluNkYMa6yO6GRnZtHq0mOowwzgdqnBl793ypO0ZGP6bPjh9IwhOYbk5m0M2dAoAYOXdiAWJ9KI5tIMrLQ838coIHHrG/beMpXdHIKls0HA4NCwM4kQxfgoBkNO5T7LoG2maSXjVqlMZzyXduTKDnPPodUJ14iSpXdeIkJUnnsknYn4pAlB8+t/3z/x1vv7XD/bdQaE5zrXufjFf/pXAVC1164pg2uvUAl+/He1fLT6mOvfCmy+owXQ2UzuI/lmKplPAraslS/u4Ms3YAFuqSs5frWSOkQIVgYPBOA14jCa3eL9lenTC8AXC3tYmEBVgGFeEmVl+bPdeAKCRk1qBoK5Lrt+RGUIMtiZivyqsXHucUoZaBLx5z2XF3u2usVHhfIacyF2+a6XmeacNHlQpFaOTbV0j8Gy3bXE2waaVOzT0wP5VR0s7fcNeqdJjfQeHfeqxaTm/MMl4/iYIyY8NLdZypJOsUEn2UV1cE49VUtQWD9rdXog/XybU+UbwDGreZ1L1vG4joHXMXCur/+0Bi8/TT0mI/2qLOFXMZk5rscmAx5jCo/P1XKSwSqZoJiiYTO0DHtx8JQJFWGbQgEKk7cHKWcbUbosS4tBjDm6Hk3JOBxLiD3ASk902nNt92gyPhtWZuQn4zWfj1d82kt23Pf3TyW3c9/ivVnEUySiNzIJlBFZ+6TQQXHvr/j/Do5Pn93y6fqWO99x5QYu3UjImkZLoHpv5P7+sN/wk+0VmsxNt6e1wkjVkPFZPo2c977xjN6KzNQyHzer09xjDGJekqNi8pbLbhSzHZMEdJVnmdZpdjEGyTdcHjuQQHalNKH0cDYmsvOOZ/2Om2ZHB7NL5rLfuPberd1EI65ZxelVJpvEJVUqL66blBRjCYOvV9Kt6krMRCo9dakwd+JcWvuBl8+i2ov4cr8iZcWH3YZGh1lOanXEqTRLMLUWVrFDmMcKcqdkSkSFmOT4aOYMyDE5jM7sssEnyy3QaTmvu9Swi8JoOhUZEbYzZM0+OvlnXJGzZsiSq6lV4mN3x9hZEoreer5kzWZombywftZGQjAkrxkneS0MjjxqmfC0MrGZTcRacRWt9+A+Opxu6fVEW86LNTJxeT+08752LtB0Yh6kV/mBtP9c5zpVZ0B4rnOdCzMKM5gMMoOuRD6pvLBloc/8+O8ymBFUAFrAyCx/HAwxG7xL9Bcj0+hIxVQhhxLHUCWZKoOVz0EBafHNsOJqPqOKZDMFfZCJFjCGTQfHUgnPI+ejL73yOikfegvr+xVvykRLjISsRzHsG3E8VeDaQNfKl7+zkQ8+viMmyZ2KQaO6iFoXkwxvUDrTtZ7Nb11j90oY19J/Y7TIeqyNxAxqb4gXGq0OQKi6gkIZkCsB4HW2f349q1kyVnHSsfx03r2FQ+ESHFVb+PmwnQBVb2Pw5u2BGbTJh5nZwQoG6/uXTGTd3+oGuuxFnAea6rDNJfFj3pfj/sLF6SS98epXl4cuwdpPE2NxvA0/LSis+32K4Xwb6/muPlI4zdgeTzAs/zUlM64yRNrIkd+NzdynB0gPHbC+GqTfqURFVFfGpljzP5jwQOFLj1tC4WaJn7CGrfYYEl0XuLIDnzSv5882H0jQ+I+31zzfrdjuJcw+RWaqKytRW6oI7ZeGKaz47V2D/Y7k9P1oe813L1+yDQ0oASP3oWVtJp40Oxp9kJLGAqZWVvq9htJTduEmthyYtTEYore0ZcDvTOSDiy3bqWEMBl/Agy5s2boRplWrPEtFtZJndQWIMQmrlrM4Fk/B0Dee3dgQombyHX07sWo8d2PHPrg5RiMkM99DO9+I3NVJD59Wmd56vJNlxyJlVItr2EczS0i9N4RwiHrY+oaLZuTCSf+lKQzaxrfyWrnPqzsoCOCckmKfLGO4JGXF03YnbGFVKZS+QpGwH3oJQzJM0c5REstrqS+mLPeh5Tb07FRDRDOW6ysUIPna92UCIIi0drH8yqR+WRxnKzALwfDKr2apar3/XAHq1W02GIN1Ed1EYjAYG9EuiUN3+b4xnWTNhmCgBVv2dYiZ3hjWJhdXWmGeN/uWcS/XmjYZVrAxzWxy82/+iX/m1O1+rnPNdQaE5zrXz3j94j/zq5gss+OpGKSoLOAq20wqkstsIK7k72avURtDbDN0JU4BzX7bznLMkj8hoKs4j6omza6euUpB9UIKWvoX54Ha3kCbxGK+ZhpO+mEP4cwWIs6nVTIKD/sU61hWAa4A1Pq+BCooslksU2fSaFCDIZvM5DUpaq4ud8TlADdq8qsG7RVxlZiQsOQYNZO3aK9IFvITz7ofZ0mXM5H25p7PFUyDxblIyjKwqmHOdR3r1cht29E9OYTLK5VnCBSinhlMpd7s63sDGKrqyrjIA1weH04DKXgIKmvfy7KOgZFGPTAHqmxEzmoeZC23S4wx5P01A02Wax4sd2ZS82G7ToHCU1LNr2Pq8hiIOsVovm8P49eNdDhVS7bwbQYz77u+Uz2hxz2blR2sMQIf9/dsrlp+8vKK4K0YLakyyC0Mb9N7rtZyHXc2zL1ptR912Ze6j46dEZZmSG7epipBrOWzoS3Mzgfufn790+YV12ZPRPHt/iW/tXvG33j9IbuxkefPOhMHK+ZYXpf8UeSeDYrPbq/4gx/9BIB73zJEx5UbZqfIZJQwZVnxcXePz5oLO7IJLd/o7/HJ8Nn+at6n2u+2ZGtiUhit5l7IxgbGYGhKXiEcTHLqPWu09GLGVHIBoy4qjUPPpo1aGMVoDhLwMoFl9YhSEm9wT8faToeMwdLLt58EXPRWQGGjAys3ieNoMWixRQ4bk8bHw/WVkyajxIir7G/Mip1v6K1nKH19++AKCJS4nZTFQKhOHmVgCpYpGJ7v1nKdrFJhBuW7yBcgW82MKusofZDyfKkOqVYnCYY30s/62q9wOuKTYR8dm2Lmsg+O1/uOUCSzl93IqmSttiYQkqEpoDBlDZYZ5N6ljpD1bBCzD05knMWJlaxIk0Y1gVUxJ6vnTR57Ip02JuGcHNRhcnQ2cKkHmmJc0xvLN7q72XE0Z8U4ONLekmxiUA3TZLE2cTxPeq5znaozIDzXuX7GKzVZpIh7ccNMFrLOqCSgLq7S/P8ZLLgMpddQ742AN5uhhtFrDiYwNkuwfB25Zw5gsII1Vf/A/B75qURGAwcmr34OxICmSkEzwu7F8t4aKbGsmU2E0ogGWUnfYF6so43oanxRAeukCcEx9fZBlt84OLgK9Nd71q2YS/zk+0+xryzDRx6bIK7TzIrGrKRnqHzeuUDwhv22YZdb1pcDpisDnjJwXLUTm2cjq24sM/R6zl6rctbaN+S9xXUH6dhyEF8HSHUAnuogPD8EWMdZg6cMWwxZwF6ZQDhVKSuSUpj6/zJQW4LBKl2lnDoQ6ZstLGZjZPC/ZBWXtQRfp/oIj2sJbpaM4++Fqcv7MH5LUPh1tmEJ0Jc/l/8/xRSeYjUfY0HfAPlHYLCua4xWBtKjha09mClViWMjoKW6jVYTJLM4J66c75A0L6c1rQ74fGB5nIrchb68X+SCrfYzEAO4sgNP7RYQIOmzYaUnPunuCFeGL4cLXu56Ru8YgKSNPDYGjTfyLFOtbFtImt56Ptte8Z3LV3y2u+KT1Z0YjJDZR0drgkRUZCNGN6V/7GmzJWXFrZfIA6ywZdpEhmDniR+jMmOw833ZWoniqGAvOo1xntYERqxIQ4vUdArSa+i9mUG31plkDucsI5NUrQvErNhODVfdgCuy1tupozUBqxNjPhjVxAratIAgXzISc3n2uCJxnworOWRFqHmuKhem0IhqYpD7fpk9CSJDvXBjOdYiuWxMJJTM29uk0UoAamUmr5pBWEvj5wmp5eRSfU6M0c4Atx5bX9xMGx249Z0Y2CTNLjTsg2MIlt3YMIyO4I2AOGA/OaxJ7LTDlTzBxkTpYc2SuXjpBtZZzG3ufMeURDaqEFDfuIBvDCkIgL/pJZ92O8mkR4wabG0fyLOSxBW2fYhudn39YrzkO6uXfLO/5dbK/RCi5jasUSbhBwtBM7WR3/6v/mOc61zvqjMgPNe5fobrb/1v/wXsNxRhlQkXGTMo3EaRJkOymVx7CtuDSyZBCxAL5cu3OYAjlaWPbpZk2iIRLaCvgsLZ4CUp8lIymgvwrLmFx4ANDlmCIOYvKqPi4T25ywd30ZkpzIdlZwUqHUChL9tWWMZsMrYttvSTngFntglzIS6C3oghTt9OGBu5ebKZgcZ2bHCvLO0LxeaZmFVkm2dZZ0x6NnypVvtt59l+sUZNitD7Nxg9ozKXF/uifi09jBzAjSsDtGX/1TH7VAdJ1cGxDkSXfWOV8XuDCVoAwQc9eYAlPZBznqolU1kHNKSDDFTlh72IOQtwRDNnfJ0Cg8v3H9fxMXwX43UKFB4Do1Oum+8yY3lfUPjT1qOy2Udko4+BweX/T/WgHst567n54faGnXds7voiexMlAF7PqoAUNNFkJm/n+IR2Zr0OExjyt4bP95es7YhTiZ8Mlzxp9owq8eVwQciG14PINKvMsg68v/fkBd/sb3lid4zJEtH4bBiT5aPuno+6e35df8SX2wthzYCoM0kbeS5ExQfPNnxyecfPrV7z2vfcjt3Mik/JcNXs8VmiD1oTCNlILEPWhGx4Oa1otUQm7KPD6kiXg+Qx5oPRS3VIreVMLKyehSS9cTVjNFrNB/2GKVmCkViCzkmUjZ8aUWfojC3MUiqOyBQgZnSmKwYwsQBdEJbNJzNPNtWg93od1GxE4MG2tuYQnQECSLDS2xiCIUUNOjGNdu7fHJRDAbuuoXWeIVjshbCCVXbcLxxIq7w9TMKKjtGyC9Wt9HDNTtHOuYlWJ2LWDMGKW2cunQML2fouNA9yDHel73H0lslbMXiJ0mO+3XQYG0XFkTRd42cXz9ZIrMdkLEZlei1B9zErvtxfsPMOU557rh8wOrEfGwF9KvNxf8/QWF7aNS9VZposxiQaG+kaPxvE1GN9N3Xzvu/CN/i4kwzDRkeerncMk2MaLIwG5RW//Q/990/e/+c613GdAeG5zvUzWn/qO/89nn3vI37n2y0qKdR0wE92q0gOYisqzFzknMomaCPZKhn01czA2t4XEfllGZiq0kdYZZ9KZ3KUgaHISguLWAFbLsAsqYNzaC69flmWp0ofYO1zRGf5qM4HpiqDIFL5uwDQTEbDpCCag2upOXweLb8rnciverCJbMR0Aq2IoyEZRU4W00a6RtF1XgZSBYCNo8Nu1WyAky3ovSauJZR6KsyA1okQDftdw8XFgOoDGUvjHg6y6pCnsXEBrA5/PyXj24wNOSuerncPwNQc8XAEYCSTLBPzw+U+BgSPS1PY4gUoWQKRWQ5YXgtoUjnnVkl25HEwPTCbQ5gqEVvUcUj9clvygoE9VY+BuHfJQo9/P+6hfKy+bu7g+27fMrrjbazg+7quftW6mzo+u72SntugMX0gaiP39/I5kaS3OBWpo02aVPqrau9dKIPzqcgSf6Cf8AsXL7h2QwmKN9xOPU9aubZ//PJKHH1HI328JvFXth1fPL3k5y5e40pmW288LycxKLl2AzfNfg50H4NlPzkmZ+n6iatu5A/cfMEfuvgxf3XzKa2OXLcDQ3D8yvXn/H9ef4PLy5HP95c8bXfEwkZJZqLcN7vQ8NKvuXZ7uSd9O98Hm6GdXTmzUzztd7MJTcqSXRdnGaGcm9FbYcsLu5Wyo3cCTBqrCS7ioyJ7TchgnCIUZskuJom0yphynH00s8lVSNJHN8aDNNvoxN47RiXPrNprXFncKmFVUXonu2qYgylh9dJPHfYWgpJnbqkUFaHV7McGpxMXjbi6rs2E05FeT6UH8CCPTeX/WxoaHRmU9OlNBdCGAjpzjrP8NUSR0aciQd0HJ+cqi2lNlbWGYEhJCYgFYVqd9K/nwZCMwSeF7gSA70fHqpu4aOX81L5Cnwz71PBqWhGybAPlGDsj8RH1WV7B9Tf6ezoTUCqzdQJ2OxtmGW1rgpjDlPM0RCeuqsExhnrdJdZu4uZix3N/SVIZdao//1zneqTOgPBc5/oZrfF7H9F8dkf7+iP2Hye0L8YnjZgrqKhQhYpSUUlfyKQPTp8gxi4alEnC9OkMcWHukgu48xpIDzMFwxEzqDjINmMxtAHBdSVvMOs8M4EqK/mKX6CjbIXJVKYMPiu4rG9QWXoFXZrBIMj6KjA1fZSMsj5i2kh61YhyMyqyV+RoUG0kTYbQi3TzMJuuCnguu2RlPWZS+I1lHxXaJgYNKSi0SzStBChfXu/xa/OgF3AJPKrRRg2rPlU1EqIOjGrNy+HNIPla9TNLBuiUu+gpF9KlgYlRD6HYcnm2MAApujccTFVW6IXj4BJsBfQDQPlge06wYsfM1nEv5SkweIr9e5eZzrLeZjrztu373WAH3yfP8STD+57rPt1DmBbnVfqUUlAonWlbzwgi+c4HowxV5IxKZVIZrEejiNHgCmO+GVt2oyMEg7WRV6bnddvzaf9aDDRs4G9/+gO5Z9zIl/drcWgE8iAAK02GH3PF/djQuYDTiY9W9+xCw2Zq2biWp+2OJ92Oy0Ys/F8Oa+5dgzOJb1++4tv9S77TPOe37TMAPl3d8ldffMI3V7dcNwO3U8dVM7DxLU/aHfeh5dKOtCawt9Kjtg0NjQ5cuWHOTawsfIiHPD9fWEbpT9OMUfoJXckeHEtMxRRNyeaTEHNMYKecxDzYSHISL5CjJhmRbOaswMqEkjVxNp0ypafRqUxrBGDugp0l3CEa9vmQg7dyE1YnVBLzF2A2nIEGrUb2wc1xG/dDOzucKpvI0Rz6vVUmDZapAJYvgHFtCO3D51Z1A12VQPYKVgVklQmyxSWcs8JXAJkVU5CfrVnkMGbp16xZf94bgrdihFbC3bUTx+dcvr/IwKhRWZGUYQoa7RJjiYNwRpxnq4HLEJ2wmcHOSpCYdMlCjPSumJOVyQqrIp90twC80Gv2wcn7igFOvfcaHVnbiYs8sgsN91PHthgAxaS56gYumontauR+sPzWP/xn3uv+Pte54AwIz3Wun8n62//0rxL/UMdTrVj/OLP/mAKyAAWxzzOokZgGJZEUVT7ZpINrJ2IoI2CrzNBWI5mqbYwKqnunkt9VEBZQjRqVKEwg5D6CVgdACDMrOMtQ5/C6xU7ZjO4DSjN/uc+xFKr8rAOIRX+jMglMGQy4RNN6psmidCaORshLkwWUAiiRZLkmPBggV5ljDBrVZxgVthEX0awBl9G1j3AwKJO5LOYaw+TEIa7mfCkJ8u5dOBqEZ3aTYz82XK/TnFm43AajE8/Wu/n9D1ijd4CVB8yaOjiEwgE8yHtOyDfVaTBS3xfQMzNUZ8dTGUAtAesyUqKymqfcOOu2LNd5DHpOGb4sfz5Wx/LI4/057r97l9zyfep9QOLXMaF5H4b3lKz1XbEUYuJRZG/dPeON5bfGZyILLU6jxmRuLnaEaBi8ZZosKZbrIGi0loGsWfSi7UZ3cCrOcm/8xusPCFnztNlxqQdWRgDCd/sXPP3ulr+5+ZDv397w+vV6ZiH93rFR4Mv9/Hyzpm9EIim5hZ6UNVMyNDpy1Q5z/t3LccWv8TEAT9yOn4xX9GZi3Uzso2NlJ37z9hkfrSUK4b6wf9vY4Mt2vp56PuluiUhcxspOMzOlVZ5NoapccQx2Bj4g4Gf0MkQbvS1sobiDXl0MWJUYomTa+WikPzBqcg9kcSet10yIuvSjSaagLZM2FSTVexLAx0NERSiuyFpNM1CsQfFV3jklIwDVJlZ2YojCwE1OwJhqgzxLbSZ5Tc5ansVRJtcABtXgrESOXLiRMdqZcQVhODvrizRXP5AYHxyOZSKsBrtX1s+YRMpgy2RZZV5TqtehIQ5GpM0Jcleif5SY46Cy9MsbaaFQun5Rgvcygbfzbu4DXJ7fKs8fvSUDq8Yf+m/L8Rui5eW05sbt+ai7R6vM66mXDEakXzJkzVQzGfVIW+I3huiIk2I7Nnhv2A4NfTsJc9sss5fOda531xkQnutcP4P19K/teP63rbj7TkPoxUwmF7asmjmqyppRFJ0lH0miGvLsHCpAC2EDCtOjJgVqIftsBF3mhEi7CkunRo2KoEPJA2yzSIu0LA+d515F1KFfUaWFe2lh+nQTUaZIfDZW+hCrGU75zDybvAAd2WvJL4yKrGSGPU1GIi8y5EsZAKiNI6uMLmYT1S5fqxIyX3IE7VVi+pVJBgtNZE8x4UmQRgNR4a4mbq52+GC433bE1w160qQusc8t2iW6MniFwyCjrgtk4CbuoOoh4Clgq8rEpmKiUMHhsk7lAVZQeApALMHgSVCl3vTxAfBFklqrGkC0JrwBvmpPoUY96E1cylfn1R39fko+uzyG9efXCYmft1+9H7N2DN5OMZCP1U9jMvO+9bbteFt+5amyOvIr1z9h5x2fv7wqcQmZxgWe9TtC0tyOHTuV59y146r7GoIheg0FyNxHw73K3G57vvnkll+8+pIbJ+YyTns+au75xrNb/uDVmr9y+XN8/9UTcfgdLW0rPVgxGPwow50PLra0JnA79Q8Mljrr6a2fWZtNaPnh8IQPm3uMyjwfL/iw3xSHR8+6mbgbO7539ZxXZVkAT5vdzPhtYiumOBietWJyM5V4Ax8NPsJ2aBiMMEl772itmO0Mk0MVtj9G+Wftod+wN56E4lm3JSbNoCyxCUWqmR9cQzHqGVwalUmlJy0mzRI2mBPXaIxi6LK1Dd9Y33HpRu59O7NhtQLlOBbWMBSgv58cOYupzaSsxOcEDXXCL0HeW6aVZasyu7ZBu3HuBVyy0AAq5QemXqeqHrO6/UEJUxp0ftAbKQdIPeiJz+UrJUdDqsy2Seg2o00UkFhKKTmPaSysapDoDVOYQ1WOpfcCTGtciFKZMZqZTV1ZOZdtYZPbheFNb+Sa3IRmjsRIJQ5jZSfudEdjw+wyGqOmbT2/9Q/82bceo3Od67jOgPBc5/oZqz/54Z/GdR1XN5/Sfblnetph947YKaYrxXSdiasyG1pCiKUrH3LpDswqz/15uhGDlZyArhjFJDU3JCqdD5LSyih2UUBfECCaQABaUCiKpLMA1NQnlBfTmDkOowJSk9EuYlyEMvDJQaO8Jtv4gG7Kpc9tBoX2IBut0lI8+Nt2lo/mqFFG+h+TkvWlwZLbiE4aa8WGvYI0EEOF1smgYL9ri9QVWb4R4AmSz7Z93UuMhsuk3mMK2Ow6T+fCwYBlUY2JXK6GB4DnmOGpM9O29GYNSUtPinnIOM5mLkcg5zEQsASDb2PC3gBqGcYoXzfOxGJaodilRgKw9cGtcgkMqzvp72YtZa512065ah6zgPW6qf2Sy/e+T32d/XjfXMLH3vMYO3hqW94Grt+nWh34Oz74AX8pfadIBeXzIiMMrJyAswyk0i9ojThKViMVhYTTh8kIc58VcdKorWXM8JubhvETyy/dfMlTt53lya1KrMzEH775MR90G36weTLfA9vJ4Roxg1IF+F01A3dTxxjF3KZK85YM2MpOfLN7zSa0NDqwthO3vmOIjrWZ6K3n1dAzFlljSIZ739KYSF8lncjg/cLsMSQmZ3k1Gnw0hCgSwjHKID7oTPCGrhdp5jA5YpHqayOSUKUyd0NHyopvXbyagdJFMzIWBsnaOMcrVPfS7SDs1RQso7dYk1i1E648X2anzmhwJuHMxBRkO5sm0BSQGoojKTC7/975bgZvVkXSwu3T6YQ3iZzj3GPttSFqc1AiTBoVFVMB7HdjR6Pj3D9Yq9GSJ2kXqoh6zrQ6OCZnG0SOy+H+CbHET3iFMQfmFOR5Hd0h6oakSF4kocZmjI3zBIdEOMTZICclAXtRH343RtbpvUEpiLGuR5XzfogBmZwvPZyp9IUq1makKbmGvuQfOiIXdsInwzbIJENrAk+aHSkrXpkVgwvc68QwOIZ985Xu3XOdC86A8Fzn+tkrbcjjyPrXvuT+j3xE/5OBD39wS24sKiTCdcft91a8/mXJHVRB2D6VIFbpZFbSd5eVzKIWNm/O8JvKF7nJhVfRhyykNsrfgyKvgvw/anJTwI0X45hsD+xgtnl2FEVnKCCU+oU/isQzV8C5igejmuJwiM2HnsFKY0VVpELqoRGNgjwZ1F4DRvIZ24RuI+nOkbVGNyLN2Y9uzgGrvVExavxkifdOVK312EQ1y1y3X65AQft0T9uEOWssRMOqnR5Y8S8H53VA5Itb6XHNTFixgq/W/j6KNO44N3C+LFSemcFjNvGYVau17DFcfqZKVw9vzLQEMX+IYv6QYXY5zYuB3XJ7jv+/ZCZPSRyX/TanWMwHoPcdeX11e0KN6Kjb93tA2n0VGehPwxq+Dyh9zEDnzfc9ZGlSVjxxO/7ws8/4bH8l/YCTmKckLeZBUSdaGzHazxMUl83ALjS0JrDzDat2onVeIiEGMYvRe1ESJO/4UX7KGCzfunrFz69f0Bs/R0ukrHja7OACng8XbCbJZ3M2Ep1mHByfqStu225290xZcdPssfoQgdHoIMyMilzYkR8PNzxtttz6br4ertzA1jfF7bEhJs2lG7mbOnSTeRFaLuyILeBmHx37ElHQW3HXzFnRtZ79vpldbve7VkBKDXbPIoE3NrHbdgxFXvt8uHgDOMWsyvFNs7Nl0KI2WDKNIG7I1bRGl942rUR5YLT0DTYFhLoSabMNDU5HPunv8FmiGqrJzRAdUxYH1SWjtwJ2gCoAOOfDZGGOWuT4AEGTG9hNjnvbStakkr6597k+q2lLygpr0nz/qyqPVfIdUiWjIAyfdaU3Wx1iO5TONE2gbycaGwuIO6yzgroYRVESYwWMEaWYozekD1Hya+uxjlWmGgzjIL3UTotcdl2k0GM6GBRVw6LWBJyOoq4oD6ELM+I6UYNMi2366//F/9HJe/Zc53pbnQHhuc71M1R/8uP/lvTnrS7IzuJ7zas/fsEHf7XBjInYGew+4PaJ1U8MqVEMzzKpqS6eSI+OSwd3UMUB7Ez6EE9RQVdQZKVmMwGyFlAYNIxGQJ3L82t57g8Uh86ZxdMZ1SZh7Ew+qFXLjG6ezAP5KijZlvqaFllpCgUAzj2Bsnxq3iDM7ogqKdJFoL0aSakY62QxyUlJ+qT61s/9OiEakWftHLnYfs/LNBnVJPr1KBKie0O2kK4UbekVVCrTlZn9pc37EhAtc/vy4u81LqKCGBDplFLSbzNMDdDQ2jAzdHWdevEPHsoz53UeSUXf6Nc76uVbLi9lRSq/+wUYrNueUJCK8+iJOgaL7wJFSwB7ynXz+LXHevPiYqANzPuw3O+6v6e26X16/t73718VCL4rS/BdvY6PA8ET0uMssQ5Dcty4HdvQiMPi7F4rYeaxTBRUVtAZYbM647FaetB2ruGqGXg1rPgR12xHIwZMg0IHBa8tL92amISVWttJDESSxarEjdtzYSemZmBlJ5xZsfMOrTKbbcdm0zF5cfN9ut7RW8+d77hyAx919zyxO4xKDMnNQHMfHS+nNZ3xTNHOwG7tJqaSzbfzDR+v7piS5cfbaz7oN1gduXF7vhgu+bR/PYPNkAy99eyDYx8kpD0lhbWRaXQFlEAa5Fk1y/mjgOsQNa+GHqcTsdyT27F5EDtTnwEpKzGqmiTCIme5Vms/p+QWaiYsfetFphrlmVRBs1VpvqetTvxwewPAs24rrqm+nRUA9X6uRifVNbWCNQBvEtNkiVGYvRo9lIq09X5sS2B9wrbDfMzq/iwl9MuJHaPSnN2XMjPrXCfbZAGa0rJeGL1E23q8TqQozLYqJj2NjXQ2oJ2f1y25hpEpGII65BTO603F2Gc5iba4l1LSBG+kfUDBRnU0Vrav5ivW87fcT581bZnQq8eiHnOAra8mPidv23Od6511BoTnOtfPUKmuJU8T/hs3ZKPwa8XwYeaH/0nH+oeK+59PZCf5b9l69M6w+pEmWxifSC+c3mlQitRkYfWaNAMu2gKqbCpsWIaopaew5P7ldSguo4UJVDAH2cPcbzizalrcOrXJs/NbztKvCJAmczCPSYsv4PrFqGSZpo1vSFnFRa4wk7bKWhE2cVSky4DpIuN9C15jrqZ5cNb3E6nIReuAo7GRvvH4bmQ3tIw/XpOuAm7tZylYSJr9ZxcoLX2a/mXH0HnaMhuPPvBWdQBWBz2zXJMD2IhJz8cCZIC/lJpW573NvkXrzPVqP888V6DjdJqt0ZdgsALBak+/rLnnq7jnHa//rYCiANFj59BjkLIEdT6pN8Dnu3ICl2HVp4DcEhg+BrgeRFpkZunbcb0NFB6/7+vU+8pHT63jMVa1vvY+xjPH9aYMVWILtqHlxbCer5fKUO9LlIRSmSHY+VoblONZu+XG7YhotkHYobWZMDrxQ33NRq1I2ZYGL3GCbGzkb7z4kLbEtDRGjGF647myez5qhWH6zuolnw3XfP/+CbuhISXDuHfC4Cc93w8v9iu+HC74sNvw3dUL7kLPF+MFL4Z1ibhIXNmRz3dXdFaAIUiY+sfdPVvf8P37p/z81QtC0txPHVYnfnPzAR92Gz4fL/m57jVrM+JUZBNbAF77npW75HYUKWZoPXfbTkChS+LQHBVJaZHfK8kl9NHMUtvaJ6hcmBm+mNRsEFMnXuo5i4WxUjoLaxgEGE3BcNmPcwzI7DxsMr6cu+qOeeFGXk89++DorRdwXLZlSmY2C9KL6ysmjW48Jsi9P3pL0HqeaEPluWcxGNkPZyLJPHQdzmWCadljiDo8L9tyzVVppykh7zkrSTvKMnmnlCguUkFRqXzHaF0MaAqobd00qwSi1ugiz00FyC2fWznLszfUHvNyjGV7DswkWvJ5U1bsJokQWeY9xqTnOInqMJ1KtEVCcTt1pKy5nbpybxn2Y8Ov/Zf/ife+h891rmWdAeG5zvUzUn/qF/4MpAQx4j57Rbpe0962pEbkmXe/LA6fyhVgFAUQbX5Z0XxuefLXEfe6mMlKMd5ohg8z0xMFl0HyBouJi/IavdfFgAb0oEhtJq2isIImoy89aTDCKpbBz8zcVelnPIA3paTHZu73gxlYznRhZS01YBPaJnFHVcIoUh3iculzLNJW1Qe0S9LPuLcwlaB7m0gvm8IgQtt6pivQJtE3fs64AmZzCpABiHOB8OHA5cV+zincjw3Dyw49KbKT/ENsZnvfEVcT604kQxkZKLQ6zdKpkDSh6E33k5sHORXYmSUrpzLV8iGVv8UoA5vB28NAawHqgBkU1qoz/Us5Zq0KUKq7qlYZqx4OPCuATVnyBJfM5PGyaj1c/8G9NWc19wUtgeS7QMxjMtRlLWMz3vj8I9LS3+3exjfWe2JbK+x+V8/gqfoqDOP7AMOHjqOq9NIl9tGx8ZItp1RmbSXeYCpOo3X5FTDWn1d2YEyWvRI74rUd+YWLF6zsxPfdE277nhjkqr6+2tI7z35y7Cd5f3KKi+YAHC6MuDF2JRze6shucmxSR9KSheq94X5oH+T0paxY24kbt+OjdkPKio1vWVm5N591W26aPd/3T9gHR0yaD7sNn6zu+OHmhtup4xvrO57vLwBY2YltkVbWfsNNbLkwI0/cliu74udXL/it3TM2vuXVuCJEzW5o0DqRrCYFPUvilZbttDrOsQkp6mKmnAlRz4yT1kkMPZOmdWGWh07Y2fwkBCOyx2DIoyN1E12ZlKr9vjsv++nLslujebFbkzLc9MN8b1O2oTWBrBUha7bezaxwzdVrTGQqzqhTEAn5NMm1kZKAW6sTISrJ2SvXWs0jrc8FH43IkRcTUkYlMHJNTlWiWq/pcr1KXu3hGDmdsebA6BmdsSbSFvMdW1hSeR4KADVaP5goqxMrcm5Ewhlidd0u7spJzT2Fphik6XKsfTSzE7cvDKCPhjFbcvYkI9LkznhW1qNN5sWw5vlmTSj3RV32uc71deoMCM91rp+VUkoAYc7kzZb46VO23zBkE0WyWVmZSWScc7+dSUyfeL78QHP1a5ZP/vU7Uuf48m9d8fFfimw/Mbz+5QYzwfTNqfTlcVieKjEWKovZS5PQXRBg57VEPzQyeMyaWWI5Az+VSfdOBsPLyIm68BooX1hBZRO6yFbF4Eb2PWdIg0W1USSoNQcxidNonAyqiRAVetDSt7gp39AamicD1iRGoGvFSa8p/ToK0GVWegqW3SgMRL8ayVlx+3oF9w5VctrSKqHXnrR1mHtDGjW7yWCfJS66EYC2BEGDADafzDxgvbtfoU3k6dVuXv9x1QFMKjK9tvXCkBQQu16NrNrpxCfLoa1s5AJILKWgqczonwJGy9l8Ma3QD8BhOaQzu2h4KDF9sIwjJ1TNQ9fV488sJa4PwOAJyehjdRwB8RhYfFe9DaA9Ck6PjucSdM0urF+RZVyew7eB38e24Xg7qIR/+T2h+Hx/yZUbeD31vLxfzxJIvzZ80G9ZN5MwW8GAOQzUrU5sY8OX0yX76HgxrlnZiW+tXmFItCvPR92G59frWZrodGQIjqclXsVHM0+i+KyJyL+EXHuXZuCT7o7nlxf8xq4lR422kovqvWUsgeRKZfa9w+nI1fWetR35zspzF3puvTB4azvx/e0TPu7u+XK8YOsbXk09Kztx0+55vr/g25evMDrx4801P3fxmilJfuBd6LlxO/axIWTDykys9MSrsOJ7q+e88Gu+2d/x4/aKH9w9YT85lAqzQUntw+4akXaqOllTeqD9ZNHl2FobYdFnrJUE0itAK5gKiHA2Ym0kxjizczkrbvq9SGezYwiW3dgQgmZykaFMROWs+Oz1Fc5Gnqz2XDRjifMofZXlmCoOfb1WiUlX7Q0MjciJdzWvL+rilJrmiTRd3FCD0jQ6zhNh9fo7zl2t90rnAlOwb1zTEqUhUlJXjI2W/cJa5Tl3sRq8HJbtRMWR35TYL59HY5TAex8NUzSomJmyLWyoMIfGRtnXotiQOJSAT2Z2aXXqICEdgivRJRqtEms30jeebZJz8Rt//5kdPNfXrzMgPNe5fgbqT/3iP8o8orAWpRRmM5LtSsCgrT2BiJ4mK6jfg6kEziu4+48EQn/Nh/+eZ/utzPZbBjNKT2GKCrWx5ItAXkWiLV/SBajVPj1VnDoBAXg1MxA9m8LM8s9YNiojI1CvDuDPVLavbKcC3UR0cXmrvYg5qxIqrxegtzJiFUwCkyJng72aCDSoUQtwbBOqjTRN4P62R+kDu7Ec7EDt1wliVtFNszRy1wX860bArJH1ilxVZLjZ5Tk3qprJKFVkomVwUNk1gFXJL0xZYXkow4RDH89SfnTVjXy+a1E6kZJmCobW6Tdd+5TIapfgbckGnZJe1t+XfYfLesyUZl426mGfzRLYLWf4OYDSx3LyKhh8sG1HkRWmSESX73sMKB3LV3/ansDlvszA+j1qaWzzVdjJ4+P+NjD4Pst/DMhalfh3fvRzIhncNhAV3sm1tnYTH/YbfBRGrrJZKzehybwaViIzVWk+L/vo+KiRXLaI5toNXLuBV1MPwNN2NzOPL4c1YzTcT5IH2OoIFgwJNDgiKz3x3YuX3I0dr7Y9IZiD0VU5TikqNvcdf3PXcj+1/C1PP+PKSgyAVWmOjKgmNFdO+hRfDGs6I6ZJV+3A82HNr1x/zl979Qmvp56n7Y5daLj1HW1xk4xZ8cqv5uX7bPhW95Lf2H3Eh92Gl8Oaq056yl5sV5JLV2SM1iRWznObNLjContDGA1Ka6JLs9GVMYcImvqssiYSk8LohfTagQ8GaxIX7VjC6iUaJiTNppihBG+F1dJ5BjZaZe7HhjEaOhtYu4nGxAfX3hAsTqfZWbY6kgJimFJYQ79g1qxJ83MvFmdagL6Y4CyfTzEfQGF93WkxMjp+ltR9djrPzGVl/SoTubLTrHoQ4x5DQtHkQCgGRjof7pUKHuux7ownJMMQLTvfMClzAK4Z1IJZjFkxesstHbQDRiV20aGAi0YmCO+nlru9yJD1Raa3ngs78s2LO167njE+jAE517m+ap0B4bnO9bNQKUGI5JggJ3LO6Ncb1p9dc/+LpY8vI4ydzgLUELaNVABbkWTuvhP48ZXFPw2SFTYpMBAaGXyRFaYLZFdAQHo42K8y0LnvsMxu5yr9LP0V8q9IQvUCFC63bxH3oApojeEwMJgH80lh1iUfazIH9nOePs8SPhylP0/1ASZHblKJtkhsnq/RG4P6aJxd7NwRmFoaAdQByxQM635k85HC3xc78MpQ9hHdRrrO0zqJmliCnSqVPHbMvOzGeT12AU6XRgt1/5af++DJPSEabu97UtLsJse6nR4M8uss+fIY1iN6ykDmlCRzeUyWQOp4ObWOTWXeMIRZyL2O6w3wyUMQ+di2Jg6+Qst1PVaPAb1jwPU+RjKngNcpEP1YfVVQ+LZ6l/nMYyXxApmkRA7cmEDw4qwrb4CcNJOxfLld40qPn9WJIVhWTuIfeuO590+4H9t5v5yJYiSSJZx7H2WZNQ4C4MqOjMlyT8vKTdyPF/houHATr6ae6oLqcpylox829/zC9XN+ZG+4H1u2Q0NKMhEVJy1GV0gv2ZevLvn3kubbV6/YhYatb2h05LrdY1Xi3nf0xkOyfNzf83rqZ3OcXWjYR8cvXX/J37j9kE9Xt1w1Eia/j45XU8+TZs+oHJuYuTAjL/yaSzNwYQQAfO/qOfehZYiOZ+sdr/c9IWp0MWi5afezW+9ON2xTS/JFohgVCWHaUlrQuUgPrNOJrh9m9qq6Aq/aaWbLnu/WNCbytBMVwt3QErwhpnJ/RZHdJwXbpLA2kVIozyRxxazXVzzB4KGgs2LWomOa+6vHaBmC9EjGVAzJFp+rfX3WCkhf9gkvJ5Iq+FLq0A8oz1JZluaQtzrHlxQ2sE6SVTDoVMKYw7NvSof7L2QzPzNr5Eg9zilrmnIcYm7F4MZJT+Qy/iIEQ8DMbOaqmNhUVhAkpiglRUB6O2U7DJ31PFWJ/8sf/1+/854917neVmdAeK5z/T6vP/kH/geoKL2DaBl4YxSEyPqzEb1viXYxCCx5fMAhhHfSc7B7Nhn/LGDWgRQVudEi01TiFpezGL3oRnKq4mSE+QsHhg6V58EXJVJiNoYxJwbTFTi6hG6irKcYxCgrs+C1cX8238jiWkdW4i46GWJh/R7EUSyyAQHSi1ZY00bYR91EiY/YG1KXuFoPc+9gUyZll1EOYtZwAKr3246ctJjKuMiwacl7I4Y6XeT6cifS0wLullEOMWmGMkhYvg4PQ6Tf1vOlVZ5NZ8QQIhHX0s8Yi+nE0oK/zlgvgcIboGHBpi1ZyWPm61TfoTsyp1kukxNgpIK6B+YuPGQiT7GV9X1vuKEu37sAVvrxQ/jGcudtfgQ8vatf79Qg+bGaTXffg3n8KvVVZKfvWnfKis54fv4bz/mN3TfkfrIyQZNGw+3tipwV37p5Xdw3E9duz43b02nPGC077xgmcdzcDg37yfFDe4PVid55nnVbLtWIK31kNaNNk/mg23DhRja+5WkxgAExfKmGIUZJ3+mVHflcJTobaNaR7dgwaXEHTkGjJjHBireWz1+3vLxZc3mxZ914kk5M0dI1e6YkbqO1z/bCjbwaVrRWGLUvxwt+4eI5rQnchxZN5vmw5oNuy5Nmz30QU5m70EILTkV+c/8BN27PZ8MVV3acj29IWpYbm1mVsLIT31iLE+dd2/G5vmCjO5nwUmBsnEEHSK+mK6zd8r7pbBDn3wK2dGH4nnVbGi0ZoS/GNV3pQfTekJKSWJsygaZ1MbjKiv3k5t661hwiMVS5TqZkyrPM0CCyeG0yQ4Skaq9gJumED9IqILEYsi+xLMNlidzodGRSlikC6NkMpz6TpdewmOMsbssQ9ewOvTSnWcapLK97q6Sf26qETYaatxhyIqhDD7VsRZYJkmTQKjEZy041swFSNZyRyoSgsVbOz+jtA/BqtF70Z0Lf+AK6I7vQsJnamUU817l+mjoDwnOd6/d5qclDKLO11pLHEaUsWEPWhZWrA9iK12IFgoCWyIncpIN5i86koCQE3uSZvdNNnJdlTMK5yD4p8r3D7DS5RD1Vhi9nJFPQJHI0KJdm1i8Xo4RZImozyqZDbESpnBQRLSxjVmiTUWTi/rC8tLPU/EJCcRJFHX5mUE0iW8iNErMZK+xgTgo1aVKT0Jee/SAzth/ebOZZ7XpYjE6znLQCtadXO0Z/CGXf5xJ8H2Q995uei/Ug0RP5YA4DcO8dt5uenBRt5+fBwBIc1sGdWQxeKmDTtTfPPARo1/0wmzJUcDuD0HwwiVm6E56Sjx7nEM7rX87U54f26TOYW8o1j2WNi/dV4GIeM305AsqQHrKSb/z98Ln687F+yK8Cwk7FWzxWp2Stp2rpfnoMDE/1W76t3jdeYrmsx4D2qWUYlfmw2/DDmwHvJdB82LTkwZCiYmtbxgvLxxf3fNzecWmGefD9Sxdf0JrAj7fXfLldE6Jms+1KDxpYF9hcNnzr8jVPmt2cEeizIdXJLLcntfLc8kU+KPdB6S0sRh2192pKBgPcrPYMQcLat7olKgsY9KCw94Y49ryOmubZHSZpXg4rQtZcueEBg23Lcitjvw+OH+5uaG1giobGRDZTy027p0UkhQImDa0OvPYrUtZ8MV5iVJ5zC4WlSqzdNBvEXDQjazvxqdvhVOSu6bE68dIFXu96YtR0jZ/78CpLVssVFrC6EQtQk3veR8OkDTfNjilZPttcAfDResO+ddyPLT4YdkNDToZcsg11BTmLCR9f2LzqOApAYSQBrDJY+/AZswSrKRfFRtmH5WRSfaY0xXRLkxmiJajDREs4MjKqbtDzMSlmZValA1u5mHyS7TEYc3geaZVwSlHfbYssub4/Lp6PVkfGMqFXDXXqvhfBjZhyW0qrQWY/OaYg343GpBnE1l5wZyK9FSba6sRmbPg3/tP/05P35bnO9VXqDAjPda7fx/Un/5Z/nPEXP6L9yQb1+p58fYG6U8IWjhNmH9C+Fb81laW/LQsLOOf5KZFTzsHvSuyyq4FL9hq8OQBGZBkRw+QFqOlBo70ilUiHHMvndYlQiBrdBekvDMW5cw6UL5LI8uWdk54jLXJS8qVaZUA2z+YuURu0zSKjcgUIBnVgIlU+SKm0yELjJGxnVhm8RreRpgsMk6HmFPpdw9MP7zAqv2FmUKt+8Q/BoJUYN9RqVp5pb1AlXSN+3vPq0vH0ozuME3fQJbPlBytGP8hAzhr5YFaHXsZjcPDGQL7Yste/gwyEb/dilHHKOCblwiafWMcpE4Xl+usA/IF0U+UHn1P5ofnLKVBzKg6hvm+Z8TUDSHWQjD7GHp6qU+t/F+s6bw9f3Xjm2CjnseUvmdi3SVHfJiH9qsY2X4eJ1EpcGPtmzy999CW/+eIZT9c7fjw60taStUQdfLG54MN+U8xfDGS5rlsV+G7/gqduy+f9FS/HFa+Gnhe3a/y2IY6GW5359OKWVgcMByCTFkHdtZaxKhpNVNKHaEhcmJFv9NKbOBQpqoR+CzDZqpbYRmJnUINkieaXDV9wRb8SueqrXc+z9Y6nJYcPYIh2ZpqmaLh0A6/GFWs3cTv1rN3Ed69e8nJc0XSBXWj4qNvw5XDBS7+m0YG70HJlR3RhQatU9sKOM1Dx0TBGy4txRasDH/XPuTDymZtmxxfNJfdTOx+DKm2vgETrRG89nZHJpV1oaE1gX6SJdfkb33LdDPzK9ed82NwzJsv3909pzYqYNC/Nip11hCCMn7WJxobZ6dSX1yu7VX2Pl8oGqL138eRzxJQJN1NiIGocRv03TzQVZk+C78UZdYpGHEzLdmSdBXwVFQY8zHiFw2ROlaJOybALIvO/afZcumG+3g4MoWaIwmw3OrBSGYo0OJVlyH7L9kUTHzxjY1JkneaoEDgE26ekMSrTuoA1wnBWN+tQmNBV47/y/Xquc52qMyA817l+H9dnf+8H7D/OaP+MD/79a9Z/8w4uV6i7LcSIebmFvBbQpaUnL/vSS6MzWAmBz7mALiVyyxzUoQcQUH2cTVHIYs6QKxDTmZRBJU3qDl++ufT8zc6g5uCWVzOylIsFIMpnjC05hMkUQLkYRGRFioAqctJ4MJYhL+SoGQGatbfRCvCMQ8kzVIniq0LyRsBgUMVoBVZP9hL0XFkoDr42S7CylARW8BKLpTpOJFFkJLz+IUE7yyfXzYT56HZmGJdZdAmZOTcnBvDV+fHU4L5KxoxOXPcDd0PLdmpYN9PMHFTzitqzs8worNtxLBE93v/62dr/dwpEpnpuFnXc9/euqsBAlpsgyzqTeihZPZawvg8Yel9wdCoj8BQQe5eU9KuAseNj/lX6Cr8e6HsEjC7OlVWRZ+2WH9prNqPEJkSd0aMmh4bboPlsfUVvpJ+vLtOohFORj5p7PmruGdaOHw5P+E33jM/sFcEbrD30D0b0bPJRe7VOb3N6ABZdcbZ86raszchrv2JtR1Z64svpki+HC37iLtlNAnSm3s59eclrhn1DTqBN5qWS6/myGWl0YIiOCzfO8tEpSR9cMBqnRTp557sSRC9ukl8MIit9Pl5w6QZ+rnvN67Dixg50Wgb6PxmuaHTgSbujMYG7qStZfxafNYaMMyNP3I4nbseN2/P97VOmZIojpZqjE+r10RnPtRtwWno176b+wWhQq8zt1KNVpjeeL6dL7ko+5LfWrwDoree+k2fH6O3cQw0H0FV/j1EiPozJJFPcRJ0YyVQw9QCYLZ5BRsn3R2XEKtjTKheQW7L58qFlAOReyw9+L183Ks/yU/mcgLpl77RG7qUhOjZTO7N+Irkv4fBZtmMXmnnyy2sBf8moWUockmFKZn7Pyvn5Xh3DgdEUIC2gvIbd117IlRaJc5X1T9FwYUeS8fzFP/HPnrz2z3Wur1pnQHiuc/0+rZ//n/95+EUkykElfvx3a66++YSP/q07zDCJY6ezXHwfXn2jAL0aOaHzg14+pXhgLLPMCqy/p/rZwioql+b3ZyOREjMIrMtRB4CWkgROy+cK6Cm9fbkYy6SUyVFJVmIFqAtWkqSId42ArD6W2AkBh6pJ2M4TBicy0qBpVp6clPTdAKoVs5ccCtjbCxhUEVKfWD/ds2qnwmy9WaEYIYSkGUcnfYZNmM1iUtZYG0mtpl+PMujULc16oiv9JXO+1gLo9I3ndtczjXYGwet+nF336ueOZYVvMyqpRhJX3Tg7+Jm5B0YJe7oAtceDtscYuApGc3n/KdOSY5bvlDHMg5iIY1aQheQ0C8gOZQb+eN9PrU8+/2YdA9zHjuPx+9+1vLnKQHCex3gEvy1ltccsYTXCWK7j+Fy8y5DmfevtUtuHe5yy4j503PuWvvFshhZjE94l2GvMoIlYfvTyGqfF6GVtxwfb7lSk0yIH/U7/ghu34/nFBa/Glbh6lr66KdkHDHQFhodt0bO0z5iHsQHCJkU667m2e5yKOBW5tnueNluetDtejSvuvfT4XbqRq2bP62nF3dhxu++IWbFq/BydACIRbXQgld7GRgeedrsZGABM0XDdSDTHx909n+2uZjfLH2yfcHOzJ2bFa7/iw+Ze2Mzujm1o6c3EGC1XzUCjI0O03PuOiGKILa2S/XzmtqSV5vm0FlOSIjvVKhGyodGBznjWduTa7oFLcU8thymZg1lVSIbXU88H7YZv969Y6YldahiThR6sXuN0ZHR27nXOufQRBuk1lKxSinlPMf0q15A1ToCWPfTuaZWhMIN24VSqykSRMxGfNGMxxBmUna8B6R2Uiawqkw0IILU2ihrl6N6ooGtS9siASsBXb/38DLsr0SP1mRKTZuMbpiC5jpOJhKzZFcaz0fJ7nRys0uLqatqawM43M5OaXZBooyCy2s4FYlHB1Gf9DO5RZyOZc/2u1hkQnutcvw/re3/uV3F7jfaQHCQn8sjNd0DFK579NYsKiWy0uLgVZk4YMuYeP9LCgbRWhhr8rkqMBHAAX9UsJipwSZxKbS5ZhxRqq/xsBTjWzEHj4ixNnSWLUc3spdaJWDLHSDLQUJ0AP6UQVtImMlp6AocC9JoEKuN3DXhF1pr+yZ6u8Wz3LUpnbBNpW0/Oiu19Rx4NWWcJti8mGSkpbjc96358YNlegY81EaMV2St0sWVfltGZdT9irfQaDrsGVAm8D1Yc/FyYWb+a9SUMFPi9Q9mEdSIdVRwG6Evg9TZAcNxP1OiIsf50H9/C2l2rPIOTmfHMirRk/PLB3v3YbCYhQOhdvXNL4HkSANbtO9HrE4vJyLEBT13Wss/vVIzEY6D3MWB9DMxO1anXZ+D+DmxW9/GBoU4+DT6P1/nYNfBVpLSnllu3a1m179WqyKUD1nf8hCtus0zE5CaDV6igGG87XqzW3LQS3WBIcw9wQOOzmYHhB27DE7vjtu1nmWkFgyHrmR0MWfN67MllAH/vW8m7U+L82OjAyk582Ejfb6f9fL2gIWbNmC2GxCftLZ+0t/MxbHUgodi192xXLa/XPVMy8+A+FGaqt54pWaxK3I0STn83NVw1A7vcsA+OSzeSUIzRcus7nrQ7Xo5rPl295rPdFc/HC6yO+Kx54de89j3f7l/NjqafdLe89ithx7SY1fzO/gOeNRsAdrHBqUhvJj7tPJvYcu87dqGZ5bGdyXOPIkheXq3GyHGyOs7Hte7fJraMyTImy5PSu+hUYu8G9tHxclwxRsvey3LF0EaTEgcDGoWYfJlMCKYwgOLkOSX7QAZqi4wS8hv3WX3GbErMSJVQVjA4X6c60brAWIa69Y6Y+xl52F8KbwJGUyStCcXWN8Sk2U5ietQ3nlTAbsqKEDW7scHZQ49mZUsbLc9sZ+Kc1aiVMJ5KZTCQcjs/j+q1K0fgcN/6ZKR3sExYnOtcv1t1BoTnOtfvw7JbYbWyFnZOe0U2mdhlXv8K3P3iiuQyelKE6yBxE0kkiLkR8xbpU0PkkpUtrAYv1XG0/JzHh0VqqpuI0pBKlIRuorB9GWgFGCqT0FaAjlK5SFOVZGmpfACYZZ3apYNL6ZLp8hqzCsStAyO9jthIHo2sz2VME1E6EUZLRmO6QEqKza7F75rZqdSozOBltpc2krMwhNnJKHz6nQviRWS6a1k/29E6f7Avp+yHynSNp2v87HDng5mDoFsn0p9xsuTbBqVgGByqk7/FEsK8HLQAXK3ECGYc3MwSapXf6INZ1jEzptSbAGZKBouaM+Dmv5MfvK/WsTyyupIC8+DxVO8gPOydex9A8oBdXDB9S6mhbKs69A7OoPXATlYwuGSU5kHjYhXqCEgdM6rz69Tj+qaLaa1jlvF4vytoPu7fPF7fscNqlRPXdT/GZp4Ctj9NPXqNFXbOKnAq0dphtt6vg/e9ykTVQAS8Yjc6Nr7l1vRcu32R7UnEhM+JUQnwWO6TSBJFejcuXB4rOOtMmPu+ALa+kcDz0ZGSMER943nS7blsJD+wN352Oj21j1plYcPq74XVsVpcgX2SZ4wEihdAqOMDAxFhigLa5dlgqbeeL3aX/MqTn/CD7RNejGv+wPUX/I27D/mFy+f8aHfDh92myDUveNps5XPGMyaPzxqnM9vY8JPhEoDeTAKSkgCFVgecSjxtdlgduZv6+bqPWfFiXHPpxgfgfoqWdbsr/biJvtwPL6c1WiU+bDZc2YGVnrjPHVd2T+13rJmQrWnobGAIls3QEos5mBh+pVm2mbPkHo7RStTF8XW+UBjU54hSmVQAVE410F56IJe9w/V6Nzpj9MNJrcbG2ZymmsCkYPHKPJhIMQXMkTTbck3FpNl5x250DDuJgbA24r0lRpmU1FrAqVIZ7y3OiUIkO89FkRcv+19rX6QpfZ4AthHTo9qfupkaAa4la1CT+Zf+3r/w7pv2XOf6CnUGhOc61++z+pV//C+g7ENmMNtMMpAtkCC2WcLku/KhCgbrANrrgzTUiYlMNZSRWIoaGVED7cusZlsYvqiwTcBYmHaOPFpUAYe5CTOrCGKPnqIp0j9F3hcXuipbnSWhijBZea1IOtHFHTSqAhpFVpP2FmxGd4ug+mjIo6F7MuCKhTpA9OKUZ21ku2sJo50NZNBZDHZcRu0McZ3AZWwX2N237HWDbSIXqwF9Ii5Dqcx23zLet+gmCgtZAOGqmxi7FjUa/F2Lc5GLLjJ4O8s5oQzmy+9PL3bkC8mkiulhDqEcjoXU8IRMcn7f0cA3JD1bvj94H29KPh+rJdh71BmzDPreBla0klywB72GuVLK+sF2LQdwc78jkMpxqWDvFCtZB5ynWMN4tE2PfZ5ymVYg+ZjkdLlvxz1/jx3fJZg9HizXbaps4VfpH1xu/7tA+TGAPcl2zixdJkVHa0QO96TZ0xmRTW6vGz6/vGC3ayHLwHnrG1a2oTd+vm696MoB3pDw+axn1qqCQTjI8Bo3lr4vMXdpTeBlkrgLP1nGvWOnW17qNc7FedLmw9WWn1u95tIOEmSP9CjOssD5/5q70LILDbvQ0BlPUxh02Z7D/VevX6MTr4YVvfVi+LK/pDOBznpGa/nB9gmfrm750e5ajlm749b3fNLf8YPtDb989QVfjJczwF6pibUduQ8dVkU+aLY8n9ZsYzMfn3qe9rHhxu1odaA3E62Oc9SFKdfL7dShVZ77+KxObEPD2k6z/LU+S5zO3IWeMYn7aW88TkcuGLkwIzduxz423JXsxLupkz45bfHB4LHz2ZRQewlj34ytRItYP1/nNc+1Sil16W2OC/nlg+tvcW/U3sHlhFrfeHwUc5qmROzM90w0+GLQAsyMXVPkqmM0bIaWEAyNC4So2W/aQ9932U5dM+ezSFRTUgRvJaKjLFucTGXYHZJ+I0P2utlTeyFdPgDZqwIQt6MAw70/D93P9btf56vqXOf6fVi5Mnkwj6NVQmRbWZiNnLSAHc3cf6eTIqnEIiRpBkWqRDDgNSoo6QesQfGAtkkcPrPCe8u0cwczlyyglMIEKiVuoimDazIplR5EQLWlP7D0KCpd4iaixFzMPY5RmEvXBqa7ViIioiZ7jeoKMA2aMBVJrMnoPpAzTJPFOcnwyklh28B205EGA1r2RSnQjWf94YiPhm1YQ4bV9R6lYNIGv3dEcxgwLyMj6murbmLcyEBs1U00Ns6D/csPtty/WGP7wKr1GCWGB7fbnrECQ5PmDLCIDOau+0GyyY76o6AMLt5DmjlfK/PAlzdm5B97/7x/RzP6x6BkZg/1Aegt4yNyAVW1lkDP6jQPsMNsB3s6I+xUpaNlv0sqedy3uKzj1x+4hJ4AhcufdZ2PyU8frOdo25Ys4rtA4duW8Vi9Lyhc7sMBIGq0kgmYkDU6J3w2+KwF5JUerIvSg7e2E9/XN0zB0hQmRKvMGCXEPBYGcF7v0X1U9706Z1agMkTHhR1ns48GxUp5Wh142u74vL3kBy9umKKTwPbBELEMpsG0UQb7SfNxf8+lHd64f0M+GIJMyTJEJyxlFHnoZTPM58KW43HT7tkFkYv+8P6G63bP57srnnQ7dqHBqsSH/YahSEeftju+v3vCd9cv+P72Kb3xfLq65bXv+cX1l/z65iM+aLd8OV3S60mYSh1odWAbG/bRzeCu0ZHWBJoSZbEufZdOS2h6LNeS1Ym7qaMzYQaDN81uPsZTsozRzqz/MHU0JuKaWACnI6JxSvpBWxW4tnueNYYvp8vZObT2XQadUJUlVMz9hSkfrjGlMjEeIiqMyoTytzFYUVZEs8jle1OBUCXxVRbvC/AyOpXnazxcU4tJM5GrSh+4VuL4aXSWiI1tS5oMo27k+zCIG3XwBmcjXTehVJ4zBL03BC/scYqaKYPWlnvTPng2XDQTfZHrh6RptERVVAOgqch5tfG4ZLlVHUZl/t3/7D/51nv2XOf6OnUGhOc61++j+qV/8lcxJZdLBYVJkIzYbSvNLCMlKRRZpGdWfmIzqYsC4PxiFjbJiFf6AwVYVSaxsoF4yelLxY2TSZdlJvm8FbbP9V4kRPEA0oxJ+Kk8ipQwgrowdDmpQ9xFXV/dtgzaxQI8mRk9dzkSJksajeyHzqgm0awmybzSMrQ0JaPLNrEwiMV4pgl0Xcl5MjXgWqPKNkyj4+pyJ1KfIgO9vVvjmsDlaqA6ctZheN94wtMt4+hk3WWA76NYhrcf39HaMMvMep1IK8WLVxcCUBXwdMdFN9bdlt4mexoMHmfc1ddOBcjPDNUCrGgOrFOtN97Pm8zjkhlcvib/0dJrqPMDI5yUFeoEQ1gHTCHrN7bjbSDmsVzE5e/vcjB9FyN6inGtwOwYFM5/f+T/p7bv+LV3gcLlNh1LXt+n3uf9b4BcxezEePi7GLmEZLgtvXS70DyQFFqTUMpT7fND0iSj5rw9eAi2Y5lkifP1+dDqfwyWjW/Y2oYn7W5mui7cyNrKv954jEp8sblgNzSMvi0RNBBHw2Zn+fVdy2cXV3zv6XOetdsHPbyVlaxAqjOekDQ+OpyNBUzFB2AWxMnTqsS3L1+xCS3X7V4Cy3Xg9dRz4UY6E9gFR2c8++C4D9JXuA0NH7UbbNnfJ82OMVo+6W7n3r9tbLkwI34RjbAyEyFrNuNazGrKtd6bCZ/MfBxvfTf3FG5DM+9Xbzz76AjJ4Ba/T8mwsoff70pP49qOEgNSXGJXeiKi8FZAdGc8G9WKe3EncRT1WaSUTHY15RhqRIJb5Zb1fmhsmBnNFA0hmlmabwoTPLOBSSaP5uihpHEFXCl4475cyt3n15DnfTXU8r6c16jIg4YuzWoP50SGXLfXB8MUNX4o32dZEXNGacWwV0zle07rjLUiO+6tn/e1TiJYldhFR8giRQaJwqj5sec61+9FnQHhuc71+6jsTs3EYGxEMpqVSEWTLfJRJcAQJayh8kqkpQVQ1V4+ohK3TpAA+wKsZvauALaa65czsvBiAoOqgb0iM60yocry6UbMYLw3B/OVwiiq0guoSgZhKF/KOS6+DE0m7S26D6SoJPZCifEKuYDXBCpq9IVn1U2lp0SWOQWDNYm+n4hJs08NSkuQfAU3NRdqHC1cepGzAtt9yzQ4SEps6aOCq7J/WXoKl7PU63aiLcygZGgdzGL6YkM+yx2zorOB66sdr6bLB/2Cy6FALDLPJZN2PFg4liUegw6rkrBvBRy/AVzUIRD++LPLgVRI+q3S1Ao0Q9aodJC5Pmbg8v9j789ibdn28z7sN7qqms1qdnO6e25HXVKNJVqiYlq06UBRIstk9GIgEJAGgmUrkA0FgQMBflCMAFacwASimKEEOQYSSrRh6MkW+GBAQaIkkF4Sw7BDqjFFi+Llbc493W5WM5uqGl0e/qNq1pxrrrX3Ppf33qOL+Qc21l5zVT9r1hzf+L7/9+3N3MNRMDtd5/Bv9zF6UwnsYc/dsXM8xvAdrjOt4T099veHYile1QM6LH9f3uHryno/ax0yn7vXZfpgYOyczhgTuPU1m1Rx04kmfWCynYnMnQziV77iup+NLpgDM9JHM2bTyT4OjmW089dizrKZ8TxoPjJn9J2jqj1vn6+wKuGqDQvb8aNnz7ist3xndcFLF0fTKNVpVGuJXnPVa/5+5/gdbz3nabMStr8A8Gm0hdWJpesmExeaPmmsSvTJUmkJom9MGFnLJ/V6BHJnrmPla276hqXrRjD3zuyWj7dnPK43VDqyjiKn/bC74O36lq+vn3B9+w6NCbTRSg+kbkZ2aTAqGWIphuD7a9/wvJuP5jpG5TG+IygzMuN9sny4veCd5pbHlTwDt1H682oTWIdK+tpUYmF7Lp2wiVd+DsC53RKz5sJuuLDbUWoLUNuG266mD2Zv8kKpTG3iKFWFMh9ZWLrpZ3p8bkdDiJrKxjGKYTB9KTfIyGoObGEsvXfDZ2iImBieqSPAVJCzPAv7YPC9HeWeY2QREn9U135vcqv1ls5b+T4Lu0lLynenLy7cg0ImVpqtidyaeryvnI57z79Kh/FzF7I8Y//OH/0/PPxhPdWpPmOdAOGpTvVDUr//f/nzOAOxETCYzdiOI7EPNoOBrDLZlZ7BJEyi7pVkBBaTGFWJ9DPrkkdYZKU5KZQR59Ac9a6vkMIKDmxjUBJyPwwelQDGVALlh9gJpTP9usI2AapI9Fq+TN3uyzsGPcpHB7ZSmSzHYTJxa8VwJGhMHYUVDAoV5V+eMIwpM8785qxYbWUQYoyYyjQzGSjdbprSFyIA0phMfdbSVVbMDFY1tHpoaUMvPI/ON2NOlEau8zCc10ocSAHa3rHeVtR1YFZChY/JGZd1T3i8luNTeZTaHZOljowNd2WbD0kCReYmoHBqjDNdR2SdOxA19NoM+xqcAQewMKw7BSnTY86TZYdtHpOa7sky82BQcren8dA99HDfnzX77xgAPGRfj6173/721mPH2r6J+cshO/tZgeDrZCa+qqYS2+EejFnhSvxHG4cYgAkAKOte1Fv6ZHixmVHZyNyVfrSS37f2RiJRqvYOABY2a5erV9lA39f4riJtLeHW8Z1g8NGwmVUFvCUqHfjy2Utm1vORyqzXDcmVrQeZyOpbxwfXF8SkmVlPZcIEmO6u2QAKx0mMJPfF3PasfM3LdobTifO65bLaMjPC7vsCqB7XGz7enuGT4Wo749o0vLe44bxqR1OcG99w7loWtqNLlqf1mqt+xlfnz/mvX36JTahGkDoY2lz3bjQoednN6UoUxNz19CkB4so5yC+tTlgVRRYbDc5E1qFiZnq2sRrPbx0q+mh5VG+IWRjdLp2xLMBypnt8Ntz0M1axFtaQxONqPcYkGJXo4s5JdGB/B1B129UYncYIhyETdej3c0WCmrMiGD32iVY6FldUmYgcs0+H+zQrXJGMDuA5TvYPZTKp9IMOk3Odt9ILOEz4ZVG6KJPQJhXDoKKMSHo0fJHvyKKcKbfMGNmUNDnKJK3Piq2p0IpRQj3eY7YfTZJOdarvV50A4alO9cNSWUAgGaprZIDWKPqzDFbJH4p5zAAMMQhrGOXPdJqsESClBAiquoDD8h2bU/lynGYRgrzm1XgsoylNVigjbGAKGqUzxiVCV2ZtTSIGTTPvyVhiZ0R6aiW3SraVd/ss2x22JxsRkFjXnm1vyMEUKSziEBoVm7airkKRKDECm5xFFjSb9cwqL8HHrSXfVOQm0px3tFcNqoro0geJymXGWLF8Z8WyZPlte0fbOZraM6/78dJMgVLMitBZjNkNkIdB8yFIWtQ9tYnctDK7XtnAofvoUK/bMwgHwEOxBwrH4z3IAZyCoiFbaxjYHW53GLjdJ+GcAsjDmjqC7slQdRr79R467/vAzR3W8AFm8FjlB5Z/lQz12HtzLJ/xcD/Hljt87T6jl/vqTSVnr+4xlF5Cec+kWfms5AuGSnPdyeSKLSx0Gyx9tDxp1lxtZmy6EjJeh/G4BzAwGG/cYYKRXrm57bmYtZw3Hc/Xc1adgaDxneXFak5ImplrmFnP47oYrFjPxaylLn25KcskTUoaYySmYIxbKD1ch3LWw2vTTFxVB/bwN5894TvPLrEu8Ohsw0UtzqZ9MpzZjotqy8tO2LVVW/Mb3VMWdc/XLp4DcNM33NBQ68AWRvCyijWP6w1X/YyZkV7JT7olbRQXypgVvjyLjM4jYz18Tp1OzF3P43ozup6mqMdeyA8353z95jHnVccXFtdcuC0z48eoj6kBjabD6sgq1rsYi2RZ2A5X+ik1mTPbje/nIK1tox2fi120xYVZGEStE0arUVJulbCAlQlYlWijlYgZlfd77goA3jFtZqd8SBqfNH2wpIyE008A6dhLXa6TtZFeidpE2VzkNDKJGQ+YzpR0MY8RwyRMIieza6mYqGoGcJmTIjjDRjlC1MSSQ+uNyG0XVuS/2+BwOlKZeGIHT/U9rRMgPNWpfgjqd/07P485L3LQBE//Xkt/abn+EYtbFzCIJlVlcBdAGYqksgxEqwJySlQFUWHOPHErg6whUzAnJX18A+iDnUR0OpPqZBCVE+StleVdAp2FKRzcSmcBsjizARIdYcSWfPjSHaWpiJy0ajz9EL9gSl9hkoDyKVjL5Xxz1HTrahzw+TILHaPC34ohzaOzTRlEwMXFhhstPUbBG2aPtuMg3PdWZIx1ol70LOqetnfcrhvSM5H/uC/uBhmw68lTQG0jbR1YzroR+I2z4gfB6gOoqmwkpv2/w92+uPsGrMP2pjVsf3TkPJBcTiMRduexb+0+9OYc298xwDP0kpGHfrj9OgSD921r3OYB63ZYx8DPMcD1UF/iYb0K/L3J+q+7z6PbeWDd+6Sv0/dxeizTHtPDOsZe37fckJlY68CjasOZ7Tiv2rHfT6nMpnd8rJbinBgMm6sZ/bkdPwNGJ5xOvLu4GYO9h+0fylbn1mP1ipA053XLN1RmvREWzBWJti22/je+GWWUA+D0SWNU5qzuWfcVrbc4EzlzHXPb34kyObwmx675AAofLzd8uL2gu2r46Lrhk1lgvuh4stiwqSrmtmfhenw0tN4SguH5dkmIhi+dv+Rps+ZZu8DqyAebS96b3ZBQ/NbqCefVlpA0z7t5YWMl4H1Zddx0zdiHNwScd8pS2WIAVFw1b/uapeupbeDcCTP5yeaMl5sZtQu8M7/h7fqWbXRc9ZK92CfLuWtH06AuWW6Kc6lTCV+A9It+jlNpdEe1OjLDE7Ual5snM+Yd3niZNBhYtlCAnXYZkkYVybFVCVtYyT6Z0bhGYjIKcDe7e8WqhDaZrXf4UZIPKWk8OxmqVhk9cXX20RCtxlehtELAEK+Uo7QSpDj5blJ59GHLiVGRIhvPY1uF6FORWUiTCd4Qoya4OALRXhtWXcXKVaMTqzWJRbWbYDzVqb4XdQKEP0T11a9+lW984xt3Xv+zf/bP8lf+yl+58/qf+lN/iv/oP/qP7rz+T/1T/xT/4B/8AwB+6Zd+iX/1X/1X7yyz3W5pmubO66f6wVRYZLJRVDdw9s1I/Y3n2Osl3dk56/cVdqPQHsISAYVZegfJklcIxakwi4PoMPZJoYImCpDrNGyMfPENGDOBSpJxKMHzWb4AXUIZkZWODJ9mjJFIxaUtJ0XuDWYepBG/sIC5zKZKvwVY5+mKk6ipIiEYSGrMJsxKXEtzVsI+bks8hZFexeRFTtpuK5rKo4AQNXx9gVOgf8dqBEht76hs5OmjW7a9Y9s66jJ72/YOv3bQC5OaZopPPj2HG4fuFcpAmsWducswmC7X1xTp6FuXq9HsACCWmeVDJmRgVQYHvJSVkLoHQHDsi5uCdA7AS3l9ry+Ou69N++wOc/ymdZ9py2uzV4oRGO6tUwZ34/KH608G52OMxRGp6J393uMiOu37Owa29475M9R97OB9zOl9pj3TelMweGhO81lqen3uA9BDv51PBqcjxgRmxrOOFR/Gc3HAtJF1V3Gzaeg7MYTqW8vL3pKCfKaNEYnfO/Pb41El5b10Oo7B8dd9w7LpRrOoed1LL261HY+5j5bbvubT2yWxRM1YLUZTnXd4b3gRFvhomDtPYz1LJ3LPIRcuZTX2Ch7rydVK3Cy/sLzGmchHV+fEoIlB03WWj8MZN3XNvJJcutoGQjDCitnEy+sFrbf82JNP+dLiiufFIOa3Vo/5vZcf8u3NJbWOPK43PG8XOBPx0YzAOWbpf4tJ0/cWY8ToJyZN7Xx5/wV4rYCZ3cnWfdKj0uE3r5/yj6+fsnQ9b81WEpdR+iJvQz32ej6t16OMdDAAaqMjFSknyHNvAIcxKy7NhshODul0ZDt3XLfNmANr9E5BkbPkTTYMDqlRZMAlv3AItrc6orP0co6fpSwTADEIC+mjgGSLyEtjkYsOktRQ+kGBYoIDqZjhyD+kJ95lfGf3vqdAwKD0ycvvqnwP5ZJTiC798UpwYU5KtgM0tbw/623FKjel7x6sTfxX/8OTs+ipvrd1AoQ/RPVf/pf/JTHumpz//t//+/yL/+K/yJ/4E3/i6PK/8Au/wM/93M+Nv4cQ+P2///ffWf78/Jxf//Vf33vtBAY/P/XVv/IXMWi0B93D8ltb2LYY4Ml/5Xn0axXt2zNW71natxTdIwGFKilUKthPIeH1Qe1lv6uEyG6qBHUil/w/5XUBlLIMSQxosiu5fcGQlNkb2JORPsO6MIdDhERWxE4a7l0TUDoTekMus9yuCiLfsWUwGnfS05xh4KiUyfS3FWptRc26DMzOW4xJbLcVzkW6jcionPG8uJmTLPCFlot5J1LIuN+zsWw6lk1H6614A+iEspk8SMjK8rlOpPNIPZdsMz0JGz4EE0btZwfGCQsIdxmZlBVdMLTbCn3GHXfRhySSe0ArszewPuz5G1m5iSxzzEKcrD8c2y4V8O4xHAM7h3UMVOwZpxzglvsMY14HDD5kMvNQHetvfCie4nX2fV+sx86kRO0Bw4fqddm7YZlhu4ey2++mtNqH7IdumwBntmV25rnqZ+KmuallggdQrRHpd1ElxJCICr7DBX00vFeYwmNscJwwQbbECjyab3lUbwjJjD2AtQ74rHnRLVh1Nd4bUtTEqKAO5GhGc6vgDTfrhq1zXMxarE40xvOiXXDT1liTcCaydD1nVTvGN5xXbXk/ZPpnYXvaquNjJUxQ7rVE7VSJvrXcaGhmPc7IBFIIRoCwjXSt41s3j3jy1oa57cce3H94/Q5fWlzxcXvG0nY8aiREfqVqVtv56KRZ2ciml0/nsN2UhPkyKhMTEn8DfLpd8KJkJQIjU5ZBYiZMHEHuy27ONjhqG7isNjyuNjzrlrTRUulIe+AKfFvcSJOSmAzYxSpYxJm00Z65FhfU2gRWfU1behzHzwMiHW2DGx1drRYwOOReTvmzSgdCNvTRYFTay1hNacc4x6RJE9XFMAkXksaZiDUJa+V+1DrJRKTS47I56zJBKuB17IEPopJBZcmnVXkcbStA6TRm+8asSd4QlMEbibIYTNRIAkBTdbxN4FSn+u2sEyD8Iaq33npr7/ef+7mf42tf+xp/+A//4aPLX1xccHFxMf7+y7/8y7x8+fIOI6iU4t133/3tP+BT/baU2QhbZXpYfidiP3xJjgk2W1TvMWvD/GbL4h9G+i9c8vJ3z1h/UeOXiWwQUFRKRWEOcwmzzyajvEINLp8uj69nndFDz2Eu/YsUCWpSo5Pp+HebybaoZeoojF5npEexmNWkpNGkYhoTWcxFVtn2Tpi+sHOzFNmqMIDKQN30bFY1mSBfylr6QLy35KTotg5ti7OcyixmPeFHA40L9MGMBhWLJu6FwmslPSJ90liTePrWzSjxCt5Qzz32vKXrxGEuRsVy3kEZzExNWeAuyDAqM3PCNrRBsgetiXuKXKMys1nPedPutjMBfIdSwOH/QxQCsAcEDhkXTd7JObkLekYAWA5qOP773EsP61hcwn3rHEYsHB7ndLlX1X2M2OsAuu9GznnsOI5t9z42b/j/fXVM/nsfeze938bXjwDdaR27ZndAP3kPDE6Z3wEUuiFyImsWpsNbw9PZilVX0V030nOsilrBFxl5VGSb6NcVz1jio+Hd5S3Lkqd351ogE1NWiYnL0N/2bnMLCAAxSEYiQBftmBmXEYMYmZAJo9OvNZHLWctbM3ErDVkyP0OakbPiUbPlrGpHMHpetax8jVWJW1/jdBTjGxV5tNzw0dbJNfWlRy0BWbFuJavOzAMpaKLJGBt5fLEWaW17xnuza9ah5v3mija4wnQakpWJg0XpS7yoW7rS8xgL05ezIgSzc9cMhqgk6id7hdeScSr5fpbWW/re0m8qbvOc2VnHrO55tllwVndoMgvX8aja0iXLb9y+NV5vqxMXrsXpyCpUXPVianNRbwXQZ4nnYAIak1IYlXjk1kQ0j6s1z7olm1ARsrjIbr0bTZimz4NhAmWqFpi+3qhAq+yYp2gK6ziwpOP3yOTerQpobZH3S6KAIOhdeqoxSaKTinP28ElRegj8ZVSmDJ8bpZNMcOqE1pMYIC34UpV4o7FtIqlx8hWT+c3/yf/66L1/qlP9dtYJEP6QVt/3/Cf/yX/Cn/tzfw6l7v/in9Yv/uIv8kf/6B/lK1/5yt7rq9WKr3zlK8QY+QN/4A/w7/67/y4/8RM/ce92uq6j63Zf3jc3N5/tJE71yvqd/7t/HxskS7B+njn/tZfk1Rq0gZTJIaBiRPUy+1t96zlvf1rz/A+9xe2XNe17kezSaA6TVR77AyVIXvajorCJMljbDQxzCWXPsrL8J8uyKjECwnFZkzFVKrOkGaoir1TyxahNxJiMQXr1em/RWma3qyrQRcd82bFZ12Qtbm4pKZpZT9/JQC+bjG4880VHu63wt9XO3GaxM3+oXcBlxbZ3AiSTIp91zCo/DhZ81HTe0fcGrTOXy+0I8rbP5pAgX/Y0lcfrjF9bzFLC51etMBFiMFMc8rg7YJ+yhS+vF4RbhzvvWS5aKitmAou637M4nwa4j71bB3JTGAbLdyWVhnwURB4CrkM30F0e3P6+3gQ8HQK81wF2bwoEp/Uqx9H7QG2anOueocwRxm+67QeZytcE0J+lHuqDPAYyj7Gf8PqmM6l8uIcA+im7KZMoCnTAkdhGR0JkhUvXcTFreWnOUF2RlOeiUFDIYNgolI0Eb3j+csmmqzibtSyrnoXtR+dQMznfaa9hNWGjgDFA/Z36lnfqW7ax4kU/Z1OiFAZQAwIsKxNojB/73SzwpFmzKC6ojfEjcwfgEMCzCRUb74ipZu4853XLe4sbjMp8erOk27rx/kidQW0NulOkrSGbTFQQneGmAISPVmc0xtMYz6f9kkf1hm10vD27ld670LAJFZUOpQ9Y8gznrqeLhpnKbGHMvwNhpbosz1NnIy0y4XRet/ikubpekDei7mh1hbWRUHr73l3colXmg80FvoD+i2or4fYonndzQpYswY2v8JNMwakBT2MCC9tJ7EW53xotz+a3m9sxC/HaN2KooqNIRo1nYfvR+dVNZKm29C8ORkQL24sE1JvxvZ07P8piU5GSKgRAeyU9kkO+5hAJlIFoJv2FwdArYZTVAOxU+X7RIplROo/AzxTlhypMsCkOpWJCA64KZCdM7hi/pMrMmwJtT+zgqb4/dQKEP6T1y7/8y1xdXfGn/tSfeq3lP/zwQ/7m3/yb/PW//tf3Xv/dv/t380u/9Ev8+I//ODc3N/zCL/wCP/3TP82v/uqv8mM/9mNHt/Xv/Xv/Hn/hL/yF7/YUTvWK+l3/259HZekNfPz3Eue/+jFsttA0ECM5JpRSxapfgdaQMmq14fF//ZLt08fUnxjCQhObJD2ASD+gSmpnNuMyeZZ2Tmlw161UATnLazEXtlCNgDIXd1BVRXJC+oSUyGpCZ8sXaaaq4tgTk10oQe7gO0uuAsrs5Ja2imiT9vo7UOCaQDPriVHjN5IViJVZWlft23vfbhra2xq8QtWJrpU+IueiuI/2Yj1ubKQq6+Zh8GgT5qUjtQ1XswpMpr5sqSthHGPUIn2t/d5AfQoKp313OSu0SSiv8dc1K5V5crEuGWiKXORegyHGsO7RoPQDMDOYawyM4cD4DeuGvOubmdaDPYDsg8FjrNuUcXydehWb993m7b1JD90UCB4ypq9y/nxom6/qTXxVv+J9QO6+ZafbPFz38PfXuTZ7bORkxmeaF6iLhDMkQ1J6XGcT3LhfU0fiwAoqJA2mMGfDpVYlwPts1tIHw3c251iTePfslifNGgoYeN4vuGpne+Y5abbi3LU7JlNpNBGnIrXbcG6F5RqYw5T13n3qk7lzraSfsCMkw4tuwdpXY6TC8FmoTSQokTJ2wdIrw9z1cn8kJZJFlVGdQXmJ/DFt+RzOM3SabRD30XZW0XnLo/l2vIZfPnuBU4ltMixtxyrUhFxC4H09HnttIhhRO2wGsJ4UXefE4dKbcdLHmcTai6lO6s2o8sjGsN3UVLVn0zs+4ozOW+Z1z6Nmi1WJta8FSCmJs0gobrua261MiD1TyzGzz+hMZSIz57moLI0J1NoR0dILOrneVkcuXLt3j9oSHzL0agLUY1afLvfbrr+0S0ZyIZWRvNXJZ8GZiCvy0MFwZppPaMr2GxtGeWk/5hmC1plEGv8/dOvkWDJ3EbBnTBpzDoGxzzJnjR3aIJLCDCxhUmibyWUC8Ov/0xM7eKrvT50A4Q9p/eIv/iI/+7M/yxe+8IXXWv6XfumXuLy85F/+l//lvdd/6qd+ip/6qZ8af//pn/5p/uAf/IP85b/8l/lLf+kvHd3Wn//zf54/9+f+3Pj7zc0NX/rSl978JE71YKkAOsDsk8z5r35Mvl1DihDli0UtZgLSuh6sBWcFKJ6foa9XvP//0nznj1yivSJZgz9PpLrIQZWAuwHIjWPhIWpCQyYLczgZwJEnbCJI4L2mNE4I+ziCt8GttDBnZiZgMCTNdlPJl2ww0pcRNSE5mmXHat2QOoOZi/zG2kDtPH3nUEpCg0MwbG8aOa4SmwEQghgm1C6MIcKmjsRkyFtD6DSqTvjOynZWDoLi4oub4vQp5i7WJB69fcuVW6A/rXBXMqPehRnmnTW1C1wstvhGi705u8s4DHmO9c+9dbHiUyAGw2ImkRN+0vOiys+k5LoPERBMtjkFLgFdBh93cwKnjB/sGJbx71nesynzc8hEHkoRD9m4+9xPYQf0Hsrte6NevXsYvsMaQOExGechOLojwZ0wmvcBu/vORx0sf9/6D4G96Xt3H5gc/vYmwPGh4z489jv7Ogb2syblPA7O5ZgFNPXJsvEOYyOpLj24QZV+rPIpUaBN5vHFmoumZWF7bn3NJ0FUA0OUxZDV9sH1hWQgmjiCm7PKUmtLbQIpG3TOu6bXvOsXs8W2KCRNpICKByYyjMoYE9Ah88nNEt9b3n50y8L13PiKkDSVibxsRV7aBUPXOfrrWhjBAhxUBt3tJs1IoHuR6+tcVBpdxc3GcjufoYqc9Lar+D1PPhkjIC6rDZtQ7fWgWiXREjFpumiwg/FMEOOuoe8tRo3W8ly73jZs2kqexy6jtwpaTciOGDT1zNOpzOV8y0XViptoO6e2AsjOXUtdB25DzdV2Rt85wlomAHxlx/O0VaBpPNvGsazEzXUbnURolH7AkMzes0rutVSAWsaouCcRBQGGwejxObYKFa7EVQzb8kNG4eR+jlmJ86rKxDSAxTSG3g+yYGUCzgiIHhoW46TnXKlB/pmHW1iOPSmcTWOrgtEy4TowgintJu3SEM2kStbu3U/WqU71PasTIPwhrG984xv8rb/1t/gbf+NvvNbyOWf+6l/9q/zJP/knqarqwWW11vzkT/4k/+gf/aN7l6nrmrqu3+iYT/Vm9bv+nZ9HRzAtzF5EAX5Gk3MSUKgNdOVbyxjyvEH1nlxXqNUGUkJfrXjrVxq+/UdqtFe4labXSSShdZL8pMISMgl5RyNOpIoyo48ARCsAMVdZcg11YQaR/4+B9RlysLv1lWwrrhXXcU4uhjGRYt+dQLnE4lwMHHxv0XUcG+/PlluJfPAaU0WcC/S9leB6lzE2YV3EWgGcjQtsuoreWy7ONmgFz+NSnFTLeFTbRFV7UlTUM5GQSk4WGL0DMs2iZ9sZ8loA4eztDZeLLQrogiUUR7va5dFVdAoE7gAolamqwGy5Ze5EQmXKIAj2QYgvzoHDdgYwOJWSWtI4CH4dmeIxQ5vp8U0ZmMPjP6yplHLPsv8NWcNX7ee+eggQvQrUTeshKeZhvYphu09eOwXdD6177Pf7+glfBQZfFyw+6Nx6jNGdHNcwiVCX2IBH1ZZtdKxdxab2YqbiLUkXB8eIzEQYMZP68vlL3m1uJabASp6g9IOJ7O6qm/Hp7UIcepMqpipyHNf9DIAmhZFNSlmYqAF4aJX2rlXIpjDyAiyG7D0YJjA0RklEQGM8T5YbrrYN11sxWeuj4XbTkDM4F0lJUbvA/GzDjUn0nSNFRe4MeEWyGtMpkh1Vh6DzRKUBqtOkbMW4am25joa/F9/j6XItTq4qj5LKcyc9xl20dL7CmchF3bLRFatOQe0JJmFtpG1dYQwtm1VNaoszc6936hCbS4SPmO30OrHuK1adfL9fzra81aywOrK0PVZFAXfOj7JXvIJegCEZvDP4dUV/Zunmlq62nFXSYpIQMJtQbINEaYSk6Uuju01pdLCVe0324VQEDVUOdMpKvmJSpPL3sYexbLsL4kLqkyZEQ0yKkMzYb+nNjh20JoyTD0OESXblOalLP2EB2VpLzAVALtmESolbqVLCSqacR+loGhhjyvM1abTJJC90+W/+z07s4Km+f3UChD+E9df+2l/j7bff5o//8T/+Wsv/7b/9t/mN3/gN/vSf/tOvXDbnzK/8yq/w4z/+49/tYZ7qu6mRdYNkFKvf+w71yx77698qepYyKtIFMHgZkKltBylBSmRn0X1CBUX7TsRsNDpIDh8lkmIsxd3ewczgXl5eZAyzx7DPKg5ysOEniJFMVuQx40KRtwayItdxl2moMtVMwNG2k0GM1hllI3UduL5ZkLxGV5G6kUgJaxMUILect2glkrbGBba9Y7VuOD/biMV357CuDDCMsI5NJYPV2onRRMxyrFplQpTg5NW6IfYGd9bjnWV5ueVi1o6s27YX+akuANJU/g4gGAZWy7obB9Czyu+Fzw8zy8P/D8FDymq8rEkpDHeBw9RBlLTvpHq47GHJwMkcZTRf1bMGu7cbjrOG9zll3onUeA3w9rp1Hyg7tu2HJLGveyzTPqrXZTLvO85jyxwDhd+r+iz9jwPImpmeWgfaWgbkK1uzbksemxpk08NEgoC6L8yuWWqPUSLDHKScWmVufEPKistmSxcsK1/RB8u6q7hazbiaz3gyX+8xq3Pb47OmLtEFQ6UhpL1EZ4y/ZzX2pVmSxDokywerC1ZtTYyadlOxWdfUjR/zU2eVZ+48l/WWHzv7BACfDSEZfnP1hA9vzrldzQgriwrCCKpeJt5UFKn+0F8pM0xilBXXlpubMzYXNednGza+4t3FTWFf5XN65lo2qqKLloCwYsu6p48GbyIpaaoq4r2hv6rRGyPmmTbLpJ3OpLpMJkUFVhG2ltBa2m3FbN5zOd9Sm0AbLUsdpadQw5fmL5kZT8yKT6ImrBy5mJWpoFC9LNch18mMvZuFydO750MbLJsg5zF9D2fGY1UqzqUC8gYjI6sFiKes6Ac5MGrMWu2j3D8Z6IMtYC3v3EeLGY83kcaK07KY5kikxdztJsM2XSXzmaNCIo0xFVAmNPUwUZTH75FY7qeAxkwyd1Moz2aV+foJDJ7q+1wnQPhDVikl/tpf+2v8K//Kv4K1+2/vn//zf54PPviA//g//o/3Xv/FX/xF/tAf+kP8vt/3++5s7y/8hb/AT/3UT/FjP/Zj3Nzc8Jf+0l/iV37lV47mGp7q+1O/59/+efnyzqB7qK4D/twSa4OzFpwjt10BX2XA03thCVMqhjMaFSL2kxve/zuaT/5gw/adTHKZ6vngKAphkch1MZ0ZxoEKGTgMdtogg4ZU/k1fnwb02jLAUarEVRT2L4nl/Ghik4Bu6GORSIcQDN26kiD7XAa8OuNthbIJN/M0tccHA+wkp7o4l/qsJBDeSwD25fmG201Nv6lwM09VS7/i1HwBGM0HupITZYz0NKmsuDzfiBtoVqRzGaC+WM1p1xW2gNPzhczY98GMQHE6oG6LbLW2YediV3LUBuvzYXmr0hhjoRHZaEh6p4IbQaIm5+NSzQEUHpqADDWClgMH0y7Y4ri3GwxNlx1eO1bHwOF9LqL31aFU8iEQdB+wO7atw3XvLHuPgcxD6xzW6zBsx96Hh5bfO8Z7ln0d6erh64frvC4zex+oB4rMWJNyImTDTPd8YXY9HuPQb2tcFMl3cXEEeLERUPe4kniFAQjIviT4/J3mlpnpSSUQ/cPNOX2QvNSbdUMfDBczcR+dud36KWvJnptMUEyB4FBWJazZRRP0ybLyNX0JT/e9JZe8Ohp479EN677C6ERjPW20/NrNu1xWW96pb/ja/FO+UF/x39Tv8evmbV6qOXEriolcqd2ztpaMVbW2mI3GtIpkIFVZeg5fznjxqOL6oudq23DedFw2ElgflKYxYczpC+WcNr4iZUdlPS5FrvqZABaTRfUxyv0VuUwq5rpM2WkEKHpNu63YlGfWO/Pb8R6wKjLXPY+rNV85e4kCXlRz+s4RN1ZijULpT/ea4A2dt+W5Vp61yY5AXRhbMYEZLLVSViQn7qoOxXR6y6lEUIlApo2OvoDEgVVMWWIenIn0UdhAW9hAiZUYnv8KozONFfMgq9N43wwsYcqSddl5i4+mzL2KDFfcRwXcTj9DiknfdgGgYjIjf89Jyb3/5nMupzrVd10nQPhDVn/rb/0tvvnNb/Kv/Wv/2p2/ffjhh3zzm9/ce+36+pr/7D/7z/iFX/iFo9u7urriz/yZP8NHH33ExcUFP/ETP8Hf+Tt/h3/2n/1nvyfHf6pX1/k3EqFW1DeJ5Tc3mG99wgzI3pO1QeGFIczDgD6jjCEtGnRKqLaXvyn5+Fefrvni37xl/bVHfPTPGWKDzFDbPIJBFYrZTBRAkVWZtjZi/JCnzF9UAv7SpD9GFbA39CSCZPlFmTkdwOFgKKGi2s2MZ4g31e53nRnzE7wi9xYPVFUQE5heejNUJc38PhoJJk7yJV/ZQBeEuVtebqhtpA+G9bohbixmLu57vixjdMK5kkllItuuwtmINSLXyioTg+X59YL0UYNOEGaZcGZYPL0ZTXBi0mgT9wab3hsWs27v+3/occnI4CGWWfShn2WQUfkie5qyiUOFg0HtdNujlG8i/9xjICdHM/QoHjMjOQSOD8kU77Biw+t5v1fwIRnpq/rnxm2/BlB7E8A11KvA0X0AbHp9j8lCj70Pb3Jsx17/rOHznyX78EEwOAHvPmt0MlhVpN5OzFnawtLI/qF2Hq3KZEk0PGuXLG1/B6ylLGzYIB+0pVdsZj0Xs5bWWXwwNJWwVTFprtuGVCsuilS0pphMHbKCTHsfd+fZRst1P+PlZkbbOzG8WW4x53lku2LpIbxpa263DVonLmctlQ7cmBmbVPHF6jnvPLrm3LX8ffceV0VyGoIhJYW1aeyn3tiauHaQjDyXjfj4mE7hrgwh1qxLH1ofDZURSeuy6kUaq7IYqyQBXoMUPSgx8QpVlHzYKM99XeIOBhCYFOL6WgVRb2RIXtMHS2UjLztxa126jtoENqlibnq+On9ObQKfNktWfc2z1YK+s4TOkjoNdgeYYtL0yWCToTFyrCGJY6iPMpnm487kZ+gLFIMZcZGduo0SHaEASVOMY6bAeC8HNml81KU3NI2fw8pEzqu2GNuIo20XRY46TIiZAihDcVNVsBdZlLMAPKUKUFSQdXHZLuuPhmIlkqLdVvzj//G//crP4alO9dtdJ0D4Q1Z/7I/9sZEdOKxf+qVfuvPaxcUFm83m3u39/M//PD//8z//23V4p/ou62fe+td5NNj55QQpjzO5gJjGJAPaSP6fUqj5DJRi+/6C5hONWXUiHc0ZrCE1Fn2zZfbBmubZBauvFHMZm7EvLOEijv2BYipYwF4C1WsZ3ZsiCx0GhV7vwJ9NaJsk1iHK69ql0h+o5PUBDIJITxnkUsOs9Q6IqqjHuAtcQtfiKpqSIpY+wsEK3DnpGRwGuoNpQOMCupKBkY+a1aohtUaOVSe63qILeMxZsWj60f3UmERl4xgwnwrLEbYWVWbT9WXPW49vRlOYEDVN5cdewIEtPJt3Y9D8MKg47BdMWWFgnCUfByM6QdJ3wVYBHcMs9gDeBkdB2AcMxySZwyBlMJE5KrE8YrByyDoe63ubgoTDkPSHTGQ+i1HKq7Y1/H/683Uy+I7VlGG7k7mYd+/5fdmRQ9baYdzH57Ve930YWOlB0qeVpdaBhenRdcbqyHO3kAkTJfEHGpE/XncNPplRJuqLk+QwSVEVZ8otklV3VfoGl1XH42ZTpISa666h87sJlJmV6IP77qfD+1CiNXZGJzEJuxWCJjrNk+WGy2bLh7fnfHQzx5hMDPL5MyZxBWNG4ouwwCmRq850z8x6+qqAnZJHanXi8Uy+l1/M5mwuHNfXc+LKCcOfNNoj/7aa6CytziIB3TpsHeACTJ1onCdlieKoKmENP90u8UP4eh0IWZGMQbda+jgnk3Fq6Psu/XCmkmekM3HXU1e+g7bREbNiG8/Hfs3351esq5pl1bHqa247kfUO97rRecwxBOiToY1OTH6Spg0WX/r0jE74aFirCq0SW+2kh1IF5rov69vxfe+ixeSBbRRwOQC2nJU8a8s5oBPWyHNTlQm5NjouXEutA670jlY5jM99OUbZzvS5V9kgypS4y4Ac+ly13jcXMzqTckYrWS833/3z7VSn+ix1AoSnOtU/aRXjrkewOIcygERjZJodBCzmKP2DSrH4+jXZKNLMCXbbiJxx88UF3fk5amAUjQA5s9XoIAOOXOUi71Ty1EjFRKZT0nfocgmtZ/dtlxSYtAN/ipE9VIXp01Ya63PQZC/gD5VRdSJ3gxtKAYgKsJnsZf/6fCf1HAbX9bzkLZaBVShgzBbrb6OlX8MXgxhrEkaLgUW3cuAh6AwYlhdbcla4YkYzzP7OKj9KOZXKaGBe98RHmvXzOejMxfl6tDRXQFN5nN43sEh5P4B+GKi4IkMFAQ/Dev04oBbXu9oEkhYJ1LC98RYpfY/T180BEDnsS5RLvS9xSgfLHi4//D5ddgqo4gH7OPycHushQDpWv51gcLrNw/9Pj+FNXU5hBwoHOex0W2MdvC9Qrsln2N9DxwGfnSm8r+7trzwyqXBnHSUyzZAMTiVq7ZmZnqf1irebFasghmZOSb9WrQPrWc3zbjGydiEZ+mTYhGpkf6xObIPDR0MXDcuqFzmeZQQabgifL9LPbXCjZG9mPJpMRBWp4t0eW4l78ZwV05bbqsYHMYzqO8dH/TkfqbMiKRfpeVXJZFIMIrH8JpfoR3nMY3zi1lid+PLyJS+rGX2yY55gHw2Pqi2/e/khPllehjnfevKIX3/2NutNjTcVyVu0B9NBXhtCVgSbICt8b3gO9AuDPUucuxarI5tyjRdOgOjceckibDybdUPMTtoJSobs8HBSSaFcYjaXOB/ngjzTSjRCyJqX3ZyVr3lcb8Z7eWDRFrZjYTvWVc1N3XDb12NcB0Bl4pi36Equ5TbMJLajXGcQ6X02ZZIKYfF8isx0T2Rn/qPZxRP5aEa5u1bShxonTLMwj+V9Hp61wbBq6/FTe+5antYrlkZY7cZ4Omtpi8RU64RVYh4zsJkwinTGus9peACDCvj//fH//Z3771Sn+n7UCRCe6lT/hNTP/ui/JcDPWQF9JV4CpcXEZXBOyYM8UzE2XoSAurqF5ZztF89QCWbfUuADy197TvX+BVc/WrP6khgJZJuIRpFKT0s2GWyRu7Qa3WlUi8g5myzh9vXgKlcGVFVClVDdPDTLD4YBsYBAIwMYab7P4zIDeziyjBr53Re2MCrSxtIFLcsCuooSCKwyay9B88YkvCmSzzKr2/WWbl2hTGa26Fg0PeeLlhugW9VyrAq2m1rkYIPkc2DbCjgERlajNhEz37LdVFgX0YqxR2UYFMEEYHF38KxgHGAdMlJ3ZHpjcNt+DSB42N7w2iH7x8HfjvUBTkHMHRA5cTMdju8QfOxJQY/IJF+3x+1VxjVvChJfZ/n7pKufxdjmkIE8ts1jjOCbntex6/Hd5DbeB8D3QfMRUMj91yghwM5nDckxM8LqnNkWqyJdcZOsdWBpOpZm5z457MPqxNz2wgRlxVU7Gyc/hn7XIWplYPWVylzMWvlMIiAgJs2VmhGcln604kC5EzTvapAKttHxyXrJ7bYucnJxNQ5FXq6UsHTnyy2rTT3GO1grW+6jYV1A2TZWY89cVTL3Lt2Gpe1YGgGe79hrEpp33DVvVzdUOvDB+pJPZwtu8xJzY9BBjcIM1Rp0K9EVsTF03rH2Iudc2n400nlardlGR5csC9uzDY4Pgdu+PE+92je0yfIM995gizpicEV2OrLqa8TMpiNkzafbJW2wPGq2PG1WeyD/rXrFk1ryVTdBrsHSdRglPaI+GSodJUcQK5NbBfyTNEnvKx62URxMF7ZjrnvZjwnYkPCFpRsUFc4U85tybw4ThgCVjUxLlwm9ta/KvZdwY/+qXHABkBNFhE7jdEIoapI9yfjk2Zyh9DDGMV92Zv2de+9Up/p+1QkQnupU/6RU14tMVFkBgbZ8uVQGciaHAEaB0qSvvktYOOpvvoDNVvoImxpiJMw0s2c9aeZgXkFKuBdboJbIiDpCmBi9BDW6z5lbCVNWCbKFVGf525C/pDOqGoK2KDJRtTewGICerqLIkHQaWc1cpKZKZ7JVqDruwCQZ7SJpY8EK45g3RhjHJorkUxcM7BW4TFLSBNPpkuuksshWW/Hi7Iw4ihqdOV+0xFlHH8SG3djIalMTG5lNbpzkUg2s3R2pIZA2lvrtFqUy295hSy4aMPYXNSW3a1h3mgU4HbwcsnBT4BayHs1hpjUFjsP6U+B2bJA/hDEf6w17MCMw75vEHNYh2zVl+Q4z/qbrPNRLdww4fRaQ9krjmVeE0L+q1/DQNOchhvPwnF7VS3j0eI8wtq9zrA9tZ/r7fXJaeR/vA4NDruXks6Lkfg/FkVInW+STuThGSt2GpkgOJZvuRT8XialK6KyodBz7yOa2SAULaFv7Cqd2vbbD+9FYz5NGWLmrbsZVO8Mnzct2RmMDb81WI/sesh4nVkIyXHUzahOobeCs7pg5T6UjIWs23tEqx6atSFHjqsC2E1OrFDXGJmZ1z1cuXrJ0HX2y3PpaZJwmlv4+x22o6ZJlFTveqjRP3S2bVI/3zWOz5ncuPuHSbXkxX/DN2SM+enGOv6lQdcJUkbi15GBRAeKtY5MVzyb348L2nFuRQL5VRRKK5/2SZ/2C665hW0dC0JD1LlqovKU5lN46G/eefbd9jY+Gi6YloXjZzdl6x7Z3NDZw089KnETkomol+qGs35Q4EqMyZ7ZlZjxdkvexMZ4Vcv4h79+Dw/02vEdjX7RVcj8NE1xIm8BtV3HedON7O302VjbS2DD2Mg7PXwW7loBoeNEtyjH7MQbDaXGdNQzP7iIXzUrmY9NuIk1+n/QoagGDjQ0jW/p/+8O/8IpP6KlO9b2rEyA81an+Caif/fL/SgCf0tB7cBbVNPJazhI8nzPEiDIaf1ahYyI3FSolVFt6Bo3h7Nev0Ve35FnJitSa7Kwo2TKorRHL8+H3pKBTYxah9pAcxDqTZxHVyMDM2PJFnxVpAIEgErmRrmJ83bqI73aBxTnq8f/aZlKWTKcYM7aOKC2OoWoW5fWNFTBqM7kvjm11BJVJRpNbQ2k8lN7GWcRY6TkMlQCv2axn2oLpTCJnkWx26wrXSOxEXYwYhmB67Y4Puh+9ezOG3t88XwhbWkcWFy0X8+048MiTAdWw+zzZlp4MtA/NW3wydINUaQL0pjLBQxA41CDjOox8iJOBVeQuMBhqAAAjiDlY7BgwmLKL9wHYYd2RCco7IHZsnVexhse2f2yZQ8Bz6LR5H1M7Pa/pctPeyOE8ZIHjfYv31ZuAwlf1Gr7OPt+0X3Ha9zhs+75tpKxHUJgmYHCYTUhq+LtmHSsJoN+cMXc9j+sNC9uzCRUz48dj3fXGJhqzy5p71i5GUDezHq3E2RRE9jcznlqHUZoZkmZTGKBPNmd00TB3njPXsQ1u/Bz5pPGporaBhRVg2ieLSpnOz8QR2EX6pGg3FarI0GPUXJ5vmDvPJ5sz2trxuN4wc57Hbs3Sdjzvl2xCxcrX5KzYOIdTiS5ZHtkNbgKUfTac25ZHbsPjas3V+YwPNxeEpDmrOp5v53zy4pywsdDLM3BNM4KcR/WGkDVntuXt6pYz3dNax5Wfsah6Vo0nei2TeDBO4A1tBDEYOi3mKz5qUq54Ol/TGE9VnDvroixZdxWf3CxZN5W4nZb7Q/L8IkPWo1Wp5D0aDB1ORWbGs9bV+FxTSgx3hqqsxhXGtsqRVMD5cF920YpJjU7jhBxIf+Jg7gXyORvAvVKZqHeqi9rIBKBP4nTqQ+ljjWY0rAHG/kFd2L7hUzBzHj8ATCWRE32we/2CTidhQ8vEwKlO9YOsEyA81an+Cai8WqEuzgW89TIjnoN8geScoetR1pB7DzNH9XyDfn4DIZCfXNL/yFOqj1eoTYvqepGdAlSOuKj45CfPuPmaOIrmOkHpRUFnshU3UKUgVAm1KI6j8zBmRqnhJzspzAgEjDCAoww0iKW537qxx0LpTA7CMiqTyGkwMRAwaF2k27hxP/HGMQRYE4RJdE3AlBzBYDXBpfGYlJIBGkDtSiZjmbWVa7g/ABcgqjC2BA9bhbW7L+xhcD30twz9iYPsqLKxoJpMNfeczVoqs5MkDfsa+lyGwfIUFE5lpokSMl9q6y2NC/uD/AcG5eNx3yPjHFmtI6zi9JzzhDWMh9dM3W+GcgdY8XAIO+zek88ahTAc06v+fsje7Uwg7l/3IVOePcZy2M/AkPMwy/lQH+HrgrbPwpi+aR07xsE85vjfdqAwIEZUSckAfghc8VnzolvwratL1psaYxLfqc/54sU1G19xWW3u7C/lXU/hwFbdFMfOp8s1781v0MrjdOTMtjI4J7G0agRdreu47mes+ooQDRvAFYDQmEDImrnzo+vly3ZGTJpNV5GS9BDmJBNayiZsFcRUJioWy5a58/zI+XPeb6544Rd8Z3NBnwz/+Popb89vuXAtZ65j5WtWviKh+GY2/I7lM77dPeLMtjgVMQU41TrQaE+0mrerW37v8kNuY0OXLNt5xd9VmRfNnO26IvkSuxAMN21zZwJmaToMiaf1Sq6jd/S9IVDUGkHvWhCimHYpJfLYxgXeW9wwtz0rX/PpdonTkbnt0S4zqzytt2OEjlIi5R8mfkZWT0lg/CpUZcIqocnSU2g9G+PoPMSiFPHK0Acrz0db7vckTPRU2uuTmZiJ6bGvLxSzrb787qMAx1rH8RmrEQnn0nW0wdFGS0jSM9hi9/ITB3OxYYJhen3nxdBH3gNxebVq1xfuTGThOqxO/Kf//H/4+h/AU53qe1AnQHiqU33O62fe+tfFIKbtULMGZQx5tZI/SnCXSEmzlr7BENCfvARjSE8fkZYV1QfXAgSVIr51wfpLc/qlJtZw8zvAPwo7WecABqOS3kRTWDgYYx/00BtRcqmUAlsFghfb9BT0zkymrGfrSNjuGEFdxbJuloGLkkHIICXVLo523ANwrJpAu6rQZ36UiKIzzaIfw+Tly1qPeWY5K+ra75i4yaAoTQavprxc2chs3hEqIxljGeZNt7euUpnOWzpvsSZRFznpsEzKivNHMoBdlnWH+ItDwDAFYjvm4y7zMpjKbL1jUfkRQI7k6xEAd1SmqPaXGV8+wiruSQDV/SDuVSDwEKTowSTo4BwPwcTrmqJ8N7LR6e/HTHSO1ZuwdwNjOEZsqLvy3GkNoPAwDuS+eoidmy7zOn8/dt9Na3reh6B5lBHely1ZsmlSViIXZTeQB3F03AbpB8tJ0a9q+tTway8WLB9teHt+S6Xj6EJpVaSNTlh7FKu+YtNVxCgOoB/HM2LSLKuOSke20XFmO+l5K31847mSOa+6MW4gJM2qr8fQ9y5Kn9/HqyWNC7TBMKs8KcPFYkvbO7adIyVF6C268SznHcu65+35Lc+7Bf/4+imuxM5oJfEYmyAs2CZUko+nkwDTpPmN27d4XK+xKoKBVaxxKu61OMYiq33H3QDwIiz4PY8+4sPmgg/cOeutqEBEFp9KvIPFp8CtbzCkAoYCZ7bjom7p5pa2GOMkX3oKsxpdn2ViaPd+X/Vz5rbny0sJpF+Yjhf9Aqsiz4qb6XnVjc+vTahojB8ZQpCsx4F1tSqVzMDCwBXTsKH/LnjorGyrDZbGhvIeM4LBPprxWdIHMzqHDtUFS0ziKOqDtA9o5D2xBdQCLEqPaxstfTSE0o8a0y7ofvq5GCb4plLW4fNuVB5duI1OYyTIm7LzpzrV96pOgPBUp/q8l1KgFXmzRdniKgpiIGON/FQljHxwGM2Z7D36+RWqnQloNIbcVGzfnbH6guH2K5k0T9IzqJBeQWAvhF50i/JFlmEXGYE4hJbMP8j0vSW2VtZRu/7BnGXmPA3bLT2CCmSAUcLmdRVJyQiYNBnjIsEblM7Mao+1ksXnHgU266YMUnKxYd9nrwC0zuScCV6XXhL5km69IQbD2XKLj4bttuJs0WL0brC2bDo6b4UlNBlnir36ZGa4dgFr0mgEM/bGZUVbGLyqWLP7NPRT3c+iHQbXD9vKapdV1UXDpndUMwGW0/7Dw+0+CO4eMoy5B5wNctP76rAn8FC6eliHwfT39e29ChQ+1FP4OnVf/+RD+zr8++F1vyOFHbb/wDk/lMF437aP7fu7rdcF1FOJ8sAW33cP7ra9YwoBAhpd1mmMZ+F67Fnig6RZdwa9MuSo6OaWm75h6Tpu+4YuWoaM0ZkTBtCoTIhanjMq43vLh88vRHJYDF+qKoy9wLWJNFZMTNoh01NlahuwSp41bbB8tD5nWXVcdw1vLdZy7ohBzHndj06Tzu3cgUMwrLc1s8pz3UkUxmWzZe0rbAF9WmVWbU1dHJEHwBaTZj0xQ7l0Wx7bNS/Cgm10OCPmOz4bOiRiwZgtc91hVOKtajU6p37qpO/N6UQXDVvvxms9SHANCZ8NC9vxuN7gk+FGZ6yNeG/l2ZoEkOUEKWh6HBuTWNU178+veVqvaLTHqcgmyrktnUyEDf12AyC8rLYFBDtCtMSssQWArbwAWDsxbxk/c6G0I6BpAV8My7qi+Ji7frx/p5MVuUycDf18Q29fTJqut+IKGyy9idSIlFjiTPTIZA7P4lRAsVa75/UwyZfKd0MqMtTp56g2YZSldtGOx6XL8n/jp//Pr/GJO9Wpvrd1AoSnOtXnuH72S/8myjkBezGRb1clV1Dv4idSBq1QxkFdQ0o7F9LKonzAv3PB9ddmxBrW7ym6J0lYP5NFFqSzMIJVCYs3MnuPLQM6mUIVaWcqX7K+fCHOPH7rZDsq7/oEy8yyMkkcRUukhLCFgRjMDhxqAZzKJQGHJoqkNCqiztyum/GaaCXREZiMaQbZrGK9raiqKLESvSVGTfKa2VnH7c0MbfIo7bp4tMbZyPpG3EhD0viuSIqCpqoCzkTeulzJwMFb2l56ipYzccTTKo9B83tRC0lRl6iKjAxQXAmWh90sMuVvG+/ovEWrzKLu94Pmi7xpmJnXKnNWGMf7Bt53XESPOIgObNXhOoOM63C7h32Mx2q6zcG4QaSSD6xzADo/iyvmq/oED19/aPkpMHyTXsXpa/exlVOzmaPbPPL6ZzGY+e2oVwHLY46y5MFIZ7eNvb7JsVl40kAIo85cK7isNqxUzdmslUy9pNBN4GzRShxDARcDeHNGHCWXriNlxdZbXr5Yjpl52ZdnUmG4ugy3NqOcSDvretfTOz0noyVrVKlMYwMv2xlz5+mipTYicl1U/ShDnNfy/85brFUYI88PVz7LN32N8VV5LY5yQqMybbBsekfXiYR+1nisiXTZYlXkk+5MmEEQWWisuHSbYr5i6JJlEyUMPmaNUYm57vny4gVWxxFA98EUAC2f8Wvf8LKfceY6Ltx27N1buL64elr6IoNMSRxGfWflmZw1vbf4ZLj2DdsSBC9yTM15teXcdtQ68ryb00bHWdXRFBCasuKtZsU2Op61S7bBCTtXTF+u+2Y0eElZ3KKVyRJorzOhN8SgR6OwNtgxrkcpiRUZADZASpq+/G14l1NWomZJagSIO7MczSY4wI1RHU4neoQllGUkzxYEwCqdBdyqNILEIU8TGJ1vp6qB75Wk+1Sn+ix1AoSnOtXnuVIiew9WDAxyCOA9ajEnb7fyrWQ0yrlxlZwSShf5qDXkeUP7VsXqi4rucSI1SWIiNAL+QMDbYCRjMphcwJnIg5TZSfwAchS5qHaJ6M0ORJZxpDJZIidKvMQoRQV06e1LvRl7buo6sL4R1k9XUfbb69GV43y5HWd0U7EJn5235RIpulWNsgm/qeRYokIFhb7sCUGLtDXKl/DsrB0HcMYmqjowq3yZBYbaQR+sEKMUpzkb99i4gRU5Bp6MzmNu4TDzP11Gkyf9JwnbJDbGkbKiPnAgNTqhJoPVOxJPwBdL9mNM2TFzl0Mm6iE2bswyVNInYwpLeAig7pNF3gEF+fX3fayOmbwcWy+pI/LXVwC2w/oszNt0H8e2fR+4e9W53yv/vWffh+u8ivl86JhfKTc9yFsc3Gcflrnu5KO63Fspa5yOPKk3PKk3dJeGmxI031hPpQNtdMxtz1kBC8M9XptAcJrnaiGGVAFQYOYyYI+9ludCUtBp2BoCDl8cilUxHhkk7qo8y5TJbJqKnOEqzamcPCsqE1m4no+7M/pgRvAx9Ce3nWMbqz1J+VvLW2EVq5aNr7jtavrCJKaoiUGTe42/rTFzyVd9Ml+jVcf/99OvYlTmvG758uLl6MiaoqZLdvw39Ej6LOzi2404pz5vF+PzbHifBxMbgEoHnrg1tQnMSwyFTxprivJCiZFMrgKpACKliiNrMoRk0Erkp4+qFU/cmi5ZnvUL1r4WgIQcR8qK9xfXLE3HpdtiVOa6b8Ye6z4atsrRDwycTjQu0DtLX/oaM5B1Bp3pge3EyTlnxbZ3LBuZuLNGnEBj1KRkcG7XC25MHuNChs9AHw1JqzHWZHBEHj4Hg9M0lNihQ6Owsuwgg21Moo1uL7JnKKsTv/wv/AcPfr5OdarvV50A4alO9Tmtn3nvf4GqKpQxYg5jNEo7iJHctqiqEmloHLL+Igx9bKmAkJzZfPWcq69Z+otMqrN8kWa1yyhUGdxg5rIbEGmTSbG4jCogCduX+uL2piAVllC5MoPbmnGb1kV6L+YvpkrEXmMqkZuG1o0yrroObNa1sI8ZtC7ATmd0HYucU+SfvrOk3mBmYewVMkZYRaVLn2MCTEafearaE4Kmbjzb2xrbRM7nbbk0iqby2BJWnZA+Qmn276VXZMIY1YUxiEmhzfHBbl+c8AZXvek/EAB4F2gklq4fe8emmWvTwfjw/4F1pADBIcbiVaHmI3t3IH09uuwRdkxYmf3lDoGfUhnDvkHNseWPmdHcB5YeiqCYxlfsG+yUWfsjAO0Y8HldYPiqOiaZfFWP3/TcjwHD3UDzzY9negz3rTsF9ff97bCmxzuaFB0Y4hz2hh7e3+TBgKOYcRTiUJecuaXtObed5BYmcXasiqzbHty7MSvOXMd507Lt3dirV9lITIpNWxG8FQdir8kbK8+1LHEKDOlxSmJplBa2KXWa9caK0sElvLNjJt6qq8aMw4GJ2nQVlQ08Pl+z7iq8t2x7y3pTc7NucC7y9J01f+DJt7ny4hB6u5qJK2iZhMtJEdfS4/Zb5jF/+Ku/QcqKX/v4XV7aGau+5rLe8rvOP2Zmemw29MmyDnWJd0jlGsUS59BhZwmrEi+2c9pg6ZMdIx+GdZemY2E6tsbhdMTpIVy9mHvphDGaEIbndOZlO6OvDDPrqTTc9BUvuzm/2r1PyopF1VNp+aK56mZsvERRtNHywi+4cFseuzWVDqxDTV/cRqf3bl2Os6sNMWqRfoYC7g3EraUrIE0hBjoxlnxYF4T9K73kgPxNy/nM5p4QNUaXTMPgMGpnFAaMEk8QF+oB/A8TdtPPhCGPvYVDb+xwHsNPnSeupGo/+/BUp/pB1gkQnupUn9NSzgngayq49dIHWJxFCYGsNKquUCpKL51WKGvJIUivoVKQM8kp/BLiMpGHAWGG0aVTM0o5lZYBUY4yA6tUlqiHckw5KZTJI3DMpaeiWnhS1CQl21VGwBtJCVOoMm7mpQ8l75g/YxObtfSNDADUb52AU6VYnrX4aMR10BYjG5tKXESmH3pdto58VaGiIs8iy6drZpVn01XkpGk3Fm0TzUz6TAapV8wKC2x7MaeobBgB4tA3Ajum78X1gpwV1kWMSSybbuyT64MMFs+abo+RUQeD8WGbcZJ1Nv79COCCot7VO+v+w2WOBcXL+3NcHpkOfh9qBB3l5yFwy1ndkYAeY6GOMXkPySxfVQ8td5j3N1TIugCUh4Hvsf+/Lov4OvU6zN7w92OuqkMNg9T7wN3rgNo3OZfXWfYYMDzqUDuA9gM2UVYWJDiAwhSlz233/jGCwnTA1sgOd4zjo3oD53LsZ5XISLtoeXu5IhYA6qPhxWaG93Y8XjcJJU9ZjfLDmBXrVUNqDTkoklZs1xVKg7FxNLuydjf50PYiAa9sJNvIrO7ZdtVoerXyNY+rNe/Ut/zI/Dm/5+Ij/u6L9/n4+gzfW1CJWFQO3YsZv7p8nz/51f+CH1k85+9eCdB60c65ms144tbMi/HJKtR8Y/NYpOe259Y3zIwnoVjYHpodeyVgWfraNsFJHAOa96sXpKxYh6oYsRhMYc18LP2ehYXTJej9rdmKL81e8mm/5HZ9ydW2ofOOs5nIfLfBsfLVGGb/fDXHJ82Xzq5YmJ6n9UrAmfFc+xkrX4/y0YSArtpK72eoDF1UpGSF8Q2iTIne0OsST+HFJGaYnPPRjIDQmIQ1aXTCnpp8ZcRsZmR77c6NOia5E0enaJ0w7Cb+pgYzVu0mA1MuMSvIZzAkPS6bsjqxg6f6XNUJEJ7qVJ/D+uf/xF9k/qWnuI+uULF4YfYejAxqckwoeqir8XdSJKcsjqMFEMan51z/iMWfFTBoCjvo0ti/Nw0fhqFPUI3uocoKA5ejRldJZtRVln+xuIJmCK0dnegAchAzmXruxa0zSR+hNtJ7p3WWHg4vvSChMyV2QtjJnCXGYdMJExhLH+LiohUJUTBULrDZ1JK55RLuSc9y0TKrPC9Xc7YvZqhKAKmtRcbZ9g6tU2EdC2sWNXaSV3XoSgcCGo1No+OoVvv9gDPnWVT9OICIWY2DKdjJtQZ5Z0waX2aatZKsKjPOLuc7BiTCYGb0ZDA8gNb7ANOxAfvU3fOwxu3cx6IppK9xMuN97zaO1CHoelNJ4+F2hvMzDEzUXeAxZCcO27gPBN53nMM2DusYc3kfG/fbBQofOsbp63uMxOTafhZgeOxYD7dx3wRAesX9KSuzDwo58j5N3s9DB8fh732Sfq9H9WaUMGqdeae5ZRsdtQm8V18Xl9GaLjme9Qva4EounmJwvkxZAOjWO2LUdNqN8nljSr9YMOPvMUrfsdUJrRNayfMgZsXNtqFygbeXK7569pxLt+XMtGgym1SxDjWPG5FrXncNm96xCloeowo+/sZj/q/+p9E6cVb33LQ188pz6xuRjkZYmk7iKEygT2aMX1jHSgxaNJKfOLtlE9wITtoorQY6i9S01p736yt8YelWvh4ZMqMTLfKItzoxrzzvLm54VG34oL3k0+2Sm7YZwWLbO9reiWS2hLVve0fXVtwAn9qlXOe8mxRbmH4Mfp86stYmMHceHwwhCLjLowxYvptCEJlsKpOVIRhS0vJ+6Ewq7HNmN7my7Z24UBcZacqKFM2e1mJ4xut8NwZHqzz2hI6RGUeeAValMRcRRKI7ZUJPdarPQ50A4alO9TmrP/aT/w5nIaGv19B2wgyeLVAxQYgSP5E6SOIkSu+FHRz6CJsZua5I5zM++WeW3P5oFJlokX3i0sgGDrl+aOkLzAXgWSMh8MnrUSo6ToezA40SQZHxm0qWMWCrKJlRKuOagPeGFBQ5CfBzzrOYdWy7Ct9bOYayLVTG1fLl7DvLzbqRGV+vZfeKMoMrJgCbVS3rVgk377k8Ewc7H0X2Y5eeDNS1p3ZhByCKLK2ygaubOSkqLi42I0hMeQcuRktxE5nX/WgUAXf7tWA/RgJ2wcUZWPfyHlUTRmJvgJ30KPudZrqFrNl6R2XiCBoPB8zTYczhAHxws4uTAfdh3ZH3TQb0w/FNBzpaZWJmjxma/u1wP8fWP3YN3wSs3DmP8rs6so37GLXXjbaYSlNF+lV2eQSoHkppX6cOQeHhsb2q/3AfBOc7TN2bSmUPj+2+145tY+o8mrM62tO5dxyoERQOfx8iCUKJSgBKXMHwPuzMaTaxYhscn6yWIwABAS+rqh7P/TvrC768fMml23But2iVWJuabWElh/OpTaCLlpWV/rfrbSMh9pua0FlsHTDlMxyDwRRQ8HixYeGkB08jLKcveXzfuTknofgDj74NgNOBx9pDA4+rNf/o9m1u+przpuO9s1u+/skT4sczdKe43VySXOZlVuQmsrroJMPO9jgd+eb2MVolFraj7+cAI/unjThb+gJe5paRaQ0lbD1lRZccq9iwNO3YA2hVoi2AcBMqaTHXMnF12WxpjEg9b/oGpyPnTVF09I7Oi0nOIL0fnj05QbuteG7m1EZA9NNK9ucRALb2O7AU2bF5tQuEJJJPr2xxst4ZB6UsPetDT2iMiuAdVe2pql1ft5pEBNXFDXq4N4frMbB5w7Uc7seEKCimE3uDukMjElxNxuqwm7xg/xmqleE//+/+5Tufg1Od6gdZJ0B4qlN9zsq8WEFKAvguzlCrjRjKWINSCuU92ZQvzBCgKtldIUDO4kpaW7rHNev32c8XjPKtpYprm0hExZEPnckpi9lLUxw0ByA2fukW44UyBnQzTyigzrgByOSdy19m7DlUJjNbdDSVp/OOdlONQFBbyRrMSWQ929sagqZvDe6sR83kOI0T585NW9G9mIHOuLMe31qW846cFRtvaVtH6C3NvGfR9KMRwOHgf9tVKJW5uNgCOztyoxOJXXD9qpWBoVFhb9A/remAfWD/htDiYSAwAM4QxYjC6DQG0E8BZWIHPJyOVDqiq33m8LCmTNi0jgE7pyOg75yLZv/n4W6Gvr1YBvnDugNAus/hdNjWIXM1nMsUPB0Clyl4HI7hVUDmQfBxwLAeq4d6+qas1GFe4OE+7jvO15XKPuQwep9J0LHjeN39Ha730Lr3ndue4+5U9nnwHr/u/kEYlenracIqgUQarH1FzIp2W7NWEhqvdebW1vL4M5HGBX7z9glWPeKsasdjaUxgyMHTyH155loBTUnDDG7aGuciPiu0SVgrzKBygRS1RF5kRaUDHZY+GS6qlpn1rH3F1WbG1XbGP7Jvj++ZVZE+WbooBibLqmfjHd+5OefdxzdczXpuP1mi10YYyjrhzmXiC+DTdklC8WI7Z+F63pnf8IXZNc+6JVol5tbTF6mt1YkU1d5nb2m7kRHdRsczv6RN8n3yxK05ty1dsjgVufJznpsFfRIm7nG95tx2dMny/vwarRIfbC657aQFYNl0E4Yvgol03qLKW2eUANU2OK7UDK0SKz/nupdew2GZAZQN/dK7SRP5foklR3AUupTJz+nzfkxjQl6fVeJ22norctVynUbFSJGIjqH1JoznMiwzRGMkFD6a8p5K/+WYR5gNlQ6jQQ1wp//1VKf6vNQJEJ7qVJ+j+tkf/beE8YsRjEHdrKBy5FmNWm0gRFAKdb4ktx1sW9BG9ItKQ47k1RodAnzhrLCC5V8Bg6g8uuhJBqAix/K6khnc2FpScQU1VRJgGDXaxpFVtI0fv2iVSTLrmhWhs2PchFKMs7ciA1Vs2ppuXRVgmeXPGTGGUXkHFG3CzTyLWT/O1sas6DpH8AaqRL3s6DcVbubpvKXvnBg0AM1Fx/m8JSbN7bYecwOHiklmhxdNT8oiJQ1BTCKG8zIm0baOuLVcPl0Be+rasaah9MA4CJqyZltvdxImtesvVHAnsH5avgzAhmw0gJTM2GMzAKQBoEwZuxG8TUCDGDsoMXuYsJDHasge3O/9Ys+mf7yiheTdG+5M5KmH7OAe+FT3A4ZDMDgwDfcF39/32pv0xB3+PkhuD8HXQ6DwEEy+KmT+Pgnv68hX72xr4vZ5rD4Lg/k6NT22Q9muOtjn64LUQyZyAIN6klV3WW2Z257HM8uL7ZwuWDadG+9TWxggHw1OJyKa69tL+hIwPwUalY7MrEfyEneMemUjwQVmdV+eFcN9CIu5gJ9VV4+fVR8Nn24XY2bhe+c34zl9+/qCJ4sNT5qeL8xu0Crx7c0lm1DxzvwWozLPbhc8Xm6Yf9Fzu63xveVsuSUU9UOlIx9vlrS942LW0ifDytec246F7ViHmlBiENokwKtPhsZ4GhNEQqpkQsoXia1IOA1GSVi9zplaB+a65936mutmzpWf0xXG1urIwnbchoYbL9FAi6oX5q2wrEplzqoOqyLndcsn1ZJ1VzGvewGpKNpoqXSkKjEi6156GDERivzeZXFhrpImO0WygZQ0wcUSHyFOrZjdZ9aYTCrmUsOzF8RFurZB3tOkx5iK4TkVky7usZlsA0bv2MKBsRyAoCnnMJWPDvfr1DRmbBOIhv/HH/n517r3T3Wq72edAOGpTvU5qny7hhRRc5H9oBTZWdRaZoRxVn4PETVrQGuy9yhb8gerhrzeiMwUJHqhV8SmDA1Lj54qTqNjKHwdpb/PJRLCCuaosLV8oSmTyFmXDEKwdaSqItt1VY4TkZgOERMqM1v0pKTww7llyQdMUYKOxRkUAaQJyIjEtLUol5gtOpGuDrPbBQz6zpI3Flyi3zryxuCDIjZyrGYemM16GieDvHVb0W0d80e+HIdIQn00o3PoetPQvZiJKY3KqKBQUZHmkfpRy+N31zgT91xHhwHkIRjcez/Laz5prm8WGBu5WIqsdbQuzwqiwZl4Z/Z4j9lDMrOMSkfB1Lg8++DrkO0ZzB2G9Qdp4X0SyiFOYjiG6bHJCnLNYrkWg5HLIRM3uqey3ys5PbaHgMIwUBukW5Z0J97gdUHGwHQeq2NAcpoheCgdnYLCO/s5cN586HjuO4ZDQHzneA+2/1D/5Gep+96TzwomXwUK3wQsTuvMdVi15a16RULxspvzop2z9W7s7bXl/uyTmKT0wY4GMNPJImviGFwfs+a2q+l8Ca8HLhbbMdcvTRwnQ9R8ulqMPXbTZ8SLrTzTn87X/M4nn/Lrz97mw+tzvvzoJXMrJllD/MZls6W2gWerBc5GKhvp2ooXn5xTn3XUTvoNOy/5go0VkGd1Yh0rHrs161Cz8vXIUHXRYlTi1jesfaZeBN6u1hgEIA8gz2czvgerKGyfUYkz1XJWvcCoxCrUxGI9tY0Onwy1DvyO5TNe9AtufIMmi/toCWVPWbEJumQ8BvpgqUykC5ZeGea2Z25312x4LmV2EmRgzHcd5J8xCzDzwdBrU4zLoKrCyBrWNpLKLTWoPrTK1DbQBjv2cmeG58ww8ZRGEDd3/TiRNc04BMbswWGSbriPBylqSDtVwf/zj/z7b3xvn+pU3486AcJTnepzUj/z5M/sTGPaDmU0TPIFMYZsDaQkPwEqh1pvR2fRvCmRCt7TfLiiun5EmCtUr8l1QrsoTB0C0JQdIivkSzRFAX+UrD9jo+T+KYUuyyqdMTbSd1bAZRZWMXkBgzkqXBMkH3ArZgzKSmN/DHqPYhtYQqLCVImqksD6FBXb24YcFMpmqnlPDAbrooRNmwy9BpvQ5x5jEsYmZnVf+k3S2NvhbKS58PTB0PWW80WLRpwEKxt4frOgez7DnHvmi5btpib2hmrRc7HYjoBvOvRNWY1Szz1W5B6pnVGZLzy9ElBZ5KSHQ+nheKczzFOgN/RGJv3qGIPp/ofB9zCoskU+m1B3YjAOgdtQYx8liaTKce0FOZdB3Hj++w6Rw7mMEq60G5wfy1A8vIZTFnQKxI71TT4EUqbHccj2HUobX1XHlnlIanrfOg8d7zEw+CrTmVGGO7yPE6bwdcDzseP5rKDwMAfzIQnsq45BXtdHX4fiGKygNoFKB55WKz6uzrjpZ5xXW2otofA+GbbRUeklL9vZCMSm0m5h+HcmLVVxHe2DGSXfQ4+cKUBycC4OwZCMOHHOa3EAVUgf7+Nmw7PtglVf87XHz0hZ8u5WvubT9QIfDSEYmsrzxYtrfuTRc259w6qvUGeZl9cXdLpCL7dcrWZonTmft0Wymflwey75d1XmWbtgbntCFuC66ivc0EucFYlLAL48e4EjjsAQIKKJ5a0KyfDSz/HJMDc9TkXOrXzPdMmyisJExuG66cBltRmv9ypUYw+oVomzSvIBV13F8/Uco/J4nUCcOxdVTxfs+Dx0OtFFMfnRKo+qipmVSb4uWryV3sVQTGFsMQ5LRXkyszLh5pNMBPhBaUB59pqIj2Zvsm5gtYfvgOl9Essx7OcKxvH+TVmTcmJh+zsTdac61eexToDwVKf6vFROqPML+e/NLTmCcpCbmqxB325RvScvZqhtVxCdAmtQQ+6gVhAlsiLHzKN/FOgeG1DlC8qWSInWCKiyIvMcsvsk20kC53OCfuuwdcC6KOYuJXbCFzAIE6+ZQT6qM64K9J0rjqERYyOh2ICTJdSewUymSFibWc9mXZM6M9qJExVZS5+I0mmUlmITepa4vFijlViMD0YtSuUxELor1vLWiIPhWekznLqK1lVg/v612JFnRWo8y8sVVXG5m5ZWEi+hlJzXUCODdATMDQPOXa6VISbN3PmDPpd8Z1+HNQxQHuoNm4LKaS/g2A9VKmWF5njfYcrqqJx0ZAsVDNbrA8A6FjcwZHNN+xVTVpB3vZp2AkyPMYZM9vEQMDlc7xhLOgWDx8D7YbTDsZoC3env0/dvlIfmh/sAD1nZ+2Swh8fzJgH3h/LRw0mH1wHShzW9pveBwtdhRu8c6wOA7/51FAG9p4/tosVnPQbbA9Q6cG63Iusj82OLT8b3MGbNTWh40S9YeWHFHtUbFqZnGx1z23PbN6x8RVueKUMfWogChgZ3TTvklRaGaGY9781uuHQbfDZ8bfkp/+D6PWHvCgh5a7bCJ8Oz1QIQcPnpZsF7ixt+8vE3+LQ/48PtOf49Q7utuN3WnC9arm7l/KyOzIzny4uXfNIuedYv+cryBetQ8+m25tlmzrarCEFzsWyJScBtFywxK742f8bc9KO7aMyabXSEZPBZE6LjNjTje3rmWi7slq5kGA5OpNd+xsx43rEbNqliGx1OJYzxsr0sDqgDKOt7g5lkuuasWLiOMycS3AFkD71722BoXMCVvr5KR+a2p42WthgDbbwbZcK1iXRFJjydeIqF4Tt8bg3B9intIkpyTpO+wUjKmj6ZvczV4fO4CdUoGR4cR7dxN6n7f//v/Z/e+P4+1am+X3UChKc61eegfubx/5zsA7y8Ri3mkiMI5KZCpUS2lu6rT6g+WaM2rWQTBskfVBiwGVJCKUU2htz16OsVs+8YHv83Zzz7pxXKChDMtgBBDQSNqqOYxZT+i5zUJI5C3EF1AVvaJrFZD4YcBwQozqIplh4OBdu1uH8OYFKpTN86SGrEsUPZKlI3XmbWfckotDAE0y/PWrbFJCaXPshm2XNWAubXbTW6xQkQ3PXu3a5mWBcwJTMrZei8xE7UZdZ3XkvPy7Z3VDZyNmtHKdJQg/ToZiu26sumk5nlMtvuJoAP5NIOg+TBoACEKRwMFsZQ4yPyuVESOgUFEykS3G8iM27jAKDoLP1RhyzbHTOYIkMd6hizc6e38ACE3u2Xk/tt6JscwN0I8o4A0ymoO2T0BunWIYicrnfIXk5NWI6yYAfSz/v6CYdt3Qd49o7nANQd2+99bN902e8Vs/BZwODh8tP/38deHgO6d/Z95BAeApU78FgMPCagsE+Wl+2cta/EJbRvWLiet5oVZ7ZlZjyu9HcZlZjrnrO6pdaBrRMZvNWRWgcWtmM29N05x9rXbIOjL/1j1sjkRuetxCJ4AypjSs90pSNnruXj7pxaB2wJvTc6cdOJe2kXL/na+TMWrufTzWJkIgGuwpxzu+Urj5/z3uyGX/n0fW7WDZ9+cg5e8/G64v/TO/7ptz/kWbvgumuYO8+jesOz7RKlMo0LbLuKGAzXq4a6lly/623Db/GEm37G7zr/mKfuFkPGZ0OXbPmsiJx05SX4vingbm1rXOkhHPoFu2RHCenM9Dxxa5yOfHv7iOftYpyQGtQVobf41tDVjnRRAHTWLF2H1ZHrfnZHet4HCzZQDyBNRxp2ExPD89bpRGP9GAM0yvELyzcwmgMDqMpx5cmEkkj0d8+zIZZkeCbmrAhZS7+lyjtXUaWwBRi20X7PPr+nOtVvZ50A4alO9XkoY9BNIz2D3qMWc9K8Qa82EBNZa26/WLNUivqDiNq0kDJYQzYaaofy4jiqciZvW8gZ3QbOf2PN9ukZ6y9CVhp7paifK9ZfieRGMgaNS6RiNJNT6elTIh81VjIDtc7oAgaBYkyjsC5gbWLrDaoslwrwk1nzjC9/G8iloZRJWBfZrGpxIy371FWiqj1aZ7reSlh9CR6eX2yZVZ6YRLq1uZpx/mRdMq4cF2db2mDYdgZtIucLmRF3ZtfX1jjpt8kw9hDJv0BM+k5we0Zmixd1v+cMutcPxd2B7/Tvw/Kw6zsclpv+nNax3Kv7mKPp/2PSo/nBCJ7K4NqohBna/yZgSZWBzzEDlfviD3S+e9zTGfc9JqkAuIGt3Dv2AkzjPQOnw77IKejcW+4ADN5Xn7Wfbqhj0tBD45TXkYfed10P75uHlj08rtdhCeHuNTh2vz507Id1OHHwKnno4faOsr+vGEdrMtP4iQEUWpU4q1oWrqNPlrWvCvCyWFWNYLKbSBlrHUYWcTiORhcWMGnOnRpZH1eYvW1wMhlkw9gP1xpLZQNndc+ykszSW9+QsuJlP2NuPV87fzYe/5Nqxdc3T/hwe45WWQLbbY9ViUu3YWk6fDb4LCDrrcWKF1cLaA322pCazGZW89++fAujE8uqpzaBNjo23o3Pmr5MqHnvJAKonMfVtsHoxNfXT3jn8ganIptU8chucCry3C9oo+Wqm+GTxmlRWyxcz4+df8oTt+ZlmPNJu+S2b5hZz+NqQ60DN2HGOgpTeOZa2uhY9TWhqAMAUYF0hvW6Ke+F5PkNBjM+mtGFVdQdCqUMnbYsnID1pCM6OvokZjEDsygST4kBGe43pyPJKOwE1E3vVx9FbTIwwVP1h9ViYDP2o6oMQZxKG+NHE5mhd3AqQf7P/4VTzMSpPt91AoSnOtUPuH7m7X9DgGAIqOUCpRTxYoG5WpGtITc1aS5Ab/0Fh7uuMW0HWpGrnRwlK4UKkTxvUCFCCKS5zHY//XstYd6QlWL+UWbzrqyjXBqB2hgpMSlV5JrZJFJSxCKXlMEfJVdwJ50kQ914+s6SlCYVFtHaOAY5y3aHHENoVzXZa/QslFwphVKJ2gXa3tGt6nHbzbKT3sQgduA+GHQtzm7b1lE3AhS32wpjEmcLYRGvb+e89egWjdihj45xxTDAGjE6APkSH3ptYGdeYMrfh/6/YdA/7TkBGRgPA6dD84zDZYf9TX/CXTni9O9TQGRUkcdFkX+dN3K+cQBFWQxfhhw4O3FmTJMBkeTA3WW9jvXZTQf+h+f9KhAwDZI36vUzAIdjnm5nev2n1+dw2XQw4BsY0Yf2/bq9bofbmV6D4X2Ce8x4XrGf+8Dgsf0cLn9fNMlhHWZOvk49dN3uY1fH/b0BSHxlf+LAcE9A4fS1ue0x5T1IjQTNA3TFUdMU4CGyyiXXXUNlxAlzbqWnrSoMWMoarRJOJRqzcyStbaAxnoXtqXQgZc1tqHnZzglZAGjlJLrhxjfcdA3LaucCugmOLlm+PHtJSIYPN+dsg+ODcMGT2YZFiXXw2XATGtZB2Mlc8mTju1GeqStHWGp+/9PvELLm2+tLumA5qzsWrueT9VJyZluD6jShNdx2htlZh7UCbr91e8knm3+a/86Tb1LrwFO3Ym5k/5/mJdfbhvWmJgaNrSKzpy9Zx4r19gk+GRoTaGYrNsHxm7dPeFxvOHMtZ7blsVvzab8cJZWDyc/aNEQFJDE427aOG9ugVeaMVgLck6YrpjEDA6diJhhNyhLtYwoQW/lannFm93y2KqJd5qqdUdtQzGt62uhKP2Vxki2f1Zg0MclnQpm8N8kj3xvyPTDIR2srPatWJazZPfOtjuW++e118j3Vqb5XdQKEpzrVD7r64sM5a8AHcggYpUQCmhIqZZQPzJ41rN+xtO/OmW/LOj6MvYQqRLKzosd0FkJA9QH/dI67ajn/rQq3SmQLV79LBke5NahFGkPpcxQDGBRoLV+GMQi/pHUmxmIMkhXDd1zOir6zo1mM96bYvcvv7bZCm1jC0S26ilSlxzB2ZuwJnM172m1FAqyTzKp2VYFXmGVgsWipbKQPhs1GQGIz62lmMrhYzrtxgH5xthl7CnNWPDrfFHZq9+U8DUv2wRRJ6d08vGFgsZthvsvuDfsZykxevw/IHKtDcBgnxi3jtgvQtKTR7S4kTWUDrsjRRLO668casw3VPlN02E83gIP7jmvAGFOZ6RRc3rfeIRM5AuSJkcdh7TGjE4Dzqt60Y+zkXr/b5OfhfuD1weB0+aOs3HjvJApcGQ15jp3zQ9f9VWY136+aym7vex9eBQYfYiEf6pu8t9RdQyD5WT7jDAYfqsQwKIJKBGAdKz7dLnm5mbFpRVL5IRcoLSZYVRWobWTmPHPXjxNJViUqHZhbz/uzKwxJ5JKpwqrEo2bDTd+MklDY8Faz4r0SMeFU4p36Bmq48nP+4e079MmycBKx02H5rZeP+ODmnKfzDV89e45RmXPX8vTxin/myTf5+voJn2zO+M7zC9La8vL5km8tL3narMc4hKttw4v1nEXdi6LDZLLNKK8gWTqbMMsioYyGNlj+i0+/ynnd8juWz/lCfSWOqdbjrDxb0tbSbyzfsecYlXjarDl3A3gztNFyXrW83dyyDjW/tX5CyoptcMSkR3YV5PndAikobCXO1SFqtt4xs8K4aVVMZVQmRs0QJaJUZu0qumipTWBmehrrCVnjKC0OZbJgkIW6AtIGwB+yoY+7aB+l8thHOJ28O5xMG3IxIWFVlggfRL46xHgM+wX45X/hP3i9e/lUp/oB1gkQnupUP8D6mbf/DdTZUkLlgfTWJarz5JhEDto4VBfIjaP+dINfLoUJfHkDTS1uo8bIsjmLS2lKIiPNGf38hipn4rJm9qmnu7Ss3zXkoYewShJfODB3RiR9SjHKO5VG4iTKC64OYiqjZNm+N4TOYhuReOasiCWM3lQisQmdle1acRLtto4UNMqmHVuIuJUCxKgIvchE529tqJ0nJU3rbcmUUhgbWV3NUAp842kaT+MkYBrushUD+BukooMRjY16dLkbnATrElkxmBEcyjaBcbZaHwCCQzB5rH/qIXOUYwPmKaAZX0NB0sxdz9yxc0mkDJAnLOfhvoYB0HTbh8d9rO7rPTyMyxi2M/w7BhLu7SUrdQiCphEZDwGHKTM3Jcmm8q37+t4eAoOvs8ywXMxKrr8SKbEc7z4wnBr8TI99eryH1+Z1wOpU9vu69aYMxmczjDnOksLrgcUHl1VAYQmHzNJwcI8nFH20bLKmjZaQRfLZBTGgmtWeLWKklYtJSqcqVgq0SzSznlnlpW9QJ2obCNmQ8iPea66ZGc8jt+GtyrAKNY+rik/skpedhK3f+ob35tekLKqOp7U4e75T3/C4WtMly21oWBcWbest267iO0EiI5yJbLyjMpFH9YZb39AGizEJ9bijqj0f3pwTs+bLZy9Y+Xo8/49vzgBQVSIryFqe57kzbHXNp0mxaHoWlTwHb7qGb+tLau2J7ABVzgqSQnnF5tMFH2hhzfokURVtdFRa3FlvfcPHrex36Touqy2b4Ph4c0ZMmsezDY+aLS+aOdveYU2kcWF8j4dJLlv6v8c+vqRQSoxfrtuGl27Gk3qD1pmFEUAd0iAZLZN8KN6arQhJS0g8iqXraIvhS5yYGVmdxuc/iJPoIG9dmF56K8vfwmSiodIRp9L49/E5+YYTTKc61Q+qToDwVKf6AZaazcB76DpU05CcQV+vBdTNG1Tx/lZ9QN/0nLeB7RfPBAT2XljBpgIEGKrOk+YNKqbRmEb5iNl4yflzmrNvZ9onlq6KkCB2BtME7MyLrDMVJsuIgUxKCZ+tGJq6QIoaY4uJisqEzkq/YNJoGwhBQulBmL4hf9AYAX8hlKb8IQ8RIMN2U5GCxlRJAoVLzIXRiZQ0m7bCdxbrIstly82nS4gK5oHlXDILB1nRrPKjccOwjVgGGCDjx2Hw0VRDUqKcd2VlVlpRBq4lDgL2B7J9FDv60ZluwiZOlzVHXhtqD7xMXhsGEiFpBir2GLMo2YQyKPFJZrGV2hmuJHWcVRt6DN3EKfV1By5TtlAcR/eB3bDM8O8OK3h4DvcwhEMdSiOPrT/KR98g8+8+6euxel0weLgfASIareLkuBMpmz3QrF9xfR4CSccA/DHW8iiDe4+s9E2Zup2M/Pi98FAdO1+4n7k9BMrH7tswfGbz/vYb68d7JOTE3PZU84BRYiL18eacT1ZLtp2jbx25k+dhDIpNrOkrg3MRpeSZsqkdN0ZC2R/Xa95rbjgzLU/cmk3yY8zLcExL27MoPYFORa78vICJwNJ0XLgtC9Pzdr1i6TpednNuu5qNd+Ad296hVB4ZNmciTS0g9e3livOqJWXFj8yfcx1m/JqvMTpxMd+WTFiLchHfWgF2JpOiIgSRZGanWFYdq1zz9ZePCVlLb5xOIoHXiagyJI3ysL6e8YFOXMxazuuWx/Uao8RZ84PbJ5xVHW/VK9ax4sY33Pai7FhUPY3xVCZyWW1poxWgVj4PG1+NE3iNkedzGyyhnLcp/eDrtuITc8bSdTgdsTpSlXD44X3vo9kzoApJ0waHtjtJaW0mn8OcmTk/xgNVJpbA+YQv0mHQOB0JodqLKxnuyZA1lZJcwr/+z/1fHrz/T3Wqz0udAOGpTvUDqp/90r9J7jrU2RI1F/tw89FL8tkc1fZiHGPENCa7CmbyZTr71g3p8gx9vQJAhUia1zK082G3A60lz9Aa4sWMOLNcfc2hQya5TK4yymZMFUfwt5h19MESoxaWLmiciyQbSUmjFARvJMtwGAAWRjH2hqr22CGvUEnvoPciC5XZZaQHxcU9E46BIbR1xFUBZyMxKvymYg2cLVoBFTYxm/VstxV6FtAlE1GpzO2moVtXLC9FHqoOAuMrKwO/lNUebDiUhg6GAfdJ+4b1N12FbjpqGwort7+MVvsB7IcD3ZFTU3edOQcnTq2E6RvknzLbLetOt5ey5GJhwKndjLaaHPtU7jcFDK8DBB8CJDHpsUdx7xrl/Sw8VN5jEj9LX8194AGmzqwS7j3NPzw8hzeVXt4XBzEcwzEAlnNhAcsbNhiSTNc7Jmmd7ud1r9Gx5aYM66FhzX11bJ/3HccxF9b7WO+H9nv4+mftKz3c3uE1PQTdCyN9f7UOo+vopduycB2fbM54xoI+Sd8dQZ5RPiqiNxib0EaC6Csbue0qbrqGla95q1mxNN14PJtQkbLicb2eSA0lAL7WAZKVeAdtWJoObTK/tXnCt24veXk7p99UKJOomoC1cZSwDjLqykTemd/SR8OPLJ7zrc0jXvo5j5xITdeh5rLaUpnIx9fC2GmTSFHLZFI5N2vSGNBuCsjbBsd7s5u77H0u5mMbw42doXVi7npedBKbMcg4L6sN116uy9z2XFQtfZLYnU2oqMyWWenBTFmxjhWbUBFz2JsASLk4kFYea+I4CZaS5ratuZnNcOXzVZuAzYq6sINWWUKWXFSRvw5yUZk0qEwsjLL83ic59g5hZZ2OVCYWMLljnQeX0lCOxRoBjANrOGRenupU/6TUCRCe6lQ/gPqX/sD/Bh3jyPTl3kORjaqcxWnUWvK8IS1q9KaXmAlrIOOkWI4AAQAASURBVCZUTMIMKoXyAbXpxJjGGkYLyZRQyznZWcxthwqJ9klN+35A9RrVK7JThI2VQavKdM7tuYqmqPG9HVmgGDTaStbWEDNhqyBgEUhJgKQxGVuCgPts0WbHOKIyoXWcXW7ovSWsK1BZ+hdNots6ciNgkKioqsCmreg3jtlZx3pTk17WnL1/w6zyrLuK9bYmJcWjJ7cYvT+oHpwrR8aPXYzEdLnh9SloOcZ0DNs0OrGo+t2Atyw3BVrT3pOBjBkMXwZgNwWh0xqlnwAHstVh+4cDtTiymWlve+KcepdxGYHw60gAj4zTp1EN06Of9iaODFe6y3QeDtrvAw33gdZDCe3YM3QPGBx+PgTwfjtrCgo1Cp3z/bEXnwEIvS5796p9HQLR+5Z7iCE9to03OafX7eU8fL/2j3dgcJi8ti+J1kr6b30S5sioTJdk8uaR2+AWcfzsPFfQphp6icNRJmNc3J/0Mol3lrekrHjZzeX+a2Sy7nk3J2VFVxiwW99gdRzz/drohDl0nTxX0GgiX1t8ynvNNV9fPuGD1QWNDTxp1qy8ZP4tbL93no+rzWjA8rRekbJmEysunQCudah5VG+4cjPW20p69RBgGJUhBk0XDOdNy3nVsgkVwUivnSv9cTPrqRuP34jMUkVQWZO8KD5uuobaBmoj/7TKfPP2MQBPZyvmtqfWkWvf0EdLVcx51rGiKqB8gbirDs8jq3f/76Id81xjysSkigGMZh0qGuuxKjEznkonzq0YbG1jxU2oRxnpVCo6M748jzVWpZERDalIQM2uF3F0FUXApC33VEiGhGITdlOCA9j8T//5//DoPXyqU30e6wQIT3WqH0CtfvSCs5BQL2/2wCBGixnMYi6Azwf0usM/kZlX92JDfDTH3HbgM+vf+YTFrz8bmwBzXQ2jFNle26F8YPUT7/PRHzL0b3v02pBLryBRgUsMuYA5KiKGEBXapRE4aSV9fkkXI5C0C++lDLRi1PSdSEur4iIXki6eN5m69nSdGyWm600tvYkqY1wi9ga/cSgn0iQK+5izor+uwWQWjWQGhkfdaBqzbDpipfHBsNo0NLVnXu+A2mHEwxQUDhmCcHyQPJWkjaBRZXRWPF5sAO70gh0bBBudClsnbBoFKIzb1nnsfZpKLafSz2NspVYi2zUcDHw5wj4VRsFHM27L6gSTgc5DgedvaiJy7Jr4ZPZC6A9B7UPg7D4p5UP1EON2H7B4U1buddxKh/f6VUD4PvnsMbnwYb2Oy+ux4z/cz0N/P1b3SV2H144xtIf1psd+3/5AQOHdZQ8nWxRk8FlDtDtX3ihGI43xvLu4oY8ClmKlqWphrQZZee0CQ8bds81iZEifbReEYlwybAvgqpvxMs9F5mk8lY700TKYzAyAJSm5r+em5w9efIufvPwGdYm/2MSaVazx2bCONdvSswdgSGN+4AA4l6bDIGYqc+u5nG+lx65EB+WscFWg7y0KOHMdj6sNF27LrW+YGc9M97xbX7MKFc82c1QxptGtku+PrWFVIiNC0qypWFT9KPl8OluRsmLla3oTWdieC9dyG+ryfqnCompmxqNVkmxBI/3ggxvoLjYnl2eWog+ZEAyrvmJhxVQmZUWtExd2S609XXJodcaVn3HVz8FCH+0IIAcKP2Q7PhOn4G+4f4RNjmwLiE9Kjcc2gH5gBNDX3ez1b+ZTnepzUCdAeKpTfZ/rp/9Hf5FYK65/7yNmz5ZU376Cj5+Rc0ZlDU1DOpuh+oCKCWICo9BdJM0rVBfJRqGwzH/rRsLpt8IQojXZVuJcqjVYQ/+lJ8w+2uJuz8jGkg1Ek8mziLJZ9HxD3MTwQwtjlxVj/t+QL4iGFA2umMPEoFGaURaqbSJnaFtHSiI5zTmLg2gWoJmCFjBYythI9BrTiHnDdlNBr5k/3dBUHr+wVLUnZZg3HW6R9gaXRic2sULrLMYPg1zu4NofDkjNGwCKvf6og8H9oenMwEIN7N9DjAwwSppy3C03MF5KZQxZQN6BS+V9g/GQJY9tkKwO7qo6y/H6tLNDV1kV85O7AOm+AfyxXrFpJRgzCodjHmpgE48d+zFG7746BEmvYjmPyTKn23ponWP1OtLG6TIxqz1p7fT++SyM2rH9HAKr+7Z7eOyj8+obMpeH5/JZACV89piKh2rqSnsYYj9sO2WNLy8PrpBaZZaFzWoXDq0ynRfjmUEabE1k7gSkrfuKPpixr0+pTB8Nj5otT5p1YfPWfNoueVJLPp/PepQfDgBiCIIPmMIialrtcCqOPYdOB55qAU3XYc53ugtCMpwXU5ohGD4kQwg1a11LTl95L540a2KRWba9G7NizxYtTeWxOo49js+7BatQ88XZSxoV+Nr8GR/MLrmp5oRak6JB96C8JnSWra24Xcn3wqLquay3++9H1qxKtt/MeBZGpJs+i9FLX+JAYBf3Maw3yrKZfF5UltzYqAnRyPoxYZVlYTucisx1T6MCrXWEbGij20nLkfs9FpZvMKM5lHIPzxmnBFhvC7u4CRU+mlEiuupqOR4tGYv/7//+//Ez37unOtUPok6A8FSn+j5X/dKzfVvyAftzS71pSTmjGpllzd6jn12L86jWYAzugyvQGtX1wgIajdp28vtiBnUFMRZw2IOzZKXg6pbq2y/wX3iE9mLEF5tEniUBgwgrOALCXACgmQzEshozBHdSUug7CTpGi/RIaCqoak+MMmDICaKS2fU2yADIukiXHLmwg6pIU3NvcPOW9XUzgsF5AYEX52tCNLx8sQQFFxfCzjWVF3YyaVKSqIvpQPRwSHpfz9HwpT9lE3PeBzKaHdt4bPA8BRxj7yCTnD/2weMxxutQTmh1QueyXyW9hVNgeN+5paxGUDgdbIcyMJ4C4UHWOOwL3jx64XDfWu1iHQ7D6+/rNbvvfB4CS3tganKNH+oje6gO1xtqCrRexQjuOc4yvX/2gdr0mO67l+479vuYxPvO5+jfJoDpUPL7OvWQdPPw9YfA+NFjew3298H1ufseHM3YzKDVbvJlZgQUGRIzDalRNMaz8jU+mTHOAWDjHZ23hKSZV555ka8DtN4KaJocx1vNiloPzqTytwGsDec69JwNx+NzIihNlyxO7Qyg6sIKXrott6EZt2EKyB1MWjZAcMK8OR0JWfO42eyAUDAiVzeJi7rF6sRNaKh1oNKR5+2Cv/PJj/L+4po/dPF1njRrPqrPSFGRMiQlpld5a2hDjbIygXXTNsWIRVQJEtoexokvYJfvmKz81GkX2YCAtJnxEnDvmzGcPiYNZdnKRnIWYD5ISvuUuA0Nz/QSrRJz3TPXPTeqoTGeNjpsAeFa5XHWcDS1KaAwTiYIrEqirpiA1pD0GHjfR0NfWFdlwxs/P091qs9DnQDhqU71fayfufzT1GdLqk+W4hLqA/l2JY6gvkc1DfnxBTlEuL4lew/bLbQWlCbnJKHzzkLO5MWMPK/JCfTtGrXeQuUksN5ZuFhCTJiN59F/G9i+bcRMpopi5FIAHSBfjEmRgyarvCcZjb0WR1CdCd6O8RBKUUxlMnUd6FqHRCgKODM2EXpDjBpXBZSSIHrJLMhoKz+ti3gEZNIZ9MLTVAIGddl+HxRcO/KyZD6VEGCF9MhZKz0fzsRx6Kd4Vc/RvsPjdDCvygArHwCMqaxTT/5+OPAdHD8HwJUn2xiYw2HZYd0BMA7LDEBNDQOTsu8RGB706ZkyWJmGvh/r5zsmEU1Z7WW6DfW6Jh9vyiZOlz8GGEYgdCQ8/XDd+8DScOwxq3uB6LE6BKHT6/RQqP2bgMHD144FxB+7HsfOd3pMbywdnRr/3HN+h9s7PK6HWNfPyoC+ChTeuQ4PZCMerrd/fHoMNp8eu1NxjITYxopPumXpEZT1nU5kGzFp11+2k8krumAliB0xOgHE+ITCCqa7k0AxKwF1cZdhGZT0Om7ZSV+7ZMdnQcwKn0vMQjmPPlmRhiNSxjPXsnTCuFkdeXdxg1ZnrHtXDFoEjPbRsNVOMhFtz/uLazbBceMbvt0/EtOa+aW0B+SSNVvyDYmKHBV+47jKivOm5VG9oU927NnTZJpq19dYm8C53VLrQKKcS+ntrE2g1n6UaPbREKIp3wlKpPIqU7sgjqDRgCuy1VChkTaL96pruizs6TARplUufX4Jp6TnfRMq+mTooh0dqneTW3Ido46FzbRjVEXMisYGfDB0wVDZwN/+H/zFV96HpzrV561OgPBUp/p+lrPk9Ro2W7CWnCLq0QV506KMpv29XyRZRfPhCvUyS29hysL8zWrQSsCeUuR5jeo8+sXtrm9QZ9i25IsF/lGDbiPmtsNfNjz7cUuqEqqJ5K0FndHzIEwdjHLF3GtUJbLOYXBoagGQg0MoJpOTJg/9d0mLJDQoWiRjUFthtXJSkBV9crKuyhOJaqIujOJ4DCozW/Rjj6Ir8RA5K/TTjqaRpv+2d8wbqKy4ap41O/v4w5oOSA/B22HdkWIWZg7u5u3BAFYtM+fvlaAOIO8YYzUd1B6CTw07p0rS3jpTYHh4rlOAGbME1w89PVOW86G6w1pNBtyHQOtQEjpcl+kxHW77aJj7sWUnzN/R43rgPb3D2B0A4sPtPATIpsupg/fsWE3BySHw3r3/k/tpkDWqA8DFAehR+wY5O4Z0dzyfpSdvahD0UB0Dqa+7/N7+HtjPd8MO3lcha1JxuAxZs3DiMqpVpo1W4gpcwiLulKtUj0yeT4ZFcaccXEOHigUMDvdFXZ5HWmU+WS/5IJ4zc4HLZouvtixsNxqRDIYm+9dluAYJkV2U6JoxOkFAos078FdP3Eu1SvhoWPtdJIKmHieUQmG53p7f0taOtRfpo5iqGJFPAmf1isfVmnWo+aRb8q3NIwDeX14DcK1neCu5sDFqslZF9SGKkTZYPvAXtL2jqTzvzMVYZuVrNqHizHXErNgmYVUH6abTURw8KSY7SoLfU1aEqAvgjmAZgXhEYinWvhpdQYERbFstfZroQKfsZIJMU5tAzIrKBLbBidokK5yJcq8kLVmVKqIHBnd8tgqAb4NcB/vA98qpTvV5rxMgPNWpvk/1M5d/GkB6BWsLqcxKKwWPL2C1wd72qFRknwB1LaAwRvJ2K/2ElUM1tYDEmEQyavSOccwZfbMhvLdg85Wa+ccV27cs/jyjEqhPK9CZrEC/tKQ6k+qEWgSMTUS/G6DkPMiqMthEKoYkOWhyUjt5aVZonchaXrdViYQwCb+uyDqjMvjWjkCRDPN5h1GZm40MCpTJQ+wet6sZs3lHjYAYZyLrdoZbtNQusFGOxgVhCGGUEg01sINTNo4HwMOw3MAK5qzGXsFDtmpaVovcCvblaaNt+oSdG5nLMjgbGL1c2LmkMvvDw52kMykl0qXJ8RxmYMER6WUZSOYjrM5RqaLaZ4sekkEO13S6r+lxD9u4r+5j0e4sNwGDxwZcYxj8pI5lDE4B+SHQGo/jFWzWXcD65jVcZyaumCM4nACEQzOUKWjc2xbsgZKH6lDCPKwr53JcXvmmde/6anfMDzHGb1LHZMP3LReTTHLVOow9ZM+2Sz58eY7WmcvlhnnJoAtJM3Oe2gQqHSSeQKUxN28okwfJoC2fVZFTdt6O92QfLOuuYjWreXdxQ6UDQ2/cvVmQ08/c3gSCKQDRYgt4uvIzZsZz6xtWoaYvwMUnjSvB8ZtQsXQdCUUfHY3xvNWsuKwMK1/TRosm0yfDhWu58jOedUsA3m1u0CrzG7dvcVlteTIrhlqNIUQtPZTekFxxHU1qzEy0JlEXgLYJ1SjX/HBzXnIIN8yMH011xC1VzHF06dtrrKexgc7bkqcowH5WecllDCLZ9MHQVLJssOLiGrPi3HYSUp9UCavX9NmwDtXI3oa0cyfWKrPqqz1GUd4veQ8G52iFANmcFZUV0Ppf/Es/9zq37alO9bmrEyA81am+T5U2G1RdS19gAXYA+cUVOWcwGvN1DzkJ2FsuyDcr0UyCOIkO/+896fE5WC3AbuOhEdc2VRxH3SrQ/5hj+5YjWcg6o4PCXStMr4g1xBqyyZigSdER6iRy0q1FzQK2DuQk8RI5ySDW2DzFAFRVwPcyGHJ1oK7CTgIVNcpJIL2xsQTfK5pZX0LvNbelZ1AvggTOdwtC0JgSW5GyIgaLs5HLJyvmdY8CFnU/DvDGa1y+zKdgEHZxDEYn9ARUZHZxFKOUr8i+YirGCWW9YRCgyQLeygBTl3D6YWZ5GGAcyj+HwaEpYHAAalBAxeSiHhvU///Z+7NY2bo1TQ96RjfnjIjV7eZvTp9dZVZmUY3LrixV2bIp4crKtLjhzhI3CAkJIRBcgEBCtgrbArkK6oILGku4ZIkLy0aIK26sQgIhQFbZ2NVBUpknM0/7d3vv1UXEbEbDxRhjxogZM2Kt/Z+TpTrnj0/aWmtHzDnmmE3E+t7xft/7ugQK90oOJz2NU+Yuj6XxY2lwCW7LBD3/3LsWxTRKMYb3jWPlf2M56MyYx5jAMkpvxSmzJwOzTJ5nX/Vz5194yA4+BxQeK2U9xrRlD8nd8fdB8anSxxI0zgGJaSnpNEowODv+E/f2OWzfWP5KOAC0kliimbcp930OK3jsOTpVXprPqZIOksF4+d1wVbesVxWP25rP311Gf71skaI9q2XHRdNxWXVcVS0r1XNlWlwQrG3NxpqRSbzvGlqrabRlaeKi3tYa7rYN265CK8/n8oKFHqikna04GM9pbrEk9eDZdL2GIPFBcj80PArHXb+gtXr8Liq/CwcfgV+VAJkNiru+YakHlsnGwgYVy02D5CIxohBFYL5W3bJ1BiPid7L1ksErOqtpKsGmq+h6jRcBpT2LasBIz2aIfXaVsmM/5rtuyWXV8apes1ADt/1i7HvM4LuSFiMVWjgudUdbGQanRqsJFyLorHQU4Ok7w9BHEG5dLH9V6bu8rzSXukMKn16L82+DGfuqe6/H7wVXfD5rbVGphzACZj3+Lcjb1doSgP/4t/7tJ57gc5zjn944A8JznOOfQPxV/a8ipIjCL85FRg8QxoCUiLqKPYGP6+gtaAz9t15R/V76o2wMYbMFoxFVBUYjHzb4mxW+Mah1j1+YyBB2HSxqzBePvPhdxe0vV/ga1KeC5Weey++32IVm/ZHm8ZsC0QhcE6XEEWEUewlORgDnIhAMXoAXeJl6/pyOjGLyI1Ta46zCm2gU33UmisVsFUGAubHRPD0wypwDsXzUBExlqbRjebPF2th3+LBuqKpoyNwYGxVHk7CDFIG3j0sAXl6ud55+7P5Qj0qfCSxN1UBdkYyW4EEXZWBjuWdS4pyCjwxUlPQY4XZsYBBjsgE7IZfsbVUaL097F8sYE10R9kCRR+C9GFUKY5LNwb55e10k5/kYKpUIlgl6eV75pZyQzpmdHwM+0/OYMrOZeZyOXW47zmPmfMZtSwa2ZMgKprOMzCb6BMynoHjv/Ivjvm8cuz4laHeTbaelxD7sjK3nAFbedg78la+XwHm6TR67nPep5xHmy2un7x0yoHkcH0HhDNv+VBwDg+XPYyWt5bUrt73QHb/28jNskHy6ueTH767ot1H0yg2SRy8YrKKtdeyzMxrdPPJB9TCKusSS0g4uYG3rUTyl8xrqqO7ZOkPnNG83C976JS4kiwPlqZTjourGPr+j15R9Flfusb0RzCzNwJv1EiECTWXpU1XHdjAszMBCD6MSqpcCO6i9+987xdtuNQq6SBHYOsP/b/MxN2bL2tZo6biqWu77Bm12VQ7WybEyJJeoL83A68UjlXR8tr0kBMFHywcAvvf4gnVfcdNsWeqeJonsWC9ZqN1noZaWF/UGT6yy2HTVaBXSWxU/01ZCgE7GvsguibzkvwVaeGoZy0Pjd0YsBfVBjNYdeXvnJY22qFTFoaUft7FOjixnriKBpxWrz3GOf9rjDAjPcY5/AiErE1lAQFxexp9NTVg2iG4g1AasQyyXYC1hGKh+78egdSwZNQaxEhE01gbR9ojKIO+3sXdDCeSmR3Q91HXsMxwsiz+8ZfF9SajiR12sW4TzGK2o3i6xywv6FwFpI1uIAFm5mIg6ge8V2AgMhPGpd3C3gu6cBBuTRlNZvBdRQEZHUFjVAyqZ2NsELoUKeCsJncJcdjRXHVL6JA4g0MqzanrevL0gvKtorxSvP4glSznJyIn/sunYtPX4x9iH6Csoi2Q8p4HZM2xaLpn/jIcQ7RiAHZsowr7FRAIfeQV+7CVJTGVppJzlyPO8SoA6La0st519ftLxM6grQWn29isjX58xcS/GOCwTTMcIO3ZnLqbCKuXvTwGIHHM9fnPnObdtuc0I1CcG9OP1Tdf4VK9fLsUt2aJjxz3FYj1V6jgFhlNmDHaALH9HzAHFzCbOAanngMK5mILx6TMxjWOlydNr6yjvRbrG4TigPRbH5n6qRPrgXuW3J6W442dTiMhCqYHLq45aWX50f0XbGoKXCBkXvbrBsE5AZ2sNXMCN2bBSHajdtb7SO7uFISmKdkpjQ0fndAQ2QfDj9RX32yb2+/mKdVfhLiSXpp29Rgef27RgIwmj1+HWRsbrg9UagE8eLrloOm7vVyjlsU7yKCoukk9rKZwiRUj9e1Gd+IebGz5qHtDSsVBDBFteJxGY6O8HxJ7AocJ5iVJ+r1R8mQAowBftCi09jRp41y6572uM9LxcbJAipHLSOJ9GDaO9QzSt70cQ5oNAANtB4xNTCFEd2w9yVMQWYreYYhKgk8bvleruLQIWZaBVqvqoVax20cLTKDuWCpff5/me/N//6t84uG/nOMfPUpwB4TnO8cccv1X/V5EXKwREJhBAKYLRo4KA2HZgHQiBf3WDfHNL8J5wc4m8eyT0PWK5iOyhdYSmQvhAqCI7GLKzvPPR6H6wUY00WPzVkmAU8naN2HbR8D4EZO9QHdFWYuVSLZ0gaIEwntCppEIaV/tDyJ6ECWjo+Ac4/vGN4LCpBwarWK8bpHIYEwgh4H3sjWsuO0KArjOgfTy2A5BsuyolFCCFwm80VIHXrx+olDswgHdBYJTn1eUaKWJjv1GRodPSj8mOK0Ae7P6YK+mheE+IkEraxHgso9yYNJfgowQhLjFOAkZ1unwc0mtTMJhBVJdELqZsVAlspjEyBMV7Q/I024vx+Pt2Gjm5LBPB3HuWGbujfU0zrB/Mg8C5bZ8LHE/FdJwpI5Sv78Hx089y37xgcKrkkOL9p8Df3Jymx5dhXxwmjx+3mYjFjPdjfx5PHfOwhHN37DKOKcCeOtcQxMEiQJ77/oaCEKLgx86GZb8c9mTfKM9XJz0mULQXBdvtC+Yyji/xIQKAX7p8w4eLB1pnuO8bHvt61yem4kLX41Dxj+8+4MPlA9emZaU7amH35uuQYylpDp3VRYXgW5e32FXsc7vvGh67itttNDNf6GFUDC3Pf+/ZKK5TLgO9rFp+8HDDZd1xXW3pltGAfdvEcsu2NwyDohs0lXZI6VkYO447yGhDURsb1TpdhfbxOi3UgMJzobpYlWChUcOuvN6k70Mf++kabemsprOaWlsWeuDKtNz2C9ZDxQfLNZLA59sV295QG4uRnouqSxYQkWV9oEls5cBCDbys1+laNAxe0g2azkUw6geJ6yUhZbZCQhvgITGwPuzbfOTqjwhEo7Jp7u3eZ+s9V6ZFiip5FUqMdNTpeThV+nuOc/ysxBkQnuMcf8wRnAMpEFUVbSSERCgVBWEglpBaB1oxfOMlcmsJlyuEdYh391FEJqR+QxU7joR1hNUCe9Ng3m7GvkFCQKjUoygiivPLivtfWnLxfU31g7dRoXRR4VYVL353izcLbn9d4lcOZCoZDUDyKRQyjGBQ6vg7qVRGmvhHWGiP1lGVrdsaELBohth7Jz1aC7abOgrDbGqCF1S1ZRgU7qGCy57FoicAD1+s6JZ2NKWvUn9GGc5LdCq97Is+vxwZ0JVlmdOkXokwKsnNCY/kKMtOcyOeTMBzvMczjEUGelpG+4nBKerkUVX2cpVAtASDZZSA4blRglaNOGDM8jZzAKMsjc2sYQQyx/vnytfgOEDJkYHF+5RjHoBBDo91bMw59qssI55VOD3CRJ06t7nz3xuTeVA4t++e8M2EbT5WGnkKNM6lrdNjzrGh5RynYj2jr+aMz1/uu4r9r7tFDi38LFu4O57cW4iZm9ssk1uUU86B/fFZnlxXj2AIEukVtbR8VD8kA3nF237Fg61prUn+eNFWorWaT9ZX3JuGC9NxbVpqZffmPfhoXJ7VRPOxyvPIpZKvF2IsK7U+ll7u7tFukWkKCrM4jg2Sx6Gm0Zbb7YKV7qmVpXMaJQPg4vftRrPZaDapGqS/iD2SLlncZJYuBDGax1uvMLrla9UdrTe4ILnQHZ2P/ZO919gg2Q7x75SSnu1gGJxkYezYRyiJPX1XdYsPgrftksEpFtUwfh/nigcvBHZokmF9oJYRJNfScWVatPBsreFRxOfLyuhpG6zEWwk+VqOEAN1g2FrDlWn3yvjLZ2qp+3Qd1Xhd++RJ2HvN/dAkBdME/C106Vr9nb/yt44+y+c4x89KnAHhOc7xxxh/Vf+rAIS2A6kQxuBf3eAuKkTnYh/g5Qp3VaPWPfrdBpzHXzb4SmM+vSMoGb0Fa43YdIRFTRACEQLm7QYGGy0nEsNIXcXXkrH93a8s2b6WtC8X3Kw+RLUO/dij7lpCo6keAkGFWBJahFAeIaPGDS7KiWfLCO8FQoKUAd3EkqBhUHinUEmIQYhAN+hYCmoVdRP7/4ZWs7xqoxCNE6DiH/LaWB63Ndi42rushxFIqcT4abJAQrSdMDqaH/dOUSnH4GVUCQU6p8byUSliIlImUqUgzDThtEll0IcoP5779JTwOxGQIh+ds0bIx+2SafHCWLTwo+HxHkNHkpZ/BmNzLFE/xaLkYx2zIyhZwvG1SQlpNPKOrE8GXcfKK+eYDNgvL/2yDOFPavq8z64832exjKcYqzmQdQD+ZsAsPP/8joL5I6zac9nNuTh1Hk9ZcJQ+hy4IkDHZz/2F8+A1A6D9XsPp56AsiS77Ucv5iMn1mPv89EGNfWU7gKgwwvFB9cCV3tJ5Q5fNyxeCN90qWjZ4xZt2xbtuyYt6w6XpohpwEKPoy7R8/Fg0atgpBxfAtWQ0j933vPi07it6q7jtFjQ6fufeLLZsB8O2q2L1xzaVPvaSdSrnrxJTWC6s/XBzza9efZZUQCVfDBcsE0h8oSPDV8sBG6IP4MIM41z6ZHq/SWqjl1U3qp9q6bltIxv6erlmM1S0qZ9PSw8KtLRjGWfnFY+uppY29jWayOZWqopKyOm+rr3ACsDHXsPgBEjBMCg2g6FNrRPRXiPeF41P/YUOqyy93188yIuLrdPjta+kpRdqN99znOPnIM6A8Bzn+CcQoR8QjQNVITdFj0hlCEbRv6gYvtEgLTRve9R6wC014RsvMG/W2JsFsrMIIQhGEYyifdWw+O5bQl0hvEf0qRcxA0JvsB9esflQ0r0IBAXbDwzVvaH5okb1gfXXJeYxEJRHVW4se8yEo7dixxACPllSjEwhjMqhOZarHq087aDHVW6tIqAbnELIwPaxhiDQzYBUgaqy3D4sCF5y+fEDNiUT4/VLq/1lQriqdyp4gV3/YA7BfvKUE60ceayy70+KgFS7kk4fxKhsZ5RDiV0pat4eGEVrsvoosAc0G22jl1ZRdlomdWVSMff+ODcOXyv7Gsdzn0sYZ9QrS7uGklmblpDm/cdxcnI/iTL5PmAyZhi655Q/HpzHM4DNsW3KEtlyzke9BI+Aq1PA+tg8joGouf3mYjrWHiCaATun5j43h6fmMnsv3wNkjux2ek619AkUun0Gb++cDgVo5sBpWRY7C0qLufv0Od31FMY9s9+nd4YhSGoZPfG0cBjhWKg+CscARjhemjWf9xfc9wv6VPrdOhPLN0el4f1e46eu18iM5kuVAEkuCT0W5aIXwGAV923NRhmcF9Ta8vHqnvu2Jiyg8wI6hXCC0EnaUOGXu15oKQJKxH7At/2Kl9WaWlru7YLOay50hw+SperY+ApJ4EWz4ToIeqdH4Lcdoj/fwlge+prBKV40Wx76WC0iRWBrTfSRrbvd/YHIlApPU1wbIDKFyNGbMff31doipWfbVfSdwSMpCmforWI9xOMOTo3fm5YIDE3ulQR6r8ZFwSGdS37Weq+BenzWzuzgOX5e4gwIz3GOP6b4a9f/dYQUBB8IzkWWkOSPNyRVs2FANTXLxy3Dx9d0Lw3tq4pKS/R6QFhP0BK17rGXNb7WyK1FbnpMpQiNQT620aew7cBo3GVN+/oas7Z0LwzDJbgGfB179oZLePiVlD5JN5Z/epvBnie4VEYZRFxlDYIwCFTj8E6gdExQnFX4QSKNR6b+wlo7nBdYq9BpO+sk222F9zKKyvQKAtS1xShHN2iGTYVZ9oQguFh0KOlHhhF2DFoGfqXVQ06zpslijrFX6si9KksxfZEwZ0/CDAy9jKqeZRI+l+RlkCkSwMzlc7ncbE8sZMZ4fG9uZTI7UzL6nEQzl+xp6ff6yPak7QOzSfWYIBbn+j69gMdKKk+99lS56XTb8r4/dby5+zYFsnm/KdAqn41T53Bszk+xesdijpmbHmsPDHL8eYF5VdOfRpTg+tgcPAKKcmp8LInMiyKH7PL7qZI+JWpUfpam/YQZLOY+sagWGv3+TCpzNcJFIRrp+ah+4EL3dE6PJaJGxr7j4YTP4NSM/lRkMLixFY2y+3Nl1+OmRXFuPn5fDamc3gfBUvdcNh29doQg6IGA2vUae4G1kk1Xjb18Lgj+8P4l/lKw0jtA/Ka/YNn0/FH7ig+qB37z5g/4w/b1WFrZe8VS97zrlrGiwyk6p1hVPW+3URn6ou7G+1EnS4qy5zKfn5YugTAwMpb0amExRY+llg6dvpfvZGAtAoPUOBv/3ggB1inWQ0UdolBM/l5H+liiS4hjpGP1XtM5zWYwqHQOObIYVV+8do5z/KzHGRCe4xx/TCHqCqE1YbuNZXZKRcEXiNYRKUJdEWqN+fEtrn6JdAG1HhAueR1d1Oi7luHSIAJU1hO8RG4GxJD+KCoFudSltQwXkvtfaBguwNUBv0wKagP4JkntB0CCqCzBSYKVCOVxnYJegpWEyiMbi6pCNPU1Fi/jyqv3Eik91GG0hshJXUwMY2KCAmtjeU2z6Km0ZdNWaB1769bbmqHTqNohZeDxzRL9wSOq8vQ2ih/MiqI4hQtiVBh1QWCtHvtgcvgQAa1KvXxTBqEUq8ngYg5E5H+DV2jh91Q840nHPkMldmMBo8dgTkIO+hWL6cyZpZ8CGnvlc5Nt9xmR+bLE0quvLKUt+wdlYFRaHa99MdZzwcQxQDMHSqb9YyXQm57jc45/EmQXcyqZ6Ol+71tyeQoUzs3p2GvHQOSp/Y55FGbmd+45ORXvc+5P9RaO80uLTQOxJFwHj05s4eH8dqAw73/seTp1DgclpwUoLLnrbOlyPzT4EG0JLkxHLR1d8rLLc9XCUZkIMmxQY9/gc0DfUwC3BJSVctE8Pi3sZBuE/H4GVRd1N5q0SxlGW4bHoaZSDiM9nVU4q5INkBhFwQC2bWTssj0OwNtuydtuyZ+8/pR7u+BNtxyv3aOtx7lGcStPJWGlu/S5lXgdF8PuuwabVKhbq0ehntZq7mlYmCH2YRbfNa0zNAy8rPrxnI1wSUwn2khoImDPIUXgUYBN9k5SxjYC6yW6+L53IS5O9D4C+lpa1tTxXnpJazXWKYL0uCBok/iNkp7Wav7u7/xPn7zH5zjHz0qcAeE5zvHHEL/z7f8e3FwhHjdRIVRKxKsX8OZd3CAEaGpCXYH3yLuonNZ87za+H/9CI3xA1rFRv/lsg7uoCEbhlER/fk+4WCC6pCqqFbQ9VIbF5wPCad5dK1wTonpolYRmAOFEBIRD7LUYlUQHiWgVQQdC7ZCNG30ZtHEMnY6Ml5UICVUzMAyKodd4L/A6Mne1sQgBXVshBCybPp1WHMwYh1GOTVvRryvwUZ1u+WGLfukj0ASul9uxP6RM/nJ/X6Pt2DeoRFQ0dEEgEwCUIkAq/SGVfeZ+oxKYDQlcShEwCThmlm+ufynHHLOVgV8uqSxFJKbqoTnxKPfPYDN7BOaYrpxPS//melmid908UyNF2AN65etxTnIHWBPDmGN67OeUEE7Ldae/H1OcPMaAngJUc+WNxximEnCe6jc7dsxjc84xV8IoxCH7OB7jSFnwsfGPvf7UNTsFkt/3WHNxyqdyFC1K52WdZvABJVRc0BF+tBnYzXe+r/A5cQpoz4HC3mt6p7htF/RWoWTg5WLDq2ZNncpBXajG+fggYk+btPv3gMNy0RIoPnUeWvixP88TqxMGr3jsa5T0vKg3VMrhg0QlgHpdtejEemVW62WzRkvPyvTctotYbSE9XgpEUufEShyRKVwLWFYDgViZ0VrDTb3lbb/kSnc0yvJZe8G1afm4vuNH3c1oDwEVWyd5GKLpfVYW/XR7iRSBVd1jkzpoCLHXsO1NVJhO9yVbVZSf57f9koUaeF094kNUcVV4TDKNV8pySZfY3Xi9O6nHT5MSSXwmieeodI1c+g7unKYyNlWAJJsm4jqrAtZdvN/Zvsi657O85zjHz0KcAeE5zvFTjt/+tf8hIoRo8WAtYtFEb8H7B/jwVQJwQ7SIqHUEg4kNFOttBG1G0/3CK4YLjfCB+k2HeuiQmx58IBhNaGp8oxFriQgqAs/Uk1h9saH6PLB9/QK7Egxf66Mi6INBeJGMwogM4SYmDaHyqI3EmwgUEDszeucgVOCtRGmLkJEtVNLTOsNq2UXD4HWDSoyeUp5BhKgSmlZXtXZU2u7A4CaCQVTArAaW1UCfDIUzW6MOSsgOlTlz4jIH2qbMYAZOPkR/qcw25GRh8BKT+wTFDlTl7ayX9GHG5oFDYJTBYZ5z2a+Yt/diV0rqAUsUOhBiXxU0MnWM446AAiKwe0LCv/w9s37ja5kNTP1L0eZj3++PucQ+lZk+F0zMsz87EBT94eQ4z2kyfYq9nR23uC5S+PTMyFmQNWUipwD2OaB3GlPvwZ3f4O6ZmGc+J+A+gwgxf/wpEJyCsFMloqdA5DEAfOwaTBcKTgn27D2vabPBK1yQWOGpEHvWC7s57Z6RU/EcBvYYKMysn5ae9RCBgJKe+6FB2wjSHvua1uoRMF41LR8tom9fBon5GD9JVNKy1P1oT1GraOEwVcvcOkPrDDfVdjS4t0HSO8WF6bjtl3QuAl3rJVJ5hJLJSigJsKSi+qHTPLQ1F00XS/qt5lW95nvrF3xw80NeVhve9ku2zvAHm9d4BJ3TqWwzg2pFoyyfbC/pvWZlenoZGdRgNZWO18YlkbK+q3FOcr3aMjjFVd0iCVQqWmA8DnU6zwovh933ODtmUgtPo4fx85bbCkpFYyl2wjl7nwMERrjoVygqQoi9l5kZVCLgEoAF+M/+y//WT3Rfz3GOf9riDAjPcY6fdkhJuL6I3oL9QNhskK9f4q9Xsd9P5qzeIz59SwBE9hHUOvoEKoW+7dAPPXLd4ZsqiclUiG5APmyjB+HbWFoalIxLmT6AC6AECMHlDxyP30oloMaD8TGvH2QUFNAeFiH+3wrcKprPC+MjYAiMgjFSBETtUNqj8HgvaDuDMW60gAgh9hU6L+l7RdMM0ci5Ndheoy/jdoNT9JuKYAVCBy5vNuhk5dBnP0EZxnLQqSCMSSU8mdUrjenzH/1p+V9e2aVQHt0ryyzKXcfS0amUftj1noQJ+Izgbh445J6TfC5TL7ZRWTAk0/vUo1T6YeWSVInAi135W56PF2I0qJ8zQS/no5MH4xSQlHPLIjjWy1E0Z7YfbGQsD20tpnGMFdvNU83O9xjYLNnS0gw971OC+qn33DGD9+n4eZyDcU/sV5Znlt6Oc8BwD/SzM2/fP+fngaC96zMt+4UDYaZT8T4lmVPg95Ry64GoTiiOicAFSe/ASzFaVOyzv1GQplwgOQZenw1q83+L5+TCdCO48kGwsRV3fcNjV9MOOvZFD3Ee62WFkY6bentwjDl2cJzfCZYwfr4k1kdbhKXu+WR9hVEuqpnK/ed5PVSsh4pfufoCGyQ1lpWK5aTWxx46mRaahABTRQVooX0cwQtklb7L0yXJglpvuhW1svyD26/zzdUtCzVwNzTcDw0fNQ+8rNasXR377qzBBsXGVmytiWDQRWbz5SIqsa5tNXoYhiB4dJK+M9wGweWyxSjDQg80ItAoS5U8YbfOUMsBI+LCY7S+EPi0SFdJC3pXRTI4tfctrhIDDfH5AkZW2gjHhepYy8jAqsQYZ9/GbtAY5RnO7OA5fg7jDAjPcY6fYvzWP/vXEY2JfX8hIPoBBk37yx/iGoneLql+cAubNqYANonLGAPLBUGruI/zqH4gaIW/XoILiMERlEg/JTspUI/oHSF4sDbubzS+0tz+isabgHpQXPwDw6t/1PHjv1Sz/YYliABOIDqJ8CKKzlQ+JQcpAgjtCS6VQVqJd4Jm2TP0FVJ6dGXHzbVxI4CsazuWLtlOg4DG2NjfMqioMCpj/6HzkvWm5nLVsqyjsEzuYckloNOkW4mwl0Zlo/m9JB72mLAMgLIiZwYQRjqs13vjz5byJXL1OaWDu1LNGRXRAohKwo6FFDtQmEVsIuAt1FNFLCfNwLBMOmVxRUqp+1FAIV2nkVktkmJXAKCyh6c8jx2wmGE/BKORernN9BpmRnEK8o/9PsdqlbEHVMPOFmN+DHkwzjGQujfvGWYy73usbHgKqOYY3L3Fh2c8U9NjPGc7YGTA8iJJ+d6xfd73WKdiyhhOgXD5ey6VDkGMyp/JJGHyXPpxAeF95jjdbhYYJqZw+mxkz8BaRdVMIJYleom1kh/c3tBeGF4vHo+PPxNPiQD5BJAr5fjmxW3sbWSfGdfSUUnH5+sVv8drvra8H8VwXBA7X0IZ+6wxNop8CXCpXBQvCF5gapvG9GOJpQ2Sl/WaH65v+OHmmn/x9e/x6Gp+0N6wdYY/2rzkUncRlCmHDp47uyAEwW27wAXBdd1SyQhOXzXrpOQZ/VkBNm2F94LHbY11kvrSjgsCmaEbgmQIiivRgoiqo6MdSPq7oIWPC1rq8Puvkm48nnBhBJHZ0gJgoQaapDjaqAEtfGJAY1nrf/zb/7Mn7+k5zvGzFmdAeI5z/BTDXVSo7YBsB9z1ArGsUG8Nze9/xvCNl7hG0337Ber1JeaT2yg0s2xg00I/IJyL5aNagfPRTqK1hFrBYJFdD0ZHa4muR3QDoU/2C0LG3330d2o/XvL4Hc/q+5KP/m5L9f13hEXN9XcN3SuJXyQ2qQpjCalQHnz+I5pPSoAE1ytCAN04rFUo7TDGReGYFFpHYZjaWJxPINJJ6uUwKo5W2lEnz6t3D0u2mxrbagigrxITMAF7x9iiueQ1m82XUSu7Bxyy6bDzMRFyXkZAWSScOdkqy01L1mc2sUzMIUz6BU+wFB6x1zeoBGMpa96mBKt7NhlFOWsea+pvl+dc+hwCY8nZtFRyepy5xD2vuSuxzwaVLNhsIlyARusPV9nfR730WMyVt7qQwOgR8DV9pk4xTs/ZZr8UbRdz6q3T+exYpPme0DnMcMBUw0EPajmHY4D52HkcgNvi2crnMhfHgF8GfMf2K7ezI2MukCGMbKHPiw9in5V96pyOxdz9PFY+fFNveVlv4DI+b71TtM4weDX2vx1+P5S9wke862YYxLKcNbOmo4m63ymZSgEvms1o+fDjzRUfLR/wwtOl7w+fFtq0UqNZvfMCayTDoHFu990vJucQmb+KjxYP/Hhzxf/r3S/ya5ef0jrDpe5Yu4ohSF6aDQCftpfU2tJ7xXbQvF5ueN2s2VjDhekw0tGhuTYtr+o1K93zib7ksa3pe4XT0W7DBsmlGlioHhtir3cWlTEiCpnl3sr8TJisOupjT2pWW4XMELq9BSktM+jctRPkigIpAgs9jHYVnTunzef4+Yzzk32Oc/yU4s//N/4WzUcVF384IFwA7/BLg1gtkO/u0f/gDzBXl4SmIqwaQmUQ1sHtQyzPUZLQeURdQdsRXOzxsN9+jXrs4e4hqpMOlmB03NdahDGEbufJJ5zHVRrpAvUXko/+7pbqe28j4Bws9bsrhFe7mqA6snpChag4pzxSBVwqhYolrZEpxEWAp6XbE4qRAtZtxdBrLlZt6guJLFf2NczgatubCBKNpa4HtpsaoT2ry3YvUXVB7BnL59enQEKnHkHYlQNJtQMcPsQSNCV86nnbrRT7olRzb7Vd7MpHc+T9cpKa3xEcJp97ZYDi0FpiGrmvb1RTFTubB0kse5x6GJblkbmU1CbZ9jnAk0FnBsbl9SlByR7jWACCKVN3WA4n9kFIcZoHifWETZxemzlhlWlMS2mn4GeuvLW01jg4r4mC5ZeNk8DkxMJAWcIcX1OzrOIB4D+lxDqZy1OlnKfiyzCFTwG+5+7vQwRdcZEiAsNjc/yysQ/ixcgSHp8cow+e1tELL7PyGVAci7J8eX8xwk2Ycrn/3ZHKR/NzW/bR+SBZqZ5fufpiBImjsFWQtE5zVbU8DjVSxPL5LJDjEWwHQ2djSviwqQnAdjBcNW1i3jwPfcNffv1dbJD84d1LOqv5tetP+d76JRcmCrp81l7ystpwU23ovY7flbXgsmrZWDNWZLggxuPXyvKijkDyjwaNU/Hvw48er/j6xT2vqyi6poVjIR2dNzgreW0eaeSAlRItFCYJ66xdzdYZdGFNlD9j3ajU2o/f85V0IzsoRbTBWOoeKQJtAoBL3eOV4D/65//Xx5+Jc5zjZzjOgPAc5/gpxeUPLea+R719ZPj4mvU3Gi6+v419+nUFtokWFHf3CJ0+ek2NWDbRNsK5CPK0AiWh7cAYqu99kVhDnWg7gfAhgkZrwToIHoREVBWhqRDOUb3Z8s2/M2C+9zlhs0VcrEBJln94y8UffcD9LwMqxPJTEqkSQOhYQhScRDcWLwVKebyXIAPBC+o6roK3vWHZdGx7Q7uu0JWLoC6BQaOiiIzzEq0c7aBZ3y0wiwFZxxJPbRxVPSBEiKVCg+L6cjv2BU5LRYE9MDaWhsIoyjIFOINTWLFjxBDE1eAC9OyBlvT+NAnOzGM+/pR1g0MBj+nrin2Au8ewTViKzPbkPrQpY5m3yeOJEHBFqWi5zQggRYCipzED1jJJL0UYynMpwW0GMHOsSgSHRTlmZg3nehCfiKdKRndjTfab2XzOb/DUXKZA9iQwnbzmZ56t2XnPsFDjGIjJNfdHrrc8mP8si/kMUHcMzB4r6Z3bNm8zd21+kvJTO3luTx27fO+5zOHhOHOgbldyXd6bcmFp7n6Mx5gD+dPP/Axjvz+vebY2s4lSBBZySOWUBik8Nig+qB5oveHH7RWPQz32zq10z93QsLFV/OxKz7aPYHDd7yySPru/4D8a/iS/dvMZL5pt9F8MkoehZm0rLk2LFLHP78ZsuR0WVNLRNOtxzsvCt7GSsa0giglF5tPoCBbXbcWq6bkwHfe2RonAtdmOwG0Iii+GC5ayj+WeWJaqZyl77lwsUe2dYktU6c5qooeLfw4jc3uCHF/LKrfXpmXrzJdaEDnHOX6W4gwIz3GOn0L8tX/mX6euNGI7EBY1CEF95xCDQ2w6ghSR3RMCfIgATimCj2lDaCqCloh2ACHwlw1icNhlhfnDTwnDMHoNCq0g/bESxhBsUuKTgrBaEJRCDA55t0Y+rglCIFZLwuUSvzD0Lxq6l4AIhJIyUYATUSQhCPAR+Cjlccm0XukIDDfrBqliyah1sSdQqMBiEfv/IjMIUnqUDKjkh2WtornoRrN5KT1aO7abGndvQAcuXq9HkRrYJYGR6TvsHQRGi4m5RGos78wATATITANhXNWfAz1lDE6xGQyXdbdn9TAKhkyO7QrRFinCqBwqi30j+HzaziKDwvJ8p9uNINizYwvDDlDo8hql+UyvH+TEktE6o2Tt1MTjcTw2u1K+PIYNO/n3fI7THsRZ30UOE/1j9+SY6iY8zUJNE8O98ynuyRQIzbGmT8VTwGqOufOT4+iizPDwuH6vf/T4dpO9joDRvO/c618WXE1fn/uczt2zY6ByCtJPAcTymM+5ZycVe4uS3vnrc2iuXs6jLAE9WjpajneENT8okxVRpRUZlUnzfivdYb3kQnUMXnGttnSV5kL33PYLFmpACs+l7lK/XhhB4UIPvKg3/Hh9xeAUSnl++OMXLMzAB80jP1pf8/fefp3BS67rloehQRJoneHKGGyQLHUfVVmHmkYNI2uYv0e2LorC1MrymNi7YdCEEHsm74eGpY5s3tZFcLeUPXh4dDXWKxYqgcIEgl8IjwuSta1ZD8lXsDCRDzAqtqLjdXvbr9iqalSJzT2LmcXcOsO//5f+nSfv1znO8bMaZ0B4jnP8FGJ4uUBtLdQK8dihv3jE/GggVIbQ1MhNUhdVCqRANCsQIjKGLZEZXNRQxT94orXITYv44WeEZEmB8+P7OWLPYACtIzisK8RgEW1H2LTxvUoTlg3uoiYoyfYDw7AKBBMijRJE/DmI0aQ4BCD5DXof32+W/Y79G6LpcQgiKoh2Gl3b0fw3hNgrKIt8SKuoCjf2MCUPqMdPLpCtZPWdB0KARRWVSYPYgRgXBAJG1rAMFwTeamptD5L0nNiICVvjkljFNDnMSXcJMCGCC+tlVLormIEMzBSM6qDZQuJYcrtXpjgBHiMIm4CBYwzIHHOVhSAyUzBl/8bj5mcoXQ/HfllqBtJ77KLn4HizoBTQIQkKJWAI5drDzLXJVY4z516qb+6uwWk/ulPs1FRMZ3rc6fXd75M8DmqeilPjTiMU1yyC+NhHp6P8xyF7mxu/Thy33P65DOYfV0wB5zEA/xSIOzX3Y8AQngB9RS9u/v/hcdXBa9M5zTGVGRTmMXL5a/l8T5nJkiGeO6/yuEPqIYzfZRUVNoLBoGjkwDu7jP9PTNujrcYPZi4lX+rIzL2q13xc37PUPZ9uruL3tVrwe3/wEcO34wLZw6bh5eWax75mYYaoZGoDg4tiMdmbUSeLooehQYlUYislTQJcD0PNxlZjC4CU+33GPgje9Uu2aoAqgsLIRlZsXWQxB69B9lzKFmUC91XD41CztWa/9zsrkPp9JjdbfGST+9Ls/gwGz/HzHmdAeI5z/ITxW3/x36Bad9FmIkXQCqwjXC4Q1kf7iWEYwVv3Jz4GoPqH34dtSzA69gPqCN5YVLjrFcp7SP2Boe2g6wimgoKlEaslGE2oTBSa2XaEto1vao1YLnCrJgJSKagePeZR45cikmYmUYFOgPbIyuE2GmECQobI9On4R9paFYVjRAQ9faeR0lMvByoTAaEUUTkUoLcKrSIwVGksITztoGlbw7A10ebio5ZK2xFMZSXMQOofKgBfWa5VMgVdsqvYBxETa4kUOcnOUQqoTAFlLiPKY/uwE4GZCynCzvA9JXKnegqnLFcWRcmKnHlupTF3Bp7ThLNkH6d9VvnalpEB4FR1NQPGsmw3j+2SSb0uWUWi8I0NYfQOk3mbEOj9/p+aUwntc5ie+Hvst6qSL509Uio7HdsfAevldmXMWSo8zes8L6ZlunvzKJRBYacCm5VntSiedRESs7HrGStjH4Tsfx7mgOFzmc+5eA7rWr5WHjfHVHznfUDhMTZ2+t7RsY6UN5/cZ4b1nfv9GPNczm3u+Z8Ti5puM8457JhC73Z9hEsZ/47U0jKE2G/30sTevMy8AfSpnPPGbKilRRL4Uxc/5mW14XvrF/RW8faTa37wxU00t3eKbW/oBg0ruKg6Hvo6ittYYn9f+j7P3xnrIfv8xdfu+4ZKOq6qltYaFnXP4HYWNON3uRe0zvBFd8HLas1CDVzp7agy2gUdga8YWMqOF2bDbbUY+wCH4jswhFhS6oPgsa/G8v+LqhstPvJ37yIpjp7jHD/PcQaE5zjHTxhy3cFgI7ALAaF1tH4A5P2GsKgJV5ER5LO3iKZG9o7+pqK+WBK6CCSFELGP8HEDWhGUwl8tgSVi20dF0q6PDKMQO6uKysT9Ni3hcR3ThtQXKCpDUBK5bgmDwb5a0F1J+mufSicDWAE6sgui8vhBIoxHGb/rlVOe7WONUHHltqot202FSLROVhAV7LMf/aBH9c64OgvWaqxVEAQXN1uMcmy7itvv38SxvnVLreOxs/pnrSPYzExhZv6UiOIreeW3dwoBe8BwWl5mpDvw6ctRJvsurR7n/Z2XDDkxVXnVfh8alH1+5ZhlX1/n4uq9US6WaFGAULETSMlj5FVyLfdZi70Sz/QvJ1zTc3de0ns1jltJt2dfIVUY5z9nKj7tWyzntbtuu9K2vCJ/YboRvFj2GZUxAeYQtOdr1SdRojyHDDKzSuDOvzGyl9mG41gJZPkzx3Tb6f+n5z4HJk8dby7mQMvcNS6fzwwOB6fi4oyQB9cij+fDTLlnITj03LLPp+b+Pu+/DwtZXos5VdRj458CneUcytLNp8Z8nyifvem9fOocyhLzcY4lEBbsCd1MKw1gxyRmplAKDx62EO0d5LDXg7eUPR9UD2xcRef1qP7rQ/RcVCLwo+01HzaPfKd5w9t+ydcuH+it5vHzFawsIcDtuxVSB+TFhko5Gm1pk0BNnRcvZCwlHZzisurGcv137RIhAq/qNZ93FyjpuWo67rYNwOidmAFaBnERFG64MRu0jEqqg1d03mCEYyU7jHBc6Q7fSDa6Z2Or2K/oZWQH03dtbxXWxzLR7WC4qDvkImCEZ+0q/r3f/Hff6zk4xzl+FuMMCM9xjp8gfusv/huo9Rb6AZqacL3CG4WvNUFEnyNfK4T1SOtR3QXh9h79u2vM5QVhvY3MnUj/VBKU8QER6TSClLBqQEqE0Yw1nUIQlEQMlvCwjgIzSkbBGqUi0JQSjKb/+BLZOjYfVnzx58Ffup3ioRfRazBIgpVRZdSkpEN67KCxKIKTSGOR0rNdV2PPoE29gZWxIxsYk3ePEB3brtoZIafewFXT46ONFyEIuo0hqMDN1+6pE9MIOzP5nBipZEivRBilxJX0yUQYZNo2l0BOWcHpanoJasqkagpSMoPmEmspk8E9HJZ2TW0PSlCWWc9IzEbfMDVJ5nNkkOVCTvDi/Ix0e4lgTmog9jke9AOWrI/YMZYlaJxT6Sz7FH0Cypktzee3B1BTgpfVF0MQqW9o51M5l7CX4+R74vyO8SsBYRagkGhEShJzGS/EpHeO2HkuI3mUwZr8/1g5ajnXp1itaUztO6Zj7wn4hPhcOC/phRrFQSq1U0qcPgPZzL0c5ykG7RTQ/UnKTI8xkk+B8adijuGcm2dZujm3MHGMxZvOf3qMU2Dw1H47FlgWn4X5OcsRyD5dPgqSAfBeYAkMQeKQ1KmMs/OaC9UhVf4uOCyh/OHjhwBc6nb0+Pv46oE/2FaxkkGGqCo9SD67u+DteslHVw8IYN1XtFInNjB6CjbVgPWK3qtoKyEkHy4eeLCx1y/bWlzU/WghdNsu6I1iqSPLGfsQd1YSWQBGisAQFENQSDzXaktrDFo6rFEMQdJ7Tec0j7ZmPVQJuKrUwhAXurRyWC/ZOjPaeJzjHD/vcQaE5zjHTxDyfgtA8B7/4hK0ZLiqCEqgNhbZW2RrkW38Q+ZvVsh3d9E64vYOhIzqoRBLSocBQog9hSGAVggX7SLwPoJBUkkqxG26PonUyAgEQ4gWE4sF7vU1d79+ye2fkMgeNt+2iIUFH0uLhAogfGQHEwgUKhCcwHuBUCK+J0DIgO8V20ESOoW+GCJoSWbGmJTYJJBmnaLtDUp5muRLqGTAOpl88RhfW121yOvAsu5H8DRaMBC3Q8ZevVzaE8s5o2l9Bnu5X3D0L0usWcm2ebFL3o72hhVJkU0r94SdDUbZY1h6Hs6VnGb2sgSD8ZwkPVBxJGllH8zlhDDLpmfPrJKd8+l+zPkH1nLXYzlnhD1nxzCXWE9Zlun7WQQolnhJXJB7IHac55Fke5rU55K3fJ2rlPyFIFgPNb13VLIAnYVX31Og5TklfOX1mL5+eD3+eOIYYNorEQS0NSgZTbnnFEmBWZZ5HGsmngJFp95/6h6fivz8fhk/yvcFq9NnuRxjjk19avwMZKdAcO7zVH5+Yb9UeI5V3D1vcjRtP1Zu6vP3Y1qgKz1jy7FqaWnkgNI7oReI37V/8sVnQPxcf6O55a5vWOiB68sN9w9LTGURUjLcNnS2pjeeH6Xv+KHXKO1wK8mq6lmZKAbT6IElsQfwwnQoEZnJX7r4ggfb8KLeIEVkFDsXRWhcAnMybVtJR+8Vt8OCWloWamBLZAdzXKotDjGWyw6p73MIis5rbocln7cX3MoFbzcyWSp5TPrbY4Pk/3i2mTjHVyTOgPAc5/iS8df+mX8dOUTbB1FFq4cgQfYeJMjeITd9FIMJAX+9pP1gweqLC8LdA0D0HKwrcD72/QkJwRHaFmF0VCF1EQgGrUAIhHXxtc2W0PWRJdSROQzDEO0nlg3DN17iFpov/ozAvu534jFEcBdcBG/Ze5CQyrMS8MtskqktQ6fj/xP7F3QYwaAQgWYxxFVVpxAirupue8MwKJxVLF4MKBmBnVbpj62TI0CUIlDpuN+mN9TaUWWl0SIxFDCyaUp61n01/vGeY8Ksl3sABVLZqTgsA5wme9PV+1wKumcMLwJe7Eo8S9atjGPAyjs1u+9cEliOWwLbkuGYqo/mMXO/WRx7vxR2yiY9N8pt5+Y7sqppvnPqpOW8p6xn9lZE5j6ixCY7PfpNesSYMI7lsgXDe4w9mXoO5sWDkuEbtz3ye3neJWCfXpf3Lcks55fneOz403nYILFOMniFEn7vmuzGOLwPU7+7MUS5zb7C6rE5HPv/H2c8xQjOxTH289T+73M/j4HBp45RxlScKj+jGSh6IZCFnc6c+Mz4mQg7sSofIktoUTjk2FMIUZVUCs/WVUiioNdtv6SSlldmzQfNI+/6JR9dPALQDSauU8oAQ6wyaTcptRRgZeDzdYV99ch11VKpyE5WReXA2lY0ynI7LGid4VW9YesM1isq03LXL2JFSPEdB7HfcWOruCBUxc9K7S0+SDa+Zik7btSGpYwLjW0wo6CVQ3Ctt1zpLT/W1wzpb1al3VjJMvW8Pcc5fp7jDAjPcY4vGfLNPVgbWbmLBQiB3PTIxy6yeTmEACmxFxW6dVE05vYuMoMqic9YG4GcVoTBRxDZdnB9ScgehYMl1NG6ItzdE/oh9hJWBuqKcP8IzsX/C0F/U6E6z+u/F3jzZwzDR336gy0QdWKXnIwAcIg/M1AU2sffM/sX4rZmMcR+QCdR2tFuqsg2AouLASUD3aBR0rKoYh+l157Bxr6naEER+76UDNEAOQheXG5iX4eT9L3mZhH9rEZ1Uen3wGCO/Ic7J0lzgh+BnSBHCX6OJf2wS7xsUkKVIozsIOyS9GznUAKDzFDl10b/QfF0+dsUYIy9jkHgiu0yG6Wl30v8y3EyYMo9ZhkM2hA9Im2Q43ynfYMH5bXhsKQ0vz5lEsvzKEFnFgsq2c25ZHkvRBi9FbMojg8CazVDsY8VkhD2y2/n4sDw/sDknb1rPgcG55jS6c8S1J8C3eXvx5iwOUXWMkIxz/K5zM/vdHGAwu4gi8/si5Z4SlGapwBQCYan5/S+8RRYmnsGZxV0v+TCxtw4zzn/PM70Gjz5fOcxygWKJ+73FCCWv+8Wh7K1BSODqKWfCM7EUsrBSXqh91j2Uhn4SncYEfu1H13Nx/X96Munrzw/vL+K4mILi9/qXfVJEPEDJeLfkPvHBZ9ox2XdsdI9vdPYIGnUkNhATdsv+GjxwNpWeASNHrBeRusHBY0axu+wrY22FhCFayDaVEgCndcs1MA3q7cY4aiE3QODUvhoDywHFmrgZbWhXWreqSXO7yoazuzgOb5KcQaE5zjHl4jf+dZ/l9AP4B1cXQAg1m0s7VQqmr2LItGQyTS8UriLGlXXCClBylj26QMMPSHoyPYZsesnTHYTQYgINDdbGCxCyQgihRjLRsVyEYGmEKz+0ad0v/CaxRcWta0YtgqxdASXQF6ynBDaRwsJH/tBtEmro4MCmdgaGZAmruz6PnoMDp0m9BKhQ7JXjOdbegjG/r6dbUMIAa0cIZWELuoBmUo6hQgYGXh1FZXvOheb/41yB2AwM2qNjknMXmlmSoIzOHiq5K1k2GCXVOd+wVwGm1mrMiLg8mPJ2bFkrmT/smH7XEnZOO4MmAQO2MRSRCKvZocg6L0awWKP2lcEDfslplGsomChZvzOxgS3UG6dK6XbvzZx3BKA77MYx1mmA9CVjpuFIPJ705JHUYCgU4l8yaD4INCAJYOjw3N6Div0pZjAn2DcfF9Ktnt677KNiSjufYwZgZ/8VgESp9scu/ble8ee5adeeyqmPZangNNTTGo53ql+z6eYx+deg1NzLO1f5lSJn9q/jD2Weu9++vG1WJkgRjCo0mcyl2YrEXi0FRsbrRx0AkeDVzy6mivRcmO2rG2NJIxM4aatGZI4VfCCYCWhk+OCoWs1vVVQw9bGUtCLqqP3mgvdYZFjj+D90PDt1Ts+ay9oneHCROG1Rg3c94tobF9c68Er3raruG/foKVnqXtuhyWvqse9klFJXJCqZQSXSnhWuuNFtUVLz8ZWT35/nOMcP49xBoTnOMeXiNAPsW/vxXUEgTb99VVqLO3MSp8Z8Om7DvfhEkiG8snAXiRbCSDaUziPeHFN9+2XeC2objvkQxvLRGFUGo3lpR6/3kRwmHoRSZYXAObtBreq+fA/lbz9dU33UjFcuQgM0987P0h07ZDaoRM47HuFkJ7go0l9s+zZrqMKjDIe72JyIWqHtxI7qNjnR5za2CdY9O81ZrcCXWnLY1unP7z5MglEAn2u+GPvQ+zdK9kOgkCqSV8aqb8wgQLv9oHQ1GeuTAJVYcgsAzGZSnMx6RxCEAfsUwZXUyGafJxpUrH3/0kiWgJTL44k0cX+JQAsY0+dVDIqB+Zt7Qn2p7TeOABEJRMSduWyeb/9SaT9lJtNkjOT+9zES4iASWWvJVMoxaGi6xw/OGXQMkv2nCR//D2fozgEB2NZXmLX8rV57mLETxIlKJwC9THC4cLHUd+/Z9otHGPByvd+WnFMFfgpln8ac+zhtFdvej5T1v7Y8Z4Tp+Z0CgSeOtZ03iUozIs3BIn1h+P0XmG94sJ0DMmMPY4heegbNrbiqmqppEWJwNrWXKiOWlre+hVaOl43j1TS8YVZjf3WUgS2vaHtDX2vca1GKE83aB77CLiUCDz28W+K9ZKrqsV6yY/W11zXW+6HhtYZbqotvVd8vo0Lrws9jGbx+XtNEstnnZfcdQ2NtjRq4LPugrf9klpFP8Ra2vF7ZKl6jHBj/+2lacfrYr3k//CX/zcn7uQ5zvHzF2dAeI5zvGf8ztf/25GNWywSs2cJl8sIwlLpClpBCAQpowWFkgQhUJ3DXlaIj18AELRE/6CN9hBSgA+IZcPjb3xI0OC1wK4U9RuNebNGtD2iqQnbLThHcC4qj9Y1YtEQtIrAUasoLPPpW8yiQd/WLP9Isf3WJd/7LRV7E7VHCB9xZYglnF1rCF6wvOjoWkPTDLTbir4zKO1xViJV9J5S2lFVjr7TLBY9265Ca0etdwxhLhMNiRFT0o8KoItqoBs0zguEkGw6w+XCj0Ap7z+XoEmRlD8nNgvlcV3BJqliu2lSlsFguWIfS4tkBJ0F2FEF4xiKhKvsyQP2+gzjmBPgVICK/VKvAhROFA/L30OYZ+hKMYsSBNnEtpbli3PeiGOPpNgB3DlAN7JoJb4t7lNmQfNcy2swAuiZ+zZXXjkmfSKgpUUJOZaQlpEZEBk48JmcRjzGvun1/Dbh4D76MA+65PgcuXFMjzy4j8eY6fl5Thcg5tm70tZk+lwcA4LHANQc2J3b/tg5TK0tngNmcszZexwDg9M5lP8/xviVYOkoIJ4Aqvdl/o6N+WXee59rNy1Z3fuuE+xZVsAODK5tRe8VN9UWW4x3XW951y1praHF0OhYXvlpd8Wvrj7FCMen3RVaOhaLgUYPyRIiMn1SBN52S95ul7y9WzFsDC71iysRGcntEO1pjHL0TrEeahY6thp8ur3kg+YRIx33Q0MIsYT0qmrpncKGuOCXS11VEqBRxblnxu+2X4zbShG41B3eiNGT0QeBEW70G+z8OTU+x1cvzk/9Oc7xHvE7v/I/wH/8KvoLShHN6HNfX12lklFJUIKRJkkWEUgQg0fZAC4QaoVrNOJrL1Gf3SK8J9xc0H9wQX8pCQqEA2cEXtcELal//7MIBpMFgVAqAtMmsY3OR5EZ50FKRFURFjX2ZolbaN78hkG83IKLzf/Bg1pavJU4ofCdgkHSqkCIWjhI6SP4UR5tHHZQUY0uJVVCRkGYAHgvAVcknTv7Aut2ZWq5DDMLzED0OszblqBGMJ+85n9ZVRF2SaOeGSf31JHG08IfWDSU85sm6jZI8DuQWoKibJFQKo6WbGKZmGU2MYPCDJBL0DqdTzlmZgrnxNB9EAcMn/WxZzATn3AItEthl3G/1GuYr1nZq1gC9jKJl5NxfWLsnmMdsOfHmEPEc7YFuI/bROGmEhTusb6BYtv9Y0BkoPOyRQnWpyqxp0qAx/NNzOA8I+zSvOSOrZmMPSfy8hy2K78+vbZTIPu+LNrUUzIzuXNs9ux5ZAZaHD/GsXlMn6enwOCxcZ8Cg8c+Ywfs2nswnXMLN9N5zb13LI6BwafA5RQUjvsI8KlkMm2NFJ5aWR77euzlK4//ot7QO03vFdJ5WmuolOX77Us+ru/Q0qFEGEFZr3a9iCaVYl6YDiEC79QSrWMvYp1K/Y2MfqzbwfDQ1bxcbKiUpZKOb6/eIUXg8zYygzf1lkYPbGzF1pqR9atSFYL08bmv0/6911Syi0C1V3RW8+BjVYqt4ufxZbWO38FItLDj9fjbv/m3n3WPznGOn6c4A8JznOM9wl9Es1z7+jKKbl4sEI+xp4+6Iiyi5cRw3SAHj3m7AaMjW5j6Cr2RhJVB9g7hAnZlsL/4ASIEvJaxvCu5ThDg+nfvkV/cEdYbfNdFNjEERGUQVVQpDVpFqwrr4k+tYkkq8PDrL/nsz8dxfR0i6JMgU6+gt1FQJgCycpFdGSSIQLuNfSQEsJ3BLIa4nQyEAM7FctHextVapMeHCAzrVCK6E+nYdS75AC6ZAS+rAR8Eq7oonYURKJn0B19lYCqKpD5EpU6gEE4Re6blsM9klGxaBmR7tg0zLF8GfBaJxu+VJYoJAMljlj2C4zUQ+6bwjFXFYgTJOcqk/jlKk9PzLPfL4LRkh8ptMxDPjFwp4jJeK7Hf91ieV/79lO1CCVDmgG98bTLCxEw9m3dDBKgZFB6zD5keu4yp0mrJLu4D250AS/n8zNk6zLG2ce6nmaVpkm9TGdscgJxjKadgegpsyzkdYwJhn2nMALa8JgfjzahajizU5N7Nxdz1m35m8nHmQGFZevxUOeccGJwDhs8BsKfu+08DDE7jGHAvQxw5rwPWcBSciWXTeWEsAii7N2Zk5R1ba5A6YEM0rP/d7kPqm2hy3/nYz5cN77OCKcQS/g/rRxo18Gl1xXqo4sJT+s4x0tE5Te8UjbbJLiVgpOPT9pJK2lEY68J00b/QKRZ64Kba8DjU3PcNUoQR0PogaF30GgRY6p5GDTz4ZvSu3dgqLW75ka1UeGxQY7vCOc7xVYszIDzHOZ4Zf+3P/Gux/FMIqBYMlxWuljSfCOSmG7dzywq7VKy++4B4e4f9hY+Qjz2+UgyXBuED2iWAGAIigFcSW0egpjcO8+DobhSrT3vEDz6NKqQ+gkCERDRVtKxIRvWi7aPiKRBuLmm/dY0cPMIG7r+jGF44QvIZRETgF6yMgjLKj0IzQoKsXbKdiPYUKimOWsB2msVFR9dWSOX2wJArevyMdvRJWTQnLtlWwhfbA3vegbkPUEmPs1GEQE2AnhAByfEEzwexZ9A+VdG0RdKbIysy5tTNpGPOMpMiJslTNiMzWZmz2i/b3IE+j9ip3c2olObXy3hKefBURLBznDnJ5wU7duig1DYl5DbEhQUtdkJA+ZpGZk5EH0z2maljpb/l/22QyJT8xfd3QL28juV5SeFQwh94uY3bTPwYp+d4CqjEe1Nqux43As8sYMmsHfMBnG5fArRpme0cgM/b5jjFAE7P6dT831cBtwQX8+NHJUcf5JO+kHOs3AH7PAGFpV/fT8v/cSo0M53b/vkdj2PbvC/rCKfLat9nHnvPT9FLC1ArS+c0egT2+/21Cz3wONS8rDej1cuP2+tYZurV2HtohGcojjF4hZGxFPNFs+FFs4nf4+mz8baLPfXXTct1taWSjjftik99LHFfmh4XJNeVxXrF/dBwVbVcm5a1rWiTX+Jtu2BlFLWObOdmMFTKcd81dFYf9B26IHnXLflkfcXHq3saNXChOi51y9/8s//hs6/vOc7x8xRnQHiOczwz/NIgaoV6+4h6F0szg9Txde9xy4pQSexCRzD29o4wDMjW4i5jSaccPEEJghYgJT4Jz/gqlpkGBcNKI0JA9YHNRxXwHaq//0dRbVRrRFODFIRNG/+sW0u4XCGcJmjF9js3dNcKEaC7FgQBohOxjDUBuNFn0EaAJkQqD9U+AkO1M6lHRAXSDBDbbYWpLFoncJaU5ayTSBlojEVJz93jAqU8q6bHB+gGTTdopAzUZmBRDWOvn5I71m1Uu5MeKSRG+lHxM/vNZUarVOwsk0IfBPjYA8g4rjxgk/K2g5fJQ3Hf56rsdysTdykOLSSGtP+cDH68mIdCLR5GgZbymFn4pQS0c4zAqZK6EmBIEUYQl+OYhP84H7EP5MprPRdl+aYUAY0/YANH8Ff4/pWQy4Zotp3tRKbXa44JmgKlKagqY1reujfOjKDOlKmbKzGc+70c/ykQPgcQ8r0tbUDmxj+W8E/HnQPjx8om5+Y7N49yTIlAhh2A3h/DH5SRTuNYqeb0eZ0y3yMAD+OR3jueAmhzC0PHfCJhnk38ScpEn7P/U6qkR5/BSQXBbmEn/V0KmQmP79/2CyrpuK62/ODxhsemppKWxtvkXxgii4dO/XpxvyvdokQYWTuAbSEY03s9/rvvaxptMcqxGSpeNhuWuuf7jy/iWKalS+DwdfPIxlb84O6ah7ZGK8fgFI2xuCDo+op6YcfydyU8W2d47GqECNw9Lnhoa75z8w4jPN9evD15Hc9xjp/nOAPCc5zjGfFb/+xfRz1uCcsa9/IC9W6NHBzVbbJouGpwC4U3AgLUX3SEyxV8/gbRDYSLCl9JpAtgQywVXSqCEggX8EbgqpQEKZA9qD4QJLSvDPViEXsHpYiCMUKM4jKirgl1hb1uEM7jaoHuPLILbF9q1t/0+AsHCbhlj8H4H8ALwlbF9zXoyuGsxFsZS0fjIiymsgy9hgDGOIZBsagHmkVPP+iUTPtkPg9Xq3Zk+DbbWL6qtRtLQ8vVeEFSCE3JT/YNrI09SHoziCyFY0rJdKN2xsK5d0aG431KJRuWj+FDMkafSbjzz1LARaeetumYx5i/bAegpEcWDGgGrWWyPiexf9S4fJIwj+c5BaLhuOVFqX46/puUK5bgT6T3S7Do4aC8dprYZqYuj1Umpd6JPbGfY2BnCkKPxUGfHfvG9XvXM53flDWdbpfPfTr+7trH9xycZPGOMXbl2CXw392Lw2dyDuTtAfJC1Gg6h/zM55g7p1JEKH/mfHGPvN8xvPvj+7HkthzvcLsT3n/FuSn2F0NKtvCUjcR4PicWC55S+zzVV/pU2eqx/Z4a7xhIPjXe+zCasF9yv3d7ws7jz3pJ7xV3fWyduG0XLPSA1QO9VzRqoE8lpFsR/3BYL2lUMz4DN2bLECQrEVjpjrthwV0vsEGxHipeLTa8rNe0znDfN9gg+e7d6/EZ+3R7SWs1rxYbaun4frtCAP2g2WxqlHb4tMgI8NnjBVp5FmbXI2mdRKuoqN0Nmrftkt6rc+/gOb7ScQaE5zjHM0I+bkFKQlIRdS9WsR9QS/qXFV4LhAM5eBbffQuffhHBm1Lw48+obhf0v/wxvo6MQ5CRJXS1RPgQPQaB1fc36B++IViLEAL7Cx/htUyqoim1brsoIpOsJ4K1yLtHQqORt2su3q7xVwv6lw3di8QKJksIUfkoJiMD0kQ2MAxyfM+3Gn2Vyl+DiCb2yWbCEpVFCYKuNUjl6a2iqeIf2kU1cLeOrOCiGqh0ZArXXUUIgotFN/5R720EkBkEBhI2LcCGUVGwYMilpemP+SjcUiRLLiXNNr1mDiwp9hmRshRSyR1bNWUockQjdTkmTLs+nMOSufz7uG0GV1N2Iwi83wGffBwpJ6VxYb+88YAZmvTmxZ1iOeIxhu6YefuU8cplujKBfQlYYh9O7r1UIvYCKeH3DeSJoDDO77B8smQjnZd0Vu+unQgJYO/m+RTLNQWbezYjxevldTvmZzcHBst5j+NOQNP0//m+l/N5Llt0oM5agsJ07TzsWatMYwrop8BsPI9Jr18EBTuQPyrOzgG5EMuEM/C1Ii5o6IJZOpjXCWB4CjCXn885pdsvE+9TgglTUP40u7q37wmGei6eYpefc8z3ien3Sq5WkCIKx1hf4YPgsuqil6DVPA6xz3xrDa02ERQ6zdaa8fpspNspj/bL8fuk9orBKxpl2VjJpemoUmnnSve8aVe83S4xylFrS2c1d+slvVUY6XmzXSKADy8f+cHbG7wXhEFjB9DGxoU3qzCVxbrY166kx2gXfxqLc5LtYH6q1/Ec5/hZjDMgPMc5nojf+eX/PgJwNwvcRRUFYoxEto6gJUEKlj9YI7/3GaFtkwdhMpVP0vb+/gHz/x0QxsCiwS8b3HWDa1QUmRGBxY8eY7/gYMFognOof/SHKKUSM6ij36Da6Uv6X/gY0VvE2wfUp7exfNR7pBAYLdGbinHB3glCm/bVHm81DCIygyEBQycYWo2u4x9TfE5kRbwGVhGcoFn1WCupKo9RHu8lg5No7fYS3ywpvkigMTN7lbZ7pZ6qSLK7QY/qo0J6zEQQpdw2h5Kewak9M3mZGb+i5DKCjcwmJp9B4XCFN18Ze71DSRnUejmC0pyYGeVGkDW1lijnmcVkSssKFyQu7OaZeyohq7FO5jGTuOz1K4b9PsAd8J1XwhzZyUJcpzz34ASo/T8WI2hLrGYGfFK4Q7uKGfXQ8f8iIMKOGS4T3eyjOAWTU9Z1+nsGM7PvcQgK8/WbRtlrWI6R93fF+0+Vc+b9nmJ35li5ufHjpBl7UcvI22ZRpHkV01IBV+49swfj5X3yWsNceXLBILog8OlzJhM4PFVieaqvcO616ULAXDn1sfHmGLfn7DeN6efk2LbHSorfl8WbnvNT2/80wM0IfMXuGWySLcNdv6BWlrqOFRx9EvayXtKjI8tfsP+bwTD4qHDae8XKRHCYS7K1dFTKsrEVbd/QKoNOCr1fv7indZqHvo4VINqxaSu+/+kLTG351qtbjIzq18HFcpAQBBaNTD3n3gu6IX6DNdUwCpVdNh1Dmvv/7V/+mz/xNTvHOX6W4wwIz3GOJyI8PCIuVtEmopa4RtF80cZSTym4+E9/QNhsY2/ft74W/QiFQKy3yZReRdP4fiAIB3f3iLt7zBcGfbEEKRHWEd7dgUvozQeoa+iH+JrUiREUccwQCJXh8TtL9NZTrSr07TZ6D1oHXY+6E9z8foPwms03BK4K+IWPvWFbBV6gWkGQ4JeeUIFY2ig2I4h/XK3EmwIshVhSCuCdwjk3gjzvZQRGyo9gLydrWSG0TIiVCHv9Yy6xg1J6dNFDloHMNJnLiZEWPiWfuxJSH6KwTK3sDixlQEm+xLtSvJywlv2DzkcxDFuWuk3mkBOvcpzxHGcSt3wN8nF2Yjo7wRYj3Z69hAgCeURhEQ7BoMt2EcXxVVJdLWMKBOcS5DyG9XK8xjm09MhwmFjv9SFyaKeRo7yGml252lT0ZXruB+McK589AgCeEmEpS3dL1rh8fzqfqfjLnJjNc5L0OSbzVOT5HZQmFyDMF4sdUzGRaZxazPgyjNx4reaA5nsAwek+0/N9qnewvC6ngOCxe/ZlmbpTx5u7V+O4J2w2ji2OHDvOl7nOpYDPuBCWLCuk8FyaLlpRJOYwq5M+DvXYB+xlBF2djSWkm8GM42upqZUdx2gHjRSBwSlskHRO83a95LLpyOJM13WLFAGjDJuuYmg1QsBDV0c/WysJTiKkQ6oQwaAMSa4bpNx9Jqv090VLD2bg7/yVv3X0WpzjHF+VOAPCc5zjRPz2R/8tRNMQKoPoHFoK7IWiv65Y/N3vIrWOf8org/v6K7ZfXyFsoPlkg1QS0fajJUS4VohNSxiGyOS1LULrnU9hjswI+hCBZGV2QFHKXQ9hP3D1976g//o1b//UkosfVlR3A3ahqG47RGtZfLqlv1wxXEq0EvRO4OvoIRgWDqclQQWo4/hCBIII2F5FK4rUd1g1lr7TSYk00Hcm9hQOiq2ASscmfi32xTAAtPJYp9DK4ZykGyqWdR/VRNPqsix6/ryX3D7WSOm5WrZ7IC0nMc7vjMldEpmZW433CMwMQ+K8HNVGM6jM++1K0sQOFIioBprBJ+zbHZR9SyU4zCxgnguQWLUdQ1kCqMwY4tlTH52Ka+yrWZa9lxEM5j7ELPE+XtvJNcpj5XHKvrUyKc09j2W/2DG2cQrYj0VONKf3NpcNZyBYXtu5Ur09pcs05hTYlMcoFyvya3MMZZ5L+TNvO6dg+xy25xSDVM4vLwRkhvhU5AWZA/ZsomC6N4eZMffKSDncppzb3NynPXjHWK3nMnPTOMqUchoQHTvmU2DyfVm8vX1nbDLKOc6x3Kf2P3Z+U5b86P1Okb8XTh13+vtYKh6SJ2laTHhZb+i9Gj1gN9agU6WGl9n6JzKBndUMXtJbRaXdaDexTuWmg1O8XGwAWPexLPV60VJry12/wEhHaw0XVceLegNX8IX09IPmbr3AWYlUAR88QpJEz1xkCu1OzVrJeO4LPdCogdadS0XPcY4cZ0B4jnMcid/+8L85lnyGxuAbHc3obewBBMAHRF0Ruh71yTsu3jxEAOgDYVETjMZf1IjBITYd4XKJeHdPSN4L4fERcXERS02Dj2BQ6/g7gBQIIcAYhl/8iKAk5rMH2u/coLYO88kd+q7j+vdjT+L9LzbYRjBc1jRfBOoHR/tCUt1D+xLcyoEO8Z8ThKVFqGguH1xK6GSIK63Ko+se7yXORSAoZMA7OZZjEgRGuTEZjD/3yz6zsIySgm1XcbVsAdj0JvYaJhEYlxIGrTzDoOJlCGIsRxLsGEOVSoEy+Im3IvUGpu1iD6IfwR/sg46SRfNyBzhckR9kK4kcGbzZgmGZgoMpM6Vgz7DehlhyOrBvjQG7RNAFiXPygDmASa+aiCxjBjklGCwTv5J9y+eRf5pSvKXwXZwC3p1txu46lgIi2XwdGEHzFMhNY+51KUJK7sTBvzLHPpn8iuPblOdzDORqPEYejjv+fCajM1smWIDaOZC0l6CKHUP8VKlm6cd3iu09BiymwjmnykjHfYrre6wc9tRx3zeOMbrHjvucMY4xbseOd2zsPbYu9xjP3ONS+GYMMf9Z+GlECcZHa5zpNThx7OxXOO0j3Vgzjp/H9sFjhWTw0Ze2khav0nlajamignDnNOu+ohs0tbE02rIeKlxSkc5K0tshgsDNUCFFYKl7Wmcw0vH6Yj2O0UsVP89aopTnYtHt/U3ZVY4wVkU0laV1hv/zv/i//Glf8nOc42cyzoDwHOc4EmK1JFQGBosYXDScvzJ4I/ALQffnfhGvRfQN/P98j9APsWSzMmz+9DforxSLz3vqP0pS1t6D8xH8QWQAAX93j7xYRVVC50YwKOoqsolA8B59u+XxV294+M5rghA0txLkNeaHtxgJ/asFehsYVgK7gHd/CvAK1UP3yhFMAONT9igQlSM4SRiSNYWK5aQkFkAZN/YMmqVDa0u3NaACdW0JAYYQQZVWDi2gHXQsL/Sxh8+n5MN5yeACq6ZHSc/9tuHxdkH98S0hlRUJkSwrREC/eKDRdkxgQpHk5v7AzMblZHSRxAjKxLYsn8yRmTAlPXKGVZwCmEruW1eUCfeBRcUkMc/sTclgSmL/XQZvOfmRIqCEH3sMcxnpyF4esT7I/Y+lWucoJnNEFXM8zwyAErCrUm8NToPcB9BToHEopuOL5DG/cliaONd/VbJbkjDLUJ1iN+ZYwKMsyAwzNGU0pQiHPaHPOI/pnObKAkthl6dKA6fX+7lei8fGOzbfAzBTgNepAA0Un7FnAL3ngLgvw67mcQ6Y0WLsOauW6X2ZjnUsjl2z6Rz3xp+AQmCvj3WPnZwysjMs4fS4B8/IzP/L+Q4+L6DZsWwyzuPEc0gGk47WmSguExQbW43gNpdYV9KxMh0PQ8PWGnqhqJRjpXuMdAw+Wj889jU+CFZ1z0XV8ZC8A6+btFiYRF4u646l7sfv3cchqlVfmC4K0VSG3mvetQt6q8eFwuu6Zal7eq/HHsHORZbSB8HWGn7weHP0nM9xjq9inAHhOc4xE7/9J/9HkIzf/SpKbNuVxlcRAAYtsIto3q4/WUcFUBkQiwWhqajftKjOoB8H3PUK4RyhNsjHNm7jd6mA6DrCehNN5iGyklKAc7Gk1LnIEr675/Lvrrn/C99EdQ7zYKO3YGUISrL+2PD4DYFbBFwVcCtPMIEBEAuLlDs/wWxEjwgIHQi2YMG0RymPs6nhv45Aq+9MVCUNghCg3VToKqp5btro67Soe7rBRKVML6O1gghoFaXApfK0g2ZRDSw+HGh7Q20svU1sXR37CjOY0tKz0MPI8mVwl5OP3LvoXVwFNsqNfnslWCQU1hRpBVoS9kzqyyTuaII9wyBkoQSXzlcAtbYjkMvb7cBtGBnMqcDJjuEKkHoYx5LOmeTygG0qgGCpMHqMKYPI8uXy1MzGAmNfEERl0WOJdB53Z7Su9l6fblf+zOOUbGTZc1jOf46lK9UxR0ApDgHM3HymDOrh+Rxh7Y7EMWB0TG3zGMCfG28URZoBp88Bg3Ng5ymWKz5P8fUSzAL7PYjiEIj8NNjA58QcGDwFUk8J+7wPi3nqnk1B8/QY8T32GPdy33L/Y6Wnp+Z96lntrGbdG1aVRIruyed6ZI6TcFSjhlEIBmA9VFxU3e57WQTWCbQBDF6NPeQQn6POaXqnMMqxMj2DVwwu9hJuh6hcWmmLSPO1fjmK0GgRQWm8Vp5GWRoVhW3yomIIgquq5UW1wXpF53dp7uNQ03tF52Jf4//1v/Q/P3n+5zjHVynOgPAc55gJv2rwS4Na9wSj8JVCtw6R6wmFoHroMT94Q3hc7xRAAdH2EAJeCeS6wy8rcKA+v4tjf/gCsY3biMHG8tGhh8HGfsFcJgqRMawr/M0FQUrk45aLf3yHGCx4j/3gkjf/3Cv6K8Hm44BdJdEYC8gIBEOvCJ0iGB+N5gNjoqcqT/DpJRnwvUIoH0tjRZTuBujWVVQeVRIhA8OgCF4gZWS6hj4qusmG0QNQiIAWYSwdtS4yia4oWdp2Bq08jw8NQgVWdb9jqdgl5lF5MyZLY4kosU8llwPlMUUCXz5EWwdgFK/JaVMGTJrYEziWPU3M26ehhEeJw34pKQJIj0+AanBqp14TIotnpBu3EyEp4RWA1COg6AfL5ak5IczlnXvPaSiEcQogqItS1Lx/Cbri8XIyKWmdoncKFyRK+MgeJLbPT8ptd/vHRNFPLtcUGJRzzFGC1XJeHoFPaoQlcI/b7p/7HtBFjmWqx2K2fHPy8xhwPgUU5pLqmLxGIFiCWh+i39r7ljnC0/547xPT40zvz7SUdlrSKMeeW3kAzPN8joH/p+Z1DKS/b0wVW/P8y7LnKVB+H+A/x3Iem/ssiGMfFE6vX573sdgTfjkByMtn/KLqUOk703kJE8GugzlmgJ0+61JENVApAstU0v/Q11ymss77tuHVcs1g9Wj9kz/TPoj0mYjXaXCKNRXWSz5cPdI5ze12wcJEFdAuMX5aetZDxWUV7ZDyd1upUPpB/YhsAl0yuV+ogVpaLlSHS1UKaxuBalnuf45znGMXZ0B4jnNM4q/+5X+T4VVD0BJ8QG36pPmiCAuJXUiu/t8/JtzeEeo69vzlcI5wsUTeb6mtR2w71HpLaGrCsonlp+2A2HYwDARro6hMXUcm0CQlthAI3uO//gG3v3GJXcY/2ObxkuWnA76SBAmPX9e8/bORCQQQTkQhmCwF2ClE7aKlRC8jwSUDUSVARu+w3EPoBYQIDJ2VKO3xXmB7TQgglUeq+FrOvePvkTEUMtBZRdcZqsrG8s9C8GVRxfJX50U0tnfR2B5gedHRbisGJ1mYAe8UQ2LcvBJU0o3JTyXdyBbm8RXsK2t69oFSkZBlIKbZCcmcilL1MoO60mwdoFZ2ZDTLhLEEA7lcag+44rGFv2EGcSEkJVJRiIsUx9t5/e0zjBkM6hPAceq916dkbVeWK7E+lUyGnQLpbLJfJKRapNQrPxtBYsngfcfOlEnzVOF07xg+vp8ZQw17AGt/Lru5ludc/v4cYPIUQDyWPE+ZtazGWN4vH3ZCRs+Zy6nSv7nXnzPOHFAZWXT2QVTZY7k7t0MbCThka5+ax7H3ygWf6XtTdm/6uS7PZ29/Dp/7kpkr930qTjHtx7bNv0+f2fJ7ZLrNHKO7N9dJz/Fz5pGv18r0R5+J6XM+BYXWqwgI0yLNR8t7TLdiaw0LPcRqjiDHRUElIqDrnI7CMiJ+rzXaMiTvUZUA39224XrRcll1fL5Z0egIPDeDoVKOPonVVNKmhZVYJVJLRy0ttRzY+oqt24mESREgeGppUTr+XLsKFwT/+7/4vzt53c5xjq9anAHhOc4xCfV7P0RrDcsF3bdfEqomickE5OCRRsReQOcR2xZxfcXw7dcEKTCf3iPuH8EYxMM69gCKaD6PFND1APH1wcbXtAZrk5hMGPsGhTG8/bNXuDpWKnojGJaC7Qc1rgECDJchgsHaRZEYZCw3DIzljcELZO3wfSxxFSoyhblsNFiJrFwEhXKnkum9AKeQKoAK2EHjhzh+vRyQxqO1o9IOmQBo1xn6u5rqA8vjtkZrx6ruR8ChpKcxOw9CICnPWdZDw7araIzloa1ZVkMEhV4ySDV6/ZWlo2XiVOtdieNQlDVlBrEMl2wUpuBpqhiZAUsGYBmgaOEPrBzyqne22LAUybPIoEQdgLUyCRznKRjZwhxZNAaYBWmI6Evn07Gnxyn92nK/Y+eSGXzRD7hnsZGZIXGsTHRfNKZk/abnV3oDTlVeD7Ytjp8ZwyFRrkp6KunQRW9nTFyL/TgNhGYZlLlewZlc+xgjOJ5/4f0Xr9E+EJxTpj02t7njnWK0Tp3nsWu9D/BjTIEh7LOG47keOf5ToHkac6+NixTlTchjcLgoM42yzPYYKCzvwSkQ9hQAnLsWz93vOeCs3D6fx7HjPAXwpmM+BdSn+/ZOg7JUwnGlOxZqYOsMGxuFXx6Hem8/H3Yqxj4IZBDUyqKkHIXCnJcsqoGV6fl8syIEwUIPPPZ1ZDNF4NHVLMwwfsa0sNTSxs+WMwxBYoQfmXkj3Djnpeq51ls2vuLKKza+OnlfznGOr2KcAeE5zlHEb/8X/seIywvCwyM8rDFfNNibhvp7bwmVofvmNQSw33iJenggOA/bLbJ3bD9a4OobFv9wDVIQ+lQGqhShF7H80/nkKyigMghjCNstomlof+ObtK8NzRcD9aeP0aA+gEoaNIOMrRzdDbFPsA6YR8HiB5rulSToQFg48AKsiCygDNApvBMI4wmdSiWpIQnJhMj62cgOeiuROgJGbyVhkJjlACLgBhV71Iyn2xgIAqv86O/kfWQKFy+3DIPCWUXfaVZ1FJLpbXxNq5wsED0HRUzeXr16RCvH5+8usYNC33gW1TAazssCZJSCMD4BzTHZHkuKIojLQgJK7IRCMmAJQYxqpNMyNynC2H84ZQVLb8QyWSo9D3NZaI6REZOHiXnJJJbsmyQKzZjSliNEMDcH0krmIwPS/fcOy+jmjL3LJNGGnZhLFp/xQe4rfubewZl8eprY5mv/HEamHD+PZZ1MwFyNJaXHjjn9/RTTtmdfUQi/APv2GHN9XVPV0RlmNT+fT/kgPjeOAatjCf4xMFjuN+5fjDPHGgJ7zGH58xQQz6/NAZPpNiUzP513KeA0N07JfB7rvXxuzJ3DU/fNT65ZnPPpuR473lNs4XPiOaC3nM/RcdJnpE89eLcsuDFbFtUGIzyd13xr9Y53/ZK7brH3rNc6LgS2VtO5aDKfj7XuDVLAbbsgBMF13TL4WMa+MKmyJC0CbpO6qU5VIxlslr2CRjrees2lbqml5cE1XKstF6rlo/qO/9qv/j+/9LU8xzl+XuMMCM9xjjIGG5VC6zqazf/4M8wnYkwnau9xf+IV628saJpfpv7dHxHaDvndH1Kbb6E2A0gZDeUHS7CxOT4CNAXBIpaLWCoKBOui1YRSVG+3PHyrQrzUqG3D9uMGNcQj621g+YVHrx39tebdr2m6G7DLgA6C+q1kuIiWCUGHHRhMZaDxp0A0juAEPllMaBP79YJVyCayhL7V6NWArixOKpT22EEhJMnoV6QSUxhazdBqpA5U9YBOgjRN5eitpu+jytzgJUbl3pUEVoH1tkZrT20GlIwrxaaymMqOwGEPfCXxASh6FRPQmiu3ertZROFU4LLp9hIUFwQh9yMWthM5CZUiqX4WfYMZCDgvx77EzCCOIjdp35I9tF6SVTv3SrimpXci7PXCSfZLQHO/ow9ibFGcJu45aXfMGG0Xxyvf2yvbTElWbpeVhPFcrZR7qqv5+M8toTuW6I/nfmSc6es2RCXbuWs9HetkgjsDNuYEYMrrNgcGy566vM0UDMIhAz0351PX4XCuz7tmz2HljoKz9HO6aFAyh1OmbW775/g1fhnwlfc7BQrn5pNfO8bUvk88Z9/nHuuYMur7xqnn4tjxn/qs5IUTAOsVm/SMX5qWGxN9BN8OKz5u7pEicN834zms1DCWp8POZ9UHgVGehRkIQVDr2GrwLpWNDi4u/FzXLVp6ttZgveRxqBm8YmV6rkxL6zQPfZMEvRw2KN51Sxo9oIWnqzW1tDTCzp/gOc7xFY8zIDzHOVL8tT/3rxGul8gQorjLokastxGwWRvZwC/esdp22G++YrgwbP/0N1n8wx8R2hbzyR3h7h7fD3vjhhCiSEzwsSxUa3AecbmCridcv8BriVi3XH+3xtWSUEnM2qFaQXXbE7QkaMH66xWbDyXdi4C99LFfUETm0C+SOkx6Lf704AR4MZrK40UEi0EkMJcYwUHG11PvYBh0mj94JzC1RWuPtZLusd7zLnQ+0LqKZtnvesWk5+ayH5OMbIeQe9WUDFytWpwXWKdoTBQNuFltUSLw5nEJMPaSQFSdW5pYdpulzmEHDvevu+DxfsH19YZNW3HVdON7WnrwMc0fCpN72JFcIm1XAtIx0q82izMAXWIqpYg9gNnMXopAU1hiTEHCLJtQMJTTMrHI1Pl91iyVl+b+yPJkMrAtE/KydHEaZVKYWdY8D+vkXi/kHONWlkSW2zwFBufiqXK2uLLgnyz3ew4onAUoJ/wF9899d83nrAJOxZS5e4rNeQoMPpcJ2mPqyoWJyZBT1vAYsAJG9nA8Bs9j56YM2fQYx8aYE2SZzj2POceEz83jfYHhk+D+PcY6BqLn5ve+IPHL7ntsv3hvBRsbS6K3ynChe16aNQDXZsvGVvQuLgrmz31eOIvVG7HE/qbZ4oJkMxiMcrzdLpEijOIyjY5/U7fWjGOExDYa6dgIgw2K3iuU96xdxUJHAJrn+jjUXJiOv/ln/8P3um7nOMdXJc6A8BznyOFBDA6MJlQaKh2tIKyDUCG6gdBGM3n1pka2DUEJtr/+NZr/7A8J7+5iOaaSO+sIH20jsMWqZPq/v2iQg4XP3iAvL3CvLpGdxXy2jUAUwGj6b7zgk7+4oL8O2MtAMI4gA8ILhBP4KoyMG5UvEE1hOK/T772MNhOJMQRib6GMpaAECIMC7Ud7ir6NJTrdY41f9igV0I2lbgbabYUfZOpFFLSPNUJ5qmubFEDjH20fdqWc0bdKjD15lXZsu4rBKZrUB+iDoNKOdtBcmH6XzGm78+jzcuypy/2FpWWEFZLr6w1NFe0tYJeoZTGaDOamCalNZaZZHj2XN5XG82Xi6hIrNwVyuSQ1slhJPbUo9bRejecyApPCfsIFSWd3ACsDzLxdfGzjMXO/4/R8pgDCBzH6epWvl+eff2bw7hN4ziA50pOHqW6+N8fKOEvmbI4pei5rtP+eBH8cKM2N/77Jccn2HQDhI6BxeqznguDnvH/smr3vMWbHfsrq4AgLeMwj8VjMlUaOh0jHUyeAYLndU0But6iyv/+xec2B9PeNp4D53LjPtRD5acdzF03K38v52yDpnU4Kn4aFGrgxW3yQvOmW42dGC8fGVqPVhFGOWsW/FQ+9ptE2ms4v1yx1z33fsGgiw3fXNyz0QCUdF6ajdXp85u76BUZGGwvrJa3V47iNHvBBsLHVH8u1O8c5fl7iDAjPcQ7gX/7n/y10CLDu8JdL2o+XuIVk8UmL/uyesKxBCMQwEAbg8zeItwohFerim4irS8L9QxxMyGhDcblKYjQu9iQKQeh6aDvEcoF4cx/7CFeRCVOf3oL3hEWN++AGuenAOTZfq5EOfE1kBAExpD9sMimLEkCB2CrC0sXew7cG98IidEBoHxnCqFsTwWErEZ2M23cqKoYmAZmx10kxsot0kmGo8ZcDKllJLFct1irsoHBW4ntF2Bi43iU3vVXRMkEFVJG051Iz5yUXiw6T7CYCMem4bDpqbUdwNfYuFYmnLnoHy6Smc9GQeJkEbYyxYz/KWLIkPFKlpKawewDQiTXMKVLep5x/mfCrIA6S1B3okwxB4anSLYuAsVIu9uQFuVc+BTvRlThgmkQQBCf2xi/nUDKIUhQ9lKMFRrxnJQuZf07nPgLBnPizTxz5ENmBEhKOSqgH/XQ7EDorNjOJAxAxyeHmgIQPsZRYEvaET/bGfQJ47sYr5jgBR3NA8ykQNlcK+mXLE6dg9BSo/TJlgXAc4OZ998BDeU4zw84BnLlr8Nzr4ifP6fS9p8pRTwHDuUWC59yn9ynBfF8G8n0XSI7tMxduIlp1kil/4nr4EIWsNjbaSOQFsq0zvKi2o+iMDfE7yUg3CnO9rDf0XtErRaMsW2tYVi1SBG7qLVp4NtZwXUWz+XLRq1aWSlru+gWDVyx1T5U+vln51HrJUsdKlX//L/07z7o25zjHVzHOgPAc5wD03RZfG9zrJV5JqvsB6zR2qVHLGrHpIrDLFhHWxp5A7zA/vGXzqx9Qv7lE/sGPIgOoZEZeBK3itpk9rAxkY/q2iyWpSX2UugKjsTc17S9dUD04hAe9CZh7gfASrwNBQzCBkEBbqHxk/ATQS1ABd+WisqMI+DZ1nKmcyKUfThCSXyEwGtcTIBABCEHsEIETuLUhLCJQUwqkDFS1RTSBdlthiWBs81jTLHtWTR+ZwkFjVFTm3HlJSWQCgoId05cjy5ZX0mKlQhTG6Ur5PaYLUj+f2xkd51O9bDqu6zYxlTGZ6L0aj5VFacaEUrnxNdjvz8slair1jZX9hSXYzKxm5/RB4gkweBcTo0n/WzkG7NQSbYjlmiULWZZfzfUjZtbSB4HK91yEnQJt2C/flOl9ISJ4H60UZ9ibLOyRf4/7h/1tCjYyA8+R6TwiaHPQ9zg9xhFGM7839/v0tTmgl9nb8jykiHYWxzDSsXnMzeXLlCM+FSWoL1/7SY93CnQcA7w8caxj92nu/8899nTcU+c+B87mSjLLbZ/LKD0XkP+kYPB9xnhyOzlvuzMH/p67mBG/VzV+iOq6L6s1UgQ+7y7Gz1gWl8n/vmhXdE6z0ANaOoSITGMlOy5Ny92w4MJ01NLRecXjULOqerwSfNA8JqVRhU22P5V0VMpx3zdIEXjXLfnVi89GP8JznOMc83EGhOf4ysdf/cv/JqofEEbhaoVdxH692182BCl4IQXm1iA7i+x6go1+gf71C8Snb+DukeXf73j4C9/kYv0Kfvx5ZAylQLiU7FeG0HVQ14jVkvYXX9H8wRvC3T1iGRnCcLFEWAfWEYRABNBrS/NHt+hffoHsNfe/BKFJwjEQ2bwMBl1kECNjGN/DiehB6EUqJ43gLpZfBvyFS4I3ImbeTiAqj64sttPj9kIFQu5HJJaZeuWxVlFVFiljkr9cdshVi5SetW+QMtANmn7QXCw6ukHjdSyhLG0iMjuYQVAu56xSD0lWlitZt8yW5GSl7KsrewpV2m9I9gXZRiGHnvTXAXsAqhSTyYlmLussVUtFsc9Ynpm92dj3RcxjDT6awZelrrDff+eD2OvNyomUln4EtSUQG68HPjLIM4l4CGHP27E8r5Ipze9Nr8P43owPYo4MYksgmHssVSHcUoLCOdGVfO1OGXGX81FFye1sqWb2CCSxgcXbUyBRsoV7xwnH53FQclh49JX7nhp3LqbsYLnPdOHiWN/alyldPbbdKYD3vvFcZvDYvu8LiKf34n1LUJ8T7zPGqbLU55ZyPvc40/2PfpaeANXH7n9kCxW999wOC277JY2KlRnZkqLcb2vNuDBlveKm3sZtbc2n20tWpuflckPndPJBjGWmW2eopaXzmisTpbhzVcVK9VBBm1jCISj+F3/uP3iva3WOc3zV4gwIz/GVD3XfYj+6Rj20uFpiG0n9duD6DwRvf92w/tigrxX1ncMsDOrdhuA98nEDWhG8J3Qdl3/vM4JWiKaOSqXWEtoW0TRRSEbIaFz/sKb+kUlqLYHQdgitEIMlrBZgHdVna6Rb4I3kk7/yAQ+/CHotdh6DpPLRBARHERknCIlSEb1MojMhZoidjKDQiZ34jPZjKSKJHQyDxKIJNiXDfeofW7hRRAYRsL1C6oAdFKbaX/XVwPXNBq0829S/V2mLEGq0gjAh9hcCLE0/9sBJInizXtL3kaPKvX4R2MnRBD4Dvwi69gGXS2WfWvoDyfe9uUpPnUqYgLGnb7p9jgxw8v4yMXWws2jYJZoF+JwBWuO4gj0gUx5bigDSI0IUkzHqsORz9Atkv2Q0G9+fKs+MbGDxWgEqyxAi7PV0lQBxyk5OwS/FuZQWH3NjzAGfEhTG/88nq+U85soHp4bxsGMAj13P6XM1jfctwTyVgL9PlPMt/SVhx6qWCwlzapUlcJp79t6ndHI67nSezxnjGGg+BZjm3n8OmCmPlRclph6Rz533TyOeOscvu88xYPoU21pGLmHvnB6rEsrvWeThEkS2pgBSj3T8Hso+gXnum6Gi0QONsmOfdf7+XaT+vx9sbuid4sJ0SBH4olvROrN3LlJ4qmQXUytLrSy3LPAI/uHd105eo3Oc4xxnQHiOr3j81l/467AwyN5hrxcEBf2FQL2uQMDqxx5nBLoNqM5hVwZhG+RDGwGdlIhURhrWUXabqoqqpMmUPnQ9oq4Qq0U0tO97+PxtVC0NHrwDVYGUBKPAKLqPVrz9tdhztvlGQHgYrjxBg2/SH9+Q/kkByqd6v0D2IVQPErf0hIoISmSI5aQBqDxCB0Yzr5RBBpeUSAHVOHxmGzMQzMfso++hanr6dYWzkmbZo5THJyAmRGDoDZW26DrOudGWIf2xf+hqrIvb3XcNRrnRcxAiACjLS30CkmU56CjaMkneBxc9rPKUTQKFXog94AHZF08zTAEAYS/RmTJlg90lPHUSQ9BFGVaZXGUWcj/h3QG1zDhOE/TxvIQ4SHhLQJXZSI2fPfax2OsZzJYaYZ/tK73zplYa8fE5TCLzuWbWtBSbmQLOKSieCynCbL9aCQz3rCGOJMFxDrsx4zzCKO5TgvxZQHmEIZl77xj7Mge4y2txLHl/KoEv7VLKZ3gKEvevB+Piwdw5nwJDz2E8p2N8mdLK54Kk57C1x45TgkLYf+afApfT4x37/08Kyt4n3vfelN87s8+rcuCg85r7vuZFsx0X0+ZKTzPzZ1T8vn47LFmZnlUCdL3XVMLS+6ga/bLesLGGh8KmQks/Csu8rDf0MpbLb2zFVdViE0itEois0zy2XjF4xUL1vK4fWdua/+Bf+t/+xNf0HOf4eY8zIDzHVzrW375g+cMNYvCo1lLdCvqVRLWe5vMtvtb01yaa0S801dsWMTj8skZqhbhfx3LQyiDuolF92G6jAX2O4GMZ6KKGRQ1yBSHEfZWMLOGiBu8R1nP3Gzd88Wdk7BEEfB3i76kcFA80Pv4UwCARrYpsYB2VQkUQuJUf+wGFF6MyaUjAMCiHUrEPUcg4TaFjUqS0RxtHCND1NQDS+OhN56PJPV4kf8KA32q2XtCserR2CKA2sSR0sIrBRmawSiqhOflySV3Te8my7lEinnNmBF0Qewb0OWmZiiFMS/Iy6FTSo4rtfYgKo0a4saRRikBn9cg8GhV7UKQIeC/2wJELMcHJ22Zhht5F+fS830EksDNlxSAm7bmUEqYAJIP//dLGnLhZL8d+QEjgLCunTo5R7uuY+DuyD7LK/sAM7srSVDsRXsnblcfI+0yBX3meLswDuvF8jjBFc32Tc2I+c/fCotC4PQCkpQMPtugzmpYezvVozsVYJlwwHdMoQeEBMH7PKHswZ+c5KeWdRn6Gs7fmnJrtU0IzOd73XE7e+yeY1QMW+dgiwBGgMx0nP1dwWoX0GDh86jin5l4+Z3nb6fP3nDgFOp8aY+565tDC46XA4DDK8djX0e+PfTBYClbZIPnRuyu+fnVPIH5ntM7sHUcLj5Sex6HmLoHBWtlxHC08jbK0TnPXL3i3WaCVT+IxsaojfxetXUUlI8v4YGs6r7gxW/72b/7tZ127c5zjqx5nQHiOr2z8F3/736ayAV9rpHTI1iKcRvUB1XtcEz8e1bseBLhGYy8rtBSIzkE/EC6XBC0R2x7/4Qvkwxa2bQRnzpGRVrAWYTXBaPoPVxCg3naERR1ZwRAIRvH5P3fFu9+I1hJikASTQJ1JpZ06RLaul2l5H4QViGRNwCbJgDhBqH3cjyQWIwNBxpJR4WOZqGsVeIFaDZja4b3AWYXdamynMI2NzCMB18vIHsoQy0kD6NpjU9/h4qKj3VR0Ipby1C8eUdITlMCHwzIsIQJaObyXyGwBIf1obZDThswYPrZ1BF3ajduGxEaWPYMZaAI0csfMSXHYu6aJCUXevwSkQQSGlIypwhxeiIBJQNNJz+CS2bKXOBHQRW9k6VOo0gp2maBN/fym7F6P2kugpkxR/N0jmYDCSXhEfH5CZD2nHoHxxBKwC0kIhn02da6E8ikZ/9JCw4tDsFCWoT6HFZruu3esCcAKQeCPJMMWBX6f8ZTCo9lnY5+biO/NIz+54vB+fqnxpvdpEiMQDsdtC44BlZ1tSgHwA2Op9ZRtfDLSIY6Vbx4FiuJ54z+H7SuPO/392P7TZ++U/9+x4x1jfZ973HL/U8BybttT281tcwocz4FQj2Cpe1pn6JwehWGm97W8bgs98PpizX1f02hLZzUPXT0uuD329dgrnr/Dc4lo5zSd07zZLlFpgaK1mkU18MFizbVp+eHmmt4rGjWM5aMv6w1XpuV+kHxUP/ALzRdHr805znGO/TgDwnN8ZcMuJHrtsCuNXoNwgeFK47Xg3Z+oePm7HfqhZ7iuGS4VtpE0by3CetzKINctvLlFGkO4XDK8XGIA0VSIto+AcbNF1FW0nFg2bL91xbtfq9CbwAv3Ev1ui1tW+FrxxZ9puP8Vh7AC1Sm8Cbt+P68iOISR8YvIhVgiGnFBsokgmdKHcXsGAU1AVC4CAxsBQmYZ3UbjtULoyDDK2hESAwiglhbXKRDRsoIQCCGVdVaOuhki4NtocAJ1Ew3qe6uQApSMJsMCCGXCIcGonfegTybG2bsvJwvWSx4fGm5u1tytF2jteLHcHpT3ZXbw9mHBohmiAIG2o8R5KQKTk5gsRqOkxycvxDxuVtn0QYzlptOySSN3QDGDPC09nYtfr5mJyyWlx0rbcp/OyCKGbNeQ+hSVo5Jun9mbJGJSxDLNWRuJiUfh2F/5zLKyqeF6OYfc45e3CSHZP6gswLMTcXnKuP19AdQ0Kd3rpwu7+ZSCOxBBoXcSWYByKVw6n6cVCecY2MzolmI003uR5/rcMsSD852I1OTxVPFcvm+ULGBmhw+Em2b8JeWkHHkq1DMHGk4BtWMA6eTcy31m2MznAsPnLEg8J57DRh6bQ7n/U+8/9/hPnWsZp8b1QdCoASkCt+0CJT3Wx5JNqcJoQL8eoil8owbWQ0WfqkPWXUWlLUbFBbfBS9wQGcNV1XNpOjyCt9sosuaCoBs0y2pgaXo2g+Gm6gD4f3z/F3l5uebVYsMHzSOftxdUyvGnL3/Ig2v4ZHvJvW347/zJ/8vR8znHOc6xH2dAeI6vZPxL/8rfQKqo4omAzdca7KJGtwHdBravJQ/frHn1nzxS9Zb1xzcgoL9SCBdLKFGS8LXXBBsFZqofB/xFDR7CapEk/EUUkvEeBsvDtw3bDwMEGC4XXH6/Yv2hov0Q7DJEpk+A8PFfEOwsInoZAaKMQCrIkN4LMIixHDSYkBhF0j8RMzUnCFaBCrHkU7ATk5GBYAVha+L7tYtehUGAFbitRpjILPleIStHGCRCei6WHduuojIWVKB+0bJsejadQSlPYyzOC4yCzmp8ACnAeUFt7C4BSvfGBYEOAik9WllAj0b2AO19TX0ZPQpLUFMmUS+vNjgv2fSGm2Y7sns2SLbWjKxdLo9TIvZg5rGyaXIlHb2PsHBIPYkl0ydFQJYsU8GIGbmzldBi314ilhPGvrXeqdGjryy5cmFXUhtEIBmToBEo4SPgTnObAsUypEiLA/4QpOTzLOeVzyOf69QWozxXRBw/e4+N4yS1z3x/CHIPPBwr5/TFfY7jFOfAfDI8/X/JmB0rdSyfF4lAhnAAbvJ5TJnR6XF3czsNyLJlydwYz2Ukp32S4+tHWMSnSiznbD9gBwo9O1AXn6ND8DsFUtmqY1rGXQKd6X0ePUZn7vNTJY8H82EHSqdlnM8pw3wfFvJUTI/zvmDwvVnWYtujcyp7SstnaSKcNDdGFIVxNGrgw6XlXReBWxaCQYEW8TvvvmuoFjYayS8dX2yWaOm5ajoq6SIDOEQ7Hq08m8GMi3Z5ViEIltXAyvSjlcSF6fjuu1dcr7b82Vc/4vfvX/Pp9oreK1pn+GK44O/ffp232yVv29XJ63SOc5xjP86A8BxfyRA+RHbwMlpLSBvwSiKtR7WB1Sew+Ujx47/ymlf/sOXihz2uUXQ3iu5Gs/r+hu5rVzx+s+Lqu1tMCLE0stIIJQlaghIELZHbAfH2DvqBqz/oWX+9xjWB9lVguFDYZUq0BiAIvAnYRSrf60UEeClCldgol0CeIJrUi6g6GkZ5QbFjDmUCiJkVBIJXUWF02K3mCx0ILkR1UiuQ1wNSeMKFx91VqIXFO4GqHd4KxKPG145tV9G+bag+euTy9RrvJQ+PC9y7Gi4HwmXLKhnEA3SDQYjAohpQIq4shyBYmGHszdt4iUriMSr9e/XycbwOWkcQJ+UuWc/AxXnJ27sVi0XPt25ukSLQe7XHwMEODJqkEFqpYQQwtdqxhBU7a4SsQBqCYG01l3U328eWe8fKvrvWmZGZLJPiUtU0g00RYu+kytuRbCBzf6DYsWFCBGxI4kbsl3LChCEh9muWJaBleeDuRObZrL2StgnjOFUhfarUMfeundomn99TjMj0/5m1nBNSmYYPIoEHNfveqf6543Py43j52Tnoe50BgVOgcgDijsxlbp9ToGfvnnJo65GPtesrLSJvMgH5+/NI6q15nAnQyc/ogZVJmoebXK8pCxhf8wfv7849PwPy5KLAl2Xh8v5PxZdhgY+BwukYcws/s4tB+fd83eauHztWu7xfe8cjLmJlRn1leu67Bh/id2+jBgAaZRnSQtXb7ZJfuH7LfV8DUTTssavRyqGVT5UQ0PYGIz0uLcatqh6p7XjsL7YR3Gnp0crzzctb/vM3X+dus+CDy0cuq44f3l/xxeZXsE7yarXh7/yVv/XktT7HOc6xizMgPMdXLn7rN/8nVEIgugFCg+ocw2WF3nq8EngjUH3g4keO+28pHr5V8/I/f4euDeZeEoxkuKnZfKhpXwqWn2rMO3CXDXah0BtLkAJ71SB8iCWhX7vEvG1Z/P4XXH3t6zx8R2BXgeEiRL2QAF5HYCgCiAFyxVvuDww6jKWi0U4iAkbhBL4uVEYhgkHiGHJlCVbGPkJXvOfUzqg+9QaKhRvN6b0TSB0ZQeEF9tEgKo8f4iTVyx4pPd3WILeKh/sFF1dbQgBTWdQHEWgNg2LQEu8lTTVQmwgK82rw7cOCi2XHY1dRJY/CwUkGa0aTdNiBgw8+vos9KU6PILAEOAsz8OrmESM9W2tGxg8YrSpyL2GV/A+lCGjhqFK5aDavB5DKsbUmSpmnMinno7T5Qg8jyMxz2VpDZzVGReGabTA78ZwE7vKxy5K88jwyO1sC2NLKYUz0ClawTderZAun7AhejizPnJBNvA4Fk1kob45jwB6bCfu+ieNYM+V7sXQ0Xm/3jIS6vO9PvTbOeTKvY9seKxE8VeI4t++x1yPruANde/d4el9OxHPYpOeWBR5jIkcm9ghembKbu2skgf3naAe0PHM+jk8xXZmVnbtvT4HB/PnJfaBTYDguFkwYw7l4Crw9t6z0uazi1FLlGCg8xjo+Z+zT89sJWM3ZuuS5UTCF1sSKi9YKbv2Cj1f3ALyoN9z1C755ecvn2wuUCFzVbfJdjQtdy7qjszouhilP7xSb3rCshtgHHgRSOe77mt4qbhYtG1vRaIv1inePS5pq4LLqeLtdsjCW14s1WjouTfes63KOc5xjF2dAeI6vXMhtXMkUtw9Ub+5BK9T3e1g0bH/5NdsXhmERjeGbtxGw2RcLzGePuA8vWH9cExRsX0mCgvalpvmhiMb1RiKsR/UOtzD4WhGkiHaBFxXqTvDqP3nD5uPX2Iu0iC7CTijSR7A1gsAmIBzITmCvAliBtOAWSXFUga9dXLUXJDQJEMAJ5EbhhQYTAR/aI8pS0QwIg4AQkDrgVGIJtwq/SFYUl0Mc9tbAhUNqT1XHP9xeBYIH3lWs31YEHQjGU79oqSqL95K2N0gZaHtDbSwLsx2TneuLFiECD5uGwTkumg6jfLTSIHlguViSKIAQPL1QVOyDo94rBrfjqPqkBqrSNmrCguXjR2W6nVqeFIFK2L1ttPBjaZRWDiujrcU2gbB8vM5peqd2bN5MK1q+1c5LZLLMKC0DMkvoIar4pR2m5Yu5ZFMJP/oI+hDLSDUCI90I8GTy5/IJ0AJjKWvcL7+2r74Ju37LsQwvlbmWQDh7KE49xnJyuUsk/a6s9kgp6rSMseyPLEsNnzJhn+4/jVMlic/pAdvbVpA+zIfP2DSpfw5rV+4L++D6FAv03DjGqiKeZsbGOYh5oLE/9n756PQ6ZBb3oBy3AIV+8jowso95nNjbWyyw5M/UFBhO1HrfN54qV87zOfX7bKlmyawXPaLHAOv7lJCWxzqmlHvsnh0bx3qFlhEUaun58cMVtbY8DjVSBFqnuTTtOO5V3eJDLHV/tdjERTofK0Byz/hDV4/n01pNlW2IvKRJrQXrocIFwYt6w4dXj1xUHZ9vVlin+GD1iBSeSjr+vd/8d591Tc5xjnPs4gwIz/GVin/pX/kbNEYhP7/FffwCpER98i6qgALND+/R2xXDpeHxa5r6wSH7gKsV2994yfLHLde/e49bGqRdsP5YYhuBvWkwn9xRrTvsiyXD0jBcaqrbIQJCJeheGvTDEvnugeZNoL9KyZBJthCZHUzWEm4Rxh5Cuwo7wDcmRenXINj9nU/vyQTq8vt9BH8iGdEj4jYMqdwvmc67TWQNQ51sLbxAaI+pLcPWRJXTXuKtoA3RnqJuetoPiCxkEMh7Hc/3rsFf9JjKsrlbII1jddnulQpq6ZEmChXIVWQGXWKfdGLQshppCRJKBgxgO8RyzGwzoUQ0sJcijAI1OcHKyp7OS7wI+GBwg5xNzmAHUHrfjOWkEJUZfSpxU8LjQrKhIIKtEsjoLJyTykPLREyIgEnALCuk5n3Lksq9gka/UwHN55UBYI5popz99kqWJIunzPW/jZ6BMgNWn8Ch2snCp5JYnVRYd8eK7+dS3XwuVQLAWvg9Nc9pUjtnYTGeOvuqpnOiLacYxL1zLADEbvz5krm5mM5fy/KzWDJaOyBfHvtYT9vcvPJxpsc8xhCeijmWaTqPU2Dn4JodAS5xzEO2eL/0eJ+ZLMVtSO+5IEZLjMPx0zX0Ah8cXoq0MBHnaPdWZfyBhcspQHWUxZx5/mCnpPzTYO7gdOnq+zDLzymbPQDsR+xGxkWpIKiUQwfPd67f8qZd0VrDy2bNw9Dgg+RNu8AHwVXV8qPHaxZ6QAtP6zVK+PG7OS/01DqCQx+iSFIWqqm1Has8jPQMPtr8+PR9uap6OqfZWsOLenPyupzjHOeYjzMgPMdXJv6F/8rfZPnFFjE4tr/+Nd7+Rk39LvBq08f+K+8R92v0YJH9BXaxjIqeLlC96zD3Ars0bD9uqN8OXHxvg/ALukuJXWmM0QyvVqj1AEJQvYt9hwDtq2hn4RYGMSy5+cctj99eRBsAIcZWP4hiMqqNf4hdE0aRGXpBUAFfpdJRomKncFF0ZMx7VBgFZcIiCYbECi5CpxCNi+ygF5DM6ZWO9hBRTMZje03oFMEJ9MKhlIfFwCADoVWI2hG2CisVtlMsr1qEAO8FXWXinAbJcFfjLiS0Em41Dw+GzfXA5cUWqzIrF1VIIYqcWMcoNpMVPK2PdbUZAxvlRjGYwauxFHQqMKOKHsHRHL1IlFprRs9CQUyKch9jydZlz8GqELLprI5Jp8osmxgBaFYuzaWZlXQjGFQT8DVVLXVBjr1Ue6WYZQJeMH1DYkYvqm7s45lL9DJ7OHg1nsNAPsdonTGCXBFBbqUcWrgCJMiRHcxzKpnX3XF0vJfFeJJA7xjBY2Y4pwDnWClqjmniOgvcnsF0HQNdU4am3L48ZgnORvuGAqhnQZ6ssuqDPEiyT7FAU5A6PeedZcRxe40yjiX/JXMVAdrTQHiudDMf4/CYu9LROYCTQSGc6GVMxyuB/vR+WC/p07KJFCEJkdij1/YpIZXnMm+nYgqw8/V9EghO5neKsX6feZaLXrty3pnFoGPP6+S+j6JRRP9ALT0bWyEJfO/uhl968YbHoea2W7DQA7WOnoIR/NlxUXBrDbW2I0CEKMpVfhfkhbTBSz7dXrIZYml+VmQWIbYG/J/+hf/Vs6/HOc5xjl2cAeE5vjKx/MEa3xjuf+WC7evInrka3KpCVDfItkdsO8RgUW8euOgG3KomVBK8p3+5YPOhoX0tWDaCYVXjFeg2HcAHzGcP+MsG9djhLmqCEsghsPhsQLWOzTcaLnqL+eyB+u2C7qVA2EBIn8RM3nkNSAh1SJRIOkYuDSX2FCKipD4q7BClZGT+sCKWi0LqHQyEIamV5td6iQ0CoTxCgZLp9QBCe5yVBDR1PSBloBfRyF5cDrgh9iZ6LzHGEsL/n71/jbVm28+7wN9/jFGXOee6vJd9OXufi499nBxs7MZ005gY4ggSlGP4AEGCqD8gIvjQUrqlXNR0y2rc6ogOASQUwqUvQo4hihJAnWBQRNTEEoqUFq0OAtHEcRLbsc/x2Wff3tu6zTmralz6w79GzZq1aq613r338Tk+zL/0aq01Z9WoUVVzrXc89Tz/5zEsli0xCt4b/LYgvSoH11QMxBclFy9L0spz+niNM5EQobCRZdnRdH1cg+wA0VhGmDMBMxAZg8DdBWBw/wxJQVjOHeyixUocHDqzpFRlTMpOFiOQl49p+4zEEM3wtDo/yc45gEPERP+UewzEXA8Qpgv7MUuUzzEvtHZSzIm0c9TvWJqAK3UhpQxez3YOHwf9xiczgMGURqHpccf4TQFQF+1eXEbj3RCnMe5fzGPF5PZjH/rKbKy6V+gtGgPVXON9B8ngCFAOi+uZTMNDAOZQz9Ucazfd79DYUzAyfJ97LlVbCzC4rE4ln4eYmUPncovBu2fO953T3JhwP2u1P97OWGbu2GOjkrvml+eRf88PzeE+1ndwz+0/69u+z9jNMOB31TywnfnsPICJ3mND87ij4W+xwK+paX3o5+fgMZJRFvfANTrEFMIOiJcmcFZuqW3HdVdxXm55uV1w0S44LbZsQ8HaFxQ2DA+dfFcOf78NalJT9P3a+WFNVmP4pH8PLzb18LcmJXWiFklDLuK7JxcPvWzHOtaxJnUEhMf6n0R97bf/7+m+9ISXv70kVILpYPVxpHrlVaYZIxhDKhykBFWJbDtMYQm2YPPuiqvPW2IpuJtEtxTaU/1Pslgn6veukaYlPD3V0HorSBcorhJ+6QgLiwmJ4qpnq+qCxbNIe2YwCBIUMPlVQlpAEqYRLIaw6MFeGjmKujQE0icDuKRGM/12CKTliB1EGNxG+5iJcYQFrVFpqxdiZRHbb5sEU6jRTEpCCPrVOY9zASowRv9Tb33Phm4LytJjbcKuWhpJpLUjFD2b2bOS5qLgen2Ge7qhqjzgKawGvVfF7mnxkIfWLxyGnrQeZIwX1mPzlvy9NRGPgqCuB3N1Hx6vDOLO2TMmZVvza7BbhA6SpR7sbb2j7p9yZ8C37gpOirYHcRp6n3vw8kJmyqblUPCxC2BmFPO2ORA6n1MGnVmqGpPspKy9m2pm+fYYCnY5ilMwdqhCMnTesvVOr6eMxmAXT7AfF7EDw+OePz2ewaT9BWuWlY5rWIROHFvHmYbI/OL30AJ+eu0P1XTMORZvjpE0mcLO8z9wz8dAbE7yOcda6nH2jz9lVw/N/VCN9x/P4y5QeAscDOzflC28GwzO3aOHAKy87fjrUKP7ENHfrRAMvs8G3WNDZ2TC03nNss8z8xif06GaPgga9v2EROTc53vv/XviUoafBzbc3vswYHcvd9saCWyD9vxdtgtq1xGS8IXTV1y0C3UgpeOs3PLh+pTzcjvE/xj0IZNPhlXR7uJueuVH/l7lwELhAqdODWPaoLLRZaHu0Fvv+K//sf/7g6/fsY51rP06AsJj/U+i0smC4qrl6S9FQmEwIeGuWhDBrFuat0+4/kLJ41+6xlysSYUFZ+geqXPo5ZccdpswXk1mQiUkCyRoT4XujSWFM0hIpMoSS0dyhmSF4rqjvGiJzuBeNQo+U+LkvYarLy2UjHMQKjWQISlgTRZMB7FkOBYGJChmTS5BVJOZ6CD3/KlkVCWhUgfERnUOvSo0kD47lNZqRpM2VoFlkaCMmlcI+l7vaRK9oW0d0RtSazCLhPcWYxKS879MYn1TkS5KNqYEk5AqMriXeiF5g9kY4kkgrnoX0quKbl2yerShsA0xCpu2YFF0ytoFBVtZmmnQmIUmOLbe9RmHcXDtVJAlQy9fLj8CiN0oUD5LSkFBn/Tb5uPnxVsOuB/YSgenZYPvHUcBzd0y/VPtfkGT3UIzy5VBbAZL48y/vFjL7qc+Gm66cgC4Wd5a9JLRcR9eZu7GC/u8qMrzztEQKS9IZX/BLqMFcJ7jpitoRxmMmbHN5zPud8znO66xxG9Oopm32ZMDpkkvWdwZ2DgUfGRgmGscej+VRM4xenOL9/uYlb1te8nrFOzJCAQfisyYA3APYeYeYjhya5+ZOUwB+Lj3bZA13sG47u/cf50Aw7FU9NA8DgH32eNMtpkD0vl3agqCdg8jpkBq56x563wmdRc4vA84jreZe/0uRniuHsrozoHxQ5/Huft+qPczj60P7OxguGUksrAdN77k3cUlRhK17TipWjah4MunL/j1qycD+2ckDQ/aALbB7f529RmpTf9aAFZly6rQCKONL3ha3wxGNqui5VjHOtYnryMgPNb3fP3u3/WvIcsCe91QPrskni01CqK0uJcK/mJpCBX4VUF5AbF2tI8qJCauP29pz8HWQigVpBkPsQC7VcB28f0VT37JI01Ql9HQDbmEsbIkEUJlcM7gLrcgwuWXagBEs9cH2aiCQv0Xakjl7kly6ikIib0kTRKxzPv1TIzr2cRWSFiSkz6cPktLgYiCxCgqTV0ExEWS7xdGeU3QGoK1iIvE1lKfNGzaGucCMQrGaJ5gXnDF1iIrj9w4ZSC90f5GAaqohjWuZyddxC4CRekRSZwusvYWtk1BV6u8sQsGI1A5P0iDumD7+AddAHbB7BnNjPu3YCc5MiOwaESZuLHsFKDxjkeLTd/rt2N4cu9fBi6V9TReb1qGlNZEfH9DxuwY7BjGnH+YTRXytlO2KEs7p9LKQd7qd9JaI4kku57HXHkfjxnMbxQI7habdngqv9tvvKgeMyvja5z75PKcxvOUJFi5DQ7z+Y+3n0ogdWG6A4VZgmlQKtLYhOFw79e0xoBrukCeBwnzUs496Sn7X/XEdt+Oz2VuPjvgchgQ7LYfxYDMxDjMzXVc09fn7snYsXXMYM6dw8HjZDAxySd8aD/cePw5sDeMNwaEExbsLsZ0ej5mxJ4bCbv3GV3nB7J3DwWyc8Bs7prcd53u+8w8FAhOxxwffzzO+P05ljtGwUlgGwqcj1y2NU4iT6sbLroFIXV00fKo2PC40jYBHw1tdCycAshX2wWFDUMGbNG7jI5NuCrrKY3nxXY1/I0PyXBWrvl//sSRHTzWsT5NHQHhsb7ny101+JMSRIirBYj0Ri2JzZfOSUZYfOsa0y1x1y2pLkjW0K3UQbS4SbSnQnR9HxwKBo3Xn5NVMJeM0Ly7ZPvYUl5H7CZiukT1oQaqJ2eQ1oMP3Hz1DTZvCuVFYvtkfyUpvews5t6/LEPrN0umB1gJsDtjGRLqDpp3y0DSGw2hX8Rd76AFsUkjJSp1GN1zHxXtH0xRewuNSdhli7WR+ryhsIGbtqKuOkLchZ0/fuOKlITtqiCrAmPQDMIYlFUzS09oLGL1ZE+XWzUv6Zk7zSr0hCS03uLsbuHWBTU/SShQKW1g0xXEpMCosn5g2sagxkgCE5UBG4XAZ3CSFzsnZcNJ2RB6BnK8MM3SzrxIGUsv235eKuPc9T0O+/bsXhiFwBt2Ifd+ZLqRF7mZ0TNJXy9swKUsM83GL7tjHMra2y1090HPGMDdAkGSBlfTaHbXcswIjscaoi1QGeeQnziaX2Y58/fTueTX83v53MfGM0Pvo2GQnc71N91a/I8BnOxvM7fv+HrsnetDWLwDjNd0/Dj6+dC2+v4+CJzr6bprsT8FF4eY3PFr49zEufHGx5wDzYbb5jCHagpAx69Njzn9fna8uc/DSNqcAYbr35m/1/vM4VRSOq7p3O9iVg+xpNN9p5+JO4/5CUDr3Nzm5jp9b+774bxEqG3Hy2bJeblhGxxtXGEk8eHmjDZaLruas2JLGy2xV03kvyv54VhWOhRGHWOt0TaCDADXvqSLhmUvMTUkVu7IDh7rWJ+2joDwWN/T9Xt/7GfoniwRH0GE7edXtGeW5QctpvN0pxbbJFLpKJ+tVYspGgHRLQ2L5576/TW2PeXmc5o7mERZPElQXCWWzwKhEtpHJfW31tQfCtu3Ftg24q5akghYwVzcQOeJbz7i5m2L2yiTV1xDd6ogM7ODyYBthVikXd/g1EUUdqYxhp5VFJj+x59gCKP3RvcP2nsoLpG8UVlpa3GrPqMxs1RJSMGQTN/HEUV7B4Fl3SKikp84inwQSSyqdk+WNgYt1iSuNxUxihrVyK5PUFCH0RANTeeGuIm66PYMBnI0Q9nLPTddwcLp3LPTY9P3vDmzM6AZWLHefTQl4aYr9wxrYJ+lmC58/QjUZHCWa9MWAJQuDCYy433H47dJIxlCP07uzRtYuAyo2QdJVhLFDIs1ZRGzCUsOuZ+6M05ZjfxzZlZz/2Oet+Xw4jeOPqBTF83xMaAHHbLPDs71yOnPCUkymPaIpL0+yrnzubV4vgPETUHxHDv2EBD4OkYgh8DPNGfyoTUHBufu03S7ad7j+PVD13buGLeAwQAq7wap47nfxapNa49ZY+azP3GvHfYbgcKYNKPQiBn9ruyDQz2fndvmMMbMtXwdhvAhbO6hz/J9wP+u1+5jCF9n+7n7p+emD8t8tESEE9uwDY6IcNnUw/6PyjW17ahM4HmzxBX6d/yiXQz/b+QHTVnOXBo1nFl3BZUNlCbwfLsCOOYOHutYn0EdAeGxvqfr1Y88YvHME5eWzdsVq/c2tGcLtm+UlJeG7blBIlQvtGfQXjVAYv1OxfKjDtvqAr5+1iHBaVj98xaz8TRv1Jg2Ur5qkK0n1Q6zbvBPVpSvdBvpeoOZdaNg8I1zXvzoOd2JYAJEpxJUCWAbIZYJv0qUrwS/StpH6AWJEC1g0oDtkksKGq3sDGVAAZ/PT48TJEE6o9tA1uIha6uMYpAhciIGITYWU2vUhC0DoVWuyDeOsgwDS5Oz9gQGR89c04VmXgilJPgglIWCu4SCqNIFtv0+nbdc39Scna4pXaDqZUTQO2X2vSULp2By4Tqod6xUjmE49NTb9L2GebsM6GS0nV6nEdPY7ztmx9pgeXm1JHhLVbfUZUfpwt6iLm9vR4xbzhrMTGfeNh879/HlCWUWcSw1HVcGS1Fk6JPMY06B8LDPCDB6zAB+xxEJ43ntyW8xtxaObRg5lTKK/ZAdKJ6yYilpttwuJ7I3i2G/N3IMPHZRC0bddWHPWGh8fofqEEs4BTavy0TNgZupkdD46yxbdKBfazyvQz9P6yGgcFzTXs+9+d7hhDk35kPAxPgzfxcAuotxG3+/d66je7z3GqOIkLQf1+GMYJJ+Dvfnmx/i7GIYHnLdp9sceu2+c3vI+4eOedcc58a5j62+7174aDgvt3y4PuHzJxf87Rdv8kNPP+Kys/zQ4w95f3MGwHVX8bjcKNCzgTZY1r7ESWRRdmy8PljLn8nShP6hVNx7gJIjfo51rGN9+joCwmN9z9bv+if+TXhs2T52SEwkI9x8fsH6Lcvyo0B75jAB2jPh5t2Kk9/Y0L25xG485//DM7p3zkhGwEDxcktxKcTSEhaOeFpSXnR0pwXdeUV10yCXHdJ53HOViCLSu78keHkBJyvaN5a0Z4LbqDkNVpCYKG6E1oBYcNfCo18NbM8NzVOhPVfHURZ6DhRJDWAEYtW7iw7Zg7IXjC3e9H2HKDjsmUSpovbygQbWG42jSAKysb0/jcWUAVsGlWiWkZTYk3CmpJKeMRsokmi9o9kWGKugsSh0jJSErrNUpScBTVNQVR3Xm4q6VBOXzbagrDoeLbYDsGuCsn3Z4fPlekF16gewlI8besDooy7/MmM5XSx1I5MUCwNT1wQNbi9MvBXF4Efn2AbLpi3wraWsPd5bboLhdNkM+VrTPsapecsYIE5rvMBNo0XaNOg839eYRHsBze1xjKQ9cx0YSSglUs4sqMZS2ylLluWh+f2YBCdmCKEfA6Pclzg9n7aPupB+Yef7zMM9F1HMrfy98dzmrtcckJtuPzhMyv7+B41gZB8Q3XX86VznJJhzQGhad4HWPNe5PL77agoKb5n5HFrwz7CX42s+Pa/xHO9iGcfndQiEPwQUTn9X4GHy3vH9afvf/TFrqPN+fcDxOvfkN6PuYhrvAvQPedAyd3+eLtb6sK7wXHcVN11JsdQHP+8sLviVyzfZhoIQDU/rm6EX0Eoc1CKFCcNnImehtnEn4889h//1P/ZvfeLrcqxjHWtXR0B4rO/Zik5AFPA154anf7PDLwyLZ5HqpScsLPXLQHvquPqSpbiu8EtD9VLYvP2UbmU4+7trMJpDaNYt0ikglJDoTguKq05NW3yAV1fgLLLZQlGQqv4p580G6pru3cd0JxYSXP4AYGD5ft+HaMC2kAqhvIKz//E5550nnK/Yfm7Jy68WbOpsGCNqRJPArg2xTKQykWrVsYrtgWN2DpU+qzAx9AuaIhJFXT9J6M8YdSEVVFoKyhgK4CKpiNhooAd5Y+aq6xzOBVIPmtaXNfJSe/uSS7RnnvqkwXeWovTc3NREL9gi4r1FJLGs1D3ufLFl4TraaGmDpekcq6odekxAZaUbr+6XWT5q+0WJ7+WrRS+/HC8aM/ATdmYpw2KmBzOtd0SrzGQed+tzX4suDksboISNLek6S+wMKRi8tzw5v2FZdHufxaEfDm47U/YvT5/aTwPah3EmC+f9BVm8tW+u/R7C271TPhp8sgPLOAcGx/uO5+Fj/1USEve3HwPp3Is4uD72wMGLGR4uOLOfQzfL/owq7En6xvM8IH+T22OM2cv76pDz4hRUjr9O5zAHfqYAJJubZDbEjH7nxvLH12EJ516bznFO2jiWZ47HmX4/HXf6ORnXlAG+qw6xa3f9rhyqaTxKzrvUn0eVNxv1cL5uRuB99ZBzv29/uC3XfWgd2n4OxM8CbLl9b3wyOIlcNAu+cPqKX/zoc/zQmx/yS6/e5s3FNR9uzvjyyQuufMVH61OMJLa+oLJeHwAiFCawdO0Qv7P1Beflmk2IOAnU1vOtm/MjGDzWsT7DOgLCY31P1u/6J/5N4sJgPJx+oyP8tpL2zOIrYfmR5/L7SyTA8qPA4lnk5l3DzTuOx39rjV86mnPL9olQXtZISnRLA6JsXhKGoHWJDtNFcH3EgA+a1RAibDaQEslY4hfe5OIHl9y8I4QFCtJsoj0XkshgVhPKpEA2BAWhrWf59Quq5xWXP7ji1W83dCcREJbfMrzx/2v4+Mcqtm8mQkTjI8pENobZk5FGwTgFfsZEkjXKXvbbpCjaU1iHnfmM0f1oLDEKndAH0Ash6EJpu6mIGwc2UZ82OKesYniaBrayXHQULlC4QOctxkTcIlKWmjd4WrXUrhvc5zLTF5NwWjcaEwF7wKwLO0bKAG3/ZDn3Mma5JLCXTyjcXui4nuW0krB9RqEyXDsmdFGoRDWzi8uiwz6+YtsWhB4M5H/j7EKb8/NGxiZjWeUUdHlyL14/v9HibLy4nsooxyzPHMjcM9hJZjjCwID2YLCLtmf9ospmRW6DlckiP0s+SebWYnJPNikqnc09ihmkk4QmCTZFQox7zNJwTqPrOpan5q+3ZI13sSD54z0DMqbX+pBcchZo9XMbs2NzC/Xh3s+A9P1Ffi9B7iM1jPSxJek28DkkA5yru8DDLBg8wBhN5XrT/tG5azjdZo5lnJ7HofsEBx5+3AFAx72Te72BPTC89WDgU2LA++7HXXN93f1epx4KBqef0d3+Zvjbeet3TTSCZ2E7zhZbVq7FLS9Z+5LSer5584ivnD0bAutjEkrjB3WHlTj0h1931aAScRJxTvu/z6qdK/WxjnWsT19HQHis78mSqEyFbRLNI0d5qd/Xzzo2bxWEUjh5P9CtDMU6svhYOP2NRvv+akd5FXtTF6G8DEQnhEroFmZw+EwG/EKon3sFi9aQGnU7k1Wt3wcPT05pH2uEhfFC9GBa/Y+zW6kcdPEsES2053D2jYA0nYK1GEmlw960nP9SpFudsX1iSAZO3ou4tad6VbJ5p1/Y1FHjHYAhgB6GSAmB3rU0YV0gJHBlIAaDq1XGmZzGRyCpj4dIg71qStB1Di+JtikIF4VKTr32KG4vKoqTFlcEFssGZyJN54b+upumxPue5YgKzlalsmnXbcWmc5RulydY2DAYsXQTNtBI2vs+/zGbA00Dg9gzhHnf26Am7cnosuRzseh2slir9udhxETmPMSUZDDCyVmHeQ75aTfsJIFzrp0uL0llH+hkCWoeL5vn5PN0xOFajc1s8lP3ucrHz9c79EYyt2SAO4tbtMdQ9pg/3X/EpEwW+bcYHhMh0ht7jGIYkuAxOOIt9msMTKaGKIfkgVNJ4dz89q7Hay6yp+c5ZvHGY07BWgZJY6Z2fPzxvGOOcRiBQib359B1OnRO9zFKh8DgIWAI7PXW7V2TKRs76cObm+9dMtG76pBEdTxe/ntw1+fnoezlfXO8D3Qd2uZ1z/3TgsPpOHP37b79pmyyIXHR1vzw4w/5jZtH1NbzYrtkWbS00fLLl28O+yxch092MApzJg5/c0rjqa0fwGRMwmVX85d+57/7mZzzsY51LK0jIDzW91z9nt/5x3nxP1+yeBYJlbB5Uzj7eqQ5N3TLgvZUmT67iUgQohNW32ppHhe0Zw67jfiF9vl1S8FuDabVXj2XlMGrXygILF81RGegU1aJFJHHj+jefYx0AftqTff2GdEKElBguhVlBts+P76A5pFQvUycfANO/s4FeA/WItuWuCyRLmButjz6lYpXP1ix/DiwPbd8/PevWDyPVM8N3VnCryIJMFUYMgVTz/aZKvQOj2CMBsvbIgzxEGIiNjtSlp4YDMEbYmcVGFoFkaCSTecCjQukKFgXddskVJWnaRwnCwVz2TV03ZTqRmoTyahpTenUUEAksW2LHYCJBu8Ni6qDquV6W3FaN9R9DmFeeBtRU5uQhGJkoDJ284TdQseN2L/8dQ4sZXbRjhbseczKeJwEvLEU/VxCErZdxapqOSsbbrqSTVtgq5bY9zPmuWUzHpNUXrWXDwh7GYHFAUYu18CwARiQlPbAYD6/QWrYjzuwp0Iv20x77q2ZaQXtrcoB97mvZ8pMjpmwPJ98fwYGMo7MayT1oNAM8zjUm3cXKDSjS3KfVHB6/cbA965t8+J2HGI+lYyO788YtN83h3EpyLZ7x5zb/5MCpkPg7qE1BVV54Z9/vv/4++Ys07nB6LzlYWPC/n0f34fpXPfmPcM2z31+7gN0d92Hh87/0+7/SeohY8/13h7KwZwbX/+eFJQ28KRac1ooo+eT4aS4oY2O2naDmczStbyKCxB1F936Atf/vQENra9dx3mxZROK1zzjYx3rWPfVERAe63uyJIDtFLwtPkp0CyFUGiVhu0T9IlK+amneqIhO8CvbM3SW7VPH6v2IbSPNmaN5bFl8pL2CxXUklCofddcd9uUasyiRbUvqlOlKdYnZdiRrCE9WulCPiepVoH6R+j5CS1j0vYMNLD+KuG2kuAxICErFWUNyFrPp1KAGKL/5ijdeLZAuUD1d8OE/sODFDxlCnfCnfY+dFzWE6a28EcG43lwlCsYmurYPNS+SArko1FVABLw3iIB1ETEJyl3vXlEEDQ8uPF0w1Ceeru8B9IWCjs2mpCgCPii48F5lQOubGld4FlVHSCo5vVpXdK2jXrQ4G2lax6LqqMqOm1jSBUvrNX6i7R1BjWhPX5ZxWhNZHAhkz7UHKnp3zSH0vAdpZhQSn7dLSeiy4+YoK8snO4xXmMBpGTkplB3O7nfnizD0LFrZSU0HwDYTzzBm/XRhPC8TDXFn4jKcc85oTGFvsTsGb5kBzXPIoCiDQT2fnRHOxhds+/gOI4lO7C12NfT3ObOph+R345/HoHAAqRMXyEM1ZdHG48/JKKeA7S6Wa+71MRjU9/qm35lpDsyv7JxR54Dn+Ods0T9+SDGAdcBJ2B//jrnf1+N2CMg8BGBO3x+D3vx1Tr6cv5qDIHccYj8CjA8AhYfO59BDhCmYjjOfmblzndah8e7b9nXq0Of80Hb3bTO9V3N/I+8CwHt/r+5h5I0kzST0y0FJ8Ldfvc1Xzp7x69dPuOlKzkuVkta249n2BN/VGEks+9deNCtabwfGsLSB667ivNjw5/6h/+Decz7WsY71enUEhMf6nqp/6H/1b8EXamKhQfH1q4BfGIrrwM3nHMVN5OS9llAa/MoRndCeiPbToQHzCIRKuH7XqXkLEEtDLITqeUfZeCSonJMQkPefkWJCzs+IpwvCskRCRLpIrB2EhOkSsX+o6baRkw9AQhqC7U2TMF0cQuwpCogJCRHaDakswBiwBpwhFgZ73fL2fwsf/C8XNG8GzSPsMwZJEBuLXQSiF5CoDGC28x+xer6zGJuIOV8vGIyNWBv1kPa2UUkXzBAhYUzECKy3Du8t4aaApW7r+n193zcYvIWqIwRDCIbmssIuAuvLGjqDVIGy9DiUhfTR0HrL5YsVdKKUKuDOWpbLRiVGPUgb4g1IQ7gx6OJk0xUDmMxmM+PqepZyXG2ytxaT3u96G91onLwodKKgqDSBJjg2nRrrlC4Mxx/3Eo4XfVmumY+FoBLXfj5jmVuW3KWZRVw2HMnf530Hdq4/fpvZqLSLwRjYLRF8cEOWY2ZiMxgE9hxFDQxRJOPaW6yOz7VnIufqLqbvFihhZ1QDQBJC2pfCzkkI8zzuGn8qm9tnAHvAh5lnUiYM4p5UNIPFPrvxvgV/ZmXGrOFYarpb4B9mb+YA6Zgtuwuw3p7P/HWbY91ypEscXbtDcsTdMUfZf6NDzclKp/u+Ljh6XZA2ran0djqv6fef5HifhM0d7zudx9zP0/nNPTDYqwP3Jf/sTOSmqzgvt/hoaaP2Un/z5hFfPnnBe+tz3qyvaaLlo80ptfVctDXvLC8xkrjuqmGspWtxJnAZaza+GFj0Yx3rWJ9tHQHh91B9+ctf5utf//qt1//gH/yD/Pv//r9/6/U/8Af+AP/Rf/Qf3Xr9h3/4h/nFX/zF4ee/8Bf+Aj/zMz/Dr/7qr/KVr3yFP/7H/zi/7/f9vs928p9B/dQP/sssvv8p3YmlfqHB69fvWk7eC5SvWm7edpz96oawdISF4fodS3ENixdRpaFtwnTC6TcitkuEQjA+EQvh8kuO1UcR9+xaXUOVSiOFCEaIX3iL9fetMF2CCNXLhlRZMEJy2vMnCWUXAdtEylcd7qNLKAti7TDrVscNcYirSNYQH69ony4wXWT7pODiK1bzC1s4/Wbk8a94br5oSDbof9RBwCToPWNsGQcglUGfLdQRVEzElZ4UTd+yKNCzej0piQg96Ev9zwkjDAt8DZuPnK22dN7S1cqUZrAUshupSXTPK15dlruYDCC0BprelOfGcZ2WNIuOGHR+NucqBgEDZmtINzVXrub6acNy1QwM1aLs2HaO63WNc4Gz5RYraZBs2pkFWWbRYtwPYs8AKC9wumjo4o5Ja/s8xGxgE5OGzYMufAsbqJwfjHKciVTW90BgsojKuYSjhXTg9sJsbJSTGba8PJrKHMcLtczejcFWnldmLqfMH2hGYDV5LQMc6cH1oQXrIbZufN2n2xyS7z1kIZ3nldkMR9zrtRtAyB1r6ymTvBvb4EfMcWl9fz6ZCdyBtj05crpt+jO3gJ47v2GckQFR7judY8DGfYbT87kr8P6TMlf3vT7HRN2SDcPg4hlnhr0rEP6h836odPeTgq6HgMFDx5x7fW68Q79jc2PeB+Yfep53AfC7wG1KmktqTWQb3PAQ4HG15qqt2YSCR9WG37h5xDvLSwBufDn0WPtoKG1g6Tp8MjwqNzTBse5KRBI/9w/+3IPmf6xjHev16ggIv4fqr//1v04IO3nR3/gbf4N//B//x/ln/9l/dnb7P/Wn/hT/+r/+rw8/e+/5+/6+v29v+//mv/lv+P2///fzr/6r/yq/7/f9Pv6z/+w/45/75/45/tpf+2v8+I//+LfvZD5JtR3Fiy2kGtP2gMjoYjdb4cfKEp2wedyHrS8hOoNfKoCUAG7Tb+ugPTN0S+H81z2LD7dI50mrxXDIVBe0b6xoH7lhja+9iYnojBq0uH5h5ITkYPHBFvfRJenichjHLpekRQWFUyC4qKAsaN4+4eVXS7pTgQj+BLqTSHKQTGL7lkGCJZ12ahzTmYEllDooUxgVjKWoqFTIuFMoXOrfV/Am0jOERtlDV4S9xbkd8vkUBGUAEaIhROH6psZvHTQGCUIqI0RR91OXkCQkEm7VaeC9JO11LKPGYlw7uDB0lw4JAgJdHcFFqPv7IglpNS4jXZRcXxcU5w3np5sBfDoX2G5KjEmcLbZDXMSUGRwkmEkNblqv+XjLSuWfmeHIuYYZhOWIBDs6f9iBqrxgWhSd9ggatWJvox0t4HeLrAxKD8kap/PO4M6O1naZKZtlTpjIPPv5ptExjeyC7w+xKDEJBv087c91zBbeZhbmFrSZyRyb2nwSIDj0EsrhBfJcD+BdY4+dYPN57C2IUVfEKas1Pe88v2EeM4v/udemwBkg9GO53pBnGh1yCCzNsXGfBvw8lHG96/29be8C6Id6De9lVR8us7yLLfwkAPSTbn/XsfN4n0Q++knv9XSMOYA4fTDhJHIVHI5IEy2V9Vy3FcuixUfLebXhRbPkrcUVIRl++dWbfG51yVVbUzk/ZEGeuoZNKHASuezq4fhL181N71jHOtZnUJJS+nR/tY71XVt/+A//Yf7SX/pL/PIv/zIi9/+n8PM///P8M//MP8Ov/dqv8X3f930A/P7f//u5vLzkL//lvzxs97WvfY3Hjx/z5//8n3/QPC4vLzk/P+fi4oKzs7NPdjL31Nfe/oNgBKkr/NuPaB9XmsUHlBctYeEUHJWG63cctks05wa7TRivwLC8TLgmDU6ivobqMrH8oKX8+AY6z/bLj2nOLcYryIyFEAo9ju0S7iZSPd9q/+DCgag0NBnBLy2rX7uAb32kcy1LKAvSeotU5QAIU+nYvLNi86Zj/bYQapWVAkSbSA78KvaSQiEVEVl5jbJoDeKSMiOyW4zmfsCBpYi99NLF4XsRhkw9fQHqZav5grcYLUFkt0DNPYHNtiR9WOFuhFjqw3/jdaxQJ1Ifh5FsgjKyeLQdpJBt64itJa0t4pVFy/EesU6kYuSemqs/T7zwxpdeDUxdiIIPFh8Mj1Ybyt75cww+psHzIWkGYYjCouwGh1DYMXNTxieDwUFWOVkgjRdMjXeEJJQ2DJbquQ9wCsAOgYjpAnkuhmG6wJ2CwSxPBfYcMa2JOFFm00i6nUd4YEE6SE5HvY9Z3jgXeD6+huPreNfCdQpCDm07N/acTPGuXrtD5zh9z/XXa2yWMh13uoiezmEOcO5JYCc1lcKOj5/nMB5/LjLjswAIrws8xuf5UHnnfYDzvjrEYh067kPHv1NK+Qnqk17LQ2PcyTbPfI4/aY3/LhgSbbS3DK0umpraeT68POWNkxsA3l1d8OHmFCeRJjgeVRtOiobChCHyprKel82Sp9UNHzcnOAnEZPgvfue/96nnfSyt34x12bF+a9WRIfwerbZt+bN/9s/yR//oH30QGAT42Z/9WX7P7/k9AxgEZQj/yB/5I3vb/d7f+3v5t//tf/vgOE3T0DTN8PPl5eXBbT/LEtOzNNuO4tpqXmBIbN+qWLy/wZ+W+KWhOxFiSw9Y1P0z1FC9Srz6ikWiRjosnicWz1rKrz+HpiV8/g1uPqeNgLZRtiv2v0ESdKxi7UnWkKxGVpje2CYWhvKigw+fKfjLz2FCjhjo/6OuCuLCcfVFx/YNwa8S0fWqqpwXKJDKpAyaSUgUuNZ5yUmnYe9bB0FILmr2YDQkD2JHCwcTdwYyVoGhMREpejVnEoxJhGCwNtK2Dt85BYySEJMoKs+6qYhrh3iDdILbCKmAWCVipeMmSZjTDmMTKQjGQAzC9qakqNXRtK47brYOWapzKfQOqX1PJH7CKpikkRhRwMC6KThbbqEHdquqHVi8DLpCNHRJ9kLuYbdAcjZQOpVC5m3moiH2ALIBSbd7bgagGc0Qn7EwYa/vMI8z7r9TFo5bx8+AdtprOAUa+fXxvtNFYs4BzNclA94xODu08BxLM4fXepYusg9mxoHf4+3DZOw5xlT3U1AT7mAPxyAxjzFmQMcyxekx58abvj8Fu3kePhqVMI97+2YD728zp9PrOb1eczV3L9Wl9jB43DufzzhUfY4hyq+Pt5nb75Meb3yc+7a7a45zNfdQ4qDMcxKd8Tr1kPO/C9TNsu1Jbv0eTPf7LEDgXfMDldGnJJyWW96/OeP7Tl/yt1+8yZcev+TZesWTxZr312e8Wi/4/PkFIokP1yfclCXvLC/YBkcbHde+4qzYUlnPq+2CZdEOveLHOtaxvj11BITfo/XzP//zvHr1ij/wB/7Ag7Z///33+ct/+S/z5/7cn9t7/YMPPuDtt9/ee+3tt9/mgw8+ODjWn/gTf4I/9sf+2GvP+ZPW7/5d/xrF4zPSy0skJWTtsBGkaUmLkuqFIZaW9tyxfsMM+YG+htW3Etun6kB6866heZqoXgjbJ4b6RaR4/xI6T/uD7/DyqzVum5AA7anGUkhUZlAimC4hnTJ3moEYCZWCw+LGU/7dD0nWklJCREhRl2jiLKkuwRjiwnHxg0vac6E7Swr+jLJkyUAsVQoLkJZewVKn8klJQmqUFZONJZURWym4Mn3wOkmwLuBbS0SBnm8t0RpiDqPvAWJCQaOgpiiFDaS6HfL3hiiDKJjThL8skU7wy0RcBp2naFyHrQKLRTuYyRS9A6r3hrL0/fcWIrhlh2/0T5OpI2HjoDVIEqQTktUxicJgWymJ9fMly6rbxSV4izVmMJ4ZP9EGBjZRjUhkAG552WRIt6WaE4mej31mnsgecIsiyggCVR91kXtk4sgUobBhWKh1vYtq0fcaTo+d4yhmw6D3DEcOM4PAwA7GpFmJy6LbA5WZGcxjjfcfA8UpKMwgb5BbjnvZ0g4UTuWU417CQ9LS6Ri37sfElXK4D70sdRo2PsckzrFXGVhOZbTjcabXai5376GV5z01pjkE+PMcpnUL3B6Ih3gdSeQcIHmo3PIuYDj9fM4B/EPj3lcPBYPjbQ6Nf+i+vi7Q/qRS0qmK4D5Q+NA5PISZf8g1r23HVVfTBcsiWr54+opvXD3G9g8yX7w64Qunr3j/8ozHyw2vtguM6MO3xjvWvmTtSy6amqeLNUVvzPWkXvO0ujn2Dh7rWN/mOgLC79H62Z/9WX7qp36Kd99990Hb/4f/4X/Io0eP+Kf/6X/61ntThjEDmkP10z/90/zRP/pHh58vLy/54he/+LCJf4JKVujeOqVsO9g26vD56orw5iO27yypP9oQFgXJKKgqbvJ/hoJfqrOo8eBuEie/rkYyqw+D9gzebGh/4G2e/eiCZDUiIhuiSIRe+YfpEuXLFvFqMpOMKDBMYJpI8bfeg6JAioLUtCQSUhZQlaRKHUT9Wc2r37bk+ovKDEoAjMorQ00/GBBBUPCnB0+aJSfah0erIfFSRJVgdgZ72iA9K1dWkWgVKIkkjE2IiRjUXTQGZQCt1V65wvkeVEWVYcadK6dIoigCKUVCbYlJ5+NOtdcjeINxsd+mlyb2bKQykmr0EpL2/ZWnLcYkumDAq/Qzn2MSvRZmbXBXhmQhuaRAeREhQOMtp7XvHUATrbfDQr1y/tZidpiTpMHNM0smx26a49fzvrDLnCsmQMJHM0R9bH2hADrtmKo5hq9D5aNF35uZ69CiO+8XZxiqDMhM4hYbN/ze9OfvZP5448rAZypn1L8Fum/u5RNJg2nOIXY1IliJt0CbkTSY3cwBoxxdcQs0PIAlu0uSOcx7/JokzAiwT88B9q9tHD1wGAPVsaRT57GLMZkawMQxOE77YGOO6Z2e217J7fN/iBTxoeBuCiqmD0vuAzCH5n4I2DwEuDzk/dcBlHvzPxSbcQ943xvvU7K0DwHLrws4HwqU52p8fZyJLFzHpiuGzMCQhC+dveSj9SnvvvGKbSjovBrOXG4rShdYFB0pCV+/eILrpf0f3ZzQBsuTak3tOr6wePla53SsYx3r9esICL8H6+tf/zq/8Au/wF/8i3/xQdunlPjTf/pP88//8/88ZVnuvfe5z33uFhv40Ucf3WINx1VVFVVVvf7EP0H9nn/4/0JaOkLlsI9PMd+4RooCCsf6SytO/uYzcJawKmhXhmIN28fam3b2DTVdCS8UvJVXAbuJ2I0HI7gPL0hnK5796IJYqkw0VCBBKNYJSVBcBWwTcetOwaCIRlAA9qbDBTWYwXtS2yGrJendN3S7lIiVQ7qIfXmF6zwn7xeY4OhWQvNY6FaJojGYVvsI27NEXEZlyHJFUdkoQjJJDVyq3SJUqqBxDwnEaHSCdWGQgxY9QwcaIh/TLthdzVMSPhg27S4MeGBg4ijjrohE0wNMSVgXlY3sHMZE2tbiW4crvYbTJyFGaDrXg0soS6+5dtkEp9F5IyCdMoQIxEJlutIJuIS0gt0arl4uqd4MOBsJsc9ELD2rSpnNmOeddrLHwTgm9LJS0TgHI4mtt8N2TXDDfkO4/GgRnBnFqQRwKsM0k/0y+1TYwMJ1e+6sPu338VmZcl3z0sAh+04mIHHCipU27LFz00XmnHx0DnTm8Q5luo3HzcBxzwRH2GPydAHefz8ZcppveIhBGsd0jI91H6M3HuMQGJzGSuTrkpLKZ3Pf4u1xHxbsnec/Pfe5unV/xmBK9uf4Ses+CeIhwHdIxjhXhwDpVEY8u+/MPO86xuuyjPc9eBi2HcWC7B/X7L1/a16fgGW8Sxr6uvLou7Z5yLWKCG1wnBXbQY7+crvkndUlbXQ8u1rx41/4Ov/dB1+gLjue1jfEpG6kWbaelRTGRLbe8dH1CVdthZXEf/o7/h8PuCrHOtaxPk0dAeH3YP3cz/0cb731Fv/kP/lPPmj7v/pX/yq/8iu/wr/0L/1Lt977Hb/jd/BX/spf2esj/K/+q/+Kn/iJn/jM5vtpqjvXvkC7jdj3n+l/tzESnj7i5O+8RDaNyjFBwVyC8ipRXkWNiACW761JhcWvNI7CrzSs3l4v2bx7gl8pMxhK7RmsLhKh1IxDtw2IT5it/meWRLBNh1zekDYb6DxYCylCTKSmxVzckJxFfMCkBI3GTUhKLH7xWyz6xI+0Wgyuo4QI1hCrgubtJc9+tGD75o41SxZdOVtIhQKB1Lt0iukZzV7CGaPB2tAbw6SBrROBViymB2OCYrHYuV1sQ++webMp8dsCcZF60SICVa3OnN5bjYyQhDEJ32l4eYqG1Bq6m5pOwPZZgpmpyj1zMQqmDIQgyNYq+JWEeENyGg2SnJrr6IUCkqictjOsm4Jl1SGSqGp9+ny1rTitm2Hz1jtab+m8xXcWMWkwzwnR4GwYnEVj/1qICo7HDF9efA3GJRMAlbMKx4uqzH7ZPgoiJaHrF4xttDCSlGbwyiAf1Xy2Q3K1fRas32O0sMts52BMYnfM7XgJOye1G7NXwF7W4SE53dRUZsoyjsHUTuY5kaqOrsVwvBHzeai3MM8391xOnWDHYPBQJMS0UpIBpOefx/s6ExXYzi7Kd9EUu9fuZsDGoDZvcxfbNh5nbrvXYhjvqUOs4dwxDslCD702fv0uIJgr34c52e+hed/FiM5tf1cdGmMH3G4/yNGx94Hi6wDDQwzt9Oe7FAZzDxLuOs7+3G/3LWrMRMCkPs80Gc6KLV968pKPtye8dXrNptMHi6UJnJdbIsJVqw+QN52jLjyrsuVbL84J0bAoj86ixzrWb0YdAeH3WMUY+bmf+zn+hX/hX8C5/dv70z/907z33nv8mT/zZ/Ze/9mf/Vl+/Md/nB/5kR+5Nd4f+kN/iJ/8yZ/k3/g3/g3+qX/qn+I//8//c37hF36Bv/bX/tq39TweUl97839N/YW3ufnyqQKgx2fw7BWI0J1X1O89I3Ud4izSRk6+Fbj6giWV0mcVRoqbRCwtpg2It2zfdCQrnHxTgdv6xx7hNr2Ri6N3vVQGMBmhPXOUlx5pPYSIaTvS1fXONKYswFplLb3PoX7I9Zrkfc9mFiobLfR+yaaBEBEfSDGS6opUFVz/wAnlhaf6cM2j5QkfvKFuqKlICgIjGs8QRAGUGy1CBBgvsqOQkrqMhmAwJr9uEIl7CzuTA98FYup7zKLBFJGwdqyvC2TpqZftMI51Aec0oy8ODCR6IauI6XsIM8tobY69UKZQgGLZ4YuIXBYgQqyiGvlIb6iTwHQy9FcmAXtl2VSVmugkNELDRjz6FLpwaurig+H6uiY2FqKO1dWBtGyJSVmzdgQACxsoe7JyADX9Imjc6zdmAWHXjxeTZKJzKGs0hiIl7eUbL9xyXmI2xUlJhh7Cca9cPuZ4PnvOo7IvdRu/l4FXjsIoJAxjcYDhyvMDhlD4h/TITZnJnIcJDJLVzNZOZaGz0rhJf2IedwoGQpwHg+NcxocCgtADwRD3Wb4pKFSp+I75ZOL8OVd3LbozKJwC9znQPt330DYPBYpzIG1OEjo37l3AcE76eIiNhdvX7XX6MsfHeggYPMR03seAArdkuoeOkfcZO9TCbfnpfTXN1pye19x5HnrYc+i87jv36fb54dgbxTUA113F55cXvL85o7KelWv5aH1K1ysgXm1qVqXKS8/qhq13lCbw+HTN1abi//u1P/Hg63GsYx3rk9cREH6P1S/8wi/wjW98g3/xX/wXb733/vvv841vfGPvtYuLC/7CX/gL/Kk/9admx/uJn/gJ/uP/+D/mX/lX/hV+5md+hq985Sv8J//Jf/JdkUEoyyV88JylMWomc3kDdQUxUv2N3yCFgCwWbH/gTYqXWyRpnl90qMOoGKpXnvZxSXHl2T5VMFheR8rna9ZffYvuREiisRQ5p9BXQnWVMF3CrQPV11/AegNFAXHkGmr7DMSyVJavrlQqWpekkxrz4krB65feQELEPr8GY3b/UiLVNTjD9nNLimuVp2LArSPlhWXzdlQwmCtJ78opg/GKKVUequzXDnylaGhbo8DN7kCNEpKG1BvKkB0bJWFNonIBu9rSBYsvPM1l1TuHJoyJFIWO4b2FfuwQVKZqz5WZrPvw+pRk6FWMKCDdrMtBzmpsIp52Q79kCr15jkmYxpDbJqNLJNczo52huSmhl6/GJMTO4L3lyfkNrdexitJD6dVBtSmGRfdp3VDYwKv1Yridy6rdW/RYE3EcXvTGtDOq8WHHyhX9dXYm0gWVo47jHTKbmPMNByaxf328OMtfc7B86Pe7aUqcjZxUO6ff7Ig47D+zEBwDmyyvHZ+fM/ssx1QGOx1vWocWlWMwNWbEZlk25t+75b6ZDY+yE+TwUCPtAdD82n3zHbNUU8Z3PMaYdZyChEPM4LDfBLAdAsG53/F12LA5dujQuR7a5q7jjMeYky7exRwe+szMMYOvAwTH8/12MaVz2+sDmPygZPc7c9+Dh2G7e0DhoT5G4NbDoofW+D7MAb27HiYMryOa8dk/DG2jY2H17/yVr4a/KWfVlt+4POfN1Q3ORJrCcVZtuelKuj6HsAmON5Y3t421jnWsY33b6phDeKxve3078m5+6t3/rRqy3KxVThmCMmwhKBCLSTP+PvcU/6jGXrZs31ly8f3F4Nrpl3D260GdQ30ilmoGs/r1a8zNlo9+11uEUvrwegiLRHEl1M80r3D1rZbywytlJVG3UIxR5q/vERTnoCqJy1pB66YhnK8wrUduNj3oq5CmhRBJbYvUFalwyM2GtFoQH5/QnZWUzzdI65H1lni+on1jycc/VnH9/UHBUITs7ImA1EGD6oNgTzqVkKLRE6mXiBobFERKwrk4LMLyX4WhP7AHeyLqDNo1jthY7IUjFgnzRkNVdcRo2F5WyEbptOSS9vgVkWLRDePkGsBpZmGCoW0KPYckxD6PMHlRp9Gezct0W7JJz7mMiNWsRVcq+9htncZXtAZswtQBVwTqqqMq/J50sPWOxluWZceqVOnrTVsqU+gthY17gCgvkKYLlszUZTDYBUPXW7GXzquJi42D9Lb1lm1baD+fCyyrdlgKVk77OXNmIewzJY13A6Ac5JZJuLheYEzizbNrFq4bGMK8b+5DHMsfp4H0czmBc+zO3NfpQn6alejTjq0bL2732cv9HMPx/nMGHnO9i3NzGW87d07j85j7/q6MwOl8zOS6jceZSiyz+UzOMszbTEHpNP7i0Dncd6zh/U9pcjK+99PPTa7ptZjraZ0FVjOfp0P3eVz3XY/pdnPvfdKaA8Hj6z0nHZ1mRx6q28zj7T7FqRT7Pobwk9Shazg1UFIJacGb9TUXbc15ueV5s2LjCyrruelKKqt/h9ddyVm1xUdDExyV9YRo+Cv/6J/8VHM91uE65hAea1pHhvBYv+Xqp37wX4YMmlhC05K6DmJCVis1b6l7Cea6odh2YITipuTp3wyEytKtDM2ZwdcGSZHt25Y3/vtLpAuYF1dsv/o5/EIIpYJB04FbCyZnFl4lql/9iNS22h8oPaPnPbJcQNtB0yhrCJirG5V+Fg5zsyUtK1gtkItrjcfYbJG6grMT3VdE5abGYK63VDcNzTunuKsWU1hk0+KuHG/9dwnT1Vz8kFf3054lAyAKduEJjSW2Fld3CrJ6Vi4mBVtq4KLB8iqzVMYpBlEQ2cdaYECKSNpa3KXF9lJNk0C+uaCNC1KRqC8MttXrJpE+oxHWX7Qs374Z7mOWDWaApK8Ji2WjfYhRSMnq5S162VxUoEgE6c10kiSVjxbKpLneMKeuOkI03FzU4A3JG3yCdTCE2rCsWor+uD4Y6sJT2sDWOwRYlS2NdxT9/LL7ZUgq/yxGrNNwTnqZaIPlalOxuapJrV6k6kz7JWMwBG8oKj84rlo7knrCXkzG2JQms0NpxBauSmUvX20WbHuDHtPLtoYF4ghgjSWfY3fSKeO2b8jyMJndnlFM3jbtZKVttHTB0gbLsuiG/MPcS3nXgv9QJMO4psDutQDEPdlyewvhA0zVtGdyut+hn3cgQn+p5gLks8nM2Mxn3G95KHfwLhbudbMKb5237GTRh8DybbOgh7GRuzndv819471Or9zrstz3bbP3mZqYCk1Z41kWdTa/ct60Znz8Q7+vd/0e5+NNszPn3HDHvzfzcxJK47nqKpauY2E7atux8QVnxZbSaPj8qmgpbOCyqXlreUVpAtvgjmDwWMf6Ta4jIDzWb7lK1hDeOMVebIjnK2CFuVyTbjak7VbBVIzKuJ2UhLOK9lFJqFRaunlikQC2TRTrxOLDLYsPBLPpkItr0mrBxQ+UhN5w1XiUcYsKcopND3LqEjabQRqKiDKD6w1iDFKpRDSzgKlymOutnoOP0Hb4d58QS0v5zReEN8+JhaH41kskRFLhSHWBhEQSwTSBmy8tKS8Di799jVkXYIQ3//sN68/VhC9tSUFIg0unEL1RRrCxeNO7efYySmMiwVtMSlgX8ingXNe7jyaCN6RK+/xIEDuLtEJYqHSVqCydu7K4rRAAv0r4E8VtpmMwgak/dGzbU+TNhuVq27NmO1t/YyLW6vdl4UkwyE19a5F614uYkuCKAJKGSIuhf9HsGLhtZylqP5jpkAS/2f3ZW1bKBjadvpZzAW2/6Cms2qLHJENOoJFEF+wQlJwX43nhd92WvLhcEjqLKQNSBorS41zg+tUSV3lOzzYsyo7rbcX2usKWYWAPc7zFIMc0aej/HLL8gMp6lkXczad36XMm8mi5oTSBNtpd4P2BGIpx7MQU2O0u+Jiput17NydlHVcGpF2wXG2rQUZb2jAY7xhJ2B60WtJBtmnat3gXCMtjHAKGtxicyQJ4fB/2zHBmGMzxmNN5HKpBBtzL7eaOfeuBQzoM3KY9adNjDXOfLObH538os3D/fsfZY9xVmc2+C9iNQdl9ctjXOe5dx5pucwgYfhIGcSzzngPDh9jovXnMmDbN3t/XANr3Ac/7Mhcfwnzm7Xy0GNfSBMfjck1pApddTW07VkVLaTy17bjuKrah4Gl1w8fbk9nxjnWsY3376ggIj/Vbqr72zv8Gzk+x1w0YwZ8vsJuO9gtPKD64gItrpCxI2y1irfbfvVUhHtwmQkrYxlC/0H687lSljcWLNQDpZMnljzylWwnJKvCDHctlFD/QLQX/1hnFlTJeKShASj4g1sDI0Cc5q8Bu05KcJZ7W2BfXIEL7pKa4bAlvnGFeXmO3LVhDcpbtlx9j2kj54RXiA8UHDXa7ojur0D5DMNctUlne/X87fmNZwZMWcRFjE6HvuzM2Iatux/hEZQXVbVRllsHbIYoiV4y9/HHj+r5EIArYPgIit6iJEItEW6jbqfH9dug188sEJhEtFBcG39WEH2ipy24ILR5654yn85aiB6gUHh8MW1vQtXpNte/Q45yygTGaQYaagUqOQFgtmn78xPWmoi47rqQe3g9RiNHgvUHEElKFM5Fl2e0xVkbUWCYDl8LEPSnnGMSkJJwsG3w0bDclZeVZlB2btsBVHlfoOJfrmrZ1pCCEVhlRgLPllsbrufpoKKvdcWB/4RiioesXabXzA7MIvWPpZPux+cTcIvg+MPPgPqgZwBERNp2j7VnMrs+ITEDX5y9ioeiv65zr6RxrNjffu5wp5+SLhwDOVLp5HxCdY+MeAkj2XmfH8k/vx/BQYLTrfg/n3SDtoNxvBCRzbMDs3KUHjaPj7DHO/ZBThmnsAjp7zpNrcR9Yu7X/AabzPrbs21WHWPTXAZtzjOEsODzQm/oQmegcqLvrM/TQHs7BUTeBM4HLdkHtOsqkD62WriUm4aRoKI1nGwpq63nVLDAk/suf/HcedJxjHetYn10dAeGxfkuViJAKB22HtB3FhwryZFsqQ1f2xi7GgghhWVBeeNozx9XbjvpVxG31P7Xmce/qGfIYLa/+gc9x/a4dQuwV3GjshG0T7amweJ6oXnl1Hk1J+xZTov+/juQ9dB0Yi1iDxKjxF6dL4rLk+f/sjNVHSzZPHMnCClj82kskJnA677iqqT64RrYd4dESCRFz3SBdoPrmK523jxpr4WqNvmgFv9ZzClVATKL+2zXlFVx9OWLfXeNcxHuNgBiMKZLGM+T4iSxh1OsdMCtlEmNrQVQyiu1dV71gWmUAydeLHaua+p5GCUIqEr4PkxfRBbUP2V3T4mzAmp0TKOwWknVvPb69ruDSQSdsi0RaBohCcdoqi2YS1irTmPe1kmi9oSz6xciy6cFd72wpcLraUtg4RE4ANH3v3wAyUfYt9K/5ZAZ2LW8nkjitGqgUzHV1Mzhn5mzG1LONhQu8cXrDpiu42ZZDTMdNUxKjUBUeZyNNcNjexj30klVhHiQZSbT9+8CQ7XVIjpb7DlMe6wGsjLJZMjjpzga6z7iadkHlotbGAcB3OZ5kdC65p/EuqeN4/nPB9+OSycLYiBrLTFmNcQ/ftDIQm3v9EJi+r6duXDHJnkPlWMJ7y2FzxFrujTECC4f22TsegICTyQOHGYYwn2ccsaTTMcfXaC4/cQoK7wKB970+BTK3gDPgk93f5wBAeiiD+FmAyYOy0HvG3gN9M5/P133o8FlXTObuhyoIl23N0rU4E3ESqaznw+0pZ0Wi7uWkbbTc+HLmCMc61rG+3XUEhMf6LVM/9ZX/HenJuYKgshhAYSoLwlmF+AKzqjEfvlCWcFnjXm3wj5c0ZxbXJGyrBjISNVi+/rjF3rRI05GsYflRy/rNRSa4FNAklC30UL1M1C897sbjXq4VDErWTvbLoZTg8TlcXCs4bFpwDnGWdFrTnQhXpePRL7eUH93gny6IywrTWo2cSAnpArJt1DinsJjGQ4yk0iGbnqZsO6hKLr56xuZNQ/0M2sbiv7wlbhxP/rrj0S9vcTcdp7+x5P1/ZIl8+YoYLK4HRwbwnaNthLLKwcA7gKMB8mBtovFG2cWwW0wmgVgkZVJ7BjHZtLtugvYt9oAxrgL2LMs0d0H3KfXB8OZ2L9nY2KZYdLSdIaIGM3LtSCYRrhdqFFRAqqL2U5qEKQOuDBRFGJw6FWz0ICXuFlKttwO4Gy+RQzRkl8qcz2gkgYm0o0VnyL1U9LEZvdwU1Mgl9yQ6EwdpaoiGRaGZiU3nuFlXhLXD1IHNTYUrPX5p9qW1o2szdgUNUTACN9uSwgXKnmUtRv2IY0lgmox3SHq5BwayjFXSAGDy/TpkBpOBgkii7s181m1B0zOFpQuaipLPJRmIzILCMegY9zjKzDWZ1iEweAgE7h3zgJxvyjSOx5nKbm/L/m67xub5ubGRUNI8t7GD5Pie7EtKD8s8p8cdn/+c5O9ekHIXc3cPmL9LDvqQHjd9/3YP726MfWByCLg/tA7t87oy0k8rg73PrXZa913LMZM7vWav2096iFn0yVIaz0235KRQ5cQ6lixdy9K1PN+ueHd1wY0vOSu3xxD6Yx3rO1RHQHis3zIVz5b6jTFI50lViVzdkB6dKDuYwJ9XmPJN7Ks1st6STha0jwokJZIRfC2Ul5FkheLS4y63yM2GzW9/C9sE7Nrz+FdamnPL5Zdtn9/XSx9XQnmRhnaquChIP/Au7v2XpLVKTrV/MekcrSF1ATk/BR8gRJo3azUBjWCCLmiK9y8hRj2nsiCeLfrzrIh1gftY4ynEB8z1Fv/GCakw2MuWzRdW3HzOkJzKWctLwT+vePR3DE/+5hrTBkLtuPySJSw865cLCEIwDrvqKEuPKzwi0HUW58LQgpmS0DZ2yPRLiZ1zqCSIgjjUATSBbUYL9NAbhfZrhpSEUEddKLaWdWdIwWiPnUBoDTQWyoirPWYUg6HANPb9jQHOGsLKqCS2sYgXlev26xGzNtq3aDVjsi0TrYtIGbEu4oowjJnSzkzHe0tZekzd6vsmDgwjMERBQL9I7813MgDMXzMz5KOhdr4PoBd9Kl5tCdEM5irPLlcKTLdOmdckECF6PZkuCNf9dUjRICb27JxgbBwcU7edw3vLdl1CAl8GuiJArfsOfYmjRd6Y2YR9kLH3ezdaVB4EIGPGShjMb8bbOhM5rRq6YFlT4L3B2kSIhrps91xcMyg8tICOIxD6UOOYnD2o+ysIzIYosAOWGYjOjTHHms0BvbHE9C5GZ1YqKLdBn48MZjOvKwUc6o71/RyAOiQZfqiU+D6Gd3pvp6znFMxMGdOYbA9kDp+XmXwGH+qwOsvgPmC7++qTMI139Xm+znFh/rymfxfm9huOPfO7f5eMdMw2L1zHRbPgC6tXfLg9pQ2W83LLdVfxvFlxVmxZ++LgWMc61rG+vXUEhMf6LVE/9X1/BM5PkBgJZzXR1bjrFvEBWTfExzU3n68xPmE3jtIZ3McKzMqXLXbjCJXBdBHjE8kK1TcvkKZl/dW3ePH3lLhN4uzrHYtfe8nVP/LW0EOYrP6jRWWd/YItVg4ShM89xn7Tk3z/VN8kePGKJEalqz6A7Rf4S8Pi40h1ETBNwD9e4C6FWDns1RbZNNhnl6S6Amuw143GUxROmcP1Fmst8aQknJRcfaEHJQLWw8l7gfqZoVhHrr9Y0y0VrMUK3LUlGYN44e2/Hnn+o0uaH9xgXRjARukC27bAd8qWGRvxnSV1BlMFYmuRrkfJBqTVYHjpRAFhUsaQBLbVDEcEYpmwG4ttLNFBdx5VktsVhEXUWLwkFM8tyRZ0y6hSVKusojvpqOquj3dUoxlaBQ0DE4myg4m+/8wkZQqDqMtoZ/CAL3vgEQQpIymBmISYRNs6rI3Uhcf24EB7G3eRHOr2qGACPb1Z+Wbui4zB0tH3c/bbNX3eVgyGbuu057LQJwVik4LDKBAE3zhS0HO1i0BVK8Nqe/fT0gYub2q6xpG8guyUVPrrg8EaMzik5jkMC7sHMhZTUDh+7RaD1y8yszvpON4ib3PWZz3GPi/QSNqLw4gIIZnBwGY8/v6i9P66BQZHQHAa5ZCBfAanUxOUhyzmbwHHmb7DQ5VBkY+W0u5MlHTM3TZTVvKQVFT3jUNvYAaUe8BrzBLNyEXvAq9z5zt971DdxQ5Ogf6hY0zdL/fGv8OdMx7qkZyp12UBP8l4rwXsD9RDQOyUlT603aGaA4hzwHD6Ocws4XWr4K80nhfbFeelmqy92OjD3r/0O//dB8/lWMc61mdbR0B4rN8SlZY1WCEuKsymw4iweWeFeWtJ/c1LTBMoL3yOr6M9LyGdKjPYg7EMBk0TsDcNcVkRn6wAOP+6hwTdicX/yBts3urBTC8VJYGkRKgEd+MxbSBZUWmnjz0jqGAxZUlnUYIRjcRYnqqxTILVN7cU33yuzqNPVoRVSfu4pKgc5Xud0nM9Y0iMpLbTiIq2A2Mwr66QbkHzA49JIpRXauZiG1i+39B9ZaH5iQtoz4TlR4nTr0eaRwJWKK6Eqy9Y3DXEX6sxXth+ucE4YWuLvgdPgVI2cpEiki5K7EZ6IKf/4ReXQiwBSYQyYVvtKdSMQPCLRLIJiYKJCsRNB+7aECoNk09Oewylg1goCDed6lHdGmLjCFvD9g0oCg22T6HXq4q6nIph6IMbqgejFBF8H50B0DOK0BvsOGUOjY0Yk4hRCLGXfvYfKJVI7kCfhsxrREXVyz9jkr1+wXEfWWbLcv9fZh3ffHw1LLIKE2n7sPpnH5+RolCuWpZ1S+stzkYWfS9llp2GaLhpC4oi0NyU6i7bx2ukJLQ20nrL2hY4o/sXJhJFmTkjozy7A+HWu/y/2yziHJtoRPsrTf5lHFUYgdLT3uF1XFkSOu5By8AQtMdxCgrHx54bb8wsjWWvg2S2B0Lj4PccbH/dlVhJLIvdXDNYHI97OyNuvufwUN1azLMPTGfPVXbf34oFmJEC3sVU5n1ehxWcSl2n53EfeJ4C0DEYvKsOAZipnHY3j315MHDwXB9ynG9HzTF4DwGDDwXc9wHAO+W/HGY2p5+fu8ZFoO5zUUsTeWt5xfvrMz6/vGDdlVy11cFzOdaxjvXtryMgPNZ3fX3tq/8HlUx2geQMyRhwhvKiZftmBSHiXq6x1xZ/vsB0gegMfuXACHYTiIWGzttth185wsJhul6yee2pPuqIC0d3VnLzttutY3scYDpIRs03JCai6zP0PnxFur5WNhDAiDqMhrHkUeBmg7Qdi48XSNcziSFQfPAKRHDPeqbPCNS1mtCUhfYoGhl6Jbm40jG3htXf+oibd97FbRPtiVBeRS5/YEG3EiQl3BrKq0TzSHAbWH4gtOfQnSXaR2B659TuPEBjSQLNpsDYtBdYL6IRFslFYm2UIRS9JohKSJOoDDYH8YnvTWd6TJBMIjkhSEKKbDajABDby3ATBAN2q6BTSIRSBiAWrgriwmCcsmj2rFXZ6NaSMhsI4FRWKTZqMH2UHZWUcxqjHp9O4KYgCISkc+ekw50ru9cFO/T7wc6EJS+Si8mCfQA0kgYZKZIGuek0yD6P1YV9AwzXs6Gxj2eoe9fTrs9LdCbSBctmFJdhy0hY9xe9N/NpmkKjR/pruF10PD5ZD3OLSaM19s6hd7nMoGi8GJz2FOav40V8Pv9cmWXLYw3XqWdeMwsbkvbi5p/zuHsSuZRv3gTszTAfg6TzkJyx/34cYzHtRVwWHeuuuBVfMQfg7qr75JNzC+6YDD7u72skDUzveN+DY80c8j5AMFf5nkyPcYglHtddwOY++eNdgGf60OIW+yo7QDw2PPl2gMGHzvM+Ce0nkZQ+pOYUDJ9lzX9+b7OES9f2bGHgm9eP+NLpC7pk+OqjD/kP/oE/822Z27GOdayH1REQHuu7vmS9VXMVwKwT/tESu+nAGRbvb0h1oSDRgF23mHWLrDQDsDtxGCeEhdEsv+Bozi2r97Zc/OCS81/dQEqYbYuEgHt+w83bb2ruYI6c8L2pTIJQCX7lsGuv+YBNC1UF3iOLhUZGXPfh66b/D9HuFvvlrz8DlPGUbasgTxv2NKw+JWTbgz9rFAwuF6TrNWxUXiNFATERTxcYD7ZJlEnnuPyw4+zrgW7pKNaeUBg+/rGKbiXUzxOFEZII7aOIrxU4pDIiRb88jkIy6gKaSIOkD0CqDLB6PBUVuCWBIZPQKVsppr9mHVgv+JOENPpaLHuQWCSlYzJgS4BNhJWyikql9Yjcan6iSBr6HH1nMS4SK9F9254FDBZZeMToGCnJjqmKqIS0B436T91Sk9H5yrbkMhjsGyqhTezW1XnRFtPOPCYvfAYJaQ8Gc+Xt7WgBve1jJUoblOnrt2k6x7JqOT/ZEhO8eHbKq6tTBbgLj6s8beUpbBjkjfl7V3iC9FJTSaQgeh+CkGe0XZe8RAFm6TQDcAr6cg2gacRw5vm73tnRT3rP8nYuS/NGEkUfza1rmctJpI0WYyYALgPHUS5hlqKOx7i3X+1A6Hxme/fOeQxuUDA/5B/m400kmvn8pnMajzv+7MzVFHhHhBiVMV66djjuIaZmD5SPgPAhpmi6/7TmPg/j8qO/DcM4B/c9xHTO9C5OxngIQLpLivu6hjn3gabX7gG857M5Pu7eg5bX7BMcjneHfPiuOX6a9+H+6xaT4NG+z21wLIuWX714g6+cP2MTjr2DxzrWd7qOgPBY39X1U1/6w4TPPcZ882OkrsBa3Ks1hIgRwTQd3ZMlxcfXxJOKWDrM1RbpAq4LmMYRK4fpEvVHG8xNQ/lxQTgpqV8G3IsbBZwxISmBNUTH4BBiOmW+pGeUVh8F3HVHKgzu42tIERFHAlLTagZhTMjZiQJDEVJM+nrhFBw26moaz5YkZ5AmEJcF7ZOa+oMb1j/4hOpFg71qyMH2AGIMKUYdJ0bM9ZrH/6NVIPzyRvMOS/2PVXytURVNYPGs5OYdwbbgFwxyzrQIA6uWgmAqBVopQgjqphk77b3LZif04E9UuagOoxEIChD9Ut1bxfaXcAwWs0yzXzeYVgh1UnCWFZ1eoFAG0BVhMIDJFaMh9HLRBNgiUNaetnHERh8KkCBtrQJO2Uk9GbOI+WeTSFUPHDujRrFBoDU0nSNEdfgsnR/kjtZoPEUXDEXfx9cF2/fr9SygpIGBy4vmbMQaosGaiA+WlzcLUhLOlls1oKlUVhqisG31Xpq17WWcji4KobN7ElfYGeJwBs1VBVGInVVQHHqW1ChI3KaS7U3JyfmGs7rZhdKzY+PGDF1MQjG6B+q6ur9IHGSnkvZdRvtz74IlTEDnlI2rrB+ulZNIlH2gOmXG4O6+tvF8YB8UTiV6+Vy7vtcxJhn6DjODmjMo50Clj6ZnOCGlNGx7CGgfmvuUgQWVzLbRDSDbSTwYcD6Wvc6BszlwMmX5pqzrXI0/19MezLn8yPvO/S6p6RTQPgS85Ps+BoPTXsq79r9rfvfVXE7gQ0HhsM/kXnySY38S85m9sV5zznD3fc3v64MO4VG5AeDD9Rl/5R/9k594nsc61rE+mzoCwmN9d1fhMJuMPhKpNOCDgp0bZczsTQfOIiHhV472yRPsNlI+Wyu5tPXYTYe5WCPbFruxSLegfO8lhKAGLiEgnefmRz5Hdyq9yUkPnAzae9j3EiKCe7XVzMAnj0gvXkFMED0p9aH0MYFzpM89xTy/VOmnD1AIabXQ+W470mlNqiypsLgbTywt2ycWt3aY61bBV0pIWeC/+AbuvRcQI+lkCZ3HfvxK+ytBexRDIi5LJESSCHbTcfobLeWVY/FRy/pzJc21oXph6E5K1t/fX9sE0Rhs78SZkqjZTBJCQBFxq4Y0OV5CAhgvhEXK+kOMz/LavoUvKOgbDGbQnj/Tj5NOPdWqHeImYpQhj0//9YvgHoQFAWMUGKqTJdpTGEUZyzrs2MIOZWl7KasEQ8rOHLa/lz1gkjpgS2UDUx9Fsd2UWBcIpcEHswdIhoVt3L2egUMGCF0wM+YY+tGwJg1Op23rBhDioxlA6M1GgV1+OCFeSN5AofeoLDxdH5XhXKDqYyZaW6rzq8AeVxn711pF623roG72pZczcrrxwlCjOvScK+dvs2AjMDgA4dE1GgPH8XWcMmgDkMvEbg/QHsre3McAjQHvoRD2MeOX5azj6zQeb+97ARkBu/E1vEviOh0vf7WihkDOZqls1Gcs+QmL5Dnu9tv1NcZbIOp1F/pjUJ17G0Ocj+rYezAw2m9uzNcBXXMM75xEeFpz+XifBiQdmtut18as5Iw77EPP/XWB4Vw/6+vUfazwreNNP/sPGHdQSQTHo3LD8+3qk0z1WMc61mdcR0B4rO/a+sd+95/AvXGGfX4FpRq0UDjCWY2ERHda0p1aohOaM0N3Kpgucf5rnvLZmlRYpPUggvn4lYIya0nXDbLeKHATQZqWeLIEa7n8kiNU4NYQRvm4EqF+EXGbSBLwjxSESRtxMcKrS6SuSXUJLy80mD4mZNMqYOuPgw+ksyXJGJWpdhpqb4wuWMLSYVtw1y04g7lcQ9uRnpyz+VzN6fuigPjyZje3vr8w9yZK68EYTIyIj1TvX1F+aEiFZfl+YvXNRKwsyQrvu4rN53duhrEzJAvGph5ogbid++Ow1pA0mLrYrey5i4ICQQkQS30tuh0IRHrGFcAbfN8HZ4yyXgoM9XipB31dDxZD2GeJQhBCD4rkscZF+K2DKirbiB4Pl0hG8wmVtUzaK9mzec5FnAuD82VMQtM6YjCEYFhWLc3GDYxc7pPbtmrCk81eWm8VuAZD6KMjrIsUhd+btxrPqjFMtdT7tukK7anrzWJMltNmWa6AVIGy8izrRvfZlJielYypv0cmDVJYvYB6vnoTRRlDSQRvBxZzytzkr+PYjZyzmL8aSXv9hxkM5UP5ZHhxs+R8sR16JzNQ2Pt5tIDNJiqHFrYPXRiPpZ1T58xDgPe+sUPS+2ol7pm95P1SSrcWvlNGcU8SeGABHaIhwF6/aQauWarbH4E4cm9V91tumQJNr8N4HtPrMP1+CoB9NHS9jHW87SEQMrDOAzB7AMM3M9YhEHcn8B/FUzy0HgqUDwPdOXlqnAWFD5nHHKN6L0gb/e4cYgnnWPJPUnd9jm899JmAep8sbUxHdvBYx/ouqSMgPNZ3bYXSYAXCkxMICdN0JGfwS80VtBtPd2bpVga/FNw6cfItj/hIMgb77FIlmwt1L0tnJ/g3TnDPb5DLa8I7T5DWI51KNiUV+GUfoxB6qWjaKQ79QkAMyZQsPlgTVgWxsvg3z7CrGnl1DVc3CjSdU9fRy2vS2Qnb73tE+bLBXG/VvaQQ/KMl7aMS20bcTYfZekJV4dZR2cy2UzD46JSLH35EcRPVrCYHBWY5aUoKCp2FwpEKqzEWF1vdzgeVmxYWf1JQXHWYRlnWL/6/WrZvLbj4fsfF3wvUPcsVBIM6p0rSnMCBHexZ02Qh9oDDrQVECKU6ikoH2ckzlgm7VdZVAr1BkPYSAoSNRRpLagRvIa08dhFwRZYQ7vrHMiDLYNGYhCl9D14VhImNpGCQMmKKiLEaq5HYLU7Kyvfj6QIuL2kyo1faSFXsM2Cruh3YvRCFuvB0/TYiict1TdOozLOuO4I3dNclvjVse3mqWfoBWBe1p6o6nNGMRdMv5A2w7ZxmLgZR6evKI32GosZNJHwwGBvpOo21sNZirW4TVkmzDIPsejFhpyNMEDrD1bbi6UozNOf62+YWjqUNdNHQ9cDQ9XmNQ/VD3LQlm6bgtG4GUJnB4HiRKKNF7xi0HXLYvK+mjNYcEJz2CeZ7eLsnbrfvDvjd7rk0kmDEYI5ZsvHxDi3sx69Lz0jGaPfOowsWLJg0z1TmfU2akYkekpg+QOKXv4ZobsWH3Dr2HEs3AWYm7W9ziGGbuqM+FBQ9GNTNgK388yEJ633sWwa+s8cbx4QcOPb0tYcA6Nl5HACFd0lzD9VcvEn++eA+M2BwOhcAHx8O1o91rGN9e+sICI/1XVm/9+//P2HeWOJPSrZvFNTPO0K1xPhE9dGaZPU/leLSUX/UsH6nxm0jCHRnjvrrG5Kz3Pw9bwJg2zOiE0wbidUZxaLUvL+yIK5qzLaje7okOo1vCPVO+pgM6lIqEC0Yl/AnJe6qQZqAubgmbTZQFIjpJaNGARIhgLPUf/e5AqG2w3/+CZu3a1bfXFNedpg2YNbKHhavLGVmdkKEquSjn3iD7kxYfCwsHp1inr3UfDZjVD/ZKjslXjMP7abBZFMa8lhB+yqvO6R3QDWtgr/FhxuSXXD51R29E68LYhExVdAFfo5tyENWCVkryEuGwShGVKVG/1C8j5EQ/dqDSQzgwLRgri2pTOB7wNgBLwt4WdCceeyJp6rbAQiKxJ17Jzq1EDVYvuvAlXGQm4ZgcC4QgqHdapZiLANiE822wBWBZltQVuromcGhjqfOn9bEPfMYIwkfoHRh6CmMSSAJMRrKUgHfouxotoW6mEa9BiSj+YI9u9qZgraoMauO5UlD6bz2RooMRjGnn7si9sfx3lCVO5DadG5gR2M0vdlOoig9xho6HLFfcNkqEL0Z5LDjtdzY/XNadwHE3ONYuKD9jxN30JiERyebYZwMuoaxJmAwZwKO5alTV9ZDgGVOKnoIDI7PG27LWKfn8BCQPJ3foT69QxLS6XaF2Xd+tXvb9E25kxrGesCi/6Gvj+W1PpnhMz92W833ccqGHvpM5UiSOWZxCqbm7uFDGd27AOTrSGj3GPRRv+T4571KWWr8cGA4N+e543/SmoK6PbZ4pufxrjFuvX7gfkzB4HicfIz/4nf+e69xFsc61rG+nXUEhMf6rqxUOorLluaJsnuhNjTnGo0QixU5M7C4DoCjeuUJlaG86EhGEB+4+aG3uPqCpbpMuK1QXmjWYKgs1fNLNZA5renOa6oPr0l94HwGgaFicBuNSSWkEsGLoTCC/fAVabMhOYcUBfHpI8zNRvWAxvQ9gwV0Xh1ERYiPVoiPLN9bI003PC2PpcN0HvtqrawekOqSzVee0p2p/LI5N2y/cMry6gbpzWm0wY8dW6haRM0w9KKsIahUtrBDZIaERCwtpvHgI+WFp/6gZmMTtIYnvyhs3nJsvuCxZy05yiDZNKxFhxYmnwPoE6bTnEHoJaSACSoZja7f1mqwu6DMYuz0tez2mZcjcuEIW8v6xFKdNizrtl949uMnxd0hao+VtTtpqxEFhG1T4G8KpDEqFa0CsTPExuITUEZiD5LKypNcwHtL1zqMiZSVx3vdd3tVaeh7FBarhtLtG97UZYfpXTutiSyXDWtQCWtrwEQF3ILKWYMgrZCaiuuNw510LJYNlQt6jpIQCSp1BUT0Xvpo2K4LfGdxRaAoPN5bzR1sHTEqODVW3Vpd5SlKz3q7UAmqTZhSpafV5BzGNQY3WSYKWYkqtP11qmq94cuiG1i2mIRy1FM57afbM54ZVUxC0zuwRhswvUxSz3/eDGZuQXpoUZuB3vQ8DzFb4+1Df18j6np6l+TuLqnfITByiBm6i9UZ91kemsNd5Q6AFtgBlr3znEhlH9qvNj3HEM3OkbY375nmBR7q05zWQ1w1p8ztrTEmn6dD++dt51jLoYa/T/beuc1JOu9iDz9tjZm6u7Z5SJ/lXds9RBZ8BIPHOtZ3Vx0B4bG+6+r3/tjPQFVASpQvG6pnG1JhsduC9dsFV5/Xj213IpjO8PjvtNTvX5NKfd2fqBbx6gtOWacIbh2pf+WjneSy68DVmOuGsgvIzQbbLACGjLzMeEUHFOC2yhQuP+6of/UjjZooSygLUl0RT0rSosC8vCbVFdJ2yHqL+ABdoP3cKe2Zo/64IVaW9knN+i3H+S+voRJe/b2n2Caxem+LvWww12uuP1+QRNdhp+95yhdbnv/Oz2ObxKP/z3uktkOsIfkAJmokRdupm6mzGplhBJylfVpjO3Ue1RxFQ3IGRLBbz+f/6obmaQFEqmct19c123c0BN7UgWiA1mC26hiTnDqSGhKhQg1lWn09VPqa5DiJJCQbB7fWZBOhFowH8eziHxgBzQhuI5oT+HHBq3caTs83A2vkbCT0YC5HOiR6yV3PGobOYC+sgvxKXTZpNUtRvEBjiEHAJYJV6WPbOOLGEStlF1MQ0tqpFPaFIxWwbg3+tKUsvZq6mIjrHUcz0FmUHdZE2trRthZ2wcZVAAEAAElEQVSRHbPiO0dodexs9uJvCm6ikFbKFlqTKEwf2RAMbevoGgcJTKGAsy48m7ag2RYkb7BlwPTAOAbBFFHB4MVC2UoDtpeq1mXHouh0UT7jXDnHnPhoaHvwmf9t1tWwuK+dvzVG/jonKRz/HHrg2faZjCnfV7MzmdktsHcM3zT3cFpjlm/MQk4BzSEQl481BrDjn+8Chvf1ad3FXMbRNhnITIGiEc3IjJiDfZdjlm2OtbnFyo0NWEbzsxIxo8/INK7jrhrPPU6unY9G5cEzzNocQ/uQmmMVb83pgW6gtx423DOfPWA/kmrOMs0Txu4u9vnQa9NzOgzS+r8Lo/t76N4/BBQe6kl9HYntsY51rO+eOgLCY33XVTitSUYonl2DMcRFoaAGWHzUUV7qgtGtA6EyLL551UczeIhQ+Eg8XeAXQnGTqF56istOGbWizzuqSmg7ZNvof2tlgYSIbfp1SdyBE9f0vYS+//m6A2NIIUIMiOtNUbaesCoxhcNcXPeMnSc+OUVCwrSR6nlLMkK0wrMfLVh8nHj11SVuk9g+Nqw+CLhXG+RqTfeFpzSPZdBHXn/OcvXuKcmB3SZSVUDbqhT1ZKlA0Fk9rjVDT2E4X2DWLdXHa1LpCJVVUGwgFZawcEQruBvP8ptrkhH8acnmDYO0mQ4EUwRiDyqIPZDrYx5MAATaxwHTGAV6EY2VyHmAJimo7AGipESyPbuYewOjDCBe+pyGZFCjnb9bc/m2o35zQ9n3F44XjJmdkp4djNGQGovp9BgpCKktiMugeYl9SL20hlR4fKufq7h2EEWjK2AAbAQFu8aDvCjobhzdo5Zy0VEsmgEM5sWRNZFFmYGio3SZMYOu9GxNSfCG2Lt+AiRvaBrXA8Ke8YyGm01Fe11CY6CMmMoTo+HV1QK/LRS0l4HQGUJr1UvGJMQkBYOtUWZw4VktGxY9GMzOnXMyPpGEQYiiwC+7WHbBEqNgbSQVgbZxbLeFmvFUMoDCPN6evHDEDk57BAPQRcPVuh6cU5dlRwk7ZiqvQdNt8DOe+zg6Y8zyHQolz/uOQcEe+3aA3ZxdBI/nIfPHu6t37xBnNwAq/WUCxjEYETO7zy5GY45JPSRrzMebArKphHc697vGGm8/C7KEwYDmtcZ+AJt167wzUzYLku53L33I8Q6NN53TIYZwbpx7jztmVafy1jT3CXnYOA/pHZxlrw/UkR081rG+++oICI/1XVW/+x/912jeKCkvPf7Rks07tUYYBLDbiOkixY3XPqtLZffwvbtm59WIxRjaLz1BErhNwq0D7uNLBYN+x2CkGBXM9cYr63cWKmvMi3ML7Wni9BtQXCdMUCJr/W7Nkke4lyXy8lKZwrYjVQ6/criPo2oZI1CVmIsbMAZTq+FLMkIsDIuPEqsPPdvHFr8QyqtEdEIyBjHCix/uexq3KABLID6REsRS2H75CYtf3CgA3DY7mSooQ2gMmy+dqxOrXXL6azd0ZyWbNwtOf30DfUi92QaMUYCm562S0ke/3LH6wPLsR2v8aYKnjTJ9RUI6XcDFPoReYo/zykSUiLky2AZiAfE0IBuLdAZMwrQ9W9MDQXUi7fsRy6jvJ1Hzmp5NhN7s5aWliUvaRy22D6jvNgXiItYFnIt9hIUuUNK1sqRxuZOk2itLrBOpjAr8iqjyTTcCHb2EdRxNkVwaAKqJgmlV6lqW+pnKuYSIOnPmBZLYQGkDRhJdzH1Ygc71eYVRNOtR9FbGaFhvK+xyixE1YSlLT1oK3ulF6dYl3VW/MHMqRY2tRWzaRU4EIaY0uK2a2nN2umFVach57gebVkRwEgdwbVFHVhHLpmdzosjgkuqyzLazXPqasGhYFDORFCMwNZVD5oVv6x0hCDE47QE1yroSzQAKx/1c2RDmLvniGAz6aA7OZa7GoHBu7uMokjHoyuAm7z9e2M/Fl+Tv9/rVDkhI8/hjUDg33iGmazy/h9bt+JT5+zc93qE62Dv3KVWS02t2cD4z4POh9e2QdA4PIybA69P2DsaeET8E1ubOfw7wvW5Ux6He0E9yvY91rGP95tQREB7ru6a+9iP/R+TRAgngrlpiYVl8sGX9Tq15gE548dsqlh9Glh+1+NMS96rRrMKrG9JWg9zTk3Oe/3CN6RKn32wont8gTUdq2yF6gj4sPnlPevMJV1895/pdiyQFf+2ZEB0UN4LbRLoTwW30Pznbqgwzriqo38A0Kg01H79i8fySdLaie/cJ7uNLpPOk9RaMYApHPK3xj2qKtefxL22RLlJ9CBgwm07jKK4UQC6fBTZvOWLZS1cRbJeQDlJMXH5fiVu/TfHeC42z8H5nNNN5BFj8xiVVVRCXBWbdYVYFksCvHOu3i8GddfE8UFx1+KXKcotNZPXr19QfG5bfcjz/kQWvfkLz+lJnFEi2dgeWjDKA0hjcWxu6osJdWGwjpBtl3iSAdKKMne2NWoqkLpokZeK8joVNRAvJJcQLsUxI0P5EuzakpqJbKI1rry3GKxvZLQOyCIhJxBuHEQjLpP2MApCwa6PXsAJzov1vKQhF5TEmKVDrJawk1Kkzg8EI0muJs1FO18dmTN02s4Q1fz/OJrQmsahafDSso2YLGhPVDTVpxEbTuaFPcVW11IXnelPRbApl/BJ6zXJe3tIjBkKrDCeFuqxGIHlBDFzf1Ky3Jcu6xZhIkWWu/anGJFhJhP5ccn9XPr9V2WJNZN2U6nrJTg6aoiEmw/W6Ji0alqXKUffCyoW90PRpiSSqyrPZ5JB3lZFiIiZruCc11xc2Zbey8c6w/QjcDfLCA31he4zp6F8e6y6wN2ZBx2zltH/yEECak6buLhaQDEbCYUkqt1m+fdC474o5dfYcznEy1znp7/Q4h495uE/voQYq90mEc437RWVyr8ag+C659ByjeWgOh+SeDzqnO8xX7tv2zp7GmXnNyYs/bT7jvXmM/c8//4/8Xz/VcY51rGN9e+oICI/13VMiuFcb7LVmrFE5TBuoX3S4y4b1F1ZIhOqVZ/u0wHSJ4sVGWcGYkEVN9+5jPv6xFcnBk7/ZUH79OfF8xbPf/UXOf3VLLA3tmdPFQKv/gV1+n2YPpv63wS9lYIKKa2hPRQGgg/plorgJSEwaH2EgnNW49VaBZkrIqyuKV72Mtc8TEBGVdMYauw3Y6wbpgko2VyWmDYSzGnu5JS1rNl865+rzbuhhTFbdT0GZRLeN2DapU2jU44hzGrFRFppTmBJys8F0HnOzBaB4vub0piMuHMuPPes3HckIpovEwhAqo06uz1qS0x7DWFpMB6f/fc3l39P1bJ5QXCnDGOqk104gFZHuZYV91CLnie5VBVWkWLZ0rzS7kes+woJeGuoz47HrOUzZwCZjxUIlkBq5oaDMXVuSVYYxVr2hzcYSg5BqzRyMVUSSkLKZi0l4q/cNoz2FKRhMqcxq1zqM69kxM2LveoBFY3fzqyIEQwjC6XIn8Rzn9O2cSHcf8xANTWfw3uI7S+wMRa1gNEQFnZABGhiErjeKqUs1btk0C8xaTZZSFdWs57IcHFGTSdg6EG56cJi0n1Ib8xLx1FCUnlh4ChfwwbDelqQkrBYqKbX9/MeLWWsiy6KjtIHrpuJmW9J0VsGWaK6jMYlNU+JsvAWIYLcYTSkRR+Disq14ebHiZLXdW5rG/vMWk+y5bRp2ERZOshz3dmD6OE7iEDM412c4XuDOBa6P5aWHGDI/uX55rPE2e6A07dxW8zkeAoUDSIngJq6kw7WYgND7WLIpEJzWHhg+AKbGEt05ae1BdnCmXqeP7nUYu+lDgLnxDzGvd9WsLPcAE3uXvHNubnOs27Tn75A8dXoODwWUn4ahvEuOfKxjHeu7r46A8FjfFfW1H/ppZdOMQFEjmxa3aYknC4qP16TaYZvE47/VqOGlT9QfNxr8XhZsvv8xV18q6E6ExceRR790hblYk3sQN28IzePFADpsk0gC1WVi+VEYcta7laE7UdChJjLa12bahNvofsWrBukipvUkZzDrlnSzgaQS1OQ9WKsgENToJai01T67wFpDKgvCkxVhob+C4iP2cqugUYTmsYJWuwG3Tbg1NI8FfwImwJP/4QLz8lpzB6uiN67xyKaBbauRE51XoLhViSBOewcNqLvoacXp1z0SEhIiyRnKNlC9TEhIJGcItSM54ezrLZKgvCh59g8GiheG4hr8ogc7EYiCVAruwnWBe7SlerrBd25gZ8QLYRUxjYKTVCRlFmMvyQRMo4YvUSDWfTNn38cX6qjmLv36d8f8odJT6Z1MQUFfGUne7HL4Msi0CXFxkGrGztAG7S8Vm7BW3UdFdH4AeKPxEb1BDaKAsqr2waAPuwX2GIyEPgux6xxdZwmNVZCbhO66p4FFjx9DwnuLlUQaLcrW25Ju6/R66xRIcQeeJZvULCJh28t0QceweizxBr92mtm4UtnjZl0RrorhOokk6sIPZj078GEGEHdWbymdmtpsmhJrI1XRYU1i2zm9DgW32DDYyR7Hbp2X65oY9Jq7Qm9wSEJt4uxidsxgzjFbw/aS6Pr3ncQ9cJffz+cYRjl7GTBN55/nngFfExxGEoXZMXVjgDcHMA5VZuPMaFOZ2X+PlcQQY5bPjgD42KhkcoxboGwGEEyv0bTmgOAYDM6d26HX55jFKUv3ujU97/H4c8BpfO8eykDet83r9FfO9RPCYfnl9PudG9fhY93VO/lZ1RwQzNfhL/7D/7fP/HjHOtaxPps6AsJjfXdUCGqS0nkNi29aMEaZLWuQK89i3bNW1iKhUvMVH1j/tidcfJ8u5k++GXj0334wGKykZU2yhuImsfow0pwpAyYBbJuGPMPo1HikuogsP9b/0Jozq+yghdPf8LhtIFrtdcOAXFxD12noewxgev7iySPkZjOcWtoqeyjOkU6XJGNUIrr1+GWBCRF70+o+MRHPT1h+0NKeVkiA+kWkWEfKa0MoheqVR3wk1SVpUSoodlbXAZ1XMBgTObSestDeQm2sI1mLP69IVihebJGoYFC6OPQR6sQN0Qmx6KMkfOL81xquv1Tz9G8EuqXh+vMy9F3mtU8q+ut3UWOuLPEk7Bg2r1rRmFkto0Al9WBlKOlBjui1JqXBWCi5RCryHEdMoktIGfU0i6iyUW9U7jmMm0jBIi7hykAsIikKsdOMvmzEIiZCtNofeeMGsJpEwWueo1v4ITMwJnUD9VHZvxxnAQwOoykJ7dbpvJKQGoNsRwu5/p/3QmgtcSlDnEbbFPitQ2xE6kB0SeWsPQMofQh9quLOpMb2N8alnbw3GugMyRu2krCFRnEg+n57WXHhLfFkQ90zhbCThsJuEVvaAOUOQBY9MC5soAsWHw1FHz8xxy6NwUMIhrLWfkznAs5EQg8wxmPcyg28Qy6XTXPm9h33HY7HuEseOAZ6MckABg9JJVMauWhyGCBMgeN9oOM+oBGTGfoXx4D3IUBwOqeHSAvH+4/NnaZzPQRq7zvnYS4PBdV3ALI5Rvd1gNuhnw9Wv9n9ofb7c74bCM4xp7uYlzmgNw/U4uy2n3U9VAp8rGMd6ztXR0B4rO94fe2HflpXzCEq41WoO2Y8XWKu1lA4ZL3WjQuH8QH78iqvsikuPU/+dtTQ+dKw+W1vUrxqsFdb3QYgwasftLg1uLVGVrj1jlGKBfiFUF0o2qsuI/XLwOJ5oj21FNceiQnXBuwHL6HrNBw+M4LGQgywWvDB734LCfD0b6wpfu1DdV0BiBG5vNkDXfWr3o20j8Nof+BNnv9wTah78CNwXVuKa4PbJoyHZIWbH3jE5g1L/TJQP2sx206llEFlqNIFJKThuOTQPh8w1xvK1uMfLcAZ5LpVkxgYAe6AtJHyQnonUCGV2jv49H8MxELYPhXW399pX6E3yI1VgJfQ67o1xEUEL5jWIFeWWPWLkiIqwIuy16MnQZCoPYOpzPPXC2E8Oo8i7cAiDHSK1EHlnkF6pa6CzZiAq4K0DAN4yi6cTpQJjBtl3Qap6niN1H9GiAzAEOnPAV30597AlATvLdvrirSxw3Ul6TkOOY557v3DhZSZuZxP6FUu3F457bGsAraM2Kpf9Pn+2uUper0uFGqUg1Vgm3opoV4XBccppQEwRm96EJqgSGr1mSA0lm1ZUBV+j6GE24t6K4nCRopsAIOCgqIHY12wA6CDHes2lkYCOKfsnTUJnQgsCz8Yy8Q0MZEZAZ25xXlKQmDHsFmJTMFgXiQbDmcl7oHPESAMyXCxqXm81Ic/IRm9tqNj5nmMzWzmruO0xkD29aSQ+9ENpn/NSCLKPpjN39/F3O2+3zFK9+XPxXS7R3I63njbQz8fYlfHBiz3OV4eAqBzPZqfZc3eM9kHeWOZ5+wYU5OZvTiQ0T2eBd77EuK7AZn+4btPcnpXHZrnGIQe2cFjHeu7u46A8Fjf+UppT9aYyiUA9tkF8cmpunRaq+6Xm0aljyGCs2y//ykXXy61hy0p02e7hHmnwLYrFs+9sn9WcNdgQp+P18ckJI3hI1kobjQ8HcBXQhLD4qOWs/euCKdVP6dL0rZBrEFE1MhFhJSUIUw3G4pr2LylfYekhDirOYEA3iuQFNGvvclNWtZc/71v8PK3u8FVFSA6lYg2j4WtFewGrr5o8AsIi0QSi8QFtlmqaUtQmavboAYs20Rxg0Y8iF6b1Te3uOsW92qjjCKQyoJUO8T3LKExCiRTQroIhcUX2lPYrQwXPwjNWx6pAsYmcJ7oVM6ZMlDZoj+LMrLGg+mM9gMGq6DPqVkMrWImCSr9TCZhtkZBTtJzSXbHGuZxKRJSRMRGrIv4Tllaa9RYxhBxi0grgDcKPoNAtBrL1wfNIwnZOlIViVurwLhn3CSiwM6ANKIy1h4YWhvVSKQ3gwnB0HWW1PRSzX7+0mkIvdAD2iIqAEtq+JJNbJJNyrQmldAmo8yerQJl6fGd9h0qwNyBv1QwAPEMBpXxM/v6Q5OQUo2BMug1RsPrQ9B5dFs3MJpjw5nM9k2ldUnSEELfBUtMMoC4QtItZ89cIqk3mFGAcrrY9oY7cQCRpQ07Yxu53X+3/2dEf/a97DPnGdbOH150T9iRDDjnZKX5az5uSFAVfjSWDIv+4Xj99jm2I86MOR13+tpDFukxTdwkR2YxU3A4dT09xL4dWuTn96YRHnPzfV3p5V09g+PPz7yBycxr4+0mh3socH3dml7bueubmbkpqJ0CtymDu3+9902SpgAxf3+XbPmh9+C+OgTMY+qNp17D0fZYxzrWd6aOgPBY39H62g/9NID2wW1biBHz/FJ77lLCvLhSZqvzSJtAhLSs8Y8WbD5Xc/Flq46VORdPIDnBuEQsBEmOaBVYua3GOvilAoy8QogWde+MO9ViKPWb7tRRfnOLe3FBePcpbNScBWuVGQxB8wiN9PJGYflRR/OopDsvKB6fEc4XbN6uKa4D9d96H4lRZZxlQfv2Gdu3Kq4+b2meMvTTZTMVSRCsAtdYJLoThoV/kr4HLwqxjHodvAKJ9olOczBTESDodSp+eMHqvQXVq4TtEslAc2ZoHgvlZaK4SZRXkepFy/UXarZPhFAKzdOkgOEsEpcByn0Jkkjqr58gG6vMVw9awioCBtPJEE5vWsHcKNDKjqKx6O9l7OWkMZ9Tfy52J0nNJjE5LiLHTxAF3/TZkGWgsJF62bK5qHdzDULaWEIfN2GqoGyZSX2/YtQVdC/JTHYniTWbnvmMhrSg7zXcXQdrI+a8UdfNLOMMouP3PX0DaDMJrCgo9NpXmU12YtEzlaJM3taX+n7f/zgmGUG3SU0vWx6DwKTHNi5irDJzwaMgug+u16gOg/dGmUVvaDYFV65iVbXDIjFLY6f3PUbD1rsBlKUcUG92xjL3LQorG4YFejFxOb0vHiKXT2YvTqMwUU1+JLO+o8/s6DR8bwR0KzNxJN8bFvGS8BisRM7KBp/0YUD+gMwZ1uTKjqvThXo+5rimYGuupgzpPni63VdopKfB5TBrNCcR3QMV0/dHx54yt4fO53VrTrqa5/JQJ87ptneBz0NzeJ1zGMuhI/sPDPZYtBlQeOiY459vg0Q7XH/XO8/e9Rn6NPdjWveN9Zd+8t/9zI51rGMd69tTR0B4rO9sxaiGJtYMpicAlAVpUbH+vjO2jy0n32oJleX6Hcfmbe33M52yYaYPjM99ZQrstLdN2SjdNpQ949PL4jKoCjXINVjPELAeC0hGkGSR3/4mi9+4xJ9WmMdnyKsrZQbLklQVpFVNWJbcfHFB9cpTXHVIKnn1lYJXX3kTv6Sfr6P68vfhtonNm8ry+VXv0NnbUEpUhgwU4Oa1XAZKWWJI0rlG6QEHCqCyzFJSD24New6byUBTQfPWTgapPXEJUuKqUhMX0xjczQK/TMSqB38ZILmIZBOTPvMvDdJDNHOwFQWNPbgtXllGa1Hstgd8SYg2qW+MQSWNgf6CsTN0ybLKKoxkk4bUGZV7ZmJEegYwyQCKurY3tRGdv/QGNeKFlIzO32QgptmCKQrGRaLv/0TmeaHXy2yUvQxeHTat1d5F6Bk3F4HQS0gNyRiCoKxePzfjdgv1KD0jiezONa8ZvZCi1UD6vjdSgLLq1Jk0GEIw2gfYS09Tf46mChiTsC5gbcTaSNs6ot8xublHMfXAMfXANLaWqxcrNnVFVXdURUddeJWJTnrinIm0wRIT+GDxwbCs2j2ANWd1P5z/RMI3MHQzpi65pgvckDSiQiTRBTXkyTEQWbI6Bm7TfsBD42ZQpYvtoAyovqFAciTdHbODY9AXZkDhoeNNXz+02B7PfzAuSvuOpHPAcAoK76oxCzg4pspE+jgBtfkaRJG9GI7pvA+d7/S1T8rY3RWoPsdizgHew8zX4es2ls3ugcL8ff/lofLR+6S247GHe4W6IU9NZF7nPI51rGP9T6uOgPBY37H6qS/+oT43TwbpJCmR6orNlx+xedNx844uKDZv1MQCjYfoSZCcA+dLMK0CJPEKEDN4ioXmr2k/nf7n57reTCZqe5/pVGpKnfakpEbA10J64mgePaE9EdJXK6qLp0hIbJ8YfC2ETDwJSCyBUufXM3v5/+JQw/WXtF8xWQVnGGXVZNwnBwoKyhEgdLq99AxSskkz/owya2q0khQQxB0gyM6V2aUTkwZAmWM2kvQSyAwoEsQ60tb9/nlNl+0Pk/RNeP0Ce9QTlzqjoPYkKDDrDU4k6ALFtkIsErGXfiabBoZXNW1g+wy6cNIf24PZit6jIOrOGfQakNnCpNePxuo59MAotpZoEqk16hI6XgDlb3McQ1TmUBBigrTozzdLN21/HA+SBNMI8VWp7B+odLOK2KVHxCuoMZqrN5aTkgTb5wvGoMxU2lq9RwbtsxzRfxL1XIcYjB6ABGcIAbrGYV0kbfobmh1VXaKqO+qyw41AnxV1UW22JTEI2005zGeQneb7HMHfFPjG0lQFcbWlcIHCBjWbGfUMrsqWLljWPTDbtAWxECoboHcKvQsUQg9i2ElDI4KmjTwMFORF+HjR7EYupXOOoWNAlaMZ5hbmu0X3DuTkYyHaj5pjMKagcBrqPtfH95BevvGcx3Ma1xRw6ontfo11zNHTmel5PgC4D6DmDpnpAAxn2MI8z2F6D2BM76tDfXtz2zyUHR2zd58WPN3afwQMP3UG4AH2bxdnIZi0e7Cxv+3tqJbZY8x8JsZOttNj5/ovf/LfecAZHOtYx/pO1xEQHus7Vu0PvE353kuVhwLESHh6ysf/izO2T1Wml/+fGoBgYugn8yeJ8pVKEE2TpYZgvIKsWCpLqMCq365lYKoUmOn3zisoFAMS09D/Fx1EK4SF4Gvdvj1X1iv3+mUJZAYVJjD0IpoeoIayZ/6SBrPHvicqRdH1d9fPyTEwW9m9cxzPgFHQgtc5xD6cPR9bUWnSMXrCSampftyEAgaBgVbLMsmevZIygwcUYGX5JD0j2BnS1ulrRQSTtA8zqlR0ME7pe/vy/bMtO0fQ/vxSkTCtDMBXOsG0maHVbU2r10w6SFYjJyTpvYil0Z6+on8C0IM7lT0qk0ynYHC6Sk6un2dCAXgfYWE3yugll8BFUtm7dvagOhU9uIiCvdZevFj01zAagrVYFwaTlLKXT25TgbXSx1OOFldTCWYP+LKZS6oC4pKawmw1wzGVicYbjc4Iu/2lFVLZfxaSYbsuaRulzq3TPsTSeZaV5gVuN5pd6DunPYNFJBURYyIxaKYjUeccWstlXFDVHc4F6sIP/XmD1NMGliW0PUvog90tFkfA7JCZx30gYNqLOA1ez/JUHw2xP3ZmG+1eAPvdDM8UoE176MbMWZ7PFAzm48z2542A0kN77vJ4UzA4jXmYc/fM57DfZxZ3fYWj8xp/Hc91Cu6mvWtz1+ku6eyh8zsojz0AVO+SXM6NP1evAz7vGmN8bQ71KI6vZX5I8jrHmvuMPWjOgv4nw+37dSfYu+MBzhyb+ml7MI91rGN9Z+oICI/1Hamv/p//JPKTC4xfIEFNUJKB9tEOTAHYvmUvSz9lkO2Bu1EgES1Q9vLRFoobekC3A5EZLCIK/BR47cbzC33fbqBb6bjqrgmxZJCfpp6pU5knuI0MLKB4iEv9Cj3L6NXXA9iZovSgNvS+HuJ3rKeEXv5ZpIE9JKJSxyC7/jmrVE7uGcxgUQdh78m41L1xipcde5RBpKhKN4GCjpQGVlGAVMZdr1sPDKSI/fn3GzVWX+9k5wxqd719aWuxDTtZZ+75TOyArdNrY3JuXt8PmTMJJfTzSRk493MMPWNqMnORmcv+5Hv5Iy5q5MIAnPsqRuA5QRJD7HrTlwx0M2DOYFZ2+Ft6fxeVJfcOqZ3QBiGuOsqqo/WOGIWus9g+47BtHL6zasgjOr67soQqDechRnpnVL2GOT4i9U6tslbzG1n4PsaCHXubP3Mbq36dBmK1A6NFb9ZSL3b9gRk8jaVuvjfLAWhbt/d+NkqZLgArp1Ecm66g6RwxOaILFL3UNPcFjkHB2FUz15jVM7LrJ8w1NTXR09QFdmbu8vHsLDPyMFZkCnjGIFQkYdldvylY3WO8HiBFnJ7HofmOWc1xHQaDvenMAKrG12PnIDp3rL0x+uPGfD9uHW8XYzDXr5fHHX/G5ljbuR7LPOZcll42HfokfYuHeiPn6j5A+VAwdNc5HjrWXaz1+Pu5hw/7+zwsZuJ1jWDmgPmRHTzWsX7r1BEQHus3vb76x/6kMioVpF5C2Dzt5Z5Bc/6iTRjfSyitsksSFTgENfxEIoQCYpVg2z/ZLqB5JL2j5Q4IKsDT/ZL0GYRGWUjT9oDPof1+DvA6Vsh54XFYt+/GsdCdKss0ABzQMO6gwCXUYBvN8TOdEHqQN7CT/cKfqOeRAerQOyc9kzWKc0ik4fxT3tawA3sZwI0D2enfzyBnxHghCVNqHh9JSMEos5cEUygSywHqACmTkhnp1oHUmh0Iy+tngRSE4oUbgDlRrwOiUlHj95lQnX9/zXO/HxDqHuiN1kjJJTWZqQNi0+6c+vPQnsd+3DDaecqo5uqZ1Vj3jGh26sysaz+3fI2T0/OTPlNQJ6WMpjx3+CDYJwGIiEBddwBsN6UG0ffTy+ftbnpG06T+YURCbuzuvrt+ulF2zGYZWZ42tK0lFFH7KYMoO1uoiUzsXUyz+UsIRvs4TaR0ntKFvazBQ/10ZjUPqGIvQ83bj4FcSELo3T5NkbDcZoHMCFCNa+z06SY9UFNmMG8/Nr3JIPIuMDgFVbfklj2rMu3BaoLb62+cgsHxeQ0/j81dUH4uyowhDLuvryMlHJvZ3AUyBmA4khDOAYtDEs4IQ5QGBsqZ/rRDDOP+hEcA+cBnbu69KVM4zdIbn88hhu1163WB4PR8DwHs+0DhffO5j+kG9h5QTJnt8fuzx5l8/h667bE38VjH+q1XR0B4rN/0Mq2yOqFO+FXqf0Zle1Hld8n2X430jF8P/sp9sKQmID1gSEJ3Hkk2sXjfDgwdMDiIZpbQL9S5Mjqwjf4b+gd9D+j6yIfMYJHxQR4r9+L156WsFj0L2QM+p2AtOmUT/QJimQa3zViAcoIySFndRlmxsEikXnJpTjri1irIAygi/lGPUEcM15DJZxJm1RFbqyAQhnw+jEYbpCR9PAHD9RzAYupBW5JBgimiUFQsxE7likPMo4skb0ibvofP9LLNG0eo9XxN2yuW8kUbLly+R7trkGzSqIekQHmQ54bdNhiIi6BMZH8uCRQQdbILY7f9a/m4o2B5RZ4Z6QvSqbQ0g+7UGWjNCHCPFkQZVEhCkvQgtpd8SoJXltYv4ayjWigYbFtLtynAyy46oweffpGGPELQc83SZEhI2997k4bPlSkDKWmGn3MRbyPBK6uXTWtskShK/UXIjqg+mIERTEnwM/K2vGC05jagmkoex4vLvOgsTOSsboYrVvTjOIn3ykXnZJbTBed00annYfZYqPz6FLLsO0DeliKOz01rJ3310QyxGJY0jJ8NVMbzdhIP9G3J0Md3FxiYxiaM5zQ9p+k1OwT0xuNNJYSHtp0ClzjazieLIzwI1MzJaaev31X3gaepvPV1avZzcACQf5pex9ljPwAU3gcC5+Y0BoN531u/t/JwNvC+HuDx/I7s4LGO9VurjoDwWL/p9Ut//I/wo3/kTyJR6HpzlWymEuoerBgFY8kk/FKILg1MkkR00W7p+/Iya5ewW8FuzQD8sqOoaRNiICyUhUkOlZr2YG8Ai+jX/z97/xpsy5ZehYHj++bMzLX23udx7617662SVCUhNVY4hAVEdyHR0dFIpYBuR3cI2cgGRMmBFSgIG0IYC9FGckslwIQwb+OwHh1gSTREIQuFVQJ1RCPoH27agRTIYL1uqaoEVbfq1j2v/ViZOef8+sc358yZuTLXWvvUrdKte/OLOLHXXitz5sy51jlnjjXGN4Y7B6pL/d3XyIDE3BBCHW8kjh8qzdJLMkahuM+ixBIK0GCQcgrgLjy45Sw/FJYsP+3vBpUFsoCuLGTrByATpY+0MxojkcxVDCCNH8lFfWsGySRBz01MI5D7+wBk4KdSRUQmUbKBSXAMNvqc71lZRPZI5iMU8+0CC+Ra0XOIEQjhrkNoGfbSKJsqCQgDIYI/7uL7YnQtyStznCSiyiiS9neaxK4C1HLuoaOegDpExg4Q4/NaUBUKBpMGA51s1hI/U6TgPBchA9wRmEzrJfrlRo4siZ9DBbcCe8nwXY3dPdY53BjQzmTmW6JElBwr003I7quYbhCNDDmM8Z7DjcVNZD9t48AmqJSzY4TOgGuP7VkLy5qX2HUqX/We1Q0VQGDdGCZgCCgI7LxRN9HAwAQULsnTSgbCcAAX4Gypl27u57TcjJxx2pOWNr0yM7cpE7gnx1zY6JbX8GFsvuECo7J+730qgWEnBpZpBJjmzGmWXCDL40pZZFrLOWZtltVbABwh/SOF8XtX1tK4CVgkpjAxjmmuR2WxC5+F/fufAUIZzB6uU4DhGOjOM3nH5jwFXnPvzSEJ6KlgcOn8pedKJr1kxamYzylfSHympjdrrbXWa79WQLjWb0j9i7/4xwAA7/6vvj9LQRMQlBiPEEDQ/agMAIIGeWYCe6EaNtDkKfZhRROSMwV2viF094Hq8cCCJZdN6jFI8gIK2WZ8PQEqisA1spllT1yIjA0QgUEEhhBlCbklPT9KR3tL4I40hD0GsXvhAaztGIiSSrk0wLUBtj4CEQLfxH61CEZVGmmijFIgYTJ5FqBniAi48gMAjEXxm2KJjCMVElWOxiWJcTm702qPWFvBuUKHSzFK4U4PESC0BvZeBwDwN42ubVrXYm2UjdV5o6cM9vJaeGikCAnCBiOVZwJkYtRlNYPBOoDqoAwfkIGtDghkWS2UOUVi9ayoiUxkU4UFiJ89DROj4cJpIgYIUCku69ftgI/y3wAYEOiB1S8VIiEjhGxOk+Sf2l+aPjix0hcLqdcwrrXE9ws+OpQy4NiA/DiGI3CUiaZZC8H1jLpRMxhrApxnGB7YwjZGaYho8HoOX+fBqTQdW0YcAMsgrJRUTnP6jknryufnjEmmLpCHHEmXHCPnpIhzxZDMQlax7zEZ2aRxp+ypCyoNnUpKR5vsGVmqjrdv+JLmOzu/A89PWdU5oLPIPs0wleU4nTewHEYbihIUHgNmS/LFQwDtUEzD0r2d0q93CoickzyfWrdlF28jey1jPpZk0bPj03AfcyZBh+TP6bgyOuMnv3rNHVxrrc+3WgHhWr+h9at/4o8DAL7k+75fe8q8btApgStGDmXnnjJoTCHrYpFz/MREqWSvQMl4Apz28SEBSAL6i8j2tfEaNFwH0dk0ST59gyHCIspGTacmNKHRMHtf67zJ6+NsBlOwSmEj8BcB1DLsNYFbVjCYWB9WBlSZI9FMPAzMpJCySHDajygWEAxxCFl6CKg8sjSYKXIIkVi/xEBN9grE440fR7mpqT2C14y3rrXYZZoUCsTjQ0m/E0Amsok7A7MbSz0T6Da7ApjGOWUgHjD0EEbcCRa9v9IcxwPkeYiHqDVoXmIovAKuBN4UEKPWLwaCJwWNMeCeWBnSkABwoMge0nD9GA+hqDc9H78YQGQ4oeMnUJiyHgWA1AK+YdAOCA0imI0oMSi7qBEfESg3Pru4ai9k8b4RsmusdDyYEImuEZHAOYYnRlU5VJVX9q/Xf/qfXFvUtYOLYD2IsochELwzIAJMZBARBnljzr0rNqAKqobNamkcckpP1bGabnCn4G6PbVzYqB/q55pWCX6n17QUci9dAoVzbFoJxBaZlvxNyXwdArJLtcTuZGOYBNYg8BiA9CkyzhI0le9xoGVQvQS0Dr1fU1Z0KnmcSpbTPOaudyoQm2YnHlqPgw6ct7j+klvnnPx1lukt3oNDbPjtwesycz09LoHCn/jqv3qra6y11lqvjVoB4Vqvifrl71Bg+O6/8P0jsxSSIZJAWI1mCFCAF2V5AJB9PyIICwagSkCGgBhjQDHA3nSx18shB7in4PdsLMNAfwaYXnsXSYD+TIEP9XHSouexw8BmxX09RymnJCCGKO+sA/omPo4gjnwMlT93CDcGvGOdVyJmOu13lOi2GTYJRALUksKMxGIB8aYwgD4hDPmDFAG3Pi8BsfcuBoIzEJy+zkby9iFEA5nkLpn7s5DJPnAEhhoCrwBLHAN1gBiTjXaylPY8qNyyJ9gbZGfXtIbCFIGW5HgPsXGtilgN7lnXJQF6Fu1n9PG+DTILRyaAjCD0Cp5SCLsCPwNUAcHpmgQfzWLi6/pmRCbTl0A2jh8/h0lGm8BvkpZKBI1iBeEsgCJrnP9UQdnD1CdqBLxxMJVH8Ab+KjJ/PFwjOdAOe774PpOynKE1aB3D1NpbWNXKDHqvZi9V5fOpTPp+a4C9Puc9wyfZ8IlgJAOOYuNu0qaW8l+H4fjZUearBDLpWktszZQp3Nsoz7FCBGXgSyOOAiCk4PspE5pC2zMwnEgm53oe03UPyRVnQdIt2KljUr8Q15NJRnmPc9LDfZYozXs83ohtmqzDMSZSjxm7nh5zED0GXE+pubFPAdtpvuVc5wx1DtUh99lp72Z6bm6u+bjJNc2Rz1B5bYYgTNjqQ+uwmsestdbrp1ZAuNZrqn712/843vPnvh9AZFWokA+mDXACFTZuOmJAe2KXxOpmOWXZ2bhJ0Z7DgQm0CaCIMny+hsZBbBSE+A1gd4RwIdnsJcRYBbGRuStiBwAMUQqAyhwjGMioKQIGic+nHkDqGXRFsFcKgnwjg9Omj2yk0+sr60S5ly6DjnSNhI5LBlAis5TASkZ6pKdGUCiRRQWQDUhSHt7AKsZewtiHxiaMJJkcpXTpXLYCPN+ir2vwjpQxPde8O9kI6NrACytAd8O0fY3BZIV1DcSmZr00//jFQZJ9WnUc1f5HRTUUASICIGLgey6AmACsKCXHa/Q8gLIsnU1rkD6HlL+USGtD8T0QRpZ05i8zCJoZmYYxAtnGX1KcRTLCSdc1CspDYPhLC3Np8vmhwsD8Fu8RqdY6A0cRUflqox/QvjcQITSNftvQdRZdW0Wgj8yqEglCrz2f3caiO+tw1nSozAAgg2jsRPqCwBSAKAEgL/r5QmCw8fEtm2x6i/3mUhzBkuxtjl2aAzUZPGD4O1Fu1k8BDkwCNl57B42fSD4JXvQ6dbxPS16BQvr7VADkQzViuGYAwujYAzLXk8LGizUIoBF4mLvW3PlHr3EE8JSvJUBy6pyB00HJIWZt7rml92pOWjl1Oj1Wh97juTr0JUCWOxfrUsqYp9c89DiB+QQKTwXUqVZ2cK21Pn9rBYRrvebqV/6ksoXv+bPfj7SfMm3cgIvudxPxlcBiipWgKJfjFPuwDaDA2rvnCNUToL8zsIUli5MlqBFgpID03OuXZKzRnRSVDIyXBbincSwCIwfOJxkoRbYvgV09UMdgR/l3CgRygOkI3GIw2nE0ZCv6dA+aW+i3YRgPNATQF+AP8aXMfJWh8mVEBankcWQN7wlsADYeITCaGKPQx3w6ANG5NAVeUwRner557gbu5S2k8ipnbA2kDpBa4EXABmoMk4BUYnsrADa6jjoz3FdqjGPo+1MJzDaCjtg7qMwfZeBHjVeQ5alwXVVAKymyIkkzgSi/lf0vJBLQT+tJCqhBMoBEwmAUU0pcS6BOeg3q1VkWhJFTrWtZP4uRSc1fhCSWEjpeNsIRfd9zX2kApFHmLziGrX00ldEcxNAz0CY9LvJ4kljl+Nnoe4PemOw4WrKA+hOobaJp49IJwaf+RePBM+Y0o8seYfRSneyIeAJQmNtol/MwEO0LTWOCjmy2GZ0HauOVyI066TlL/kPjlIziUelmIf08BC5K6WMQAiV5YQLIB9Z1ybxmZMgyy4CO+9HmmNMpKMznztzPHOO2JBmeqyXzl1P6DMvzT5VSTmuxR/NElvNoj+uhY4svJuZA9SHAfKw3VR8/3ZqstdZar41aAeFar9n6lf9cgeGXfo/2FyZGLpnKCI/wStzcSJaDwgLmRh1HuaPYNyjYPIimNZbQ3SXt+8vMDiI4U4av3+gGP1jkiw0h93q9YKD9a8kcxA4kllgMm33o62njL1aAoP2SiQk0HQ1xGTIwj+aGEJoIZC0QrPYvsovupp5gbkzstwSkEoQ6DOxWYhATwAGA4gttSsCREPvoBudJALmnLoFB3xr0xZqnG1ZmLsrqOCD1E4pEKWkAqGNIJcpqOZ2PbDx8SCH0Cfxo1l+aL3dqGJTWMjGlKdOQekLwNWTjBwAHxG8QAFQBtvJwnQFblbSGyPSlXkMpAWDMQZQIAqnTuWXWuozsUAScgTwogtQIZEkoM9o5wsIR+NKgeYXhm8E9NX3xAVG2Mn3BgYRLE34z8duRtPbxcxnSeyn6JUUgRnjQAI7QVQGoJANjMgJslS1Ut1XNoYSL9xdocHGdkarpTyVZnTfwE7CQwCITw5BKwMsaAZrJnnNJQnnINCZJmg/VsU31NJIiPz6wmS83xl4UFAY+DC5O7as8lQGbA09LbFKu4j0ROX6v03nPAampbPTYHKfXW5LQHgKgJfs6d9972YUFMJzew6F+vSVZ5cgxdgGY36Z3da4OreecnPsUl9dDgG9kaJT+6UousiXwjI8/+N6/cewW1lprrddwrYBwrdd8/dKfVmD4m77rLwIQcGRg7DXwzC86mFZw+TaL9hnCzZvjHj1u8AkKJADkoPrmgQf3AWCCe8AIlnD5NoNQqeGMvabBOVRUvplYq9TLRhE4SkRS1Cto5I4gJowz5DiyRoKRYUwCgeS1B85eE0wLBAPUj4G7H3Gon/SwD3cAEfr7G5AIfGPgG8aTtxvcvFnXKKs5PcAcGT/PChCbMGakCBpBESlWiaCREhic7CMywXhZge8JQuxJIxLUTY++N3Gc8UZTAueJSaZzI0Duh2OlltHFhDAYpaTIB0DdZEmyXDPJhDG9RwHIispfkwGMJ2CnIBaO4X3scczy0ci4OR4Ma0zM+4uAl3sGt0N+ZPLVUbdbyiA+9QomEyM1hwmZvUtgkFrtX3RnAntN6O9I7jstMLaeGz/DYpGjJyRJTaGMoFhkKbCUoNYV74uniJUZngG7cQgR9IkklhSaxxgNjEAG/bXFg7MK9VmPu+e7PFzaKPqgfXQiyqARCQxLBot6LIGFRsYzZR3ruZuahyzV0Y3wiX13h4w6SlnqEhBJfYWlGUp5L3vzWgAmh4DoUu/bANjCHmDVvkF1Ph2ZtRRjLNUSA7UEQG7rklpef2mNpvOb/rszB0gXjW7K54/g7nzd/O/M/r2VvZPp+TlzmLkvA07tWZxec45NfhoZ7WJP8EgazfnZ28pJ11prrdd2rYBwrc+b+sXv+mMAgC//038Rm5cFL/xPD0E3Hdp33kd9Kbj7ax1unq9yhuH184z2fsQMvQLI85cc6sc9xBLgBfaJYPfmBv3F8H8du6gM7CiDBWUI42Y//q3hThk79pTznSkA7DmrNpUFVBdLISgwTBLVXjfcylwqGBSj8733Yo/zf/5RwBgg6FateSkuBDNAhIv/pcIrv/0teOV/UxiYBMSeSgUdQgC3RhnDjTJKIhhsO1MW38z+IW1SRAim8njuCy7x8MkWbAGImm10baU9hIiGMmljI4M7Y+oxc9cWpmWERgFzBsYtlIkyMrBfHFleUGTbFMDnYPoMiGiglgoWNEsec59dZNtakxlASVLJmO2YwWBi3WwEmT2DeorgOjF+8csBn97DOC8TI1IClFmkAcDl8RyBOgY5lYIKA929kD9fKheNxjlAjBfBgBIpAj7SG6YuhdyntUtUogLnso+RW/2iAGTg7npIQ7CVR2CGdwy2AQGsvZ+FWQ11BHiLrmNcsqCunF5CCCHoZ8H1RvtOWdlhawOMieCQGMF6Na0hZYdN7DWdY8lKSSrTwAoG0Mj8JNXUBbQcb47RAvbHKMeZVvosl38npudP2UsRQi+MxrjZMafnDhcbz3+ploCRF0KKCAlgWHZ7oFA/oOP+xqXevOnajUFEIRMs8gzTz5ItWwLEc8D3lP5OJskutwNzN5wzb4SzH5eQX0vHFmsyV3mtivsqWc0lI6A985cTiyFYYiPn1ugUUDi3vqcwuuM+z4EtXNnBtdb6/K8VEK71eVf/6nsUGH79F/ynkLvn2D1rsbtPEKpw/xcegB4+gZxvYX/Tc7jaGYRaQd7mlYDqsQNEYK4cyCk62rwEvPWRQ3u/wuVbDdyZHs9djJ1IeYCsIECg0k4A+k30DvC1gB3yxjyZz/COIuND+fzkaEoOOSJDGUkdsn4MbD55DfEB1NQAWcD5gf5h1sciuPNrN3j07vMMOAGN09Bg93gtAUIf2UsemES3Fe0vs0GBGBGAoK2FUSIbRNmjAMbDJ9vsuMip/4lk6NEjiWkMwyai3EjTjYHZAWbHCA3gzxSIsRvWi5K8U3Qt2UWGFhGApSXolNlU1jCeUwAh6hRgogoDOEqMmgDoWN8rFgA87hkEdK/T6YaZHGVWElDQnrIyyQ2AK0tJpfg9gdLINqMdxhQjI3lnijfJsRsugubUu4pEHRZ/GTjKaiM4lewmG98/EnDH2awnfUmRWNjgCSB1ZJUYV8I2IBgejgPylw3kGN3OwpgA5pABv08Mo2OEjuGrgNB4/ZzELw9EgGbTY9t0qK1HlTbIB4DZdOM8Jxk9BgbzuSR75+9LAgvp6mQ/HaBg9lgN4EDHKpnCuUoAwbLPz7lg9q9/hCksDXl8YAQSBCI4YdTsYPf6N4f+xjnmbelaJUDZGw/IY+oz8yznZ2IEUwKedM9TMJPWvOyPnOtxm+17y38B91+aA697QLYAhceYwunYc5/3U3rzTmVTlxjB28RR5L9nUTZ76nu51lprvbZrBYRrfd7WT330vwYAfPW/+1/B3gCmE9CjS8huBwJgbjzu/ZrH5sOfBroe8B4SAuB9ZN4EYIJ1DmAD+44XcPm2e1mVSFBwlVgce5PyB5HD7FNWnMlSQg2hP/u4vt4+Q3DnkuWrkJh/KJFlCsoOPvOLHnd/6THIBdDVDeTyCiAGfNSnEgHWKBDsekAEsqlzTIO9GgCLZhkqK5r60TgCUqmiFBbqmiodIVhC2CojlXrohD0okYg2IATWTX1kgHI+WwSIBGS0Ns2fE69SRHvFyjpFxlaIETYBYpRl8xdBmalrE0FYZMqMaC9ocm+1om6rpcELAMQeRI4GRJrxl4D7sDlMb65EKa/0k3HSz+FL8FFpbuDwIZGI04KVgUXOclNk1pF2JjOEEgGiZHaTBuY4YACgXByTjoMMjKDo+PlxeR+IX0RUklnt1MNKjsBXBsEI/E18oytFpsTQqBAhDK6+kjWscmOxM4LttgOgTqUKKBmSwHN8z8ERmEWTn65TM5uqdrizbbP5SvrcAHGjOgVqogY1bGTkhDmNoSiP39sML4DB6SY5s4pSPDcxIRmNS9P5TOYm+kXLIRMZBwZLyKCNSdB5e5St2ruHyfySqU/KSqwjW7hUSz10c4B27venBX7l+bPgpnjPy76/OTnuFHRZCriNYyaT1zEwsHFzXzYs3d8cO1mGtk/7IKe/l4zddN7H1nPONOeU4/XYeRZy8boEQHh1Fl1rrddJrYBwrc/7+if/w58AAHztv/NdkLMN3DvfhOqjn8LmX3wMACBev3mnqlIQmFLvmUBEQFVBfED7wlaP85FsivtkdsCb/kWH7S99EtLUcG+6QPtsjas3G1y/mbKrJDvgzq8Bz/78K+BPPgC2G7z0f3wbrmnY7FdXwPnHlQrqz5TFIw/c/59fAtpOgZ/3oKqChKDgtoohg71AnDKctNmAguDyCzaZeeQe2ZTE7JB73JLbKaB7de50PpJAkSOYyyiJjExdcAxUAWbjo/xVogwUgMQMRUkuhREsiDqMJlOZZFjhiUAP6siOKjhiR6guNQTd3QnqxhkAWKik1NIwYSj7le4ls4KOYgZfBFwSexNFmVcQEJgVUBmMw+wTDrOFnlL37ZHNjeBWdLzUO5q+BIDo+12ylgCGnMFGBjdQR9qTJwoUKTnTmqG3FEFyBIrOg6aYaPhGQQgI6iya5agxM1LjN5AZ0cwYxlPTZzVlfWb21AaYxqNu9IPiDMOxaI9lAoYAktFM6AzoLMoQe1b5bdozxm9UxBNggaryCDGaRKWlSlM/QYO7ZztUObtvAgqxvxG97iv4wOicwTNnN/sM3wwrWP6cqykImQNXLOXzC+Nk5mT/gMSSWw6zpiNBCF2wcCKw5GE5wLLP/X4O+xv0RbanmHeI1xYh9N4gCKFmP2Ijp+fNAb1DIGV/nH1n1VPrGIC5TfTFIVb2NjXXU7rUu3mopqAwzXEKCtOx+/LWAvRiv2/wFJZvXs56ujvo3ryf4j1ea621Xpu1AsK1Xjf1D//n78J7v+EvAADEvID63zwEegfZtUCIrGDfR+mlAYKHsAHVFchanP38x7B98RzuTXdw+a4tggHcGeHiXztsfv6jABGo7VBdXqN6MeDCWrz8v38nrt6u5jDP//M2g1AwA70DeaC6BJ75lR5nv/gy6KYFQtDX00/vISKgWhGcnG9BVzcAANpuIV2nrCagjKFhgBnhYgNfEc4+LujupSzGuBikYMVEYEsCIChQzE6WAUP8RWS42EWAcmMQLMPfIdBWdbJsx5sJwcAGCnRZSczAwiTACCR1mgKRChBRJtVeERAY7l5QJvCJovAUCaJ7laJvsFKAkySXmVmLYE4qRVSBRIEjBhlvlqJGwxQSDG6nSSWWHDVB2QVVwbaui/aEIrqJ0ggECUd8FUFhAoNJEioRDCejnGQ8lJm9CNATNSUZjCaggcwsK/6eANz4HmfwnEBwkqsG0vsJEbRuoiUpC6gKmrHXG7jOgIyg2jj0ZIdeyyRXjW6szhk0lYOpAlyXPmQANXoPxgYYI6gql+/He4ZjE5llD+cNTLFxLxk2YB8Q1sbjJjBu2hptb/G2+4/zcUvM3TGp5vTx9JwkTUzzOxbvMJoDxuOUhidzTJcLjE5MZvPm5rN0T9M5h/LvX/G8i1mVHJmzspewPC6NOQc4biP5XGLR5q63VMfcXpfWY27Oc6zfXJzEXK7g3Ods6fpztQQKp3Oel+TqnEoweNs6lFu5eM4Beev/+DV/+anmsdZaa732agWEa72u6v/z974dAPD17/xPIG0LPPcMsKlB1zuEN90Dv+QhzgMcpVzOQSQoC2ct6MkV7MMnOLfvQPtsheYRcPYrryiTaIzKNgEABuh6vOn//THc+4I3obtfYfuLLynAAzLQO/ukh9tYXL3Z4uzXauDyOrOAIqK9gayMT+oLxJOrASjuWlBdKTMYBJAAsrXOgxlv+v+9Arq6gXvhHj79b19g91wMrI/7vGSGEypkhrK7oz/JA919nS45gEEILDA3CoJCTWheYYS6Qnc/6PRqiayUgLZew9xj7eUWRtYwXFZoLiegLFCOELHXanQSamX/pFawqIArRjl4KOtGAMcokZS/mJlCYCQNFSuDhDICGUQWkXwkchyBoKAoZwUKtCdPNL+SHJWKyQiuKYPqEmBnMJiAZ5Rc5uci2yaI7J0RpOiMDOxoGD+DvBjHAWCYZ8H8Jfnq4GZbgNI0XgEUwyYALOCtA7P2EvZPmrxGUgf0ieWjOKl8z/r87roGzpBZxeAJ9cZhU/dwgeGcgQjgPcOYgE3l4JjRVA7WBBjWP8Cw8d0zaokb52QeYkiwrXrgHHh0tc29Ygn8zIXSH6pSXpgeLwFDYEKU3oIdyaY4+UMUx5lI/Mp5dcEenEs6f4k1G1jCAviIykfB+p9/AoVZHnnCLR0Pjk+M7z74OXzeZI0mj8tjln7Pz09Az9TtdI/hS+B85t7KNT4mt70VWzcjz10Cg7cFgKcYxCzVFDAvgde11lrr9VUrIFzrdVk/9bG/BAB435d/B8LFFiwCuryBnG+BB4+AXhlDujiHdJ0Cr02joJA8yAdcvtWAHbD91xvwg8eDdNMYZeyYAedgf/FjsMQKLM/P9BgfIM7j7GNPcPn2+3Bbwqd++7Oon9zH3V9+AvrYJxTgAaD7d9G9/Rl092vYG4/mFz4G6XvAGNx85bsgBGw+cQ2+vAE9udLxdy24jwyC97Aff4Dndz0+/jufzXl2I8YwAhaI9kJq2Du0F5JV/hhY8w5NdE81bSSFdgA5zrEbpouXbSrNRTRAfyHwGyCcBYgNenwEXpsnusFIoIg7QjCiEQRRMmt2FPspFYgKKfCR2EMXbAQxAAIUqIVkNhMBWzaAQZSVxpzHXCnn0KlkNYM1SgCKUO6jRmYx8SdEmUmK0k0RZKfZkPoGg0prUw+hAtoCtBqV0kqUVmZAl/aiHgNjmaS4SdlaOrEC6lxa3J8kd9I6DGPG930wxdHXyagLqOsNpDWgnb5nYGUAxTBQMJYJvJr7Leqmh/cqDa6tx/mmQ2VU4rjrKu0rDJT7T00EgI11aKx+bntv1BETuuE1henJ3sbfeLTOInjtIOycwbbpMFdzjEuq3Psar0s0OFUiLtWoj2vC4I02x1PQMdfLmDbVotc6ZECSgG8AQUTNdnJP4QGAsTQPHX8Ar1O2zIELUJio38FQpZRIln2Ue/c4lUvOZPJNwd4S63RKHTNDOdgLt9BvmqsA6mmcIKzXSa/NANynNWiZA1gp43BflrrMDj6tXDSN+zS1soNrrfX6qhUQrvW6rg/9q+8DALzv/reA7t5BePYO6OXYU3h2hhTpACYFYc4DwaO7r4Yt8AJK7p59r/2GFYFuejWoARQg3rsDPHqS+wAljsMvP8Kb/187hDtncPcadPct6PJG5aebGtL3uP5NL6C/YFSXAfWnrjJbGN72PLo7DPZA++YzbLwHHj5R+SvRMK9YdN2Ce0G/UXdOdoAvWCTuAHcWQZcF3LlKRMlj6DOMAMfsALuTwfn0EXDn13tsPn4J2kXZrTW6XgBQWUhl4C8auK3B9ZsN2vuM3XOAPxNQP4Aw7XUcGEKxCpDMDvAbZUspyS+tQLYBVOlWTjxBmgAf7wkumtoU96FPQDP4Yk9d6p3LfXQhgt0A7elLUsrIcpZ7pIE5pOExBiCbGLkQvy8YWLkI6AjqesqA1MrMQWiQjAJDbiAB2cSFhvkES/kLhFwxUoOMon3xDKmQx4cJagCUmx4pS1IpAkljA2zl4WpGbyuVhxoB1V5BazSDSTEZ4cyDSGNKmAVtW8F7RmX1c+C8wa7ThahqZQIFwKZy2FZ9NlZxgRFiX1sdgaTB/MY6bYIrM/S9mUZGIGNqRDO70Y6gqDSiKf16kgEMQ+AjcDzkCjllM81k7GkNbqhDJaC1Z4wCGpnn6LHHe71GMQpZUjyEzw/HxbkQjboTFYjw+PyD1xsDvDlDlaXzbss2LYGucl2Wek8PSU6nTFwGv3kdhh7X26zN4n3cQnI8zGsetJVfFix9Pqbnlu/x3rFrT+Baa71hawWEa70h6kMPfwBAlJKmjTUTZNeDbNx6Sdxg1zWevEMd/pqHAfzgiYIT5wAfQM5F8OhAz9xH/9b7oCCwbQd5fKlji/7nLE8ugbYFv/wKamLU1qpEFADqCmQM7JUDOUZ/xyJsKlhrIBd3cPnFFwqcRGB2HvyphxCJrqOAzsFaUIyhIOdhWqC/E0FXlCAq4xf7DA3gNgrEzI7GPYc9wNGcxt4ImicB9lpdQLefuAE/uAQlaSugYDAFGLoW6Bj2uoVlRvMJi+svugthi5tKQSF20IzEFNou0H5CUoBq3NDj6KsEUgm+0tD1BP4So0YtKwuICBy1LU37/XplA6VK4CueI/Ha0PElArAcI5GMYwgIORMxbf7UgId7AnfI/ZZZnhn7HiEYO4N6IDShYABpMKvpaZC/RiCY+iDznpcBoZBloQNwlPyHTXSGjWMEx5CdGfxNonssWMAb7QklI7jYtrARaF02DS5fPlcAkXIOWR8Hx5BNAGxAv7PwjhF2Vl9XLyb03sAleWjtsalVSipCOK+VzSt72xL71UfZZzJcKWvJmTFJTUuZqE2MzlR+WZiC7G14Z/a/U7AYsAw0Uk3B1xQYngKSSkaPovywlBEeNVyZmZstsh7n3DiTfJTl8NjAPBN5CjBaAkB7pigLcsvpuXNg8KBp0BKrNsvODceWMtLhOsug/DZM26ks4lTqOhpjBgzOfU4PxW0suajuHz8ed2UH11rr9VcrIFzrDVVZSvrsfwS53gF9p7EDxArUmJTxA1BdCppHHnAe8ubnQC99Wo9PwOStL6B70wXAgP3XDxUMSlAparWB+AC4KOtMMtO2BZ2fQTplI29+89vgzhjVE49gge6ZBsDzaN+0yZEJ9iagfumJmsuwmuFQdEYNX/Bm8OMb0KMngGHUlwHtswbBKrAzO6B+IujPFXSJgQKTgk1TmaYyXGKA5oGAe+3XszcebmMUDPowgMEYhSGm2AQlcBgCqOtx9pHHqJ6c4eGXNHj8RYRgAfISnUER9XkAQ5mrFD9hrwkg0YiPSoPgBQbcajYeYgh8AmPZKVMU/CVgR44g6T4TQxgG6azk9ZAhEN5AQVmSe/pBZko+AsrEdiJJcwXBQCMyYkxGGVkhTXLE0eumPkINtY+PWfMWJUldI3uovZaDXC0Z2UjjMwuakEtm+xwrwAQGF1YW0MaDI8PpdwZm60ek46ZyoOcvcX21QfAE6dR8R+IacJ+aUnXNqBLQsx3qpofhgF1XofcGlfE4azrUBaPHJGjduCfOcABFsGI4wBQb1xJQpU1oKe3Uj9s4RiKAdAzZd23MckwZgu6P9UZN5ZzTa5f3Vj7O4wZeBIVzLpV5rD256inMIA3sFWQk8ZwzcCnZys6bAXwu9CmOfs/65WWwMjfGoWOmYHAu8P6UGvVOHnA63TOcmWFpc9Ewh1s5cs6Y1px87oF73u+j3AfFS2ZJ42tQZgtPZS2ZBD/51X/l6HFrrbXW51+tgHCtN2R96JX/DgDwvuf/YwUyPqhUkQhwDm/+x58CvId/9gKoLOhTr6hUMwjAAXTvLvx5g/rDnwTqCvL4iQ5MDARRMBi8OoKKAL0DKqtgI0lNQ4A7YwgRds9asFcp5c1bt/C1ApzmYcDZ//oS5OoGVKvEFECOn0DMLdTxBOf/psXD95zBXgOmVcnn1dsiiIjgJTmLmjZmIgIxyxAgEfga8DXhzkdbVC89Rk3FRoEIYs0ADjkCaaIBLMbjwIz6pSd406MWkLu4/AIFnZRy+WLwfIjSSN8ooGMH2Etl9foLnbe5ohiXUZjTIF5Simsmgxbo8+QpR0YkIJjAYDCRuYvAD4l8JQ22L0FgAndpv54cTsUIQgWEWsFcCd7AgJgwnJtcPmVgbxN4DFUEjjYM99DIsI3sWWWbUWILxwPIswF1rV88MKuckzgCSxEgxjwA0CB6AcgKbOXAhBhJwJAoy6ybHn1nQZWH60zOFwysAffJzVW2HkxAUzm0vcWuq8Ac0FQOZ1U/yv3buSr3CyZABiCzgiXAKp0xj0k1p+ySF8ZNX6Ey/uBGuCoyAY+xXCULOa0l0xcm7QGcM59J45UA5NgcDt2L/hzAT2YUcZwBykH2os68h4ChziPsPT4EKEYS1NiHN2V7D12jHGP2HjJwCovS3vFY+yxkAoNu8oXDaLw07InAcBmIPh3DeIglLXsO50x3DrKnJ4LC2wLatdZa6/OvVkC41hu6PvSpvwkgAsME5JiAl18BAJhHl7j+d74Q9cMW5pd/fTix7WA+9QhydQ20VpnARLeYwvWDGDAUgaQB4IGbHVBrn5UQwXQBEt1J3VZ/Ng8cNr/2CvDwsSoENxuVhVqr7qRBUQp/7BP6X7UxIOdgX3qE6vIMfgv0HDf/AnirgIh3ESAVsknTQcPsLWJour5mn7RZipqZwAj0JIHE7JAa0VSUw0pl0D23RfNxB951uP+rLfrzDbr7kQlrAEAgLWA6QrDKEvqNgG503uZGwV+oI8kVAZrfKKPHnV4/Sz8BBb6srFnK+aPYT5kqAbiUZ8id9vNJlGFKYgZDASQxrBmQegZlYAVLR1MgThjIzqZucDcFQd1a43cFMNDeQhuALt6MDeBaJaDBxZB3qwAxR1MEglxZhHN176xrZQf7m0p7/3Luot6ndKzxElZRsQjh0eUG1gYwC2rrEIK6gKY+wRAYAZotKVXQtQVA59qgWtUOvTdod/p5rrfaK5hA3nST7oVGoOMkGWU8f85BdI7paazD490GF007Ah5EgumWO52/aJhS9B2Wc5ib5+zcgfzhnDO3ydeZ2cwP0kX9ICX5Z/n6IcCna6z9mdNoiQDsyVoVvM7dQ8lsMqamLVMmF4D+vZqwfVNzlr2oD4zf170x8z3T3nEMAst+dt/0uNFYpZT4iBR4z1jnKcDbtNfxaaMjZq85AwqXDJoWRhjen4ViCvjx3/HXX43prrXWWq/BWgHhWmtBgeH7XvjWDGgAqKwztDj7V58AnEfoevDdO5CrK6CpIRdnwOPLDAYlMmTc1JBn7wGfeqADBQE1dYyZEAWDxJBdizu/+ADtW+8AAtQPOtiH19i98x62v/xJlaAmIFZZZeaud8Bup+AyAUMTWUkE0E2Lex92ePkrLIIB2APmJoKnyEpBBnkoGEDsMbz/4R7dXYP+XJkoBAV5UlkgBAWFiQkUyeBQAQcNBjPM6J47w8N313j+cQO+7hTgdSoDzQwZC6QiBBF1Hq0i41YDHB1O7Q2ht+qs6c5EnU8dYCLzF6xu0sUo45dBYEdZNkpBwZuw3m/uDRTKctEM9kTXabSHSqwiRyBoI0OWHD0T8IuupTlCIrFxfgwGg8VwDieWMIE3ZDBJKWcR0JB5I4ANICsaByHIPZS+N3AscL2F7IyOJ7rGsHEunvVeKwc2AcEzfGfQewLXHq5hVJWaxijTKMoWkoULlK/LjUfoGWQD+t6ga9VRlK1uSHfOAnbMThgOcIFhOQz9cSUQmzEnSTWVfh6qNOa26rN81ccexSkAm+tZnBsPWAajc4/T+Ok5keE+k8PpErCcnh+E0ImBDxUMB1xU7d467PXIZYljKN6DMAsKhz7J+EWODDmQZe/mFBSW1wYGk6ByPZgku5iWNXUeHb22xw4eBk7TdeBJr+Zi/2KxZksgc+5aGSAe6Ak95UuO8ufwmR/39U3HLBng+fktM4XT86aREvkzMnP928hk11prrc/fIpETusnXWuszqMePH+PevXt49OgR7t69+xs9naP1vrd+m/b7dT3Ee5AxkZULADP43l0FaA8f58D48nWydgByQI6rkAyY4uajbTOQJMPKJsbXpetVvto0oPMt5OoG8ubnINsK5uOvQHa7sUTTWj0eALYbvPR/eBvaZykzVuyA6kqyQUv1RGB3gvYegT1w78UOmxdfBojg752jffMZth95qFLaCAApCMLFBtT7LLOVxkb552B2489rPPxNF7h8B8FeA9uXA/pzZfJ2zxN2z3uYG869ftwBHM1VQi2xb29g5kINuK0gNALu1Y2UO8rgTUxi/CLGi4Y1yoTGjW5ky1IkR2IH9cnizScMII8wpkxiiHummco2J1M8HxFvlqEm2apXFjRUgFQhO59KkneygNLPBCoFOaA+AVgiQehNBqr2TAEeAHhn4J9UOs8qgIwGxPvOKFA0guqig7GaK+mcQeg0LzAda6zH2abDtu5hSE1fnDd4dLmB7xVNSyBwFfLj0DNSn2Zzp8Uzd65HgfNzMlFdwrFUL4Gl8rxTc+nm3CIZgqu+HoHTqWFLGUOR5lRunksweGqfXRonSRH9DPsyBZnTe059j0RquJMA9Znt8utBGE7mwdh0XnNZhyUomrKg0/s9dI+lWVCqFCNiFwDFHJM2Z56T5ujEjOY7OvcAa7x073OPl2ruc7bYW3mLsZauHwpp6jGzmrlexbKvcIkpnFvLQ2uxsoOvr/p825et9dmvlSFca61Jfejjfw2AGs+QqQHD6iwaX5erawV1EhTMEYEvzvV5Y/Q1XxhkkFfAF+WVZK2yjzZKTX3xH3VdgUgBIZhAZxvtPwwe1PVo33KOyjwH86sfB21q7V+8ulbQGcEpbnZ4/p89wKd++zPwNYGdwOyAZ//lJeACHn/pHZx9skPz4qeU/SMC7YZMN/PgCbaXN9on6L3ei1UgQLseIEI4q8Gdi4AnXpcI/k6DT33lOS7fqaDLbwgA4/6vOly9xSjLt2MFd23cgIbktImcI4gYO0GiwNB0GFnni439kJ5UthlZP/YA9ek8BWSSXifFVCnioYhcQ46hIESXyPL39D4CCFTIbQvgmCcWjxHSfkFfANsoLaVAWfqZYikQSCWe0TE09/qxKNgTAiUGITJ6+jqyuQqzKGm8YZWYOgY4Mn5VgHe6AK43mSEUr/earh8CobEB1gRUMTi+D4zLmwb9dZ1NaqgKkECg2LOI1oBaBnmg7Rif9ox7d26yg2kChybKHuf66tJm1NB0oz0Opy83rVIc64ERmEyg8G6zy/l+I+BUylqL603jHtIc5sBRBkQTxsumDBTScxNLWPZLlr2E5XzL6yUgmF5zgXHt6j1H1WUQtd8XN73G0Cc3NtmZynpnAU+8x32mLuY7coADz4K0cg3n1nt6P9MexFMNgdK1ZqWtJ9Yhc5bTxxjnCx4a72lZueEejd5z+kLwBDfWpddfjXtfa621Xvu1AsK11lqobDzz5j8CAArUIjAkIu3bswx4D9m1CuaqCnIzmLykEq4KaWl0HyXWMVLPYdDsQfOJT+vvxJBHj/Xhdgt58BjbrodsGyB4yL0L0OV1NsIBALl7AXpyBX5wiRd+1iFcNCAvoKsdqFMw98z/9ETlnYYVCKZMwVREIOcViDqnwDUayMimUoaQgcv33MP5hx/rpjAEIAQEy9g9S2pWQyrxrK4E1y8YtM8SQhUQGoG5HoLuKTJ9oYobzwRSCLrLl8ggOgV3oVIwpX2BCvYEcSyX1jsCtsggCpJEVnLURMrxy0AfiKAxPi8RHBa9g/l4wggIJvCZGcH4M0t0awWPFIPoSVQeK9mxkZBC6lWNKzlCgkl7B431CIGQuCYJBDY+qngpR2pKINC1iSpBgY+xEfAEVAqGvTPwTtknikY44hj1RYum6lEbn8FSYzwuti02da/5fMV67W5qBVOxr1EI4B2jf9jgqvLYNh0MC5BMXAJnEFcydWWvXaopKxNI0Huz99q0yg2sEwYCcoZhyUbOsX2nbH6XJHsjU5IJqUM0GMykWIkl2eiU7St7B0sZafp99HMCfOaYv/L49HhfvjgGvoeYu/L4UoY6PWbaVzgym8E8CCqZ0LnYhUM1lViWUtXp3I8Z3aTnpzLacvyS1ds/l/eOORWYHhpvdP0pC1o63KbPy0QQNn1f5yS6TIIPvvdvnDTXtdZa6/O3VkC41lpH6kMvqVTm6+69H9FpQwEIUwRLAdJ1oMqq+ycAEIPunkEuYy5h1wOiTqaQADRNZAcj2ggCevY++PIG4fJqYBRhFEQ6r+c5D3p8pURUbWGCwL/zBVDvwY+uEO5sYK5ukKIf+HFk91LPX/rjWkiv7KaIKMtXVeqEKqLGN0RAVUGaCmDWcQLg7p/h8Rdv0d0lsLuD7UeeAJXBzTvuwG1ZTWkIMK0CHF8TLr9A4M+9xipkxgxAJZAE4vKKyxAkT8iZhSTQ3kAfwWM8gQR5zHTtPNYUGEZWLz2Xa/S4mEkEpik3cIQFEmhNDKKJ6wmlFhPQTREW+XyejBOBoB6jB7IREAcFe0GZJOfMAMY8KciDsoiJypTEHlZeXxdCaA2oNdEZVSA9K5sWZbR106PbVSASNLXLGYEJiBBJzhEEhj64PjAq4/Hkcgsf4zEyMAZw8/IZ3H3GnfNdqaA+ygSOnpsYjSz1BE5rCgqDJ1Ts95iv24CMOZZr7rqAgsPyWmkdEdlEgzEIK90+5/oVAeCqryFCuKjbDD7LXshpgPosCzsZdw+M3Z48G8ZK48b7FSGUPYlpfGWuEltWZvwN89ozk1lg9051Fc2/HwCFc4+Xrnfo3MTO6e9h9LMEhsdYwCW2bm68dG/APOOaz9+TzppsxnOsX3OttdZ6fdcKCNda68T66Uc/CAD4ujvfrGxZ7/S/V2NAxJovmAAgkzKFQQADZRGjvBRVPeQTAnoME+SRRlekHkTabHS8FGbv4zh9DwRRh1ETw8cNAb2DefkxxDkNq3ce2NQQY0C9U1AXIzAkSlpHijLWXEHqI9t4vlWH0U0DahUQSGVw9c4t+nPdODx5u0X1eAsxhCfvsMoC1pLj6nAG9HcBvxXIhVPg0hP8RQAcAVYQRBlDZe5iP5eXLOsk1nzCcv/EiAY0FtkVVe9HsjRUFxPjvkAUUk2njF267nDcGPwlVm/aazjdd1HH2tsIZQR9HYbzSu1p0Z9I8Q0QEmXvopyVjfb4Ba/bPN8alWZG+kX6eF5kISUQ5KYCX/QwJrIPVwrgE+vJ5z3CVaXAEYxq06lkMRDEMZoLNSw5q/vMqPnA6AOjNj6DFik2xbX18G4wFpIYKZLm6Z1BCAz98A4bWssBIqRxBwub62ll1mqSbziVEC5talM/Xj6vlBW+ivvgfF+R3SvnaSa9Xel5F3hw/RTKKvIpIA4AblyVfy+zG8vxBqngWA47BYNLUsJhLct/IJYBzJRlS0cvgUJdqH229pDBS3rtEFBKj0dyWJqs4wFTm+mYh641/TllD5lkco/hZCno0tz2mdyx42u6v8V7WnCEDWJg49/R6bVXdnCttd4YtQLCtda6Zf30kx8GALzv/rfoE71TsAeA7t+DvPIQCE6B4t07Azt3dQ0Yhux2GjKPCP44unpyUPD3zD3g5QeQtlPwCBRy03jepgG2G8jVNexLDyFNDbl7DnrwWMHgdqMRAT6Ad52ymudbCDP4gcpQweWmID5OkiJrQb2DNDXCRQ0T1FwmbK06ewoQmCAGePxFGwSrfX7BIsdCiJEcyk6etM8sBqsD0AzCGCwfrDqNCiGbzeTQeRKN5ksZfnHs5JQaUuQDIpsYBlljAmEEyuHzhBhsH1lIYtEg94hrBNqbyDtWdk8K0jD9JAxRFSS5D7LsTcymNIQcAZEjIwrGMYFYMsPmzjuTmxhF4hw9D2ximotocLzcGO2nvLEIJMgGOIku3UZAF51KuQowRh0/XV+DK329lCimTWMVwVuq6aZ9e97hqjOgnUZTIBBQCcgE2MrDmgATxy1ZPR84ZxOWlQ1YC9CWJJd7QA5j2eRi/EI8PoGTxODNgYV8nwvulNPjlpgVmQCY6c+0lkyC2ni4wLlPdgiOHzbwPvYSSsGOcuphpOXohOm103rMyUBH9zqNtFgwN5kD1SW4W2LVAgiWBtZ2em46Z2qqMu1zPIXVOtRTuFSHQNkp0uIERvP15txDn7JX8NVk8zKrjcRsntZvuNZaa72+agWEa631lPWhhz8AAHjfc38Y5D3Cg4fKwgGgugLYqNto2ynAun9XA+wjw0ebRqWhkSEEoIDscWQZJWifocRNA5OO6Rzcu16AebxTNi8Idl9wH5uPPNDQ+7sXIOfVACaNL6JgMQI+qqMJjTEKFp0HWatGMkSQs41O4azRa0dXUfO4Rf24ga+NmqQwob2v/X2mFdSPgf6OAjK/TeAyQOp0SwzuGLxTJlFYMvAKALgMbo/gMLN8iX2CsoLJLTQByBLkARHECWVyjpyeMwJ3FDGWGTY/GlWhJ3FPA8hLQA46FgkAVjlpMprJ0RceoF43hKFOgfUyoB2J7GSSrrIo6EtSOwdQ2dZpBJJ7Umlg/hyB2igljbdONwZy5mE2Hr5j2MZH4Gdgzhx8p6YzrjfxevoxC57B0cQEGDMyuXfNG/Secy8fAHSt1f7EAM2xjO8TN4K6dvCBssSzZDhKoxiagIJ0TPlcAkHJ9GW6KZYCKBwz7iiByoitK4DDXHh5+fv0Xsp5lixquX7Tfr25eczPUw1aaHIsFWM5mNwjNjWbmRs71ZJEchpYPgu2F8C0LsQYGC6de6g3cboOc+/rsd6/PMYRUHjsy4DR3E8AS+Xfn0MxFUvnHrrWvpT1eFRE+V7OrVkCsIPkdc0dXGutN1KtgHCttT7D+tCn/1t1JIXJslCqa8j5Fth12pvX95CbGzWfqSpAImsHaN9ZciX1QUFeZZFjKKjIDwse4hzMhz8B2m5yvIW98aDLa7h3vRnkA/jXP6VMoffZzTT3NxqjMRFVBf+WZ8APr0BProAQAAe9tmFIbdE/s4G56iGW4Z49g33SYvvSDdhtcPOcgTDgN8D20wHNgx675ypQMHj0pR5SJwAlKg/1CrRCEyCG1HHT0eC8aQAJkpnAEHv9hDUaIwG6LAkVZFZurwcwAr0MJoGBWYuGL2IkAsv4gkDZxTSmDMALGAAe4v4cLjGKyC6nAAbXVDMwpUXg26Bn9ZG5jK9nFm5yP9pHWNxfBKIgATpWCWxiDnuCVAJuPIz12J61cM6gva7AVhB6hqk1WqKqvAJAZ8AsGmrvDSoz3kxOJZlpnklW2qbMwzTnCHw59iECQB8YhsfjJjYyPU4/S7OZfMsTwJXmNfd6OV6+h4LZm46V3DDTeUub90PgZnrMtL+xvJ+SUZuTHZbHZeZPnXtmJJ9jgOmE9+59FmiCRv1j5Zotgbe9vMN4D0txFOX1p/MZHTsFJZPjCm+uo2NNx51+OTBnNDNXpzCIt625z9VpQO644c2xMdLzJSjU58bjjgxzjsRdrLXWWq+vWgHhWmu9CpUcSb/+C/5TSN8rU/fyKwi9y/2DaWdDlc2OpQCiW6mFeJ8ZRnivxxsecgz7XuMo0usRXLbveQH1rz+EXJzh6p1nuPMrj1VeiqCS1AQGjQGdn6lhjLXwb7oH88mHymACem3DCGcbkPfon93i8u01uK+x/VSP6tEOYgjUOTQvXaN6bHH9tg2qa+DixScIG4uzjwf02y3MjuG2ipjICqRVuaIIYK5ZZac9UD9khDoqKGMQu5j4ewZ0UTLKSeoJzRoEAEcIMYcQ0OdV/ikDExjHSs6f3OtzbguVhKZiABCgI7CLzGBiIB1FMCo5GiPlfJOoVFZNVZCzD4OFSmaTjDIyjykug1x0U208KPUbQuWhiFMhow6h2iuYgIG+BoMsxyUX2UYDoA4gVnZuW/e4FsL53R0AoO8Ntk2PpnJIxh9dZ8GsvYTeM9regupewRkGkNZYB/YGRIKzCDK8ENrKo0+SVBLACLj2aDY9KusXN+2GA/gAeFrMkpPxpn6J5SlfW2JqZALI0vWHx4mS3jdpmQKOpcrM4IKJzZz8cARYSHsuEYb5lmt2qKdtbtxRKHvc+HP8ZuOQGcoiGF4AhdP7nN7bdP7T4zMAn4CXubIUMnieA5inyjxHc5h5v44xz8dq7rNagtQlgHjsM7YUar8EJA8B3rROP/HVf/XgNddaa63XV62AcK21XsX6qY/+1wCAr93+h/pEkoOWERTe5xB5IlIwOLEDV8YwgKTYPkUASXb4a9u++wXYxy3o8hqwFnYXwI+vY7SFygw1y7DXSIyrax2DCfzkWsGgKegtEZAIwnkDtzEQimHqNePBb76Ls5d6iCGYNuDm+QoPv4Qjc3cXZy+1uHm+xpN3xT6nFFwuyD10IIK/67PEsL8QmE4ZQW4Jvh4Yu9xLyAB4eF7jJYY+QQLAPSFUkt1HTVuwewK9hlcmzzcC32gmILeRSoysor5nNPQNOtL2Sol/iJBdSiXmCVYqCS0ZxNwraAToOUtEIZFphN5TWpckMyQz2Sz3rL2DwAAG0zFxXCQitjCr2W473N0qCLx3doOKA1pvYKKM1wWG84zHl1sQgL6zMHYwjkmsmSHJAeOAsoIm9hRmSRwHGBvgbMhz22w7nDcdDOu20/J8v9ohMFi+JkJ7m9g5Nmw6do5AKPa+JShMj5fcMId5heEbgDROuQZHmKrOG+0V5MIQB4Lpnrzs7xtungdnzAPXAOYB4x4zicM9aCVjmHr43AwgHI1BGM/7RHbpWF/dbQBYWs9pD2L6WYLC/T7U+QD4p2UKD837qFNt+fmcmNIcq9v0JI7+DpzwxcZaa631+q4VEK611meh/uHN3wYAfG3zH8QevuI/6sD7+6UQAOahpxDQx6TOoFTXKkc1BmADqit073kzuA8w//plZQB3Lc5+6dOQy+tBZvr8M9of2PU54oKIINc7QALce94OMYzq4w8hTNpD2PXgELDxAnvTwG8MHn2hOojevKmGWMBeA/25gis5A175MsbNcxv054SbdzigUgMR8ZylmGBR9urGwD5huDsB4Y6HdAzqCdwmaagygb6BAqgEBgMNIfHJTAYKEE1LsFes7KKRzPAFK5AKcEZgWg2xDxUAiteJwJTjT80qhMpKgyoJNa5iYCxTXmIy4JGEOqLKKtiBnaSOk8HmePMvNDovP50cO9PvXnP0kBhCG/QxA7AKOIUJ1HNkWIHqvMfFpkUfQQiRqGSTNM9w11vctDV2VzWkMwAreA+B4T3QwsIFxnnTgSeSznKD7YXgvNHQeRNgzhyCY9jaobZej3EW1nhlAgvgNGeskp6f2zAnwLzHcE0BymSjX543N2bKBCznUs6J5ySGM1LPUzbTN65CMIQz28VzeAAxBTM3Ysdk3Lt3DBjN9S9Oa9YEZsIMAoALJq/1bcHCqcDkkGQygdElADVr8DNzb6fOdZFlm5FYHqpbr9Xk/hbv95bg8NS5TNcsCOEnv/qvnDT+Wmut9fqpFRCutdZnsf5h+98DUGBIlQVKqWgqY4DEGgYZ2MJkKJOMNzYblYwywb/lGZjHHcwrj4GmiLF4+GRgJJ3TzMJeA+lFRNlF7wEmkG3AOwd+8ETnUFfDtZlBIWiovQvYPU9on1PZWtgGBTpQSSS1KgH1WyDUQUFLH2WOiV0DFNB16kTpzuLuo6fcAydG4CuAO4LZAaaNAM1B51/GNVBkjXplFqWQjQoraOOewF7t/0MFuDNRg5foaJpAIyJmJVFwKYjPRQCYchChkZPgOOfUz5gAbAKjaTx4AI7ADrnHLjm0qlENQThkWSjc5FuCst+wWMOYcA6qggLGOuja9AQYQd04fPrROSCEi/MdiAS19XDeIAjQOYvdVT2MK4D0DLIaddF3Fs35bsQMlqAgZRD6wOicQRDKjqXNWYuLjcZXXLe1vhbHKVm4OWA4ZyCzVIeMY+ZA4VKZBcCbfh+Fzc/ME5jvb5x7vTEOrbeojYelgSlMj0fmNhnUDczcISloOfc5gLsEDKdrlfILy+s9DXM0ZZzmcvfmGLl0XAlGS4azBG3zfZ4ThvLA1NO9T+e2xBYeqqU1+kwlpsvXOz3HcGoUtDjexHBmrbXWemPVCgjXWutzUAkYft3FHwTVtfYVplD69DM6jVKAAjRrgRBNYWJ0BW0ayJ0z9Pc22Lz4KUhTa0agDwryDANnW+D6RrPprq5BTa3nEqlhDDPIOfgXnoH55IM8R9p1kG2D/pktumdq+IbQb5V1oxghiEqAJgBnDsTaYybb6BjZFZsoGwYwEwZmK7FisvWgliPgogzAzE1kCaMxCzkM31zXkqMhuBvYPl+L9g4mJWY/Xnvt60MOrU/AjKG9fElyKZN/DUOj7E0ZJzHaKyVwKlDW0Upm6QCAHIOdzpVCBIMsQ++hB6QByARl6nyUrkohLY1S0GxMk9jWKmhgfZSmStDPB+qAq0cbkBEYG3B53WCzGRYkuZhuzjt0bQWzaeE6A1N5bDY9+t7i7PwalRl4qbm8wPR8EEJltE/wrOmwsQ4+MHbOwouGppdmMlL0DM6CwomsERgDHRltbuc3rotGIXOgaEayOv09gaN07VYYlsKYjSvdSSeArTzfckDrLNjuM4JzZitLgezH1mA6Tprj9PnSaGV6nb2+s4X1OxVAnAqyEih1MWajNB8arjuAtmnA/TSs/VhQe9m79zRgUM/bB1/T1/auOeknnGM8l+ar15oHhbcx3klzLg1n1t7BtdZ6Y9YKCNda63NYP335/wAQMwxD6rETZO9/JjUGiUVVpezYrgV2O9BmA7reofloDzAj3DuD+Tc3ChoBYNMAItqDGE1p+i96C8yTFvzgMfwzdyAVw378gbKLIQCbBlIp6BRD6O9U6C4Y7NV4hXtEkBbZwQTqyogHE4A6qiiFgAQOyz66CMYAlVJWj1U66y4CQh1gH5tsGpPHFYD6xKoVWX8mAjWCgq6IedTVUyWkCvIkyz/ztogAGIGvBNRzjoxQYKqALR0sRiA1QB1FiWkxtwhCS5fSZCgjJHHSpOCzH/ohpQ7K5jEU2AkNTIYUoDCRg2ksUZApRqLzKEHaxITEObQqAZUekHPBpnEK2mfA3Pn5DgKgaXrc2bQKWuoelgOu2hq26dB6g6rYjM85jZ7FcxLQ62PGn+WApnIwxWb5EFOV13UCkEaMGRJBugCQ4htXgs5jG+JT+qekAGc+MDwYjXFxTofPzWAhzp1I4CKonKuBERziP5ZMUZZ6+uYA6dw5hwDMoXWbHnM45H6SZzgda8YIyEUGWn+f/+xMWb1TrjVXSz17h+a4dI2jn7UkeZ6C8xKUz7mRTl7PVQDZ/PrC37NTagWDa631xq0VEK611m9ApQzDrzv7/QAAappB6ilBGUJWmWdi/xBjLXB5BbIW7Ze9XSMZ7p4DLz/U4+tKIyQkaCSFMTBXLajrIRdn4F0HevlGX2OGnCtjCEDRXACqawfTBuzeVIECYHpBMKTGLekGCODoGgqJ4CSybZkRRHwcgVbuzesY5obRXwjYqSkLALg39QqEeu2J414BFncq00QEamJjb2CR6RdsBIiIwNXEKIYwzBeIAI5EswNFJZaJGSyNfciR9jUmWakMmCs9FmC4J69oV6xKUokp9xuSA3zsTZSNokiJ/X8UeyMzWkjXT2Cbiz8ClaESIB0r0CbJslw6d2AjsJVD8AxjFaRt6x5BCC7mB3atBbHgZlcBQmg2PS53DUJksHyUf161tRrGVENYvReCIY1qIBI01eAimhnDKBHdVj1q9nCi1819eTQ2jpmC1VTT3sJTpIulScycfHNunEPjjmSYokBl56yCXYM9WeOh4gjsM+AjQvoQT41QppLJ6dotzX9JiltmSwLLMtdTWNTy+X1X0jFTlti+6TxH7p+FTDHENU4AfCn+I587I2t9teMiluoUkHgQ2J0gJz12L4Pz7ri/sPxCYTQfmjd3Sq+ttdZab9xaAeFaa/0G1k9f/y183Z1vVoDmNGQeAGBJpaQi+jOxh0EAYyA+oHq4A123oMeX6iqKGDIfFFDSdgMQ4fqdd3D2y6+Arm5Uqnr/Dvy9LcyDa8BGOtJ5oLKg3sE+uIE/b0DBwjeMy3cS3HnQnjkfg8wBBE9IQfAi0PB0r3LGrN8k0UgFjq/dGJAjuHsOYMW61DO4JYRmAF/caX8gRQAoMpjBKO+GARACuYeQHeXQ+JQDmHMFI1OIyApSZPQoDExfkokCUIAW+wP1IlF+mm4vyjlzWL0ok4hOHU8zi8kKeuXMaZ+giBrCkJ4kPvYPphtLFYEeBMools8D4NojMGfDmfM7O/S9UVdUEmzqHueNGph4IfhACEGli641QCCQDbi5qeFvLMzWoa4dggwgr7YeAu2lY5LM9lnjs0lNHziziElCajlkwJfy8lI/YcV+3CtHAgQemBOhDM7DLZmOpUiDQ5K+U55PxjSWA85rXVM3u+Hel4vOHZNfi99zlMBmro/vUO0xZxOQFqIbawJa00rg+RRmcPZ6e72BYzB4igFP+VrJxpavTwH0/hjz4PPo/I+4fu6fP28+c2isJVA8/YJiYJP37/+0Lx0WWOcRcJw/Zg2hX2utN3atgHCttX6D66ef/DCAKCNFZKraTt1ARYAQ1JAmRHQT1GyGP/FpoKkhbadg0XvQTauMnzHwz9/D7oVNlBp6yJ0z0JNr0K4DV0ZBaNtBNo1iD2NApEYy3TM1bp5ltPcVaPmLANo6BVMEIBAyoRYUGEpmqxLjBQVwjuKc9blwRxsSqeUcwRAqyfsU8pQNXiiQZoYTQEFy3h+cAkZzo2YzfisZmGVXUIMCPUb8FeMqUs9hvg4G1kQsCqCpbCKK+Av0gFTI0tJ0y0LQuYoymhJiMH0twLkD24DQRgCe2EFAAR1Q9CQWa8mIGsm4pmmfGAgSCKYOkKBz393UCJ5wdtHCWqCKYM6Q5gUyKcAjAnaRHQQA8QSqAowJsDY50Qqs0Y13KRnNoKHYzCaglxjC/HxkeBiCxjgYHmSWS8xffpyeknmWKB271H+4JBm9jclH2Td4tJcvgd9ZoLK/4S+fd9CA+Px8AQaXJKH53hb7Jfc3/SXQmmW3ZmWZy+s01+85N8/9uc2fN7q3hfmV3wRNTWuehhk8WQp6yMCmmMNcTT87S0zpwXkW0tzlYw70WRay7EPOrmuttdYbt1ZAuNZar5HKMtJ771cjGB/UKdQYZQijOyi8U0dQ5xQ4nm2V+et7SNsqO2gMQm3Q3TG4+yuXCBcb3LzjDs5+VTcU1Dr4Z87ANxGgiEE4qxAai4dfssGTdxH6O0FZtkbdReXGZjMTZXUoyxypUofKxBjmDMJAanaS2K5GAYm00V005hwmSSR3CeAFCDG4l+jSSZk1DAbKBCagKIg9egqaQjMAR9NSdB0d2D2KbCHsAOQy6ycEbjE0HCYwGY1pEMeSyAAmh1TqS6ZRAWcy0REjCgZ3ZhjXa4YhhAZAWOz1kuvqMA/R+RZ7OekZqByICdIr+0dGUFuHygTURsFdEMr9WMwBobfZFdQ7g3rrwCxoqh6VCdnAI4GpqfRSJlLOjXVZDmlm+g2TJJALqWlZSxLOJbakNG+ZqykYnLKDS7LI6YZ9jqla6oGcA4MnSVwna5SeO3ZuAoNJArgHjooPSgYCsTeP45cNhlIPM40ktiUwnAOkx3oLhy8F5s+bAzfjHjnkeU3XCUABClGcc5wZ3JvriWCwfH5qQDMab9THd9yY5jZ9fnOxIOW1TsoonKx32Te59g6utdZaKyBca63XWP30ox8EALzvuT+cnxPngBCgmYSVykvZgBoL2e0AVldSshbStpAg4M5DCHAXNewl0N01sG+7i/qlS4hlPHrPGexOcPZvdvAbC3du0N1h9OfK0Nkbgm+0f1C2KUx+YHAS6EMMaadoICOO1QEzsWCsskhqir5C0R6+BAbFqONn3kdJBF2B4iW1Fy9VqNLxmvlHQU1kYAXkSBmXBNKSOygNwC4pp8QMDB8kAjlJfYjIgGzqMJpyCVPYPChKRL0azwSj6yKNAFVA6AzgOPcGSmL98oDxJwPCYWA20/jpGKNMquYbGngj4CqAbMhsZWUGZ8/OG/Se4bxRMxTP2kNICpyaTY97Zzd5G5wAQwKC5WbehyECYbq5P8YuTeMbpq6RczXdwM65Yh669ly/3SHQNpUrzvbmTUDEHBN5itPkFIAe623kyXUOgcH8eLJOhgIctJ/TcABzBPAHGL05Bm/6PgRRhnOaocjxL99cjuIoxB4Aoqw1UMGOzsxnj0GeWaunrVM+V8cMXVItsXP62uEvNPbGWujTHMbzo98X5c8LRja3lcyutdZar89aAeFaa71G60Of/m8BKDAkCeokamIPGgBIgHiAqgryzF3gU69o/IBR1q+7VwME2EvteeJecP1Cjau3PgvyQHdHNwRP3rXF9VsY/TmyYUsoIhrIUWSjBqtObjyIEXvgSPP5bNoQa7Ze6mUTTyD20XiGQUblp+J4kEKWG70IhsQIQAr0Qi1gowxhmkNoZIjpM6HQgEqWooqVAbRB740x/M5F7qAeoOOnaIjBbXRgE4fU+QiEvc5fjBrKCOvPFByvbwaDHA33lcYumUiKxwfSc8vX0zE2DA6u8TVjAlxn4hw82t6iqRw8gOuuQggM5xjOGX0PgrKT9cbhrOlg4gZegDFLhMExtPUGndfPFUcmMG0vuTgvvT7dZDqoa2QChj7wXgZg+ukDw1qXx5xjipZkh6M5HJFvTp9LYHBJqpnGmzKc+0YqtDi/UmY7fX2OyZyC7xIMpmMPgcDpelgO8LGX0AnDzPTjLQGWEszNggthuDAP9o9LIofYg9wjewCofjYA4P6c9r88GDGgC4Yup4x3LFpi7vcgJp43DwzL6+x9uXDgS46VHVxrrbWAFRCutdZrvjIwfOFb9YkgQ3ahMZB799Uk5lMA7l2ALq8Ba+G3UQ5KBN8YVJce/YWBZ4JvCPYGMB3QXRDcBiMAklizjNM8QRJqqqNsFAIR7Q1kO0gLTSVwO5sz8nTOCtbIhJEpCgCI1xD7PL5AmTKS3MPHTnMHgQjAirkJq9QUAMQQ/DYAG8mZh9wyUk9jZgJ7qAdPZA11HAV4kuSl8TpJfqpB9DKARyCD2YgNldVsvEpoA2ncRqABDEbAmtxJRyWkLqKMgRkcbexEx/Ok74cVYGfgra4pR8fP612NKvYCNtbDh4C+b/JYbLVXsKkdKuNHoKPiIV9PDWEUFN50lTqFBoI1GieRzgWG25mCpvS7QcCNVGpCExkqQIPhpwCqMj5vmEd9b0sb4JneQWCf/Uu/e2GYGXbtUM1dW/J4MyCzOG8JYB1j5eaYWB2bEMTMnjs7Xlyf5BRbGZ8lxD4wwMvOk0tjZbnhJA4hiAFCed8BU3nnSdc5ca1uM8axmkplTwXKc3LSvbkUIHoKBqdS00PZiWmN9VrzrGFp6lPOb+5e1lprrbVSrYBwrbU+T+pDn/xvAADve/Y/0ieq+Nf3wSPYy2sIMfBIHUeJCM3LLeoHBL5qwQ8dbFODXzhHf9cg9JF5s4SbFwjuIm7AaeixC7VoJIQA1Eejk0pUnohhQ8xWQY53HKMnlPUTUQMXMkHHZcnxFJTZNgAc4wcIkBqDXNIpuCNP4FYBld+EDP4iKQFANz0JxNlLHofMx75CqSJzyJq3KFy4ispwLACNwxjaK2M/H+XevszypXPivleMsnwSCGiNrluUeYKg/X4CZKvWcl8WoP2WSQE23ccJZdYWALgliCEEa8Eb7eOzlc/vSzJ6ubzZoq4dbpyBMQHNRt1He895CtMNcJaLIubuBdYeRVKHUUCBHZOgNn6vh64ES+m1xjgNuQ+MXVfBmYDGKrBMlbL5Eig9NbvuUHTCFAzqY85OpulcItHvL2iBdSxAamZSC+ZlxADJPijm4tuWWTnikf686bFL5yzJMhnIGaenXGfJDGfp2MEkh2E5wEYp4zQ4fnnMsAeIpizpVLL8atSsqdHTjFP05c3VoT7AfAztr8HStQAUYHve4OZYD+xPfvVfWbzGWmut9caqFRCutdbnWX3olf8O73v+P9ZfQtqkCsiwBtKTykrtix8H7t0BOa8OpL1D0/XgN99Ff8cCBPRnDNMCviG4M4E/Dyqz7EiZNQLCmco9IQDteIiWAABWIKisnsToCSiwEUB2RoEqAKkLKSkr0JRoqEKEzB7mbDoL7Ud0FOMVABjAXyRKD5lNTI/NTZRmAtGlVNlDD8BFJ1Pyka2zKikFxeecMn0lUyrRKXWgI5HnAUTmcKMsphjRdUksXswwJKExqyjIjGkeN7qLJsmq9hImAFFs4hIojBXqgOpOC2uVtUs5gYm9a6OBjPeM7VmL2jpsKwcXGJvKoYugDsAg4cS+LNIaj9r6bBSSMg23dT86bk4uKkIZGG5sDyJB21t0TpnCygwxF8NGdwAYx6R2e8Brwpb4on+xBBQZdMgwDpHAzFxjGteQvwzBOEcvPTcHBsu+sqUKQrjqa1gO2fTFzjB4U6CUzh1V/NiVx1h4wACdH+7h2DhTmeTIXbSUFGBY384bBCZYCrG3cKn/bQzkXXaUYcwxw6O5HGFYR88tGdicOMYcIzpXR0HhLRw9T7lmKSc9ds7aK7jWWmsdqhUQrrXW52F96FN/E0CMqqgrNZNxDmDSnsK2AyQADx5r3yGRHtc7VJ94hOqVCt0L53AbBrcKntgBuGb4swCpBb7y6qDZqexRNl4BkhGgZd1tJidMFpha5YaB1JyDjSD0ov2HMf9PEBQrJmfNZLJCAFkBx7D10OrGmTi6eUoAmPK1wKK9dHF/ncxaQq2A03SDoYxvIgOUnEkTAxnBoRjRsHqjS0ZhMLfRAHkAHuDUl5jyIBMQZUAU+WksRwqzTzfmY09hYZiTXiNfHgsMeKjYvMVeTUSZbgq2l9jn6VqL4BWEbOo+AjfKjp61VQB4d9OCSTI42/UWvTfK5pgAg31wYDlkqeGut/CeEXIovVNzEpo3cJn2AIoQumBw01caiRGfz66mEHRhXgpZAs25wPnyuKVaCpGfA4bTmutnzBLpmY32HIidgsE0lykYa4zDk67BWdUPmY3Yn/MSiBszaoyp6UjKU5zmEh4DW3tAumS8ClOY1CcahODA4AiSRmzlAngf5jAY0uxLLIdzT42aOAbUZsefe19PBGmnxFTMnruQbXiqi+osiF6477V3cK211iprBYRrrfV5XCmq4uvf9cdAFDcLdQUSUYDoHIRVuomuB5pa5YrOo/7kFXxzF35rIDYBHkHoknsnQaowABFP2SSFzjVLUHplEckKfDQ7Sfl6vtPMQmo8UkQFsWQzGYryysyACeB3RkFVR5ALD0l7qMwqRibP8VhyGcGURFOWYArisIyIwJhhQwymR3wdNoK7lAeY7hcEcYgZiYOZDUnMiowsInka1Fui/Y5iaMzyJUYyARBHOb4iX68wwhEgM5I5OzC6qSYJKRsFWNqfN2yYE4NHwN5Gv+0rVFHuOWXASgOTJOnc9RYhMEQAY2T+vGLzOReCXrOHWMLLl+e4s92NQE8qJ8o+AiVreRgMLvWczbFdU/OWXEmKOwGGc/dx6NrlczYzY/PsYAJPpRGL5YCzqsdNX+F8281fc7rJLxi6VAlguWBm5Zrpy4Hy2Dnmsaxp/MNc39zse1GQ5OVna+4ehvkM/YeLYGpBGjnHLi8dc0odY3en17sNAB3GOGBOk16j/XnPSXuX3sM1c3CttdZaqhUQrrXW66B+6iN/EUA0nnlyBbIGtN1AbnZ6ABHAKiUlH6KzJmH7scd4Tu7g4XtqXL9F4M6U8TNXBqEJwFkomDhCSl8nFgDK1LERBEcKmgQKElnjEJgFIRvKRHYLUMaRAK7UrTS4GFtxY0COEM69AqvUq0dQINhpPyF5Gnoco7GLNDF6If7J/YUVIFUACWkeoUQ3UCOZWQSg91gFpCB4KRxQhQWo9DB1P9W5CTAAM2AAefFcnUc8PklES5ALDNEb5Qau2LeRYwXmEQBT0BgQZSp1kMQSMutm23CAmbAvfWB0ziAEBVzeK7hjZlTGo3M2M34Jf7rI/OQl4oAQHUJTL10QyscvbYTL55NM9NMPL7B508PRZtpwAALgicfgJp5f9u/N1RQIToPlp71oszUBhktV3v8cQzrIJQfWa8iwG8CXi3EeI2Md9ujZjNZ/yYxkDCTGoN/l6IMxqwcMIHTajzgFzIeA05SpHL1WvK8aI6FsZQKDp8lU94Hs3Hz2MvbSNWfA0rF7mr+XmVzHBRY1z/OWoHA+viKdn52vTmJGj/VY/vjv+Osnz2uttdZ6Y9QKCNda63VUyXjm69/+RzW03lpI16voyBgFhc6rjDQI4B02n7gCv6tC/YhQPyZ09wX93aBA58pGwBLZPKNOoeIZXAUYji6VNvYxxnmkeAMfItAjIPRq80lWc/NCzwhtzHPwkY20UV4ZoP86BcryTiRWTfSnaUmjGRMVmGSmTo+PpJ0WReBlovuoQB8nllFoYCuDspBZEhuvLSYCtzhPeGU9xWAMLI2CuyQ9lTRuAoWJ/Qvj49M8U2RGApUJDCP2M0qM90jPSc/g2oMj0CLS92G6YTUkqK1H5wAWQm0dem8yAxgEsBGUpU17gEpPJZ7feWV9+2hQ42IPIk/cKud6zcqNdBBCv7PYOf0vaBpVQBE8q7HM8B4mUDg6blKlgczc82X5GKtRArulfrnptVKgu95vvM9CzpjA4HB9zrJVFMcn+eac5HaOkdPz5sHDUj9gfj6Okd6PJAfOcy57HSds1BwzdaiXb+84DJEewzolwxkZSaYPjVlecy4MvuzrvK1hzJRRnJPqnjrW0hin1HKv5QAMcx2Yyt78n8Lxda211npj1AoI11rrdVg/9a/VPe7rv+iPg0KAxFB77FrNKVS7SABA++Zz+Ealk34D+BoAI7J0MeLAQ9kzErAVMKtE0TvtQyLW3j0RxNzBuHEXIOwMuPG6wfcEcarnJBNZJg5Apecmdg6AAq5UiZEzAl8LqGVwn6SXutGlKOkU0vlL2mAmMCvQsUtDl0h0DiHxNADPKCUFxXsXUjmpidLXPkpXI2hLktTMCAaKxjapJ3FBIicqSdV7ji/F+VCch5gIRCsFl3p9Bp/3sDG+owQQ6dYtDyH1vdduN8MCJg/DakRTbpybDA4pg8EEMImUgUxAKAGp21TqbWw7CwTCdVujcwbbauw2CgybYBHKkts910SZAU7pnElNAUIyuwEGOWOYHA/sm9ak+yglsyVwnZVDxrlPWavycQ6Mn1xvz8F0EgAPFP12C3LYOaAzgMu5sX1m9VJf4CHwd8icZU5Cqr2FMgY2GL4sGIDsWEY5ZTFLJnAaBg9gT4Y6vd9j88+vn2BEM+7dLB7H9Q4L8tdDkuOl8dMnNWc3Yubvxto7uNZaa92iVkC41lqv4/qpD38/AOB9b/02BYGAAsHKImws2jdt0d638FuguyNgr5tvaXxkA+OmOPYAmhg54T1n59FRJbYtOi0GpwxgcAy2agyjfYcRkOVNPxSUGVH2LVVI40F3/6wHiw3qbgqAuhgHQQAnmWYEgMLaQwgTGb2SEfQAtwypJTJ0VNxDvH5kAVVyG68flAHlK6P5iJVokH08XQFgvI9AyvgJIBUyOM3MJI37BVNPoEDyPcEAsgngrdMlcQy5Gf7plkA4P2vRVG4waImb5jJoPm1kN9blkPlUnTNg0vMSkASAXZSRplB559RUhjnAGx6iRSaAo/xZlg+Mzhu0lw2oCtm5VOJrae6U5KOxloxVAmhW2nkooD0fQ5JltRksYAwwcy9gyX4ekVKOWcIEWHgP7IzujTTiYzr2XC/YHMjSuRfPnUZgxfGmkQU0fk14xCTun78P+Oae19eGAM5hPfaB0rxEc5y/Nwayh6Wkh6Sth6oEz9MojLl7nj43x5jPRXCU9zH3eG7cUlJbAsNj97PWWmutNVcrIFxrrTdAfejjfw1f/87/ZPRc98wG3T2Lh1/K8I2CGldHtq01CgoJoxzBEMFL7uUigGMvnXiCeAV7Ehkurjx4o0yKb42yW9WQNYd4PCGCH4ogNMS8vnIDkx4mFjFFV1gMzJqQykWD9hiGTUKIQA6IR9G3V8VNVJKdIgI6kiGegqAvlq6mnvR8I2ocU5yfQKeQAFYloORij2POL5QMCCUxkgmwAgoCpTCaYYF4jeCg1ujpRp/zAG7aCp0zsEZBlonuoAD2NvOJ3fJBJbxdILR9BRGVjVYmjLaWu96CCXDOwO20kVIsoYOGyFtDWTKaamkza2Lw/fn9G1xs2hxBcd3WqKxHHVnCBNQshREwDIVMc6mW3ESB/R46juvgCjA6HSu5iE5zBMuaMqXDRp0y23qspj19c0Br2SRm8jsS8DjcbzaNg5gyczkyIkpIy2PK85bA2dx6YgQKCxntpBdyrsqeSJZ9We7cvQHYYyJH8yl/n7m3JVBYHn8MvJXXmrKFS6D/M605gL3mDq611lpLtQLCtdZ6g9RPfewv5cfv+7e+E83LNzB9wKd/8xbdmzz4esgdRDRrkV6ZQGLNFySjJjIUNzIQgu+MgsZAOUtQIrjJYDGgCKaHAj4g9vIh5hNGMEqC4Af3UumTnDICJ+FsrlL2HZEv3ToxRD0Qsvw0uaciXnv0ewKaacxRdqCykIiy1OJpJTk5mtT0FO+BsvkMJWUc6XFEyIA5SWHhSRnFCIrz+KmHUkjXIV4HAHjHCCywdx2a2mFb9yNm6aa3Wd7povTTFmYwCcT03oDj8yHomCHKF4kEIfUHxvcvOhKBKpUVpj5CBFYgndmL+U3uxjo0F1fKOAZG5yxENMTecIDPPWfI4GsWWMw8Tve+d+25GADE9S4AZynZzO9BBHUO+6BiLgNxYIIGcLXEDk7XZvx4n0VK4MTJwPBO+wqHufg9oDVcYx687/fdzZ07s5YTOe2pAKcEmwmUL52zJ7Wl8V9RPb4AmgeYuHxO0W84d41Dn6PpeUss5RRkzgHDxHpO+1iXJMBzktrhGnP9pWE1kllrrbUO1goI11rrDVgf+oXvxdf+tu/G5dsbbF4G+juMcBaZu63P8RBk1AVUAZ1ugAXRUCOQRkgkoBcynabjcIhgMLI6LGCrwBGxBw6ONaePkQGZJDmpAEIlQIsbeAcMKHAM6oR1nmIFUsfNWwZfopLVqbTOI0Y/DOPlbMF0WHQ4HfX9TdxC8+EFSBUWCNFgZIME8hL4jc9N9pHag4mBuRToWkXwCeg9Usfobyqcn7WZ8QoRAPrYA5hYNSbJcQ5D7xtQW4/KejjPGeBsrItsFMOagNZFANJpzqKcefQ7C+8M+qZHZw3Omg5VdDdd6oGa29hWxqPtLSyHGFYvcKRxF04YFiH3+qVa6pvak2PG40oGTwrGLh1fGT8KlC+PBVTOGib3NZVuzspai4D1Q7XEaI7uhRbuefiwzfanTXMIl8ZN89Dn5uWbp5jIzDGEUyCV5J/A2Ml2CqzSms6ZxKS5lfdXSikTKJyf4/EevNF8ChCXx5iRo44+DwfGnXu+lMSmOU57JdOc0tyX7muttdZa67a1AsK11nqD1j/8//4ZAMC/9e1/EaYjgFmNZKBAhWoPaz1CIASYzCqlTTKzIFgNms8yUSmAo0QTmWSQEs1YlG1MmXtBgY6LF7Vq3jKKnEjsWioCgNiHF4GiGIFY7dfzBoM8U1AAQkRQKQPQ8lGaWoK5ETOoTCTvKPcGJuCYjF+E9DYSuNP5RxmsEUijPY8ACllodF/lCEI4sZ8zm0eCOoqme0nA2Qh4p6xc5wyaigsDGc7MnTUehgU+AvMECjVknkAEVNbDRpOfKSvx4PEZwssNcL8HtawE5pWBbAi+BXaeQOftnsHKnLSTZgCVNQGVbfNzU1DmhMcAoQBepYyvHHfumgOgiks401eW5kwJ7MWNuBSb8TyHmc2/Xuf0Tfkxg5NTpIMj0FLIMedAyqtRS6zV0nFz7GyK2rAnyIzL9/e42cpptW9Ww5kxnvvS4tD4U7A7fe42vX2jz3J8L08Fg3vzKub8wff+jaPHr7XWWm/sWgHhWmu9wesX/sIfAwB84V/7C6COI6vlQUzwzkR3yQBjgwIIT5klZBZ1CQUQwBBPmiloUm+cAi6OgCiDQwZMrf19GTQmosPxAALTnoZkAEMMBU7JPTRtfDxBEHvZqoAcWZGC41MlAEjjnyS0lwXILcO0BHKxV1H0YGEgWBnJR5MhTB4z/pEEciMrmO5DEja1OiFlXbUvUNdIIAkITnsUSbTPMDmeCsUeQmXcDAsqo6H05QbXBzWC6XsD7wbZYctWTWmMhylYxk++fBf0Sg12AIzA33HqrrozmgsZgSlRZNEiSymTDSyA/HwyjCEhUJSy1sajsWPH03LO6TkhwTTeoqxlkDZ+rAaysghal0BlOcbSRn+ZldofY6luAwqXgNchY5p03inmKE9T5ZyW2EYA2b10CrDLMQ5VAsGl0cyUJdSxhscjgFnINtPvTwMKR+OdwAhP1+SU86ZgcHof5WtLvYlrrbXWWku1AsK11loLAPBr3/btAIB3/eCfi0xRyGAPAPpOe70kFOHgTOokCqjEM4adl86gaVOSwWCUnUIASrEOgLJeXewdrH0MhidQHQZWMRCiYwa48ZmFzCxgCpZP8kog9+mRCQo2AWXcEltHUIloKDZPESDqvJDjLaRWYJheIolMpVWnUuISxWI0XroX6WNUhdVrCyJY0sVRkOyibWm6l5xZKFk6S62B1IKqcdmcxXCfGUBg2EQ6zxlYhfj+2crBOYO+tfCe0VUWm7pHU7l87r171/B3b9QUyDNuLi3MpUGoVK4qG4/qrEfX6TUb60a3PQesSgDQGI/dgY1rkpledRUqowYzhsOs0cfoujNS0emapNenuYbT3q1DQGXfoXPfHXP53NPZwRJgLcULzDGTZY/a/lz2nVOX7mV6vVLCuQTCl+ZU3k96f13gLHk+NbdvyqoxxgxuOqqcyxR8zeUETkHhnFvoIZB7bP77/ZsFQ4n9z83o+hMwmO5l77OW57T2Dq611lqn1QoI11prrVF95P1/EgDwxT/6gQyKUk8bEUA2KAiD9hamvEFINJWJoJCKPYqkmAoSSJRLSszpEwHQGpWLGtHg+tQvGCWVoY8bnKDB9rCxVzDhjzSvQNrn1sXjObJKjiANskwUgQZTmhQen9R2oZCDGkGokcfyZ2HENo58MEj7Dokj01hISLPc1BNQB52DI4gjeAFCkV2Y8xMDdGOXWMgqgMwgzZWNh9k6VJXKfDmulY9zb70dlLAR0HnPMEYNYgCgrh2kGkxm0gY9sXnWBFDQDfvuuoZ5YuL9AGETwOdOZZWBwdzPSj6BsXyx3DBvbL8XjVHKNlNtKzdkBi6wg0t1G5akZJgOPbc8/rg37Vj8xWKG3NwaHpTJhr3zpizZNEuvdOrMc6Z9AFWeO53DQbOYSU17EfdfJ9jkalocM9c3WJ6Tjt2f/z5jWt7T0rznxh/OH4DZMM/DY55S0wzFBPKGXsupi+w+CJ81WlqD6Ndaa60TawWEa6211my9+Pv+FADgi37kAyBJLB9GSC8ZyajLKAa5I0Wg5ym6iMYMwsh25bDxxCDagOA4O3Cm+IoEHLP7Z7ymmtMgXltlq+IieIpxEuRJwR1IHUcdxb5Ciowfxn+AUW8gvAIfCEEsNG8wOYdGR9Ncxb4rP08y7gmMbCSxDMY5aTkjqNZ7xSCLFShQjueLAKbxCJ7ARmBMyGOkEHrDgIssYQicewW9MwiegMgoMksEhnFDGdSE5qar4piSzxcBpI2GNDaug1Vg6XYV7KZHY/1s31oJfko5ZpKv1uxz9EBiMUvZqeGAKgKymgcDkT2AMwFZtAAopvMLk+dK85s9qelTSCr3jG6OSDwXxynYrCnLlQxl5u91HuQkp85joGER1M4A02kI+6Gx5oB2uhcb3+d5ML4PwNK9BDEjkDuab8kaHnNexfCFTvklySn3eKymss691yeGR8feo1nmM577k1+zxkystdZap9UKCNdaa62D9eFv+lP44h/9QJaEpvy/oU9u0osVgRxEJaDiGGKD9hHaMAZfZZRBcir1pMcRZRCUIyGgxyXwmK8FqBRToPENRhQwdgxzoz1GkuaL2HuXmDYeNn8I0EzDyIKRj39ClLfGeScnUh2sWKw4JwDxddH1MQWgFWQJbPo93xsLwJRBI5kB3IjnGOshYKtgcNMoK8c8ZlUS8HKCLPPNz6f1EoJzKiFlTu9hgHMm/x48Z/BOVYC/ULdVabRHkziA64GdTJWYwKmhS1lJrhmgDGQJAFP5wLqMJKjZj8451meXszIndUgCmnsVZ86dgsTSxGU8xv7mfc51c8/pkk7vVUtjpHlMnTunjF4JFKasl+UwG5peOqQemtcp/Y5z/W7p+T3TFAJcMBkUzo87xFVMDVcGAHU8o3DJqXMAbXMs47zr6Ch8fub129TclxKHzIqmoPBpv7xYa6213ri1AsK11lrraGW28L//QJYtJmARwmAKI4mRS6RWHYYA+wkbJZ4Qes7Oo6iiFNVEUAgZ+gMDgGpwKEWUYOZMv0Dad5j684wABsoWJraNYki9TWxnHDtt+oRUIisqZc17wTiGxH5HciWQjNeZsIwj4oSh147XynJYr4xlStbQhSEkwxmuVAJrbEDwysIS74M+QAFMbf3Ih8cldjCCOuYAL1wAQOTswfR+uV7BYEBA8AYggb8xQMdAo/2Z0sT524Cm0T7Euug7TKY0I5noBHQFIfjc36bMYDo23c+0FIAtZ/nN1bQ/8JTj02beYOgnPMrencL0YBlYTQFuWWM2cx9ozLlcLv2+OHfCCBSWY0+liKfEKSwBobl+vTkAo18SKCicM5xJR01BYXn+MVB4TDqaWTlafg/L9+MUZ9FjUtrhuPHfl/Lv0txnaE4O+z9+zV9evL+11lprrWmtgHCttdY6uT78Hygw/MK//X0qtYuggkr5ZMojjKwRpfa/MGyqRpmFos6kALLkkyIYShkBVEk2WyEjhXGNMofSM6gK4I3Pc5KdUWlniq9Ix6fHMfYBQjn0Xlk5vQdJe0oKmU1MvYkZQ5q4CClH0cdx0zWSNLUa1odMBLVpEBKMmhFTryUpI2ish4iNcl0FlHXtEMLArBFpfANQkJ0xZkKEwGYIme9bm/MgE+DMc0t9iM4oWCegOu/RU6U9mmCgVSbWnAX0CUAKwQfSUHnRn4GSHLS4tTifEgBNN7gpCB5A7kkc9R4uYJxT2Jg5cDFvqEIwtPz6+NjlAPTpPe5fm/fA4B4TeUvW8BgInIKKJSOXfE8RdB2qgwziAqAcjQ+Me3MnTGE5RyZBIIpB9uHg/MIMKJwDn0kCOu2hTPObA+z7TPO+wdAhVu+2pj1zcuzpeKf21a611lprTWsFhGuttdat69f+w+8AoMAwG8TEzXve39EgxQxON3ilqyPZACYo+yXIzFoOuScBiBToGYlxFgriuJCtSlSWKciK4DSNl34CCixrZerEYTBrST9ihIJoSJ0CupRlGP9QmIzLyH2Jmj84gOHMbIKyoylFVjMEAlmNlZCg/ZJwPLiIep0jV0BVaRakEMNWmg2ZZGvK8BGayqMyuhBeCLvewjkD1xuNhEimPvE+gtOxLu7uNBMuMK4fb0AmwJNmE24uOtRVjILYdti1FSQQ+lADnuA7hr/aoLrTZbAZhNAHhiGBIdHQcQhECnmjjM1jplX2bBGJ9kaWG/Xyu4cCYEzD58uaupuW1yqBV4rDMIRRRt50flOGqJRrztUpgG4pAmLO5GaRnZuAyaXxj4HB8dxDdPDcd9PMDNkU6CaQNTPPKYM4BYYjxjCCwr33TpZ7Ag8FzI/vf+zuOb7n8rkAC8CB9yS3c/e+d19HatHpFNgDyXOf3+l5AYSf/Oq1d3Cttda6Xa2AcK211nrqSsDwi3/sezOQy6xgkv9FMMQxM1DBXyHTLHb4AuTfiQRsBGwCgtdgwuyw6WI/HSLbaMZgIPUiJhMYGO2BI9Z4B0rREaVZTZqTEchGoqlMBHUSibzYR0hSSEaT9BQY+hItxr2FcY5sZegh7KMJTtrUJSBqh81g6g20NoDIZ5lu11t4T7A2oKkcKuvz+okQCAokrfUIkX30EQBrtqTexOXVZsiXtAF141BVDoa0L5Hj1JxncAy3543TNb62IE9wvYF3jLNnrtK0Zw1aykoS0SUAw6RZhQkMTh0n0xcLU6OadMy0nzH9PMUtdKlvbO+4iXTSLfSdTa9RSjNL5ml6j0sM6ik1PWfJWOcQGFxkzMrXC/OVvfNnXhjJWxdcTfdkpKTyZzBgMWQNjuc+dumczjMdM8fqjQ135s15FBTvA/bbvi/TOR2Kv0j3kmMlhMHk944p5wjgqEnQWmuttdZcrYBwrbXW+ozrxX//OwEoYwjEXkKm3Kc26t8qwGDqXWMTmcPsfKkVAiEEkw1Y1FAlZMAZuiFzD0DM78OY/avCAAZ9NGxBZBuTfFMQewELmaeSCJHxK8xtGEBPsZdwAJR5v0jpHml4LkZGABjyFEvZLIlmKHoa+iJFN51dZ7ObqHPJPXQAgylqwgcLwwqktnWPzhk1jgkS5braP2hsolQjW9dZDYu3PoPBxPiBQ46f2NQ9WrLoryvQjQE7QmgC0DPqO22eQ1M5SBi2z0vOo0t9WRkMUhgxe4OhR1yyAgimny5MWKwZmaalACeM3puRgc1nUlPgOwcg985Z6BucA6QJQM8B3VPOP3rMAfA2Byz3wtyLMRbXYSoVnZ37PCjsxMKJoGaXTXD2wejYKGY+my8c/FKgPH86z6nz6Kk1Ns2Zn9scYzp1hg3QL6dKB9bpNZgEP/47/urJc1trrbXWSrUCwrXWWutVq1JKKn5gBTWrUEaGM7mPkIbsPCRCLoEmIKdcUNHrxhzgUzQFAVx5BMcREIqCuwQWGj+4mcZrSCCNobDq5KlsIfQ5wRA9EdnF/HpQvahYGYCgAKPYiXKzLQCqAI6A1O+sGrQYyb2CSExla9S0pY3r0kTWTyIw9kZBWgJIROi9yVJRawIq4/cYMssqAzVG1yxJVk3sK7QR9CU2UkGk9iYGZ2BNgGEPFxg3D7awDywggN8I0ASYjcP5toUIwbDARaDlA6sEM8pHgaEnEOMlG21uK+NHzN8cezj3eI6xKX8vM+4Si3Ld12iMw7QOAa+p02QQykB0DmyUUr/j8szh/LGZzLzRztIcj10DmO+5XGK95u5ryq7NxlAckLAenWchm0yAe+cr2BBQG6fv5wQUluYqc4Y4CRRO70PPnUZZ7APD6fWmjO+8acxkTQ70+S3lQKb1L812TjErWmuttdY6tVZAuNZaa73qlaWkP/qBKBct5J0AiKNsMky+5Z+wbURANqeJjyWoTJFYskGLeAVBko4zGm8hIWYfmpB7+MQx4Ej7CRGZP9WA6kWjAydFqetAdSGDQqkGoxkIFEgmZtNiYAlpAkiTeU6vrCPiPeV7jqY01HjYTQ/fGwQxMBG0GOtzdIQxAZvKZdAFIPfm9TEPMklJbWIoTGIXgCD605qBcQhCuG5r7HYV+qsaZATbOzvs2grddQXa8ZCzGKWtde0iM+mzIUyXmExhVCZACgYjXQskGPO7kR0sJKJjdmUMLsoNsJu4lJaVztsFm4GZC6wsYWAYnmEVZQCFUylnOScXWJ1bJWUnjuM3jm3Up8YhS32EwBDHcUi+Ojr3iMHILCt4ZK5pTmUo+zDXw6B4YNfM4pxnrzth5pww4C0wAYUZqB8AheN57gPDpdf2X19gfRdB4dPLOEu2NJX2VZbgUV/74Hv/xlNfZ6211npj1woI11prrc9avfj7/hTe/WPfq1s/odi7pq9JGFjCxP5RdgQFwADbyDAWQFIiCJMYXZHBFgFcDTmHwRkFcHXIURkS1H0UVlm7xCKGXrMSB1AICCZZhdFJlDwN7qWEKDWVQZ5qo8lOinZIkRwxZkKjJTD0H7IMz1cBXHuAgP6yBm88Nls1bUk9gInNS0H0lhVA+dg7iMjCpeB353m0WQaQQWR5XBDgetdgd1kDNwb2sQEIuHlUKfizAVIH+CoC4Y2HqQOsVSDIJOgDw3mGSZEkUfZqMGYHgTG7UoKveYkiZelxEBoZvkxfWzo//fQRDCYZZu9NPm8Kukq56hK4S6+leWVPonTN4n7nzFaWegfLmpqqZNZxQYZ5KJPuFAlpOc4+o7YsSZ0DL0vXnVuDY5XvH4SuAIXptSVQeGodM4JJcRSHcgYPgb/D0tzbmdBMwecKBtdaa63PpFZAuNZaa31W61djf+F7/s73DJvCuIlX+SZyzx9z7HcjBYchunBqJl9kFkkggSEpD1BiRl9iBxO7mHoFI5vmghkcQgEET+AoLSWjcQ4BcS5VdCNtGeQI5FnD2EvG0IhKTiMIlSRhNQFcxWv0nAEhEksSEMElAJ+eV8AFIYSdVVlo43F23qIyHjdtjbr2GThtYu9gAoPA6NZyhQJfJ8AYhOCdhUh0HxXKPYp9Hzm7OsCfEew1w7QE1wSYOz3unO9gTYAPhF1X5VgLH1S+6vzQ62Y4wHmTgVEJag5JQqdVOpIuAb/p8XOvlRmDJTi5ivdRW49NZC7L+ZaS0FQlYLQUEGgMELKT7hwwOsLcLUk2p78fAzpz93qslgHOoZB32QOFS3OZzmeOfR1fe3zsCNiCRkxhySIO48yzdXPs2lzNg+exq2may6nvx2isI6Y+S+edcr211lprrdvUCgjXWmutz0n9yr/3pwFouP3eHocAW6l0kUgBUgJTFNk1Sq6eRKPzEhiToMDO2GiE0qjMkk2Ac2ZgEuvUR4YMOInVATQbugAK2Ky6koIlnycxQgM2aP+iiUwbAdIxhHQDTbF/EuWmkmRwEbUBcBr+Dk7X1mtVZ33uvdx1VTZ7mUoIBcMG2BdMWdvbUUZhMopJjGHfG+1J9ISqcWgql89vmh59Z+Gu9L+HlOPYND3ubFoAwGVbwzmOAfcU+wy1hzH1DoYIFBMoogieSjZwGu1QmrOEAgTOVbkWp4TOl2Xj/PoYueGFYCJ6LucIYLSO02ISIEZVLNUS6N2LGphhEGf7ImeAgJvEXtwGDM4D0Dn3Tb/I/OnzSzEdp8klZ0FuAfLmpLWlfHROZjwP9vbB4G16J8cj0ezjPafTo18C7DO8SyC6nHd6vLKDa6211mdaKyBca621PqeVw+3/1vcBQmCrOYMAEAIPofORJcyZfxGsDTmFGBu7CIHrAN8ZDVEXyr2LBAUNAWpOw1bZxwTWMtgEstsnSMBnPvchEotKW+vC9IYEwROQ5l3EbQBp/hHYeIpGMlCA6SKbVikzKLlnUdQwR4BdYDAHNYQp1vCmq8Bscg8hoBvDzpvM3uU5kOS+PybtP7Q2RECrv/demcFN3Wt/XWcGM1gGaOtQ28HIoqkc6rteQWCUriY5JhXmNMoCjlm+9FqAgq2pxLM8dkmaN9dPeGjjzvG9RwEsOALls6bDrrcjGe0UqE5zDOdcRZf6APPrs3l3UyfLMYCa6xEswdoSIDm2FqfUPijcB01LjqKfyTzGJi5xPWh6zLDWCRQm981jtXQPtzFmmVubcvzyc7sEBk9l+J5mfmuttdZat60VEK611lq/IfVrv1+NZ97zd74HIQIJjo6XKgONPXh+AG05IiLJQxF7CiOrF3rdpIknTZDwrKYnTY92V2cX0tBHmWZk8EJn1PzFavZecJRlpMQC7xjSK+ij2DvINkRmEjCNh4l5ie7GghofWU0AJgyh8AFAJbl/kLY+glOATGxFTCxlIIgITDNkr1kTcLVTdk5Chb6yuNi2YKsMoso0I7MnGlovggEEkqC2DlxptmACQCZmDN60NdqbCtKp42mwQNgEmCrAmpCxeRWlqoYHG38fmbaE04kEdTS1MSSojEpekwlLChdP8tE8Z+yDrcScTVm6Q1LDuc2ziXly6Rqc5lVca1rTfsK5mhrdLJmqTFk8F41u7KF8uaU+wRMB4Ow8J1ERp1QQhgvjNXoaF9FTjh0fM+7bmx5Xum/Om8Ecvl75ZcIpoKuUowYxi2v/tGBwyqiWvZHp9/L8lR1ca621Xo1aAeFaa631G1pJSvplH/zumJcHBVaFkygQSQIeQNOosnR0AHLBEWytrE/fG/g29sf51L8Yw+opRjtcK5ADS+xZVBaQWZQx9AQIq5NkNIIhG7MDgSzJRHQ9BeJ8bBgYzYyWAHPex2uo5JWrCEwKoCuOgQaorYc1Hs6b7BzqPRAC4aarEET7CgFl71xgtO3wzzuzBs0bDjBR5rmpe5iCDXtwvQWzKIgFACH4C+0dvHfnGo0dxzOUzqY+qGMnk4xAI6AxEhV7WA7aZxglmIC2UB6Se84zZPuA5DZ9ckTqIsokYKOb657UEMcH1p7AQxK9mTD2uR6/PVdV7IO4zDSyjpvdO4+YlTxNf+BcLQHDvQiG/KHcN5lJ85h/XwoDlgMs7iG5ZpajHgCFh2rpvVyaz62Y3wWDoAziJ+t7K4ObYuzp5+9UA5q11lprrVNrBYRrrbXWa6L+1//rnwEAfNGPfAAAskkMRVmmu6pgznt1GgWQcvwIBIEyfRRBmniCqTR3zz3ZZGdS0FiiKZ2JwE4jA1IvIiPGVKS9no1OMDE2gs68giwTEJjhWqMsYmQwxXE2myGKc+1j/iAAU+scklsqUPTKeWX1qm0PCGHT9LDGR4YwgsGgG3PvGc4xiCw4np7kjYlpNFYlp2UfoTU+s3wpu/Dedoed05D6K0fqeGoCtmctNpXLG+jZrqy4cScgM4eWQwaCyZildPfMtcDKZJlm4UQ6BVjTOZxaaR3S2IaDOqQGRmPmzUxSIHr5fH5cbPyXwOCUHRzJHiOYthgzgUsgcI6BnPaVTed4qJaAyh5QjFl+x/L2FgPYbyl5PAbaRmCNsDi3ck7JIOe2YHrPPCcCVZ4y2nPS4GOGM3Hee+zgEZnxj/+Ov37q9Ndaa621DtYKCNdaa63XVH34m7TH8It+5AM5tkECgSJrl/IIh8D75CiKHFHBVYCtPPrODlsq0v5BlZ4CORndE2ACohdMjIxABJuKI23jEWxA6AzQMkLPMBuHEGWXXAWEGzv0OzrSf11Z1CgmRkqknEHfMWyjsQ19a9UlNUliobJUG/sgnWc8vDzD2aZFFd1UK+PRiRmcVQEEQZZoNpEt7J2BtR6N9bnXsOyhKw1eKuPhhXAtNUwV4K4tJBj4GFsRRPMFmaCy08iyAgqoUqag5ZCzBJk086+Mekiy0mmfHjAAtbk+vlRTCeccQFo6b8moxnLAxjr4oCyUKcHbERnh/KZ9Hywemle+VgRcQz/ccq9a+Tj1ZKbxxvELxx1J52pOkjoAsOPAaw8MHpBQHqrhmvtj7K3HBBTOsXtzURrlvIfrHpefMgk4Rs7sM5G3M9k5Zr4zvae11lprrVeznj4tda3XXH3hF34hiGjvz7d927ctntO2Lb7zO78T73rXu9A0Dd797nfjB3/wB/PrP/zDPzw75m63+1zc0lpv4PrwN/2pHCsBACmUPvhEhY2Pz2xelI62VzV8l6IgBFz5zMiRkcwmwmhYPZGCTIogLnQGPvUkAjA26PGVAF2UtKbNmSCyiFDwl8xkUoRGVRhlVDEXEciAchSVEVlI1xu43uDmqkHfWVxeb9Q9NEY7GBPQ1A4X2xYXmxbb6ESaGLraelg79KYFIZgIfAwNPXsuDIAv9fq5nVVG02kfovMGPjBSoH3J8nEEb5YDavYj8DEFg9MA+dTDmGIqSnYxzxuE0tSlPH/6OPWfpvudVnnd0fOQnOtoDsjxAmgR1MwBoNsCsbIfbgBhg4y0NLYp7/sUl9WTMvZOrKXYhkNgsPxZPj9lToMMn8fyXi17cAyit8UXDmWl9Zvrw5syr9M/h+93Ph+zXIvPFlBjCrPXWHsH11prrVezVobwdVT/7J/9M3g/bAB/4Rd+Ab/rd/0u/N7f+3sXz/nGb/xGvPTSS/iBH/gBvOc978EnP/lJODfuFbp79y5+8Rd/cfTcZrN5dSe/1lozNXIkjSHuFFnAvI+MgIqjaYpvjQK8BPpI++JCjq7Q05KzqbAGwRsTRsxRQEDojWI6FnjQAEKTlDUwglcXUgWFAvTQXkdHIBuNaWqP4OL2N7mJCiEEnYdAEBxncxzxhL6rwBufJbMiBldS43zbgTmAARgegFSZlZdBFqkRDTBsJjtvRvmFPjDAAT6w9vtZD7Nx8GTAVUAV40CStLSNjpx5nUrgRbrJFyH4BMyipM5FdrA0pEk13WwfYuUO9ZulKkPh51id9Nr0+CkreUx6+VTmLIXEcM6lczCgKeeRQCFmXTeXzF2mv1v2s0B5ep0y2H46TmIxy+PL8/fOPWSgEs2CynV0wmCQMm/A6LOq73NkPidrsS+jHZjA4fww7ms8au4yzl+cM6BJLOEpn4HTIzgOs5Ofae/oWmuttda0VkD4Oqrnn39+9Puf/bN/Fu9+97vxO3/n75w9/kMf+hD+8T/+x3jxxRfx7LPPAlCWcVpEhLe85S2v+nzXWuvUSo6kX/i3vg9I4fSOAZacXxhiXyBF0xR1EB3cO23l1WE0cDSLUZmmzSYtDO8MQojAEQDXfnA2RTR5ibLPnH3IGiIvAoTWDDmDRiA9wwcC117nRcM4IUSGEkMkhaQ9X6f9hlXt4HqrXZJxj6iSUWWz0rbQBUbnDHpvwDS4ezIHdM7EWAhlXpxnXPkalgOaGHDfB8YmmsacVT368x2uTY2QgutZexB9YNzdtJmxSxERZX/fvkHJOFjex/FO6QMMQrAURpJIYH9jno9f2OjPbaZH1yfZyxKcYyTLc58GDE7vbe73LIMF70Up5GMKY5s58DxnQnIM3N4GZOS8xAlo0rkMoHCYT/HuRUCWr0cTBpEKpi8QAKcMNIVRj6aeP5jNTEFrmh9Hk6C5vsHbBLyX55dzSOxjEDM6fiqrPQUM7gPs+b8ja+/gWmut9WrXKhl9nVbXdfjbf/tv4/3vf78Gfc/UT/zET+Crvuqr8Of//J/H29/+dnzpl34pvv3bvx03Nzej4y4vL/Gud70L73jHO/B7fs/vwT//5//84LXbtsXjx49Hf9Za69WoX/v934EPf9OfyoANgdDvLFxn4HdWwUl8TWLOn7EeRFGCuatyNEUQguuHTZy1AZtth2bTZ5CYGEUJhNCbUVbh5qLVXsXaw1ZOQWOnLJ9pvDKWAcCOtb8QiLJV0udJYGJPoEjMNYwbTtp62DMH53R+KY6DebxBFAwRD8pYEtrOYtdbdM6gcza/HiKDmPsGOeCqrXG5a3Dd1ui8yXmEdzYtNk0PY30Om985i9ro72lD7KPcFDgsmUvHpNzCxMQldmiIVhjLIW3cIJeAsxyvlLum8Y7VIeZxTpI5ZYhO6cm77TzmZKDT+I3h2DB73tK8Sxnm3Dm3rQzEZwxjhj9h9Kc8xrKHLULuE/jLxxSS0CCEna8y+22jZHTvWnOurNmEZyxvTsePP3f7c03njtxgsf/5KT97+3mZ85LURdnxXAblZ/BerbXWWmudWitD+DqtH//xH8fDhw/xzd/8zYvHvPjii/in//SfYrPZ4O///b+Pl19+GX/kj/wRvPLKK7mP8Mu+7Mvwwz/8w/iKr/gKPH78GH/pL/0lvPe978XP//zP40u+5Etmx/2+7/s+fPd3f/dn47bWWgsA8OK//50AgC/+se9Vx9AAkFHnz4EdJIjXkPXgOIMtrkOMpVCZ581VA7a6RfOOIa3JkRLZU5OULQSA0DHQMfrO4uyshQjh8tNnKg+NTB9fBAgRQiXKKPaEQJp1qHEXArbRpTQQ2Ai8g5rLVBGEQplDNtER0yjgc4FBfnAMBVT2qbmDDOeMsnpRAusdo7cBZ5sWAFCZgBACXJSOps3urrfYRjMaJsGdTRvD6AEfCNvaZdloEEIX+wqTyc3SppxpcDLd20wXDM3c+TTZFI/OnRjE5GMnrqS32UjPHX8sOmAvemCJGcOw4U9g5xiIVmHwVDI5zGPKjM3e08Qgp7zXKcs6dTWd9vel82avU7DG02tNjwMACw8HM4CtJOWeYQu7oFuVmiOQFIxks3OGM+U9TI1kDvVL7ofOz5vQHDvv4LEnGg3NrfXKDq611lqfjSIROf1/y7U+b+rrvu7rUNc1/sE/+AeLx3zt134t/sk/+Sf4xCc+gXv37gEAPvjBD+IbvuEbcHV1he12u3dOCAG/5bf8FnzN13wN/vJf/suz47Zti7Zt8++PHz/GO9/5Tjx69Ah37979DO9srbX264t+5AMq3SSB95zNY7IraQKIUQ5KRo1dEphMz49YugioxA9jZMkoAWDB9t4O55sOrTPY7Sr0DzegjiB3nBrZ2AD/uAb1BKkEtPF5XAhgGwVgEljlcXGjG3ZG+xo3HhyBrust2HhsNr32+kV2ERgA4eOrDbyPEQaVh0mAk/d7CokET6432F3WuLh/AyLBedOB43GZoXHKvJ7XXe772zmb5akbq0CxrBKUzYXN5+Nm2LbSaXTKoqUqGZupY2gaAxj3nx0DKnk+BbC8reRvGGfZYfI2GYJpfeZjHm4v8Jkzg1kCg/m4Kes18xpTyGt9zPV1xAwKwUWp5VSOO7f25XXKMfTPvKHNdJ5z85nrP1y6z1Prad6f8hpTZjDd52oms9arUY8fP8a9e/fWfdlauVaG8HVYH/nIR/AzP/Mz+OAHP3jwuLe+9a14+9vfnsEgAHz5l385RAS//uu/PssAMjN+62/9rfjlX/7lxXGbpkHTNE9/A2utdctKURVf/GPfC2M9JGgPXgjR8IUA4pglWMhAs+toMptJoNGEIUTeR56QBiCYGEPXG1xKkwEIbR2EDNAx6NzpNWyAIIJUAap4nvYRpn5GjY9gE0PRjfYmbrYdtnWv4fM+qPTVGZzVPSwHnV7QPsXeG1SVjm0aj23ToTJD1EQ6pt3VCpoB9C9tgVqBoA+MXVehsl7ZVhocS1OGYRqLgAwEpxvqEriJqElIOq9k88rjSrZzCgaXTD2WqmQGl1jFQ1X2hU174w6fN2+0Mq2S2TvkhJrHLUxcPtMag5TDeYdprnvzW2C3UpbiIQZRrzWRms6sR5l3qGP6DPo6vx95MZJaTvMeRwzp+Nz5Hr39tc5rcuA9Xrq/Q1Wa+CzNsawVDK611lqfrVoB4euwfuiHfggvvPACfvfv/t0Hj3vve9+Lv/t3/y4uLy9xcXEBAPilX/olMDPe8Y53zJ4jIvi5n/s5fMVXfMWrPu+11vpMK0lJv+In/gt0vUUIhBBlpCLK+uUSBR9sBcxBQVoEiaZSZo1IgJh/CCCHvUMANgJjA7rWxucBSeHzBIQrC9QBZuvhO9EYBygoNNbDS+pNZIjRDELeehgWVBcaGWE5oLEOPhrOtG2FunZp+gBiBiAHbCqH3hvUNsk+gatWwZ/2HwZYE1DFOApDgu7tHk3l0PYWjx9vYWxA3TjUZ9pHHERdQacmMCUQPCR9LNmwKRhMTFAG0wUoTDUH6A6xgzQBj6Xcc8pcHTdZmZcKLvaQnQgYR4DrRDnrIfOT20gV5+YzvQ5wWg9kef1hvLD4eVg20QkD4KX9a88ZwQQxR0Pbp8Y2o+dp+KJk8b4OAMtjdSx+Y3rc/PlTh9RVzLXWWmt99mo1lXmdVQgBP/RDP4Q/+Af/IKwd4/3v+I7vwB/4A38g//5N3/RNeO655/CH/tAfwr/8l/8SP/uzP4s/8Sf+BN7//vdnueh3f/d346d/+qfx4osv4ud+7ufwLd/yLfi5n/s5fOu3fuvn9L7WWus29S/+z/8l+s7C9QbBE4z1aDY92GgERTKeMdHlMwTWnEETABb4Xpk7YwOqjUN91sPUQcHc1uPsmRvcv3uNs02LTYyBICOgKmgvoRFl+YwgxFxB3joQAT4a2VSN/o4oHzVNcgaNMlDPWd4JIBvMOGdw3VWRGdQ/BGSZJ5Gg9wadU3AYAkVwq+CxqRw2lUNlPc43HQDg8ZMtiPWaZ003mL7QEGuR/lge5wTumaMsBLUn4JocIw2FEYADBnOceUng8EfdSnk2F/BUc5bp3MtKRidOzKwpyG1rDiBMwe3RMeK9Pq2r6Sl1anbiYRMWXnzflu65zFqcH4/1vSjX78h67M1ttPbL7+fUEIcpRBOc+XvWc+b7Z+eee9r37//5v/2bT3XeWmuttdYptTKEr7P6mZ/5GXz0ox/F+9///r3XPv7xj+OjH/1o/v3i4gL/6B/9I/zRP/pH8VVf9VV47rnn8I3f+I34nu/5nnzMw4cP8Yf/8B/OfYZf+ZVfiZ/92Z/Fb/ttv+1zcj9rrfW09eLvUxnpu374z8GzMnO+M0CUZyYZKUGZv+660v7A1Hu48TmWot3V8DcG8Bqb0EKZt6Z2aCqn0kjHQAX41gCONaheAAihPutBJGr4Egh17RXwVQ5sogtqZwAiiKj76J2txju0zqLtbY7KCIFgOaCPzB+RxkFY42PAu2Bba59hkpHayA4GAa7bGn0EpdZ69J2FMcqQPvPMJc6qHkFolBMI7DMmwHEwWMYjlGMsuYaWv9+WEZlKRedMRg6ZuSxJ/m7LDo3OnZFizgHAfYB0+HrlnEqp6iGgc4ytOlan9M+dIq08NP6SdHX2WrL/GTw05hJbOHfO8niHrjUvAZ7O87ihzLiHEFjB4FprrfXZr9VUZq3Peq3Ny2u9FuqLfuQDObuQbQBEmUNAIymYRV1GvW7gbONR1Q5dW8F30aXUk7qEWoGplXUMgdC1Vb6OCDT/kIHgCPW2x7bpkWIaKBrf9J0FGw1+D0EjMEKSdlpl8lLcxPWuhncGvmfYxqFpBiOXxLIZHmcDBkGOmvBCcM6g3VUI11bXYOOz/BVCOLu7w72zGxiSPPZeVMEEZOV+uyPh46mWAGEaq5SATuWf5XG6zvty0TlAOGcms+ckemijXxicnNKTeChi4BhTeRsgvJ+1eDtAODfGdLxTa2rCksaeYxCnPXxzhi5pvqca76TrLc39aQyBFnseD3yZkI5P/Y5Ps+ZzEtG/97/7b06e/1prnVLrvmytaa0M4VprrfWGqGw886MfyEYu6t5pYEzQXEALiKEYYE+4ebRRExkMkRBkBFV08BQB2p2CweRSmthHkMA2HttG2UFENi9FQtizFt4zui5mDZoAy0OcxK6rck5hipAgElgbMhNoJ+6ekgAFadC6iOB6pwHzQQbmU3pG6Ay49vneLzYtaqNsYgn8yg3xdINrF0DDCMxJsbmf6RGb1sAyDf1sAeNequkmfSo9Tdc6BAJvU3NGH68WGCxrxLjOMJzTsaeGKQfHXohlSK/tjX/A3ORp65Q1fNoq72Vq8DNn3lLOafr8sTiQUz5LqTfymEnP6PiZ66xgcK211vpc1AoI11prrTdUJSnpu3/se9G1Frby8M5oYD2Lms14AzgCqoD6TIPqNd8PCN6gay2qWvvz6kaZvL6zIzNI4oDtps+STo2GAKwJsMaDCXDFxrKpHGwEfkHUFMZ5RhvNcZgFptJg+BQP4YXQOYsQh0muoj4wnGe4GEeRAKKtnTqbxvtMxjrbbTeODTggbzy0qZ26gwYh9MLovcmvzR0zrdFzlEAl8jnpWqN5ncDezdUxELaUZbcPIuZ71kaA+kSAWmbx3bbn7CD4mWQqTudaHvNaqEOy4qWaymnHjOTEdGYCGPfGOvWaB0DiZ7KeryZgXmuttdY6VCsgXGuttd6Q9asp3P5HP6BOn56i1FPAlYcwg2Ovn3cGwdEooiIEwp3zHQCVZhJFuSgAYwIa69E5g6ubJrN8HPv7LAf4CPyaStm+IBi5eRoSdGzQe6MZhdBr2jrAhWGzb42H8yb/rgCU0EUTmpxFaJ0yjEblq11n0V1XMEWOYJK0AojAlDLwxMRpdFpzEk8mQcWD/HTYqA9gaV42ONkIR1BICwDy0Lm3ia1YAl8DuDPLIC0CjGXnyBMB6pHg++m8DrmPjq8/b2yjxy6Z65zeC1jOc3lO8zLMU2oKDk92aF1gOg/JWU/5jD3tFxDHqhxnDaFfa621Ple1AsK11lrrDV2l+UwCe+IZ4gjeW5CNIfZQJ9Cq8jjbtDkY3nkDcMCZ9eidUdOZtoL3jLatACFUMSrCckAdwReTQAyh96zum6SB8D72GnZxY1gZH81kGM4xLm8aVJXLIfO1dait/h5ETW+k6McLgeCdgcR+xdRj51hgGs13u7rR3NDaelQzAeMpZqKsuZiIVEOW35jpCqCkwM3l4xhTQDm3wU6y2aVew0NzWRr7FHOS0XhLvW2EPVA417/4atcUhJ0q9bwt+7s8znwG4GjcBTb3UP/godob71YxGctA7qjs9pb5g0ugPH1GDr1Pn6mz7VprrbXWbWoFhGuttdZaAD7yzX8SAPCuH/jzarrSeNQbh4ttCx8os3IElXMCyO6ePqi0s3cGu6saANBLhWrbo6o8mqoHk4KXPjAMCVxgXHcVquQOWppJcIBLMksOYAAOgCdGe1Nhd1mDjJrj3L24wbbuMxjsnMGuqxAC4XzbYtdVEBNgrcpNE0AiEtS1g3MMZsGjJ2domh6buse2chnQTd1Gj9USwPKBEQrTl7IYY5A33WQfYoQy8F2YzyFn0VPmvXTc9BrD68c38k/bz3jo2nM9dHvnP0Xkwa3MZW7hyPq0YHBac2YyI5B6JIj+0LnTOgVsH8w2nMhXlyXTjJ/46r968DprrbXWWq9mrYBwrbXWWquoj3zLf4Yv/Xv/Je6ctQgCtM6g7y36XvsMuQoI2w6V8ahtkloqq7e7qrMLaIp6SIDRcMigzwuh7W109NS+QVeAn9Q7uKl7OG9QWz+MYwMCqXxVvPYQNpWL82CEwKgrl7fJRILgGbAeNrOajMp6XF83+dp+Z9GToKlcZu04snFL/XtLfXw+aN9gksA64Qyoq4IhLYHaXM9dOiblHs5dt2QNb8sWHnp+LxNv2ndXrFGWvs7EXMzV0wDCJaAxBbKnAqpD9/u0ZjJLYHC6vsfA4LFeyzmH1elYB+dZALEpKFvuJ+T8Uxm+ebnzKdee+3348mNlBtdaa63Pfa2AcK211lprUr/0Df8FAOA9f+d7MgNlrUe17QYnTwC9ZzABnbNwjnHv/jXubNrBUCWauiQQJAB6b9A7Zf+ayMQFoSwX7Xv9Z7m2ajyTWDoDwHCXw9v73qKuHLZ1n6MimAShJtz01Qgc9b1B21YgArZ1H11KFYj6GwMPAzCGiIvAuLNpR2vCExAGDMBsGpugTKiB8wxLGkTflucWIKrc3LtovpPGXGInR5vqONapUtKlfsVyg7/cUzdvFDMHDEq57FiyOmailkxsytdOic5Yur+5Oe09n0xsXkVX0VONWubW4RTDnaXrHJJjLq3jKf2AYynwGBSOj5sHiYeA4BQMruzgWmut9bmuFRCutdZaay3Ur/x7fxoA8Jv/hz+TZZ03bYXWVahqh8oqa1cZj3qrLF0fAY0Um08L5N7A3mneYGOHyAgmQecNdok1tB6GQ5Sk6s/kJGo5aFYhB/TeoO0tqO7RkMCSsofndYfWWfgIlIwRBE9od1V2Om0qh7PzHXZcIwSG3xm4JxUcV6D7O3SVQ210HimKwgnDCcNyiPcVXU0Ldi5tbi0FdMGgDRaGAyrjR2syBYMJOO0iiK6NV2fUeO1pzW3iT+lrnBtnChSOxQ6cetwUCCbwoa95uLBsUlOCwVNYqGPHlAB1/7XDrNjc8bcNdb81k3aC9HQuH1LXdv55/TkGoCwCy+P4liWAeCzrsTx/6TNyzMDnaWS9a6211lqfaa2AcK211lrrSP0v/+53AwC+/O9/lzp2mpB77y42bY552ES2TqAgKTF7nVe2TGToRdz1FpXxMCw5amITpZ9Mgs4ZGJYMDEMY4hvO43F1BKRAlJqieBwYN12V4y5SyH3bVrBnymIaEtSNQ9cZVHcdup1FaA12r2zgPeH5+5cZuBEJLBRwBiFc99WImbQzXXyWQ2b9DAcEqJy0KhxLR2YyiU3b2+APcRVzjE557CHZ6Kmb9BS9cYrk82jP4V5e4IT1OxEM3sZZc26uxyShpziAjiM4Xt1KwPjUHsQ50Df3O7AMBoMQQFBgvjBe+VwCm0F4xBKeOo9jTGQA4Se/+q/M3e5aa6211me1VkC41lprrXVi/av/y3cBAP7tf/B/Q1M5mMjSGQ6ZQbQc0Mf4BkKM+xNC740Cv5gpKELoAYQgOWg+gT8fVIqa5JX6vG4ea+sQIoOWev3MZDM/jCHgaFrjSGMxiDTeIoGnEAhEQN9ZhJ0FPIHOHLabfu/+iURdQglojEfrDdq2wUXTwoH3wAdDMpsIIGcdjsabzL2KIHIK/jiu7RTYBGGUmGpug36bXq9TpZhTYDplDqcMqIKI0xmgKTNYrsPcsUsg9ZTewGXgO2bEplLWvT7LA4ziUpXXWJKuHst8XKqDQLA8hoAUKQIsx6sM7O6yHPVU1vhz4UC71lprrXVqrYBwrbXWWuuW9fP/p/87AOB3/KP/DIjOnTUH7REsJaN58zeAH469emlz6QHYeJxEVpEjmAR0g7lzNgNPw4LaeLjAKts0Hjayf2VZo0Y0IgT2nE1uiARtb3HT1rDWI4RoUBMAsACeIP0gbZ32DpaxC3OASBm+YXNvKIBBcDL0Bk6BUyovun5BCCwEAx2nzGcc5+gN+YupFoHRidK9EYibAW8lMCsB0lxP2Gh94rotgbzF0PjiPZgDhXPM4Zxcdfz62IVzeo0lk5UpcDuWO7h33iIgPQzwjklRjwG4YzUyBRJGCQrn+g3HgHJ5LY/NZzq3lR1ca621fqNqBYRrrbXWWk9Z//R3/XkAwG//6f88b4nVYZOz/NNE9q+KgfBJHgoAhiXLISX1yxUbUS+Ux7WJhYxGK0mOuuttBpLpvBQqn5jLVCnEvustutZCRIPrU4mocyk8ob2p4DZdZlBSfqCLPX5BCATgvO6UkRQ1xkEygomgUP7/7d19sGRVff/7z967+5wzDDMTUJlhwKDRmAoZ8VZJiTNGEYk8KJqE+kUwlMFQyY1RFBL15mJuXUxy64K5xkST8uEmRpOKV2IJeCkfyAwJ8pAZH64U5aDRUIUKKiOGMDPAzJx+2Ov+sXvtXnvttXbvPvN0zun3q+rUnOnevXt3N0fPZ75rfb+BcNRJiuvqONcsFccnGjeUse+NFQtUbX7pD+3rWuqIhDZLN3OTKE/CSyBDDWzsckl/T2EoDIaCaEixBLd5QL1bGWt6fW5lzA+GleMaQmJ8SPz0S2GbglX9HwJGy0HLawjv23SvU94S6NA/LrhLSO3jQqGwaRkrACwHBEIAOExfvfBGbdv+RzIqKoHr5nvl8s8kMTqh2y/20jlLOiWVoyhsMLJyJwjaYNedH5ZhySr2KZryeaQi1Ll/l6TcVt0So9yMOqaOhtv3h5nWnbCoJDH6731rNUwyKTXKFzMN86QWWjR6jVlilI2eb9/BBaVJ0TW1Y5Jxx9NAtauT5JVGNf555zvjfZSZ04jFPr4pCNjHxW5rDE/uL/aqPkewqldbLllv/lKGaS/oTQpAqYxCecVfhjop0EabxQQ6m46DYXGL+5zun/6SydpyzpbVQvcal7I/sr700h363vTfxTgcxq7J3ja5cmlahcI24Y/OogCOJwIhABwBOy94nyTpJbdfpwP9blndypy9cEOTaDAsljkOhmnxv8BpLjMaVi+Nf3lMVOyns+EwG/3y2Rs93obJZLSX0DZu6aS55kbLWO2xkjTfHag3Wnpqx2D0h1nRsXQU4LrdobL1ufqHOuX9di+izRB+pe3J3pwkabHfUW+QaWGuX9k3aI9zNS2R7KbD4ExBG7hiXUSl0czFKcJFaJh7rnHjH//5g5UeZylo9Bf/ROokQ3WksimPz90/l5u0DIXxpiXTVdoam8XY+xL798y5pmo4bFpSWjx2uoYzTcFrms+yMaQ2NH8ZPWLCucNLdWOaxlKEHve5X/5w4/MDwNFGIASAI+hrF90gSdpy2/+uE+b6Mk7QMyZRb5AVlURJ/UEmk42We6bVaGQ0GuegavUpN4n6g6zcDygVYcyOdrDVxjQxGuSpeoNMgzxVV0PNdQZaO9crl6MODhUjM7LEaHFQzDXc/8QJ0mKmbH2vNkrCZcPB2rmeutlQe/5rg2SKpjVr5/pKvAqJW+kb5KmUhvarjWcK2r+7z98UBu39/mObmsT4lU/7Pg/ztNzz2PVGEpSPbzkWwt43UFZWCv3qadMcwDaBKLY80W9cEl3q6V1+ebwSpe5cRNNuv980obDtvMJpjnGXttYDa3h24DTCPw9Lfx0AcLwRCAHgKHjg9X8qSXrFHe8uG83YapsbPHKTaK4zbjpjf320fxoVlUJp9Muls3zUqNhDmI0axsyNmsjY83fSXOoU1UH7XNJ4/+Ez1h4oR2HYpZrdhYG66w+pkxWVw6Epmru43IY5nTRXb5gp6wzVf2pOw4VUvWGmhcQoVzXUdZxfmm0nUd+kikpsj5obBGv77rx9ee4ePv+5clM0zlkcdCqzE/29jKFrawoa7vJR9/rbLusMveY2itfkzd7z9ham5bGj7/yAOKmRzxKuSxq/9qX8dzDN+YvHV5eUHu6+xfFztO9gG0J1EMByQCAEgKPo7l/5vyQVjWeSZDx0vjfI1B9mRZVQo8Ax2ncoqWyqYpeKur++9gadYsmppG5nqG42KMPg4mhY/VxnqLlsWC4fTbNiZuGhQUdJYrQwCoBWNxtqvjPQifOL2ntgjYYmUTcbRwE32Nlrs0FroTNQmhopM+otdtRfSDWXJUXQ8MKZu9fRj0Kx/YLDcn9WEjzXpCpgcNZfaL/fSH+Y6UCvq/UL1YY7eeBx/vWH/qwEyGQcyELXPciz2vWGRke41a9W1bTafs569ayyXDXy+NBz+c1tYo8P3d62QU/8vsl7/cJ7BONLmqfVdikpACxXBEIAOAa+euGNklQ2n5nrDDXXGWrQyXSw19Viv6MT5ntlxWGYpxpKGibjzqKJir2EJs1HIyjyURfT6j6v+e6g3H8oFUtPDyzOyUha6A40l+Y6NOiUx8x3BuXzHux3deDQnObmiqri3Gh/oTQOaf5SS0laM9/X4tNzMnmipw4sqJvltdDpsp1V3VmElU6aiVFvmKmfZ2V10+7LbNPBsW1DD79JjTGJnu7NFctss2E1SJlxhc2+hpjGClcyrsrFwoQffsOz79yqV3VQun9MiH9frIJoQ2JzZ87JHU8rf285S7Dpeo/WYw7HNI1kqA4CWC4IhABwDNnmM9u2/1ER3rKh1nT76tvlpCpC33A03qEcPu+EPnefYDoKVjasJSqGxieJkUbnNHmqdQuLRYuQ0TltkxvbuXQwGmbfH6Zav/aQ9j+9IEma6wzUHT1v0y+5C3N9KU+UdHNl2XjwfXmdgepQ4gU7v4PnXDbU4rCjfp6q64zQWMqSv9BexdAv77080+Ig08+sORR8nBsG2zZxCS0xzVUfbdC0BHUc+MIdMd0/Q5qqfrXnTyQ5lbfK8PgJ73uomhk9dorq4FKa1ZTfN4zCmOa/o0mNkqgOAlipju0/nQEAJBXB0N3Td0K3r26aqzuq+klFEw83NNnv/KWV7m32duOEkK4z7D5zjsmS6piH+c5AP7PmkOZGS0AXD3V1qN8pz2NMvcunbZJS/KUYV1Fer9dwJRaiQvsE7S/xc+mwbKzjH2NHbLj7I/33IcQPaPZ12aWpzzrxaa3p9Kuv0wmD5ZLZFs8Veo25STQwqQYm0yB3vkxWdi0NnyMt35u2X03cgBTqwukHzbIpTtNXkpdfbd6TyV9pZQ/kpNfkXq99TPT1H+ZSUXsOv7Ld5txUBwEsJ1QIAeA4sdXCV9zx7qIymOZFd87RnsE0SSshylbzLH8vXeYsw5SKSqE1yFN1R5XHvrNP0V8Gavct9nud0XOrnGvoL5F0G6TMZ0OtWbeowSDVfHe8BNXugWwKT36nTrfaYgfY9/NU6ei1VSpZo+e3e/z855i0V8ytZGYyyrK8DL129EMq09i0po1YExs3r7Td1xYKb+X12mPsnj+vOhYaLt+0BzA0wqGtpr2dofPH9hmG5iZOasoT02bPYcy0AZKqIYCVgkAIAMeZbTxz7r++S9J48HuS5uUyzzQxle9jEi94ueHBft8bdJSbarWwDFMy6mZDrTvxoA4udjXM68sYQ0tAk8QoTY0Gix0tdnKloyWeaWLKxjJ+kKk0csmzcv7ffDaoXG+W5sHZgFJ9GWCbX8Cb3hu3ApokRpnCFaDcJOUeR1tN9IO1e1vovth1RV+b6tcbOzYUDqvP5YQiJ5T5gdF/zOFW1ZrCYOxapdhyz8kzEIMBM7Df8khUC91zhf7bsn+/5WUfOWLPBQBHAoEQAJaJu85/v6QiGNq9fkNnb6ExSVnVC4WMUOByfxm1XUgP9YvqXz8vZhB2nK6h9vFr53sa5Kmy1JTLTkNyJXpycV6d0RxESer3OsqyXGu6g/E4jYZrssPgf/rkiTrw5LxO3bhXJ3Z7lecZmkTDYVYsqfWuV6oGYb/q6Wra++WPmAg1u7GvYZCnWhx2NMxTzWfx5jn+5xS6lrZjG9zGLo0NXPzuoaou/wx1F62fMzwTcdKS3yNZEWt6X5Za5bPchjzF370qaeAfLUJ7PGPV2thxALAcEQgBYJmxwfAlt19XaSzTycJD0u1cQDuyouMsBbX324rWgV5X/X6m+bnx3kEbsFzznYFOXFhUlhQVw0rFa7SE0q2mPb1YdObMurm6cwOtne+V3Uv9X+zNaA+de30/fXKtDu45UWZhqG6aq5dn5XP2h5kOLM5JktbM9bXGC6exbp/uUtXY/bHzhKqC7mPSxBSVzE696ucGPbscM1aNCi199EObW/mKVf5Cyy1DAc/uyavMIWy5BNa/P7gENnTNDR1Sy2MmhOKljJZo89xtl5CGAl0s5Ln/MOHelpuE6iCAZYlACADL1NcuukGSdPaX3iOpOhDeVe6BcwfYj9glm4lJlJlE852hOmmuuc4wGpZso5gT53q1AOIenyRGqSm6ge59ao1+5sSD6mbFOI013X7l2KGzZ81e1zBPdaBfjNw4+NS8kvU9nfqsfeVrtctY/api+RqT6vlCocwe27S3MNbdc1LDmNB+wtDSTf99849rE5ikeuiz39eWW5aPzSvXV7wPeaVRi3+c+9qaAl/zbWnj34vzhzum2vumFXtMKMRWu6bm3n31yqAvfN3jKqv739vRWpYKAEcSgRAAlrn/7+L/U5K0dfsfBe/vpLmyJNfQqbr5S+DsstC50YD6fp4qkbM8MrRHS9VGMnY/ne046i5fXLtmsWj+MmqE4/IrWVY3G2pDNlQ+n+ikEw6W1z3I0/Ey1sSUFVLb2MYPxqE9k/b22lJAb57epCpP6DH2/sqxkUpf05B5/3j7mPL7wH66Vl02K8GwOqLED0S5Esmkyk19j2CsIjhp+WNT2POPW4ppglVsv2jsucPdVtt1NrX7EmNLRKkOAliuCIQAsELscmYYSuPxB1n5i3wuqR4K/SqW8Spg0y4VlFTu+xvmqbI019q5vp44sEaDQabshPoMv0nntXsjZZIi4Ka5OknRmKab5lroDpSb6mP9wBqqxlSqfaNg5441kFTpzFq7RlVDYajqMx634O6THIfB0B7CUHB0K35t37umPWzFebLReev7Bu3A+cp1mMAexCVUto50BbDNdUyq5krxZa3+dTW9/02Nd+xjqQYCWEmYQwgAK8zOC95XBrmO0xTDnxFo+ZWdYBUkUMWLDY53b+tmQ5nR/sSDB+fU72cKCYXPUPMXe04bBm0jnRPnF7WmO9B8Niz2NI7CYGVvY+A5ytsa9qiF9g6O/z6eq9dJhuVy2qYGK+W8wFG10w2f45CYll8DkxbHKRl/b+oz+erPk9T+Hjq+uJZY19D6zMDxtY3/e1lKU5TDbfxSnGO6WY/TXGf8dbf71ch9/ya9VqqDAJYzKoQAsALZURUXfPnaaBCM/RKdOZ06pXBFY2BSdZPwPkNjqsvv+nmqpw7Na3igo3Qh3PgmNpLB/dPud5RUhsHFYUeLw0zr5xbLY/zKYNNrlVRW8KrNRCYsAW0IkbFRBmXjFgVCmft8SbgCZUdrtOlcGbpu97lCjWvcBir1x4WXrjZVXUPq72s8KMUauiylunaku3jGGu+0fU66igJYSQiEALCCbX/lX0mSXn3nH1RuD+0F8/fUDUeVqDWdfrVKZsKNVdwql10u2s9T7Xt6jXqL3eBzu7fVglRSr+rY42wYzE2ihc5AAzPaV6h6cHNfm3ud7nLO4u95sV8usPTTf5/cx/lC+wJzJeoNu+rnmeazQfB1lY+fsBevaR/fpNtrj5/QvCZ+nlCjm8mjGWL75+rnii0nbfe6/Oetnrd9ZbJNFXOazyB0TZ/75Q+3vh4AOB4IhACwCuw47y8lSeff+Ye1CpP/i7wdQdEbdLSmW4TB4Wg/2cCk42BkVGnwko9CWifJNcxTHRp0tNjvKM8TZZ2hFk7uab7bV5bmlS6hfhgsu6LKyN3zaNmRFPb2YZ4W+x7TXDaLZU53Ufd1uUtHO0muTjosr72p8mZv6yTxpjCdJFL9HFUEF4cdHeh31V0YVpbwhvYntgmDTbc1mdS4xr+O0FLeUNgL3ec2q1mK+oiN0H7LeCAL7Qlsu+SzOEdzIGxTFS2es/4zJxEGAawMBEIAWEX+9bwPSBoPt682OknKqp4xSbEvr9MfPTIv5xXmo8YuUjEuYjhMy8Y13VHA6mbj0JMmRvPdgTpprt4wU3+YKZHK+YWhJZ5WKqNOmleWS7rXUR7nPN5ei60Yuk1Y3DA4lw0aK3OTftl3w2BvmKmnTAujIfSxPX3zo/fFHbPRNjS1DR+HO7PP19xAJTx+Irbst/i+PtKh+fmbh8Q3ib2vsW6skyqm/rndP/3v7bX6t9NUBsBKQyAEgFXIDrc//84/1CBPy6BmO2rOZUPNpUXFywYYuwzU/pJrQ6H9JXqYp+rlmQ72u1roDLSm2y+PSRKj/rBoKOM2AomFwXLZqknK0ORW1UJLVdOk6KhajqSILB+dSweVsOiewwotFw3vDRxXwZ7qzZevN3SO+VFYtIE2TcavvakiGKrgxpZ9jh83OczUX/M4eB1uaImdO3YtsccdrqmayEwRBu253ffRf08nNbv57LaPtr42ADieCIQAsIq5FcO5UcWuk+RFVU2JNKrMDUZLQI1JyqBX/kKsYhzEIE/1dG9Oi/2OFjpF+LGVwv4wK8JdMu7+6Qaipv1WtsLnjn+oVASlsutofTlh7gxir1aZbBgc5KkGJiuXv/rPb7+PNZOx1b9+Xu28acXGVjRVB5uqTmVlKjDbcBL/vLF9djYUTjo2ZJoZg7EwOM1rmhTmgx1UG6qoS33uSUux21Z4AWC5IRACwAywFcPz/u2d6uXj0RC2miVJXaf7qLuE0/1Fd+1cT2vnepLGXTEllctQEycIps4+P3/pquUu93QDn1td9H/pLkLt0Lmt2g3Sf46BydQbVUdjSyBDr9W/f6EzqD3eVjTd/YJJYtRRXns9k7qHppX3LG+8lqa/NzdmaR7IPkmlU6uzLDNWfQuFt6ZAFgpboeWosedvG/aiy4RbvA+hf0jwv6c6CGAlIRACwAy581V/UQ62L5eEOpU841TCyuqW6p1KpWIJqX3sYJgpN9JcZ6huWizrdCuFoVDjjsuohT6ZymiMjjPrzZ8VF65GpbXxD1lar4q51+N+H9pnaPdbuo+LLYdNnWu3x04Kgu7rcN8zd+mrf50h8eWp0+4tjAxej+zPa3qOtktKi2Pd+YfVx0373NNW62LXUr2t3ggHAFYyAiEAzJidF7xPkvSKO94taTzzb5CPh6KnSRHIJCkLLGl0q3qdNFcnG2r/gQVlqVHW7ZeNXyw/EA1NvbuoPbd9rFsNrDUxcYOBswQy9At922Yu7mMklZ1SQ6/bf5xfAbQhz15nNAx64y2CS2sjYXD8ZzUcu4ElFJyXqimMteVfQzwMhiuBwXNGRoQ0Lct1n6v5ekPLfZu7ttJZFMBKQyAEgBllh9vbjqRDk6g3yIoxFCo6knZsp9BAk5ZsVAmUpBPtMtLheDlqqFmK5S439ath7m1+GPRHQeQmKUZROKHQrQ5OoxYaJizzjAWOytLP0XsWawxTee0N1ammEFh9TBr8fhpNVbnQ+1Efc1F/HdMMeW8Kg20b7Pjvaaga3Hbf5NFsigMAywGBEABmnN1f+Ms7/helc/0iHOap+qNwmHSKQeuVGYWjX6YHo2WjaWK0fm5RvTyrHON2KrUhbWiKBjaZvd8Jg0kgHBbPnVWuObSPq5xD5y0VDQW3tk1eYt/XlpTKlDMS/f1sbrwKjWQInTccBtNgtSy2f85WC93nnlQlDIWxSSHIBt5J1b82/DC61A6roT/t96H3uK3Yfz/2um97+d9MfU4AON4IhAAASdK9r/5zSdI5//K/lvv7bDfRoW0y4z3GXVZp99kNczeE2L2IuVJJuVIdNIkGw0xmtM8uUzUMjr+KQDMwqfrDTAOTak2nHwxz5dLMxu6S7QJKY1MW1UOGe5/t3prKBAOYfU02QAxMokPD8ZgKqaieGpNovhOeeeg/v1+BrF5bdelobAmpG6b95wy+324Dnsj4j/D1OFc2dQV38pLXNo14/Ntiy4ABYFYQCAEAFV+98EZJ0ktuv05pUswXDP2iL6nWVCVNjJTmRYXRpOXcwIGyMjB106HmO4Ny2ahtTOPvG5TG1b6Dg24ZBkPL/sqAkjjX0cDf8+feHguVuYoqaSfWOMWp3tlqam6yaAXPDV/+60oSU1lW615f7bZoGHTDWx5Ybltd3uv+GRPb4+iO2Igd5z/XNEKdZJua9LR93mm7tIbPS3UQwMpGIAQABH3tohskFcGwk9bHIAyd0RRKc+XJOJjlSdF5dKBUi8Nx5ShLchmTaG23Vz6PGwatcUUr0eKwI9vkJjdJpTtpKJq1DSWhIOiOeyhfm2xn0+L1DZSWsxz94/znKF7g6IZRxbAMN6OAZl97U1AKLn9sOWohdO5YhaypWjbpfa0E88hxTUti276Wpmvz/z7p+ZaCfYQAVhsCIQCgkQ2G5/7ruyq/aB/od9UfZOp2hlo71xstk6xW3Q72u8pNohO6fSnN1R92y86kdpmoVflFO1G5R3GYp1oYVQdtGLRVKX8ofFMTGJe73NFv7uJfi1tZK0NP1hyy/GuI7oWzlUSFZySGrrfy+Bav1RdbAhq67spzT6hOjkN8tWHOpIpdaF9lG5NC4VLC4FIqm2mS01kUwIpGIAQAtHLX+e/X+Xf+ofrDTIcGHR1YnFOvl+ln1h2UNFomKSNjxktAFzqDcqzF4qD4vxz7S3cnzZWa+rJTf/nkfFbspfPDoCu6fHBCU5JYEPQbudhrsgE0Ns6iKaT41cfRMxZ/mLRyfJuh703NckJNT/zOq417JQPnbtPgxd2r2BQMg41yGoJhrNo4bRg+UnsE2WsIYDUhEAIAWvvX8z4gSfql//d6HTrU1QknLGqhM9AwTzWUylEUqRkNk8+MDva7OtjvaDDM1MmGWugOlHrLC5vU9imOgom9vU1Y8Ie+h4z38o3DU+qFPxt0J4VBvzoYq36Nj/OazwSPjj+Hvf7x6wiM5widz4a8CXsvm8ZmVMUG0zdXJWMm/ffhVoQnVVcnnWOpx9zyso9MfDwALGcEQgDA1L71q38iqehI2hsW4ymypOgY6uoPMz3x9BoNh6lOWOipm8XHLTT94m68X8gTL9iFKnPuHjt32aNbTQuFqNASw1Ajk9B+uaalnU1iy1WDyzQnLI0MLnGNvFdlQ5iG7qzusVJ8ma09t//+udc3adlp6HX61c/gtXnvQexzCT2uaa/jpOclDAJYDQiEAIAlsx1J/6fP/286Ya5f7g204SFLcz3jxAPqDTMd7HXVG0gnzOXqZsPyHO4+wFDgykf3+6HQPz7WcCW0XNGvBtrb3eeNPVdT6JjU6GXaEQeh40NhJRQCY9cffg316w3NJExl1EmHUy2ZrIy0MNWKqT/6oqmSGwvN/m3uctXKawwFzyR+vhiWiwJYbQiEAIDDdv8l/4ck6dV3/kGlypYmRv081VOH5mWM1BkFwdwk6iR547JPyw2F7m1tw6ArtCzU3t5WaHliczOS2ALQKYfEm3CoCb0O9/0vv1Tfn5ibREqKJaqh5Z9lwxevKhjbs+g3inGfy71e9x0ZV1/dcNjcHCgUjt3zjGc9Fp1pO2k+ep3ThfDY80pUBwGsHgRCAMARs+O8v5QknX/nH5a/WC90BhrO9zQYpprrFDMIY2EwtAwzVLELhRIp/gt/bGlo26pg7XkmBNlBYMaff153RmHtegMD4t3bQ9c3Pm+1Y2ns/auc16RKk2HtPfUrdk3LK+17G7t+t1Jnq4FtlnTGrtm/zX3dfsVzkBfdXDtpPr6GwDU2dY6ddK0AsFIRCAEAR5xtPvPqO/9A89lAa9cWcwdjowBCv2w3VeJC1cHQck338TakTaoKxn7xjy4Z9ULdVJXHyN1tGu407aEMnc9WyCqjIjT5c7B/j+1dPBKa9gm26eYauq1xWWnsjZ9wffbPz2776FSPB4DljEAIADhqbMXworuuCd4fXfbZ4vvKeRo6eeYmVS/PGkOWG3gqlaxAcAgtT7XNWSZV8Jrua6pGtVnqWEqaA2XlffKWszY1yglda1P3UjtbcRqxYBh6r9zraxsa2/4jQGjJKhVCAKtVbGMDAABHzO3nfrAWePwvl7ucM3SMrXSVX97+tvEv9kUYXBx2KucNBQ53r11ZbfSex39+9++V2YGB1+d+dZK8dt5aVW50XycZjl5f/MvnB1x3D2HIpHNM4i4Xda8/eOwU1bnqctRws5zYks9q86DwV0xsj2qaGH1m68daXz8ArARUCAEAx8T2V/6VpKJauJQqS/tZeGMDk2px2GmsDFb+dJad+vvh2lbp/OYt/uOClczRvsbYUsjQXsZqwK42gCmfu2E5bexaJi1X9UNa8X3435dDy2knvY+Tqo9tltOGg2PoGpv/+5GoCAJY/QiEAIBj6vZzPyhJes3d75BUbYRiTdqnV9wX79JpK1aDPFVndJwdWxGaYejvq8tH+w3LcGeSSmDzg01waemU1xxbohoaczFtEBufK534vrnP5V9bvWI33UKjWDBtaubSVlOQnBTuQyEz1JSH6iCA1YhACAA4Lr74ig9Jki655+21fXu1X869X+T9GXMhvTzT0KSNg8/dMBhqBhPaU+Y2JgnueWvIMrHOovHxDEbu+ITquZa266OsJHrvoRvwBrnUSfMyTFcfn2iQZ5UunX6obgqd7nOGr6/dPr9qMJ60BLSooE61F7PFNQHAakAgBAAcV59/+V9Lkl5/z9WSNLny1hAG/cpZluSVgfZ+ddBW/ip/b/jlf5CHQ1hoH1us4jlNs5Xy2iLhb5rlrKFj6/vkqh1a82RcCXWrhLGxGCHTLLlsaiYTavwSq1SG90TmlePcY9pcI3MHAaxWBEIAwLJw28v/RpL0a/e+dXyjs9Sv/d6ztBLymgbau49zj2lj0nliyxD9JbJ+s53Q9VQa1njNbNqohN6G99K/XhuAQ1VE9/b4HsVw+AyNHWnTWXR8DdV5kvb4WNgdHxO/vhiqgwBWOwIhAGBZ+dwvf1hSNRi6YyWaglho6Lx9TJsw6J/fDyp+p1M/kEwKD6HRBW5AjO3hqwRIJ9D5zW+iQc9tNKNqUGoTivzKaNP+yLbjGWLdQUOPjX3GIbGOqbHnaNNUhuoggNWMQAgAWJZsMHz9PVe32jPoBoVBntaayJQjJUbnyk1a2e8XnMGn8OgF2900N4kGymqPHx9X/3uw82YknDTN8xu/J+P9cX4odF9rbI/fpPEL9SAVDlyhP33+yIf4PsjQ3sVqYxj/+SdVS2MdXCchDAJY7ZhDCABY1uxS0jZ7Bt3bksQEw2A5CzAdjmb8jUOMe6w7/88az/5zZwoOq4+NfJWzByOzA11NsxAb5wl6nUrrDWSq1199L9NaQItVUCuvK62erxKmG67ZDXjul3st7lfjdUzRbMh9fAzLRAHMEiqEAIBlz1YLL/3336/sZ/MrWH6Vrs1ywNSYYGdQd0SD35BEKpZRloHEO0ds9mDter0nnrYL5ni5afX63EqhGwr9Dp2hfYyh0RSTKp+u8nNps+9ziiH15XM7XWGn6WxaOUfLMEh1EMAsIBACAFYM+wv6pf/++7X77NJKf+mnu0xUCu1Xy2tdPGPdPQfl2IjifIM8U5rk6qTD4Lmrz+Pu3UvjjWIq1xqZMxgId5Xr9l+f6g11/GBtX5NbkfOfp0mwUYx3PX5X0NDexuY5iU5Dm8h71rYpUNNroEIIYJYQCAEAK44fDIsKWRZuVJKM90cMTFbpnBmcs+eEmIEZH1sJXaYYeG+H2KdmtAQ1taEqHCiCIxKiw9pDyyTrAS24rLNFuBqf028yk48D62gGoh+022g7bL6pyld/Pmf/Z6vj2wn9d2Or0gCw2hEIAQArlg2Gdoah5YcXG3B6w2JYvVTMKHR30seajviNUKyeycbHKJFyqZMOa5W46riEcGOUSWEwVOVrCoL+OZse47/e0RVIZZOeTB0NJ4bC2HPEGsgsZXi9u0T2cDQFdgCYNQRCAMCKZxvPXHTXNZK8QfAmkZLiNjMKdjZsuNXC2P5DfyyEPbftYpqPQlqeVEdQNKl1GvX27YWao8RCZlMH0qUql5COQuFgVAWd1LTFX3LpL42Vpt8nGbq2SeNCDhfVQQCzhEAIAFg1bj/3g5KkC758bXBPWzcbKsmNjEnKSmGxjy3caCW2fy43SWXgvb0tV6o0GU593aFqnh8A45W38ND1tpo6iUq5UjnBzllCGruW2JzAaQKbH4QP51xtnmOaWZIAsNowdgIAsOpsf+VfRe9rChP+CIrQ/f6oBX/sQnXOXj20hb5Cz++eK/QVuq5p+PMAQ6M7xq9x6IzhiFcHBybTwKTBUFUPtPFRErHvj1QVMNQ11d5GdRDArKFCCABYlWwofM3d75DkVYQSo9TEh5xL4Q6YoSHx7vHl+Q+jyhSqvkX3HpbNY4aVx8aqftHGLpHmLJMqdePrqzfLaXpN/nNG39PAe9F2P2SbawAAEAgBAKvcF1/xIUnSJfe8XdK4GpRLSo1qSz8lJ2j58wTdkOiGJa+rp7/nro22QcefYxjb/+hX+UK3TxKa9SiN914Wx1TDamMFNrB/MBY+g49f4pLOtq+VuYMAZhGBEAAwEz7/8r+WVARDGywSJ4xUKoiBoeqxuYHlbcl4JII/FN4/pv7Y5iYtdhREMVMxNN9vvLfPDYihINiWPd7OWqw/n/P3KRvH+M1pYhXB2DXF7mt6H6kQAkAYgRAAMFNsMLQdSaXQLL7q+AY35Lm3u2LLOqXmgOSGOPca6sfVA6d9Prfhi/t60sSUVc02zxF7PbkdsRF5HU0BOXbe+vHx96jpukP3LWU/JdVBALOKQAgAmEm2I6ndY2jZEFWd/RfvHOov4fRvm9TEZtrw4gbD8janImmvteM2gHH2S9aDYRq87tD1t6kETtvtNLT01n2uUOCbptrZ5v2leghglhEIAQAzrbbHcBQG/T1toT1+7Qe9hxu3LDWI+NVIu8S1kxYD5G0YHD9nKhmV8xj919ImaIWu1W+6M+2eyWjzGIWvq00QbNqLGNun+dltH2193QCw2jB2AgAAFUtJ3cqgPz4i1KQlJnSMO9rhcMYo+JXB8qsWOKdvaNN0e9P4i6ZurfXb82AYtEtb6/sjvRmH3oiMaTFnEACqqBACADBy28v/RpL0a/e+VVIRvgamqL7NZYPRbdM1KGnaP+gvLW1umtLcoMZf2lk0g7HVzlx+lbByHpMqkOnq542Nrajtr2wacREOw7EgKBWNbfxq5KRrDQldE9VBALOOQAgAgMcOJ7/knrdrkKca5sU+u4WsL6k6dkGq7sMr/u4sywx0LLXHSG1CTDgIxpZD2nOXz+t0J00TU9lP6J4/lQmGwsq1J5OvvanaWH41dHD1l+QO8mLYvXsNqcxov2R8lmHoOv1ASCMZACAQAgAQZTuSvv6eq3Vw0A0uzfTD4Ph2p4mLP+B+ygHrsRA4SWipa2OFTfVrrYQu2cY18eP81+MuDe04r8Nfbhobeu+GwaXvuWSZKADEEAgBAJjALiW95J63qzfs1ucWNiyPjAl1Io2Nm2ia09fUcKUSSr1wWDnOqWK6gdGvwBVBdnTbhH18ldEXZefWdss9i8pgqsFo3EXlfA3D7adBdRAACgRCAABacmcYThrREB+SbhvL5M5tzctHJw2u978PPXYcHMdBLlTZ9K/NPUdob2BT85pYGIw1oykby5hEA5PVZ0IGwmrsPacqCADtEAgBAJiSnWH46jv/QElD9S5kvEQyq807DJ0nFnKmGzI/DoM2cFWesyFouZXF6nVNN2+wsSOp/OpgNvH66tfTbsSERHUQAFwEQgAAlmjHeX8pqagYumrhRNUqlzs/cLz0snlpqGuayuD4uPBeR39fZLCSF6hqNmnqIhpaKmsNTKresFOGVnfP47QBNPYcAIAq5hACAHCYbj/3g8FxCnZGoM+dH2gV8/UCoamhCYzkde/0riFU3Ws7fD60xDT0nE3ncDutxq7H3m/D4GD0PlTPMzkMtl0iypgJAKiiQggAwBHwxVd8SFLRkTQmFGwqe/pMqkHu7dlTtaJmw1JTExl7Tnd5aP1aTHDJqnue2DX75/E7mfrnc88Zuj03iXp5J7iUddL1udcBAJgegRAAgCPIHW4fW2pZDVGhkBge3RBThKpxCIydp+35YsdMGjbf5nGxbqKDPK1XV1vMXIw9Z+j52TsIAHUEQgAAjgI73P7X7n1r5fbWzWdMUls66d43PqYeBNs813gmYjHgfVKVz61MutfVZt9jqDlMriIMupXB0OttO6rCvU4AQHsEQgAAjiIbDC/9998vb5smtLRZGipN3msoedVDZ7C8DYWuNiMwJlUFYyMj/P2C/rlsdfBIhkGqgwAQRiAEAOAYsIHEDYZSuGlLXWzUQptmK9XQ6FcS7VD6UCgcnyO8hHVSKHNDoX3eQZ5qkGfF80Ya00ziP85vVjNpriMAYIxACADAMWSDob+UNDYkXlI5miK2p65yngnVx3KpqFMhbLLUMGiP8ZealmGt4XknDbv3n3NSGKQ6CABxBEIAAI4Du5S0qSupZat4UnjGn1QNQm2XpDYNfG9qbDNNGPTvKx47ubI5zSzGaa4TAFDFHEIAAI4j25XUn0voziqMVdMmh7T4/803hUH/OUIzDiddS7XxTVILhaFzTfMcVuy89ou5gwDQjAohAADHmQ2Fr7/n6obwF9tHGJtJOPnffGMjL6bpIOo+zv0+VB30zxUbRzGNpq6kn9n6sSWdEwBmCYEQAIBlohIMG6p2oeH0oVEUTZoCpv2zbSdP/7bqdfnXUn/eWKgLBcbQfQCApSMQAgCwzLjD7a1QM5VQKPTnEvoVx9bLQ73HhQbex0JZu0BaD5tN1cNQaGwKpywVBYB2CIQAACxToRmGrlCFsHbMqCFNqEOpH7o6aT46th4+Y8/XbmyGe652Mw9ry1a9ofb2vjbvAQAgjkAIAMAy584wdINYmzmEViyI2UqjDYPFsfUB9n4oHD+2+RpCgbG4bRxQ/SH27vU1jaeIBVUbpAEAkxEIAQBYIWwwfP09VytXotxkleqfVCwJzU06cb7g+PjqEtHQ0lD/e/exMePgmEdDYXFffelrbNmqe31NVUsAQHsEQgAAVhi7x/CSe94uqV79i4Ww4thxha/WqCUStiZ1Aw0tQ3Wbv0yuIlavyQ2DlREWDWHQHssQegCYDnMIAQBYoT7/8r+O3pcmee0rfNw4DLozA6tf6bhZTcsxEu79k+YL1h6jalAFABw9VAgBAFjBmkZVxJrDhMJZaHbgpIYxk8LgNI/xQ2ObMOgvNaU6CADTIxACALAK+KMq3EDVFLKq8wurQdDdT9h2T+I0QtfoX1ebc7B3EACWjkAIAMAq4o6qiA18t1qHrglhsKnhTOw5mvYiukG01fUlhrmDALBEBEIAAFYhu3zyf+x8i6R4APOXbVb+PmUQbLvMs/LnhO6mAICji0AIAMAqZitnb9j1e60fE+pSOs3MQysUGP0Oova4VKZWGZzU3dSiOggAS0cgBABgBnxm68ckNVcMXaEAOE3Xz0nVQ3//YNOoizbnAwAsDYEQAIAZMm3FMBbkQss67ZD5pnOlcjuJxobWJxP3HtrnojoIAIeHOYQAAMwgWzGcFODc79tU5UJhzl8qOj52PNvQn4PYdH6LMAgAh49AuIo85znPUZIkta+3ve1t0ccsLi7qj//4j3XGGWdofn5ez3ve8/T3f//3lWNuvvlmnXnmmZqfn9eZZ56pW2+99Wi/FADAMfCZrR8rg6EVGlHRNB6iSWUovRMGJ4U+AMCxw5LRVeTrX/+6hsNh+fcHHnhAr371q/Ubv/Eb0ce84Q1v0E9+8hN9/OMf1/Of/3w99thjGgwG5f27du3SZZddpj/7sz/Tr//6r+vWW2/VG97wBt17770655xzjurrAQAcG7bSdum//76kIzcf0P4Z61Y6MGnZTKZNddDFEHoAODISYwy7slepa6+9Vp///Of14IMPKknq/wd7++236/LLL9dDDz2kk08+OXiOyy67TPv379eXvvSl8raLLrpIJ510kj796U+3uo79+/drw4YN2rdvn9avX7+0FwMAOGZsMLRioXDS7U2jJSRpkKe1x/rchjPu8xEIgaXh9zL4WDK6SvV6Pf3TP/2TrrrqqmAYlKTbbrtNZ599tv78z/9cp512ml7wghfoXe96lw4ePFges2vXLl1wwQWVx1144YXauXNn9LkXFxe1f//+yhcAYOW45WUfaQxcTfsJQ0tOcyVlGLRVwEGejv7M1Ms7GphMuUkrTWYqVUbCIAAcFSwZXaU+97nPae/evXrzm98cPeahhx7Svffeq4WFBd166636r//6L731rW/Vf//3f5f7CPfs2aONGzdWHrdx40bt2bMnet4bbrhBf/Inf3JEXgcA4Pjxh9tPElsm6oZB+2duklEIDHcm9YMlew4B4OigQrhKffzjH9fFF1+szZs3R4/J81xJkuhTn/qUXvKSl+g1r3mNPvCBD+iTn/xkpUroVxiNMdGqoyRdd9112rdvX/n1yCOPHP4LAgAcN5/d9lF9dttHJ46DSBOjTpKXoyX8JaOSnL2Cafk49xh3/mEoKFIdBIAji0C4Cv3gBz/QHXfcod/5nd9pPO7UU0/Vaaedpg0bNpS3/eIv/qKMMfrhD38oSdq0aVOtGvjYY4/Vqoau+fl5rV+/vvIFAFj5YmHMDXVpYtRJh0qTfPRVD3W5ScuqYSo7m3B8fNsRFwCAw0cgXIU+8YlP6JRTTtFrX/vaxuNe9rKX6cc//rGeeuqp8rb//M//VJqmOv300yVJW7du1Y4dOyqP2759u7Zt23bkLxwAsOzd8rKPlNVC17gqmEceWSgbxESCoFRdJupWJakOAsCRRyBcZfI81yc+8QldeeWV6nSqW0Svu+46/dZv/Vb599/8zd/UM57xDP32b/+2vv3tb+vuu+/Wu9/9bl111VVas2aNJOmaa67R9u3b9b73vU/f+c539L73vU933HGHrr322mP5sgAAy4wNhm0reeGB9fnoz3FVsJM2B0oAwJFFIFxl7rjjDj388MO66qqravc9+uijevjhh8u/n3jiidqxY4f27t2rs88+W1dccYVe97rX6UMf+lB5zLZt23TTTTfpE5/4hM466yx98pOf1D//8z8zgxAAIKk63N52DbXdQouvpDZuwlYFi+9NbZlopUMp1UEAOKqYQ4ijjnk3ADA73rDr98rv7dB5qVoh9DuLloHQmVfoVxQJhMCRwe9l8DF2AgAAHDG2Wvg/dr5FijSkDlUCY8flJiEMAsBRRCAEAABH3Ge3fVSSVzGcMMxeGs8stGGQbqMAcHQRCAEAwFFjK4Zv2PV7rQKeu8w0TUz5eADA0UFTGQAAcNR9ZuvH4hVCmcrwevs9YRAAjj4CIQAAOCbcjqRSNQiyNBQAjg+WjAIAgGPKhsLLd/3P0SBIdRAAjg0CIQAAOC5u2vp/S5J+8yu/Ox5JEWtNCgA4KgiEAADguPp/Xvq3ksaNZ2yHUgDA0UcgBAAAywLLRAHg2KOpDAAAAADMKCqEOOqMKRoG7N+//zhfCQAAwGyzv4/Z388AAiGOuieffFKS9OxnP/s4XwkAAACk4vezDRs2HO/LwDKQGP55AEdZnuf68Y9/rHXr1ilJ6B53NO3fv1/Pfvaz9cgjj2j9+vXH+3JwBPCZrj58pqsPn+nqs5o/U2OMnnzySW3evFlpyu4xUCHEMZCmqU4//fTjfRkzZf369avu/8BmHZ/p6sNnuvrwma4+q/UzpTIIF/8sAAAAAAAzikAIAAAAADOKQAisIvPz87r++us1Pz9/vC8FRwif6erDZ7r68JmuPnymmCU0lQEAAACAGUWFEAAAAABmFIEQAAAAAGYUgRAAAAAAZhSBEAAAAABmFIEQOEY+8pGP6KyzziqH3G7dulVf+tKXyvuNMXrve9+rzZs3a82aNXrlK1+pb33rW5VzLC4u6u1vf7ue+cxnau3atXr961+vH/7wh5VjnnjiCb3pTW/Shg0btGHDBr3pTW/S3r17K8c8/PDDet3rXqe1a9fqmc98pt7xjneo1+tVjtm9e7fOPfdcrVmzRqeddpr+9E//VPSgqpr0mb75zW9WkiSVr5e+9KWVc/CZLm833HCDkiTRtddeW97Gz+rKFvpM+Vlded773vfWPrNNmzaV9/NzCkzBADgmbrvtNvOFL3zBfPe73zXf/e53zXve8x7T7XbNAw88YIwx5sYbbzTr1q0zN998s9m9e7e57LLLzKmnnmr2799fnuMtb3mLOe2008yOHTvMfffdZ8477zzzohe9yAwGg/KYiy66yGzZssXs3LnT7Ny502zZssVccskl5f2DwcBs2bLFnHfeeea+++4zO3bsMJs3bzZXX311ecy+ffvMxo0bzeWXX252795tbr75ZrNu3Trz/ve//xi8UyvHpM/0yiuvNBdddJF59NFHy6/HH3+8cg4+0+Xra1/7mnnOc55jzjrrLHPNNdeUt/OzunLFPlN+Vlee66+/3vzSL/1S5TN77LHHyvv5OQXaIxACx9FJJ51k/u7v/s7keW42bdpkbrzxxvK+Q4cOmQ0bNpiPfvSjxhhj9u7da7rdrrnpppvKY370ox+ZNE3N7bffbowx5tvf/raRZL7yla+Ux+zatctIMt/5zneMMcZ88YtfNGmamh/96EflMZ/+9KfN/Py82bdvnzHGmA9/+MNmw4YN5tChQ+UxN9xwg9m8ebPJ8/wovBOrh/1MjSl+yfzVX/3V6LF8psvXk08+aX7+53/e7Nixw5x77rlleOBndeWKfabG8LO6El1//fXmRS96UfA+fk6B6bBkFDgOhsOhbrrpJj399NPaunWrvve972nPnj264IILymPm5+d17rnnaufOnZKkb3zjG+r3+5VjNm/erC1btpTH7Nq1Sxs2bNA555xTHvPSl75UGzZsqByzZcsWbd68uTzmwgsv1OLior7xjW+Ux5x77rmVgbwXXnihfvzjH+v73//+kX9DVgH/M7W+/OUv65RTTtELXvAC/e7v/q4ee+yx8j4+0+XrbW97m1772tfqV37lVyq387O6csU+U4uf1ZXnwQcf1ObNm/Xc5z5Xl19+uR566CFJ/JwC0yIQAsfQ7t27deKJJ2p+fl5vectbdOutt+rMM8/Unj17JEkbN26sHL9x48byvj179mhubk4nnXRS4zGnnHJK7XlPOeWUyjH+85x00kmam5trPMb+3R6DQuwzlaSLL75Yn/rUp/Rv//Zv+ou/+At9/etf16te9SotLi5K4jNdrm666Sbdd999uuGGG2r38bO6MjV9phI/qyvROeeco3/8x3/Uv/zLv+hv//ZvtWfPHm3btk2PP/44P6fAlDrH+wKAWfILv/ALuv/++7V3717dfPPNuvLKK3XXXXeV9ydJUjneGFO7zecfEzr+SBxjRpvfJ13PrIl9pmeeeaYuu+yy8rgtW7bo7LPP1hlnnKEvfOELuvTSS6Pn5DM9fh555BFdc8012r59uxYWFqLH8bO6crT5TPlZXXkuvvji8vsXvvCF2rp1q573vOfpH/7hH8qGQPycAu1QIQSOobm5OT3/+c/X2WefrRtuuEEvetGL9MEPfrDsjOb/S+Fjjz1W/ivipk2b1Ov19MQTTzQe85Of/KT2vD/96U8rx/jP88QTT6jf7zceY5dP+f/KOetin2nIqaeeqjPOOEMPPvigJD7T5egb3/iGHnvsMb34xS9Wp9NRp9PRXXfdpQ996EPqdDrRf9XnZ3X5mvSZDofD2mP4WV151q5dqxe+8IV68MEH+f9UYEoEQuA4MsZocXFRz33uc7Vp0ybt2LGjvK/X6+muu+7Stm3bJEkvfvGL1e12K8c8+uijeuCBB8pjtm7dqn379ulrX/taecxXv/pV7du3r3LMAw88oEcffbQ8Zvv27Zqfn9eLX/zi8pi777670jZ7+/bt2rx5s57znOcc+TdiFbGfacjjjz+uRx55RKeeeqokPtPl6Pzzz9fu3bt1//33l19nn322rrjiCt1///36uZ/7OX5WV5hJn2mWZbXH8LO68iwuLuo//uM/dOqpp/L/qcC0jln7GmDGXXfddebuu+823/ve98w3v/lN8573vMekaWq2b99ujClaZG/YsMHccsstZvfu3eaNb3xjsEX26aefbu644w5z3333mVe96lXBFtlnnXWW2bVrl9m1a5d54QtfGGyRff7555v77rvP3HHHHeb000+vtMjeu3ev2bhxo3njG99odu/ebW655Razfv16WmR7mj7TJ5980rzzne80O3fuNN/73vfMnXfeabZu3WpOO+00PtMVxu9Iyc/qyud+pvysrkzvfOc7zZe//GXz0EMPma985SvmkksuMevWrTPf//73jTH8nALTIBACx8hVV11lzjjjDDM3N2ee9axnmfPPP78Mg8YUbbKvv/56s2nTJjM/P29e8YpXmN27d1fOcfDgQXP11Vebk08+2axZs8Zccskl5uGHH64c8/jjj5srrrjCrFu3zqxbt85cccUV5oknnqgc84Mf/MC89rWvNWvWrDEnn3yyufrqqyvtsI0x5pvf/KZ5+ctfbubn582mTZvMe9/7Xtpje5o+0wMHDpgLLrjAPOtZzzLdbtf87M/+rLnyyitrnxef6fLnB0J+Vlc+9zPlZ3VlsnMFu92u2bx5s7n00kvNt771rfJ+fk6B9hJjRrtaAQAAAAAzhT2EAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAsWej1wAAAdtJREFUAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwowiEAAAAADCjCIQAAAAAMKMIhAAAAAAwo/5/3UlUy21EdswAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import rasterio as rio\n", + "\n", + "# Retrieve first scene using rio\n", + "item_url = items[1].assets['blue'].extra_fields['alternate']['s3']['href']\n", + "\n", + "# Read and plot with grid coordinates \n", + "with rio.Env(aws_session):\n", + " with rio.open(item_url) as src:\n", + " fig, ax = plt.subplots(figsize=(9,8))\n", + " \n", + " # To plot\n", + " show(src,1)\n", + " \n", + " # To open data into a numpy array\n", + " profile = src.profile\n", + " arr = src.read(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can open directly into `xarray` using `rasterIO`..." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "### Manipulating data in Xarray" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "`Pandas` and `xarray` have very similar structures and ways of manipulating data, but `pandas` excels with 2-D data and `xarray` is ideal for higher dimension data. `Xarray` introduces labels in the form of dimensions, coordinates and attributes on top of Pandas-like DataFrames." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We will only scratch the surface here on what `xarray` can do. To learn more, there are great `xarray` tutorials here: https://xarray-contrib.github.io/xarray-tutorial/online-tutorial-series/01_xarray_fundamentals.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "#### RasterIO and RioXarray" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can use `rasterIO` to easily open into an `xarray` `DataSet`:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (band: 1, x: 8741, y: 8771)\n",
+       "Coordinates:\n",
+       "  * band         (band) int64 1\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n",
+       "  * y            (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n",
+       "    spatial_ref  int64 ...\n",
+       "Data variables:\n",
+       "    band_data    (band, y, x) float32 ...
" + ], + "text/plain": [ + "\n", + "Dimensions: (band: 1, x: 8741, y: 8771)\n", + "Coordinates:\n", + " * band (band) int64 1\n", + " * x (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n", + " * y (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n", + " spatial_ref int64 ...\n", + "Data variables:\n", + " band_data (band, y, x) float32 ..." + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rastxr = xr.open_dataset(item_url,engine='rasterio')\n", + "rastxr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can also open using `rioxarray`, which integrates `rasterIO` and `xarray` and is the most efficient way of opening using `rasterIO`:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (band: 1, y: 8771, x: 8741)>\n",
+       "[76667311 values with dtype=uint16]\n",
+       "Coordinates:\n",
+       "  * band         (band) int64 1\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n",
+       "  * y            (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n",
+       "    spatial_ref  int64 0\n",
+       "Attributes:\n",
+       "    AREA_OR_POINT:  Point\n",
+       "    _FillValue:     0\n",
+       "    scale_factor:   1.0\n",
+       "    add_offset:     0.0
" + ], + "text/plain": [ + "\n", + "[76667311 values with dtype=uint16]\n", + "Coordinates:\n", + " * band (band) int64 1\n", + " * x (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n", + " * y (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n", + " spatial_ref int64 0\n", + "Attributes:\n", + " AREA_OR_POINT: Point\n", + " _FillValue: 0\n", + " scale_factor: 1.0\n", + " add_offset: 0.0" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import rioxarray as rxr\n", + "\n", + "rastrxr = rxr.open_rasterio(item_url)\n", + "rastrxr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can see `Attributes` have been added to the `xarray` using the same url.\n", + "\n", + "Beyond what `xarray` and `rasterIO` provide, `rioxarray` has these added benefits (plus others):\n", + "* Supports multidimensional datasets such as netCDF\n", + "* Loads in the CRS, transform, and nodata metadata in standard CF & GDAL locations\n", + "* Supports masking and scaling data\n", + "* Loads raster metadata into the attributes\n", + "\n", + "For more info: https://corteva.github.io/rioxarray/stable/index.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "#### Dask" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Another convenient means for opening a lot of raster data into `xarray` is using `dask`. `Xarray` integrates with Dask to support parallel computations and streaming computation on datasets that don’t fit into memory. So this is perfect when you want to process a lot of data. \n", + "\n", + "`Dask` divides arrays into many small pieces, called chunks, each of which is presumed to be small enough to fit into memory.\n", + "\n", + "Unlike `NumPy`, which has eager evaluation, operations on `dask` arrays are lazy. Operations queue up a series of tasks mapped over blocks, and no computation is performed until you actually ask values to be computed (e.g., to print results to your screen or write to disk). At that point, data is loaded into memory and computation proceeds in a streaming fashion, block-by-block.\n", + "\n", + "To expand our `xarray` toolbox for working with larger data sets that we don't necessarily want entirely in memory, we will start by reading in 3 bands of a Landsat scene to `xarray` using `dask`." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LC08_L1TP_008011_20190507_20200828_02_T1\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (band: 3, x: 8741, y: 8771)\n",
+       "Coordinates:\n",
+       "  * band         (band) <U5 'red' 'green' 'blue'\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n",
+       "  * y            (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n",
+       "    spatial_ref  int64 0\n",
+       "Data variables:\n",
+       "    band_data    (band, y, x) float32 dask.array<chunksize=(1, 512, 512), meta=np.ndarray>
" + ], + "text/plain": [ + "\n", + "Dimensions: (band: 3, x: 8741, y: 8771)\n", + "Coordinates:\n", + " * band (band) " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sceneid = items[1]\n", + "print (sceneid.id)\n", + "\n", + "band_names = ['red','green','blue']\n", + "\n", + "bands = []\n", + " \n", + "# Construct xarray for scene\n", + "for band_name in band_names:\n", + " # Specify chunk size (x,y), Landsat COG is natively in 512 chunks so is best to use this or a multiple\n", + " asset = sceneid.assets[band_name]\n", + " href = asset.extra_fields['alternate']['s3']['href']\n", + " band = xr.open_dataset(href, engine='rasterio', chunks=dict(band=1,x=512, y=512))\n", + " band['band'] = [band_name]\n", + " bands.append(band)\n", + "scene = xr.concat(bands, dim='band')\n", + "scene" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Typically, it’s best to align [dask chunks](https://docs.dask.org/en/latest/array-best-practices.html) with the way image chunks (typically called “tiles”) are stored on disk or cloud storage buckets. The landsat data is stored on AWS S3 in a tiled Geotiff format where tiles are 512x512, so we should pick some multiple of that, and typically aim for chunk sizes of ~100Mb (although this is subjective)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "In a way that is similar to `pandas`, we can explore variables easily in `xarray`. We will first work with coordinates (equivalent to indices in `pandas`). Here `x` might often be the longitude (it can be renamed to this actually):" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'x' (x: 8741)>\n",
+       "array([261300., 261330., 261360., ..., 523440., 523470., 523500.])\n",
+       "Coordinates:\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n",
+       "    spatial_ref  int64 0
" + ], + "text/plain": [ + "\n", + "array([261300., 261330., 261360., ..., 523440., 523470., 523500.])\n", + "Coordinates:\n", + " * x (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n", + " spatial_ref int64 0" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scene.x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can also keep track of arbitrary metadata (called attributes) in the form of a Python dictionary, including the crs (projection). The crs here is epsg:32622." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We can apply operations over dimensions by name. Here, if we want to slice the data to only have the blue band (data is found under band_data):" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'band_data' (y: 8771, x: 8741)>\n",
+       "dask.array<getitem, shape=(8771, 8741), dtype=float32, chunksize=(512, 512), chunktype=numpy.ndarray>\n",
+       "Coordinates:\n",
+       "    band         <U5 'blue'\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 ... 5.235e+05 5.235e+05\n",
+       "  * y            (y) float64 7.856e+06 7.855e+06 ... 7.592e+06 7.592e+06\n",
+       "    spatial_ref  int64 0\n",
+       "Attributes:\n",
+       "    AREA_OR_POINT:  Point
" + ], + "text/plain": [ + "\n", + "dask.array\n", + "Coordinates:\n", + " band \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Variable (time: 2)>\n",
+       "array(['2019-05-07T14:54:18.866000000', '2019-05-07T14:53:54.971000000'],\n",
+       "      dtype='datetime64[ns]')
" + ], + "text/plain": [ + "\n", + "array(['2019-05-07T14:54:18.866000000', '2019-05-07T14:53:54.971000000'],\n", + " dtype='datetime64[ns]')" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create time variable for time dim\n", + "time_var = xr.Variable('time',gf.loc[gf.id.isin(sceneids)]['datetime'])\n", + "time_var" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Now we will search and collect band names for grabbing each desired band. We will just grab the bands that have 30 m pixels. This provides an example of how you can search data in the STAC catalog." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "coastal 30\n", + "blue 30\n", + "green 30\n", + "red 30\n", + "nir08 30\n", + "swir16 30\n", + "swir22 30\n", + "pan 15\n", + "cirrus 30\n", + "lwir11 100\n", + "lwir12 100\n" + ] + } + ], + "source": [ + "band_names = []\n", + "\n", + "# Get band names for the bands with 30 m resolution from the second scene in our sceneids\n", + "sceneid = catalog[sceneids[1]]\n", + "for k in sceneid.keys():\n", + " M = getattr(sceneid, k).metadata\n", + " if 'eo:bands' in M:\n", + " resol = M['eo:bands'][0]['gsd']\n", + " print(k, resol)\n", + " if resol == 30: \n", + " band_names.append(k)\n", + " \n", + "# Add qa band\n", + "band_names.append('qa_pixel')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "And now open all of it..." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LC08_L1TP_008012_20190507_20200829_02_T1\n", + "LC08_L1TP_008011_20190507_20200828_02_T1\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (band: 9, x: 14291, y: 13621, time: 2)\n",
+       "Coordinates:\n",
+       "  * band         (band) <U8 'coastal' 'blue' 'green' ... 'cirrus' 'qa_pixel'\n",
+       "  * x            (x) float64 2.613e+05 2.613e+05 2.614e+05 ... 6.9e+05 6.9e+05\n",
+       "  * y            (y) float64 7.447e+06 7.447e+06 ... 7.855e+06 7.856e+06\n",
+       "    spatial_ref  int64 0\n",
+       "  * time         (time) datetime64[ns] 2019-05-07T14:54:18.866000 2019-05-07T...\n",
+       "Data variables:\n",
+       "    band_data    (time, band, y, x) float32 dask.array<chunksize=(1, 1, 299, 512), meta=np.ndarray>
" + ], + "text/plain": [ + "\n", + "Dimensions: (band: 9, x: 14291, y: 13621, time: 2)\n", + "Coordinates:\n", + " * band (band) " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Import to xarray\n", + "# In xarray dataframe nans are in locations where concat of multiple scenes has expanded the grid (i.e. different path/rows).\n", + "scenes = []\n", + "\n", + "for sceneid in items:\n", + " print (sceneid.id)\n", + "\n", + " bands = []\n", + "\n", + " # Construct xarray for scene, open each band, append and concatenate together to create a scene, \n", + " # then append and concatenate each scene to create the full dataframe \n", + " for band_name in band_names:\n", + " asset = sceneid.assets[band_name]\n", + " href = asset.extra_fields['alternate']['s3']['href']\n", + " band = xr.open_dataset(href, engine='rasterio', chunks=dict(band=1,x=512, y=512))\n", + " band['band'] = [band_name]\n", + " bands.append(band)\n", + " scene = xr.concat(bands, dim='band')\n", + " scenes.append(scene)\n", + "\n", + "# Concatenate scenes with time variable\n", + "ls_scenes = xr.concat(scenes, dim=time_var)\n", + "\n", + "ls_scenes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "We now have 2 Landsat scenes with all of the bands we are interested in stored in an `xarray`, but you can imagine that this exact code can scale to years worth of data and bands." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "From here, we easily subset one image at a time or the entire `xarray`:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2019-05-07T14:53:54.971000000\n" + ] + } + ], + "source": [ + "sbands = ['blue', 'nir08', 'swir16']\n", + "\n", + "# Select the first datetime\n", + "t = ls_scenes.time.values[1]\n", + "print (t)\n", + "\n", + "# Upper left and lower right coordinates for subsetting to Sermeq Kujalleq area\n", + "ulx = 300000\n", + "uly = 7695000\n", + "lrx = 330000\n", + "lry = 7670000\n", + "\n", + "# Subset xarray to specific time, bands, and x/y locations\n", + "image = ls_scenes['band_data'].sel(time=t,band=sbands,y=slice(lry,uly),x=slice(ulx,lrx))" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f10281a8e3bc4484b6ec5d8598dd0061", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wlV3nm/z2hqm7qMN2TFUEogJFMMiL8sMAmp12wkQETTTS7sBizgDEgwAIbjL327jqwrCyC8AIm2BhYssCsiQZMkEGIoDRBEzvdUOGc8/vjPXV7WiPBSIhB4PN8Pv2Z6dv3VtWt+IbneV4VQggkJCQkJCQkJCQkJCQcB+if9gYkJCQkJCQkJCQkJPz7QUpAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkISEhISEhISEhISE44aUgCQkJCQkJCQkJCQkHDekBCQhISEhISEhISEh4bghJSAJCQkJCQkJCQkJCccNKQFJSEhISEhISEhISDhuSAlIQkJCQkJCQkJCQsJxQ0pAEhISEhISEhISEhKOG1ICkpCQkJCQkJCQkJBw3JASkIRjxitf+UqUUhw4cOCnvSlTXHnllSilePOb33zc1vmpT30KpRTvfve7f+R723327x1/+Zd/eYPH6Mc5fj+NY9/iE5/4BHe7293o9/sopfj7v//747bud7zjHdzpTnei0+mwc+dOnv/857O2tnazl/eTODY/C3jve9/L4x73OG53u9vR7XY59dRT+c3f/E2uuOKKG3z/xz/+ce55z3vS6/XYvHkzT3nKU9i3b99R73vZy17Gwx/+cE444QSUUjzlKU+50W14+9vfzp3vfGc6nQ6bN2/m8Y9/PNdcc81N+h7Hsl3tsbyhn3e84x3HvK59+/bxlKc8hc2bN9Pr9bjnPe/JJz7xiWNel1KKBz/4wTfp+yUkJPx8IiUgCQkJP3HcWJC7Y8cOPve5z/Gwhz3s+G/UzUQIgfPPP58sy3j/+9/P5z73Oc4777zjsu63v/3tPO5xj+OXfumX+L//9/9ywQUX8OY3v5lHP/rRN3uZP0/H5qbgda97HaPRiN///d/nwx/+MBdeeCFf/epXuctd7sJll1224b2f/vSnechDHsK2bdv4h3/4B/78z/+cj3/84/zqr/4qZVlueO9/+2//jYMHD/LIRz6SPM9vdP3/43/8D57whCdwt7vdjX/4h3/gda97HZ/61Ke4z33uw+HDh4/pO9yU7QJ47nOfy+c+97kNPw94wAOOaV1lWfKrv/qrfOITn+DP//zP+Yd/+Ae2bdvGgx/8YD796U9P39eeN9f/efGLXwzAox71qGNaX0JCws85QkLCMeKCCy4IQNi/f/9Pe1Om+MEPfhCAcPHFFx+3dV566aUBCH/3d3/3I9/b7rN/7/iFX/iFcN55592iy7yljn3TNGEymRzz+6+99toAhNe97nU/1npvKpqmCTt27AgPfOADN7z+9re/PQDhQx/60M1a7k/i2Pws4LrrrjvqtV27doUsy8LTnva0Da//0i/9UrjDHe4Q6rqevvbP//zPAQh/+Zd/ueG9zrnp//v9fnjyk5981Homk0mYm5sLj3jEIza8/tnPfjYA4aUvfekxfYdj3a72WvnjP/7jY1ruDeEv/uIvAhA++9nPTl+r6zrc4Q53CHe/+91/5Ofve9/7hl6vF5aXl2/2NiQkJPz8IHVAEm4yrrnmGh796EczOzvL3NwcT3jCE9i/f/+G97zzne/kgQ98IDt27KDb7XL729+el7zkJQyHww3ve8pTnsJgMOC73/0uD33oQxkMBpx00kn87u/+7lEVvN27d3P++eczMzPD3Nwcv/Ebv8HevXt/4t/3xjCZTHjBC17A9u3b6Xa7nHfeeXz1q1/9kZ9TSvHKV77yqNdPPfXUo+gae/fu5VnPehYnnngieZ5zm9vchle96lU0TXOztnn//v0885nP5KSTTqIoCrZs2cK9731vPv7xj0/fc9/73pc73vGOfOYzn+Ee97gH3W6XE044gZe//OU45zYs71WvehXnnnsuCwsLzM7Ocpe73IWLLrqIEMKG73XZZZfx6U9/ekrDOPXUU4Ebpvl897vf5alPfSqnn346vV6PE044gUc84hF84xvfuFnf+Ui063v961/PhRdeyG1ucxuKouDSSy8F4F/+5V945CMfycLCAp1Ohzvf+c68613vmn7+la98JSeeeCIAL37xizd8l580Pv/5z7Nnzx6e+tSnbnj9MY95DIPBgPe97303eZk39di0lMKvf/3rPOYxj2Fubo6FhQVe8IIX0DQNl19+OQ9+8IOZmZnh1FNP5fWvf/1R61xZWeGFL3wht7nNbcjznBNOOIHnP//5R90bftLYunXrUa/t3LmTE088cQMNateuXXzpS1/iiU98Itba6ev3ute9OOOMM47a71r/6MfqN7/5TZaXl3noQx+64fV73vOeLCws8J73vOdHLuOmbtePi/e9732ceeaZ3POe95y+Zq3lCU94Al/84hfZtWvXjX72e9/7Hp/+9Kc5//zzmZ2dvUW3KyEh4WcT9ke/JSFhIx71qEdx/vnn8+xnP5vLLruMl7/85fzbv/0bX/jCF8iyDIArrriChz70oTz/+c+n3+/z7W9/m9e97nV88Ytf5JOf/OSG5dV1zSMf+Uie9rSn8bu/+7v80z/9E3/wB3/A3Nwcr3jFKwAYj8fc//73Z/fu3fzhH/4hZ5xxBh/84Af5jd/4jWPe7mMN2o0xx6TbeOlLX8pd7nIX/vf//t8sLy/zyle+kvve97589atf5ba3ve0xb9eNYe/evdz97ndHa80rXvEKTjvtND73uc9x4YUXcuWVV3LxxRff5GU+8YlP5Ctf+Qqvec1rOOOMM1haWuIrX/kKBw8ePGrdj33sY3nJS17Cq1/9aj74wQ9y4YUXcvjwYf7n//yf0/ddeeWVPOtZz+Lkk08GJEh+7nOfy65du6bH7n3vex+//uu/ztzcHH/5l38JQFEUN7qNu3fvZnFxkT/6oz9iy5YtHDp0iLe85S2ce+65fPWrX+XMM8+8yd/7+vjv//2/c8YZZ/CGN7yB2dlZTj/9dC699FIe/OAHc+655/LXf/3XzM3N8Y53vIPf+I3fYDQa8ZSnPIWnP/3p/OIv/iKPfvSjee5zn8vjH//4H/pd4JY77775zW8CcM4552x4PcsyzjrrrOnfbwpu6rFpcf755/OEJzyBZz3rWXzsYx/j9a9/PXVd8/GPf5znPOc5vPCFL+Rv//ZvefGLX8ztbne7KUVsNBpx3nnnce211/LSl76Uc845h8suu4xXvOIVfOMb3+DjH//4D90H3nu89z9y+5RSGGOOcS+s4/vf/z5XXXUV//E//sfpaze239vX/vmf//kmr6eqKuCG93VRFFxxxRVMJhM6nc6NLuPmbNcf/dEf8dKXvhRrLXe5y1140YtexCMf+chj2uZvfvOb3Oc+97nBdQFcdtllnHDCCTf42b/5m78hhMDTn/70Y1pXQkLCvwP8tFswCT87aOlEv/M7v7Ph9ZYCcskll9zg57z3oa7r8OlPfzoA4Wtf+9r0b09+8pMDEN71rndt+MxDH/rQcOaZZ05//6u/+qsAhH/4h3/Y8L5nPOMZx0TDaSkIx/Jz6aWX/tBltRSsu9zlLsF7P339yiuvDFmWhac//enT126IggWECy644KjlnnLKKRvoGs961rPCYDAIV1111Yb3veENbwhAuOyyy37odt4QBoNBeP7zn/9D33Peeefd6L7WWh+1PS2cc6Gu6/DqV786LC4ubtg3N0bzORYaVdM0oaqqcPrpp284924OBav9zGmnnRaqqtrwt7POOivc+c533kBnCSGEhz/84WHHjh1Tas1NpbMc63n3o77Ha17zmgCEPXv2HPW3Bz7wgeGMM844pu25Pm7KsWnP5z/5kz/Z8N473elOAQjvfe97p6/VdR22bNkSHv3oR09f+8M//MOgtQ5f+tKXNnz+3e9+9zHRyNr1/6ifU0455dh3wBHbe9/73jfMzs6Gq6++evp6e3/73Oc+d9RnnvnMZ4Y8z290mTdGwTp48GDQWh9F9frud787/Q67d+/+odt7U7Zr9+7d4RnPeEZ417veFT7zmc+Et7/97eEe97hHAMKb3vSmH7qeFlmWhWc961lHvd7Sxv72b//2Bj/XNE044YQTwllnnXVM60lISPj3gdQBuZXin/7pn/jjP/5jvvzlL7Nnzx7e9773bajKHQtCCPzJn/wJ/+t//S+uuuoqtm7dym//9m/z0pe+9Mfatt/8zd/c8Pv555/Pk5/8ZC699NLp377//e/zspe9jE9+8pPs27dvAyXnW9/61oaqnVKKRzziERuWec4552zolFx66aXMzMwcVa17/OMfz5ve9KYfuc07d+7kS1/60jF9v2OtsD/+8Y/fUK095ZRTuNe97jWl8/y4+MAHPsD97nc/du7cuaGK/pCHPIQXvvCFfPrTn+YOd7jDTVrm3e9+d9785jezuLjI/e9/f+5617tOu1ZH4oft63/6p3/iCU94AgCf/OQnee1rX8uXvvQlVlZWNrx/3759bNu27SZtH0jH4PWvfz2XXHIJ3/3ud6nrevq3b33rWzd5eTeERz7ykRu+93e/+12+/e1v84Y3vGG6DS0e+tCH8oEPfIDLL7+c29/+9jd5Xcd63t3mNrc5pvfdWIfgeLqtPfzhD9/w++1vf3u+9rWv8ZCHPGT6mrWW293udlx11VXT1z7wgQ9wxzvekTvd6U4b9vGDHvQglFJ86lOf2rCM6+OZz3zmUeu+IRxLF+dIhBB42tOexmc+8xne8573cNJJJx31nltyvy8sLPCbv/mbvPWtb+WXfumXeMxjHsO1117LM5/5TIwxOOemVC7n3Ib7p9Z6A83rWLZrx44d/K//9b82/P0xj3kM5557Li95yUt4ylOegrWWEMJRNMsj6V0/7Lve2N8+/OEPs2vXLv74j//4Rj+bkJDw7w8pAbmVYjgc8ou/+Is89alP5dd+7ddu1jL+y3/5L3z0ox/lDW94A2effTbLy8u3iIXu9u3bN/xurWVxcXFK41lbW+M+97kPnU6HCy+8kDPOOINerzfVjozH4w2f7/V6R1ENiqJgMplMfz948OANBrPX35YbQ57n3OlOdzqm9x4rdeOG1r19+3a+9rWvHdPnfxSuu+46/vEf//EGEwTgZh3Ld77znVx44YX87//9v3n5y1/OYDDgUY96FK9//es3fJ8ftq/b4/zFL36RBz7wgdz3vvflTW9601Sn8vd///e85jWvOeo4Hyte8IIX8Bd/8Re8+MUv5rzzzmPTpk1orXn6059+s5d5fezYsWPD79dddx0AL3zhC3nhC194g5+5udfOLXXeLS4uAjd8LRw6dIiFhYWbtX03B9dfV57nN3gd53m+ITG97rrr+O53v3uzz+nt27ffoHbj+rgpSUGI1KBLLrmEt7zlLfyH//AfNvz9yP1+ffw4+/2v/uqvCCHwnOc8h2c/+9lorXniE5/Itm3b+MhHPjJd76/+6q9ucJl68pOfPC0i/DjblWUZv/Ebv8FLXvISrrjiCm5/+9vzlre85SiNUZv8HHmPv/664OhzosVFF11ElmU86UlP+qHbk5CQ8O8LKQG5leIhD3nID60EVlXFy172Mt7+9reztLTEHe94R173utdx3/veF5BK8V/91V/xzW9+8xbhzB+JvXv3buD6Nk3DwYMHpw/ET37yk+zevZtPfepTG+xJl5aWbvY6FxcX+eIXv3iD23IsuPLKK4+5wnzppZdO9+MPww2te+/evdP9cGMoiuIGLTKv/3DfvHkz55xzDq95zWtucDk7d+78kdt4fWzevJk/+7M/48/+7M+4+uqref/7389LXvIS9u3bx4c//OHp+9qA/Ei037f9fu94xzvIsowPfOADGwLPH3cmxiWXXMKTnvQkXvva1254/cCBA8zPz/9Yy25x/QB18+bNAPze7/3ejVra3tzr6MaC7evj4osv/qEzI84++2wAvvGNb2zofDVNw7e//W0e97jH3aztO57YvHkz3W6Xv/mbv7nRv/8wvPrVr+ZVr3rVj1zPKaecwpVXXvkj39cmHxdffDEXXXTRtLN3JO54xzsCst+vLxr/xje+Mf37TUW/3+dtb3sb//2//3euueYadu7cyebNmznrrLO4173uNe08vPGNb2R1dXX6uXYf3RLb1SYXbUflEY94xI127M4+++wbNIJoX7uh9e3bt48PfOADPPKRjzymxDEhIeHfD1IC8jOKpz71qVx55ZW84x3vYOfOnbzvfe/jwQ9+MN/4xjc4/fTT+cd//Edue9vb8oEPfIAHP/jBhBC4//3vz+tf//ofu1L69re/nbve9a7T39/1rnfRNM00aG+Du+vTIN74xjfe7HXe7373413vehfvf//7N1CD/vZv//aYPv+ToGD9n//zf3jBC14w/b5XXXUVn/3sZ39kpe/UU0/l61//+obXPvnJTx41TO7hD384H/rQhzjttNPYtGnTMW3TTcHJJ5/Mf/7P/5lPfOITRwlWV1dXb3Bfa6355V/+ZUCOs7V2Q+V+PB7ztre97ah1FUVxzN0LpdRR584HP/hBdu3axe1ud7tj/n43BWeeeSann346X/va145KfH5c3FIUrHPPPZcdO3bw5je/eYP5wrvf/W7W1tZu9iyQm3Jsflw8/OEP57WvfS2Li4vHXBA4ErckBSuEwDOe8Qwuvvhi3vjGNx5V+W9xwgkncPe7351LLrmEF77whdPz/fOf/zyXX345z3/+82/Sd7g+Nm3aNL2+3//+93P55Zfzute9bvr3G7sf/bjbVdc173znO9m8efP0ulpcXLzRAsqjHvUonvOc5/CFL3yBc889F5Dk95JLLuHcc8+9wYLIW9/6Vuq65mlPe9oP3wkJCQn/7pASkJ9BfO973+P//J//w7XXXju96b/whS/kwx/+MBdffDGvfe1rp24uf/d3f8db3/pWnHP8zu/8Dr/+679+lAvVTcV73/terLU84AEPmLpg/eIv/iLnn38+IDaQmzZt4tnPfjYXXHABWZbx9re//ceiJj3pSU/iv/23/8aTnvQkXvOa13D66afzoQ99iI985CPH9Pk8z7nb3e52s9d/Q9i3bx+PetSjeMYznsHy8jIXXHABnU6H3/u93/uhn3viE5/Iy1/+cl7xildw3nnn8W//9m/8z//5P5mbm9vwvle/+tV87GMf4173uhfPe97zOPPMM5lMJlx55ZV86EMf4q//+q+nlrBPecpTeMtb3sIPfvCDG7WFXV5e5n73ux+Pf/zjOeuss5iZmeFLX/oSH/7wh48KXhcXF/nt3/5trr76as444ww+9KEP8aY3vYnf/u3fnjpePexhD+NP//RPefzjH88zn/lMDh48yBve8IYbDP7OPvts3vGOd/DOd76T2972tnQ6nWlF//p4+MMfzpvf/GbOOusszjnnHL785S/zx3/8x9Pv+pPCG9/4Rh7ykIfwoAc9iKc85SmccMIJHDp0iG9961t85Stf4e/+7u9u1nJvqfPOGMPrX/96nvjEJ/KsZz2Lxz3ucVxxxRW86EUv4gEPeMBRE6aVUpx33nl86lOf+qHLvSnH5sfF85//fN7znvfwy7/8y/zO7/wO55xzDt57rr76aj760Y/yu7/7u9Pg9oawc+fOm9X5uyE873nP46KLLuK3fuu3OPvss/n85z8//VtRFNz5znee/v66172OBzzgATzmMY/hOc95Dvv27eMlL3kJd7zjHY9KXD796U9Pbcmdc1x11VW8+93vBuC8885jy5YtALznPe9h9+7d3P72t2cymfCpT32KP//zP+fZz372UTSwG8OxbtcLXvAC6rrm3ve+N9u3b+eaa67hf/yP/8G//uu/cvHFFx8T7fS3fuu3+Iu/+Ase85jH8Ed/9Eds3bqVv/zLv+Tyyy/fYON9JC666CJOOukkHvSgB93g36+66ipOO+00nvzkJ3PRRRdNX28Tou9+97vT1572tKfxlre8he9973uccsopx7R/EhISbsX46WjfE24KgPC+971v+vu73vWuAIR+v7/hx1obzj///BDCujvU5ZdfPv3cl7/85QCEb3/72zdrO1oHmi9/+cvhEY94RBgMBmFmZiY87nGPO2qo12c/+9lwz3veM/R6vbBly5bw9Kc/PXzlK185ylXnyU9+cuj3+ze6riNx7bXXhl/7tV+brvfXfu3Xpg4sP41BhG9729vC8573vLBly5ZQFEW4z33uE/7lX/7lR36PsizDi170onDSSSeFbrcbzjvvvPCv//qvR7lghRDC/v37w/Oe97xwm9vcJmRZFhYWFsJd73rX8Pu///thbW1t+r5f+7VfC91uNxw+fPhGt3symYRnP/vZ4Zxzzgmzs7Oh2+2GM888M1xwwQVhOBxO33feeeeFX/iFXwif+tSnwt3udrdQFEXYsWNHeOlLX3qUQ9Tf/M3fhDPPPDMURRFue9vbhj/8wz8MF110UQDCD37wg+n7rrzyyvDABz4wzMzMbHApuiGnpcOHD4enPe1pYevWraHX64X/7//7/8JnPvOZcN55521wa/pxXLBuzMHqa1/7Wjj//PPD1q1bQ5ZlYfv27eFXfuVXwl//9V8f8zJ+0vjbv/3bcM4554Q8z8P27dvD8573vLC6urrhPaurqwEIj33sY3/k8m7KsbmxYaQ3dh2359KRWFtbCy972cvCmWeeGfI8D3Nzc+Hss88Ov/M7vxP27t17jHvhx8cpp5xyk1y0PvrRj4Z73OMeodPphIWFhfCkJz3pBocZti5yN/RzpMPe+973vnCnO90p9Pv90O12w93udrdw0UUXbXCPOxYcy3ZddNFF4e53v3tYWFgI1tqwadOm8KAHPSh85CMfuUnr2rt3b3jSk54UFhYWQqfTCfe4xz3Cxz72sRt8bzsQ8RWveMWNLq89x65/3zvllFOOOgatY+KR95WEhISfXagQjrDXSLhVQim1wQXrne98J7/5m7/JZZdddlTlajAYsH37di644AJe+9rXbnAQGo/H9Ho9PvrRj/KABzzgeH6FhJ8wtm/fzhOf+MRbxGnmvve9LwcOHLhZcyUSbh340Ic+xMMf/nC+9rWv/cS6GQkJCQkJCTcXiYL1M4g73/nOOOfYt2/fDQ6GArj3ve9N0zR873vf47TTTgPgO9/5DkBqX/+c4bLLLmM0GvHiF7/4p70pCbcSXHrppTz2sY9NyUdCQkJCwq0SqQNyK8Xa2tqU/3rnO9+ZP/3TP+V+97sfCwsLnHzyyTzhCU/gn//5n/mTP/kT7nznO3PgwAE++clPcvbZZ/PQhz4U7z2/9Eu/xGAw4M/+7M/w3vOf/tN/YnZ2lo9+9KM/5W+XcGvGz2oH5EdNHL/+/ISEhISEhISEnw5SAnIrxac+9Snud7/7HfV66wFf1zUXXnghb33rW9m1axeLi4vc85735FWvetW06rl7926e+9zn8tGPfpR+v89DHvIQ/uRP/uS4zgtISDgeOBab5QsuuIBXvvKVx2eDEhISEhISEm4UP3cJyKmnnrph8m6L5zznOfzFX/zFDX6mLEte/epXc8kll7B3715OPPFEfv/3f5/f+q3fAsSu8A//8A95y1vewq5duzjzzDN53etet8F15pWvfOVR/vTbtm075jkVCQkJNx9VVR1lbXx93JIOSgkJCQkJCQk3Hz93GpAvfelLOOemv3/zm9+c2hTeGM4//3yuu+46LrroIm53u9uxb9++DXSOl73sZVxyySW86U1v4qyzzuIjH/kIj3rUo/jsZz+7warxF37hFzbYER7rRO2EhIQfDz8Jm+WEhISEhISEnwx+7jog18fzn/98PvCBD3DFFVccNf0Y4MMf/jCPfexj+f73v3+j1KSdO3fy+7//+/yn//Sfpq/9x//4HxkMBlxyySWAdED+/u//nn/913/9iXyPhISEhISEhISEhJ8H/Nx1QI5EVVVccsklG6ZVXx/vf//7udvd7sbrX/963va2t9Hv93nkIx/JH/zBH9DtdgGhaHU6nQ2f63a7/L//9/82vHbFFVewc+dOiqLg3HPP5bWvfS23ve1tb3T7yrKkLMvp7957Dh06xOLi4o1ub0JCQkJCQsKtCyEEVldX2blz50/F7GIymVBV1U9k2XmeHxUDJST82PgpzR85LnjnO98ZjDFh165dN/qeBz3oQaEoivCwhz0sfOELXwgf/OAHwymnnBKe+tSnTt/zuMc9LtzhDncI3/nOd4JzLnz0ox8N3W435Hk+fc+HPvSh8O53vzt8/etfDx/72MfCeeedF7Zt2xYOHDhwo+tuh3qln/STftJP+kk/6edn/+eaa665ZQKYm4DxeBy2bzU/se+0ffv2MB6Pj/v3Svj5xs81BetBD3oQeZ7zj//4jzf6ngc+8IF85jOfYe/evczNzQHw3ve+l1//9V9nOBzS7XbZv38/z3jGM/jHf/xHlFKcdtpp3P/+9+fiiy9mNBrd4HKHwyGnnXYaL3rRi3jBC15wg++5fgdkeXmZk08+mZMueDn2VE+3WzNcKzDWU48yqDX5whhrApOrZ8CD7zvOOn0X375mO4PZCcOrZ9j6RVled3+NbjyuMHS+fwCsZXybTbhCM7jiMCG3jLf36e5eRZUNwRpCL4MAqvEEpVDOQQigNSETTUuwml33HdDdD8oHRtsU4+0O3UjVR1cQNPg8wHyFLRr8NX3cwKF6DUoFlAZtPDs2LXPdygzl3j7oABpC5jFFg+00hKDAK+pJBhMNhUcZT/Ca0CiUU6huw2B2QlUbjAlk1tHLKhpnqLyhbgyNUwSnKYqGutF4Jz+uNuAUwYMyAUoDuQcVUNajdCB4hckcSoGxjl6nxipPCIomaBqn2dQdsX9tQNNotA5y13YaV2tCUPJTa1SjyOZLslx0SiHAeLlD1q+w1hMCOKdBgTUeAO+VLC/uC+80OlvXOcmCgKAIQb5HPc4w1mPyBgUYEwgBJsMcpQNFt8Yaz6SyZNZjjWO41qEZW9kPQHAKZT0E6caZ3BE8mMzTVAY/sehOQ/AKFOAUjA14JccSMGP5Lq7w09/d5lreUyvIArpo8JVBr2SYsaKeddhVg+t6fNejSo1uFEEHQhbAy3e1Q00z51CVwq5plANdw2SbAwW61GTLinouYCaKYEBV0Mx6dKVwnUC2rDHxfJ2cWKNKTbHfYCZQz0A95wh5IN9nCXlANQpfBAjgZhxmzaAnCtcPmDVFsBBMIF9WNB1wg4AZKfBQ76jRKxa7qvA5KC/XiK7i/vOy/cqB68RjqsEXgWBAT+R9ykEwUC/U6JHBrmhcP+A7HlUrgglgIN9vCAqaOY/veNABVWvoNmjj0dbTHI5Vza6jMzPBeQ1ezqPgNd4pQm0w3RqbOVyjUfHYKh0wOqAUeA91ZcmLRq4TLdeHDwqtglx/QZHZeE4HRV0ZbOZkXfEc80GhVCAc8S8g94x4qtelxdeGfCD3zvb1ALjaoK1Hq4DW64+29il35PK0Bq3ChvX4oKbfJcsbtIbGqek15NzGaxEV5B4Rv2f7N60Cvr0u4rUpKw5yDOP3USruy/hnc8Q2+3g9x9sv3jPd5vE4k2WYuP1eoXWYHp8s84zXcnxlMEODahSu8Ng1Q7ABt6nB9qRa3qwU0CjsmpHzxCl87uXaHBvZZuJ38HGH67B+nTs554IJKK8ggK4VPg+YkTwT1Po8XLST681U4DIwtfw+PYgqPj+KuMquRzVKdqGO578CM1ZyrXQDulHoEnQD5eZAUPG6Qq4V3cgyQ5RlKgchC3H5DrtscV2PcrL9gNwjttSERqFHhpDLvSh0PLpXk3drnNPU+3qQe7qDQ3znaX/G0tLSNJY4XlhZWWFubo6rvnwqszO3bPdlZdVzyl2vZHl5mdnZ2Vt02Qn/vvFzS8G66qqr+PjHP8573/veH/q+HTt2cMIJJ2y4Ydz+9rcnhMC1117L6aefzpYtW/j7v/97JpMJBw8eZOfOnbzkJS/5obaf/X6fs88+myuuuOJG31MUBUVRHPV694yasp5n7B2mD1ne4Kou2bKl7nZw3QZmM5RT6Nxz+a7TyA9byrVZZvYrmJUbK1XOaMGw6bJVdNYFa5i5aihPu2AJ3tItDdZ2UE0tT7ehJ1iDCoqQGUKvC96jXCAYzZ5fnmO0HbZ9yTPcrqn6YDRkBHRQuG5AGbCVwgeoTYbqVIT5Ql7Doboi8HdOs3fSoTdXobqeemLR1qOUphn1sb2SIq+ZVBlmoCiXClQWsJ2aZpRBrghOHoKjuoPOPDpzZJ2Kogj0lGfSaMrGMKks42FBYxs6vYbxJEMHNX1ghqAkkB4gD9AsBkq1lgDLSbCR90rGoSvBg5ZkpzCeUs1gejnKa0kYvKLfrVjsDzk87hECNE6+s3MdqkbT75cScE26ODqYQgICEyTp8ErW4RstT9wYCGjWA5cjgyznNArIMofXkkiaXk0Iiqo02NzR6QQmSx18VhGyhqKA0WqHXndCsF3MTECtZACE2UYCLBUIw4yQNZjM4xuFyjSmE7CFolkqJEmoFG7WSSBSanSpcdsbiMGkMoHepjHD5Q6UBjXbEMYWMo82kC3n1FsdqjBgLMq2Aa6S4LpRZAsT/J4e3gZCAVml5C42D15Dk3u0teT7LXYM4xM8ulGyHWONHWryRmEcVDZgOopmMeC7npmrO7gONFsCTSb7tbukCSVUOxy60rgsSAzpFN1lRbngUZlCdQI6aJq+R3mFK8CUis4STDZL4tI92KGeDbh+mCZsugaDwpRyiCcnO9CgR5rOQcVkQQLVfEXheoFmxstnG0UxKvAF+G3yHusUoRvQtYIGmFM0Cw3KKWylCP0GXTiCLzCZk0AZi+3VKGUI9AmNxjeavCvnjdIhBukW53IKExMLr6bJedMYMECm0N1Kzs0YexskgDZBSXJj3DQhzzuy3OsnGz7+XauN57a1Duc0WSHrVkqSpyPJqs1ajpsYzMIEazcm6d7LNkhyItf3NPBXbdKtqVY6mF5D1qmxxpF5CeicV6iYVE2X6bQkN0FJbK4COiYYRkGIyZyOicL1ibUx3kZrj1KSXPigMHH7QlA4L5/KjrjWux01TfBC/LtrjNwfMyfrJ8MAanPAWIdxCqUc4ft9Ag5yi68MqqfJD1jIIfRiEG6DJBezDkYStetS9kOwcg3oSfy9kO3ymZznaCCHrAY6apqYZKvg8/i9FfgZuaUFhyTaRhJyO1aSpHQCplYEB27gCQbyZY230PQ9fiAFDZUHVA2hp2hsoFhT6AZcLgmHLwIUksjoUhNswAxjkO7B4VEDhbYB7eKxzD2h58g6ctyakUWvWUKskwUXoBjjhjlqXmNXDJMDMdn6KdKnBzOKwcwtu35/1FmbkHDL4Oc2Abn44ovZunUrD3vYw37o++5973vzd3/3d6ytrTEYDACZGK615sQTT9zw3k6nwwknnEBd17znPe/h/PPPv9HllmXJt771rRudVP7DML6uTxYy1Ik1wWua7w0oJopys8MetjSZBxvQCyWuNPSuKFAOys1gx9B0FbM/qOldcYD6bttQVQPWELRGKUWwevrkNcMKGk8oLISAn+3hC4tqPGZYoVfGVCfMUc5nHD7DUC4GdvyzA6WoZqSKqxuwQyVVW+SG7/rxAV9JpyEUHteND9AY9KMCflePoe/h+p5i64hymGNyx5Zty+TWMchLrjy4gFKBzqYJIA9l26txlSEEqe4FrXHxYTxWAaPWA4zcOHqDitAf44OibCym7ykrOw12ZMESpCgF9TibvoYHJoaQecarBcoEtAlkeUPjNFVtyawEVp1CSn2TMmM0ztE6MN8ZU3tDph2rVUHdGKzxlLXFOY3pNvja4J2S79RoQqOxM9V6stEGSHFb28SjDQYJCldrtPVUE0twmlArVK9Ga0+DoRpndPoVxWxJtZajZz3laiEJ3EoHtWLxHU/oOlSjwUsVnEaBI3ZfYvBXOHytaYY5qtRkK5pqk0MPDcpDM9fgA6hGoyqFrqRzsNb0UZWSKqIJkkCODLpSNAMvXQYb8LMNas2gNlWEg5LgANRrOVkFqpZk13UCppR9ki8pJicEsgMWFDRdCZYA8j0ZqpEAqN7kqHUg328hQLaqCENDuSCdDeWgd52mXJRToNpRw0RjR9Jx85l0OSY7a8yaJVuR13wWyJc0ykvwoxsYnuKwK4Z6c00zMeTLmmqTJ1syNAOP70LIQDeKyY6G4jqLrmQ7qznp9mRrinLRSSKxbGg2NZiJJDtmpFFIdwcNdk3LdaYhaI9dNtJl2VISAvjagIemlvNOZbGbGKvo0u3z1KWV5MN4MDGZMH6aKDSVkcTYaWi7ZEoScuc1zmm09jivpwlG+9n2HD7y3zaoV+3PEclHXUsA7INkNVp7XKPxTpLqptEY66efCSbQlAaj/bSL2Dg97cZcv+sQAtTOSKPCK3pzY6yRbfde4/wRwX6bLPn1/0PsPCrpBkm3Re5x7WvTyv71v19crncGaxwuyP2nTZRA/t9Ulk5XChT6iPWEuE+8U2jjJclqNMp6fCUHLu9LUmhsoJ5Y3OZaKv5rGeQ+ntPSXQyFJ9RKjnmtCBMjndXC4/HoSjqaKnY42uRCV0COVE9cLBg4HaN1eS61cDk0A48pZb0QE4mYiNSxQ6lLhYvdRj3R2Eb2ox2BbjQ+djOkuyn3yHxJrsW6D6aU9zZOEhrlND6HoCWBch25vpRTqAboBNkeJecQtaZxGSrzdGZLJiZ2u1YyKBy9bsWgV3Lo4IBgjCT9CQkJx4yfywTEe8/FF1/Mk5/8ZKzd+BV/7/d+j127dvHWt74VgMc//vH8wR/8AU996lN51atexYEDB/iv//W/8lu/9VtTEfoXvvAFdu3axZ3udCd27drFK1/5Srz3vOhFL5ou94UvfCGPeMQjOPnkk9m3bx8XXnghKysrPPnJT77J258dMthcKv5mxaBLRbm9QQ9qzLaGZrmDHhkalWN6NVu+1lAcKFk5rcf8N5fQo5LQyQi9gnwlUn0yQzCm7S6jJxUohe/lqEmDmtT4fodyoYPPFa7QQJe5rx9gvCVnuF1Tz8K2Lwb23Mtih9IityOYLARcT1r3qNiGNwFVacJMA9d1UIWHrpdq3dhQXGcpT6lwcw32kMWsaUrfk4fBqGD/fCFBb9eji4bZuTF5fEAvLfdxKxlBg8odGDWlNfhaMxp3GYWuvGZjxdgr8kHFoFtS2IbCNExsxqSx8ZyJVcRY7ex2KqFuNYZ6nBFiRyRUBr1mKA5IlXu4o8EOavrdkkFHkpDaazLrpBMSIDNOEhDjOHl2iaWyw0rZQatArzvBdTSrww71xKJUIB9UNJXBlQbTrwku0q6MR2sJIrzS5L1aHqAKmrEFI9VPa4UuNh7lZNZRNQZbOKqhBIZKBTCBaldfugOzzZRWoTIPpYbCQa0l78mC0NKQSq6rdaQpCI0q5IF6VpJib4Ufke/LaGY8dsuY+lAHlwX0RAtly2rU2MByBzo+XrRStQwmdjRioOOXcnQjFdlgJPBq5iXRASgOaZpuoNnU4LZ4Qq2p550EKmsGNGTLmmbWE5RQQ4r9hmwFqjloBoHudRLA+xgYqUYxOjHIuegU+e4Mb8EVgWa+wazKOdPZFc9BJwk4AepBkN/HQrOyK0aCr0MWXwS8hWzZ4PoS+BWHlFR+DWSHLJOdkVY1lASjOCgJHVYCu2ZbBWMj23XY0PQCykshICiot9cU12Q0fdnf9ZyDnovHzmMzN20ZVAc7QrearVBaAl9l5Rr1E4PuOJSVoFwZqcw3lcXXmrCcgwmETDo+Ond0uhVVbTHGY2IwrFWYFgaIDJ4QYpCsAsb69QQl3pvUEYF3tSYlc9NpKPf25JqerQkjSzABmzuCUzhiNb7WqEpDd/1+2tK61BGdC0l+Ao0zaBWoa0PwiqxopusOAZqYQPmw3iltN1RFmpVSUhBofz8S0yRFxc+GyMaK+8Noj9Wessym2UnboXFxe5va4CpN6KwnTUfuJwBjPd5Jp1TpuF3Go7P1xEyB7K+gcDH5VyagSyXURpCEpOelCOIMdB1UGjNaD/iVk8RA12p6/vsMQi7XGI18N9eRQD9b1pKfKqHneiudDJcHQh6g42gGSgoOIRYXeh7XkXWhIKiAGStcX5J35cCW0PQk0VCNwnVl2U1vndbYDITW2HQlUfF5QJeaelYSehVPypAFSbiUInQcZtni+y5SRS2TiYFaoeYrwkAojJl2GB3IezX1UsatAS54XPjR77upy0xI+Eng5zIB+fjHP87VV189HSR4JPbs2cPVV189/X0wGPCxj32M5z73udztbndjcXGR888/nwsvvHD6nslkwste9jK+//3vMxgMeOhDH8rb3vY25ufnp++59tpredzjHseBAwfYsmUL97jHPfj85z/PKaeccpO3X9cQCqTqq6E6qaI3N2Zy1SyctAbW47tOHgqFpnvNGno4Yb5qRLMBlNsGFNetSUDnvQSqiJ5DVQ6cE8oVgNUEk6GHE3pX1gSjGN12Hjty4Dx1XygiAMoFXNeTRc69KyQwaytfygtX3y4JBYaDOdUmLw+yoNBDIw8kDaxaVO7pHFAoD2u3Ed6tqYBl0QAEQFtP3UigMFtMMPOBakaehpl2rIw70lEoLU1po4YlBiQtT7vS1Cs9ljYbNs0PAehmFZWL9AITYqUT8shLV5HfjQqoPECjoQafi64GIDtoaZyi7k8Ylxkm0rJAaCPDUcHVVcbCYMRCIWVAFzRGBfKs4dDyAN8oOv2KRplpCdgWjjpIxyEEoZoFLUGT0NQiXUNDM86mSVZTGdGQAHnRYIwnVFLNJkgi01ZSq7F0xXThJODoeEk4Ok42wrcRo5KuRR5oSS0hJidCtZJuhFkzuJ5HjzXV1hpVaarlQpLRUgsFIvLlCeDmGtREo2tZRjBS7TTdBldpQCqvaqzxGug71IpFl5HmYaQD4juBYm9GMMIHt0OFPmuV8VIHZQP1vGhEXCfQzDrcZof6XkG2JjSp0U5PZ59G1wpdqyk9Q8Xul66R7hiK7JCl6UkwFCw0XQlsvYXOgchb11EHZWNwZuTY5AfjZ3rxWGyqqVSGnsg57zWYFYuN3HZdS7ckP6zRgxqnM5SC4oChnpUA0BdCMWs7EOagFZpLEJoK/QadebK8mQbRLnYMKEQXomMSYIynqQ3sL1CzDdquBx4K6UT4fR1832Eahc88ygRCo7ADR+MMTWXIimaqAQkwDdxb2lPw0unT1k91Ty3da9rFCEr0WUruE02j0E6hAviRRU20JNE2w3YammEunQcF9EWHoiKdSeiPkmBos65parVW0wTFrCdBR+pSjoznjgz6UeudyCMTkQ077XpQR3QuCbJujSQQouPwG9bRXvum2EgnaxM7VxtM1IMpJR0rpQJNTKiM8TSVxVgX72WShNS1JpupKIqGMDNhtHuArrV0enuRIthzorcLGp+FKQXLx2KMG0gHLkTNGE4KT+0OU55pF0M30pkwVdRfWOQa9sCalcSnbZAXHnpNLPbIurEBX6xrS5RT1HOebEUoWTqAXYOmH49L240I69ejy6VL2nTB9yI1cCJFB11pzEg6N8TihlmT7mHIPWqi5dl2sJBbdKVYzh1z/TFzvTH753I4osvz04In4DecsbfMMhMSfhL4uRah/6yhFZLd9mWvJSwUUxFdM+8o9hnqQSBsLQnxARxsYO5yw84P7oHMCrUqJhijMxbpfecgzeYBZknujKpxItiIh9x3ctxMTrZ7CfJMuiFlPVU8htxKALYmn7/ycTvY8c8lox05B35RRIDlZhHpqsLRm5mwqT9moTNirc75wbVbCZVmbtsqa2sdik5NOclQuzqEDNyM8NOLPZZ6LuDna3Tu8KsZ+cKEapyRdRrqccbC5lVWhx163ZJT5w/jg+K2gwN8Z3UrjdccHPVZGxVCDSmt8JZjhVZK38JPDlYeXnauZNAv6WY1o0oSh3GZTQMlE4OhSZnhvZoGCNUol4pZTHBasXU2qKbVzjxvqGsJ+l0tnQydOWzh2D6/gvMaoz1rZcGkWq8BKCVBUS92X5xXlJNcNEBOtCUmUkpcY6ZBpXcK3+gphUZp0WyQezpzE9GTRMqIKw3FoKLIGlYO92BoMZvWrRvd2EKt0IMaXxmpkpYasoBdMjTzjhADGbzCrhhJQJXs16CRpKESGkfIvAifOy7SMWJSM7TymdkadaCINA1FPSMV9WACvudQNqAPZyJALzzUojVBQ3FQUc0G4XjHYM+M1bTyaleEjhSMBD2u57GrBjuKv3chW4XRTgmk7IhI0YhBSy2/+yIQdCBbjTQRpNOhGygOqenyq7l2HXo96Ioic11LsFPNSqJSLkJ+GCbbwpSGkq3EgNhAcQjGO4RSUi56igM6dnMADeWmyG/PAm7Wocca1/PSLWk5/E7R2ToScXajaZYLVK8hKxrq0qL3FnCiXNvteaNUoJlYTO5R2uMbjc3dlObTHOysJ5R9h8o8ajnqjcYSjLqt0qWh49HW4Z1oSlxjUFooX241Q/fraUVeBO1ybleVxU0sDA261hIUNgozkWNrJpGGWCvMWI7TeIcnzNeE0pDPlVjr0FG/4rxivFZIQF64KV3LaE/jDOVyQTFbTq+tdWrVxiTkSKrm9d9zpM4DmGrPpwlNe41f7/fpMln/QLttIu5XG94TkK5JK1Yv2/uHavUn8vp4tQNOYboNwUvS0VLoyjIj7O3ClglFt55uc/n9WdyMg8JJYjm0qH5DWM2mInAVuwV0HGrVTimOdLxQ8UaWaZVCC3VKeelQtImKcgrXFZpVS+O6/j0aJcUoPyMdmGA9Zmiwa5qmJ5/RpcJ3YuciCxQH9XQfmgnUA9neJlIS7Vrswll53Wfr17YZy2dd36MnUmxpl6sqhVts5Jmi5D5kVizZqqLa5FGbS4z1lAcc1zznlT8VsXYbO+y9/OSfiAh9+5lXJxF6wi2On8sOyM86mhlP1nLio3tQS+uoD+egY+u627D1SxNCJ4vRa0B5T8gN3SuXoq4DSSSMIgRJKKKwANV4VBPwmwZTx6tgLapqmJw8R+fqZZT31DvmsIdHnPThVa594Ay9PfKgUNERReWOrNMwPNBnfO0Mu2wg3zwm1IrBliEre2cwMzXV92ekir7QUOzJyJeE2jI5oZ5WUl2dYWZqmsoQak2jpRp16LpZirkJa2tdvnZwgLKebyyfgt08YdAvGU1y6omlN1OSRbpW+zA+tNajKQ2+NqiJgUZRrxQsDXPYugpAWVus8VSNwXtNWRqM9Qx60vqx2lM5w0xfnIKWDg4I1foDr17LJSCfiTxtE6V71qG0pxln1F6xl1mUCvQ71VSb4rxmadgVLnpl6c4MGRQlVWM51Bi8F21Jy2OvJ+JU1bRuXpUkOMHL9vhSqsMKqCaWrCMuU8KXz5gc6tLZvkIxqJjUmmZoMb1GAtDMEbTGZF6CwCB6DYJoJ1StIPKylZcHNlG4KQp4L7Q3o8B60YD0a0mIYvBiVg1+Uy2BhRPXHlUdkbyMhHZklyTAEWcsj+o1om1ZlfO6XJBtyFaFHmJKhHpUKkwlFCgzke6MrhV2v5FuXIguYyMYbw3kh6N7mwNnwFvRlQQrgYzyQs1oBh4fTYFUrfAnTHDDLk1fguJ61kkVGciGErC5LuTL0in0FuwE1k5z9K41uB509it8JolUGxQVS1DNQ+eAopoLdPZrSTasJEQudlmUlwRonGsJNleFcuYGou1gZJkMc0n2EBFxmGhcXYjY2IPNHOU4k6JGt0GZgMk9xjqaysD+DtV8Td6v8Lt6aA2qgWa+oTM/EXqQseiJJEBhpsHsF9qUqzW+J1VxrQNVLTZE+lAG8zVubMk7ohVyjUZlQi9EgVqxhCzgcy9BbCMCZTOWLqsvAk6HqSYnP6wJKwXVlob6QIewOKHbqSlr+e5tEN30NAxq8rxhMsolWO02086cjp2bIzUYGyp0QShR2nhUW4PQ652iELuQNo8JkG6d7IT+2CYqthXjx+W3mhJhuyiCWdertMlPq6HxXkdHLKG6HZmgCA1MYwpxpxNtSKRkaTXVlLn5Gg3TYkjTGNg5oVvU6EjhGntxDmwLByogRYHMw9jK/9tCzBG6EdUoSU6jbsrlYepW11KdjtyxulGRQhVi8UJPOxdqzchrE9H61a0JAxByudZVo/AmxMQkPkM70lUMBkKGiM2js5ydML1fSEcF6oVGnmnR5a5NkpRThCKgV6UbQsehakm+y54SIf7eDt6BqSY38kQ/fhClzi2/zISEnwRSAnIrhF3TuK3SklZjTb4kN3kzgaA0rhfwysPQomrRchACKgSoG9C5JBlaE6zcrVXVgFKE3KLKmpBLx0R5sdttZnLsaoWuSuqtA4p9Q0I3I4SA61qGJywwe8Uqc9/zzH53jUPnzOAzoC/6gfpQBztXEXoQakOnqKnHPcY/mMXW0ARgS43SHg1UJ0uApAY1eS66hckoJ6xmmCu7uFPG2EOW4pDQi5o+NActxZLCCoMK14GR77K6RWEzx+z8iO0zq/RsjVaBUZOxUnYYdEtKawkByk4mD+baEBrF0qG+7B8dRPjdrSmKhk2DEZUzojuJupBN3RG1FyoYi0R7X+k8tEGJbzSNM3SLCu81w6FUXsWtS1GNMvDicjMOGdZ4unnNwmDEsBLR+tKoy8655el6nROrXyCKbzWUWpIFL5a8brTOQVZZFAWMLM5bEQsrqMtoq+s0a2tdOt1KuhMKfKNjUBUIPlCPMhHHL+fQlYd+qKSy3lrz6m6DLy0qd4TVTIKnLKBXLK7vRBvQEYE9vQaTCw3P1QpzMJOgRAfpEjiFV2L76TfVqBUrnPUVTT0nD8Cs00hiuskTVjPsUKNrKDc7CS7nAnosVC/nFKZU1N31DoQroh4k6j5cR6qsykvi0vRit/E6S3EYVm/jp+totSQ+W7fK1Qe6jE5y9H9gGN7GEXLp0DQ9SXiUR7RCHTacs71rDeUmSXIm2x2D7xmK6JyVrcHwVEd+0OByyFYU9QwUh4EOjLfFDoACl0v22yZZwQTywwZVW/IVxWSLRx3MJYGbE11Md4+m3BzIDhvyFRh1+pixptkqibOvNcoE3EpHug4OCborsW/ND2uxGu6KRbarJED0rZZnbHADJx2vNSsB5MAxWS1QxqMOSNCvVi2h75js76FnK/xaJm5PAbLDRirTkc4ZTMDPN5KUWNEDeBsoDmnKRUn6VC3BpF02ksiOeqz2PWogbl50hb6nbKAZyrXiY/Ibag2F2IPXUcPiGk3jFEW3jl0UHalNFl8anLMU8+UGG9+AJCe+MZC7DVQqpcQiF0DH5AOO6JJEsbY6ogvSJh5TyqITRz6HivQys6HN0iYfsmA11fu0TlyuEcMAHYs93lvI3fS7tRbg1jSgxXYbwGHwNpAdyNC1wm1qpFthAyGI1W7QkSZq5XsEEyALVAuxHeIhzEX77UHsgsUdENp20dCI3qyU/eBby22nxIbbRGvcvthN4474v2JqBKErReh6fKFwA4dZNegGmk2N0FS9JOOtjW/QQqkCpEPeRBtihRRfKk3IvLxvItdB26VFBUImlDKnU6CekHBTkBKQWyGyVfCFVD11LXSM7sHA8m0VxWEY51AsG3yGaD5cTD6cGMUr7wnWgveY1Qrl441RKfTaBMoa+gV+0EGPxAUrcw49rvG9HLta4osMn2uUD3SuXmK8ZQtXPWyOwbWBax40i57IQ8Zel8sD3wJrHXmAzjmG35lHA/OXK5ZPD5x62nXsWZ5l88yQg6t9JisF3a1DqspSH+hQR5pFvnlMRRd9oKC7T7HzM2tcc/8B5TZxbhmfNUFbufG7Zam0+kbTABNg7+oMuXH08wqPonYGHxRF1uC8whrPeJKjjZeuxUomtII58XtvYiC/pgoGHel+9POS2bzEas9anWOVp59VjOuMfibrGdY5hWlYGndxQVM3htWlHngoZkvK1l9eAWuWat8szRahnJWFJXhFPcoITtHbNObQuEfHNuzctEwTNGtlwWiSS8JhPabTkGUNTWOoVgt6iyOhXRwRkIQ8VhPj/gpVLA9ONK7MMf2J6AAqTaiF4kU0EGiTEnrNNEKwM5V0ReJ7hPKFVNi9dAr0IYvrBGy/kQp4I25cemxxMwq1asEG4Y+vGejX+K7DK4TuV2p5DzJnw3Xky2QrhnrO4idiNarqGFQjCTs+0us8kpw5qdLbpbisQq4l3UD/GkU1B/VsoLs3isWHimwF2GMpF0Tcigpij2vA9QJ1z6FH8bqLtJLuLkO1CfJDBl2aqVaqnhVtVNCS/PhMko+mGzCVmlK3in1GuiO5JDXlJqnq6gqyFRhvY/p5b4TDHmzspozU1GqUANmSwVs5/uVCwGwbYy/rE2zcPieBXX5Yka1J4DX4gcb1QDc5riPzIfR+K1ScLEhQpQNuYuksacotDjqeotOIg9rQoGyQwF/JOdDMOPJrC1xH7MADYApHM7ToaOEarNC48Ap9TZfQ9ULt0YFqq1zrwYQp3U+tWOl89KLNs1OUJzrMQbthtoMUY+T3Yp/BLxmpms/U5CcOKXf30R584Sj6FeVKgVq1uH4t94SxpR7aqdC9MkKpbGojAX4jNEc9MoRZNZ3H47zMFPL10fSXura4RuNGlny2mlLNgGmXZUrZOlIj0iKK2HV7XR9BqZy+RYlddWubPC0mRHoYMO3yBK/QhZP7aPyscxq/mtHMMKWi6dYFDbHzripNd7fBDzPpJE40uk0S+6Kb09Gy1x6y0h3tO6HhVYas24hL16FCuhoKSWTisda1xnXEzCIEyA8Y0Xksa6qtDdQa4myRoNaTBRXnlqi2S5PHTM76aTLrtRwzeYMkD/Wcn1L8Qhbth2s5x/TQTDu/LeXQ1OLa1SY8BKFwqWjEEW4FWgkXAu4WZtXf0stLSGiREpBbIXQNarLRM70aSCBjx6xz7bXQq9QkKu600LBwHlWLgNxt6WIOy7BEVVbSISkyVu6wgCsU2VoX7SRwyw+W2MNDmoU+zSDDTOThunbmAuMFCXxWT1FTkV+Ti8gwW4VyUYJKuo4QXUy6ewx1X4KnK7+znducuYdxnTNZ7oDxjJc7UGn0RItlq1OUywXkHo9m8Zs1PtNs+5eaa2ctzdYaaoNb0bIPIgUgrGWEmYomWFbGGUoHVouGme6Ebl6T24aytuyYXWP/SKyWh6NCOgVVrOg2ekqpcLWhNGHqzd84oWPkRvbHxFms9txu7gCawOGqR64doybDBc24zKjKTLj4jaJcywmV0IqCEbFrs72GoPCNoVrOsWuazElQPRnlVGVGXtT0OhUaCSoy66gnFpMJn7ssM3Ec6tVCtfGIoNwpgtcS4PUdTPRGnrWXB/WkysB4glHr3v/GR5vk+HsMVoJTEly1Wovc4ZZzVC6UqdDxUCo5B2KgRoj71UpQ7XIJHPQkGhhsrqWS2Ei3Qo+1cMILSUbVJJoV2CBCURNgZAixyukB33c0AcxIYybSdTBj6WioSnRSQYk2RIZjMrWL7uyT7kS+AuW8DB5s+nJuV7PCC28Tl851Cp9Zqk2RTuLBrBpckGC+7kvhoJ4TwasZS1Ljc3A2vhZ56VIhlh87kuuj6QaKJdlnqlFUC56mp6XzEWTbdB0rrbFT0kSnp2xVUS6IlqTVo/iOp/vVPt5CNQj4gaN7tdzus2GstAcZBBcUMsStVvhczB/IAmpopnoHvKKekUAYI7NkVKXRlcZrP6WE+SxQHJAkza5JZ4ZVg4vnXyi86IoaEfwHA6joqBQ7IMoLlYdMquhEyo6KVD9lPXrV4rPYDdKy3vZ+6fNAfljuV9kqmImmanImThN60gkyretWrcXFbZyhrRNN1EjjjCU7ZKkzT61CpCNKd3GjE1V76w3UjQwbPZLS5YOiWs0hgO448rzZkDzIQMQwTRJa2962ZhSCWteyt8mKCVO6VmvB3ZLFpgmNXh/mCGp9m4P8rR02CpE2Non3q/iy85p6lNGZKaPDliygmg/M/EBRD+SabY1IPFFzp5DiRUc6IWZfhpsTV716KMN0W1pxex6EmQa1ZkV87mO3KvNUfYdetqKzKLVcj10v53nU8oVM1qNr0ZqEwLRbElSkVk1ksKgMHwXf89NZRb4nGhOl4rySELti8R4kO3P9eKMgWxJzCBMtr9edv1KgnpBwU5ASkFshsjFUm4R20XSIzjnyt2pO/tUNdA5CuVDQXZlACEKpqhvwgdDJOHy3zXQOO3r7Vmg2z1DN53SvXSEUGeNFTb4aKOc1xbIMGhxv73DoV/p0DkC+6mk6GeMtalphbfpS7fEdcRrqHFif6KwnCjMyqGCY+UF0x+rEICkGnT/49g6IlTK1mqGdBA4qMPWX7/8gw0zghI8dQlWN6BHGObd9j5Iqey22u6MT++z6FUN+4pB+t2RcZjSNwTdWKpmVZf9wlt7MhIWBJGAHx30qZxhPctF39CeMeznVMBNtSBYwHUkyqtWcapSRd2u2zK1htee6tRm6WU3H1gzrHKscA1thtWP/ZIa1kOO8TCTOckkKfSNWl64y8oDLvLhpOTWdLWKqSK86eQyNIQwtZp/Fhy7DX1jFGE9dG4q8YWZ2TBOpGK3blg+K2ooDkbEerxW+AWY8fiJOYyoosC7SxBSUmupAFzoO3REandIBP4m3BCPVTx9HFGfdBtdotHY0pcGNMvk+0TI2tDSgTBxjwthKEqEQgfTWilBrdEmcmgx6KcNvqiQhihO8/cBhZiv8/g6h46WS2vOS4NAm3R7ihGW7ZGOHwpOtmak9dDOQ9epa7H2bXqA4JAGWz+ScbHoSoE4WJKBvk5FqTuhR3kqF00wUo5PEda57naJeszJHoIBqzuONTFN3HeIkdrHyVbW4x0nwI9dxcViE0/Vs1FLE67o4LNeZHauod4jDCbVsW7Dr71dO/g0mYOPQtXxJ43JxELJjTXaddCSKJelKqL1W9CFx7qmuoztXpDfaETRFFMIDlYIw06Bzh97TwQ0cfk4GU4Z4XImaAGrZz6phmgS1HP6gkQC5FsMCPLg5J05YMw6zLBXzoJBuB+C7AVykv3iFsgHmaprSiG1s7vA9SbDruZYmt25gUByQIomKnSPdgF1VNEGsVUMMzidrObpfo/Z08JXCa7GyDtES2WcBcyBDVzmFk3PIbamitslSreQ0HUPerbHGY6IWrqkMTaRbucpgVix+oabbL4/oRniOFLIDN5iUbJgGzxFaEKJrWmvx648QxR/xLBHnrzBNJFWkehnrp/8PQYlpgA345Zzxao6erQiNYrJWYHLRsVF4XL9haZOGRqEbI7S3saJRYEeaeiZSoHSQxG+TWPOaQ0K9Y8sEN7ZyH2wP/NiQbR9RreXSsY2dU7tkxF2vFD1GM+PWjUQaJRPS42RytWamxY/glCQrNqA7Tia/94T6SR5NSTyETrSkLmQ5qtMQlJPktuek85F70fopTRPX57rSYWldudrO661hYF9ywUr4WUJKQG6FWPjGkOW8g64CTVeC/KYTK4x5tA7sQm9P/EB8yCsXCN2ccscsB+6YM3uNp+5pxqctsnaCxU6g952StdPnae1elYPJvGZ4gsKuSSV07SSkO7IqQZGZSFDX2y0WhlWs6LZt6KYjAUw2lABn9VQJmlQTA8FSujeN0piVaG3YFoxmG9hU4cdyKo61YfYKje/lhH6BCgE9rlEjB1Ye6vWmHv0rljhlPMuVj+hTTwbCie+LYLXpCG1Ez9SM9vUZ7R1I5W+2ZmZ2jLWOqrKMfEGWNQw2C29mbVxQHRL3mGAD+EAVMnaX81I11IFluiLcXS0oa8vm/pDGaxqvWSmltO6cjmMyAp2+cNBD0UwnvTeoOCRQeOJ+oZIpyr4lYkC1WeY3ZNH9qhplws/O3JS73vLCF+eGUAB9WB0XQgcZW5k23tqCljp2JiwUMi8DjyQFmVAkVOGEI26FepB1GsphPl1Xr1uhtWfNdXFBBOYohAplgzzInULPV9jc4RqDW8rxXY/Zn+P6QrPREz11QJNqo8MX0d0q87hDBSqAWTbR2UkRCoebSMCDM9PzRzoJAV1pSRwmsfMSpx03A48aipDWZ5JU5CvRknNNAtRs2A43E5cqvMJMREdfWflbXctyxzvE4au7Txxw+tfoacDtc6FGda7TU5ctMwE8mBoa0zo2yXbmh+XaNaUkQb5gw+dcRwL4ciGQL0slXHmmXR3lFXYU32fE4tRUGjuUz/kCxl3ZfuXlXzuS6xUk8WgTpKDkms7WpMuaLxnyVcPKbaVz0Qbkrh8D1zjHgqi1MSWxEs26g1gWnYyiDbYIgoNUi9tEVRoLwvfXUTsz0QQd0GuiJwkoWMsg85K0r1hxGNtUg4Kqr7CHLdmq6HWafuyiONHe6EqSkWxN4bqWclEq4Fm/pl7LsY1Cxc5RiPKpNnmy49iVcaLHKQ4VMhOmC2rJ4rqasjLUnYa8aJgc7Iql7J4Oru/JD5j1gXdtQT3OC3FxXpCwZ/WGye9aBTzrAw6BdX1HXIY5IjmhndNSSxFCH6EhaaerT+8FEe0E9RBk9pQkozIM1B/OyVfk+nNFLJ40SvRdMw2629BkHp87/GpOsU+0N+0zI2hFtSAOiWbNTGlO+lCBcWIfHTJPdsjiuoF6T08eJxoYiI2y6yvoeNSWCkqL2ZfLsgcO1WlQpUGPNES7XKKAHxOEQlgrzG45Xr4v1EHGkvCq1pVvYpjbscLasIMrrSQ2cW5Oa9cMrM+B6jiaQjo3+GgZTKQgl0c9yhMSEn4IUgJyK8W2T+zl8N234Tqw/XM1GEU1o6n6GlvKQDOAbK1BlQ0hs+x+4GYp7hTivFPOKewEmp6WYU0+sHyX7Yy2xWppJonB4Ts1zH3Dkq8FxpslSJv9viIbBkZbZcBTPRPwUdAejFSJ2wBQuTgiYwZMFPwSH+J21HZDpDLW9P064TmAXrFwKCMfqelMh3oGcAEzKUEp3EwHszoBpVArI4Z3nOe6Ry+Q7RgRhoH8hJLJKCcvIsd4VahBMzNjeosrHFrrScW1MVS1nXrtZ1lDt6gxKpAZR2EbzNwqy6Muw2GBLw16STgqwQT8TENwioYMZQOVMyxNugzyEhc0/bxiUmd4r5mUGTYTsWmeNdSNodsX/nedOeraSFfEafH4VxLoubaiNtaoFUuN7EuCwpXgShvfi8xv8IpeVk11IkXesLrWkUnIXonIvIpajomZzvgwpVQJm37Am0BnbkITrXxVm5wC3UEptqiNoTsYUzZm3ap3LOJUci8Vz0PSFQlrBr9tjFvJyA+JTa9qFHZFr3crDlnqTY4wsZihkenEjVDEMOKU1cw4ofjEh7w5mE0TTbNqYgwcKA5o6lmpXJeLQpHqXWUpF8Sac7LFUxwSZx3dRD1FLl0IO5RguelFdykL+SrToWt2qGh6kB+Ua6jpyfldzbaWv/GCVVIUyNZk2U1PgnTVxGQij8F/TzQYdixBbBvotnahvT1y/QUjxz1fkW5IvizLANF+wHqyoutoRKbXXxN9mMxG0BKnU/dk2/JV2VbdrGtPgpZ7RmtT2lK8OvsU5aL83Q08wXrsYQka28FwbsbFTFDoL2Yiy8lWImXMKVQtXHxdKihjkBqHS4ZZua7MipWJ1AqwEvibFbteYW5Ex9LaweqlTO49cw438KjGRG2MbLutYjIUx9rodmCekvtO2J9B34tGoOdkpk0cYOe6oj1QMamCuP9j5yxfkftntipcOlNmVHOgu0EuV4PYMXcCaMS4IcJ7JcUE66gbM6VF1bWhKJppIqJjd6OdxD6do3KEI9aG14j6DWFdiUmA0yIUN16m0xuZcu8m0oXIOg3Ba5rFBj02ZKsad9sxrtbUNpAdsqhKrK5ViA5xqxY7lH1fbmvE8XARypUCPTTMf1uok5OxEXv1XK5tM7JCD8xF65Xtk3k2ofBkB0Q75mdiR63ToBca3MTSjDJ04XBbKqGyTjR6X5fQ85J4FA6iza9yscsRu5TN5kY0bRNNqDSq4wi1xhZOZg0FWL56DrJANl9SY+VhFoQGGLSOxb32vBSOYNCKkIvmpbUiDres++3NgifgUgck4WcEKQG5FULXjtDJmP/aQTb98xiMoTppgUNndCRw8cShdKBcAGtY+YUFlIfBXs/KyVqmSmuFt4G6r6kGkoyYSnjfrgN6DfKVwLbPiFZDeegeEOFs96BH14HO4cDu+xgWvw4H7hzoX62mXY1m4GGmQRlPVjQS4C/l5IcMzQI0Mw76DntdLnajOfiROAk1gyDOOYUj69eUqzlKMRWVHjpngClh4csHJPkAXD/HljUzV02YLPRYrfqorSXz/TEnb9/DxFkar1le6LB73zzL18yxPGiYnR8xKTPm54YYFehkNcMqZyYvqb1hXGfTzsH2+RVut3iA/b0+q5OC5fGczHAYaVwQGgsAJrCadRnnOU1PT9vvGtFqGOMjL9xEO84wteGUwWety4zDNxqlFSZSpJzVhDgfgXayctuZQOgTOjr1+EazWhWMS3HUCkHR75VMqozO3FhmfaxK4G7mKhlMdm0f1/H4LHZ6akWR19R1h6zTYI2jjola08gck9lNI9YmuVRhR0YSBRUnDldmSkXQlUzwrtdysiUpb/siQN5698tUZRBaXphtcIjzUUvB0WMJVs1IS+KyaqhO8JIM9IW73dIwTClzMnSlxDFqIIH/6KTojOUU3eskCdG1IluOonBxGKbpi8mDHQu90ecBO1LSJYk0QuVEsO5zoZn1diuqTYHigIjZgw0UhxVZI4m5HSvsUKhWIMtog2KfSxBcxYSkpVU1XchXJOjOhhLsyjBCuWa9kW1tXbiCkW5l05f3uly6E5ggLl4HxMpXN/L5an5dp+Ly1jEodj+0dAlcIRalQYtWxVRQb2o1NUSHMdFq2TU1neYu2ppWxBD/PpbvGsx6AtCS6V3fy9RsEzA9cSZSK6KTCJkkfVVXump6aES/Y6I+olnn/fvCSyB70IrmgJhM9mPCO4rfob/+vYKG7l5JLJou6ELhFyr0oXw6Ub7e5ES8nDHt7NSzQXQt8dyoB5JgoWX/uELeK/dVI7ShIghNqFbkvXraiagqK9SsgaeeWPKudEl9o9EdcdVyXjOZZGSZI7MOf0QM2HZQphPkFUCQuX5RpuUjFRQr9wkXqalNZXFjiz1sRfsyG2cHAT7zlNs8hXWwq4MdxQQaxaQryWM2Ervpal7uiTSKam8PO9SoGUcoPONfHTLZ10NPxGnKDuW61KWis1/2mbfxfM4l+WhmovA9zpLxyoiteOw8h6hBUbUCLW51dOXcYSLUPj3R4rQ1lsGG+eKY8kCX4EH3G1jNUGMLecCtxsnzTk01KfXEwthSbB6LFhGkgNPajNsApRRJdK8hNHqauGLDlE7400SiYCX8LCElILdCyHyO+Eu3A43DjGt005EHfJAHDRp02RBMKwoE3cjNouV6h2nfX/5xmXxO+fhwjdXEYknEyEFB5xCUs+KAtenbIzb/a5d8zbPznxQz3zzAtQ/bhp3A8lnA4QzXd/hMKDL4GCxtq+hvGrN2oIeZyOA0O44PnhnhBeuRhommHlryFaHL+EI6LbqG2R+MaRb6mNUJK2fNM/vtJdbOWqS7Z8Rgt6PpGprlDnuGGcOdOb1c9Bkn9FdYHnRZ84qiJ7MAfAzkV0YdenMVt5s/SK4bvr+yGIf+acrlgmsmCxwc9NExUaHnZK5GEKcTnARYwYIbZrC3w/7FnP7cGBtF6taI1fBsMWGFDrlxDIqSUZXjg6KsFDaXrkjwohGx0U3Haocxmmpi5aGrkASv06xPW47JR/DSsdAE8swxmuTM98f085JDqsdoXEBQ5NtGKB0ohznhcAc326ALhzpQELoyM2L5UB9WM/x8RbXWJV8cTyuo2nomUfDunG6bNdMJxcopgiN2vSQxUY2imW/IDlqZFzKIw82cQh8xPTk0og3QlQRsea+mmhiZaYEE0K4XyHdnMpdjrCLdQoT0ppQOAQqqeRnYF9bks/UgYEexun9YIrNqUYKN7i4tdMbW5aqA7j7wVlFtkuC01W40A6YD8HSlWDvFky9Jkq8bUJXMoqg2CQXQW3BzMtwwW4vXXdRD2REYJ9dcviJ0qMlAkpZsJQbAM+uUKJ+1VCC5VmXoo7jxND2hFU22Oor9huKQEWpQI8uw4/XOjitkAKIrYlJQxY5NpCzpqr33gO/E9bb0y7ifxHpUEk1fBMKs2KqqNeHM2yU7pXa23Rq5B0UalIvJQXQqo+MJBwqCDdhJTGSyEJMvOU98IVQkJfT+6YBH5dV0FpHrSwIasoAq1dRwoJ4BP5Zj1IqjWzppOR/o7FOAplYZviPJTFutbzsprcbNjFWkvsq5186WMaXsU+WhFdDrOMNJBUBLQUchhQfnNM1qjsodTWMII4vpl4xWOuA0daehU9SEEGJyEaZ0qxatPXdLsYLQOrEfpUJo9SStNi0oj7JhmrDJ9Wimw/9UKZTPsHNCdVAGhGbLmvywjgmlXO8qSLfbdaON9aZGuqIjQ7mrT3HCUOyLnaauDGpPh2prjW6yqbGC8iIenz4P2mPoFXoo9DuVBekS544QAi0LTZyntAjZ+w00WrRJy5lsn4eyyIXCNTaEoZLp6hOhiikTpDMc1p+NSgdC1+FqQzFbEoIS4fzICOWv56T4EojzUdrtkGGr7YT4hISEY0NKQG6FUCtrlGecRPHdfZBlhMyydkp/StWoe7EiGEXZftBhuFPROQDVQAKtqVVopDr5I55MQUtwMVmUZWVjKJaDdFOMonvA0TlYUc1nKOcZL2pmrxhilobQOAZ7POPNms4+uYFXsxY31nQOyIyFkAV04Rgud9AdR7lD0b1G6BXFCHSjmewQfjCNPMyqbWJJW3yvw9z3AqMtioV/nXDoTps4cJcueseIwRsyetcOwXsG3zlM//uWw+fMka0ZzNc2ke1xXPkAuDJWTotT1licGbK9v8qhSZdBVnE467JneZYrr9hOsIH+5iF33XEt16zNc52eYXSwx3Apx5SKoQYWK5nKvpbHSqEmqIDqiyNX9zrFaIunqizkTOeCtNQJmSOicN5SN2YaxLuWFmI8nUKSj7Zr4ryKE85lrojJvAyFU9DtyRTzxmnK2hKsYmXcmc4iGdqc1bFkn96JvqM6JDMd0Mh8jjgJ2mfiSEQw2H5Fs5oRnEbHYYrlOJOZBgSqJrrDeI32EnQTFGakNlAPdA2uq4TqNYrcbKcwyzaaDUgCoRyRahZFyAbZPqdFiNq+hkw8DyZW7iMVBMCMFNV8kM7HbCBbFhFsyER0rCuhTlSbJKhsJ4Vny5p8DcabmQ4IDJbpoDJvJDmYbBU3JeVk2GG2IvSmfEnT9GHtNk4GkZlAd48mWxbKTbaqsGMZnqdr6QDUffl/PRO7DpZpEJYNJbitZ4UyBetJg51IIFzNricPLg/yeYii3ziosJAEwsaORdOTdYRC7gPVnGxDtgyTzfFYHUEhCxrWTgkUB4XyVfehWojc/0aSsGxFC6Wsq6i0xQ4lSTCrVrRdHY8ubayorycN2aok7fIHRegLR18FCZzbY00AN+Mxw5b+FLsmcbp9fljTzEQKYiXLbI8zQWaptImhHco+8Hl0IStlHwkFLzDZIudcZ7+mmg9CDVycUB+WpMgV8nc7ko6XLmVInRR+1m+orhPXWa87n+lSxfkQAVUTnf8CjKIuy2n8VT2yU0aSUEyM7BeEeuUgOmbpqZvWkfa9dW0IQWGsp8gafJAEo671VK8G63Qtm4kmSxsPpUa37mHR5toMNbqJNNg9PcJiid02pikN1axGH85Ai67KDhXNSRP8doduNG5iKfZkNDOxcBYUzfcH+Ei71Y3Cd0QzVp5U0fQy7CgaNIwVrhfnamSRatcRaqkeGlBGbLqNwpcyjDB0nAxDnYgpAV6Jm+JshZoBY2Wu1HhYyP0tj85rQwt9N30mmrkKVxnUSO6tYaLBiJEkKojRhpOijy9kv4WOcABj02mqjcEEmYn1U0ay4U34WUJKQG6NyHKyQ2PpfgAqBMrZOBAtxKTCRWqDc+y59ybhbY9EwxHUOk9aeanABQveKJkXArQT0acC1okEA3Vf4a0mX9X0rlpFDSc0vRnqTQVmeQRG099dsnpiN3qxxwpjnBwt1pvg93ToHVIYMaCi6UuA1TSIi0h0uclW5BTMD2fMft+y8PUlrn7YPN7C8LZzeAvbPh+Y/U6NmjTr2+88qnLMXF3S9DrMXFUTMsXJH4YD51j6uwKjfTPsPqHP6ve3Yyawb1YCkblDAZcp+o/dzaTO+Pr+HfTymm2zq+yKD+lyLYfSwNhQAZ3Zkn63pKoto1EhXGqvGd6hksrlWOEaLeJrpzHGMxwVjOPUY6ND7LSsi0GLrKGwDaMqp5dXdPMaozyVszTOSLBpZVJxCBZXG0KA0UTKy1oFJhOhV4XKQK0YlgZdCK0rlEYqyROhCui+kNm90zIcEKk0q06DsZ6wWNLrlTJgsdHRNccTaiOe/yMJdCXIko6At4AONNsrut8ppPI+UjSZnuqAMFIxN2sizgamFCvXF/veZiDOUdb4OA1aBK0tVai7H6oZGM2tJyAoSULqOek8ZKvyolmWc1Kc25hSePJDet2++oikyZQiEG/PVTuURAHPNPGxExieLB0WcaCC/lUmdiiEiiVq6jiBfRwD/B5UHfk8URjdisvlO8bTOb7munGdHRGem5EUCpoZT7akaSfO63F8f0cSsBCpQK1RBV6uzeJQ3N9xWJquoFyMuo/YCWm7HygYXKNwGUy2xKB9omh60eI2JhOt/apdFU2GnANyXzKHbBTKE5MNSRCqTeLYJdsitD8dK9CmUdO5DsFKUcKMFNWii9oBmZKunFDwfO7xhQTNRMteHTtwrhdwUQRt1yLlrLO+39tOhV2Tga5Bx45rKRlYrTqYodhFu55HV5p60HZvfLTSFvqbt+uaEuVA6fVEKl+Wc1c1FrfQSKFlzUh1fxJpZCBai2EmmqY80NQGOlA1BkUsAnQUnbze4JiVZU6svoMMRM1sNLQwajpY0MeiRFZIYJwXNZNRjo4V/WqLWIGHwuMyRXGNUMeCAj/q0AzEYazeJiIiP9ugKhlGaK/pyPvmHLqWY9UmhGICgSxXacwJY/zBAjPU4jaWB8pZB5lHL2ey/5Qkba4j54A9ZPAdOeZ6bAhltEnP/YaOTbwcRAeyr4M3AZcFqo6TLltQqEENS7lQRg9lqB1j3KECV0knVg9q6WjEgbGttk5lDoyGDBGvOylA4ZEbRq9BaVCVIczVqEkK1BMSbgpSAnIrxPCMBWZ3VbGnrghWM94Cg93iiqVi8hAU+G7BwuUN193VUg0Udf8IalWQB/GRAVdQEiC1gtXW8QXiA9XCeEEBOd2OYTI/D8Chs3J2XgkoxeEzuvT3ymBECZoCruMJmSY/LNVcXSvG27zQVuKDxfWElmKHimzNoCtDPSNBQucgzH1vzGTngO5+KOdg791lgm3ngGL+X8aUpy6QHRqjaodqHFQVynlcBofukLHpioZ6IAL7g3cCgohLV87y9K4WUfL8txQL/7qE6+fsf99Oxr+ySreoGddZHCamyfMGNaiY+ELa9CsZk0ZoUdIRAK+VPJAyR96rJXBAkoKZ2RHjUsTovU7FuMwYjbMpj9mXYvdZW8tKtOucFBm9bsWgU5IZRy+vqL1hUmpxyDEB3wQm4zx2IqQyp0zAjaxwlUHoMKVoNFRboauB3FN0a9GfIBa+fl4xXJbhhdVYBjBWjaGeWElQxgY91hQxwM1Wow20koF4dUtNKhU00hWI9l/Ci0bOU5mHIslOPecJhReKxYyDwuMrodP4QjjxRPch5SAfSVDXUpHypVjtN23nItC7RuhQK+fU2AMWn68P2suXYpejYNpBBFg5LaAa0RyUSiao6yZeD7GDqCtF05VEwOcytG+yNeoI9sFoh1RsdbkuvG6vo2Yh6i9KqOc81SboXyM0lqbvsavSIWm68brLJZGYzrLoBMZzjmKvdBa8EWG7Hcv1X81KJR4fqWZDOUbV3HpiYYfy/2pekhOfrTvW6TomRSF2Z6JWpInCeNVEmla/pRzKcTYT2d56Tmgzai1WxGf91KLb+9gRKCUI1w4Juk3UivTj3Ic80p7iXAcz1FM3uGpRNCCqlsGGGKBGqs1Kkg7V2gEj9zLRtIhuwXUDzUBN9S1ksq/ajo+uQa1K5Lt+v1SoRpyfpLMj14/ryaA9c9hGDYIc92nyF5+iLRXLjtvrQJJxXWeilwNUjcy0qRQYUHs7aCP3S9fzZJkkEqLnEopUa7fdOl45p8mzRrquiqmpBjDVgTkn9zIU1KWl3y9lIGu3ptK5uLDtz6g3OeyyoV5oGO2MVDa7rl1xRUAvt+02LZqrbY2IxG0grGXYVU1j5RpyPXG6s6saH21v/b6OdEHyMB3y11Kf3ECGhebLiskWadmrSk+PQXvOmLHGDaRrFuZq0bWZaOG+lOF7TihSAXFca6fED6LBweYJrjL4lQy1v4PaVEmS5jQ68+T9iskol5x5YiTZUdJlMZtKnEIGKpZWngkeoXstlvjMwGj92fDThI8/t/QyExJ+EkgJyK0QduwIuUwyx8PkhFmyITRdqU5a0WTjMli6w4D5y4ds/0JBtlpDCOhRDVZzzQNm6RzB7Q4xaMOvB2LS8weXSwekcygw3hIfdJlQGrZ9uaQeWJrFAbp2bL10N9c+cifdAzDaLg/9YDRmFOkHdaR6rOqpJaeL80BCFKBny/Lgt2PiDAA4eHaPbZ85iF3tceAXu5QLUOyDzV+fgPPY1Qo1aai3DhieUOAy6Cz5qTB3bYdltE3Woxpx7VFGKqqj21UwtPhMUS32UM4ze3XDpjcW7PrlGXwu1BN/VsXo4Ax2+1gm78YBV6wZwprBxopwGDQixEbEi0pL679T1GTaE/KG0SRnbVRQl1aqkFY42XQa6UJ4JR0qr3GjjLVaUzWGblHTsQ2Vg6q0U353CDK0T+YqaPHSL2UmCHHAG/H7rtssx+GAOjA63CXbn9HMOzonLpNrz3A4IAwaTOZwpZXkIyZI2ZKZHktVR01Ed10I3cxIkKI85Hsy8NDMebrXaVw7RBDh/etGAkldasKsOHSFuH26EkGzzDPQ2JEkA97KOlUjCUewRwi3B3LO2ENK5n70QS9ZdCVBsitEzD3eKoE1RLpSKXSibFXW31ihbrWW1G1Cni9H/r9T1LOSfClixyJI8iHBpfxezQstKlsRaouu5fPZmtCGWntYnwkFTPQOMbHKwoYiQdMPMldn2eJiwpKtyEyEhvUkxIylA1UcZro80zo/Rf2I68ZuR+xIZDEpMaXsG5DP61qSk+mckLjP7DAmLv317VNOhrG1VE8XBcpByXnSFurjDLzpbBA9jvNeRoYwI65sviNdBuL9aT350Xgflxtfa6FqRbYqDm4tLSpksh4zkkp5UJKYmbEkQXJfFQ2HioUAE+15W+qdUKigQowUzERPl+9yNU3s6l4gr0Vr4rqx29WAiTbkbYGn7YbI+bheONK1JNtmscTv6xCyILSzbhNteRWj1UKOV7fBaD+d/ROCCMwbp3GlGFyYTByxxPBCbuxNJQG4yR3Wtp8XPYnPg+ybSqH6Na5fQynzfMQsYX2ieLABvaXE7y9QE0214CQhXc5xRnQwzbxjZtsaq4Mu+mBOvqQpF2KhYWTE1rfnULUWB7XNNVSa4qqccpvDLTSURibdK6em91UXdSrKieaJroORxRzIaeYbVK1Rk6jjcPHcGjjUTElYyuUcWpXlOi3/+o4YNSjAjYRW5nVgXBZysro2ow305sc4r6U4E8DXBpWJBXALXxvUoCasZlPqaEJCwrEhJSC3QmTLJcpZEXTPdth350z4umMJaFoLWzTMXDlBVQ3dq8aUO2Y5fFbBwrcm2NVKql/9+KCNwUDQTCt2yiOi6ia6ugzlPW112VvF5i8eotnUI1+qCZmmGmTY3NA9JHQvXcmD1nrpckhbXEUXrhjIaOHxq/1Ghip2I0e9D+0U5FER2PRvoEYlWQgMduWAkWGJmzLWTtqJcgE76TFeMNPKcTVrprQKXYc4FVq+hxlqWNWE2ELPVlSknijM2NPZO2bl9D4L3wrs/dWG2V9YwTjNShhQHy7koRaDqZZK1EROuK8y3IxDZw4bNRxNaVgue4yiHXCWOamwZo4ib2RqeQwmQhCqRCigcRIsuChKl7kAQkfq9iqckwdbXRucl87E1NM/9zLvI2/iw1OhB06GfWnhnGOjk0w8v7rXGlbGm9A7RxTbRpTLHdGrDCqqlQI1NFM+dhtgByO0HNcJdPYr6hmhNFWbPPVs2MCJn2wRfUlxQLjVnf3inMaazETQB7NpBVk3EnR0dxvGOxz2ukzOKS2Jdh5dm4RKJQM6g1qnLvkYMNuhHJfJIvh4LrcWrMpBuVl0BW2wqkvhnpuxmoqUg2Uq+PaZnF8uLqtNSIJudQUBc1jJ9PO+0NLsOE46962+IjC8raP/fTsNXs1kXZ/V9MLUbleFdQ1HK7Rvh+hNqUojRT3vQItdbDXnyZc1k81h3Zq3id85yPbrCiZbPb1detr1DFpMIepBoH+NYrIQkxAHoYrHXK8H5i4OXGs/206HbyeQ60rRzEj13GdBHJF8DMYzuSaFOhUpVkHB0EhVu+/FytkGwnyNPpgLZS+aG7TLtWtiUtEGp60NebDipqdqJRXzNoFBOiEtJW2qvyklERAXpoAZScLY9KQj5hejvqRUU7E1AfIDlqYbplqUapOjf7V0cJuBaIWaLtP3q4ap5ezUEnm8TjHStSbs7kIW0LMVvjIEJ0lE1Yi2IUS6ZuuKlVuHC0p0ZF6TdRu08Wjtp/qyqrIoFci7tVT3jZ9qyyZlJveEwkt3AvATi55o1KCh2VHiljPR+Sxr2uGz/kDUlPWcdAZGBmYaGBt836FsYHjlLKaWblB5ciX6DC1OWWoNfC7XnttSERqNnmjq243Bacx+cUDzRZg64Zmx6DF87rFrhmZLDSNLyMS9rw32zUjTzElhw1u53/mm1bd4VL+WAZGZzH6ilntvWMlEvO60zETSkqw1Qzvd96M9A6FldR3ZoKJezcEbwigWeGKHWfiPYXpu/jThfgI2vLf08hISWqQE5NYIH5WZGg6f1Rfv/uWYIMRgsA1o0ApVO4JSNAMTg3tLvndVqtdRHNneMKcPyDaJiXFjy3XPRuvWk6YO1It96llL0IrRZoPygfkrGlycIaI6Ek9ouZfjMwk0dK3Il9R6JVDL8stFmWqtxxofhfTNwNO/ytDf19BsncN3DJMFoV/VPUXdM0wWob9HsXpSDARjwCji01jlbrUumcxayFdlunMzWP/OxYrHW0U9m5Gt1lQzkdPvFMNJzqBboouG/mLJyoF+rMqDipxtSi1D+xzosYY+U3Got+szNKwVKoTRHu8kqLBBgV2nUtSNQauAVoHGaXyj8I3FOc387IiZXCZbhaBEcI5Y8FaxSqiMBCfkDps7qpEQ9f0kPkRrjRoILSGsZDHIDZQnTSi6ogcZ7+uTL46nww7t/kwEuDZg1yQormbD1JJTuWg9Gyv2bXW0mXNioVl49IphsEu6J+WCiLl9Lh2O4kBMGGMHLsQA1nVi0OElQGwnk08W5NzPl6KN7ApTZyKfi2i72iR/8zE5mg7xM7FyHiDkHnNYC71nS0P3WouZKCY7HT7T5MvSXZThjnIMXUfO58YrmIdiWRIiFaC7T0uiy7qQvYq2tq4rX6+7T7G22UtSEq+1lqrVdKJWQ8lgRtEiCOWsnA/TiehNT5IbVwQZ6jaUzoMrQpxrESdFR5cu5SUJyldiB2ksHUoXC7zTQYFRqC0i6/h9o06EZqOLVeuY1+ooWktbXKySx0Az6LAuCI+f040s0+dRaGwCRDehkEVb3agVIZ7XkihJ8K+HOhYtwnT4m6nVdLhf0NIRaTstOg6MDApCHNra2hYT4nwWTbRJjoFk1OaArBcllsa61IR4zkO0SSYmmUFRzsv5a4fRCaq/3kXT0YlMhmRKMuNiAktQ0yQ7BHATC16hCxdn8UjiEHQcIug11vjpvcAHFecaySyRFnUjhQnvFEYHbNSFhABKyyyQqrRTLYovZM6HL6Q4oXQgzDQy0HNfLhQ3J20XXStCqWHgpOjh1HQ4HwTU1hJ7RVdokVo6ka4nM1qK/aI5aQAXLchDx0+Hz4btE8KhInab1p9x7dyNYILoOWDaUdETjc89zbYKtSp236HjRC8C0EiXrM49Lt4387wh6zlWV7pS6KnF8EKXGt/1BOtQXlFsmuAaTR1ylFeYTkOeNzRWXBWCM1PhucqC6OQKYExCQsJNQEpAboXQq2OW734yc/+2xOrJ4m6lo2jUG6Y2qNpDdnCE7+UMT+oz2aSZvcrT/f4SQakpDWU62ddI92E6VCkmJbAeXLgM8tXA2kkqWmNmYu0bArYMTDYp1k7qMHtVhW48u+/doemC64o1adOTyq/PA9U8URjqsVFkaSbiRtJSe1qrTzuBQ2dYUBZXyHbOXhmo+/Jwn+x0TLbHQCeLA6uMx+4pphVrFx/+2VB+mo5Uen3Xkx/SDK4NmDKAUaycnLF6ak53X+Ru1+LccmC+i52ReRnd+QneKxZnhwzykoVizFLVYc/KLI3TTEYSpfU6FaujDtsXVhjXGR3b0LHi+79WFRxc6WO0uF+1/v151tCL/LhuJnMAVicFdS2VzHGZoQls7g1ZnnQB8NFWKOvXWOvQOtDJa1ZHouMoBmIdGbyiKeOJ4iWoy7eMqUY5Hhn+NxpbbL/BbppI4rIqtKvWQjdbEktXgJAHwiQ6IRVScc4PGqqtNZ0rulS3maCcnk68tnFAX9OVzoQpFT4z1IPAZGdN/wciPC0Oq+lwS4IEvcUhpgP6dAXFUqQX5evzLKaJdQXj7RJ42pHCLCuZw2HU1PJZB1meHpk4f8Zj1gxNP5AvKczaOpWopVfJvIc2gVHT7sfSWcJLLw7Cyu0bOrst2QoYK90hEzs2Zn87UwQ6V+W0gnAXEydCDOKrOMMESQx1BeNtUmEv+7KP7SQm7X0njjxGRyG0dAh8IVX5Igrs22nw5aLQHNuhhNX8uobDjiRY7u6VbmGruWq7Ra01t4qDCu0wdk6y9ftEO2Q0WxaevoraHx87Z003TAsELl8fYgeI45MNMkiyUVJNV0F49FYG06koEFZK4/uiG9AT0Zrow2ZaOJH9qSSAdAqnA1rF+TYBgo30nSCJiSlFa+GtUEDLLSKeVrF67+PQw3YGTZs0Nj0ReLfFnJba1dkvgyqlmyvvy4bSIWypaa6IVf1STS2bp8MNPegq6nxcjm87ADM1WS5Un7KyMkvIujhLSMmcj9gJGU9yubdEpzqbOSls6DCdPQKiFel0K0azhjAy0vnpNLGLqmHNSqcrCH2VrkNbJwYXB8TsQi1bmZsRh4baZSuC/TzgTolimlKjxvK+Yk9GNe/RW0rcck6+Kxdx+84R1eEOqtS4oOQ63VrJcVJhSifVB3KhZ0Y3K5/JueHjzCHqKJovhG4bsoCayDPCdQJ2X0Yzo3F7Chww7ksBzCyU+NoQ8OIQGcBXBnJPeV2PUHjsoMZNLL4yjA/OQOEhrofcyb11aAjKQNcdOTj9pwYXoovXLbzMhISfBFICcitEtXNegu4dA/JVprSoFq3DFQF8L+fALw6EbtWF3v7A6LR5lm9j6e5fr+wROeLTytIRnQ8dn/+iAJVKvhkDSpGtNZTzls6hmpWTLdu+sIpqPPrAMljL7Ik7uO5ceWhPTqixh8WaE9pgRYbPub4XukT0fm952aHVpAQJJIlBSbai8Jk8rF0h3QahLiiaPMBEA8JZ1s36d3GdyFu361oF7URTsHya4tAdhY/vC6F+1DsbmYx72OK21Kg1i/M5VVHTKSRKaCcTX35oi4jMOyUHV/vyHY9ouy+Pumzqi5XSatmh8ZrcOBZmRlTOMKksRge09lS1xRqPj9xtG4Xn5DAscxpnWJsUMrAwdlh6nYrRJCfPGzp5PZ0HMNObkGnPqMpktohS9DeVHL5uBttrCAERyQ8NDBp07gmx+ugb8dh31tDOOHE9j13RMZAE2kD39DHqmi6h8FTbAvawZbKjkeFeHYdZyTDlui7CF2KBm62K+Nz1Hd2rRSuiNIx2Co2lFYm3lqv5cowX43wOU0oQWA/kOshWRb+QL8tsC+UlCPSRWoWOMy6G8hldEzVQIc5zUOSHJZlpnbbaynU1J4F1PSMUpcHVUrnWNcxdrik3RTes62ycjC7BZ768bn1bD1if3zGUc1yX6/Sldv5HtRipewMHmVRWW5oUNshckVqq0KFWmKFoJnzXS8V8pKZzK+q+BL6dgxL8+jxQz0KrbdAx8C0XhXalXBw2WMo+NVG0Ptksxj/t/mjpVqaUbqLysWMSqVmuJ0JxM5FjZpyadmhVvJ+oRuGPcHBStcL3ZHSnz/10RqGaqYV2NDbiRGXA97xY/GZeqJ0jPdXXuJ6fitFD5mG8npxN7y0l064acT3t+WzHCrsau24B6hlxqwpFgMrQLDToNXGSM1FQ3wxiNy/Ezkwvnh+u7QSrqdlBvqSiwQBRx0CkrAYaSxRmx/ufU1CBCkrmKjWKsskI0fnOdBvqypLlDZO1HKU92gaqUrolLYWLoDBz61bf1jp8HGpYFDWj5a5QqLoOFPTmxlSVpZl0RFC9lqHHGrOmcSqgD+dS5T95hIm2v9V+afHZibhR5YclWSubSKXKPfXmmuxARrmjRlWa7Ntdwlyg3F6jFFQHuhT7DfVMkPM699Bo1NDApoqZ+RFrax38fEPwYEeW4GKnohDHPI+GzE8NL9SaOLD5IkDhCLWiXhQ+onNihhKKOAdlOReL5MJJN0cj3euA7JtG42uNKRxuOY/DL1UUoCtozLQDCaBWLCqb3PAD/TgiidATfpaQEpBbIXQltJnDZ+axZX/Ew9xLwKAboZ3su+sAiDSJGtZ2GqFeRBrVkZjSKo7sfLRUrJiAVDPRn70S+pPtG/q7Jijn2fmRJSjLuJEGmoaFS6+iGpyK68Bom56KXIOKdrsa4fUGppoK15eHgh7JBG1XCAccHeQGbyU4GG1brxTakZpWkM1IXFJEKCl/b3UtpuXhx9fqOU+2rCkXAq6IPvM6VmMVop+IMyKIDzA1Noz29Rlq0N2GJTeINozAwDG/uMbWuVX2uDma0nDo0AACVKNsWm0MAarKSuvfOjpZTWYdo3FBt1NR5JIYqKDoF9IJaZxmZdyhLi3BK6pauizBH2ENqQNZ0TCpJIMbuwyjPbXx6MgXr8qMABRzpdC7GhGwulwm1u9cXGZp1GU8yamrSNfKPMrpKbVMxQBTN9BscnjABEXn9BWG186g5ip8t4GJRfUawlqGX6zxawYzkWzZTORkUw7ygxo31Ey2ynELmRzvpg/5YeleBSXnsI9UqGDFwrZzMFKWbEwmfDuAsHV9EhpMS0PKVmLVfzZ+BydD01Ss8AcNw5Pk3MxW1PTa8la2pZ6ThKG3RzHZDNVmJ0MzY2De262nXQxvJSFaO81R7JNkSsUZFO18CKL+oA3eZfJ5ID9scHGCuOuG9ap+rdDOTPeRj5QTlNjHNl6Bldkjk0X5fDZU0h21cn8oDsaBiEWg2VaTX5OLWN1IgtJ0Zb/oMaye1TD3TYvPRAsy2iGJ3fBEMWZotQztvhNNjegnpFAQk5EY1IsFsYp0HHD96CoV55f4QqbZE5TY2XYloAwBuV9YLwWLOKHaA3qihQbkxUwgmGjj3PFT8fJUr2UlCNa1nnZdm3b/Bik+mJGmmo1DEXWYHge5ccXCzNBgo9BfrIXjNPAVMzUKKBejsYKXDgdOpqarJiZeeYgD/Dx6Ip1BNFPtiR0q6lm/fqwVqIlBdRt8aeUe4RT2CB3Z+HAHMkUzMijrcRMr83Q6DpV7XK3xTlP0K8oyw5UWsz9jtNmirCfbWk3vV6NdM6j5iv72NZkt1GjUTC06iqBg2cg27ukR4iBRZQJhrqbJDSrz1Nsa/L4O+WFNddpEEglkfynrKeYnTHQXu2RRh2QCu7eBcrNDzdSoAwVmHCmofQcTw3I5EGveosEWjqbXiB6m1mgd8I1cD0EBc43M6AjAphpjAi4WWMyqwfc8YbbBGw+VEQ1aQM6dToB+gz5Q4K2GgVTjVO4JTkuHaraaTmP3taE/L0mb29WLRTvpvBw1BTIhIeGHIiUgt0Lsv3OfMCfBPNGCtKVd2cm6q0+xHG15HdQ9sCUb3a1gepNen4weX3brf/OZaD9aGkzQQsMiQD3Q+KzDzHdWKE+ep/jeAdCKfb+yE90Ipamclwp2d3+kQrVdFq/WK7/dMOV3m6EhP9xSeqQK3QYDupIKajuHoeWt2+E67UEDOlboW2eels5VzcXgNNJtpg5EM7HCrtbpK20iA8Qp50GoRB1p+etKwSSXrsFY4xdqCLC61mHpYF923thItbArO3zoFXm/mtryBi/BQFlbtBIx+Dh2MUCSlOGwQ17UU/vNyinRmUSNR9GvKUcZodGowlFPLKGQib3NyGK6Dd1ehTUNTWNwlWEwGDOpMiZrBdqKUF55Rb2ac/Vks0wNtgHbqeVhHmQf+FxOtCZOenYxWAy5x61mjAPCfT5QSJA3W8OhHDvWNM0R7kSVwndjEOKlK2LHMgsm9B0qcwy+0hE3KwPlglCiXCHH3TSIo1LbnSNS5cIRAuRI02rnPJixmupOikPr2idxJpIAQQawybrquSCJOky7cMFCcSAmP3Ot/sRgKijnRcxebhIO/2RLmG5HfuD/Z+/PYm5b07te7Pd2o5nd161ur7137XKVXW6wMcZKiIkSuKA5koFEXIIsuIILBLLEJTdcGCEhgZDIFRYSBESIFCkXjiKHcI50jjhHFsZgA6YoV7u71X/d7Ebzdrl43jG+tY2U2EdVp7aV75WWVje/Occc7fM8/87QvKY03EJlnPRXx3eYkbr+Is/6i1hJPgqqFK9F31BtiyVpZraalQA8cQ9TXuFemzIokG2ZmsUp6FCE2EI/sy/djH72F5n1d4SONJ7Ktq6+bjm8J9dEdS33gawl00fc9+7odMneoVrJCUqU6lysiEsTVIlW5/i0UOOOWqh7Z5I7wbHAuWtPmuyjgy4oQUIpQTVoIE+Ihsql0WC2/I2rCEEQAxWEamWK3e9U5GsP/qSEVa4ybq9wB0Myck9KlWhrsilNXgY9FGvhpdB4TCd/llBHaVwpx8TuRdMUFwk6SUi3uzvnreRK2F4txyq5XLQzzEYMKipSG1GDFO64RNo7yUMp6ewoaJwnZs3ivBPktC8o5sHCImIXnrB3JKV5+GCLUvDmasVi03E8GNTWkm1mjLogKAn75IjRaXbdUjqLENslTi8OHFvP8LolVwl3JXQrFRTpxpFboW7ZjxYM74+M56Lr0J2YJMS1oCzDoYJaUBFALMMTklJ+WUvI3zKibsXxT7eBtHNCm2w04yJIJlMl10S1GYhBE0ugoyo2wXkdyEETRwW9Jq8iKQlCyt6S1x59MMWevtzzt45cZdSZR9tI1QT6XS00QYCmGHrYVCCuzOGl3Pv14x72DrUoEPzt978DSSjid7kTSved1f36Hq37BuRzuMYTaEtacjYysf/tzYVKUrCvPw7oMfH6pypSKTr0W0UbcGe/O1GvCn1LReQHYA5b08UOc2pgsoLQKPyDlug0/Q8+pHp9RKXM9Y8o3E6K+smHPxexebZFfJmE0qWDmp1tTHHOUsPdNqooKAdKEO6sy8ByKjjzHcoxJ0yPzM5BFI2LWG0WPvtEcSiF59TEpTbPrjqTZz2dLkVenkWtUvgUaD8gFrhJEZVBO3kYpgxxGVC3YtWYj4ZRFVgmKjAJ3SaayjN4i7MRH4y4ZNkoUzuVGXqHNglrhVqRk4i2U9B4b7B1FN5zcbVJWTjguo4kL0FkU8hhtRjZbVuUBtd6fOfwpfNUQVOddMRgZjqHtuXEUrmcJ1mQhkLDUVHsfxdP9xx3jfDljezMNBrUSSA9iFRVJA5LmZieJKEHecXQJinie6ivNPqFBuXYfaUI5KvE8ptOzj8vxXt0ckyTlcwNKMeYtyh3EzpYaD9+I0iIDndUqEkrMgmxUxEvp0oa39DcISqxTPlVhu5hJqwTZNFhxEZE6O1rze6LzOeV6dVcsB+fSsMynMLiBeQgzVDzpuRrKKivJD8lu0Jd6kSvMAXd6UHTPY1UVzJll2tDkXPG7EzRcuWSBVKuz7bstyJqtyV4kTBdh3KRJytC6tAWN66mWCZP1ruTXXZZkz2vma7HKPsgG/nOkt8x7QOhNSlfGpMNuL1iPJUsIDSonZUJdxvFPnXnhE+/CFDHWZSMl6YlnHpU0DAo0qknhqIHCCVbyKhybUvzknUmnETstUAvKsk5oXs5H81R3503WppSPSpUufbjMsr9Sgl9SfkSkBnF1MKf5Duef0YQW+40JtM5gbobEpEnylpBhIrVcKojdi86F9MracQmVDYpaCJZa3IS/cyc86ET1iQOh1r23fzQ0FSngegM9IbDUNFUARQcXy1hEcm9IbuENgl1WQmdySXQUC28fHRSjFFDZ7l5tkG1gfMPbgC4cmvqDyv8ShzL5NhIYKq+dqRTyQehhdAbdGfEtGMRscvAYjHQ9Q6/rVFVBpMKnQ2hhwIcDTEqVBvJozQySRvMzhAXCu0V/XSfW41onel1Jg9GkJdamp7sMtqJTiN7LftqMOQmkYvroAShRkwbiL0ljo7oEqYJhGJzrqtIGg2mSsTrSgwUFJi9Ji2V0Le8lnPB3xfq9+t+/W7WfQPyOVxuB7nwrd2BeWKjEpiStpqsIjjYv2sxfaZ5I1NQvyz8Y3/XDEyNARQ+/QAn3/RUtyOpNrz86aZYZsrDMhmIlcL4UgBlOD6u0GPm6kc1J99ybD4ciXWNO2QOj4vY1TI7LeWCXJge8uIuyTksM+NSeMPDuTx8qxuKu1KeURmVmR11wkK2eX7Pkbe41cyWvyYwZyH4dZ7pW5Mfvx6LkFkrhkehNBtCVcEIr36icmSXyUrBxpP3Vhodr6GNmErG5XE06MmBKiNTuqCKw480EKqz+KSIXtMsRkLUczPSDzImVVJhSNJ50rgqkIKIPrWVhiOXneI7h133kJTYbNpEjIrDsWbRDrNA1VaRUPjj07STtSfuHOOrFh0U/YnBNIF4VaOaJPQ3IyhV0lPRqUguwiIKHWwQ8SrrwPI3K/xG4zeJZA1jUlSF7pKV2CBnK0Jl24n+wO6LQH2RqS6NhOtdG3HKcpnqVsNX9uSs0F9dYrtS2N9Icd+fy/mgAsSF6ClinkTkk82y1APtqztdBkGupTSoktcBaIgn4qQ1OUbFRn5VN4r2ucEdmW1bxxPovijnlT2KRkmXJjoVAb3oHzLdYzVnlkzoxJz9Uef5vPWbQj+qmKfp2QotZ7KCNQGCVnPRqwe5Zg7vy0Qf5HyfnN7CgpmqaY5S5E6OdH4t38UeoH6jOXwhs/xIUV3L+3TvJNbf1uzfF0cxkGZCj/L9JwOAXJoveyh6jFooWaFsh/aqhCEWlDEqMY7ICP1qKfoX0wTCrpqn2zQJvCE88mKMQGnADpbkMvUrgz+RonlyLyILWoZT6K3oEtIqEpSI1VWS3JLZkS+X8+9Gz3Q/EOrh5KIlIZepJKanmU4lbleZ6sZIY1Teb7L4Dou3KFu6WO9W4M/jnVV1UrMmTwVBWlVQqCBhe+aoiUZc7qZti0Gz6xqUyrS1Z7XqhTJV7iFUiaFzaJdQVcLoLNoyF/GLQgsNFiyk3uCedDRVoKkCV6/WdxP/BOrE0zwSPcPxqmX7ny7w5wG3GVC/b0CNVoIAcxkaZWk2vTGkSguFs8rzcECZTNw5dr1QxlRQ8rWyRm88+dZJc6ggnnvMrSP3ovmjDH3y0x6uK9QoGqHcRmIw+CgotGqi3AuLA6AaFblWcq+uI8YkgjeC9i69CM69RncG98yRHkZI4DsLB4s5FZrahNDF60ru/ZeOsInEJmFe1XKuGY1qw+eCgpXKUOy7/Z736359L9Z9A/I5XFMGwoxSAJTJmV+qz6IbCnKrZlrHRFlJrkx0M7Mmw3Zw9nVP82zH5R884/jEcnx4h2DoeCfcHk+guSofEkHljEqZ9UeSXXD1wzVmgO0XhXM/BcMlB3EtCc6P/l2kP9MkqxjXIuCNTUadjgzaSQ5ABfsPhOZgD3dJ0NpLEeBXuaRTF3SkEtRjCi8U0SmfsRcVuolMpMJKCjk9qlnXEB554RPfyMN7yrwQ0e3kwqPQg4ZrJ1QPpUUnUTi/xt5pLlJSmFrsKWNv4Giwy0CK0gwoIHlD38mXC96waEcGb0kl4yNHNT/AlMq4NjAeHDEaIoYcNKYNmCrSbRsWJ51kiQThg4y3Nf6qwZ71pKAJQaZ8qZfiLinmhHS9CcTBCLUnaOxFTzg6aCIpG5liG9kOFSl5HkYE5y5RvbKoq0rC36o85y+kJhGW0mRkB/Ghx7xx87EUR6DJIlbNCIKKFGG4/Fv45god5HyttjDmqViTqXyswZ9Ks9o/zhAVbn+n5TC9FNLVtWZ4KNoMt4f+AtBCCxoeCFri9oIk6JE592Q4FaSkfaHIg4RtTsGIbivFf1iB0oXidIT6Ul7TnUN9o1BeELu4YA71Gy4K3aqTAy2J2fouQNDAeCLCc5mqy7k2niYwiH1plVEKdl++y/6ItTTrKNFshIU4Z7mtLvcPsfQdHkrDMp6JI1Y24G4Vuy8lFkVP0j7X9A+guVT0jwQRtDuN6cpQICKF2kn5cy7XdLHGnYTXoc0YU5CyJMF7KiqZ8q+DNBdZSVDcxsPBQpOwjSf0oqlQyyjT605yQCQQURpVjDQ5dqdLtobcw+JGHLPMzogjV1AzYqYjDCeyHVMwq99E0ac4CR6c7r86gN1q/FLoWbHYAGdbwg6DCNLjMlG/NCUbRJzMJtveVGUIQFKSQVMVtBVBkWT6rySTIyNuX538v70xMz0v14lwU+M1KJsYW4t1kRQ1Ye8km2PQ5EONOh+Ig2GwlrFzVAsPCmwV8WuPNhmuKtJ+wfF8ZKgEATh5tOP6ekk+WPLRMmg5z9x6xJyJrsPvK0EGVh5cEte8G0t1K9eNXymqB0fGfYW+cUJ7WxcUeRHIW0e2mvrRkRQ1/qohD1ps2R9O6bpa4owOhuqN7NewzCRfo5MSOpVOon0ZNcuTnt4mTEFxU9QYl2Q7O0PspNGIa7nnm4IAuSbIUCfDoBaC6tYJOos+GUnbCqamYhB7cZIiPhhRR4sORbtoslgFHxxysO/X/bpfv9N134B8DtfkSKUSM5dY/qP8nu8QDZXvinAVhaqVim6kvs3EWvHg1zvsfuTF//aE3XuOcXNKWIiP/eyDL3UCU1ih9tCfSZaG9jKhRynGdZnemTvKClqmx9nA2dcSZtRA4s2PmzmTYDwpdJhYOMtOgtygFGpNJqzznQbksbifoJDQqaxnlyQAfxLF2rekLKeamUftbvVsS2r6z1IftIfm2xX9wyTc/cdHxmNFVhmChl6jBl2yFaRA0HX8jBNI7C16IfBKjCKmBTA2ErOV/RPFDhcQ7ctoiEEeoGbtOXbVTGGqliNjcEKRsAlqEazbTWToK+pmZOgrUskoQEnysSpiTG0j2Dg3M6gSqrV3qLaINy8rbFCE0yAUryiFe0YTooKD2GaKDkKaMHQmd4bhQfkavUYVC1sVRUCbjVgwi+Yj4S4tfiO0G/dhRVhkhgdFixPE9hStBc06SsM5T/O38ncdig2uhsPT0nRU5RTM3HHwK7GfHU8y/kSaRndQhKWIsGMN7kZQlmyFIrT8WITl1bVY1dbXivq6iMPb4lJ1C3EU/UCYGiYjqMHuy4nhg4DaWsxRU98wW9P6Wr6LDnf6CtvJ7/1jmaabXixxVYRkZJtMp2YraWv0fJ5NBSg2Y2/EqlV1RetQmhhBN0uqdZB/G94JVK9EVN6+ktd07yYWn2j2PxRoPrEMD+TvoYXmjaCR9bXs//qNNFZuJzeEyb3L7kX3Ek4jzXM7O5XpUc2mDqEtmSEFZUhVQodCwWyTXNODgVrog3nrIBbx794S9y25lSk+WUlGSpWJEyVSMxfzqU5iz9wXnURQkgNhS+hmoeL4k4y7kWbC7YTHl6pyDu8NWYu+pC5Nlzmq0gwK2qUHQQbJQg2TZPNC+dxqGYrYPGuQxlOZ8gtKVhDZRvaTP4tUl5LDMdFUZVsUuSpGE3GiSxY7YQrtziXYOZJNDIMlF2qdWAhLwGEOmvNHO5TKXHvDeKjk/rKrUFasiu3jjpw0+WiJWeFaz/XVknrhUVPwqRLUJT1b4NcBVSWaU2kS2uIOeHu9INWZ/RcTi08Nm28phusVVdk3YVHOX51JvaG6MYRVYny2lIZ5kTBnI0074r0R9PZNjY6SWD5eRMn7uBhpVvKa+KrBbg2508Rzz/71EjUqYisPsRw0EWjPO8beYlzC2kj3fFm0iBHVyn4eD5Xc41qhwpqDIZ0ElAa19OS9OPaxDmiVyd7IuVonUg3m0pIrSBM6+TlACuL3QAPy3X6/+3W/pnXfgHwO1xSyNrlfTZNdolBL1ISJ5rf42BWzgFfE3HD+H3eEVYV7fSCetiyfJ9w+CvXKLchakqOnML9cGhAsqE7+7JfQXM81tkyyS8Pj9rD+tIi4tUy1k1NsvnVA9YHNfxoZ39mwf6/mppE3qK4LARtxNooLaQQolKVYA0FhXxdNhX1LnK7fSrgOxXEoFQtQg6AUWuxN6zdGCoFiv6jSHV8ehXjMDxr/YoHbieVntlkeZItI1OIlr0oAWLUe5YHsBeHwRVCe013BmBOoKkozM/G2Kzl4upXpWN45zFvhYXHniE2Zeq5HrIuzhWYMRgLJssLYSIqWFMTFhfVAigrXBMJoZo546BzVcsT3VgryNzX+6UiuM3kZaT51DB9kTBMkjCspQXHWYo+pF4l4LNz8URclc6HBNIm8TtQfVsRG9A0kafzIBt3pwplXs2ZgskUdngTclaV9Jpxxv8xzwOZ4CotP1WzdmnU5TlroiDow6zZm0XlQuEExniXqN5rxtGgRkM/1S5n2CyJXgv2SODuhQWU10/1SybVIEnRMWMDipfy5eypifHcQKlJ1rTHPKkEsCnKoputiuBsGVLd311S28nNZC6I3UZeyEarXhHL6lTRCsSlUp2MRvaDvbG0TUGV00BL6aUvGhoFwHuG1HIcJBRzOFONZpL40dI8zm69aukfQvNRzWKNcl4KcTCjjRC17m8Y4XMh5UL2xxeY6z1oKc9DYXva7CiJIDw/8fB1PZg9Kg7kyxFUqWhYlhbQpQYPnI85FQufgYFDnA3nvSoihFNuxnVCM0tQEofwpBWmiPga5L5pi22tGobZNlsPTdwrrCMuIvnIM5yX0jtKoF7G8PSrGi1SC8gQ9SnWWz0qa4pI9n5umV3cugBlirUSYXgsCIgORLAhwPaGvCn3jxIK3TigjiG1aRmk8vOgt7m4cCrPwpL0TuqiVhs5Ukd2hQZtEuxglWX1fUa3GuakIgxUNxXokTZlBQOUCx65Cm0wYjdwfTgL1ZiAnRX/dSFhioTJpm+FxT2Uj4wPF8bKBpKivhJapMiw+1vRDTTgPpC8dSXuHGiW9vDnr6W8a9keLaQLrTcft2sngxiaqhWe4qVG9wVeWxWJgeJoY37RCn3VJ9BtHJzkmOkupfLAMN07CDl3C+xr7oCf0lmY10u9rQU1XI9bGOT0+VBZ97Yi1DILMlK7eGdTao52I/AHqF47xvGSBeE1uInT3hfr9ul+/m3XfgHwe19R4lMIkFzGuiMTz3ChkPYUwMTsDFV0kWcNw0dB8vJV/HwLrr29RKRFXNf2pYtzIa6dCbHbIegthmRoh2ZBMNgo1QlpJweQOCnfMmKEU6rcBc9sRNw3D+QmXv6/Gr+XhPAmbZ9ciDf5BlDCrqOeQRV2Evag75CJrcdvJRov43JVGzWZSVYqNQ5myP4qzE1PWBTSYEuGjFIG6k8C8sAB/JvxfNKKBmAAfm6SA+kAqFm2ScIgXcmCUdIPkqKVA9gZTR1IuRdAMT8k+zCUUcEJNUlBQy1TSuEQczEzrEgG6VFUT2qFUJiehOuWs5LU6YyukCdHSMI2HCpLYhfp1wj4X6lf+4oBfyUNWveNnxCSlAilkQVRURhxzVpGcMypriGCv7NxM2GtJUE5VQndGuP5Nnk0MUpWJjYisY6NEa+My/cNc6ELykeNGzuvSs4lb0PT3cvyTFVrU2+LzKTQv2TwX0tmCGuXftRPnIntUtC80YSnUp+pGGqes75qDZCCupLmNlTTWoZFCdf0dRf8QxjVzIGFspBkBim5FUBS/utOQzDqDrZqvzeqG+VztH8sXrm4U48NMOhW62ngGyotj0vT9p7T4ieY23SNyMQyIBtwgoYqxpkx6xX5aJaiuDMPDSPPSsPtSYv0tzfanBppv1QxPAovvSKbJhFYO5zKRn/JcVC5BhkXfo8e7HA2/TnevORF9Si52yfrGFhSn3ECCEnvZ2swHOJsMbUBfVpL5YTJ+V6E7Q1pE8mUNjWT20CTyJDivE2ZryFWhCybETWlCTQulMS6LO1UujZ4RepgtzlbaCw0sVQldwg/9acRdCuIUFhmbFdWVKUYBeW4gsBmzvctiCStBY/WgUGSxSx9UoXAxN0apybOtr9xI5P423y6cwNHZCdVIafksiuhcmUway/2kFu2WbiT1PI5GaFeIrXeKCrfwcx4IJmEWiUUz4nTkOFYc+lbuG95ibRLqZZ0Z9hVqb4itwdgoDc7zmlBCCrFBCvdRGhi1EZrTsNay/b1h/0MBe2Nh1MSrGr32pCyZNoOpqTfS6Y6XLdukaNYD/WWL3laMwPLiSFt7rm+WHPY17XJkbKMEAEZFVtKIhVjJMW+D0KgK3VNXEapIuK0LzU0QHwDfW5LTGBeJQahb0cn5qlyxei5mB2k0aCf7IN9Wco/x4khHhnQSiYu7wdL3a90jIPfr99K6b0A+h6veZlhJ0SXhVndC1liXm0EpQPI0JKVoQIrDVWhhOLdUtw3jSUVsDeNac/Jf9vhNRf/gTiQeFsx6isnrf5pgSxicwnZi+ZsqxBu9THuHs+n/NNpn9u/XNCvL7j2LX8q2VNuyyWXTw2KibsDiQ1emqUomauVFqRGKxfRdMYIm5AeRkCANFrWXDA+3K02Yy4QKiKJDMVtDtVXz98kWhidBmpWtITZ5prXlukAkbwem7ayEvB0q8Ap9NORVFJRjNKIlNQm3GBk7JxQNG1FamoYcFaloLbBJJphNJCfx9QeDsTKZHA8V1UImksZkjElEKw/ZMVpsHalbT58UeYEkIevM2Fvq1lNVAR8M0Yv2g0Hjnw7YJqAfZ8bO0fyXBd27AWUybR3ooiQnx95Srca5kEiKWURPVELVqjL50ZG4rWYXpupWMZ7J/4dVIlcJfTTiSmbl39xWzyLbiTI15blMwuzjVwY4WhYfGepraUrMQZqMWMn54naFZ76RItAelBTFR41fF91ElfFKFdcqOY7jaZ75hc0rORfMIE1NfZAGdNJOTdx/vxb6kzlOidqK9oUI2t2OOx2LYxaix+rOAQvk2lm8uGs+plTx5Mr3KY2JGYTKlrwjLMUtLE8Ux4VM3c3kalXoWATRW4j4WklwYJYpemoEEbIHscGtbhXDw0j7zNA9jdSvDdsvJ+rv1AwXieqN5fhBpHptZovj+qoI1ld3aIHsC7kOJ5vbrJibkbhImIPGn0TMpSFWYi2cKtFP6FGT60jey2RaZUEM7dlIvK0kcC5DvKxRyyDnmBYqoO50abrlO+Y6SQBdMjP9aHLBUl6LhmnKhrAZPcg1MTmIzVTOJPtPXQzkrSPVcg6rXqidqRK3vGwzUUOuhMqVi54pJyPOZWOhQJnpnlnuK7k0jEmaEHerCetMXImKXzcBjlZmLWXargYNp14m+gqh/OgoOURNRLUBV4tNbe7dPAxJneX0yZacFYvK8/yTMznvTKbeDBidaeuB3aGhdrKvx2jwXnRhpoqMvSUdHJsnO3JWhCphdpoQG8Yzj67inO1EZ8i3jrAO2GWxV86Swh6yaMumYMl0MPN5y3WFaiSU1FSRcVdjXzk4jYJ4fLrElGOqrx2h9eyCDFfq2sv2RoU+GVlvRAenVOagMuGqETdC5HqwNxY/UdeaiDZ3RNrJwAOVMToRs8FWAXUhr/F7sQ6OmyQ2v96SquJu4RL9u2UI5RKmSuSto1ru/n892r/nK2U1Z1F9N9/zft2v78W6b0A+h6u+iewfS8Ey5yAo7qx0893v01RPTTqOt0IIY6U4vNtS3wZ2Dw0P/t0t+s0tZvGQH/i/XOGfbFAxo0IkLhzjxvLqp22hdr1FfbFgfKa7EP6zWHBStA4QWoWO0K804wbe/AGD20qDMXHbMzA8kALuwX+MvPhDBv9Q0nLFBQtAipxYczcSNxnqhFt4Fu3A/mtnuKN4+ttOnHZCaXRymXhmK+m68aGH9wJxK4iAPor2ACM8dhUFkaC+S9PNCplyRWkgpkIWBXFVfmaQwkf1jthG0q28P8sgGR1RF994STDOxQpSr2RCaJ3MlJJO+MGK01UV5yZGtZIJYlzEWfnVDY7+KEhGtZKqUKmM0vKAiEGTk8KVgEOz9GiTGDuHrgPLTc/xBzM6QxrFBrhpR0lGzjBcN9RnPeOh5I3YDFFRrUf0p0uxVq3L7SIVl6Yrjd0LIuU3oDoRzs5I1iATcpWlGNWlaVh+qBgeFLpOEv2J6TT940z7TOxOw0oQi8ndLdUlG0bLQfKboqMohXhcRXRnxMmqWOyKU1qxoVVw+LJHHw12r0smiUzsp+ZBchCQPA8U1V4sqA/vZ/qHZVuau2vRL6VAd0c4PhbdRP+goC6vJK0dCqJThqOpFcG6X8vPHp8mmtea4XGkem3x60R1o8X1ba/pH0tzlU0mtVGmsgcjovg6iztbku8qdMbMeCbIS30tFLTmlaF7nGheGvpHkeaFkWaiXDP21jA8CRL2N2pCMXmwPXPDFisYN6K7CifCzfcncj0oX5LELwJ65fFjI/t1WdCRoIirgNq5YjWbySjMIsAnDdpBHpU4YC0Dam/JVXFlC4IEuSuLPy0eyV5BMPiLgNlacWqrE/bWEDaJrJMUu0p4/dqrolsqLndRBhG62O+q60oa2GVEjRp9Pki+ztaKfqOCVJrBKb/DDIpcwgbjougvCvI8IcqmU8RlFmrQqISyY4u71aDJnZXttHnOJlIFOcCW+58WvRcL0cjkpQwTaCJMtsWVuIzdvl6DyoTTjuXFkZg0w64WJGM1MgZD8AZjEpVOrOqRnBVtM3I41qRgoI4cO8kpip0lfdBjq4j6eEHYSKDpJNhOrcdcO9LRCCK19rOuYhK/j0dHPAmoUYTc5saQs5Ym4o1DA/5hSUfvnOjInvaM+wr7ykkA4ka++3ChqJuR86fXdN5y+2Yl9+KxHLtFJB8Niyf7EsBoWG56hsERDo7UG0ZvUCaRi4UwTeR4cCiviY2h3fQ4G+lNxvdW3ASn1x+LHfAyoeoktuxRk2LGbDzjJ8vvVglwv+7X/1+s+wbkc7jGjaG+kUldtoVb7AD1Fg3lLbqUGpmpB2Shaa2eZ07/x49hHGGz5mK/Ii4c6mSFuzqSNi3do5r1f7kiblrcmwPkJVnb/+ozUiWFWGylIZo+N0MRCivqK6gO0hmpLDaLy1e5ICkyMX/8b3t2H7QcHxke/kZiXDmuf7xwbd2EjBR6xCrDKtCuBobO4f79ErVbkn8o4TcykQ1tFvvELAVKplhzmkjaBEiQXzbQpjnJ2t7KhDluAmoVxH0qS5GjEqigySPYk4EwWFJvMFeW+Eg851PhS08cc3triee+CKPL1DZC6g1KIz7+uuR1BI02iYChqgJt4/E2EaMm54w2QuNKSdEfKlwT6I4VvZZkX11JoKBoPgAnYvfhUFG1XjQqUc/i95wUrg6iJdHS0OSkqRY9x+tWONCtJ/Si+RgP5SQDmcAmhT86eH+UB3DQIshVYq/qV9IETILcsBHqin/ocZdWKEjXmvEsMZ5H7K10JocPhGYXW6FsmU5j96rY0kL9RtE/Siw+UQxnzKYM7iBFf2pSsaIVzZFfZRik+RGkUArvrAQJi15jjwp7Y2neKPoHmbFkNkx0oYnqp1IxTCgNQ/8Qmpd3tKJkRYid6kx9qRlPM8ODTPup0LwmrVE20L/rqZ85oTWd3hWnsaU4rgmCMDxI1C8tsc13zUdB7cxR/u5rwGtUFGQwWyn6pyZ60huoKHqDcTOhl9KEua3GrzPNC8N4nkkLcaoTw4cR90qQyEmrExcJHTTDeWLxqZ6tZ8MiS6H/ZETfuDvEtNwL8mVNPh/hqpImIiowGbO1olUoNxZlE+rTRsIvGxkAZAVma4VuVX5uopPOuRta9gMqow9mDh9UWhE2RYg8WdgeDdnkuflwe4q+KEvIXVs4/Mh5Mom0kzclBC9J4N1aEsZTMiibiWuhemkv7lbhJKB6I0iIKxbkURATPWjRdJShjpxUZZKeETtihQTnaUhWXsuiOIW10iUuTzr8wjBcNzJ/soUGBUWnJgdBuYT3Fm1kuGFbj7VJBNyjgaRQ7UhlIq9u1oCguGfrI+Yk07qRF7cbjttWMoq8xu8cWotGLaZKkBqX0G8q0OVaVpq4dUKTGzX+ZiH3oEWk2owzrTSfKPxlA6kYQ5QQSTVq3HNHrDIDjejJnozYOgh9ahHR324ZqoZLr/DvCHJsTkbOT/bErDn2FYN2HF+sBBmKisPlgvpkwJ329AcZ4GgnCFquIqmgK7TS3A69o7tdotaeqvUSohgVpokCBidBc3NXfi4oci+2ybntfreP+u/6uqdg3a/fS+u+AfkcrmSFsXP6TY/pAtW3XsFqAde3pKcPuPypE5KTSd7idWT/jiGspEB6+BsdyWoRpzc11BW5tujOs3//hM1NB0oR1hXaJ+LJglc/veD8q47d++4zBdRkz6uS2P8Cd5Slt7I1UFDtE2YUxyzby1SZnGmu70Tqlz+xkGIVGM5EBLv8jia2Mg1ePpMPOL4D9aVBvTa0L2riezIxHs/E7lMmnlKM6IOZtSDaK3ICc5RiLtVJOPqvLGGdSE0SPnKWh3oaykMEeXDLBFwcUsJ1I5O1Ns0CWuPEaz4FLa5YWhOrDKPGbDxxFJG6sgllClfba3LUaBdolkKxylnRH0XsuVgMLJqRbnBEnckuFQGoIDKuFgTFbgaCLzoPBXE0GBepWo/vLTHIAYmjQWl5Dz0VVKMhBYWpxO0lJ0W9GRivGpaPD2LBq8VBZnl+JATDcFvLlG/U4n6FCEqP7yVYBdJZJPYWszeS77KSwlRHoT7EJs8BdDoCQctEnKLdqDLNK/mOsaVoloT2ZI+w+o4mrOTcsoViN+fGXGpSDd0TQbuqy+LMlcR5SBAT0adUry3jg0h1rWcK1OK5nJ/jCdKwR3mv5o1m2Ih4fULl3E4sd+0Rbn96JHtN/cJSbcX8QCh+as7WMKMEDUYH9TNHfV0um0I5C6s8Z800byQ3wvTyMxMao0f5vOFMPv8uTTsXlEKJeLpoIaprQyyJ3s1LaRD9SrYHRGcSm6IrKQMN3VuGiygBkW+cJH+3AEJNlJwPqG607CclFtWTpoG9JZ141M5i9xp/Gmf9grp1IlBPYmVteqFi5YwUekFhLh2835GmNG8j9KN0WuLrD4VyVCg1sc3SgJ2O6Oc1ZihBgydpzqtRfbH7LcGIuYnSNJd9NjWY4TxI6vhkDbsKqM6gegtVksamleZpSl2fXPjiiTjtZS37KKzlvpHrJM5S0/2xNE25EYoWWaFWI3nnYEKNgiKV/IrUiFOeuIwglKsp48QkjvuaHDSbR3t2l0sY9azTo85iAw7SbNtICDKksDZRV+Kqd4g1y5OB3fM1xzpSrQVJXTajJGhHzdX+FGcjm7MDtQ1suwZzmuiPlYi9JwT+KA1lWkTMXpovoiYP4hKVTz30hvpkIAZD3DnR1biMUcwWySoqodxVmvTI8+h0z/V+QX/ZQmdIbyp4K2VeBfCPPYuTTlCOm5rX40bQDCeDHlZeNHKNhAiGcRLNi/2u0UkMC5KiPyhy1qJ5qxNRa+zpKMOaLAYJatBCwQtC95oGbNlmVKcFgSqvu1/36379ztf9FfM5XGbILF562m+8ITsNlYPtHgD94ormOhEaqG8Sy9+65sGvH+gfwOJ1whxG0LB/z5GdJVdiJZiVotoGiJlw2qJixvQJFSJunzk+dhyfFKeZfKf/mOgEsYi+5wdQ0ZpAEYRP8o0MKmV0FNQkNJrjA8NwYuZgxNgUisKRQs+B+qa4/4TM6uPM6iOhxRyelm2xeZ5WTg//iW89WfEKVa38udAjSGrOKZjEnrkEJirFXf5GsbfVLsmErInygLGpOEGp4hv/lgbH5KL6l8ZlSiae3KUkxErdTVaLmNyYhDaZOGp8MPSjJKQDRQCfMQW5yCX1d3rfMJaNn/7u5TXRa/HCL9/BOBGlpiB0sHy0guCMYs3pXBR72N7JNNNJfkJMmroK6DrKd7IJ86gjL2MRcmtxiukk8GsKV8tPemKTJZTQSTMwWZ2qklytghTMKgiFZTwTi9TxkSdV0LxWNJdFJ7Fkdjfza+asED0CWvIyBDnRjA8i2WWq67scmckeOhfUq3+S8BtB5GLDnPhdX8shrW7FLal9JejJ/gcS268kjh8Emfof4PRXK5rnlrDKdD800D/M9BfMphCxlW3Xo6B5thPB++GpaLIOH0T8RZDv11Bycco138v5nq1Yv8ZarotZ14WgJW6vZgclufiEXiQC/DLNL8nmYVlom7pQJotDXlgl6huxrzW9bHtybwn7nRTBw5mIsM0onw2UMD4lFKTJiaou12YJ1cuNWO/SiG2fPw9CUTrxUtB5TX6nJxwcuopS2CVF9agTdKA0VvqqmCdoodhhMjlqYisp9UmiRIo1cybrLKhJERLroym0Kbku/CYzbrIkpYNYACvgaASpaIS6NX+faWXAi9Ww6rWc81bOpVwnCShVmbwO4ubnkgjoizVxKtoQrispuk+l8J/0RcnLsKA+7QXZLBN5VZK8daFz6ioSi5EFVXECcwnjEikquSaVmFxYK9dvBmobSVnRLEZiUtQPj5w/2hEGuRdcvVlxs10weMt60Ys+xFvZFiAEw3rT0Zz0LB4eMItAdkUvU+7F2cn+sActaPSoRXheBiOqDcQvdMQ2FbRZzhUa0QWpvSXc1rx8sxH73M0ouUSL8t0HLTbHQWHfWLpDTdN4Tt69learFgQrBUk9d02QHJOF6FCWJz1pkGyU467huJeLZLXpWZ8dURfDTI+bLNRTVGweHmAlNpHiqFgav2IAwiIWPRKfi2oqor8nv+7X/fperHsE5HO4Tr56i/Maup7qWRG2LRfQiQ/7+lc/we3fofnmG6gc9sOXnP7WD6ADHN9bsvpPr6g/dcRNQ/+4Zfn1a8m8uBrwD5cc3mtw+8jqq5eQErFZo3KmfSWha1NxpgcEFUhFZzE9k5VMpOHOfSvrMh1KRdw+5sKTV9g+k6xMpsnMFqYoaUjQd4L74zuT006x3J1dsACd5wJoChJLSymcUYgjD2XaPIgoNbeRWCkYtdCCllIcqMlitxQaqmRrTLSl7CLjsZWHShth0CQr1pPaCFKRfVHiJkUYrBRPTZSH8mhQLs6NSfIa31va5UBKGlsF4lgzHJ3QzLyVyWU0+L3FLj22CgyHiuWmx5qINYmUFEPvyEHhOyvJxyZjraAbZAi7SpqKSgqYFDQqKcZjNXVpHHc1q4cHjrtaJreDhirjP1qhvrBnc3qkHx3DZYvfVaigGc9lGhzXEdXLxDEsEyoYeCNBYbMAt1iLSk4FpGKdmpU0H34tDURcSHaI6aUo90s57qafmsiS0bGUrJnk5P/aF3pO9W5empneZDo5/sM52K3Bn0bMQdM+E/Hw8b1CWwkSbtdfFOvb4iRnAiyege2F0uJXmu1Pjdw+ytTfkfBNt1WY79TF7hd2Pyx6AnsQupTblWsoi6MWWba/ujToYAhtaVKWIhJXUbQhYZXvqH2d6ErqG+ZJd3Wj6N8NmK3Qzab8ilwaVBCkwx7ltOyfJJqXmv5BZvFc0T2WIsocRatli03xFF7o1+kumTsLhcjuJczQejGjCMssxzyB2dm5OcKJoN2vE6oXNyn7qiKsIvhiZ3osRW1Q5Ku6hIE2qLMiQA8GmoTaWkEzH4r9q9o6VDke+o2bwwVjLagPw4QmlM+usqBCdSauEmhpWMhI3sic+i37mkUkaeYhhV6PQiWbmplymSuXyJ2R2YsGtQwixnZTarmaKUiquGRRGoZwcueQpA6WvIwom+W1CbJNojlYjoS+WJAHQUSmNO6cFN2+lkFKVFAcq1CZs7MjF4sDn96cANAfKwnlsyNX2wV+X4n19lVN9fRANzhSMJyc78lZsbttOb5e010MGJtoas9hqGgqT4iyv4xJNJVn0w5cH1qG2wa1nx4A0oyF90Zy0ihE58KnjezTp72EtBpIZ14oTa9r6u/UhDbjdorYaMwzS/8gScjmQrJVYisOYXGZ5mshe83hxUrQB6+gjSzWAxerAx99/TGpDMtiOY8POwcm05yOjKMljobu1VIauSrimkAyEmgYRsuiHUSX4o0co6AEuUrMaeyx0XcDuXuW0v26X7/rdd+AfA6Xut5Cuyafb1DbA+HdC+yrLXgPWsNyQfXqiH96ivvoDenROQ/+x5f4Jxve/OSCbB6z/nfPMCGizhvipkH3AX29RZ0tOf33Bw5fOSMtavTNjkf/ZsuLn9lgRqFtxLpoPTTz1HSakv5XYUvlBjyuFPVWmo4p1NAvNf05tK9FqD7ZdX4mU8TLhFAoNolcxKSpycQgzchdMKMq9oficpRXUZoIJVzv7ArSgUxqmZx0MlAnvEt3Hx4VORrsciR6ydFQCC/b91boBpXwsXUVSQehReVUColYigwt7z01Hxwt9tqQv3SQpiSJ48oUDNjrCltFtMrUq4Hx6DjetjKFU5kQjPjzR9Fz1MuRrnCXqyYQgsZWcX7oSbp5+d1kTJVIZVI82f6ShE+fvUJNNBELh+uW9qSn2zVz0FmqEv2+ph9aqrNepnsKCJBXAfu8QntLOAtiq5rE7UolBY96uKzL+9/RdUwvicgqIuLlL/ToVzWTkGgK09OjCL1BCvbZUrY0B3klzUf/QN5Th6L3sAUpiNC9Ixkw9iCFS/3GUF9J0CHA8kMzO1JNKENYSKGvveSEZJPJp15sOXeO9a9L7sf2K4nxYkS9ke47GynQFx9Z2W4FNz+SGM6FuoQTTYUatPDkH4hWqPqoQkdYfXTXoNXXYDv5OwoOT3Np1O4akOSQzAFTkLwpmHAZMTvRt3SPE2QR2du9pn+Uqd8oDu8X3cwtc6ZGVrIfxlPRtOhCCyJLw2j3Yo1NxdwwJpdno7i4EjG63WnSqBkvhF5lj4IUho3oG8xeSXDbXgIDZ/tZjegnOo0y4oCFS/O1zNHKvvNCP7MHXbQUWTRipeHNBuJJwEx2uoOSDKBcaDIlyVrVhbZWUAZlM/rGkr24vE33DvVctCnaa3IsTY6Rc1WtvZg0TM4gbcQ2ojMil6l40rMWhUmPEpU0HEFBGX7k0WBXnnCwUBzo6rUUvmEwoCPZG7ISFDR7QRXUMlCvPOPRyXVfRwZvue1bKhepTOSdky2Xx6XQjLLDNIHNScexKgnqUcPBcMsK13pSL9kg6eDITWD3RhoHtfZCDRs01cOOELVkifQOtxppLjxd7wi3NXovGUkKisZFMlvsg57zzZFXrzdyn/Fa9BfLSHrSyb0WVxBLyRHJBnQUd7XqWmiB5ijol+6VBL6CWKAryKPmuK8ZBguLQB6N5KR4sSVOUTQq3fMlrINQS5de0G4Q90CV8YMlBc2xq2U/HcXkILuEGY2cv6W5VIM02uZ8IOwqcvfbH47/y6/8PXDByvcuWPfre7TuG5DP4UqPzqAHcmb48mPsYSRXDqU1OEs6WdC9s6B53YNSZGfAGtxHb6g/eJ9ho1ktWlSILL5xSTpZkJ1BNRUqZrCa5lVPah25PsVcHXj0a4bnf3j5mWT1Sdge32o8puIjp7u/5xLeVu0VZIHkk5Wp6uHLgWzKw6JMqafiWYWSCVIoX9W1lsyJDCFJorDpFHGd0L0mVlGKoOms7TUsRduhokJPtBRV7C8VUixkRNRaJ/AIV7cgGzlpXBPERSoqUpS/5yaQRtFzpNGIWDQqVAWxNxKANciEMpfJqTGJtAj4KsGUspsV9lUlwuJVJg0a886BmKSImYIEj53QolQRp+YAvhPbs2opFrnD0VEvPCHI91QK4bp7UFVCm0T0ukxVFUmrt8K6LKoXtxo5fvJQ6Yv97xTuRROFy63lYVytR3xnyQjKlKo8C22p0pw4XT9zjHWFGdT8utSUzA/kga33ItZUlzWxlhPJbXVxzCpIW7GETpUU5am4oplRGlW/lIl9/yRRXcpxjDWoXn7G3UwBlSIS1iNsfySSbaL9xNE9kmlrtoIUiI4D/ELOd3HT0iy+VmM6Cd9b/slXvL5eY7/R0n6jISxkO02vZo3U/v1yLZR8irCQ41i/ED2MPSrcvhIUpwb/4wf625rqlRVtRbHWXXxamo4qY6/VTIEUVEeK8LCWJlh3UgDpgwimsxYuvumLa9V5pH5lCEton4vWqnuSaF8WdKfYDbudIqwTtiBS9iAT3+TE7hglDVWs5DuncuzMURe74DKpLtNmFXShFwnSNAUH+nNBilRJus5WbJtzsapF59ntSndaXOeA2CRBE9CFQid0H03GXYoWQXWGuA6YWys0tqBIm5JX44Q6JUJvaTxUJ5872eSicslVkdueHuS+o5ae3Nt5cpKTKpQx0TqQFXHU0vhHQYFzLZbbqk5Cg4q6UKkCWCnotMkkLRMZZTPaiV7huCvNbSrKfiP6juS1XMdYstd4ZXFtYCzbNAyWvnecbw6s656bvmUYLUPnWK171ps9RicaGxij4eZ2QfWow9koYYRNwFw2BY0pOqCTwMnpkesXa8yoGI+CzNgmwNEQXaTLjugN7nQgLEzJKioBp7dOEI+oefXRGbiM2ReLYyto2LitZv2dPYhldDoZWa16ttcL1NYxPgqYnRT/9iDotw6a8TTJ+VYLIpv3jtDKca7Pe9HSBYXfV+g6iL5nHTk9OWJU4vJ6RX7RyvNj6cnJSDN2XaGXxWnQZMxyEDprW6Cwg5XzpJWmNh4duteYq/ty6n7dr9/Nur9iPodLX22J7zwmVQZ7GAnLivrZlWhBjEFvO+IXV6TKYIzBXO3k/5xj/VGP7gLxbIFfO9pvvJGmQGvC+RKz60mLimw17tWOuG7BGuzrHe/9Pzu2v++cqx/Tc7MwUZ2mQmvy058aj6kRyQrGpcIdRcehktBh3BvL8UcGFl+tBUYvIluQQmwKEYPCky7ULO0lgRgE8k6nnhyEl5tascu8c4HJonMpGowpICqbjKKQxBeFE600WWsp3rQmHg3BZerTHh/EgnjcFa52E3F1wGdLPlqhVxREJGekaJg4zpU8RE0lxW4KuhRVEJ4MBIDeoEbN8XIhD02dhUqBQuWErv18DkQtosnkC10kS+HS3TTUmwHlhH+dgipNiCarLFN7kM+OimrhiUHcezAiYhbBbKHZlAmi3oykvXDiTRuEBx10sffVsJDQsbgoYn2vYJHK9sP4IKJHJe5JvkwlSypmNkDR8aggn4ulFNMJ3Suh3JRmYvUxDCciElehnA8jxLUItw9fkCI6LOQ80Z45tya1IiLv3gtUbyyxhua5wa81oREaU6rvdBqxWM6GdSYuI/Uri7sVC9r+Ql63/e8fseyhfwC3P+UlB6ZMo8mK6o0htjLZd1e2NNaZ5bPS5J2rWf/UP0xU15rq15cSINmWsLyDZvHsTpwea01o7+iKs1ajNIBqyrjohSKlipDdbcWtLrSZ5XdMCUfMjA8izXMRjIM0IvWVxltp8tyNoIjVjWZ4GKneGMwg6Ij2JZRQTTocsdgVLQRgMm5Xzvc+E5cSHFhdGqGVabnOUSXM8FSogWZvSQuhUKYqwSIyuiy0oyTnWGqTNDpZEU4i7sbgtprxUSAW/Vd1VUTQO13oYUWMvjeiHQkK7bUclzbPlrAEJdk1nZGZSFTkVYAgCJ/ZW5KyqEquF0YZUugmoK1ouH47PT6V64kigEfD8rSjO1TYOmJ0YhxENJeTlqHFdL8o97KcFNqKyYOyidhbGWakoidLmhQM/i23u5hERzIEyyfXp4xHx4OLHSEYdrct+33DOw9uUSrTOo8921PZwBgsjfPElSY+1Ly+WWG+vhB74ivHDUvZL+ejBPwdDfQ1nAeUzjI0URCDZrGSUEFnI/tDTTha9GbE2DRnNmWTURby0UhT22ZpMJXYYgPwsmH/soFFxD7u8J3DvLaMDwKms/jTRD4fhebaawhWhO9JKIZU4ixo64itIsO2Jg3F7OCq5sprlic9ymTi2ShZKwAHQ7wpjdGny/kciUdBmdXSC512otsB6tahS1Me28T3e927YN2v30vrvgH5PK5uwFwdyA/WouH4D8/v/m8YIWdW39njNzUoRbxYoXyERYU5esKqwq8tKmRQilRZbr+yoLmOLC/36JRQ1oIP5MpAKLHkzrB4OfDm97fi/V8L9xvF/KCdm4+3H7yTruO3nU12EO75zWOZvtqj/HtzKVqTyUlLROZ3eg8Rld41PnmaEFL41jZDnB7UiawSBPOZz56chpIrosfJIjfLpDVP3vteozvFoGvhSGcppLIGXbj12iWCvmvAtE3E0WBrCRXETjtHuNnaSsGSJ1U+yIRUZ1ggLiqFOmHqSBwNOWpCNGgliefGiJ0m5e+uCQzbWvQmRXiuC9WKIlSfxOrSuAitZdxXxb5UmjBurYQqphKeFpVMCrOaecxxfIvbXJxgdK/J6yBFhM0iQC0FkHvtBBWx5TOuNTqqWQxNkuMxFc+615IL4iH3iuyYed+pzhzekf0pWRciijZdKeLb0rgUjYX20iSMp/JntxdKVvVa7KS1F+qSLdkxw0IC4fRYCu+dvI8/EQqa+pEddTOy72qayrO7beG6Qg+KxXNF+8oRWodflfMsgV8XAXyt8B/06Jfyxffv5xKEp7CdkqT1JYxfGPC3DrfT2B6qnbnTNFWl4RgKTazQIGMjE+KwFKqQjqJ/SotI/VE106n6x1Ec5LKI3FOTWX2o2H65NCqqUB+npGivGB8KMlFfaoYLQRtTnRnPE+7WzM0HSrRcb9MozSBp1BL0KSiCBBRqhqee+rnDb8QG2LwWHZE0VFroUp0WOlShRimvIBVdRFOaDytajKzAn0ZylcSut1jYJluauNNRroetnV2m8kqm7tM+y1YLLbLNqKoIyCnnebGXzTbPNrxqIS50ajByHrdF0xWUNAtRiQi67BBbB6FPjgZsImdF7QK9rgiDwSdbrjN5fYxanOwGK7kb3sxJ3aggA4hMoXxRrnOx9M5JvkuO0pjEwbAdFlKYR8WlWWGdJHenNvL89QnaJpaLgXUjurOEwkfDzaHldNnxxUeXfAdItxVmazCvK+I6SrZRGUyYo9gUR1/TLSzNZqCqAmPRTlQmUteB0ApVNIyGXOfZ1UsPWhDRAMkrtBFqX3YTzF5+WwYJBDwaQpsxO0EWda8JSWGXHnOSBL3tNTrcOZ3FrMhNoKoDi7OOugocuwq/X6BfV3Q3jnQqFKwUNXnvxN1vZ+chWLZZNqU0r8lMqaJ3Wi0yZCfX0fe//bhf9+v31rpvQD6Py1roB7Rf0H60h7E8kIw8LIcffYq76rA7gRIO7y9ZPBeBuv3oNdXHI1VVwbIlO8vwoMYMGXfrIUTi2ZL+cUP7qcFsO7Y/+Yj1165Rg8ccDalqaa7u7FFBfp8dZ8qvGbHIUgRU28xwomhumKkj1S7z4FccVz+R+ML/q+f2yy3rjweSa+geSaE1NSKpOG2Jhe9dQQMQj04cqZo4c791LU5PpPJaJ1N+ob+o2alE6bKN8S3qEqBchiSaCTVqUnQSSlhH8mDIR0u0GW0S1ckgdAGTpWEIGp/uEIY46rnpSINFVeKcMnGMtUkojbhfeYNpPXHaHp1RKt3ldiQ1oynh6BheLjDng/DQUyZtK/R6FH6yEwqJsvIgxZeDNNEghkLlWEXq1cCQCv2qv/vseHCSygxCLyjuRTloYqdkAjwqyVWoMkRQoyQdc1sRF2lO4dbXrriGiT4jnAbcG+Hw5VXEXBfKkVfFtlVQjuogdB49Feq16JGSF6vaCQVJhTqVtYi4vVYYUyhcRU9iO9GQ2COzm1v/WAL4TH/XaKkE3eNMXEfajy32w4pkKwakpxwaUCeZ/GDAtp7tacvmq5b+IsN7Pfl5Q3WjaF8quifSJLW/2WBGQU/iFzva/9TSPyzp4V4oZ/Z5Tfckib6pZIH484jZa5pXiuG8nM+lmFp+orj5/Z76ZbG3NZmkQd860UMsyv6MYHeGbEoQo5OGbP9BZvmRpntHGqVQQjxjI4V//cISlpn+iWzDdL27W0F2YsuMVNiDWN9Otrbai3uW2CDLcZ8Sx5XXDI+DNGlNIh6M6EWmJOydke/ZFCHxqOfjkhuxwZ0pUqPGFPtmkiKugwwiDoZwKgGN+rqS21GTsNdWqGrDHR0sVILKpWUSkwYrOR/UIl5Py0ju7Kx5yzaRCwrBIsxJ2kpnsds2QrEiK7RJLJcjIWqGQdy9lM7EwXK7a0FlmoUnBCO5P1GhnCAIzkbZjkYaDlW0CK4OqFroofJYEH2WqQNV5dE6E4Im9FZCDQsKq7JorVKrGb0ROtqoOXvnwNXVimNXc/vJiXDNlpJ/cf5gz5vbFam499nTgbTWtItRLICLC2D1sKN51xOipqkCKSuuX6xpz3qUyhIOOGpwmeZEnkkPNnu2m4bt1RLz2pHeGci3ju49L8GPBZFSgy5huuV8vqxkcLGKpHXEPq/BFhS2N8S9JRrIbrLVRdCs4mYWD45+58Brjm3ELj3qYiB6w8NHt7x6dgqXFcqKnbBKCnXi5dlzELqZOZH8p5xh3Y74YETE3ln0jWPKc0lVnl3ovp8rZk38zHTwu/Ge39W3u1/3a173DcjncMWn5xhv0J+8InsPTQNtM6Mf9X95jv/SY9zHV2ANsVaY6yPKB6gr4pNzzPNLOHQorVj+x46r/917hLWj8p7j04blpx1xYfGnNevfuhFxOxE1+NnJSoUyLVW/DfFQd79PfvexAZ/VXCRO1KpYKXTIvPffZW6/3HLzw4rdBw0Pf120IZmSop3uCsgpeVl3mtQmschMGYrFp7JJPPvrSEbyPFCIYHoSnk8UKFOCAJ04xpiluM1kJwU6k5UkCB990qcUB5uwd5iFFzh/5edALXSG3jAESQfGluJEZbIqglGvJZfDZGKWwkXXMhWMsdjmZojDXe6HajLOJqxJHLtKKBdWE28rzMaTVCbBbK9LLPz1zqLaQE4a3ZRMgIMTqkuvCE1ieLlAbTzsHaYvAWqjZHxwU93pe4xw5VFZiokmYvoybbUU4W8W+8yCbmgP5unAqGvMXqbFZlRAQXGiwrySgtkMQpEbT1NBVEAdip7/DXRP5PwbT0vT4QQNyeru/EhW9AVvnzdJieuUXwtqQlYc35Fie/GRYbjIjKeSqaEy2D3U14rDe4bhYSJfii1tWAmq4bYKc1SYrzfo0LDysP19nvZjR/iopX0jtCx/kqluZCLaP5EJv91r6q+2dE8kyRxg/LEO881WMjk6TbUF5SEugGuDHqUhq69kH4Bsa38BzacOvy6C6JKv0X5xi/+PJ5gRxhNxWmqeFwpYJdQrVStU2ZfNa8XxqYjLh/NCwVplaCXYE6Uxo2g/zFExnqX52EYr6erduxJUKOJ9MZ3A3A0PVAScULU4CsLTPxFNB1moejQJ+8qRHTI0KMLsbLJkz0QldtQ2Q6eL0UD5rEVARY3eiZZAlwZDlZtSNhm86E3UKI5f2cn5F9cBvMbsDDwWYbLKiHPWSvI9UKX5GTW6jphKpvk+GLlvjEaGC4MmGcmxiE0k9tI4SIZPEY0XKlWOCqWh7yqUAmMjWYuL3RAdodJUVWDIDmPEfttWcg2H0ZYAUcme0NOftcKPIpyuVyOp1aIZywqsZOBwLFqFU49tJRvjwfmO22MLC/luKSryaLjdtYRdRXUycHIuGSDX+8XcLOnLitQmxs4wNg7bBCoXORxrdB2pK0/XV6JZKZlI/a0I/D5504ol8qMe/YFn2Yzc9gaVFO5Bj+8c1WLE9yIApzPElbhTaZsgaOzLitRIDojbakJbQh9LfgxWUN5cC6qWFeRFgfw2Hq2yaPYUKJN4c7mWnBCXqJaecV/JPfsoTmwAuilZR6uR5A2HY41zkeViYJ8UcaNQXqO8DAxS8/3HQBKK9F22zU3/lfPM/bpf351134B8Dpff1NQf7ZFqGHG/WrTye1NDTDMFAmuobyPKB9KyQQ9eaAZNDf1AXi4JFwsWLzzuZgDnaN6M6G2PtppcWeKqxhxGEar7KLakDpormeROjYZ6+z5UEOjJ2QpEIKzdXWo6iMDXdRCd4urHpGA8+1oitCX514hWJBt5L7+WBOa4kCmrBA5KQUArzQdZQRvRVj48Gz1TRKYHv4pKChtvyK0U49kmQnGu0lboG7YSLrPvRLzKUaayqhf+tkry5cJoqBtBorTJ+N7CMgj6oLK41dg0BwMyNSXegElzz5a8BAXG3hKjFAvKichUaQhRGhqt8pyUPgD5tiIcLLqJmCYQO4tdBuLO3RVuQct0fEprLw1KdgX1MZl866RAmegOLgtVpOg20G999ywTY33jiGspIlMR+E5C9OwK+jFq6G0JiUzorIklqExF4fink1J4liZOD3J8s8tob1ADHN/N1FdTKJ6cZ24n/PDqVqbuw/mdLiHWJazPipPVeEIJ8hNUorpVjCeZ8Sxht4bFp1Isj6fy2thKYa5Hxe4nR6rlKJoZlVHXC9zIrN/IjYjt448dUN9ckirJ7hhPmdEAuxNeu+mh+8EBDpbYJPRgUR832KPoLwDyXnP8kkzvV9+wYnWNNEBzrsJrsdadsnaIoL0mLiPHj9aYrxxI31kWkbvFL7MU9oXWZLeQnKBKxy9E3FVJDy9OUeYoTX5YCzVtMniItTRJkyOWimqmv9zllMjxCKtiFtFkXEHWUl0acafQR43txHqZNkBniRciZBZkS4TdnHqyL42113MeSGoRAbmTEDhsIq6ApEg2QgknVVEV6+cpPFC2KdeJdBrEeWrvhNLlp1TwQHZazCqKToydWP3mPP0SVyqlxPpYmwxrj9KJzaqnGxx1FdjtWh4/2NJ5xzBa1q1oIm4OLat2YH8U62GjhV6pTEbbRFUJ+mhL+N3kyheDhI3GIFqRXHKEqirQ1p7b7QKyoqk8x66mXo0MB7HbDdnRnAoCMbxc4IPi2hvywcq52gaeXNwyBoNPMnjxtedwueA2ik14W0vhDpBXIzGIM1/aVoSs2CXNctlDAz4YtM7US9mGejVS2UhbeV693sh99bImZtipFpOkqfRF2D6+aQVxmMwHBi3HuZN7XnqvF1qbyqRbRz4JYvNbFXtlnVGdFdRqQuBcFuTWa/TOyqCiSeSiHaxWIykWO/Mqgiu6myCuV5Qh1vimFb1hVERl6VIjx66K5F6Tl3Ee1Nyv+3W/fufrvgH5HC679/h3z3AvxNJweO+U+j98h/zoAhUi2594gBkz+p1T9BBQPnH7Bx7Rvh7pH2zY/NtPpQHJGZwBpVAxS6hhCFSfXOPfPUOFhLnp0NkRlxX29Q6s4eI3I6//gKG5lALLTxkgZdo8ufLMgxElgt6wzDz6t5nFs4FUGa5+rMIvxBFr/wVIrRT9lz8uVA57FFbRuCl5CUcwg54dhgDMoTQqyygFfWcwJyPx6IijFmTDppI2Lg+jXKaAuDQjISL6ptAmire+EsvdqhUucE6ZtMySqrsoD5VQQqlGgy8+8VplXB0I3kgxAqhqxO8qUq3kvaJCGUhK+NPztLG8n7IJrJq3BwXxqpL8iipgjQgpU1Ki/xiLiPMgNpO6iaSg0CtP7KwcjN4WZy8l39lkzOkg9qaTaH/iLWehgHAowptCJSDLvlZey7bWiVgV8boGXJb4hMledG/vGpXLilRJUau9TNKr1yUbYuNRV5UgJ1rQNXG/UpjihNU/zCyeFcvYUc0NR2ygfaHoH0hDm6o8owpwF7wX25KYXRyVVJTpu701LD82DBfQPRa90kTPcgdBMYyF+sMKlSqUhuFB5P3//ae83q84vlpir6zQfxTYry0J60z6Yk+8roST/lCC59ylFSF4A823xUnLr0rmx43QohbPNN3j4uR01OggqM1sSW1EC1Ht1JzG3j1iFrnmYiZgeoX+rSXjF0bSpZttiQlCveov8sxn90tw11Lwu70q2pXiLtaCnqhpWuhiqZHGUnlBmvRedAV2L0n1sWFuYLLJhHWmfm1me1813umMpuDI3ETMVSX0qV7DKogGyms4iA2sWXriYMUZ6tYI6rWMQpMqwZ/aJuHbZ2DnJPivUHhkAm4wR42/uDN10DdSeDOJz4Oi2oykQuc0S89yMXDsK4bBkCvZHfHoGLLi9PTIdt9gq4gfLDkqbJMIUc+2p0onbg4t1iS6m5b+UOFaaS58MJwsO2oXuNyJPa62CesiTRU49BUP1geuDy0pKqyNWBtJSaNcpLIRrROUc90Hg6sCm0XPzaGlqT2VC+TSkJw+uOH51QmnqyPVDx54cXlC2EsWBggN85OPLoQWurXEVUD1BrUQNAfg5sUCfTpydnagdZ5t10hjvunYblviTQXLntvXKzGuKOhFddHLdjjPzb5MEh73WJs4XR25vFmR9g41aMyLSgTc60D7iZOMnF7TfGHHcdeI1qcXRDUvIySNfdxJVkqdhEpaEtX1w0Hosg8Ch6vFjA4rkzFPj4IQDeKMpUbN2LUyQBn13X3JpXnuJ1bNCb3wglJnhVKIbshDbkFtxJZZGuv/2Y/879q6F6Hfr99L67uL1d2v78oaLmr80pJrSzxbUP/W87n5IGeWHx1pXvcMFzXZGbE/zDCeWLHZbWoRlmtNVorj4xozRPQYwUhDko1Cj5F42qJ3MimLp0voR1bfuMUMUjjpSVw+IR2pUC3Kr0noW91IroHtMu66o/nWG975f79BBzj7RhCOrFc0z4zQq4KExW1/KOFX5f1KloOKMsE2vcIelAiQFbOLVNg71N6IP/1ba3JkEupV4UM74XuLH3+abW4BEYInxdg5pkRikljXyg6RoizvnExXlRTuqWg0RF+SMDZSVQG78rPOhEK10CajbRQNiBLRag561oYYJxQNuwhgJjqWmgsbPTnN6Ax1Qq/8TDOb9Deq5H9kK7QwFQoR3CbiYGc+O0eD2lppUFqZCNPGkhxddqIWfUe2qVgyF7HtJszUq6mIoStIS5k+T0J3M6g5DT1W4nyUBkm4VlHyOyYdx/Qd/JKSwi0ic5UoDk7y/8NZCSRciCXs+NATG0kNDws5n0iCZgAFEVA0z00J/RNNSftaztWwYDY6yOoucyRrGM/FivY7X3/C/nIBdaL90RvSaaC+UtiufM6zhpP3b0lVZvNbRnj3TWY8lWKmf5AYT4v5goL+i57hInH4IAq16gMviFX91rFMZZuMOGRlKxTF1Ny9Ji3ijJDoCM23hfritnKd+E2kvyh2w6pcU1kaF7cXNGk8yaRK9re7FepVbO7EtXqU5iM75mR0yvAhVUUjstPoKIGP1ZVheBgZT+5oKHlC2pKgJaoXJEyV6zSHctLl4kZVRN228aCgfn+PuhiE5mIkQ0OpjK0i1cKLXXQT5/MoV3fp56g8/5xySUTOdZJGZiPXUPR6Hi6M24rdrsUXFE9pEZTrOsg1rhJ1HVi0I64OVEtP23hioU76YGgboWjGpGhPO9JosCYSvSEmRe8dnXfEpMVWd9KUlBDUXS/dhXPSeNjy/zFo0YUB25sF+31LyopxsFzerFg0I2MwxKR5//waZyO9d/jO8frlCUplLk73NOcdymahkuqMXQZ0E2bqUG6iuFXtLKcnB7kn3lRcfnTGs1enxKTphophtGw2Hdkl9rsGu/Sij+nESW08iOB+1zWE0WDrQN3IvfF6t0CbJDk2dZIMoeJ0N+UB8XBgHK1ofZax2LSLnk0NmnBTC3p2uLv/AMTbCn/VcLhpBR3pSlbTKPQ0UyWWjw5sHh7QJ6M4IxaDjTuBY7nnKXk+ZK+Jg0EXO/PZvt0lOIj1L+XZNJ/P9+t+3a/f0bpHQD6Hy680628cSE2F/sYn5JhgswIfICeGxy3tt25YXu7BGvK7LW4XQCncdmD3oxesf/0F1BXhtGHztRuOX9xQv8nScSqFHhPJGcxhJJ4s0EMgrGvMrUWNgS/8P675zv/hDCg0kxMkQ6M0HpP2w/bg9uJoEqsyCew98eEGc9tR7WDxtTd8kC749I84+kdS3O1+ONB+ZNGdxh1KsVlL4aXC3WcM5wkdlNiNFvaVvbFS1PYKD8LJzuAaoVOlMsVKQc+FtSoUrZyk0ZgeFjkoVDDE6q3JV5IJMbX8mxpE3B1Gg2sCfrBok7FVmCkKIRiaxjMMFuci3b5m9KXormTKm7Mq2hLQH7ekh56cxC7S7yuZoiVpOjJTDgjYOuKWnvG2JhvRsyQvTUzsbNGaFP56abhUJw9PCdEqQvw2onongW3nI3nnhDaQKW5ERZNwIftxpvl5RU6gmsRk9SLhevIzqbpDnnIQi1R7JfkMuhS2Zi/p1lMwYljlmdoXlqLTUEExnEthXd1IoxJaQQCyEapTtRXErHnmGH+gJ72usUc5XuOpFL3tcyW6oiCoSHUN45mIW8VaWhyR/FLev7mE4RTClztsFcn7CvduT9g26K1Fj4rhk1Pq0iAN7wU2X7X4pWL41XPyFzyh0VTXGrdlzjEBLY2WldRx+9oJxUlLM6S9m/eB9tJEjSdynla3svOHc6FSJSsNfHaZ6pWThj6Is5c9KtSoGAriUV0baeYqQYTsrrgDRaG2qVj2wbGIx4M0iioKdUoFobeNZ+KoFRbIfiuOdMneBRnqcEfBtLdGdF+NND/jWUHDQqGQuUxuSoK7KnbPQXQSCS0IodfEThCQbtdI874eSUE0AzlOIYAUfRcoK2YUqdAg1UKuK3ojNJmkyIuIW/iZ2qScvCZFJe53SVHVHmsSQ2MZ37TEfYt6MBB6y9Y2nxk+aJWpnGhDFpXQjXw0DEEm5dvna+qLnmU94mykdSLYDkljdKLe9MSkOG4bKitCdK0zlY74YLhY7TmMFYdjLfexKnA41uSsMFYcp1JvMW1ge9uSgpYQvaRwNvLmeiUFepN4vV2hgFU7SLjeaGYLb1NFzHlPKrSrpz9wy3W34PLDM3IbWV0cqV2gMpHKBl7drmfE5we++AqfDCkr9n1NeBjx3hA6SVkfB0jXNWkdCDc15mTkZN3x5tkJSoO5MULVs9B+6AiLco4eHCx9uQ8rOV+ywnQFDVcFrSs6vbSMmK2FQpfMXqMWxVSDgoYfLCEkDqOhWo6zicDqXQmA3e+bO+v0JBC/qhL1h7UEoTaJ1AoVWGXRl5jzAbKcN94b0vPvfwPyvRGh32tA7tf3Zt03IJ/Dtf72gXC2FoHyT/wA46lj9SvfBiB7T/udG9TVDZydcPihM46PDA9eDCSniY0lG0U6WaJvdtj9iBoD1bU4ZuW2Ipwvsbc9at+Bs4zvrGg+uUUtK3JlUCGhxsAU9utLAvVkxzkJgm0H7pjRPguiEjJ6SGA05uYIMeGOGXKmuhlZvHBc/GbgO39KTrvYMFO7kiuBchHGB9KkxFam7cklzN6I+8kiYj6uRHRcl/TiqhS+u3pGPiYL2SmRV0bHahaEqlA4u73wigkF1YhSzKGYfeVVKjSQvWM8yraHYsWJgqr1hJLXYW2iP1Yy5csKirYlF9FMLhPm8GiUhPWoAKFZ5KP42ceocS5IIGJWmIKeeJPJW0c+HUsBURyLpu2uo3DnQxFbWvleetCSqXDuxamq8PQffnDF7aEVn/yLUfbbwaJvLOncw8bL/qkSeie2p8pl4V0nRVoF1I0TFMVrVK9QncZ0GjMipgGFbpVdcYqJoJDGJFViUZtcLna5mfal5FlkA9FKg3v4UmT9dSMISCvN6fAoUn3YSK5DknOnfQnjiWL/xYQZFG6rsAdBP9yuTDZDEZmvhO6lI+y/UPQsVzXqSrPsYDir0JVsZ30t+3g8lW1c/5Zl+6MBvfb424rqlRRPbg/H9xN2q/GnkpPRPxIr3vqV4fgFoYPFNtE/TeilRz1raC6FsmVKGCMoTPdWRslpCcFMCnUykLctsc4sXyr8pljzRqiuxFo3VdM5L40cCfRRGpKwvPs/FcXaN7lS+G0i5qDLtSloVuj13PhkW5qlAJSmYnK/Ml2hMo2K6lWxQr4RTUls7zRHkzaFqKTRKM2rnlzcOoNaSeaMa4PoIbRc03Y5Er1hOMj15Vo/F87WJHEoOlRi/KDl3qGtICtT+CkIVUop0YHFsSJrQVVi1DOFaawrcg2r5YAPhv6yZfHwgLNxTob2wRCiZvQN67ZHKbAm4XRiqyQPI2Y9u+5N62TR45Okka9PO4bRcrE5oFXGR9FjaDJGZU43R/rRUbuA0RkaT1sJtewyKeJgaFYjdeUxOmNUYts1xM5y+v4tlYm8fnnC5uIg29yJ9gQgDeZu+OEVQTu+dd1gV57Fkz2PNzsuD0tqGzgMFS9enlItRi42Bw5DxcvtGqUyq0aarJgUVRXQJtPWI9YkLouNMErobHGl0Z2gVPaoiEHu0eN5ngdPutPkvp6d2rLJcq8obse5EdqUmpz8RjOfXyqB6gT9yFUpnNsAWdCTnDLjbiEhqhXsPl2LyUm5L6p3OsxSqHkpavh9O87anuNYcbhtISjajw31rSZZx3gC/aO66K363/Ez/n7dr/t134B8Lpf+1jPsO+/KRDpmuocX4lJV1zCMXP30Bef/9+ekDx6TFSxfxuLDrzDHwPprew5fOmEZAvr2yPjuKcOZY/WtrVCwsjQFua5AQ/PJLdla7PWRuG6xb3ZkZ0WjMQoNy5TwQGLhqOfiRDSxlRycfGsgrOSU6j44pf3WFbv3Faf/oeL6RxYcnmY2HxrcTjO0CZWkaESBfyvt2vSqBMwpYm0Ip4F47rEvK9hpaT6mNO4M9BrTGbHYXEjhnWOZZMFsq0lQmFGT6iJcHDRqVOJRP3HDdYaK4sKThOaVhOaUs+QG5OoOYWAhiIhSMB4rmtXAetNxONZYEwneSKOQoVmOxDqK4D3oeeKWkHAxvfKk0RCDxjloaqF4hKjxoxXqk8ukvaM67yWZWCFFXCzN1VvnUfZl+td40Bn7rMFfeOGYv6i4ev2AVGVMgnSayYMIcdNCCt7sS4r8wYozEEARc6qgJORNI03PxPc3mZSBLJPvafIOQjXSXopTFYvDGlKQ6hG0KYF3ZSUrOoPmmaF/wJyVERcJ6ogOBrWXJic5OLxXcje8TOh1uGtqw7KYHVRAkjT147tSmNqDYngSUG1gOFF4m0g3FWrtCbcVySmaNwq3L/kZFdQvLfbblrCAx3/4Ga9u1wxfX+NupShyNxq3h7BU1FeybfbGCJUKMDtD/aEVRCRJgz9RESeNhS8okR405qjwZ5Hqmy3jw4jZabo/0KE/blFBaGHjSZ7tcbOWQEa/FDRiOJe/qyhN2ES+DW0p3KLCbkvafSPNU/vNatZ6qATKK7H3rWSfguw7+XnmMMn+QZ7vCyShUCaXyadezs/eCBpXhgPaJHKSJkSdiTB4cn4yTtCNui5CbRMJ1hAK/VLsry0eME6aEqXFjcpUQoEcj04m/TZhdKKtAyGKHe7ypJNis/D7AWISUXp73onuAkN11s+Nh1IZozPd4KQh0ZmEaLvqkjTeXHSEqDFaEJvOy32xtiXFHqFduYLe7PuaEDWrZmBVjyQU+76iqQKLapzpWNt9gw+GZTuwWvbYjehQDseazarn8maFsYmTh3tCNNy+WZGjYnuzEMqoyTSLkZQVTTvyeLPjmTkRcXlS5JcN+WA4LB3f3jbUq5HtzYJ6OfLw4S2Vjby6WRMGg2sDq3YgZsWxrxh7S916Hm72ALy+XYn196ES+ui14/jsnM1reV70jzLhQQCdcc8q4gcdvGjk3mUy4UQop3lXocY7V8RZJG5Em5SLMQYqYw5ammctAyQU4gaWVaE4lqYkKqFN1YlYi46wejQyDpaxk+wRbMa/rnndtpi1x7We6qTDPzJ0vSXfVNRXmvaZZniQGU+//yJ0ccH67iIx3+33u1/3a1r3DcjncCmlCRcL3MsdaVFjxsThp79A+/EedXNLcy1aDnN9ZHkYULcH8npJrixpWYFSLL+9JZ4ssC9uSE6z+sYNqalIjdAkCAkVIvFkgdn3oCLZGcazCnutwYoYfDyRwm2ivkyi1uiABKEWhKA/VyxeW2wXYfSYIUHOnP+XSPfehof//XN2X3xKdRM4/Zrm1QMY3h/xJ5bqWhdKSuHjtyK+NSPsvygP3uqTSjjqWZCPdCYTe33tJAzsqEApvM3kXATSRnQQFKSAKgnfebKYzaoU1vKgMsUdJXldvN+FPpVDset0mYxM/1VGaElKithYAs2GzlG5wHIxSAFSkJCJGhFj4SUjOo56NTL2VhoeLU1PGgy0UghplamsJCgHkxiHBurEuK9oNuKyE4LG78Uzf8pHycUeOJfmII0G3u1Ro4FlIJ3FOR2Yg8G+dIRVgsFiBiVZHYmZRkUQfndqS7bCUgoBfT6QrqvZgUj5QsnRmazVLFCH8l47sfgVu9ss2R+9IiykWekfMuuA2lcwDoKmqFKk6wDdI40KThrQQt2ubqUBH0/kc5KRc3cqkOFO6B2Wgry420IFy9B+bBlPDOnxIJP5VUC/rHH7gli1hdL0MFHdyPnaPRY3qTf/3VOw0sSlChZvUTGyls9VUbH8FIYzRbZqphOqKDoO34ouZQrrTE6oW6nsf38R0J0hVWC3Whqsj1tUBH8RSM7QXJb96O4craoiiDd9KcCi7IPYFO1MadYmHYruxSLZdAq/kWbO7sWkQOWSHt/eWQuroGYalhkoFsPibpYcZJPwbcKuR5Iv4XlNpCqNQl1oTJULdENF9OYtgwcxc7A244PB6DTbYNs64nuLa9/K55j2OeIoNS3jJGNn0lr0oxMdlIIw3D0CrU1oLbRLs/CMg6VyAa0TSgk1MkSDs3HeZqXA6IgmMyZNLL/qys8NjVaZlBXHriJVgcZJlz2hKc5G+tGhdWaMhpg1lYls2gFfNCYhaoxKWJsYB4sfLU07lvwLzdn6yNWtNB9VJfs0ZcXitJt1KuOzJasvbCWv4+Wak8c7Pnp9jlLirOW9xZ953nl8w+V2iR8sbe3ZtD29d9zsF6SocVXArQIhGG63C5QW9KpqAs5GLndLfLEPbmux/w2DAWVJVuEXEyqpcDvHcJYJq4T9qMWfilGJ2YsTYr6q0UHOx7CS885sxHgjk0sjLDtaj8UoQxfDk0nX0ZTA19tKUBCb0Z1Gv3sk9FbSPjtL57Ug420kV4X66DL1C4vfG3ydSL3GfnGPqwPcNnLOt4il+e6+UL9f9+t3s+5F6J/HVVf0D2vi+ZK4ruguDONao6+3AKiQiT/6AWndoA4DLFvU6FEhYG6P9O+sQCnCwoIxIj4H9ODRvQjZVc5ka9AHKWLTokLFTPPiAEqhfKSSjyu5IIXGkLmbUmsY1zCcKKq9bJcKGYyhenZLbhyhVdx8xTG+f059BfW333DxK69onhUU4DQwXKRZBJxKCKGKRQTfa8xWRPZ60m2UyWkeNXpQ5FM/a0cmByTZ8AxBC+CTEFTEpDsx+tSIoGZeeQoy/cxRhInaTa8t37k803Kx881RF3ctEaTnpOj6imNXEaLBmkRdeZy7oygYF++I8yDFUOFk29I8hCBUjNlhRyH887qMlr2WQsgbjBWHoGyFEz+lvSsrPGYGgxqLENwrscS8qjFXFnUwQod6t5dCU2XCSYBFLKGDYqs7ZXnooxFaWZ3ILknWyESLiIJOJCeFqSAlYtM6oSbJFPSkiMun8C57FHSjvpRC1nRCjZqKf78RCsZ4Is5VEv4lKMlkHXv8QITpqZGMi6yYLWNjlcX5qgjVzQj9o0RsMv27nuFMim33nQZ3adFvKqobVVK9hQpWbZH3NZM5Q6F/NfK+i+dCVZqoVH4F9XVxiHs8svtSpn8cUVG0TW/n6KDuxOrJFgpUFjG4HhX21tC+UNKEDXeFjorQPLOkRaK/yMTqLundjHc0KTPcNXC8Jf6f8gtUoIjO5bz0m3I9FJ+HbCDWRb8RFLEtVreUfVGaQaHLyOdOlE3lpCherAds49E2YYy4yfWDI2W5ZnwnRWtTe5p2xNpE23i0TjSV6DOMzlgT0SrPDnRTAOhnmOqKGbGIXgtlsUz5p2A/pTJ6+vcg/6cUeG+F/pikWbFvDRFAMnyOx7qYUsigIGZNKoX+RJmffpfGR7YnZSWvfWuqPDUhRguN7NBX8rryvWLWjNEwBDnRz04PnJ4cWNYjYxG47/ua85M9KWqaElJotOQJqWkfbQRFGr1Q30LJ+Fgt5Rngr2vyqLnaL3h4suf8fC86NqByAWPEcMOPgvjW1Z0AKCeFH600d0CKYic8jJZxVwnq4kr6eSXXuD1IFo/pFfnEk404qdmb4qbm5J6WllGoWJtAbJK4b5U09tTIe96FR2bSiWey+Z52s7Fi0pFNxhw1bq8IbxpxPDRJXP2i0BXNaycNSqGThkUmLZLYObuM/3DFeNWgf2TH8SujGDJcurvnzvdxJTTxu/zru50rcr/u17TuEZDP4dr99HsstoHkNONZRX2b2PzbT8mbJarrOT62LL72muNXHlI7g3lxDdby5n99wck3e8yQuPypUy7+zSXkjD14xscrAKLTLL5xSXi0wb68FaestmK4aEhOsfrPb8h10TkUy0cpAoWCAvLMWbzOnP2bl2A04zsb/NoSG0330HLxYYDaoXrP4bGIx/fv1yxfJK7/8FNO//0lP/B/fUX//imx1bz5CU36gzsOgyXdVlRv5AFUX4EewK/VPAFHSfL07isaVSWZ3BY3prAUx6UcRS+ipuKdO+55RpeiqFjSFm1GGozYK0ZxfSIjSEHQmMny1mai0jDeOUsZF6WhwGBsnIuUnBXjwTIODXrpqVsRwHpviIU+oowkGS/WgpYMuxptvIjWi68+gGSqS/4IUaHrQAJiUjgnBYH44BvReiyk6JMmSop8FZVkcgyGfOJRLskUj9LkZBjOiuOM19LoJMBm9LGkSZfiUx8UyZdQSF+0M4O+06IkCGsJvNNRErVTCYOzfSlqNagSkmgGaTKqG0ELhovE8iON28l72Q5SpQo9D3GROmhSJTS8pmRl6KOhvtTluklzoxPbjD0IqjYXJB2cfF32z/4DRXo8EADzrEYFRVVsoscT6B/nYgMsgm+7l4Zk/W3N4V05RnUv2pX1tzTjhrkx2b7nWXzbYb5dYQ8QG7G3VlHT/eBI9XE1C+a1l+JsPMlzQaUixKXs5+6xaCl0nI6pNBlTaKfsK8n3aF9ouX5nBEoxnlKE5CLIV0lBFvQwtsLBj3UJikxyLLOahOmgU+m+E7ibMhQYZTtTJdqTOFFkNKgnA9lrqtaXa0IcnqLOIvb2FlsE2Dkr6ioQk8KXHBatxWVJ2wRFIK5URilFVBB0mtGPFPV0Kd9Rpcr1Y4rj3OSAp01GKzF6UFostXNWElZXUMuU1XzNDt6KQ3FJxBYEBQ7HGmMSTe3nbT4MlSAoOs+NRzfUKOB0dcQnUzIz0pz3k0rWyESzUopZzD5pwIzODF5QjW5wpCRBfxdPboWiGQQ5qZuRy9drbBPQOjMMjrr2DMca13qOx5oUFe26x+jMetMVdCnz5IMrXl2uGfY1L0ZL3QjCErPm2Fd3Ddio8c7QVF6GHyWzqOuduF5VUVLctXw3jobO1lSXZjYXmVwQU5UJj8XRLCwTWWuqL+0YR4s6Orlv24QtlFMd5Jys3z2QkmI8OmJ2Qu2sZaBkX8m1prLYbuuDYRyMWLEng+kmMRAsHx04XLfULy3D40IH+4E9w9FJQ3rrsAdNGhV6MHLvsnJe9a8X2K0mrOU5lP33vwG5F6Hfr99L6761/RyuxfMjdjditwOh1mSjyKdr1Ksr8uhxh0y+vKb9la9L8wHsf/wRF7+xxZ843HXH2W/uJZxw05Iqg70d2b1fsfj2NelkgdkW03IfUPuOxW8+Z/Ubz+m/eI7qRtQQeO+/vS1Fv0xlm5uE6zL1baK+Crz6o09g8FRf/YTlf3zJ6pu3LF560sUaojxM3/2lZyQHx4cKM2SqbSQvKrLWNJ/csvjWDe/9t3s++NuZ9tdb7HlP/uED/t0Bv4HhQabaSnG2+jjz9F8PPP43R9ylxS48zSvND/2fRx785CviWuxJ55A9L9aNjBp9NIKk9FoQgK0TwfW1Q22tWDwWdyTda/Sg0ZeVIC3T9LLYPZqzAZooRf22YjxUuBJoaKwUJHXtxSrUZtLB0d20dPua4EX4SRaqV/RmfrDrSjQjtgmkqOYiTGuZYkZvcKtRnK8KHUR6qIytA+6iF+pAL+9BscZVDwbyg0E4zydhLsz6bY0fLVplxl2NWXqZZC8DZuHnabhQoqSBScsohb/OkjTdacxeCvm0lFC9rATlyEYsacWSt6BGFASpiNPDMjM8FIREqEoiXs6TzkgOAW4L+x8vQvllRHvF4lPRZoBM7LPNdO97koPmpcYexCXq9GtqLu6Tkcageydx+2OB3Zcy1bWi+lbD8jcawmkUKhrQPcn4TaZ5rfBLQTjMIEX/9f9mZPclQTHOvgrjacafJrY/FImtXC/1NWz+k2M8FeSjfyjIwO0PZWIDi69Xcm6/lUuS1R2FyR7kd9GTiKh+8by4bR3UnMljRkDn2a66faE5vh/l/3pm6pQ7CO1NnOzu0AszyEER3YygG8llMYFAaGxiySxIiPayHyYk1C+zWCKX5HHtFSwDcTRUC894dIyj5bht6bYN476Sz1bihjWLuUNpzAtVCpDJedCEaBi9ZRidFNtRY4pwPXgz/x7eup5AJvFKFztbb+b3zYi9bc6i3QDma03rRBjM2zFH0pQkRQgicD89PeKKs9XhKJOaEPWMeqTSPPSjI3ihbR3Hihg1WidS0p/ZTqPFvndCLqbmQ6lMSoqbW0klXy96mhJc2Jz09KNjf2gkn0Jlmipgm0DorWSDVOKYZSqxCnfVnbnFRCWb1mGQ41KvBtbrjqYKDINl8HYW6MdgaNcDWmUOh0bS4Qtak6LGusi4q2aEa7hsUSeenBTjBwP9e57xLBErit5JUX1UobcWuxfBen+syFHhViObBwfWpx1hLJS8i5FsMv1eGqLlSY96MIguLEuzHE4iw8PE8QuB6vGR+oMd1XkvjSzgTxLDg4g+GTl8ukJvrVwXXgxI+tcL8lHE+u6dI/6kWD1P504tYYc0kfCw3DOrhOo/awt/v2T97b/9t1FK8fM///Pzv+Wc+Zt/82/y9OlT2rblj/7RP8pv/uZvfubnhmHgr/7Vv8qDBw9YLpf8mT/zZ/jkk08+85rr62t+7ud+jpOTE05OTvi5n/s5bm5uPvOajz76iD/9p/80y+WSBw8e8Nf+2l9jHEfu1/d/3SMgn8NlXt9iqgD7A6vWYW6OxJMWExPKWjZfvYb3n9C9t+H2S46TDwPN6wG97Wi0hpzRh4FcW8K65vBuTX0bOfvPe8LFCvt6R24ceVGjtgcYk2SHWMNwammMAa3Qb2754J9vefnfvC+T5jceHRKxMWifWL5QjF84p/rkGoYRtYN213H48ccsr/fE8zV6DJx+MzKcaHZfMJx+3bP7gRWLFz3u5Q6U4fnPrHj4GwNP/k2P/6o8zJtXHcOFproesc+v+PT/+D5XPwHHd2re+1c7vvR/uwGluPmxzPFJzYsPK+rznrBfCsUsKHCZXCxHQaZtehQ+ezKqCKJLqvaoZNI8iphaRUVqEzko4ugAmSTrKhKPJdCrTiKo7TX9cQE6o1ceGqhsBBuJi1KlZUUKSqgeJdFXlSnp9HBPXgsf2SRsE0rxISJWYxLJCfVETbQwmIunMEigIosglpNXjXyPoyOZLPa8S2k+XBMgwxg08aoiLg2YTDyWUEGviQcr08ZVQF8ZQpPEvvfMk0cNRkIiZ3ejKcgLoUFkLZxsMxRqXbF3Te7OvEAlKW5jK6+ZKEKTeF0PdxP+sIL1f6joHxbdj4HdlyN61HeUwDbSfFzhdpKobveSBXLzI1lE7qPoFfQIzSuNPQpnvNpJUxCWogUBaVLkvJDtsAm6h0ILWX2kWP+HirCA5g28+YOR6sbQPpdCff9BJr3rsS8qEcIvEouPReDdP8qzO9eUayLnlvw+nokjmN1r/CaT1pHx1NN+o6Z7N0rT18svd3tnL6wH0bPoQTHWckzCI4/90AntzWUOXwo0nzhiI8eIDMkp/KkgLIJ+KVQUdCnVCbs3bznOgTnK62IjDWSqBXWcm0olNDQOFlRm8DVmIZqonde4JtA24zzZ9172S/QGW4VZNzEV3qpYZ0+IRc7qrhBMd7SouRvLlKFBnk0o3v4ZpfJsnW1tmkFQgBAFxahspF2O8+BhCgRVOtPUvmhBJKdjGByLdiTEO1rXRNnqetF1VFVgDEYQlqzRWqhepqAfwCyCn14zvVfOgggZm1g08jkpCf1y8JZ+2+CaIOL8KI1aXQc2q57b7YLlUsTz66Lj8FlhTWRZj7y5XAPIoAQY9jVKJ8Jo2Y0WY6OgMYMl9G6mrg69k+13keXSM3pLd6hJvSE3Crf0834jqvlelTqLqiN5BePZiKmiWCG/qckbT7PpSUkzDhYy+DcNvhWKp3njiEuhfTZPjgzbmnB0hN6hb4QSpgdFXCdUMaUgizGIqYVOF3uLWgey15ilJw0iQk+rTLUcJX9pMBIseDRwXTGqSkJp+8JbLPd99dY5l+tE9czRr4ff0fP9e7nS94AylT5LbvxdrV/91V/lH/7Df8jv//2//zP//nf+zt/h7/29v8c//sf/mK985Sv8wi/8An/8j/9xvva1r7Fey3n58z//8/zSL/0S/+Jf/AsuLi7463/9r/On/tSf4td+7dcwRpq9P/fn/hyffPIJv/zLvwzAX/pLf4mf+7mf45d+6ZcAiDHysz/7szx8+JB//a//NZeXl/yFv/AXyDnzD/7BP/if/b3u13dn3Tcgn8OVt3vy01PUaom5OnD7kw8ZN4oHvxVRleP4xROSVdx+ybD5TuTwyLD4jdcQI9pZ1EEscPPpirCyNJeB5qNb4mkrIvNPBlRK4qzlA1gDx4708Iz21QApwRhIFxv01Y5H/8Mbrv/gBe6qI7WO+qZDbQ+Yh6cMj1uqWASf4wjrJdWtZ3z/nOrjKzCG9vmRcbXCr2D/1LF8GVAhkxtHXNasP01ko6g/vqZSSrQjp+3spHP7v3oXHeCH/+Ebnv2Jh9JcNRWExOZbHfow8iP/p8gnf/IC/TM7/GhJQR582iYW7cjgLcO+Ih/sTBOaQvWSzZidnhsVXQqqVDNrSpTX4BLaZlQlU9mcFLlFaC5RoToj4sissKtE5aKgFEmhVGKxEJHmoa/wvSUFTV0e/jEqQT6CJh4dZjUK7WIwJK9Zn3QkPU1M1V3oIlKIKZ0ZbqV5016aJ7vy5EUpwIIubkPykLV1xNaBEApCtPSkLA5pem/lwWwz6mjmYpUMuiRuCyymyMsk07+9gZGZIgEQTiLVa0NqpQEIm5JfMk45E8wFo/Z3NaQOEJdS0I6n0piYXhqX5adw+xWhFLlbI0VvgvTAU61GYl0RWkkdtyVfpnlZiry60JUGQRv2f7BH6UynM/lZK+GCqiAFxRAhORGZmh7WH4rN7+1XIu5hT/VrS1SG5Udm1gYd3hMkYvPNCr+Qf7NHg99II2J3enZvE1tfQRL8mlksPonTyaC3lnTiiY2Iz6ubQpe7uCu4p+YumyznrCrOWdfSPGAz2SncayeUrlb48HZrCnoiSEt0GW2lKcdlsJmw0igvxd2d8BxwRSivCqXL3FlW56c9VaEjpqCxVWT34Qn6wSC0GW8JwcyoAjBTqe50E3cFuKniTBO8y/URowk9aVSSImvFb2eLKEVxsrprJkAKaXX3djIIKGjIGMxnfH9sca7y3hCNJsQ7Afmi/ewkNRc9i3MSWjgW9yujE92hxtUBY5j1GdOKSZGSxue7T05R472hqgJ1dWcPp1QWZGUQhMmVxPQpvDQW3dvF6Z7DUFG5wK5rBH0xgr4cx4q8c7gHd+5epg7zMVFKvnfOiuPlQsJOG2lIUhSq13Erqe3ORTYnR/xSDsbQV0QvovS4kcI+j0YGJ7dOtB0mo3VgvKrkXEPRHWq0TdSNZxwtm/e25KzYbxt4r4ObGuUyw5tWfr4R+ms8l4bPt0bOiWtHuhjFVc1kYm9h1Ji9XKfoTO5qzMNhFtCPr1pIMohK64g5G1mt+rnRHL2l30oAotqJccpwUcTqWTE+CpjX9wjI22u/3/Pn//yf5xd/8Rf5hV/4hfnfc878/b//9/kbf+Nv8Gf/7J8F4J/8k3/C48eP+ef//J/zl//yX+b29pZ/9I/+Ef/0n/5T/tgf+2MA/LN/9s94//33+Vf/6l/xJ//kn+SrX/0qv/zLv8yv/Mqv8If+0B8C4Bd/8Rf5mZ/5Gb72ta/xwz/8w/zLf/kv+c//+T/z8ccf8/TpUwD+7t/9u/zFv/gX+Vt/62+x2Wz+F94r9+vtdU/B+jyuGMmVJbcV/skGHSa3D0jvP2b51desvn7N2dcDm19/yYN/ew1agTHkxpJPVtA2qN2RxTevaT+8QfmAfbMn1AqsvXvS63IKKIXuR+xukH+zFhWS/N4NrD/q0YPHFNF6XrVgFMeHhqJ8lqf9do85erRPYAz+yQbz4prNtztML0WlX4m2hZQIa0EX+geWvKjJjYOU2P5Aw/UPO8xtx/rrWzYfBciZ1SeR8dEaQmL/g3LziOuKXIklqveGUNJpUxCK0+FYi6VnHQU+N1n44qVQk5wDZteT1IiDj/LiCDQli6u3CgalKbaWCT0llessWogohVAqk1uAMJqZJ97WHltHeUAWmlWKd3QQNRdhIpJVOotwVGXG0aKtVKeTI1BOUpwpWyZypRhMUaGtOAkpk6iaUET1EIaiRbFJaGKDRVdRwuHaKPS1OmIuBhGAWpmIq/SWSBopTO1rOYbYO/qbSqCPenZXyqYUsQWFSMUO1+3ll/ZS2JpeROPkQg2iUH0KRev4BOo3mupWtB3ZZOJCPnN81WI7KYj9OuPX8uf+oRTmKlKCD6WpOPsfGnhdU1WSeXP4klBbukdFOF4S1kMrzcLxiZwz9aWBbyzpfrKjP5fv1j8U6tnqY3HrObwr7lbjqXyv9pU0EEmAAWlwHTMnXjQfQnuyHYxf6lER3FZRfVLN+zW0oj+xR2mWJA2+FP4uC03uxEMJBJwaGXOURjos5Tw3B021k4ZsQl8m1G+yrNY7I814SbBPpuzbjeQyUJqPO6tlZJt2Dt9bOXeNIBgqIQhgFIMFfxSxck530/752nq7+odZZ0BpSj7z2umXzmiTymvl/4rb+Gfsc7XOsxA9pc8K13VBJSex+PT/qiAVKej/ijYG0jxM7y1UTY3RedZ6uMl61+RZRyJuWaqgFnreRl0Qmjvap55/3gdDKi5b47YWS91Kwk+NSeKi1Tly0rS1ZyyOXaqgR84FUqGAxahnhMgaEcDXtWfsnDhaVeJyBUi+kE2iN+ucnKfluKVCY7u9XDGO0lhOjoB+tKTRiFGHK+55CsnlIOMHKwjJ0rPYdDNKMVGw9vuGMRjalQT+mdOBxaYTJNdl8q2TDJPS0CubJFvpYsTUUUJFk0JfOXRpPqRJF/1Tft4QXrfimLaI4CRs0OwN6tOG7UcnHLcNu9uWDDx8fCt0MifUTBUlINccNGZnpHH/Pq+Y1ffkF8B2u/3Mr2H4/474/JW/8lf42Z/92bmBmNa3v/1tXrx4wZ/4E39i/re6rvkjf+SP8D/9T/8TAL/2/2Hvz2Jt2/O7Xuzzb0Y3u9Xtfp+mzqneLpdtysEdCSi+GHODEvOApQvhCVmR4AFLWLyAAuLBeQCFiAdLFoEXQAIlukkuIoC5SNcXMG6oolyuvjnt7vfqZju6f5OH33+MufY55cRGLtcJWn9pae+11mzGHHOuOX/f/7f77Gfp+/6Fy9y7d49PfepT42X+43/8jxwcHIzgA+BHfuRHODg4eOEyn/rUp0bwAfAn/sSfoG1bPvvZz/6XnOLr9fu4rhmQD+BSWY5+8BTyDA4rtI/c+HePwRjcJEM/7YgHSbvRtKjlGm4cEXNpMefBU6JS8NJtwiTHvPWE7pMv088t1fOO7qUj8rdPIUTwPu3ya1hvUbnFH0/FWxIy8XIET/b2cwE1F2vCrUPcYkL+1hmzRY67e4g93YD3hKMZhMDubsni0QXNjZyQ36Z455Jbn9U8+eESFTTV0x61bSnfOKMoM579kRvQe1QIhEmOKxT5KnL6Iyccf3nL5K0V+MDit56RGr+YvblGtT2bjx1RPY688i/XfP0jOXZlcEmqFL0em45t5jEHQZgCJwgkJDAyxqI6MVfH/D2DVVDE2uILjzIy8Nuh00Mlar5MzelbS1tkOCuMg++FLWl3GX1vRlBhskCRO0JQtMP2vwJslF1Mq6jKDpfJh3zfW5GdeEn18U508NoG/Knk5ysTMcciHyGK6ddakbp4rwkpEQiFmOpbPfaf+CEvX0VJweo0QcU9A6LAHzvsqcVNA+6gp3i7wE2jtK23evR5ZCs9ghSinNeh+wMYd/kHsBEykVulUDIp4qskXrefyTBdnkoHRXcozelFKt6LDrJVhptEmhuBySNJgdJOYn0njySedhjelZfn++JTgfKZhtMF7tWe/JlEgppGkS8Zr5NtBAxt70fcTDwa2QZm/65i87KEJZTPFevv72BjqZ5q6vseoqF6nhrXZwKkdAIEzc04RuOaemCDFEQZbkJtiTfF72M2adjL5TrtkZxDV8WRNVIRSfDZGvxcmBQ3CxIjrAz5BTQ3Ff0NR/nI4iaR9jBKZGkmkjlshE5Dal0PBsKRE3+UF9nXMGSJnC6OQQHSPZJAT6uJ2d7j4HuJVLVZwLeW0BsBQ50dmY8hcCEEPRq0x5VeEwPwUOxZjeE6wJhyNb7AhvfTK+WkKgEIuZ6weFJUKJsF6WLjMUVgt6yYH+0wk5DABmMqXe9EIplZT5e8EpNJS4hqNM0P4GI6lR313WXF9KgWdvTKzHoVOIWgqS9LlA04L5sXA3PpOoOZ9PhdxroXFnWzLfDPKrI7O47nO+reUje5yMWcll1+r8hKx/Z8QjbrKO5uR7DkvGK3LiHC4cGOi4spJvNorSinXTo+kSpl1tO2lmImA2j7aIr2Cr+2OBul4DXVTdEaJrc31FthZ9VBR1YJ0HfvTCU4Kgs4J2wOaeNGzoO817WbHGUiNg/4oOW4Ckco1d4H9LQizh3BGVhbwjLDlwHVSOx5yJIkb+ZgawgLJ6/15H/DKfHMBYWfy/GpXmOf5lLg+azgNJ/KEzR3xC4Vb6b3Wl9b1PP3IOf/ytbLL7/8wvd/42/8Df7m3/yb3/ay//Sf/lM+97nP8Zu/+Zvv+92TJ08AuH379gs/v337Nm+//fZ4mTzPOTo6et9lhus/efKEW7duve/2b9269cJl3ns/R0dH5Hk+XuZ6fffWNQD5IC6jib1DHczZ3SkpL3ri5RKQFJ3Me/S6Yfq5C5hOYFKx/PQNDv7nNyDLqH/4o5jGU98uOPjVd2A+w1WG6Zef0bx+A7vpoXeEm0fo552AD60Ajdo2hMMKPakgQJxXAmqaVsBI8oa4W3fJgfJrTzj7oy9z8s5zCAF//whilB6Q4Jl/8ZTzH75F/siQnW25+VsGN9GYdmgyMygfufH5jXSfPN+gNy3lhQwN1bOOi09MOfoqmKbff0r7gF43xDKjPO14+7+dMn0EbH2SsVih+otA2xdURw2vnpzzaHnA7E5LM+zWpSjKON2nX6nEKmgthYbis1CSCrWzYsCeym7i0LfBwIBEYOLxrSHLPC6qkS2JAXxn8FGhMz+2LxsTsJmXeNAUv+s7Q29D2sGUXUrvNX5nmd3YsdsUuMYSsjSsmYjZaAFOzwrxuxx0+KCpik52I70ME80uhwBhnVHd2VJfVqhOwIPKPdQWUsJm9En6ooUtCpXHLQJ6a2BnaO716J0ZDchuFjC1pjv26Ea8BKbW+9hiK/+aRvwgbh7Iz8XHEY0M+33C1lfjafOlpEzpXnb/7Rb6RYrsXTP2f6AiJuUruIk0oHdHafh34Ep5XO7lhqxw9LsZ5SmUjzIpI2w0ppMhP1vLMe3ue/ILk4r2RE7W3A40t6F6qAWU7GD6FdmN7ecwfcvQHgr4UDGxRvPI/A1Fc1M6EEDYkf5Ajjek5uZsqbBbS8gsditxwbrdm861l5JC3QkIME6N510FsIctYWMozsWD0x4npiLFkOpe/DDSii73rX2SMZkogNTI8+bNvrywP/ToWpOvBJzkl0q6VdwewIc8oo5lxzoGjdIBkwdCZwjPS5EHHjow4FuDnuyBhNYybIeUAGeMdPS84HdKL8eQ/BrDyLc3kg8TfbpO+nYIkLgKbAaZ13AOQtoAGG5XKYnoLZK2f2BGro6ZWktC1RADnGVuZEbQIjEYQMtwG9VBI31Aan89BSntKvlHthnFQTsmaVnjUWWkXRciIWoNxVFDkTm2m0LO2XFL31jO4lTYIBPS/YjEzRai5lfZ3uRuradzqfy0FAnWxfl0/D9AvS6wpcNaOSdta4Uh8YbuU6GCLAABAABJREFUaYUOoHrkOc8SqE0stF507C4m4qmYOopJj3Mad1lAFchOGubTBp/iy316/8tTQl+7yxjQY4yJnGut+NCiwhUeVhnaKylJ7RXhqJf/Nym9z0mXjZuIPEs8ahE97wSw7AYdHwK+vRL/YBZwN4L4P5T8zRAVrKxElOcBHpVopwgzT8j3r+Xv1hqic39/b1P+QN59990XJEtFUXzby7/77rv85b/8l/nlX/5lyrL8HW9XvYfqjDG+72fvXe+9zLe7/H/JZa7Xd2ddS7A+gCvcuwEhEIuc6aOG/D+/gcoyCJHTT+XEuiHmaYupbWFXc/C5p1AWxIMpbmrIH15SnvbEozk4R7YVU7vug8ioMos+W0JVQpGLLGtagTHY0628MoxCrbbEIiMcz+UTuyiI0wnFeQPBgw+c/IfHYmKfTtC1w9SOyVtLhqD8YulRvUNtGuzOiTyn7iAGurvyhhZyMbZHrSEE8pVcrjvMOPxGjd400otyNCFWOTE3xCpH9Z7s8ZIP/1/foT2ShCrlU/EaEs2qOk3zZMIbz24wK9sxdhLS0JU8FEOfwODvsMkkqbOAKRwqkxLDqBGjdmdEntUr4tBREtQo1QpRdlelH0SeW22kUyO0hv7xJJlKlWT3m2RMt4HQWJwTmYZOg8ogafFeS6JLawidwe0kFthXcmx+Jk3mA5By3jCZtGgT6Dor8bsKmDnqTSHsTS7yqug05c2d7GIOK+5laHplZUBNsbzF00wKCDtFf7cjFoH+2Im3pgjSzG2T7KFXY1O5L2MCIXHsptBOJEHdIcShiC9JftxUQITpBBg0tyQa1ib5lmmlfdxuDG4G2w8FdvfkS3eQLeV6w/Wrr5QUvzoj5JHmVsRuoXicSjE30N3wNDcivoDi1BA/tsUdePGJaMgvNNVDzfZ1TzCwfd2L1MvuZWTlWTLDBmFyqscysEPyT2gBSVENbJt8Nfcd3WEgKmiP5XzlS0X5RACGz5NcKsmgfBri/dwTLMQHE+xWDPTtkcQbb18OAiRqQ3MSRzZl+ASICRwqL2yeRBgHSYNr5XJ2ZcakrlBE3IQxDWsIFohJcx+dxp8VZJkXUDD4VSYBWg1rSz7rmE8bJlWL91qAcURkQAMjoXhRxthYul02gobIHjhoE3CdDNODVEubvZwJBnZhL5EMYW8yD+m9YAAFPsjgaU0Y/RXDyDKwHjZF9jqvx7/T4cuneNxhufeADhAAYxNYiFE6OtpeGsWH1C6l5FjapxM5d16RLVp86gDxjZi2y0k3FjMqJE3q6mo2hSRVJVN28AKojBbpmmsNXWsppx1V2dG1GT5oJotmNOxrFVOnkRYmOZV++mlA3a3lPSLzkAfMosPYALXG3Ggwifno1wLU1awnRjg/mwmLpcBY2ZgxqT9J6QiNRj0vcOclzbIcn3vVKfRZPr7X29s1+asb6XFaOOk9KQMcd7ibPfqoJd5sJZa6FqBLkL9PdBR2JABOobYG1SSGKjHjoZAi1jhLEe6dxhdRChPzKO+j/xWvxWLxwtfvBEA++9nP8uzZMz7zmc9grcVay6/8yq/w9/7e38NaOzIS72Ugnj17Nv7uzp07dF3HxcXF/9fLPH369H33//z58xcu8977ubi4oO/79zEj1+sPfl0DkA/g0o9OUbOpDGW10N/xxiH9D7zO8dcTPXy+Iq430DuWP/Yq7SvH+DtHtHcXZGsPTUvxxbfpb0yhbjBbuZ383fP9tqDRUDfyf+eg7Wk+dIRqO2E/UtKE2tToVU2YFRACqm4xq4bVD92HSQXe075yDH2PipGQpQ/dqhQ51g2DP5yC0WTPNzRHGn2+BqUxux66nuzJivaoQMl2H9WbF5SnHT5TrF8tufiBE7b3K7YvT1l/9GA8VzEzxDIjnCx49b9/hv36BL53jXYilfFTLzvDix7XGbatlHxttwXdNiesM+LOEtY5cZmRvVlinuaoy4xunQtY6A3RK0JjZFDPhZ3Jqh4qD5VHZYkB6YQVoU5dKp3BtRY1lL8BxAR8bGR3UdH2lq63GB1k57Hw6NLhLgvaVvwVJsk5QIrQssyjpz3KBkwpdIVKsivVaUhtwX1jqbc5fdpZJAEZm3tM7mFrib3o/aMGs7a0dSrViqBa6fJQAfDS75BfavEa2JiGZwEY5nlG/jyZHLzsFiqv0jCsxsevhmSyJHFzJWMhn5um3g+TDOP7EDFUkIHaTaF8psbCu2DluqaB6ql8Xz3UlM812UqTrfe3kV+IpKs9jmz+UCPDxYd27L6vwc0SuLQwfdMwfSRSK1uD/cKUxdcM/YFIpqpncpvFUyOA5NSQbeSYQMBUyAR4qCjH7UvGksKoEysyETBQXAjLY2rF/Osi4xpYG1NLW3m/EG+LimIkD0Xy+hy6sazQzz2mVjR33eh56Reye2saee6GWG033e/YDr4okzpfVFDSQL0Tz062ShK6Io5m+b0fSI6zXwjQUDpCqzGtkvjpyxKavTxPiiulybzt7QgOgtPiHUlMwABC+hSzGzaZSCpzPxrDFTIUWyOGaTW8toey0eEur4ADuOoL2bMmA1OgrzAgIClQbZPhuhRHC7jkAfl20bvD/Q3+rn2y13B/4QWwAsJwDF6PIfVuOm0oc+kY6VsJz5jc2mLKwVMijBFBkU36EcANgC2vpJDPJha1nLXJKyPnSJsXGaSscsIK9oa6yYlBzPJtk1NflpLslx5nu07Dp02Dd+qUUVNHUfaUixatI/7RhFjIe1eWedpaNiz0tEdnAVdn2MKNErOy6KWQsTcsHy2ESckDfiHlqOgI60yAsga/cPhjR0wBBxE4vLMin3YChJwibiRynaclcZ0REzssJwtI8eFqmcn3VSDOxBdm1naU7+mdlvfDlZX3s9STJB4rkbJ+t1eI+jvy9XtZP/ETP8Fv//Zv8/nPf378+qEf+iH+3J/7c3z+85/n9ddf586dO/ybf/Nvxut0Xcev/Mqv8GM/9mMAfOYznyHLshcu8/jxY774xS+Ol/nRH/1Rlsslv/EbvzFe5td//ddZLpcvXOaLX/wijx8/Hi/zy7/8yxRFwWc+85nf+wm+Xr+v61qC9QFcse9hcUSoCsy6hqKAyw3xzpzmyDDJLHFXo44OoHdMH9T0Bzm9kTZz03roe+LdmxAi4f5N9INnAjy2O1SIwnhkFtx2D0iGlYCH3tTyu8wStUZvkkE9Rugdtk4DjA9kywayDH2xQWcWekcscpTWmB6U97jbB9gnl9z4tVMBJ71D+Yi7fYAKke1dS/WukjZ1IH94SX3zVopsjcTkvTB95PSHT1i82ZE/W6NcIOaWN/7sLe7+h47y/96j+ue88d/dJGwM5pUtvDXF3+5YXUxSa3kc2QxdSwKWCmnHWqdIxwHnRNGX68ITa9ltVNOUxT/txt3T4DQ+DxDU2D6sVGJLvEIn43mMCmXEYzE0NHedGXPqfWPJpx1dYmJ2u4I8xX+ioa8tetaJwdcliVguO+YEBYWAi8lBza7OxdjpzBij2bUWm3uJ/E3JNqpTKCMfNHGZoRb9KGsZwIHppYSwO/bSiK6SLCd5P6KFvggCgGwkmiAkWSWMQXcUpOMjgQndS5Svm4q/o58xxuRql5q8cyjOxcPhq9SgnAoCs01iEsoU15vY/nwJu7uRLLEAwcrtaAeb1wOzNzW2VqhvlLSH0NVTqnUCMwlARAPNDejnAbsVP0t7M7L4hmbzcnpMl+AngBfw0x7Jbujim0ba2xPQqZ4q8pXcfn0TikuIkwTqamGDdvfk3PgysrsDplX4Qh4DSDmh7lUa9PfMkp8EzPMMPwmUzwzFqRWAsDZsX/GUzw2qFwDhpsnYH1OUbi69N26SnuOpI240dimFcYTEuFQRXwlw1K10gEQlfpqoGRvPC6/wuYJlTj8P+GmgPGjoGkvw2d7LUTnwko7V94YuWomHrtwYvdt1NoU5SJCCawxU8veT544Q5G+DJH9SCazYXIZk6dsQgKyTtHJgPV54r40D8BDz99DREdPf73B5m/kX5FnWyrErxShVGgb/qyb5F+5j+P1QMBr0aJSXgApGJmQwqmsVKTInbEcpgCMv+jGiu+8kOtu1Bm0jrjMEm4zwqXF+AEND5O9wrJGBBZK/ZekeSqBISVx312b4TjM72UnCltd4Z8Q/YaJ4MZTEeB8sdglQyrH3zypYOKoD2eRqNgX60opcyWnizmCmPUWSW5WTK3HGOmIWvfg9lPhYBnaakKShw/td8vp5r/GXBY0NqEz8Kl1npKh27pge7lAqsrqciN9NgbLyHmqXVjZTTJQdA42wKDsDTjqQdG0IqXxVt3Icwv4lMPme5/27sb6TEqzf7ZrP53zqU5964WfT6ZSTk5Px5z/3cz/HL/zCL/DRj36Uj370o/zCL/wCk8mEP/tn/ywABwcH/IW/8Bf4K3/lr3BycsLx8TE///M/z/d93/eNpvZPfvKT/NRP/RQ/+7M/yy/90i8BEsP7p/7Un+LjH/84AD/5kz/J93zP9/Dn//yf52//7b/N+fk5P//zP8/P/uzPXidgfQDWNQPyAVzKWvzxHPP4bHA7wmxC/nRDcemJXS/sxaSCELDvPMPUjpApdC+lSbHrUc8v8JVFP3wuoCLJm2hb/NFMzNNZJkZ0H8BoTOPBe5QTEJOEvxLb2zu5PojPownyvdGothfQMymglW3r3YcPIUbmb9UoH7HnW2KR444mtPcXcnmrMasa83yF6cAdTQQ0LSpQinzlmDzp0L0MEdpHglUcvNFy9r0FsciImQEl8aXLD0u6Fj5QXEA46eRDuYjCbKwy4iojLHNwYlCMeRzTf4Zd2mgYTYmDD0LpCJnEzkanXzBLahPFiNhp8UeoSN9YfJMa1jvxbwzlYsAocwrJCBucxrdWukecGHVDv99hNTqgrSf2mr61kmIVQWdhBCHoCL2WssJhBdmtC7WVrhEYozpFqyHnR/cyeMQ8EjeZRPFWYSwkDFmku9+PJXYqDQG6U9ht8pBEuT/VaLIzK+d9pwk5qKCErUhzUNQk78weIJRncu6jBbuVy3QHUljoc3kNSC9IEKldAiSDib25KTv5+UqhWxmum9tDD4gAofWnOy6/J3D5sXhl9z5JvlJ/gO6l/LA4kyG8fC6vr+YEpg/E8yEnRfwY3eHAQClcJd6ObC2sBuwTvUwn8ixfilwrZFA9VUzfkecl20rcbUxt8QBukoIAlBT+hTJgdmqM8x0GsX4+FD6KnCq/kObmfhrHJLGxYT15fHweCbkAGn0puv0hWWtIMAtZks8pxphlPbTKK7k/n8u/3VHADylDRsCur0WPD0DhidsMtbb0m1z+NoPC97IDHnrxLAzgI6bXsr7afZO8GN6Z8e/pqqxp+JuKvB8MDMP4+9K01JXbDmosNYxBjkfp+AIzorXs6A8JU8N1hx4QaUJ/0XPiQzruZJo3yT8yXDYm9kIpKSbUV44vRjDJpH31uG3uUBNJtzPWS+pUkLjdq+drACLBpwSw97BBo/w0ycT2JyZiCj+2rbvO4FeZbCLYKDImBZN5I8yNFqN431gwkcmRDP1dY2FjxCPUa/JJj9ma8Tx8u2VzKWT1XktfSJ/8ejMPU4ea9egqmcmjHCtFYqNVpDsrUWs5DmUC6wdzNt88hAiLm1vstBdWKBOwLOEXWrqdhtxxEIYnyVBVIYlZoZTyVNUpqALqsBtj46/X/+/1V//qX+Xnfu7n+It/8S/yQz/0Qzx8+JBf/uVfHjtAAP7u3/27/PRP/zQ/8zM/w4//+I8zmUz45//8n48dIAD/5J/8E77v+76Pn/zJn+Qnf/In+fSnP80/+kf/aPy9MYZ/8S/+BWVZ8uM//uP8zM/8DD/90z/N3/k7f+cP9PFer2+/VIzv3f6+Xt+ttVqtODg44Cc++VcI92+wfK3g5n//FQiR+Oo91FsPaX7kY1Sff1sid48XqOcX4Dzhpdt0Nydkqxbz9lP5/cGc3UcOmf7qt5LJPK08F79ImVG/fED5bIdqe5QLUlT4dCnsSN0IcDFGvCbDKgrQCncyQzmPeXrJ6R97iePPL4mFwTw6B6D96B2y85qnf+SQ2//+Er1LHSNtx/YH7jP95gWhyoRZ6Tra129x+bGCG59dY87X4D2XP3qfxVdW6K14QJQL6MsthMjlD9+lOdbc+vUlIbf0i4zy4Urig0Oku3/At/68kWjZ02Js89a1xs988jXIbq6u91hcRURulEm6k2iEkTK/K50YQ0s6EXQCEzFIb4FvDbGTHT6/zfa3C1Jg6NXeF1J4bCFRvq41hHUOEykNDLXFzjuMkRjMQa/e7XJ05kWGscvEDB8QwGQjqvBkpWNStSxPZwIUkgEzlEH8LCpCMuEPDmfVS0SrX3jMRjpAQiYgAsRkHOcOcyrDarZWtCdhjHDVtSYUYUxU0r10fAw+gqjBF2KgVkF21d00YloxOodMUqViaixHyfDeTxM70kO3GCRCQJChOl8ydmqsPumoHlqKc2Exhvvpk7yrei4goLmRgMJGnof6jgza7m5LdJricTYCkmwrAKa5FVMnhjAg2kN7CO3HGuy75dhZorwcT3colwuZPJ7iQu5b+VTm5yXVa2iRV71GN+K7KC4SO2HkHEUTyVZi8LcbYe36RSCWHtVpssvESt1rmX65kIJHBd2xpH0NiV4qyLkIuQCVkIDdKItzjMWcMQFMYayElRGApsjWclvF5T4xrLktO8TDQKcbeT3oVuOnXhK1EggKlSdfdAKGgxLtvlPyNzb079ggDIYSb0k26SWsISLJSNneqxS8HvsnQjKsj16RK7v/8n36W1d7RkJYEhnCr74ZDF6S4fdX13DdYYgewNB7Y4V1klWFIO3oReZe7CcJMuB/OxZlSO4KQdF1duwe8QNouOJNCem+9cB6pMZ174wEAljxhwzeF5NY1+D3gETrFyO+B7lb22T4rcif9KLDZiKFqzcFR8dbjAp03rDZVHJOrKfb5eLhaDWxlPc9fdDJRsIuozyuRyAG0CaZm68l8c9UUprqa4uuDTGX25ATk96Th80XFUcpWPQCGKKVVDZsFAlVTB65YTklxvNWC2jW8rdYHTZi86gz4jJD93p8r+GlmqLoqbeFPDcairKj23R868//n1gul3/gu+vD7PBLn/sM1ez3V9hSbxz/hz/02e/K47pe/3WvawnWB3CpzY7iwZL4+i0I8sasL9dw80TAh7Uwm7B77YBp0xMOJnRHJcEqfJVhphIjpM4uKA4rifPNLO7eCfaNRwICdjX1J27iM8Xy43Pmbzfo1qG6xHzECM7LV5ELU+KkiyNWwjLYZyvcrYV4THrQj58T79yQB2E0xZun+BsLFu84Lj59wNGXVuh1w+WPv0w/VUy/FmhvTSldIM5L8ucbbr9zDkrRvXyM3XQsvr5Gb2ritERvW5bfd8ziKxG93HL4W2eEKsPPCoLVFM93Qs9bDUphdj32tKB8lmH+6DnzsuXB42OKdy3tjZZbJ2uePl9w99aS0vacbaesLiZSVqgYd30hUe3OgI1kx43sInZGPrhaadSm00QbiCn20856fKdRqYuDLn0IO2FWVB4oZ2LAtVbMuq41wowExWTRUKsorEjm8c5QlB1ag8vECKlNpFi0oyY7OvnQjlGJ/0Pt29tDEWAqu7bFtBsHttAZaM2oZY55RG+NGMQ7hY6yI28a8YDErZUB00SylRU/w8SJLEunSF6/BxhS5icmd7PVZBtFv4jYrSQxqSi77Jok70m+gmy1BwlDV0ZUYGt5UoJNw10vlx+G/PnXLa6Sgdg0jIyGL6C5GXCV+CvcLBDmHnu8o/nmgvJZkim9VYCC9oYXmcnOUN/uqd7IKU4V2U6kVKGA7S2JBK6+VEp/x4I904AAju5A7r882/eLDKDGF4klWVoBar2kVgkwE+ARcmFAVC+AgyDemv7AYxpN9VbG5iNepDhVpHi7IORy/qRPRRiobCugw+cI01EF6RBxSkCVS+zJ0AsyAPQsopNUTrcCVofIZBUEgLmJeECyl7Y05zKAqk58I7rWhJlH9SKXCWlH2U6dvP68TkhJX+nlSVHARSA6if9VXtHvDPqgS8ERwuTpFCsdowzMEcY+D9gzjPIHMjAVjFKn4PR+M2F4D1agrvg3vn2KlkRhB6dxQ4xwuq2hG+gqswLSaRKDou2tJFspUjmigBifIrb1AB6SSRyEWWncHhzJ0J7uNx2/UXv5lrA3CRDpMPaUDA9z2NBQiYHJMifHMrznqUhQUK9LGfp7hcoidtHimozuIscddiJLBfpgkjQObO7ptrmEc5iIvtGilQCJouzlPS/J5do2E8Cgkwk9MUuusfC8EAYuAVZTOYlxDmpkZ2zuaS9KYSdMhI0REKuQF2kW0nsT+CKMXg3lFfHAUcxaujqjnLbsLiaYS0u3mQpg7jTZzQZrPfOqZdvmbJcl9bNSNqiA7KRBKWgvqvd9ll+v63W9fud1DUA+gCsezPFVRXkZIEaUteA8T/7bl4U+frsnW/dky57+7gHRKDFvo9B9wN06YHe/YvHZx6P5nBDpFxlWKYnurRu6uaZdaG781ga9aWjvLiieCbtAiAI8xDW5l2lphdo247Gaix3MpkwfpajKzIiXIEYoZef/7BOWm18QhuXRT93m+KsdtjF09w6o3jgH73H3j7C1yLiYVIRMo7ctF3/oBoe/7VGbGvKMw88+l8Z1a+Vxdw576ohVRjSGcJjJYw4BXffc/58cvtDM/lVg+anb3CwVx5+/hH8O7Z0jbty11JPbLH5tif/jB+Q/tKGLSrS/iOTEbpV0LijRC/eNFZo+ybFSgAvRhqSl1mPa1Wi81qAWvejHCzHgEhTNskTlwmRk2lNUPU3axdyuyhd2Qk3abdRWPCy+tfhhFzgNTKYUjXyzzckrKRbLJz1hK5IqtTEwkxScwajbeS3ShY0l2j0bFExM5nOEBYqInCGAchq7FSCRLzV9hFAFkSnkHjZi1BxieIOSMjw/DcRG2rVBTpHZJblPlIHcdAI6Qi479tGmnyW/gkTxyr+7eylNK6VPdQfDkJ1YkiQ9chNhSfKlpj2C/iCQrTSh1ugvHcAdSdoayjLdFPJzaRK3O7CPcvo5ZI0YystTYWbylaKfCtPRHaYHpBTUgIJunsoWV/IYugO5PYDmJG0u9CLxyzsBXBIxHKW8MR2/7hSk5KtYBFyEbGXQPWw+6qjeTaEHEzmHbipJVt2RAL38EjavCRMSjAANu9Eie6wSGVaKjydbpcE9A9sq8d50En8s51aAqG7let1B8onMHWElMbGq0dIFoeR5GxKRvNMjOygt1OJ9CqucmAVsMtxHGFO5VKckZhWR8ekHFX4ScBMZ4HXhMJkwJUGL9FEn5kTpiGbveYgo9iP4wGDumcz0Y/k+eUEG6lK9599B2mQzMcBrFTETYTlcKh2NAzCwYfQyZOnygxRLccVHov3YA6JUxCaWJARNjJHJrH3ByzF+ZqRjvyoLjUnyNUjBroKyIc5YqTh6vZwzY4IWpFLXtXRwZLMOaz27swmuyYi9whxK2/j09mZsclcqMp21rB/PiSYyvbElz+Qx1U0OldzPpGqp21weuw145LquM4RVLmBVy3uKmff4Xo8dQUSgF+lTuMjpBiM8SIjHtKPZFHsAGZHNl50RBqaX9D2O5TXZbnKIit2TGRSBcNJjyx6/yclv1RCh2ebUz2VjL2pg7tCJtfZOs91MULZ+3/PyB70CmvD7rKz//b6963W9hnX9yvogrgdPUF/6JvUNjTqYE2Og+eQ9uoX0GJgu4EvZ/g25RvlI8dY5k//8NsSIm2W4UhEXE3jwBJyj/egdVh/KBVQsV9B1HPzW+diwrlpH8XglXo48A2sEdAz/hii+ExAmRCnitETFSPvaCXbVQp7T3KoEqDi5Tn9UoALsblnwHtOCLzWzLz1n/WqBuzkHY9jdLoi5xd86Ah/ILxq6O3OOfuMp/fFEjPDD9uOgATWG7pbIzFAKs64xm1aON0ZwgckbF8y+cUGYlRQXEu377EcPCdOc8vGGYhm4+bktu5dnEOH2Pyq59/+2KKfI728JRZBhbpBLecYukEE2gpK+EJVJ8ZW2QXb3RvoESObzATyU045s0kNKpXGdZbst0xCQZB25Hw2hxoZxpxTSQGNF6tXtMrlskGKutsnQWaBvLCaTeM38qEHZiDroISraVUG7y2gvSknLaVOkMCS/gexgu1kgWyn8JIgUa7s/hvaWw9/s6e720o3SyW6nWmXiCbGMLd2mluF5iPMdQMPQb2G3Cj+RSN5gxOTty1EZNkbbDolW7SFiAm1TGWEymueXkoRlWkl9CilJy83knG5fCbiZ7PzbXWIhcmFVTAu7Vx3t99QiVUqpT7pLiVYXqXekkaF98zIsPxZpTgQ0TB8xpn0NLE7II2Yn3SDtUZJepZLL6qmUKepOmJKQye0PHhjdDwO8wq406l6N3WpU7qkeafIL+X31rqW9KS/Q4kzhDkW2ghbvClHuf/aWpp+JT0MM/hIzrNMeRXGmyC/lfPYzkcVFI+d5KBo0DeRrAVFuJu3wIRefiq6NSHamPbEMYw9MvN9QlpJu5HcZeHkMee4ENCwlbU7vjACc455YBPnKInGoglDyfMs51ZQPMrInGTwr8Y8runUuaVmtxbUSFjHIqUIayEUyc2UQhySz4sWkuqsrJllP8odcTboCxkjbvje0rR0bxElD/9DkPsRy+ySLGiN7eZEFMd+GORnkWlcjg4eYX/mZNKQ7Z3DOjIzNVTlYDPJaGCRsMd2G0hFrJTlskG412xy3zdClY36ylajkkN7rOk151JCVbs8spWPUOrJ+PEd1CjPt99Kx3kq8slOpK0VeK30nSX1AAowQc/GeYSN6lsCHitjSEdpkgM9i2gSSIBGVRdhY+mcV/RszYqeJ64xq2pJPemxKLIxFkJ6QqSN2Bt8ZeQ9vNRRBNk9ShLkykXZZ4J3B5J7yRo09bCmOGqqDhum05f6NSw4P0o5Cdz1OXa/r9XtZ1wzIB3EphSpyDr/RSQEgcPGxnPJUBon1SznTxxKxmJ3X6LMVZJmkXbWOrA8cXLajYTymqN1sm2RVWoPzqOUaFU6IWhEnhRQObnZQ5NKxkY4FLR88JG8FRhEzi6o70IrssqU7qSjPN8mHEMRD0nWoELE1ZNvA7vVDTBdZvmqZvJkxf6sZAcPsna2wJ72AB32xQecHxDIje7aR4871HgSFgOocygfq45xgp0zeVeg6JXW5gOodOI8/PkR3nvLxht3tI+YPHP3M0p7kLD9kKM401eMdJ6GierDh6Y8ecvL5yPkNiznsCKdF0sGnwaMDNfXEtfggYj4wBVpMul7htSa4wSDLqFkPThG8dHHECDrzGOvpW/lTVBrxhqi0M9gaaAxm2gEaHxUxJBOtidBqVCa3ZQqP7w2hlw9MnYzLMUqCjCmcGNeDyG7s3NN1AmCGGNaoIyoKI6GcSLLqlxxmI0Z10pCmW4VuLaEUn0A8cGjrZffSp8x8G7GNGTsm7FbKB0Mm9xWKiN0oidv1KU1Gi5m6uFBj50U0+6SmaER6lW0S+5H8CajEjli5zOwB7G4LMBi8J66CybtSHNjcdfiJEhDTacpTGbzLR5bmQ4H2KJIvFcWZDOHdQWTSKvCy41+egj4H81jSu1QQ4CQRw+k4sz2bMHyPgu5Eig0l4UvAVjRyDtwQrZ/M5INMLRpJR9OZSKz6hcTols+0GOB7kTv5ClSrR7AXrICakAkA6ucpiUwLKByAdUisT9R70OULkcfZWo3ljioyxvuqIM9D/ZIX8HnUUZTSMeO1lL1lt2rxMg278VtDqDzZVIZQQZjIkH/YEWqbTMVyrlWS2ignsrPhdUpMxxLBbiQFy3UZfh7kMlETSzFci+9hz0YOrMTIDKg4ZmvIjvm3QSFXmMgwpNtdHe7T//eRu3u2RL3nNmRT4cWbH0BIjIwA5L23P152MI+n718oNYx7mdjocxkKVeOe8RlSwt57/GLu1xLQYWWjZLjtblWgsiDsUjLi19s8mc/3ZYuoSCwiBDVGFbvOiozLxvEcwmA018KMOXnP1EmalZUueVci0WuCj+Pfss480SpoRAY7yKpiEQhRowqPqjN2z6dEHZkc18RK3psHyZ9aGuIiYqe9GNyDJm6FmXaZ0HDZrCNGJaWyzuAuZFckGnn/bXt5385mHcdHZ7z7/lfOH+jyUeN/j7G5v5vbvF7X6zuxrl9ZH8Clsoz6Rz5K+cappFlZy+yR5+avnaYkHkU/tygXCFWOv3tMnJb4SUbILX5iMedr1MUaNZmgioLi8YryzElyVoxEL2lX08cO+3SJulxDI4DHH89Rp5cCJJzff6KpJK0yBtX1xMISrUafrWkPLXFWUn3lMVQl8WBGnFW4yjB/6IlGMf2tR0JfK1CbhvzhJe3tKe1rJ5hnK8zFBt327D5+g1jlbO9XhGnB9qOHIkWrW0ni0gKK3NEEu+mYP+iYf/mMmGk2HztCNT1qV4tUC7BPlyN7cvj1LdEIc1Scttz/txfoLqB6T3HaonykuSkP128z8Vy0wgRELUO1iojuWTHG2JJL2aCfiRzKt1Y+0K7ESorOWQaubpcLGFAS6WkyL6Ak6LE5XalIMeug8qNPpJiK/t31RsCJDftJBGRY04HgFVnuCE5jMpF82Ux299gZoon0Z6WAGJ98KkM86CyIREqJ/j9/bglpV9otPLpV9Dd6+pOecOAIE49aWvGSTB3hsIegMKmJ2NZp57+QodmkXWwQ2c9QpGc3Gu1E1hQyGcCzdbpMGbG75A3ZyrHlS4mw7Q9kQDe1XF5FaVPP1jB9GqlvCRCYPpbr+TJSPrZUjwzTd0TG1M9EtoSC6ls57tDRLSLtcaQ9iRSXivp2HOVX/UzkUtFCtpNj7eci8you5Fjyy9RpkkCFm0iPx/ybBuXkOLoDRN6m9szIYPIOWSRkJC9ERC8toQjJ6xIpTjW6g8lDkUR1hwIK7FZTnGl8Cd1RpL4d6ecyV08fyO73YKAfmYWeEShmK+kjGZbuGf0ekMzrGlSfGJHTtON/mdM/meBaI4PqrQZjAt15SbMVdkLfbCgO21ROmAb1yqMbjToroBNPFRHpY0hR2SGXoS+aBPBsShGz8jiUE4lY9cBQPbTYSyuvbyU7/m5I2fIan+JzryZhaS0DtbGSJqV0ePHrPclZwxA7+EmMCeNAr3Qc/37HmTwZw3VKitJXvk9PAUCSZr2HYbmSWDX8/Gpb+2gYT1IvlR7L0CY/FK0aIyb0LHf7y11hMEJiRvt1jpn0TBY1RS4dHbs6x1QOWzqyMhUKOoPNpYwxs56us+zenYvMad5TTjoxvHuNX2fi8ckCzhlskn/6lCYYg8KfF8RtNiZ5uU6YnLjJoNHi/RiYnU0G6wRqUkEsNqLyQCgDrERyqnfyWuw6C1HJe1RjJL584cgmPTbzwpKUSRc6dSgTyeed+GRaI14cE5jc3mAOOoqDlnzW0W1yuucVvtecLmdcr+t1vX7365oB+SAunfSueYZazCDLKM86ePiMm1+Yc/6JgvVLGtPmZGtHmFhMppM2P5Cta2g7SZb69KsUX3ib+PAJ3fefMNnuJMb35Tvw7JzJ594SgGFtKg6siFYT2xbaFnV4wNj9YTSUU/FeuIDaJbmTMRx84ZSYW9AGmhbVdnSv32Jz1zJ/5NBtYPvpe1RngcWbjic/dZ/bv3pB+bUnuHsnuLuH2KdL/KKkfLDh0X9zQ4a62ZTFWy3N6zco3zonZpaYW3TbYy92hCqjm1tyrbGnG4pcigmV0XvJlgaz3BFzw/q1CVHLrvv0q2uRmE1y6pdm6DawebXi3v/cki0biuWMi/+9SGCwcfywi1ELU1Ds01S0lR256DVZ4cbUGQEAAd/rJNVIUovcE7xKXQgWawN9Z8WEaf1YQOh6k3YCBYBMy07MoVGNu3YCWMI+Jz+tQePteyNlX61FFx7vlRRqdRpz0tAtC5RBdswnATzSbOykQNBXEfs4F6Bg07C/tOL5KHrYSrkXtZGysFYTpl4Ggo0Rz4BChgRSrKyJZEvpvSjOBhONDJQDy2HaKyZtZMAPmWiy3CSSX4qkRPVivp5cyM7yYAafPor0U8XkMaw+3dN9wqEelWRr6eVojgd/hkoFgYr16x671WRnmTAHdi9Vsjsl/oy5AKpsKyAkW+6PV6e0rVBIS7ubyuDezxKYKhS7+5HJI4UvRAbWHopqcZCL+VzuU/dqTKjyRw59aSGPuFlg8lCLmZ0h/UvhFh7TGrobjuqBHTtUooH6dsC0WuRmO2hupvjixLwM8qpoBcy4eSCYJJ3L5D7GmNEAJM9NP5efm52WRmgNnBUinVp0NGdS9a5mMpQbLaWBPugxstUBfuakP2aaWgfaJItJbz0qDtK0mJghjfJguyTPm1wBSp0ct9kZOpOha008kc2IfpvJQG4F9WnrxeOQ0rTkb+Y9fomrAH/4gdkzESPouHKJq2DlvclZvOdyVy8jUjH9wu8HoDHItcYOlOH6CUwZe4U1UYzA4+rtDxaKwRMz/EypSLMsyecd1niMjjivWa8rglfSsm6FDdjVUpYzAByA1XJC7DUsemzpxnJH7yWSNyowsx6/yslOatrO4jpDOenEhB727IgykWLWjsyIWnTJ3J8eh44SfWtDKn01qTwT1MrKYxxY1uNOnsvHlVwvk78nM+sJm4yeDGUCcZVhjjsO7q1QCmZFy7opqJscpSPNZYmd9kwnDoqets0EdOZeGDETJar+u7wCivBeeu334Tav1/X6TqxrBuQDuOJmQ/nr35A0J21gvaG+VaCqkvyz3+LGF2qKZaSfarKLmvxsR9Rq5Ny7O3NoWqL3qD69Kb72EvnSS4Suc6gnp2JGX8yl+FApkXtta+wbj1DWivm964UFMYZY5USlUD5K18dgTAfp4oiRWBWEO8dQlRKLexloDwzVu0s29yyzLz0nW7XMHzre/ZNHoA31nZL2pIAQMU8u6G5NWLzjufvv13Qzub9uYUT2FYIUJHY9USnql2ZUTxoBP0aTP12jdi0xt8RJTixtihIWr8zBl5fM39xRXAbCwYT27gLde7Jlz+mnc+Zv7rDbjpgZZm+u2Z5PCC/VmLWRNKCdlLSZtZUPXC+DUmjtXmOdQEYMAj6UjthUQjjsjPqUXd+dlbgnVYoNjXhn2F3IZFkVYgLwTnb/nDM0nU23rUSDbb1EViadel710m2SpFVF1ctOY59a7RUoJ0lXfubptxlm2kOj8fOUVDTz4pHYasKdljA0EAOzN418n7ZtzeMCuzZiFO4VpESwODA+QeHmYb/T3so5ylY6dX+I5Monw7mYnZFzUaT0sZRuZZp9Qd/03X0yl/g9FNEm5U4uAKFbKPpUCDj/Usb8P1Ycfi3JjqLIn3a35fabm5HdHZF4ZGslzIUdon8V3WEQoJGJrCtksuueX8qfV0jH2h7td+TdLPkrorAigzfENCLbmjxNAGslP3dTSQrzU+k48cc94VYrvpJWyhOnbxuJuR0ifScChGwN2YURE//a4EuRUA2pVvmlsCXRIo9xxfh9exzGBvhgpegQxLBva5GmDe3tA4MJAq6G/+erfWeK3WqJut5lMJPXTljmdKsC92DK7smM9qwa/2Vn0LWEI9Bo1Er8G3rRibQsQDTSV0IUEOKmATeLaC/nYDi2YJIXaCnPx/QNK/6Zsxz1LBnkncKc5qilhWcl4VlJW2eEIIlTxoTU5SFfWl9hNdLXMHy/0Ldx9T08qhSB++JH7HvZjCFGd5CovZfpGG7XJ0N88JrgBy/KXjo1+kmueEtMegwggKNrLUNPydDGPoCPel2iMmEyrAl0ztB10mNUTVvyzIlJ3IuJvix7shQl7LwWRiIq8knPpOqYTVomZZckYfI4irKnPKnpGvGDaBvYrUp8Y2XzIhPDuSkdrrP0tU0sTRCfmtcCUtNJiZfiHSpv7bCzXooLb9XEA/HWUYgPL7SGeKNF3W4Ym869RO6axOiYE5E6O29YrSoePD6m6y1aR/JJz/R4R5Z5YX1MYFJ1qZ9E4tSzzL+w+fPdWoME6/f763pdr+/Eun5lfUCXyjPUxZpwPIOqxLSBePMIZQz2S29x498/xTYRdblGX2zJLmppCjcK3Xpi2xI/dE8axHtHfX+GbTzxcon/9EeITUu8XMLFEqU0zCQZizwTCVWK3KVPpYfeo9Y7kTbVjRgVnJfLA2q9wx1NiLlF7TpimVE93KB85OjXn6Dqjvm7PU/+mzvoJ+dkKyf6fGuYfeNCQE1mCTcO2N7NsFuPudhx7//xFtnDCyaPGsmYBJLmQcAF4CtL/fKMmBmiUmNMsGp7dN0TqkzYEOdRdYdueuzOo7pkvO899e2CgzdkF1S5gN51xNxSPM7EnAqoWT/q1aVLI4q5PPUUxE5Dp3FbMVv6zsjuXwIm44DgNLEzcJFz+NuWg69puueVeEeG0sLW0HYWbQJhLXKD/rykqXN8kNbfvrWo1EbsOyNPSWfH3VEUNLtcdM+Nwe8sPn1oo+Nek54ub3ZSJqgvZZL3RaT8aglO4Q4EdGw+4iieWkIWyZ9LSpSfBOLcoTpF8dRKj0VtUmqN7DjGZBZFy1CvggANX4nZGZLp3O1Zj6H/Q0BFHA3pEpErIMBNIt0th3bJA5JayQcD93B//TQ1mydQ0NyQ2zBtSrO6VNJYfm6o73lCBv0Nl1hFGeDXP9DiKxlwB29JP2csLfSl3Gc/g2IpO/a+kuG8O5C+j/wCCCLRao/ksbgJdMfSS+NzpKumEy28fir6reL5vnxr9q54O3Z3pWCwviUDd7SRbJ1A2iTs+z6snFNITE0tsrFBemWa5HM5FCCiO+mDGbwsOsUgx+RxcdM4MiaDN8RN5PEPiV7RRrILQ1b1qEU/phSFMkjMdJTzoDcSlRV1BCdMmApgl4awzIllYlWMfA2lmCD+mG4ujy1qaG+GMWygPSbJ7eQ1UZxK/HP5RoFZGfHqBJG56VahznL5W70CAK7KmK5KpQajth4AyhUp1bdb7wUdkB7+AD78ix/D72VP4iBRSnIlseXFERgNoGSUtEW5g5BAkDWBts4kmW+8D/l911p2ZxPyacfB4Q6t4lgk6LYZi5MtZe5GQDWAFyCxWRJ2QR7QpaMqu9FL0vVWGuazQH7QUq8LIlBUPZN5IxLU1sDWoCYOO+nJcnkv85c5gxdHGwFY2axDzXqUFXlUdW/D4mhHsy5wO4tvjXQitfK3ElPpqmo0XMj7YHVrS3VYc3yyYXFzS1n2eCcFmL4zbM9l8yef9COL0+0ydhcTmk0hUrPeSupXYmXKo4Y8c1RV/zu8Aq7X9bpe325dA5AP4lJKmIXZBH25JZ5fUpy1qNUO5jOUtYR5SX6ZmsrbFrXakj1doxonMbQqRdSuZGenerAm//pj8VIkRoPeEb0nxjB2Z+A93as3ICSfiLXCjHT9yLDsJ3KVDOryQWFPt+hdiwriqdAXWwBiAintoZEm7L7n8qOlSEhCQDU95aMt7SuHuFkOEaovP2b3sRMoC1AKs2nwszLJxQzRSvt5fWKw647pNy/EJG81qvd0N5MeN0a6w0GE7+X+ek8/M4RJLswNkG08zZGhvl3ip3k6TzLETaeNlFptxHRudkrkWGknXaUyr9G8GpLW2MvlfK/pdpnsxHUiGVBeuhfqW7C7lwb0IJePmXQ9SGpOgDLI7nDlBKQMxW1ejUViw33HiMgSbCC0EgWalQ6VRQFME4eaSkqSqSSONyYvyrC7rWudYnCFhcDIY4omYi8t7S1Pca7pXukkrQbIH+SgxONAlMZxejUOtLqR4TJkkZDLIOwmwoi4SUyt3Htw4kq5rVDE0bzdz0RWYVpJjlJeLl88sTR3nUiI0kAfsv19BAvue7e0d13qAon4QsCAMA9yOZs6Q4rnMqCWjyx2kxiYAtRSXsf9LEmqNgJe2hP5fXsccbNIcb4f/AcDuUpRxgNjMRqi01RrV4ZsI54WpePoefZzn/wdAV9G6luR1ScddifAgSjFiiqkBKxpYmgOe/ILKWKLFtydTn4+lg4muZtOEkOEZbC1gAjdKdxMfBbKJ/mTSj6ZuGdFBomZ7uVyditm+GylcdNAtyzS7jjotZGeHK+QXOYU3RyECaPZfxwN54VOWBVd65R6JuWWpkk+oUx6UtxMHlfI9+zU4KexGwFKA/Nld/K3Z3Yi51FBJIIxStGfTsERw9vdYLjWyQsib317IDR6P97jE3nvumoeF8aSMZlrkFGNt/++6zJKswbJ1xjxfcX8Plz5qiTMpc4NY8NYeGi0RCKHxmImPQeTfYSsHo4nC+8rJxwZlHSc211B6A0qG/o75DZCMqATwXdiJC9m0j00+GbkgirJ7GTDpt1lAhyiPA4xjae4Y5vijjORr9brkvWywhTSDwLyXqzygJo4snlHOWth7sQz1BnqdUm9LFltKmFuIpRVx8HRjnLWUhw05IXDGk+bGKNq1jI52mHLHuc1WounxOapQDadn9K6b/u8/0Euj/6OfF2v6/WdWNevrA/gUtMpYbcTUACoPMesG+LZOQDx9gn66YWkQzUt5BndazehbtDrHbruQWv8vMQtRLrV3ZjCpELlGWbVoKoSdXKcWA6HOl8R247YduTvnBNfuyfMyNDpEcIINIhBAEyRQ9cR8wx/+1AkT1Uu4KnribOS+dcvqV8/BKUoVoF8EyHLOPhWK0NZ2wmI0aBcxOwcB9/YgbWsXrbgHHEiIMRe7sB5olK4kwn6fINpI+5A7lOl6N2oNcW7F5LSFSLlg6WAriKxNS4wfWdHd5DT3ZoKa2IVNz53iWkj7XEuYCdG7FY+HCefvKC4uSPaSH/sUYedDFKkAf6KNMBMetEnB2BrCZtMNMJZaiAvhTXxk0D7Uk97O+2cXeayIxgU9Jp2k9PtMknKKp3cl9MURS8ARyGpV4n6D2vRZqu006m0tEd3u4x8krRAitEYH3qD6jRqKxrqUfKe2rFNrXDzKBKWXkBENPK9qyLmNBO2o1epuTwSJv4FqY5IZ6R9PWrpBIlahnJUFAaiVjIkpjhY08j/y+cqJRylxCYvA7UvZfgZrusLKB+L50F5YSVctfdj9ItI/ltTJm9ZTCuD+uSJPNhsDZNHMmDv7jJG7vpSdvk3H/Zj9K6ptUQBr1L7d5KFlaeARkoKV8JOhExua/aOYvlJjwpQPVPky/2OPSTAlgb47jCBya0VKVEr7c/9TXl95BdS0GdWhvpOoDsK+FLYnPWrMoBnG7l9fZ7T3I7YnZLjqw3bV+U57Y6EkYmGEYxI10jS2WtGZsC0AgZCJhHJykkDuk2xyMHKdQcPTNTSsRIs6F5TPLNQiMmcoDBbec3pVl5LeIWpUypR2sUPZcDPA2anBWhU8vciSVhyityBl9dBSKA2C8KQ6bhP70rhAN2BMCLBMprpB2Zn/k0joQGNQp/nxEcV67MpTZ3T7HJ2m4I+xeqaxDpIx8d73rMViR3YsyPv/RrWAD6Gv9GrhvXhK1xhPobIXpXkYe8FKwPgGP69Kq0aTfYmjHIta0RK5JaFGMtzT9PLe2OIiu2mkMZzFemcEdmV9mTWXzHtB/rEHCgbyCpHWfQjQ9P2VozfwCIxK7mV6GWA7bIi7ixq2pPfqDk42jJbNOSTJCHNohjPtxmuyWjWBfVlBY0htIZ+kwNpcyU1vJfzloOjHaaQiF2VTrMtHNmNhnzekU86TOUwyTjvg6ZpMpYXE4kl3xT0/f75besMn5ifonC0bSas8rA5BDSrAu8156sJ1+t6Xa/f/boGIB/E1fWoPBcfw9mFeDl2rXRhTAvUxZr2k/dQZxfEozkAykfC7SPCk2ciq5pOZCA53RLblvzZGnY15LlItfIM1hsBGJkM+gDqcMHlD9+V+44pdrcXQDP4PQD5uU4eFaPQdY9+fEZ7eyoSrbpBXW5o784pH23o7h9SvXHJ4q2WcOuQ4htPZFd1MQOt0M+X2E2HudxiT9fExYTFuw6qUh57AkrEiOp6dOdBK47+03N0F1h/6sZ4aJtPHBHLDIa6Y6Xkuj6A1kSj0E2HaQPFt05RnZPd3UWJqzQ+V3RHOar3nHzFsT6bsjqb0lyWYp4+bhLzESXuthJWQZmImkgpGkizL3mQ/PlBFoUClWJ7B4NtarmOcyeXV1FAyCDdiElyYWX66nsrEqqo8J3Glg6Te+yRxC1rK03n+axL3wfaVYEpPDiNKZywH16kNrpV+13wPFzpAxGGYhiWw8ynfouIP/D4457Z23J83a0efSRsGzripgI2lFfS56CS5CWXcjk/CSMToqKkNakEGAB0y+iZGEoHo4nJ6yHgwBciwUIlliSk6NuNSJJCBtUzmDxW1HfC2I4++BncRNiQ9jjJklbSF5KthhQqmL5p6BfCBCkPxZn0YIRUjugmSe4Tkwm9g+5IduJRIrOavGvIVrB9OdBP97vxbhLBRLojSbbK1nKi7UbSw2g12UqRP83QvaK5Ld0Y04eK4lwz/5amueskAapW1Hcj9R0ZxP3CYdfy3GzvRbJzibyNSck1Ru7mSQaXGKXuJIwJZW4uHThunuRAhrGpfmAoVBRWRCfpXL+QjhXtUvFkEWVoLKTN3U89utWEow503Kd92dSy3ot8D5ee5yxiNob8UpOt5LyoVMqIFoYMlRgUv5ceummkuZXAqhKw4abyPPoyPVepdX5gyVQv4JtOw/MC31jiZU7zfMJ2WdG0Gc5r6S9RMTWRM7IBIarx/8PvlBpidfesyZ5ReTEF66rnY+/lSLdhwz656j0MywA0BikY8AJbMyRvDXKxGBXNLscetBjrxb+Q7qveSVpZdVyPwKHpMlonYMImf0yM0uEROmFZi0xkWk2bsdkWaBUpy56y6F9ghKwRIEMA1Wp537Ie50Vy2j6dyPuSDZAHssOWat6wON5iJj162jM9qikOWrIEJILX9BcF9WXJel2RZZ583qLTsea5XM510pkSvaJrLG1vqYqe2bRhMm+pZnJfk6qjyByTqiMv3T4gICi0joTWju/N/UakXZt1OfrsvptrlPX9Pn9dr+v1nVjXKVgfwBX7DkwpPRdWnqJwMEGvN8THz4lBigeZTXHHU7Jn52RfewCLOeGTrxO//jb+e19H1z3bjxyhXzmg/E/fgqqSgd5H4nqDKgrinWNJ3dq2xCJDnV5i64D+2jugE1DppO+DEEWS1ffix2hbYVV6L0yMc5RfeyKyKecIh3PKLz2k/fg9sssaf1CRv3POo//NPe798y13fr3BH1bY52viwZRoNWFeomsxmFdvL1l+3wnbu5obn6/J30kN7MFjnl4KC+M92dvPsUsBYmIi9oRJjvZROkuKDHwaCGJEtY4wLbGbDn9jga5bMQ6HSPVU7mN3ryJmhueftkTv0I0MQdpBE6Q6WnmFt0bK9yYOlUucrkgqkoagSGzEleECJcOVyvz4AZrdaOhriarEJhCyM6DBmwiTHm0DvraS0w/oTBrUlZL/941orsuqo6nF62EnbtSHu22GqZyYg1WUuFPAVwGz1WJ+7jTuyKFaSRkKpexEo8DPokTsdlqAUoTVD3TSRdJqgjFSPldKaSEzR+z1eD8hF2lZfikRsVEn6U5g9D9k61RCWKTTdw71nZh6WAT8qD4NBIXIi1SfzOq5fJkW+kPxXqD2w3J3v8dXjhhAv1sxeQLZRtib7ctJSnapqe8FilM5xuamgB4QULN91XP0RZFo6S4BiSoyf1tkPO2JgCe7A9NLUZ/uhWWoHmtCAd00ybdqBY0aGYd+nnZ+lU7SKeli8QeBeNwRlznlQ8vubqQ/cRAyzNawe9UxfdPSnQSmbxrcBIpHGdFCc8uJH6cTg7aBffnosIGe+lbsTsztoYhiqm8kRGB4nMHI20A/T0budugYEcDRHUg0sIrQ3ggSHdwKyI0zYS5VqyW2eZUJzi6DPJ9KOmAwEdUqKESSqFsJN4hannu7kZADtmKQ72d7FsC0Cm8iIRMGRNcadKRfBElpC9AbCVfoF9JBQ0yMkZM+EecVJknzhtQ3Ko9aWfr0N0fhyK0fB7Ph3xglMciakMoGRa6DSiBFQ4z7dK3BPD6+718Z9l7wawz/qn0/yHtByNXOkKsdIlflWZI6JjKz2GuKWYtJQGWUhwVFNWuxJuD8i+Cid2b0RTSdvIeYypEVjs26RNvAbNqMnheROOmx16TtJVygbyzRabI7NTaxEFUhLF83dajGQB4xpTSod52UO2odUTbQNNnINDlnyAtHPmuom3wEh21vaU8ruqlLnUvCWPheChDzqseakBgbAWhNK0EEQ/Sw3L5Gm0jXW/rO4ntNedDQdzbRKwEVlXRC1Z7rdb2u1+9+XQOQD+JKvgr15AyAGAPLTyw4evgcpTTRd3QvHRGtovjqY+n2SKV73XFJeXKMffspLGZkG0f+eEVMTEa4cYg+W0KIhFvHNHemTD7/Lhd/7EMcfe6UuJgx/fffkPjd7VYkUoMnBSS2NkZJwNJG2I5dLeCkKqEqaV4+pHzrHL1rca/eovjyu+A8mz/6ESqruPXZnSRWPVoSc0MsLMpHVONQIRAmOevX5yy+dsns7S0Hn9/x/I/c4mQ5Ra93YDI5Bq0lGSvPpMSwlf4J7QKq9cQqAQ8XiFWG6iXiU/VO5FptT3t/QfE80FeabIVI3TLD7C3P7qVpimeFxYcuWT48wF4aGWCOHVEFVDLORqfBSNqULhw40ReP0iwTZcd3KNkqHApodxkmC2MpoZ10dM+q/dSRZCchZFLkVnrxfmSBvOhpmwxjA1Uhu3bbbYE1Akz62mLykEzw0tQeg0JlYiiPjRFJlIm4Q4dyWpKUJrIj7SfChriZABScQu+syKp0xEwcYZmjG41fONTOSFN1odBOEXZiRI+laLfFK6Dojj3Z0hDslSFKSZJTcztSnKsUCcuYdKWcXEgYD7n8kKgV0nA5lPrpXhKilIfV9/ToncFsNfljDSqjOJcd7/YoSaUcEglcCbOSLXViZ+Jo0NZOfB8HX5MBX8XUSbIG1St2d+R1YhrG2NohjSkqkYO5nFTwJ0xMyGTYV1523k2jiK3Cz0Mq4ZPd+WypUWcl+VrkRO52h1pnuAnM31Qsf0BSs4qbO8KDOe1tT/XA0GdgLyQuORglEcpa2KZslaKRYzLV7/YWpoGtMo3I3wZZFkYSs8pnWrwfad4ydXqMTtLA7BbMVqMbAVbKRGKrxXyeqbE0DoCJI7YGlVLYdK3xVZAdci/+gP6GQ+8Mdiuvi36KpLh5lVLQBPxELaDDHXrMSos/JMWxkjpPYiYJWrpX9Adx7A/xuXyvO0V3FNCdIruQ13N/kDYMlpZQatrO4Kt9yzeQYnD3oMF5iRke2AJgjB0eu0TCPq1K3ufj+yQJV4HF/uNhz2wM4CHEPdmbrpmOizEJaw+KIvPjHVqHFwBQ10tB6mC8N1eOcfB+hKjY7gr5fe7wKSq3qHqKvB9BV93k43Cf5y4BBk+9KYi1lfeV1mCMhLw2bUYEpgcNWz/h+Naawjq2bU7TZvStgCaVCWDqaytgVUXMRJK4qrLbv52oSHGjTuc/PXavictMNkaioh66aUxgOmux1icbpB7PfVX2dE6O0+lAOU2PuZegEJKU0Bx0ePdBiOH9/fdshGuhzPX6Dq3rV9YHcKmTI9ThgUigdBr+h+SnroMYyZ5taA8z/P0TyHMZxhcTyi8/wt9ayA2tNuRvneFOZqhKDNz69JI4n6Iyi3r3Mb7UxF3N5EmPn1eQfCdxtRJQMZsIIOr7vQwqHQuZJS7XxFvHcn99D3VDfrYjHEyIheXhH5tCloHRVM87zLrjwf96koztyf8REA/HIDVTCtsEYm4JhRWp1ddqMYznmZjatQZrUL3DH1Q0Nys5d73D5xrlHKrtBdBMRU4Vhz4TaxKA0mTLjvr+lOp5h102+ychRtpDw/xB4OavGbreoma9DHNFFJ+HkT4LsiAAw4sxvG+t7Izp5PuwYQQg0YtGOnhN11riTqIug9eEy1yKw4q08zr1cr0UpYpTsDVi2KyTxjpCv8lZLSeia067feOQ45QMeEaG9MHwqtPxuEMnnRM7kegMhYtDEZ0KipgH2Zn3inDcEWci1wu9hokjlIHsNAMb6Y88lJ5wIMWFyifdf6/QW0MwkF2a/S61WFtGH4GY1vfG7+amJD3plMg0EEu6k+9DGdDJQjOYoX2Zvo9QvS0t78VFKgJMBvKQSyqVm4rROlrxFYzsQIrfHVKZ3EQiX7uFHKNphTXopyLFMskTkV8Onon9Y9K9+FIgyZQO/AicdKPwU2FcymeKcLclP0tSjiKMngWf4oSjhqxy4kGykd2d/e22y1KkX0EeW7Rx76tpQTca00nvST8bZIBJGnUlsjeaOPp0RjO4EsN4zPcyLimWjGNCVrZSLyRkDb6RUESZhxsjrF4W5DV14FCrTAIOioC9NFIe18v3oRTpnr006EbR3e/oZyKBsxsxp3c3nQC9lZQ1+klA77SERgxepCivYyJjGpcv0t9Hvh/upfdGwM1QBjmEM+iDTrpt8iApdX36m3U6JdClJu/U/B2DMCFX12joVjG1nr8ob9k3s++/9BUp1/izIXXrypdIrPaPxaTOlYEpGd8PosJanyRaV5jZgTG5cp0h5ndYg8Ssbyx9LzG9IXUbRYbj3XtNhnJG5wx9b6TbSIGaOPRhh87EG9M1lmZd0G7Ec2OnHatNyXJX0jtDkTtm84bqoJHUr00mr6PGEJKsyjlD78wL733dLqNpMuptkRLOgCpQzVvy3FFUPfODmtm8GaOXu86y2xU0bTbK2AbpWpZ58szhUpkhOzP+bUQvXSDX63pdr9/9ugYgH8TViuRJZTJoqzxj8rQbvSHqYIE6PWf+b7+KeesJXC6Jux3q8XPIMppb1fBpQLy4xHzhmzz5370uKVBNizo9h+kUpTTzX3ub+sc+Rv65b3L2A/PEbiTvB+z/Tf4J2g58IBxOxbx+MBfgMq3GPhE3L9DblpgZ7vxGy+qHXwZryR5e4A4KXvkXlzTfc0/kYBdrHv/xGxAj/Y0pMc/QW/ESdMdiBI9ao5seXbe4o4nIqjIrj8ca9KqhON93gZSP1qjWoTpPzC1muQMXpCgqRmFLnPxfucD06+eYbY+f5HQ3Z4Qyw08yDr+84emPwOKtltn/MOflO+cplSkQnOHgxoZs0YpUoBcjPUHKCE0CHsoGdOGxZU8x7TC5x1gvw0synJuzjHhWgIL6eTIydlo+4LyYv3XlpORPizxDlw5/XuBrATuTWcvl2YzmvGK7K1I3gZjWVR4gDUNhSKZpxXgOklhkt1pACLLzbHcqAQVpE/YpPjV7mNqqnYatFa9KAHezH43CRITpSbvoPpUShpnEy/ZHXpKsWpH8KL/fTS+fK7Yviz9Ed4x+FNOkQbAVY7ovhDFRyQBvOinX6+fI46tgez9K0tZhR7+AyWNhLLYvB+pbUFwobC1lgKaF/Lm022crxmQu3QmAsFs1dkv4MpUFFnK/Ku79EYNsTCdZ2JgslgzabhqpHpnUlyHlgfmZNKNvXvfYd0uCherulvlv57hZGON7lRODt38kpW8qQD8PmNOMUED+KBPA02qKM2GcRr/LLFKcSp+Jm8pOfz+L9McueSvkOJWXBnuRyQnY6BcRX4m8ymxEmmfqvelcTNxyzu1W0d6IdMdigIfEVA32jCBsoeo0ammJeWJ7Oo1fyGsmKvEH2KUwaEPaFbUZo4XdLAjouTBS5ngc8HOHaRTZRiXAOkgh5Rh0kgoObJPuSAb4JANMhYx2pSku5Pe2Bt0pwjYTKWHqq+A8x5/nxCBspG8NvD3BPalwvQzNPuiR8VAq4lMy1CD1iUCRSeLSVZ/GVb/GVa/J8PP3Jm2NICQZq4elk2ld+jsk+arMe/IraVUDwGjaDOcMZd7LJkgCH4OBXqlICIq6zcbeE6UiB/OavHDMqjaBosQ+5I4sSUyrsiMEhW9FcKG0JFIFp+k6iRK3lRQY2sQQWyuN6W2d0faWuhFTfDXpsIct1d0td145595L5xzNd8ynDUpFtpuC1XJCVfRM5q08lpQa6Hsj6YBJHuaSwd4HTZf8G1nm8J1OuSvCFlkTWF9MqDcFTZcJYJn38n7sZWMlrjN5P/wurxD1d+Trel2v78S6fmV9AFfc7ohnF/LNdEJsWoovP4RpNcbSYi1qUqUdfSvSrN4RFxOmv/GmXKbvUXkGeSbpU9MKrKH73ldgvRGGZTph8vVTeOk22S6izpao2RQ1mxJjwB9NpFMkmdRRCoqMqDVxXsFmh9l1sK3h7k0whvzhJVws2by+YHMvx269sDRdj2kcm9cXPPnDOTSyPXvv//UuMbPkb50JSPCBybcusVtH9nyD6h16VROqArNu5DFn0niO86hdjXm2ws+kzPD0DydGJkZU71FNj2o7VOfwi+RZUQrV9LQ3SvABs9xhNg1uZtCdx6w7VIxM39boLnD01S1P/uM9zGELNpJVPV1vKQqHSW3KBAR0DClUJo4f1sFpXPqQq8qO6bTBlJIONHQ2ZBcGe2ExKzsOTipAOOoE4HSysxuc5vBgJwyDjZDkBOWsxc56/HmB6ywm92O0LyRj5xAR3CVvRlBp0BRGBCBMPCGH/tCLDEbJUMvWysC7NpSPZbd6+pWc8pnZgxITMecZwRnZXdfI47Gyqxym8ph1N0S6pgEz7aorD+UzPUp6JNUqsrsfx3SsodthiOfVrZQZKi/Dv6mheiq/C3lk8p8rumPP9iVhBmZva8pTGZqz9RAHLJfvF5H2JJUFLsIYL4sS9kP5PZgwTWJb4sAAwOZl8aWYdi9t0o6xP8TUEpXrSzn+/EzYIGlO13Q3nAz2X1iw+1/syM8lNay5lYz2XuJjp0e1ALxWdv77eaBfCDuXX6rUyxHRrXRgKJcK/Qrx5/iJsFOqEVZK9SlNqoj4Mkgil4L+bofqpZyxn+9BhZvI4y6fKbb30znsRX5VnCnKZ5KWpVuFrrWUKcIIeuPUExcirYpFIFQevRU/VSwC2incoSSq2V2Kc04pbP0dobzi4Ee4kRKyGrmfmKRiQ5mm3SaZpJXLZUspFQ1WQIqbiqdmMNTbjaK5FTG1AM3yTGHWRgo3nZJB86iTv41VRnxSYp9lhFzOL0CbEqCGONqmy2ibHO9E8lPkbuzUuMpE+BS1O/aPXEnPkrffbx/3e1U6ZI1PwIMRFFjjX7iO95q6zWjajF1dsJjVHEzrF9K91Ago5KvpJBGqnHTYzDOpOnkPzPv3FCjyQgmi8wZXZ5jcc3y8oZp0LI63HB9vWMya0dDtEkuhjXgvum1ONRVp6SBv653BJBCxbgoutxWX24r1rqTMHYeHO46PN8QITZPR7XJpK28NJvOU0w6jA30rXjqtI21rRwbF6Mj8sKYq+8Tm7P0uthA/3XYrvSO08roKU092o4HFd78HxKO+I1/X63p9J9Z3H7Jfr/cv7wEN1hJnFWpdSKxtfUUipBXq+AiWvRQHtq2AjbYndr30dqSlDuYc/dYFcTpBbWspKrx7A959AkbjDydEpbC1SL3iai3JWICue1RZCvORInljZjDLHTGXKF718JmwGU0PyzXx7g1U02K6QHnmsBeNROBqhXm2YnG6Jtvc5MlP3efO//Am/s4xunPEbIJa7Xj0v73Pvf/nO9iBjbFmBAnL77/J4ivn0HtU1yd5msbfPsBe7CBGbvz6Gc2HjimebsQXMizn0U1PzAx+XmIua2zt8YdTYRbWLdUjYUv8PCcaTbaDaBRm3bF4M3L6isUuDa6r6EphImJU5LNONM1ZwKUirCH6kii7nUNxWN3mdOcldJp8J4Dg9m8GiLL79/wHDN2JA6+JWpFVDt9r4tpKLKnPOesOxNPh1egrqS9LslknhvaLAnPQoXMv/hQgNFYy8oeCLiexrjGLeJv6ELIIeaA/8kQbyM8zuhM/Do6qV/hFAGXIn2bU98RPoJOXpHxmqF92KBNQBvxCyY6xBrU1gzSdfhFTn4PIn0JGiqKVQdjUagQlk4dqTK3y+RC/m8zDncJPBMjYeg9m6onE1g4m9/xUvC3FmaI7IEXlRrKNoj8MmFZ2wqfvKPq5XKebOZqbGXanRFqVpEYxDezAmNxVnEsc7uSRpGcZD3qz/300e2nZwEqEPJIvFW0J7UkQWVEnDEB/GDFvTqRTY60lWjaIaV552JxOyAMUzxTbT/QsTras3jmgOBfwEYw0krvp4JGRJLD8mRXzviJJ4BTZJp33QY6kIT/TtHccam0pnyvcTFKx8ktDeyzPXbaBzYcCs7d16jxJ51+DO5CCSbuFZhYxW43Zpbe3SiReY/HlTgb7cNLBJn0kBYXZKPzC01XCqtmVwU2DhB70Il0b4nyzlSb0RkBjp6QYb2Ul/arae0FUYEzcGtg1X0ZUp5MUL9LekICJ5pYAaJeifrNdmsSjInTFPjxhGvCp08TOO7JMJE5ta3FNRnSSMqenPdOpbLooJX6PIelK6zjuwr/f8yFGZ3i/J2TPZDAWJr53Xhx8KlrH9H+JCc6tyKqKTNga9L7fw6euDp2Ym6aTmN4y78lSH0fb21H6dTUBbDTIa3ksfW9QJlBW3Rhp3DvD6nwKEYpFK8dQaqyRRCxsSv5KIKbdFJjco3TA2jgyPcYGcjGIJdO7GsGXUpF80lEWPXoRRz9L02Yv+HWqsscHRZbSuEDAi1JRyhKB2Bl6p5ke78gzz1pV+FWKdW81fj0h6i3X63pdr9/9umZAPqhLKTGXxyjRud4L4+H93ovhPGG74/xH7xKbFvfhe8Qnz1GL5PkAiJHuQzdRTc/y+4+J3hMKgzpfyX2st5g3HmGfLZn9ytfFx/HaS3D3Jkpp1HIjoCPKoI+SVKmYG9RyK8dS5JKOtd5ALmbv7sO3sRuf4nqhvzUnFrn4Rqqc/LJl8XYPmcVsGjYfXkAIUObc+7+9wfn/6mWe/fhNtp+8QXdnTnf/gN2Hj6lOO9S2lUb2Pk2BWrF6fcLmY0dy6jpP8WQttwdgDeFwSjiYjOyH2XaERUn2bEN/WKAbh3IevapR3mMvdvjSYOvI9n7Bg5885uJ7gF2KFM1T70BviK2hr63IqoJogWNgTFxBRWxKrOobK+DDK+xGYxq49x8c828sWb9iePRHFa/9L9/GFJ7JkTiD/eMK9bgkFoH+ROJV51+3qLVIoOI2I3iNshFXZ7jWYA9b3DYTAGQiSicvChEqN2r/8Spp368UvgFUkkbTHQbwSuRJMGrorzIWY1ldFqlfcRRPrEgSIgI+dmLWDJW0fQ/gItvIjnm2lqG1X8TUyyFeAlcJqNi+Etl8xO9lPB7ak5g6LyK6kx16U8vD063cJshQ3B5Lb0dxpmSXWkH5XKJrTQN2nXbIDWxeC6n4LzL9Wk5+KeAj5AKUdC+PN1+n4zjae06GWFrTQXOcQMwBoBl7Mgb/CjE1kGu5zsFrlynm19Dd9IQ8kF9AeU66f2FAmvu9nLtzS3/D4Sug05IwNHWjkVz3SFCCBnfokyRM2Kz+2Mnf5O2e8plKsbTyO7vR5DdrOd61JL/5iUi/lNuDQt3LY8uWkgy3eynIc7kZwJZKjfMRu5XbDjYm2ZaAXZu672IWCSc9sTMUpwZmjnDS4SfJj7QV6VfIkt8qydeIpPJDLeEEyLkMRYROyzmz8r2pNbO3NNlSYbp9shZKpHjVI41poXwujEkoJI44ZjGZ39UoOUPF8bnzU2FvJNUuEHpN83zC7uEc/1R8aWZphW1UjJKsYRDfbkvWK5FNWhNG78bVj4FhmP6dSg6vms/fe7lwxUA+mOKH+xgSruQt9MXbHfwrTWfZbORxVEX3gqk+s15AzXtSuUICJzFCvSnotjk6gQYfNH0vvo2hxLUqJJEqs54QNJn17DYFs6oVWdW2ZLKoyYuequxHOdvADjVdRtdLi31m/VgkOTAxA6vkvJQweifPgetMulwcU756Z9guK1x6Ty2n4lVRmXj6tucTlpcTYUDyAJXDHLeEo5789Lu/n3stwbpe//+0rl9ZH9SlNeHhY5p7c+J2J2Z0QM2mwkQAcVaiq4rpkw5VFuhdL0N30+Lv3xw/mfKna9CK6qkYybf3CvGWTCop+rt9Am2HspbYtPDgCWFa7A3wOr1MEgjRmwa1qcdjou0IR1Oic8Qbh5KMBejeY9ctbl7QzyyrTx2z+eQJ6vkFetXQnFhpXa8blq9KM3moRDJ28I0t7RGsXrE0xxk+15g+kD3fCCNirZjbQcz5WrG9bQnTEnciLegqlRJGLe3o8kNFKFKKVormlYjZgjAppEhRia8BINtGinNHtkN2YddaJCsTJ6k+g7l8m0nreWfGDH+V8v/z3DGfNrjeiB5ZMcqdZu9GsmVP/fKc7R+uqV5ec1FP8K2lbXJUrwgpvcgujXwQRtmxjiai8oCed9KwHiVJK3QiUzClxOCOUiwjO+FE2SGORQAtkptopF9BBUTn3uwTrHSfGrp9ui7gZy7p86WYMWpJPjIrQ3vDS7TqZS6gZ3iXGWQwqTE72CRFSk3h+aVid9+zfSniDxyzd6VdPBx3VA+MDO7JWDz0lmQbJSDMJGP5QWJUTPo3F4mNT70c+aUMye2xSLu0S49hKs9vTLvkQ0pUttk3qxeXyVTuYHdLjr08TUO3Fo8J7P0gvkg+EDX4WQbwlCJqOwE6ulNcPJ1LXKyC4plBH4hvpR/6OqZeVHlBBt/iTEEhr+n81NI9kgIVXw3sChIakEV0rekPAsW5DO3ZaSbRwjtDtxAQp5wAAfdKg397Kh6KofQxyG0Vp5r6nsjy2puebCMAqZ+IzMtNhaHKl8IICSCR7hfTJJCDAIZsJUxNvhSvUfZQXivNPYc+z9EXGUw9KsnFBpmi3hrMTqe+FkO00N1wAp52KX2rG2gBUqGmgIv2WM43EYbyx2DjmEhGhG4hxZnKCUgB6I6SlGgijEdIbJS+Wnw98cJEKiRxa2gq36WSz1wCIqyRIXtIpDKZJ6Ro7aHAcPwIuDLUX+0V2YMN3rdGozvvv65c5/3+ESD1gKjxZ5o4+iAAcutfADlXj28Y4gfDtvda+kSCppj05NMOYz1db6QfpJB+kHzeMZm3I8sihLcwFEUlrePWBFQytms9XE4RUqN7jIrcSreISSldKvlmQlDpPKtRXpVnDptSALWJ4+PTWkCI0QFbSsKZry3eawnb2Eh0sClTf1Kn5Q/ba3xjYSsbU9frel2v3/26BiAfxKU1vHIXpTXVN54Tuw6lNOFySVxv4KU78q7/1kNi27K9kwtj8ca7AEQncbbDJ0ZUCuqG4gtvoaYTytOeuJGI3egc+Mju0/fxr9yBTPwk+utyW8wmYLQY4oeBv3cCANLt+w/fo7uRzNMhEI4W5F99QPatJygXCLlh8tm3OPjNxyxfs7gP3xMGA8gfXIC1HH/D8c6fmKMvtjz80y8D8PJ//0g09y5SvXEupYE+7pkNgOCh6zj+jWec/PYW1Tns5U7kYIAKAX9QCQipe/y0GFkQXbfE3JI/29HPLH6eE8q0i2U127s2Fc4F6pvgZwGiRJOGTgziQyEhlRdGIn0AahNTcZgkq5ydzuWDsfDo0kFUmA5CprDLlsm3Lig/X9F97YCL9QTzLCMvJEmKTHT9Nz8X+fj/Wc7bqz/2Dvc/8hyd/Ce6lA9VkwXstKddFcwXNaZKO5xZ4GoKUPQSy0uSVulWJSlUGnQGxqKRKFK/SCWJhUfPeuysp70lt22XhjD1+CqV2FWBWAZhWC5y4nDfQREXTkAOMqi7iQzL2RrqO4HJQ0mWmbyVsfxo5OAbiqNfK8bLDelXpoF+MeIh7E6G+9mDxKbM5TbzpdASvhKztEsDum2k96FbiAxJexlIi3M9lgiSBnn5OXSCayUhywlQsTthWbSTZnTp9BCwQoT6lgzfA2gc+kBMo2hf6cg2iu7IUzzJhAkoIs1dR/GVCt0LsxC1DN7Nbc/iqxZfRZGJLTN8Oj7lFXSa7kgStoaoWe0U5RNNLAOqh+6Gl86OI0+svEjwDDQv9RK1fJGLh+LVFtWJ4b+fi1QtZDB92+Bmnsm7hn4unhftEsDyAoB2LwX6BdR3I+2x+I58wT5VCwEqg3emP3YyvG0tZiuvJbPTxF5RvpHDxI1dNMPsHG2kP/SEypOdWfGmiNVJWLEke5KvJA1Te+Ab8r2HSAUx6UcNphPQplxiBluF2YkhP+Sy2WDXYsRXTpGtNGZtUTYQNhnxMke3Wlrlh7fzmy3T21uKzBESAxK8ZrOS8jplIrNZQ9MJY2mUSKFe6BeJaky1Gnwdwxr6VmEPJAJyO/J7uS0f9L5ULw30V5O43ls6F6PCOY2xnjLrx+PIdMAoMaZ7r0dApYk4r1mfy2fBdlsQgqKrJUZ3YCKsCWy3JUUmnR0DGzT8bjC9r5YT6jZjUnWJJRGgMYCN4dj3/SjptZXuZzpppQMJkaG1naXrJWiCuD+vI0OSTO+uziT+vNO0lyWhM9ibNdmipah6eS8tUrKhibCT/iPdfPe9Ep7vhA/kel2v78y6BiAfxPXSHeK33iF6z+7jN8EHVn/sowIClEKdr4gffmUEALN3G6K1oDXdD30MZQyhkH4MYoRHT+lfvUn0Hvqe4qyR3yVvhQqB809k6DceoLJM5FZpxSfPiSuRYdG0woJ4L83pPhDu3cAsa8qvPcF/4lVU3eEOijEaWNUdxdMN/kN3IHgmz9MOZNdz+JW1PIa6YfL1M25/zrH75C2yNZx/7xSaljv/4xMmb28k8SoGYUick68YoSiIiymxsNjTNartpMW9sESriVZj1rWUOsaIPdugdy14j+q8ADUNuo/Yy1rieq3Gz0smzz1Pf0Txzk+WLN6UnWDTgG4k+YRazNe0GtY27conDXWn6XdC44deQ2NwywLfGUJrsCuN3aU0pWnO+WduYGu4+2se/VXZzW7fmmNWBrMy6B42dzVhknH85cCDi0M2bS7m96iInQEifZ1Rlj069yzPZxgb8K0VPbcNUnAWlPhANhLjG4uAn4l23jRKzLZBYSZOTMGpywGX9O9OMvDNpCdMvOjyo5TWxbmTFmsFBCRqNbEWutGwNZIw5WHooPCVDPBDvwRKdv6VU1z8UE9zLL+3W8YCQ6mLRqxSO8am8rGPI+14ZyswO5GXLT8W2b3q2X20T8BDWBLxBYixvZ9J4pQkbsmAHAq5n/5AgEso5G9j8iRS3xIA4CZJouWFAahvyrHOHii6Q7nMIPNq7gTsDvKHOc2HOoozQz8PlE8NxZli+qalvpd2aTsZrM1OfA/rD3uqJ+JtMbVOBvQonhSnMMctbh5g0ZNfyM6/L6F8ZKnvSImjGK21vH0EiDdbstMMt/AUzzXBRqpvSCqbmyaWCZFhNScinwJGFsCXsH3dUVzKebcbTXcYktRNU1yI78MXEVvL82Xr1CifukqUB+bS6o5XEp38NKM9CbCz8jxvEvtzqcb0NbMy2BqypTAVvopka4k01i75hVKSmRpeL418n21Tx4yH6vHQU5POuU6SuShMI4gZXjk1tqqD+EtQoJ4V0MtthEJkYmEi0qy86CkyR9dbdnXO6nxKv83QWcBYj512KBUp814kTexByNV43avN1AMQ2cfs7j8+XgAhiVHJtB9BjTAH75ddDbfnvGbb5lIuqCPH850wuUaKAVd1MTajV8kTkmlP02e0nZSd2syTF9ImfuvmihvHa6ZlR2Y9m12BSSDCXDHiA4mFiPigmS/qUQo2sB1DMtfViGAfhrLD95+DPHdMyo48c6NcrNtluD69DxuPNZ56l9M3Flt4CREpPUxkg0XZiLssiA8mNA9nhN6ACZjCwVb8S8pzzYBcr+v1e1zffdHi9XrfUs8vANCHB/hCo2dTZv/yC+LNeOcx4ewcdbkcP3Xyd86l0Xs6ofjWU9ndb3oBAc5B12N/+02UEelSe1JSvROF/QiBUOa89C+f033qQ2RnW9SzcyJ+LDhURS6sQwhSNmi0mNx7R3NnwuSrW+Jqg30nEudT7LaHPMPdPmD50Qknv3GKDoH6E3c4+o2nrL/vJvNv9Dz4iQXTJ3NO/se3AKjeXrL98CGLtzvWL2dy/0rRvDRjspG2M9U50Ibt991GBSgfb3GLgvzxSo7LaDGop76SMJFpUYUAvad59Yji4UrkWWUmt+c02WUtTfBtT3tnTn7RoDvLx3/xTBgf4OCbh3zzvxM9dKg8qhcDrNIR1WiUA/M8l51SE7Ebw/QRY/mcbaCbQ307kq0lJShaePjHJkQFN37bMfvScyZvVTz7sUO6hezk+yLSnohhWTc92bagbTLRUjeWfNZJDOjWohayU5mVjnYr8gOdyR6WtgG3zUUyEZCdwDxI83Dp8b0MfkTpYVC9HneB4zIjFAEz71E64M5K4qIX9scIqIw6otaWWAZJLJp6Yq9QmZh849RLcVcGoU+DYS3AobmRjinFoQ4yl+xJNka8uqkMg6ZRtDcC1dMh3WjvQ8mX0h0SFcQ8sr2vsY38XJKgDCgzFgX6QjT+Ng2qHMh9KZ8YlgRw+omAzyGqNRroFsJiSWcIFMvI5mVhxexObm93myTzksfWH4j5up/Kdapv5bRHkeJc0x0F1FQ8CtO3DNtXAqaW4aa/2TP7WkZ9N/kastTUfdiRv1kKcDo3+BMBcnVhaO54zFYieXcf7SjfzukWInVrbnuyJ5n4JBqLyiIHX7bs7ohEaugc8RNPKDR2o0ZAE7Vi96qjeGqlod7D4Rcsyx/ssc8z8kvoTiKzNzXtDXmdFecCHrpFOs9R5HXRyKCuGs30Kznblz12aVLamYAJ5RMYAHyraI/lNWBqQ3/s8QcRvTEidesF7Cgv3p3mppx/nVrbu4W8VtzNHrWRNCxda/pFKiTMxGCvUqFktklSsUsB1b6M9ItIrLwwHw4JDjApxMFEYh4JSjwDunLkmaNuM9o6RdhG0IUnyzzea4rCjcPzUFZojE+79C+yEsN6788Gz8NVUDGwKX0wNM5QZE5AhIY+mL2U6srt+CDypq6zTGctVd6PhnkBNBGsx2hpBx+M7503dMlfMZ20tCkdy+iACy/uc/aNZbYQma73Ulw4GMQ7Z8it33tT9J7Z6J2RCN1eigGl/0POX0jyqcEcP5yHPPN0KcbXdwJiCErYKgVNnRMKhzYBm3vxhSSZ6tjtkd4rh40P+ySX5yaL2F5KKlF8IBiQ74Rn49oDcr2+U+v6lfUBXcoYCIH5l05Z/dGPyPdvP5IOkDyHxG7EECB46d3Y7sR/4QN+mkPbSpxuCMS6wX38ZdCa6rNvErte4nZv3UA/O4flmvyrD0S6dLAQJmQ+GY+DohDmo5VJwN9cEO6ekK16mtdO5KCtpbszR7U93SvH2LeecvDNmublA8K0oHpTgFU301AWvPwvTlm82YjfZVHh5yWz335K+ZVHlBeB5Q/egu2OyTfPoe+JkxRBXGRMv3KKKxSb1+Y0xxn9zZn4VZoWlRK7wqQgFkZKCRtJzCqebQmLEkKU0sPU8K46x/JjM4hRwMdyhwoRfzAhHE2hyLAXOz7yTxuyOzvRAE+dJFE56RZAX9kFiwp35Fh9OLD8eGTzSuTy45HmRAadYXd9+jhw8kWHL8HuxG+jOrdv6e6heqo4/hLMHkS2r845+x5hLnxnYGPpnlZEp2AicZMhaPrWMl00wlZss712ZUh/STvIRCU7fY3IIEyjiZX4DYq3JenHl0m2ZSP+MpdB57CTBK5MsvCzS4N2SkrcunQ+mtQtEhD2pFcSk6rFWxC1ADOf4mqBZARW5BcKd+iYPoLtK4H2lqP5cCuDgYbqiR6TsKImyYqSZKpVZFtF9VijouyOu4kMvGJKlyFeObmvbCOshpvAwddFamR3krRVnu19H/lKTOd2K14SN5HLdQcIazNT9NPUnTGH9Wt7edLgC9GdAIehXNFVUD2Rhneb+jjcLBDTUxaNvA6m38xwMwFgza3kUwjARS4GbA3dLYe/KGhuJqDYKbKVyMwkJlkM18L6KNxcjOXlY5Ew7X5kKy33RcTu5HWXnxm41dCdeHQnzFT9ekd2bsdELxWgPYHiQYZpYfeyx6yFzernAVelxviQkrSW8rqeva0oThXlA9kH290P5OeGUAXx5/SK7lDAsy/E0G66JL86dgI0OglIyDaKbKkxtUQA250ASF8FXCXRyC5FJociYp9nIytntyI1U14YkaHY0jRyzPml/A24aRR2Y+pQrURJDwZ7nV7bwgQyesOywrE8n9LscqppK0AjAXalIvNpw7ToyPRe6JJpj0/gQV1hOYZBPMb3f8E+sQrktgfwoRO7ohJQ8FGTaT8yCsNlQ1SsVxXriwnTiYAPnQzaY9mhCuTGj/cz+DY225JulzGdtDivOZg0I3txFSztmnzs5wBGKdXgf8nt1dtWY4JXjIquzWiXJTEosswznzVMqm5MxBpuZ+gyGfpMttsCd1GiTCSvekyRCiVVJLSGZpuPRn+/zWBnJbms1WN/UjQS2qFbef9SEfzc41LQg58E+sNrsdL1ul6/l3UNQD6IazZBVSVxVxPPzpk+2KGODuR3MaLyDKVSlGqWUX/yLupyJUzF4PvQCrTG3T9BaQ1aYZ+vxdNRFqjk4YiTgrirxcjddpJk1UlU5OoTR8Io5DlxlyZELbItvetw85zVayW6DwmoeLJVK/0ahxnuQ7chRJYfyjEPz2C1hhipzj3N99wjWoubWLAWvWnQnaf+yA3CnWPmX3jK9q7em9qVQu1a6lcPRI4VApMn7fjpu/6QMBODTyVqLc3qLkjpYCohpPfoVSMRwjbFXkbZ5SouPaEqxuje/NEaFQLdyURkXZlBOU9Z9GOvRWwNdmWkJ2OQXRRBPuCykHbOkiEVRv+DbWH20DN92KD7SHlG2s03oEU65HMxSncHUoaYbSOTBzuJec2CxFIG0f+roEZtM0DojbAfNqBy2W1VCkm96iV6SacYUjUY6a0MtmZjyM6s6PQHDbVNJvSJlChqE9CXolnXXRraUuKXSFjk8mGSjPopHjRUcgIGYztR/BJDh0S0MmyaFqZvZGzviQF7+oZl/lvF6PXwpexuD/G7w+rmjM3b/TRJf1J878E3ZDDVrfgABh/J0GmRX4p0ipjAwUQAh5umXg+dfB+p9dyV4DNJ1FJBdtd1LwxIyOQ4hxZzlTwm+aUiGDmu5p7DvdLQz+WY3CKQL1MylhPZlZ97KVyMcp9h6inORSoXlcjnJMEqJtmISLfCaYHdaqKR4Wj+NUv90VZeUwfpOWjkeYoKupdbzNem6TnyhAy2r3iiFb9QfmoEUNzvKN/KJZQgsVXtkZz7ISWqemwwjaK4hPxSM3sXVh/zklx2qdm8LKb39WviZWlvBEzqCvFlpHym06AHdmOkXV0JcHfTmBrktZjIq0CXQhBiSrza3Qs0NwXkTh5pea0l2Vy+gmwp7GN+mXpFDiTYYYhsjqJmpDsUg3p9NwjQMGJ8Z2ulwJD0vEzSJkYCIboWs0vsNc1FCa0h7qw0hzv5mzRZIM+cDL1JLjUM+z6Kp8KnnefBoK2UeBmuSo3ie5iQF2RISYI1GLevpkEFFDYBCk2kD4ZdkxOcplo0FGmo3/tQ1CiPAqibfDSJh6BF9mlTmlQvgNIkM/sYpdtLc7rE+CbwkooArz6OAbhcNcsP54A29ahkbowvluPjBeACsNlKcaBSEDPx6HS7HJNJYIByGjTCVJlAt0uxuk6hNBIskAWR2Q7ALkp6HlHkfwQBnPmFGYMxvpvLR/0d+bpe1+s7sf6re2V96EMfQin1vq+/9Jf+0u94nbZt+Wt/7a/x6quvUhQFH/7wh/mH//Afjr/v+56/9bf+Fh/+8Icpy5Lv//7v51/9q3/1vtv5xV/8RV577TXKsuQzn/kM/+7f/bv/oscQFhMBBSCG8C+/SThZCNvhHLHrxWh+Ip/8/VRLWWAnTeTMJiJJ0hqzblDzmQCO7Q4/r4h1Lc3l6w3qySn+e1+TJvUbx2CMDPFFjnYRsoz2E3fhtpQMSjKWR6225G884+Q/PKG5kRPv3iCcLNDPL2leO2b+nx7QHeQsPzZh9sQR7hzD0QFxUlC9dUl20fL8Rw6pvvFcig0zw+7+hPLdFW6a4W8uOPpqx+pjB8T5BHyg/uhNiuc1Q1O7udiJ3MxDvhbGJFY5GIOKEdX0hFJKE7FGQEzvUF0voMSLUb+7MwegfLTFbBrwkbCowGr6g5Li2RY/LfDzkmg0d/+PSppwvUblXnorGkW+UhSPM/GHAPSaOHOEKhDyMKYKhQwOv94ze3ONbh26j9z51TXF4zWxtKim5+6/PaW4lAEvW8HlR0qWr2t2L02oTkXGoNOuXKgkrlTpgMpDigKW3dM8d9jSJYkDIi8o/f7DstGE2kIZoPLi4fAyCIZSbnsAFLpV0Ah48b3B3t9J63srw7BpFHpnCDPZYYw2dTxcZgLKOg2dDIQhj5TPBDT1c/lqjyUZCiUxu8PQOP9KRn034HMZDsUALDGyqJR4lYb28kwieUMmA6ldK3YvCVDbvLxnS2w9yLriyEx0B5Lq5GZiHLe1gJLFG8nDkbwszYmAk/JMgJAv2UuWykh3LANUcarw+V621S8G47p4CaZvWqLXZGsBBbrWNLe9SH2KJB1qNJtXg3SI5BGzsuM5GMCcm0pULRuLvrSU9zdi4tZIItlJSz8H+zQHILuUxLRoBby6WaT6ZkH7aod6aYe9tHS3HbqXYsQYxRMRFehLS7+IlKfCGGSbZNA/iHTzJKe7GSguRFZHhOXHArM3DfM3hG0yjWLzUcfsHQGu2VKPAQamUUmaJaAjFOIXkiQzYc10pyiea9xCzln52IhM7cDjFiJbsxslTfMpGwMVcTNhwHwlMioV5LaU2yeyye3La9Du1AjwXQW6TjLLVtjD4XpDF0jIIzZJ5oigd4b8WYZqNPbSEB5O4DInnhX4XuO8DP27JpdSwM7SdJa6zeh6M8bCDsP/MHBf9T8MQ7rR4t0Ylr8iezJaGI6xXT15LFzQI2DZbAv6xnLz5oqDSSMMzJVekPca1OfTZjyuMhODuM0dZeY4nO3wUeGvJHKFqGiaDJuAzXC/V0HD0MExPK62t6kFPWe3LvHbjMmdzdjbIddjbIs3WgztQwRwVfay76OibLoUgawSVsfYABNHVvUUVc+iasTLU3hCGYgBskmP31lw+zJN06hxk8c0Crvap66p+N0HIBEBs7+fX/G6iPB6fYfWf3UekN/8zd/E+z0V+sUvfpE//sf/OH/mz/yZ3/E6P/MzP8PTp0/5B//gH/CRj3yEZ8+e4Ybmb+Cv//W/zj/+x/+Yv//3/z6f+MQn+Nf/+l/zp//0n+ZXf/VX+cEf/EEA/tk/+2f83M/9HL/4i7/Ij//4j/NLv/RL/Mk/+Sf58pe/zCuvvPJ7egyqc6jjQ+L5pRjHjUG/85RoDMymcPsE3nksbenGkK/9KCWKbSeRuosZsW0lanY6QeUZcbkmWkm0isu1xO72DtV5+u97jfyLbwvA2NWEO8cUFxLbW3z+LZoffA3uLyi/8Dbxzg3xTtQNbLbMv3rO7rVDpl87g7ajnxri997j/JMZd359x7s/MeG1L2/p7x2SPVvDxRJ965jb/9Mz8ZI0LSrPKU8r6lcPmHzjlMsfuo1tIge/9VxOitFUb11IPDDgbx+gty3Vs5Z+kaG7wOTdmv6oImZTiocrAOzTJe2HjuV7owhVJuDDBRQQpgXtUUb2HPS2wR9OUd4n0BKpb2XUtw9YfGWFbjphjZTi3j+d0S0MT38kMHllzZ3/S8H2fsH598jQYtbScB1B5Foqjm3Ur/5/2PuzWMv2+64X/fyb0c129WtVu/vtvR03sWMc4hByDtwECEeHnBdASAdIxAOKQAIuICF4QkiRuFIET9wHIJEA3RcggcMJ3OMciEhIiBM7sbe9+71rV7tWrX62o/s39+E35ly14wQSyb42Uf2lpapaNZsxxxhzjN/v9+3+fUlyMiemFrzHLh1mWuEHOSpGYpHS7A7Y/8KSaDTzmxkXryiSqTiCbbxbc/5xy3BnxmRbROF5r2E5LVDdtDF6LTa+euXbH3ETERabnsMVKwRNGhVBQSDOErHKjQidpFVCGaqfCI2bFOhbFTEo1NQK7z4Vbn876py1VqJSLcJsFGAjeinFZjIxgj70AyGVBiYUgcYbaaa6Bsl02ZvDO5pyVybYK3vb/tsJrte5UHVFY3kgjmEr+1yfQnZi8JkUyvX2SsPx4VTvdCKNTDOW4MPpi5HsXBzP2p58hnK3S2LPoHck9KmVmHlxM64FykGrtROXG4S1WDyMW+KhUKa0g8UzgfxOyvLjFVykrK1b+46QpegG0gtNveul6XBSPEcl2R267FK+u5UfG5qXS5ko24gbC1VIHXVBJavU++sV2dsF5a2WZJaQzJRojB6k2EUqzcq5BR3Jbi8pHw2wS6j2RNtjanEsSyZyTNqdlvxhIohEIsjC8oY0xysHrnJfirdk1mlAVKTakWORXoKttOSc7HrSSyPvtyNISXopDaXrR3Ql3796Nwj96lKv/y9/bDBlh2DoDqHKY9fwdhTCVETsKzqWqa8KStExyTnjNrzoOrwi2oBuEnE+i6x1OSvzgdWftlQd3UsQmmQq51d+IkiUaAlkW1zIWFymohsZuSdC9rrvb1SrS/oVlSmIc9UKUXhS81G3Fmv8moZlOoer1fJRr92i0u75jTdMljlGB6FcdYgMQG5FV9F4Q2qu7qdlawlBi8gbmC1yhv0KpSSksGotifW0zkiuR3chKOuEQV9oWavAQOBD9KnVmbxurgDnpEnqDSvsxtcjI8BalL8S2FfLlCRzNKVkESkTxb3Pevq9mqYVLYlJPe1lRv/6lEWdok3ETxJII6ZwtIsE5TS6liHLqhEWMxIJQPVFwG5XYjjSMQeerqfr6fqdLRVjjP/9h/2Pu/7KX/kr/Lt/9+945513UL+Fcfp/+A//gT/9p/8077//PltbW7/la1y/fp2//bf/9odQlB/+4R9mMBjwz//5Pwfgu7/7u/n0pz/NP/pH/2j9mFdffZUf/uEf5sd//Md/R9s6nU4Zj8f84fH/jtVP5HCATO97glqQ2CvtgrVgzRoxIbHEZ6+j3n8oAnRAZd0o2WiWn36W3pvHxH4GD4+7/0+pPn6besMyuLfAvPcIrGH5qWfoffm+pLDHQP3pF8gfTODkHPqFCNK7zI/qIwfoJpA+vGTyqT3KbU0zhJ3XHboJBKPovX4IC0Ffmuf2SB9NoK6J4wHq+Jzm1Zukd05ont0lOZ1z8altiuOW/HCOOpvIZ0hTiEKnOv+Dtxi/PScaLUjC+ZzYz0TvoRRHP3DAwf91CFrjN3uY0xmxSPHDAjPpEKYYafaHJOeSgE5i8IMMc7EkjHJU61Fly/yVTbLzluR0LoWEUTJ+CzD55Ba9o4bkZM7j79uh+oEp7s2RBBY+kbo8/AD2f/4xMU+IqUVVDYsXNui/cwmA3+yxuJ4zeutS0tg3Ch79gT4qwPiDwOjLx2ANzcEQO2t49/+Z4OYJyUh0Oa5MoNHYcY2rLSwt6XZJCApjA21tCa3GpOK+0yxSdOI7d6xIW0qAoG40oefRC9NpQALZmeR7oIFCbuZKg79MSU+75Pe2y1lQEHLRFxBFb7BuKhSoli6IUAo23Uq2Qtiryd7LRSCeRNwwoMfNWjC68Zql2pbAwt4jKcLDyhl6FEnP1ToJfSUeD5kU7slcGgbXA3F3CmTnEmDncxGB+zxSHCpx5WrERSs/lQaj7sTp2Tksr0thm59I/sjK9WqFkrT9iO8HzEJjyxXVTDRB2ZEVCpSXnAnlBWlxBTT7LbrLjdC16BmiFgpfMldUz9cMvprRDjqaWnOlz8nOFeVBJGy2sDTkR4bq+Zri3YzywJMfy7/VJKH3ULP4jhr7KFsH7YGgM8lEkJp2FEmendPcHQjtZC6UqmpHnJ/UtYrsK0V3rLqgQq+kmdnz5I/MOim9ONTrnBa4QoR8Br4f6N3XNB2Na0V/W9kLay/uVnYqTZwbBZLzLlvD0KWhK8xCiy5ncKWdWmmLXF9oUspLCKYcb7UOulzR5VaubO1YUBRTdan2tTzGDeS4mUqofCF9wgUrdNqSmVgh27mRRnuVG9QJmUMiZhI+75C8znkNwO812NzhyoS036B0FMSyW0+iB9b4dQOyolitEspXOR4BxW+maK2sedeUK68Y9GtyK/eKFbLwZHbICvkwOrBsEpwXemeWunXhv0JlPtT0BNXZ6gpqs0pMXwnO5bN0QvgncjtWr7kSla/+/psT4FeVi1IiUK/KFN9qoVTZAFGhOy0IQFNZhqOSskpplgn5oMF7zbAv97DzswFqksBmI6gwoBqxsiYIqrbScoUUmm1xykqLlvawB9OaD/7O32YymTAajfj/51rVDn/jl/442SD5hr52PW/5f33u//yWfK6n6/f2+j1HwXpyNU3DP//n/5wf/dEf/S2bD4B/+2//LZ/5zGf4+3//73Pjxg1efvll/vpf/+uU5RWxvK5r8jz/0POKouAXf/EX1+/zxS9+kR/8wR/80GN+8Ad/kF/6pV/63W94p1dQRYH/6LNX+gWQ3w/EplUE2d1dPbGSfr6/KwJ0EMqUUkJ9co5YN2SnFeQparaE29dEWD4akn/lLvlZ2xXXmlg39DrROFqhlCb7lbe4+NQ2sWlwN3eYf2QLyor5p26QTGrSO8cc/cABPlXrQLjFnsHOWibPJ8R+j9n3vQjOS/5HCPhrW1x+bIO4u4muPGFnTPrwkmZvyPQZRfHmEapqiTsbxM2hNGWdm1fvqJXmo/EsnhkQRz3JCen2zfCBY/nSDrRO6FohosoGe3SJalrQ4Ec56dGUxXMjEZGnlmiEcrIOK9QwfOMcO6tZPrdBc31ITAzRWmIvZfzaOXbWgNZsf60k/fkRza6jOBSIHmDntcDeL5+B0fhBhqoaYp5iqrA+7FHD+LVTYmpZvrCBPZ2z/aZj/4sVs5vi8LV8doN2YFne7BO8QqUBVyW081RsgbOAu8ixmSMmgWaW4couKV1HTHo1YTV5F+BmA3Y15cxFnGkvbDcBRorqF0roO/RSrHTDPCGcZuhSJtCSaSKPtQuhqEQjdq+xs/K1Nxeih0EcZIiQThVuIEWkOs2onms67r8I27PXC7Ijy/hrlslHPMlMQgLL/djRYUQ7YmfSODQ7XugwmRSGzaanutmyvB5ptoRSJi5VUtxLMSmp3clU4foiOm9HUJwIijG/KciJXXT5IlMRqyedGL3a6QTmXeigqRT5YwlyNLU4Lq0oOfW2x841+Zlcj9qxl2T1CQzeTmS63irYrciPpUDuHUkjZx+nlPtRMiyySDuQps4uFPOXWkypJNDPKeqXKlhYyhcaBh8YqhsOfZmQn2gWzzvydzN8L9B7IAL49FKaR9+D9pUSfWtJ/NoQFSG9ULQvlUw/3qI8DO8q/FlGvR1xvStNyQqpiDYQraBRulVUB4F6S46XzyPVDUc7jtgKevc1vhOp22WHMFRi0WtqqPY8REWzJYGYyYVZo2IrhzaQpqW8LnQ6U7JOQG9HUcIYG4VZSuNgl4pqV86RVQPrOpc1N5DzkiifRblO71NEQpeZY0vWlr2iv+qct5zCF5HeI8Mq6b4dBmzVOb41rJsa5WU7iZCfKUFiakM7S7FFi7WetLOqzVKxs13b8XZOVd5rnBeEQHcUrLAu7FeXwatkdKMCAUXVJswXGVni2N+c0U9lct92lKyAog1Xr7WiUs2rjLJOpWgvahLtsR1N60khObDOLXlye+vW0jpD01p8UOtk8qpJ1k3JKptjhey0zlAuUqYXfeomYVlm69+3zgg9q0xZzjJxAoyKwbAiTQWu8k53t0fPaFx2t0wnQvRu/1SNZTLtQVDENMhAptTSfLRakGwTJSvIdc3H1tXzmzPRH8YrBtnT9XQ9Xb+D9Xu6AfmZn/kZLi8v+fN//s//to95//33+cVf/EW++tWv8tM//dP8g3/wD/iX//Jffgjt+CN/5I/wEz/xE7zzzjuEEPj85z/Pv/k3/4bDQ4k+Pj09xXvP/v7+h157f3+fo6Oj3/a967pmOp1+6AdgnTwONFvZ+t9xIZoH6g7q9Z5YVcS6EberpmXx0gbJnWPWyel5JsJykMYiNYJaJAlqUaHGIzi/JMzmRKswxxeiL+kam1hWEjo4HKB6BeW2FkpY3SVh3z7AVAG9qMFadn5jsbYpVQFCqmjHKeO7DnU5JZ04GA0ExQHaoQjnVdlglg3LGxJ8mB7P5HWGPYiR2YsjaTzShNjP5bMbhZnXRKOox51gc3DVKGYnNc2GYfapA2niugR5tIzPlAu040wakxXQ5D3twBKtxReJfEOMWVO32oEmOS2lyetQkGjt2qa42k7JLiO3/r3i4FeWIm6tFf2HNe1Wr7OtoXOGCjQjK7qPTmXqtvqEzJJeNvitPtWmoR1YescSqHj5YsL5K5bJc6ZrKLrR7WpFKQCD0ygbiF6md77VktAeIPirfysdu0LGdInpQoXyhQhz3TCIgNNr0bx4utAtCd5SAdCRZhQ7EXIX6FZqEaGnkj2hWoW/1xc0JBXNgi8kgdzOdefIBLHRuH6gHUWa3VYC97wgF4M7hmov4noRN/br1O8VqqGc0K3CRkv2zIxqz5PsVGs6UdRRkIduAm8X0jRlZzLZ1K38tKO4nk5HI8XxSmBtOtvg5TXRfYREXgcl9r8gjXc7lG0MCWJNbCL5Y0V2JnqF7ELoZOm5od4TgbaIn7sJ+/sFdWcuF7U0B1GJDmTVhAlN7qrwaYdhLcAfjZfs/FrXLFrQg5biUFPe8JiZod4NxFTcoaIWOlh2qlg8K4WbersveS1OUd7w5EUDS0M6gcmnBXHLj4WeN3x2gik7lOPZcm1Pq59bYJaK/j29RizSC2mm/NCt91tIYfFCKzqXzkGsGUfqncjoHYM6KEVDFASFSGayn+yLM9ESPRZtRnqhqDdF5yHHSpFeCurmt1raG40gNqY7xweediQ5Km4g+27ldrTKmVmJ3pO5Qtdy/vts1ZRIY6F8Z1Wt5HsdDGsNi24UzSiur4luELtGhPWQxvWQfd25xgWvce7D1azvmgujo6SDqw9rPlYrdIW964TdK4H3Khl9Vbj71lCk7dcHDwa9Fo/7qPBBrVPRWyeNVZa2azctYB0G+N9aV8hHt2ufcOBai+876tgK7VBKksv7AwlkSRNHr6jXj/Gd21+zSImtAR0xnSWvD5o0dRS9RuKCdBAb3y4VPXpFvUwwJmCNIMI68dBq3DzpmlsxFpGhil6jZFGD2axJt0tiEPRtlSfzrV5PZsV8I3+erqfrm7F+Tzcg/+Sf/BP+2B/7Y1y/fv23fUwIAaUU/+Jf/As++9nP8kM/9EP8xE/8BD/1Uz+1RkH+4T/8h7z00ku88sorpGnKX/pLf4kf+ZEfwZgP3yR+M8oSY/xtkReAH//xH2c8Hq9/bt26Jf+hNYRALEt6v3oHtbdD5xMoNKyqliBBY8QNy3vC6Tnx+Rv0//PbEALh+ZtdUSxCcoxGZRn27rFoR1Y0riKHIkfv74kIer6Q58RIGORSrDet/JmlHPzCJWp3G7Vs6L17iX5wTPHGIdx91OHiSBaCIODk510g2dESf3uPetPChdCpYi/DVI7NLzwWmtQgI5040UZoTXGK6DVWFjAx0u4OiKklbA0p3jlBzUr0rGbjraUgKoNEhOhaYY8uGdwt0S4SexmLV3cpX9rtyNOa0M/IDmf4rT69ezMIoMuWkCj0osIsRKyuljUxMdB6xq+d40cZdloLPatx62PmhwX9e3PyC8/wjXOSwwn9B/DMf1iSPLzALCW80Z7NUTGiFxXD92e4YQbOE6yYBvjCYJaiv8nPPa7QlDuaOz88pNqF5bXI8gD8IsF2InNlu8JJi+DSl13ir45gA0ojgYjI1C604ncv3vgiTlcKSVSPEMeOMPToWpONa9KiRaWeVUK4nWtUkAYjJB3/vScuUCHpHJI6/UgyU2sa2qoJEAGONDDtjXpNeUnOOwedWpEdJYQ80Iy7tO4dsazNz5SIejsFW0hYF3gAapJQTnOICv+oR++RiJZR8ro+l4l4vRNJJ/Lc6kDcplaTa92ypnu5wVVz4nuQTWXCbhdcJX/3Zb80L1T4nqSXZ48t9QsVvUca3w9U+5HqRks7DpS7st3FCfTvmLWTWMiDZG5MO5euQWT+rCfp6B/JTEvooWatOWlHkeQ0EQrVVBHzwOT+mPOPQf7Y4D49J55mNGM5JsoryXBpRAyezAWpC6nw5ZPXe7RjcX6Kt0uSS4P65THJVLO4ERl+JQMdWX6iIplomi9trj9z8mZBeqEku+WDPtrB/JlAeqmxC1g+50jOLOPXEpoNycTRLQzfTHB9QRdWCEcyUdQbwMOCwdsJbhjpPdAkpTRw/q0h+aGEdLZjqWzzU9H/pDNoNzzlDdFysLAwEwG97wWyYyv2w3M5B5NZV2wi52XoRPEroXo76M7pzm1ORaFTEQXZUE4csMzqOHZp7CEVrZFPZSCzou0BnSBfmttkLrbR6aV8d7PUsVhkJNavkY11qGCnsVihHt6vvtere5qmrBPK+oqKE1DUzlI1CU1l2dqak1rXUbi05H9ERWZd1wCIeHzZpB0iIinhRS7DrxVCsRKrd7en33KtLHyTLj/E6PBE4jlr1GSldZHLaeyE6bqjhaknAgcjifXkactovGS0taC3uSQt2k5n4unlzfp9VbdvVhS1trH4yhKdplqkzKYF3hlpdHoeXRrCZkvoe2ISyR4bkpkc55BIo+9rK0YgF6m4n7WCsD1dT9fT9Ttfv2cbkLt37/JzP/dz/IW/8Bf+m4+7du0aN27cYDwer3/36quvEmPkwYMHAOzu7vIzP/MzLBYL7t69y5tvvslgMOC5554DYGdnB2PM16Edx8fHX4eKPLn+1t/6W0wmk/XP/fv35T9WAvimJdYN8fAxqt9DbYwFBelyPVRiYWMEWqNvXENfLkS8Pp1h7j/m+M98nNg0xMm0a0Qs5BlYSzw8JhyfMPnOXSnw6xp1ciF6Ee+JzqEfncrzbIeaVDWhl3D6uT0ACffLM+gVqI0xlBXHn+lz4z8tGDyKpFOoNjTTZxMOv2+Ezwyj/3KHy//peWhaVOtJDic0Nzfw4x724RmzZzLOvmuT8uaQrTfkPSef3iedONw4p9pO0ZMlerIkDgrCuM/Fp7exF0tU1ZLev2DxwobkgiAi9OLREmKk/+4F2fGC6rlt2mtj8IKC6LIV2lViiIkhmXlCP0fXrehCrCTLt/sDUAp7Icdg1cjEXGhbZlFT3uhT3J/jtvqgFPu/cCL71xhBiYzG7Q4lG2WYQ4yYpcNv9QmJQrWeybMZ05eGmElJcX/O+LUzyn1kIttxzqOVALXUegb9mqRrEJQWXYpqxTpSOUVsNCbxUli1qyo9XiEgqyYkgrYBu1Fj8xadOcLI4ZrOrlhH/CAQstAJogUlCYU4VPlcJubRdNoEI/92vSiFfyG6kJhIEZjMRbSe3RVaxUooHJOIK0QDkp5rMJF6J5AsZGpcHlyJ3H0qU3FxIpPGIGowZwmx8LBXUe7Layun1knXpurcizJpXMxcM3s+dq5WkfLVinrXi6B9KsXH8nqk2o7Mb4oWZIW+KK+EMrRUpO/nhDwQNhxRQfZuzuLllvTcoCtF74MEO9f4TLQNk5eD6BasNDyqUVQ3nTRzjRSmYvEp2+27gEZfRNzQS/jihVTEUQs6MzqYkV50IXufmtCcFJhK4W5WFEddRsvSkp1pkjNLfavB9SPNRiB7kNBsRNJzjfrYDPtOgS8iy1uBzU+d4EeO/A+fQOHJ3s1xw0i9HUimmuZWQzuQhrTaE9TA9Tv3tCiNmr00hDQyf0aQHLTsh+XNsM4KUZ61DW87FqFvsynUvmhg8v0li5sB0whtqtoGgqBE5Z4Uxi6H5NJgJ50+yUPxWJNeKIrHGlcIahdSadyjkiY6mWppOrpt1q2cM3YpVD1TC9IG0sw2m5JZYhppesStTCyUk5kggb6I6zR16IwZ2g7pGcGTwZXJDPIHCbPLQjQgUbQW1viObiXuUGlnQ2uf0DjoJ+hWifUiAg+CMizKjPk8J3jFcFSSrBCEznmqapMPZYNoJRqSXtpQ1gmzWUFWtIRwZQ38pEXvk4nsuqNlha6BcN50jYQ8d9VEWBPWzciTS1Abed26Fqvv4cZyTRN90ra3ahLqViyOrfWSgdShR6uwxFXDNpsVLJcZfibOZDrzRK+JTqx9Zw+HmF5LHDipjBTYmZgurGiZgFBRE485zAQFjqyDLr/Vy6O/KT9P19P1zVi/Z8+sn/zJn2Rvb48//sf/+H/zcd/7vd/Lo0ePmM/n69+9/fbbaK25efPmhx6b5zk3btzAOce/+lf/ij/xJ/4EAGma8l3f9V18/vOf/9DjP//5z/O5z33ut33vLMsYjUYf+lkvLVQnYI1+xNMzoUOtEAH7hInZZEo4OhYHrJvXCLM5+z/9Tmera1H9HtPP3JDX7fQkuigY/+IHxPlCHLNCINY1Ks+oPvPC1ftvjqV5SRLMrGLwqCXm3XtXNZyJngPv6Z0E3CBh+wun9I887RA236npHUfspIY8I7tw4D3tjmhZ0geXKO8J2yNcpihOPSFRpO8+BqDc0dQblpAYisddgu7OkHq/T33QJz9ztDt9YibISf/dC0EQbPfZ61asdbMEVTny+5fixmWUICpKoZeNICxbPeys4eKT0pAq56FpMfOa5PEcP8iprg9BKcobA0LeZZjMaqLVFPcE3TCTJTGxRKsxlyXRGmKR4LYHmFlFclF3OgnD5JUB5bUedinoT7QwuFdS3xxz9Ac3pJmJMlX1RSRstfh+QAXFfJZ3lpMNykS0ieiNBrtVETvEAwWuMejMo4zQqUwqSc2xc5vyrSE4LcnGJl5NM1slSIkTypcatJiNhvrZRpoALxaVEp4ntCNMXFtTrt4/JOLoFHqiwUgutdCrgjQRyUx1Yl8R8q7sUX0GdqpJz0Rr0r5Ykp90nPnute1Co53YyaqVQ81Og2o09k6B23QdVUqK2mAjvrjSbSjfWfemAbSgLKNfy7FzTTuI1FsiRE9mQunJLuR9yz3RgCgn1KxkDvWuoETmTMTm9XZX1G96tBfa1ooqFRKZjgcrxWc0cnxVpWm2gqRzL7pJeSnvqRslDcOGE3ctKwgIgHaKZhyZHA+EDrLZUN0bkp5J8ntyN1/TyopHBldII5PdS8FEQt9TbwXiXs3g950S3hxChOJQ0XugcT+9K9ks/2UXakEeVAvFzRm6hfxOih971Edn+EEgmYqWxzTSiPTva4rHirBfS6DiJ0sJaexMC1Yi9WihvtZSHzgJlbw0gpK9OmX5kQbzbkF2rmmHgkAkC2kesguFLWV/xi5rxdRINs9Ws24clrc8oe8JA3EXCyMnTXEXjmmWYhVNd66ANMrBdoXoWPJBghULYXSn9Sk6FE5157yVY5dMxKJbt53WZBAlM8ZdGRDUG/IjblqQPMqIj6RgflK0LQ5S4Lx5AvFQTwi3pflY0bR80MwWOUpFNjcWjIcl1ojbXNkmkmDuDVoHamcpW8usymi7ZqHxhnKekRcNWRdmuGpSFsvsQzQw/ZtoWNIQXdnkwhVF6DcL1uU2J4J6rSLOi51ulrWkiVtrXcIT+yEEySGJnTvYitKVJn5N4wpRMbssWJz38JMUN08wo4bi2kKyjBJP9EoopoCbpXJCqoiZmbXWx+dd46lEixUqK6hHLfotn8txfLqerqfrd75+TzYgIQR+8id/kj/35/4c9skiHUEd/uyf/bPrf/+ZP/Nn2N7e5kd+5Ed4/fXX+c//+T/zN/7G3+BHf/RHKQq5ovzKr/wK//pf/2vef/99fuEXfoE/+kf/KCEE/ubf/Jvr1/lrf+2v8Y//8T/mn/7Tf8obb7zBX/2rf5V79+7xF//iX/xdb7/72HPEF28Rqxr/6rOoXiEIRJpchQ1qjXtmX+hUQFyWqCSBYR/OL+Ejz0ouCECIxOmM/gNBAlSWigWv96AUzadfFKSjkITw2Dp8YaBtBVE5OpEmZbFEzSuaoUE/OIbTC0EAOi0KWUqyCOT3LglZwvDtS67//ASfaIZ3luiTC5avHlC8ewpKkzyWYEKhioEqW2wV6b9+zOHnLOVHr4EPjD5oGb4/w5SOkBmWL25DgPzOOelFRfFwRtSKZm+4bkL0tJTXdR5VNqjFEj1bClphu5vrVkG9mTB/Ycj8I1vMXt6Q9PN+QnHiiFpTPbOJ3xoSjaHdG2AWNfnhnKg1xYMZZlKiGg9GCV2rcZ3epEMNaifZIzGilw1mIsdAV40ktLee0ftlV/i0EAKbb1bY8wXlbsLery5YXM9pNr1Mrm2EpRGRpAfzIKesUvLEYRIJ+Mp7DdYGTL9FD1tsv5VgwsqKJeUTN371pNuN07hG+OGSJRJRfRGq+8pI8REUvtFEp0SkHp8Qcnf5CMHI75RTIkLXiK4ggl7KBL4dCwKy+VWNdhJGF41MqYOFkIt2RIL0Iu1YJvT2g0IsVJHibkXZWQl8XV8KSbxeuw6ZuZEi164er9Z2q1F3+SMt9O4byluiOyn/wBz7whzdKHqHkmWhvRTHPhWHLID5x2vSSxHAL59xpKcGe24ld9EpKep3PGar6fJKIslM47dadKNxuy3NfotPhT40+EAzuKvJTjSmgnIvsrgpxbkvAukUlA2olUtWF5rnr9WSst4P6KXBFRF7PyckkfbZiuT2nGQmlKdkKnQ5FaQpCymEscNMLVhJ757/2s4agVg851l+vKL6YxOZ2H9mQrpdUu1E+g8V/OoYl4N7dYGZGpL/OkSXYsWLhvQC+g8Vy5uBYCB/O0c3inCaEZXY9g7ftiyvixaGiKRQA+6gQQUY/nqG/YURw6+kYo08DutMF1ewtt9dNWrthl9rONKThPROvg6cNDONmZsu7yZAZfDbLX7opamK0iRK3oqIxrNzvaZM6Vrh+oLAaC9ak2Yc1830Kh9lRdvTXibkupbnJzOhzq0oX6aWTJmVDi1YQdjsUuGnCYtlxnyWrxGEuhbRdpa4tcvUk8Ltlbh7scwoFylbwyWDvO60HB8u/Fei75W2JHaUqidfI+u1ZIlbi91XTYjpQgjrTlS+ctACOnpVXDdGq/d6cq10Iz7odUOxsuVtncE1hra1OG/IUveh564an9Clomsd1z+rVPkVGoTXQk3tt5hei7FBQiG9JlxkKBNxC6GsmoURJPlSnPdWzmgrTdjqmCaPE0zV6b36ch5+O6ynGpCn63+k9XsuBwTg537u57h37x4/+qM/+nX/d3h4yL1799b/HgwGfP7zn+cv/+W/zGc+8xm2t7f5k3/yT/L3/t7fWz+mqir+zt/5O7z//vsMBgN+6Id+iH/2z/4ZGxsb68f8qT/1pzg7O+Pv/t2/y+HhIR/72Mf42Z/9WZ555pnf9fbb195HX7tJ7BfYu4/XFruxaYmmltRxwN45hI0x8XJyhYw4DzFS3hzQuwMqsdKIaI3vJZi7c2LTSlOzWBKnM9Ivv4/a3YaVla9WFA87mtFKwB6iPCdLGP3aQ6L3YgHctJ0VsCX2e7QDDWWFBrG7vZgTr/c5/2ifvfua9LIR1CRNoa7l75tjYmLwwxRbRepntnnmZ0suXyoo3s8o7k+FLmU1Zh7QtReEIU9ww5TsfIHppZT7CdlhwG31sVUrDl9J0r2faGb0yUQshKuakGl8JuLZVS5GuZuSzjy29CjvyR7PwQVibrEzaTBCnkrQYSsNXOil62Yiat39GcVqd1lCnuG2+uiqJWQWMy2JqRW732mNuVgy6MT0ftzDlC0hTxneWeIzmV4P7hgp6FIv4YEdV1n5SFtbztyALG9oW0tdpcSA6D68IBgmc/jS4kuLzjy+1aw98iNEJzfp4Drqlg2CqNgg2hEdccsETIQggYOmlCZDeSmahLJgRLexJZa9pjTr4MHqwGPmMl2W0L6OwvTqDPvGkHQitJSVjW/UiuxUtCbRiL4hpELlSSaiWTAlGCdaDJ9IcddsRNTM4PueqCR3JK2kCXE98FnnyjXrHHIWimZDCgt7bmk2A+ZOH68hm0viejLVkvvRQLNxRbfQ97O1q1F+aGnGYs/rc4VWELYj+Ij+oEA5aMYBc27I7qcyUb1Mxb54KE3Nyqo3mdI1HaIlcH2Z5Nebmug1DB1NIm5l4aCm+FqOG0DMAulFgn++pFlYlFeMNpZMHo5xO3Ksq2uO5NyKbqOjySWPUtptB2kQ7YbtkKKhI3uUMPpVzeTFHLftsL8+xg8jftMx/ahC91uK1wqa9/q4LY+bdxSYUlFvBXwmInFdacpPlsTzjPRCY087rVgCi9uB7NQIQvWxOZzn9D+wpBNYXIf584E4cJjTRGyWFcSthlCLHqXe7hrhVo5RdmIEieiK3nYof7ELRda5denG4IsIKhK0Fge4SEdzU9iZOJ09Of0OadfEdg3SSuu2Slv3RUC3WgwcNiLJRKbk7VjO1XQi35WQQuhMDGIu56+uWetLfN7Rsh5Y2gsLSaTeadGJJ80kHLLu6EWrfJAQ1VoPMj3t099aUgxbKie3+SsjRdUV51fWuE9a5vou4dx5Ke5X2R2r1PEV8mJMWDcdTWs7zYU4Yf1mdONDzcmqKekeE4JstyAWnVC8smgbSBKp7Ftn1tbDMV7pOaQpu6KgrahjPkhDE6PC9huUAt9qQm2JScBP0vW+VqknKAOtnPNaCe0vObOdlg10hzTapSJaOcd8lyUTu1sv7X/31v5NXwFN+AbPlb/Rr/d0PV2r9XuyAfnBH/xBfrt4k5/6qZ/6ut+98sorX0efenJ9//d/P6+//vp/931/7Md+jB/7sR/7HW/nb7uSBKYzaB0xxLUo/crFqROpty3xxi7qcoLKUuKyxO2NMCdn9F97LPdeK2F3ylragSU1RgTsdUP4yG3MnUNi6+CJJqb9+POkb9wXNCQGlDHEGAR12R5g3jyT7fBBGhGARBGLhGCUbD9IcF+M1GND78RBnlHtZQzuK9G55OJAReuIqSEkUrikxzPa3QH5ZaC5uUF6/wK3P8YeXeL2xlx+pMdmiKjGkR4vxN1LKbLzhtDPaAcWXeXoSy80rDyDRmxy19kqK3pZlB9bRVyuiLrjfteemFr0siGKNyXtVk42LcEoooeYJbjNHLNsRS9Cp4uBdWAihYzrXc9iO+pcuzvATiqacYLuWbKjxfrQt8OE9MITsyuDg2agaTa6CWnVNQ6NICDFoWI2TPA9z7IqUIkUUTF0N3gtRSem+3tQkr5dtLRlglJCyVI2ECpzFUjYiW21CcSgWVdyQRoaeV29nvyt8i6EAy+e+e22I6QdZ3zYheLJ5okQWnc8+Id9kihT4+WNSEgDZq6FnpSs0sqlWLFLGL4v2QqrHJB22E0l56IDSCaSkm1mVsTAtcanYlmbXoDfgexEGph2KLkMri/2w9opkutLzJcHlC80bH7inIfv7TK6MWX5+ibppRQc1TWHmRnsUtG8UJG9nYsIe6rkM+222AsLpSFa+dBuFMRiF9GZuLEnObOin+lLU2XPLfWex9Rm7aJUHCnKa910e+RRMwsR0hsL6tCTVGcl1qDKi/VrknjiNMfeWjB5MEaPGnxMMZs1apmQzCHerrHvFOLA1Nkmq86FSwVBGWy/RfuE0+9ruXH9nNP/eiCIwKUiJhZ2K8IsZXkjYJYi5K6ea9CXlvqaI38k4viood1uye4UomFSUnDXO0AAs9BU1x1mbrBvDeh9x4SF6eGOEvITSO9oqs2UdiznQNSKeJpR7Qu6ZFNHPc9w54m4oV1I0+az2NksC1ff9QVNi+OW6LQ00LUgIrE060k33bS73hCKFwrsXLbVVoK6hBTQct5FIxkq0Qq1MHTngtgSi3Wz63c0nRVlKwoiUu4HsjON7hr5YGWiHhL5M51CO1T4ucFnipD4J24DqkMkpDFYZYIoBWni16F/T+ZpAOtwUv+bGgXRgVyhB6umI0ZFCDzRhAiS+mQex2qtdSTde2lWYvUrNORJulbrpVms64Q8F2cuoYF2CecmrN8jrD9fXGtPJJxR9kmICvMEEkSUbXatQWmgleaG7vq2NsWoZMiCiQRnBL3MIsni6roTzYpGJ/bScU21665PT4GCp+vp+l2t35MNyP/wKwTisqT+nlfIvvCOOF/NF+itTcL5hUz2QdyoFjWMBsTzS1AK/Rtvw/O3oO6sdJtWGondTdq+FIOxs/HVb3xAvHkNdXoOWSY0L6MxZbt+DN4T0wT2d4UmNKsEgek0Kso5QTO65mXrP96BLMNvDtBlDUqRLENnGRoZfOnh1cfs56hcmpWQaOyypXfoabf7pK/fJx0NaW5uEPu5FLLeY48uaT/dR7lAdX1A76uH+P0NVAgs9/ukU0d+OMcPc05+4Dr7/9/u/UKUJmQ1vkssiz1DsIp0EWkzudn7TFHtWHouoGsneR9ao5c1WdWANaiyZfniBj5RmDaSnC5EX+Lc2rLXTErcZk/ey3nyO2ciZu+lmKln8fyY4pE0M6pxlM9vkF40HH5PQjQJ4/fEASudOhY3hIOua4VutKArScRcdhkKF4Y4MbgttzbklYTzsEY0glfoJMhzvaa9zFA9R2gMqktfVjZ2I0HAaaIHD6S9hmaeouZWptArSlOXo7BycHL9gM4UwUZCokhOJFU9pJHiXiKOUl2xa+pOsGshO9WUtxzNtiAqxaFZIyorihdKCsJm1G1ix5+vt6Q4QEG9KcJnnwFRUTxW+ExoWatQvxXK4Pua/l0jKEyfjs4kDlv1niGpYfTllMePD9h6D8qHm+gcys8sMe/06N2zRAP1VmDwxZzlzYjbEIcnUyl6dxN8CunU4HODnYPvKcLA0ZiI2WrQXUK5z0Wo7YaSNJ6eGcp9cY7KLhTl9Yhq6cQSoFpF2GqpzwrJWnm7R70ZoedJHqVCG3m/TxgGfCfI1fcL7Itz6knG4O2EaifiL1P8M7WE3z3qMXxTnKnaZysGowr1pQ38tEf1XEPvrZTJ1w5or0WyZ2eoL4ywC0X6oKD+7IL2LCeZQf+hIRpBMha35FhoJ+Lq4kFCO4hr6tjiVqR3qKh2IKSR7NjiniupS0t4Z8TwWLH4zgr/YmB2nold80GD6jfU8xSdBNRpRvJWQTOK9E5WBgidCH4q5xNI06BcZ0BQK6qYgO+sjEPn4taPa4cqW8qkO9oIiItV2JRGCi00Q5+ytm9WoUPvOoG5fKG6a0oO9XYkO1O0Y9a6l3QiAvrsTBpzQV9Y206vjA5WiE9+YnA9TdNozGZDs0hJ+41QkFRkMZehh808w+2F2M12jckKHfjNAYDyGPUhZ62VXmNFyQLWf66QCuBD9KorOpVU5UqBWiMUrPUbq+DE1e9ilIDFtrUQxaY3T1vaziErRIUKVza/MapuOwNGR7K0XdPAiqxdNzZGB9rWSCCrV2KIoSMUkiujBi2xtFAE+TMqcCv4yUDhUQvRnZW3HHphOhOIq9t0tNLcqiCNJt8OIvSovq6p/Ea85tP1dH0z1lNs7dtxXd8Da8nfO4UQCHtbkucRAnprUwIHjYH5kpglxOn8iYl+XBfZsW4gS1FZyuUnttj4uXcgz4RKBdJEPD4RatdsvqZVnX7nUP6/s+5tPvk81a0RPDxGHZ3K6zsPbSvNR9ohHsuGxXfdhrYl5BKCuHh1l3Tq6H0wJeYJ/sa2IDnWoryn2R+g5hUomD7f4+j390jOFvJ5jMZnhotPbJA8nguaYA3XPv9YtCxtgC6vww1T6rEiv3NOs9PH9Sx7v3RO88w2y1f3ZBs75COMe8xe3e6KU6hHgnq47uaiPNiLqnsPjx+mxCIlDHKWL2wCUDxc0H9Y0rs7o9kdsHx2iKpaVNmgp/JcezoXlCiRtHqcX9O2evfnPP79Q1TlIDFkJyXNKOGZn52x85XA6P0K3UZmtzNs2RUpXgkdoBWP+pBF6q0ofHeATjgbO5RC28BqLBe9JnpxvVJGrJFDbcBEYuhoPVqaD6VkEogRkXpbW0zhZJLdZXuEIoj9aJDisdmR6Tu+y0sIIqw2pbx/vRMk+bvbpFWORTqVAmvjqx1NREMzEr2Iz1hrOqIRh6p0Kta01XWPCpB13HlJBhdtQ0il+Ky2I3Yhr98OOw1KA2ZmyU4N5YHQj5odhy0V6lpFM4742lDtR+oNaLcc599bU+2JS1M8LIQ+k0jNMrirmb3qUE6RPUq6hG1x7VKhy3goItVelHDFk0QyBe7n68yJsNUSrehV3G5Ls+1Jppp6V0IKieC2nBz/USuHdN4FRQZxkfJjjz1M8XnE9wTpUoMW834BEa5/5hHNaYFeGOYvt5hGERMJXeNuDz/wzF9y1PsOfZzBz2+IM9ZeK2jGVmT+aivN36+NaEby+asdKH65T3pu8AUsbkD2AyfMP1URjTjhKS9IQjOOHe1LTtf0UrG4LZkzdiFUPnO3IHuUkMykMYmThOSNHpuvGdFkXCa09waMfy1j+CuCplQ7gWjl/NCus7YtFc1GkKa8Y+msEuR9BvmxJuSSBRLt1fc+Gmk+dMO6WWqHETeM6wZleduJ4YHvzqfOGcvUHTXMyO9Xr2k63ZEgbkH2x7Zsb+9xh9yNY2eG0F2aXSdo19Jg52fda1WdjfJRLoOFLvdjPssJFxlZIXqNVTr56pZwVfRfOWWVVUrbOWqBaDFW4YZPulatnrdaYtv79aGHT65VbsiTDcEKfXkyoHD1fG0CadZiOjG5NeFDKEkI4qbVOrPWrGgtGpQQFaldOWRJgzKZFRLOGqT5MEmQdPMISosBhx60awR8pVFTIwnjze6lZBdyvdJzsw68jFaQ1GjorMXlehaNDFqerqfr6fqdr6cNyLfhUqeXqJ0tmM1RaYp6/z5kmWhBbKfpUIpYlqiHx0Jn8h60lubEBaI1ECPh4pLm1ZuSGu49sZ8TV7oO71HGEF66Tfk9L1N990vMv+d5hvdbuH2N8rtfpP7OZ8nunVPuSpMRO4terIEso3lxX4IB25aYGIr7c+LGAHtZoqYLivtz0sdzVONodwfoaUUc9fH7Y9TjM3nduiZ9+5Dx23Nu/ntpcPztPUI/w9RSaC5e2oDW0RGXwUd8rmlubKAbT3q8YHi/5YM/fYAKkfyNR6iLGek7h9ilx+2PCQdb4D2un9B7tOTg50/YeqOVvIeBwlYRW0WUjzR7PVTjiEZhJxXl9QG+sJTbhthLJZ8EmL00Jjkv6b8/IfYyYmpQMRL6mRyD1fKBRz90jdDrghcbKehPPrshtI1RxvxGgjmbM/7SY+xcKphyWwrpdiCoR8ijCGeRRiQm3WTQRgn/m3RCc8TZSqpu2YS44mErUJlnlfisEwnhyvoNadEVuCrK7624zBgbCIWIn9FyE/a53HRDLpQps+wQtkQK+3bcCXndiv4iTlnRRppNaQ5AqCzTFwO9+0bseocBl3PlirXockSCFHrDu4rRm0am0l0zoBxCpSvl/VZuWdWOuBDZUigTdtlpE7b9letUKoJm+06BO2iITuHGjnrfM3jXMv5SBgoWH63FrelmSb0nqezVDvTfs7gDOV71hiBDZin0NOUhnXQ8+S0xEnC9KM5XldCd9HkiGQIabL/BLDTtMxW6FDesaCLpcQKpTPxDFtYWx1GLE5Oei+1uGDvsvGsSGyMp863i3lv7ZMcGNhtBpl5aoJKIfphL/sqZpfeBRZcSqjb7ZIPrBwZvJxSHInjPP0hwGw712Qk+72x0FSwPpHGsDyRMcP7Lu+jDTJCtV8W1LruA4fuK4TtGhPE3GurdQHohNKj6QPJRxPJWXs800HtkpJn7X87Inp8SB57iuSnD//WQ8g/M125rcejgYzMWH2kob3ra/ZaYBykenRT0+amgCtqJTW/+2GAvBbFyPaHVKL+WJpDMpNAUClfXaO8KldAu1FqwXm9K8Ro6RET5Tr+TQbUnzmp0uo7+fS2J83lkecvjcrGW1q1YOYdMmuxk0u2DSvZxO2TNgsyPhVpEq3C1pZ5nmIc5Zrtea0GAdTbHqkEQoXgn7vfiapdn7VorsQo7hBXl6sqt6uuDA7tryhM192/12FXj81u5Xsk26bWd8EqAvvq97xqsurXUjWU5y6jmkuC+ek3dNTZKiXalaSXrxF3kch0MMlyKEUy/xWSeuEjWFuRURh6Te9LrC2zmoXNEc7kcA3HI61CfRoJMV5kgIQWfdtfBb4MG5KkI/en6H2k9pWB9O67RkPlHd+j/py5DIk1ont8j+eoHIjj3Hoyh+eQLZO8cwd42qm7AOeafusHg1+4Ty1IK3SKnHVqyM9FjcP8IVeRE7/GvPotZ1KgQCFnnVhShGRtcMcYVugt522bzN85oP/EcyVfuoNKEuL+NH2T4VKPGOf5ggKk8dlKhTi/lc2iNPr2kfuUayUWFruQGU90Yie5hY4ypI2FvC31ygesnHH/fiJ2vNegmoDttRz1WDD+Qz4fShNEQfTGnfydw/D1b7P3SGWhN9mjK7pc3OP9ozsGDDNoWd2uPdmgpHlYixN/dwM5q2q0CczanePOIZ9+1PPhfr9Fe14w/ELcjU13dDMubQ6otSzswbLwpzZuqWzSQn9RgNVRyUwyDHD2vpHkpEuh0/X6rz85rleglQyAMcg7+0ynV7TGTV0b0DhsGj1rCqODyo2OigdNPR5776Yr7P5CLqLtbMQmYyVUQH0Hhxl5uuK00FEW/oSpTAhADUlV5fZVHEEElUVyrWo22AddYjBVbSqLCl7bTlHS86VxE9tmhhMKJEF6jS03IZZQYrYi7fSEuVm4YhPYy19R7so/M3GCWinIvkl3KzW30jmZ5TZoDsxROeLMZyI819U7ATqVw041idj2QTvR62rwq0oLtpthJRD3MWTzryY+NUGkU2AbQorcojgz1ZiRkgd7bKe4759RnggzaC7FCRsHwfz7GB4V6a4fkfka97+j9ekG9JXSuZA71JtjHsk+SqcI0ErrXDqWYdn1JWzeVYfZKK/bApWRRkELIAn4YSU8t+bWW4qOnHH+wJYXjRoM6T/FZxFxYuFFi7xXYudDSXD8KPa9R+O0WPZUpb9yref7aKXce7sLcohuxrY3TBPPSDL42xBSRkEXaTS8F9K2W6AzXP3rCnQ/2yC4NzQb42yX6vqAN+YMEf3eMKWB502OWmt6hotxD7INv18RWk54kBAu9r+SEDNxnZ7RRob86wC4VxWsp7VCK9GgjybnoddphpL7VQqMpHnSi/sea+uE2MQG1G6jORhz5MekEmpseet05+9UhGUJtAkM7gOaVkvYaJKmjLBNCKQGE7YbockylSGZCG1rZ6IoepkstryXJ3C7lcT7XXZaMnEtByZ8qXGk3VsLk9lqDOUmot4II5OcdqrO2X1br3JOYCr1wlWVjGoheilzXk+OcdMV0vRVJZopWG6ikgXMDjw5QLlPSzK31F1Kkx3XWxspxSuY4YV1crtAIaTr0mrb1ZPG5onCFJ7QfT6If6sn/54q2ZZ4Qsa9ec/X+Ii4PT6S2gw/m6r06C/Asb8hGTr6LT1DJVqiIb43kGTUd5au7LtIqcAbvNKOdBWWVoEcNSSfk9x0iqyYJPne00wyVBNpNoTomE9Pl0wjNKiR011C1HjDAasjytFB/up6u3816ioB8m65gr9R9saxI3z1CKS36C2MgBLK3HhHOL1CTGdQNJAk+UcTRALW5IQiH0rj8icMcI2yMUaMRh9/bR1Ut+nTCYs+w3DGUO4bljpZgPtXxkQuNH/doR4m8f6+H76eERGMqj248s1sJyfEMNZmD88RKtCkkCfMbKfpygS5b/GYPFSJ6WVPf3sA0kghOnuGGgrIs9xJ0K1Np3zNCc7hYrveHnle4/TFqUdH2EKvbZY3ykd4HU9o+1LfFJzVaTbVlqPb76K7Zqnd70ghYI4L5GNl6o70qIupA8ugS1XhUh7SAoCSq9cyf6Qu1yihCanD9RPQeWhomgJgY3CgjphJg2Gzm+FRT3uhJ+OG8IuaW/N6EzS+ekJ7Myc5rYmoxTaT32OEHnuW1lN1fD+i6C5CLYAqhlfhCbE1NqaRRMCKoDLUV8WlAKFeqE1oiRYLu3K2U6aazQXzwg1M0y0TyQVzHnw9KKFutJjZaUoJTcakiEeH0ipagWqE7rBqjaCO6Et2C60lwoqr12r5XO0UzFIpKtS3FvM/EEtf1pPirN7spJnIuVnuR3kNNs+HFIaqRibF2KzqYOB25DU96YTDLjvu/cqTuNCe6FmTCbNdiIdsY7GZFrA3XvvOoe2zk6M42J/c35fMC2UZFuR+x5ZUFbLSR7FQyQuoDJ8hMAs1GoN6OJBMobzuW1yO271DDlmbHyfFUoGuN6bW4vhSEu725iMUdotFxncA1gLEBNwzCTb/pcAcNppL3ptGkF5pmy/PijWPufvU6+iJBjxviTi1oQc/jnaYdxTX1SJcavTSE2tJ7O+Xwl26QP0w6Olcg/2rB4AE0e452FClvt4RnS/KDJboV2huAbrQEHD7u0FIr7k/1dsR8cUh4b0D1XEO945m/4HEvS3dulpp2S2hs6aXCnCbgFOULDW4YqHcD5UGk2hU0x+81tLstaBi/bQSRM5Hm+Yp6z7O4GZl9xNFsB7I3Cuw7BfGrQ/pfzskfyYcefKBJZoL2+BUK4a7OI5Cm1VQiaDcVQoXrRXwK5bWAz+R8yx8LSplO5VwWPUiA0uD3WuxC6JKxa5DtXK+RFdcTqld+uqKpScNKlG1pu+9Hdi6NkG67ibyFUHjsXEti+6glOE3sUAOlhLYk+RisEQnT0ZbkWkDngn6FTqzcsYAP0biepEN9GPXgidfvkJMnkBTgCSSF9TasqVlPhBCumqBVY+S7lHfTJajrLrRQqfih8EVXGxmyeIVKg6C7PQlqpBCkMxvXhKgo8habSteQJY50r4QgCJRSyHVsZtGV2HhLiKQ0tSv0DLrryRP7YR1e+S1eMWrCN/gnxqdl4tP1zVlPz6xvw+XvPiCZ+/V4SRlDuJxIbsegh8oz+XsXKhguLiXtXCl6j0UJFwZFJxTX2DJc3TWUEser4NEO5h/dYfnx66C7G+Cw4+7XAeUj6VwK7eVBRjvQTL//RaqXdvG5iM5ViDQbGVtfmRMfn8KylG3znnh0AnVNMhcHLb2sIUbytx8TBhnZ3QuKDy6pnt0ibPS5fEGKAxUi9t2HktfhI7u/csb0O7aI4wFYgx8X2NM5ze0t8ot4NYrzgZha0ikc/f6MOB6Q3D9n64tnRKt48EO76GVD8e4pjz+TrSldfmdI790ztt52hERRbxoR3guRmd7DJb3HLVu/PkG5wOi1UwD0ZEn+YAJaYZYtzU6fZjsjZgmqcZi5BDaaeYsrNOmkwRWKkCXU10f4QbbOJVEuEFIj1rOXjuxowbP/Eo4/oyi3tHCUA1B4wjyhOIEbPx/Z+qpYflJ2dK/CozqXHJOICF3piO03ZOMKm3r6ffnTpl6oVpk8PnoNURGazsLUycRV2wCNRjUaXSmijthLg5pb6h1PsKLRCBsrFMgT00DMJXDP9wN+6IhZkHTyrrCzi87OVnWBbD3h37djEZOvkqjRT4TElZK5kUwNoSfbXW92Vqmha2aut4K+9KXRoaPzrGgwzUiCCIMFf5HR7Dns+wVukZI/spz88jVCJvQgM9eonqN3MKe5XZP+ykAcv1Kx5QxW3nd5M2CWUNy3JAtpOOxCqDrtWOx9TaVQdwvUaYaZGuLY0W45ycRoDZ/77JtUVcI7x7tc254QrtVSSCYSWugHgea0gJ7DvVCSjARtcPsN5UtCAXO9yKsfu897j3YlA2Wh4TSD85TBfRjvzGlnKWGrIfQ8+ZEWc4OueFq+3KA/NqUdyXELI0fznQs2/7cHqEqTnyqK+wn+MqV+2Jfjm4MbS6GXXBjqPbcOcNO16H2WzzrcQY2aWmIW6D0wxKMcN/K4TUdymmCfneO/Y0HIItmZIb+TYubieKb2K3SjsAtF762M4q7kNCwPkFDEi4TeV3PSM9E1JWdWgi8TCYcMry6YfaSl3rtCEttRoN711PtOMj5qCZb0qZyT2blQB4MVpKYdRYrHnXbpQhCsFcLlhx6fCTpBBFNqYhowxwm+Fwg2Uu872uuNNOhBzAfakTTv5bW4zhnJzuT9k4VsT0i7rIlWqGA+leeubIaVU6Ln6ix4vdeUC0l1XF32fVA4b/BBf6h4N+v8jNBld8jjV3qNlRZjlXzeuqsAxCcF6k2dUNeWtllNH1hTup5sRlbakitROWvUJLF+3cTEqLDWr524VnqPJ4MPnRfxeYyieVOJlyZER4pBzWB7yXhzwfbBlF7erJ+TJY7U+vV+UF7hd1pcY1CNiMrNUpOdGJKpUDdX7ABCZ1ihOhMOy9pmfDWkeLqerqfrd7aeNiDfhsvsbuN6BnV9X9yl0kRE6DGyfPVgnQvSvLiPslZyOJQijHskxzNCP0O9d0+agGVJ/90LQiaoieoV4oo1mTF4GFjuSOHqEzqnKrnY5qcNww9K0qnDVAHtIm1PMXneML2dird/iITM4Ppd6N6gf5VHYq1YB6cJ6cyvtRvNOIUkQZ/PROReO3TjefADY3wK/ePI2cc00TmSsyX58ZLQzxjcX+L7Qqsyx1PwnqPfl9M/6kZSdS0uXsD2awue+dfHNDt9lt+xL6LC84attxwn37MDWrPzuqN8aZcwWCnP5Sa5+etnsh8SQ8wTYp7QjjOCVTS7PU4+uyXaDqUkHT5Gkk7jkj24pPfWqehThgX1To5qHLpq6N9fgI+M3poCkJ4u8bmRNPUiw230MPMaXTvsvCX0EoqHM178/8xY3BCef9Sg5pbeXcuNn7tg+KVH7Pz6jN6hbHtvVGIK2R/1LJPE8yRgM8/B1hTXGilOqpRhvyLPWtF80IlMhYmCskGakoGkmvtaXI10JUL4mCB6EC9NAgZiFmBpOlpUhFaLj36HpKhGQxZQlTQxKwHvSiBe7keUE6pJdiava5cSdkhQgnasAuAqKcDyQ0tIwQ1FVO+LiOshegkj6Eg7FPvUtt99tyroP1plM0gAJoXHvVCi5obquqO65iAo6ust6vaS7L2c5p0R+XuZBA9+8lKSxacKu5RtiVlgeTOs8yZ6dyz9R/IeykPvSOhYtpR0cBUhu5vKZygCemL55V96lVs7F2wMSk6nA8YbS0G7Bh6GLWRBbMmWFo5y3EWOmVn0WQpzA2kg3Kx4+wvPEKbihtVea7BTTTLRXH7CMb3sYfsOSkPvnmX5rGP7Y6fE2yXYQNprKI/7+JEjPzKY8wT9dp8PXr9O6HvavhTiyiliFiT4sJFk9VAE2m2Hncj5EpU0Ie1A0t2zuxnJVGPmluUNaVhiEskeW9y1mvj6kPyX+6SXmub5iuF3n3DrU49ARXq/VhDSKLkiudCjfN4V640mbLXk339K8rEJ2a05/tmSejvQbAT5HF/tkz1OMAtN/UzN8iASR4K64NU6pNCnq/RyaQBW4ZW2Ym0LvQqjA6g3pOHIH1lcP5KfdbqRBWSHCabu9ANJFA3PtLOGbkX/I18+0Sm5nlx7dWdb3IwESSPKtTmdiEZEBUHd0mNLSMTi2vQcOLGvBUhyEaK3rV1nYggS8fX3G62EomU6ipTuEtRXyEWICucMy1mG1kEai44KtRKBBy9UL1TEO/n/trTr8NIQ1Rp5AdZCd7NCaLlKeReLXzr0QxAPSX6Pa52I74ILfWuu9BwKTK9lOJK09zWtbK1nkYaqcZKyfnk2oJnK9V+v9CcK8hMl58BUxP/ai4HB8mbszCKuTCgkR0aOV0i+9RoQj/qm/DxdT9c3Yz3VgHw7rrph+Mt3IM+IzcoON6C3Nih++W0AVJLgCkPaK4h1g8pSqu2c7LW30WmKunmNeHiMylIef98u+z/7AVFr0VEYDVEzfu2UxUtb5IcLwsvjDyXxLq7nJKXQoMptg6kjUYlQMhqwnUbCThqydx5z98/c5vb/+75YAxsjYX91Sxz1yI7mLD6yjXKR2a2E3nsKv7uBuZiDUjz+rDj1JJ02fvxe5OhPv8rer80wjy8BaJ7bxZSd5S9AWTF4FJk8l1C8r0AbsAp9NoPNPsfft8fezz2U3I/E0owTmoGmf+wJ4x527kiO56hO0L98aZveexdEoxjcq7j8jjH5mSTC6ybQe/ccv9lj9wtzjr9vh+G9lvxwIcnnAD4S087ytBbkIzuvaDcK7LJFLyWHRMW4zhXJDmdiJmC1oD1a02zmpGdLOQ5Zgmo9/UMgQP2sePRf+6VGmrs8Qy8brn/+lMXNbUn3dZrYGnAKryA6hd1wNM5ya+eCu69fI2w2TGLR0TPUmkqgrehIou9EpB3dIXiNHbT4VpHMRVORTrppa25odkSYGztxOq0Up62OZKeG6ppoRYJXZJdmPU0MGVcTRBW7YEG1Dvhyvbjm6dul7DOWEgho54ryZktybrFTvXb/ag9aeu8mKG/FEamUJmTFtXc9QUxWIvCoFCEkFPc19vvOmTwckx8aqj2PajXtNMNdd5B7vIr0Xs8JIcPmUF0XKlxybrGnkitSnMByH9wgEM41dqZxfXHFyk4MugU/imTninK/mzIflPSKmtR4Hk+HpImjmqdU8wzKzoFnxxF1RBcOf5GiHdhTI9ogExm+ZVnc0qAS/Ngz3J8zOxpgzhNJby+kCUiPcrH9TcTNKdmsOX5/S7QyGxHmGVmEZkNCBJVXNNseCk9+L11T50KtCJkUJuXtFuUVg/fELcvttSR3UpqNSHPDYc4tYdzS7gTCRQoG7KVQp8zSUj/TYI5Tmm1P84zDPspQpxkXjzLODeQTxeKmFHr5qSAi4WbFaLwks45d2/L+nX0mX9nBdAiBMpEw9uh+S7zhcI0leVO0M/FSis4qs2Tn3XmcQfNdC5LEUd0ZkZ0r/Cfn1Jc5xQNLMhcqn+t11Lse0lwk4HuifSoeSQZIOw4kUy00qSySXMpxb54TZ7BkKhk+vuhcwWzE98Q5Ts27nJ/Q5dw84dCl3JVmJr3strsXRJ9wmYrFbLe86wwhokKbD1Od5Pdir7pCM1atwcriFqRwr5urEiHtSdf1JIICgapMiUHhGoO2AZNIk5IUH44HX5XnTzZBoukQutUq72OFfoSgaRtLkjq0CuuGB6BurTROqSMGi00lDd2YQNM5e2WpY7HM6PfqdRPWNJrgNDbzaOsJi5TQ91BaVBJR3bmQXXT6DiWNICp21wsxI1i5kYU8EpQ0lEF/6xuQEPmGi8bDt/5jPV2/R9fTBuTbcIWqJN68AfcOUVqjtjaI8wWxrESArhQqz1juWXrGoA52iUqR/8o7kKbEEODhEcRIrBuGD1rJwAgdFWs0hLMLqGqSmePoc2OZWFrh0w8fOFQbyU4ryutFNxkUHnpUcnOc38gY3i3x/YSLP3SL2//HKe0nnye9fy7voxTuYAMVAq6fUhwuCYmh6BvmH92RpHUfWHxsXywsHfROguReHCSkLmJOZ9JweE9yMkfN5DnkmfwgNwm/KZoOczEHq9GTJYMHfcJmX7JC3j6juD8lzxLUsgEN6WRJe21MVJCcLTCNJKiHVJOczMnPE4r3z8F52pubxMxS7xYUdxt2vjwXDUdqRYDqgjR3IDoQDXohdLO0bKFzzAobss1m3hnGd9Qx5SO6bMEossOpaHxaj+oIx1EBFrIPMp75P2bossYPC3Tditg9tYzeU1zsSHpwtIF02OK9ZviFHs04oayHjL6wxPwvmrawItrWwve2mRcRZ6tJ0xadROoyIbrOoabXShhhHqh3BAkJCWy9Ia5FD/9nQSpMKanjADp3BGWot6F3z+Jz8LVaT8ZdX6a6phZ6VDOWCaIyUnTlp0K1Wk0WTaVAQ3Yp00jXixT3E5lcK3lOSCL21LK8KZbA6bleW7MGJe+RzFfOWZH8VNGOuvTx779g+rUt8qWieq4hG9a41uDmiaSNp5KsXm+L201+oum/JwgMSrQg7Y0G109ILxW+p6iuO/IHVsTLhaEdSOORXsh+SC9F0OynfSabOcluhTaByekAc5agby9pA3irGPQb6lroJpgo30MvugtdKWafrEnvZ7SjgBm2xF/cQN0KQt9KxRggpJ2GoRDtT7pVYb48IG2hHUHvkYQo1rcbRr+RsjyQ4EM0DF+Txr88iBBVZ3sbyM4MRElVX14PQrNzivDxOeadAellQvORkuINuY40m0LtUivqTRFIHonIXjeasLSYWuhPIYX61ZLmGoR5Qu8DK3SoQUQ/yKm/XHD+nCc5N/SWsHyuJdteUljP5dmA2Co4zmGqsAqq3QCjluyDTIIDZ9Ik+EIQHf+4IFQKbIdAlAnFQ2lky92VrTRrFGRlgCABdYrFLdFhmYU0GMZBOlXdOQxcpOSnWpK0HVRbQj0zjbxeed1DgMnHHMM3LO1AztN02jXfSopjO7/6buhKYS9sZ1cdCKcZarvGpFfDA9dYdNauKVMrqtVK/wHgo6ZtDVnWkliP84IsrIp606WbP5nHsWpOQmugNAQdCZlU7dr6tYsVQJa16+et1iq1XT9RuK8ajNDRsNKsXW9DCFd0Lmv82r0ryZ1IpIIiBBkCtc7QtobgNU1r1iL8CGjToTROEF2cglzOw+xM9qvyVxovN/KoVsIsJY+oy/0AyecBoXkunnA9fLqerqfrv7ueUrC+HVeMcO8QQpBmQhtUnguysPr/EAiJEkRjOhchOhBDQBddzocoEem9fUq4uYcaj0SfUVaoXsHs09elqejEkQS5URYP5tilo97J0a1Y04ZErZuPkMiNcHmQoxtPNgnU10ekj2fQic+jUSxvFNS7BWiodgvMssHU0gTpRQ3BM7tlMa1QHIiRqBXpPOBTRcxSyQLZGYqexQdppOoGjCa/FN61OZ6iFzUxT2iuj7sMEYUuW3pvHEuqvI/4wqLqBj+S/ZM8uiS57GxC715g5jVm3qK86A3kLh0wi4Z2u0/2WKhvetmIeP98RrRWtkvzoWPjRwUYgx9kYJRsT+OJRhFTS0zM2hHL99Mrq1wrmhCsXh/D/CKw/dqSa/+lwUyWoqdpJandDwtiYkinkWzQkOYOkwSZUkbF8KFn+2uOvS9VtMOE7CMTklFNWrQYGzBdiJlJPDZzeGfWYWPKBsn98Bo/S8AGsFHcfxKY3RQnKjsza6rVaikdMQsjU8Lu/DKVUJ9CEcSZSksR53odv72Vx+pGHIlCIoJyEGpWMDKNbMeBsNlSv1jhe6HTikDSpa8D2JmW90plIr4KNtTdFDnkUZKp+xEzs9St5VPf+w7qE1NxGjrs4+bCs0hmSlys5oZwUK9F7NFISFl504nGZGEY3hH6xuADhV4amk05l3QLxWOFKbv3TyQfxGdCJzKVppmmtJVFp12ieWXX2p6qSkTmdJmhanEZq7fls68+s8/kvfLfKJi97MSG9gl9h+x/mdz2Dua0h73OElaawnJPCsH0YUq1LdP14XuGwXuSmbK4LQ1USCQfQ9cyrbcLRXZi6D2UJtVMLeprA5odJ9PkNwqWtx31VqT3SJGcG0ETBh4/8FLstQpdybY2mx2dbRSJZxnxLGO4Pyf93DmmkuOcXirqLaBwtGNPO4DiboL/9THTtzfJBjUb+zP2P3pMeHVBvevp39P03sywy6vrneo4/SEPErLZZTuEBPSZoDiuJ41vSBAtS+9KU2SXV65Z6WVnyHBrKShTKwXs8rbrmhVFvdMdsz4U9xKyC6FW+RSG7xqazUB6Yqm3YHBf0I5mHNe0n3R6JVJHSXMSlQigsweJGEGcZDTz9Kph6CxqlYprjcZvts9tW4OvP1xAe6+lYP+QAP1KrG6tJ0k8LIygNrWG0hJbtdZl+MaskdaV09XqdZoyoa3sWieyonY92WSsnLNWz1lZAK8S0hPrO2G9vJ7SkbayuC6AM80cifVrh62VaD04DV4cxHCdmCbKcV05mdlll81yIZo4Nwyd7kM0WdGKxixaoZ1+O4jQv9EC9NXP0/V0fTPWUwTk23Apa+H2NdT5lHhxSTw9Q928BhcTlM6JVU2sanrHIqKOy1KoRgg1i+EAplPwnebDGlTlJP/DaKgbHv7vH0EFmN0ywmPPIJ1B71SmcKazlZ28kBONWmcuwMoZS94vmaeYJpK//ojyO65T3JPHLF7cZPD+lFCkNKOEs48lXJtm2NKTXFSg4ez7b2HLSLUhvGlXaoqTBu0082sGNZ1DjEw/vUN+5ijOp4Sbe+jHFzBfcvqxPYrjCFmCihEWDemiBq1Qbeh0FRXKe1TT0g4TzEafkBn8Rp92IyO/c0YYFeLUNMowy1aoZpOW8rlNiruXgjJYhTk6x9/YxkxKjn7wGgf/8Rg9Wcj7NZ72YISZ1ijnMBdL2v2BBBoqRdQa1Ths1aB8pHxmg/SyRpctZlqiGg9a4TYFhbGTes283fjyGdFqoRqZjq4VO9SkqyT6Rw1Hlzkmd+S9huVFD2zg8WcM+78m9siT58b0fmbE/A84nFeQRHTmCM6II1ZEkI4UgjOY1Eu2hNOQS0BCVBBGjpBrfE+xvKYojmFxrcWNFMwt9DzhIpP+LY1UNzvr2ZmmGYmlbkgixqsuhO2KVx+1TBlVFC62WOV2uSM9mbD337OUB4loRDS4oYT81VsBM7OEzQYmZj2h9rkUclHD4pUWe5wweF+zeLYLZCwCi6MBX7w7JNgIBorrc5o6wVhPmaaY40SySO7nbHzumKO7W/TuWQbvWEInPu7fNSIW7ly3hncUk5c90cp3bPaCR9daLHMLEbkDFEdKNDBJIH2noNnoBK2lwWw24vBzv8CnglhFG+nfEypbeRCEynSS4vcaTBpYxozhW1aCFr0inYoTlXKCVA2emTK/O8KUEsZnatEf5C9Nqd8aS5aKhzjXlLvyWUypCFmQAcFUUCJqTZ1L45nfnFNWCel7Bc2+I5YWe2nWGp/ePUv5QkP6ypTFZZ+N8ZL5l7apD7psjb5D6Ui4SNGNJpl1mRxaBO6zh0PSc4O1UF1z7N66wP/aLvlrktEyf9YTbjWE2mIuLPVxj3BpaGfQ3vKgoxz7U7um3/kiwl4ldtNB0XsnFcSsVeTn0DZyvrtBZPFMAK/IjizZBUgAYlxbr7aDSOh77MRgH/QJVrQyrhfp3bUd8qckk2ZBR4uT87Pti8NYdm4ZvqdpNkR74PKrrJjeIVx8p1ABs7uZZJD4jq6oJMBwZeKgW0UTE5paQ6shDXgbSQYNbmlBRWzisSZQLlLiXLQx7DZPiMCRhPVVxkbQGB3ExtcZ2sqS5I7qvMDUHWqRCfpqCodfJuJIZQL6CQtgIlSLVNLHk0BUap1XFLWklWsVRe+9alZ0QKkr9EUptRazaxUF6Wg1dLQznQSSxNE0lsR6mk4Hs8oLCa1BTS0KOh2OhrOUZteRzIRut3JDS+bSnM/GURLZ10MWcceKmaCRK3Tk6Xq6nq7f+XragHy7rg8eQq9AD/rEuiE+PEINB5JuDpBYyh3DYGOEmi2I22NJKU9TwriPu71FejwXqtV0jkoT3Hc8R0g1ykc23nUs9oVCYmopVAYPO5g8t1y+3Gfjrbkk8oaIqaEZKXwiojzhgkMyb7GTirg1QrcRyorylQN0HWi2ezz+bEpUsP26Ry8azj6+wfZXHGGUsdxT2Kp7vQBtX9GOEnQtFpcA9ArSmSc9qyBLRbzeBfz1H0XOPgG7vxCIRYpqtfxf3VK89oDZdz9DdmlIADVbkp1UqLIlaT24QOo97bUxKIVZUah8RMWIfTyhGe+IYD9PSc5LMFq0HFVD/9CD89Qv7JDdOROa2OGEMJSU+mgV6cMJsZCuTTnXuZIZQqpIJg162RB6KdGIwYBuPOVBjnaRZjOld3+OKlvRgjRObtJGrdPUY2qF3mU1dtJQ3B/SDi11zFFpBCUF4Pkrhv7bjs03lqDg7JM97FIKvGbDwEYrDlgBEZ03GqUDvu0KgEajkkhslWhBSku0gYBGd1ai1EZoWB5CZ8cbkyjTRSMUEjeUwEKB0iRZWsS4K5chSQ9PuoyPeit22g15vNi0WpY3xY5VBN5CafI5ZOdCf2u3u0LFic7EDcNaxJ/cSWlHkcUzQiXqPVQsP9EQL1PC0JM+TKivt/jXR2jTUSyerTHPLWjOcuyF5fxX9+B2TfmKo/da3vH5A74wBCOi9HQqNI382Ei2xY5Q1AT1iWTnomXRjTRIplLkb2XsvOZ49L2WcKsCZ9AmoGykzbspcBZIH1t8CtWBh4FDRYW6tcQ86OHzQDrVzJ+XjI5oIs3GFb3N3ljQ/MYGJkOOT1TMX2pJhw3+S2PCZsT7J4r/DU+0gexIGrDlMw6yIPa+lcINPbpRqF8dYTtkwHQi9OKxotmAZiPCM0syGzh7sEFyamlPC3p/6Jzm7hhda9JHdi3sdr1uvxQdLfTEEpJIsyHq7Oyx5bTeho1AvSuTaDMzmHsFYeyFYtbz+Ebhc8mg0U7RO5Kivv70Atca4tKizjJsI3kc1U4EE0nPNNOXxa1NtQqz0ORHhvJ2S/tSTX2eocYN+ijrrouCypgTy/KlFj/QpCcGu1SSpD7omrgur6a8ETBLyYqJCULfmRt0EDvqdhiJVsIZ84cJppLAy949S1QW1xPExKxuBXPWlsCmluYxP1Y0IyvudEHOg9Zl0rQYS2g1tddQicbI9wPFoJaCvksbV9AV7nLutc5QTnIJ7/OKJmbolV6lCNAX5C7Ulk4egk5FhF63lhgEFYmtliBNLbozbSSZHARZeRJ1ERRGtmEVauiDxpqANY5lpz+JS0u6XQmi4jQqb0lT9yE9RF0lZHlLdEoMMWoZhKgAfuCxU0N5LcBjLVky3VOFcqcJncYmmWhcr/vcnU4tALH41oslAorwDe6EvtGv93Q9Xav1tAH5dlzWws3r8PhMNBDLUpqP6UzoRTGirGX7ixOYL2leukb6xn3Y2pAgvMMz0svOjWo4IGYp7d6AZmzJTxt8YUhmDrUr1JneaScoLz0h1dRbGcO7FdMXB5IM3jUHo3uO6S1xXtn+WoPrG+a3ctzLBbv/53tkkznu5g7FVx9Sv3wNUzq2XjecfsJw/hHD8Csl4/d7tMMEXxjSqQiEV5Su3hHMbljJ9gjAsE80iv6XH0GRUz+zjW49pnToacnwXs3smRycRy06pCFLmH3HNqOvnBCNIjmZQ4A4KAQ5SIwU843kCCTzmubaCDdMSc6W8hpGQZqTXjbUNzfI7l+A85Ak1PsD8osZg3cuePRD17j2H0+pnt8hv3sBIbC8NZB9uQzUmyOG7806WpaWJsQIGtXs96le6JEshA8fDJhGGozQUd1iYoSq5pyI14HQz9Czmpgb1LKR33tN+eyY/kPIJpHxa2e4zR7v/ckeyRyu/ZclqnW4YUJItWgQDPQfgusrXKux/ZbQSo6ASQMxQPQKpQPUiTRmuZfmJPXYxOOWCd4GOHDERYKygZBoceNxCtVqfC+Ie5ZT+IHvpv8RdMTO5UaeTDsqS9Q0m1448o1MFX1fdAy6EXpLOxLufnOtBR3RZ4nY7boOpcuipIWnEV8oXBFJLrsQvkQEwNm5ICs+jyw/XhMvU8kW2VT4l5Zk7/QILy+ID3rilLW0FJsLmjwBOrej9zLK2y2LjzaYs4T82JBMO40EUhTaUtzl7FIBUtSrKAWr8vKTToW+E5LO/GHfYiuoZil61LC3MeNkOiCOWophTXnYp7nZgInk/YZq3tmt3usR04huJUWdVmPOJazS9wKDZ6aUVSI2vrcb7ImQ2IONJCcJ4cJitDgq5c8uWR4NSM8M+aHBZ4Z2FLALTX5oiQqaFyrcZQpDh8dSXlOSdxGhd6SYveBpdgPJaUIy1cR5HxpE4L4VmN1oyb+wBS80sNnQmEwybAZiWOB6ojPRexVRReJRgV1o3PMlYZZiJ0YS52cSwhmTiJ4LFSwaqDvrYvoOZpbk2pzypc656e6AZKnIT2H+bFxnOLixIzm3VHuB9NysndrqrUg1ks+iQkLY9MTSioj8+Tnmq0NBRPYj+tJKQ/bRGRGoLnL00tD2xNTATg3ZiZYk7YwrZXYQ84Jmr0XVmmbLYc5TfCqNIMg1IT+7Cr9cZVJEJQjMKsldMkLku1AciXDP9zr9Tx6JGHAWu+wGDDbChqNtDdUiBQU29SgdaZYJrQ34pUVVBt0lxduFFO8+F+2JdCsKPZMmHEDPDX4bgpPGIykcbZnIoMjLYCG7WV3Z+QJtbUkz94TTlvzHSnS+ygIBaYh8bbC5I/acuG05zXCjpHWGxHrqxl5pTYwgOCooCIo4bgk6CupbGnw/gFMSCFlCPRaDjlVeTjSRMPS0XlCm1bUtGkFHovrWNyBP19P1P9J62oB8Gy61tYk6n7L87PP03jgW3cbOBnEyRa2C7poW5RxxviB9NBFh+ekF6iTQfOI5lAsk7x0Rzy9pft9HyN56xPwPPUv/nSXtYIRtAqMPGnTrcf0u80KBChHXs/S+doiptygPRC+x/X/fw9/YxuXiZzq7nRCMwrSRZBmh34PFEnv3mLC3QXJZ4oYZvcOS3v6AdBbBB84+mrL3pZJoFFtv1Bx+rici6whtD4rzSLKAyYuKdqdPcjQFpQi9lPRsiZouiaMebkcK/Vv/14wH/9sNbv7bQ6iE/jT60pIw7pPMPc3ecL1fk8uSqBSqy/9QjSeMCuysZnl7SLmzQXbpyB9MmH5kxPDtS84+vs3+I6E8MZtT7u6RHY9Qy5q9X12IgLxZWTgq0suWZjMlO16QPfTEXopqPe1mQXIZ8b2Uk0/3qbYBBdmlwZRgq4jPuoC+Ru7nelFL02SkqCJ0QsoiAaUon98gmTSYWUN+XNK72xK1xo8LdOO5+X97kpnDXpaEfk72YAoabsz6TJ/LOftUFN97HUUPYgJNKbQj7zWagDIRjxRBNusSpwHfGIhKggmTgC41vXcs84+0Ij2qNEqDWWhiGvED2Ufthl/b97pCNAXNhugBslODnUvTElKFzyKMWoqBuNg0Rz1C3xG1ITlKaG/W6FoKyeW1iGkUNAq3J0YDpkyfsE5VBCSXwqcSQljmkVAb0qlm8WKLSgLDL/Qo98EtUugLpaS/vWQ2K9jenZHsTzj/1T3aYSQ5S0gnsHihxW9F1Pup5AZYKSYHD4SvH42c36YTMwtyKPt0/pzvkB0RJ5/+/pbsMOlGqrBoUraHC+rCcv7BhmhwAHuUUo0sqhFxrPIKP25hYVAXKbZUNLdrmCaYSrF8e4zbdOhhi3mU4fZa9HnC4K6mPIiYZxZUs5T0KKU9HlMsZbvbgVBNVuiSaBEi2Tu56BkuE8mh2G7x0RIaRXXD0X8/IWqhpIVUClXX85gLi51p4p4j/+yCZlKQFw3LTY1JPcOiYfH+mLDdwNxSfLFHuS+Fn2pFj2QvDb4XsAclaepIgqK+P5BCfFMcqJILg9trsYcpIY/UD/uC0C3lvGw2As1GN+iImvpaS/FAskX69zX1FsQ8YqM4sDVdQZ9MlRTPrSb2Pe6DAfrVBf5BT3QxbZfvUVk4zVBDT++hRjtxyCpvtrhdwAmda+W4FBL5TtgLi2kUYaFln215ivti4hCSLrBzBs2muGcll9IoqdAhiR2tyzRyPfI5nc5IUMNoI6YLQow6EhP5U1uPm2SQCPXPuVQaHy2ueCbQaR8QW+wuh0RFaSR0rWBisKU0QNF2oaLniQwQPISTFOsU7loDM4vZL0X74fRarxJaQ+0VcZpgthpCkDwj3TnyrehhsdOMJIUjSRxlYzAmYIc1yzKFqGhqK8hKVDI4MRFXaWjl+xJB3qe6QiZ1Kx+qHSr5bt+UwYVy8hxzYfCDQEwUceCIZRcUGuRa961ePir8N9gF6xv9ek/X07Va3/pvzNP19etiQlwsKe7PIET0/h6qalFpuub8q8QKBcd7OL+Ei8mampS++xh7WcJ4iCpykmlNXJZs/coxqqxJL2vspJIcj8SgfBfYBugmdEFZEb1sSOZOHLCyFPP4kt5RTTpxFKceW4lA3ZYRmpb6Y7eEplS26KNzzNKJjeyRFJ9h3O/0Jobeu+dcvlx0N0+hKIgrkghzo4ZqNxPNChC79He0COtViCgvYYmuj2RymKvTWcXI7GYi4nmjaEeW6qDP8tkhYaOP2x3RXB+jqgY9LclP6k6MH4mppf+wpN3uk19IuOEKTUrnIqKPeYKuW/woJzlfigWvUiRnC5K5o90qJEuko0rZRQutZ3mjwNRShJoaXCYaiOVeJ7xcBvoPS3oPFqiqZW1X4z2qdphpJUnqi5r80Rx7WaJiRM86Zy17tQ+Kh3PstCIaQ3lrQOhn+GGBWTo2vzZn/5dln8eOO+3azkGm7ugSUUnDYaMIn6tOwBo6vrOKhJ4nNqY7XhJqGCMyOVRStMVVoVJrea0g/w6pFLemBjs3azEyXWq3KRWx0SzPCw42pgAkZ5Zkomk3Pb03hKfXDpErWRRBL40meZhiuyI6GmlwYldA1XteBO5LJTSQFvKHCb23MuoteQ01N5B7lIbl0QClI1vFkuPzIeY7plLMmcjyloSnpYOG5W0nlr9eXtMnSGGylG1b3hAqo+lCF0MmKeC6VlTXW/IzyB8lNFteHKHmCUYHTi4HXF72sHNp+sxpsi560ktJ89YOsnspMQ9rapV9lHWWr2IXqpcGdSbFWfRKtCcHnSvV6wOK91JcPwhyk3XC/yySzK7cy3we0Y2i2vOkF5reQ006UTCzIoS+FJ788lq4EvU2iuxMk91P4Hol9K4HPeaLjDBLKe8PKd7O6P1Kj9n9EcntOcU7GemlYf6sx++22InBbTgJXtxyKK9wRwWLowHlowEbL16gPzpDbdW450pMpcjupmtxcBw6sWq+LsYF+bGmeCzIXNSR4l4iGSAzOY+jEQSlHUXcULJE5DrUhQwOxF44amgvMsJ2y+iTp9T7XRjnRKin1JryemB5PYqA/jQBEyCV/ROSSDOSfbsyBHG9iBsITUuXmrYv10NfyPa0Axi9qykOjQwsOv3UKssk6s54IRUBve+oQWKs0X1XuvczpZzHoZEMH5ZmbQihmxUCELvsEg1BrXNIUPLdxneuUKprtrv30o00JqZU2Llon9ARak0sPMFpmjLBtyJUd2UCC6HGxayzDVbgGvMhBy7oNPidIL1ppNEwJqwpV2kmyfCSQ4KI4+eJnKetltcvLUlHF0R3gnIDRDHDqLfk+iUHVGhyMRFanlohxF4R07g+N56up+vp+p2vpwjIt+GK3qGyPvHOA7hxIOniqegEVK8QmlBV40Y5CRDrGlXkYC3h2QP0O/dhuYStTaL3uEFK4j0slpBKIxE2hqgQMWWLuVjiN3tiJasgWUih7zakWO01QWhG9y+x5wvUqCCdRIrHUB4U9O7N8Ne3yN4S61+aFgZ9VOtR3tMMNT6FxXOCRgQrTUR+Hmj7AtmHVC7gzVCj28jWG6IHKJ/ZID2vMeczYj+nubmJbuXmvbiRM7hfCY1FKU5+8Dabby6x05pmt4fPYPJ8SjqPmDrS9i31SBFMH9NGfKrx2UjsdmPEVMK9JgTaUUoybUinRjQXxuDHPXyqiVoTE0OzlVHuJWQTz2LfsvOrl8xfHDH6jcfEIsWPCh5/tkd+HskmAe16+BRsHckuFM1QilC7kNCz8etTVONQK6QjsWLxa5S4XVlx0tJlFx7YOEKRrXNHlAvy/Lq7IaYWVbbEIqF4tJDzp/WoILbBLpfCQXkRgiol00Z5cZlGhm7yRxJIBw3NMpFk9K7BAOTmvdHg+5pYy+vELKCXZk2jopHE9iCMELG6DFDviBhbN9COxV3J3ilIZrB4JmDmltDz3Hu4Qyw8bd4VcaFDF2ykKUTvETUsb3hUzxHmhlZJoWBLiEYKoGhh+4uG2XOgnKJ4P6H+aEmYJYzelIl0tR+E5jUEbGDv2iWXi4L3H++wszmnbBL8S3MRLn+lz/I6cDhAbXri7ZLqNCOZaOptQTraoQiZdSMT6Xo7kJ1p7BIp6CLkZ4lQPyrWE1m9MJw+Gks2i9OEgxoWEmSngrhQtUMplvNjsdk1EytT7pqrjArdCWUDhKGkRWeHCcubgf59TTMy1FsBkoAetiz7FntpMaU0E+1YeO52If/2RcTODfWep+50Q2Yq1dfyIzXZBxnNZqC87knPjRTO2x1//oMCXpnjFynpu3243qCGntrllNcDdmYwXxxSb0byl6YcDBYUtuUtrqEWhvTC0A7lHDVLTWylUZi8sSXBkAlk5zB72RPTQHJm8UVATxL8wMFxTj5R0owg227nYiudzMANJNWcqEjP5L1UV2CHNKAvDc3NFnuU4vYb1NSilwaWhsWdHfqVuIll+0vauwOZmpeK7AKG/4/HTJY57nBA8cjQbMR19hKwfi/5/sm5HZU4BDajuE7lDgnMb0f8bktsu2T6XKb3bhjQ1VXI4cqxrL3WEiuDahV+08HSYLpjiQJqI2iBjQQFOojpwHpEqSJ+2AU31qLRQrOmfaGv3MBCEp+4NkiTs3qMdgp9bPF5RAWL6wcYOtrSQiMuanpi8SMnlCmnCbVBFS1NYzE2SKBqIyYZbp6gEkFw6tqiu2BDHySEVeuIzR0NEBYJWNALTUi665rqjmst1sm2VGuXOt2uEDK1/s4RWZtI6KXo3lTXsDW9Jw7mt2h9M1yrnrpgPV3frPW0Afk2XdF70Jpw9wHlH/44/TdOiCEQl6X8H5C++QD3sRcwX3tfKFnA4kbB8C2ZmNO2KGsp91ISrYlVJbStpiVc20LXDl8kmA+mqGGOfv8+/pVnKA6XVC8fkP3XN8V9q2rQeyOqWxvoNmAqhy5bQmrpfTBDLyouP7PHxv0TsQXOUmJm0WcT/I1t+g8bJi9kZOcNzSin9/YJ1A3ZRUu1qWn74mvvu2l1/15L8eYRWIvbGxNyQ/vCDulZSTtK6N2b8fAPb6JbSKcJO79R0lwfkp97Dj/Xwy57JAtxPRLqQjfuUysHL01IJXm73rS0n9hFO5mAtQND85HN7iBAuWPJ7ymUVpjJksH7Hr0Up63iYk4yHWEvl/TeV/hxj/kNzfD1BFW12LJh90uK488URK3Z/tIlWWoJhSAq81s5bU/TP3aUWwYVI8qJG9Y6VyRGMBbdOPRlgx/kRKuF0nVRoutWEKF14SINVEzFzre5OUKFSHIqSAkxigUw0IwVIQkyAXVKuNCAzbvcDyXCZbQUQ66WCbxYWMo0UykFTomIHSnqyT2qEQGs73UFjomErrkxlRJxs1foSqgmQnHoUsWTSDTd5L7wUoSlHvU4x+21wvdvV/tHXIV8IVNau9AkhzkhkYYmP1aCzDRS6Ps0cvo9QhEqDwIqatK3C+qtQLUtBcfwPc3lJ1rMJCFu1zTekKctVUzoJQ39tGYnX/IbD2+wvC7UsZUbkZ8lbLwpU+tmAxbPO/JHlnSi1jqPZNLlk8yuJu717VaceUJnA5sGkqkhVEaKoIFHTRLSC3luu92iNFBqSCLtUBqakAeKQ0M76CbXhZcmx0kuSuNVt38V6YWm3pTHjd7VoDRRdenyPdlWn8tx6z3q6FR5WDczpAFzbjGVornRkN1P8RMphkfvaMq9zrp0s0VdJoIWXGtI3xwQr7X450vUSUYwhvT2gnGv5HLeY7lMQEXmpz0Wj/uoWrPxtqYdiMYmppHewYyXd044q3q03vDowRYgTdPsOxsIMHotJVhJsA6bLdl9oRW1g7h2M0rPNc1WIGy02Lczmo1I8UCcsqqbIgLXLZQ3PPQcbiqZF+12i1oaYh4IJpKcJmIKkMu1Wb02JNGCZmgHi1uB8it75KcKsysohh96yALxPJEwvFZ3bmOR/NB8yIYaOsvgRtAp5RXFaynNGKrnGvTE4tJIHDhoJHzSztU63ym7n9JsdPkrtQwD/EDE+vo8kWtAIUW2KYUGiekmBlqaWEBctQBsRM9E3B+VoHrKi/OXcuJuF63QLE0lw4JVJs06L0iDnRriUt4vphG9svR1YkOtz1OUjdROqMBx1OJbTZI7XG1QNsq1KOFDdr/NLEGnnvoyX9uJq8yLS18EikBsFaHt9GpR0I7QNVS+FwmZaINC2qHzS6Ge+UFANYIcoVn/3c6fFupP19P1u1lPG5Bvw6WyjDgXUbWylv4X7sCgLzSjRpoKtCa2LfboUorVEIhNy/Dn30aNh8TZnDiZobKU4ftz1PYm8XIi1rzGYN68S/n7X6L4wruQ5zLlB+zpDLc7JH/t3po+pHzAPDrHPILm+T30tEI5TxhlmBihbRm9NYWmJcZA3OijH56A85jLJXpp2e7sbYf3aggRrCG5KNl4N3L02QJbyvRXeYhG4W7uUO5l9B4tURUkDy7weyOy84aLT2wwOAxUG5rFgeXsO4U2YJZy45NiUBqO1bTd1PJ7l4mFsKkV6TRiWvAasX+FNRVN+YjPNcWpY/HyJqb0pOc15fVCON2LGpTCns2J1vD4D+6w/18uOPjFFr9RrMMG7azGVAUqwPTlMenMk52KFiWdB1yuqMfiM0/rO4pZvPpmtuImlh7NiFajqwZixE46hKP1RGtFWN/Z8wIoF0ApsgdT3HYPPS+JRUo0RiyBQ2DzzYbJJ4XKo0wk7dWk1qNUZFmmmDTil4mIyhsjqcVpZ8frtDQgtqM4dA5ZzifgtDA8Qkd9WZiusDaEwsvUs9HoLml4NUV1ibgJ+VSt3bCIWnI/qgytRfugomRfNIVw5ttRwJS6y/iIlAcimE6mivJakBC+RKh6uhEqRbUTu9T1jq7U8bfzT50zORuQHKUi4h3UXJ4NuHHtnFFR8cG9PYqNkocXGySJI+5U1Cand9+QTg3lfqD9gQmL8544gHnJtUguNfWOp39f9DzBds5FHX1s+xdTZs8IEra45TGVJqxyBjZayQNRHTVq7NGlIaYB3Wr0XK1tQ3sPjFDSlKRspycilrYLRfV8Q3ovlXMsio5gRbOZPS/7rP9QvitRAzkkZ4p6U1Nvxc4MQGFL+a4kHyTUO0L5Sh9JsW/nklESOmG9cgp9kRAKQc3scYJ/aUl6p0f2ViIUsDzQTDNmrw2wQZiU1TMt2bimucgx+yXVjUC/qCkv+6izjPlJn6++PsZ0zMPcSD5Mm0WiUyQnCc0GDD5zyvJ8ALOEdhSIeYCgGN+YMDkfEM5E95Hez3CfmpN+dbDOjDFTS32rITrRD+jTdH19MHO7RpZ69yzNd5Skiad5XJCdGarna2KryY4S6gOHLjXxesUyy0hmHcK1NMTOwpbckz+0RNPplVL5PAC9+5r+RBEyOgG4NK1lITQrFkbso/ue7F5KvSXGDXEI6UTO/dU57gZXwml0JDaakAZIruhNvhdEg6Rlu2iuhNsr+qSqdCe8Rqy6g0IjDdMKOTBzSC87F7COiqcnYhaRnZm1jkXXCpaa2F5dgKNG3td3aIxWUHiUDmgjtCzdJa7r3BFqgwOCEy0RSnQiygbyUU1TWbEbD9Lg6YlcYP12C7Ug/3ppZADSbVN2IQ5/0cj+C8lVw6FrRUwEJZK/xyu61rdwBRTf8CT0py5YT9c3aT1t2b8NV7i+g0pT4sdeYJVmHs8uIETUjQNxwgKU0riDDfl7kRObhvjcDeJsjjIGlSbEZYl674E8LkRBTzZGKGPoffGONDNpinp8JrqSXoaZ10y+73kwhnqvT7SG6pVrLL7zBs1GQnV7DG1nwRKCWP8WKeHZa6jNDfTpRFAQ73FbfdRkTjtMCbmh2k6JwwLyDD/I/n/s/WmsbOt53wf+3mFNNe/5zMOd7+XlZFISKbuDWJYlC5bt2O4kgADCaqiVDwbsDmADDRidjr8lgAMEAQIEAboBd4IADBqCDXRk0XanLTmyRUkkdUle8g7nDmfe81Djmt6hPzxr1yHtuCMlUnidPi+wcfbZVbXWqlVVq57/8/wHkv0po4dBLD+7dN9y2xISTT3WzF/o43uW9uYmrp8SEi3FjZWwunYg3Sui0LjaQffTlyLP1KwLN3+ZXusvE4yFK90MhYIRDUJLsjI1CVYRUiW6mEwTU0N+XBNScSJrr46JqeHo39hm+EjOh6pbzLwiak29N2D/35jQDmB5RdEMFWevJYTMcv7mgNktS7mjaAaKbBpEHA9SgV2aDWSW9GQpFDljiInBDwv8MMUNU0IhFr2qC0BEKWKeEi/dvqzm4pVCpmGtRy8r9LJG1S1nb6ToC9u9l8A1lqpOKKv0mf7DBLCdELOjI8gD4rr7qJIoYvWZOOhcdpejkTDDS33G2iu/04HgFaoT7QpI7EILQ5ffUcgEJQ5dp2t4ZmdqLwzZYZeafSp5FkTZVn5ySekSOorPRccQMtE3FfsaP3S4nZZ4pZLi/eUFvLpg+f1N0kcpvhfwA0/1cEjaa3jy0Q6FbfmLn/8WISqyxLE9XJKmTlzWvjBjeUe0Ce13x7Ay2HFN78qCYl9T73iyUyMGA610jKOF/Fje8xevRZptT3lVuP/q0tfAKaiM8M91Nx2yAbNboiuNXQodpN5rcZ9e4v7YguJT55hSkZ4YXF+oO/XNht67Kb6IuCJiV0igYiuAwlSK9FzsXhe3ozgtXXG4ApKZwk0c4/c1fuhpdjyuL4AuOxOg5PMuF0FDeqaYfapdT0tUq9D9FlqNurPCJp5m27F4s2HrjRNUpTHnluqqp3qlonm1RM8N7lEfvMK810e9NWT6nW3shwXZqbhxhTRSvVgz+tIx+efPJFX9Qop+1ZkczN7ahvMU3YjQX1Wa5MzQfn2T3nvyd7uQRPR4b0D9UoX97JT6ViOOYB+n5PsWVgY/lNBEe2EIaSD0PNmRoXq1ws8T3JMeyVSoacmTjPQwwWdiEay6VHa71F3qO6TnUsjqRia0rt+5i90tJSBzJRoVN4DyaqTty2dDBcguFCEVQNh7bBjdM6SPU8ynp52mTp5v6F4TNwy0E08yk/eMbpRY0UZg4CWDI8rnmtyLRiIoAb6tAA1SAXAhjT+QAC7F+uX79TKsFrqGT6/LxXHPrrchkWNKZprsRGhgl7a9xM79rBJQ4AdeQFaUfcWoCE6mJL420GhCN+0IrSHttZJBMhPNh5pbquMe4SKVi1CU6eIlAFMzK1OX0AnVtIDomIo2x19q2Do78KjFsj4mCKUP8P2Az55NeH+UK3Y2vH+YP/EPCED+i//iv+Azn/kMo9GI0WjEl7/8ZX7t135tffsv/uIvdrkuz36+9KUv/dA26rrmr/21v8b29jb9fp8//+f/PI8fP/6h+5yfn/OVr3yF8XjMeDzmK1/5ChcXFz90n4cPH/Ln/tyfo9/vs729zV//63+dpmn+YCf1+fojW88ByCdw6YeHqCzFnC1Ru9tr9yOcg7oVelVHw9KNXATj3hZ6MpZcCC/TkFg3oDUqsbieRV3Zke3UDTEGmaLsbRFPTolNKwBnVaNOp/QOa5QxpGcl6uRs7fRkSxGAh60hyl+O5Z10rGKEuiHsTKSi1Qp7NANtaIcGe15h6oBaddOBxydSYM+8dMhaZPweZVvZTAqY5KKi3EkJiaLeTLB1pNySrq8tAa+6ZO245u7CM9HlJTdZBckcMQ1oH9eCTel4Ktqe6lxdui/RboKifCSZO8rdjOWNbrqhFPaiJOYp/QNPMmtx4xwCLF6egIaz16QrLGJTAU3JAk4/3aMZdSFnneVwMEpMBLyI3FXtUI1HNR7fzyS/pXGoymGmJWbV4gojwG6UyxMOdBqQVmxzXUC1nvEHlWwX0ZUAuI0e9aT7zi0NwSt8bXC1oS0TfG2IQYn+IAkdDQPhaRNRibxQKvHiqx/ly5kowCMmnU6kMfJYGzErhZmJvgA6jrt9Jur0l1kXl1eliAiPg8LOxCXKjcJaKHppURqN6AHkTSXHqSKk59Kl1Y2i2QqifThXLG95sYc9SOEop7pb08xT9NsDiqOOx973mK6z3NaWfGfFo7MNXDCMexV1a9k/G+O8YXh9jvca02+5+qlDbNWBqHf7VGUqgPfy+BSYVsCHz+M6hDE7U2L92nbc/bTjyzdKCqRrFXZuKPYlYd2d5qhWrS2I01EjadAnBc03NsTooKXLeonkD1LakXSrk0WXyJ7L+cvOITtRNB3zMD1XLG9E+h89y+YwM0u5C6rRqL6AC+0ESKXnBj/wRBNxQ48tIduXcLsw8PidBk4yMJH2IqN52scOG4ZvpZT/eIfQF5pdcm6ITjMalRS354SJQ7WKettLYns/EF5ZUt1u1mCTueXk3W2mx0PIPM2tmvpKSzv2uE1He71BV4qtl0+prjryI6H8rW45mknnzpR2qdYezJOc5ZMB9ighPUqEGprKJCE7sNhPTXFXG8xSo5IguqWnOTi1BmJmoSWdfSy20/wLdakp5XrVDiNu4vH9gDlJcBuO5H5OmKXoVihLaTcxSM8lUPLyNfOpgAxTK9qRTLDyE1id96SAtpHs0xf4G9U67V1XAkgur3v2SKabamrl89x0blBedRMP1mJ1usv7JRUrZPL5D4n87nMxD9Fejs1n3SSazpAhZQ1SdKfXihp5TxoBr5cJ5GtXLYDCi2C/+6/WEaWDNEg6Kmi0XVgqsUuAf3YNiSaC6yacpRWq6qVYPHQAsFWoRmx1QxJwgwCxm8IuBZxfmgSYlV5TGy+vLbbLmTHV83IK4MaNG/zH//F/zDe+8Q2+8Y1v8FM/9VP8hb/wF/je9763vs+f+TN/hv39/fXPP/gH/+CHtvHv//v/Pn/v7/09vvrVr/Kbv/mbLBYLfv7nfx7f1T0Av/ALv8Bbb73F1772Nb72ta/x1ltv8ZWvfGV9u/eeP/tn/yzL5ZLf/M3f5Ktf/Sq/8iu/wt/4G3/jj/4kPF+/r6VijD/6ueHzBcBsNmM8HvMn7f+ebHsXf3MP/d799e2xadHbm5IHApBY4p1rqHsPZbLx+guoj5/IbSF2+gEt6eiTEfHwZL0tZYxQMS477XWD6vegyME54qAgDHLMB0+gyImLJWoypnx1l+KDE3AOd3UT3XoRNh+cQK8HZSl0sdmc6D2q18Nf22R1rUf/0XK9f71/ShwPafcGQgG5nYmbVoTx7x3S3NggvbfPyc/cIZ1HTj6t2fpeIDt3uJ6m2hAqS+/IU20alleU0Goa0QSozsb00tJWdR242DXh1w493ZfjlX96SrvVZ3ktxdQR00R6H19Q3plAiPTeOQKtqO9ucfBjGbf+Xyf4cQ97NCOMChZ3hyRzh2kCrm+ZX7O0A9bp8VELveYyeE43z6guto6MPyixh9Nnb4YY16+N0MmUTJ2sTF+wRty5Ll8/pcBqolHiiGU1fpChQqTcy+k9WnDyhQnVhoha2yFrd52QRunudpMkEHCgM8kCuLTeDZWVTmDPSUp6kMBCALdK0DMrVIXCo+qO5mEjpAHVca9VEN3JpQBU153N6SSQXmhcEbn1j1oe/1QqLj4jyYWINpJMDclCwuRUFH59slC4Xgc8OyqEvbOA7w1Fv2BlsnI5BbkEufVmlL8XUYBbgGQudKTqjiRmu0n3ZZd5xptLWmdYnvZQNpIPa+oyITpNNqwJXuNq6cDmactyleGPCuK4FfrLoWgjigPRcLii238WsaWiHYmjmF6YLjcEeaMGaPYceilaEJ9FYhZQVsIAQ68Ld1RdkelEsGyXivqKo3hi15oHU8tUSXnZb7KQPJhm26HLS/si+WfwUFHuQn4E89ecFK/da9Be6c5PT2hsl4Jn3eVmNJMof4td0vcQ2g3RR0Qv+TB22gVX3llSzzKSUykO24nY7abnGteL2BcWVGcFdir2p+mJWZ8bu4DVXScahIVsL9pnonKA7FTOLYj2SF+G9y2R0Miie9qmC0xUUehirSKZmY4SKuftsvjWrcLnAT1pMA8LXD/I+7rnyfbFMveyYw/g+oHs1OB6ksshttNRxOLd8bheXH8WTSkieVMp2pGEaF4W7aZibYd8WfA3m2IsgI2YucZvt1AbNr7zzOBjdUUsd0EmWpJ9IqJ7cTsLqFatHaEw4nwXUxFZX4IWjGi6kvPufHcNgMvr66XVr3ym1A8fdwd+fP4D12fXTUXy2GmfZKoTLp2lBpJiz9KI3mSzERe+2B2TVygbSQeN0LJMwNUWbQOhNWsqWWw6yqhXqEr/C5kpQkvzA3nv6UYmqqqz670EkKEI3e1yfKELXtRLabL4quLh//n/wnQ6ZTQa8b/muqwd/vL/+6+Q9NM/1G23y4Zf+en/x/+i57W5ucnf+Tt/h1/6pV/iF3/xF7m4uODv//2//z963+l0ys7ODv/1f/1f8+/+u/8uAE+fPuXmzZv8g3/wD/jZn/1Z3nnnHd544w2+/vWv8xM/8RMAfP3rX+fLX/4y7777Lq+++iq/9mu/xs///M/z6NEjrl27BsBXv/pVfvEXf5Gjo6P/1V+j5+tfXs8h+ydw6SIjLle4YSq6D61ReYZ64RZYg8ozSCwqSXADseZVxqA+fCxgA1CJRW1MUEXxwxMU71FpIgWs92At1Wdvy33yjDAoIElQZYPrJQJSgM7vkOJ7T6GqoawAaEcZvi/H0NzalKlL3YgoXmn8tU1U60mWnnaSoZc1+uBMHrs3IDlckB7M6O+3nb0jxDQhOV3SvHSFrd89pdzWbLwXqDY1PtfkxzXb//yIyfsli6uWYGD0ILDzVieGDEAQcBG6bhx0kxUtVCyfSgHe9iW878mf3iI9mLHxO4cMPpx3wnXovX9Ket4Qi0xehzZI2nDtsAcXAJz8sTG9/YriwQUHP5Zz/pLF9QXgbLwv3V3dQtBSPF9ypKOG8ccNm797ij24IEz6hEkfnKN6cXsNPGJmidYI+FAKtBaAGQJRKUKRgFGoukVXjvL2mNBLMcuG2Qs9VruW6Wsj5rek+768JpOXeEmtiqBLLWJyDRSebFyjrfjvJ4XDZh5dOCkig/j2axNwq0QyRHKP73uyUyWJzVrONWkQS9+OYx66ghzoHJWCdEejhBH29hWmclIgTxXpicUuNHYutItmKOeumQQp1IN0YC/BR1TQPJGsGruUAsgXAj7qPaEUoeiK70j/7lSK91pE4tVVT//9RFyRTkVIT2mZfTyheW9Mdpgw3lpIuNlZirKB+qRgY7gi1Ib2wYDZ/QlJ4rnzxlN672Soqegw0gtN+7kl1bVWcjo2PPmpACiA7EAE3fXVFp9FfJefQeaFDvTiDPoO02tJn6TSMVYRt+FwEwevLWhfW5EsRHcioYdS0LqxBDy6YZAQvDTSDiPNODB+26JaoYZJbkqknsj7tNyD/KkVjUESaXYc9lh0E5eUumbTU19xVHteBP/d1KIdRcqrwvNPTwxqbsWKGSnmuFHhnvaw5yJ893lEd8BVf3pGuFpTXeSSg7HTgAf/Yklzo8ENAqvXaqFv9VrU1RK1VYONuJ22A7tQ3pApRDIXcX+9Ewifn6N+6ozFp+u141GzEQg2kh9okhMr6ewX0Gx42olMd9IL3RkrdJqJk0y6+puN0G8yAfFu5DtNmyJcr8iPDdVVJ05JE2i2PWqvwvcD9WagHco5sytFfixBmUJXEsAaDbT9iG5hdcPTXoKGXN4f+aEhvdAyJUwg2U9Jzg3lLqyuCfhIp4reE0X/kThyXTZp0nOZTOhSi6VzZ5lrp0Z0VV1X/5KCqZxMUmTS2ek6GrF5vrTnvRS+h0yyjaCbMvMMfIRUBOmuiOtJ3aX9rx96sZMedZRUBWrUCk3qPIWllTR2LSBJmYCrDaHVYuUbIdRGJrMrQ1K0YnJRdqCpC6l0vSiTvFpLav3CoIatGF90mTGxA1x0bldmpeVc+C4ksZvA/P/Dms1mP/RT1/X/5GO893z1q19luVzy5S9/ef33X//1X2d3d5dXXnmFX/7lX+bo6Gh92ze/+U3atuVnfuZn1n+7du0ab775Jv/8n/9zAH7rt36L8Xi8Bh8AX/rSlxiPxz90nzfffHMNPgB+9md/lrqu+eY3v/k//0Q8X39o67kI/RO41HAAW9tkHx4SWyf/twZ1cka4uUe4ton+9j1iVRO77As16Iv97Q8MtMLRMe2XXyf5ze/hPnWLFAiPnopeIM9gVYJpyb/1seRszBfoNCH0c3Tdkp6uYDySjBGlWH3mBsWjKTFL8L0EX1iSaS3J3E0rzkW9grjqEsW9R739IXpnCz3KhcZ1PpVUcVgLq1lWBCMUqHQeUHVD7OcdYNCMPm5IL2rqzZz8uEQvKuobE9qhYfyxpIHbaYPynmQ5pNzSVBtK6AAZ7H2j4eQz6bqTpbvGduhct9JFIFlBdXNC/tEJelWj3QBVd7qOEIhFgmqEj5KfyQSCVkBA/9Dx0b9V8Mr/fcHVr5c8+umC/mPY+daMaBRnrw+l89fZxSal1OCmiaSnK0I/4+zLW2z/1imzNzcZn85JpjUx6z6eWhOtRsWIH+VCrSpborViwdtIxgG6m4C4iOslqNwy+c4Zfljw+E/1CYkE5EUT13qY0AEDXSv0Uuw1/XXHsFdxMevRzlMG2yu0ijQmUM8yoaZ5EXiawtFWFqWl49kOxCkJFYlpkJyNxHepxgo1t13nVBFz6dy6gdje6hqu/ZML2s2Cre/IsYZEusVCf1DkpwKeshOxnU1KCAs57qA7Okce8JnuaEgCUqISwXrU0IzjOm29eWtCuFPTbCqYW+g79JfnmO9PhDN/kuALmdi4qzV4TXM24Mdeus/FTs4orZk1GR883mXwQcLipRblNOU85+N5Ru/Hp/B4iNktqVVB+l4fW0TagRQ41bYUn23P41ODrcRKV8WuAz6MsJDzu5wWmMLhlgkMImHk6G+u6KUNiyojvD0iK2F1Wxyb0l5LrTNQluzY4Aopouo9D5mHiwRGLfOXEoonmtVNAXW9fY3PZELXjiLVhic9stC5OrmJQ68MyVzRjgO9J5K43g7FGtaRMPmeodwTik276dai+eKxpdoJ+L4neVhgOjCeTiV3wd0tYZ4QokIdZYxfumBm+6hpgq4VxccFIUWMBg5TevuKORl6pfGbjt4DSWovr4vDlJ5amm1Pcm7ENe9c46oh9RIyC+7lEnuvID3XVNcc7VDjhoGYBZaFwnT0mnbiqXflwmG6FPBQBJokok9TTKlhbmheKck+KHA9cHsNsbQyDcg8prRoD65W2HvivIaJDG9f0LSW8qQnn8VBi35UdInnUYTSpaFB03tkWF0PZGfdhGip1lMr+RBE2pGYC6ggUy83iNSpFN12ZkiWUL7QiCan1iRTcVBTTgDFJYDwWef8VAjwiCauw/bW4vFuibOb7GMd19EJvn0uE7HLSUnIn9n0RhMJmbi0uf4PcNW8gqWR61qAaCX4kVY905gpuT0uE9FH6YhKgiSjB004yYgm0p5nEARcu0GncdGdk1/PE4ctjgyzUvA470T7l2AqEsde3OZsxHX6lGgjaiEuaLRCv/skaLX/KG14b968+UN//w//w/+Qv/23//b/6GO++93v8uUvf5mqqhgMBvy9v/f3eOONNwD4uZ/7Of7tf/vf5vbt23z88cf8B//Bf8BP/dRP8c1vfpMsyzg4OCBNUzY2Nn5om3t7exwcHABwcHDA7u7uv7Tf3d3dH7rP3t7eD92+sbFBmqbr+zxfP9r1HIB8Atfsx26y8XEllJu7NwhWi6tUkqDuP8UAanuTeHaB6xtSINY1XOs+kD6C89KAPphDnqErL0nhL9wkPj1CVTX+zRcw7zyAG3uoQ9GBqKaVsdiqRJ3VlJ+/Q/FOA9M5vXcOoKxQmxMAzLIRu26MKhAAAQAASURBVNfconsF9WZCWlXSndcK1euhzJCwOSS9t0/55nWs1oCH4UDAx6WOxChME8nOBHz4YY69KKmuDUlmjQAaq9CPDgnXd7DLhmbSQzeedH9GfWtC9sERhTGk5xZ7I2e1I5qLcjcRrYWns3rtHLc6GkCwiuyiJT1crPM+ooL65gbZ4wvM+YrzL+4wfg/ssmVyL7J8eYNk7kifTMlOG5J5j2g1ZlZTHBaYJqKqhtjPKA6lcx+6gVIzhHQmXf/HPzNh813P9u+cEfoZo7fPwBpx2QoCfhavThi8d7Z+f+h5JcGHQEyM5LUsanktjCY9r2hHGXYu26h2M/JTKE4kSbnafRYOGG0n8FSK7e8Ehh8sccOUD39hjEoDqtGUq5Tou2DC0NESUk+zTDBpIDQGnUlRG1JDfqDpHUaOvxxRxktuSO6ITdLRimTnqtZC71DPzAKWLww5f9n8gJC1m24YKWTaoVqLQi/pHc1Y6Ft2Ke5B5sJSb3lUMGveuRt0HVwvKejNOBJvlbRPC8xxit9pSfdWtLVl8WBE3GthZXBDL1SiUsN5iu9LcvnvvHMXZSKvv/CU01WfO9dO4Bqs9rdRypEVLeU0p7k34oUvPubDR3u8/umHvPO9mxBFN9Fse/AQuxRsN/K4gSJmAXskl2ahMomWwuYtaeoIrSZuebJei9GBZZ3Stga/EYg3vLhvlYZmbtFe6DbtOKyFv8Vnzpg+HpNeKMqB6Fx8D3Ql2gR7LoVvcaiIStFsiANXSIQmlh3atf5GdVMz10MEvEcJyVxx8cWG0daS5sGYpNM3pMeW6pWKOE1l6pEH3BXHcLJiuciENnOSCxXrwQDdKpb3Jqgkkt9YUC4y5psiJMdG7Kll9oqn1zmLoQ2ra55iv6PeOOH424WR559Eir0lo6yldYbq+xPS7xeUd1v0haX/gcX3wEXo7Sxp3xnTjj1U+hk9qe/wrqMwdbQ4uxQtjht5zEEu56MfoDLYhaba86QPMzHJeGmFelRQXWtJjxOZ5Hx3U6ZZmwFTKvIPLOkcCShMIukTMXe4NNooDkU07/sB3Zo1lUh3AELPxMwhXjqRtYpk8aw69hnkH6dCBRyELjRQGjPtCJLu2mTKTovUuXJJwrlMLuxSgNra/jsKMIh5XDd6YiF2tWRyLkwl1D9dabG87aiY0QhoURGZKKTSNNC1FpcpJ1O5qCN2sxXxeWnkfW4QQHEJShqD8xpTOKFRpYHoFGbYEjdBH2UCMILoZ4JThL5Hm0hIu3DSLvfF5zLpihFMo6FFwFASiX2PWpgfsg12P+Ak9r/F9ejRox+iLWVZ9q+876uvvspbb73FxcUFv/Irv8Jf+St/hd/4jd/gjTfeWNOqAN58802++MUvcvv2bX71V3+Vv/SX/tK/cpsxdrbv3frB3/+X3Of5+tGt5xSsT+ByxVpxR3l9wPL2ADbG4mSU5yIoTpK1GxZpAq2kjnOZHxEC9ApU2YigfVHBYiV6jTwHY7CHU9RW12XIsmcuSlYTZwvCYtnpDTqcqrRMThYr9OlM6C+Jxo1zwnTG4P4CtTERSliSiJ6kqtHTlYCgNhJ3ZH/NnS3Z5HwJvYLeh+dkFx5TuWdTnBhJpg3NJCWkBrv00OtRXRugV50QtbDEIkXXUmn6QYJuA6MPFvQPg1CN1DNh+qW4XILFLsXh4FNNfUWCEpe3+930pOv2pYb8zIuwu24JiaaaGFzf4rYGzO+IjbBa1sTMoD2M7gsgqDdz8ovwbN/hmdhet5HNdz39j2e4SYEua8kBuUx019L5k2wP0YSYWQUhoKoW1Tii1oRLvUfl0KXY9CazGt9LIDEkc0+1LfsbPOrcdWLHhAryXkvmit5BQygs9cZluJpFOUVojdCu6u79FjqHrKBQWvQIl9fzaCPJCtphVxB4ha+sCEZ/MCk4dtaVaVyfj2QF+UmDClLQmhpiIh3T0NljNhMRpKYzeYzrs+6uul4X9pdCdmI6bv4l5UMMDVw/0PYFhMSDgrDdrKlcxgRxzvFC3ZDXSwBS1JHsRChhOIXOPWpuefc7t7h4f5Nlk1G5ROhmpxmJ9bx6d592y7E/HQGRD4+2UcMWki5de78r7LvzYlZa9DK+47crsRsGoci0s4zVPCdOxaWsnzck1jMqaowNolHQETNsMeNGirtJi88DYSLbcXdKqiZhcnMqHekkQN9TbQcGDxX1XkszgvxEpln1VsQPvLhn9SXYL1gpVqOW900zkdfncprWDqD4KMX99oaEPb5+AYmIvNVphqkU+ami91jTfyel/dYE+3EBH/dh4NA7NaHvcbuNWOSea9J/MiI2mvHOgvTMkO9bmkmk99jQjLpJQS5d6GovoBtN8ciiX1rge5FkJnSi8PaI8w83WN4frcXc2eMETGTxsiPYzlXt22Lx23tq4HpJMtfkR5rx9oKYexE1KwGNzUanF2jFac31JBjSTo3QtYDmZi0anrOMrTdPKDaqThsi05RmEqTQv1qz/FRN+dNz/I/PCSNHs+Oor7Ryrep+dAumm/wJfQkuhfmSE8Ka4gQdWOwE4s2lqL+bTJgGmrH8ECVrxfVYa8L0peFhJp9X5WVacTkBUW0HTIqwni5L4np8JgbXiK10ECCrWgncFBvuztlw4zJgtRPBd/SnYBDQeUndnFswQtcjgjJyTVC6o5K2Cj9LyCYVOvFrSpZvNGHkoOdlQmslxFOOT2x0m43QuYh13xsLg+o0ISF/dj2hfDYJCqnQuv5Fs4EfxQpR/ZH8AGtXq8uf/18AJE1TXnrpJb74xS/yH/1H/xGf/exn+c/+s//sf/S+V69e5fbt29y7dw+AK1eu0DQN5+fnP3S/o6Oj9UTjypUrHB4e/kvbOj4+/qH7/IuTjvPzc9q2/ZcmI8/Xj2Y9ByCfwJWfe/wgI1zZJDuu0G1kdXdCbB3hyiZqPISLGbFp6H//CKW6i+HBMXz0CB7vE0/PCdtj0WsYI/Scuoa5CMHj9kT0JasStX+y1nRQN8TEEF+8gR4OKB4K/UpZC/MFVDVxtSIOCvTjQ+zb94X2s7uDL7r7KCU0qw7AxCylubFB9v4+7YZY8JpVS7vZw93akUmPD+RPZpijGar1uH6nfQmSlt6OEpQPrF7bJT2tQWtMK0L7ZquHPV/hrm8RlcJclCxv9Bi9N+P6byyY35QE6vwMBk8C13+jYvPdICLUDOY3NMurlsX1hP2f2WO5p2mGWlLRjRZQFyPtdoGar5jdzVAReu+doFxg8p2zTvOgUF4S1ZWX/I7srKIeKYrTSDKHzXc91//hMdu/N6e/39D/aEpUCnu6ktfFGgGAVgTmftwT699hBzydJxad7idGQpGQHs2x0wo3znDjHDdIUY1DV56oFMm0oncAm99ZsPUbj7j1DyvhMmsYv6+5/auB2//dVFzKVi3ZuRPB7kpLuNbSEDtBpjKdqFxLhewqKxa8rRbBehZY3Iwsr0eS046rvTJrQbVu9LP0Z6fWhazPIVlGjj9XkJ9GTCmUHECmJUGmEOmFCHLrCTK56bqPupVOdH21xe22NBuB/kONcpeFlAh79aSh3W5Z3W4pDoR21bxQQWUonw6ISRBx6eUxdl1av92yutPSbDvs3KAPMq68eozdKwlJZPZbO+w/2CLttWy+dMb8/pjzsscbLz1hNS349N0n1LOMYlBD5+rletLljV2XF8CeWVQj1CYVhY4TNlrCyFFslrASGg9OM1vkLMuMEBXVeS4AT0f8aSYJ0Vs1rKz8vdLCbQ8yyaobC5+ao6dWrJJ7ntnLgf5Hws1b3vb4XNyXevdtl6itSWedDfJCCjFxlpK07/4jmUIli2ciaVMq2m9NyB8k1LcbdCMd5HoDmh9f4H9sTnXVU19pcWOPOUrhaY69sKJluL0gvL7k4rOtZL78btfAeKXElIrl3bZz3roMW+wmg9u1TGXeGRCtaBGUg+xz56itWt5zRVhrxJKpWN42uw6fQXmzxecIRe7jHs31Ro7zG5sor7jx449JZmpNxwmFaAl6TySTqB1H3FiK32RqMMcpri9F8+n3tkn+2ZDiQFNd8WTnijhuCX1P/l5O/nFGtciojnqoJKB6Yu+sglDU6lvirKG8WhtZqCC6EFvKhNAXkq+iXSee9lDthLXF7eUxh7TTv6SdrvvSjWrdULicdHUi/g5kxTysXet8L6yB1iVIiFlAVZpYeFQlwa8h7wBMfObwZudaplRLjZomhIEnpjLtuLTWvtTLKa/wF6nQRUuZCsYkEFuDKdwzwFN47KSWhkIQm/DYNVpQoFOPGrXd5EfLFKPviWkgjlvq241kC1WKdNo50ZVa9pkK9VGFjqqWhbU+5Hk19a9eMcZ/pWbk9PSUR48ecfXqVQC+8IUvkCQJ//gf/+P1ffb393n77bf5yZ/8SQC+/OUvM51O+Z3f+Z31fX77t3+b6XT6Q/d5++232d/fX9/nH/2jf0SWZXzhC1/4Q3+Oz9cffD2nYH0CVzJrULErMl2geLIAQBW52OwuSyl2rYXlSsTkiUXtbhP3jwSgaEN85yPCy3dQHz6ExRI1HlG+eZ386++L4xUQO8CgBn2IAQoJJVT7h0x/6mWGH8zQq5JY152+oxRr4KVcTNTmhOSsJGwNcT1LAnDzCiwrAThnF2AUrmexexu0I0uyOcLMKsyHZ9DpW5qrI8zKUd8Ykc5a7KJFlQ06BAaPFM0kIzkvMasE5QWgVRuGzd8+JVqD3+ihnCdZNvhJweg7x/hJn2g0w0eRi1ekMz68X6LawPB4QX4qDlzHn8tFM+IgP4+YOjJ4VGGP53KeVzVRD7EXNe7aJhvvLJm+1IcQMAdnYDTb3x1R393C9QyT91bo1lNvZWSHLdk04ArNxvst+cFSAhrnpdCspAmIilH81jsth17VMtXKUy5eHzD6GKLWmHlJzBJU7aivjkiPF7RbfXxuSM9qfD/BLqWTqBuHG2XYWc32t6ZEq7n4yRtUE82tr5WYSiYoygWZpiQGN0hxA8PoA0W6jNiV5/HPRUndLpxMBFpFUAaVeqLTQglqpXsflXRe0wsR8c4H+ln6spPcj5j9gFtOZ3epW5h8b8rxj00IidghF0eSZq7aTsSuJKn5MgukGYuYFsW6m2sv7Lor7AZQb4pDkV1qkjk0PoexIz1KWL7S0n8/wb5nWHy5xK26y6GNa/cfVXehcRddWnWj1y4/+x9u07u6oHf7gs/92FN+58ktlIqcnQ3Iri85OhrTu95w/doZ3/3wBl987T7fP9zDLDX5Z8+ZPRmhm0782nWsNaLHcZsOt11TFA3LtoBaU68Ssp0VqfXMT/tc2ZxxdDFkXmaYnsOvLGqWQN+hVoZghKYSc082qYnvD3ADgz/KaHdrQpckrYDR9oLyYEMobRuR/gNDuRfJzlRnE6xpRlECCe2lYBiyQ8vqhpzjdqieaUfG8l5ILzTV7VYS008SEVcPPMmFJtwbYC6gr4BoqP7YCpckmJnF9wOkgd63htII70G954jXRWCevl8QPz1HHfSwS01zo8EeJugG7FxjTvN15sSlvkOvDM03N0gj1C9X6KNMKHYaXCYBm1SaZq9FNZp2ryV9klBfa9FzS3J1RTweAPDkt26gPjXHvjckZJHN1084ORvSlrlY1Abp5GenmnYoRgD1FYcuHPpJzux1x2h3Qf7NCavXapglYqk7lE68PUzEoe1MCm4/kjyMsEiw55ZmFOFmiX/QEye/TOhD4kR1WeBLsF5yLg5c2ZkAcpmiqM5KVwDE5dSh3XbdNMDI7b4DOtWl7kI+byRhbSggfxRwgRG7a1VpYucqFZMof+tyNCToUMu1z6m1/a6+0Givu+OLtBseNXDEeSINgabLCGkVbRGE2uUUNBrvE1Qi2h0VFK62uFVCOmxwtcEUgWaeolotoYlTuxaYq6CInag9NprkzHb5K4HqunzmKbp/E6GTxbTbd5BpZcgC/E9rsv/I12V2xx/2Nv8g62/9rb/Fz/3cz3Hz5k3m8zlf/epX+fVf/3W+9rWvsVgs+Nt/+2/zl//yX+bq1avcv3+fv/W3/hbb29v8xb/4FwEYj8f80i/9En/jb/wNtra22Nzc5G/+zb/Jpz/9aX76p38agNdff50/82f+DL/8y7/Mf/lf/pcA/Hv/3r/Hz//8z/Pqq68C8DM/8zO88cYbfOUrX+Hv/J2/w9nZGX/zb/5NfvmXf/m5A9YnZD0HIJ/AlZyuUCNLyBN07YhGYT58SihLVFkJh9Fa1MaYOFtIJoiLxP0jmT4sSwkbTFOiUaz5MUki4GNni3h0IsBjJKnpOIca9IlFKjkSgx6j//492s/chWFGmiTEo5MOfKyEJrWzCcdnhN0xKkbyp3MBTU+PYWcTt9HDlhXqdEqeWvTRBb2yRTkvgKF/VRyx8pTk7fuo3W2KukWdz4nDPvWtiWSNRAFlMbWYgzPi5gi9bBg8VPLcrUFXLfpiyeLTewy+f4Kf9Jm9MsBUgdWOojgUWs/pm32GTx3K5eT7C6JR7H4zUG1nhEQx/tYhF1/ck4T5LBVKlNb07p0Qxj2iNbiBpe0rMIbyjW2ZEkVIj5ac/e82uXrvnJgIZUzNS3oHOeevFTLNKluwhtXdiYCRAHpRdgn1GhKLG2WYEFi9ukU9MQwf1STH3WSpo8hVtzeIRhFyoaflT+e4jR6zOxnjDwPN1R69h3PsrCYatQYagwclo3dacc1ygXq3T0gU2Sk0k4xqO8FUAe0iow8W1Js5qpKucuh1lJ0swMqIJiQigYQdnUsloQMbncWpiUK98AIqQia0B1OJnkT42FqABDB60GKXLasrObPb4uwTUum+un6kGctjszPhqNdbnUako9XZhcKuhEbSjMWSVUWhcTQbQgPKnybYFaAS6s8vWZ7n6IOcfC7uTXZupDveE6//7KBLTW4sdgXNZqDY17SVIe6Pmb1a8RsP3sBsVxgT2NhYMp0X4BXjrOLdf/Ii48+fkWrH564+YbaV8/b7N1FecfvNpzz9zRtSbPKsm11MKqpFSj5u2bi24o3JIfvlCBc1mshPvvhN/p/3P08zz0iHNfpxjm3FZrbxHQg7F9CkWikU7Wsz2mlO+lFK2UvEitQp4lnKrDEkiD2xboQDj4LypRo1TYhjR/GB5NqktXTKfSYAr/9Ypjn1ric/MOgaTK3xKdRXHTiZkOgW6lcqzHEmbkheEr2TuYDQ+LSgmCnqlyrSBznKiUj/0h7VTg362KK87Dce9Ih5wPU9ampxew1uYDFLjbtVE2cJ+aGhutOgZ5Zkpqh25TVVp5kUwj1HcS+j2dDYhWgdlO9S51PN5o8dcfj+ttAWvz+gfbHEPM1pbjT0vjGk/XSJepoz/50d4p2G9kpLup+QTKEdKeqtzo1s01E8SIjGCiBZGJaLMb0S9EkqLkxVRz303URv1VHxNKBNpwcyxCTiNxz2fo90xpp+aGdqna/RTESvk55YTCmBrT6/DNVT2BJ8VLSdjiNcrSlLK51+r9bZLMorTNm5f408ZmZITw3Bij4qpgI4CAq00AAv9TJqYYg/GCLYHZtQ1aRJ4TOEyps+sxhWDmyrsEtLM5bnLVktYOaa9lpDPqhpHg3WdrnouE5s131PaAwsLQ1CA42nBpWLU5nJPTF3QmXUoQtMjaIVmVsBPiYSOyvhZLekPc3FUryjlq1V9Dp2+qPIWnD2I1w/SJn6w9zmH2QdHh7yla98hf39fcbjMZ/5zGf42te+xp/+03+asiz57ne/y3/1X/1XXFxccPXqVf7kn/yT/Lf/7X/LcDhcb+M//U//U6y1/Dv/zr9DWZb8qT/1p/i7f/fvYi5p58B/89/8N/z1v/7X125Zf/7P/3n+8//8P1/fbozhV3/1V/mrf/Wv8sf/+B+nKAp+4Rd+gf/kP/lP/heekefrD2s9zwH5BK1LL++f3vklePkOPrck04rFnQGjrz8E74mrUop/I5asKkvF+rabguCDgIS6hhCJ8wXh1Vuob9+j/jc/TfGdR8TNEepsJtkeu9uS2dG0HSAZEM8u4M514ocP4bW7tJsFyVmJ+ugJamcLpjOYjAWs7B9Dmso2pwsBRFqhkoTVF+/Qe+9EAEvo6EPXdiSh++Rcfj+5EPeuNKH8zE2y4xXtOCc5K2l2emRPZqjWUd/eILmo0csat9HDzEpU7Tj9yT3qsaJ3FKg2NOOPGrLDFavbA2Z35Ms3XcpEY3EzJz9pSc9q6u0c19MMPp5TXRtgVp7l9ZTN3zqgfGmb/OFUXK+sIfQzFneHDD6YUd4akJ02ndA0IX8yQ61q6rtb6Caw2sswTaD3YCEajtQK6AgSCtjuDAQUWI0bZpiyxRxe4K5uYpbyd72o5dw2jna7z+JWweTtC2g9MbVU1/qkF41sozBkJyWqbvGjgmaSUm1aBk9q6kmCqQPJwpE8PGH++WugoP9gQXm9TzITcnczFrpXNRF6lK0iphY90GrbcPHaM+pESMTdCuTLmTRI8WEidBaqyinyfYtdwvJmkCIEQEdJke466Jc5AirA4IHi2q/tE/OE6ZubpDPP2asJ5ZVn3+shiSJ0XnbFWl/+ZheS9WCXnctNR9uwK7XOTHg2mZH7XFI6Lo0I2quNZHocWOHR7zaYoxS3IZ1z6OgWCvInAkiaSaT3VGgwF59pKTYqtkcLPr/5hJnL+fbxNZrWsDrvkY0rxr2K1Mo5L9uEYVrz6Peukb00o3w0FNtTJ6J6UqGfmFHL9Z1zrvenvNQ/5oPlDn3boIk8WY25f77JapGxubng9MGGBOR56SonU1i+JB3tjStzqm9swqfnVIc9yAN6JsW8qRTqtTl8b4hdweJFyf1IzzT52aVGCso3KtRpRnr2zGEuO4fZZxuoDL0HhnYI7mZF9qGk0F3qW9wgYm8s8Q/7EMBvt+jUY1N5cZsywRymmFo0N831RtKsbaR4aiTYrte5EyWRMJTHqYXYxaogE7NmCM1WEIvn7QbmCem5gFjdiDV29WpFcj9f27Cm58+KGteLhDRgSo2pL617vYQtprGzT5ZsDvdCiXlQEO6U+NOM/EhTvVQTG01vs6R+NKD3WFPuSeZKvRno3ZqzPOqvLZ7dbovJHTuTBSdv7VIcgu/B8m4rQYi57NOnET/2nSWyTP5cD9Qbc17YPuW87JFax8MnWzBPyI8FFIa00wWtdNepj/giiJuVYu1u5Yu4pgGucy9yEe6bhemCEQXgu5FMTLQTAGMXWkL8+pIbRGmE5pXIft2ky5FJ41pMr2uhXpla3lvRypRIe8QqO4ott6k7G/WuwXDp8BUyAcqXtXHodxeJPIguTUdJRL9khlkBGazEahcQetaFgGsiUBpiEkhOE3nuGuKou29jMAvTOfyxvp7JjUAWCNOGR/+n/+uPNAfkz/7D/+MfSQ7Ir/7s/+1H8ryer/9tr+esxU/iUgr79IxkVoOPFEc17vauhAleJoF2/8a9rWePa510ycuK2O+JrsNo9LxGJZaQKuJ8gTo+J5ZCkYonZ8TucSqxxPMpKsvAR/RoiD48J7t/hhvlsu35QsTlF1N4fCDAxWhwgbAzEfoXEFclvfdPCaNC9lUUkCYy3UgMMQaOvrRJuLIpIvpELFJjYlAhos9n5N9/AokB50mPVyIA72fY85V0729usNqVgiWdeqKB+S0p3J8JKCO6iejaoXzElh7dOOzK0X+8otnuETWkJ0vG95bgA9nBklgkxJ6I7JQL5Kdi80uE2d0CO6upJ4Zmb8Dq9V2Ui9QbCbaSjmd9pU+920dVjupKXxyqrCY5nONGGapxhESjKyfCfsAPxC4SLZkebrNPcjgnm3oxE6gbqhsDfC62vMmDY3lNYkRVLSE1NCNDOvf4VDQy9YbFZ1JgpVNHcVjjhpkIuAtDO7TkxzWmCtg6YssoU6duu+1Ainmz0uuOqIiku65nJ0iPrRJKAkAQuttaf5F1YWI2rqkcwLogSRaKdNHtU2tWe5q2b7rbLj8T3b6dwhVxnbJMVLg+azeeS6AhjjusA+m0kx/JG1H09tU6s0B5sMcJybnsU0VgYXGbDlUZkpmWAicLpIfSwXZFp28Ywt7vLEiPE7K05Xp/xkeLLRLtuT0+p64TTOGIUeGjom4t01WBUZHD2RA0LM96JFMNSrIJVETsRvtywF/avs+rAxFcvj44INWOe7Ntzqoek15JkjsWZSaGAV14o3KdWLbR2L5jVUlR0lRWRPUBwkZD2K1RTrJT2kGk2o5iZZsG0UJsw+pqF/R4mBGSQDKHeiLHuroa6b+bkh4b6q3I8D4Mfi/HFfJaNFtynUrmivoix+80xASyRynqaY5/0Kc57JH2WrhRSageYA9SsZFdaeqdQDsW0bPvh3Vatzm3hJ7HDTzthmf2YqDZlIlJ1GD3M/RmjXuhxO02NDcbgoXkQY5dgh85zEYjz3/TY0qhv/UfGfJjRb3rqHc8utK4Qfe5vtmIlW8/EmYp7dgTD3NGt6ZU1x3J4wwzs6S/PiLkgeVnK/x2S7XjxVb57TG9nSXq5YW4Lh2m2Pd7HDzcxN+oaIcC+OyFlUTujl7o9xqiiWIVPA74Atwwkv0PQz78p3c4emeH41+/Rv+dbD1ZCHkQsL4Um914aXZwCVIbKfhVEIqVruUn9D2Xqd92Zgg9ubYmM5lCpqeaZKk6BzBxtJI0cS3mFH0vZhQzKS9ULSJzsxDQoSv9DOR0zlpRCzhyvbg2CvG5gI9oWIu/TdlRIhsJgwx9L8CnEZOB2GhCZQmtEUF6h1DEVMNA4QmVIdRGXNf6XsJUO9twsxTzinVivNPPBPUmdtMPxA1LR7nmOSUuXOmPXoX+RylCf76erz/s9ZyC9UlcMYo4/P0LVJqi9bMLgNKaGAJKa9CKkFu53UW4ewN1dEY4Oyde2cSkidjmTueQZdiVR+3twHxBvH0N9dEj2ebGmHB4ArqQfWuFmi8J13dQ95/CbE5a1QIUQiCeT+VgtJapzNkFShtU68Qxy8uFOJ6esXr9ZQZnY+L5hUxPQiAaQ3zhBru/dYo6PJXtVDXptKUdpSTnNdWrV9BNoNxJSZYD0Iretx4KCNicgA8k0wq7ytj+zgpfWAZPPHblWb48AaUYPfToRo4lZJbefk3y8RHu5jZ20eCGGfmjKc3eEFW1rF4cMyhb/DAVPcusxSgBA6ZMQClO3rSkMyivDcjOL+1hIqZymEyTLByzFwqKY0d2tGR1e0A9NqgI+f2K0Muw04r66pCQas4+N2Hz984pr+T0H8rU5FJorsuGmFmSaSMgL0aUi/ROKsy0hCKneHDB6s6ENE9Y3MjILzzFoznNVg+fwOTtC5qdHmF7zMlnMvZ+d4UbWIpHC+orfdLTGtUGVIjkp475jQRbgSoj0Sh6x5Gdb9foynP4pT7zu2HN+Y5J5/7T6TMoPKr7svJ5xBcdSOkyIPTCUG9K5scl/zr0PcU9i6kjGE3IEnQL85vStW5GQt8KudCnJN3+WbI5qRQosUt8xkgx5FOwpQhzRSwqj6s3pGtpqk6sO/bolRaqWBHYuXFO4w3TpyNUq9dp5WZmyc7EvteNpSiNWjQp7/8fclCO5SrjbX+Fjf4KqwNvP76GSTyv7h5xVvXwQXO26PHpq/vc7Z9yWA15y1xnVFRcbBXECOUiI84T0aEExWduPOXD5Q4vD4749sV1lm3K+bKHMYF+2rCoU3p5g/eaetwSa4Pyivqqw9RWROmzBE9C+qkF2bcH0jl/uaTd7xHHLVf/+BMefvcaye0FRdYy/WiC6jkcEE1kcC+hHUB6odAnhvlnG5L9FLsSNzKXd9OHseLsSy3m3KJamRQQxBhAJQFzmmKOLe22g5sl2mvaRYpaGvz9vryOA8+1n3hC7S2n39gjPYfl7UgcOtJbJf7BEOUUvZtLFqpH8SghaqivOBg6CYf0Uki7kad4R6LOfSbvhXrHM7onIX2qMpj9RAwqDg31phS/1RZiG3wkttHtMJCfaKo7DemjlPjGAvveAB8kPTskgdW7E6585pjj+Q4A7Z+cYt8bE1YGpaVodz1objSEeyMxImjpmhUyZSs+sixve/SokcnKXk28SEmPNflxRrUtU4Jm03P1J+Ucze7kuO6cNBsitteNhBqqRtK+xXmqK5iDTB99Ede36aZztetW/tQKgElFyI6Xz0qzIeLzOLc0m0GS3KuOttaKoPyyp+nzuJ64qNAJ6DccqkskxylCL6yPJ9gIRgmlqpHPll2YdUjjZYChbkRgf5lY7tPuszh0pMOauEqIbTexHDqiE7AVh040HKVci2Mm9uGq0ai8u18lTRYSSUZXrUI5ix87ceGim6Q0YpVNRBy1IqiVIZY/aPP3fD1fz9f/1HoOQD6BKzZNdyG0xLomeo/7iddJfu9DuHMdvX8iepDWoec1NC1qNKTe7pMtK1RVo5+KxgPvoW1BK7LvPCDc2IX9Q3Q1hp0t4um5ZIbsbQuwUEoCDpcr2BqjNiYyJZnNCa/fwXz4FG5dFeoUMukAaG5tyuSi8uiTMxHFZxn5cSdWTxNoW+J0jru5iakc6mzG/I+/yPBbT2QbGyn12JBMa/K37uNfuMbwXoU+Pu+AkVjSNrsD7LxmcWfAYN+zvJHTf1KTnpYsbw8o9sXRSzdi6RsTgzldEPs5pInoYoDkaEFMui8NL2nt5fXO+YseZlqyfHlC//5cbH9d4PpvLLEnC47/xC7bv3tGeWNE74MzojWoUUq5mzG8X2IvSgl3VIr83JOerIipYfrGiMnbF+QPL6ivjdnYX6KqFu0jelYSM0t9Z5PsoZzf6voIU3nwgebaGN1I+nmzO8AuxHK3d/8CN+nRDhS9w0DIrQCKgxXRasqdhPnNlP5BwPUtbU+TDFNM6ai3M7LThuxgQbtRsPm9mpBZolYk5yW+l6LLFr2qufYPS1YvTnj6Jyz+ekV0WiJE2k6b0gWBkQsdy/UgO1WUN6NkHvSli+xz4afjFWZmqDckiTxmCdXVQoofC8kc2r5ahwZeJm9fdkmFe80638MXl5khrG+3K0kaT+bPaFr1FUfdSuq4qQymgno7QhY4vbcFUWFa8ANx9zErjbm+onE96fTWGrVZYx8WNNtO0tpXULYKp2HZy5lt5Hzx9kNc1AxszRc2HnJQj0h2AhdtwT9+9AqDrOFze0/49tE1Euu5OB0w2VrQDg3LqRTO335wnf6g5vce3PihIjHJHd5rcfqJoFRkNFmxmOeEpQCYai9QPDWULwgoaJKMQQXlLUe8yNEKtA0YHQibDfGdIRc7DsYt6f0cu4LlC47VdaEcldc8oxsz9IcTlIPy5ZraBuJJBpsNcWlJDhPcjYrNrQWnRyPUzJIeJoSXlrRjDdpKevm3hhigfamRTIXdRigzleHRW9ckSC/C4tM1+aARp697I8IwYJyCr49Rr7Q040joBcy4wVcW1fUEstem+EdDypdqmCdSKDaa7Mgwe7nLComadhxIz2VioJ1QktIZuDIRV6mlCMnLGy32OKHZ9qTvDjBvzHAPhuiVTAhcL3L8vR1e+bEHlG3Cw+9ew7ouR6MUwXWyAD+zaxvbdF+jfmJKvT9AX13RXAOOc/rfKoS29SCXlPlXKkwiIvn2KCc9Nxz++nXRWEUIGx5GDj1NIA2kV0vyrGX+7gY+E5DYjMCWiuqqIzk3awMIPwhkR2I57fOIGwRCKdbAdqmJRhPGDrXREDpgXN9sUUuD23CE0nS0uO46AN2UqktB7/QfIYlr0Xo0UahaXgp5n3XPw3ZZK11x74YeXWtcJk0kOR6E8tWX5HpVa8mmGTRUF7mEo/ZafG0lALXV61wcQOhXEWJloe0aD7XtglUjMSrIAl6DWRp0pQg6ggFVy5RHhPVAVOjUEabp2rjiR70+CRqQ5+v5+v2u5wDkk7i8J8YWffU6zBbEiynJN94ntg49X+FevoF5/6FQrp4ewu1rEoarIWwM4OBIJiWL5dqCl6KQpPNZCZsbxMMT2s/cxR4cwWwu9zNmTe0CCEWCni7BaFSaYO4fEG7soR7tE32QAMPjSCwrkrfv4z51BzNdgbXEGMB77JPTtWvXZVJ7SDTKa4xSAj6KnKg1vQ/OyHupgILNCfrdB8SXbrL6zA1637ovOpODU9L9GQDD9xzKBTkPnf5l+O2l/A6EPEU5uU8YFGA1YWeEcgJKUApVNSSnS/zmkOS8xg1TMIbkeIEfF+jm2ZfK4rUNBu8LGHI9hR/mFE/EKQstQvm2XxA756zlm7u4QgSfoUix84rJ96b4foZRiuSiZHVzQDrN6N87B6C8Oab3wSnL17bpPZzL80g1GI2pHM0kIz2pMYsoIY6J6YwGYPjYcfFyyuQeQlmLUaYmHtJ5JFl4qi3L4GGFrlpJVw/y/Pwgw9QSJBiNQteemBh03YLVksquFMWjBRvvjjnNMszVFW4lkyFslO5m2k1IOscq5ZE8hKLjbCfiv58eW5la2NhRfRShSPCpuFXVty5D0MQwByRcza5AGylOm0nEztUzfvpS9hetCKLTY9MVaWodmgeQHVnaYaD3WNNsiC4AQJ8l9B8r6kmnN/BqLZ5tT3PYbfGlkfyF45z4wpLR7/SZv+Bpx8i0p3MKmz8Y89vnfYphxbCo+Y1vv8boypxeKuGBu4MFF2XB98/22OyJBXO66znr0udv3j7h8aNtoo7MT/tghNceFwnoSOM0ehQZFRWH50Pi4x5cqwjOSIFXSXde72vsUYKbeHTmWN4y2AtDvFnRe6dgMVE8/Sc34aWaek/AVHs10E4CzW4gPRZNjBsF+g8N/uEG4abHDTX5BxnlTUd+oeEi77Q9YPYzqu/lqOvC13d3S+z7fXoN2C9esFplVNvglwn2NBGHqGuQjWraRW/d5bfbFZzkNOfpOkE721nRDi3hbks8L/AjocnFgwJbK/z1Cn2SsXo4RG3XMk0atvS/l7F8wVNvSne72g1kJ9Kx94VoIC4TzhcveuxUCutmIxDTQP4kob5TkzzJcMNA9s9GqD8xJbGe2ccT4sATneWj37gjjmZ3GsztivbxANf3JDsr7mydYVXgvaNddvolJ1sD+v90zKSBaruPKSFvYN5pamxHYTJPM8kWORbqF68tKE9z0iNLsxHIDw12ZXB9iDOLPx2yUGAuaXhKtDrLu558s6RdDDClfJ50rdbZOkS6YECIaaQ14hBGqfHGCNgaCS0w9DyqNF2jLEqcUFeAX04oYyKNg6gV9gfCB1ERWi2TDyMUJuUks0atrIAW1X2fJVFsbp1MYXQAV8T132P3uWhWiXz+vMbXCm3FclrCCgUI6VbhK4O6tM3tOxGbe4UyIvgnDeizLjBVSQ6PnlvUVk0otNha/4AGxHdgHzqg+Xw9X8/X73s9ByCfwKV6PVg2xINj1N42ar5YU6Pi6Tl6MkQNBzK9UIr62ojsd+6RHZ2J3iLP5GcqhTp5RpzNUJMx8fSc2DToQZ/kvERdvyruVlkqj9VaBOMxYuYlfnuE2j8U3YdWlDcH9B5Eccx6crTWpKjdbYLVxONToXBdhhS1XUvSWhj0UUB6VqIvlrhbO9iP9iXh/eKcGAPq6o5MG86n4vQ1XdF7fCTi+iOxvMV7wqSPcqEDXqloRWIkXgYxWtGlRGtRIQiYKluUC+gQxM7YKNqtPnbRoEKQgrv1IvbWGtdP6d07wW+I9WaxX4ExhKFl+zslF6/02HyrhSzB91OIMPzeibxWaUJxUBKNptrJMNMV7ZWRZHNYRUgt5viCfuNQjSfmCSpGjr6QcOedlt6DGWpZkcwz5rdz0qOEkFl8YSivD7ErR/rkQkBE49GNvA7BgHYBN8nRbSBYRbISS9R6w5CdOYJVVDcHpNPOrnfRimBea3TjiT6i2kBIjHSsGw9ZQlQK5T35eWDzu5rjYYpOvdCpgoKek6K9VWvxsW7pAsuESuG0/M31Yheg1tE7xlDtirBDRQEvKAETBJlG2IUmZAIYlBdKUDt8xhH3GWh/KVaPa2ChOieh7Ez2IwJtzeJlR3Jqab+4IB4V9B9q5p9qyccVzWEPlIAnN/HCWS/Ns6yBAPFxj/lna7J+Q3VWCEWsNOhRQ4yW2GhWZwUrClSE2cmAaQSlI5u7c1ZVypXxjKfnY4wJ/PTt92EXPlhsM7AN9lbgYDqiOU2JypAfyVTJllC+2FBNc55Mc1Tiib0uRDH16KWFzQYWCavrct5wiiR3FC+UVN/YpH2cs7oesY9zoR5NE+xK0+y25MOabHPJ7GQALy0JqwR9nlB9boXWEY5zQhLQn1+Q3BtR7zn00nSFp4Q9ukmEVuEmHrufC51uz8HhgPyxJWQQtvyaDmQvLOZ+gtuKNLsOMzPY7/dRmUy2wl6NOs1oHw2kCH63QN1w0NH/oga34eEiJW6I+Fwd5mRzRX0zUG9C8ViKdN1CvR0IVkTO1IpkpvAFqEaRLG2n2RDr6OTC0r5Ukn1Y4Dr6z/xTLcwK9HkiwukAYdJSTyA6RXKc0B6mGMClEf/OiA+jCHhDAidpH3SkHcL8hZq01+KjwjtN/62C5YsOt9PK1CsasjOZ4EUbUe8PGB/A7OXQOctBOY74rRY9teAVYbMFHVEXCaYUAXp2ZIgnQyzy+TEIOHD9rjnQheopJ+cBBVFFSCL6QpLr7VEiQKLnpfDuNBCq6zvENEIjGrGQB3Qt1+WQCv3LLgwO5LGt2PXqVor/eJbKVONSv9fZD9MKjSpkHdBRXQihFtpkjGLvrZIAGrT1hFoCQ4kIAKELQkwiLIwAK0UHPiKcJUKrygNxtyZUBl12OhIFYZGIFa+COOo0hvWzhksMkrfyo17PJyDP179O6zlk/wSu2Hax3c51ORrSrQdQWUbMrThPhUCsa+xCHKzCciX6kJ0t4sER0TnQmjgooHVCQdIKlaZgLWpeilsWiG7jByzulJXCUyYCGrWzhdrcoP/OsdyhAwLrx1QNyUW5TlaPdS2AxnUia6UkmHDQRx+ew3SOvX8oYOdiBlkq+zw+X4clirjdy32skbT2VCYUsQMc63OmFDExhF6CH3Xgx0hXnRDQrUcvSlQIqGUFicFNCuy8Ru+f0m7ktKMU1xcgEHMrYMQ5SSj3/gcmCmJnmZ/L3y4nCfa0A4rOU18fCT0OSGcigDelo7pakDw+xxxfyLYWpThkNWIEkJ91538pYLAdyoTBjUV83/9oKvuailMWIRAzS1SK09clpG61l2LnNWev9zh/tWC5azCVfDkm85ZqJyMYqDcS2oGl2cpx/VRS5bVG+fDMpnczJSYC5uTAFKYKjD+spWN6Kcq8fB2c/oF0YSmOLoPE1qnK6w5ix6nuOp7N0GC747QLsdm1KwEcdtGFCvpnYKMdiitOFP22gI8uOI1WrQXsrhCrzHpLdCcqSFFrVhpTQ7NK0OOGdgiYQJ61XDoEuU1xyNGVxiw1Zm66jrJYy5rDlLaymIXBzOU+oTHEocP0WlQaRMh+ZqHW6JVBLSyn+yOGRUUbDM15zrhXcS0/56Tp07Mt+6shDw8311aj2akUQtpBedUTW00MXQGlI2rQonMB+zELxHmCGTdChSkEkNWzjKpOqG43FEeikTA1FPtq7SyUPU1w9wcsV2Lva77Xh9KIVe7DAqWihP1FRf3hSLI+Tqxw/CcCRnWjUYWTkLfSrCk5upSCrXmtpB3K6+wzyYUISaQdSkK2Xpmu+y2vn10p4jSVALgrJVtXplSvVs+ExUY693phMKUifZhhSnF30m/OSA5Swq2S8qZb75f4wwYF9ZYAYteXnJNi3+AHnnQq3fz8bQGYfiiJ5el+Qv6hZHTEzmaa0pA+TqVZkHZUowDJuVgTN9fFPU87eU5h7ChvyMQsfNxHv9snfa9g+WYtdKWoUJXBDaS5YEoR5advTJl+oSa50CRTTTsMRAPpo5SQRAEfEVhZKYqVAID6Rkuz7WlHgXor0GwE3FCcwNzQrx2xYiI/l4YTevHse0GoWwja8MDAPXOaSiIUTu6jnwUeqijnItooTmSVxiyMGFjYZ5NR5eke14GfVKaQl051l9cZ5brJpEKsd41QsaLTsDL4lUwJVaWfGWZERTKpiU4R8yCgZCnTjFB3QalpEL1a02lIBm6t9VC1hoWFzMs2Wg15lw3iFEqDSn/0NrzP1/P1r9N6PgH5JC7nUHnvmauVE3G3TsXJxuyfiW5jOCDWDWbZCB3qvmgpwqOnqA60xLZFPT5EFTnx4f4anABQlmLhCwJWQhBwkkkIImVF9uicmCQy2YgRtb0p958KbUulCbGRbWmjYTaXfYdI1EFAQ6dj4douar4ijgYwGqDOLgi3rqA+fEy4ts3s5T4bv36/y/awcgxtK78bI0CkbaHI8YVlda0Q0eiGZnRfbGeLwwqfGXGIChG2xtTXRuTvHxImQ9rtguzjClqP61nOPtVj6zsJ2WMR1re7Q3EP66UkBzPIM9Sypr46Ir93KOAnS0kP55i6J65djcP3U3Qmx6yUIntwTuxl2OM5MRGAoM8X9FoPeYofF5hTyfaIqUH5SMgSdv/5BXE8IFrRu2QHS0yZkT6WaVdzfUL+ZEZzZYhykeRkgSobTv74FukM8vNA76BGtZ6kjPT2G5JZTUgMuQJzUZL1LMl5Rcgs7TDBF5Ij4odyXgGUD5jKkcxaQmbkPeY9ygWSacPxH+uTHYK769A2oEwktBrdawleg+sCxRrILqTTms6g2hEQ0d8Xi9P53YjuHGd8QpcVIJON4cPI6opQQtaBgxnrIu4y00AFsfLUDowHkNyT+d0uTbwWW1rVKKrtQDuKFPuGajfSbATSBxntOFB84Yz6/oTywSYZ0I4iamXQV1cEp3GrBDtsCBcZ6o8taB8NJUH7g4J6x8OmHJROPMELECEqzHYFuxHOM0mW7ix2jw8m6JlF71QcnQ35u8svYXRgNc+5uncBR7mAjqWhvOHWwnd6/lm6u/EkucM1FpN42sqixw08KvCk2KUmO1Msb8Lo2yntIIWbjuWtgJ2adaffjTwqCehpSjPwxHmKbxWZkc55dc0x+r6lKQc0L1bidKasWLc2Ct8L2I0KVyRkD1L0WU65J8X6OnzOxq5r7Nl5+ZSjoxHmLMOWBv3anGqZYvczfOExc427WxIagz5PsCuFnibUu4rpwwKtwdxZ4p3GzVNCGqAI6AuLe6HElxbVaNx7I5mwfFjge2LZrKIAjPKFFvMoweUw/EimN7pVNKOIG0bSI0t1zdH72NKOoNlpyQ4lQ2b1UkM6aHCnBTu3zjg+HpM8TWlu1eQfZvgC4rWK9jwj3VsxGa44+GiL9rrkqoQiYI8liyX/1AXzckjUQlNSF4kU/1OLXcp716esTRiWj4fYlcJWXQDhUvqI7sVSJj8z23XzPWopyexup5EJwdKQzLVkbijJxtFdLofvBXSrCXkg6RLlfS6dfd2o9VQEEwV8ACyF8hdjR6MqrVh1Z0GMrroWp+6skkEMIHxnKmGWmnbDy1SjO1Y/FJvf0IUORs0aGBFABy36kbTTgnX236bXom3AtyL8D+OItpcTCkUIouEwGzVKRVwptC1Va+LIQaXRw0Z0ILOE9MzQ7DgBQ0kk2iAmG5dUNaflPR2Rya//0fdzI3/w4MDfzzafr+frj2I9ByCfwKW2N1GlF51FnqGMIS6WhEbAgrq+izroqD7es7w7ov+RCMjRGt0rCIulOGUh04xYCn2IVYnq94gbQ6E0wbMsESB6L/qRi6lMSQBu7MH+MUoZyhe3yM8vEIKsE/ChFbFuZLutQ/WKNYBhIInrKgQ4nRK3xoQ8RVcNcXNCyCzm+i7mwT4bBxnzn7jN4L1z1Gwh046mAeeIOxuoxlHdHDN9IWXv14+w5ykxM/Q/alGzJanSUtz3RrS3tnE9i2kC+b1jMKJnCLYvYX/bfarthL3/zyHtnnz5q+WKtr/B6sevM3pv2k15AmQJ2dGSOOxJarjzoBV6WVNfHZIdLjGLmnVQYGGg9aLlKVLRmjSOMO4JdaefocuWMMyfPcYF9IVoPnAeNkdcCu+j0bgrE8yiJjkvZXs+4nODKTL8zgDdRHyuMHXATitU1TL8eIXuplhm0Yquo5eiXKTZLCTgsvIks5Z6b4BdOUzp0K2nutLDDRN0HUjPKwGnXQExe7FHucczD35nMMahbcTXBmWl4y3Vv2LjngMfyfeXnH5hzMUriqv/w4xmI2d5M0E5MK24KJlGU49l6pGsRChrVjJJuVw+lckIFklWN7Irn3b/ZpK70I4gmT4LZwu2c9JpNe1QpirNbkujQTvF7N4GSSkFhi/EdjOmQegcK4sdN/CkgCJQPRyS3VhSjTP0qdBcvLId/UphkoCPhrRX453BHeYkc02z41A2YA8y2k1HmLRoBaGy1NMUO9dY4PBsF7tSNDdqTOZR05RQdHTHH6CCqdoy3p2xtb3k4fkG/rCPubWknnT2sRNPfmQpDgzNuCtis0DvY0szAm7U+Now+k5GuRepX6xIHue0Ww76jnbckOaOxGnmnwsMJyva+yOSmabZdQxuzpg9GkEE814f6+X1aD61Qh/mQoeLShyqiLCw5EXDyftbFMeadhRpthzZO0OKCsprnuTcYF+d0Xw0hH6AKxVRQesUamXxV2ti0Oh7A/n4bMi0JQaxIU4eFPK4KGLvaCKuLwWwaaB8vUIfZPTuJbRDKI5h/qJMX6IVy2A9FRCcP7UsX5DJkplZmh1HnNTEaUa730N7xfnb29ioaHZaaDSf/dn3ePvoCtW9EdpCM884e3+AGgai14RCwv98Idke+q0JeixGCVUR6D01tAPRT7QTeR4hC5KV0W/JMsfmYMXxxYCw3+My9ybME0gi6aGmmYAatPhUiyPVykCwXchkxPXl5UgvlFhtK9Y5NCyNUDk7iiRaoxuZPKy1UQZi7lE2os8S+dz1nk2X5MKgUKOGeJHKVGZlUK0Re2Hd6To0Mnlw8hxlpBZEG4LQpnCd9XfXcAh56I6rm9R0QvRQW2LsbJxTT9vRq4wOtKsEXxvRfaiIqxJoNGbU4INCmUBMFKE18nsWqK8ElIaogkxTGkMoAqbfEmqDqrvJkBIKavB/uIX//5z1nIL1fP3rtH70kP35+pdXWROrWqYL07kUf1ubqDRFJUIpWqebx0h+VMGjgzUgwVqZZFwmncfw7DalYGMsQYStpJ8z6D/bt1ZQ10KlilF+PzpDWQvWUHxwglIatbmByjNUJsekjGH5xi5qc0JclcRVSf1jL8F0Dv2C1WdugFKs7ozxPUvoC5XM9S3tzoBwbReylOKopt0bQJLw+N+6Tv36NVZfvEu918ePcnymxbLVB/Sys6ONkTjsgZF8jOWVlORwTvHggvThGX53tKZt5fvifFVvpoy/N4WmwZ6uCP2MsDEiP1qhXXeuQqS6u4mf9LjM2rikfcXE4Ac52eMZ7WYhoYEbBep0ijqboZYrmfZojVqUMgGZrtDzFfp8gTqboc+XhDyR5HmrkTm+JuxOCFnC8oWxgBijsKcL1KqWjJOyod5ImN5NOPzSEJ9qho/btVd+NDJV0ZVQ+cxCks+TMxE7J6dL2oHBVB5TtjQbKel5hS4b0dUoJQL3EPGFFmpWJ9rHR4rjlvxUinpfWlgafGXxjXDN4yLpCoqIKaGaGLKzChUj29+4YPwB6EVFfv+M7ERx6x+tsKVsz1ZyftsBuEwsPqOVwjlYoWWpAGgBHMlSdQJ04fZHI+LU6nqLXUhX2+dC/UBBeq5JpgpfBHQLxaOE4cdSwOhG0ey2uFdXovuIiLZlYaHnGA5LshdmJNsV9vqK6kAApb6+wt5ZiE7kKCe2mnAs1j5KR9wiEcrPCyuhIVUG+9JcJg6Jh6McPTeM3hMKkV0phh8rCSQMCmMDZtR2DjxC8yI+K8pOzgdsZ0vubJyx9cYJrjVCx4pgpobFm0L9qbcC5StCC6y2I+2Gx19Iytv8JS+Fvdc0Oy1bNy5gYdGPC9RbQ/Lf7TPaWLJ4OIKdGv9SiV4Zqm9voIISgPNChf/UkuZuRfp2T/IebIQ0kDxJobRgYPVkSJg42k8vcaOAPbM0u476dXHUazcd7t0R8WolvPsIadaiTgSFZh/m6LOEduzxfSle/UAoRHalaHacTGRuLDGVIpmK65NdKaqtSPZBjl3Je6PZa5l9riE9U9hS0X+oqK63+ALarRb3+pL0xFI8sZKPERTqXp/isQQJqqul5EbcLLF9EcR/45+/QvP9Mclc8eLnHqEST0jEoS17JOF4ZqmxC03+1FLvePzQ0Y4iutXYnzin9+YZ1fVWLIcfKwYfGtJji35UEN8Zcv7P9ghPekQdSW8tZPtLQ/pEeGW6VYRpKgGEnRCdSSM5MTutpI0vJCsnWSryYy3hhkXE551+KnZ6qktAbiOhO4+YiM46KqDt7H9ryeKwS41eGmLhib7TeHSGDr7X0Z9sXFPULmlMMeuARSX6Dl04yIOI3Aux/I59/wy4BCVOVrC2942NIStaXCNi8+A0vtXo1Ms0ZGFxp7nkFlkJK9S5I3oNNsDKEKMSel9U8jlKhOYZep3Orv0BypbrKF7qmcnF8/V8PV+/v/V8AvIJXM2LexTffQwhin3tZCRuWE2Dvn4Vjs8hSwWcAOa7H6LGI3G9ArHGvXkF7j8hzhfPNmwMDHrEJwdr7UacLwRE5JnQtZQmto64OUTNF/i7V9Hv3F9b4NJNSjg5W29WpQkxBkwdJBNka4Mw7pE9FRG82+yTndfEqkK5SPru4zUQWl5J2PonD9dalPqNHUwZiEVGcRbJ3jsg7E64eGPE5sdnVK8NKE48fmsg1rqJobo+YnHdsvm9Japy5BdetqcNcdTDzCoBViGsQYTyzwbLqqwxrWPxqR36H03JTxpialHnc3y+hXIJ2XEn6HceYkBpAQUAysv27LzG39jGnMzl+SVW9ChWo6crMIbVi5v07p0IWBr1sMdzOZ6ygRgEPDaO2DcMvvkYegXJXFLPFQigwVNtaLa/vcQezwmjgtXNAdk0oNso05V+RrOZc/FiymDf07s/J/RSyisF2VmDz+RL0/cStIu0k4zkrJQk9roVwFB7YmaIRkt2izEo68mOV2z5CDFjqS13/ruK008VnH/eCUc6kcKZWkunFQipQbUevWrY+a0TotbEfsatv38IWnHltyJHX+ijAmTTyxAymX5EIwAk9uV3U8vt2gloSaciLr/MNLjkfCsPMY9i8WulmFJOKDi6VVQ3WvH+10YE07sN5iIhLqy444xbzHEqdJGLhItqBI3uaCJOuqNe4Q8LsscavwXZq1OqMsUDWztzTu9LgR5txM9SGDtiq6hOCtKtinhvwPiDSH4eOX9ZEsOjjajPLMiioq0s4YMB4Xol3d5WKGe6lk42NhJqwz/76AXyoiFNPGGWCkUmCwQ0+jyRPIVGES4SQs9jbi/xpwXF7pKmTojWs725oGots9M+J/tjNm5Pmc0KyspSfJxQvjch9gPpvYJ2FGG3otnSKBUphxr7JEc1YBKh9rhxlyKvFP3PnLGqUhLrxWK41rQulQ50ZiSV+iDHXC8Z9CvUdbg466PPE8JWpHo8ILu1oHk0oLzu0KUmPTcEK4F7QUF2e07TWNRJjnaKcDrAXavpDSvaJ0Oqay26NFTbct7QkWxfCvb29RLzUUF5BfLHCc1mYHAvgZiwvOPx4wYNhIsU14vYV5ao2hKOckiiWBF3IXxh4vDzhNZE7j24Qvo4JSTgBx6/48kepuhWbIzNxxIgWTxNqPa6BPff3MDnUOhLUE2nnZDJX0ih3oyEgUdVmvbjAepaxYtXj6m9Zf9sDA/FMpogOialI7GVDIxkPyW8sKKpO7fAk6SbbnRGD1Z0ML4X16JwFcRcwKzEupgAcZmgCo89sYS7K/xpJuc1yH7MVDQoYSLTD7rAQV0J4GfgCY1GpQJklO8+V7V+pvkISKHvu4wQHSW5vNICTkuDHrXEg5x0byVsqI4KZVOPawzBafqjiqaxxFFLDAqbdBqki5Rgu/0poC+aHDYarIn4ViyU6bsu40i+N5QNxJUVcGIvm1LPRejP1/P1B1nPAcgncKX39lF5hn/hGvreIzg4RvV76EGfeHxKbBpU1dmfGiNUoSwV16uu8FVnMylWs1SoTCBFufNry1qVJqKT8IHoHMpa3Ms3sI9PiErRfuauZI+AFO/jkQCW3W1YrqDfE/rV4QmqVxCMpKkD6AcH4pw1HmLffyy/W0vxeEZsWtRkTLvdZ/Mbp8TVSnQjwwEXL1hMDeG1bQb7gfbuLqsr2Zr+4wpFO9AUTxyzz+ygPZy9aiiOI+VezuD9c4oHQh+7pD7ROmKaiCOWcsQipf/BuegsfIBcpkrJwtFu9UgP5iJq3xjS/+4hYXOA3xziexY7r1GVk9BF54ldMrsf5OjGEQ243TH2fCnFfOdOVd3dJH/rPtXWLr0PlACNsxntnR1CYkgP5iJyTyyqbDBlA0lC6GWo1otGJE/xo4xmLF3UkBrc9pCjL0qVX5xFsoMlbrPP8ed6hBRGDzxnrxiKA8vshR7Zhef0zR7pIqKbQLWdEhItqfBbPdIz6ULXmznljmX8YYmuWvSqkZDAWqYqwfQY33csr0kYWr1BZ0fZcaSjFFzFvqWeKMbvefS8kveqMUQrOo3m2pinfyJn8FiK8OWuoZ5IoZUsI81QrQsu3SpMDfXmpcC3o0vlUqChxV0rWch0wNSiJ4ndVU63HfiooTdX1FWCKyJuIAWpPUrpvX7OfFYQKoNaWXHvMVGmMLUEnkUTyD/OaQeR0HPEYaT9sYbwtMfitIcpHNmo5vTBhqS/DxuhZ0SIrcH2hdKjvj9g8ARWVxRtTwpjNxFr0PK417kQgbqzkk6vjuhKkprt3JAdd8J6DGEDXGKo64RsZ0V1Lo5i2YWm3nPrDrMKinTU0NYWVKRapZjE45uEqrVMD4ckoxpXJpzvjxi9a5l/tqYZR7JzhS8N1Y0WvTRwmpHOhJ5TbwfsS3Oa2tLv18xP++iFITvTVFc8i7c3xf0sAlue4upSLGzP+mstRL3r0Mc5q497pFPgpsfeWIpJQK1w94bYlxaEVUJs1VrAnlwYbAR/OpK8zjslae6ojnrkH2S4NEPdqeh9XxLaQyJUrHb4zCzB3itQTrJnCKCdpvnCEv+0h11o0icFpoL5y15sgs9z9MoQdSeuHjUC/FpFnCYwdOjTFK+g2XGYhcHODcwN9a4n2kCyn5HOQEWhom18V3P2Wc/yUx67LyClGUXUtRKtI/GjPtW1ziL4Ron2Cq8toVCwsnz4ezdJZ0pcZ/sRs9ACJDq9kJ4bVKNwgyA5GEHE9O0wCLA8MSQziImiGSFTkkrL6zZ8lr0TTZS080bC+9wgEDs6kl4abKnkPKcCmGM0oteoNTH3xGCeTS5yT2wEsJB2jQuFZHK0Bp05gusyPJIgpguXU4dStuMrA2mgmsmETFkBKt5pbOJpWoP3mnaVYDJP1JHhsGR63oNcJiOhCy9UJorIfGXxucckkrPjl+IwF500gkJtMIMWv7JCRjCig3u+nq/n6/e/nlOwPolLa2LTCr2oy2mI84UU8SDFOqASK9SoEAnDnoCRRP5PkqDyTDI5FkvJ2vAetEap7mVPU6L3a/CBVph5CXmGfnKMnTeojcmadrT69DU5ltMz4nxB3D8kHhyLSL7ISWctsaphvhBgslqxujOByQh3Y5tYN1TXR6gihyzBnq6IuUUNxeaWumH7OzXZNNA/DOSnDcvrGfVIY1dBwBMw/HjF6uaAkCqqie464orioBSNS91Z/zq3PnbVOkI/JRYp9ZUhIUvwo0ImIx09LX06F/G81ahSJjJ+e4QbZuKeFSKqcdQ3RiKGNxpVtTK9AHw/xUxX+L5QllTVyvTAavKPTonbm6TzTr3pA6QJdlrhBkbAB+AH8hrHQQFZItSsKKnkoUhYXclY7ll8qkiOFrSjhOI0YCsYfbDAD1OacYJ2kE4jrtCM7wfM6YL+0wai0JxUgHpLaHqmCbhBgl2JVkO5gHaRdB7QywZ8JBSJTGaUAici6GTmSBYwuys8cnGkCSgbUYUU0r4HxWlAxSiaFx9QdSvnJwRWV1JMJYGDLlfUGwIosmnE5ZKhohuhiVy6X5kKEUHnzyw7YydkvxStuoFoVopjoW2FpHsfBHADqV90ixT5VyrM3OB2G5bvT0RU75UUT10GgRlLOGj0Cp0EquutTFs6zQsKfN9L4bOy1LMMdITME5wiNoYkd5jCoU3AzxKKI9Ct5KAEabZjciePi12wo1MoJVSuwdaqcwpiDciTuVBbdOoJQeFrQ71IUZ09qE/lOWanBlM40mNLM0+FjuIV8SJFfdgHFXFe85lXH+KqRDrSaWD1xZK0aHFjj8vl3OdPEoqbc8xeSXu7wpZQHGjs14cUbxWU742fWZ8aEf+Hm6XQrK448iOD+uaI8nsbDDdWqDsrgpHgt1B42r1WdBc9L+dxZclfnuEmHvewj0k9dquCCMWVJc1ei0+jZJdsefLvFZjfHmJnhurFmmQB6Yc5qxseN4iEXGhGIEVycSzvB9cX6p/vSfEdP+7jh9JUaAcwf8nTe2hoJx573uVVbDaYpSGeZSL69or0wqCmkiWhGsXo6hyuVaCi2P5mnvxpgr9WUe7I+9YNA7MXYfiR4db1E8zLc5obDf3Hio1/XJB/vQ8Keo+MZOu810NpcQzTpcbMhSJW7XqaiThYNdcb3JWa5Myip5YwdsRukkatSfcTmg1PMhMRd3h5yepGYPVKjZs4/Mjjhl6E8Q6i7hy2FKiZpN3bSU0cONQsIaYR7aDZ9KQXSoTljUxhdKVlkqIRF6puGkJl1o5WKpFrR+yCB9fgI3afC+RzH00UB6rCE3MJaKTvxbJ4ZURnU1uUioSgsHlLtRSb9CR12MTTOtMBHdmX0gFtwrNJSNZNWwIyMRk2cv9Epj/KKUKrxdYXAS5/yNrv/1nrcgLyh/3zfD1ffxTr+QTkk7iaFnX1ilBzOkeqWEq6t0rsOmgvei/hfqYrYC81Hl4oSHFVim4kS2GxFHpV52aF0VB1FrwhEJtGuu/H5/hbVwhXxyTff0i8soUqe8RVyfKqpTfoy+OzKA5XyyWxgXhyhrVGqDXOiU5kOKD3ux+BVtjFkmg0PlPEyYiYWvTFHLWU7fi9CeZsyeJGyuZb59RXBth5Q5ZqqknK8DuH0DToNlJv55TbhvwsUG1o8rNI71CKfXyg3RviepbsUDQXOJmC2CPwkz75owui1Zh5IGyNJMwQmTTYZYvb6JFULarxKOtphwUocH0573bRQpJQ394g++BIHMmqFGrF8rUt0vOmE6OnkgFSBYoL0V8M3jklJhalhBIWtRYNT9UQB7kEOSZ2bcurWk9UCrfZJzmaM1rWTN+Y0DtsCEOZDG1845jm2pjljR7D9y+w04p0muMzw8VLGaYBv9kXZ6tWYUtxoIlaQFtINM0khQAhEQDkcykYYmKIVgtAWbS4YUJ2sMAuHcp5bv/9BeWdCQ9+TqFHjWQSFjX1MgUTcTmM7ok9sRvnpOdLYi/DLCqhiQ019RZwCqurnUhaCb0qP3ecfMrKsXbsB91IoFp2ZGg7R6x2IIWOULCgHXe0iACLm1IY2FVHyTIyJdGtoh1GikNF3eZSUMwtyd0F4d0hvFDilla63GnEX6SocUNsDP5CaDNuT4Bn8f2c8o0KnXuSzInofGlRaZCOq5eiqTnLIQ34MmXz21JYnX5O3HXqHYRedZRLF3YkQIXc45YpMcKythgF9BzOKULa5STkHg2MBhWnixEAyaDBORGhq1pTb3mSJNDcqKExmA96+E0pPttNcdLid8a8MxkTt1u2r19wejCm942CYIERtHcrGqdJH6eYfzpG7ULc8Kw+XxLOMkytMJV0p+1BiusHml0nhflhTv+FGVpFFr2c6BUm88wfD0mmBne97gTDQmeKJqJqK8Vq4alrS7G7pJzn6P0Cc3NJMwjE74wwIwGiyYWmudGwetURWy1J1mcp9eeXuIuM7MBS73ryQyO5MCdQ7UTmf6zCPM1BRZrNsM6YwCsG9xKaETS7LWZpKF+vpAPeaPzQkd3P8S+txMrVa+K4pckl7BFEj7V6d0K4WpO/NOfW5jnvvXOD5oUKzlKSV2aszgqSM5n8tgPY/91rmBoyDfMXPeb2lN3ekqcXYymK3xvjDcSDXM5PFqRrryA9M7QjT+hH7EEqk56RBADGVhO79xQm0tzwkj+yqdkerTg7HZBMNeYoo7zuMUsR7q/tiutu4jFxmI0WXxvaeSpgORfnKrl4KMqbDrPSAjJMhFahd2r8uUzjYyYgH69QSsBNXFqhH+qu6RbEUU7piG8MOvXYfkMzz2RS0k1LMJF8IM5WPmiaeUo+rjAmsFpkKB0xqaSiey+aEDGK8PjGiFudimgbJUPEyzGE7n46CQSn0Sas9R/RRJTX6MyJ5q7TuDxfz9fz9ftfzwHIJ3DFtoHFSqhJw4EAkSQRsBEiWEPc3RQnrEwLEIkR1e+JQL3fk6Jba0JZCnWrrlHDAWpVypSiK34JQQBMlsrjvCemhuTDA2Jdw4OnuDdfxHzvI3b++8eSx2Et8fBYjuH8QkBPjFC34oAFXap6kKlNkcOqhLrBpxqeHhJfvYW7uok9uCD0MsyTU8gzxh+sUGcz8rMZcWtM8eCC7CQjFilqvqA4DfhEEaxi8OGU4XcqwrAniedVK9oYqyk+OoOqpnlpD7NoMU9PoG0xR+fEyVDyN9IE1XpoHX57KALvVUN9vUdybMQG2Sh6H18QrSW9v8TvSr5HzCzJRS3PLUbUxYI47GOqQPL0Qo638Qy+fyLnGFAqCJWtc8dSDei6ZXlrQP9kjpotoVeIexgQtsfELo/Dni2JWQIxMnp3hpvk+CKhGRmScY/0yQXNeFumLkXK4Y/38CnsfLvl4sUuS6SfoEJk+PFSEs+tBh/R0ZMsHPa8EnF9z5KdNbiexQ8SmpFFt5GQauxcEtR1JVMMPyzIny7ITidUaUKxWQoHu3OWUQHUqgENyXELeVeAJIaQGOmq19J9Rgk1JjuD5RVFcSpZH1FL+F47jmivsHONF403PhfKlW5ErO56EVOKXW3IZELgeh2A0dLZ7j+SFGhTKZavN1Br7JklDh3uwwHueoN9UKB2W3EGurqgKRNM2gWRtVKYqZmVY/vyOeFwiK40LamkRBuZSviTHIZOOsabNYNhxfRwiM8RHv24xRylMkEpAnHsyAc1TW2lqO2yNEISiHlg8Oo5y1WG85rsxorVcR8WlqDhrDH0NkqaxtIrGmbTTDj0ERHyPuxhAN8PNNsC4uorjuKRxXzYZ3FXBL79DxJOwgSA2Wti/xsKD7UhPUpotjztWLIbiicGd1YQxh6/5eA0ISoIWw3FBxmupwmpgWsVi5Mew3cTekamXNXdht61BVyD9rhPtlVSnufS2W9ln6pRqNLiZ1acX8cOP/Ak3x9QvDnD72hoDK6yqIXkcFymcCvXGRh81CcvpRDvPTRihaxhedtjVpr8vZxmI+J3GvpvZ4RMJnLoyOJFh50ZzMLKhGuaksw1k88eY3TkQE+gskINKg30JX8i3ioxNuCOC9otT/YwJzY5H+Uj0gDtoBV3tu+M0JsBN5TrcbSAkslhMDK5qvc32feb0mD3YPqQn0HQCoWh2jJkn75gfjigvdKg5pY48LhNR1gYcffqd1kl5ykMPMwsMfe4pz3iZsPZ2QCdBNq7Ff4gk1DJIpDulcT7QvGMFnwijlBxXki9rUUngo1QBNzACaXKCD1ONYrkQpyvfGll+kI37ciiUB1N56yVe7JeS4yKtkzWKeWh1WJxawJNmXQ2wDJhsYXHzxKqkK2pVyaXKbP3GpN4tImEy7wcFQlegMVlho6cWIVvDL1Rw+q8BzbIfRsRpRPF7U9nIqxXNkKjiUm3XRsvyQo/0vVcA/J8/eu0nlOwPoFLDQbQNBI6OOzJpCFLidsT2Bg/y8QYjyQ9PE1YvDSWvxW5BP8Bqlegr+wKEAiROF9w+nMvP9tRCNJtv3TBalqWn76K/fApiy/eXAcgmvcfEt64S5zOiRczSWA3Bv34UMCH7i5QTSOTmqYlXkyJqxX0C2JmpbCOkeHHC1SeEVKDfXCI3xtLtz9GYp7QDhOaF/c4+zdv024UXHxum5PPjyWgMESK/RXZecvG+5UU7MaAUVKcd89TXJ80zYt7JMcLzNG5iOh9YPrjN2R/WkvI40yE5Hop0yDV0Z2IUYr2keSA6LolDnKUC/hxsdaXlLfG8tyzFOU8+Uen+J0RarqE1uG2B4RBAVrjdkcCDJ0EExJkW6YMcjxAu90Xbcl4QL2Vo0sJmfRDAXbtRoFyjuS8JDlakM7ky7a5MWHw9hFuZ8jZ5zZI5lAcR0Ki+P+y91+/smxbeif2my4i0i273fHmmqpbrCKbbFJCs6Fu6Ul/bQN6a0FPLaCBFpukaIq8df09bu+z3bLpwkyjh29mrlOAJJJSVdcpYE1g45y9dq7MiMgwY4zPdbdFx3sXiTPZ+topY4eEyRnbR+yQWP/shPf/9UqfN3PkYJiWnvl3W9pr2QzbKZHbcEycV8p8Q3Mnr//+rlMOiCmUvceNUDpP8RW1azy586RFix0mdh9KRJ5aaro5rF5GZu8Lt196/F7/3j/NZF/oP50kPJ7lo7PRQQeSgxqNNFMwW9ioaHKjOOxu1Os2n2f6p4XhDOa/aWjeeuJZwt57OXddBWk/oiE+nUhfLTC3gfLtHOszJWTMk4F8GsldZvOHM9G1mqxCPRvCYiLtPeHZXsfiJJJHx+b3Z5z+0lNMzUS5C1V8K/qOf93Qbxs1H3u5N+WTSPNsDwXWfzgj3rWENwHzL05xd05uU9Fg7j25GFbLnn3faNJdNG0+JDq73uA2Fn8nKk/3nWc8KfSXcPZLR+ky+w8yZrD4W4dp1JTYNuHnEf8n96L87A3zbx37LybR/a4dy//QUF702NHQ/bFluCxMZ4nyoifdNdg2Ef+bNfsXhf6jCFvH7vWS8bcnmN7Sb/Ua5oncZS4+vsM/6aW7CQVzOWCvxMUfPhsYf79i3Aaa38xwV55yNknPA4R7aQVMFB2v/zji9rJmBiFh7ZWrdCxobgzN1y3jmbQh5tDc3jjKB72sX3tLaTPTByPvvrngzW+fULKhedlgBkt7bbG3gebWYr6ZMb6ZaaLvM+OHI/1PBvIXO37x3/0e3ybCsz39k4wdjLJdPtmRZ4nu0zVnP73BXgyMX/TsP0r0LzL988L+g8LwLHH3jybW/3Dk7h9MxC/3rN8sqz1uwT3f0yxGitP14fdG339Gx7JwtNDNq4T9gXjamEI8TaSlmu347YK0zKSn0zFg1CTRA7GF7CqaMdZgzFiR01Q/Ex1HSr2l5qqzGK0cstokS95GVl3jLjBtmoPWW1kb2Uh/kUVH7JYDpkk0y5H5fCCcD5xcbpmvBpou4pvIsA80IdI0EWczrmYVlVpMl2QIs4hvk2x3J6Et+62ok2VwuEaDhDJZNRkhk/ei3h1QzTzIQEGw2GOh/rge13/JekRAfoyrCdAu4PpWhbe1mtbfbZRFQUUZYhJC4j2rX17ByUrahH0vvcSyJpCfrjBbUYAu/6+/I/75lwqW+/oVphPlhqoBWfz6ivTJc5b//g0l18I4F9xXr9n9tz9n9j//Wq83RsL33V6aEm+FjlgD3mHcTO95v1GmRUqYF08x37yGXBjPG0LwuG/fPaAI6x3FqaCfv5nwm5GzfysxvYIJJ+KioX11B0A5WXDzj85ZfD8S545ZtSa22wH2Pc3vdrBaUBZztdrGsPrDWhqPmzsoRa5Vr64xSGTMMFCsEfrRDzQvDeWkIks1CT13DjsF7N0O1yfyssPe74UetQ390475donpJ7lcTRPxgwvMmCAE8I7+41Pat1tIheamV6PSnCpwsBTMMOH6xHQ+w98NEJQt0nxzTT5fYO92jJ9eEO4H7HbAjpHdL56xeeE5//WO1HmGc097NdDcGvzNDqxVdsh2JC0azJRJ83AMHwzbxOLlntw4UrCEjRrDuGxwgyx7izPYUXzs1AXcPgKJj/7H92x/dsbL/96TXMHceT74n+Hkr67AGDUtrSPNA9lbid2tKBrrLzJf/g8D4d0WnKH/6ITVNxO3P2tor9VEhHtlaPzzX/yO/+U3X/KzT9/w22+eE/vmmO8R7o3oamdJWodToSvTQgXmIazQbySctRPsXxTCncUOhubjLbkY0uRIW0/7JjCe1cm+y6RioFfAnb3qSJcRO4uUvX2gkxQoJ5HpusPMEtNtC5PBXQ643+o8HM4fmi6AuErQCeGIrYWtp3m65+KDHW/en8BNw7SZ091I72QnS/+0MJ4Y3GCOTlDNtWOKS8ZnA2Un+tj8pRCg8Vx6kvFZPE6bpyiakttJT9M/UShb+GDHuGm4+PKO99cr8uUI60DqMvGrGSYU/E82OJ/guxV21PtvzgvhmxnThwPJFso6YEdD8+uZROrXHXbdUf5BD5uAOZ0oW6/tn6sBc29b8sd7Zhcjd7+8kIPZi4nzT+64vVpiDYRXLdOHI3yyx389J/3ZlvJqjn/V4veyGx4uVWiHK49fW/IgW+iwNkwLNaUmQXNtZfHcVKqRLcQXI+5Ng0nKEWl/NxOt7+DgZAr+dCRuPW7tGT8aYbRMP91jv+uIP99RXs3o3jihKSeW5VeW4UKf+cs//kQZMwbMBwNx5ui+biimwZxm0l+esjFQTpVh0r11pFY0MIq+I7t2hDtLXBS48bBUg5SdI/ZydTOzTPxiT/jdDL+1TGdJKKCV2NuGRB6dsnuc0IGCUc7FdSu6YBsxvVWGx0GEHqoxA8BUi+4iDU+5GMm9DA7KKsLWk5uMjQdrW5SrESptrFQ942EUapD1LQidcIVmNjENXla52dBvRPPLwbDdtORomfYeksXNIsZmQhvZbjvSeAgJ0nbmkHFNIg2O8b6R5iQZNRe9pz3tGe5bbBeJg6dE86DtKGBa8UGNKxiXhZBMjpILJcW/gYf//3+rFHNssv4m3/NxPa6/jfWIgPwYlzXkuVAP2upgNdWb8q349CZm6BryWW06cnmwyvXuSMsChBKslnov5/CvrinGSHhenaxwVk3L/ZoSbP2ZOyIcZbenuRlFsbLmB42Ge2g8Zp3ec7nQ71pL2Wwx2wHGif1nZ5QPnlJSYvHLd0IsrKU0lV7WNMx/+Zrm5S3t2y329bXoUedz7aMxtN/fs/vinNIK9RlODWbKLP7qPfb9nVCF8zllNaecLBmfLUmnMzY/PyeezbDrXmhJ18JqSW495Wyp97eG8YtnLL7b1e+hCsCDLGTJCJEoVCG1l7ByjPX4RUzOzF4q4TwvFDSYL1bYMUrfUVf7ek1xhjRX8T+eNdgpaztWC1hvad6sCbc9Zoz492vKLJAvltjrNflcwv3ptKXMAtNZx/2nnnEFqfPYMZGDwa37h3MgZ1Jnj7oOLBRvab9fS2DtDSZXqlWfsPuIHRN2yqKnpYPdpM6Lw9/NkERV+27L/HslOLvesHhZj7XRftrdiO0Tro+U4LD3e03Pby3Nm+oCZgzDuWP9qbj3uYH+Uq5YzelAzI7//c++4s16xecfvSe+GOF5T1olhieZ6Szh5tNRnJ6DMgxypd0UA2GrPBAKmIuBuFLxdr7cCU25U2GSnVKmw3Kk/UoUj/npntWHa1JXWPw+4F52lFXEDuaYzE421dEHBZidTuR3nYT/zydMUiOUW2VDlC7j2oi5E6Vr/mJDyYY3v3mCedcKWVkk0qyaQXxUKE5Uquk0k+ayRx2eittfth7TW/LpxO5DUUy6N5pah7MBXMHPJwW4nUShPQbcTjbG0+AxIdNPgT/95DV/8ulrFh9uMCFJO3FtGL9b0A+Bn/3ZS3afT3I8qoN0cxeYrwb8ZU8+n+ifyX1r+mgkLsF/2+HvHHlwrF5s4EWP8QU3i+SP9/C2Y7dpSc9HxotE9zKw/csL2q8aeNYzXUZck1gte+LzkWnTkLtMCYX9JzIHaL8LNG8CuS3EZaa9MXLauqzGBcB4KgOA4itFr2qFmq9b+GSvbI2pHtdkKKdygKMYZYR2idxkzL0nvPfwuhP96/UMnve0/+ya9JMdZjKsvxAKkv5ki/nZhulCCdv2Tcvsa9kkFwecj8oFmSn7onSZ/nkidQW/nFg8kdW6qWYLaZVkt+uKgvy6pGwKB+7a0/x6RlwUpudTtYutKuvRkqc6vcfIsrb3lGJI20BpFSZqt646NhRR0JIspe1iUlE/TxJiV2Oq3PsHsXmsWhqrQMFjHevLQxEfdG6YkMDV0MVR21WywbrM1Hshj8nUR5qaJ+uUdN7MJ5rFhF+MGJtJo8P7JKljG2UqETK2lZ6kJJlCSPRekZFowRWm3gsBmdwR0TDRYH2BoWaDeCW3QxWxjxYGi+nd/48P/L+5lTF/K38e1+P621iPCMiPcJVZi932KpJzgZkXdWcYYbmgdFIFmjFJZG0dxTvM3VpFc9tID2KrDqOmeTPrwE6Mn17QvN3A6Uof6L1oU30v8fhUqVmHf0+Zcr7C/eprWC4w46SE85TVfMSkBuf69kHD4JwapaeX5NM55g8vaa960rzBAaULEtSvNfUuHz7FvJFAPn/yXPkU3SW5cYTvbqr2xZLnDW7IDM8WXP+J4/KXUfuSM9OnTzAxs3/ewvOWsE7k1tKfO5bf9ITv7xRg+P5ODY+JhF9+o32ZItgJ10fSzOOcAxvVZOxGxg9OCG/U/KXO0cQMUyS8XdN/ckb39Q0EUZMOhXmeBT18u4Bb96SLBa5qOcztmunzp/RPW1ZXW2bfRcxu0H4OE+VCQn1T0YZ8OsduB4q35LMV9n5P8/qa7T/5mO1nS+Yvd3Q3mWluFCp4t8Nv1bTZPtW8lCVhHZnOWtqvrsknM/y6kE5mhPWEuRPCUwy43URaBlHOOo9zBreb9FB2KFhxiGrMapOmxlgP7M/+R1HacushOIU7liIKFw53t6d4x5N/l5m/Hug/OeP+M+Ul3P+kEO4N04l45KefCPHKY+B//eWXx+npfZjTzCeenm64mc+I0ZGiI90HLv/pG97erJSOfd0StuZo12tSZbwVMN93uF6OQa++uyBcefVqY83uWCW4beHzEUbHLs0wd57m1rL704Hmm5bmu4bhw+khAX5y+MWoELSFwSSL6w3DB5HmXRAN7GMVjPbZSHCiiJz//D1X9wu2V3P8ncciK2Mmi4mFONd0nvtA2FkykOeZ5sqpITFCQtzJRLoWnSnPLX2r4tsOhvRyzhf/8CWv/6ePKaeFZCztT+7ZvVoSF06akeuGi59ec/X6lL96s6S4wocfX7O972h+fsfuZk77XcC9XvCSBeZPRj760zd899tnpLnC5PZfr44NnJ1g/HjEvZfrEtlQasDg9o+nKuZWibgJsghuM+77ljQrnH1+y/Sho//tCePTKAQqqxC9//0ZxlZ07CKpTt47mtsaQPn5Hv97ocX756I6dW/0b3FR8Fujib6BeJJpriz9lyPsHeadBN55lbA3DTzvITo1mbUYtiGTuqzZz0db0jdLOB+ZrQZ236643QVmLz3jeYZlhNGS3szI2WCaTG5rkvfkMFFUJf9dR/ykJy0M7WxifDNn/tISlxBfzdid6d6fVgmTHeHKE1cZf+PlmrYWrBbPI+nZSHpisHfSx5S5CvA8VvemQ7O8dqTrIBSuNgwmGg0oulxPLIPrbdVSFfJaphVsvZreNmN3svk1FW0wBlHQqv11booctawoWaZa16bJQrRHJzdswbpC243k/CAcd7NI203sN+1Rl+F9pt820n6ERNtGShNJ2ZIny+K0p++D9jvao0lEOBnqexjSKASkjJY0BgUgOlG+pKKHNDoJz4Gc7DFXpRQwjax6j53t43pcj+s/az02ID/CZaZE6USfyvMGUsFtejUQMclm9qC9cEFoxm7P9OVz/NUODnkcd2vRuUBZGG1DOV3QfH8vdCR4OWFV+pVZLaFpsPtBtKJYUZSYMDdreHoJt/fw9EJNxqzT+8cIJStvZIqU+zXpz3+C//4axklIRhMw319hB7ltFWP0O10rG9v1Rk3Mbk8JjvDNe8rpsjpUIbTifIG9uic/neO3E5/9D6IrlXnL/osz9k888zcTqTFMc0OcWVZ/3GHHQPPNtTQc/QRTllNYynBxpuYjeLlsbYd6/AMmJTVbSQ/4Q/bH7OtbHXOAfU/39Q2lcYDD7EfybIEZJvzVhunFCeGdAhOv/mLJ038xkuYN/n0S3cpeiHq2mpPOl7hrhUuafiKtOvy6hij244NofBqlq5mdMv/DrVLlnWX+/Uh4K01LXnQQ89FJK88Dzd2EW/fkWSCdL6XfCA4zJuKqkf7FGFyfSF0NKQvSguQQ1IAcMFMLuQkYazFF9sTFWsYzCBvDu/+q49m/3mNSqZkfBk7n2O2Iv1pTlh3FOWZvR3YvWsaVwUbRgIqH4We9bGuNTvXbK6nUbSd7X9NCmizjPvByfw5rz8XntxhTuNqf8v3Xl5q0jpbmxY70fikOvJUOxPVCIED/Lclgesf8T2/ZbjvC72bHpoJiaL5rlJfQ6XwcPhlVsMwK6XLC2IK9kQDbXIwqWDYBfGH+m0B7AxTP7T/v4aahLOXoE0IiRsdw1/Hm5eJwaImnERNEZTMFeDrKDehO7mLTRcKf95T7VjkTa4cdDCZa8mCV8rz3mC7R/bEVzSlAcZlXt6cMX0yiz4RCExLbpjB8rn3yd46r9yuak4FfPH/Dv/3VZ7y7XbI63bPsBv7i+Wtuv+z44/tLhtsWe+95df0CLkdWF1vurpYSQs8S8UTHxtw0EiWvJsq90Am/h/GskM6TMjjvPPnGU84S9rMd+fWM21cn+BtPejHy4Ysbrjdzhvczlsue+8nB1jFeJMxyokwNJsPu8wk3j6RtIBToP4i0b0X1Gs8LaVawvcEmyPahbhzPC/5NQ26KktWbjHvXwEc9vOygk9jarH2l3AHPRszeMX23IF+IqrZ/12KMKJ2pEVrRft0Q1rB/rkwZ2ytBnCjKYHGF2cWe/q6De1n4DqOlvbX0z4tcolzBvwvKihlspY0lcBBPpaXgQBmKBnMXpCFq5AiHgbLzum81Sv02xSi0sanapoOOIUNpiuyGD7qq+k926yg1UNPNovJP2gx7ix2t9DKjIbuaA9LIzpaiY4FTkyFROLWhNFDpTWWwELIGCkmwZU4WFzL725lS2H1i6r3uEdXhqmRLTBZnM95lUheZohPikYWsjPeB5ukeYwtxcsSdKJVEg6ni9VIbLmqjZjo1bng1H+w87t4S1nLei3MYz5IQqL/j9ShCf1x/n9ZjA/IjXKUN5EWLGSPueqsCNMlBCWMowYO3D7kMFnCO8F7wPLHo9XAMISyNo7QBe78nn87F5e8jZaFGx95sKG2DmeQmlZcdZa5/MzEKBQkOnp4DyJULRKFazTFjYvpkRXh1i2ka/Ksr/XvXKrQwBNInT+V2NQxqaCqtipwltLeW+NlzcmOxZyvRdG42xBdnuN2I6SMYS3PVc/uLJRdV1zA8X7B75mnvMt2398z+ECnzFnN9LwvgENRgxXoMpwjnp+RFq4Ty4FWJDCNmI5vNsmjJq7mC94Yd9m4rmlVONSdEjRTrDTQN44sV7dc3eo+xkvv3vTQt40R8uuTZ//Sa+3/4lJN//UpIz9mC5qurI53Jvb3R8QiBdLmszlcKJjT7HuYzho9OaP94pTyXGCmNp1iLHUSXKrPwcB5VjYUZEnY3HTNF4qrBr0dy8JiUKd4SrvfE0xY3JnKjLsPthXDY2LB/1pIbr5T1eSB1ATsl8JYCuDEyPp3r9JsXsjfsXrSsfndPcY7haSedzhvYfbbE70UH2z73TAuOrlaiXWWYHMMoSkNORhSMYrCuKLZlsnSLUa5J0cIycv12BaMVAjDItjPHwNR7zv/ZFdt/fclwlnH9QaCsyWxaZJa/CQwXsP7qVDkiH0zH6TKzpMl9l0VDClaC2CarGKyBbNkX7NlIHryK+3nE3gf6y8Lu55N2cBvgJFKiIb2dkS8H8l2D2yphfbqM2OWEfd8KsVhKBxC+njFdRvytJ54k8f1fz/BRiei5qXklvcFvDHFZCG8d07LQP9E+l1DgfKS/nmFnEfeuwyS4KSuMK/yjL7/lL//Vl6JjhYx3id/8337C6T+7Yf3VKevQsU4nvD47lUNQlPblyU+vePfVBfNftWwuG8pZpMwTzZugkLpWn48x+Hcdw6cjaTLKY+kydu0kZn7Rk0eHfx8YaWk/2DHuGtKH0ox8//snKvxPIuuvTrFF+S5uZ8mxoZxOmJtGlJ6XHWamSbu/dwwvJkwytK+9tEIW0kwNafxwpP2mYfhshJtwTLk39560yMqqeDrRLgfS75e43tB/EJUNsfeQjJy5XrfSmXy2IY4eEw3+w5F+29D3nnjvSG2RBukkHVO3Ty63bH9zxrBf4PfqiNzeMDwVKpJDtawthrCGsPYUj0IGW4vJRjqiNmMGL+vctkAEt7VqQEBUIVdwa0cOEtSH66rBSJZYwwJp9J2Z3pLmWa5TUVRBRjUHHHQT0cI8UqIVRSuLiijXtGrDa1S8H0XstoAp5Oho5iPRyIghD0IOj7oNIA01byUbsi00JwOzdmR9L2RrfDeDbOjeWfovRhaLnnHyxzR0QEjSELBhonSGnA1x12C9jBXsKisxfXD4xSTnrdFBJ70ICAGBgmsy4bUCG3MDcSZ6qN85BvNw731cj+tx/afXYwPyI1xmN2Czx8SkSf12OBamdAGTM4y56j4A58hnCxWy/SiE5IBwWCME465XMGEVU7u7HnLBWEPuGtGkpsofHkfRaSq95oCSmCFSukozKiP5ZIa921G8p7R1Qu4cZdlUUfleCMXZCeb9NfbX3wgxOWRgxKhtmM8oux3p06f4r99qP9cbjHfQtfg/vFIj1QShFGMkbDOv/49PmF1lFi8HTv+QCK+F7MRnJ1z/Ys6Tf2XUOMAxOwVQAKO3SuYuRfS1ofJyKpJj+glTRh3/XLUZ0UBKjE+XtL9+BZMsicmZ5u22Zm3MJYReNbTX9zTf3TJ+fE7z8pbSBU5+ea3m8HTFeDmju98D1fLX+2OQpN2KjmU2vRCmtoF+JNz0lFkjbUXUd2kPmSE1pRxrhdCkVB2/UJI6gdw1yjEBTC6kWRDtbNXgdnqt30SKt6R5wJWCHSLttWX30YywDrTvdqLpOaPgwpzJs4AbEh//Tz3v/7wDI2H4+39yRtgX7FQI68T68xnz1xMmFXZPRR3KAbkTFZg+GmFXiyIDppFXv/XVACDJCSd0kf6+1cS2yaKCAMwS6aqFkMkGwtnA9K7jOq6Y/8Ud501k+68uiTU7xPeQLhL7jwz+wx3p+zl+Z8hjtdhdW+KBMtIkuVMBZrI0p4NSursMS9VM+aaFeRL1ZKviKS8T89807F9kyknkyMM/G8nrgImGtMikg3PQppON6rwQrgJxlZhWKvqUgm6PuhU7iEbkNwbXczye/mBNbBEa0kF7ZemXDjNY3EkiPhuxN0EuQ13k3/3uE85+dsPtt6eYdy3xbkY6K+y/OeXjX7zh1VtRnpp2Yr/uOLvcsF7PePfVBQC7P5WlsZksJMP0JOq7MWjfBiV+Ny8bxjPpCQgZtg5jCvbbGdYWpouIv/OMk4rLsozMX2zo9w3lfSt3sDbjbmsIa1BRn1JDPp3w72SH1tyIxle8tAymKDPGDTXUcp4Jt5bmtw27zyLhe2WXuHtf9RL6muy9J88yw3rBs794z9tvzwlXngmkI0gGu/bM/lRWuPGrJRRoN4ZsOlwLIeq9zKTPdntL+7Jl/zyze3dGe2sYTw1xmbCT9ElNbQ7c3mETREWVEGcwnWTt82XE3nr82pFHOV3hipzRTCGdKPlbzlW6JtNKNDgzWOKiunBlFBg5T9ItRYPfWlH7uiwd097DLB3pSsYYJZofsjv2EpnbJItb28sOGwzlJNLMJ6a9x9ZE89BNxElOa2EWSZOlaSJDFuqRkoJNXUjEfVBWTYG77090CbW1UXKFcQywdaz9DN8kxnWDX0wEH0nJ0rSTDCaMkJJmMWqIUK/tkgx+oftiKQbjq1j9oJNJ0sqkW08TYf9MlLLT3xruflZo7isi9ne8HkXoj+vv03oUof8YV5xE98n5aNtKCNJxgCx1rdVE3gI5q5g+0JWcZfrgVO5P+/4BDQEVqnvRinCW0ngVkln/dngN8KAfCcqfOGaHWMBa7LU0EVgk7vb2qE8p3lKWnQp39Hoznx2F7fmDSwnYrYHVAtO2+Fc3x808iuinqEZlOVdxPoxyiJoKJ19HmrX2LTf1eABx7rn8D5ujfuLwPkdRvpdAnt1exyNXSlYjK9/SSM9wPA6HY+09WEu4rwGObSsRv5NI3fYq3O0Y5Q7VBErwbD7taoMQiRcLvde+p/vmVuhQrAGS9fPyXAhKaWqyfRMoTZA26LZaDyMxeJ4FOIjBp/o+h/T32nwU75VkXsqxaVA+RMFtJzWLGVGwvCN3QRqcQVSs1Hn9bink1h6P2SHlXRtd328zkVoFAOYAzVbuQcWh3wXGE0fqLH5fiDNRoopRUUXhrwV6lWRlE1onorl35GQlFjUQ3nuakwFzMomLHq0my0kc8WnTKKG5SYyjFyXjzzZM50l6hbFSLpIh/MslpYplbYR0EYmnaibaK0e5bZid9dito3nvVEy5jHndYV52EvV2CfZWk+RZUqF87xjORaFxbYTeyfXnphFvvqIxrtf3HzYGu3VKy57pmNhojsVlXGRRWLLQG6hN3FIFdnGykk0t2MkoFM8VphNRauxkiH3A3gbyXBa9eXDQO+5u57CINLf2KHpvryxv/x8fsFgOLJfKGSmT4fblCWenW9zO0lw5ZZ0M9th8EhU22C0H3MVAeTJwyG6Zv3K4ncVs/HEyHk8ScZlxW0c8jbjzEXzBvw3s3i1EpbGVxtMJfcpdJtwpydsOhhJVVE9PlNhdXMGv1ajZXrSZQ6BluLPkAP1zUSzTPFOaKv52hTxP2L1Vindv8TvD1e2S7nIPX2wxSdbHbm9Iy8j0b87kHDXXOd8/S/QfRsIWxmeR1AqpslH7MJypCc5tYbjUv7lLHaOw1jbmgBLeqx5q/zyTZoXZG2lr5r8N+L0yO0ySBqjU/S4GNXgAXb2Gks6tIyXrdCJ3hVJREhNFmaIYpgtlrphs4KaRuHyQXsNMVtfaIQ+jopAEHbcSZJt9fOysvZyqegX/hS4y7hoJzX1m2nt8m0i5Bv5V2pQxVQ+yGgg+sVr0uJUyVFyrZonRkpdJVK9R9wcTpKsq6i+YaiMRQpJQfXJMm4ap92qCbKHrJnxIyg4JGe8z9uAOVoDJUEJm/0EiniT81nD3c+l4Dve4x/W4Htd//npEQH6Mq+sosxaz7SUkn8/VfBgjGpQz0jJYK+FzpQTZm3vK6RJSJLxZM3x8RvutpuP5dKGwvqQitCAa1yHP4qC1KLNGxaWtTljGqvi/vpVGYVNdlaxRc7GcixplDe5mpyalCWD8cftMKZSLM8z7a/1sMZcuJBe5Zr2/kSB+s63NToaPn8ObKzUc87n28X6r5uH6lsVv4P7Pn7D8w72cqUCF/DTRfXtLnjfkRYvbCWE40qmsVV7JojumzJPLg+NXmTA3a8qTMyEK01RfA2S5Xdn7PeVCCerlcAynBFPCVuTIAfnJKfZux+mvpMtgt8e/M4xfPIVcpAFpWzWYh1WRmmMzAfreZ0HNxzAyfXxOuN7p523A9iO5ax7obNYef2ayHKwITqGGYyS3QUnk84Y88/hrNTW58RX5ypSZk/h8Hym+Cj73meIMuQuQC6l1omENBTtM2O1AOp0R55BOEq//G4sdDYuXRmjDvtCsC/2FI3aO1CloMM5VTJdQq4VQ1ISMFnwWncprkm68xLPGydkmfbaXiNeqELCVMlFswbiCr3/PyTJtGuK2AZclHG0T25nTe7rCeCaxdno2UqIlLEam+xaKNB9Mlvi7FeEnGybmzH7VkT30H4o2VXqP7dSwlMmKmjVYVl8Z7n9a8GtH2c1gLhtUk2s6u4WySCTjYBUZGofdW4Ynon3ZtQpG11tyKKItbR1mqpSr7YOuRSIUFUN+C8OzxOyVwyblfgwvInbnCC+bY/Ningz47zu9922jbagBhdNSgu00y0zfnFCaTPPO47OC/W5+fUn3k3s1CK7w0y9e84eXT5m/GNitW8zXMyKQlhmajPtQTnC7VavGqEA5ibgr2fzaxcRiObB+uYLbjtM/ueHWnYAt+O9FccqOitxomp9+uie/aymrCTNammtHXFimk8zse+mSsJrkgwr3/gMFMYJoSmlebXFH5TtQDO7eYz7cM58P7H51Rnw+Yd63TEOngENbyItEnhnc2pMaVOTPI2UK1RY3sf+JKF5x9pAvktsqzo4GXw0SSlNo/uMcE2H385HmO+lGmlvpPWw0xA7isrD7kwEXMsNNQ7h1NDe2Or8poyV1B9pVIJ3UpriowciLpGTy0Sgc0EqXYiYZL5iQ4SAmz4ayEJ3KLifSNmBchq4ifCFDm4R6bTUUsL1VE9NUq90m05yMxNFx+tE9213LNNTSo9QJe7LE0eFDIoSoAUNBjfHbjnw+YU96rt6vYOPlUlebJRMy3Wpg2Ady70h72QCP24YykwapVOeyUhQ4WLKhORn0mY0MEYa6TaUYfEjkYnA+4QLkJlGyxTeROFXr4veOsJa+LS4KMT9qQB7X4/ovWY8NyI9wpZOOvOjwzjBezsmtZffUsfg+0r28V5jbssNdbTDbXoLzlCXa3oqiY/qJ9lshCqLsOErrsLuxNjGaoJuUMEX5CUfXpZTxVxvyqsNMScXwYoHdD8TzOf7tvQrztqFYS17U4MMpyb0LMKkWgvNWU3rA7TX9Lze30pDUwEQClOtbFb9NQ1lv4HSpZiR4UaJu1g/IxdkJxVtO/v07aVu8rSiFwYwjTBF7V8MGm0bZHp2nxIjpVdjbbQ/Bk+dNtZitk3xjwKajW5fJRSiS92qMKkpwdH4CzH6Uw9Ub7QOzTknri458MiPNPSZ1WO9kr/vbPfHTp/q8NlAWrWhzIOpURV+KM0JX9kloE8B8RvPyVsclZYy15GWHGSPxbK5G0hls1e6YVIRyTQlT5CLmb3f6rqeE7yOlrU1sKkJplo1E4xaGJy3N7YjdR1h63v5jz6f/454SLHZKot3VnA9j9Z3P3sF4qePZXhuyg+kCuNY+7Z+q6J6W9YQvEBdVBAvgK8d8rlRlXNV/VAtNOfm4o4Um+aHAOD3d8WK15q6fcb2ZM24bQHadxoDZOsppRVp6h51HmtlEe7Fl84czFY1bOS3luzn22aBt2DtYRuLzDG9nlFmGf7pm3Df4b2bk5YTZO8oo5MN2URPcvWP9eaG9Muw/ro1mDS7LXcZtLGFjKLsgusuoifZ4ntSQVXSm+KLieBUxGxVn8TQx/84JFUgwnBf83uD20Nwadh/nY2r8eJoh5GOI4OIV7F5Y7DVM6w5TIOwsw4tIW9PEh8tKPUvQ3Ei/kIzoQdNKwuj2ytJ/fYKLaga++RefYJvC7qbhz/7R1/zH7afYnYVVpPm2YbAFt/ZwPpE6K8oPQj9MMrhvZgxxBs8j+cXA5lfnmFXGLSfiZCGBPR/Jtw1mNcmh6q6jXET8u4DfGMYLubH5O8vu44Rfq9EJd0Jn4irj7y3Dp5WCVpAjlq3NB4b8cU9531Leduz2c+KLEf9aIvfU1Sl/Rer8vd5/+nDEuELee+yTgXLVMvvWYyckKn8qET4F3EvZMhcL02khN7JSzgHSSmLz8aPpeC1gC6wDmKLG9VYNm187cihMH4/Y64b2qjp7TQa/g/0HCbtR8+l3RpbCXs1BcqhhMmoSyKLOMdojZQuAQdqRctViVpVLNrgHdMUVsGo27FZuUaVa39JKZzXt9AxYr2ekGrLJXNdDM5/obxyXZxucLewnz+n5lvV6putwkWgWI8EnYhcZJyWRl8nRnveMm4YCdPORfW4xpnBwjnUui4LVREoxxGgJM1G5SjaEVj9PyYr+1wulced9tfI1xOiwtoCrepBdICxHxi8UtgrI/vj9A+LzuB7X4/pPr8cG5Ee4Xv23S8xJh8kzzATTKdgJ7r8IhPWlHjAWLn41Y/mbG8yYKKsZuQ3YipKUrpHAGlR8VgEyKMsiz4IaC8tx0n5oGvLFEnu7lb6jCXrflGUfO1XrXWPUTHReU/S7numsw84CdoykRaMciX6Uq5Rz0DWk0xl21kBfAxNLoZyvMMs5bHYSqHsP1/dH9KGs5pjSkVfdEW04JHGrYbBVIJ302lj1MVOErIbDvb6hnCzkwNVKz0IuOkaH/JSabSIqUa/3PZlhx1HZKqHFjJPE6/sBYlYhj5qvsppLE1HKgw3xfsLX3JZ4PsdX6pvtJ8pMuSxmN6hJDLVBrJoKe8jwaILoYimz+UcvWP7lmyNtyw4TbCS69+/XTB+c4m/UYOAtZjeqkTEeE6NQi4OI3juJyGvOySGc0O0iJhem0wa/TzU1fSKsHfO3oQYxZobLlsX7LZTC9ucXhPuI20+EXWHxjSV10L2XsNwOyN1qrnBAkPA8zTR9VbenP+aQslwf7saLipWSsiJKMnzx4Xve3K/Yb1tydBibmZ/vuXt5yv1iruLfFZrFiPt3S/Y/GWlOBuxpoV8r7dguJ/JkGTYN4/2CcjZBSLCRLiIv6v+bapfaOxiF6uSS2V7NWf06sPkiUfYeM0/YNkqE7oF1IPtCe29xvULxpicRezKS1xKex/NIbpxQCysqTO40GW+uHONHE2FjGD4bSRjKJDFw2Hraa0eU7h+3B7+X5sFkw3hWmL22jKei8viNJc805Q73cP/P98z+7ex4DcV5kXD9yjNeJJprh51E6ZIrVGb20lHWhihDMvIs039UJ+B3gYuP77iyp3Tfe4YXif/4Hz6FZeTk4y3rTcf4xNG+DsRFIXzfyNa0ONzW4kYYf7an3HekGfgbT9460nMV1qnxdK8dw096eN3BMmGuG2xviaskm1mjxqh7axjOC6krCmc8U8NZLJWyakizgnuvxPtiYfL6jjHgNhZed8zfGPhv7oj/7hT3dcN0IkF4aZUpwd7j7hxpmTHLiebrjukkY0IhbwLuac/0rBDvWtydU/bJqMLeJqrmaQAM7m0VYns1j9mD6wN+x5EuNa1EbctBz4PhaWF6Uif8oyV8sqF/EuSytkike7l1+Z0a3uEzaXT8ey/nN6NQS5MgZrmCkQx5ptwZDpa4jQILqQhjjhZmUShfMpRBaJxNMjowUU0MSS5rbhZJ9wFaUauMz9izxOXZhlQ1Cz0dd7sZbYj0g4wjyuDw9w732RbvE3fvlpjR4kYJ3Ut9PwwM24Z2MRK6SM51WFGQ5bHRgCIXU5muD4noBoRoTFZM1mJwq4lxH4hOyKt15QEpARYXO1KyZG/J81hF7h57/3fPwXrUgDyuv0/rsQH5Ea7pBFxHfQiB34hiYbIEiDkoyfftP3Zc/8kTXvzLgXDTH21UjwJy70jLjuItw5OWsImEq52oOKlg7ndHXUlp5LYk16WJ0jZCFGIWFSklNSSzhrRS4VK8JS08bhcZni3wm0nFf82SMLXhScsWu49MTw/OTkFF/7zV9gLYrCYkz2QxawxmqhoW0M+gCuDV2JTaVBVnJNqGB1VTSjUwUe9FyhLFR7kWHfUg1qlJsYbSCfEhZVnXdk5OY3PtrxlGNSWdw261f2a9A1cbh8aDNzDGSkXTsbS7Uc1CP2k/khqS0gZy43EHlOlA6UoFU6IalJxFt8sF5jPskOVWFqvisR/JF0sFI3aB8G5DWnaYnLHfvaVcnlfnqgayJdz2kAr5ZCbNUHVTy23A3+6VM1IRkeZmlG1v/ftw2dLcZ3YvOhaverq3e8bnK9x2ovt+T5rLkevkjz2xm1EM7D4Uxcr1opmELQxnakaKlRC4BIlkTW1ASrSiKAXRrg7hXzkqPA1T+Or7J/pOTMHUSeXQB5hF2vlEv24xNjO+mcEHiWY5qqipRRXFKLEZRMm6HLA1K8CdjsRt0PbYTJksdi+3ofa9ivvmxjFewv6f7GtYYBWpRwu9nMHmH63pv1lhEszeF4Zzg7/2xDZhd6JThXdBjkjVkhXA7SxplRg/ElVm/KLHvm+ld1hLm+GqwNzU0yA3+nv7XgWZ35ijQ0/q1CyEW6Eh/bNC+O2M/mmhvTXVgcyQZwnXOxZfOfYvpFkxuTZDt5b+aWb22jL/HjU5J57hQsYAANd/PMfME/lPt5jXM0qQre3dnYT2s8/X5KeGfDUjL9BkfjSkz/bE6xb7uiOeqJhPN43OiztRrcKbIKraJtDeGfrLBBtH8XLBMkk6iNlrW++bhrgqTK2aj3BvGZ5H2tee8WkS/SlVQXgvVKP4wuylJ84Lza1h/6IQ/t0puWbBhntD9o7cWMImsP9kIp0mFn/w7J9bOaV5OUnZrYX7GWY0cJbgkz3TugFTaE8HxpOAvWmE4KDjGbYKR9y/kA7FbaQPspModXFR8J9syZNj6l01lzBCxGyRQ1d1xDJbR24z4cZp30IBo6a7nEx4L2vZYdvI5StKc1G6rGZi8ORZomAw1w0sFcSaJzX7mHqvbRJm56U1c6IWllZomwYKRVa3BihwcrpjfT8jJ8Pdrjs+80zIpGhJzuBcZtrJRcx+uqMUw+5+hqli/HwShcC0mZNlz8YWNRrU4UWyWCdkLWehGzkXrC04l5U1gtCRfq2AUeuVhN6sBlKylMERLkZZ9Q4WYyFNDucTCcuwr8/NaBl7Tx4d9pDE+Xe4yt8CBeuxAXlcf1vrsQH5Ea6DxaLJmnSlWaV2Jz2IbDXSKR7iAt7805bVtw0nv9uQ560cj1YtJmXi3DNceDYvLGHnufhlxu0mTduTrG+Lt8RVC+cz3C4q8K7mQBRXaVrRKlsCiaOzN5Rgyc5gncHvpBUowePvIn49iCrWzo7NiJmyHLOsJS8D2RtcHyXePgTZ7WWFC0AnhIBUJMo/iLQXrehnuVAah+kjJiZRo6CK55P0K+4HzUbJR1cwQlDjcfg5VXiesv6ea7bFTM2SHaaj+Ntf7aSpKAWz21cBeyMU4aTDxowxtXFzRrkjrjrUWLnTmDFi9iPbP3/KctPDkGR7DNhhUKOSszQ7KcuZzHtm395Jo9M4iveY5Ln9sxMW34+0390JpfohPezQlB7PLauavtowM0KZN9hR30FuJDi3fSK3Dgfa95jZPtekfv426fhMCeaBNPf49YCdLHEZyMFIEL06aBHMcXKbA/he3vlxWbUQEVEY0HltXKYgqg9IJJ6xlVZRYOcxJ6POhSjRqguJeNtiVxPT5ISgTBYbDd2na3brTkXGvuZqtAm/mIh9LSQO+QelJqHX7fFdJPadqELJMFw68jzBxyNlE4hbr6yAbCiTlaC9pqDvty1YaG9g99TU419w7xsljl9M0goMlhQSxoK/deRORWyZoHtvSX82MDVZmQ5BxbQb6rbWe0VuJGhOrVg1dlJTkr2aPn03hXBniEa0GAzsPo34O9G4/L0lfbZnyjOwhXBviXMF9uUA7bVlWqqh8Tvdj9xgCBtH/0GUbbEtTC5w8vkdAJs/nh73O/+HE6aTwulPbrh7v8QUnU85Sp/QXhvGyZErTWw6VbggvjAtE+HKYybD/pMJs/Ha37lcqNIqYvfueI6Fe8htnfBHaV/8nWM6zfg7RzyPNK8t/bOC6xUUORU1ABKhV8OEC1GjJCwvsEgSPTeWxe8D+w8y/dOCedFjK1JhzzKx96JjXSu3JY3S9ZTTSPpmAU8mmk82FDSB9yGxu+1ovw+018owiisZB5gkq+Xm1mDfLbEBmqT9TH+6JXeWsg7EJ7EiD0LT7CgtSK5ULf9NS1yWmlhuiM9HmuVICpnUOzXai4m8CZT6nZkkkbzxWbQpEP3RFUxTgw3bJP3HAWFChblpErPVwDgEUm2Y1utZTR43ND6RagaIa1Nt+ms2yKjrZdaNjJNnWld74VBpmAWMz9xvOuJOuSnhpCcOXvcLZ49ZH7qpyoktRQOmEEKSF53LyhKxmegzzumPPa2hg5M9oqm+SaTowCuFPe29HhXbRmjMwe74cT2ux/WftR4bkB/hMklNhh0l9CT/IDSrNiHFocINFXpXf264+flKThw/uA+WSm0xGcYE24/mzN7C7CpDmdNsMq5P9OeB259awg6e/a/2WJCqeA04Y44aEjtIMzHOPP2lZ/Eq49YjcaVpXlo00j1EpYYXL3qTX0t/khaBHCzhVqF/08WMYgx+O+IqckM/PDQOzlBcUHPSGyEDpcA0YfZZFrWhOjUNSQ3GUVReJPLOpYrmF0AVlx+akAMFbT8+HDgrpyfz/ZWE4s5KdzFFWfZGR3yyxK/3amp2e8rZUknnB5rXXmJ37c8oGltXqW8xUZrA6q+uyF1DmTtMKeTOk/0Msxsxw0i6WOGmCCcr0cHe36nZiQlmhtf/3SWr7yLhdqjNkxoDe7OhvHgitGtKR1tfcj66dhXvRaFrnLQiFtGt9hPxpCUHS1q2uO3I9GzJ039xy/BiQZxZ3E6Biql1hPUEGewQ2X8+Y/OhFV0kPZyDdqzAgxP1qhjRglJXSJ10SHoxlGL14mxFabptqtWnGg2/GBkHTVVdyBibJRA9GzAGpn2Qx3+b+OjjdzzpdvzL28/JyUl8Phna+SQL3VtPuLMKFpys6ESLqNyRbEiTo3myV05AtMoo2atgLDOjROhFPNI6zGiPzVS5C3AyMVy0FAPj0yh3qEnZDM3LhjgX0hBuHNN5Ol6rJhrSxUR/UjCvZ3AS8e+DAueKY3ge6V5JN+JGSHMo9b6RWtTkJul4Dvat4d5UMbOoSm5ncL1nfBpp3+hREO8actB1N54nmhuH3+s9D8hrnMF4nqtbmPRjs++8iuVoMDeB/ctzZVFUnUFZRYZWTeTm1+cs34hmtPvTgfCqxe9gWqAclL1V8zCqESkW7J1lvNRxdVvFvsezJDeyEzmNpctIuQvSqjyvTc/HlbJVz608E4WKbKQPuXOUX9TwznczmmtL6R1pnmluLKlRET97bemfZZo/NhQLw+cD/WWm+9WM8axQvlemCrZKfJ4NokKdiDJodh6/sbBtyL7gXzfE0tDewPRBYQR8/f7iHMYnSeL4mRqs5tYyXmjC3tyI3jg+i5i3M8zlANEQrv1D6CBCVeJ5lFMUEq/bQY1Hviiw8cTGwfuW9s4ynmWyl5OZKWD3lrSQI9gh1PCQ/yHrWkvZOLm9zZLMHDYOmhoyaAv7msyOK/g2spgPbDYzTs925GzomsQUHfu9x0wyijC2UGaZ9qxns+n0Xqcj5r1st0sydB9t2G9a4j5AbZym2myYA9JRTG0atP/GFFK0hHp9xtFTDo56nYTvzYkoXKUgZGNw2C4R2qgBSL2ndbOR3igYtHRZ+Tx2+s95vP+trsLDY/Nv8j0f1+P621iPDciPcNkRCLWQyOZIt6DC2MVzdL5JrTj12YnqohwHpUkf7ESBY4ptMdA/gf0zq58Zi8n++NohwKv/w4LVd5nuSqjDcObIYU7sNAm1o+xVY2cYVwaTGpqZrFWzkwjSToUcDP25ZTwBkzzP/5Xscv1mOobd7T9dYqZCe91jhkRazWSLW8Xh+ewEe9/X5mKkrBbEsxlhr6wSvFeDUbUVpAz7vexxh1HNwaHwXswfXluKnMaG2nTkwl+71eb6//NZ1aI8wOsHelqae9yslZtY2wit8GokiNKBTBdzws1eblW7QVkqs0bIU+cxV/cYaynzBqaEu96y//KCbhANzu4Hpg/PFPA4JfKT02M+i+knPvi//BFWC9G5TmZKSh+qviQlcP4YbGk3vXJavCV3AbvVMbRVAJ87T3FqOuxYBZddDQIzEM872tdbwqJhOuswuWBSoX/SMH4x4+xXa4YzNR8YFaztLQwXQvGy4hlIc2UYFMMx9E0nfjkKtKlFQNoGjAUbatEweGJv8N83xGcT9EJK2hc7hm2DbwUP5mgZo+OqWTBlx/xsz+5+BqawfLKn74PQjVPDsKq0rJAhiaCfqiOOsVmJy20kzEe29x0sIv1Nh9t4uBhVlN2oEGGRKlxZaJ7vGW5UmPYfJKEO0UCQYDfOC/l8gp0jfThi1kHop0MoyiC6WXHlGIpn91bDifeB6USIRnaQ24wdhGTkRq5iUI7WvjkAB1S1DjY0Vbc0bz3DUxW8zXuhCG5rqgmDvss0KzXAUfcb1yvT41DUp2xprw2pMQyXmXye9V5tUa7FumF4Fum+94xnmWlV7yVXDdOpwi/TMtG+9YynsrH1W8N0IuSntLLKjecRfxMYLxNuI1THZLkhNa8C40XG9kIM3N7ifjer7lSOeBEJ75UkXlyhee+ZThK8m2EnQ7OxTJ/1lHsl2Mdf7Mkv5+RZZlo6GRR4tE/XDSZC/yzjn+91br6eyQ54snITq/drEw10iRwUNun30jC4Uffv5taQGpjOEjnIHc3urVzBBmmOhsskd7jR0j9P2EH2s8UXwh9njE+jQh+rg5zdOcyALHeNzoncVQTYgHvXkJ6OpL0nDHJxsk8H0aXqcyKuEm4vyl9ZKWzQdZF8o4FA8QVTheTGQ5hNuOXAWC2yKWCDEIVUhdzjJIcqZzP90AKRYfRCbkxRE1PvBeNeN4wyqiEqZ5MySKIl+ESaTcTRMTvbV72HJbui1PNisEbULOcz1hQ5fLuinx+u0eVIipZxF+q9o1r2FoNvhUqGJuKcLH29S/qcbES37GRTnBYZc/NIVXpcj+u/ZD02ID/CVawMN/KBE2/RgyzrgRW2mpKlmawcixOtZTzVa4qjFiWF6ArNjaaHfiOHEnpNFYtVMWESlIajj7nvYfOh5fanB9cX/dyOKiTtBKmxx+3dfmhFFem0XTYea7CjYDIHePnfd4R7wDTYCdzYEHaFk9/thCogIXxxQkkA/H1PPulktXu6ACC8vic+XeHfbyrVqp7GVRiPqwhK01TaFdDUbI3V/KjbOArwjUEE5yItSDsTdaoUsEEH54CmVLew4gzheg/ekhYtdkpkb3Hv7rVNAF1L8/JWIY/9qMDDnMmNZ3yxoHu1Jp+fqIGp2hmA7vUWqnuV3Q2E1/dCTmquSQmO3HpYdbhtnTDmjN1FijMP2Rz2wWYZ/NEti1SkR+n8cZ92H8yYFha/z/h9prkt5OBo3m3UhD45IdwrTd3ERJ63yjp4EogdFGOYTlpSnbDnKiwfT3Voj3QqJ2rIgU5kLCr+D9kfRpPTEm1NTNbv5sEdGxTjMx/+01dcbRbsdw2z+cju2xVPf3LF9d1S6dSzyOpsx27fcH87h43Hnip8bHs3wzWpWvsW6S9Knewi+kiJBjeP+tozjLuGIVadii2YJpPPJth5nTqX4zGtvWSDC5nx9RwTMv3TTHPliCu5HRUvpCCthGrktlC2ntJkMuAvevL38+qS5fAbw3RWJ9G9Jb4YMbcB/2KPvVowrXQfsCMMH0y0bwLtFWy+yPiNUJDmpgqYW90b2veyo919rBtN+85VwbmGGxhpDg5UmOZGoY3jiYTpGP2seBguJbzevygs/2hxg4YOOcipi04Nl79RMzv73tI/L3TvhILYUTkdbufJjWhdORTiAvI80b0KTEsV4u7eM54JuTjkobitxe9FFyurSMY/DFys7oPYgrvz2p42E94GuVNVSlVJhvGDCe4a/E6Bj82/X9A/KSz/4Nh9UEgnuv5m34QjTTZsDFwt1FB0yFSArFyamwb3thEqsXPYGjg5+YLfWuKJEAU1jxZ/7ySKrwjUAcFKi3y8DkwBpnpztQocHM+TKHtO35e5HGExEbcBd6cmsLQZM9rjtqSuOs35QjxN2L3DfTXDfDgKcap2xGmelQ2yc5hFgrcdtLpObJOOoYI5WnISHfJAq2MvjU5yalTtIssqNzqu3pwQFhPFG8Z1K+teA8sXG5oQuXp7gguZdNPgBtHo0qWMKbqLPZtNJyvd2VSZs/p8Y2tuRzbE6pxnzMNgydRGBDjSsFylXpVi2K1bmvlE10zs+4aS9Tvj6GmayDS5KnA30hbN1JwM+0C5/v/wQP/fcGUMhr/ZRij/Db/f43pch/XYgPwIV6lNR2oLtjYYJkNsRZPp5/UBVWR9Gd57XA9mVR+4oTYBSW82PBF/PXcKh8qtkVf8rJAbc6QOmKSHauqo3Q8PRV+pPy/Iz/7w70bFlDj9hebO0F9qu0HNx2FSWmwtOGpDIt96Q3fTMv+Pt5TVjOI9doxM5y1+PVGco1gjW9xqIWxir+ZjqgX5rHlIjU8JulbUpbc30LZCA6b04F7l63R7X5POvVdDEtRckDMYw3QxV0NiDNOJp3sjJCYHi4mFMnNHJMe/u6f/8hJ7r+wNUKOgdPUivUaMR/eu5nYgrTpy43DbCWPB3O0pM6XVl3kjalTOop6lB10HpTYQzhFPO9x2pFhR0EzN/7BjlHHAbiCfziFm3M2GfDoX7SrIdje3nvE04PpMe6uE8h9qDtPJjOGyITtDnHvljzSeHAzjqePuC0Oz1mvf/hM1JeVAI6rIXdhA/7Ses1nFHU0tqH0Vro4WU4WyJVlMpUCVyWDaVEWn6YhkvL45IWdD00a6ZmJ3NnJ1I19fuxrJybK+lXmA9VnC8JWC6l58cMvrry/Ic4Wg5VHNaEkWYzPGZZplJA5yxwFxxSkqVM2oYsn4jDsdNX29b8R8aTLdaU+/aShdIqxGyndzbFLzhYXwPsi9aLKkJxM2JMpdg9s78vlEvOl0fHzWcf5ykN3nAR3aO+xgmG5a4tOM21shIY2K47iA8Qyaa0tccMy10I7wkIjdyUI2zTPZw+ytYVpJOzKdZtzWVsRUzlLrLzKuN7INdrD/dMLde5hlki/MvvVs/nGPe9Uxe1t1bMXjBuifJvwXG8pfreifiQo0LVTA50YicJNgOk+4taO9Ugq3SV73ikQVPheF3QVZAKeZqGbDRcZkaL9uGC+yNAIJhhcT868C04k0R/7WkeY6B7O3mHv/ENo3mUPeJW5v2f1kwt56tp9kytmEu2okTv9swgyW8KSn33ttWDL4957mrab/5c6JHjfoeFKqbiZLCybxu2Fa1ZBLK3vg7KjhhId7SEUaBqWTm2wettdA7oSKlVCwoyUtI+a+Oeo3St08Mwh9SU0+ppdTjCx2M6IWZgtbhWmWswRjReB6J4tsW0iLJESnbl/aBZrVQKki8lk74StaMDQB5zOrec8UHf0oNPMQqOl9Yt8HmNRwshAaMkZHsxxlr9tm8iJiQ6YJ0pxYU8iDY3G+JybLNHlysjifGG5bTCjMVr2MKao+xLpC04qmFXdBtsKDTBBMMpRlwjSibcbJcV9/r0wWZhPOZdkAJ4tzmZgs7XwSqmIz3Xxk/PgHFN7H9bge139yPTYgP8JlSuXJOzBDpa4caSriNtuxFkY1eTh7dGOvk+Xc1IdK0RSt1BRcaXtluWmqbSJoIk1A72WNCuyDnsQWJUYf6l+DfOOTgtswh+ZEtAqMthGQ1/wP2E3FceTR1sw01h96Zt/MIGdycNA47PjgtJKDxe2igvIsyu442N2WIgF645TlMRnySaVxeQ8p1UBHi7vZSMdhzENCu3PVYvdBM2LGRD6p7jSpYEqmextFbXIOi3QSJQhqyo2lLDqlnztD8R5iViMwKCfDlKxmJOcjumNSxqSsZqGUh2R7qIhGljPWrDmeG8WqYDhmuEyWUoMH07LD1fMidx67L0qmz5nSOrJbKOF8UvFgssTmXZ9IMw+51JyOhjgzhG3BZC9qGZBb5YiYmGnuao5DdV+aFjJEsBNHgXRu5DBUvKbacZXJFXFQAV8qvatgnCgcKdqjINzUYtO4gjsdKNnS7xtctcM0Bvp1S381w5/KBe0wiXUhU9505NNJzj2+Ti0N7CePXer7T3svS1V03h6mp+NGjkXifWvCa0LG3Wm67iYD2RHPLG4+1dwD8e+nUUWoCZm4D/o5cpMqvhBPEnbryIuksMJOuQT5YsS+b8izDHNRtspJhPugCXaXyDNtaNk63NphJ0PYKFNFqen6/ofLRHuljAhqtkVcVLexqOsqdaJV2WQZP5iYLiwlZML7QFkk4jJS3gfyxUi+bTXEaFRIT6cZu3O014bBOfIsM1wU2t939M8T097VJG/dj/zaMSxbfFPo3hu2n0fc1pHmVR80aqLsqntT/wHQJuy9J9wYhjMYn06Ea6/gyWSYTgtpqffxG6tE8RcSo/uNUUEYjeh/jZotk1GQ407UpHBvGZ+KtufuHaUpxOcj9qph9ofA/tOIGSz++1bUrXvP4g+B4byQv54Tojk23NNJZvbTNbN24q7mXaSK5tnbwHBZsL0hnciRLDdqIMytLIQPmhrdG2oOx2LC9I6DwVJuMnaUdW5J5oiolVDIM51PpcmYaI8NCgBdIubaPLdC/szukOWhcxOna9MkQ7kPuL0lPxso2VXdh8E0GZJS78tpxHaRlCxp8LgmUQr0+wbrhIwkLJt9i62dXSlq3PNQBe1JYZ0AtlWDUbLB+8QQjahk2ZMvRlw30YTI3XensDhoNUzN/ZBVrkn1+zjQrOpKo8V0hTh42DmYCT0rXX0uuoILSTqRXs0HgOtSRTwqncuquWq8ggoP22APCO7f8Xq04X1cf5/WYwPyI1xpVjCdRJ5xXqfJSQ9ossS7B2qB28sJhmJJlxH2FpweZIeHWAmC3zWVFmf8kDxdQlaKbZRTUalTxnKoeQ1/jYZlDsNUg4quYvF3QkByWxhbKFZJv3awRw55cYXYalp7mAjaKJ7/5hOYvzuluYuE+0HFcLXX7Z/O8PtM6hzhfsKOUcV/pU6VoKbEjEnC72SV7ZGLmg1n4d01LGbgPf3Hp3R/eF93xipjo9KQTD+JWjR3mGGi2Q4Ub4XCtI7SeKZVw+5FqPS1wuz9hN9MTGedmqR5PXAZbD8eXcaEqlhIVigC6Gcg1Odu84DM9BNmiHI0yxKGHtLeTZK+w9SmxYSMybnaLdcwyVLIzpGWrXQaY9SUs/VHbYfbR7l2zRuGJy2xs2w/sHVqrc0bznT+NHeF+XulBad5IDWW3Fqu/kFN1z4TXcdOOofIMFyWSmXRd51m4qAXr4ZCCJpOpjJZbBeZ9v4YMqh9/UEwnK30jmyxf5wxPJseGoc2kSZH2XrMQqiYbyLTsx6iNCL/1T/5A//PX3+G66IoWQZKNkoujxYbEqlXM1KKOSIwRG1b2gbKpCK3+HwECM3BJccX0bpcZqpT8TJaTCPU4HBd2ZORvA0S4d96FXhvOso8Y9aefBalEzEF/6ZluhANzK19HTwYclNoP1+TkmXcB6adJ1zrmNkEw7Ooz5oczb0C9obLjB3UgBkgHRrHZSFsNL0vrl7nplAyhNVEepGx181RM+J30q6YqOHF8Gd7mt/MsG8t/ZNC/yQz/9YdE+5nbwzjaUVlrwLZw/65qGXNnaG5g+2HshWeTlWg2156jfYbifT3zzPdO0t6qmwPt9PEP7cZt/bkeaJ9bxkDuHtRjqaTwvw3jdCgJ5HmrSd+uadctSpqk3QRqYXmnSd1CnFMBewbXcP9s8zi957+mVAIspH4vs1y3PKFnNWk5lnC7hzpr064a3T/o1EWxYGCaLI+0/YVmSgSeseFXt/c1iDCiurYAehF4SpemSbZa7iT5kIObRWYl05iddtLn+AG2RKXRtoZdtKUME9Hy1m/sYSNpX8uNDJ3mdlZT3/XQTakZRJK4IsQyGyU/xEyzLMGAYfOycgkYhgDORlCI8Rk3AZKNpyd7tjsKw02WfxCdKZ834h9+WSgbSfNgCzs7vXAyYuEm0WaJrG/60irkeaJNDfjIBj9YJ+de4cpBttGxlEmFe18wtoDvaqT5fAiMTuR0+LQB7nl+UxOFu+jdC6TZb4asKaQsiHlepyLoQm6x6RYrzlbSMni3YNO8HE9rsf1n16PDciPcKVVwlMLQVeUSo0CwTCiYgHYwRKfTrD15BcT7C3mZMJcy2nFRkNxD9O+3JYj/F0mTTvNUO1OF5GylZ98oT5QsjnUiMeJkO1VgFCbmjTPpJXEkaY+ZDGIOuYL2SiB10TlHhxoVyqmqjjWwtv/2rH6ynHytSHNLOE+Mp0G/D5jp4xfV9F5Ksq5mBLpbIZJsjxNTwP+poeZVfBizkeKFsu59CCA38UHFMRUvcQxi8RgdwOlcQoNvNlBKcTzjt3zhs1HavxSB2ENw4WhuWlp1i0nX49ykNpNR+vb0qiRSp3HjxL051l160pFaeJjwt7vSc/PhG5Yg391A86SF2o07GZQHoo15PMT2fBaK+2IMfr/ugs5ONLMy3GscZCyLJaB3DhszPj76j52OWf/pGH9sQqfuBBdKraVplNpI9PKcHMqceq08Jh0KFQrSpdg9sZUUS5qknfmyPqZTrNErOmBBoTLlIOdZ1Cxb0MW0uALZTJH1IxsyJNToW8KX/7zr/nd66fimY8W2ox1Gf/aExeO9Exaj1989Jq/+ref8cVfvOTf/PbT4+eUbI4uPSUbzL2cwNzJKD//kKoLlqW4mqBe+e7ZO02O5zUR2kfRo0ImXbXa7otRlK2m0H7d0tzA/gMVmaYY7MaRVonmizXDNyt42mMmB176ExP1neYgTr+dqvvWMlJ8xr3s6L9bCkFJBjuYowXodJLxq5F00yrosavUt2gI65pKvZCOrH/60DRO54lwXZ2wTlVYep/Jr+bSumxlgxqXGiK4fZ3Ufztj/7F0J7M3Kka3nykPw27dkXLp98ofcVtLcy+74P7LkeHO09yIbtVcG4Ynen+7cYznQkGbG9n/2lulljf30D+t9LGalzGcF/LlhH9Tp9cFdj8fMWsvetOyYF92+M3DZ+RQhMwt5Qg2nqmAPNju5llm+2cTs9+27H8yEr5vmM7kVKZwwAdk66DBiDMdb7+pBWtFgu1kjnbAxUvL43aWsFbOx7SqCFXU9xmXCePrEKnSrLKvuTkn1W43JMwQpBEB0aL2VWsyy9BJv5EWGX/Zw17Hxly1GK/z0b8xNNdWzd/GMTQJN59IUyPEI+n6M5OE/q5NGjw9SABJd42csLIll0I7m45aicN96eZ6ocbe6tmTqpvVQe8TQsa7zHbbkUZLiZb2VNk8/aZh3ASa8/6IkDqfpc9wNWU9G9wsVrpVPmZ+7G5m+FtPejKJzukLq/PdMQ9kt59hkqFdDXiXMabQtdKVbHetLIJ9xruEs4Lyp+jwLuNsOXqVBJ+YfgRAQS7mwVHwb/A9H9fj+ttYjw3Ij3C5rcMG2T/aUSPL3OjhlOcZU0W8rjdwGzRZy5UfZSCfRuxtIAdNxQ4PZKrW4zC+tVsFXeVFEixdfx8r2ka24h77rSWeJkrIlKVEjERztLNklG2q3VrSKgtN4QG5SZ3oUmY02NHIenKpYLo018PVFLj7GWw+bXB7OPnGsXg1kFpZxMZFwMaC2wghSecqqv1mIi08qbXYecDkArMglGQu8bgZvfJMSsHd7chdo+K9JpQfrGqFVCDHqimz//SU618EhnMdl1C1Dn6nv8/e1inyCt787xrOfuNZfpP/WhhkbgN2SJTgiIsGG3OlZ3lM0msl6LbYKSm13DtK8NrX8zm2n7A/yDPJs6DGwygo8rBMRhkekyhpm087ti8UipcD+AHIcPErS3O1I7WOzUeifcWltDpurEhYNSkYT5WpMFV9kY3VLe1Jon2vSXJqYPrHe56cbxj/5dOaTyNhdDxJog8VPfyPYlpXlKswGcxcqEPaeyEP40PxdhB9K5UZcnJ8d3tGGjWRLa5gKIQm8l//n3/Jf3j3gn5UkvJv3z3l8mdX/P67Z+qit44yjxhXsE4T27gLcD5iDOSp0lYGT7lylNNJoYilXlc7D/MkisvGwyo+bIMB96TX51y1LP9gZdgwSI+RQ0Uf9x7TSq+wu57hqn7ETEqgbt57ypdb8ss5aZXAFNm23jnSacG86ohPIn4xcroYuH27Emqy9oRne+lCNoHZ947iHwrf3EiAPp3IKSnNdS2aZOg/G/HXgbio9J6dhhX96znMk0T3BcLaEmfKBRk+H2DrcTuLv/OMH43k17XJXwuFaK/M0bQidhKf20GuaG6E7o8N42mp2wnDEyEdxUKcG9xGmrHUant8/ftwWbDTw7DDTIb0fCS8bGTA0SX8raNcBw1FooNnPXw7Y/9JZPbS0z9LEn17DVWmk4zbqyAePx6hd3rdU8P+J+PRJMGOCrXzO4NZO6aTQnkysPjLjuEC8qd78nV7FJIXUwXdpuAwLH/n2T8vNc9JNLJczQ/CvUxC0kzosevVPLh1vU93hdIUzFpi/jLav267vnOiaJ2NcNcISUsGZknn+WhlAR0yrlfY5fonFr9TCGX2VtP8w+8aCHdCh/JplJC+GkbkZMnR4ptEORnJkyVHQxpEXZytBsZRVox5LcopTaZdjIy2kG8a9XEO7Ol4RD+lwdJNYtw2MFhR4z7qFSS6DpiTiWkv9MP7SJiLuum8GoicJWzHFg3JVgnfTbSnkZjkjtfZzP03p9AlaWoqlcu7zH4IjKMnjY5uMcpxK5tjZglU0Xt9jh4al2n6QVf2d7QqK/lv/D0f1+P621iPDciPcBVTRZlF/HkTK6JgFRYWl1kPoJ9syVcdJRTcWiiHedPKvnJVE4KzoVg98EzhKBK2VaCORbC9Q3zgSt0iGgkVqRPRg5ORRZl9rnr+T9KB5FC3dTTV/ary+w90rzqkT11h/5yHoMWhZpzUIiR1hWkJ4zmMyw6/L7jR0WwyfhuJzxcq6K3BDYk099ghKfyvJpibMYr6FHR656ZTUV4K47MFxRma2+F4ty6NpzSeuAyMJ57tC0dqamF9ogLcHhKnvYrJ2bvC7pkskkFF0rt/Yrn5kxUf/d930o7ELA0ISoO//rNWWh2gvSv4faG9TYS7kdwoW8MMmXS2EK1sSmpCFo30JqmQZx5/10sPEwz7j+b0ZxabUIM2FPpzy7Q0bD8quB78Rt99rIZZm48DJ2PL7U9FiSlOVJy0iuxauQ2ZqU7MM+yfCw1rb2D3D3rs6xa3q65DtW/lTcftH2bH1OjUZViI/kc2cu5ZqmAnGwoW2ySKs8eiQlkfVbMQDVSUztpydKgyNrHfNqJMTBaQkLy/mvEv4meawqaa6pwz1/cLhaR1CeYJ12hyKppRDQ60ajL8bCIOnvn5nnJm2N3MsG0iDw43i+SpkYDYgH9SQ8+iOYrn011DuPa4SlnMHsYVEpxXfYgphpNP1ty9XWpqXh2xSqN9jIusbJFTWcamuQrjeJZg5ykf9jB44i6wzrZOgQvdB1v6q1kV9stByu9UN/utzuPxWZQrUlGoYJyrCVz8upFJgCu4e2U/mGRYfGvZfpqxa4mkxyeyrzXJE162TCuFr5nJ0H7dMHwyEV4HwkaIiyhd5YiGCZHhaGhxEMP7rVCN2FnGMwnU2xvYfVRpY0D31rD7pGZjtAW/sUyrTHOn/5q1bIqLgXDtict0RGLdzpLedmDAbRz9FwPNd62Sy7uMuxEdKS2yqFAvG6aTTP+hkAazVnhlXGXKQinjcVGOGovmm065JRHM1zN80mvdzsrmFzU2rlcjWLxoqtOlil+zd6JMVccpilBwnD3qSw5Iihnr/lTUI8/1Hv5a+29OJvJ9U+/Xur+790JJwq3Ts+MAS4xWCNCiUsouRnLUc4Sga3BaSS/CzlHazLQNxyGV9bKoPjToJStQsGknUpYuhIoWnpzvSNmKdjVIqwFgLgehm9EQB0fTRdLoaOYj+Y9yPbSjYVwHaDLNs70ojoPFzCLxTpS6PE/Sw0yCbk0yMDlYRozLTPcteTd78GL4aAumcPpsw75vhGBEx/p+Rpks7cnAciGaVs62Gizm4z6AEJtck8enyRPC330OyON6XH+f1mMD8iNcfmPI8x9QUOAYDpaLBHN264j7Kk79gdYC6vQ5ikvst7XJGA25Q5P5wnFqag+xBRlMb4/Um2JE8cIW2fAZTZMY9TkmyateIvFSJ+Z16neYWIdMqfaGZhLlyVbHE1M4UsoOFK9xldUMNSp490+hWINNBr+1NPeO0z8MYA3jyuE6bW97XYhzRzvEI7UKI1Qj19DCNPO43YTfRaW4WyMXqC6wf94xLSxxZo72oeRqORxVMGSjoslOagg3HxlyC2webGcPRdb+Wcvy6+3D6MgYNh+3THNRUXKAaWG0Hc4wLSyzd+ODFqVqOEpNYC/OYHcT6aTFTPmIrvQfzNg+d4w19C835hhSOS0R1a0GUZK1nXEB2w8M2c/YP5NI/NBYhveB6SKqQL2T0FXi5oLJhe1Zxtw0daqs79FWm9biCtPJQdxuVMDU5sN40ZEOzQegtPPqwmNHNQ0UKPtqoepkMWqWSXTBA9ehvl+3GNnH9mjVG84GUrQ0rUSx433DVLyoHE/2EpWjRGrfTeKMR4ubR3Lv9XlOn7G7m+G66rA2WTUfvRf1xEBJEs9SMxMISXqPqtvye/0ZWiF8wDHLgLFyxQ2witg3DSXUaX513jnQW+IygYNoRXG050NFiQruXWD5pxvupgWz5cB+Lc68X06kwSkJuzro5VYUJLqEe+OP9tgU6TjinFroa6Iebi3TSj93O6Wux3mheecZPphIs0JsE817Bd/FkwTWwV7DERt17tiJI1XL77Qduj/A1MLiO9h9KCT07oNMe2UZFqXe62TNG9aiTOXG0Fw7aZkaWceayRCXGZMN2ZdjcF9xOidsb+F5T37VkWcZk2U9HL5umU6zvvP1w3uWUG1tL2Tzm0ANx60ek3aE5Cz2aU8aHPQOd++Is2oZ3GgwZKtLmnJWHHFeSK3uaamBfBKVX+NFe7Kj7ouxKRruBCHPB/REWj8hFxjlc9jBCkzMFpqiwEGLaLQJSqXkHRBwk3Ssjg2vgdIlYquGJlcNU+p9FaYjBxEjC9+DAF1ucNJxGAOhi5rjZItvIrZqMobe1WvcHe2pASETO7m4pdOk3j8azGRZPB3IxdDMJ5zN7LvC7HvL7qNMc9ETR9EwS1LzYVzRcazmK2btZatsiwZlVbmfB4fbWQ5ujrmT7S7FME6ecd2QsyHtAiYkmuVI10iPkrMhJuWOlGKYJse4C8xWMr2wpjBMHmfzX7P7/btajyL0x/X3aT02ID/CFVcFF6tLzaAiQuLtOqVcyy/e3HtsLdxyUwh3akTCWsXyVERdMLEiFhMYK15vzqFSMx4eVKbSmyWWVHLy8Ew3cTvqIX9waTIHq8h6c9LnWsYzQQU2QTYG02WoYWhpnjWd9poGu17CyLSq2pQsq2BTnWCmZZ2WosK+f2q4/XmHGzU1XX1XmH8/cv2LTs8aayCpWB5PPcOpZfdCm5gbRNnfVpemrIIoNQ/I0DGzxEsLoQkqx2nyIY9FxUZtRmoy/eG1NsLNnzhuf3LC4nVh9j6yf+JZfya3ojjX76RwEAIbWDjcFPC3+6NuxO4mqNQwt4+UTpSs6WyGHSb2Hy95/xe+ppdre+JMwX/75+og3aBt7p+qEbVR+3hAnw6FU7ES0ebGiLriqqg8VKrfXkWQ3Ttsr/eNyyqEbbOsPA8uMF2mHIRD6qf0b4eHmFNTUpJQB7OItE937O87NUJdkoOPK5TTqTq31RErcHK55f52zv7tArqEbSX8nnWjbDdHj3WZjz+94s3Nium+Zeo9i/M927sZxmbS6NS4FPOgSwHGdYO9C+RZooSa+bF3ZAslo2ZlsphkyUPN1AHM1sk2N4py9sH/Unj/F56whvECzGQxy4k8StB7/X5JezowvZoTLyImGty9g4970m0DowIBx49GoUGbOmV+2+FsoX0nI4f+31xQPprY3cxYXOyYJk98PdNUfzCEtc7VOIfujSHdtQoZ7GtYaAS/F3oZNpB7DSvG83z8jGLVZDajYTwtzL4N9E8y/s5B0XvZ0eN3MJ5auneG3UeiUtlRdCnplHTt5VbXUHstHcf8NUxzmPVCP2avLLtPEmEN/YvCeCbq1rTiqNlobm1NZj8ELoJLSv1m1FDCHeig24D1iDJqa7jhqe4xtrcSr5+UY/I3hiNSULwK3LxMOg47B65gvpnhqz4itxLxC9m0QhHWeqwWa0iNgiRz0LG2CZrvldaeozkiRVMn6+A8T7L03ZkjWnKwrpZ+7qGpyIt01Gcwy5AqooZQMXyGaMlNva8ekJRFbb4QapF9ViZHARsSeaooyFzIt7HSfgA186Oi7bYaLlR3OWNlzmBdJu08ZrQ0T/eEkOiHQHwzEwo16H5SDKTRCcFYJIbJ410ijp7hPkCX2f+DkaaNGFvwTWIa/INF92DVII5yP/TPKzpS3RBJBlrd3HNtTP2tx1/2pCSK2/THJWaZiZuACZlmPtHUZiMmizXKETGmHC14F6e9GpZsdD2GyDB5fd7jelyP6z97PTYgP8JlJ7CYowc8yTBdRGklKjfXRHOcRGMqh7WouFYOwGE6LeeYg01lDjWjwyh0zGRTqSEgO918dB9Kf9rDbSsb0mrnaXt7fGgqnV1NiUkVri+i7eRqFZzXFfVoMuFOD3Z/74jPRlIxek2TRdVKUGaaeKdQEaBsqraBY2jX1BTs3tI/MxJcbwS53/3UHd1lDvSh8bw2YB7MpKJgPH1oHrStx2EZx7CviswcGobxVNSQOOfomHOwJs5BmS0+6biMip9gOjXcfxnEc05KoD80h4fE6ziXIHjzoSeFU7r3I66PmqYVZX+Y3Uh6smA6b8mNoX9ywvoji5kgnnJMGLcTbD+qbj5NIbWmNlyGaQk51WajK/S1ITtoi2y1Py2OatWMip5qzxnW9ujAMywfCj8Gqwdvl44pxWQ1JO59ID2boFcgmfFZNCIvHrmxChbbJ0uZZHNrfcZ1kTg6rCukQZPUQ0Dh3dslJ78M7P7ZHucT467Bh8R22+FCYrzusFvHy4uWMJ9YPNmSsmV7Ozu62+Te45fT8T0J6ryNL5gXEZuNEthDDZQDSnTkWyVA02UJWoNEv6WV0UOuydWbDw3NPaw/l7OQafT+rouk4jHrIEpJKEJa3nSUAPk+CAG8mBg/SrTfNsrwiQbXV4vrbBjP9J0tvof+I/CLiZgc01WHAbqXnv5pJs4NzW0Vma9qo9qqiE8ttDc1OHTQOdncIaRs1Hfd3IjC5HcaAMxfydVs/r1OkDiDNC/KxvjJiL3zTCvD6g+W3QeVOjpKg1Iq+uE3Qhb3L6QRGWvuSDFA0fs3N47hQte4Gyp1qxWVK3Wi/fmtIZ7mIzU0PO3Jb2aUZcTdN6IamUK48sRFlo7txcj0POG+mhFXmXBvGS6rBqMYyiwdzwGixVw3lFBo3koHkU7kBFec0I480/caT9Qku42Dtcevla1iKrJ4FLUHNU1pKaTXFDURZhFhdJTeYndCr+LTCXsXpEkL5UiZza32uXRCvvNcF3WJlrAcibet0MeacwHAacSFJFe3LMqidRnrCuMuVOc3uTnFqnkyLsNNQ1kmXBuxtjD1Xpk6FeGeNo0aHVNo5tPR1AGQu1w2jO9nxN6SzydRMA0k5zS4KLrhlrp9zmbG0asZ6BKz1cA0OVKymFykYzFqgkxvoSJWh0yqKTSwtzTP9ozvZ9jREp6PND6x2zekQYidA7p2In++ZXo1hwR+60nLxEDDFDInJ3tShpQNMTlyVvNhjJzNYnR4n0gZYnLE0ZG/W/0NVwL/5esRAXlcf5/WYwPyY1zVfcqv7QOP+tYdQ6gwmqZNq4zND5Sp1GmifViHyTi+iIIwGkx9eNrayOS2OqxUipetk0I7WuK72YMvvCsKsMpy3ClWdAGM6GC4+jpbtR/FkC9HWPuj01X8tKfcB+KLAfeuIZ0koQ69Fa1lljHbOj1s9aAzvRVn2umhZ6LB3dmHgK5KJzhkhhyS4KfVAxx+sA7FCoVRurOsMKfFASFSUZNb0U1E06pfx6w8BKEVcKP+7ZB7MS1/YE9awO3MkQ6XA6SmMNZiPntL2FB/X0GQ43mhfW8oxrF/OmP+JjF700tQf9iH2z2Ujlf/3Vy/O5MjkZ0OYuIHlCeHwiHvZbxQIViCGtlD45CW9XzIdeqKjnFqtA+mThfLIB1GmsttCKvmozSyowVwJ1HUjdsGVqJkkKRbMKWib8mI0uEKpk1KOd77uj0FtxAtqmRzLHQOE9nyA6QiXAXWP01w08D5iGvVrORoSZNl8XwrWsToGd/OmIzOJTeL4qSbQnvW/+AzDGVyNKuBqffk6CSErYgG2WFbWeHSZU2V1x7jwM5HUk34bm8M09LS3Kqo335cLXO9eOnWRzluBSFGpSnKD7lqMc97zPeyPuVZj/92hhthPMs0145YE8rdzjBdJJlQXE7sY4NtEum6FcXLadreP5VVbMlWoaN9PXdNfY9lob0xRz3S8ET0J6GMEnu3t2oUXK/mxe843luEolQUsCK0i1810nFF2L1Qc9NfFhYvDcOFrpPxTNdPbmXPu/swE9ZW71VpaCbx4H51rW1XInpm8mrE/E6fqVDBSnH7wwLTFcxNODpVNe8843nCb4UMhJfVxaqTFe7wXFbOZXT4W0/swNx5Sg4VgSgwPGQbmd5STiLpoNmJVtqiZGheBTmOVavp0mWyESLtdobYZXK1UHZ1e3I1ZTBXjWhks0wOujeXvho8nEdc1XfINKM6Y6XyoAtZTmoeeg/R4E6EZpRqP2srYuCC7Kqt07kRE7hG2Rdx8LKsNgV6p4Dak6ihQTFMN42QnI0/DoUOzbibq7HIyRJHh6sucu5ctCl3mfG2MO1FiaTN4GRM0S1H+nVL2gb6ZHBNYn65oxRTrXSL8kQ2EpdpkFEwJxOlGLIBt5gwLzvMRs/I4b7FtJkUMm2lSKX7Bnen8yWNjtvbk5qZomFIWk5YnwhdPAYp9n0g3TWi+Z73jDvlm3ifaRpRPUuR3kwshAdDkMf1uB7Xf3o9NiA/0pWbcpzG2/Ggm3iYPKdWE/nc6b82Qnw+wtZjqyXk+DRh9+4h+K/Ra4s3pFUUdJ30ULSjqYFlD/x+NxjyQUBeC8A8y4L8rWhYyuI40Lg0bS++4DaWSHhAL6KlxEZF0Fu51bi1ExWhWgabUc5adlatTYuKR2M19cJnwBLnCnI7IDC5RcemBr1pY0ylXMne8pAq7++Vnpy6chTBH8LyUiv0wPU1P8X/YNq6KCQrOpKvMR5q1KAYQ5qXY1OYzstxSuj6Q06LfieuEmkmTQsG5TxEw/DEkmaaTN/+3HL264dOsrvJzN6OfPd/6rTPVXdjkiEdrJU9lIAehAdNgdH+HYTMqdNEHq+cBxqk0Ym25szUrikoP6DUYse0gEvkiyy0Y7SQwGApvjYSVuiVyUISWHtNPAtVQG4Is4mpFhJpdMfzLbxqmT4cKKPSzgF58x+E50bNrrEF++WGk3bicrHlq++fCHFzmsDmrKIlZ0PXTYyLBL3oVvmuUXhmtowFXJtk+WsKZeeI6znlJMq2tXtIaT+8rhSUO1Kb/ea9I206bPsQ7leM7HYx0kTlSuEiFPJWNqJT75VfMYvKOwkF86YTh3+y8KYjLjOxIovl51vydYc/F23Eou+4xErRWocH6uJkjpP+9puW8SKJAmREnyxWiNiBQth/NtK8amiv7DE0Mi0TfufZvSg094Zxoes61sBADCQPZS40zxQYTzhe//tnChpMHXRX0jwAjCeF1Vf6e5wbhnNZ1bZXomJRRNHaf5Tw6+oA1T1kYri1LGvTDIaPJ7qvAuMHiebaMZ1kmrWiKvzeMFmLiTA+SdJDOIhnEXfvhcbOcjXQsITXgfEyCRneSRydzyZMDLjeEL/ck2pORIkOtu6oqSAjBDAaprNM99ayX+m+E94L6StWNtThyus67BXISXWBM/kHWqoosXo8qU2mAf/eyz6dOkRw0qpgdZ65OgSwXmnc08zjfdJ1cLCuTZqkxMHj20gIiVL0ewrN1L3KL0bSm5nu37OI80o3T3fNwxDBAMuIfRfIAFtHTIYUNQgpDqaakh6NmoUcq/OJqUOs0WKTclT6QbQsEzKhE9KSsiUOTsMAlyk7UU3NZPRsazOlAzbK/cjeYZ1QoRLqNbsJug8B3iWmmpdiBytXLl+fpZMhfLDHmkLwCWsP9rq6h+ymg9ZGQxDjdcySy3/deWt0hMvt/5cn+v8269GG93H9fVp/975xj+v/7TLpBzSn8kARKrYKnmvraAdzdLZi4/UADZqE0mQ95Go6bG4P2SBVUG7q+9ZCkEMRavW6AyqCK/VhKivd8gN/dzsa/FrOSdRtLabSBiZzDLUrthxpYweaD7l+fqmiyFZFVO7rpH2ymGhpv6t2mkm8XhMlnMQ90L94OhytYym1yEj12CUhO7aalNhq2H5AbOJSRXzxBwSlHGluoMbkQMmysdrSLmths6jNyzwzXtRchklUB1yRH399v1IfzGoOJ3L7oHfJjcLTDja3m4/1Z/05XP+Z5f0/7JQ/shWiIe69eTjuB21ObTwO500O5a9T5iYj56Tq3MSh0avIhqlCV2q4HqvpQd9RODpIESoCUqoLVF95WxbZ6B6aD58l2DSy7pyf7whdJMwmjBXK5X6+hmKwXdT3Wz9P1p5O6EqBfN8w7gP375e8Xa8o0VKqHeghkTiOjrad2F7PpQdwRU48SejD7KWHwVGqU1YePM3zHcsv7miWI+HDnUwdbIFkSbtAGZ0m5dEet235LbRXBr+xah4SR2ei44Q7ZBYfbo7f+XDXqumonPlyyFeoIXf+zpFOolLQk5E96XUHXeJk2deGCfJdQ3gl3pLb2792PudG13FqC+HW4XpdcwfK4LTSuXhAP1wvNM0OFdnYKj29uzI0t3qd3+q7T5VamAPHPBxKda9rde4dbMNjVymMC/0b9oHq2N7WYYmRzXOxHA0MDtky2avhae7M0RgjB1FM/XvPeF4RvQSlyeyf67xNLUeHvvatU8GqOQk87+WSdeNUxM8j8cu9hjCLpKwaV3BXaj5SW7DfyBUp9XJ0clUnghHFNFx5/NZKED9DeRgOprPEdBFJF5ESCtNZFc2f1AHOaI/ahWOqJUI8TJvUtC6TXNEcymzyGbOIlKyBTIm1qPYPk3fnMjE60ugIZwPOSXDtfMbVhn6a3NFCFiNjBkwhbjUgYqZE8pxEVzzcV+xegv0yWXL3g2fAXvtfDNDkIy3LtkkNxGQxrv48ZN23qruZ3SsF3jYaPIy9Z9qreWKwlNtG3/NkatNgjoOzA+LN4MjLqj1s0wMNrBWaEaM7fh4G8EWZP+eTQh2jJVfNxxTdseAuRSL70EUdwybRNPGBugmkqDBQQNqYx/W4Htd/9npEQH6MqxaD+XLCXgeKrbz+tiYB94bUZdxhco0Kcder8CmVgsO+JrVWytCxUMmG4nPlXQPpB8gB9WHvy0Ow4GTk4LKMCmGrv1h8IaOpKZPoBrlDlK/63iabY6F9oIHlmSbpxqloUnAf4j83coBRUa1CN86sCuT6AGPnmC7jkXqW2wx34iMfdTOlhnZ5NSt+ralvDtJj/LDRsIM5oiGyJlXTYorQj9RKxJ2rbmPzuSaW07IcxfmlZq7kWT4GPJZGrknUhydFxZIE/3WaWC1niy+UJmt6W7/TYiBsDdOiEDtzpKocBMSxFZUkVzRMH1D/UyeWdlIoWW7LA2oVLQW5B9EmzFCRB1+w10EOacdU37qddYrqNh6/VVaCAU2YJ4NZxGo+VsCZOqW3MFl2vYSj+a5ld1ILuMP+7xy9aR7Er/XBbmpT3MxG+tuOkg0nH97zk4sr7seWr948qeJ2vVesdtSmTfT7RrSVpyPWFcKZRKz9Tccn//03/O67Z8e0dVxm+n7OeDbRzCa6ZoIPdnLNKmjC3dZUdAN58Ph7x/0XsPwO2jvY7xXOaCbD7LUKo9xa8rOBzfu5Qgx9VhGb9d2nbVCzvai6AyB+MNSGvbr1DA53OpLuA3e/usA8GyivO8pJJC4NzfeBxXfK1RhXDhvVLLuafxE2VW9Ui3flfNS8kVeO3ARR+U4SthZPxRYhD610Q917oRqmwOJbaTTcoOvODRyRvYMmJGzUPMSzxOzNQ0Fm6vGbVtA/ycx+J2pLbvQ7xRmmk0L71uE3NZdmqeDG3Kqg9btKfTzJ+FtHuFfDFa4800lWA2jLMdU79ZY8S7i1x2wc7nUgf7lj6hohEjVRnVBw9zVpftD3d8hgym3BbfzRCn06l8uSW2vfUrUyDvdWTVRvKz214NZe50xFbNNKRbKJdaoeoCwS9t4LTbGiGxmHbKhzRQ1CltmCL6S99EvWFqEEk8NYJAifPDlZ0jrQXu41tf9BMV0ylCKaYzp8L7bUphgNAS6G2tgboQjjwzPl4HJo6uDIHAIP88OgCXRN0yXKVCmXFnLvjxbDuEJcZH3/NuMWk/JEssG3ifG+PVo0l7ZqqIa6jRnyKknPZRwluyMSb5JRCvtlz7QJ5NuGqYsM9y0eDeCKBbeaaNuJPgnhT72v9z8IQUdmvZ6Ro7bnYHAxjZ7tm4WQ7ad7chQyNl/19LuGtP27Rwoec0Ae19+n9diA/AiXLCYL9lYPRZMMY7WNdDtNmt1eheqhcRAdSUV0dpqSm8MDrFTnkaY8uF5VG8hjMYyckOxe07BD83EMQGzykaJQWrmvYKGcTbD7wWl0KKjdYbsO6MJfpxGYSa8pXv8P4LeWyR98gfWwIEO61DT9kMbsdlbC2E6TRuoE+bjsw99zKJimkBd1v5MhufKQj9Jl0miP7wsV0VikIzphoiHV45hm2pckK3gVipWGQzZqMCY1UKYW2KVLlW9ci/pQVNjORelhckfh5JHiZmRDOq2qxXFtKqOpTV3N9spdqeJxU3+eJVA1EIu2oZQDolZEuypg9g5Wk7Q4KzWQtIl8WZEJNKFXo1BEu2oyi28M/RNxx0uBNIl+RRJNCV+OTle2i5RJyeLGFdpTPahD1W2UbHCX0n6kXvayxhY1LkZIylTF6mTD/c2Cf3M71zFbh6Oo1c8nUshQwwlztCx+es/2rqNMlqFvK+IDv//+Ke18Yni5gHMVFu1HW1n3Xs0YQoufi4oVXuyIrSMPXlki86isjqXj6b8y7J6b6jJVmE5VoPbPZfSQ5wn3vsWcC3bLN20VG1vc1lYdFbg7r2ay5kakpyNs3TGPIi4KrtIgyzpgM9itY/m1hQz3X8qF6WDvXIIcr3JbKVNwFK2bZJi/NOw/sIwnNWvoSU/XRuJmSXwSsfee5laOV6437D5UId5ew3AuxKS5OwjDwceKalzB+ieZ2WtLnMPiK8d4Dm6v06e544iWmFJteYNMIoYXkXAVaK91fU2nCE2cZPrgN2pODrqpcC365fAiwqQsC7wEyfl8xN3K+OFwrwyfbuivZ0ynE+EPc9JpYno+qbCt10juRA2K83K0oz6Ix00B2iR7Y1PvIZ0C//LkcO/CMUWdYiirqHvQ4V56GAz5H4TJ1gT6UsMDhf5a6bI6CZ2PVX1Fy/L7BkIhWQ9dJA8aBrnFiLGFcR/IvcOf1OGALUf61WEd7wcV4Tjsv5tHcjTHtPK8CUJzGqGc7cnAtJvL5hbI0UBbBy+T7m22jbp2U0UpZrKn9vfumBeDRfTfvcNmdKzqbuZkSTsnK9xVrHqSTAiRoW9Ie09eJvw8Yl3W/i8S5k60xlxdribXKi/l+Z6unejHuRCbCvq2XQ0evW3kxAjY+VQT0A1TdDifcB7ms/HoeFXy4d5tGLeBbjnW4ENLO5voh797DYgakL/ZRuixAXlcf1vrsQH5Ma5JCbj2IBKu/G67UWF7CCUsrpAuJvzbhlTDAtOiBhDGSk+wEgPbvj4k+kO4lYFYBcjVuYpkNK3b18ngaKBL5GRkQUlFDaIRRastgtdtwSbx0ElGKEWFyIn175XCZKY6HQ8PEP7hv9OLUQ/t6rZVbC2+2wM9o2CSJX4wELceFhGSxWzlHFMaNTs4jtavxReSrRoMAyUiDYQVSgH176mKumuzBTruIFpKCUIkiqvuXhXVGc/z0ZnsQKXBCMVp3gSGzwchDL4ctSylFEx7mJaCsTBed6IvDPaBGrZSMvWBRpe6QnNrlVi+N0e0Azjy2gE1QAXRDAavRqipiIcrWJsJJwPDfUt+PgjdqLQC4/ID39kWTi/X3F4toZEA+/4XETefaghgpWzV6bax1XnHlCOVy1RqhfOZYR/kVFUpC8aK/nFEIzKUJBSkRENzqmwPXDnupz1s3zJiG+kz4l46CP8ukD7qKdmwve+0PVDtMQu2yZRk6DcNi0/XbO87fBsZ6zGyq5HUe8qbjjKvlp+mYEJS1kfW9Pj0N5ZxBZufT5je6pw58M23lnxSsylqsVYmi1lF6QeyIS3zMbMin0eyBbZO4Y17B4tI820rM4RDnko0R8OB+XeG/XOliS9eGTaf1+sjm2P6uHRP9RzJolPZ94bxXOc5J0LD3Fcz2u+h//PIyV8G7n+a8FtHanV957OJxV829E+EhkwrYF+HEwH8lWyfszec/N4ynOt1cQYH6mjsINxJhB4XhdUfdPymUzU34WV1N/LQfzrRfhcgiabTvf9/sffnwbqlZ10w/Lvu+15rPdMezt5n7j7pTjrdCRmASBQCvB+CECUQLCcK8laMolCKBQUSLUahPsZCUSwsKV6MgILG+hQsGYyA30uUTyYjvCQkZqCndPeZ9tnTM63hHr4/ftd9P/skBgUSu2nOqjp1ztn7GdaznrXudV3Xb1IKVjQaAsrjbFeC6tAVfZXZ6hFTjdRbxN0Bu/tLzOdjpJMa/rEZmlYQGgt5eAHcGcPMLdycGrVQMyzSzenW5i+xgI9jBhcmx/OIVuaGa0udmBvhIvwei2h35BD2VXe0NRRUITX8vsW7jeGD6rDy4MIMFnEcYbYHahQMNP2cCEDyhsV/pmx6U64xP2g+Rm/VbMEW6pXYiF7NFUxFWDclQ4OFziKahGqLjbhVxLY/aWB6wyGJcK3ujhuYRCe3phnQVjXCqkK91SMoVTLdacqSniquv9k6ONURSQNupKMDmCR+Djsd0J3QJs00AWnpMBzTgSwNgsElbf4DkhXEgwb2yqpcWyGjiK3qczrDxgZA21U0WWl4TaZtj5TYUOSgXQmCfl7D2ohuVSFFUsYmsw79YLFeNBCrWhYbIVsU7iewaRpax+ekZ18Dcm+7t/1B2u41IM/FTUWG0YGUpOGMhkNpAYAWvEvaTMpwxh3FgDSoKtOMVAdgiI7AJCRJcKeZdgHeDSyRkTAN6sqiOowoBYbPxXZoONWXgZPxMAukUFXUl9CZKm2QDEl0FoItr1EoSbkAXVvVK2TURClgmaLURKTtAXJMekxauw26oo9T91o2CZVOzwMbLtECjsnuRCuypiTTJqLo5xyEVLggtNsEXXWGnYiw7Wlbq81bUt6zKGIDS4Sj248UVuvUNAWQ578VlKKld+fcNHU6kVS7YRlYgCSlYMS1Q6sFTNjSRiMCaCLMwqI5MJzIXxiQIhAXFaeuwsYnp4knb9DPGeJnXELQEVfyBilxcrt1eYH5zRmO41TTvmndmUYJ42lfArky/zyqfacZ00I487AzV3pYsulISfT3FKmkJCw65hUwCUgD6VdS0TXHaSAgAMR5hdRXGN23QNdWMEoTM5aFUxh5NkCWnyGNAuxBzWtnb0DsDeyIBcjiYAI3GzgFBukptopwTQez26LvVHcyWDRbHfpVRarZYODWwNErIuyJQ5wGUgpbQwekfW04IRCj1K1kgKVheFwERDMeqvMt5L1Tpmqry1ucDoA36Pc1UG0QrgcCyNpgdBvo9pkcbtdEIaoTum9151AsmSdP0X2qPuVjYo2S+QLLBrma832OL0WYpUW7D9THFotX9DCH/L6aD9YYtqlvWVWCarkJu5QArK7Q8hqgzbRb6D5khy11wlpe5f/HNwTtPimESUiHDA0LVj8FRk9W6HcS6hM2HO15mmH0u5pjofTIrLdKuwPszRrVB8boLvC6krXB6eE5iAewE5CutuhPazS3LPzjUxhtZPp9Hcy4BHfkUC0F7WUdVnSk9iRFa+3KEZmeDjx35w4ECg2/HxCNRMeGOQ2Gn21Ma+ZSmZ9FFTM9qokcpnhDq2fRdQS6/q0ctXsVEQerjbepeN5bp5qNOlDb4XmdZfTDVtR/xEBqla0DdR8uodYpvhimmofWQZqAVNMdTDoiGRiIKBibsJqPuFY3EcOqKkL8ZBOLei/cz5EHbozoDpYHM4qOxFGEm1OIPiwrIvIWSGsLbBEpRARwrifCHoXDBDVc6G9MeHzqCDP1NMIQau7qi2t+lsHCH45glTEQLgy4fOkY68EhRoPOk15r9zuMR4QLZ9stBm9hTISzAf3geGyPasjOwKR1m5AOG3TSoL60QooCc+wQJx9+K//fvd2z4b23/UHa7onQn4NbnvxLlEIjgP4sTCMpHnViM1GelKfzLLTzRBYWqA4d6iMpE3Cm9Qr8Fm1SuULz+dleMgkohsxBcCOKIGl3m2CXfHPJomabiolScWnJVr1ZxLxUx5XSnEAbAdVtaK2WdSMANmFvPe1O7dMjit47QX1gMbppYRcGtjWcFOcCfm8g6tBtfOLjOMJf6fmZvBYCgQ1Eyqnsinpg5hXFcHyNzqC7MjCQTJsPiuTPLM4qqEcQmAsd7H5H4aiLtOs0qSA/phOYlVH+Mqd21TETe5NJfI1BYJcGo6cryK2miMTFAOLUaGAceEPc9ujORwx7Xt1a0iZ7wxCRSB3F2BhMOf6hs7Rwzd9Xop7j9GBK1GPlYBe2OL2kaLA8GaFfV8X3n+JLTnJFqNWJvcXsv41gnxgTXahDaYAAoJl1GkaoNpZTDzl1qLZ6jGY9v0ebEAYL62LRQ5gLLdqnZrAuomk4eR4WNYWknQaoJVqR5pyT2ETIKYuYOJDWYUaK/Am1FvG4xnA4QgyCbpURGqCe9ejmDQXoA+kl6/PUF8XzPb9vpzx4TZJO3tDOdbCQU07JKw3uy3kXuNBiOG7Qn4tIVUKYBcQmonqmhp0MsLsdkkmwLU0YsqYp1vxMbg1SWIS0JjNsin4TqAuZPaX/H/j1UNsFjK471McGbqkoyIlDc4e3Aj9OqJ6pMTrgedkcqoj8fIfp0xxgrK9EGM/XrI/5nEz3Wl+JNEqItNM1neD0IRpCbD2uoZ5riuGzJi2vD9WpoN9OqE8E9RHpXm5FBzrbqoYskvLW3KEg3NypEcYJ3cUA2R6wde0UzSGHD2GHhbN7bAyMA7rLHmGL+1IfG1RHFuKB+sigWgjaSwGmE7hbNerbFC67BSlew/kBdm6YjdGTvhonFK4jGz9YZpegCaiu1+q0R0Q11rRCN9r4GdXMpSbSLGRewZzQpUsGAaZKfxoFNubTAGj6tyjaGFYOamYF31O8HdTqdlhVCMEgeEsxeTAIp5U2xFyjqhnRixAMunmjehKuPam3XDPGAVhZSG/gW6f5PJGW1D1pa5IbLMv1HBXvIfG4Bi63JVdJghRk0O51GO7rgJnqO7S5QhV57WxRvJ+0+ZC5Wviq6x22PJuzJlJfoigvxqohWTmkFR0hw5jX2GjWYdVX6AdHZERpsCkCy4Mp2nUNYyLqSsXrwRY3MdmhRgxJkE4qGDV3iFkbtuvLMOPedm+7t/2vbfeumOfglrUb2caRjlFaQUw4EZZBlFbD5yRL4Xq40LOYV4F3plz1e6kIB0nx2WgecoNDR6rNfqRO6QfadMAkmK2eQtUZb5DJMCFb5q5A2huFo+6nLtKIoHc+9PNoYQxAJ8AojltQEXwWo0sQFZVTiJ+ble58RLUg3cy0pI5JEE7AKwrtk2GBjgQWD6ArVhFPhk0TYRe2uG3BJYQXr8sxEy9aOGx0M8XhKp4pppIg3WoQ1tQOpCh0gdF7v7Sk0sU66c1a1DEoMvOk2aQWR6V+jW8Jb/SdpZi0N4XelAsgnOvZ8JyhLAGieRYskFMUNmo6cYdJsJPM3SY1I3a2NE5ur4W7umKzYDcnR0Yx6AzFYD5sDiPckcPqj67p4hNY+Kcgxb3HDxZpkPJ9iElIW7yJd2sGLySd2PK4UiAaWgfZ7xCDwWrRaLp45EQ4c/pVwyKS4C6tgSSorqxQHaoo2DMbIQY2z+OdFuMrS9Tn18xSgDYlgVxvo8JUuzCYPsXcCvEC13jYpSHF6cTAPtPANgGj3Rb20pp8bM2zCWNqNcwg8BcG6kqqCGx5VCeGzfXaYLi/QzitEY4aiGfxBNAtyAxEH+ojaj6GCdQmGljeR8vaZFmgd1cGrC8QabA9i3kaUbAx8ONc9BtMnqHGw08TxjdI10oCbD1GtEI8NSwAERUIkYksIrfaRCchGrN4QYJdAXZN57k4CahPgaOPDwzy1GDBZDWBvOP1O8zYaPgxqV5Z81GfELUsoXOWa8CwP5Rr0HQGo/eOsHx8G+2FAKhmjcnuAfZ2BbOwMO0GjZDAffeTRJ2M2nQnw+A/txYM9/WILsGeOLr37fXIujoZSMmTM+tH2PEwR3UJ24yTUN7PdFzDw1gDKnMzsLbF6UnUMAQdETXSRnnd2Iav5WqaKoihA5bv6XqVvDYEOmCgCF3X8gSgIXqS1+b+tEacM6APAMMHB17TZuS5PuSh1dTDjXwRp2NtN0J5fT27NDy+NSmDsAnxtCbyvDY6ZOL6GFS/gqUaT5zR8RXtotoDi64tOXSXCJOuN4q+ZGpa8obrY26kVD+WDNAuapweTdB3FfrTujw/ntZ08jKb9a3tKyxPR/CLqtwfUmLTBjX1MOc7VFXAdLuFrQNcs0Frn60tfYz+3NvubR+L7V4D8lzcak650UROvia8ocIAclohjiOFw9lmVJPEY5Vg7tB4XzQ75GzIXEZFcsEbG0VRohSRMRR5kF6L8zwZNzrGgtKZnIom1eI3GULvObsjF6vmfMfXGpSqEEH71lwkL4iKSK/FRVJKlSd3GmN+9rTtkeqEeKlT+0Rg2PeIo0iqk9FCxiv33ksR2gPgjWrmdRqXELY8UEfEEfnZZs1LgU1OhL1TcVB4WiGeG9TBi2hUnCiFKzdPeqPO2onJb1d0xorgpE6AtKiA3iCOY7HtHB2Y4gZVnZqC9ljlosdRRBxH9OcilvfHM3krWvSsHNEM1RDgqGZh0JmSfwH14oe6iImLxb4zBQGWDvbxMVGTmrQW+ufzs/jWYegcX7e1JfBODmsW+qoFMVocZc//cH7A3s4Cl19yuzS4WDvdJyCc1mh2O4iKXFMU2JEvRUBuTLDm1FU0hfi1L383bBVZZOTGVmld0W+yRQrCMxjIbo+hcwhXWSiISYiDYQBdHdCtK6wXDfpVBayJXKQgiGsHJDZPaNkASACGbcCdWvi2wuyRIyAK+gse7qEFwmmF7s4Y/oRidrfTkWu/16O9b2DRvbAsCNVsod9VFGQaiRJ6gWzxsbAJ3QMd4rbnFL3iR1teBbq9VMTnMAnjZ4RoRCcYPVOh2yON00/oWGV6PrY+NBgdCNoLLIb9DFg8wLDN1f0Rfgqsr3kmudd87uxxU4IEqxOD5ojNRTJAc6AoCdjsuIVosrqguxAxe1+F5QsCtt5PfZDtgOaQ3290UBtsYQPlEqrFBtFJVrUmJxZ2LahOBeNnLC15F6TJ1Qe0h109OJTBinQGsaIuyu51sB0zeapTQdgK6C94+C0iN6kiOgFhdkgcJXR7kU5Ydyrm62Tq2m0aGnCwokXxXq/ocYSdO+q3thUlyAW8rrtR10CGv8ZSZKeGKEmYcPhgtgYACXJcwSxJhfJzusW1h2PE0xpYWfijEUJG7BzfU6ZqfDAYhGXFIlp/HwY2K9wfA7vTc4DgGciJUWDzAahdd4SZDkS4o6KMudivI5oLK9T3LYFx4FDKJqC1mnMCYBwQdXCU6ljscJM6b4nnoAc9dSGI1CEiqBtg0AGS1ZyWBdciqWJBj5CRIjUTkd5AWltyoSSh0GiRhGGCswFh2/P3WwMbSwDz0zFOj6boD8bAyvGeNKbmA6DmA45GH8ZGDSME6mb4sNv4ve3edm/7nbd7DchzcetMgbfztDtpExBHvGmZtSm+6KQTgZPBLRbqWQcCT9Fr5ufGSWDWgFNUwCSkUYAJ2EzMmoDxlSWdZbRgQ8spXWgdb7Y9F3iJora2Ogkb6UKvDYBfVITmlX6SgwVRsWlIIzowpSaSziC8Oee8kjz9gzY92SIyzHyZGqY6we960o808RtK6YLXrAQVALtjZgO4Ywez4GcI59lgsMnjMbUPLtX9hkWhaQ3SzLO50aKiICVGXcNUkN++bA3MAkWRKy02x6FY9fYXBvitQKGu5XfSXxro/T+K8Lt+M6XtFbGYed7U1QSgoEU6DWQ4FwMEYRJGNy3c7WrjUJY4HcSalripU6RnHBBftGIj2VvYLbUpwsaRKi0qIALNdTaLKRg2Za1jk7x2Sn/SQrI32N5b4gU7xzhabIjRMmMhUz9VA6MAr/kDtmYCcUE7EuBmA8RG1OfXiC2nu+tFg//424+o6FPgrjdEdwy1JEjUg8TWwS9JN8kWo3K7wXjWIfS2JKDDJPSHI0RvYW/VaB5vMH3cAi4S1VNKH8BCaftR5rC0FyL8jO47p4/tFuvX9SGpPmY28LpbO/gV6VPmqIIMprjKAaC+IwGy2/P8M3pdj6mJ4UScVp8wiYWQZttEB+y+T1AtmaWRQ/riLNCdzgJbT9CxLDrqQyCAa0l/sj31GMmyMeG1TBF9dz4U8fX0ae7q4kUB0QHzl3j0Fz38GMWJLYzZiOTckFizeWjPJ0yfMNSiHFpqRwRYvbjHMEuoThnqKYHOf9WpKfkk/Q6LcaMIRUZv+92I9dXAzzvzpFVuRw0/5Xftd4NqurS5uDVCeGgFP4uIDpg87rD13x2aO3STq44N6jsWbmEwfsYWvVnmlEpAoVcGdW2ilgakDgUDu2SaejHD0PPGLizciVr2TvP1SQpsdWJhTy0zilSLYlSgnQ4aIpKabwHD4UEcLJFqk8qAyG3ROS1bZSfPAQQWjo/rBbg5In3spKJeySRgFBCOaqRlhWqrB9aGqHckzUl0LTGO14FfVESwM5pd0XnLa8NOOmuC2e43dtonjpa8qg0Mo1TQepkzYBAaEph1ePACWbDRkSDANDBAsNFGxkXISUVXvt01r7/ebBCUrAU8Q+OV3lC/IQlVRSF9RnmNTbBVKGtG6g2HS6OA7ctzbO8v0YwHhogeNBzanJCKFjxpWutFU0JWn80ta0A+2n/ubfe2j8V2T4T+HNySgfqtJqBSeopSckjfEVqttqbkPTAkUCf+WbeRqVCG0yrRx9D+NjLfQ9eWkG90AJAEq6Ox+qrrKZKpQ00sjljiBWHb8ybRG9i1wDc6uZoEpmEDLOx73vREve4hepPQzAO0BmiJECS11CzOWyYBY50OG0706Wyid3lPFxkmXXNf0QROBI9rFn1BgM7An/eQhWUjV3G/kjcqdjeQScB91+7gcEG7VyIDEdEIp2/6uZMW/2xCLFEaFyFri2gT9s7PcXy0R0ctbezEm43OIlKDk5TTnbRBQw4VywhRDmtp9ZjnY6tOVzIwjVyUCpZF+USF9DVay0lizZwMc+oobnd03Qqi++8F4aRmk2ET8xFGHjgZQRLQPaCC1ZOKAub7ewrUR6G43XC/Beu2xq8/fj9vYINlFobe6Pf/6E2shwonxxN1tQL6Zc2p5U6PtKgQB4G52KJfsThiIS+lgYiDBR5c8ntfOhb9ljfgeqcjt12tfQFALrdYHU0Kba2Z9kwy3orobk9gXrCCrTzatibSM2PgGDSdPdmEdj8X8rRvhgCysJvsFC9AA5gnx4iqxTFrC+z1iLVSW5IaDHSmWJqKUivj2iFd6IDTir9LPB9yinr9qzMsHmRI3f6vOfgJHaaaI+6XJGD2fofV/RGjGwbtnqIejlqOYRvFRhZQdKGJgFhsPw6sz1McL0HglgJ7hxSs+hSoL6whBzOMrtMKG5GNh10D66sJ2x8QrC/w2ks2QTqiDX7GpkcCm5jRTYvmqMbqJR3aicPkSYswYz6QW7NxGabq9JeIhMSa++q3AprbFt35gH43wp24DWpQRTb6reXaMAll/aiPDXA8QXRAf2lAmFJrZVseuySkfPnthDAGpk9YtBcS/Db1VdJu5nTSG6CHCuI3xXKYBv1OPdHCMZ2r6KTHsEg7NwijDe01NqnkGOUwP7ckehS3Iswx15tUJbpozS2d06bMFTG9QFYOoTMbwwIbATVQwDhuNHCJCHGYEjFPStWSbbp1hd5yOOSJDMZE2mjy1H4gCqrtTimK+rtgkOYVQnNmzYrCwUQdS4YIz7UEgRQUtwjW85oxGIiu8bI1lNyQZBNtqce6XvUMp03bHnbksTxVQXwSYOo1BDUAmlCeVg52e4BfVDBNgK0DhsHRJazZoCJ+XRGhirzHmDrANQHz0zHpp9k0QFCGXt2SeiBRBFyyEOredm+7t/0vbfcakOfgJp3BuUcNTl4aSRWxdKzaeZ/g8I+cmY5rtkPKnNuEjQuTgO5P+hiTrWQzJSlRU5DUnpA/Qwnn45Qvj3/1/xVvwDlYqxRS4Humqx1kWfGmPDg2SfoeUDoEIov9+sii32c+RByHDZJj1Ct/HMrNU3QqlelUySTEcwMbHKsoigEbqqA0ruCQhKgRZgFyWDEnwGsGCJSCpFkodB6LMEcVnk575XeIUpKUU3X25s2bUWoiJ3/CiSAqCvcPH9/d5HwI2CAYfk9Z35HF54D+Pkn5HFD9j+RQQwMKQtVFJ4dJSmuAShulTEfKmpdI2kUarApJAVk7hkx2Bqg5VSfslCCDRXVk0V/wdDSbBQTvIBpMKIp8Ya9Hv029iNgEc1RRD6CWoUACPjBF3NeifBwhtxuE/R4pAQcnMwytY6GvYnAzCqh2O/SnDexujwvn5rhxYxemCvCd2xgZREFQVMeLo8PPXov+1ljpbprg3Fs02x3tRdWKFDYW9KNb1kidha8izHaP4c4IQwQLMsOLIfWWGoWjGm6u51XFCbdZWqRtDznfYXdnhcOndpgbYSyNDjrDY+8E9noDv+fZyGqDmSIRQjMbEL2FmMiJM0AXID1vIKDL3ONTLF7EbJrUC/oZbW3rE6C9QB1IMqRbmbXB+gqpfsNOQHNgkTTRfHyQ0J0TNiwRmD5mMewApx+/hL8zAgA0ty1Gd4D5ixIgCfWpwfT/nmF9HhgdAov7qS0B2DDYlWB9kVStaHWAAjYO4omUGA+6UI2A4dqA+ukGw17A6lrA+GkLP2auj215LeXAVUmkdPUXPdyJRXcxoDqy1EuJps4bQhJmOiCuLCQKmhsVg1t3ArrLvO7sioYOfkIamPFEj7q9CLcSjG9SfxJ0kG3WBnFvgKxpFhEmHCaYcx0zJLZ70qICNQ6SgLimuxSWjteu5n0gAf1uKPlNUY037jIaUVpsqtnYVAsiNDE3K02AO7EwnUOYRhb+Ag53NLwwDYaFd8XGSTztjHNeEYCNXk+AqIMNs7IlKwcmkS5qiTrXU21SvAXmFdc8b8t9AZaPz+sVQBSm0Ks6A2kibL4+n5lAgn4mw+YjjQLMacVGxeRcJagGEHQCXPI9Y837RTipCxW2JK732gQmAMc1UDNTRQZBcgbRJsSTGkPQ7yXTh7NtcE3tSzXyGDpHK97eEXXtOaAyY08a25rnWlJNnZgzQ7xna8uDoI/2a97b7m0fg+15R8F68MEHISIf9udv/I2/8RGf03UdvuEbvgEPPPAAmqbBQw89hH/6T//pXY/53u/9XrzkJS/BeDzGtWvX8NVf/dVo27b8/lu+5Vs+7D0vX778e/oMTDoHmts63U7Aud8C6j9zCwBKHkWepucf5uYhVbE4UMWpui/NwoYqpAnq7sK6vGfKr6XUlNLkGCIwdDpJpUFIBnfZ6cJwYedivklZl6Q0okxbELBpeGRJOP1sYOHoTJaF8qI3zkEoDZZZkU6VRqoREVBv0XDqX5qsKpHK1RvEHc+AxpxXUqxzNd9DrTHrawsiJ9D9j/yDjBopF7i8h1c7X1HkqTNEJ84UkZLAIsELmwu1NYbW6pwEajOpx2fjoS9FtyIuKi1ICp1LolK/st2y0jMQwRv7YAEbYfc73sh3SL+L46g3ey0YtKkyA13T0ojIhORjCxYr9VZXJoLiYtG1pKlyx5MArWXWhH6PsBHjF54ygT0IdRkabigq6E0nFfpFjZQAWwUcnEwhluJyOdMIJ89zVHTamhKdaMw5OmelwSL01KH4gTSJBFD0vXCc9AYt1KpIEWpv+dnP6QQz6HsEAUYBMhAF8DNqhEQ1SVBnsKOjKdxuRxQxo3C9KYWe3w0MfmxVVL+2MEuL5vwaYe1gG089y1rpL3namgRV42GqUAwY0s6A+sigvcgE8W6PZgZ+QkSivcD1wqgTXnNgMX0GmN5IGB0mLK8I+h02BlxHVIdxewx3arH9Povxbc37kIT6kBSq1WWexyePcD/cChjfIs2qXCuBZhfVKd2ycghhsiz4h20+zx2qoNsLqmOLbj8Ve11Ahe3afIhnM9LcdEwlXypdp05Mfp/wPDNrA3lmhKyrocid34NZkHbpdz1CrdQzw88tHpg8Y1S8T4F+d4GfsT4V2NsUIYcxBxmwSWlQgnBac6gxoRVz3GIoahIAVeR1tOXpyDWJsNoQ5ILOLQzcQoqFOnObQK2eTap/4bWc1DoZkRlM4pWetzZwKynHJYfTSqdZUF4Y1JjUREMbICSUQYZZWa7DCUDYrK/iogYWCobOIeaiHSi0w1RHYEmEU5Kuo8PG8ru47q1sGQ7AqJFIAnWNus4lAVIdN7lAGSGJ+fzi+9tx7n5lo1lUNBcC2DpivNWVIVz01Mklb5hfpCYDyW32AXl/O0tre9WH+WAwGXcwLtIVcpDiHGgXRNuktZC1RTV+DuhAPhb0q3sUrHvbx2h73jUgv/Zrv4br16+XPz/3cz8HAPgLf+EvfMTnfOEXfiH+43/8j3jLW96C9773vfiX//Jf4qUvfWn5/Y/92I/ha7/2a/HN3/zNeM973oO3vOUt+Ff/6l/h677u6+56nZe//OV3vfc73/nO39NniJc6PPBnHsVL/9QHIBWnRJfe9DhaT1Gs9FLcQUQLTYnQFGpO1cyUXP4sipRai6MEUkqqCH97XIR/2XnEtMofVh5wSly4N9qNVITvOan87FkkucnIlDCgTPpLKJWLGI6bwrFncJ4uchWnf0mA6g4F9wBKkwObIPsd+bxRHZ70PVLQpkULgGxdCoAUL8vJYLKkgaXIm+P+r5FWYlyEP+PSVfYrv0WkgxPpVtqkuU2xmLRQsFvMcsjNFbC52aWGuR6k12m2idHmRnnemc6V/467nsdl6Yg65ENiUzk+Ke9rFr6ahOnFJaeTreVN8wxFrTrSnIM1J3tmxWl/d22gBkWDE+lUlrQgSeiX9WY6nwQy9vycA92zslYhbXvSonZ7IBgsb8yYTZI55ibBnOs2+iI1SxCb0J008C1tft3II2WHn8JNJ73OHlSIiwq+dcVCdLy7JmfdMXRwaB2Cp2OY3euZoTCvCxVQJswcMBfb0sBAC73S4Aun+N15RbSgNELl3IskUsSE16I5dZsQ61YLPm1QxSZg5pG2OWGVKiF0Fs2spwC4UpMAYShkd9IgBoPLD91BdcdBjiuEMRvNYYuOV+PrFDebHpg+ZTBc7VEfC7YfE7gF0J4DVhcFi/t5IjdH1IEkB6we5nS7uWMwvQ4s7+d5uro/oDkwpQg2PRuEydMGk6eJFKwuA6MDgVG2Wru/KeiGHTq61ce00m0vRCIZ+zxfh/MDMAkstoWNSbcXmZQe2XT0u5Gp6s8Ihq2E5rYK16uE5pbFsKeF6JjXSLrasqg/5X7XJwK3Erg1r5nxByuy6s7x+wwNm6LQcEIeagrsU25ujTY62ZAjCF0IE5CUuiQRRS9k5pbf90B0edgJJdvIrolyZP2D7VSQnojExEpznxwLbdNRLyFBELZDKdRjkzBsnVkTQfczBlay8bALW/QQRpHaWOugpUowA4X6JoAC90B3v4zOUEcHYElt1zCvdX3RAUY2HNE10fQGclrBrFiQYxRQT3vAJbi5LTa8w2mDsKwQd9QAZBKKrjHrWWQwG3MV6L0l2/o2kVbUvQXWPCBJtSgmN21VRJhXLJ4tm0ba5+oh86bktuSQxebiCuOdlt9tdi87qRHVWARgkCqi8B66cDxfRrR0hnDQ1d+Y4t4GfP/3fz8+/uM/Htvb29je3sZrXvMa/Pt//+/L71NK+JZv+RZcvXoV4/EYf/yP/3H81m/91l2v0XUdvuIrvgLnz5/HdDrFF3zBF+Cpp5666zFHR0d44xvfiJ2dHezs7OCNb3wjjo+P73rMk08+ide//vWYTqc4f/48vvIrvxJ9f48q91zZnncUrAsXLtz1/+/6ru/CQw89hM/4jM/4Hz7+bW97G97+9rfj0Ucfxd7eHgCiKGe3X/qlX8Knfdqn4Q1veEP5/Rd/8RfjV3/1V+96nHPu94x6nN1SMHjnB65xQdUi/rfe/YKNw4/ljc8+uER8ZsJp537Pm4RuoXUwE4/ohYt3h83ESVgY2f0O8XZTkIZc+CMAbmkRK4M0DVpAAQksukVD58iDFsgAJOWOpzUL4RIalidmFqSbHNcsbAO4oCeB3e0RVGwbg0EaoTg4Tc8vsbo529xAXEJo1TlLaVLJG3VpATn/OYwR4LR6IA0ISo+QjDpoMX74qT1Gj9YwwVFADqUSOJAmpMJ0qIVt0kLSTAZEDdjbfHlgSjtQmqqM4KRMswI2lCKd2CJJ4a6L8HMwjRxFaC2iTZHdBEKapS2WnyUMLwHwBsujcRGbppyc7A1QRUw/7hTrtka/qEuzJF6YEH11he54pLkvDFWT1rKpGwe+xpJTYNMK0lbcUPfC5vPFec33bwILq0rPZwHFnhpGiIYONmgywsTXiN4WZysBXbyMTQitRQIwefgEy2XDnJAnJrCtYH2fLe+fooE9cPDnPczIoxn1aNc1MPYwxxXCNBD9aALCaV3CM2WqBgctUYtMoakPLfr7e0CAZqcjYhMEcV1rU4lC1ZFOP48aBqQR9UFIAtcMTIAfLIwLiINFezRCvc1cBtEmJHYGs/MrrBYNTtcN0gNrpLXD+D0VQsPC1Y85uU+k5mP5kh7ueo1qDvQzHophG5BjOlQNW0B3XhECB2y/s0K/BbSXAiRY2JbC9dFNi2ErYXRLaKfrqTNJFvDbAfWB1VTyzbUephHVsUV71WP6AYduH1hfYu6HWxhSsgYGqZqVhWlpkGF6wbCdMLptypohQTB5RtDtAsurCeKB9eUIu+bzUyewC0cNi0lEstYWGEf4cxF2YbG+n52RWVnu32XuX7TUxCQH+AnRDfFCkXq2rA5sTuJYrby3Bw4AajBD5qgmuiGg8UYQxN2h0PaSQAdEUowxJBDZ8dMEt1KKVb1Z1/JmOmHhrWunFHSSx9roOWY6pXJlZ62lLQ0NVF8igdQvo3oM0c9nBwCtUBTuUOxq8znMNwZEqZhIgnRKQxFmR6FQmKJSB7OJCJKgX5OW6XcCj0/WsPUCWEUucoaI7leckJKL1sLNqfFLOjTKVuxF66YImgiQeoFXFMl0BmlnQNRhjK0D6Z5Rr22lNMeMfoBJ8k0z0KRk2iOODBPaLa/pfnDoT5qNq5aeC/w/GKioJhLP9pYSivXyR/M1fzfb/fffj+/6ru/Ci1/8YgDAj/zIj+BP/+k/jV//9V/Hy1/+cnz3d383/v7f//v44R/+YTzyyCP4tm/7NnzO53wO3vve92JrawsA8FVf9VX4yZ/8Sbz1rW/F/v4+vuZrvgaf//mfj3e84x2wlufSG97wBjz11FN429veBgD4si/7MrzxjW/ET/7kTwIAQgj4vM/7PFy4cAG/+Iu/iDt37uBNb3oTUkr4vu/7vo/S0bm3/X625x0Ccnbr+x4/+qM/ii/5ki+BZLX1h2z/7t/9O7z61a/Gd3/3d+O+++7DI488gje/+c1Yrzf0pE//9E/HO97xjtJwPProo/iZn/kZfN7nfd5dr/X+978fV69exQtf+EJ80Rd9ER599NHf034nhYlTtiYEys2oWL8K0B03MBc6CorP5CnIYCCtQf3YiFSaM4LmgkI0EeGkhluaDaphwLuLQbFUNKt8x9G3DURgdv67RTU3RasAoBTq+eGpiUizwL9dRJxXLJA1hyQFgZ0M9ITP0yadcmMwMC9cYnU0KZSy8jmyLsTR614ci27JXvI6CRR10ZKKTUqG9JNlQYA16UnT3TWufeaTePnr3scgr5AzJUhVkEyfAgoVIKkjWKaZ8djze8nCZ8gmnLEIGDN1DuCN9yxKUlPTIUvLAj/72xe7WRY1UPgfiRS7ZLSgy6GQOf1cEZvUW+pDdBLfPFnj9HhCNEO02ZoGhmltezYlJsE0LAjMKNCFKzsD2cSgtGmAe9ECojadZqVuOJ1lXol+X0mzU9AZ6iBay+RzJMhphe39JV9bTQpo6bs5hqSG0I0r9KaIXZdLZq0MrUO4MKB/QU8Rrj5v//IJ/E4olI3lwZTC8Ds14hY/mx37MtksVJCe33/a8pg8ZdDcocPUsM0GSSRRHD8ZYOqA+vwa4hLsdCi6J0iCPbWFwy5egO0BGATDvOZ7a6K12Ag39QiDga1IezFVgJ14LG9NISZhGBz2dhaQOqC9kDBsk3aVEQi3Egwz6nEkkZrlp3zv+pgNQjIsvHfeK5g9bjB9UrC6zEK8ObCINYtX0wOj2yiC6DAmWuDWnMAbbcrqk5zZwal+c2CZx7M2WF/W61U42R92AsI40mpYz+U4yna2UpqQLHA3AxsrGOanhCl1GrYTWlYLKPweeB3T6UiKrXjYG+BOLdwRhwHNoUFz2yJMIvxOwPIFtLut5iz4k0sY32QgoenpDmbXgupAC83eqq7CIh3XRPhypkaCJndrVk92x9M10bSqwxi47pk+61x0idHzwwy0Cs5ajVQrsgF+j2ESeRwn1JYky/XGnTJ/QzQcMp0ZBIRpVB2dLu0Dip0ztTkbO2Vq8yiYr+aGYXtq0Z4iH5uDUwvCHYVrw1TTy9szeTx6rzEnah5iEzAJkCqoixatdGVr4D4q+oFxYGOkTdHGop3rG1rek1KduIYOHNSY3R5py6OeDJiNO2ztL4lKq+lHvn/mQF0m0AdYG1FXAckL/LJmgGLivdR3FsbQEczs9LyOgxSb4TgJ6rrG9fveBrz+9a/H6173OjzyyCN45JFH8O3f/u2YzWb45V/+ZaSU8L3f+734hm/4BvzZP/tn8YpXvAI/8iM/gtVqhX/xL/4FAODk5ARvectb8D3f8z347M/+bLzqVa/Cj/7oj+Kd73wnfv7nfx4A8J73vAdve9vb8E/+yT/Ba17zGrzmNa/BD/7gD+Knfuqn8N73vhcA8LM/+7N497vfjR/90R/Fq171Knz2Z382vud7vgc/+IM/iNPT02ft+NzbNtvzugH5t//23+L4+Bh/6S/9pY/4mEcffRS/+Iu/iHe96134iZ/4CXzv934v/vW//td3aUa+6Iu+CN/6rd+KT//0T0dVVXjooYfwmZ/5mfjar/3a8phP/uRPxj/7Z/8M/+E//Af84A/+IG7cuIFP/dRPxZ07dz7ie3ddh9PT07v+AGCxne1FdZJWXaDeRLxwoqw6DdrcajK5FlAUXnvIy+fAmYYAkiBjr0nYQL2/hnvJKX/u1XowyUaboRQBDGZjiegFst/h47/4t+BfuOaEahSKyJM31DP5IwmbIjtb6ppN4R1WFbBSQeMxRYVy6uAOHfpVddf0RWwqWoeUX0MH5qI3q5TY2KRRKLauadBj4tLGJrg1TMEdmOz9289cwK+9/0Huhxa99RZ1E0andKPrFnZpWXAHKdPEEhKpWwp3NxuSwIZoYHNBmoahHmSQTTijIjpxFDc2wkm/N03tjVMW57HO3xFv4nFMHrpoc+VuVRseeK0FvRYO7f0Dmt8eFaE0j20sE0GYDQKTs002XSUfK5bCy+7OGOZmA3erQhzRIU20wBKbYLbYnKCO/Lz5u555ev3vdzi5NYO9U7F4PqypMTlLhZtTQO7OtSWLBALEE1Kpso4ELZ2mMlJ4eDgDmojQMzCuOdfSmndXqTuWeSBIAlNTBJ/DOYmy0cHJtZyGAyg5IWgthmMGIXanDZ16suuW5vKE80OhpGXzANQRzU6HsHIIvSlOPEGpacNKE+YT80dk4vm3JLjsSjSNaA6YFp6zMtwSqBbCBHNsqEXtfkJ7MaG9lOCnbEyGGYvNbKPLQD5+t/Ux/92e10PUUZRdLVgwu6XQAnfE4MDmiOtTEqDbD8zsmJMuUy1IgeouD2gOLNzSUAh+i8e4OeCApT4Wpp5rwwMB6UGDNgcGGF+3RbNiPDDshUIXSnUsk21MGJAqCwfTs2Exg6DbD6RhPW3YmKxkgx5ZIhOIbL5yAOiwHVjkG80WUfqjCYCYyGGF1eGGZupk/ZzR9dD0gvqUDl8mcN+tuoIR6VGK2yBFs5En7Vk8jgQ16sCGRupIDSMKopdmpa+ZkQwVx5uO349pjYZRCvw5XxqPZDZp8LzmoFQ4ve7V0SqOIov+sEF1IRyUpSG7Kya6YHVWrwNdz/JkvjdKobKFAhk7q658fH5SB0jjN9S3lJGmJLSj7pWmWHHAJTXRTJgE56jd6HoHVxOxjaON5g86KDIrC3urgu8t1l1Vmi0ASHpdpyjoewdTcVhgOgNzokYruz0pnMBdts3P5vaxtOH90Fql67r/6f6EEPDWt74Vy+USr3nNa/DYY4/hxo0beO1rX1se0zQNPuMzPgP/5b/8FwDAO97xDgzDcNdjrl69ile84hXlMb/0S7+EnZ0dfPInf3J5zKd8yqdgZ2fnrse84hWvwNWrV8tj/uSf/JPoug7veMc7fh9H+d720dqe1w3IW97yFnzu537uXSfgh24xRogIfuzHfgx/7I/9Mbzuda8r8GBGQX7hF34B3/7t345//I//Mf7bf/tv+PEf/3H81E/9FL71W7+1vM7nfu7n4s/9uT+HV77ylfjsz/5s/PRP/zQAwo8fafvO7/zOwl/c2dnBtWvX7n6ATpFSHVFVnlSVs3oJgAVkXqAFZWJujit06+oujYcEWqJm4V6/rLE+HnPCpaJmZPvRIgqkYI/7wxtbnNd49+ElFoAVrRsx9ZvnQ2kDSl1BlOIfL3WEHfm7GxN1i2quLmlDe65HuJ/FpnjZhNNFUhPKNEwbqZLGm+kT8cxrJ2hwoloZey26Zx5uPPAzrR1vXnlKNhjEYBAC+czJJqAJaF/Y8ya+qDbIhBYIEG22CuKBTTp6FDpYNaFkDGQ6lqiFpnh+tkJhyp9L9SUShF7/ivCkmScKFKQgNPk1U9xMqjE6Yzep+2KagPaqh0x8SRvPeRnZyhcJ+rMzTVbWCV1veB4BQM2Jsu1Z8NTHSvUIAqyZMixzBzl1/FnWuQSBLC11I3nXRhHVCaeoUAtVCFBdXgErRzeskdqrrkjNglUULNPDMnCiOh+xzAxIxzV8b2EqpUVlo4GOKFj0Bl6RONOoaFzP4W4HSjXzLII0vyMJNsnzVVIbWNITMQ6QU7fhyg+KHBlg0EbFuEhR/GCL4BcmIawqpKAJ88HAONJI1gNRl+YOaT6xZgHdXoxsNq54rO4PEM/C3W8FVEvB9CnB6JYgNAl+mjDMgHqOQr0Z3aEg23akaFVLlADCMOL/hxk4YU8s2P2uh20F3Z5qSrYT3MIiNgxHtK1B+0DPnI07Fd/3co8wiQg1rXFjhUITypP70KRC6QJYtOdpve0Ffho5uW81PPRMcCpzSQcVAAEAAElEQVQAmGOH6nZFy9lJRGhII6uPLNorHrHh/tpWztC9iPB4bcyqU1O0dLTwhhbfEdWVFdJ+jxTZtIpNxdY4Z5XAcEASx5p1JDy+ZdkWPfb6f9vyHxwqMIF9Y4SgT+noxEUhOjYOiJbnpvH8HGdfM1OkJBDVYc6LXsNrC9uxGUqWifN+kspxplaPJ7k5dipgt0hOUYuMGEbZ6P6g6K82LWnIqLNSlxS9lyDFFp7DI33uGT2fBKJZqUpIY7VUz+tpNt+ILI7FReztLZDpon3vSuE8dI7rQB6kdZYDqYlHHAc2VAJ0d8ZlLU9VQrPbAoZroFdRvLGZIsqhVGwt10+918jw7DcgH8vt2rVrd9Ur3/md3/kRH/vOd74Ts9kMTdPgr/21v4af+ImfwMte9jLcuHEDAHDp0qW7Hn/p0qXyuxs3bqCua5w7d+53fMzFixc/7H0vXrx412M+9H3OnTuHuq7LY+5tz+72vNOA5O2JJ57Az//8z+PHf/zHf8fHXblyBffddx92dnbKzz7u4z4OKSU89dRTePjhh/FN3/RNeOMb34i/+lf/KgDgla98JZbLJb7sy74M3/AN3wBjPryPm06neOUrX4n3v//9H/G9v+7rvg5/82/+zfL/09NTXLt2rdzQShBWZ7C8o4FuowB7qpO3zDE3WvnqDQGSELcD0trRuWPpGII24eQoqSVuKZAzkgDC5WEaShFgtnvEQ405TihUqDtPnlMaAJ26EAWzVxzi+GBGt5iFhVlZIiFVZPEdaD0arDYQQOFvA8D6cMwbeuMRPQtZO+aErDiWALT0bS2bA6X2pDpqHgVHc0mnYSx2N5axyZsiaB50isai/UxTJwC8QVAKVtrSiXlrkR5YAUcNn5aPN3jDhGppMpUHUDRk4mHVAtbbBGMSU7ZHAZhGUqRyXsgZpxm7o5qABGxfPsXJ7a3NTXrp7p66zQJkqULzJIhjhvh1xw1CqDYNnwGL2umwoZDl8Ebh/kqxzqR2pL5ZYbi/Q4ajtj7uCPP5GCGnotuIbo+FURIUwa14Bs35KeAvDKifqeDWBuvLRMrG1w26/QphKyBe6pA6i26fnPGceWPWFv3SMhlc3bfMxXbTNEXRTIJNs5YPYFLxOc71QBKEZYXR3hoDgKihkdEmPWd4LsYdT/Rl5uFuVXQFmwPtlaB0P22GjRa9iYFpsAnuiLkUcUx+expHtWtOwF4PUd1AGiwnt1EwnnXo2gph5QpVTOrA89cCkARbRQytw8nRBA9cuYPHr1VIT9Xor/VwN2uMbhp0+wnb73EIDdCfSxryGdFeBvyIDUtzJHSVGgMnL2YTsfffHNrzQL8X4eYGbsWUddNtlqBqDrQX6Xq1usL09PoWEaL6GFhfTopepNIE21aQjmh5mxsMd7NGHEeKpmva7DYHZlMoJwYq2g5YXyT1yi14rIethPpI0PSGqeu6xplT2konozt7ucWwcpDewC0MbCtYXouojw1GTztqO7YAt6LQvjq2qOaABzDsRmalGOYMSQTCltqBdwYy6TF0m1tmzqrIhWfWWEhn4JaG2pKUgx/ZJIRG0QXPUyepE1dUC1xan5+hYiWGQ+YsIwkoFDHq8VAaEQlgblRg09hvizqQ8Xu3mgnjFgI/5XmAyMsloy2lYaq0iZ1FmCCIirwU3U0PxN2BBX0eLAwGGKDIR9wMgXQgZKuIkHV4krQZMJtLVlAcFvN5ROt0motIYoMjC6JhouGNKQIn8zEANkMxGMyPJpBThzhVd65s7Wu0EeqoYYtNQuUikt5nzMTD2AQ/qM3uKCCtHKJ+vjQLmP42w0VbOMjlFlEzR+JzgdXzsXCt0tf74Ac/iO3t7fLjpmk+4lNe8pKX4Dd+4zdwfHyMf/Nv/g3e9KY34e1vf3v5/YdS4lNKH5Em/5Ee8z96/O/lMfe2Z2973iIgP/RDP4SLFy9+mE7jQ7dP+7RPwzPPPIPFYlF+9r73vQ/GGNx///0AgNVq9WFNhrUWKSWkj6DQ6roO73nPe3DlypWP+N5N0xSniPwHALnjQEEQUs1CXILALi0FdMBmGm705tduaFhJrXYBQXW+3VjaVrE4vJSUXkHhyLr7VryRBE7d42lNGkNnNkLbzO03UMEmi/uj69tM320Nph+0SOc7Ll6dAdYWdu5gTy1f3yiXPPOIk5QbFjm4gma7Qzwlv6CgIIPqGqrIglAL52wrmSeHmUZVHIXU0Si/h6gNb9F5mLRp4LwQiteGy47JKzZbDOLL7ikYB6Rx0DR3oaZEgw3hpTRWtopIhw3M+6fk+EvC9sVFmZ7bEfnkUgfYyVDStK2jg4upIo5vbJd04Ex9yLQQBtqlDdKVeAPvTxt+vizWDOoa1hrEZcXmIYvxs9C9N7B12KTdm4RhjyJb0ogMjm5uIQwce6as3bEJGEX05wPzFy5y2t1diPBbAeaETmN+hEJNWd3Hx0pnkE4qCupz8vxShcMzD8x4/MVyahrWjra6AmBpN0m9klAfOGDlaJvpInBUo1KdR7XdoT0aIS6U5rRy/N7XRFRSb2FOHcxRBXPiUB8Lhgkw/zhf0JWitaoD6T7qzIZAQXW2SzVrRdomATitOC3d9jwncjaLAO2qZiFbabhiBu4SENcOxkb0c14P41mHo/UY7lZNhOuYuQmmB5pDQbev7k5a4O+9o0J9h9oFJGB9KaI7xyLYdsDW+xxWl0mvSsKf9Ttcd/wsod8hZajb5++6XdVFHPMYuBURktFtUX0M6T3rK3QHsh0pWCELuatUnPskUNweayC7jOXGe5jRKrc6ZbOQ0V0/ZUJ6Mpw2m1M2A9XF9Ubj8NQI7tjBLbiu2JY2u4C+h2pc/IRCe9tpUb7ia1anhqLiUUSYKVKnBXBG61LPPAzTatOdM3uySDmqq5U68cEAoSYlrqCMir7wcdTwyIDNWiZQSpgim1qgG3V6zc+VhLIGhnEq1K5o+VjbUuNRGKKJTY9b8zF+ujG0SGffWx9v1wZhHGGy5Tr02LfUlmFEKpxkJ78ErlPaUKcgdOYT0gwxCgUJxMRvNH9TD7PTl9fPa3gyRFOk0/VYBzA55RySUG31GOZ1CeC1LnIodUZ0X9Z6L8DCKZ0vAQEYlhViq/sb+T4po9s5dLfiPopLGD5xifYim+540LBBOWpKTtXzdfvQWuV3akDqusaLX/xivPrVr8Z3fud34hM+4RPwD//hPywmPR+KQNy6daugFZcvX0bf9zg6OvodH3Pz5s0Pe9/bt2/f9ZgPfZ+joyMMw/BhyMi97dnZnpcNSIwRP/RDP4Q3velNcO5ukOfrvu7r8Bf/4l8s/3/DG96A/f19/OW//Jfx7ne/G//pP/0n/K2/9bfwJV/yJRiPxwAoqvr+7/9+vPWtb8Vjjz2Gn/u5n8M3fdM34Qu+4AuKI8Ob3/xmvP3tb8djjz2GX/mVX8Gf//N/Hqenp3jTm970u/8AQn5qod94oVYiCeyVNW08c8Gs2ox8k8xOQlKp3evKoj9lPocYpYyoJiDu+E1gVcumY3hmwhuNzcL0hHS5RZwF0qi0CUlV3Hina4q21CpWHgWsrkbUk4HTMOVqxyZyqjfhTStOAsx2X24cl3/ewh041JfWQBT080aD8lAQijLFyjcV1auY0Rn+QQKpYS5tMiQAZBvfTJ1KmeOsBbRUqivJiI1mToTOoV/WiN5i6+1TTB+nDsQ0AXbk0ex0G71M5M0ZOhkVSx/98w/dgX/RGmEwSEmwWjUwlmLx0tAFA9ykMjUlge8tdTBBIE1Afd+yvEeqtaEaBOawAtZOE4VlU8TqsYJLBQERbRSyJXP+jNBAxSsvOqBzmvBcwdqiOrTUYQAwjUc161ngmywoFshsoAB84kk3mytKp5PHWCV0exH9uQi/6xliGQRuyWYEKhS1Cw1JO9ezSdTzpz0ebdAr4X6kILB7fWkszVGN+uNOMLqwYkaDi0i7A7qjEarJAN85vuZE3XpqbVLUKUyqgHhugETgyn8Gps8kdOcBe7KxpYZJsHPL491Z2FNXtDYlh6dhTkg2VTDnuk3jqzauAEj1WzvmpwQDUwVUY4/YWrUbJmomnihPu6pxcmcGP43wWxFuLmiOpGR5BBUXb/22IcXJscAM08gJeqKDVWgSugsBy/sS+r2Ik5cE1McG68sBzZ3NFNzPInUfKxarbrlpcCSxiF8/3N81pY91gpsrj97w/e3KFGeo5AC/FRFHEd2lMyJuZFG0Pm+m6ECkBse0An+xp0g+oNDHwjRgOGYhJPsdwpUO1ZyUozCN6PZ4bUlUdyiTUQBFDwzQ7yZ0+wnVXNBdGlAt6dpl1qRixVqLYJeAo5oFNoC0PTBfZ8QCPVWJlrSek3W3UOG6/j850lnZjHC/TL9Zs4znfudmzLZKAVOBeqFYOpTmJNObzMDvwC31fKiIXEmA5h9hk8OUeAyy5XGsU2lawyQVZ6xs92yXPCHciZoMDMxSkoGGDgi6Vuh6JEFgVgbhTkMXQl1nTB0KGp0GQcq23QNF/mHNxHVMdKgDFLpqQfsTiEgHYSJ8HeCXpALnLqs/rTdNVGYIGN6zUq0Uskxp2x6IPOpgQ0yEqwNGk573Hpe0sUilKRpWFeI0oLs88Nhk3VdGp5/FLbtgfbT//P73K6HrOrzwhS/E5cuXSzwCQLOgt7/97fjUT/1UAMAnfdInoaqqux5z/fp1vOtd7yqPec1rXoOTk5O7nEh/5Vd+BScnJ3c95l3veheuX79eHvOzP/uzaJoGn/RJn/T7/1D3tt/39rykYP38z/88nnzySXzJl3zJh/3u+vXrePLJJ8v/Z7MZfu7nfg5f8RVfgVe/+tXY39/HF37hF+Lbvu3bymO+8Ru/ESKCb/zGb8TTTz+NCxcu4PWvfz2+/du/vTzmqaeewhd/8Rfj4OAAFy5cwKd8yqfgl3/5l/HAAw/8rvdfFPKWgVzZVGXHEWA4HHGhzSLlSuke2x6yckprAqS12H2PxeL+hLDFqVIcRUjvNh7rvSDt98CiKqnn5MQqpcGwcI0LNj8UF5uS4MuJWCJXPgnftwpIwaC6ukK3rMmJNyiWubGOkJWFO7XwWwEhOYiG9t34P3jXSCebyYq0ahGrA7ByY6nOcIJNQuzs3VqRXDDme0Ke7CFp4nQq3OU0CsVm1x46hJlSZ1wCeiDVFFfbtUF63SHaxQgmCQt1m7A7W+PWvNHiXwsFFbKKujKdrkd47SPvwX955oU4PZwiSSB/WRJwc4y4P8AcVqgeIBLXryok6GQyGrjRwOOZLT21IIkjBmTJccXvDuB3lbSRShtnrLsQIbt5LKBuYQJcf2K/pBHDAJgGVB+0GK6y4I/BlGYwaagYoHQUdZcRk0jD04OeEqgB0Xt4RoYk0abTbPdIywopmvIZ0mlFRymREoSYxf2mDsCtEdzllkVLZxBrgdnvsLg9RXXHAVc6njMrCzPyGBa1ZgbEoh1KQYBWldithXQVYBLGNwXz+wXtBZ0S7yp10bLwDlthc+zspsECsLG07gzd1xKIbJhErZEltY1uPx7NuRb9soab9hABhnVV8leMjQiDpaub5paMP1BTl7KfEGtgcEB/3qPZbTmkuFWj3Re4Fjh5VY/qeo3t91v4CV2r2vNELbCwiA6IL2yRVg6hsdh61FILMU1o7rDoXV9MSFapWyMWq7lo9tOE2btqrK4mNIeC4VKg+YFa2Lq5II4SUo2N21NSUwcAMrAQ9hOoOBro9hLsmq/f7UINMVhkNx+sMWwl+FkojlGSaNcqepzd9Rr9Hgcd1aFFtQTay1HdnfgeriXSYzsW5m7For8/x/DA9ZVQQgK90HHJXq8ZrpnXkyoy2HJJGiPX1jy1F9RHBsMWUd4sGM8NWX3E9/Mz2vGaHoVClbU4ebPtZqCQ9SXi2azkxko6KeubnyZSnowUq+boNoYD5ZJXxCuM2YjFhrSUZBKqueHa5YHoNMw1aSMXoA5hFLTHenNMRJuwtOOBBSmESUMJxXKNzm6FYjTPQxsXc+rUThwcdmwPRDYlFTdAiboW9Fnb5hFPahquSOJhigKpI1zjMZw2SiVOqEYDfFsxQHBpud8GqEaeqGpFcwu506DftjCNh20CAngt19cb9PuBg6dRQLQGmFfwO6EMekw2zng2N+2VPuqv+bvYvv7rvx6f+7mfi2vXrmE+n+Otb30rfuEXfgFve9vbICL4qq/6KnzHd3wHHn74YTz88MP4ju/4DkwmkxJzsLOzg7/yV/4KvuZrvgb7+/vY29vDm9/85qKvBUiT/1N/6k/hS7/0S/EDP/ADAGjD+/mf//l4yUteAgB47Wtfi5e97GV44xvfiL/7d/8uDg8P8eY3vxlf+qVfeheV7N727G3Pywbkta997UekRv3wD//wh/3spS996V3d9oduzjl88zd/M775m7/5Iz7mrW996+96Pz/SFqvE4mtpCT0rhJ7UcrA5sOj3IrUa6409JC0twSJVEtp9vbFlGB/gpLczReQZO94EpDeb4kmLyORNmQ5j4TaWvsCGUwvoBD2Uyb05cej17Yz6/ieregzPRspfGFBvdehvToCOloruXIfQW1pdKjhRLH7zwhrVfSrnXQB3WdkyiwIsPoNsROGaK5LF1KIUriKCTICdDIgLq5xqtQhN/Hy2ZaEwn4/x8deexq//9jU+NyXcOZmW42CUwxyV4mUc32doHd55eBUh0nY1JdECPhZ74Idf9SRO2jEO5xPE3tKOVi0ffevK95cGnbgL6UxxUNqVZmhkQ4FcsCMJ0hkdulSJ1IKxZrxoEQBJqM8x36IUFSaifeUazkZOGoX5GpCcU5KKvgbKX0cU2NrDZ4pTpq7ocS7nuQUpLAcNZMcjNWdQrN7R1nfbwywd9UuOzVeKBmm/J/JXBSRJ/JhrB7fd49IDB7h+ewd+5dCcazGsHZsPmxgeaLQxFJ6vzU0H23H/2guJWRn7AXZlELZiyZJxswF+XtMobeyRFhUdjFTwm/T8ygGeYtMmB0ff104GpkGPAiBsNBEBv2QKvJsO8IsKRlIJbEwuIqwczChg2AKG/QEyGIyf4XHtAfS3xtj6gIWJLNwBYPREDdMBw5TZH7HmOdxeipg+bjA5SDhoRqh7wbDnUb/fYXkVGN0SdPuq0TiiW5RbcS0xWWibv8fEoj5WwPjRCsMMbFwTHw/QPtYuLQvaCSfQ7lApdIYOUP0OhxrVKf/tVkrVGkjvEi/odyOquYEHm8Fhz8MdOaRpQBwnmDsVhn0P0xrYhUGYRjSHBvUd1XM0LNgrRT/CaIMK2BZIjk2XW1C/4SdJEVPAPLSEPDNBFikjSLH7Trq2pJrrlHgg1KIuXEBQlALCpqvfi6ToZeG44XUQa9LDsv4umbxfmwYtVgLboyTH08GLn8V4vk7+jpLlWliu5cjcGIl8rfz5i8Gd2SAybISkBBjm54un1ieM1Jwk30dax7Uv05CSAB4QGLitHs5F9MZxYIBEk4VsBKE7IF4UObTULY51PTjzGfi5FFXK5UtrgYnX647mJB5O13sDM/WYTTvMowHqgNBLQaaCt2V/JQrCjA1JWX8Nc4GGzqC+bdFLQtoaChKbKnVgy1kq9zbcvHkTb3zjG3H9+nXs7Ozg4z/+4/G2t70Nn/M5nwMA+Nt/+29jvV7jy7/8y3F0dIRP/uRPxs/+7M+WDBAA+Af/4B/AOYcv/MIvxHq9xp/4E38CP/zDP1wYJwADor/yK7+yuGV9wRd8Af7RP/pH5ffWWvz0T/80vvzLvxyf9mmfhvF4jDe84Q34e3/v7/1vOhL3tv/ZJukjVer3tv/t2+npKd2w/t63wkxHcHOm4aZtzwmyF7gXLHF19wSPP3mRzkdZ/Jen/5nrKgmPPETo8f2PXSE8rBNxZC/zid9kNOTgO0VdMtJw4ZccZk8NGN1Y4n1/ebfY/6YMOZ+54SRHz3kzG+h+pFO/lAPmksCMPdLKlYwIGQx58q1h46STXk7b9EaaBejCn5Ubohb3YtJdFK1kaCtc8jaiEE7XDAeAKEkWpQNA8gI39Rsb33nF52i4o0w8HrxygEXX4Gg+wbBQr/iMxBiUyX6yiZoOtVOlBaXAVhHGRsQoiINBNfboThpce8EB7synqFzA4C3W8xF1GIkJvMEzGOts8Y9Eu2JSNtjAZSegbIGcv5cSjGZpWwkAF87Pcfv9+xRpamHP44KSp5ISUM16fML9z+Adv/0CFv9ho6Mp2SQLFoGwmyZPXNwc28EU155sq4kgwBb1LbjdsJnWQDXYBKwcaQ1rnp/5fKmPLIadCOz2SPqY7K5TjTy6oxGL/oxIKHd+tr/C4s6En61lbkIS0lYmN4DFCxLCKDJs8MLm+CUX6f4jALbOTHZdhDvh1DZM2KSYY8d8EbXETju+nLeZgpIGixQBO/G0AIaUfBaez5vv1zhaf6bBwM0G1L81oS6mIY1p8rTB6j6G81VzwTBjAWsCE9KbA0G/i+KQxIRxPibWQH+1x+jxmvkgx3zdLGKXQBFyfUK0gCGDpFIFBSjFU7jt5izYkejgNGxFTsgdaT2mo96jv0R6prtRI4z5c7fK2RgstE2v03pBcWfK+UJR6TDJRU6h127T2Gggn10ZbYpExd18rWrOv7tzpFqZYdOQZPQhNPycSfj8rOfQy4iWt01CnAZYdfw6q5kQTR03HWlQ+bMVGlW/aSaYhq7UtpYFP7ChRoWx/l2rRTK0KbFAdaoUNW1KCqXPbh6XBeqSeAxK868NH8C0ebtmMKIElO8Kov9We+V8DDLNMFn9vYZsxv0BWFsKxqvI4ZmacojhkxkiGuFPGpgpm3A5qYiYVBFmabkW2URNlkmkiq7033mYMlbEQemzUiWuuyPq5YbO0eADinYGzRcZBYiNqMaac9TS0UuMrnk1s7QkCpFsATNCGl6naSA9uJoL4ifOYSRhfTAhGiOJhhGHPZ74+m/AycnJ//YJe64dXvB//R2Yyeij+tpx1eLJL/t/Pyuf6972/N6elwjIH/TNZEj3RUv422N6phsAFzrEIHji+n5Z+Egdghag5KOKcqTf9+gVIgBroxOkPK7Sm6vqBpIAJehQC7o0GMzeX+HgVREHn2Qx+eA5xO0zasb8evm1AniXriOF4yYhVVC9BiAdHbHSouLCv7ZsiEwCFnQkSeDoTyIorD4jMBdLCka3z4I5IyMbahWoYxkTxTErs8l7EEV2gjmT+HsmJFCLc4YQ6uR1a9gIEQHE1uKxpy4UwTyAYh8JAxaLitCYitPtGIw2HHxgGAxCZ+HGA8XdKnx8+sY5pGDQ6fNsHSjYNAlRi3hbB8TBoJl18AP50nHCEWgOYcvTTOlMSQrGJBTNTIoAvEE1HXDr1jawO7BRy81HOvOZJEEg8KsK73jni4p5gZ0OCCtXUKMUhAF7K8dpoLrzJE9NQ+ypZ0hQJG4Ui0Vz7EmP8ucGNnoZLfCGzUemdylSI72BnyaMnzEIRyN0D/SYvbPG8gURactjgEOzS0oTOja0duwRe4v1soZpAql64wBZMAsCAizuT9rICYYHW0ADM6EaHpzrkVo1AKhV07BwdEg6Q+mIWzQjiCO1KbURce3INZ/RlQ7qdha9gakimxADRZTODBK8IPQV6XU1H5dkM7WePGWweLFHc8OhmlMoDkmoTwTDNjB9isjF6ICOSMv7VL8xShgdsFmZvqeGn7IZaff5uyykb2459Bc8JNE5anTTwE8BuwDaqx6jpx38mPqA5BKqUzmDJnByXs0F3VZAigb9hQHm2MHdduj3A8ZPWfTnMpqqTUBk82N6KVSv6lQn0zUgjTZyncVwnud6mHHyXd1gI5WpUMmygKY9NErmRc4wSY6FfGhQXLbcWhAj2OyMIgvqHV9MKVKd6PAmm4JeFH3M+5sMEZKUkUdBKe5jxayW/HmR2IRk8XfMDllRGzJtVKJTbYzdCP9J56IzVHXC66Kab74D0c/rJ9RzZIteCarLWdNRy0/YRCWj7nXI6y1K8xGmEdURndSGLFrP1uECQDUfOV9DNKcneUGChR15xNYh1YH3h0WF0fk12rVlerthTodpQnEvTAYbWpZqHOM4EjRbajq70luTOtkFb4k4Z0R3zeyZycMn6AaHflGr+xYHEGErqgMkHyvZkGR7ID2sN/B9DUjC7PwKizBFGBmkgzGa82u1Z+c+uK0eQ/T/o9v5ve3edm/7CNtzgLR4b/vQLYGLan97vJniO7r2DPOaORS5UBFQ1J3debI2JCr9qDPKx2eBnpT2kEXq2cdedHoPAW8CQntNzDwmVxb4c1/8n2AazzNGE2uT4/Rq+pjD5IMMoMPKlqDEEmgIToNZ7CqyUcVNInmVYC60SktJfI81Q9iy/gMA2vsGNJdXRWifznBuN7oDTurctSVdTRLYINShBNQhOyTp5y10kpz0m9OHQeQkqSC4UEYaDzcdNq+XNFBREu0n83eWhPoZKApgEqrJgNBbTGckekdvSqaAqwPdqhL311g6ZiFIyYvwg0XoLOzY8/MZcCJvGQiZdgagSqj2WphzXRHdSx0o1DcJw5r7ZCs1JFB/+xLymKl1AEbbnU4PE+1hg+ix4Gc1I41fnngV/sdN0zbkrA6eZ6mm6J5hcWxM/Vr1RS5uViObSiAYxixMUFO4HCcBMEC/G4GlxbCtIXEqku8PxsUBBy4irCqYOiC0rlgMy3GFsD/AeKC/6BEu9hjOMeQxLStO0XsDDJqR0urxPiGtI44jmodOiaJU6tSTj1mV4GYDxPA8EA0lpA9ugG0Cc0ZEA9uEv5PTaoNsSUKz3aHa7srrxs4ijIH+4oBhz6M5AS79osXkJjBsg05ThpNz2wKLawndOWB9CTh5ONH16nEAEWj3+Jhhmza6k2dQilDTGkwfdbBrriFhRGFyt8chQxgDW//dod+LqBZAfcKGw09SoWklIZXHTyjYl16AhUV1YtDvBtiFoc5iyc9mBj6vPR+ZV6FUIgDw44Rhi3oqWhwH+HMe1UFVzjOZO/QXho12wlBA7dUVyo+5336aL+tUqE1+iiJQH7ZoeBAr2vBCAHPsOBHXaz07euV1JrtH2ZUpgu5M2fRTrn+xpvWtGZj2nnn6sVZnLl2jisbCnfmZvlesaAIQ6g1Vy3QCNzfwEyIX+TgaRUzCmFQ2Pj9tsjPMBuGSANUx5XOA1Kqk9EGiIkTi8+tmNDLWRCzNsVOdC88fuzJszFyEm/hSzMeOyGC912J9NCpC8ugSzIpOeCkBMiV0EyehOFlRB0kENhnw+gxqSpFRVQDhuAFMgptSRJ6qhPn1LfinJ8zGuj3hdzIOaHY62IbOVmamhikN6bGZPikV0TZAByhKu7NG750aIOnn9V3r5rO6pY/yn3vbve1jtN1rQJ6jWw6oM0vLgkh5sCZD0qCNrvSc3uRQNqxteX6KIO/8VlVcsiRbzLa26ARSFdnEUJtdXJnckoGG6w9u4eevvwS4NQKQigNXtn9cPjSgfTlDG2EArKx61stGrL4iTzdpgndxZNEbuF9WdDnK7ls16SjiWMAmDYjr5g2L+UyNukv/wQIa44D+zph84wQAaRN4pw1H0nRpfpAzB34czySZkzJlx36TuA0gJSFCoZoLJC1G5hVSbxEHBlTx9RTJSURR+pMGKRjM70zZ6KlVcvQGQ+sKBSyqW1ZaVNw/zbQIK9rnhuwak2lPVSqOUWgihmyzayOPX+CNWrIWRkB//RyiVp0Rk56xk2xPmzNTeS0iMr0t61gSkB3bCnd6xXyAlGlG2sDARtLA6qj2nKk0P8axSRQTIdOB30FFsX55fh2xui+wERFqNYrz1GnFpOKWuQ3wBmbkEZcV3MSzWFlbapmyoH2t+zf2vGZcpMi8jjQn8IaapMMGYYshiNIa9O/fRphEUlAmuXHmueqX7oz7mtqTnrLR8itH62Jv+NkGA1ura9agFsjRoF/W8J2j01oVsfVeirvdocPWe2mfe+szPFaXUWxWzSAMBdyiSNn2pB6Znijp0WetkeqE2dNMOrcdsL4MrK4A+LgFojbwq/sikgNGNyyqOYvU+oQoRKyAfhcY3WCBnqfxZtB09O1Q9GrVqaj5BZGDbi+iuWOZAbJiEOGwE+FnPB9HBwZ2zZ85ndCP7vDv2GQk1cAd24JQSGuBvR7uxKE/F1HfMQgNnbjiKGGYZceuRPerNRumMKKlr1sC3flQaFdmoI4rTiLiuYFFNsDvWa+LrIXIf4puotZjnRujAKaTB8BvRyST4BZC+llORNfGz49Vw6HvlelV2akLScX6ju5kZuB3HEbU6khAcfzyYxQ9R2g2aErKzleeFLEw0XySM7QriWwcjRbbtDMG3cAqlPR10xmkHU+UW9EmOhSW055ajEVFimZxHxT0B2NSp2aeg7NJQNwf6J61tEjzqiCsABjoqAMgs7R02VN3Lcm26za78iWgtXAuYrTVwV1dYXxxibilltmqXTStQX8wRugc14RDNRHRAUoaDMzKwpw44LDG8mgM2R6KdssHXf9VI8Rm5V61fm+7t/1utnsNyHNwy6iBWVnUp4Kd92ohX59J0B57yP0rjC6vuDC6VBZYKMKQufM57ZUvrnWzNhsAIXNOkpRyMgjs2GP8CYcIWx441+P69XPYexeQRdvSmzIJ3L04Z2GqZ5PZ7YvHOjKPeBAYF2HGns/Pa3W2J83Fb24otAli5a6aAk3tPps8zH+kD0EymBNSb3XqeCWbQh0AksCMvLqsoPw8qXgYANK8olaluH3xZUzOHznb+CRt4uyH3oA2/8+OW0QM+J652UDEprlRYXfWtcjWwIax0wT2My893m0LXYHHMJXvIOXmMm4+Y0pnAhf1d2k4swTk5+dJXj5eSkUTR851ilB+BoqoPxsEACCtSEXjm2Ym/y3MwNA0dB4b0o9SlLuavPyclLNiAJ7fZ74PiUzHdicW4gX1McPtymE6rQDHhi1P9NyhQ/NMxaKzNcDCFjStIIid4XcWUWyvJVAkay62pK6oxbFU1LsUK1KnltcCVGMiQ5h5iIsaNqh6kEzN62yxNDaW1K1qwsAHY5mWngvUVCesL5HiM3q8wvZjCetrA+ojFt79FjR8DkUTsPfuhNWDHvG4xuQpg/kDLH67PepXkkvYm61gVhbjG1w72suBovyLgZoGg3KuZe1EezGWib7xLMDrY1ssZ/2E+oWzhbpEoDkwpRiuD01xh2rPR9KQOhbBYUQUJzYsst3cFJpTHEciAAsDOWggXjB+hjSgHGpXHRtUS56btqUzWKh5XPwsUndhqAOyvTZLauCRqgjMHYXWZxpyiWxSJBed2ozkBsX0GsJoFY3ouP5Fq+iDRaE/AWwwci4LC3/uU272gA0aQfpUhNHkdNuyaYqODl52xYYkZ6LQjlfpTKrfyPuctRyIKNa9GbGmOJ7XNREV/Qw1kSjj2WgkTyv17HAWJhF3bVl/lvNfzq7tYJGfXCLFrTVEIFUcDhdhJ1wrzdjz/mA298bNDUT/nYRoqt4nYxS0B2P0ixre283a7IlwZ02PnDiYLc0f6TiYA6QM45DU8nzpuG5pPlQYLGwTOETZ6KKf9S0nwH+0/9zb7m0fi+1eA/Jc3ARAlRD3evS7CfELDje/y+LalYNfV2gXjVKmUhHLFieSQSDekJu+29NBqeE0yez0FPAmUPeRwKm0ABgMRpMeX//St+Ev/tFfgnEstg4+o6c42EVUV1Zll7q+Qr3VIztNxdOadKvxhraURhFhWbFR6UyB8e2p5Q0xCwuhRboW5zm9O0/IxepE2ShS0lOky1pVyrReXER32miAHjbaDS1OYnmOblowFgQIgLSc+OfU7FzUA1B9iBSqiGQtTGl0zljdCoqeICXuozhqbUTtIFOk0DF5QwQlSXlPuzWg2m9JKUhQdEXQLusNPWrMCb9YFvZSJUSvCMvKwTWasm0SbK00IKMBl5boTj3ZaHxK85I/z5l70Fm0pLiLZV1MFrAPRBuIuuSDrk/K1DtJLEJWjlPfFW/y2VJZTIJxmvFSCg4h3UsLlyQAqqi5C5yyMzWbotHUROY2JDaBo+sMn8uuSMYDsFChKvNskkmcuAKYXFlgvN0CU6XizR3CYbMpULR5p1MWUQH0RB/DYBAU4cDKIkUh7SoIKj3H3cTDjhiAZkcew5JVZ9DG0B+OqHvwzKuIdcLWE4LJTaA7H7G4TzB6psIw1TTyMcXPfqQuYwIcvkwwfcxh7/+xJXTP9izmpk/yfY7/y0U0dzgxb246jNRhy51aNEc8Vm4hqI/ZOLQXEsY3DEa3aSmbhcmIKBSc2JAGZdeCMIkY3xDuE6AuTKT+jA6EKeeHTGKHoVZCPEMMq2O6vvV7AWHPI2zTxnjY8/BXO9r51gnrKxHr+wdMnjGoTnU5yLQhLZIzncu0BvUJj1N9rPulOUHSC90FR6QH5UbXdBvnqiI6P3P9u4UpBXJ5TIB+Rgb6IUFDBPm8MNJzsWZjEhUxsT2KZbBbiyIeQHVKQ4eojVQWuefkdB7rhGEnlsYtOSBWsdDi8rWbTGLjdyGWpsOopiVfarFKpdmLNXUimeommYprQA3UiAGUeY2VZoM6mM4oHVYHZSu7cc5TumOxCp/SdTEeNjBrXR9yMKxoo7CyfPzorL1fYh7RyqI/GhXtjrFEKlNmCdiENAvc30jUlvdFHXq1hk3MdLP/tqUpRx7ohcOauSE20gHSn52A3dvubfe2/5Xtngj9ubgpXJ28gb26wvHhlIumZ0FoWoM0Y7GULXOhIm9pDSkmBpzOugg5rZAqU4rrZMAkaS22ALAgVCcst99hdTrCN//m63FxZ44vetl/xafMPoBH+4t465OvxvVnzqE/HHFSZUE+bxIVwEsR5qVsVWnSZmlOACaBAsOZR7jApkYSmADuAgtn/VzppIIZDOLuwMJQg/OSAUWLQek2Z3IuxOS/0wat0JsfjE7rRUoRDOG+mqUtOhIiGmzg4A1il6htUY5+cXjKLlx5CpZpWcWahpPCTYPD9035Lm/0QVHKdD8NQhFoFN6Id3uEvlJPfbW9dYlUKBeZrH1WwBwByc2YAdy5lm/lKGbOjlqmigjHDexOj9AbDGcaBBEeQwSlC6mWAxCeT9seYvR9beK+iTYbhg2gmITYOSTovolsngP9jjSczDQB0SQgaDGvYtSQaSk6cZXeAFP94ZZnsSAUH2e3oTDmcfA7AaNnKk6Yj2rUp8D6IkpyddjynNJWka44OeRSNVGmFazaWbkejRekLVKlMIqwJ46BioNBAsPNzG6PdOKQJjxPbBXhe0tThbUFRkQ42sMxpIobGl0EQutosKDfaxoM3G6P5jfHRbS8/V5LwXizQRIAYPYUKVLdOU7GWTRzwl4f8/h150jDCTVKw0ZLVq4j0ZKilHUcbg7ImNQfiP5OaGNrWxbtYUQdiJ9iI0QPgDkzNa2WAMSg22fzU88BgBSx5QsCTGcooLakRdk1BfRmALxqKIbtUK5TAS1i/RjU85wfUG/16G+PSZcz3K8wSmxk0kZnwhwSUX0D9y3WuqNRGHg4jUQ+5g5xHEsAXpxE2LkpVCTa4UqxzaW7mJRsjmQoILctG5XRLR5vP1UxecPj6qfqPgXdlwQMs4TxDcGwoxbIBjDdZp/7bYrmIWw8/SyvcWwU+90NCiYecB1pawhnEJqc2xOBsBNg1oYuaZ2K+FuB3w1wJzS6YHJ9onlA9kl3gNnuaZZxWhUnrTghFc80ATiuEWaB97S8Ho/Cxu2q4rUTB4FMPVJPUxIOx3jtyUD0MYfWorWkTlVRkUpO6qUJqC+t4TvLdHIk9E9PgR3qF6UzkLVFmPkNa2Blee+aDUgnFYdJlepC2gay1qyZbJSh63iKwjU4o//tcwAKSfjo90H3+qp728dou9eAPBe3wQBjTtCHZaXUFE5wUwKTYJPaCzZK/1CnILvfIbSuFOOpt8WlSLJtrxbA4lTXIOANQafuYV4h2YR23uDJkxF+7IPn8f+ZvQrWRqznTWk20AS+bpUAz30rdAWrIXLK0bVjtR2NwoJ8Z0Dq1CGpioU/y+YjF+d8nzgZChyei0XpDaJoozJS4bMkSAWdMmrh7M8gE15Ui6LCa7tpFqRKGN2/xnqhny87ZmW74F6rCaOpvBktMWem/4WCxddl9oaoveyZvIzCHT7LJQI2iexa6JtIu1nVkAAgulFsKfnepSEBNv70EYVHHXoiClbpY6lXC8qYUO+vMXQObuRJU5o7yM6wsYNdOp4bXuBuNageOUWYUKOQg8LSYEoIIYBiPxxzU5SBIBvhmoBhrY+3CfZmjeZQYLsK81cMbAAU3eLninqcGJSWXXfQ0ewgc7LT2eIgAMO5SAG0B+o11MGHxVaKnLqvRnp+NIHPzYJXAzbxW1HFrrLpKVeWKGTPYLs4Ave5zcddkHZ5bpsmEMnIl8T2gDCvEMUwD6Rn4FmKgpQM3HSACDNfkjcY77a0bK44MR/dIuJj280UfZipOFsHDLFOGN/W4tiq+HqSUB8zXyNZ6jmS5VR9eT8n3O6UYuZBHa+GbRbKybIQjjWL+twYDLvUk5WpfVQ9iFJEi7sT+BzShfia3TnuGwTY+gCv4X6Hk/84SwwRPDFadPNvt+TfYX+AvVNRFL20SDsD7K0a/tTBehaqq6sRzR0iBf029Pvk+9VHHAaEZpPwHisgVdSsDNuJqe6jiLDti7Mgrcsp7LYtEakw4vmS6VGZ/pWUQmU7fu5YQxPQUVLmY6X7sN44cXX7EdWpuorNBe0F6ldWLwjYep/D4gEGKvbb1FwMOxFhFuCO6FRGOp1Bcyg0+RgsUqMNwYj0QNgEv0WNjPgzFt2tUhAjNvbJKioPioDw8wLSq05mzEFNOmhYgFcR0SYkwyIflra8pGNyqCBVBJZ2Y62tFulJoPlEDjIKbMBbXuPudrWxeZ728OuqNE9IYCMzCQUxHlqH2FnYvY7hh56W5djt6crX6dBK0R3phWn2LiJYIIGoRxwssOthDnk/xMRvrHrPrgczT9rv8Lu+09/b/oBsy+USb3/72/Hkk0+i7/u7fveVX/mVz9Je/cHf7jUgz8FNdnoAdSm6i9WtcEIMQx6+TFg4iXJ5YXWiKthQkRJYRBpsROdN5DT+rONRroWTwG0NpJCo4BkA+kVdGqFMjUoDJ+MpaNrtWa5oZ+kDPwhgI+JRzcJfOfLVyCPYiLiseFPqDGlEwWyK8SiYXFyiXdV0UslNSGeAcz0kanEXUWha5fO4CLGCBKM6EH5eu+8Rg2xE4nmLgvXpSJGXCHgLN7dAFPirdJNKUbDzrgqhokNY2KJFKlK6S8eep4Plhgt+H+X4GH1MYlFOnYaoy5QplVvs2WgxwwSFjsZima9ra6bJ8/vn6yGS81yyOAQUznsDudUgNRFm1yN6A99bGJsQBgtTRWw9cIL5YoQQBbYJiNrEJJsQ7mvhb0zRXFpx3yUh4Qy3OwiSCGzNO3HoreagcALcbPXoO1dQruYJ2ir7B9doB8sgwYMK/pyHBIE7sQgXB36nWaORETstNvIxlSpurheTgIFFZHsJmDxtMUyBfo/hgm4lLHi9IM086smAwbDYS8sKphWM759jdTJGTp0XLxtHoNoXHUHOsCkJ7q2lBa+LMKopMlVECgnRCzAKqBrPIkonwtXIo19XdMYKBrYJDCM0EcPj27y+DdBeZPFbH7GwZXgfMLptKDyuEnD/GqfjBqPbFn6SsPW4YJgIFi8K2HmPxfIam5Bqye81DIBbWfhZhFsajG8A/TmiJu0lTojnL0qoj6n5Mp6FtdxhJki/m+i8tWZOh1U3plixX4fw8WGEYgULgVrAanJ3EjSHbEwQqOMZttn42E7QnWfWCARIRzRlqE/ozBQWDuHiAHOHrlg5dXzYYeE97JKnX91k0wKwObJrFesPmhGiwwC7JoImnoioBK69OUiQzlH8jLZVFMYz+d0q6pEEJSwwGTYZ4gGj/4fXZkObrLP7zQaZVLgwziJwwfwlHpMnHJsSz8dXxwbVicEwIwoCUR3QLnjtjFRMnocT2thbbZbtysBvBbg5dTuxjrSAF6i4m583Z6nEKvFcBCg+r3SNMWwAytqrKBhMglnZkkskERweqc2t9IYNpuaSRJvYfCitC1WErCzClY65TGsLu9Uh1gHR6IHuSJfiMEnRw8jvz1UBvee1mUwEequ23DW1M1seroo041g7yCgBdYQ5oWPeXfutg5az1spwIJ1Z0ibj6Fnf9AL7qL/mH97t13/91/G6170Oq9UKy+USe3t7ODg4wGQywcWLF+81IL+P7Z4G5Dm45WI7aV7F2ZVNlM5jmjNhabnwOrtQdJbTYw3vghfEnaGIC2WRaU6bp9HpCdjbWTAoKtutasG8cfYBMnUp36SRBPVWp+5COsE+Mz22K970ZGmReoPhuOGECSDiM8hdwXVIgJ0M8N6iHvlNU5IoZjVVLO5SuWAnvJ8VmFJQEWpAwAlxOPPzBP5QULI7AA01bCL8hQFuDZijig3OmmLg5UOe1BufXysfE2y0LEnUYQko+pQztr15LF5E4a0aAej0jWhOJKc5owj5as2fDapl0e9CZOPUlafxola+xjLnJFt7xuMak+1WkQqBrVhA9IMt33UcTLHQFRcx2epgdnp0JyOgJ8XN2EgxZjkvsEE/BJvPHAXtvFGRPZu8JMDlh+6gX9WIrVN0CLRYrSPSfaSO5fMwm5alINTUBPKyz2pQEKUgZKZjwbC+HFl8jiLCLGJQ16Wk7xdUe5MGom+pSujampNTr+eWI2oVtnxpBsUzLBCjyPPbbL5fMQkxCEXkrUP0bPBSb9iYZZFv0jTmRCe0Qo9rAkI0sGs6W1VzlNC59dWE1X06YIhEQQov/4kJzGAggZSo04cS5P84Rn3HYn0JGN+Q4rpEuo8QURl4Tq2uMgG82yMFx7aC2ePUVLg1CoUoNmwwqhNRtyUNC6zZ4IRRoo5BtQx2zUakPkXJIzE99HpWIXbP86d9qEe40KPbY6EnKvp2C2jAIKfxybEhNEcV6lOeD37X07FpFOFnAfWhxegJCi4mz0hJEM+UsvqEyETO2cgNRHa2y1q18kdSSRTv9tLGXaqnGDxMoqJBmhaugYdZ65GDD3PmBjV7KPtFPQ3PQUla/BraAq/uD7TzVSH+sJ3Q7ZF6GJuEMAv63rEEG4ZxpLA+T+0Nz+Uw3hTMYaLNu8XG0UrRxNK8OL2W9TJLNptRgI3CUt0XtWGHSXebpmTnw4BNCrqhHW5p8PJa2MRCR4VBcQK0K4P2aFQcCbNeS8ae63tni5kJ6ohe7caZyUMKVTytNxq0uaMrnebz+IMRf6eNGjUpQle8fK/L32E2dhFszEHOroPP1pY+Rn/+EG9f/dVfjde//vU4PDzEeDzGL//yL+OJJ57AJ33SJ91LVf99bvcakOfgJtkdJAud80RKYWBEsFjSm0Q164t7E5QPC68uR7k2Mwn2UL3zTaKIPDc42cUoMazu9sF2mVpvHJTO7J82HGIT4u5QFt5+WcNOhw1lrA50cRLAvWgBJGB03wJm7GG3SKvKYU6yPZQFXbR4Dq1Dv6rRLmpC3Z77h/vX9F3P+5f1Md4gLYkApZwjcaY5wcIVtyUeq3T378+4ZMGSsiCfcEqh7trC7HXwf2QBs7awrYHd7VmonGQgUR1cVPwY81RQUMSqm4ZSzvSLnIzL3CFrRMpvMt0qgXoHAObUAQvHm3BuDLPLVd73LCbXIjd6wWi3ZQE99bjwwkOslw2MTQzvitTOdG2t9K1Umr6s59idrBHWDnYyqFc/dSXGKpfcsSKJ3jB4rLewN+uSBZI8m8zQUZBtX36KO6dTXLx4gq39JfM6JhH2xXPYOxV55RGaoQLSrbLodBJgZsMmzyXkk0eb3yoyRK6OSJWiVQtb0KQw0QZybeFXZ4DgcQDGHqE3dHqrmHwNcNopivrJggVXpgyGmZoBZD66OraFniha6k3hv/NYb2yTw2CICgU2H2EgZW744AyT6yx23VJD9CYJ4+u8NquFwC2FYuopp914cAm71nPakrK0fs8usyUisHyBUms0JdzvevS7pGg1h0BzKBgdUIxsO6A54ATcT7VpqUjpCk3CsEsXLOZoKLLQZpoY8zxcq4V1Q4TDDNSQxCbBzxKF2XqphprvP/5Aja3faJCpWbR4BdZXWND6XY/QJKbOBwqsuz2e89Uhgx/N2sAMTGjvdzSjRHgc89AgWwpn6lSoUVybYp3054p4eDaMsUkYzgU2OgCtfrdTycHIKJEZBPUpTQEYCLihWmVqVm7UoOhbbFJpipNq2sI0Es1TgXSyfByEwu9cEIdxQnNT0W+ltyV1rMq0LomAXWjjY/gZJSPiCbBLQx2IUq6MNqWStGkLpHKlip9XWgb/oY6KECU6TG15YBxoTDINsOroJg3zf3JzYWYDdRba7JU1uTe8f+h9MJ2hRtq5Q7o5gq0DBzSVBniqID5rwjAYWpcb2npvnVvx3qnrQ2xiYQVA84uyCD1mLWO7sbzHOJR1IFOBRfeTLIRIpsG97Xm3/cZv/Aa+5mu+BtZaWGvRdR2uXbuG7/7u78bXf/3XP9u79wd6u9eAPBe3RpOfM30nCnMRktAOMAopODpd9utqg04oxx1TXxCN4nR1/4riwMGgX9Tl7aRWIZ/h5DXrCso0/0yDkgPVALCgj2cancDGo5rlJCw6VCUvdKQSYD0fIQVOgWGTPjap5gCE488EBYpVGlGeRAoQTmtUh1qsRxZjkvUaY3KBnd7YshBbTEJ1oVWXKHVGOYteAMV5CVFg64jXfcJv4mWXbuKNX/KzmF5elCyRj3vV47j2Cc+QUmMSHnz5M5uC/4wVr+ixy8J5NiFSmrq7MPso2H7wGKYOm6IaioZllGqkI8cLLeqL67sQKZP96yPtjqGT9PzdpSQI799irsTtGrcf3ScVaOkQPb+P0FoN0EMR19MuloXz9YMdnL96gtm0xSc++BR1/IOl01MVix4m9bTZHe20uPaqZ2AqfidFp6I399XRGP28xu2DLSyXDaI3cHOD4YMzVA8uSH/S5ofnVgKCoT2n6kyghxR28/mlU562F0hLRyYMSpNaW1JJ1BY2OX5GtIp+dBZYOJijGqbfuBoxdR5slueOmoSZCmlPK1rsav6J0cBG6DGUmtdzVDqcbTyvs6jXVBJEzaUhqpQg10e4/P9LqFYMzTt9OKK9EOEWTDF3ayn2td2FSP3C1R54YsKQwRmL7dFjdWkC/DixcVkSmXBLYOfdDtWJNhkzakaGKdAcEiHxM/35iEWzWwCj2xQxi6JQwxYRpuhY1FdL1Xyoxawfo9jOrq5SVD66YSi83uNa0V6MiOOIfjthfb/H8gE2DfyuaAc8vm4QZpFmES6x2DSgmLiJJY8kT/CrE07jm0M2RcM2MOywYei32AjkjIy8VkRHGhYHQHoNNrGkgkMLZbO2xbY2GdK9+nNsxJPSJIcpSpq57fhdxRrozrF5C1PmrVTHpoQyJgOEmQ4/grpzWUV6ekOa25p2wQw/JFXI9IL+hS1MKwzM0wRx0xr0ezx37XKDumSHsbyFMZuIMI1EkrbixgGsUOf4noA2DFNPmq4jFdE0AfU2xT8pCPqbYyQvCGuHdKKBo3p/MTbSoCIK3PkWcRrULIQW8ymBNC5wkJWmAbGhM5X0An/EJgQJvN6yo9Y4FAQjD+GayYCudxy05PuI0palVcgrAdV2RyS8UgSk3yCgAFQHqMM9pVPmJPXiGPhsb/cQkI/6VlUV9YcALl26hCeffBIAsLOzU/59b/u9bfda9ufipvUqlF5DXjC5ss2FNfpVvWkKzkzxARZ5KVpqRYDiGjN5vEIYV5CrPVLKk1p9biTCQeSB9KeNhazeFKpUCqb8WDgt2FtbFuPQWiC54iiEoBShpaNrEaBuTiySfXLUi+gETc5C8QLs7K5wfDArNDMJArOw8BeGu24O1DokSDSIJhHcyeLRToAmYFBxPiyn9DzQZ6b9uYCtKB7+9+9+OcQm/MYH7ys3GN9Z/NZv31/QF3EJjz19AaaKpM9keB+bKWYWhdMF6kygYf6iEwADnBxOUTQMij6U7zeLvSvuY8yuL/p6sSflbnt3hdOTCXYvznF8h+5pxiVEryLVILAPLBFuj+GfnmL7hSeYP70FGKDaI+XJrx1T73WrRh5B6UF3Drawc26JX3/02ia/QxIM2LjsXZjjZD5G6C26dYUPDuc2k//EYyM28dzJk+jewo48qpHH+KUrnB5O0Z6MGNSnRbu4iLRydMkJUt5bDAPJsiOYALTTDRt3IoCFaQSvlzQOQLAsoHtBio5GCD0DLiVq0emSaphAh6usBWnyhFwLlQlFqNEnmHMdkQwtYJOiITIbSmhjCtok1iBVTU92MTRLSM+Mcd9/DljvW6wvCPyUXPzmWNBvAXFMyldoiHrESUJ7OcDdqiBB0F6ImD5psHhRwPg6rbn9JCFd7FA9NsLpSz3GT1G4PH+Q4XixBsa3gG6Pe9PtkTZlAiVFbrFJDQ8NIB6olupGN5hCiZIgWF+JsEvDlPSO7k3dHr+Lak59Q7fPQs/ebBBqah2qJWlNzU2H6IgauDW/x9FNi34XqA5JHQ1bCbBASBsqplsRdbE9sHjYwy0rNIdQihSXITadm8YoU5WGHWoyfE4PT2xU8zoUx0TMZKC5BG1tDeI4oj6ghsKtFCVxPG4UnivKYFnI9+c9m5IqAiur2R2KaoCfN0SiELZl7gksz0fTGepOttkkpJpFsp07ukx5o/kjCc2BZcCiSzD9psGBITKSKhbraWU310eteR1KBSOd7O4iPAkbTwiA1lKMDscm2ybMxh0OlxWqqYc39Sb49kyWCkTXX8PBk18rkpAzOrLZiEmQztKhTjV+BRUCEI4bmK2+2HZnqrCxAUkSWQIJ6FsHMWDTk+9rTocHqp2MrUOKRCIxCMxAE5JkFNldOn6GyPuHRIGsLL+DBKTTCsneLU6+tz0/tle96lX4r//1v+KRRx7BZ37mZ+Lv/J2/g4ODA/zzf/7P8cpXvvLZ3r0/0Ns9BOQ5uGVxtxl5JjFPPcV2SdAv6zKZE7XqLI1Idn4SYOf/qTB6ssL4KfJb608+xO4fuX1XEB2AkpaeRbzFeQhAyX8QAKoZSQqX19udOhURnUhBNuF2ge4qoq8rNtE6VfUhUqUytRaTYKYD/31m8g+Fzo9vbcEcajIuAAyCOOOEWVr1lteiUaKwsM2T51PHTBG1ks3Hp2gygNJ0pMGU0L7RtKdjVNpkceQJfNSGShTeBxKLz+GMbkdfPifFIwrM2hY61dmGB1D4PqMjqveQs1StbCigTaBrAp2S9L1SEmztMZdluaLO4uR4ws/qDWIQbO+ucPWlt2CbgNe84HG85GVP4dLH3UI3OIrKc1OUgMm5FYyLRZORMrKiyfCL5QiuIcKW0Y3YOUQvODqaws9rtaBV0wE1O8j5I1knlM83o/bGYTBYzEdotjp1h+I5b6qw4ZQrAkg0Km0QrLPnzsBJq0w8m94ZNTtpRCtQo3x1P0m0x/V0lDOtnsuVfgfaGCJRCxAraguiS/A7ek1KKud1/dgI6bDhuTQIi72sawqmWIhGb+DbM7OfpFoSAOaxCXb/u+DoYYf5g4J+l0W/WwlWVyKqBUqDbgalpawFzW0L00lpGtqLCdvvY+Fmexad5jrzS2bvd0gWWF8NmDwjqOYUnXfngNAoSjLX54m6bqluor0QN8F2OjwOWrTXx/yZOzWwLY0aMvLhViziM32rOrFobjgVxAv8VsD6vsAMkzH1E34aUR9renmnYnEAw5ZSjwKPsSjCOMyIbixfEFDfov2yn1EoP+wQZQljpULZhH5X9RMjRTB245mMjVSSyU1HFE0GgV0bOF0LIRR7e0WAMkAMsNmKFkjqYDZsJfiLRLHFReqU1NgAAGRgkxnq7KwlCPsDm2HNu3ALrifR8XjblUHYDhDPc6K6XiNOIupDCz9LaO7wnDAtX9ePeezzZ8mNgVkxL8isTUFByMkCKVcuEQG0RALTlifipDa2RlGE2axFzKYQQuQClWZMNYHmHgmbNXB1xvHQJrgdoidyTETfjgKdpxSdR0O6FzSXCoFGKSmv73UEvPBnkc6LtVKC/aKCX9Z32W0XfUtvlT4Zub6PI+LOgDRSE5V8L4zU7iTHfcl0sqRDDXkuVFPZ9OOj/ecP8fYd3/EduHLlCgDgW7/1W7G/v4+//tf/Om7duoUf+IEfeJb37g/2dg8BeQ5u0vOCd03AkIsttc+FUTRhohz8JiANFsaFUkDH1mJ0mHD8So/6Fhfo0+NJodUg/0nZwYhVZrZzzZNaIN9R83SJUyipA/p5XQrjkh6etSH6lOKWld8X2lydQTlI39JCV5OhS2+gidnu2hJD65CSBWYRWFBs2BwarMexWAsDKJ79aC3S9gDoa0oQghF5LY1s4KK3fDubSjZG31UInXL71cK27JceriL8NglxwOY46uOy7kYESJIYBBkYUBcDmxfbBFLRypY2zlIZXQiyadjYmcB3JHnn77xqPJbLhvoKoAQLmpWFOd8h3m6wbjwub83xJx56HwBg0Tc4OJkhRoG1Ebv3nWKxbJCSoGvrItYXnVKmKDAVRec+H5P8vQ8GsrBIuxS828kAW0UMrePzewup+VmN1UlyvXHQKuGOiQV9t6B/P1T3FPLraLMrSTRtnDtgLJuP2NuNJbXo44021SY3cERHMrUqBaF9636LcFJT99FEnp/aRMAQWStOWIMgNMIgT/A8Mi6hOgVCbdQmm1QrutIpspErdi26xACSEkQy3TBhcp30qdgAyQLDTsD4/RaLBxJGtwy6/U1RjwSkOhUrXAjga2DyQYPFgxHdOU7eh+2EydMGoVYBec2Gws3PJKxbNjrVXIpwPFmiEKZGCQ60LS1+/TQhCe1oTScYthIzJHrNpBA2RtleNxnALQxpWuOAam5Z6BsG4ZlOXbUuMHXenjpazc609rPc75xUXr4nDc4za0EcEcl1+y28H6M+MtS6OFKwqlPDZHC95EzP9dJ0pCPZtWp+HG1qQ8N/S0RpTqPqH8wgkIHHDFFgAmB7pUapDiY13NdYM23co0LcG+BuUGySqV/M61D3MNXqpEoQ5w5uJUiGGods+wshsgLofumaEyYJ8ERIctYJhfWJrlWJr51F7Hl4E0d6TQYhqjNSXU4dYRaWgvjOlBwOOl9xrU2NUiEHg8ViBBFgst3CB6trGUpmkBhFaoUNedaeJH1N3xF5jb0hFbLR6zjTN9VkIwkKsk90Rgc9VaQzl9q9xyCIgbo/M2JQK5pYGkDYVOho6Qxan840tqmmY2QaRd4bOw4qkmUjF0d0BpPBIHXPhQ7k3vbR3l796leXf1+4cAE/8zM/8yzuzfNru3fFPAc32abz0XA4YjCbBrDJxHMyPqF1qJgEOWhYKK/pfZ6CwKwshi86hD118FtRkQJFBfKkWClcdsybA4KBHWfaDZsGe4fWoGITxeQAi2uljeTkcBbiYPMxaHFXbQo8/oMCcqkip70mMUhKhY76tihOM5K0gFdI3qoeYRBmNFQJ7Qu74taCOnJCptOpnGuSBincXFHUBfraKZpNGq/yeENvEYOg2eo0wZo9eqGmKSICbTBSNER5FLHJGRYZAYIWvxllQQIF7dcbhM7CVhE4qstENen3UsIYHSkmaTDl70wVyLqBoI0KzBkEBoC9uAYAbD14gn5V4b3vuoa3//tPxP/30Ydx63iLTV2gC9N8MSrfk63CRrzeOaXc0fXGd3bzXQnRF9MEYK9HPSHNKCWB7y2aKSkJ9sjBPj2i/mJZYevyoqSwbxy0BCVBHWeaDROLFioLPwHAVLQsThqsmPUVorzwYjbQGTYe+TyvVXyeNRprtSC9NQJGTHNmIJ2BWxq4Uwt7alGd0L7XBCDuDhuKYmtJI1lUWLw4wF/qlTrHYEEorUqE195d+h7lqGcxf7w9osvatYRqDoxvsmjvdjkh78+lkvcAaDHZsSnys4hhO6BasGmYXOdxGrYj7Jq0mmGLom/TUwgOsCEJI0A8i99cnIcRm4ZqAdRHDL6jsFyKTsKEDYUph9v5acLkaeG0PmkORpX1IHrMJp7J3gOHCFB6klsI3KHD9LGKAvsFxfWZRpcT7JlBweyIjE4kB1QnpCjhsSk/wziVxiwnkptBtT8ZhLOp0J9Sbqoj3zeOSA0zAxst8aJIj4Fb8L2yJkPCBrkZttmAmUG0WEX5DHLiVGwOUsEmRIVileBHQL8fKIYP/O77XRbp9THT5I3PU3g2PNmkxC5JGarmhrRCQ92MW2oQoh76OI6b49EZVKemUNhixWEOhOt9iqDwWkBU+dRx4BUNxEaYJnAQoHSpdNAgnNRYzUcIg0UzHjDeaWEbj2rsN6gqoOYWXEQ4SOD1WI08r9UgSPNKHbMSMHcFYUfWYuiygcBhAJFSvbgU0S6hp2WNTEUsLvo8UjGN6sBQrlkItT5Y0VVPThzRoHGgVW+Vyv3DLszGaORZ3FL62Pz5w7x91md9Fo6Pjz/s56enp/isz/qs//079Dza7jUgz8EtamFYpjFNBKakpHBBFQydQzytIVfWsKMAo3+wcqiPDAZvyRs+38EMphRKmdZCKpIKBCP589QwqACyM5h+UG8CKjRnKBw26EXCh8PO45x4iw0gQICFDU4UxGWF1BvYc91GaA/wxregwxPFuiyEh0WNOGgTpToLsQlYucI7z4V7EQIqJS3rDZLJTl5n4OTSPJXOZ6PP+O9bcO8fY/f+E4gkVOOh6C0yF1kkFbetlDZNSZmoJZ2ERlCYLaSHJZfwyB97ohTfl19yG5U6xZDTYvi6iehCdb3mzbI35b2za1d2C4OARYGLpQkJA5uptqtQjT2uPHwbD/6/ntDvJGE865Rqpg1SNAiDoVYGYJNbBURvNk1gFpsLv9fRpMf29hrGRfjOwtYBk3fSaKA7bRA7i+rBBbZfcQdmNiDZhMV8xKZMHaCKS5ilM5RtAuzIw6oOxZTQSKA633Lau3YUggKcXMYz/xaomF8tOvW7zcUI6SQJCDoNzrSr1sCudMJpWEzGKhXHJr8VWTxmdEQD0NAa2KUFxjplLZQ60HrXG2o+9JyzdSwCdWMjXMWibvJBIhz1sWB1GVheZZHUXfZEOtpNFomfxs2EW1isNndIuYoNM0KGrYTxTbPRwXjB9EkDt6bWwniKj+sTNgkAC/z+XCrBgYAK0DUPwvZKp6oTBdJayEuk7W81FyxeGDBsR/iZ2sHqtD8ZwG8HyGmFfjehOx/QXvUwK4NqIeguBcRRQreb0O0HCtoX1HUMO3Hj9KVDlmxJDrCg9lsRsycF9ZzFf26KcuNiW22ytDkAgGpu2JDN2WjQAYtFerYO5+sL9RrjtEk9b+gyFUY6dCgNDpufzFwJk4j+4oA4jgVhMT2bKDe38DtcM/1ugAxsNKwmsts1G6x+l+tKyM2LJaWKTZ4iL2ujOR88T5oDi/5cQrXYnOfSUQ8iic2rW7MJpCnD5lwhaqlNxmxAPMf9j63StSyRzaxTM00AzvX6XAO/clgviKi6KiB4A+u0SbBJKZOJ9xurf5uEblHTYr3eXPNJAxOlirB1pPtdNkjRcxYmIc5rDpz0+cUJUc04THHQ8wxqVKF6aWIS/84W90nNDTBSc4Etj6TnRpgFvq4aXSQHmJ17GpDn4/YLv/ALHxY+CABt2+I//+f//Czs0fNnu0fBei5uolD7YGADEGYJEgwXTaU1xcGi3mvhe6u2t0pJmQ3ovcC/fwd1J8ClgH7bw6q1aKZAiS76mTa1CTgk5z5UBvf9mcfRH+yjXdYFiciFGwZO/svEPafqZsQj/5XvAVoYi4uoZj2LYw12krkjXSoYyF5HMODGCOFCz6kUwGpXQE6wTuHLNM0lvl12B4MiFUJKUOxsSVrP+0ZqEZ9TwvISWNAc1uivDLBjj+NbW5A6wHe2TP4gLABEmFUStZkTiUojAorwXGlYUJpN3ov3PHGlpNA/8+T+Gd0NiuOXqQLSacPQucw0yGhOFp8PZqMROeMWFT0drQCgX1cwNuLW0RbWs0qFzxEhON1vlDwNo8GIxpFClSf03Hmh6FunlnEw6FKFdlXz3DtoEHYHtK9awagWaDLr8MDeEd7zrmu4/NAdHC/H6FuHFAFbRdQjjxAMgmpzkjroFCcumxDnFQWzgWGKtvEIoUJJlM9e08pbRwLicU0kUc+T1KteqAj7ed5EURqIS5AmMOPxyCGOyH+Pk4DqoEJyiQViFSHZbjMBmJMqFPfYoObzL3leH7mp950rxU3UvzMdMASDdH2E9eVs50qhuwQgVHqOGtxFvZKk2RkddPpO9KE5YNFdL9gwhJpNyrDFzIvFg5E6i0lSgbhgfWFzadiW0/b1JbX+XaDQ9PsdZo40h7xe6jmbitCwQbBLgzCJqE7oEBUrlATraqET54Wl4HsuCBc9Ju9t0J5PaC8G1AfUU9jOwHa2NC3JaW5G2uwLAORsn2R4zVQnBvMXpuI8lSljsUJxBjOeAZJmbTRkL+lni2xukhTBtumZ+G5XLMzjhIL9nLnCxyrCM2RXMjYTuSkIM2ol6lsVhu1YUJdhO0A62uu6U0tUyyTYtVI/ax6v/DnEA25NGpZdK83NMsk7tY61cM6rcAwoDM2GBlfNgVgJqpV+Nt3fnMieqlTyVmRl2YRpknkuyKWmKURGzU3jSbVcO+YMaWiqdRxawBu0JyMaWgg42Dgz/0EwZ+i3ef0yiCc1XRzHHLpJbgSWDiEJkjuDNK/tJpMDuKsxKXkfVpcIvZeI4Vph6oCYwHyPRDQr+Q3tVSKo9RjIPkidpUlF4FALSU0sZgExAumowbO+5VnaR/s1/xBuv/mbv1n+/e53vxs3btwo/w8h4G1vexvuu+++Z2PXnjfbvQbkubjlafrMc5CqnHVJFCfCcBrkO0ub1ihIKu42VcD/+Rm/iH/xW38Uf/0TfgHzMMLPPP1yHJxMARg0ux36JXkJFI5zYmtGga8Fcun3r55g4gbELMTWJid5hkglwcZeVoV4gBbI2f41VwsC3UewOMyTb/2cOy88xvGdKaQKcE1Af9oAF6iArfda9Msa5pD8aSRg++IC8ztTpdfETfEJ6BTLIOmqWRyYvGweqxN/13j4lnkaUlGAmPT4VjcruJessbt3ihu3dwrCkLLtr4r242nNm3dNITXiRl9QGqT8feaJnVG7V0d6kTRhc9PURkAMEDsHzAKaFx6jPZzqgWTzGFXcjGAgFQuE6Dc0MSiNTk4qYBYQowBzi9MosIpWmIqi8pjpCQnlHIBoI1KRA21dQL+ukLqKvv6KiFgXMSxqVNcr9Pd32D63wrWdYzx+tIfVvMF62eC960tw51scLibFTcuNPHxnMSTHpkfF6khAPKlhzvUQIfoxvrREu65hRp7nDUBzgfyZz343CUBrUZ1vmfyeG8E6kHoRBLLlgRrUGA0GyUY26GsHN2cxKGphajQLwO+wYJQmII1ZiElPOk+chdI8QamS2Uo6eRavtooInsutq3UiXNGZzVwfYecxwfzBhGEnAHPSdhAB8ShC2FhpIS4JwaGE3Jk8nEtAt89U7H6HaIVt+ffqSoR4g+aQOgxUAc3TLFy7c1ps70QstxKqU6sFK18/qmO37UnF8RN1lfJAv6e5HivqLWTBoro5EvQ7CfURG6Ll/RHNIY/F+GmDYRuQkwqxUvTkREPeekG/R2SgPmHTkz+bCWweSljgOCIaCsFjo4V6gIq4uX9lzdF+NYwS6kNND18LvOPjjQfiJBIVy9/5FsMYc2ZMNWfR3p0jkmk7Ctxtl1EQoD60hRLn5pZaklHCsEf7WKN0MbtUPYqjrqU6NfCeYvz6jkUYsxH16vgkQUozF8YJ9RE1PXl5QRC4lsc+O30xf4XHpL3EBsMtKcxHQqHd5SDC5BLprWqvrLZxiAkQbwBFJv3SqS6NphzGRVgXMBr3aNf1Zo0LgCxtcZ+rpz0bETWkiI55QYQ3FEmpAkJFpDvp/caMPaJQIwQvML0t98eiZ1ye0aqMNZOnM6pT2djMn814AgBxzJMBQD2RPh8JQBNhRx4hVoVOm8aBw8FRKIOwlA0RngMUrI+JaPwPqQj9Ez/xEyEiEJH/IdVqPB7j+77v+56FPXv+bPcakOfiZnTCEgVoDczWQIFtQuGt5kmuCAC1QMyC5MdX+3jTK34ZT/fn8NOPvgzrgwmD//IUSp9bTwb0KyVJ5ymHogCLdYPVrNpY1+YiX0AqSxRNUediXp6ehechc3xREIH8IN+5zftJwunpuLzuuOlx8doclyYLvOMDDzDNNgFydQ109HKfn4x5s9gaSAPIIvGkb6Y85iyaT9GoOF0/pwjMnQrDFvUBSR19cnF/6cUHODiZ4sXnD/DeWxeL7StpRxQT25qTbEw9zGmFVIcNzUpw140g5d1JLOAStDkxGTES0nlG4YxRAJ9oqoDz0yWRmExXS6oZ6C2bD8EZ7YfS37SpsBc6pAS6dI05dY/BFF0C6VfYoCsrWiJLdqvS/c/NlRl7Pj8mTftmA9vvBzx07RaGqE1sFBiXGLJnE3xboZ70iINBPR3ge0t74Oz1r4gKBDC7PaJnVsswONS1oncOm6yA3FioHidp45USgBHRG2MjT938vdcqrs3nok106RkMouF0M29xSjvOWJ059yexCG7tdEBqGwYcqhudGXtSuQDYUeD+uYjxtEPX1jCNL8iVdRFRqYNbTwhOHmbhaJaWLk/qJBc1HC8PIaqFINQshv1UC+5EYTg6YbJ3ow5foOVtrOiilRzQ7UWMbhnIgeNkfMlr0HjB9IOGzcVGCsbCVHiZmwF3J3YbneZvEWWJuh9RPQQYtEfKVnVq4Bb8XbfHZgK7PXBnBLcUdA92aB5vYFtBmBLZObtmuLV+L2Nq2mAT7B3evvwswi1MoaTlcD4ildzfHDJIKhJ/DtGG5Fjg1VXJLSyG8wOamxWSodtUe86jOnQYtvgdSYJqQvR9Ikrhj0QqWDYsSFan90r18bseZmlLM5ERLz9TWp6XDaIi+reGD5qW1rsAG5/URLhjV8zy/CyguWNpkxw2SE+s9bmWwYthTHtd01N3E6ZE+8zK8nCr6xsDDZU2ajkUMS4igMMnq6gkG2pe9xv9mEFaqtBcXcMGF+E0V8ivlPPnYhlslbVPr2dTRSAHeCr6IoEnZBzRACLV/CxQUThUsJ7U4UsEG/Q7u+8VtF9F50k1IA1PnGKY4gWhc6Shdpa3v6zjywYuWQ+ogaf3tufP9thjjyGlhBe96EX41V/9VVy4sIGK67rGxYsXYa39HV7h3vY/2+41IM/FLYFCO69Cz8GSZ1onLri6AKacsSFQgbOgPRrhv8o1/Gp6AYI38OsKF+4/wp2jGbKmgJswjFDr3zhsLqTJ+2qc/02DW5cexGwLmL+q2wisI+5GEyJFxmFvICXLM3hQvABW0ZFe6Vrh/8/en8Zctp5nweD1DGvY07vfoeZTx6fOsR0nTshA7M9hSAjdKCYQkkC30gJh5ET8aCYn6aghUtPQDYHQfKD8aSQEIgGCWkHB5Ecj5DY0CmC+WAHbwY7nHJ+hzqn5nfa0pmfoH9f9POuthA8IbaeO7XqkUlW9w95r2mvd931NRE9GBSj3Vd+eYPEacP6OHuenM5xjhtfVAbJGY23h5aHgG5m+lYHhVkWkd7yTwLl6LNIXHy+xuxm5bQmVEIrM5PkVml0JpYDykxPsnh+gLKBUwP1He9hb7vCZe1cxNMXoMBZlam7C6F7lFbnP6aGWmpX0EPNqbEjEJhipGVFEQlQZsshfpfMvlVf1mQleNkec5iXqQaKN6QtNQH72xXx8J4ctuqaQBzv3O7l7mcpfyKBAfqjq/R7VZEAvuhGADQupT8xHKadsIADAtwblvMfi8hq1cTjezXDvbI/FdYSEhfH9h9ZCmYihtShqh6Gx0sjRxnixv8NuV8mx5Q5pG9BsS9h6tOUFUsMBUprOSjaj0nTpCw153FrYZcd0caEBJkvhGMDrR9MVJxVr0UYWiXOfp/LQgHlUwF8agJLuaXHipSCR63sYz5EXvY7SEV1bpo8cNTuR9LgY6Pazfo77mgvIOlJDIFqiMGEhiaCyVgNAdjryFZEOKGTrWYDZHcOSxbJdiUXulo1csPx6vxdRnjOxe3dAqo8WNyflR3etON42KHRXbI6KlcKwRxvbVNBHDTTXAspTDdONrlu+piNXdcrGSD+osi5Dn5TUaQyAa4mUbJ8fmGzupZGqZMIthb3b96RSeSauD4soIvmYmxcjjoKhitzW/YAgX0u2qknoriWcz57ZTJ/yRx56Y7lfRYTdmex65SfSeBWSIj7Qiap6aOBLIkbDHCjP2LyYVmHQLOj9wsFsDREWoWMpRT2Hn/Iebzc6mfgJojwiJ6RN0rEqaVVMqxEK0ecU1LAESXVn8Xxh0KQiTKtpQDAoaG8Q6gB7ZvgaVRwDZ1MelaClLOjFnjwouMHA7yxpkbWHrR33Zb+jdq/SwMYgNhZDUKjnPbpdwc++NB6ADCFk4KWKgMfoWgkgLtmU5HttEL2dIogSDem4SccFGzncEYteWPDe3Gmg9rwPmsjPrug5ggL0xAFaZa2WskSqY2+AQfGZlui+TgEF2MA84aVk2PXFfs2vxvXcc88BAEJ48uf1K3U9bUDegEt5BXUw4NLhGue7CbpTOvQkG147HehpLl7nvrFS8EZMDjq0u1IsSCPqRYdJOchN/sIdPU2D8t1F5YJ/+R338SM/+P/BrzbP4p985p1QrSU3X2g/B1fX2H3sEMMyQB112P+6FY4f7o38WROBDpJmq6BKinKT6wm8GoMHdUT1tnNsnitoZRjH7QAAfVrAXG9YBPcmCwnDYHhMFMidTtav2yJD7S/8kRfxn7/wrEy9gMX+Dm1XwPUGu02Vj1H7tS0pBojiPhVxfjKj6Do1H5CJXBFYxEcI7UdzOmaIVgQlehCTblrSkBnaNUJFKCjC+dBZ2B890YxkUwlFYefl33MHPmg8tHP063IEeeT1M/Ih9B8UIxWpl6ThTA+CkuaR9sKIgK0d9TitBWqHetbDyTEInjQhjYAgDmFKRxbzOkLriNmsQ9MWOH64h7Yv0DYlYhCEpjOw0wEx0t3GDQbxuEKsArxY17pdkZ3RNusaSkXMlg3atsiNVAyKhY8ifU8le+NAq+r5c2c4O5/i4HCNbVvSuKCjde/86gbr8wnF9heeI9S5eIRgSCU0EWF/YLES0wQ9MuAQAGxgYZhE/grQdSBF0bMhj+cFDQ9mvIBDp8kz95p6njCGR2owRNGeGfhFwP4nDHY3DLqrjhazOgJaXntQCDMPe2bpJBVZIBqhPemGha7pKC4nPUiRduMUdKQzVlREI3zFfQtGoVwpNgGl0Ko8m4/6kcL22YDJPVJfgoT3hSKi36Orlpamwm7ZCLkpC2jdi47k2ojCAEQxQhUxzPnz1SPSudyUKAQisHvWY/K6QXPNY/nJArvrTERHBJzco7wYT6hesQmLyAV+MEQZ0zkMQlVLyIddCb3NIdO/YqDIXnk8ho6oXkE1xai96Xmshhmy8B4AM1Y66jJ0p9Adeehe8zUjUSeA5gfFicWw9DBrm9FmQBqPSUSw/DzbjcawGHVhyilJeUe27HWWCEYo6GBVnRvYLdAdKTHnAIpGZd1I2lZ1gR477AU2pZrmBun9dK+BTix5BXVM1NVy2sMNYqmtAD9oqDKQkuQ0ho3QsGzAZNEhRIVOlXzfnUUL5JwlgLTPbK7hlRT6GnEA1MRnUxIVeRxymrk0maqQhgJEKPSG14ZfSCM6SAetgOiprTP7Qx4ihVbosI7BksorhJbPmvTMU1qaFKFDql4BCUERDWLWPz5dX5HrU5/6FF599dXfIEj/3u/93ie0RV/+62kD8kZcCog7iwftPnKuRkdIOXoF1xTQKws/JzUFVji8XqPdVJwsCSG13ZZ4dXuERIbWZyXClCFt2kYW0+ltBaW4+9Il/J9P//ePBd2liTWgcHY8h57FPNE9fvkAetlT+Jz0FjMP1RpEsZF9bIwi25voKMNgsL+3w/HDBbdDM8VWFR71m9YwOmJ9NuXNPiWe65E6FAdNc66E4oiO4zMPruCZ6ye4d7yEdxbbrVRCAu9Xsw79Z5eYff0JVueSk6LCmFgNhYg4ZnKYEeGIETlnQukw5p0Ycp+TYF3ZgOjFKMDGHEYHSwQku3bFKMnefNin6dpr9w/yg5rFrx4DswSBUlb+L8J4LTSHMEjQV6JP1Q44qxCVYTFwuYUfDLSJQE1r5+72nNPsNzUwhRckQwFRYf9wi822gtYR/fEEi181aA8BzCPigUezK5GCKKGAYjagX5WwpxboFQoP9M+30DrCfH6K4VaLYjZgaAoo6zO602zLPNG8SLeKAOlcOws7dVAmwvUG61AjBoWzs6lcg0G2XWN9b05NhlzHuhjRqyi0GKVBMeyggann1xst6efSDHihvySXsogxZK2UQnFB0YG2/PRpMXvwgboXXQRoob35XgPRYHKu0Cwj2qMUAqgQFw76pOD/RTBfPCoomNak7dABKsJXKrsyKQdAA6EM0IPOqITywLBkceynLEbNTsHsgN3NgPqhxrCguLy7FFA9JBWrfsRiXbdAmLLgNo3kgEyIZgCjBW95JuhLAJrr1KIkEbubRkStmMUhT53mekB1rDltX5EiZlecypdnBt0Bz38S2/sZQyBRBeiVlSYNAsdEUtIcci6KdsAwYaVqGzAY0FKM3x1Ss5Ear5AE7+IilRyo9MACPiW4hwLUh0yRXamqYx4nu0t5IxTQD3sUMtstkTU/ofg8ZXdES6cs3WoMB/J12QY3ZWEby4DiuKBdcEm9SSq+dcf3D1VEeWpy82RawNc0GigHNqNuTxLbpVkJU+mq0us2ise3pOtY2m8okPJWBcRtAUwcurOaMx0TR5otqIN7LNtoa9GIvXu618UagCS3R6eEIiXI7qagC14R4CMAr8f0cqE3BdFbKM9w12hE7Vcl8weF4AysaLjCcsjuX9GKVq+xcIK8pHsrFChu7zXU3sBmKvJcp3ttDAqqFucD8LmjygB0hhrMdC9/kiviAhr+RXzNr+L1hS98AX/4D/9hfOITn4BSklsGQImLiPf+v/brT9d/Zen/9o88XU9kRUC1pOekB066kSKCWQRCebooqAPYVKQcBG0u2BEGBfPMjuFTvYHb2VwsRqdQvFRDW4+jN53Cn5fwO1r9AmDzMfKDgGst9m6dIQYNc9hJWFxyoEK+oQPSKEg6dBxUzmDg9xS68wrHjxZIfLAUQBiDxm5dY7OuUdwpcwiWMnyYqdSMlLSfzbx+HYFAvcvrdw/gW8LmYSBaAQX4zmK3rvH1v+tFvOXwmL/vFUXYEdArC31SIHF9lUmORvFxagDGRiwHFgJCsVGj65gCktVsEppDCmyTckQsp41K0sUBiqyDnM+QqEnykInCeQ6d4UNZQhjjeQlsLOzdklkr0gCGQePS1xzjt3/ri5i/cDYK2UEkIUaF+fPnOPxtj2BMQL8tSKUwAX5doP2Ph0QhgsLejRUO/vBr2P+dD1C8ZY2D6ytORHXEdK9F2BQ4+BdT6NrDXxrgnm/QXfGoXqzhdwWm33KC0Fp4p1HOemaOCD2Q+SNGNBLI10loLcLDCtODJiMj/Hng0uEaAClfthTXHh0xvbKFKanH0NIkZktcryWJ3Y3hmA21IBQ0M2zOtAroDGkhXvH8KH6eUITHtkXp8JgTme8NTDXmnQQ5R6YkZcu0AKqA7nIAbjbYf/YcCAp+z6E8pT0qLPM72Hggc93tlmhDmuT7CYtSs2WRbyRQ0O547WkngXgzXlvbWx7VCbUZ9SMF/40b2JVMfD1gGhbl7SUJf5MCPmkS7FZlFywKnkVQvQamd2S6XbAxSfkY/TJAD/z58kyjfb7H5I5Ge4P5F24vwG4B3fEaNy0bBF/KbU6DugA9Wlp7ybZASMchjhRIMcUY5mxQ7A5oj6TgFnepFO6XivpQRdi1ESoTkYTuisdw6Gh9CyIJsWBD0F328JXYNpdsMvw08HeF1oUImHMLLYJ3v3QwOzm/QeX5TKgCi20F6E5DNwZ+EuBndOlK59XueAyLNRPRVUiBhvy6drQwjoYNmepHLUl5qqF6jWAAuzL5lq4bDTVw39xMbGoDMiXRbDWwszmbSJkIdW4BSUKPTsMfV9m5UA0KamPgjyveu5RYq1cB2EiTYiLNISKgFz2DR3uTgwKzecegaDoSBD1OZicRY1K66FVgYk45R2OY9B4FtdhaDgwGDV15lNMh55nwICAj2ulZoU0Y86oikLNXJuJycEG38nR95a0f/uEfxvPPP4/79+9jOp3ik5/8JP7dv/t3eMc73oFf/MVffNKb92W9niIgb8AVNad8KOQBoAEzJ8KAuQPAyTcUskWiTjdumYSnFZyWkEDA3i8xXAX0YcfpeCqIG4P5i5aUiYc1TgEc3jzH6ckMqHye9APMgQjrAiEC5yczxF7DKwMzcTJxR24AkgVvDGACLYDi9RLDMz2LNpnQz4522J1P+MNJURmRw/Z0ETDsiyha6/HBYwOqeY9+V3JKldADTfFx6M2Yzl7xgEWvgKYgV3zq8fGXnxkbCg2oRtN9bBIY/IjRXSo6Ii1K7GpVAbidhbKRRW6EBPYxUyO7oogeAlFBXRwnSUPnB83f80ID6w3mny/QXIsw1xvoCd2fzCTAS8BWEo2T+uUQWotyr0N/XGPx7ApdbzF9rqd4PTdGCvfv7OPBwz3JO+HxkHk9fKsz4tHvCqCxGKBQTAZURw2eecsZXj/dR3teY9VaOK8xqahdOTueoZwOCA5odyWu/aLG6pZC3BSYv0iHo/aS2Ljeszgzi6xhcRdtlQUZK/c6lNZj9XDG41vTu98shGIo4n2lA3wwODmf82PhKYANAxGH3bpGNevh2gK2HpBI9Xv7O/ig0baFoFoBmJE2lig8UQO+YDGrOi2J1AqhFPe1nRRJQTH4Uo9FSBQaHpEo5vfo0kNb0VEFFr7tO7coPzeDm0f4VYmzzuLw6grb/3SE7tmBOrCNQTggPcybSHqMp8uU6ViEDwsWnMOSKdhRkXbka1rw6l6hv+xQ3bUo1grNzQF6Zxh+t89sivkvz9FcjaT4OCAObDiKtUKoiLAMexF+ykIbQWeqWr+UrBBL3Ylp+cdN6WQVFw7mrMxNcsrTQGTuyPS2QXsponpg6DLl6Qg1uWfQ79EtKsnGVM8JeHabC6PrUzTIAnAE5nu4ScTkHilpiEAs+LPVic5iep405CaEmgruDzSAAFTHFv2SQwLdiTVvEVGeGLh5hF2LffLeAJyWsDuiO0lQbncKvdCx7KmFnwbJD1F5sBTLALO2zAoRDZDyCnZlMlKR09JtRLQ8V4hiMzzw2BbnKgv3hzn3td+LOZBSSxPnpxRPFxsjr6vgDaizqQKKEws/CQww9ApmoxGGNDxKjnm8BpQF1HJA3FpgbR+39t0axE7DSVOGqYdeW8QqUNcRhR5q+Bk0czFeeVSRattS0J6bpZ0ZfVG8ktwk9Rj9zltBXSL4LPUp2TxmxMQn1LwTu98UFtrKfWAAwuwC0qNHRDw1Vb9eX/hE11MXrC/6+qVf+iX8m3/zb3D58mVoraG1xu/+3b8bP/mTP4n3ve99+NjHPvakN/HLdj1FQN6oK1FZAE65xWUk+0rKxA7gdNhLcB2xcTUWv+nmEei0kqk56Xvy0N1+Q4fyuQ1wucVs3jHIsOOf/HMXtik6Trx07R5DDtg5yM1a0IjJQcvvra347l9AATTYfASVQxDp367zdvpBQy0GmE1y5OLLqyJAi3Ujf5ABfhd1EaqIMLNBGhtaFcdKXIZsHMMFVYRaWZSXGxS1g54N5AYDOXzQpiR6yJQ+Cc6jaBMuICFKi+OSCNIvoiPjDX1strjN/L89t3jTH3gZfuEQJBgwbIqx+Uj7ZsOY8KuiOJoBm3WNobMwOmSxZno/Oxs4ne9NvkZIRWDhb21A2xXQJyViEXJjpVXEumNaup31sPcq7M4n2LUltDiq+WTJWQRMHjlOaE8NukOg+Z+22P+mh/iad76C/qqDfVhgst/Cn1SZBhElRFBpole7pkR90MLULotVXW9gS08K3by78BkgZcsUbFSLCY9dNevJW5/1cJ3N4vhdU2Zdi5fjFhv7mBMWgqB1KSwRYGp3BF2vxChi/CzGHARpSp+vjfQZRiT1Ku3L9LaB/tyMWoXDAWbNIMfVrx6hu9XBTBzKhxZ+6ZiVU446sPT5Si5MdqdyirlpSLvZ3Qh5Kq49UN2jGJoBdpLo3QDhYID2wO46HZn8lCJm5Yk+tFdCRkOUhBNqEXKz2JfDVbDYVk5+dwCKFSfz+rxA1EB1yj92qxAu9ZxQD0ooTURK3IGTjBLNItOrbKmrBpXF94mKE43YgMuxiDZmbUiQxqXfp2A+GsCuFaCBYRbhqyjbSV2FcinAkMdYDwphOUj4Y8zIpRog1uikzhlxGQsW0Pcq2K3GcOgQCiZth5qhjLrV2eYZYMGvkvvV1EM1FINDMRBRybAhFOKypYByJefCc5tNm5ov0rzsVlDtRDFzI0qlPI9PEuqbhk2Fk6aS4Yqym50I3pO9tWI6fNSgA9daCvCO+VJxIE0p2jiabZiY9w8RMIKk6JVlCrvo4xJ1MT9nIlHHuOdGkXkvn8O552dQg9k6LREd5RT0TvOaEMMF1WloJw2emEIgmXZEQSwbO36eBg1sGHCbULVkAHDxeRuH8dmsTLig+Xu6vtKW9x7zOZ09Ll26hDt37gCgSP2zn/3sk9y0L/v1FAF5A65sY1uE7MLBQCWhGggEnEP2Uqhgqu0dLXK1CYhKIWre3OuDHXarSUZPMnSsgOX+Dm8+PMZrqyUe3l8CCrAzB39ail0pKEq0onsYOIWNSVAONhNoDdTMkWsvk+12U5EycrnBbNrh/HQ2Zm84CUcsiByYY+G+LwbuuxR01WTA4mvWeHSyYKEqjQMA2MKjH0y2LE7icvz6h4IUicpGhCNJ7b0gDI5LsSVOPZ7Q35LuIiWGQwFadB/e65yiG1JTJsJjdW4R9/g0jwmJGigUB4ioKKGV5CZKAaG0+PTL1zE72jHkT0Xs39zg9GQ2FuuDAgq+dzUf0JzVKO6XcFf7TKs7frjHY1iMk0NEFse2YhaF0jGL6rWJ6MUi2T67xf6kw64t4ZxGWTi0g0X3+gxmpzFcGlBMBjhnUFe0eI5ewZQB01+c4/b/BnBLuhRVt9Z44egYALAdSrzphQd49cUrsB9fwOxFBF9CX+qybilGoJCcD9fb7MCW9DFBtDIpNTl6heCTK5mFrh1C4LZ4p7Pblyl9diULXqMPGodHG4SosN1VsLMezXlNTU1noFrD0L4ZwxdzISToBQAikoHhnRltDLTvzJ8zabhDtoxWsK9VKNZEH+xOwTwq4PYdzN0a/noHpSJ8YxGea6HWBeKcDU2Y+tzAmi0dsxBp/QrQTrW7xCyP6oSFVsqr0D2LUbfgZBsg+jD5tTKLyH0ZUR2zUHczCsfthqF2pLoITankv90i0MK10TBbnQtON0POKUmTewYQagwLCrPtnUp0HchuTVAR05cL2AbQTmH3Jof6roVn7ysp3/x3qGh3q3IxOKIZOkAoY9JISBGuHf9EQ8TI5/wQlYXabk4dSL/vgSJCnxVC+eE2xQC4fQrKQ8n9Ha73wJahlDZpUFoWw+7AwawNwrMN8LCG2Ri4Kz3QifNazSbFbI24sAXo3mRb16hAGp6m6Ly5FhGKgPqByZbItItGpoFZyZJxM4YnBsvcE4DNVr9ksxJK0nntg4INy5UO+kHF945yQ1IRmPhR6+AUgmGjiEEK+04DRYQ6EyOGZHkNIEQ2JKonpVEFlfUy5alBJ9bCfuC9SpVMXFej3CKjH1FHmOMiN9+hCtAX0sxVAMLMI8AgFoGhuZ4J91FxSBFdaqg0hg0/k7qmw1UshOKbrIfrkPOuVOXzMwdFRByoKYtBkTLmBzzxdWFA90V9za/i9Q3f8A34+Mc/jhdeeAHvete78Df/5t9EWZb4e3/v7+GFF1540pv3Zb2eNiBvxBXHLA0AUFAw02EUjAvkHVqLYq+Da23O5shFt7pQ8ASFALF5LD3chhNfVVAfomuH8/sLfPThnIJDgavDyrJ+cgpI6b9pAquQC+lE+dLWwxwMGHYFovJS/IqLlNNwsFj1dE8xRcBwWgFlyLaOgPClNTnywassOu87i4fHByj2O8SXargrPaJSbG62Bpg5TK9vsDudIhOqGwtMnSROS1cReXx14ceiULQB5mHJcLCFyym6UcsDy3ECnVJyY1TQKqCc9ujXVS6EVekROktE4aBH7A2URqajoSS8j1IcvITLTPE293XvuXNsdxV2qzqjT2dn0wtZHxBPfg8UQLcrSO95S4d4XvGcJftjoTVdDB3UijoOBgwKFaEztNcdiDB8/bV7+MTr1ylStwGr8ylM4fE133gbV+oNZrbDv3/tzQCAbrC05X1QQ71pg71XHeo/dIJZ2aF1Be5/9Bo+F/bErSggzj21Bc8NQKMR65AYfjmQcOhsFtGbAhldSp8JbUVHEYFi4uCdhhedRsz7Rl1LCtFMnytmjJAKdb4ar5euKbB/eYOzkxnPVxmYpXDKJPTk+Z9FxEaK06M+u8z5xlLo6hWgpVkMwjVSvCbtSkP3wPrNnFYPiwgvNJMw88DOMgzNBoTGQk096S+1g+8NrZsj4GcSilYFVK8V6K6y0E3NUXfJo35g4CaA2SkMewHluYbZ0B5XD6MTVSiZMTK5xxDDpPlwU2kk6kjq0oAcjqdFhFk+sjANUZZgWdSrQNG38mxYUkCgr2kPrHuNfslrs1gD7RUWlJO7Bm4K7G4N0I1BdY+PKN0LrawjvSqk8xFBLUbWdKSwPzYVzN6hhgQKgKNzF52xeFpCyVDBYEkxS9oH2Ahzbjj1L0Oesoc6oDi28LPA952EsUmJQHfkYXYaxZnY4lqxPl6XiAsHVQSUr1bMahFUJ4q5QLQBujG5oE42u8FAKHAUx9utQXvDYfqKhe55rlQcC/VBiujyPCE3gJsImgEI0iHNxcayEakC0Fi4PQ4OTCsBi2WEvV8yq0RT+6J6TctzJfQoE0lPnIk1tQJUxxBA3mC4bb4GzLmBr5FtnMtHlgGJM8A92xLNTP7DvYZpDMIBGzzliZAHI81gGRH+Cz6xule0bi94HBAAVYpBSkRGJNNzNg5iLKGQB1hK3LMUQIplUIhyzSsdYGakzyIoyeZ6A6AgTxuQL/r6i3/xL2K73QIAfuInfgLf8z3fg2//9m/H0dER/uk//adPeOu+vNfTBuSNuHoNzHlDT7CvFxG4LqiLQFSw84Gp1kqgZGgiEFV4jIIVg4ICsD2vaSWoIvSOCbUqgu4jAYLrR77/RUcPxYd8onfFxOMV9ERRQoDgjCRTs0BPhb0yEcWsQ7+qEAeF8r5F/3yL6ZUti2yAzcLEo7jUMjgvUYtkH3zDh89wVuFt73oFn33ler4xLp89x/nJHLvzSU4Fj1HB7Hdw6xLyleyyVE57ZqBIGCAiKTrLr1uhtB6v3z2kk9igiX7IBMwcF5zk3mr50DIaPgCq9PBnFR9SEZzONSaz5S7uhzIBmLhcYEC0DCEiC+xXJ7MM/+vKQ6fckSDNn9csTjt7QdQO9OtyzByRRjEFFYbWQk05oetXJYw0Zv6CzWTK6QCA//zKM7CVh2vHh27wGp+/cwUvFUf50vBeQ+uIsC6wfFmh2S1w549v8U2Lc6z6CvdPF5g84DWyepsHZo6Il4nQUiwX9w26SwZxn1bKANGkyaKFcwauN1nUDa+ATiPu9QjbAigD+oGISDFxMCZg6HlbS1a8AEaKm0pUD5X3NSFGtvTY7ip+3wQEY0gbPBhgHhW0XF74ccreS9ic6IzSio5FidrIFHvqAZDjXpwblGfA7ms7mAcluqtMla/2Wwx3p4gGqB4YAAbdcx3qwwbdtoQqAnxjMVm2aFDx9QOPhTlmToUWOlMoInSjUJwJr19EyboXKtOUzQlsxOxFi3IFDHMWabsb4jglNC3byKWqwTC7IsJuRaQ/KGihR4UKiI4C6VCSZrV75w7hYQ19qYM/K2E2Gu0LXW6qIc19cyPCrgzclQGh1PAToiDaAd0+UZioOTn3dcxic1KtNHzFpHoMGqYXi9o5kjM5z5eKKLYKrpZEdwdEy2ZEBeahpMLUbjSGQ0E4BEGp71i0lyksN5I4bnZEL3RPB6nijAhGsTIYDjyKrUF/ELJLmOoVzNYyeDC5XBm+Tiwj0QQt56/TCHOP6p6FW0SoQGQjZZU4G2HPLIY5Mh0pauRtshtqVJy4niUHteFggOs13bUeFRT9rwzcvgc8m8n+yJPOVctreyDUMWtw4BWHT0kLMvdZD6V0hJoPFHvPHdTOCkIuFKoI+MsDzR92Bj41fwUw7HtgxeBZTEIWmyvP54OShgPJ5MFGQEeYrclCdOXk/qB4vcTS58FRQkiSyD8925SYtKRGH0nLkfRdEyf3U2SGgZlFBK9kqGP4vYu5Sk/XV8x697vfnf/9wgsv4FOf+hROTk5wcHCQnbCerv+x9fQT8wZcajaMFqFJwCz1U2pEoMgn79aVhKppFNMB5WGbaVpR3KYymuI1lNOSeSGT3F7LA11JNgcnSyqlgyuhMSRtSQQbjCJQIGkD0JNuhMYI1Sjm/IlEIeu3JW/sZcBbfs9LUDqi2VQ5+Vbv9TClx9AUzKVw1BOkrBKlI2bXN3jb17yOX7t3mc4rUlSuL9DKYtAZDQqJiiXT6dCQXtSd1Qyru5CD0u8KPLy3jzsP9imsFweUat5hcnkHs+xRvXkF90JD8TxEP9AaxN5genUDXVKITMqCI7RfeZiJg6499MRl4bjSkQ84EwEb2GgUFEiyEQl5mv9YYGBQ2cY4aQGM0JWQEBUdx4eoIrVqerDLrmjTw4bi7w1dvrIGIlCbEOSa6XfFaC+siBxEr9A3zFJxg4HvLKeAVcD6VoTugD/3jb8IjYhXjg/htiVCCexuRNjDltQqKc4hfPH2qgcOeP7zZ8BEtLsyC/QBYLJocf2ZE0yvbaDu1tA7A33GpDxbebjOYOglAT1CwjmRm+DQm7wPUKSeKbF0Npa5BD7R4vKGRFri7kmg4tZwYi2FUVQAOmkOxRJbWXl/E0d6EEYh6+5Nntf2sw1UUKjvWpiPzxGXDDnsrnh01xyqVyr0d2Z5iICtRfNoymySZAVdBfg9Dzdl2rWbBYQqoj/yRArkT5RrY1iSkmM3cmykCK+OadUbFeBq5KDCYcGvmUbQn35EGgBO0qPIxIZFRLcf4cuI7bORjkgR0C9PMHndwM9IKbX3S0w/V0KtLOypJeoxD9Brg/a5AXan0B1G9HvIWSOkOokmo6bQXg8iNi+JGphO5QYIwKgTcQraMSPEtvwe0Ro2I74mMhAKNgl+GgGnMBx4NjQ9wxarE41irbMeI53faIHy2GA4dHSsqiPMVqO96vm+JalzieY1XO9hOr6u3bD4p30vz0txbqB7Bd1o9Jc8dCs6kYBskaslo2PY90QP5kHE6hp6y+GHn1E8HsoIv+fhF368h0QFtySC5vY87DkNTkwHFGcmN9SJducXjsfxgoVwTgHvNAcLReAzoOegIF7QU8WkV1IAtuJMBZ7X/iCgvTmMr68AteX26IbXjRrUmAFi4jgQA8ZBj0YWvodpGGlbQrtMeiFdufH+uTMoTk3+NzAiICj5/Ekp7bxwREco95UYU/Bp+I2U3yex4pfoz9P12Do8PHzafHwR1lME5A24YtDQcmZiErIqsNDvNWIM0LVD9Gw6hh3D94akX5ClnM5CYu9JC4IIJ6NWeXoeK9oSql6N9oVyf49JTKg5SUURRzqRYrEbNVBcazCc1CyGZXofpQlKdq/TRYu2KXHczEZqjGg5omfhmydNwCi8B4tg5zU+99pVPuDEOQVRZUQI4HQUUZo2TdpKGAziQMQoeAU9G4hgpKm17HK9bNFuKuiJIwdZe3SripoOZ+AKw/dKae6C/MRewYfkTkUhMhuopAtIzikqU4xSTggiv8d9DVkQDwUEQQqSCxcdV4iShHZEP5KGI6Mq0izmCX8EjDQrvjeY1AO6wFwQ3xkU816cqMTdRa45bQOtceXQahvE+SXmXAtqY9joFm/aoD0s8Z/Ob+G52Qk+U1zBUFrsbhjEuYf2dKdKxYTygL/ksLy0AQBstnUOMUTQfPala8REWBOwampYE7CbB7HTJKrknYZ6WDFfYD5Am4B6v0cj2S++YbHrLw2A5bE1Fc+PKSRHJY14NZESWw/wK4sw8xcclyDmAlKkewA7wwLNjrokZQNglQR4KiiL8bMZeW1XdQdfe3RXAb0YgHWBmy88ZPhob3HzLae4c7ZE31sYG9DJuZgf7rA9nbCh6RRUr6FbFrqpyFJOkEpJCvcT0laqYwbe+TqiOLFwE1Kg3Jyf8WpN0bldE4kwO1JW+r1AahNEEzIVJGIQulVBCk95pYF/ZYZQBGDmEXXEYC1CoWHXBq6WBumA953oTNY41HcMtlMW8HZHi+FhyQl+1Nw/0yq+jtDAEpUmlKQmDXsUb9uVgWkkqySS5uTrCPQqf95VpBBdBWpnEBRMr+jUFADVavT7HsXKMBm9jnCLMGawzBkkiRgx7HFir3vSkcIkwqwpOAcAOKIQ/aVAKt3U5oT74sTCtKAuZc3z4CaAn/KaST/n5pJdUoslc6cRCzZq0dA611hqUEiZC3nYBK8AEbmjCDBrA1xtgUcV4BTc5QHqvMioh3a8v/mFl8+qkoY18npK902v+D4K1IHYSMcrce9CFYRSRR0KhfOaLl+CIOpBZc3FqFWTZ1AAXRTTezd6vNdreSYmMw35nTj2Pfy+gjwv+CVTCHoMNjN+SvQwpG2VwVl6tiX7bUCeVZGIMhz3PSr5+QsU2afry3v9kT/yR/67f/af//N//iXckq/s9bQBeSOuyJsuxcOjY4eeDVDM6qP9a6/J0hLrwuRJrpLz0mwAtgV84IQ7TYxUK5B/aigSXScqfs+S90sbGUFinAImXoTTcdRCSDbGcFZxqtxYbrfijiihOOmTAjtELPYbnKyno75Fx1ykozN0XplKAZeKwcApU7epWPQntyzEnDLOSVUS7jPXwncGIYoHfBHpFAaF0CqYqUMcBB0CoFREtytIDbAR9UFLCo/x8NuCRZjnPsZOBJIJYbIR3aMJMHnc+SikQC55XprSww+0BjaVy2nkSpxUEIEQNOA0qVNRQT0oEacBaj6Iy4xGdOlcSnhh6tMAcbPiv8t5L1keEdtNld2Z1mdTnpvzApc/qtAelFh/c89mYmegSg/X2KwfMTWdsC7ujxaL2SzAVMBy2uLBtsS//9jXAlWgW1bpMcw90GiEXQWYiOtvfoS3LB/h1vQYD/s5PnV2Da/evkRLaQXJGiFy4weGkRkbsFnVTE3WEWa/Q1UNKKzHej1hg3GjQSGNeDQKzUCEAxqYHe1gr3j0g0XXFIL2sNHzTiO0FmY6sMkSxCl4jWtf8xD3H+0hbAoW1TZmykY4HHLjp5NBBDCmJ88c4tayUITYq0rYoD6zaHumjKMOzNvxwJ1PXUXYc9Clx4u3r1Kr9KCGenbDz1uvsT2d8DNlHeKKt3Cmn1NAXZxrhJLuSMOCRZZdaynUwffvAT8NKM40+iVzJeyGyINd0WgiKjYW2mPcNxvhjbhYici7v+xQ3bcoNgb+bI54q4F9bQJsSV8cnumw/M8V1s+BzbtikB+cgr6xgzqewaw1djd9LjCHvYBixTBF7ZApWFFJswBQ7GxGOqhpFXwZoZU4YJUJOVHwhmnr2gP9HuAiqWa2IR2qfqDR7cesW1GDQiwA07Ch0KLTqB4YDEt+wMtjg/7Qw64MdAfYRqPfp9DezQP8ImTEIBQhF9PhYQ11qYO5WyNc6xDvV4ia26E8UZxoQQ1JFemmJZQvX/FchiqiPNHwlSZCIKi1GhT6S6QM2TNa6PopdSQ+ItPHQh2ATuhRGrShjcDwXAv9oIJu1ejWlU1QxlF4cpeCJ30UTpoMw3BOvd+zyO9EhzaIY9mc4aZECW1u9stHlmYPZYTeaepRFK9RszF0BEsIxkBb4uHQwXQ6N6aAIHTzMD67ap/vv9DMjBp2RdZpJQe1WAcU+x2HeDFmqqsq2Xyke2dC5kNUQBmzGUpU+qkN71fQWi6X+d8xRvzCL/wClssl3vGOdwAAPvKRj+Ds7Ow31ag8Xb9xPW1A3ohLitqYxHwaTPtWvCnG1DDM6fiUEYALDUMMQPQGqvZETVLGQj/eTGIpvGcJOws2AqXQRgJ4dUz8OH23wqUdRBeRJlZe0U7RKxFCcvKl1qMLlH12i35TYi0i8czNj2l7Fcy5weSBQrnSMH3Ew2935M0fF3B71A/oKoyWv50ENQJjEJyKiEoRFQgqh1npkwJ+7umyUsQcepd/R6b4ZuIyzSiHC6oIvbV5yg0f6QpWi9YmPZgj+FBT40MgNVrB64wExSGhDEIFajmdD1c7aiAupHXbN23Rb4t8LYwVL4CoYKcuF+lEYESNCoV+S0TMFAHDcQ271nDXeujCQ71eo36ksH0GuPKRAVd+JeALf7hE/cwW3a5AMe8lARgSrjc+YLXl9ikdYcqAxX+scPbOHg9ePsyUo+gN8GBGp5uB4tnFrXP8H174KP6X4xfwzOQMRgUUKuD5xQlWl2tsBK0IXmMy67FbVzg82uDsfArvNKrpgDBx8AMD/poHNdz1HRs4cVTzMrnM3vwKiA7YrSsU4o4FAKaiTW/K5aiWrThuXSiyFPDgdEETAdGuAKC2qLMwD0v4w4GUObFqDk5n5zZE+b11kYcI6RrEaQFVBFy7doZVU2GnapoGHJLqEqNCNe+wnLaYXjnBy3cuscH2RAM4/SbKYdZEb0JJRKI/9EwSv+xRHhtEoyRVnQJy3dOm157QUUp5OkRBs4h3Cx4Du+bn2dVAearR3hjo1GQj+mVEecaMjeKEGhRfKbjrHfSDGu5an92GFICTb+Ln19wvScWasMEOd6ZoXhhgTi2RlTpiOBpQPKKovji2zOqw43lJdLJYBOYPrUpOo+XWpi6ExhXnWuxoI129doDdIlvUugk3cJhLjonMavw0oDwx8JMItxdgNhp2p9DeHFA8LKA9r+nyxGBYUHPRHQbmbRyEHGIZjdC1ZhGqHfVz8bhCvNbB3Knglh7+UoA6t3AzMJTSUOOhOzYSbunhJ0Gcxkh9c9PxuERxknKXejpRYXShi4LeQBrGhOah1TANj7ndarg9n+mHdCRLx1LuYRWdrNLwJ5QRaiAlLD+3ekkcVwAascQFxKEsEnVtLNTGSlYN80jcXI6Ljwhzz0GYIyrv9xyb9zJk2qZyDGDUPY0PQsnbnlsEIvmV7OcggvJ0/YTx2gCosYMgNsMZ7z+kXgFmOsBtC36+NXLOVXCGOjZxxUrmIXG4MAl6ur6s18/8zM/kf/+Fv/AX8AM/8AP4u3/378IYiQbwHn/6T/9p7O3tPalN/IpYKqZc+afria/VaoXlcomb/8//O0wxGaeO+oIXu6AcUUGS0FWeDCI5/SSubfodgZKhImlZInaO4qN/+FGL43fSdSY/nDTyz5GDjpxAzpu3jJV2llaSCTFRQCwDqmUHpSPa03p8jcgbftwU1EgIRUvLjfzoYINHJwu8/dm7+OTLN1C/VKG91WOyRzHyIFN5oi6BVr9JnA0R6Oe8FNnExjCwcL/LTkm2dnCd9N5JIK6AvcMtVqfTrHsAAEjWSQwKpvBwu4Jc4ZlH0hfYqcsNT0zUJ9G2JKQj9pym5RyR5PIS2dgVlaMIXIrn1IDAacAEWsoOMn0bTE5aVxenktJIpbTvlIsBAP2mxJWr53h0wsA+W3r0xzX01kBdb7FYNOh6ogMARt1JRE4OX+w1OD+Zjc5aNmLy0QmGhQzeLAvcWERg4vG7vvbXcKVaI0SFz62vAACOdzO868or+NT5Vdw930OMCl1bIKzpImREoG8Ln5sFP5jspKbXBupqCyOIgx8kMd3rbIWb8gSUFkQoNeSJ/iZ/A8j0q5DzCDBS1y5QBAEgOM3jdlpDTRwm8w5dKzqVswJh6qHFiCCel1BLccfaWDb7vcqC45Rv4feoCyrnPZSKqAqHtiuIvqkIW3kMd6Z0Ijpo4VoLNBa6ZeFmt1rEuHKuRIQeShZpxVq0DRHolyyU9TDqJMqVNB8g2sHzSApUmsinItpLCnix5vf8nsf0JTooRXFpggb0N51jdz5BcaeEHoDuKgvhUFGobTra/yKArkkS6kdHKYYrQobYumfzFMsolrUyvY8YKUZlAFoORZSgO+meEC2zLeoHmgF8Hb8+LANmr2oMe7L/kc5Ybo9ogt0qdIcB5RmbcLeQa75TcNd6mIcFEY5GjmcKQizjWCQPUjyLJkMFcbXaaPiJTPQXzHgJEzpM6Z1BtBGT1w2aNznqnDr+XtI4oGbRDBvzPVsJWB5qoi6J1gZFxE6JXqa6vkX3YMqivNfZXQwaORQxTD301sBuFGlfQsNVgVbUSQcEFUmn2nMwp+MskzbqDljbrNvxCxF4V4H6LwVqntb8vfLU0NJ5IiijJKXHOuQBGRscyfjYsRFK9si+Drz2Om4Pej06XU1d/iyH3uRmRFveG0Nv6LC17LPew2wMwr4bkR8VeS+WhkzNR/QzDYfCtsPtP/OXcX5+/ltemKba4U1/8yegJ/UX9bVD0+LVP/8Xn8h+vRHW5cuX8aEPfQhve9vbHvv6Zz/7WfzO3/k7cXx8/IS27Mt/PRWhvwGXEledqAkPpxyHKA8JSLBS9I83H4nvmxKGo6V4T+9o26mSlgBAcgGavmIxzIDiUfGYwC/K1CcGleFzAIiJ6iXNByYibixCpnOpXqM/qdFtShZz4qqlS4+4syMsLiLtKKGDq6bGYq/Bp25fx97BDv1bacHTnNcYmmIUA8rUyXeWCbgAsu1wEq8o0Lp02WNy0EIL0oB1gWFVAS3tZVNY4Gy/wXZXPd58ROokjA2YzjvMph3qvQ5Hz5/y4Sthc74zQK9R3ilYVCRxZqD2QKkIKw8sNggapiIylAKs+tMa8bzMydnjOJdPueDU2FAmxAakKaWJXnIOSyYA8V6N/uEEQ2thaofT9RTqDh9O/bYU2oxCfFDhbYcPAQClCNqNiPSLCf8fnMZmW6OcDtAmTfsVmt/eIH7dBv2hx+Ibj2GvNXjb172G3/v2z6D1BT51fg1DNPhDVz+O3huU1uHf3XkBrz46RAgazb0ZlAL2rq/pzJUo6z4F9tEyF0FBVw5h6bJeaGhsbsQQyctOwvN07LJOUCFra2zpZfsNQmCgZKKXKY2cZq8U9ztGlRtC1xuYvR7aUiQfRIxtrjao9jseGx0xfWadDRZiTa2A2Wm4A0cnrSIiHA5E5EyA0QGXFlusX1miKh1M4YW+CPxvf8cnYJYMUsRG8kXS/UBoKr6K4/0h0g0JCtkSd1gQ+WAwJuAn1BH0e0QBkiWtCkB1yn0q1qR1RcuJeBBthE/NywOLfp+/N71Hyld72SN+ZInytRL+VoPuigdqj3Aw5Oanve5Rnij4JW1kw4R2tqGK6WPH69LQxUkLtShMaHwBCdMza1J49LmV11ZZA5bvL72CXWt0BzIEEfSgeqTRXpackoK6BjeX66xX6PcD6kca/WXHwrbl18MkoHy9hF96mI0UniWRo2h5z2FxzGahul9AXW3ZKJYB1QM6o6nkJri2dJFSMd9jAaC54WHW40BIdxLm5xT0uRWBtUI47IkGXG+Ytr6S109TfnEcC3MPSHZOQqyjYXOhIkXmSVivG41wMGBYjroJJansAEX70HTqQgT02uRUeF8L1azXdMEKgr6l54eX85jsyC2Rmf6QiJg9sVBbQ91VwWdHLPjM00IPVoHHPOoIv/AjOuYVUZJBAZUg9yU1agwIZdq5tmyGgpfnSa+pM9oWQMNBkp/xZ1QhzV6iolUB0Qba9l4Up18wNHm6vrKWcw6f/vSnf8PXP/3pTyO8EayXv4zXUwrWG3CpTgPi2R4VKLrWyBSYCE1BeARQeZjTkhOyNHkHRth85oU2pCjArEanpRg0/LeucXX/HLf/401Ov4rxJhqjNEPpYanB5HMFBu61Gr5kk5OF5yI+5NRsRBcQZLunFM9nilKQPSoC+l2BWCvMFy3qwuG5Z+/iEy/dzM5SGUaHGqdbRcwP2SzyTQ8FE1FWA5p1DW3J+bWdgt+jtW0QJCVuCuxMlYv3TMkCUSIfNbpo0bgSSgMnu0IQHSX2i3w4Bwug5kQ3W0EW1OfEwAl9EqIHsWqNStHRK9Ihx5cWaiLNidDJICJ8qMgQvoQ0ecXpuzQc2oSMfMQIuMMez1w/xZ37+7QUNhFFo9C1FmiZUaDeumHgoCvgvYYTmkHmPHtNPY0gZi6QesXwvYC3XHuIedHjI8cv4OTBAtP9BlpF7NkWr233sekrVEuH//f9b8SD9QK9I5oxPKzhlgOObp1i21SorMPsaIX7j/YuoG4Ko/cnG6xq0aHf0SkNoKheqYgIaZSTxWbEaH8sx0onO1AVoTWZdFEsPVUyW4hATLorHaENJGDRi8X0iIz4XUmKy4R6F+8lSwCQ5kS0TUWQzAg5z5MBeh4QgoItGAjpnMHr9w4weWaDXVNiNu3QtCWggP/vL/02FqkA1HIATvh1LWJoYKx9Ehfel3gsEdvsWMglM4lizWwJ0wPViUJzha5XUZGOBABB7kF2I2hIQC5S7Y52t/4tO7TnJaK1ghgY9MtI5MVp2sIOzINwlxymnygQjYGbc9rva7nfKWRLWhUpHlcD7cNDQcG32Yp2TcDBMPWiYYgIJe8BplU5t0R52uPqVsN0Cm5OzYsKdLWKFpi+rrC7DnRXHCa3SYHykvbdH0gmhzQTplVwdYA617Cnlp/5UsT5CQEpIoNfZVIfLDgombBg7y5R1G0aDVc5qCgW3B3zcOJU8pME0VAiXtdOrseBRbbqNGJFBChUAaUJCB2Lfd2loRSIGJQs4KEA7CxMJ2iW3Lt8TZ1FNAD2e4TzEmptub978syZ+dEBbt9Br1III0azEvms5UZK6FWxEkrabIA6Lbk9WpCcVgTr8pnVHnCCzmS7ZdGJBEFBUtilHhS8POqIMMozoAoZ3Y9BwUgzoq0nHbW11CJ5BVUGaNl36n5iZhZgZxAX4rjliGCnUMJ0U4qSPaSLAKQw2Se5UuP5xX7Nr+L1gz/4g/ihH/oh/Nqv/Rq+7du+DQDw4Q9/GH/jb/wN/OAP/uAT3rov7/W0AXkDrpj8zCceek0XnjzNEq55TFSeQSMe0Vs/3XCz64dMZ+OgLgRHpeKVo+ZuU2I1qXHjHXfw6quXWdQ7Bb2znOSBD2fl5YY8BZQWLcCNHfyaeRrRMvsiBVVFE6lLGAwfCCK4jQWkeeBE3z4s4fYd4ixiMu/w267eg9UeLhj8p1ef5bZfbDIE4TAXdBJJeJ+zIlIz4hWaVQ1TefheQxUBy689wcnxnD+XJt2zIYuVk4AYjeGUUcu+2OT2JDa6hnxp76OgOxH+pqf/vRxnJXqEpFvxjjbAqgxEgsoAbAyqY4PuVoej51Z4dDKXfI8gdr2chIdkgQwgNkSRMh3tuESYe4SKRXoqlouJw4OzxUgtUkC/H1DeKVCdAOu3ePz+W5/Djeoc//bhWwCQ55wF8aC2pF9VMNMBs3mH7baCMQEeGrbwONlNMd0b8MPf8UH88eUn8YHtszjxc3xy8wx+16Uv4BfvvxUffOVrYXSAk4ljjAqHt86waSoMzqDvLE7d9IIrGSl/upApr6fTVVwXcEWgbkP2x/eGmhbjYaY8j/22pDtcY2EqL2J5Dd8T2QmyDaW4f8Uo2TC7ko2qUNiiTEmTzXUSqCvFovLqzVM8uH0AXTv0kqGSmr90fSktgZBOwR8NqBcdjA5oG2a29LuC+x0Vbt44xr2TPRwtt/BRYe9ghVnR4x1v/Rh+5ewmbp/v4/zhnHXjQj6TMNLYsCGJZtQ1QKnRjUhxim56ajq0AxO671lsnosoVjLBj4KiSBNPwTL/r5zCcORQ37Ho9xhcaD83hb/s0T/forhdM3NkkCTw04KoTB0w/7zF9htb7K4VOVG+OCMtym5Il7EbI+npMTtNBcumR+90TjZXvQIsWNjuiMiGIkAP1DOkVHAdQN3TnEiyaRTcjBN/5XmemivcluqBRXc5oDrW6GvRt8z5uRmWAbpV6JcBemeys5bdKGjH6b+f8md0ozEsxXJ3R7H45PMl0+nXCr1RkuYeiXBoQG/lPtZroZWNAxU1AOpNO7hT2lOpTqM8MdyPnWZ+RxkwfGEOv6Rbmz62GA64DbqjC1sQxIuCbmlklo7ZeTYiRBH7rwtxSYxAYBOge1IUo46IJajtcKDczF1EAAC97BGPK+77nuNumAg9HZjbk9B5HaF1hF4ZhKsd1EmJaCL6Q+pfUrhhrEeBfVSkXrmZ0PCUNNiiCQGNBIHGSKYHBwsxKITWQNeegakAkcSph28t1NEgVCphFAx8VsQqQOvAay3w+admjp/pgUYNqfEPgx7vX0/XV9T6W3/rb+HatWv4qZ/6Kdy9excAcP36dfz5P//n8WM/9mNPeOu+vNcbQgPy3ve+Fz/0Qz+E7/iO73jSm/JEV+JxPvs//wT0tGLRvXBZzIkoKa4y9UsTJmXHggGOk2BMaNUbWpsfbGkpK45RNsJUDstFg/P1hGLo+4KmHPVQOqKsHNpVRRqVV9Q+NAaoPTn3PV2dtBTsbJ40aRLJJURfoDWBD9wwCTDTAbbyDAWUpsSUPjcGoTMoZgOGrShDZTI+3vXThFzl32dQo0byuoc4guXfi8hBeDB8kBjReGQRoRT/ppAmY9B56h2jyk5XwZmsO7g4JZotW2zPJtL4iNOVuaDZSI2E1/ihb/0P+Oz2Kj5zcgUnJ3PJMAHpalG89E2yKtZAa+i+c7NHcuTSF3NAABS1kzyLOGoiALjWYrrXQv8vS7gJUL3zBP+7W/8Zn1g9g4/fuw43GFTVgGZTCQWL+77Ya7BrKBRIdws/GJjCw1jSh8rCwyRLXgA+KDYXYiGrAISg4J2BPymh93tUkwF9b4GoUE96bM9rpptf0Gv4XcH8FBVR1g5Db+HPShY6ySQARCmI2gQ2LFIQ+caKiDRCW7pqmZKFBzQby7JyaNcVynkPL7SK/NpSCGoT4AeT38+I8Hwxa+GDxvnZFFpoaUoTqaJ+JwJbA3vUoiwdysJjtZrgYH+Lk+M5823mHQZnUBYOR7MtVl2Ns/MZ/HEFe7mBUsCwLVC/UqK95qFbIqBu6WA2FCqHgkWl8nR3Ghbc//JMMWQvSGJ3r1BsGB7I/AgiJL7CBZ0Y7zPdtQHFMd2J0lRbeepKhmWgrWpQ2Ps1jfZIpv1TNjO+Is2rOtHo3tKi+nyNfhkpeJ8HlI8MhudbFC/XcHM6VIViDM4jfYx6kEz/8ikDhBQh7EymBqUmDKBWQfm0P/JZ05GWuImmZEjtKjZAd0CdSHmq0V32ousYmwDTsXEHwP05ZHFqz6nP6K/QBay7LI5Y8nF00wg9QOx9ITQlZJTZtEoQA6E1gQ1fQhOKczo9QShIKMfJvlkZuH1qRKIhulJsFPoDuc/v98Bpibh0sPeLrFHxczpiIYDZNgAw0Ko57DkOmUSvpHs2Gn4Rsu5EhdH4IFS8xlI+R5gEGGmmQh2Ayj9mRKJWBcLEjz8zoeGGmTj4k4raj1ZnBF05ld2vknYnWuSBnD21cIcOiY6oGw65wtJlBDQNacx04GcyDYUsgz3tmUW40pFOlYZPF4wo+Lwk5UrJ54M/A2BjGJgow6vQtLj9f/y/PVkNyP/jS6QB+QtfvRqQi2u1WgHAf/E4/If/8B/wjne8A1VV/VZv1pftekNoQNbrNb7ru74Lb33rW/HX//pfx+uvv/6kN+nJrjKMZ0YesioljOsI+8gSitZxpPsE8CEVAXPYc3o4sDiNUoAl+1C0Qg3xDKE7ub8H3xlEp+BvtFDphhwURclCj0jJxWa/w2SvZREH0qBiJQ8+eeBrmYzRDUX49TZCDRpx6aAkW2NS9SimA6kBFcXcvjdsInTEsBHC+YXCP/0/iwC9YrEHmUQNmhQCCQPMyIksM3FQNkBL2F/9qUlObtdnNmd2uNZi2BVEE2qXXaHCkPQCIYf06SIAGwtdBDS7kvkjjg1RcmWa7rV0k0qNjAn4x5/6n/Afb78JJydzNjwmoFz0YxFcyHbqCF14VJd36G/0eX9UETKalShkqYh2rc2aCroq9Tic71D93ke48h138PZL9/H57RV8/N512TcF5wx0IfS8QcO3Fv1g4XqTmw+tYxa3D61F15Y4O5lh21TYNBU2uwrnpzN0XQGlADcYOKcRgkJV97j8/An8rkCzrtlkdAbNjuc5ODWGWAJYXl0j6Vu6XUFBvxRooTOSQg45PiwqtCBWtBB2zCsxkcido3aomA5yLjW6pkA57wVl4nWrRQsUg4JJrl8XON7eaXivcb6eYLOtcj5A+h1tA/avrIkmTT3wyhT955bY/Oohysrh+P4e6lkPU3DK2m5KrE5meOn1y0LRU9CHHYrC0xq0NegOWQhGw4LcbCzsmuGDdkvxtemB9oqH3VJI7Uu6O0XLqX40TP3uLges3u7gJuDUGMg6hKhZEBePWLjajYHyCtUJOfimoSvW9HUD0yicfx3T4bUD6ocKdsvmBmDORvW5Gt0lCoyrUyID/aFH+QUWSqEIGGZRXJFIm7I72W490ntyToSKUCtLyszMozg3OSUcisWvm9N+Vg9sPqKlQNluWGzbhjSn5iqbMt2xaaoeGk7Zr/XU6QhtrTjXiPsDna4ekYIVSnAQ4BS6aw7lI9KJuqsDc0HS5aTY4KWEcUhjNNzomQ1y5OFn3F6K6Dldd3Oi2EboXsUduRdaGgAop5kR4hi85ya8D8e5g73NY6vPLPz1jo1NSQvfaIlqmbXJLlFRgUMmJZQ4kOIWCx5vc1zwtUuGQPpEEU6GDbl55d/UqhTM7jgp6N6oo1DaJEBSlttwwGRWZqTRRiAc9XyPpWOOTS3NmWgg/UzyTNJsaeFgb+wYCJvu80WAmQ18zaDG+76wqMLVjhb2O1KplNxDdSVudcldMYnR0zCt0/xcd7xvxqQ/esJLAVmO8kX786R36g209vb2/lebsO/+7u9+Wrv+JtcbogF5//vfj9dffx1/9s/+Wfz8z/88bt26he/+7u/GP/tn/wzDMDzpzXsiSyXnj+RgFcEU8yAPxyRUrwIgnumoPUXhjTQoA1GEdAdRi4E35zLwwSMPCkgQlLIRsbFwW/q3h0ZEvcKRj5YFu7EBfW8z5StpILKDViQlQUWgvFugPDbkGKck24D8uuevLzE0Bcyyh++IKGQRKTBOo0wYE2rTs0sDsdfQpWe6rVBe7MxBX2lzMBUgBaqhPdhFLj+2FvFbV1DnBeKgUD63IWVAHj46uUg1hUDvJmsjLrolxaCwuLnOwYtJ65EaFKWA3WoCI8gGRGMRAwX7MYy/5zozOjDpOG5vVOh3Bb7pLbdhKgrgmb7O7ZgsOjpfyQPWVMzvMJbnzEuT9uff+kG8ff8eXl4d4qP3bo7p5zrAOxYIWsTxk/2WTag0AVpHEW6TchCFLjWZd9RABJVpDtHL60QF1xZwbYFhsDg5n+PSM2eo5yLazggFKXsJRYlBYXU2zQiELjhtvPncI0SvUO8z1jo5n0WvZNKpaDSQPkvSUMbbU5iJQzXv2DQmN7igUEhoZJQiQpvkpDWiJuk9lII4aym4ziK8Ps0NT6Y3RuD8dJqvYTcPMB1QngP+cwtAUSdSFA5dX2B5uMWVq+f4pudfw+AMlgc72NJjdzzNfHk9KOjTAnZN96JQ8DOWrHOjZfMxfd3AbpEDAk0HmB0F5bpXKFdMzK7u06XITVNxz59JoGKoIvM+yvEzN7mnUa4ByO8hKsxfpF1teQq0lyLKFVGV4pxT+faaR3GuMb1t0Fyj4Lw8MwgFUJ0A5YlJXgso1gw67Pcji85UqCpmcihHLUBy69JrkzUbLIpBbr9nqribSuG9Fc1AHdEfeARLxKY8Zaii3XE/hz1awhZ3SnHQ4gXR3RhgHpQwjUZ3KdDitlXQZwWKcwM4og/FVtGqeMLvxzLmrIn6nkG01OYUKwnQlAl+eWIyyhSKAJSBKIIRSpqNGJZ0p1IbA9USZU4OW7GgFkW1GvZBif7qQCG3AuKqoAGBiPBT4xY16XIptNIsex7rko0QysD9l4bBbDhwCpbocXZfA6CWPS14Ex3NA6EKgmJEmGNLimC6f6dnxdZCOQ3dawrKFYh6BAV9XJJKd1xkLUiU96ZRShyDHoWu2e8Khp0WId9/beH5+UyfTUFGdU1Nnq499H6fHRN1xbwrNBz+pTyR6BT1mBEUuUP2w6lxuPd0fdWuNwCZ6MtuvWE+NUdHR/jhH/5hfOxjH8Mv//Iv4y1veQve85734MaNG/jRH/1RfP7zn3/Sm/hbtiiq+3XjlACkhOsoeobECc5i240Fdkw8V4WHnbk80YXQeVjEAyhCnh7n7BCvML28JZ1K3FFiUERDkr1sUOjXJXxLH3eVRy5CydUiHk11gwfsN5wzYAzI1LEk+sVECjv5eWZlcD+xs5lawxe70HyAiICSaX3O2PAsIk1K7RYqVryQVA6F0RVlPqDdltAtG7Cht7kZqPa6fPiVitAm4sr1Mxztb5AshBOtqp72onHQo4uS6FKUTra6cWyKOk0LWQnzSqL2rDWJiu5PQC6S03t94tUbFLZ6TueNuDopFTnFV0QStDQvrrd0enIaj1Zz/L/uvQu/8ugmznc1TNLz6FG/EKXZiFGhrgbRM/D8+pxOz3OlFMMnBwn9i5HbO9treRy9JlWrpGuCd6KpiGx6CutRT3tUFQcNZjoA4jyVzpPSEXhUCboRcPfREnEw6JsCtvJQKzvaLwPZpStGRccrFVHPehx9/SP4QWe74yRW1zaIgFxlil0QkT1PAHITmCk9YUT3/J7LblnaMOkawJgpEhRQBwwLUpBUIJJYVA7DQJe0XVPhdD3F5x5exvpsil1bojurOIAQl7UgAvv+ysDCFRRr+1lAcU60YHLXoDsUpyAD2BbZIrk7jLANMMyZC2E6NgrJljfaKEUpC9MUAmh3dHbSHZuO3TUmlEfDffE1fzeUnFpDIVuBR83PuJtyOl6eJctd5KyJUALlucruRgBEgM3XMDtNAbqVArSIuekmNQsc1kQiN9ntK902epVHwyrQTUlFbuOwT+1GMh0oVmIGMSXFLJZMOddbAyPHIwX+hUqoYZHvX6w0hrc1qB5qqJZ2w9PX2IyaXomehchGKBiWqle0VO4PPOLeIAW6YlEb2CyYSy30OTULgJynSkL7hNplzi3cPGQkwp5ZGLGyLc9GWlTUbCzRCbUzgJSrQcGfl0DNZO+LGRop7TuK+YTyFNnDRLH3DcAZm4VoI1TFIVIsRupeTOaJc3GtGhT01lDAbyLCRMw7BIXTIiiPxagpjJK7FE0UN6o4/t9EBtTK57WoR+vdobViu04UNAitVduQn22+tdyfIt1zw/i6PalbuvTZoRIXjFRwIaPmiS95dnzR/zxdT9eXYL1hGpC07t69iw9+8IP44Ac/CGMM/sAf+AP45Cc/ibe//e34qZ/6qSe9eb8lS6X7aPIc9wooUpYH4WAK5SKtDtOUZuYoqHaKSMamyAWhKjzQCeQuxQELMD5M0fNBuXswE3cVTsAAPGZlGrMveioy5IadtBaDJudXKFjtdYfwn5dwVwaUDwo2HuVo7zhZtChnvdCaHkc+9LLPuRhJtH6R13BRVwIkKhQn2d1ZRZqNjqMLitCZEEG0xfpccL7wjtsZugfARi+qjHTEoOHPShyfzfHweJH3O02+u6ZAuy1RTFhIJ3TkYgChLpjhEYOGXgxjGrxXsPeLbN+bXKZ8PzaXbIDo3BVPKk7nDAt63xsYG9C1paSHG0ld1ygnA6D4NW0DnNP49P2rOF7NMAwWu6bMiMbQ2Hwuo0z/z8+msPVw4WsBri1ys4lHFar9jo5HJsC1FmHQ2G0qVNMBQ1Og3xXYX25RTJygBgbn6wn6psBuU6HdlnDOIKxLNrqFB9Y20wCVjihubqHWo2eGnfUoKod+XWLv1hkLhgsPS13TrnfoLHxvMAwGx2fz3OD1jezDcYXi1yboXp/lhtF3FsFpcUlLDmRgIVlQo2QKalXUzGF2tMvTVkCcuRL1TYo4mIBwMGB3M2BYMAyzKMRlzATszRsEr+GDxuGlNfptCTVoqMaQM+/pnGQaBbO2MKeWHH1P7nt7w8HuONUntYi6Bl/J3EI0BtlZqYpoLwe4WcgBhsnWN4XxqQD0hwFuFmF3gJ9woLD47Y/gDwdEDZSn/J3pa6R3la9U2F0lklGdUgcxeZFogh54DEPJe5nZje5b/R63PSr521ADYDdjajsA6FZzmKHYJJlGZ03JqBuIKKTRgZa08wm/l5qqYRHoBBUUyjUdryava7TXpXl0CsW5gbKSBaK4L/1lsakWm+PyXKO/5DB92TJg8U6N7nJAea4RLbB9NlCbsQwZqQHYhPTrMlvbIgL2fslckAja0SYq1IMaYRIY3peosBqCXvEZEIsIHPbZzjgURCh0z30PM5/tz1OOSlgw3FD1KlvdmlN5XxGCQ4ZUdPqKMBud9R4QZEcPpLalZsPcZyqgWduxORQzArWyWX8TbWTmSKOhd4b/HgTln9JhLKHr2WSlDuPwrQzAwsEmExGIZi6oUQd24V6sdAROSz4rdIDvLA0AhBbLYRzREf68fA56zeea14IOycBMAn5j5HWJ7VNPn6fr6frNrDdEAzIMA97//vfje77ne/Dcc8/h53/+5/GjP/qjuHv3Lv7RP/pH+OAHP4if/dmfxV/5K3/lSW/qb81KXOap5/TpgisNgDwpQquBdZGFddhZxC2dZzDIpK/TnJ72Bph4WrwCQGPk5itiwAv896hAyDnZ0hYX0tBT0yIPkoy+7Ig26EaT8wsQ6Sg9zDefo3y9wOTrT+kP34/+6c26Qr8t+TsysYNoGrQhShNTg6WQmycl30sPkyRc940FFGBnDosZx79uZ7MgPKYmRonjk4qoJgNe+o/Pwm8LFv2OCFN/XHOqJ8iJmrOYL2rHZqA3DNDLwmWNfsUR7q8XMSvN5gFrOmEFpwGvoR9UKK7v8Oy3vg4jjVkMzLxA0hOYMfdDqYji2g4mNWcKKCeDODvJMQvIjZOXbBArovIYNIP7EkKVpsQ6YP9oK5bBKhfgReXyz6Xfn+418B2bnoO3nkhIo9DyDMXe2ga0D6fQxwVMEXB6OsPQWEQ5B2EQO2FpDN1gxqm1AsxRx8YRgN8V6JsCz739riBXPNauN9Clx3ZXoagcbOUyhaqekE6SBPgxKhhL0XyiVgWvgCst8PVrFDd2F8TnYaS/ic1x/mh2bLAG0T9dPlqL1oVNSUbX5Fd05YlgNBS9xzogTD3s3RJaRcxmDFWsLfVP7rUZTl7e5+e7CnQoKim89tPUMATYDYXWCRWp7jExnKF6Kg8qEAE3EXtaCZALJZ2nzI6FI4CcZu3mUqyFx5uAYcH9sVtg++FLqG6XKNbAsKDgfXeThZltWMz7CbC9GVGdqGzf6yd83WTdqgfSw+yOTQgdtOR6FCF81ICbjQGCKtDNCwEojzXc0qE8Meif7WDXpPGEKqA/DJl6NiwkjdyA9wkalCHqiPJc7nlzj2EJmLWBnwb+3tKjerWEm0aUJxp+4WAFTXBL6myiAsqHFv2SdK4gSef9gcewF1Cck05mOhbQfsqvqUsdyvvUVYQD7vRwyAC9WAW4A5fPn5L7apiwQE85L6rXPB7n1IjEdZGRhoSQ+FosfBUk40Kui/TkT6iSYail7hWKtQbEOQtBwWws83fKkMMoY0IG5o4NxcDzEssL9vEmwk+oYwk1USTdybU5KKL8yanRSAijZlOiApByPFBw+6IClIT+QUfqLgD4VSloZUS518PUDtYGoiBCh0QEotO0bk739AjgsCdykkxWZLASG8trRVAYDOqxAVWiXCnFBidMw6iDfJIrfon+PF1P15dgvSFa9uvXryOEgD/6R/8ofvmXfxnf/M3f/Bt+5t3vfjf29/d/y7ftiSxx+VApVO2CcxLAh4tKSIYsNYwhTSpC0pZDnqKpQSPGABgZc0ZxEwEe46+m1FtAwdSO0LTXYwaHiXRKWQ5QGwYRRqeBMmbPfn2pA04rYDHgmeunuPtoiSvvfIBHv3IF6iDRwiJib3K2yfWvv4/eGTx8tAddORS1Q7ctOeVKzZFMoQEgSCq6Kn1OyValh6kGmUAHnJ7MSEeYuWzZG1oLVfrctMWo0JzXOPqGY2yaCv2uoBC8cgiVQ7eqWKQL1ck1BYI4INnZAK0jBdpeS3CVcI+TNiVRwWxENeuBWQ83GPjOoJj3KA93aHYlXr5ziedC87ig8Ni/vMF6PSGlrPB0YTIRbjAZVWFxPNKP3AWxdG4OAbjOjHa8Ghg2JYp5n1ED9coE588YaCn6Tem5bwMbDddrOkw5hd35BMrST/+kn4tgWzQiNrlYaehFj/Kyy+nqpgxQmin0SgL7/HmJMCMyUh606HcFkSod4Z3Q0KYDwqBx++Eh7ZST25SJODjc4ux8Ct8rLJYNmraEdxrNtoKtHWLQGbkLiloUgE2SMhHzeYObe+e4fb6PqnDYrGtYQY8ANi4qCuKnAQ0GdCrN43SymgJRMSvFaSiB8IJjOruyAXriMF+02G4qhFJBtQbTt5+iHyyuLVe4e75HvUhjyP+3Eeq8GD+Tc4cgp1k3Ogumda+yAxHkY50KeUAKbkDyKEgVCgW/P+wlnn6EPTcIBelHUCONSXnmSvhJRPVIoT+IGPZYuJudlm2gWLyfBgxzukVNX9d0l9rn+w8LwB8NcE0J03Fqz22lYL29xIyNYCOiEVerVuVmJcpTyp4r9IcRQUfUDwzamw7lw4IIxGcq7J7zqB6QiqScQneJrlTJqjWU0ogkl6m1RnvNw54Z1K8UaK97mK2GkiK5fkh9RbIVNltDtMixAQgWcLOAyX0N2/DeVJ1o9HsR5TEP/rAkgtIfBMRpgF3RTKD6tQm6I0+6qzQdZmPZjAjyEKaelt4rCyuuU0mTAi8FvFcwO0kHX6VUdsVMkCkfBm4KohkHPcxZjVDx2HsLIsS9QQiRrl2eDlh2q+FMQKw94k4spQMbHuU0NYJ1gL1XMQiz5HlSA00RTMd8ET1IFgik8XRE0N2BoyXwnkNsxb7dRKjWQHV0IQsKCCqO+RyJbpXE8hpAa2CX1JL53lA/Nxh4Y4DOoD5q0O0K3ocHA1UG2IrPAyVDJH1u6QCmQUpXyvwYBNVJYSNpVYHNXASUOEEqoUM/XV+9Syn13/6hp+ux9Yb4xPzUT/0U7ty5g7/zd/7Of7H5AICDgwO89NJLv7Ub9qRWM7qTIAAQ+FulNFZZKqgx8TY1HiZi8WmLvU9Z6J3YBKbvJyhZfkfp8aYZU6CgvC52RlK8kaf4CPwTy8Bp79zlaZQqZIpUB8STClG0HfdPF7h0sIFSEZe++QGRFQnLU6WI5zXw+t1DPHy45LYEhW5bsrC7V2a0JCbPeVC4nHM8NBuRjCxEBSfuXQgKbltQHwOg2OsIlWelLYuN44d76JtCpvOGtKDewE4dzHTAZN6NOhOZ4vvOIrwyFdgfYoerUM160g+SY4pM0fumQLcp5XUUhrMK2/M6v27mrJcecTA4e2XJKT2QE8ETOpGE4okaBRD9MElwCcAUqVhGPq5Mt9dYXt7AndTydWD+DSc8PpWD/cKECEh27BLEwJGWVi34wJ/ttZKNwWagmvX596JXtNntLHU5mwJ4vUa4N0E16wWpUZhc3pHW5BXcnWkuFILX2W0MAEMEVYQpuY/zvRbl5yY4vrcHv+V526xrhORaoxPtIqCaDJKlolncdQbhUQVbOoSg8dpqiV1TYteQwjY0dtSgCK+cx51fI9LE1w+C1g2NvYCeiI2zZJAoFbHdVtn5rHxo4H7pAO3dGV5+/RKsnMfiqOV77iSDJrKgM8cFqkcUOuuOjYXp2WxoD0Sxdo2GQmw3jSg2ci0JSqIHlVGQWNARy641ihOT087dPGKQNPBg2Yj4Gfn/vobQYAC71Si2vNeEioWhXRv4KjI9/CCivUztSHuZdKDqdolhGURzIte0BtordMeKJsI2CuU57wd6QNY3IFCXEQ3f027Y/JiVQbAR9V2L7ZsHlI8MguHPl+K2ZXfILlh2q2G3pJwqQYOKU4PhyKE/ZFp9okj1RxRpR42srVD9WOwnsXV1rNG8tYMagN0zHsOc+SiJRlsda7gJt1k5Kc4bUoyqR4Z5GoMgHFMPdW4RbUT1UM73mc3IVfnI0Gp2UPB7TC5PVNBoKFLvD4hElSs2EbRNJlUIpyX6KwNT2QvapeuGTmaJTpv0Qm4eeF+3bAajVygeWTZFIKKWM0AiJFsEGQVIDWzSdChxiXL7nvqWxlCLsrXZ2U3ZiDjhv/3c83gkZ8edFndIoWP1fI5FTXopjT4iioljyCAAsxjQnNUIHemdENMR1xZEggcOwGxCPyVkMA9qIp9tKCJiLeYuJvL5LM/muCGVE0EBC4cnvp4iIE9sPRWh/+bXG6IBec973oO6/uJ6V39ZLy8PBJdu4iOdIlOR5OabbR3lQQ0A/T79/ad3pNm4aCXoWXTHUor3ZJcrziJp2cNWpvlgoe5V5uDb2ZDzLQCh8QjknrdZmhY/GJxtJuicRTMImnJBYJ+bivSl1OykJunWjjSWJPpNTUMkjSA9eBJ16OINMzUudjbAHrVQOsI1BYpLLX69X6GpHFGVzMlWuTEITmMY5PV1pL5AUJzpXYX6pTJP2ZUJ2Ju0sM9ss76kPGxzUV4kCpycP6jUKMScH0FxO89pkGKYInKV9SEqCS5zM0lRfRJSAxA7XjYYxcQhrgr4dQFjPZq2xJVbJ3myd/ZwjtAbdI8m6J/pcxOTzq8WehFaNgWm8Pna0IIIDR1J/MkSt92VCAMT4PWiR/XmFSeeQbYxAn3HYmC630Bfa5DodX7QMIlSFUkZC4OG7wwO93ZYH88wfecx7NRB9QrldBj1GhHZhcz3DDqMgV9b3lhhenkLNSj0d2boncGuqWgtnKhTCtk8gOdQzle2X445iT1lpSgdEdYF3HFN1AWQhsnnazGKS5gWIXqx0rB3K2yOpwhew92fEFmYe5jFwM+jBvylgVkZ13Z002rZIESZ2CqZ0NqdUK2cwjAHTMufMVLAAszm0J1Cf+jhK9JvhjmLR+UUbDNaqyLKxFqzOSk2fK/yDGwGJJvDlyzGo+V7pqKxu+r5elYyMTINikVusaYo3Z4ZFtlVQjxiFqQnMbuvSfWqHmrul+g9tLxXsg92S49irdBdinBLD1+PlC3lJN1cimMtKEFxTEMN2xAV9jVzNfTA7dQ909WLrRI3M1ocR8tmr3ylwuatDtPXmaiteyJNbi7p8W48/slCVw+8j1endOcqzjXMyqA61tBbg3IFVMektZqWgyY3ZZOme+YuqV6RnpTuewDMVqO/2aPfH+/lXoIp7ZbXpZuTWpXoTxedxnSnBEGTW0NLThctdznESgno1MGk6UdKkGezGzWyXXRyw4oWgARVascmcMxoAt3wep3PZRL7xzpwGxPqMCigohaENuVE30sJH02OerTOBrS4Q6rCA1MHiBg9Ct22X1d8LbGzT1q8qMBjJAh8fq4Z0fIINQwmMGerffLl1BfdgjeOp/jp+q+v9XqNF1544UlvxpfVekNQsJ6uX7fkBherAFjyaXPzoOPYbKRCPn1dpuXdZQ/MHK1aG5sf1tlHP02HFWCvNRhOq9HlSqwS3RmDEJWKDMAKCuZKC99ZeHEUAbgdUSZcqg7AxiDUIQvlYQP6XYmTXcmk2SQolzubKmPWOijE3FREgQOGRoraIo4NmIbA4hB3qyhNihoDpVSE0rRl9a0gHuBxcr3J+owIlVPVVbJWDIAqyCEeWssmQF4TkbaO/UC60e6dDYvk8xJqSTeqVcNJfHQasdMoZj0GxUaiP6+I1qgIM/FMB75fIl7raO8rIYmxVzD7PdzOiruUPBRD8rKPGR0Zvz8+KZQC/KqAXkjehVc4unWK1WbCbQsaD48XiFsLvRhgRCAeOgMzcUw7l+l+kCl+NRmgpj180JhUPcMJFXUSAFEKLXqh6BW0BF322xK68Ghf2sPizefY7Sr4XjOfQwe4zqJx1WNi0XheAEdyTiNRJ1076MLhwSuHeOaFhzjZTBEDcPT8KdbbmhkwQUNbnxtCZpqobLu52Uyw3NvhXb/7EzjpZvj4y89ka+SE+JiCDZCWMbbv+fXZ4Q7bFXVBuqCDjtLIrl7VpQYA4Ho7Nstgcw8PCtE7g34vItwQGqASsa+JiAuHAOZbmBcnqDfA9k0e2FiUpwrq0Rz923qUNxt0n10SAemB6kShvSwoBdgEuAkyujjsibZIUrijAer7Bm7K3y9WwDCnY1YwFG3TJYuFJyJQbIDmWkD9SCMUzBJRveg7PDAcMZOhuR6IuPQa1QOD/iAw4O8qE9SjBnTLZqk7JFrg9j2KU/L/fa1QnlJAXmxEv9KxeRgW3KeogeldheYyG6L+kE3EsO9RHjMlXLcKxblF91yP6tWSDlRCnYo0pKPYe6Mx7AXRbwDm3ACaAY7ZuSlQh2JahWJFx6r6AcNYY8Pfm33BortEO9/kLBZTkxiZmh4KEYjPPIYbPbBlQV0/MOj3qUfxFZuy5gqbr/JUob3pMHvRojsQVGoSaDE8I2rjrvbQ5wVCEZjvcVzkJsJuSZvq9wLi2sCcC82rMWPgX6OgjIJuVM790K1GAIXmw6Ej5awOTEUvAulnCz82C0GE6p7NWjQxXzsqjMGCyTghaorgzcYgWAVVeYTWZMRdBRF2B7G4jbyWVRGBHlCFz7bsZTUgRoWhtcxrCipTbmEC4s4ClZeQV0WEeWehKhGaiMtcLHh/1xM3DrIGw2Yn2cc7BVUGqJ0hPS6j8sjUvqfry399y7d8y383peqjH/3ol3hrvnLXk2/Zn67fsKL4wCuBvXUjSeY6Zn1IsqQtD1ta2ZbCHfcKh8+dYbZs4VPhnF5z4rP/upLpznBWkdOaLGqLMAZMRf5Meg23Lin4juDXggIajeLEQs9Z6GLheLM3EjrYm5zkri5MVmMQJMNRlK5SY6UA/XqNRO3ixl64safsDYH3E3ISRX9gpwNUxUYAmknaKY09uzlJ05SPd6CQGwCtW6cDYqCnfAwKdj4giaMXBzv0TQGAE/bLB2vEqDC5ts3CbdfbTNGx+x2292fMY5GHX3qt4DX2b6zwHb/nE5jMO2ojpDGq9pljYtZ2TF+XY5fC+5JAPSR0Ju8QqUB71xnil1CR87U0H7enMNajqB2L5gd1Pib7lze4drjCxfSphA60jyZoNhVcZ7BeT+Q6oii/lPyNtIraQb88gbszBbYGYVvgXb/jM9jtKloEXwgEUzrSTlf+jQgsbq5pNSwUu2rZIgwMqTQbjddePUK7JfJ0cjKnIN1GFJPh8UwOKYLszFFboyLOzqf49y+9GZ++f3VEnaSxTM1UOR0QOgNbjpS27XnNBqXyGWEBiGBFr9FtS7ieza6xF+ylhdZBcwEP5YHJqxbFKfnuUVyJDi+vYa40UHsDuqsO7TfvWDBPPNqrAbtnAvYOt9ie14gmorvkES0wLIFiS51HsWbxq8LoKlWsyKl3k8giu1HojgKqU07H+wNOyPv9SJqUTLOZIxJhJB7Cbkk17C4H2EahOlXorjGcT0U2QlEButOoH/L96gcs+FWnabGrhD42AOFwgApA9cCgWLHxaS/77MLlKzYN1Qntf+2OTXgoJYME1FgkK9zqkUG/T5qXmwemqh8XaG8MzBSxonnZAqGO2RJXicZj2AtZQD3M5UKW4U9ygWK+CbUg1e2SKe2TgCBJ8srzuBdr2b45NTTRyL4cK1R3LfRJQaRIAc1NB9MotG8aMOx7DIuIUDOYMBRAdddi+7YBtuG5syuTh1JRgTQmQQqT85VpBQWtI7orDmi1NAygAUlLUTsi4BYhu3El4wGo8V7LDA6QFlUElGcm2yErR6pXsBLaaJh5kxAmFRQtdr3KCfdu35GyJRkmRBnEMEUQLyg2w6EQG+Ay5IGb3u/z58lUHl1bwCfTDWeyWUaU/Zhc2iEh3kYQaLMYOBDTEWa/B2o/Uq7kOZCcIWMAzVM0RHupoFNmiuRFKRsfM6t4Yit+if58la3v//7vx/d93/fh+77v+/Dud78bL774Iqqqwnd+53fiO7/zO1HXNV588UW8+93vftKb+mW9VHxKXHvDrNVqheVyiWd/6q9CVzWtEGcORRJDJwGeCPmiHov6nC+hpLkQq0okxCESus5WlRNqKFTyejeRVBMVqT+R10or6uSRHtl8RKIEk0WHdlcK8sAbMRToUKK4fTHRsiY+CwBTIBQQhQcs22MDyumA7sEUmPqcNs4lf0egXnRoU0q6oAIAcrOELX3zVcHJlxbL04S+pEZEZ/vWdOxi/n+2dc0Nn6J/fk2fe1r+sqidzDs0mypPzwEKuX1jYacDxc/pdUCnpNAxrV3pAD8YSUmn2H1YEV1YXtlgsxkbBGWYR2KsHwP/goigE3oSVM70SMcr09qUZKR4umFpG1BVA4aBYOiwLWBqHne3LYFWo7zcwHsNYwO0YlaKKXzOFmHyt+yXGff/65+9iz4YaBXx6Refga4di3xpnJxoadgwqExlSgW/3xUo9zr0uwK2cjjc22FRtZgXPT59/yrzPOR4hsHAiPXuY7kpcj7jeQHYCLM3IEbAltx+ImggEhWB5Y0VNtsaWoqJ9B4JWRkDzEb6SWrCmBbPhl2LJmnU32C8zgDEFavsWHNfUwOuraf2ZUfjgvKgxXza4eSlA8TaQ+/oJGQbujuFKqB+YHLTYNpxIg2wINYO8CWLfjcF/EzSrOuYC0M/lYwSD6ERcQhhWqHkKBbW6RpKAYftMwNmXyjQXhqdkLobA8r7BUwLtNc9JncMmucHFPcKitMPiHx0R3QOqu7bjDaoSKct5YDmekT9iO/fHfDr5Zrb0O9LgzLwz+65AWZlUZ4p9PsswodLA+y5RbGm5gIyiS/PSRsDiN4kulJ5ptDecDAr6iK0IwKTbGOHpRTSO52pbNopFBugvRxhJMwwUXVMihFSbJSqRxrN8xSZ27WBn1D/oiKgNwZ2q9BfcVA93cmiYoNkxfrWT+mGxptLhNnq0V5ZTAYS6mY3CsMyoDjTGPbFjeuy42BrTSSqWGsM+55FfxEBG6HPLXSnEGqxwZXPtVmbnBGjPPfTHzjotRnvkUIPDRW3OV1fyrHxK875tSg2y5nmlNz/TBzRDgNqBW3kZ2Hq8yApmY5AwkmLynEolIYOLr1GzNbaMSgi2p0lImJjpnfmZ0dQfB7WHrr0HBoBHIwlepVXNIFJZi2dmL90GqFtcfv/9H/F+fn5/2pa9pdqpdrh1k/8NegvMp09tC1e/ov/lyeyX2+E9Sf/5J/E9evX8Vf/6l997Ot/+S//Zdy+fRs//dM//YS27Mt/PUVA3ohLpkDRUtvQH0/GKYSj+0mUlPRkIZinVkHlnI4UZpiCuGIZ+btzL8JAoX7IQybxX83KZPg7TaiUhug11JjNAYVmXSG0ws218TE+slKQxHNgcnnHaVtbXGg+AEDBHPTy/pwqz+oek6tbJs8mlyZDBCO9ePf6DPlFJKcjijjb1B76oMtiRGB0aDIV4fXQEpEIUvgnlCEVraMOgI1RORtQLzroBVEU7AyK2mHvYAulI5pNJeF2YscaFZzkWrimIPoihXbaV4D6AT+YTPFKaIWZDaj2O6zuLvIUXxfUWgSnJEyPh+CxZHZ5/eDZsIRhzKQwEj7pegPfM+keUaFrSwwbiu6L2ZAbl8OrKxzdOuV0UUW4zkhgHwtzbSIWew31F5pi9KEdgxw/efs6fu3uFXzu7hVUy5aNTyDVyUl2iVIxo1lG9i99LTUf2rBhevBwDw83c/zq69fhbs+IMilg8eEJ6kWX6Wt+Vzw2udM2oLzS4PDmeUZpxnAyHsPp5S3qSw3Wqwl8Z5iv4jRMwSLHlB6+tTBTJ01PzHSt9Hq85iMtosOF83Chmc92ynsD9H5PRCRdF3FspIpLLeqjBq43OHm0YNK00LTMrS26mwObhYpT8vIUORgwTeLLM/5/mPNroUAOt0Pk5BoK2VqVDQh1YUqKM4D0o2CRfzZYakmiBnTp4SsgVAHuap8zLPrLDv1+ctgC07sj0C8BaBb909c0dKvRPdvDbtkYladsLHwNzF4TZGJGWlmgLwWaKxB3KiIM3WGEPbUIE4Y9lis2T4vPsMlzNSQJnShKvySqowK/V55xWt9e9jDnZkRaiuQqRjew6pHQljRtgf2M4nk3pd0v/z9qKvoX2mwjrJxCc82juEfrXXetz4WrajXCzMPthRwe6OsIt+dJtVp4aNG7ZA1IR11ImIbHTAV0Kw1lzQK5PyB6kMT1+rSg9awitUo5lc+zXou4Ok3yheobFUZ0Yxbya+u1yfpCu+NQiw2rgrvKe3r6f9KQEA0iapSaZFwUf6egSbkHozHAzHHwA963q1lPGpUMP9qzGqE1I2IpKLOtHOLWwgr9ql9XvCdI1pCyYp5i5O8IMgUU9WaIKg/WoECmAGRY0EmTk5qnIubvP9H1FAH5oq+f//mfx5/4E3/iN3z9j//xP473v//9T2CLvnLW0wbkjbhMzNMbAKNQL9kPJvoTAHQGetFDPAuFby43/U5nXQicyk5YUaivKeEWEfkhoXqNcK3LFo7JNhFAvhml6XJCQ5QI4xlSKDdpsWpUFW/0zRkpO7yZx/HGFpD5uspxsrXZVdidTMaf0SxIM69XR9Q3N+LKpbi/OvBqFjvG4EwWEXP6r2itO+icM5IfcuD3/Y6OTcHpcT/l911v0G6q/DVz2GHoLLrBYrHXUEfgmW/hxdZYTxxUQVRn2JRsehLEHzjBQ1QSbpcaHqaXh8GgfzTB5PIup3YrBQQpmlXSgETkbA8tTlUAi25lSEmCioL0AHEwuXC/+dwjfi0Ab751D0XNYD/fsDjfNBVpW0Nq0IiqJKqU6w22uwpOwhWL2jGVXSaVUCA/2yuU1ouWBJl65QeNajLkED+6eiEHABbWs9jQcm15hbYr8MLVR9h76ynP270a/e9dQUt2h+8s9i5teD0GajTqmu+xbcsxnEw+U8Zye7tupHEooZzZYlTjxkjEL9OCt2y0aOd5wUAgGT5cQNIA5GtKXWgyfSPT2KAAG2gs0BheQ4NGWTjU0x76uIC+V2HyhRLV7RL9aQ1zbGE6hepOAeVAAfhuRD9MA6zfyuYgoxoDsng8FBHDgc8OSLpjsR/EiCKmhsmMyIfy8j4df77fD1APK15vPemWoeCgY/6ihbrRIBaRtKgqwJd8X7PjlDwWFE1Xex31Dicaw94oOI8aKM/5fsWaFCk/YcChr7ltdqckXV7BbDRMzgtRWUAOsKlJmgxSy/hv7SU7RTEHAxrorkr2jdDYoJCdrYLQsGyjsrOYmzFVnhoJpsYXWwCnJYXoToluw2C42aF+rciDEKScp0EjHvbsQ8XtKbkeaqey65abU5CtnBLHL+aPDHtsDLW/gC7YSEptp+GnvN5DGTl4sEQb7FqP2yAGJb6Ogo4rogE13Q5jEUkBBrI7mXKQhHQwK6OX+3hrYBqdEbgcuChLDSqjHyzehdYo2xGN7H8VgJ0dacLy2YkX0FJdej67NDDIwKKY0iglWg5OlA00Dwkc1qWBT0IqY28eQ0OyfqvkZz4qeV7MPK3KRQSfksKVU8Cg8HR95a3JZIIPfehDv+HrH/rQh56aJ/3/uZ6K0N+IKzUXg0ZxauGWwt2ViTedpgAU/NmwLsdGwamMkiQ4O5YUjEbxfU8NgxJeazQgn3dD+8+YCnSnOJGKCuhZJGWrQkuYRg0aKAPpSGkkH9QIY4vfeuws1KagRiQ5WaWHUtJzKE7tu7M6T3IToqPMGHpoSk/+fxwD9bAtgMqLFTAFvhH6wmsD7XnNB2vhAaflISa/bwOq/Z6T704QCUEUlKSnA8jBVr4j199pg5sHZ1idTbmNA7MfYmOgtgXi0nE7gDzlBoBiMhAt6BWc4msFmaLb+QBdDhg2BkeLLe52+4Bmw1HMe7je5Gl/cEx0LycDBsnXAHBhAi/OLorvXcy5j7O9FveOl0janBc/cwOIQHm5JUrh2NS4kxrmoCPyEhT8rqB1ZeUxHNdQB8IzUTFTpUIYw/u6pkA1GdANoucwAd6NmpVe9DK+NRlBCl2BGIH+pSn6Sw6qCChnPfpdgf6kxhfc5WyPWz+/QggazplsO7zZ1FAKOZW+2Zb5WCQKmh80ismAflOi2uswtBZDx7T45FzF46AuCM7l5Cny0IMTat+6gFn2mM1aNDt5L3fhnKuAybxDJzQ8pSL0qxP4my1wWsKcGfLwaw9MacEcVcT5gzlmLxWYtcDmuYDmpheevMqUKNMKyrEAyhURBmoggOohbV7ddKQaUUOg4SdEJ7ixYPBdy6lvalQAvkd1yul1v4ywaxbDzOmgqLq76gSBAIYjhukNC0C9MsVw6FAcW4RIhGN628DNadu7u859nnx8gd03tJh+okbzTQ3sSxNUjxS2z8WcXG5aYP6SluYEmDxgzoifxmzPWz+i7W/1iAW/vqcx7HlM7lH4nwr5Yq0wzOh6BXC/TJcaGUD3FsMyYPaqhj+6IIKXn9O9kqaM1K7yTKF5dkD5oJCgRzY41QkF6t21AaoxPMZnBborHtXnpqjk/ZsbpGfpuzUzOzaW53RG/Uh5qjHMmb2CQBvlEIRy12i4aYSSAMd+31PoLWZ7Zi3vK65ZYSoatIGi6+GQWSPKj4MmLYh5WPB+GgfD+7ZCphxFE1GcmUz783WE3RhS3XTM4YOhIO2tWNNYwO5Ubv5iITbwOgJBBlmJOug0jRuCAmbUmPXHpCX3uyJvq2+tIIiArjlgctsSamsQ9wZe0xMOvrQNefvTCpsCauoQgxiieA1dO/idJeU4yNDFBvn8R+Y6KclrSs0X1GOC9Ce1vhSuVV/tLlg/8iM/gj/1p/4UPvKRj+Dbvu3bAAAf/vCH8dM//dP4S3/pLz3hrfvyXk8RkDfiCuCN2Sm4ywNSgnK68asAZs9ZmVKJIxSCynQsJa4esSTaEPPPquyalXzaATBrZH/ge0gKMcRTHyqSjxvUmD3SUzAYDbm0vuWokEgE39PvLGlUjgLDuBxQznvy9As6QWV0RSFPvVREpgxky+GE5ETFBsFrwAY8+6ZHuXCNTjOHpGf4GLw0Y+HxB0MM5OjbuRzbCMBp9NuSjUXSfngFbT0tZwXx4ZMuQUHclpfuXQIiLXOrvY7oRhGYsi1PBDNhnghEYZl0EqqkHSSiNB4TR8pX6fC7vvWzuHeyl2lD2kR4maRrSfotJrSfHTqLesJ09LApEI+rfMySjSxRE4160jMvI537qFBf3eHKCyfMuLiA0uw9syKy4zS0CdCVp93ltsDixpqNysMa+qUpgxrbgnS5l0baYNcWpChFwA0mIySxN/CPasQIVHsdHdZ6w+vDRhx9ywNceuYMuvAYOovLl1e48qZTajYC0YtmW6HdMHxwaArgTo3yc6RRxThS72zpc8J5EKTQDxq3nn3I8EkNVPMepghwbYHgSY2DIkJHkfyIMF0UzKsZm+rU6KR8Fh7zgLgp0G7LrDdSCii+ZkV6x94A8+YN9p5ZcdptxS5UM0Bz95Ye67d4lGe0aY0a+fMeilHgrDwpSuXZePnqnlP/YgNxpuK0niiGoGeG/9c7Q5cisVDla4csptYdERTbktbTX3UIVYRfUFcQn2s4xOg4WXazmFPBbUO3KXPYoV8C/s07mA5Yfl5DFQGhBMzrNdrLbMz6A4/ukIhO/Yj7VJ0B/QEbkWEvYpg/XhgVawVX02GrP4iYv0LRu3aKIm9x3mIo49iQ+RqY3E+oSe4XYXYa7RH31034c3bDAjkUpK3qHmNI4YZug8VGGpQqor1KS9/qboHpHd4Di3MN3VHf0VwnoqM7NjTBUnidVnmuUD2UEEMr2RgJMYjgcV6y04gF4PY8ipVBKAP8nkd5wlT36g4LdpXsZBsDmAgtNrrmUQE4xdffd/BHfA5kdFnQ9Tgo6PlAW2O5/owgZxCEJhY8huWJyRbvxZpZKKYdESUVeH9OYvZM3VXyp2Izrhc90JgxTykQ/dBGTCxkOBQ1P5OxN4AhvUudFzCthrpbA52BP66y9Tkag5hCEreWaAYAM3EMq9Wg9iTrWyAaPcmgShqwxy7Cr/JK/St0/fiP/zj+8T/+x/jYxz6G973vfXjf+96Hj33sY/iH//Af4sd//Mef9OZ9Wa+nCMgbcGmnoSwnXTGSTgBxdUq2h0yN1bloj3Vg8KAihJ14yFFurExKF9vAqWdhBJvdqlB5REnLjgLFX6QoKSl8oo2koXRCN0nibHASFJwht9YEQCs+EFL6sNfoNyWpRNkKV6DrWl63JFUoTWMjINxgCd3zEK0GAK9w5+E+N3DioSIfkrlBcopfVxhRpaiAQJoTRFyrk0Vjen7omNGbMBhOvFL+hg2cCCakRUN0FgFm0eck9Wo+YOhtbrBs4dHvypGS01kcXl3h5OGCacidRtzvWeQOGp2y+KUvPJ81KUqNug4oQIEUqPTQ1iag6woEp2GXnWSCIOeD4EGNcLlDUTk4Z+AG0e0IrWroLc5Rw7UW2Fjo/R5+0FivJlCizwhCvRs6i2I2oGlHrcVw5GhnGXg83vztL+Nzd6/AdyZvX0Zl5HjVyxZYAr3QypJ9bjHrcevoBHdXe2jaEsFrTOYdTlYzpNyR4DT6rhAKRkRV9/CVxvzyCpumQhmVZJNo+NZy+qmSSF644oXH7YeHCJ2BLgZ4pzGd9Li03ODByV5OeIdipgoUELcF1B6PDQugCAXS/rShxiZEamYgdq+YcL+cOLIFMP/krc/dw+ANXrl3xKmuQjaC0KLXMROH2dEW290+/MKjPGzRn9TwRw5oNEKpYDcK/dsaqDs1C2ChXIWCxbOqSAtSomcIVYSfxlz4RitIw0D0w00kNd1G+IqhfLrTqE4U+gUpP24PCIXYbUcg3q9R3Nhh0AVpZDZm1yPdA+01D5yXqDoAn5ti/o5H2PynS5h9soJ71xr+9RlmtzWaKxFqMSCeGcxfA1YvRNQPFNbPSUL7oFA9UmiuBVQnDBb01dg4AGxGtjcjqmOxMO/ZjNiWRbIRK1jdU0CexOzJfct0yKnywyKlwvN7tpHiu+TPJaqY3cjn0lMfU5wzudzXbMLaSzwedOGi6L861uiOAvRAwThA1CQqalPSOTA7FsrlWYH2mQHVvYLo1476BD8ZtQfJgSrOHfojUoP6Kw56ZxCOehqMmEgL4U7z2IgAXcmzAzYg1CEbk8RKngG9hpozxwSemhcP5MZVpYFHEFMDx58JgzRlBY9Pch2LVWCD44SOlaljYnMbVRaCD5syM3eV4ZAFZUC56NGvSw6TQKRC25AzYkzH5sRPFNRy4DGNCmrqoVpaP6OI4qLoOQAJHAZ5YwTRjqIBM3xuKFCUPvOwtcMwlNQhPnkAZJw+fLFf86t8/cAP/AB+4Ad+4ElvxlfceoqAvAFXKANCSpTdjoFnamBxiZI3WExpqxvnDlELt9qADlcLcoxVgptTAS3NRZCJtHKKWpCkHxkuUKOicHKlEUIQXYkJmF1n1LIqmEKuisAJlQIAiucZOuiBginPGcUQi98oSIzZGzgNi+P3lFfkL0eMye3S7EQpQpeXNvhtz97JIt4UahgNkSLSyVQOz8uvb0YnL0BoVYjA1kCfFPl466QB4FfYfEgRbZY9GxVD+lkSXqewughgOu2AwJyRfleyKUuIklc4vrPkz+456IM+v4YugqT7Itv5phe1taO4UnQT2WoWQu2R4jxGiEMVqVT1rRUAwEvzoQ0f1H6guxUUk9pt7YA5Re3a0GEm9Ea0HxHFyzVs4bOWIjoNe61BedgiOo29oy3QaXzh396CMWPAYnKHUmnKr+mmNQxGgheViNCJWrx8fIhdQ81G7AyadZXzPOJrDO7TRcii7nZHC9xtU2FWUwA7JFtj8Nqez1tu87pgo+c1bOmwd3nLYt8G7JoSx+sZbMnJsi099T2iXzFLInjZtll46YmPnrQvABvl0JEilz+DAJOZncLnvnAdL9++nMW0F+2VAR6H4DR2TYn515zCLAb0qwr1UYPZ4Y4T1yKguxww+08TGEE4dMcGREWG59lm1H/UJ6TBmJ3OIYPliWZ+hXwMQsUE9OKMKelmS0pPczUgVBH9VceaZMG/leY9aziuUUwHlJcawESEmqjr7mt6FGcG5VGL8HVbAMD6Y5cQvnaL7lKEf3EOs9PYPhtQnSlMPlMjGorNp3cVts97NlSViOHBqbpybJaKzTiIrk7ZUNQPpTHRQPWIGRbBsMBHpEbGSO6Jaccai4GM0oQY2t4mNNbXDAMclnQMG+ZsTsKEuoz+wGPYi9KgibOSiLf90rEhnEb0+57ahJl8hiwdovRAZzNfYRR8i+bDz0Rgf7/IVDE/ZwFvWqIqCKQ9qaMO2FnovT6jA+GwB9YWZmOIhO8s0ewh3UPA+2TKk0o1p46wsx5qY2jlnKiuAM1DLtSmugfsmjoQREGUqgB3hYL7i45dwBiMGHXkM21QkgpPB7iMjksQbbKGj4OGWfYo5/ycq4L3L21IlQy9gVs6uIWHm/E42zVptaG1bNA6w/fsGfyKxiCcl3lf/Er+rUjfcjsLXfnxM254H3Mtaa9RjZ/vJ7ril+jPb2L95E/+JN75zndisVjgypUr+P7v/3589rOffexn3vve90Ip9difRG9Kq+s6/Lk/9+dw6dIlzGYzfO/3fi9ee+21x37m9PQU73nPe7BcLrFcLvGe97wHZ2dnj/3Mq6++ij/0h/4QZrMZLl26hPe9733o+/43t1MA+r7Ha6+9hldfffWxP0/X//h62oC8EVfE4zezCE7z9ZjAfFE/kQpRP6PYkxoIudEnW1LF18iuVhcfMtJcJBGgEuqSEgEnOqbzYiKFVGew21TjjSkqwAucnawNyyA0KzYaQ1OM+xM4JdM1aVgj7Sbkh1+mYMl7JL1DzhTRwOAMPn3vag7hI/Jy4c+F7IwknkbgAyyL9nXISbflmUG8Qk1DSMf1osXvYPhgPyfdCQAdVqR5i460MEQWj21XcP9ak/NTdO3YlEheSTq+6fW1ZdOUGo88gU9p217DST5GEsorHbOjUyrkAQBOw1iPajJgXvcigJZDEmlBqxRpXZzgxzEITFAP1xtMlm3+ne76gOHedCyyNxbDltoM5RW22xp719a49G334AaDUjJVYlDAjhNEpaVovaDpcb0hwhKBflWi3xWSqcKAyMmC58XOetp/XkBUvDit+d5A6wDnNYxOOSMR2DE/ZLulNqS83KA7r6BEt+I8t2noLGIg9cr1FmU1UNjvNeLWIngaBigjNC4p2P0gx3EwuSGyoiOxM5fP0Xj9i0VwKrIir2+dLKy9ptZGLEQn9YAQNBaLBs/cPMZs0sFoiovNyqC8scXm+YDyDChWopnoWGQHQ6qRm5C61B1IKvkgnzEV8xTfizNRrAJDBqMIiAt+Xk2nUKzpkheXvI6LvY5uSFOPWAb06xJV6VActSiu7agn2BnoAeiPa0zqHsM8ojxlg2ZahXCzRXkOxIXDMBf3KUFN+iUwvc17ntkRMYiWyIAeJDRR0AhaxLKB6A6I4hQroh9EJITipIBAl2uYnpoS7cCCv0IW3uuORXRCVqIl5ShqFrXKK/RXBt5TNGlHoeA59NMwpnl7BXtqoRwpWzD8PoI4kQUFNx8tlN2VgXo9BWDiEepA21hD5MqXktMiaK+fhozQqESH1RFhVSLMPOyZoS25ICWxJk022MgGKVGHTEQOei1CtlQPTucGr5j3sPcqNpiiG1GOKIbuVK4o7JbPGrMRcbenjihRaom2jciJbnQG06OOtGWPGIdjmseCobQB/qzC0Fr0K8IzYaBrnaqoPTQTh1gGuH0n6Av3RZVh7FYVqJUcVEbLE6U1CfmVl2eZfE4BwBQeej6IMySRehUwGlR8la9/+2//Lf7Mn/kz+PCHP4x/9a/+FZxz+K7v+i5st9vHfu73//7fj7t37+Y///Jf/svHvv8jP/Ij+IVf+AX83M/9HD70oQ9hs9nge77ne+D9OBj8Y3/sj+FXfuVX8IEPfAAf+MAH8Cu/8it4z3vek7/vvccf/IN/ENvtFh/60Ifwcz/3c3j/+9+PH/uxH/vv3p/Pf/7z+PZv/3ZMJhM899xzeP755/H888/j1q1beP755/8Hj9LTBTylYL0xVy0TfRuAKTUCSgKPYm/YJIjLUSgVTO0QtgVCJfxUDf5OrxBris4TPM78kPHmCkEFVASnTgOL7lgz3FDtrARBCRVMywNiXcjveHJyG40o2SLRKSgDRM2njSqC5IKMN35UTIVWNuaE9OiIoChxbyGZOAgtTJylavqzeyjshjo3D/npdYGXG73mgy89TEW3kSwXU7EHExAHDfv2c8TBwgnsH8XJK5rIpqnwMI8s1K0dtucMS+x3RaZ3KUsBfwTgOjNa+3oiI2Y60FHKc5LPhyHDJIfGjt+XgjVN08Ng6Ci2x6C8JMBOKIgpPIwNorNIaAhQLjpxqFI4FYemGMhdLl+t0O8H2hVHjAnCA/UxSrMxUSaiawqUtUOICtNLW/SONrUxCsVlY6FbBXfgEBybkLYrKPYWpKl8rYK71UgDQoRHp7yOKDkmTuPK4RpXn13jMw+uMAgyKuwfbrE6nxCJsRTi9+sSi08XiBrYfl2PYubQ9Qa7BzOGYipBDXWA2e9zPokqWDjtXd6i62nR6ZzJxzRlqSgV0axrmNJDm4Cv+9rb+PRHb6HbM9BbA3WtAXSAsRHex4yoGEsKYd/QjScC0JZNKBSvEZTkkLNZ1zkFOlpeu0pH6JJ6kwiFzbpm7orTWKkJgtPYP9zi8luO8fB4AfzqAuGZAb7WaG54TF43MklXMC11EcGyKOyukY5DU4s4DhkUMHtVU3uxMrANC8bdDeZdVCfA9vlALcRW50FADBQXV4sO3mmUpUP3q/sYrg+AU9CagnMAwMRjdTxDXDrstEW4P4F5awPz8gShAop7JYY9j/JVg/56RHXfIHzdFuHFGaIC6kfA+rKHaTV8peAnbBSKDVPV6weKgvuByI8vpShUgN2N4YXlKZucULJx0I7N2vxlje5AROeB2SnR8nd9STSEzRsLWu0Uc1lahfhMi25bwJ4ZdFcdJq9btNc86ntGdCekXwFAfdegveKZYH5aIJQBetAYFqRP2UfMRYFXiDtSJe2aAm8VSHe0Z4aNWMFGxM9pt6sckTrUAdgSRQ2VNBaDorBcR2ogap/D9uw5EXG/J8WdIwIdnUI0ig1nY6BfmcIdODZEg84Do1CKHsQgWz5rD3gTUd4p0F+SlPpJBDSgAnU1zBwhgsYbPCjq7ogIhaiJwAsDIN23zX4HL/dM39LEIwaNctqj35WIvYaeOISWOphYBth6wLApswMYgoaeOnFvFLdCMdlIAa9q4jh4koFHOR3QratsjmJqJ2G3eCpCl/WBD3zgsf//zM/8DK5cuYKPfOQj+I7v+I789aqqcO3atf/ia5yfn+Mf/IN/gJ/92Z/F7/t9vw8A8E/+yT/Bs88+i3/9r/813v3ud+PTn/40PvCBD+DDH/4w3vWudwEA/v7f//v4Hb/jd+Czn/0s3va2t+GDH/wgPvWpT+H27du4ceMGAOBv/+2/jfe+9734a3/tr/135Zq8973vhbUW/+Jf/Atcv379vzsh/en6b6+nDcgbce0M4kGgQDmFyzm6K6GTojooQPzOw6bI07IEmSq5USsRnUdJyI1QUIrOI8wDAAA9JozniZaGXluEqR8TzLeWCAswvl9Q0LXDM7dO8drtS0QyIotjZSJ58FocRqL8YsuHSnIVMRMGvCW0RAHZdjGK1a4Sf/Y4aDZcm4I/YyJiL1WGIC9JgM5p/kUXq9SoyHGOKiNJk4OW1qgJaUgBe4tBmhRJ3n3zBkZLsS9WjqnhQ8oBKTmp8z2/vzjaohss+i3Pk5m40UrShtysJLtbLUGBKQ/GlB6qHjhhD5qOLRdcwZI9cU4Al11kVkik7mNIP0PEZv9bH8IFjfM1BdvBaRg5dr6hKDMJqQHypr3T8IbvGQPRFXQK/sBBXelh5Jj5QdNaOHJ6Wk4HLL5ljUXZ4c7pEt5raBNhS4fu0YThgIH7//D0/8fev0dblp51wejvvczbuu1b3bu7qi/pNIE0BDoIJEGMKBmREw6fDgEZisDxYygSDYgekHDkiMAnKuBAQb7DTY9R+XAgIiASDHyAEALNJSQk6XtXVddl79p7r7XXbV7ey/nj98x3VRmQxEO+bkLNMWpU1d5rrz3XXHO97/M8v9sY+0fjRNtSOmJ6OBJNUUz2v9lBhvqTl0R+As9NZx47Z04wnQ0TsoZokA9aeEc9D3JqgpaLgmhTVMmxqg9A1DrCmAA9ELE+gGlT8fYxEfbcGq5hDox3vK5B6GGoiHj0Tlq9ZgdmE4imdECEhpaiK0qjp04sp9MDB38impCa5g0eJtHrimGL1TrHWkd8/KUX8Pz2DprLW+heuUTx/iG0Y2HntjzcFpAdGdg1i0IrzkW6U3AZC8doI0Kh4ColblDC0VekLHXDiNU9AQgUdbtJSJoyP+fnsFnmiI1BnA7gtz3ssIU7qOgetecQTwwzHUoPBWomVDBoYgF/roWfZgwV3GlRr0tBCwD1niG6rYjyQGF1T4SZWdSnqKPotgP0WtP56oguf9GKnsNKk1EQWeiGvR0s0Y9uBKFYsdlodxh0aFq6a2VLPhepVrJcWF43AMhqhXbXQ9eajcBJLloRBTM3qB9sYK8VaHZpzeurwMTwPKLdBi1qFwbdXof8IIMbhpTl5Ma81+3MQHU6GQ1g0iEsLLUVp7t0PfWJZZaIp/4nuAg16RAKUppiHrk25YGNRx6gKtFASAMTssi1vtfKFVzb+2Y8OAUj4nmi5VxPzaRFCDnF4fJculPodj3sCfeqTuho2Qnpccrx2vuC+0L/Mwji0iXaqZATIUyofH9uAfCNYcBr74i1YPBsu8ip6RM9li49Xa5qmyyzo9us+6G2KHZrtMccKEGRIpkcsKDTUMDkHs0yR5/XpBDFfKXfTz5oJ/+oOk5OTu74f1EUKIri9/252WwGANjd3b3j6z/3cz+HM2fOYHt7G5/xGZ+Bb/qmb8KZM2cAAI8//ji6rsNnfdZnpcdfuHABr3zlK/FLv/RLeMMb3oBf/uVfxtbWVmo+AOBTP/VTsbW1hV/6pV/CI488gl/+5V/GK1/5ytR8AMAb3vAGNE2Dxx9/HK9//et/3/P/zd/8TTz++OP4mI/5mN/3sXePD++4S8F6CR6xCOLCYTmpASd5Zj9PPvF9EGDP8YXlgokIepuD3+7Tf4mGBCIL4lkexw5h6BMqEiU/JBYB0QbE0w2fozEytYLwdAUVqDdIwdUX9lgg9n7yvbvUmrQl9HkcAPJbsmhrAJ6ZF/2hAqgbEZ2E0kguLD0dKvRuVx2tdAEiIypsXnNPm8r31hvtCeR6SMgUm5SI2GrUyxz1MmchLGiLsjGlk/cUmnadYTUvcYeNcERCVbQJ8LVFOCgYzldbzGeVOC1F2GsFcKtIDWV0m6YjinC6zzAJfe6JigxwDCrpCZSOMIWHFrpVr49QIooPvW2sQiqildAKtI2YLivMTgYITmO4VafnCZ1GPm6RlS6dgzIs+m3m4YNGu87gawNjAvzpFtmoTa9BGaaCU8MSBSXKcevaFg6XQ3hnoEU7Y35tjEv/MTIUMRAFsTnpVff8mxzlUwW0icgHbcouCZ1BVjjsfsIBPuHea/i/v/K38PqPfT98Z7C3s8DxdIgY2ZSVwxbFqGHz4RW2Ty0S1aunSPUIks03Oh7faXS9licy62P1o+doPTroELxG8WSJ9uaA77Fjhkmfnmwyn5Cu/p7PJINAmyB2y7y/B79dArVBPm5x+uFDmjAEBTPpMDk3x+DiHKbPSJD7tZmVKIsOWkX85hMX0f38LmAi3EGF5lKL9bmI/AQobxgYKXpXFx2Up32uqTdWqHahYU8Mhpc1srmS1G8WiaEk3Uc7heJQwyx1ykOwOzUbaR2pS5tbqMLDb3nkZ9cY/rchzF6D+x+7isFl0ZsNHMbba76PGdCc9hhcY4BoPuN55U9UCHmE2/JYX3TIloA/1WJ9lk1HeaDgJx7NaZ8co8bPiphei0ZjiGSFqyVvorcVLqZMVQeIbERLdMMuiZD0CIovSXPqtvi57oXevgp0CJPCuQ+EzY4MQhXgxp5I9DRDzJgtEjWQzQwbniWn+MqRyqVqg27bcz2V9c8sNcprFm7bp4l2yLhOKaegJy1R5y2KysO2SzStkIv2Lfap3lzLVaOhp1kyJUGjke+tE+UuHX1xvtyEdPpVRoOTAIbZWtFr5AHxqOB+5URXFNi02ak05jsdYh5h5hpuyKZCy+Crd2IDuByHgUef9cEfxsYkpV9v+0GZ02md7s9TZ6Rf9eu97pGM3lJdIdnIR7GXV17RFlwGTEBkzgcgPxPTGu1bDgHQh76uJJNJrm9qkF7MI36E/gC47777ktZia2sL3/It3/L7n06M+Kqv+iq87nWvwytf+cr09Te+8Y1429vehne84x34J//kn+BXf/VX8Sf/5J9E05Bqe+PGDeR5jp2dnTue7+zZs7hx40Z6TN+w3H6cOXPmjsecPXv2ju/v7Owgz/P0mN/v+NiP/VjcunXrQ3rs3ePDO+4iIC/Bo7hu4e7hAm5XCk5zSunPiK+502xCAC68K80U2qVF2OlYuHoFXWuE3RaqFlGfOOuontS8JAUKXkFBAZXfuCy1mvbmmvQsPbUIZYCZdPDHOZ9bEBfVN0JRCuMdWqpiaTZp7AA3tYFDd7GmO5YIIOHIh49OEW4Xp5G+QO+F9NErmFsFsoXC+h7HaZboSdLUyumN8Lz0GFQt2mWeBJZ9ARW9WBU7po4HZ6SI9mmTghaagVX9K9gEKSpwgxRxMr3iScNBBHYeOsbR4Yje9OL4FQ0wefQQISrMjskH0TmpNQnhinJ+rYEddkzlDiZRzILXsKWDNhHtUoTtoDgdADVCjYYeiyuMoDk99xoA3NpCjQL8LIcadVgtCozGNZbLAlnlSJsCmynkACIL7K7e5IzYQYd6mSedSGgM7IBNS3dUctpaMXNjZ3uJM8MFnrjGjSBGwNUWg9ccYfoa4FzmcLysELxGczDA6V/RuPzGgPFTQLtfwJ9pEET4bUyADxr7+1sosw7vuXGOU8mocHg8Sq5ek+0VVuscvqUOpTmssCryDeoRFNy0AErP9PHiNu9/RRSkPahgdlpcOn+Il33JLdxcj/HeK+cRnEF4eU1HIVAH1K0yZIMOXVBJpxWj4lBA7I9t2dGlbNymz1mzF4GKk9tbDd9nImAK81mFyfYKoStIt+wMi6zCiUAfmJxaIjvnUb9vF6/79PfiF556CNksR3hsju6ZEfxuh+g0yusW9RnSl6ICUAT4QUDINcxaYXWBeop8ptA8uoI/Kjilj0B3sYauOrjjkoVop+EOGcCV7dViOx1RPFfAPDrD+soY+jPmwLMjPP/8ffCP1MirDu6ZEdpBxyHCvWtgkaHZiaiuWoRc0AbRVui1RnGksT4NZNcK+IKWw1AKdmqQHyt4cYpqt6hvyU6oRTAtG45QRqiVYt26lmutOO3vgwWBjUDf1BvxuXJsEroJUREr182NaA+sIhCcQjfxzOIYMcXc1ArBCqU1KPhqk9GhG0WXqiBJ4a2GXhvopYY707J+1VzP63MeemWYASVDqOzIott1MOCQJgYFlJIBZCziIgMqIiLRRqJNMwstVNuYRbphVQEoAtpFTpfANfOfVBahlwoQWlgf1qcMNUJx28HuZwiWqC9qEfTPRX8m1CtTIzWZembhBwFa6ElmrZM2Jjk1WmmaNJ3JYm/LKyh5zII4FaqU3ZQ0dQURTWc3mUjKRNiMurLePCM6LYMdAI0CBgHQnntMzxpQQpcFUfOeVtnTn1UeOCwzG9owRLfGffSjGwK5cuXKHZSlDwX9+Iqv+Aq8+93v/qAgv8///M9P/37lK1+JV7/61bh06RJ+4id+An/2z/7Z3/P5Yox3UKB+NzrU/8xj/kfHP/yH/xB/5+/8HXzzN38zHn30UWRZdsf3PxQa193jdz/uIiAvwaM96zjtEeeQqMl/jR2bivyI0DxWhgFTUrSGMnBTWHKRDEPPQl9E6mi4AMdeB5JFoAibCVhjKLrrsw56ZywF+BGnQn7OD1+Q8CrVSdBdRCpOg5wrLG0cVUaht560YGeBDT2q0RvUondhuS1nAyoyVEpEu/riCtufuk+qlaa+JfYbgSAvVGYCaDWm1yYsvPOwQUb631/6jcNgBO2LOwkhFJG3HTi5BnGTcQJFZEdx45mcWtyGLgTkoxZHhyPEVm/oNeLUlRuP6a0Rw+aCEkvauGk+QDqXqRiq1YscAcCWHQu5xiI8TV6IOigQo4JbZXBLsfmtWJz0k8CeyhScBg5K2IFDcBrl6RWykm5p8xmT6juxSbaZT4ndvaMWi2CNsCadgbaxAUXV4dT5GTUP1yuY7QaZONQEr3H85C7ef/kcr58cxfMFnDc4N56jC5xmeqeR7dY4esMan/dpv4I3/KV3Imw5xIhEI1vPSrjW4BMevILZuoQCMBjXpFmtLfw0h808lssS7laJrHJC6dsksRvJ47j40D4eum8f1biGX1vYocO9Fw4TCnbx5TdRVi2ev7GHeVfikck+RuMa2Qs5ykGbzAJiBPJRm8Twt6eta7Gt9p2mY45GylkJnUa8j+cOTTqH0hHxsBD3rIiT6QA6CxhP1jCFR5jnCIsM3SInUuMMzo9OcObRffz6D70SWekwfPUh8O4xsoVC+XyO8rpNtq2k2gQWyY5ar5hH5DO6F7VbEbhaYfi8QXEkBfNhjvbaEGbgkJ1wyo2hg2403LSgM5mOcFVk89Eo1AcD+L0O6sEl7OUSzUmBc59wE/VRheg0sqcqICgULzuBltC85lKL4khheFUhm2nUZ3wS1IecCIiScLrlQ6zqQ0bBuZag1V6Mnk+B8iYdwPrsjzDw0O0m1bx3LHWjyNetAV8hBTu6Ea183TCiG0V0EzoN+jKivqdDsBHFIZsOs9LivHVbFkjJn+9pW6Gg3bFygD6xqK5a+CHPSU8zxDwgP5QCNwsIWx2i4boexw7ubEuL27XYSh/lwNyiuz4QtDFCzS3ilnQ8ch/6MdEvvn6F7NhwOOQ0katGdBatTpQ1aMCeGAYCSligObTwwwAYQI06ulUp0W/IHmQXirkpA6EzriUDytDBzE2I9qgIhKFP2VJRDETiUNBvu3GW6pHoNIxSEcWoFWMSUs8gFKnbXQGD0C6jOO31WR+x1yRGxWGdNBAxqoSw9Ohtnw6f9hfFvUkFldLdlaBgLxUERP0B/+n3pclkcsef368BefOb34wf+7Efw8/+7M/i3nvv/R8+9vz587h06RKefPJJAMC5c+fQti2Oj4/veNz+/n5CNM6dO4ebN29+0HMdHBzc8Zj/Huk4Pj5G13UfhIz8Xsef+lN/Cu985zvxmZ/5mThz5gx2dnaws7OD7e3tD0Jo7h4f3nG3AXkpHr0TiSxw2aFQGDoWEM0ZR/g/o6A1GKAXbHOKRHcciDtJzMiVjkK/UrVO1JDEW7WE1vsFt29CYi9U74tjRQoYlDiF6AjlNJ+zFaFznwKdBcAEQELhsE/RePSSUeEVp6y1TNq2WmzM3sFAKU/6hxJ7yG6R48b1bV4PE6Aql9xHVCBCoZyG3m75WvrXkM73ttfciSD7iQr6KNtMwpJjEfUMzAgRAXdUbPIg54iI1TpP9KvQGHSiS6ATmFyrQMrX/tEYtuqQjxk2oIxoW7xKjUI2bqkTiEpQBaZzx6hSkF+8tIIyATuPHKaAQFO51AT1uRc9bafPdgkDT81HZ9C1NjlRYUVnrb1zM9jcUQOhI3Z3F+hdmmJQbFgA+uYbCj9DVFiuC3hHJO419z+LLON5+1bD3rOitbAkCLvawj+yhPMaz+yfwvF0CNcYqGsl/LUB3vDw+3C93sJ9xSG29hbQJuDMtiTiiRvN/mqEcdngoVO34BxpVcppFGdW1GWoiAc+5jrPSUT92sQUAAkABycj3DiZoOvIJ9+arHCyLhOad3M2xmpOutzvHJzFxKxxerRANwloW8vrDVAPo2+j0EniehQNUwxS0AhlpBMtECCuX8scWJvk3JadW2G0t+ItpiO0jmwQXyhhd2qoAZOtY2BOzlO3TuHieIr5yz38U2PMlyWaPRZb9QMtHZMCEYFYBKBydF8qvVjoxhSEF4V/X58m/cresyI9pgzwy4yJ7VsdbOkYQggAKwMzcNQl7LQstGsNXXj4awO0px2yYYdlm8MMWRyf+rQb1B781hZWL+c5Ym3Q7tCGVkVSg9odj2CB/OwqZX3YFdEAU3Pa3hf4yonuI+Nr8WUvNif6mB0yYdzUAPrnWQD5VCFbMMgwKqCdQB7HRsUuuB7aFfUvplFck4XyBQDuQkOK0SCka6gc0E5YbBNV2ZiBmJVGN+Qa6CaB7mJLw/ehCiz8ZcG14zZZWKuaw4mkyxt5NliLDHptECoPU/hEfY1bHWlGVYQ5objdjUjXUpFDppjHpN0DqM2AoO664cDIzg38kIYEqDzUrQJ+SDvhpP/wCm4cU9GqpQ/Kj4kehTxSRyRhl31oZey1Zj1tVyGtmz1ya/J+faMmpRFbbqX4ue6HRIhA7DQ1b1JBp9cWFfeULCatS994xF7gHohaBjFEuX2Qc/twIUpjpAKSkP+jXQPyoR4xRnzFV3wFfuRHfgTveMc7PiSnqMPDQ1y5cgXnz58HADz22GPIsgxvf/vb02OuX7+O97znPXjNa14DAPi0T/s0zGYzvOtd70qP+ZVf+RXMZrM7HvOe97wH169fT4/56Z/+aRRFgccee+xDej0/+7M/i5/92Z/FO97xjjv+9F+7e/zPHyrGePdj8xI5Tk5OsLW1hfv+yTdCj4ukpUi+7F6Jgw6L2Vj51CgA/L5dkCfc7TlOnvokdBFx9yI8JRN+9EhAY7iYliJ0b+idDyUbjAKpSmLxGGUzjaLDjlpSzFvSw1AKj1bcQrA2qE6vsDqq0iQqaTrkOVWPftwefKQi7jl/jBeu7fIxvQBQ35bl0dtHtrQCVn3YlrzGKI3AZHuFk6Mhn3dtZPMEJufnGJcNXri6t9mwNNg89c1gf60AbO0uMJ9XhOP7rwtFyuQ+pWXHztCKGEjOVjHSg55uZZsNNjoNO+C0v5/gxd7hK0KcqbBpGCCNho4s3nv9Dbh59o1UT9vpm4dPuHANv3X9AsWaIsj2rYEtO7rIFB1iVOg6Q8ctcSNTOqCb57BDh92tBZZNjrbtbWt1ysqoBi12hitcvb6b7ID7JPlU/KvN9eg37Yv/Xwu7cnj6f1X4y696J15e3sB/PPhEnHQFnrp5mroOsSkej2osVwWvVVTwtUU26LA3WcIHUrH0CyV8FZFfWKKrLYajBm0fwAgkWlnPI48BUBow1sM7CZaU3Jcid1itChRlC+cMssxjeXOI6vQKbWs3FLW1hc5CSo1nrolQ5aQpDE4jTnOobWY06CwkFx+Ok/le90YEqr+3QDpbkCZ8sLOW60/dSjVq8LJTt3BjMcbxfEDDgqWFnVq4HYdoIsqrGZpTno5KZzq+5kZj9KxBs8f70FcxrTlhr4U+zOEnTHrPtxqY9w5phSsGE3bGrJD2wRr2SonufEsxfR5hlhr5A3OE90zgHl4DV0uc+4SbyI3Ds0+cx+7FKY72xyiu5HDDiOKW2MqWpGIBbJryIwYHtrtMH7dLlVLe20lEtlTSNAWU+xrag8W9aOJCDuH8k4ZkTzTKI2Dx6jX01SqhJAC1IO2W0LEkKiBqEa2LY5YbhySc1h3QbQVSUksOerwIynWjNvkXeWChqqgL0Q2RFRVpn45APY4bB2Z6nK6JiHmFfKcmZXCVoZw0qA8G1PSNPNRScj0Mk9LV2tD6+BxRPQDQS1KszMIk0wGz1KR3dSrZ6Iac56kanZ4TXjGTqgpQC4OY9wnqcm1LJrPrmuu+mYuwvVUwLfcHXzI3JRRsNvqGBR7SFMRk8R6Fjtujq1E+W/2aCAVoE2GsT59lm3s6FypISK2CX1lk4xautmzehN4LQw1HT69VudwkDUMJVR5IFTYReki9V2yZwK6HHe2xc79hFbQ6DbrCssaVr/56zGaz/8tpOX3t8OBbvxmmLP9An9vXNZ75B3/3Q35dX/7lX45/82/+Df7jf/yPeOSRR9LXt7a2UFUVFosFvuEbvgF/7s/9OZw/fx7PPfcc/u7f/bu4fPky3ve+92E8HgMA/tpf+2v48R//cfzgD/4gdnd38dVf/dU4PDzE448/DmP43r/xjW/EtWvX8D3f8z0AgC/7si/DpUuX8J/+03/iuXuPV73qVTh79iz+0T/6Rzg6OsIXf/EX43M/93Pxnd/5nX+g1+nu8eEfdzUgL8UjAmZu4MekCCkVObHKPDDNucBHAJ1Gec2gvuBpNevofEORueyoIjJkcQ/SuNaGzYUU+6RxiV1tBPNCZKqUAghVhBcxuZKmJLlT9Q5QvThdAbElnQuVS3ze1RGdhFCbtBnEzmymeZFJ5rrsNyMiDlcv7/H7SjFnIyjE2gjCEjfQdya6mHBbT91PxyJwcjxIG2cKucoiTm6McWJH6B2tVK2hRl2afvX0hn6DWywqfq9T1Azchij5Pi9F8/1i/oVlkydWrEhIDE9G6UgBrzhwxXbTuNyebxI6zdyRyEvhWgPYkJqEHkXRNqRGDS1SurbrDH7tmYvJEjh6aiF05uEay8liZLp5cAZqZlFd0Vg87KCHHUpxCrv19B70qQbGekQVWLRLaJ41HofzIQbjGk2dI8sdvNdoZwVU4ZNDWLq3FHDvv80wfchi+3/ZR3z/efyH5z4es+f/OLbvn2LdZCkUMTqN8fYKbWeoM1ER+V6d6FU3bmwjG7BICOcopA9ew2QBTWtTwdIjZjGyOWLmi9gbS+ED9C5iwFJE/Y3K8PqHnsR7Ds/j/o85wuF6iFvdkJoSrzHeXmO5LJIbWfBabH1FyNywgTKn13DrTBqxCGWYVm8Kl0IZY9CJUhgj6SfBBsSVRb7dsPnwCkHQnnqZ4wPhDC5sz/AJD17DqXyB//rCy7Gvd6ArB31QIFqguGVE58AJvllT5xDymArmbKrRXmoYeBkYyKbXGvF4gPjxc+jOwDcWxahBtxohlPx8hfvXKJ6sJPzNI7t/hfWNIczLVxhULRbnFW7+xjkMXnGMT//E9+Nd/+XjUDlgfa/D4HmL+iydmLZ+26I+F1DsG3hP6+DipkXIAvIj+QwpBiMOrnO67gskTUc3JLLRNw6IFHGbtabwGRSbKxNhl9SPxAs1qndX6Cb82ZBJPkjLhgiRyIEWsbUvIyDp6UwqR0pPD07Bjx3CQEmDfGeEiQABAABJREFUphCCJgUuj0QgxqJ3AATNjrT4XZPi5qR5gI1oTgoRlHs064xOayWbLrPeGAoAQKw8gtXQBwXUTkcaaBlgTgyteoUK6s+0sAc5fBWSeNxPHPNKhF7kR4FFeauhp0SP7JSvvQ8VRBlgTizChOiE7mwP9EF5iO0uRfum1vADNiG6oVYGY0cHQa9IO1WapgtJWxeTtXUMRM6NBJlmBT/f7TJjKGlgwK6pHOyQ6Bz3lgC0ljeIoJIKaoOaeAUUHmppYUYd97ksIDQ2DYl0/3VpXExFGmuUoR4ETXrRj48EEvNhPt93f/d3AwD+xJ/4E3d8/Qd+4AfwxV/8xTDG4Ld/+7fxr/7Vv8J0OsX58+fx+te/Hj/0Qz+Umg8A+PZv/3ZYa/F5n/d5WK/X+MzP/Ez84A/+YGo+AOBtb3sb/sbf+BvJLetzPudz8M/+2T9L3zfG4Cd+4ifw5V/+5Xjta1+LqqrwhV/4hfjH//gff5gXAVitVrh8+fIHhRh+/Md//If9XHcPHncRkJfQkRCQf0wEpEcTVKtpkdjeJibuJ6NeUWB+G7QfLadheinZAqWIz6XoU30RDJnAL22y1EVLe81iu0F7WHJaJkJqtJsGI01ml5a/X8mUr9O0x+0h9cZwYrSy/HrfrGQhIQvRCeLgVErAVTokMTqA9HwAp/HaRrjVnf2zLvwGFbndOcWrTVMgjUSiifVOXgnCFytfr2COLKeEUjT3lCstid02d6iPy6T/iJ1GsVMzHKtHN9YGatRRJN/oZLUZxX2sL051dtt7dBvKETpDqpmJQglAuiYxUIPgFhmLTCOhjq1GNqGbiDYR3dqmEENzm0uM0iyWSNXim9H/fjXLMLyi0U5IH+nOddCFg7YBp7cXuHk4EZSF16GrLWKkUNx1JqEHvtNJP1IO2oQYBE/jgLM/b7E8p/AN/+u/Rh0y/H8ufzouP3kWGDo8fN9N3JyPMT+poE1EljOrxLUGRdWxYWoyxJslwrZDOWrgnMZo2OChnUPcXI2wPx1vzkeKGHW5Qry0YgEh974t3B12vK621I/0NBCA9sudwbndEwDAzeMJ3cFyn/JOoIhUeLFU7vNciIpItkfHxjG2IqjNPKLXyK7nabOPDy3Jb19kQpUi3a0XsveBh721rxa0pShYeA2LFp929ln8p5/7ZN5Hp1oK8G8ViNsd9HEGs6J4OjvRtwX0RfQhpnFC0TEurYioeMXpsaRBB7FrHr6f7nztDnUl/cTbDwOdmhQwmawxmw4Q5xkwYHO9e2qO6Qd2YVcK4eEl9BNDprBXEbomGuKGATGPEmQXUV6z8BUF5+uXtciv5EmrEUXDQRoqP87u4TXsExWa8w56aZCdMN+kvafF4Ikc3QToJh52YZhv0VKUb9cK+TGwvD8gm0mDYYgQhSwgm/UOdWAoomNB7Sce+S1LGpO8l34UELMAO7Nw2w7ZrYyuWjst4oy5FLqRnBAPhjrKvahyj+rJAqsHOtgjC90x/NDOLMP1wMI3lESd1dwKRRYcEElzAx1hjyzc+YZrtgbghVoleo0+CNGXEbHyKG5k6MYSqBiAfKrR7AaYtYIfEwXTa02b4SEHWtmhRbftYRcszlOgYiQlzY+DOL0JBcvKviFDktuRw9Cvb2LiYTMPowNC4LXx0un0n73hqMF8Sme6rHIInoYQSkeEOQX6WNo0XIKIzUNNrUs0goD0+2ufAQUks5bEUxP9S8ru8Qph2eDKV73ICMjXfYQQkG/60BGQj7bj4OAAX/IlX4L//J//8+/6/duDEe8eH95xVwPyUjxshJmTz5uakDXFieUNCrV1rVOiuWr0xp7QRnKIG71JuZW0WfQFcKuhTiybAnHUAiATaTqltAeVCMOZytwX4HptknNI9IqbpWHhjlbDzAxzTLxigSWIBYRehIIBh1FoZP2EP0ZpAmSaFAUmTw2IBgDFYCyv4Y9zIhWCSigrOotev5EHirG1wPsKRAlCn0IdWPxXDqgcAY4+8TeA1/jiihuOPK+9mcHezJNVa7vOYAaO9JrM48LFQ/L5xcpS6QA1onBc5x4YOsSxgz27JpLTu64ss9QUBHF5iX3DoyLKYYvRqBaXMb480sS4+eVbTcqwgIootmu4tSSJNyZZ7OZV74wFFk5eoRySCmRyD0ijkg87lAca9R7pJXYFoY+Q3rVschgbgFsF9HMV8l8ciwNNQH1cwi2yVEAAQDVucGp3jsz6JBrVNiAbtfjir/1P+Lm/8Y9xrdsBAFwaHeOhR67hEx+8gmuzLabJA4j7BfSvj9E1FmGeI7Mep8ZL2MzjFa96HsOtNZwUbfNFid+6egHXD7fSObiW9r++1XDnG/iTHHnVYffeGSbbK7ijEtoGsePVKEfMAAk9VTFuCp6DkxEO50NY60kvi7wuWekYkikNV1Y4Sazne5UaZsMptC49VCZWyjoiPriEengBf/86WX6arRbmIIe5Rv1Un/nSc9H5fkZBQzTa1sJ5jemywn959hX4xE95CqEIyF4ooK+WElTH9aPb9jBLDZ9H0mNsRNhtqQkZ9JlCpP7EeQY1I/2kGjXAUY5yd4181GL5ihbr8wH5sUJ3voXuFIvaoUOY0dTg5Olt7OwsYWcG+jBDPmxxfDSkjmIckL97iO6BmhP9yvM5qgjdMktC16TLmAbw5xu0WxHV0zlBy46FbiiI5BSHQHkkwvODAlBAftMimxMtcIPIZk8Kazs3KI4Be2xh1grFlI9bXozIjzWaU7T4jpJJURySyuQHMWWqILJBMScS8qhIHwuF5Co11O8pG+HGFIPHniK1YrGuGwV7iu5qqlMMifQazemA8gUGzXa7Hvl+xuK+DDBrzURzG4CFRRw5BkAuxFp26KnbCApuLKYkJiI/EGdEgHvDbkvhvIjQVa3hqoh8yr1FN4rBpZK+rteaKeegNbEaU5TuJBDRjQL8lud9BCJQfhBoQ9wQLlJeUc80py21tjS06JFII0iuzTytu1WE85vcHSMOgEoRsV0uioRU95lJiFxT0Tsk2tsQehNSWC10JCrc6zm8hKz2eVL9/thbuFeeWpg+MDeqO+nQL9LxBy1AT0L0P8LHW97yFhwfH+Od73wnqqrCT/3UT+Ff/st/iYcffhg/9mM/9mKf3h/q424D8lI8nIj6+mJTA1pcnbphBJxCyJieS+gX6HUeSdwnxbyuOb1DQcFgEmbnvQYhJj5rnxocewQjgKFQ4OIbdYTabeRBSI1DolB5Bb/nOIm7fTHup3EKpIH1NreJ9y7PpyDuJJufU1rEiIHno+S5KNIH80xEKJ/E171mIyChE+n1ABtRNpAcTgCwaQHQW/DmuUM+4QQXTsOd3ljbQhqw0JmUSH54MtwgUmtBVrxmSFuUi6tjSixX0qSYrd7RRaZqAYn+lV0rsJ4XWC451YryXivdIyIskn1tESMdoZygJn0YZJT3N0jz1etMtIloW8uk7tZAiUDYOw1XyQT7TI12O6I4vUqZIIt5Ce807IlGt+OxeCCwoY2k5KlWwwpvOwYF5wwaZ7Guc8SW2gSABcYq5PAxolQdZn6AwjhcHB1j5TIUGcXw1bDB5KEpqtfeYmNaetRthmuHW/BOY9nlWC0KFhzAJvEdEGE4XbS815jsrGCygKiA5qTAfFmibjOocUc9jNC9WqGkkQaiSDHr3XW8RrPO0Epz1OtIOuGbGxsQOs18gZYZJNoEmNJtAjpvz6YB711rA9pVhkL0OL6l0Dyb0/1JLemMtXldtzXoAEwWYK0XStjmG1r4/SHnZ0bvFxQY11o0AbyntNCT+PnnZ8xtO5jSI+Z0y4udxrhqELc6hA+M2dgdZogjj/pMpEXvyGP8lAFqA91q+MMC9sIKyzqHO9vCbzm0ywzxJANURNju0A0BHOXotgUpGAVkU5lKdwqqA3TmUZ+KwDSnViWSehU1xIiDhW7IgXqPdCjdKhFeR4RMpvunGyaZN0jDhnYCXmOv0OcphTJIcB6RAXfKQbeK2SDg4xFFExKJIIQibn5m4tggDDxNPvp0cs/1PdtuSJkq+Xx6rWnhLMOT7MRALQyC4Rofc67XIYuABvJ9CzfysCtZTwFa+7YaYRAksFbugVone2M46k/00sCdZ+MRPV9Xfsz9Ipccj+acg15rWhpHXitfcsilO1772Nvp6rgZRmk5FzEY0WK5btZEZVTDZiB6jTgiwtzTXZWs0a4zcK2F7lFEuecz6/stSNYyECXW/Dmihdw7rAQqQjR3KhNrd7ku6XOYyXrZI8yiaext2wFBQfqMEHlM/5xw6o98of7RerzjHe/At3/7t+OTP/mTobXGpUuX8Bf/4l/Et37rt35IWSh3j9/7uNuAvEQPP/JAy6yN/JYlXzYP8BNuZiqInaMUDfDUdsSh39jq2rhJMpeCPzUeeaAI2wYiGq2GObQS2sUNrk/QVT2CAoZSJfj5Nkch5BQj9hkchO2JivQhalAiXs+CiLDBaVgr9oo9lSkoulKJq1aPvkSnqbdodCocUASYpUF05P+GRjomjdSEKc0CubiSJ4crW7oNYqJ7GkAkNUyobctphW69QSegAHX/CuNfKwGQ9nLvhUMRSWq0xyXpWiYwfTdQlF4OW9IeZIOiYFxQp7CxuYWKnMBHhcG4puPUQ0vY0t1hYdufS09ZiEHBVh0QgaahhsPKRhk6QYnUplBOvzds/kbg9S3eVyF7/wDn/9g1JnA3nPZ2jUU5Jq0rLFh4V686wplLR7j0sddx6qFDmMwjH3R44JHrWK9oF6tuFQhBJdF4uVXzvbxWwXUG3/+BT8MbfuP/gf/9mdfhuz/wx7F0OabtALdWQ0yng2QFPD0aYrkuMNlZYu/MCRubWQHXWFy+uYusdKger1LR3tPpACI9vf6jbjIMhzXuu/8A0Wl06wyZ9aSqrfhee6dhe/OAKFqOmoVQ8LQMzns3sEjkQduA4ahBsVPDO424sql5Jk1KJ0GtNtQHWbEN9asMoTVsemYZ9K9MoKcWxaDDqf9Sonj1EcafcMhQQUE6KD7fmCAECVhsWwvvNIrCIbMe737hArZfdszhQyA1CQFEA2QNCFVAKDi1xpJZL/lWg3zQwkw6Bi0uOVHXswz7V3YYzmYj1Aslhg/NoGcWe4/cQnGdae7rT12iuMl7vrqwgHthiObmgCFvMrSIReCUPyp0F9pU8LkJp/btxZaP6T0rOgPt6KqEsUPIe9tdJQ0AcybarYhuwmFMyEkHy04U8hkQTzfILpcYvqDgRPaVH6s0GdeS0h0NkN9iarxdaHSTgOJKBl/EjebDijVwoNZBRVJg3RaHPcVzOUMdvQIkgwNCbQtbDu2sYHBeFhFHHu5sC3ON9E09y9BJEKFdKbQ7FLjbmUF5iwMoNyBCFDKpkaWxjSYCA5dE3v37qxwdr3oReMwizH5GS/VZhlB5NHseYUD3MT/2yPdJ11JO6FyKjRZdBQEMPJuaI2qFEiIvRyiDULGIBLVnXDIuQZ/9JPTXYtAhBDb63kkDLshj8ApFRqqnDwpV0cK1Fq7Oktg+BiQtiF9lyaCDwxbZ55w4XhUhDXnMpONrVBtnx96cBTpu1hMvQyTReJksIB90KVk9FP/dGn33+Kg4lstlCjzc3d3FwcEBAODRRx/Fr//6r7+Yp/aH/rjbgLwUj0ycnJQk5U7o1Y9+cVf0dPdjDz9ioFjMSKHASnzNG+ZzpBC/IJtDFkjxOsq44S8yFh15YNBhRr1BP3nsqTdAT92R7/WNhAIXZAlmUgEs+iX7I2ogpdt2konRNxqi+YhCu7p9KuzHnghLp1MTo3puc99YSPqsvWfF5+shciDRRwChcynAPDqDvVoCCnC1WKFG0hySpqbP7GjY1ECoTrpw6EXo2/+3axhvU0Pwws0dblABsFsNTEYHo34Cv7u1IHWnIEWCWg5BUDpyoeIhE7+z0iXL2PWygOsM7Wz/O2S/5/9Dil8ASWehLleIhwW6RS5vGq+LlobHr8XSWUTqfm0BBWTDDg/ffwPj1xygfPURDk5GeOCeA4y317TyVECzylD89gCn7zuGzT3OjedY1DmuTbdQdxnF3FHh8v4elI64+OA+Hvmk53kaijqIrrUoX7AphKxtLebzCusmw3qV49ev3Yv3Xj+H4+mQPv5BQYvws+sM1nWO42OmnVenVugF7fjACKtPWkNnIblu9SPJKG5SURqRwjpcvbaL4akldObRNBbGetiqg80ZTOiuDQRh4ucwdhrtitQzpQOcUMmMBJYpBazrjLa/tcXw7JINnyGS6Tt9B20qqxyD0oKSeysiHBUIQ4/Fwx3CxGFYNXjLW38IhfU4vLaFRz7tWSZgC9KnLc9VKWC4s4bWEcYE5LlD21qs1jm6VYaTRYmw07FwDAraKeZejHhPm4WG2WsYZrrdwsi5tSsm3meVQ5w4KA2Ul06gRx2nzELlWz69hZAH7F/fRv6qKbKDDP5mhXabOoH1okBxcQ7YiIfOHyDfz4CjHKNTK/gtz3DFacbMlxHRU7frUDyX02a8Ip0nSgHc3Nshv5Izpb0D7W63A9rtCF8FuG2PbM6mQUU2B3YF7HzmdeA4h26AZheoTwXoVqhblg5YugWa3UhnLMuJvRsFeb5I0f6WULI00O4EVC/QAcsNuQbbqeFrGEa097Qor1mopUHY7qCXRIz0zHK5uVbCLIl0qDlRxOF7C1ocB0C1ksXS0nEr5IAbArpjAxgyriVmLu5XQdwJRXyu+uYx43XUK1Jze8OBaMF1HoCd0XULnmnsek1XriCIuNuShrmMsFNqUNSSrldQYO5U3zD2jUXsmx6ZCRgOeWIWOUhzFKBjYeGcRitZOL12Qykgy4gcNh11ZqvjAWbPb8PXErgrIYXBa/i1pTYp0N46dkScfG0TEozefa+mGYdbcGjjVxktevvv3/FH0RjEK0BCY2OE6FNASlZ+twH5aDweeeQRfOADHwAAvOpVr8L3fM/34IUXXsC/+Bf/ItkG3z3+5467DchL8FA19Q+q1ZzI27gJUeodN4Tig5KbYdI+2EiKVsXEXXgunKrVqRGIIjLlLwPUdgs1Ex7G7fQkDcTSE21opaHJWKBHEStHKaSjiMiTsFAapZ5fm4L2Wo04z1jcQyhFwmGHFHJKR+iKjkAqKOgRp/uxFXvIyPMv710AnUJ7UnCz6nUlAUhm9FH0HrsNnDcID6wQ1jYVp5AGKgm9xSoXhafDVbK2NRhM1rDG43g5wOLkNqGfDMZi0EkgrDMSwQ9ubqFbW5hBh+37p2LFKvSsoGhZOqI+xkuKu9IRcZZBm4D1gmFP3SJHmOaSAhyFJx2TX33/fJ/1mb+O8f0zeuYf55y2awo5EYG9cye0dzXkXGsRpftO45kbpzFdVDiZVWjqDFcPd6gXkHtP24jyNYc4uLmF4BWeO9zF7miFrcEaizmvR5DCP8s8bkwnuDrdlok9i4MYgfocBfhaR+inhsgLB+cN8sKhXWXoGovsqYqpxjpieVKm4Mo+7M/VFvUqRz5sEYNC+egx4q1CroO4ZomNsSl4fbWIp28djpEPO3zCuWsIMzZq3hM18M5AnViYpUZ7kiMvOmSZR7FdA2tD616n4W9WiF6jayxs4aG0WPpGhXzSoGksbE5xe7xZJo1On+LcydTWirBfZwH5uRXskcXZe6ZQWcDhwRj/73d/NpZNDl05vP/aOZjeIS7QuGG4vcbWZIVh0abmtW0y0a4oVJMarraYbK/QbXu4iUfXc/OXFqpT8BNPK+ZRB9+ysYorqoejTJv1lOiQe+8Wyt+mm93FT3wB2ULWGq8wfDrD8uktuHMtsgsrZOeZZRJbjfbZMfSww5NPXkB3voVdaCxPSuZDLDL4sUt0Gr3VQq8M6gsOdj+nrkJyRbI5p9btjkd3ukO7FdGeYuFbHDPA0E5JW7ILNgamVqhPRxz88nkUhxr1PQzfjJWHGwD1WY98xmT1UDCoMAnIyyg6C7H/dQp2bqjt8AqmVujGRD6yE/6cdhTPqwDY/Qz1gw2iibA3c07Ktx38kNQgt+MQJkQFTK3gJh75HChuZMiPJXuj1RwyGSIKzR7vgfJAwy403RItrW/tioiMEit1OzMpRBZCL9Jj6nxSMGUu5gE7MmQJkuDuVbLtjRmbiITW9IGC/jahe1CwU8sGR6x9EcAmMo+kkjnqefRaQy0NkRoVgSzCLbm+tatMEs9pt9t1/Kw0+4ONeYjmEC16BUxzoDHA3NL0o7d51+K019OBZW1VTnFQZ2X9lD1IZRwuqINC9iMQtRIr9D4ZHi2HDMFpOmOZIM6GLwEO1gc1Tn9Af/4IH295y1tSjsjf+3t/Dz/1Uz+F++67D//0n/5TfPM3f/OLfHZ/uI+7LlgvoSO5YH3H30c1GyHkQLfjkR0bdOdbOjapiPH7LRSAxf0hiREB3JnFYSJ0o+mGtda38bp7dEMToq8C3T4E+eiRCaXBBbVvXIAESfd2uSkrQ3zTUVJQGxZZ8ntHpyRx3XOTCArRBob0qT6gT/j6Pcpx+yCpMZwEOoVYBuQ7NdpVnn5/9LLR9SL8/ho0GlGsIe2NAoNXHGO5KmBMoJPSWngLYiVMcSYRFm1DgvWTvkVF2NIlu9qYvCb7SkWaRrGLhSYvuaeElds1FJDC/6InjcwOOlqUPrUN5QG7Vggfs0zUn+A01DSDOtWQLpB7GBtEjJ3BLAzi+Vq0ChDKGqkIee7QrDP4VYZydw3XWgYDli7ZwALk1vdNZ1aROuZaw2l7vkF0glOIJxl0p6HO1vxZE9DVFvmgg3c60ZR8a5IbTVdbZIXD9miN2apEsyhQjhqYXx1jdDVidVpheTEibDnkkwbdtQHsuTWyzKFpMhgTUhbHYNBguSySC1sUQbuxAV/8Me/Ev37yj2G1KAQF4XtkrGcDppjw3q5Z4BSTBlvDNaaLAaeZdcYcl4MC1X1zOGfQrvIUBFkUDusVRdVndk9wMB3BrTPJaInp3lIK6NYWsTUwww5lRfcvt85gqy5lp+RVRw2FDcnt57MfeS+2sxXePbsHT946BaMjOmewnpZithASTRFRIb+cA69gWKR3Bl4Qy2LYEo3xmg52kntjVrSD7bZI/dFrDezSsrhd5BwcVKTSjaoG0+lAbJ3l8/j0EN2u0GgkK0K1GsWBRvexK6jnBrSU3XJQQSHbbmjBnAeaU9iI/JZFfHBJvcNRztejgOJIo32gZi6QirDHFtopdNseutE4/Tgw/dwFuudHgGGWhYpAc65jQz3lulPdpIZJeSIGpFHRncs0LK7DmQb6ZsFGIgDZjPeKCoDPabkbbUS5z8Y9yMxCBbH8dYCbhCTw1p46FFszTT6bK3STCNUBUUT+KD30UZYyO+yRRczA5x94TN5nsbgUsf0BhWCZR7K6uMlzsifUcQRLQbcWlNysNF9TKZQ2BWQnRIBiEWBmBm6Xz4MIohSO65VeUwdkZ6TY+VMd1Nxyve1F6pGND7za0LzyANVp2Dl/d0qWl6ak1xj11LZNBouhs1khIa0RHIPWRELMTgvf02jBvUiLC1xoDHThuaYKoqmXJtkGs2EK3G/6IZjmGg8jgYcKae9TnuhM35jFPCQECSoyE2tN9AgAvxf4d8xDovP2mUZ+0eDqm//ei+qC9dDXfmRcsJ7+lj+6Lli3HzFGrNdrvP/978fFixdx6tSpF/uU/lAfdxGQl+BhZ0z5jUog+GFIha6uNdptYHVOFnyZPKUphVPIj3vP+ZDq46ipF4mK07EEF9f6tqwMeZ6+2IiQRTsmFASAOIVwkY6tAYbihNUY+GW2yRGM2LhkeYHa+/NMdCuVpkfKRIrQgaQbicIVj3lEvstALnihGQi6AnGooc0tRcpx4pK4Pty7xsnVCYylSNf3AYIiloxe0J3egUs2lNubDwSF7qRA7DfHJABWaTNMfOH+5fdWmiI8rxc5UR4dYcsOpvRwxyWWyxJhQE1Mc6lJOoMYFMa/WSA/1iirFpPtFUMCG4twkkOPOpiLS7ot3ShRvbuC2i+gLYvh9Q2GLhY7Nek0LRvAPqk7H7TIqi6hTjEotIt8Exho2EzofpKoAFNrXPi4G/I62ETmg47PfxsXOx+0dPkR5MF7DR8VXGtRjhp4r1Gfijj5s3Ms7w8Yv+wYxVaNR89fx7lHDhAjkpDdtQZ1k8F3Gus6ox2n9XJtgRgVyrzDE8uzG9erhucSvJJkdOphjAkohy3sgAX3bFkle17MLba3ltBnalzaPUaWeTrHaaYtr1e0yY0RuHGwBXdUpvu5d/2iZgXY2l3i7L3HG7OAuDmvGADUBl1j4dcWvjUYlC0+7t7r8FB4brWHq/MthKDRtBad6FfycQuTe2SFQ151mOwskxg7oWJri9jpO/Q+OvPQkxb2RFyLSmrB7NTQCnaeob1VEdnUgJqSTnd0awylec7DQYNuv0J7ugMUUF2lNmD0pIXabVC/rEG8WQIPLElDmlnkNy26dQZdOn6uhaLZ7fhkgZyEvpMOPudnr7pqYQYOoYjITgAUAaEMmL5ModkfwPTrmGcjoJc0XdBiz98NgXbHw64hhTrQ7nlUN/keqE5B3SpISZM1tU9Qr896+GHYFNBiaBEKJsOL4RFCzqEIoljQQoILo2RzWEDXFMDbhYaZa+iZhXZcd5Sjla1uuCYq0XJU1xWGNzyaHTY9xQ02A6pVaV3tdRy65bl3Wx7K899x7BAGHu1WEO1JIM2qH9RoOhnqhkMaP2QYoRt7mhEsLcX0Izp1qcBw27THuP4acoASMgr9+2ZQJZoTEjUrrfk6Mh09o57F3CL9NzrF5w2khCbNoOw3oSZVMYr2SUvSu+r1NDstkZVWQTcaZm5SNlNqlPufk32pD9G93eVQyb4CDzYxayPoPQd2qj/Pfm/rkfuIjTvWi3zcdcH6yBzf933fh1e+8pUoyxI7Ozv4oi/6Ivzoj/7oi31af+iPuw3IS/DI5vxbd1zQ++IeTgGnG7QP1XDbLiEfFE9LAe4V6vMOftclClaohP7RWzv2Wo6SloloNdEVp25zb1JpQVUN3Uzyfcvi/7bgQBWkIVFgEGC7ESFGcWBSOsoGgw0vONCGMnZqY33oGOxHm1yZvvWbAoDmuEQ3zwEbkO/VpFbpCDXpOJWadLSj9JoUKEFrlAYG5xdwjcFqXt4hKufomMhLdBqYZ1D7xYYyJk5dygboyqHcXSP9sKzOSkXo0gEntCs2JYW2sSNtBBpCu1LwszxRkgDg9MUjBKeghh2KB0+wd5pvfgwKcZpj78+8gPixC7StxWJZJkeYh15+DUqm5p0EZvlPnmP40AwA0B6V0K2+IyVYW4981Cb3Le+MUJqkcZKN2K8oMjcZJ/+uNSz6r5b4M3/iccxWFXClogA7iNe+ihhsr9GtM/jaojkpkO/Wybo2BoXFr52CfrZC88KQv/feNT79vmcQtjssVwWC1/jta+fReoPhoMG6ziW/Q6GbFsgHHdwqYzPjDIwJ8C3RlpPpAP/nUw+jbTLY3GM4qREDRNTPAt0UHt1TY8T3jOE7DTtgMd2jNRh3WPzaKUSv8IGrZ9G2FmbSIi+J4vT2oJDbxuw0DD3LfGowfMPQwvlTOzh692lkmUdd05Y4G3QpHT7bbmh5PGlRDPj633f9LH7u8svwi08+hLZjw+o9tSPDXWZxBKfhWgPXGiye3oY/1aE9LjGqGmSZQ3VmSQRmmcE1NgnWlaFeQHX8zOb7Ym8cFdSoo+tS4WBnBtn5FdyaVrlxv0DsNE6e3EFxpKHXBugU6gdaFDcNlpcCQmuQXym41tyokui4OeeARkPfLKBXBubEYPwBSzT0oCS9BYDeaaBmGS1uny9QX3AIxznilkOzG4GOgX7x4xYUMp9yKO5Zot0JqC846NMNymELNwlJF6G2OnSPLZBNNfz5BuW+wfJiQHz5Em7HMXskA4pbpDe5UUDIiAToRqG8SbSmudiiPkOk2Y09UQ0ZzPhC6Eudgi8ilAO6cUS3Iy5NNiIMSWGNF2qoViHcUyNkch85Uq5CycC/1T0RxQlw8PGGwnJPy2DliVqEIop7l0oNRchYOPe5I+YoI11NqKr2gO+zkmYqZkKflcbKLA10p5AfyxrRD4D6xwQ2Qn3RbupNM9JnswRBeFTHRiRKrknMed1UEJMASWK3M4NsznVBu836Dh1hjgV5FoMRKA6GQsNmIDTUhjA5nYOr2GmEoSedTP7uLYahY9KeKBNh5pauX71JiaLDpF6LnqRR1CVG0DlSQWyD+VxRKGmIKuVUKa9I2e2t0F/sI/4B//kjfnz91389/ubf/Jt405vehB/+4R/GD//wD+NNb3oTvvIrvxJvfetbX+zT+0N93KVgvYSOHka9+A//AXRVcsrVKJga6LYDrSYBwu5rzclb5KRJeZWsAItDTUHmyKVJj2rVxtVKMkKUicDKMCBWOMkq99BHOULF8CwlE54+aVc1GrH0m+DAnOLqWIjjTy02kn2PYvg13SoRlodEE+qfI+laJFird2RKVonydWpQBOu/DWnop1I9/A9gcw63T7mUIDEmbP4GG6P+vLQUvLHt3bT6ETfEYpcC4J4G0G+AADbcY0GHtnaWmB2OSBXIN5QgLVapDA5k8u/2ZIXOGSwWG/g8yOS7n8Tlu3XScvQ++cFrNhM3K/z5P/5O/B+/9WqYwqEsO1zcOcZTN08nOpUddHANC+ke8fJi5dyfszIRoTawQ5fE3K4xsIVHljmEoLE+qniJt+iK1dUWtnDJgUoZIgbaBDgpGGJUyJ8p0Y0jwk4HnfEeKiuOrXt0oRy0qIoOJ4uKQnrNIMxeu6Q0i/wegepfi1IR3SKXTJYNPeL2qaTSpJIVZYt6nSenqyCo0Hi8xr2TGW4sx7h1fQvKK1SnVvBB7FH790VoX1nmEzqhVEzUOJt7NNMC5sRicF1h+fF10tH05+QbA1N4Uqai4gCgctg7PUdpHQ5ORtgertE4g8Wiom6r56IHhXzQ4VPuex4BCu87PIujwxFteHOHs1tzTFcVkTXJzTGFZ9N1I+eEOwPyGeAqoDnvUlGp1xrxDHM++gwMs9Y4/wk3cG1/m6+/pWA6Fswbyo81mostsus5EY6tAH26plPXNAcqEZkPPW2zywCzMByGAHDbnhaxK81Aya0amfWYTwdEoGSyDxORXS3o1qWIQISdDtWkRn11RBH93CDsciBhDhnc1215FOdWqI9LDJ/JmFlypBEt0O56lDeoNzFzA7/rUFzN0G3RBtiNpAEwdA6rLzBnw85NMlLo12DdimZCgfqPhUZ72sGeGBbHA0+NhAbCiNdCdxqhCPxZGzG4apAtgfoUYBfA8gFSaFUkmgOFRPtCxCYEMDIo0Od8nJFE9e4srbX1iYVumM+SggpbzVDIWiM/MnBj0qxCzteiIl3EuAdJkwPc0TCEgt/3YtOrHC2jb/8/hfsBdq7vQOSDjfBDptu7EcMnY0Z6Wgql7dGJlnoeZam36A0d4tpCVczfQVTJ/K7ft9gI9mhQhJJ8FPQUYwDoSFGmZTmS2UpvHw8gaRpR0QxBZRxcpT2pMQjdGlf++otLwXrZ13wzTPEHTMFqajz1v/3RpWCdOnUK3/md34m/8Bf+wh1f/7f/9t/izW9+M27duvUindkf/uMuAvISPOxCo7iloRwnbW5Anq92Chg6ihKHAbrRsPPNRq4iuLk8Ot8kuDZSyBtBQDrRJ3SbTaRHUmhTSN96Ng4aeimTobXcKr0gviPvNnakc3Eip4Gh4wRJQ5JyDWlYpxv0nH0lcDWnTFKYKRAN6Yi80I9fkYd7m7jP3sw3yISJKJ8TylefXQKZ3rkewo+bx0fSQHoxKICUSdI7pCgTU2DfHaLCAGlYwCmcDTAC6fdWxlockbTQg05mg2S3CwDKBBSjJuWGBK/YCEWF6WyI+UmVKDt+Zfk755wIlnvrlEbdJ2wHsfBVCsjvWeI//ORr0jWo6wxP759KSd0693AHFRO/OwNfW/hpzom8ArJBt7nGI/67+oVRCjLsaotW6ECqVfjYl18VJy2GGMaooG1MzYevJZBPS55NpGOQuWcFUzpu9hFYXh2jyBxCpxHmOZomw3xZ4tTWAsPdFQZbawaOqR5NCxhur5FVjgW3OOBYG3D+nmOcPzel5fB+KRojvvd+lsN3BlnusDWoUZREP3qXrdAZzI6H+J13X8Lx+/eAoHDP/bdS86E00RYWKLyP20ZS3TsiWvVxibxwMDrgLa/5GXz6a9+L/+Uv/Ty2dlYbNLG/ZgWRmXzAkEo9bmFLh84ZXD/Ygu8MDmdDnEwHSUDfi9UBwHUGv/Tsg/i1F+7DfFkiKx3ygin0l1/Yw+zmGDFIwKQChsOak+KcLlLdDu9RuwQGz1nYqUGxb2AvLqGvF7ALjeqxI5T7TMq+/u5zKKqOrlsLizjy0GvDdOy9AHMrQ3hgjfa0oyj5WgVjuUaphYU6V3PYkEdkBxnM+TXihZo0KE0Btbl3BXuQoZ4XmF8dI3YKemWgIrB7Zg59K4cfiH3vbkM6z9qgWWe0lJ0bhEFAdj2HvWURzjeo9oHi0KA5GKC6mqE+E5HN2Fi1WwF2ZlDf46ibu1BDLQyas8y+qC84IgyOxWx92rMZykkJ6/OXtAPsXKPcJ/1VO9KWuvMtG4cqIAyYLO4nHmG34xpVBqIhOlKUDia5L+/h57DZ4zqdDEMqT/QoKISBR9hr4bboGqYi0E1Y0MetTnJfIvTU0ubcUxivRSMCWf/VksGEbiii9DIgOyEtF0Fou/L5VUGlwp10MwrQ+2YDgYiMqdUdtLGejqYi4PNIfY2hHscsNdyQGp2eTpsd0pmPVDHN5qPyMIMuod4AG+GogNgZCfWk/blek4abpvdK9pd+0GYjvy97RbJiV1Hs4EPSWvGNkOtReA7sbEzPrZxmoG/hU+bKi3r8QaMfd1EQeO/x6le/+oO+/thjj8E59yKc0UfPcRcBeQkdSUj2d78ZcaeAabm49xtQNuXULp8Cy4ubKR6CBG1J6myUQhAS9tRPgpTA/gCgBQ7XnUIogmhGJDckCN9YFnol/NxoBUGpNS08a8PpUeXT70DEJvwu0PEkZvFOx5StjlqK3rmqlefop01KilYJr+rFj9FEcW3aCMDLUYsQqV3oRfpRI2WN0IKX0ypoQM0sp6laTlioCbrcLCR9yFuiJfUbmCM1rBclu1mxaaDkU6QzL6ngXtCJmCxv++k11pbuL04jHzcMDtQMA8TaQA0dykGLjzmzjz+++yRmvsK/e+IxdK1Nk3ClIvzawlQOWemgAOQZsx+Op0M2MZ0mMiFT+sGoofNQx9wVbX3KkjCFJxVMR4Rlxvek9NAl0771bXS6Mu+wWtM9KgadkIVE5YqC3tSG2RVnG752ocaFzgALC3OqxsXTR7A6YFZXmC6rhLYEsdUMnUY1btDUWSo8fGtSCJ+2Ab41KIctNTaBaNP29gqzeUWUoqXWQp8wT0fvUtCfP1uSJlRQdG1MQHNlhGAjHnrFNVw5osVyV28cq3xrEJ0W4TnuIEgPqhZesji6ec57u/Js0HqhamNSTk61u0bXmZTorHVEs84oCL8xgN5pcPHsEaZ1hdU6J+1MUKkejWpWGbMPBJUJXqMoO3Sd4bl6ocyYgPxqASP2slGTLhSE5qInrbyfCnGZEU0NQBw7PHz/DTx5+Sz0cY641yAuMoqXd6hj8ocFUVHHYUSMHHyU+wauAnD/Evm7h2geXcFPC+hJi9AanDs3xY3nd5OoWZceZ0+d4PqVXQwuW4RXzdEscqiTDGq3QTwqEIuAvXunmL5vjxP5TFCYqU7uUIiK2SCe2g0AiBOH8W/mWL56DX21IpWpY3BgPmXORn6o0e7QardfG90ooDjUMrEHul1SqvJjg+YcbXWV57Xqi28OX2QQYiWro+SAxM6Zeu7HgQWticCc2Sl6aVIzIS+DDmOdQhh6Oh9qcaTqFHSrETURiFDEFLpoV7JvCOi7GczwnEwtLld9fspKwY0jLYlzWhHTfpiUr35v6K8pXb5icu7yRYRdE6lvdqjz6ZGR3mHLLuV3uttQCjkvXxBl0h0bmFCwoQmSdxWLcIfwnflPPjkK2rJLWTx+v+LjrQy7WgXI61Y5Aw9vdzz0J6Lr6im/OnJPU0ivGwOP2Oo0hItjRwc5ubbRRDpq1TWu/M3/14uLgPw/P0IIyD/8o4uAvPnNb0aWZfi2b/u2O77+1V/91Viv1/jn//yfv0hn9of/sC/2Cdw9fpcjkhvrBjG5ePScXKIiAr2XDOLKZ0DIFMIQdBKZGcL6HSdHsYeyvThQBaFDdQqhvG2aE0E0oN8cdGSx1KMegYUFXUt6KDukRG5lRU9yG/qSGiAd+de4RXSkfemFhR95qHHHjBBBYPrJUwqs6uldvXZE0BHlFcKwI5LQb7S3MbOSbeLtNJwIer/XlvSORgNjJ/QoeQLhNvMH5Mvy+pQ4qbhVBrvVCO1nU4T2jQaAVPwn/3nI9FwEw1Ez4E9LcrbJAopxjaZhyvb7bp7Fs9Nd3DeZCk2ItK3oAJMHhJaT+1h4OClklWeYYbvKRFjOJqjPCzlz+gT7+xNgniHAQm23iF7DtzoJ0aMC8hONwZMa00epo3BCSdMmYF3nG1ckTcracFhjtc6hhT8djguUtzTW93VsRE4sbKMQ7l8zNV3xXrsxm8ALNc13Ropo6kounJni4GSUrikthyO2d5doWgvvNaqyxTxUpELVBmarRXAahXVJj9EH/8U9jzOn5rh1NILSEc2lBuWohTEBXWfQ1Bnibout7RUOFiPSulpS1oLoL2JUyIadOEwppqpLE6Z1QN0wHFGvDMb3z7BYUHPUN+XlqEUcUWDfCaLlAu+RouqQVx2aWUkkEcC14y2URYcid2gU6V9Z5tG2FjFonD41x/71bdhhixgV6V91lqhpMUTk45b2wh7oxlwvAIbzhcKg3YoIbcEJ9sTRsUrzc5a/kONJdY4i7/MrdCcFVASqmwrLoYbXwJmHDnHw5B6L6DmpMMMHZljWWyyWrw3QPLpClnmEIU0PbNXh5hOnAA1sXZpidjiCyTy8DC3WL2sxth6dDQg5XcJ85bFzbo7j6ZAUxEbBKxbnnVMoDwzqix1U5tlEq0iqV6fgYVGfAXCrQLUP1KeoJSmv25SmrkXU3lOH/CBQ06BJqfLDkGzAmzNOdGeOQw3NwtRpy5ylpWbzIw5NKIWGVkSGyioWuqjVZn1SQCgCshM2qH7kkR8atGeI0MBKNlPPWwgANDioGgbYYw1fAt1YRPErFushhyAYbEIAbPKaatLMGFBJ7liwCkZtTEtMu2lelCd9L5uxQUGkc1/vXGgaUsl6hD0lpS9lvS7Z4PU5Uz21F1reAxk6hVzW7X5pHTqolYS5yucpOJPQ13596xsC1WtL+lmVuPn111kprido2TT3bogISmzwN/tsgNnk3gj6mXJhFc/9jj3jRTw+EqLxP4oi9K/6qq9K/1ZK4Xu/93vx0z/90/jUT/1UAMA73/lOXLlyBV/0RV/0Yp3iR8VxtwF5CR4xA/IFhNNKRxUVFIojwvK9QDHaCK8Av6affHnNotkLKA8VXGXQ7grNYmo3/F1omKVOfGIlC77b8klsHmUDCRIa1cPXAMTCUWhS4j6VMDSx/1U6Qq1ECyI2vH2wYpgL/akM0NsN/AlFrogK0d/G3c0C7ImFm0iGiYoYXOZGvz4bgJGDGbsksEZ3W+NjIsytDG7bQYmAktqEgOK+BawJmK8zmHGHUIneQ4IVe5ejPr8ECtDHGcJey2JCvl5OGtR989EXAjlRhEwsad06gykdfG1JxVJAXFnooUzsMtrH+k5DWzYlTDJXyHKHEBUWywJPtadIt/IaUdPq2MuGmw2YkZIXHZYnJXL5fy+YVjrArzJkww7LWYllrIg8bbXQNsIf57Q0XRiEMw2Uidg5f4LtB9Z4+dYBfvHqA2jqnDQnoQ0BSH8zZT1itc4pFj/JoUsH7RTyTzpGtyxR/HaFkAP1Gc9+umJDaXSA/pUJuh3A7TjkezXMb47gKwAWuHZ8BubMGpCi6cHvA174jAr1oy4hB9MbEwxPLbFeFMj3JIV8nuG63xHkAfA1swFM5jFblUQuwCauay3aGyXUuRpZ4VAVHeomQ1l0jIjJPbpFDjPoiCg0Bh2QEujjbaPc2dEI+bDFYFzjoftfwK31EMtlid42V+mIrjNJO+K9TijKmd05bt6aQJuI7TNzDHMiezcOtjCoWqzqTPQ0QNuqZKQwXVQotvi6s8yjWWVQhkFuWeHgharnZzniFkNL3ekIrDXMWkO3Cvkx3Y6UB7p5xum2AfzIob1PaCdNBtQKascBQ4/uk9ewnoXf0W+dRvXIDCFouKfGsGugefc2MJQp/NkawWnUjcHW7hLT/THM3CLudAAi5k/vYPzADPOjAaZqgPKmxjrXyKyHulFCnW0o4r+V4WS5zTXq4hr6uQrKGaiZQTcJqM976LlBfpih3YlsXBqF8OAK+RMDtA/UMNcLLF5VA8c57IlB99Aa9rkKw+c15h/TobiZwecM6CsOSFnrrXlVqxALmfxLMnwMglI0erNOzJmYrsUGNmpAzyzCTgcsTSqqzczA7TgoLbbhCil7wxcRdmHQ7niUL1hkc9quh4FHdiuDXUNsfhl4mB8aNKdJx9IS2OgHDFCMhu8ntT/yywXR9hXR72gjtCdCw72Fe4xdKbhqg4SrIC5qBoKi8DFQgn54fhxCxnVRt/w9bkSRvlkRVTK1SugUz0fWhd7CV9AQFRTUWiMOHJQ0NzCCJPuNlgqg0YfaaaEVEJeWGsYsEHEGKVsAYCqXXNhIFxbqVWBmVsy5QARZF2NGVgCGjnS2250OJVck6U7uHh8Vx2/8xm/c8f/HHnsMAPD0008DAE6fPo3Tp0/jve997//l5/bRdNylYL2Ejtu9vNW4ZKBU4EYTNbnLfhBRHii4ijB4L4RM/usapEP0i6S4pahOIVsoNGcksbWf/OhIkbOJd1oMSmYISqFUdP1mKrqOCMReLBg3tC91ItPAinxp9GI9oW/d7p5C95BASpCgDFGmUEY0CWEpmSJOozy9QmY9OmdQHwz4HPJ4GBGHO00BuzhgodZAdZv4HdSZ6EKcagQliU7DlNRH9PbCSqyKy1GDelYmN6WESnlJ4Q1aqFNMiA7zHGrYEQ0QUWOv1egF0DEQzQBua+6iwmhMJMGLzW41aLFe5htr4P65hI40HDRYLnluwW0sY31Nz/yUgN7TceTQuYdfWSgbUU1qXNw9xhNXziYr4r5IVzqgKjs0nZXU35hseYPX6fkB/t+vLIuxnRZl1cK/e0uQPGD8yDGm1ybkYJsAfZjD3reEE3QhH3S4sD3DtelWCiMrthq4q0NU1xTqsxF+x8EMuuQGplREs8xhbuaIF2qExuL+i/u4fHM3idOtZXK5bw1CzVBIX5O+ZnOPS3tHeOqFM7RHzjdBf/3r63UiAOi85ZnjYbKQrkloTQrXrHZq0r7mGcyEQYk24/0WvGLeSEGEI3RsRH1jkA86Ngv7FcyZNWLQtAj2GwRN9w1/RNISaRNgspCE9PN5RfF50Cmo0TUG6laR6Jb+VMeMhRVzFHTN32FX8l5aIgKu5NriBwEYO2BukZ9ZozkpYIcd/CynTgxguGSt4SvmPEQbkR3aJG42NdcKPyaSUN3QaHZ4v/VCalSBVLntDuVzOZrdgDhxOHduiv33n4YWhy4sLDDwKK5maE5RxJ6daATDwrvPAMKa+pZw35qC+Kh4/2lmYJjza8Rnh1CBGoniloYb8jXbldjpdkBzziE7smKJDvSaiGAjiiOiJO2eh50ZdKc7qJbNHalXitauUaVpu15r+ImDWhtq+87U8GtLZNFEoNYobtC2tz4dMLimsXxAkutn/Jme9tVb4QKAG/mUw2EXmohHJDIB9I2BgtvyyI9M0ndoB3SjiGxBGpcvIrIThW58G2XLsynorYR1JwiHlvVfriEpaYr6FiDRy3r9iR8KsmQY7uhL3l89atLnekRNKpif8DOpV0JBU9RyqOa2tb03JlkZQQ/5JsU+qLUfjiUHRA6XqBVRiV6b8q1kX1ND5iJhyfsNK2oibw+y7fN0fFPjyt9+64tKwXr4b39kKFhP/qM/uhSsu8dH7rgrQn8JHslxKgDlAWkBuiFP1xcR67MyoTtSyKfUWJgVw6qQB9iZJfLQ8/HLgFAF+JIbr1oa2tWuNQV2AB+bRIYUwvep6nZquSD3yEcvYJfwKNVoNii1oXtW1Ys1hfrVI9/99EgJPUuD6EfvUpULN9eS8hKDgqooWEblUC8KzKcDIg/DjgGC/c9LdgZEoN3f2TETGtkJC9ro+Ptj72rU70dZYEq1YcGwsVSMqOcFG4l+I2sNoAFdsvmInSKHXrEI371vKtQAFvJuaSn8bgzWiyLRBYIjrap3jlIqYrUqgKhgxmzA1ivRWgj9J3iKnn1jsbe1xOxgBKiIXLIhencYJU5QMbDwBpiarXPaE4dO08lFAc4ZPHuwh2LQIbQGYZZzwi9NzXxWbXjkXqWsjb4Ido1lgd5PdvcahNpidTxAu0P7UHNxifmiRL5Twww6ZJVDGJI6BgD6kFzsG7MJkREbcN9FuouEnRbLV7TQ961QXs7gFlkKXZxUNWzhkD24YBFiAy6/+wIRJnn9bdNrODwGeys2BMMOecHi4vnDXYwna9i8155Q3G8yDyU2y8FrdMtMgiQ1bOEZvCh2zdWkxgP372Pn3BzOkZJ17wMHsJlPtL32sMTuZIVi1CSNUSkNQu++lucO1b1zFIVDDMDe9gLFoBNXsUi0zAQR/fM65eUmRfzkpEpBl/mgRbvM2UhZ0QiIWYOeWdgZMybCVgf9sgW6U0wW7yYR7Z5H+/I13LaH33NsKBoDvdPCXx4yJPDZAQDg1CtuEQFc8rOYH9O8IruVwZ9vqHsoAvzpDtop6HGLwVWN1T0exbGCP9PBzg2G9yyAlcGlR1/YDDKkSb/xzB7CTgv9xJD32cjBHFqc+tQbgKY+rj3fwe0yByO7niO7VsDODNx5Int2qaG2WtiZ5OEUEXh6CDcMTIevAto9okQpeTzne1ddtRvUOEjR2TCAsBuz+C4ODNyFJmVSBAPoWifrc92R3qMbFvJ2SpeuUAZgv4ReGphjC32YAR3F/coBZs1gRTu1ULWGH8k5yvqqe8+MFsiPqCPJj2jla9Yq6Vd8STqWGwVkUwM3ov2wdhxyaUd0PVik5qN3G7crtdFpCHLRTXiNbM21QLf8vbEgvTQ7EWcqxSYkagry9VoS2LOQbIa17ENMnee9qj3YfIhrVygleFdjE6roFYMr0wAr8jPZ26dnMmxTfI9QiD17FqEq0uiUDtQWtlwT9Qnt5uEUgzLnNARRM9qdIw9sRnpxfitJ8H8UuUp3j7vH/x/H3QbkJXhoz6lbsMDi0mZR6wWE2QkFf7oF2m1OjrRkfOg1J0u3U4iUWAiGDMnFRWkAWbyDcqXEMcgsNNxEsiw0nVUw6RALusaEbSeIBvi8A09v+lb+iM1hSjXv6Vp9+KGNTPGVI2WdqJjoUmjpLBSDZgZKVChHDWzZAVE2ndpAFT4F/iWxfRbSNFoZhq7pnRYqi0IZIooQl9SBIChgYSnCNptCGo1m0+LVxiK43CT4RrH2VRmn8dFpmNzj+HgoQmnAz3KUOzWbFOEr91oLTEUAubbwjSWl5zYnlT7UUNsAU7lUhJoDNiX7N7ZQbdfwjeXE3UnQnKRsB6fhG8NiNQtYr/INSpKJhU8ghco7A/1rY5z9rxke+j864Klhun7FsCVK0RjgoCQ64Egf2p6sEBsD1/H32FEHN8+hFkTVwsAju7BK59Y1lq5REbj/oZv4xEtXcWZ3zoIkKBQ/P8bqqIJSwKrl6xxMamydWiDPHcwaULVJ1/FoNoJSwLmtE5iM9+zZj9vHYFJL4KLoWgRNWM/LpMfoWotumaFdZTg5Gt4RIhk83a/aNfM0YgRMSUTJd8ziyAqXxPD1Mse16Rbmc567ayyuHWzDdQZaR7TLHNlOg8PpCPWRZKh0GqvDAYbDBr0jV73KsTNco3MGRdXheD5A1xkUJUXivZ6nR/iUQmqwlN7cM6Z0TFnPxG2r6ADFohcayI8psFUBMIcZnDQVYehpgxqB4n0Vmwpp2s3SILQGfuwxeHiG/BUz5Ls1Zr96GqFkIRtyFohht4MbeVS/U8KuuC4Vz+foznbQVyssP66BromAZNdy+HtqOqKdX+LK4/cAuy3aB2sgi7BVx/VsYeEeWgMKKC7nsA8ucPCuc8gPDa1/pxZ6QeQPkc1DyCLMPhHFYIH8GQmPDEBxeoVo2DBB815HoG1szITzrwQB2YlJqhEMmy03ZtMSchbS+RQon2LmSTBSrFeBLoMRnN6bjU0vc0QEoRx6xJFce9GcqACsLnk2GyVpslGoTYgK0QJB6FBQMdkK27VK6eRuxHVLO9Jt/dCT/mRJHcpONAdTIhxXjtet3YnUB8rrd1VMtF8GN25E5u0Og2KDFfG5IGLdlodZq4SsB6HvhoLXpEfJ3CAmFN1tOyJv207Qmf6iq4Q2RDFOQEZkXPWp5OJo1RthoNGA0xy2lZ5ovlcJwYhRwZQOcZkh1Jb739KIRgd8HyL3K/S/V6hf6ESraEhL1s2d1KwX67g9PPAP8s/d4+7xkTjuNiAvwSNkSGLBZJuoQO2F2jym2eXX7IIUpuyExXSwEpikIylNA88QrJL2h3plZHGm4FMFLv6hkinVmF7xsd+UVURsWFDHTNJfxaYRkAbHK1IR8kiYWgHwCnavprizJUrS7yd+7GRIJRN7Kei1UGB6m0gAwMAhOiUuUIJiaKIisaELjZFpFiF0sc4UG1alwOJZfNvpIw9uIgDpBFttCpNDT4MQmkUS6WeeDVB/wkAqZoI8V+goeraSu6BGHVxrYYeOhb8gKybjlNDkHnaroZPUioJ0pYk+aDkHt85SWF6MgLqPPJli0qBtLEzhSMOxHqGxMLmnuF1yXvQxdSVB3Lb681YmIhuSzuSWFmd+o8PqjMLsoQKnfjsgTPNERVJKqEBn6nSNYgBOFhUbvh7JeW7A/2eSlJ6T+uZnOfnakr0BADdPxrAq4OHtA7zi0cs4vb3A8jVL7Jyb01LWc8rpg8b928f4iw+/C92ExTNAOpOxHu5Ghf05G5Hx9hqLukDXWYYLimOY0kGQAI/JZC3hgaSiacvzV0qK+9tuPZOF1MzFyCYhr7rURAavmYuhGQppLJ/XCsWqt5vWmcdw0CD0oZdewRQeZthhuSx47+vI0ENv0K6yJDRXKlKHE5AyVQBs7gdB3qL0lCZj0ngfQmhzj/W8oF2qF4ejChhc4XVUXnQDVmgunjSlbhxR7itkt4iU4ExN6pNTmN8YYXl9xET7ezogAPUF2su2OwHF8zns3KCb9K5KGnYJom8lLatDQSvbYNm8aw+41iJYIM4z6JsF4BTMB4ZyjhrGBpiDDPFjF2gOK7hxgKsk+C6LCNsO6qCAdkSIdSvFuFipuqHQfbxC+MAYbhhIYVrrlEmkpGBuz3QwK4V2ElEc02LXLInmRBnewClgxKJ+8UBAKLBJWO9k4COfY4bfyWdn5FnwVgHwYEr9WkOvDOyS+U/FoUaxT8MOU4NreWTBm2x7R07CFzmg0o2mhkX3+wc2TYumVTEUECXrw5dsZLUD7IlOe43uNmsbER4lgy2k/aIvuEOPbgyIdkYrVCfJ+ehNVCAujb2jofKCHMigjNq/iGBkyJDz2kCQsJgFrt0bcJrNhYqyrlHLEaOCLcUOPiDtmQAbFsiwqNeQ9Mt5sq7vC24l/Y9CspbHbesnPK9PajzuFup3j7vHh3V81DUg999/P5RSH/Tnr//1v/57/kzTNPi6r/s6XLp0CUVR4KGHHsL3f//33/GY7/iO78AjjzyCqqpw33334Su/8itR1/Udj/mu7/ouPPDAAyjLEo899hh+4Rd+4X/qNYSCC3K09FsvjmhjmPzVRRfiywi7pK2h7sjfVp5Ni5kLLUoBwycy5FPNlN/bg/8cxesp7EmmbiioIVEm0toW0mS0FK+r25oiKDY7oQxotyI3UsVpG0yEmxYbKkUlRZnbFPVQ/F6+W4sziSSx91PDSJqWymg76+cZBrtrbjj9wp+TQ098XsGv7CaFvW+gep1IwQTdGEAHqNs85SEFm849s0DEzrH3fQ+tgTsu+XwS4Kd03OhLFiz+vUz4bUGNARQDB31jk24heIW9B45ZOEZez3sfPOC5ONEeOIqc7Y08TQKVot3r6dOzJESPQaGdFaRGGTpqRWm2slM19Lk1i/Xcp9+vNBuc4DXa2uLsL1gcfUyGnScc1qcVpg9pFLcMzvxEyUZKB1Q7NS6eOSIFSBqOIA1aXGZslnYc7H4GPWHiejFsEYLC8NwC2ga5fmyqmnWG33jhHvy3Zx7EB66exeF8iDe+7H149dkreOXZG5ifVDAi9i6Nw41mC9/4ef8G6mPnMDbA1RauM3j5x1/BasZwxCrv0LS8zk7sc31NW9xehHp8c0xRf48W2IBiiyiEyQLdxBSgn62gnmc2i5Hirz/8LEcQbUc+asUNSyW9iO71JIo0MERg/fguotfY2iVdzLcmXUtENhH1osB0WWE4qanbiUA3zxMyZsSJLbn4AImOFgORLqWArHCkaElRNfhAgWgjuj2HdptFW31adA55RHHMYtWuFIpbBnZmYBcK3Uj0GZ2Gul4in2nkx0YSwzXsEwOYEwuz1KR+gghuc8rDtBv0QAWgPhOhjzJkMw39QgkMPPz5BqGIvMe9QjgoEAZBErsBOzfpfNXZGt0R75/muEzC7bDTwW17IrESEBgNsLrPQz+0QHGoYRcbK9zswoqNmlCW+uLXzExKyTYLk9AigDqMbjvADwOKfYuQRfgxdT3mIJOmwiGbcfIfi0BjjyjDl77Y7pHZhWGTvmBOkj/VpULZ5xH+TIt2K6I5xTRuX3INjkWAqunsFQbUQQTL8L5QSHGuAZyt4UvSbs2aQvV+mKU6BXuiRddBlJuBjYGOWI2CO92RDiV2ur21rnJs6EzNFHc/8siObEIz0h5WBbFy57VVa1qM9+GVyivqKywblFBRu6IWhsYnwAZ1WBpSVJ1i3oaNzEQRVEQbDhds6Tj0EHQjBtBuvLfflaGVasRSd2mZ4RGQXBV7lF4NO/6uEa9/b/rQ753Jnt3G5ID1UnDB+gPN/rj9z93j7vEROD7qXLB+9Vd/Fd5vpqzvec978Kf/9J/Gn//zf/73/JnP+7zPw82bN/F93/d9eNnLXob9/f07Ambe9ra34Wu+5mvw/d///XjNa16DJ554Al/8xV8MAPj2b/92AMAP/dAP4S1veQu+67u+C6997WvxPd/zPXjjG9+I3/md38HFixc/rNegBGEuThSaHSAON4mzdk0bROUgVpFRJmCSsyFJtNy8NYLVWJ8THDWqlFpb3jRwAyC2/Bm35annCIA9sugmnnSGjt+zKwU34UpEHrmCaRVCASgJpQrC700ZG3NxGclk0V5ZLvIF/dxjb39oKeaFU8nJihcCqchnhQDABKwOByK0DLDjVgpuwcsVOGHu0Y0ePeothYVK1dNV+DcfqAwbi9hqtJmVibJKAzRlIwa7C6wXBVRJ6ldoddKLmL0GWkcMxjXqVb6ZVIsYVo/J9w8txZSHt8YUHsvm9sKNHcSTDNnpmsnagw5aRbz+T78Xv3LzEm5d24JeGZy0BqZw8OLugpWBaTRcKGAm3R3C93ZWpEwUagNU4kjHoJimDo3919Jt5/pryHU3Kw1fRNz6eLXJ5QgK1463NkGInaG42cn0WLQx7nTHZs5RKwEgpY1j4DCerFFYh9mySha7SgNF5vBzV19GwbugJd5r3Ld3jK1sjcp0+MWTl+MzLj6Nn3niEeSDDjEqPH3zFE6fmeHW0RiH0xEAFiW2dAwZLJQI8CP8KsPw1JJGAEKtC0FBYyOq914jOAV/ykEPO8QURGihIq/b8OwSy5MSSke6TQntzbUWXac4YY3AeHeF1TqHLQJ2PmUfB9MR5vNK8jnEHCBoyY1RMIVDu8rgMzF6CKS19QVQ33QGrxBqI9RA3vd51aFdZ4iW7mq9C5pSEetzgRP7jtoENwry2eTEvT7FZiQqipFZcNLoQjcK+YKf9W4sDkYWgIpot1l4Ga8TtUi1CrZh0as6rhNuFESwHNHseKi5pWtUEYA8wm21UDOLfKpJyYGGH3uEXY/iuQLdy9YwT1eIgwjcU8PcKBNtR83ZKGQnQj+1EboDE859BbXDZPDsiLqS5rhEvtAwa6B+0ElmCcXn/YTfrkSDUGwm4mal4YYB7YUWdj+HE7qUH3v4MT+Hq/sosPaS1h536YoVi5DWN9WSxqMiaHs8J8IUMw5yEEDnpnM1yvezsa7PepilhpobrtUBbAplwq9q0ZxEIkqYZ7BLunhR7+LhQOG7vZGh2xY0RbPw9uLupSKpV9HxtdJFC+LyxN+lG6LL2TET3ruJaP4KGjZg4GkkMHGI/b4j1Cu9NMm8JC6ypIFR4paFvokxkY5TQMo9gVBdiWCopBfsc5E2DbmCW2RcA70C1hn3Gi2fy5Ho81pNp6x+kFUEqJrW9WptqfWISG6PKovUPfYIjiD/EFodXgqZdB+JhuFuA3L3+AgdH/UuWG95y1vw4z/+43jyySehbudWyPFTP/VT+IIv+AI888wz2N3d/V2f4yu+4ivwvve9D//1v/7X9LW/9bf+Ft71rncllONTPuVT8Emf9En47u/+7vSYV7ziFfjcz/1cfMu3fMuHdK69k8UD3/DNsFmZFj+m1G7CpkwDtBMiD8UtjW4sziBFn5jO5+u2AqrrGm5ADnC7xcKiF0GqSLREO6Dd5jQsZJEOMo1QBxSSA5adGlowFiFldOgFc0Jiz5sV6F3XOvGb+ymRctxsdC0bRfq5DQSfwt36v3uHkqQRuY0m1es3dCRaUeuNq1YWYKsOrs4k7ZxQuV5QwwJDx5N09L/fcuNDL17M7jw/aDCUqnLJgUhpFoS9C5eSnI+eBgMoChwLD6wNilNr2sX2r0WsXG3mUeYdTmYDIIIBc+J+5VuD3b0Fzo7meO5wF806Q146OEdaijUBRodkh5s2Y6ehDIMTAUBr6j16Jy3fMnsjKxxcZ+BPchR7a9TTEsW1DM35DtVOTctYFaU4Z3Gt94lu9bSsMMuhxh0G4wbWeMznFbQJFKnbgNGoxqSqsWgKzKYUMEfPxiW5mQkdIx+2aA8qlGdWaFYZRpManTNkPki2h+8MfG1QThqsjyoU23USyLt1Blt1Qk2S6eXSwm43cNOCE9QITHZWkmvC38vcFhb+WzsrZNrjaDaSe0RQNaGfWdEauNbAZNSGlIMWPmg0sxLV9pqNqKBjatKJuxppX4nyJfd66DSLsq026ZSC08DaQI87hMakhOYe2dCGz9NnmYTe6Uw+S8EpZKVD9vgI9V6EHweio55NAfrrLpNzvSad0y4Vi2/Ro/mKHP8+aA+QfAjFLKJuhDTB7/VrbuIZ4taRp4+1SUGFpnQIDVO6zZzp4W4YUhaE8kA+I1Wsu9ACteH6I05V9VkPjBzKYQvvNfDUkHQiJXauEUR1G404cbA3c4yuANPH2DyEnFN8PLTE+B1DzC+xKdMtr0W0LDrtQqPb9simBt09DfRxTsrlXofYatpXb3ew+7mEDip051pS7BY2vRfQpLgCQsuym2DWMGIBn800bA1ETcSl3NdY3+sRswB7ZOG35DO8Fv1O7xol1rtuJJP+nhobqVXp9SAhi8jmGt04pHA/XRMl1+1GXB5yajXiiIhSVPwdfaGtW6Jm+ZRGIm4ojZMMsOKEdrXchBRpZp3wmfoCuWRDlihqCsm9K2ZEeTByvHd6a/Y+8PY2dCN60dY56nhiRzcrrIksRQlXTU5yQTGQUAZfcW3psigmKL0joxl38IJyo6ZpAWTo1G9DqlOJiheziBCWuPLl3/CiumC9/Ks+Mi5YT3zbXResu8cf/PFRR8G6/WjbFv/6X/9rfOmXfunv2nwAwI/92I/h1a9+Nb71W78V99xzD17+8penhMv+eN3rXofHH38c73rXuwAAzzzzDH7yJ38Sn/3Zn51+z+OPP47P+qzPuuO5P+uzPgu/9Eu/9HueX9M0ODk5ueNPfygvziU5EuyNKAm3mraK2Wzz9tG3nYtst0Ves11o2BWbD7OGeLgHpto6lfzc2wkRCt2QM40Fg+JUH9SnWJS7ITUkPVxtjyha7VEFlD4FqMW9hl8TS8XkNtUwvTeKYPAO7/Qo+Qb9wh8BQKx2FRLtqaesIBCSR8bNL8rES1cOturQzXP0/GBdeNKpzgttTpogJULHZHErnu4A2NT0iIyOMBUhfl06/n6hIfmORa5vbDo31zB92xQe2nrsnD9BXnWw2w2aWZmajyiOS6HT6GqL2cE40Wn82sJmHkXRYWtnidm8wvuevQDnWPA26wyutvBOY1LVmN0ci26ERefW9op2o5aFbvAanQiq+xwLbQP8ysI9N0L+ngHGZxfILbNX3INr6LUEHKpIxypxXzK5R/HgCdT5NYIztLXdaZPY/WQ6oKuU09jdWyA4jdU6x9Vrezi+PkE5aEkTygJ05TDZXWL7zBz333sAW9LNqzizwnpaIqsclgtSzFxr4W6VaBc58vdWMLcyxPeOoYXeFyXU0JQOrrZ3vM7J+Tl8x7BCWzhU4wardY7uqER7WKFbW0l15/0wmw5w63Cc6E9KRdoMa96PVcEQw9sDzpwzcK3FeG+J5vIY5mpJHcnpNeJJBqxJjyO9ivqMXqsSo8LuxWnKhuG9pGC3GygFnD47Q1bR7awo24SchaCwnpdwjd18PqSB0fLZabewaT6iiIWdStqIKHbefuLgq4B2W2x0lzIPaFSatseM9t/NvR2yJTjgECoPFPUIAKBbjfIZ5m0Uz+Wc/LcaZmYR5nnK1PETz8FHydTx7ISF3eqiY/J4o2mMMSbNylWytl0v0LwwRHyGwYTQ1COU1w1QeuQHRFx76ujsEX6ee/G9cgCeHmJ1Fik8LyogZkjIqRtR7+HGAeZWTr2KjdCHkga/xVRst+1gVopowMJCrxkG2wfBKnHA6t0Be7qP8tigITlQnyKqZBcavgKyY4PqSoZwTtbTlkMX1XENVl6lgVPMI0yj0j4AaTLNWkIVa4V2KyQhuW414pkm2ef25wsA2Glhjoli9O99P3TqB2GuIg04m/N91D3xQIFoj+gPb0cbUPo7UO7QWzbn1MTpVrH5EIdDJVbxqlPiYsj7VfXohA3MRxL9H++DCFTSfNz22aRJiaDzGohrcbtK+4+g54aaONOHF2ZsimjdHgExfIHlEC8WITVRL/ZxV4R+9/jDdHxUNyA/+qM/iul0muhSv9vxzDPP4Bd/8Rfxnve8B//hP/wHfMd3fAf+/b//93doRr7gC74A3/iN34jXve51yLIMDz30EF7/+tfja77mawAAt27dgvceZ8+eveO5z549ixs3bvyev/tbvuVbsLW1lf7cd999ALgxTp6NyE8AKCCb8/G9NqQbs3HoJhSKAkiTYy/Tv1Byc1ufBYrDO4XtpubG1Pu627WEkE24SZlGcWIl/F140hHQQ+Q6AgFwY+Hh9htKLanfQRb33iWqZeMQBn4j4utzRwLoZCLTwOSE5QUuD4oTKNk3YhBrRUAmYrLpqLiB5D2n1HplboPsqcvwKc8EabOiq5VK4Xq6cgnmRxKty7RNkq+hkDa3fgqtrU+FCwCx6VXwqwyLJQto35mUcYK4cd2KQTGkcc2C3RTUFoSg0LYWi0WF0GkMttbk/EeG5EVHp7Cbtybp2kaZyp+ckL5BATuSJWyvIbC5R7xVoLqcwVcB9ZmAoRTVMDFpJqwRweuaBb0RzvWwaFGWHYpRAy2iey3oTy5hjNoGLNbFhhLnFey4RdtkEq6oEmf7ZFbh2efPwB2yQetdarraYjhqeP3WlhPVVmP9cIv8oTm6rYB4ksG1RvQ3RICqMQv3wbiG1hGdM8zR8HTFClHB2oDd+6YoT68wGDeSxi7X0SvJclHwrYY7KnH+3mPEQNQpRpVQhyB0Nu81jPVYf2CL7kjnG953jvz34twq3SDB8ed6rUqPijgJPOyLyCBZNdMFUaPgNbrOItQG3dqy0bIeWUnLapVeIxsY35Eqg5wiYV/xM2HWoh9bEYGKufDzezF2p9DsRHQjCsu1TNx9GUh5upGhPs11xw03U2xEDj3yKYtjUyu6YxkmhPccfiU5JPkty6C8mYEvgOa03xhgDBwn5U4hPzYYPpPBtIAbRHS7juLoTIL7lgooAkIOVFt1os7gNvG2mmUIeYCvAppzDt3EY31fh2KqcO/HX0e24Frox24z4V5rZOdWKesiFiKg94oorDT97a6XtG+xoZ2yEYp5oMYDQBS6kTmzhmo0/JkWvWMXIp2ioo3wgwg3CkQrFCjIb3UyYABYvBON4Lqv2tuSxeU96G10e52DqRWsoBp+5BCn+WbgEpH0GQAREzvoKCzvgTX5O+SkaoWCts0IipTfiiYBGDD5HZ0YWPRouOY93ed59InlqtWAgYQP8lxVrxWMQrWTx2rr05rJDZNoruqDB2X/UNLAp6Yt9DRblQxU7hSRq40epM8wiQpaPldEIGOiicW+qekdJ+8W6nePu8eHdXxUNyDf933fhze+8Y24cOHC7/mYEAKUUnjb296GP/bH/hj+zJ/5M/i2b/s2/OAP/mBCQX7u534O3/RN34Tv+q7vwq//+q/jR37kR/DjP/7j+MZv/MY7nuu/R1lijL8n8gIAX/u1X4vZbJb+XLlyhd8wwMGnedSnInQLuCGda2i/uxGiZycKxS1ZZIOCXdCppbfk7bUiza440awUqhsG+RQSFgVSFrKIfKaQz3T6f8xpX9sX0/kx+a722PL3aUBtdfRvj7LByKQrpctG0Pe/40aiOiluZJONsulCizOXZjOCPLAoanWiQ0XZyJRTXPB7hKSH14FNIySi7LjlWIhJ06FsQGyleSh8ctxSJkAXDspGcSi6Uz8CYINKNAZYmjR1AyicV2bjTqSvliieLRC9hl9mMMMO4YVByuPonZkAbL4GBTXqUJ1f4ugmYW5rPVxtKVjuqKeoxUq3/1o2ahEDkJcOg501XGOS8xHA5iirOoSDAt6ZRLvqVhmKjKPT7LEpEBTG989werDA3mCJex84SDa6Rkd0jUW1XScnqKLsMF0MsDyu0CwKvoSazxujQn3Ehqlb5HCXh8jHLWLQ2D4zp4DbK7hVBhznCM5gXWcIXmPn7Bxq0qGd52hvVgiOWpDVqkCMCuVWjdPnptg6f4J7Lxzitfc9i3s/7gbufXgfytBVrEfS1vMCrjFoW6JE9SqnJsLQBMB1Bs06w+xkkBo9I+5YvaA7OP6ts4D81Br7R2M6agWFuTR4vYNVT/fyXuO+x17AKz7uCl5x//XkUFZt1+gaC1t2yEqKxH1n6Nij2BTO5hWKqsO9l26hqDpU2+tE7QtBoauZQ+KdxpkLU+yeWgBLK9Qw3lNKSzPeB0Y6Fqb59YwUziU/y904JMen7HoOvTLJ4cku6UoVipjoStFwPdKOwYV9EJ0vI+y8X5uEurQGdEPkpc9uyKeGE38A5dMiOi9YZIeMQ5WeNpQfa1TPZlAzCrz9MKA95bF8sEOzG5CdaOz8pkUQ/RvO1fAPrVBczVhzPjtG+2DNNaigS5VeGaI0huiMrjWKQ7rorR7qcO3xC6jv6eBHHvbYsqGpPMLQIzw7pPOUNIV2qeFHpEepfiIOrk/FPkXZ3Z7j+QfFXJOM03MoIF4dcB2aCVwUZaCjAV1rptM7Ttmbc47IQD+RFqORfg2ks5lOa3pPBeuRqG4cYBcG3R4/775iM6k6oZr2W9TAp7VZHeWIZYC/WSGWgcYA/YBj5JJrVBSr9Wgj2h1PaqrmWhDKAL0wFJZH+X1rXm8szaYxiirlqvRonOqIxkdBthM9MwJ+laG3oEZj2ETYwGGMoCRKgfuG0Lr6xqRff6FAylUu70mriYrLZweyB4Q1M5x6ZD72+48MvRDZ9CLiDmTnRTviR+jP3ePu8RE4PupE6P3x/PPP42d+5mfwIz/yI//Dx50/fx733HMPtra20tde8YpXIMaIq1ev4uGHH8bXf/3X4y/9pb+Ev/JX/goA4NFHH8VyucSXfdmX4eu+7utw6tQpGGM+CO3Y39//IFTk9qMoChRF8cHfiIA5MdAXV+huVMhOqOtwQykEigif9TQtBbsEvFdis8ndpDhWWJ8LUF6j3glJ++GUkskTNzE3CiiPNcWkva6jVYiZIjIh09D6rHjrl5tJT5yS99xPl/pFOOqNxaKqNRNx+2YhY5MRLaF1WFAY26MZkm8QJ44XQpqr3mlKDxxDBHWkTkUj5Y3ETkEJfUIFUHfRp6V7DSRERDqv3EOZQBtVG/jzOZ8XRUgBcv3m19N7dKthT6/Rpcm1TwWgziJOf8I+tss1nrh2FjFj4vj2w8dYrYtk19rzmAGkPBFtqLEotmp0tcXqxghmm/kP1FKYFEAXg8Jw1OBkfwQ76lAv6ZRlcg+FiPakoAXvbsOE73NrpnYrwOS0hG07i2ymMZ9WgIpYLku87L4DzF2J/3blAZiMdDMfFIqqQ9cZ0pBaI0hBkCR4obCNOujLFapXrLD0Cr62KLdrdCcjQQg8lisRykeg3Krx4IOHeP+1c3CrDOWElKjoFcpJA0zAUD8FhADYPGBvvMR0VcHogKvXd6FVxHRVoW4yppQ7Q6SmdIJS8BrbjNbEAMSNrB+BskD3Tb6xgAZIW/Mq5W5Er9A6jXLYomv73I3IJspEdEuefyv3xOX9PcRAB65iQoettrYpsTwCGI/XOL4+SVoiGhTk8IXHjXaLPHeZriNC3MtYhRoT0XqDEDS27pthdjiCvzyEubiEd8wo6RpLMfpzQ4qFxxsUA4rIhN91LLyi6HrWBrpRRBdasZ2Vz5SbBChvxPwiIBp+LlQrznxbTM+Goni7G9FdKWkQItee8kAjZPzbDYjwttsR4WwD82QJlSvoFmhOh2SLqxuF6rJGyJje3Y2B2cdQJO2LCPtMhW4roJvExOnPny7hHlnBPDlAe19LsXoWYSYtyt8cYH0OaHY394Hb5mvu6ZxuFGn5awB3ysFMraSbc63MDyxprBkLcbMw8COPzrIZ0DURAUgxDdFZRC22uYX87k4hOzFwwwC9pr6is0SsGXK30fe5itc0iPbAD0Q3o8AifqmpKyki8mOFdhsIIw/Uij+/5ZkHorFpUiRDQ89ISQoDcbCykSGI0hDYhRgNLHJEs0kvD6lh0AizTDxIYkLHkw1xJuYjfYPUz148oMDn4YcvIhYRQYOUtTIkhF8JGhbEBVEBQjnczFKVpvNVaCz1IZ0hHSuyiejDCc24gw8KhMvleuaaKEejaa2uIvUk4talbARGLrlD9u8fDK3q7x53j7vHh3581CIgP/ADP4AzZ84kncbvdbz2ta/FtWvXsFgs0teeeOIJaK1x7733AgBWqxW0vvNSGWMQY0SMEXme47HHHsPb3/72Ox7z9re/Ha95zWs+7HNXHTUe6skhiiONbAFMnusLfQpEzYqbZLYAp2aOX6dnPMWb+VRDebrDKKcEjSCikk8pZq9uagpII+5Y4HWjxYtecQMAv59P1cbOMYDp5X0+iQZF2wB6xy0Aiausak4dOTHkOSEoUmrA5wJkQ1kbNg0RgAksHiKIPHiVhIEqgg1DP9Xq+e924+efrmsEaVsqAv3ETGg+gEI+aTlFLr1kjfTXhdc+tpoC1O2OWgoviJGj+JjuUAEH0xE+cJWNp808yp0ai0UFpWJqWoLoRkjdiqQs1QbtKkdXWygNlGdWUDrALbKU6ZAPuiRyX9cZCkElegpYWbUU+Q465OdW8CsLL2njffp2cBrzkwohKjz6J5+EOsmgvMLrHnwaa59hN1viGx79cZw/NUW3yNF2FvUyJzULpCWYzEMLlYvPLWjLy0+wmJcITmO0t0LXWPgxJ69O6EpGznN1XOF3Lp+H0gHlpKGsJzAfwzmdBPauZShfV1vsT2mhO59VGG+tceN4guWyhPca8ckRsvdX0JLBcbu9Rh8cGJymxkRodb2eRZmQrmsMapPDomhp29t9tvWmeckKl6ayygY0qyzpQWJk81BsNfCCWFDkzqImeIX5vMLW2TmKIZvMuLKwA4ei6hJSA7mntOQbhKMi3TerdYH5tML05him8MA9azSzAv4kQ7umLbLvNHZ/h3oP3aiUa9C/J+ioRQhbffAbReDZYUYdwkjoRp2CnRp0O2zSMhGOD65qNjIl6HC1y4K43QkIZUC3S71UL3J22x7r+xy1Z9sRdslmQncK9kqJ+qxHtxWwfrBD1EBxyyQnpmaXGonmNJPAdUsUJ1QB7Y5HHHpk9y02tt8KME8NoD92DqwNzFrR1exGBXzqjHkbnhS0fhiga83EdA8JZQwII4/xezOEnQ7dqQ5+5Nis+H69VtBrAzehdgpgc4KoYGaGjnJCjdUt0RO+4Ui2vN3EI46pvwEkU2OHAYxmpUl7U5HnI+nspubgp9wXWpuO6Lb794drfagCiutslIKNTIEf+KTlAOjuhQF1OFBselQE1MKg2+s2aIRhsxWEgqTXoseISMYiuqFAHk7uK9EbmqVO67Je37aXRkV3Q6HKQvGeRC8+14BaG+iWyHgUzaES98EovUeUfUu1REBCZ6Ayz8BagE2HmEagpQ7Rz3KuEbK/hYq0uiiIYQxyDrk4ZVUbCnHsB1sqcljl79xrXrTjLgJy9/hDdHxUNiAhBPzAD/wA/vJf/suw9k6Q52u/9mvxRV/0Ren/X/iFX4i9vT18yZd8CX7nd34HP//zP4+//bf/Nr70S78UVUWKxZve9CZ893d/N/7dv/t3ePbZZ/H2t78dX//1X4/P+ZzPgTEs7r7qq74K3/u934vv//7vx/ve9z585Vd+JS5fvoy/+lf/6od9/iqSBhWyCJ8D67MR04cViikwuAHY5abhcEPSq3qaQ8gjBedRUACzge19wSAuJetmNKCgcyUNjzilmIYnQW41UF2x3DQisL6340YFwC41Bs/aRL/SjYaeWooIIW4tlU8C174h0EIjQ0ekAUqmZA0pAUkXEYXecpyzeYiKbkKdSiFQSeQufOEY+HWlIwXxSjI7TITaazYalKhYdCpSZ3Tm6UwVBHFRRDYg/4eO0JVDNuyQD1uh6Hhazy4t1tMKsdMUhbekZPmGSdrNIofvNJqTglNsKQJ1RrqX7zTaVYZi0iAftmmY1zaWbk6jDkaas3aV3SFibvd5j9qCgsnVokDPj3YykYthUxD3+gYA6NYW1xYT/OlPfTe+5PX/Jz558iw+e+e38Nrxk/jfr3w6rl7fxXhviRgVBuONw5S2QcIJZTMOKgmi29amwr5+ekLaXBbh+0yOTqOZFVhNK7rYzMkTaWuLZsHk872tJdPE600h3bYW5ZDNVdtanDszw2rNLA5tqOF5+WufxblPf4HXfiWFh5JCQmODHkWF4bAhjW2VJQ1Gn5gOIAUPAoD3GvmgY7OShaTJCF7j9OkTlKMWWelgcg/XWNKlOjbF/XWJ/jbHtD7JHMDJdIDmxgBhmuPMxWPY3KG+eRtdD5DMEA3fGpi9BupaCdcahiIOOkxOL4m2tAZ21EENJAPEBsTDAvNLCtmiHwQA7lyLfD+DP9OKTkqa/gGTvXuziWgYkKfEittte37uItDueLhhQH0KgN7QerRHst3WtUZ+yxIhmjB4Lzs2GDxv0Z5yLJALJnx3WyyAdath5xrZjQxmrdCNIrI5xBpXtAcGkuq9MYkobxqM3pchPDFOyEJUQHO+Q/fMCGrcEXU8KpCdKLh3bwEvXzAjZ7eFmTNgMex2MA0QLWCnBtmxAVqNdgLkL+QwSwMztzBzi2i5btIpUNZbzXWz3fGko2XUGNi5IZKRRSaajzwpbdstG4KgYI6onejRYkjieNRS2Gf824/ZZLhhgOqA5lSAXWrmlniF4ojJ5W4I2JmBGxA1MTUbSn2UMUOk5drWnu6oi7CkXAJIobWqlewRzwvai/QZSiiFek7aVtjtNlkgYu6BSIF/yCPslPtIKKRxaFXS5/RhhVGB+0Xim4FUUBuhTiy/VvpEvVUByS6dzUxMifZxZflvHblOR5WaDSUGJspGmoqUoivRAqbomAYNKqOBSUJ1+kwRqGTVi0x+793j7nH3+JCPj0oK1s/8zM/g8uXL+NIv/dIP+t7169dx+fLl9P/RaIS3v/3tePOb34xXv/rV2Nvbw+d93ufhH/yDf5Ae89a3vhVKKbz1rW/FCy+8gNOnT+NNb3oTvumbvik95vM///NxeHiIv//3/z6uX7+OV77ylfjJn/xJXLp06cM+/1BgI4yTSZcVtxnlIBaRtL90VqhYOTdAs1bSWEQUU24A3ZjuKLrjv0Me4aqNYLF/PkLynGjZuUY3YTBV6Pg9FTS8oA4RkYWK0mwkTKTtrqzL8IC70DALxMjkS7jSsc8sCRt+ek+/imIf26MhREr4+iC6ktifw8jRonRlNqLV3v0ki6RgaYj40LPwFy0HXwMtamNLQTIQYUtHWo1iZgQAKANSvIJC1/N/I5LlaSwClKADykTkMq2vJswDMRkL063TC6xrIhxGhO+m8MgL0pt6l6l0SCFCtITj6b7ozwcd6mnJ13RQILs4R555it2FtuQ7jXzSwjsN1/B3ahOgDVJ413RZ4bdxHk/aU5jkDSZZjYvVEd5w9n341YIaqN+6dgEhGCnkpdkUwbXSfD5fW7peyfUxNqDbcdBBppOdBnKP2GrsnJvj5IkdVA+eYJ1R08LCniLxw+kI/ijH+N45RmWDw5MhutqijRlF6CZi/2gCY5kTAkQUZYvnjnfx8lMHePTh63jHlf8fe38Wa9uWngWC3+jmnKvf3dn7dLeLe290vmEDAekGJ7jADQKDUKZUSJZCQoUMUtlGFraEVCqpeKiyBUiopOKFt5SQkF8AYVWCE1dCmoyEwCYgHI4IR8SNuM3pz9nt6mczmnr4/jHXvnYV2JmOjGtrD+nonLP3auZq5pj//3/dm+g6Q0pWx8fPdpzRa2xrfrZm4MWFzMCW3a6xkqK8F6RnvU/Mnz+Rifl6gOANJpMtto1D6ARZKYUyqPgdNy7uTBCQ0RUp1L3CnU+8wNPTGWwRYA9r+HXR52wqDZgyIDTMIzn4jrM+7yQlxXPSJFjre/F+/t3oAWlO3Ywi7aQVcObQHndwzwpxTLI9vx8mcRK/tkQMPKCXTNeOlQwSIhuTdK0oK881QgV44fInwyyNbhp357pLcLVGJ4VxFKvb6inTvkMJBDGISJZ0U2pEuI9tTyJQRAweWGxe8VBeYfS+QaiA+jgCE8/hw9YgjQLsUw0/txTdrxzcEijmmoGIjUJ6b4R4p5HMDIUQNUJS/V4YhhG65p4KBbgFoD1zSvwkQjcGsUrMZIrUmKjAhoq5FtKQ6Ly/AoiaPVwHqIknoiWBp2gU0BixEVZwlwbtcQct+UkqsvFDUGLeQXqW7li800ZYo90XdEMD1QuF7W2K293cIAxBxLwIUAvqXLpJx5yijUY86KA2BmotJggKiFmxrSS4EBx+dTN+tnk4lWoNFdXO+WvLzzUVaTcwguzHCUJ1E1MQK2hfnrjLQC2P35UC9JqfT59pJQMuOTQxR8nQPAAHInwWpOk2155LLlMAEFcOeiR0LBl8IYoJihiJ8ISS5+4bHtkbvO6NH77d61vhWnXjgnWzvlXrD3wOyO+nlb28P/J//TnYomJNLha63QQor4BuBLG85H26MVAsSMVa35GmZCwbrFyYjAhG6efPCz2DCwErDQsivf4BXtiKOYt+BlnR2nf0UMt9SbHo7XeTTMMUuFvl4W0EJ2GZr5u50IlT0j4Go0iEude5qAEbkI4TOrPfIJ5WvK70FwHxjJfnVOKakid4AHbWiNn95Nr9lUvAhi41pgqIQiPLgnUAfTAh9Sd6d2EUtCW7XGkbEXMSu1fQ447T9I2FHnd0k9oY6L22F4hTsCzPkaf4oH2v0pLc7jXF8RowLmBYtVhvREfSUIMxGjY4GG7w4PQAxkQ0ixImu7bkLBAJedSjrhc+945LGwcz8KiqDkZHuliphMIEDFyLVVP27kt031K7bJKthanEIUtcm4pRC/erY9R/ZINXj8/x8Hy/Dy5szwbQ0xaxMxhOt2gaB2MjtEpoG1oOe8kl8bWDOXUo5grNUUT50goxKRgdMR00ePZ0D2plgb2WyI6kl3difZwbNZ1pHQl9GGLOaMm0qthnm/C7kTU2vTYjqb5hyNkdxkV0WyeWwUC7LGCHHqE1KIYtfMeUc+cCnbKkSDESdAgA8UUFddjg5GiBxbaC0RHrddVrT4yNqMoOq2XVu5c5F1A4j82WaJGv+XpDbYVKCBSFh5fG6/ifV7h6k+e/qYHVKwyZ7M0VDCfyZiPH5MSpqmBuhd4Y6HanQQBA9KLWHEoEwO8FuDPL09LI/qSYCK6iQnlGClU3iz1SazcUrYcSPe0I2FmHh4r7UTI02/CDBLfmQdcnoQ+qw4TZKuULS8com1CcG7S3AnSj4K402gNSyMz9DYr/OML65YDhQ0N9REU61+ChRXuQYFcK7UtsSnqxfQDavQC3MAjDCLviUCRUQHabysV4TsPO1ru6oQlH3qtyoGwsaTusBp7ZLzX3l1jSYQwmwZ1ZhFHE5B2N+Sc9ijNSqexKob7fwcwtwszDXlmEgw6oDalOCTCtgt3IdeEeh0V2RTe0WLFR6alUcp1IEw/3tOg1O2Egx6IkdA/oLX7DiAnosYp8nExXzdWESzuxdhmAte37grzYYEqDNmI4IUoOhJQ0Afn60lv74tq1wVy7xkSwict04Ox+Bu75DB29NiDT1GwoJ/qS3Dzk6wvkurW1PTqCVjJL0jV730z/sglx1eDhT/zfvq05IB//qW9NDshX/183OSA36/d+/YGkYP1BWHkfNA1QLNk8mIZNiNmQjqACL36+ArbHpCckERearUJ5CZRXTEsPFZEVgFM5t1J9Fkh0CX6ceptegMVKbnL8JGH8rkZ9tCsMiisKVPVW982AyhcD4coqrzD+phEbxB1kHwsWOSqS34yAnjOMII4yW2aQqE4BDwfo9eiDgGjIz8589TwdVJHifQgXOFuKAuhzPwCiKmg0aRkAQkuEIXUa1bSR0EMgiqNU8noXeihNg6oNolDN8sXNDDwGRxveZ21RHUqWjEoY3F6zqHTSfCQgtgZ+7ZgovnWSiM1J/WDcwAy7PuQwBoVNzaKzXVMT4muL5XKAh2f7QFJot6RxAaT55LA6VQTocYfRWGxm5SKqdcLB8RJ3DufovEHdOmy2BVabEvNNheeLCZbbioV75GQ9Bf4JNQWefm0RWs2JqokIXuOP/DdfxkdOzvDusyNa4z4aYvA/j6EbBesC9g5XSEnh+197B4OyRdcZ4BmzPYyLKAqPe3cuMProFeIfWiKMA+p1gWZBJ6xnz/ZQThsMX1piPK3ZeCwL0iKSgnOhRwJyw5Sbj9ix2bBl2NnxdvzsTel7apTOLlJR9C5C10uJzWx3XkFb6mAmoxpK0KVi2IoVL5u57Rmbt6wN8a3pLXLt7S2UBp4+3UfbWiwuR6TLZe0TgPW67JspYyISgKYjzUuLY0+oLYazba/R6ToGTUIB62MF3fBc3h4Do4cappFGo0ZvXKE6RZpLUGw+DM/JOAzoDj0bB8P9xV1QjB2OWiIBGwM/iRJIJ9TRKvXndzchldPNNdySDld2I3tPkcRliU1Qen2NZIHwxgbFlUJ1mmlYCu1+RPNGDbPSQEsNyuSLjCrPCe12aRCGCcP3KaYPg0RnQA90qwKbexHFuUF06IMP3bRBGACDZ4op7GtLOpKLqM7QI7R2A0y+SX0IbYfZvLX7gQJtMd/QrUJ5aqBbBbcmipTtj5ORpPFCDDpqK/QwJqqnIpH2VmsGKyaF7S0+f3RJhkGJieKicwtlYvOx0QjT0H9+KgCrl7mvl2cG2TELg0A0Rsk+vmUzWDwuiKJ0QBgHlGcGqqW+BWBTlQzfl15DkngdQVBwc3G4cmnnkBW4P6KIvZYwDvi+R8fXpYKCXho2EOJElRHwvqkJkAuinBh52GWTQDJph+LptHO2AgcnSpwUIVbtkEBBJfTNPHCA/L+3Zhc6V6YLq0wxy5rDTANu9YcCAblZN+v307ppQD6My3BzzmjD9oRTxfoAaPaBdp+/SxqwKyIg0bAYh5JG5UJ0H4UIzmuweI6cjiVDZKU8VxQstjtbzQzf646PU54prF9OPSc3aT62CgpupVBecBoKgBedNZuOOAxYveF3r0u0HsWVRhgmmfhxsqoazSmU4yTRbClu5f34nKmKvbMKLCe0OW09KTY2YRR3IV+RDY+KRFyUoDDJCYISOPVm3ghgqoB6VfD/4r6VHzzl3BKxYtQHzL5AUIgti/oYGAiXvIYaeTSZwqUT2pZFYw5HRALTnUcdtGPmR2hZJFgXaB3bGiasS+q3b+hCNd3fwFYe5bgVrQSF0cWwo9OVXKRjuJazERQWZ6NrVq2cxF/Nh3hxNUF7yiYvIwZt4+CD6AwKL9qVhKLybNaEyuQmLfURJvbBeZ/9xuv4+jfvAAAmvzqAWykM/+xzfOIPvY8YFTbbAiFofO7RK1guBwitwfSjlyjG1Hhs1yW6YHAyWWJUtSieO2ibUE4b6j9uX6HdOmxWJdZrdtV7J0sgAeWk6dPajY29bgUA4qLAYNKw+YgKbuARGtrgDvZqhIaWv7Qq1mw8xLUq+GsoCYDyeMMclaRQt6S3ZV0Gmz+iUeXhFl4shpVKDB40CfGqIIVPJSa2R+YbxLVDOaZrVndFPY/SAJ5X6J4O2UQFjbh2fcNhBx22Dyc99SrrXvC8QhiS/qM8MHwqVKCO0+dulpBkustwvoxQcmpvNhr2yrDYLSP8cUcNhujT3OOS59NRw8LUJuiaRb/2RDNMnR+b9E8/ZHPiB9yvMiKqOg1/4OEvKnSjBPX+EKEANveDTOhZuNqHFemkgdqC5adajL/hkPY6uAWL9LDv0U3EjGMWeuOO4qljEW2B9jDCNBzU+NMBuklEN+JeY9YaxblBeW6wej3AboDxexr1ccT2hBkkUDL8EG2Fqfl6SbMCgxxdQjuV9PCaDZNdsjFRHZPGlVfM+DhhQKoZdsz0EKpfdarQHgaYpZZQRO6jZkt3KDs3cMdbFBcG4ahlUzPz8HsBzR5ft25pEmC3HB6NvlrAjyKKS9MPmZRX/XcgGUA1dNwqroiUJC2Ur4xQ58L/GlIRHfUvkBymbD6CJDo9S5SFLleRQ56c26EBtTK9EUJuWvrnkuti78CYEZYEXg8yNTKyGYKELaYg9M+cb7KxiFthnhd0QMyIR2+/m63dlVC3cqhitoXXgqYLRY2oUPptCM+3Y10PD/y9/HOzbta3Yt00IB/WpXjB8EM2Ab4itUp7NhihBLmtchEolkRF7JZNCRKw9yNPkQxRi4wQJC0i9g7YvtyhOaTI8/jzEeW56sXrm7sJ7X6ij78FygterHVHh5VunOBW1JpEC063Vxp6YzgJS4BZWqiGuSRmrXv6RbsfZZImdAXD++tGw6xM77IFoM88KS41aR7i0KVW5BdDCpPkRECZ681OSxijglmyKFcDuhkpK8m1tYY5t0REOk19AUCovZMpWJQiPueb/BZ0RNlIy8cc/CafXZ6uKwWkziA0DI6zIy8uSwrFrS1GwwZIQFdbaBcQFwWCN9CamRZaxOxJGp0QNBbnI/izCj7bwZpdBkUUEXRaOmiT+iRsbenIlCeHXlyt8sT/9mvnDPqTYrsou949K4ftpahJlXruehGm1kkySUw/5dc2otqvoU3EwV94hL/83/4yXp1e4KtPbkO9Qz2H7wyadYF4VWD0lRKrLx/APxyhWxVIVwXOv3SEt9+7jRAVRt95ASNWx0gKz8+mcKWHLYhMhFZjfjHq0Y6UgPGk7o8/Bg3nAoYnKzRbh/a8Qrd1SFGhmjSwQkcrhh2bFq9RjDop5FUf3JipXrHje9RJCn3hQk/PCtmq2Os+96PILlfXEJnieAtbSC6DULQAQI87tBsiXCgDBqMWrvD47u/5Kt741CPqeVqDg3tzanBUgr+scPLRM6JUvYNXxNEXgHYmyeQycU6GNEw29QnuwqK4oNNUec5peHGlerTD3+qgGwWzYnMcxgFxTHpTlERv/bxkQTj26A4lOVusesOAxXIssjaE0/9igZ6+VJxZmLVG9cT2qeCmAZq7RAb8KKLdj+JexAYg5QZgaVHfSijfKxFKFuzDt12fT6I3hha/jiYcds4QPhw1KC8UdShlxPAxJ+LVKXUVAHvN8tRgezug3QeGjzSakw7VKc/zIOYazEjhUMauOdCxK43iQiOOAtrD0Ici+mlAKLmP6LkFdEKY8LxXiRkXbq4xeYfNlK+A4oz0RpUpYeIiZRaGgbJvj9DuBZjTguj3uUNxTqvybrozFfED0cDcSnBz0xuSQIY3iNzjiWYTCeumvI32qqe55gYhmYS415He26q+IdOtYvaHDKGU3zUBmQ6pEtFsJeLzTMvNt1WBdNbkqI9JOWtDGh/Vqj4Akg0sz9OUHak6sWhvxfI9KVLBAm+bsjYtu9hJTpRyvIYkr3e0rFICX4XWpTq+jiQBu8lKo3Rdv3ezbtbN+i+umwbkw7jyZAlEKdopeoG52UgyuqKoUQXItE8oWS0bhu1t4On5DPHNNW+XWIBQiM6LuLKpv3iefSc3VQpVgRwuZbaCpPT0LRYxybI5siJUjdIMqciCAUnsgmtBZWp5XJnO61bBblTPyY0lxZx8DqFmCA1NeQUjr6E8033YWX8xs7HPI0mWlA4UO2vEKGFTsbaonl/jmSny19O1hHe1cDCTjg2HjH+UXOAyxK7yFDADJEFLkZpQjRuG4Sl+kKHThPWRUEwZGpgRk3v7V3RyCjtXJLPf9BoAAKITYSPUZ27YCHPYoCg7QCW4kpkX3dbCDDy0STh+9aKnDmVx+HjQMBsjKKDRPR2o3TqcL1jAZ8SgbVyvS1GKovKss/DHHaCA0YzZIjHovvkwjpqQrqaD1/l6hP/p9KP48ultxLMS3Z0Ww0kjQnm+j5u7DDkztYJZWtx58xQv/5HHUDaibh2uzscf0E7kBq67KntHKTfwiFGhuaoQWkONhIhVATpnec9Czsza/isQguZjS7q97wxSa8TZ69r2KI/lG4O0tVAKGE9rpKhwdT6CXzkR+afeJaxrbW8jnClcABGuQdn2tI/8WbvKkw62sX2YYIwKbW3xm+cneOfZLdGlJFxejOA7OlghAW3gZ2ls/sxIw/FDDgpCCUmY5luiW7rY2Q3zGEJBdCIjFUnMKMy5g90q2s4ubW+dHau0Qz01ReVQQDFrSDcS+lAuWItL7gPJkn65PYlo9yK6aUQ7i0gWaA5FjJ2EUllrDB8bCuNtAkxiWJ/YwSaTYJekWYaKVCPtgXafSCiipJqPAoMRW1qPq0Q0bHsS4VbSXIH7XLuXesS4udvBbIHBU4P2yKM+TiheOKK/ndCr5D0wjejl5KsSS9LOdK3hrkxfZCOBk/1BQBgTQU3SXKha925fSdNhqz1iOGG2HQ5DalYA9O9tDiLk9YKNYXEpj7GV2wgV1Y8j7Eb1QuzchJhasRkapJ5up0Tjw0wT1YfL5udWUQGajxkruqcpn52yUo9m98JvnUQ/JxunZEz1e7Y0QyojDp3qjztrT1KmZ+XHyKi8AlCb3okMLu7eV3ExzAG6vYmEXENSnwMl+7jsc70WMDcn15qMPBi7Pij7UKz0Lfpzs27Wt2DdNCAfwqUbUq50I//3pFmZGhi9SKiPgOqcFz0koJhzX+zGIowEUJ0Bg88PMfjcCNqDhYdM6dyCFycoTgk3tzkhbPb5mHbDjXrwWLjTk4TiivB9dLmA4YXNNGw+TEOuuV1qUjfWGnbLC5ubU2xoV7oXZgZxeknZe75TElLIpqU813CSrlxekkoWDS/ydqN2vuuB3OXMY1cu9kLQ3q5x4tmQJKA+Eo5vDhuMUlsKl9ccb4mEjD0vSBKklQX3ShxokKTIaw2dtAITs5utY9ORN20RwANAt3F96GGoDd59fKsvxFNQCFuLqupgi4BW0n5jZxi82BiENZEHWwZYFxCiRlGw8G6XBVOxAUAlnF2O4R+NkKJG6FhQe6HvQDFjJAmP2ZZ0ghoOWoyGDbUFmgWzy8ngiSJupSOmB2sgAXXt+sT16DVCbRmAmBSpWkFhWxeY1wO0n99HeaqhFhbrp2O4xyXSxmJ0Z4Xpa1dwa9U30adfOMHTqxltipNCNW5Qrwv4lQMeV+ToA6gOtzAuohx2MIJMvPTqKalVOW8lKJRVSwQpskAPGwc3oP4nJaCRgELfGoTzsuccxEDNCm9IQbp2EWZKqthqUUEbOqcBO4crUuLYvIZO92hYSorPETSpZ9LgkL6mYf7DBMlrVEdbaJOQgsZWUuaXq+oDuSaZBqd0xOBkjYuzSX8MKTdTQ4XZ1zQ29/k9bw64P5iWhafueF6ZloMEu2EwXXQJ7krQoyKh3YsYPHT9OaYbUhzbkw5xGBAl78GcOoQnQ2CvZZidSehmQSbsgsIGhfakAw5apCogVpH2v3sddKtQPTXwe14oWrSeNZKbUZ4aDB8b6Jp7TA5STToxODFyD/OjiNEDTUqppcYjh961+xHdHhPM4yAy2E8cAv0A8Cct6jvMKTFLi/UbHdpZYq4HTy1sb8v3w3Af7ZGQhkOe+lbsm6JoWKB3+2K72xEJxsZA5/Ty7AyYANVobF4KqI+k1k1MMkcV+1BYgEU26aymp+OqoOAnfD3tjAiR2fKYVOLwyc25N+mOn7du+B5202tOV1GJtS5Ro4xIl+ei+5PGJ7oIfSWosWZzmRybieKC7oSqIbqctYIqiIDbSQq5IgIFr3bBjBAEwknTkIv7CDYTW9GLZNpV98HiX2UaljiQ9fTea2GGUGL0UZOClcSUInrDrClpLpJXSFsrwwJwmDQIuwFYLW5hktNys27Wzfqdr5sG5EO4wgBCPWDzEQopHgbA5lhh/AD9BTWnArd7IlCvecHpWI/Q8KMB6pNEd5kSwgNXFAO/vEUYR9g1qVlutXPIqk/Sjks9ohuN7nhMRFqE3gHysUnvkELd07HL1OLkVXPqZjZaOOkKbskLqerYVJRnRFP8mNzpWBDtUZ7HZVo+Xl56w4tHN6XLTSpEaAjwAiUQeZ56JSOc91YjDcTO0qUeLUkJ8GuZnNeGORVR7cL2gnCZZQoWa9pjJqH6BAknNC7u7IRVolg90E3LDBjMZiVQEMgZHgmm8tiuiYiYIvQ+9MWkgd2vUcwaWgFvHRGGxmB7NYA/HaCYtJgvhlAPBggX1A4cfewMStP+1RQB63XV03O61sK4ACOTvWxNu1pV8I2Brx2CN5J+jj4fw9cW89MxTBX6nJMchFjt1aQ2RNK29o6XaBcFzuYjTL77FPVHdshD+sgaZmmwvhrgI/sX+MM/8ptI37VEcaXw2n/1gG+doq5Ga1IcVCSn3+wz3b1rLVGPxyN4r+EGHi+uJhSOV77XXDgb+gRyAJgerYj+JNG8AAii25jcX+LVl04RvIYtAoLfIWZenM56ep3ZZQWMjzZiIBAlQFP1Opn8PUgZ2RLaSGhIa4pBw7xwOP7TjzE9WqM+H/SfWTlqWfyVXU8VCa1GMWyZ1u41mpq6kUzFi4H5MKuXEzZ3wMYvoA+a60a05e4mpHQCEBoNhxNZqF5ekEpkVxrtPifn5mSLOAlsAuaWk3IRrifLc1W/kCyaqad2ZBbQTYhwjt8hzVKdF1C1gV0YFI/peBYmAfWdwOyQBMQior7jEU8auLlBuxexPWEzVV4oCq6r2KOseaCiZh28aF+gErpVwaBEKZBRBeitgZ0bIiUAuingDzzc4xLVE0vnr/0O47eZhN7uB+rEBEnRgUOiwQuFYqHQ7DOzKUhSedYEqMR9w14Z2BVtelWrqL8YB2rmBrxhdAlp1hHJNXTEKi5Jj7NnlgjTpeldtIBdHotpeG5kTVy3RzF5NxPrXHlv/JAoByKbizAUdLVR8BNJNi+Z6h5HgU5lcnzdNDGIMgvHs4W65mvKNKmkE9ojjzgMvcVwsqnPC8mhtQwHFJREMkcA9DbtyO5cCv3z9Be1ALEj5h6uEsTARPb8TIfN6FkCG5dE5zPlxVQk60yU3KfWQq1SpOHaawMtANl+WxmK3pOV41/aHWXr27luEJCb9fto3TQgH8alWczHgmFSmTqlW9Kemj02I24JFCsRil98UJjulrwARwu4DTB4youaW7JRqU6B7rMHGP7aEKN3DdGKhs3O4LmCWxC5UF7qJbNDV7px6q1+Q4HeVjNZEO2QYiQWCfVJhB/wNm6h4CecHimv0E0AtzCozmj7m6lcxaUkujcy0Rzz/uUlp5QAetcZaDYWcRhgFhblC4vx1x30whKCbygaR01nGTvu+PyiAclJ1iiE25unZINr4vlWS5IvaWvwQp0pQn+75OmixIJSiVuKwPViYZlaQ4rNNa5w9Brd1vZBgSkp+BX1CaEzsM8o2E5R70L3wOO3RUAxaTC6vxQrWYXpW+eoTjaIQeP07cM+QT1IQGIuilMCukUJ3xhBNuR9LQJsGTCc0sErBN0jHykqmIINS0qAdjsNSfQavrU4vnuFKM+zbQooR71JhML0YI3ZR65Q3NqiKDwOPnmG0d4W71weoDId7swW2L7RYNXS+Ym0Lz6+K+kw9n1vvY3JuEYMdKeyLmD/9UukpGBNQLss+T7pJO+tQ/fvDtCt6JKVEpgC35A61m4d/LogQlQ7tN7g/a/coRan222PxZcH1LqI85nf5KkoP5vtho2jry2qWY3QZr67ghOERGlIs8fPvxy3vUXx9/3XX8Gd0QKDosPe3QWK0iMGxXDGRAqZLYnGmDL0Nr852NC3FjkgzTimRU/fYShdMQe2tynmdgs2csUVz0eAyES0YmZR4AOFR3REMYoLQWu+MYK5tDz/bIJZWSKMAy/NOXorXzW3MEMPM2sRJh7tQcDy9YjiXGP2VaKk4VYL/cklwjj2E38kQYBrmZpfFOhOeN7qRqG715AS2nHS7cd0haKjF6CflohvEQ00aw21NdxLpxHVM4PicQG3IPpg9lvEIqG57VE9sehud2j3uG+lTmFzNyIetr0FcX0ce7vhvjBO3P+0ULOQRKdiIA0aNRTdgWeIoEtoDwP0QorWTkGNPGAS7LMSulNsKjYUtUcpyE0D+Ens3QppEyyDgVGEahXswpDOGoHmMJBWth/Z3IilcR4UmVqhuNS9MD8PhxAUj7Olqxawo5fRzVCahPZaCCw4EFJRwSwsBztAP/ihbkPMRlaWe7JORBSkQYFN1Ftk1LlIPVqhEqi1kGYlW7fzmNSOkRV3CIfuiFbrrD3JIM/1x0z8P4cKgBoyvLbXreQHFrQleTEv6TRfT35uuabdrJt1s37n6w9kEOHv96UaBROAUFKIaFeisyg4XY5johWhksZAxKV2zfubTnKfnFCXHP/YDSdynYRRJQ2sX0oYPVDYnrApSTYjFgAUG4AcIpiUNDQr1aMTfpBdYSjopP0mG6aklHjj87lMzYZDhd3/TU2kJz9W0gn17ciLhkyr9KVGfZiQFmxU2hkvytWpRnNIW8jyiaNN5yRABYs4DL1YkzqTBBU0wlVJK0pvaBecrxkNxYqq0UC1y/1QXkGNOqRpAmoruSCpDx5MHcWeSrQVugiIjYEuA+LKkQc9Y1aBGXjSuySLA1LEA0A6K8lVH3VQww6x01Bzh1t/+DnOFyM2IUEhnlewJ1tO1g3QXFXwG43ypRXsf5hitV+hPQwojzeo9te4ej7B4JFDKIHRI+Dyj3QM34sKWtK7o9jGpsQcDVsG0UuQgtU2loF8iYGDuvR9lkav/Sh4/4v5mK+9MQganMwDWKwGuHMwx6yoMT5s8O78EMu6RNtatLB4tN7Ds/kUn37jAb5xcdg3PjFodNGiGHQIQeNX33+FeSEbRxcyAJdbCu6busDh7TmWmwpI1FRY0+Ijf+YRnqymOD+dwlYdhuMG61ihKD2a6DDY32C7LpFajWZdII0ChvtbeG96kerLP/g+Hlzso22I+IwONug62ztZKUU0xboA7zWqccvckqpDvS7Y8EpNlryGGe5CD1Okc9jOAninp+lqBhJSV0IKWVdb5rl42rgW04buZwrixqahXEQoONlvHFBcGHSziMFz6gzWL0cUl3KOWTb363tEGjOTJDraeCuxrc23TRropjIZ9mCeTlJIM48QAbW0PcVSPat4u1FgUGBQ8GOH+T4HHeOHJdZ3S5gywWwU/CihPfakQ+41QGsQkyWaqcShb2tEr6KgN3Tdgk0IVYSZM6tDJxbs7UGEmrWwFxV0a9AcRhRXGu2eNBLzAjjoYJ8XqF9poVYWdqXgJ4A7d4j3tz3CaVqF4VPSm1KZEKB6KmtGkvxegKnZXKkI6IbHE4sEvWW+ipYcFlKyFEIZkWoDNQjwChg8sPAjJfq+1OeLpEBnMhU5iOKgJ+1coMDGIJVsntxCtC2SyO4WCrGkNi9UNB/hDbSYmkijENG7RkWlEEeBoYKazWuyFPNnRC2jJMorUuqKyO8E+Fg6KMS9ThBpBRjeFlsHNWuRasXmw3HIoSLY1BiwsBekQwHIuR892yn/rVJv865bwEiKfHao0pL6TjogUY8k2TqoIhuKQJ2gshHQ1KBgY6CGuzBC1WkkFXlcZQRWhkG1CrSG/zavDOb8Xj/mzbpZ34p104B8CJf2QCqBwQsAoIXi4DRhe0gxdrsHIAGDc3JcV3cVnDhbeXG8qo954QH3X5gtERLd8ffFFVDvA3alsPyYR/nc9onowRFh6aYUZCbNBiiUDNzqrEJ1xhAxuwWS5kXDboFQ8Bh9JXSugpaUdq3R7iVJVOfzA+jDDmPB+zPTw0hyMjnL9S1OPgFpPop84Qb2vqqwOTGIhaTAB7qfDB5YJAMMnwPnn6bvvAIdZfxEwrPWlq4pjtQAvTakdJw5TgyryCRcrxFr4WsXEX3irkzUVVSIW8vpp0D+sTFAGYFaEIRWI3gHlBSGx2UBM6MoPSWF/dcvUbcW9aZA9Aa26nBwvMDp1RgpaviNpYvV3Q0A9PerDraY3qtx9o1DlN+3RHx7AtUp+M5gPq8w+qZDNwHGD4CrT0Yc3l7gaj5E8hrlpOkF8DHQdvb2baIJp/Mx6T2dphVt1rJIMF/WGWQRdQ5VDIuC1rMy6e+SRSH5Gk/OZ3iwvgXlAlzl+9DBsvR4sRrjzt4cz9YTNK1DCLrXX/i6QAs2FCko+GShy4Bq0KKpi54KlZLCfEmILDdVXVT4jffuyZeNVDKtEr7rtUf49XdeQjlusJkPoF3A6GiNeltgMK0l94TfGf9whK+tCnLZR8xTWT6aAAZwF8ydyGhC80pDLVBrkAT9sGXoqVGApK9HjeAVqXaCKEWviR5ZJrD7tUW515BuV1voPmukI3LlNZtZQbkSgGLQETVpeB4kxeY+FkAcBtRHGuUFgKT7oUQKRFV1x/+3UwhlC33cQT6/m/1EtFOLC5YnHSjudcDakFJUJBaEzc5RyV1YmlMAiPdrhLVDHQ3aqcLgBc+hxZt0szOTDjEoWiQ/L/r7QQPqsIF9f4DudkeU08jUu1FIBx2wMHRv2jpomeantYP/6AZ4PEB5ptEeMpMiBQV3YeBf6qBeW8N9Y8RgPAvRtQDmWQUcdpymJ2B9P5GathbdyJDvS27MtM+2t7QJTyZBFQFYka6pN+II5mnDm1oiNACPFVVEfRK5lwlVVSXusX68a9KyIxk6amGycDw4Njq61ghlQiwZOpgt2TkYYtPQzkS0v0eBO4dCCj4HvOaGWPbF1LL5iQaIkvaugupF8XEgA5yggWkHrC1/1uqeypqyoHtlkUYBaWupb0FiYKoI1lWnkVwQepgmdU4E7D3yAuwQCJv3YojjmyAo+b2xAncI/RFOjksRmcwNodLgIKkKiIEuZSrxvVAmASMPlaG62gCjwKFUUB8OBORbQZm6oWDdrG/RuqFgfRiXgkDvbAiSAnzFJqAb8//RAdtDhc0xN71uArQTIhj1Afm9fX6GlgJEppgA0A3YmLR7IgAU56t2QsqTCuJcAx4D0QDx9hdnFd3J7/ROq6E9L1DZ8jcp4UBvKFTPtDA/ytQtPlc35sWcj0mecjdL/QUzicYkO1/l5/YVeqeuWCa4uZaLakJzGNFMQRvebpd1EssEU2tSJnJYnwJSFUnlGAde9LPNo05sPCKvYZmmlVojkzwJTJT3+7pbCnLmSBGFrsWp/uj2qi9IAWCxqrBdl9IQRPjG4mo16LUXe8dLhM7g1nSF4DXC0sG3BoUNmK8HmLw6x2RQw09obRm2FikCb/7Zb+I7/+TbuPq+Gh//zgeoJY9EmQjfGdK/IoMOu63Fs4spXlxN4GXqi2uTfa0TCklTzyPIbI2bmxEUfFxmkGiEtRMbX77W4f4G1aiFtaF3i6prh7p1OKo2WGwrNFvX09CioAWZkpaS6l3C6g15ISlBqFBECFLUGAzbPrldm4jRtMb0cA2lI5rO4rweAkikLgkKkQXfVdExz0WeCyc1Jgcb7N1dIAaN5XwAuAS7X+ONP/4eTj7xAh/9gXfQ3O+QOo2woRYodWw+Q6f7YxmMKfIPtUEx7DAaNohRwVpmEugF0abc2LbrAtPZBsrs3M7aFZvUjJgolXbJ9p35AC++PaQDVHMQoWqmmpuGwuiMVuaAUlMDm5OdbivbdefcH19ROxYNkc4wivDTIFTIxIyLjSFiaKUAjNwrciaEijRWyJoHldAXwvtfFtTx/QHMkxLVOyXPnTJSsD3uUA46ZgjVQsE0qTc7S2vHSXynoBYW9Z1sq0fnsejYXEAsXsvjDfcoQaLia1uUFyxYzUZTp2ETsDHSXPBPN+XjZEpqMtSndbMIJ7kZuhHBfq2Zqt5p/ixh5x4WATXuerqQnnQ0tBj73k3KT3ncsUhsejyga76nZiGuT9JQGBHn59wNU6s+GDFbnseS2rpQ8DMNVerDXHVD6pcSK+T+cpSLfH3th+IupVs2CJAC3NSCXKxtv1engo1J0jmsVlCaoIh6tGxaVHnNslcJGiNaC9Uq5FR2Ftn52iQNghT/2d0rZV1KkalYmaOViP573Weg5HBZyCCgT07vwxCv2fWqJPkjinSttfngteJm3ayb9TteNw3Ih3CFgdjqytRxcAqUi4RynjB8Dhz8ZoRbk7LUjXh7u2HjgEQud3mhevcshmZBKAxsRpoD7pfluUZ5buAWvH91xsfSHf9Ey8c0DQBNQbtb7ZoHtxD9ScW9vTpD77gSRc9dXCm62rRsVBhOBmxeilh/z4ZULHGQoVgUGD2UPAK58LORAcpzoDpT6GYUPDb7fP3J0Kc/a1LYZCi0+6SMwSTEMqE+oZg0jCJitvQMinxsL3SDVuD7LJgUQSIGDKlLrQbWdLFBJ24tQwa67UKsdgJl1RE9SEEI40lhuy4Y7ic/71YFbBFIiWoMjIvMAzERKQJ166B0xLOLKZRK2Lu7gDor+1C/+fMJzr92BAwizN0N1MpifLTBi80YGglv3H+BmBS6zva0KSuhewCIgrQG6p0RAHFmigwx7LYW7YYND8BGI7Sm12hEL2LrBDihj2Vry+qAWhJfiyWtN6g3BZpvTtlcPatILQsa//HBS2hai9neBuOjDXxr4CoPYyJ1FCr1QYGxo6OXK7xQsihcDqJvaRpa5YZOQ2lqKFZLulZ1W4un5zNU4xZl1aIat3ADT/vbpxWuFkOGAcpKkeGJKQHG8Viqwy2cC3j72S08P5viN969h73jJYppi3LWwA07VHs1kHYJ7INxg6ZhKKEZeHS1xWo1gHUBXUfaXnF/zeK80zi4N4cpPeZnY+bBeGpWso1ydjC7bhesVEIxbuGeOXQjYPDEMEviktNrtxK0o1GYvU0jCEQW0G7Nv7M7VkYX7Ebcshoil24lFttrmb5XEakxCPdq6kGuil0YppxDmS6kWwX7jAL0OAxo7zdojiJWL/G4Dv8jKUt+GhHfWsGftFBiuVsMOmxPh4hTj+GdFVIpSKaIqAGgPDcsMAs2yaZRsHOD5nSI6v4KzVGgy18V0SxLFqy1IZVx5bD5aAtb87W3Byz+q+emd1TqDr1kpci+JLSl7QkL906oXUmyK7JrVJh4hHGEn3kGqA45KBh+sWISfBERNha4KFA+LNgYSHAhIMjEkNa+tPzl+6qigluwuclW54qnCkNZE+BngiROA/fFhsee9RLZUjbZJBbCUWi0DISNjnqU7NQFJ6J5mz9TwC35XWCILd+TZKlRUl6RgpfhtKSoe0mk6+mtZiOphA4FsHltdN/0JNH6pf51Y2cuYjMaQjtiJQYB2aaYaHYgzUuOWRWBVCtAHLCSDI6wCyRMgCqC6EP4/YqtAWyEdoHUvGHYidRzw/JtXOIcfxNEeLN+X6ybBuRDuJQ0C0kTTQgl4EuFzW2Feh9YvqTZGGTuMWvxPogwOhYTAFGF0SP0mgtuyLyI9UGGEFH7gtNIaib4b7cSnYY0EP0xJhYrUexxEXeak7y0R2/7a7foQxTLS7q3DJ5pjP+XIbZvtGgOWUy0+7TVTJrNT7tPOkAsE9EfLZkkiRewYi68dc+Ljlvtmia7UT2CojcGWdNRPTcUJy4NJ3eWBUEqSJnIKb1oNLC0O+/6xpAT3JDLHYdhlwgsQYWq1dBZmJ6nbmOK03NSOIA+ODA0FspElDPy+J0LUC72QuWcbN5u3c6JqrFoWouX33oCpRLKLw5x+GsW028oFI8duq0F9ltsViWen03x+fdfQhMsHl3t9VoBUwTJkUiIFxyBF5MW7uNziqkbi2rUQmmgEMcu4wKaOR2OTBEkHZxJ8llLEiMTxof7G2iT0G4cE8ZL3r5rLNLaYvLxSxgXMPjIAtWwRfAaZdUiBI26cfCBjYOV/I88mcS7I362ZcBAmoQYFcpZQ12EpMnT9pb0iiSNSRQkZjBuEBra4dbvT9G1lujSS5fY+8R5nzMC7FAL6wKWS7pTdecV2toiRA1tEoyLqMYt1huK+nNieddYhK2FNhGmDGi2juhHY6ilsWwum1XB98hGNBsiP4gKy18/RHxRQc8dql8fwNcOqdM4ujPHrfuXGIwaeLEQTkH11Lh2U2DyHpt57QH0wwKNbsKfDZ8qrO8C9RHP5eYoYn2HOrD6aDcQUFGomxnddEKXXNNwAgDQSTjeRYHiUcHzt9MUokmhqhsFNyei4CcBdq3hzhwAhTT16CYR7QzY3gL2flNj/E2D9mwAtBSzpyqieTHkeWwSNi9GQBFhDloiphOiJBR/y3m4MZzoJw4B9Oem0C2pZ2ol53LgsSsXMXrPwhQB9a0At1QYPjKwSwM/4L7hB5IDEoHNnYTmIKK4VPBDoDrVRCi2us+fcGeWg58ImJVBcWZgrywL5lZD1Rrrl9m4FJcGw/ccGwfJWIkFXwvpWHQRs1u6BPboRqPQTdmwZf0G74tdxkhGf8VlSgVqePw4BxHunkd56kxiFft9V0sApK5JH1OtBgaRNNhRYAaL2hX8SvQjuQlNNvWi8yT0VRWJQim51qSW9EPUmtSuThCPrSGiolN/bEn+nZEk5RWTzxvVo+6I8tiZvbcxvakBQPQ6eb1Law/5vVG9k182L8n6kp6+FWjqgWzFK9fD32oHfLNu1s36z6+bBuRDuEZPWUi3UwrKtQfmb7ABCAP0YYJ2wwLcbsSyt+XPuwn3ymJOetLmNpsFJfa5Rux43ZKPlb3i/ehaU2GJbOhOpmmiLdEdhFLBx80XPU7Trond5f8qElnp7XoLHp+bG9jvvkT7f1jAPitQnmnYrSKFqlXY3KPTVna6ok1kIHJjgeJCIRRMal+9EuFHCX7IhiVb9fqhWGNWvHibmhc+P0pMU/cK7rmDmjuUTy301vQJvBDL3VQFJvN2igVVIqyfIfvrU6+kQI94cYECQM1EI4LM/oIlF+agoS2nk0EC9bprieJQCcNx09vJpsgJt5G8kQfPD0hL+qMLfOL/9BX81Z/6RXz6B38Tau4QtxZpY/vk7UfP99G2u6I3Bs2i10VMX55TlxIVmpqwlSlYMPu1lQaABe5HP/KUNsORGRnaRZiK080snm4XJR8HIgQX7UYMGq7ymN5ZYrUu0a4KrOcD1NsCsTXYrks4QQNyyvt2U8CvHbzkegw+cYW4dohRoesM2sbCn1UI7416xyylIa5dWt4zIHaaU8uk4IPBd33kEalLdzYoyg5F2WG+GWBTF7vwQE1qVoiazZpiIOPt187F8lb1DmZdT2fTMCdEfWwR6PJzWgFJkT4k2pti3CK0BkVFwbUWEwBbBuB5BWhIXkWCe2mF8MeWbIg7jfNHe7iYj6ldsXQi6/NkInD0b1yPcG5vJyDy3LZbnpOb+wE6sIkoL2RAsNDwt9vehEJ7nvN+IOYXeneuhwKA5mNWLzSpVy2L5DDkZ2AXhpkXJUXJ7UkHP4qwK+oToGgBrC8c3eimHfw4or6VsLlNp76Tf6tRvLC9KxIUECYy3vcK2Bi6kU08E7N1QjjqWAB3gmZGhW4WEIcB61c5rS4WLDRHD4i2lBcKw7cL1IcJ9u0BqW97EZs32l5rEAbch5iLQjvf4lJjc48W5u1UivDI0EAv+SfN3Y6NhCZFy88C95gJc2h0pzD7skV5yc/HLjXCgInpqlM90qE7RfMPC1KGPGlVQdAUu9I9KtxNqSGB0F+VIL6IgN5q1Ceh17SoKM5aCr09b9KkrcZx6PNGkNjYJBclu4l7avnM9YiPCkCqdpboWIu7XyeFf248st1uGSVLJREl/q31u1D7IGhGLyRPu9R11YkeJBAN4lBOqLZut8+zyVB5W5W9WJAaF3lMLdFsZdMuZyrx+ZJCTzuDxm/Jg0I/NPu2r/Qt+nOzbta3YH0YTpmb9VtWMyMdQSVgc8wiYPxQJprdrtlAAupbQlvSpA2YBnDzHXd7+IL5H90IYgvJgkIH9BczUwPDZ7umQTe7vA0v9Kbygv9PgrxEx8alt8xss4hc6BpCq+qk+fCSD5JtHKNLaP/jPty/maKYS2PVSkG0pAWwXXLDV57uM+WZQawSuklCexhpNxnQT9GafU7G/JhaEAAoluLkI+hHcalQXsiFKEiRpyUZ3queV44iws4taQCKdp76OiVAHi8lSDKvfHhbw+lmq8mDDhqqYMEOBVK5QvaaR2/Dmgv4KJShbJ27XRcIrUG3dXzfw26yb4sA4wK2T8b43Luv4f/5pT+FV4YXeOsPvYfi1KJ4YXuXpWrY9sLl6A3pVjrBNwbL+U5rkhKdrsKW950dr6jF2FqEyxJvPzxhGnhUCF6E0Crt0IaoMNhjAZ4i0G5cn4WhdIKXlPLQGVSTBm7Q0b3JBZSDDp2EJtrC9/exow6m3DVg3/WJ93ub3bgoWPS8tEH3dAhtE4bDBlYyOaKn+Huyt8XJ0QLhvIRWCV95ehtKJ5Qln8d7oiMZbTGiT4leszkUqDBGhdPLCZ8/7JAfpRJGsxpYGcTHQ4SGj6dMwp1PPoexAdtlhdgZtBuHdlXADTy61mJ2tGJj1FiETiPudShGLTD20JLa3nUGe3cX+NTHH0ANPe2Aa6I9QQTq0WuopxW6ocLqjQ5uzUZdd0Bzv4Nuge3diNlXDaLeOdB1U1q12mcFxdSGQ4LyUkTKU1J/roecInLA0Y15/odRJPXpdk0HqEAHO7MSO2zNor3dCzKN5+Q+2YTizMI9JgoXxgHNKy0uPhWxeFVh/BA4/vca7lyCADuNYtgBNqG8vaFGJDBFPO53vb4gTEilVGLnaxYWgycGgycazUGCul2jnZG2uXm1w+ZuQNxjmOHgGYcgo68VRAA8zTrsivsG/y0UuJWGHwqls5QGLNEOt9sPKJ47lBfMUskuScW5gZo7uIXG4BmRqOUbAZu7zOlwCw0nyfK6U70GrxunnpplWu5fplZwYpqREQzaKicJlqQoPSfVx4paHRV2bljZujc3OxTPU3wOm3b0JwPmZwwC1NJS7D+Nve26HybYS8vXGRXSIPRBrnSWygOl1GeGoIiAoeYGXgGd7u13VcOfab9De/Kwi+YG2OWsiE26bvn7HgEBKbjJsIGETlC17psJJSYAySS6Ira6pzcC6JGXjOYA6Pfufl3TCt6sm3WzfufrpgH5EC7T7pxVVCQVan2f+R66Y2GQvfuzE0vWT/gBXbKSFdbQlJOuXg8ijQqDqdA7X7UTNiyZ89lPPQEgUTOiAhuU5lAQhWtc4uxNn2lh2gui0sifdjd9ipJ4rjuiPEGE5AA1KsVcGqkVpAmRoDBpYnRD/rmSDIAM2SuZSAG7Rgvg+5MUX79dS5M08YgFUD0jxG5aEVCCF1tEcfkJu/RhaPSiVwolsWse1pKoW0QiJYMgVCDQ0tIkaBugaiOBdOBFOaF3kQo50LDTkqTNgj4tHJKnwDpP3KJXIvbWMIcN/ugrD1A6j/c3B/g/3v41fN+f/hLao4B4xTchowxpY5FaDV1wQpu8RmwYyhcyPaskDUxpoO0oWtdbDbvcHZcRhyolCuA4L/qskE5ExkrLY0m+SdaJ8HmSiNOlOTEJMdH5CAC62sJ9lY5W4bJkyGNSqFuHr5/eQrd2dL9qFZSLOJhuMHxpCaiEprPwnpkcg0lDO1tvsGkdVFRotq7Xvmw3Rd909AnijUWQpkmbKEiI7tPhc7gjADgXmNnhNawJmL085/ekIWpUDVu03jC348IBW4ODwxWSV2gXJUJjmJeiEwbjBrE1DHnsDLC2ODlc9I3QYj7A+1f7/I6vLfS0has8LaBlMvzS/8ej2QeqJ47ueWfA9iTBXLIR0A1F5MkAWgTMKvJ7XSy5p4SCk/AoHomDFwrtLYYJmi3v64fcH8pz2SdkwpwuSgahHnpqqlyEWRs25hUzMMKQFEe31ERNqkSnqwS4C9vvI/WtiNXLQDdW2PsaHexQBZTOozioUV9WFC6LHaw28vlYahZQRtoBSxZHcyDi8XEAnlQUeY+A8qnrXZTqux7bE7pCdRNg8Jz0o+h2Iau6I6ra7lGET93Mbnzvlhp+zxPBEPF3e+T7vambkHbVnPie8sqQ1p1Rhltxn8op7aESPctmtx+5NZPrtYjJzVaCOjea+7xCX4Rnapbq0IephlK+D0WSplH20Mg9ULeCGuS8JS0WwmKxmzXXGf3KyIOu9S4kUBqBTHfq75f3UEExYpHEalnsis3O+bDPh4lEHbIlvMoUs8Qb6Uas4uVaFAWVyZTi6GLfTKHVO2TNSZhgrXdi8gQOkaJig+GJjCcjtLWK51zymkM19+3Xf/TrBv24Wb9P1k0D8iFc3Zib6vA5L0RuBUzeF9Gj3tkphsG1i0xuLK7lgaggRYYRu01L2lXWdcQCwvPdoSo56Tw69CI/I3rcUPIxizlDt6JjkZILlaR4exX5GkzN2wNCzxLnmFiIRiWip3wk0bqECn34YjcBbE1UJFoiI7oFsjWi3VxrGizpCMkmlGdKEntZdPhhgt0qtFNx3zIgF9skhAqoTg3avYD2uONUrNEwK01diOOEMBx1iFPaFZslC6GkQF2IV4iH7S7rwSZgazjly2ttEJcFBs8ERRGRd4qajlXivJILKYb+UXBtj2qMDzeCfkgjZ5IUnUAMCr/27stYr0r8pyf38d89+j78+uldvPbmU+i9Fll/Ukxa6FGH6oA5IikomCqgmLakU5nYT+6TJMPXc9KHUpEQ79VsVsSRKtRmNxkc+Ws0IN0jOpmK1ovHVyz+lUkIG4dwVYjlqu0bsFhbxMsSn/ihb6CqOhRHW2QHmnZdoNk63L9/zoL7k89wfGuBk9ES9ZbNVrsooXWCKSKamroL7zU22xL/1affRtowRd53Bla0MFonuMITmag8XOlxuLdC9BrtqoCxAdokscxVvWB1uyzZ0JiE1bpCYQI+/cfexmtvPINSCSFoXC6HtCK+s8Uf/0Nfw/nZBNNba8BE3Dqew7cGceVQbwrMjlYi6ldQ4w4vLidEnKRpXa0qJK9hb20R5TUolRC3FrP/VPRFtdlyIr16CUj3arglJ+mD56o3h2inPA/rV1uoTsGuZS/Yo3OW23D40Y0BFBGDZzR10GLvnQywucdhRPVCY/CcYmgowJ3T4jqVEemwYSG3kYm6S2hnLAar50Yc7jgVj0WCvnBs5AG0RwGL1xLWdxTGD4Dxlwu0v77Hz8AkTPc2/TlHm2YNN+oQZx7QCXalEYZMcecwJ0GPO6IHLTUvKgLjb1iiJA8siitNmpbfWZfHIvE91NRguKXq6WTdNMkexwBXP46k1bW0qG1e4ftrVpYp8IGNhOp4Wz8LcBe2R5qj29n79ntxur73i0PW8FrKt4JQUznNTzbBj6NQYCNdzwZZECGIhhNBurhk6ZZCd7MhCpHtj5VXwNDTltyQ1qRbaSxmXgIZE+Ig9NbNWow30EhRr1Kvv1CSWJ5T0a9fN7RnEnv+fhVXpnfbAvh75UlHUx4orvid06001dIIxoLaFZUAP0ocnojeR3e6R0kwlEGMJVVQ5YDEglSzPvwwF+Jx5xiZhxh9ivrNulk363e1bhqQD+nqxugLZtOI21XJgjwno+ecjVzk58lmctwvuyl6f3oAGJwldCNwulnI5FNJYxFFeGqIorjljvIVHd1vyPVlY2E3cixi79vO0AsAk0af3J7T1U1Lmle+iF4Xq+emBEB/oS0veWx2LYiIUMLcQsEtecHMjQ9tgBm8VV4oNIcsbLJdsFsoFJc8hlDxfS3P5UJlE4o5UJ7tiulUkG4w/pqD8ooTUwUUTx0T5jU42cvCSgWouRNEBNDi668aCmE5TdRAFTD+vlNSAHrLxh3SAbBRiK2BdhGhplhZKWC7Lnr72d5dSyek8xLmUYW4chRzB40HZwdYriq8/4xJ6BCrXYrGNd1/OnaXWcfgW6IR2uWOkY1AMWH3qcYdEQexe01Bw4rjVRZ2x94li3+uu2blNbm96qlabtzC7JFiZETjMprVGO5voGYtvnZ6C5tVSXG+BPcVQzZ6l+shkY1gsKoLfOXJbYSLAqGxMMMO7apAOC8F3WHDoFTCl17cxq37l727VrsoUVZdrykpxi1Cx0DCq9UApgzM7RBL3vwexqhohWsYZhZfVFAq4fSdQ/zar7+OB1+4B39Zwfz6mKJ+r3HncI6vX9zCZLbF8vEEpgw4vxpDaRbF2iTMn06hLgrRB3EamyJpe9kuuJi0UAp8/+V4zLDD3tc7PPseR6OHOek53aGHelr1e8Dq9QDdssA1NbC+l3D0bxxGDzVWryb4AWDnBuuXYj/osFugfOQQBjwXAdGGBbrtZeOLbkKrWNXJVyiJ+cNlAS2mCubS0pY1ERXoJgnFhYZuNfSa4XZxHGAv2QigCgjHHeqTiMXrRHeLK8D9+gi6DFi9s4fJ/gbFfo2D8QazwxW1PUWAe1KQKroyaPcjwgEpVmHjEDKVc0+GMAUpSQD30HbGPbAb0xJ8+FSh3UsYPub+0xwGdLc7FvFbBbvUsGvAv8lm2S4p2IZoZ5LYeMeSjlcqAMNHhvdfawmaTaiP2VAoT2MAP0x9inkYsGlQQfbuJMhvoMuZH3H/iqXkX+ThgIjMOVCB2CpnGhw1c8nKwKpViBWRDpV2+7Gau95+Nkk4YFLo0RC4BL01kqMi7lhzS/qSzsJ1z2Ld01pZRfSoS84hAQDdaNgFG9NQJr5fUXSMIpqP1wxUdKv6BiZpIkIARPMo1u9iS2/XQjUVZCqJgJ3NkqGGT3EfhmYeiRL0Iwcg6q2gQFux4M2udB8CtODGBetm/X5aNw3Ih3DV9zuobjf58gP02gm73glEoyEtC0DvUGXXsvFGCjkzrcoPgfVt1RfhmU5l6h3E7Yfo+ca5sUmGKEIsdwJzpN3z54tleQF0M2DzcR5IqFgsRCt0MgOc/1GPUFCXYbc7q+FMNctaDt1KArsIXZsDoDniLhhK/r56oeBWnG7pVqE9iAhlQnMo01Qtjy0c7vUrqedQ+3FEuwcMntIis53w4l48KlC8IMKhO2B7L+6SfWuDaDnxNTWdUiCIh+oUC4MFE5uTFvFj3F2sAQAri9MXs97VpR/9JSB1WuB8SVP3tGo1lZdsEBbQtJYVpKDj6evvtDBLg3pLa9/QaTgRXKdOA0PPzI3OwBQRbthBlwHKRGloUq/TiI3lBXVDl5cQNEzpMRg1pE7phFiL5W1rxFoYqDcF1NL2BTEAyQtBL07XJqJpbd9AdVuLsHDiBkY9yfrZGD4Y3D25AoBeSB86oivt1iE01Mb41uDFxRRNXTDZfb+lO1dj4UYdPvbWQ/zZ7/wNdKcVg+lE5H+5HPZokq686E4kCyIoxGXBPI+g6VKm0gesbrUld2k021JonoDBS8xpee0TTwCTUH5kgeHJCrPvfyHoUsKjJ4c4ffcArTfYe3kO/e6wzzpROiG0BvdfO8XJx0+Z07JyRMfE+jPUFq70aC4rNo1zNlhQwMH/WGHxquu1AcuXgeYwoHxm4eYK5SWw+ViL4QOD9UvUdGyPSetZvaSw+lSD0QOFwXO+xsk7ouOw3BfGD0mJQqI+rb4dek1IN4ac8zzXTKtQzFUvOu4n4EmJGFohjUjzC1VCfZuuU7pTMI2C3hjYmpRLfeWApUUcBAquLXVvSIB7e4Aw9tj+5h7C+yOs6hLWROqOLguk19cIUzYd6rCBObfwtzqYtYFuxOZbsbBt9jiIyAV5N6PhRbHgoCE3KvUxzS6QFAcSVwz8aw8C2oOEcFX0ouc4CMDQw75wMGuDeNiK/kKhuRXQHKQ+tLC53UmBrBiUWkCaCCIQmepqNrx9kn0V4BbS7kVSuDqhJlnALplfYpfk3KqW7lZxyPcylKmn4poNnyMOheaZdoU9xtI4SAOFvZb7asf3JlURZsH3FIkNBE8UsbxdselEUjArQ0tcyapJZeybGbshtRaiF8pOYIWEfbb78ZqZSHZDlGtQRB+yq0KmAfN47Er1wn0/in1jpqLQrABqT1xkqKCc30r211REHqtQYLMhgvLX9vcPi/7jfyvd6v/fn5t1s74F66YB+RCuk1/hZMUtgT7cDnTEqg+kYJfmwDbA6AkbgOuTilAAvhRaU5l5y+ih6nxbP7pW+Eu4X9aFJLnoZO6w2fJYbKZWJT5/LHl8ugOGXy94QWvk92tBRSwwek+EpGLPq+MuFwTYTVWDBKOVF7x/NwYqoY6UV7y4mJxCvFLUmKzpU58Eug8Vmw0V1DXUJ/VUA0CKiXFEu8+/k6Y9sAqkN0QjVBJxxooVLYLDgBO9THVIRdy5w5SkbUURputr3OFUBegrR47ztbAtgJSq7JIVFwWbwI5FcmhF0KzRaw+QAO1iL+aMpaSvg/fv3hnDlZ73ERSgGje9Ja3Sia5R+XEkc8NJJkZ1a4Pp/po0MbF4rUYttE2wk7bXkNgBJ/dKJwxfXqIat9R9aB6/UtRUpMSwveANumXBJqU2KA5rKJ3ghh3cwKM42iIGhScv9lA/mABV6F3BUscv5b07FzDCuaZ2A9j7NwPYd2mTO91fIwaNrz86wS999ZOwRzWsoBztxkEpaky6iwrqKato6juAlBTKWxsm1zcWxbDt9R/ZOplNg0LbWkmQZwp7Oejw+HIPxy9fYjpo0HxziovVkBqTqHD75Ir0l6hwdTZG9ckrHBysUAyIJBXDFk/PZ3j6ZB9pa5mhYiLMUByTioCuthgdrWGKCD0SAf9FgcFFxOYOhxWDF9Q7zV6eozonzWrxekTxsMDmVQ+3UjJNp6A8aWD8xRKxEGREHJRCBbQnHUZPuO/kMFDdAaN3DUzDAUi2/LYr3dt1b+7EfgqvJXEaYw+90aieslFHbZiYPQho92NvWZt0Qv1yt9OVucgAw1HoEYDNqx7tARtcf6dBOPBovriHs8d7mOxtcfDqFYaDFsWkRfHako12VNBXDrGihWx9HHr6lGkVNndEuC1GG91eQP1qi/aWR3PCz4DBfUB1lpPGpVhuGNCahxHtLfp/68sCfsKCVp8X8BOK8N2V6YXVxVxj+K5DeUZNm95qdCcZRmKDlAwLbw6IlOxt6F3JVCSdqzmITB8P/LzKUw0/Cxg+pYmGEiep5BLCzDP13XGvjFaaHkF1YpEhBtKrmOUBqLMS0ZHSpRsaAPQGHprp69kqV13Ta0CnPjUdEVBrsUEXq2iiK3Rky2gMwD3ZbJXo8dDvz25FOlyuYvL3hQM1Jfu9XO8ikaIcumjWYhSiAWz1jkKVc5Gyu6HaPaYSFBsuMT9qSge7viExN5X6zbpZv5t104B8CFd9oDE4pSjULQR2BtANgcyZzXSsbkh6VnS8bdZrJA0kJ4W+XMt0iz4kEOBjZQteQJqRKE2K3jUmGZ0IpWzmwgGPDogi0OxGvBDWxxHNS21/mzDcCdX9UIIKRSPSjXaak5zX0fOZRejaTXhszSEvkM0+0ZRmn1SMLCpXkTkHfeiiiMghKIgRbrqV8LRYcZoGmfRlVxuz1aQjRGD4mE2N3hr+Pq/IhkdtjSAIgBK9DBrJGGmEDy/84WQS3Lnrmxa9NqTViK1j7gi1C8Aw9NSeFBXF6+I0lTUVOdyuF7sXEe5pAecC3GENf8CpZTFtoAoJIvNaqEjyHcnv9dMBdE23p662zPKwARvRVCgNhKDRXUsNT1H1yEmS7+et8Qpdm1EQ+b28fq0TolzkdRVQDDvs3VsgeA1tI7qaNLB2Q8vdFBXiJKAatXyORMpWMWxZ1F97LUoDl5+UhuSsxHpTIiWgHJC2pU1CUZBGBckqgdd4/aNP8Cf+69/oHcBiIDWu/J8npFlsDcrCU/+hRf8Rd3bDSiUYG9BtHDYXAyQARkcMXYvFtsSd73qGW9MVHbWiwrazGN1ZQemE0d4WP3D/G9jUBV+LoE2Z+qHHHdqtA1Zs2rWJCFumS2/XJfNXksLe8RL7X1JYnxgMn37QjCJGjXbC7+v4PY32xMNeEL0qP7LA4IlCs5+zJXbNf7bS7SbUSrXyu+Fjg+iA6hz9YCQMIN9v9FRQ01CIXVzpnqYYh4E6qEFEfZfe3nahaVGtE9Rhg/aAIYEqKNgziziMiLMO6DTshUX1mG5P7VEAOgbwmZVQJ01Eu88sDx80Bq7DsOgwGdW0UV45+GOBiRWdActzw6n4UNBcQ9tuP048B71C8kwzV90udDGj0rGQBkQn7ify+pMUo3rLVHQEBV1T26A8dSEqsFG0a54fbBh2+x82hunmG54zOYck01tVkD1emqXquWgyNIAAhAOPpIlUATvKq6l39rV5+p9c6kMVlVfIVrxEt9k4IYO10gD2KIfKiAtDAlUrjlViE6wi/w3ZL5SNvV1uUkKRsiDSDDafbISTZJAo2JVBKBMGz5Q4KvKpQ8lmOR9rpovxgdhYQUwzlOgNe7pysUOvsyYmC+OT18DaAEUUy2hcs/LVQCmhikLDzXqwD0MS+g0F62b9flo3DciHcPkBsPiIwvxNhu9luNkzpBoqAbN3aZVYLIDqIlGPIchBFnJroVt1YxYTyrNhCXkDL0QQvkA/ib+uxch/29WuidBeGh7LBicLxjOKgaRQPix6F61uJMcdgebYozlgNkEYJDQHqU9czrSvTMHKbjt5T1eBSIeKO/qXl9eSzO7Ck0yC3wt9EZSsBHkppr73tAUREzLpV+ghA3GaWYttr1yIk2KacCx5QXWr3e+HXy/gnjuYCwuUAWZFWldxpZAcEAcRbm5EXCnTtU4sIFdmxx0WNwHqKBjkRu2C3McwHTvJNB1C10qNgXtWAFVAd7+hbW/+nfzRLvbi8JQ51FLAx9Yg7ndQXqH8yoAUrsZgeTVgxohM+72E+GW6UKaDAUQNYm3x4Mt3aMerUu+WpXQi/StoBE/oLaeRbzJlrDEYTuo+AR6KNCdVBNSrAvppibRyLPwVUK8LhLXrG58UgVe/4wle+b4HsGvdu20plXifBDR1gRgVimmDsLWYHK7x3otDfPa91/srbHb2wp+6xPEnT5EsKWPtinQvqIRbRws2PSb1TdPe0QrDgy3qywpdZ/DgN+6iaRzRjLMZOskwWS4HfaZK87UZ/vuvfQe2iwrdqkDYivXxtXCz1FEb4b45YCDkpIUW84H+u/EvDgAFLF8Frj7JTIpogfDGFv4/7PUFxOpTDdwZGxi3Aob/7ymCuMPl8ycWwOAUGD5RqA+Abj8Q8QhAcyg0T8W9xI/EzEKstpNNcs7tcoh6br8Chu876EZLXgQL1u7Qs4GYM93dHDRoXm7p5pRzK+YOOgD+pOW5OOswur1CqiJ0C8RJIE3Pa2DksbkXEL4yxelijMW2xGpb4vbeAnbkAc1CN4krlh8kGNlrwjCieqbR3WkRRhHl+wV0q2DW1JIxnC/BXlFP4vd9LwZHUn1+h9loBqI+LXqqEFyEnwQMn5CmZBcG5YUYgTgW234MyV4SRLeWhkIGPgyOTfD7vp/stzMaAGhPimp0dLNKVYRygWn1Gw2z0WheZvPlR3FXpGsitbreFc4qkLLlx5HDGklYNysD+5QXh2RBqlyje2F7qNhohVHs6VbJUhNkl6KXuyionSgjMAiCNvH7Xj43feYTwGBHs5XmpOC+3OyxQUliMZxfR3ur68+ZbJCgA40REPldUp5aQGoid7ky2SiEifCcuqlMPZMUeFXrHtnCxjDnyUa+lgTqQ4r44aFh3ayb9ftk3TQgH8Llh7zoDJ4qjB/zwl5eUACqW174dUeKUCyAep8wdnm5o1v13FjJyTANCwPTskhQQreKDqhvSZEbdohJfgzdsdHopPnJIj9To3fNYqouj2/wRMFsRaS+kSwBuV35zMqUlc8XReytmwyT8z6m3R2n9vyZlnR45TmhVGnXFCW1Q1HckpaxfkQ6lluI24qm6DRP1syWjYRpONUrrti8dJPY3zcM0FMBdKtgr1iEdrPYJy77IY8vCOKgW4U49ajveVSnDO7qDr0gMiyG7UaJX70gJDkTJIu2PakBycs0TlE4izWn19pGzG4tYaqAj7/5GD/0w5/HRLI3isrj/vEl3nj9KZRKcM73U1WlIxsZz0DAGBRMGeCGHe6+9QwHf+IZtGXzMJg0YjEsX0op6NMVxd3MJGEhHBsDtBr69rZHK7IgPf+dUQMiJ3E38U9MTm9bCzv0GI1qGBdhxTUrtQb3/vBTDE9WaE6H6LbMvJger/rXYIuAh2f7eDKfYfpdZ2wklOhSNDCo2h16lIDp4RqNBB3mwEFfW+aFTLaYDmpcLIco9wgn2mHHoMCgcHo27V9Pfp3rTYm2tTi5d4WUFI4/cSrIkELYWFTDFkb0Nt5rNPMS+vUVrAuwgw6jgw10EVBO+Xw5XLCYtPjYH3kf5lNzpAShgKF3R8OLCpPHAbYmLai40Kjve6xeiRj/2wGdsCpg/qkO9mlJgXfB2zZ7rNiS5fnf3PZ9U9/ssaA8+jWN0fsK63sJk/fRUzJzU749Sdjc5lR+8Ez1DnOm3mUC2S3PwXaPtBWzNjALA3vJjJ04CjBrTeezjvbQ3W1CtHalEYtIO9WlpfnGlcPqdARVazSHEe65g94YmIXl1ayKaO508I9G2K44kXnw4BZc4WkFrACzsnTHO/A9aquPa2xeZr4FiojmKCAMI920okIQhMNPSXEyoq/QjVCLBkLv9OhDAqNF7/ClvUKzlyQrJGJ9P2F9H2gPAsXWVUI3S9i8FPpMooxMdzPuk2arMXxge6TYNArxpJEwP6KysUwwc4s0L9Dui+2svH9h6uEWptdYqEbDrjX8Pp2sogWy8yHNSag1SVoGPtNABMOjt7BVXmH45NrkX/H53EIBYw8/SPDTiDRh3g5cYvDkVnQpgU1IT5/Kon0tTY1ik9TtcThgGgW/59HuB4RRRDeNKJ85dOPUaz9MTeev6HaoDgdXtNDNKfJp7GmSkERYHrBz6vKKWj2bejc3JDDbpKEmD2NPdKzRQGOgZI/7tq70Lfpzs27Wt2DdNCAfwqUii3wVgMVr9GtvZ5LbIXa1q3ukQ9gtMDhnQd5OrhXxDbnZbn0tOGwhkGrg4+fE8vJS9XQrP+Sf7Z3UZ3YAbHSS5YUoOuwmTh2RheEzsY3sOEVNms1CRjVCBXR7Ed0sYvhUozxXKK40hayZzlHwdWZ733aPjlXNfiJykXbvgQo74b2RUMZo0BdIplY7L/1O9QVCLHjbTFfgcSq0+yy23ULDLRUGT3VfCACAahWKOYu84pLTufLcwE8j2lmCPeUUtzsIwNZAbw22J5EuKi0tfQdPeZX1Q06B3VzRsrdTwMagfEa9iVKgO4sCL/hPKyILgb7zKSisVgNUgxZaJTxc7+Ot46f43jffQdtYPDmf4b3nR2jPBmga11v3Zg1DNWwRg0Y1bEnt6TQePTrExWqIFJnG3TZ8PSnSjSnzm6cvzxkAl9CjMcWkxb2PnDIFvGASvKkC4tJBu4BQW6T3hiIkhwi+0cNb1+2FV6uqRyRSUBgebvDw2QE2iwHcQd3T0jabEs26gHGhD0SstwUuL0c9pcpVHmFrsVpXPV0seMOckNbArxyUYjjiaFZD64T1psTleojjvSVeOrhEez6QZoKNYDlqEbyGtRHlqAU0m5joNRabCqExuFwLxJiAk3tX2C5LoiCJDdv4cIPbews2rDqh69hU+db2jZfWCe3a4WuPT7B9NAFOS/iVQ2zpjJaCxp3PRpx+p8HzH2rRfqQmejBngbm5KxqO/YjJb9KhzdRE91avJrRT0herM/QIoVsBq9c994WgcPWmQn2Lv28Fic3UHy0TZbtR1J9F9EJgWgFT6O4lJLW4UnBXWmy0hd8v02O/z0LOvV8heo1i0iBVsUcoVVBQhw26AzYDdm5YHILmET2V8tLxPDHULKSNRXs2wMHJAvo/TlAcbkmLOmiZmL416G4xvDA0Biqnky8sdKfoXAfATwIwiJKsTUpWGFMrlqfoTOTm6850JMg5YxaWTYKV1yOOSt0+xdjFlaaWTTQkRvIvwpC24m6u0B7QvWxzj801DJue6usVwog2w7FMiC4yCFCla1RTRV2Ipw4iv/9s8LBzr3IJoYr8/CWbI6PeWpARvbCIRdoFt1o6iWU7dCUaCz8gIqICUSpzRkdBszBAFanZM6TeYUy6GBQQph62BpqTwIahVbTiHXfwd1pe364sdEdkJ+tEMm03OiJyOYjWrfidzzSqbNOrAvVASLlxIzVMN+yuU0ENEzcotWtMtgZwkgO0NYh7nvQxnfo97GbdrJv1O1s3DciHcHGKBoxepD6ULzoRbEtjYRpe2OtD3n78qGORHgEoUrS0520zotEcAOs7REKqi4Tyis8XrcD8211wYHFFLnAu1O2Kf7s1m4TMHbdbohztmI9vxMEq++wD1/6d6NseHfok9WwlbDf8N5IUMENpbq54ccsWwyrSQjeHH9qVvGZQE2MaJhlnaohp+PzuSsMtNAXwkWFrpuFUrLgSMeil7hPf233x+t+i5w+HAelx9a2AKEFkOUHYLQEzt+QMJyCMAtI4MJxt4oGksH2tQ6qY0twdeLT7kZStViOVEe2twEmueN2nVgOXBaJLGL/tKOxsNEXjCdisSnzt8Qm+8uQ2fvX9V/Dvvv4RTpKFSjC5u+T7r5I0ExSUN1sWajkI0BYB6DS2y4pFgJdgvs4ASyIF6dkAk18doPnCPuorCreLYQskWtM+PZ2J3kNoTq2B3WugbYQdddh/64yfbUIfNqg0Q/6U3uWF5Aaj3TqoiwL1poA2CaYI8K3pX0NoDB2vxBEsJfWBXBIlr6OYNEBS8GuHYthRPL5hQW5HnnkrLqBpLGlmUaHeFjhdjPHe8yMMT1aIKyfWwjzG4usDDP7HCVJSMKWn1qQxqFclTBmgVUI56OAqj6v1AOWYgYGhNTAmousMXsyZ79GuC1gbcDBdYzSq0T0aEZFpDCZfKBG2FuOXFyhfWmF0tIYuArQLKEYturGGHwHT/1TCPK4w/WIB0yiUZ4bF6TlpKO0e+fBZ26Q80Nz26Ma7TCFda3RjoHxh4Ud0Vhs/BIZPeX7HEmj3ea7qVsJQExsA3ZGSVZ1xbwkDoDpVMDXP6W5KgXlu9nVzjY4oJg2ximj3IvSVQ/t8CAAwr65ZhJsE/XAA5ehKF261QBVw9+MvEPc64F6NeNQi7u8ybwCgeMGwxst39lF87wXaFwNSls4KoNUwRzXKJwwhVAtOWpJJiFMPvdUwdzcwp466D0hfHNgo6A3RFD8L0Gsmi2PSMZF8rZkmrgDdasRh7HOLwiAiTD2yAYX2bOCyo5NbUtxuWtLF3IL2v4MnBtC07o1lguoUwtijOeKx+YFQHiXHKBWCcniFUCYUpxZ63AEfWzFMENK8BVoG52bCzQ3aGZuo4pJi8KSI9CTDpiJb2MbDjt+bSSQtNQMAFfdHdKSlodVs6O5tqDe5cIgFkaDi7QHMOf/vZ2zI2lmCnRuUF0R02rstRr9eAQ2HQlB041IBCLdayblSfXNsWhHmi1GKn/B4/Tiim4VrJi5ssMI0MESxIRqjA7jPdhIwm9hY8UsVSbmC/KzRUEWQdPVvfzl1owG5Wb+f1rf/jLlZv22VVwAUsD5mAaxb0ptszc01WhbX0XHq79YRg0cLDE8jqksKLLthJpKj5xIDu4YklHSHsisWJYSrQQRBkIRYSEFRCBVqDWyP+Th9joeiEF0FwGzQe8dnn/ZuDGzvROiGlAol9C3TSlEzk8cT/UqmbmS73XYmxydZJRlNYaLtbuqVrYbzipZNTXOw84y3W6FHlAnlxY7ikIWJdiO0Kwl87ER8W1xR0wGgt3dUnehAZPLZHCSxFE6AIWIyeNfRcnJlUZybXaKu4oUckALsGhqgxAUIEprFi6SiZWrNAK0wL3p6VK/DCORNOCl2Y6exXpXIORLZLje7tVjH4j0lCsz1uIMbdB94TFUEYNohRSDud0h/+hLhY2telCE5H3JxyjbBMag+/6MsPYykdC+2FcpxK3QwoVYEjdBRs6HtLl08a0yql5dsjuRxs7Yk1hbKxp7mlCJpS2ZAmkfWuaRI7UroNOzQw3d0+jJinXu9qaDVMQ8gbC282AWvL4a4/coFbBlQDjq0j0eobwfUP7iAbwysC6jPBpLtQkSjbS2M0DFyvkpXWwwmNaDowJVApEmZiLa1uFwO0XQWf/iPfrP/nCBUm8J5hKhFfE60JQY25aYGNrf53W72gfalFqEEyjPVJ3jbLSlSugMRyMeKdtMNxefNYcDwMWlSbi6N/XNHJPSYx+ArasW2L9E5yQ+A7W3a4nqx4fXDHd0ylIKYFhw6IHFfy3kMYRgBLbkMSigwNpFuNWuhOo12UcLstdCe9uFqYcmzrw3soMPj944o1nb8PBFIh1Gd7qf6saO2YPGNfYzfMwzUHESokYdfFuheraFXhlqYuQNGASko+Nst2mXRB9/ZUQsltrD+uBP73Nifo2GQoOYOxZXuTSYyegpBL0PF59Ybg5jtdRta/NIhKvX01KQAvTHopglupXpUOGn0lsSDh65/fO0h2gsgDgP3okHge19EtLc84tqh3RQIU4/iXMOuVa+xiwWbmmR2Opmc8dTtB4YrgoU+dOrDVuN+B7fQ6Eapd6rSl0QW1MADkw4IQHe3gT+vgKOG999vqc+ogFAxjFG1qi/0/TjwO1RGlA8LbO/wPaW7YYSdGzS3O6i5I+V3jX7/5cCIlNv6Fpu4TpoQRDZa2Y0rFgm61r0TmIrSbFki5iqwOU82fcDRS9WitekUqbEHLV29btbNulm/43XTgHwI1/You9Gw2A4DUpGiBcpFRLPHxkMLnF49r7G9P4WvFKJV2N4CVi9JWu4AaKbkeWfRYyjFSSRJU1OL5S8kOLAUJGRLxxstKeb593ZFTUooANNwYmRaFjr1AXqnrW5MP/3iQhymmp2eQ3lBL5I8Ts3X2eztkA4ouaAICgNgp1Fp+RghM3bE0jdpKX50pjxQ55GpIW5FNKTd42PYjbjglAmdvE+h2k3UQikCz4JTxuqMF6RioSSBV/QhW1447UbBLjSqF4bBbJcW5bnmBXxl4K4M3LnjlHQY4KcUi9oruq74fQ8VFcxWXvAwIIw9wtTzoijFU/Qa6qJAaA1CY4HnFZSO6M4rNCu61mRKgC0Dqkmza0KSQvB08CqrDlon2CL0VCi/IRXMFgEv3z1HDBrD6RaLZxOUpYe7u0FPwSsCw/6eExXRhnbAykTU2wJdbal9aIkwKA3kO7vSI3rT29gC0hDIv+stBfVha6FeSIeqADPq2HhINkjOLsmieyjAmAgtugvjJOG9NehqJq5HQU6USfA109lz0zC7tURoNfy8hKk8nj2foV07tI3F/uuX+MQnHmJQEuFQAMqjLW69doHJ/qYPKuz8Lmk9Sqr99mpAytqw4+vqDGwZ4JcFwosBwjfH+PL/8Ca6tUP5doXlGwGqiLg4H6Ndux0fe23RLQus75IW2B128AM2F+bM9S5z6/s85+pbCd2MqIVdaKxei3BroWjNIspzwywPJUOHuw2GTxTSH5+zsR/vhh+zL1voDtjcixIgyPNEdWxQ3JrudKHkHtVTJRWwfnlX9JWnBmal4Ud0GooDobFUEbG2FPl2CtWghbu/RnMU4OYao3eoHelWBSYnK2AY0FxWcE9KmjokRfciGdSwGKZGbvUJTuzpbqVRnFl85N4p7JbBeHq/xWBao9yrYc4czNIivrpFsgnDQdujNskrdIcUPidxeuKep9BNIxGSRgGG+oVUMHvDz4isqEgHL10rBrx60YWJNiG7Dub3Nrrd/tfOEuyVZVq5WPKmiknnKMTAoSKiaUcezUEkAiH7ib5wcGcO9d2A9uUGxYK5I26phZJF1MTUkhmy39EyWHQUfijDk6EnjUrsbZORxPGX1szyAKAuCrz58nPoTrNI1wCeV3xvLiny97fb3o1M77Wklo0DYBO6ow72yqKbRRmIRag93t5PAnQZYFca3SSxGS74PjKvigL2nLMCzfwm3V0LPOxoHRyGUV6zaFKK3WAolql3L1OJoZYq8boLT2toDJjz0wc/fjtX+hb9+V2sn//5n8cf+2N/DJPJBMfHx/iLf/Ev4mtf+9oHDzMl/K2/9bdw9+5dDAYD/MAP/AC+/OUvf+A2TdPgp37qp3B0dITRaIS/8Bf+Ah49evSB21xeXuIzn/kMZrMZZrMZPvOZz+Dq6uoDt3nw4AH+/J//8xiNRjg6OsJf/+t/HW3b/u5e1M36lqybBuRDuIbP5QJusbPQ9YImHOq++IsGGD9MePynRnj6/Q6LVxWuPk7qBaLoRkqmIg8fK7pHWf7xFchfHwDjJyywc4Ni1+gdtDa3qR2BlgyOjgVJLK9lfWz5PG6TYCUTwIstr641wnes0RzwIpVtdClWZNPgljwGLY1CGOzEhIU4l+SpKiAaFEFdSG3g4/kBb5dT2nuURISN2ZlLeyJK7Yw7q6mFwxzJa8/p71normuFbkK61erV1DdRo0eCjChSuqpTfjDlOX9mN6q/MJenGvtfNhic8jHDKMKsLBsRlxAmhPb1hhNbPw0sytZ0RjILy+bDRVRDbp5x6qEvqbMoXlkBCpjdn9MCVC6GMSh0tUW9LiheVokWrpFIx3ZZwjdSmLeGGhRxWurWDk/OZ6Q/BYbk1bVDc8UPQkswVzFucfc7nvXfy8nBBgCRhLBxtPk1sW8sjAQtdrWFtjtqVUZewtZC29Q3ENDA+I0r0qsSds2Di1CnJdPjwy4AUekkyIdB7DRCy4TzW8dzposDUGaHoEAlhMYSmYgKi6shbYLvLlBUHtpFOEFXruZDfO3RCS4e7tEFy2vUFwOcPtzH8mpAjYtoY8LWQiuiOeH5AHvHS/5bmpRQG3RbBzdtMHxpiYNPneETP/wN6CLgEz/0DWAQmEAN9O8tFGAOGih5HdECk6864f8njN9XvVFFGCTUx5FmCBrY3uL31mypxehmEW6h0RyQrlleKNTHEaOvlPAjoH6bgvt2JmYLa6A+4rlRntGuevrujuLpRxSmq8RzushoyobnpllruIWCW6g+G4jHQrTPzE1fXBenDnrcYbNiuOCtVy8Q3thi81ZNGk8RsHwyARpa8ba3Okze1ahONar3HDUnK4XikkVnPGlgLi38NMBsNIZfL9DNAr7xzm1EC7hLfle2Z8xtYTMW4TcWqtNYv71HJ76tgqqZ4aHE1KAPHQQbkmT4N4IivavT/bmtErOLqJkj+tHOEtopBex+FkhbAhAGEeWFFNAQZHgmVsUJaI6C2BSLXmXNwEb9vGQhv3BEGzQHF2ZhqMurElBEmBcF6lsBbqERXt6KRi7CrjTMRmzMW41Q0d0rp6cPnhioK0dUoNEMCLxT053rG2OabijSUB/+Ty+zCXNy7lYReGVDWqpJwMqivkMNkH5coTis4S4N3IWFvbK9xXEygNlolN+o0NwKsEsD96BCGLKxKC80B2uS35QRerfc0aWyHlElAAMOf2Ag4YjZDQt9uKBuVa9tybbByaTeBCC5BERFgX+raYn+7V4fggbkV37lV/ATP/ET+NznPodf/uVfhvceP/zDP4z1et3f5u/8nb+Dv/f3/h7+/t//+/i1X/s13L59Gz/0Qz+E5XLZ3+anf/qn8U//6T/FL/zCL+Czn/0sVqsVfvRHfxQh7N7nH/uxH8MXvvAF/NIv/RJ+6Zd+CV/4whfwmc98pv99CAF/7s/9OazXa3z2s5/FL/zCL+Af/+N/jJ/5mZ/53b2om/UtWSql9Lv8et2sb9VaLBaYzWZ49f/+/4DVAwyfMnBPBWB9d2d7qb1M5vd44Y+iTyjm/PfwGX9XXSaEkhf7bgyMniaUi4ir1w2aPRGlBxbmmdZUXoKUi+FODxIcG46coF5csdgoLyDFNwt+L/a/ds3ioj5kcZ9yA1EA3SRh9FjBbojqqMhk9GaGPsMAoAOLCqpPtwVY1PRp7WqHhqgIrO9HTN7V4p6C7GrbNyCmppjdtAqDF9KAKaA+pMWjW/E+meOeqViZ8qY9f95NBCESxCYW5EuXZ9S25GR2t2DQoW5UH5CovRQrLqGYK9S3IgbPNd+3KUW3xaVGN5U0d3GOSZ5XP7PRiJMA2AhbesnBoB2sMgl7sw3my0HPgU9JITtgaZMbD9ry5nDBYtD1Imp9WcDeW+NwusaThwcYvufQfseWF1cFaQjA7IuGjlxpY3teuJ20CC0tdTfzAazkcCiFnhLFRoPZKSnyGJVOkuquoF2AFW1HPCuhDhpmoqiEblVAlxS565LvzXhSY/XujAFqd0lxil5DS4OBoAFpZFLUffp77OhoxhwWakzKskNTF3CFR9vY3XE/rxAngZS0RNSkrDrEJBSvhgnz2kR0awdz5lC8vsRk0OBqPYBWCc4GLK8GMCUpPtEbcbOKSFHzPY6qbzC939E5tInQKiEmhWZewY1bdKsC5UOHdj+iPNNE9lY8P5YfYRGZBxHNATMnQskGwW4VmhOPwUPbBwu2U8AfeJRPCXXW9zuUTxyqcw4h/IFHcWpZpJaJqCbQ8+6LpQw2ZAgAzeeG3p0vfoBdYnXiIKKb8XzxIylSh0Lc31okR7e05BXsiA5p8+cTQCWUzx2HAoMIFYHZlyy0Z5PVTajfavd5nnVjcZWSQt5sFNrjDnZuUVwq1B+vgcuiT7yGlcbfE5XwewHu0tDONUrzVApMocBsFc3Gwg/ZgIWKhbEfM/Qwmt0+BgVMv66xPWGTiMggRNro8niLuUJzxIwRLdkaSfOxu/1A6o9M4rPVcU4Oz1klZmEQJqRTmTW/73bBzy0WbHD0rQZh4VA9sahv83FTIfuWFNx2JXS2/Q6DbxT8vsyAbhJhGoWw74ENrcaToFhwkQno0w76vCBSEBTUtIMtAtK7I9El8T0c3F9i83zcP28cBQz3t6gfj/vXVixUv28nk3qHL7fQ6MSdTG81TK3QHXiUTx0/h4aoSLYMVonIuu40wij06FAcBZg582f6zzvkPBPQWCCB38sgWhvN74JqNKJe4eH/+W9hPp9jOp3+by0Hflcr1w7f+Zd/Dqaofk8fO7Q1vvjf/V/+V7+u09NTHB8f41d+5VfwJ/7En0BKCXfv3sVP//RP42/+zb8JgGjHyckJ/vbf/tv4a3/tr2E+n+PWrVv4h//wH+Iv/aW/BAB48uQJXnrpJfzzf/7P8SM/8iP4zd/8TXzyk5/E5z73OXz3d383AOBzn/scvvd7vxdf/epX8bGPfQz/4l/8C/zoj/4oHj58iLt37wIAfuEXfgF/+S//Zbx48eJ/98/pZn1w3SAgH8KlO0XaU8FGYnPCAoIUJhazvtzRolQUAbfoN9b3WfQDEI4t7zt/XeHsLfKd3VLsfLM74pw/i0YCyDYgPapEr+sgZYmZAIDQw8qsW5BcjmvIzeAFb1/MWcy7FXhhPZDsAOGwd5KerMXTnk5e5H1ntEF70Xio3W10h97VavBMo52KdqTh46rI15PDGcsrBd2Q197OeAzlFakFzT5Qn1AvEkWYa+rddFd5oBPnIO1ZOPlRRHlOTUk74+dCmF9e25avIdO0iksKQpPJHv7U4fhJ2oVyaSIo5ZlG+aBA8bBA+Yy0mjgJ1EkEBX9VMj9CqFRIwOXFqM+IYKgeejQktBpp5XqRNwCZxos1aRlw9LEzhKBxejXG3skSJz/wuNdX9Da6CegaC1dSS3Fwf457b5xCFQHxRQUEhe26RDlpejeqD4jMRdEYOt2HGSIBpoi9vaxvWCwVd9c92hGDhhlQNG5HLQvTpLCcD7D/5gUOvuOMr7szfaPEgLr0ATparEnFUiaiGHS9u01oDTaXQ+pN+vAZamXi1KOa1bRJVkSOKORnLoopIkajmp9NpzH86BwxKVytSLkKQUuoIxtJW1JErnTsk+5t5WEGHkonbJcVvNDFfEMqV4gaWt47bSLsqMX+d7/A/pc02v2E5Xc1WN9n87H/FY1iTrSiPuZ5sHolYfNSRHVOykz1xBIRddRoJZtQPLfwY1ryVo+Zv1Efiv7s0tKMYq0wel9De4rO/ZDndX0ojc4phxW56c9vZQ42dSs+ZzuRfakWkfSluBpdWeaCGGkOawPlNcLSYbWqUO7VKKZtH3Jn5wbFqcXizchjuBXhlrQE3lmJK+gATN4h+uLWtOIN0rwU71TQNR2aBu866HM2I+qaYxL1AXRHGj7WsFcGemPgzi0dpJQMPorUIxbZ7S66BFg2EjmXI0r+UXQJgxcKzbHn3uHRaz50y8fLqG2+NqigmKOxogYrlkQ4ytcXfN9azUyOYUSy4uaUONxob1Ef4vdJ6QwXBR377vtelwav+n8Xlwb+pEUsI9yTAs1hIqVvwgYsGUC50LtLJXH1q94v4G5vUDwqe8E3RgH6aYnusoR6bS3256R+4T/MYFZC+xpS1B2+MkWaepQXDITtRkSGu4OdtTi1KgluyawOtxTEZmH7FHQ/SoDaORpGK01VwYZFt5LLVGtAA2ZJVLqnwUnjeD3AMVkZEClqQ2BodfztXt9KEfpisfjAn6ZpfkfHNJ/PAQAHBwcAgHfffRfPnj3DD//wD/e3KcsSf/JP/kn823/7bwEAn//859F13Qduc/fuXbz11lv9bf7dv/t3mM1mffMBAN/zPd+D2Wz2gdu89dZbffMBAD/yIz+Cpmnw+c9//nf79t6s3+N104B8CFe2h80i0hwSFh39+5t9Tt/LK/QXspxKnLUOmR7l1kQe/ADIibCm2ekayJcFdERPU8pJ6L03u1yXTC7ss9d6tdOU0PNeXoDeQeD5MTJiAVBLkZRwn2tqXXpBubyWbpp6LnRuNjLa0Ws8sgtW2lGmMi0riUBfi0VnT2EBer94JKIi+f9KHr/d3wV8Qd6XfL9Y8rUVVxSnNgeJrlWBKIrdkAtPtIM6mvz4eTJstqRmlReqz1MZPBOh7sWuYexmEXYrTkTPRYArGge9NkiRhTyAPn8jQ+Z9GGBCfwXJ08aMRGQBd35966ZAtoptO4uHpwf9+5YbG4ANiZfGoG4tThdjmBcFUhlxfHsO46gnAVisU+CNDwQXMkF+h4qErbhtZfQmEF2YHa7616IU6VsAoK/dd7mpMM/Wt6IdgmIAoil9TxXrfwcgiSVviizoTREw3N8geo12WdDuduPQLEoUTwp0nYEqwq55MxTGa5NwfLDAcj6Ary1Gx2uiNY1FCBq+MQhew8ixhI6J8+2ipJi809A2oCh8/zpNyX+nlk2aXzm0a55QuvSIQcOvCzS/eExK1EGL6t1S9Fkai9cY9tne6tDe6mBqhgtOv04XuPpOQP16g/YoiBOSwuzrInQuiL6FYrcfbL+j5pBjKchfxXO3PiRialo5d4uE+oiNSS7a7EYQUUEAsiOeaXfnl2lok02qJCfwZikbh05AFaAGHrE1sELZ87c6IHKqnTSn182BFPwlSGM8aVG/0vUDhLxvQEwKdKPRzniMyQKT94lKuqVC8ZxOacVcwazFOnevZdE+IHLh5hpILF7zlTRrB/LQIWdlqFYhjKm9iY4Bs0kDKiq6Ej618EO+76GS98orFOekbbV7DEJFBMXaNsLf6qAbFt7FrGEDPfbyPvN9VF7D1BTK18eBdCwHpnkDDBOceL7fwwDdiMOghBqaGkBUKE8NKVZCh4JNmHzTIO63ME9JyYxFhJ61wDigfrVFezrY7f21gX1WIBx6hqauCrgrjeZ+h1Al1IcJYRqghh5u0qK4MvCTCNQazWGghbNXUJMOdm6E9haRslPYLMIujTRG3J91h15M7kc0Pcj6D7/nqbMTKiASBOnh/cOEjlxZrM5Ng+8LDAXxfV6Tu2a9/Ad4vfTSS73WYjab4ed//uf/i/dJKeFv/I2/ge///u/HW2+9BQB49uwZAODk5OQDtz05Oel/9+zZMxRFgf39/f/sbY6Pj3/bcx4fH3/gNr/1efb391EURX+bm/XtW9/+lv1m/bZlNsBwBWxPJIVcrBCR+G8vRXp2pqL/vDQdSjQNDdBORThXswYt59KoONE6iDVubnSiRW+dSf9/QVnMDnXwglZcX7yoyvPkb1QiqlBesvjIieymAWZvKxZOFliN+XjtHrUkLNDJj852iZn6lJsZu2WzAPDikelQ2rNB6KbS3Gx3x5jD03LSul0LXWxLbrBbAroUBOJM9SnrGZnJ+SeZX++HPDa3FOeXVp43EIHJE99k+Nj1UUJzoDB8TEerfKGPDkBSfbZKfYsUt+1tFjh2y89cSaOgIoCoaO0ZFP8dmP2QXZyUSX0hDyVFfVLQlUdaW6ihp4ZG7ahIKiZsfCk/s2jCruFQKkHbRI1IzM0AEYh6UyAlhaPvOMPZ+QQvHuxDjTxc6UlJEhF6T8HyGug0zKSj1W9DOpWqPKLPjQn6fJJtU3ygmUFSNDzq6FrlKo9OmhelE6pZje2qlET1BL8sYEYd3xMFPrYNiNJ8DA+2febJdl3CuAAz6NBuHdGW0uPe97zAgxeHRJICEQsgwQ08YgSevZjRkreg8D56is5zLkp2AjMmQld0/yomDbqG1Lmi9Kg3hdDVhA427NBoMKskKKiyY7BebWAPagz2tmj2HVQHmNOCgaJ3PdPOE0NM1yNqK3JTriKwuZeQbIR9Tocnt2JhPv9owvCpQphrNIekK7UVC7nySxWSotNbn9CtJPh0AISYtSX8Hjf7PP/afZ7LYSB/V/K7JE38gs89eAZsjxRiKda14jpUPrd0PRoqwFvooLDZGLijGtODFc67Pei1QXeXDkRxHFCcWgyeA1efClBbi9F7pg9a9WOeQ36SMH5Poz6UgUZF+tT6LjONGGrH5mF7L6K4MByaeI3hew7b1zq4Z46hhHse5XsFur1IvYBSCGJpC03dAvUQsf8s3IoDiOyox2wnDgtCxZ+3+wlmoyi+dgnFBWlQ7WGAbjWKb1aoj0NPD+pWBfR8N6RQAUgFp/b6pQ3sV0cSngp0hx7uSUkK20EHtTZMsr8kmpNzQ7r9AD9SKJ46NC+3FPSLS5/dr7G9PUT1zRLtfkKYeKhWAy8qYK/r0YB2j0jN7JVLLBcD2IcD6DdWiN8Ycy9eWKSjBrgsgE4heQdzVqF9rWYG0RWDF/2YQyF1VrJhLROqWxv4b0x47asV/DgALqF8ZhFLIL6xhnlvxPf1fo04d6SsbTWiiQgjQXGy4HyYaB184KGvSMVSLQ0KeoF5EndCzQYxudjbHmd73m/rkgHU7/ljAnj48OEHKEtlWf4X7/qTP/mT+OIXv4jPfvazv+13Sn3w/Uop/baf/bZD+S23+f91+/81t7lZ3551g4B8CFd5xQtReYleP5Ent5s7vHBPHiTc+dcXPVXq6IsRxRUn6NUludC5+XDUBPeOKvlT9wPRONAopreyvfpEYoGvpPkRUV/WgqjIhgBZb2GAbrhDWfyQF3vdsnAPDpi8LwnMBzvB+/TdPJlHT/fKYvNM7QrVrrnKaIGp+bPkeFzNPn8GsHnLeSl5WuuHvJ0SJCQ6NjwZRdGd0M7WIsQv8vuT+sasp5uJM1YYcOKlZApbXpIT3c1in3NiN0C7lyjAd3yvN3cTyktO1tyaj8PmhdbAfhxRH6f+/WinwOaYBd3kNwoUZxb2zAoyQ4qKPXUoHpawDyvERSF6CvTNR2wNyklDAXYhVKqgET3tTJ1Qf2hNy5wNFupRmo8IW5BypY3oR85LhIsSce2gTcLZxQTaRRSHdR/uF0SLAQjqYRJpRkNPulICimnToyNMYadwPgrSk3M+kMD7SCOT08LbVcEkdsXjbVv7gdT1YtZI+CGbCSgGEmb60/bpCKHVPVUteo2usXS1aTX81uHh2T4TyF1AMexgqw4HRysEL/dzkfa+LtAuWNCaUIsFb2OZ+O4CmyWhvhkJHWwbi7gsaEUcGXrog0HYWlQHW7z8xnPsH6z5moce7dph8EtTdGNgcz9Ctwrt/Rb2wtINSQHr1wKK5xZ2oVEfJyy+s8XFp+ncNP2Kg1spdHsB61c92r2IcOCxvpdQn0iy+ROF4oIZFN2Y54RbK7T7kc16YDNjhCKZC2q3RK/Nqk7ZfABi0eslU8SSqgXwHG/2OCwoLjWGT+gOpZJQZxKL+Byi6K4Muo3D5dsHMJMOcUBqEAYRiAp2DazvgZkpW431y4EahcTzNBYUKa9eSmhOmADOJimhu8NMCbciTUu3Crqne/F4QwG4cUskZ030yo8T7IqZF82tAL/nEarIUMBSbGMXGuWFou24DH2QOGzIzZupqaHwA2o/6FRG1JLoBzNezEahvh1gF0bsdiPsmeXeNCStLIwjqicWySR0Lwbcy6TJKc6o5TGNgn3hiHSIdkIl7FyfWgUc8PWbU9LiUsFGy59XOPrOU9RvNLBrMc8omdOSIhuY8oKoRXfYYX4xAk4rHHzXKbqnQ6I691vYpQKuil7/M3hqgO9Ywj6sgFpDtSIwn5CiFsYBze2OCMUXJ33BHaqE8oy0uGTY+Kh3RohVpNPWNyq4uaFezSYkJ3tERoWd/D0IQK0R9znhUglQrYZZWuiNoV5ErovQWayud5bLf4DXdDr9wJ//UgPyUz/1U/jFX/xF/Ot//a9x//79/ue3b98GgN+GQLx48aJHK27fvo22bXF5efmfvc3z589/2/Oenp5+4Da/9XkuLy/Rdd1vQ0Zu1v/+66YB+RCudiboxlZCB9sdDam8YGF76385hWo97vwPT/HyL77A+VtaggJZ1JdX6BOCs1C8PhLkpGWB7sSdJinJB2lYIIweqR49SPqaaLTcFfpJ8zj9kPcvVrxdfSg0AqG8+xE1I+2YlqHVC9rixgKIlshBbn4A7OyFwePX7a4B4g9F9L4WxKahVXBi0HSfFJ+F9Rk1yM1MRntyInB+j+xqR30ohFYCee1Z+5JF+QyF3CUJq6Cweo0iWrPRaA4S6hNSQnJzVVxSoGq2CvVRwvCRxvLVhMm7u1DFdkYxe/VCoZhzAtseRIY7HiZs7rE4mbzLQgRewV0aBmgVCe1x12se+CHlvxWaVYlQs1BPnYE+dwDoztTVlla20iRMj9Z9Rkb0LKLrK/odT2dbFEMWsioouL1GaEwci/vGIKUdxatHLwSdSYHBf9nmN1PElCbiYd8eILUsvkn7YnOS6WVsHkTHkgBlImbHK6S5k+J9VwjExlDnku16JW/EDTyPceGg9wnnhdoyyFCDzlm1gZu0KCcN9Scuol2U6BqLGDSWa6Z2K0X73pSAdlGycUnMQjEDj3QuVKvApHYoIMyL/hghdDSz16CsOgwmNcKWjlxm2KFrLB692Mfl5QixNdShrC3KRUSoEibvaoRhgppbhHs8OUePgeqp4XczSY7N4wLVE4fyjJQfL41BcWZRXGnohWXhvWCh3xwC7UFC9YLT9HaPjfLokcbmboIfAG7Ox2pnovcw1IFkOmg3YYGtAs8fJTquYkE0NJRyLmZqXJK9T9BNu1I9xaXbD2hOPAvytUE6aGELj737cwrKz8RRruC+2XUW+u6mTzcPU9ql5kT4MPVw5xb2rXl/zObcoTkMaA8imqOIcNzCvD9gQF4C0Bj4UYL79RHaI6IP8bKE8juxuV0YmCUF2UhKHKXo/tWNmG/RHDPlOzpg/VLs7cHp/EdL78Ezje1JRJgGmC0/E9OIkcc+MzOgwPyJTqHbJ0XLXVj4me+bHLs0HCLJ/sghVOrfb1Mr+GmEP26hPr4EgoJdEhGJw4DimxX87ZZaFJt6YbduNS5+7RhYWzR3pFjPeRlbA11r1Hc8GyIN2OcF4n6L8y8dSfAhUL5foL3XUVcx7mDOHbb3AtrHIxb5W4MwjOg+tsXwfYf2lQbunK5k1ROL+rUW0ER1hk/pxmVXgtrKPpAUqF05iH2WSRxK4KvsLTmxHpLvAQVgS31NGMlnr6URHPL/sUhEfEDqGQaBmU/f5qVS+pb8+d2slBJ+8id/Ev/kn/wT/Kt/9a/w2muvfeD3r732Gm7fvo1f/uVf7n/Wti1+5Vd+Bd/3fd8HAPj0pz8N59wHbvP06VN86Utf6m/zvd/7vZjP5/jVX/3V/jb//t//e8zn8w/c5ktf+hKePn3a3+Zf/st/ibIs8elPf/p39bpu1u/9uqFgfQhXTnBtxZs/KU7sdcMmwA+Bx3/mGO0MGD0BRs88ygsW7u2ENCJfsQhvZ3RWqc4Y1Jo0nbViIQW7AmwjE/6KWpBM6fIDTjQ39xNGD1TvZOVHO0qTrdHnhJCeRCGlH6DPEynmwOh5xOqupovLEDj8csD5Jw2hbLlAqsDnz0460dFdp5yzMWn3du9PEnF5upY1QGRCGpdwTSB/zTVLecBdyzpJhvf1EjqY5FgAisG7CYAhen1JN9nZDseSnvXFmUU35SYdCyart5oTUXKXeXu7YdFsN7w4FpekmUVHm+R2T9CjUeovpJAQQuUBaMktkaaxvCBHe/NGB3MhVCedgJVFquKu/wikcvQF8TBg+FRhGwqkezWnghJ+mJTCelX2dCCADlVKaETzyyGUSXjlE9zQH54esJgPQPK8HcCGwbiA0FikVsOM2t4mN3QGqTPwJklzAUAp3L9zAX9MxONqPUCzcb0TlXGxL/ijp15G24SUgLp1KG9v0CxL6Kw/6RR0Qbeu1BigCEjzgsFo8sbsvTzHclXBVsxVYRMGjGY1nA1YLAYwNlJ74ALKWY2q6LCYD5ntkfNLVILfOgz3N6g3otWwEcZEfOStR3jv9JCBix2RqM7YHokBAOP4OtqWXzw3ZlPUrQWaNImvS4raV34p4fJNg+KKQwUoNrTjXyuxuqOwPeZ3dO9rCed/WKbzZUKxUNi+2QJBYfR1h9FjAz/iXuMWiudOkHP/doviUQEkGWYk1TvcVac8LzL9MRlxzdsK9XGzc7TL5hRxRuTPbHm/bryzrQ5yXz8Q1HDK84bnM79P5XMrgmJSD8tvVujGJRYGUGVknkijUd8OqJ4YxAdD6lY6BT+igxNqvt/JJRQvqPHYPBtDybS+G2fdA3NDivdKrO8nuHPbU6jshrqv4QM2843iMdoVB0DdgSc1UktwnuRIbGcJw3ctYqWZEyJ24bVW8OOEUNEZkPRXNiduoZG07vepPji1Iy3ITz3cwwrh5S3SRcmmwya4M4fuqEM3ZaEfjdiZlwASEQBeYxStmC8MkjaIzwqkUYQf7n5W3/VAYxCnHvZFQcG9BpKLaEapNyhJMw+sDMyK4YT63CFohWLO8ED9kTWwdgjjiBCB8twgVED1wKF5PU+1wEyNWUCqK8RhQPnUog0l6o/WfK2jiOEDA/e9F9g+m6I8V9jeTli/5umMNosoT7k/tLc6uHPXaw+TI4KjLD8TJFA8vjJIAzYRammZN9LxfTIrWhunMgJrQ7rVxJNKqoiOJJ2ALdGXmwX8xE/8BP7RP/pH+Gf/7J9hMpn0CMRsNsNgMIBSCj/90z+Nn/u5n8Obb76JN998Ez/3cz+H4XCIH/uxH+tv+1f+yl/Bz/zMz+Dw8BAHBwf42Z/9WXzqU5/CD/7gDwIAPvGJT+DP/Jk/gx//8R/HP/gH/wAA8Ff/6l/Fj/7oj+JjH/sYAOCHf/iH8clPfhKf+cxn8Hf/7t/FxcUFfvZnfxY//uM/fuOA9SFYNwjIh3CZrUzsZYrYHOyoUznHoxvzNqv7wOkfogVlFp+HckctcguFbppYMEgxkKdj1x0uQsELVbOH3nLWtCzkyzO6yCR9DY0RhCYpOtp0Y+FYS6FvGj623fLf2yP9AWG79kL5sR9EL6LbUc6KhaAPW9K3qnPeN9PSejH8cIeiRIteqN43H8JZB6QxKdCLUq9TKzIHO9sNqyAJuwFAzBa78hm1gG4UyudWUBKF4sLArlX/HtuVFgFp4vsRdmhM1nWs7wn1bcRjyo46+bjdgpNOt6LoPYorjp+knupVPHXwe2KTk3i7JJSllADVaJRPHeKikEAxhXYq1p9+R9eCWNVmB63epQpsLmKne3Tjqh7gvSdHtI+V31/nHmsboXXC3uEK5axmyKHQqtLSwQw7QViUWAIDT89n6KLGtrPoWgtXicuMFOuxsUQBNswJyciGFtF3NWl6ZCQnicct7VQRNOkVicdQjVp03iC0Bn5eIi4KlLMaKSisL4a4uhgRCfEa1aRhZolKMJpagFBblFXL5POzAYazLWLUGIxaDEYNisKj3Tg8utzDcECaGXRCu3GIa9e/T8ok0s3yZ6fYjMSg4UYd7YYlZBEAZl+xiEb1FJ5uGnm/BMxfU1i/1cAtSEVcvqow+5rG9JugvqMEyvcKTL7sOMzIoaSS3xEdKX+6A8wLh/Yw4P/L3p8825bd+X3YZzW7O93tXv+yQWYCKFQHssgiaRmyRNl0WSMHRxzYY0844ogTe2qPFMEh/wAGB7IHDkvBCRUKhUSLIllVKrIAJJAAEpn52vvebU+/m9V48Ftrn5eSbBUdBSHLvivixXvv3tPss89ufr/ft5u8jWzfi3RnIYmmBY3TvRzP+0dhPFeGudCGulNBMrLofPYcTn6iKNaikxJba8WQ7v/F8jDUsFtS9gWENGlXLk3/a3GSChMv7n6TxM2fSe6E6dJFQIuI2D0YiN/ZEupA0Qw093dEG7FrCQYd5oHFzwRBNLuU26Nk+8o1bJ/I8EYPokuZfykopt0oyUIqBUGoLuX1ogK7MhKimJySQhVEs/FWrtHVlZzDwzwmSqc4K/lJEG3ZNDd2Kbn+xKfmTNyehjM3BuLZ81LyO27L0YHP7NUYjhhNFOpnp9L1R43p3qJXkX1hWnALj5+IA5XeabkOmSguUa2GvRH0t5LvwK4MdmXEFCMqyWPZabHb7fTo+OWbSDgbxIr6ZcXi6YrqyozNZNTw/uNr1EWFO3XQCfroHg4Ul5bukSMeOczriv7BgOoV7f3I+hcn2JWRQdDxgPKK/sQn0bnQ0oqrArsTMw8U0nwohE5WBnEmuyqIKdGeRCNThTQnyilBQLwahzoYoNdjk6mC3JejjaPA/de64q/oz7/F+of/8B+yXC75m3/zb/L48ePxz3/8H//H42P+/t//+/y9v/f3+Lt/9+/y+7//+7x8+ZJ/+k//KfP5fHzMP/gH/4C//bf/Nn/n7/wdfvCDHzCZTPhP/9P/FGMOjd4//sf/mN/93d/lD/7gD/iDP/gDvv/97/OP/tE/Gn9vjOGf/JN/Ql3X/OAHP+Dv/J2/w9/+23+b/+g/+o/+7T7U3fqVrLsckG/Qyl7ev/N/+L+gZvXYZGTtht2IsDO7Qalk1fuu01K2zc32mMqnKSkHcbqvgeT2JJQLaR5MSju2u6/rMLIjVy7WuxNGFylfCcLhm/SY5B5lOmloMo1pdMkKMH8hNK3dIzWGC+rhQJkCaTymrzJlI+Imiv29ZB+8RSB6F+nngghkhIJUzOdGZxSy+wNykl2zcthhpqNkAb8Iw+X3WSg7zMTdyqcE+e5MEnR1utmWK3mem4jjSnlrRLheiqd/fq9hJt+XdvJ+UR9oXd0JyQ1MOqZMuYgmCvKR8gzy998n4aubREn1tTkwTF5nci5aoP6hJAoThRueMwTizIMJB8pWKt6jVxJ0tzVSyFSB6tzSPh0wGyM3ZZXoC0n0GgOoMoydoNKR0BqUjaiVhZN+fJ9H95e8Pj9ONBBFdArTJNrIdYU66wjrQrQiQSptbYOgIF4zmXTs9uWhMfFahLcmoAvRreRsjcXJjvuzDc+vT4QeltPSo8I2A64T5KhshEaS3b6G1o7ie6XD2EBpG/C9WB8XlTQZk4VMcNt9KU3VXuhT9aRnv6koaofWkXZToa0X4XxnxQBgY9AnvSAtI11N/h1aS33UcjLb8eZqQbys+Og/GXj7exXtmQhr46bArGVq37/fs/g3JcNMtFYk+lWx5WBRnZvpT/b4bUF5afFVpNgoOdYKsRWVQFBBLaprWH8ox/LsuZgA9CeHa042pvBNsqke5Pwo1mJ7nRPW7e4wPAnlwZJXuXR9axkzQ/qFnOfDXAwbfC3FdLBi2avi4bnDUYDTnnhbYjcad+whQPVwJwhYUJycbLn5/IQw9akhVUyeG4a5nH/txx3TH1dsf6fDvJFJPyc99kUtTdcjOYf83BMVNM8F9SzWiv37g1CTGqFchipdKCdeqI7JUjhaGS7Yjdgko2H3nqc+l4vVMIuEWs7x+q1i9zSw+IWmvSfNlzvyFFd2bCxC49F7aaDcwx5zUYjO5FgCDas3gtL4OuIWAZzCbrUgNlstdrR7Rft0wF5b/EJez24U/XFAn3b4naW4tiPNLJYRPOhBkBzfpCnWvU6un181EkrZSLiqSYhSMKC/vcF/MT2gKOm60n/QS/FfBHTtMS9r9Mcb1E9mdA8d1bmlu+9h6mnmLWXhWH51jPZIsGEdMBdiVW5aGbj5qWSaVJdiIOAXXtCKQvQfZp2QDSO6M3ZixhHLOAZMYqIIy1PKuer1geLa68PjnTSRoW159vf/T7/WHJDf+9//n38lOSB/8o//j7+Wz3W3/n973VGwvoEr2+5mpKLPtJ/JQfCZedN2cxBpF6tIKEVXYdJgytdSOLtpSv9eME4/67dqRFqyBmKYw/BxoLgVB6ac6ZGboFysB4Ok0O5kWql7xqTZXODLA9PvLKPt7vzLPc/+YCLbnwXy7utieBUONDBfqhFx0Q7KbcTVEJUaEZw02B6bpKgOTQakYiUhMJmTXmylGCpXaZ+nQMdM/9J7WH0iE7/yljEfpNjAMFfygkGmXwQ10tLqt0YKqj3QisuN2ci+LdYkZxspBnMIXHUjovz9mSJUQs3KCJNOtr3N6/RaGYVJgsj6reyf7lSKCbO22I1K1AvQrpAb+RuLnwtnmjqglxY/F+hMdVoE6jaiTKT+ohyF/JuPoDsTHoOfBPTOSEp7mgJGHbGzQdyhMvoQQRURWw8Ui1bcshKicn5xhK0drrMibG/ELYugUMc9fmfRU7HP9XuNSSnFOTtks64TQiMiYG3zly7NU1SSqq5MZLut2belUKASsqOLQFE5htZiK6FfdZuK2Guq45aQBOuutRjr6Hcl2nqi12MIZFk6tlcTzMQxDBafkKToNeWRICZdV1A0TihnJtnw7gq63qBLT9EMFIs9wyCaD3teEt9vGTYlpnYc3V+zvJ7xelNCUDz+53D9PWk+VAR1VTL7Uote4yRw9v8s2T+UBrd5I0XU7r2Adprp60NQaHkL/rahPQM3D8Qy0N2TSe/kF9LAFGs4/oXkDUUj5629UmyfRBa/VGxTWJ5LltHZQa8/SsnUV0LpQh/QzXxdsy2o9YHKuHsSqZPznN0fDBxCITa4Wf9lN3JR83U8FLG1pzovYF0zfNAS9xXTLw1uAl2cYM46bOm5frOAItmnLhxqZdk/kfwTfWE4/W8qNk+BraXYKtoHA+xE2N2feeqXog9Z/MSy+q4f6ZC+gupNgZtHsr2vGgSlsW+LEd21rSLq5E5lI6ESmtf854IGFFuIRjGkBkYFQ7HWbD5IwYbTwOInlvUnHmYetkJ38nNP1JrypdDl2geRcDpQvCoFfV0IfbO8MKChPxK6mZsKoqI2ivJtQbCR+qXFTaA/8dRvDFw0dPcE2RkeDtKovyzleV6QHLOTz+WvKhFyJ21LuVTsjiPVVbIqf2+PeznBOEV41FE+q+mPI/zmhvqHM/qjSIgw+7Rg/YlHnU+IDx04RfdY3N3CSc9+VdNfFDAN6I0R9CjKfUz3QikLBszaUF+kMEcrjYTZavw0oAaTrnvpRjEAVhorNSgZxCTHEj3IgITEGCA3J3LXgh4o5BoY+7tZ7t26W/8265sAGt6t/84yg9yki40UE/Wl3KiLjTQPWRTtywNyUa5gmEghik40Ki+vpb0UuG7yjltUx5izIW4rh4liPO0ZFomHvD0IurNDVBZw260aBeNZRG32h2IjKmma2nsHhOTxf3bJi//VJIU8yWOHOcREvRpfz4pWhFRbKg8nPxP72H6uqG+CCNkTygKiEWnvScOl4jtIUUKRxnC0RPVqz2Qf7h9GcdLKYvNEG3ONUCbKW8ZgSD2IE5lKEL12QntoHwVck1Km78lG5zwVuwWi/O1rGI4OSIzpDjkJuwdqbPbq64MWJhop8Nr7sHsa6E4OaEmxle/YTWV/V+cFZi+89937gX4hovrpLy3VNVTnNk3xIuFIqCs5sE+4zIdiJlsVA8Q6HESXTRhtSgkSzOWvK9gbolPEQaPPK8pnJW5ZsV/WUrxHRewNoTMM6xJ2Fre1DLtC0IbCp6BBceUKTmNqL1klkPJExGJYGeEGZNeu6BX1pBcEYtDEtxXRa2JEcjgSMqKMPKffFZS1wy0rlJFGyc57XG8gKtk+oF8LaqE06MKn/BFN1xXUJ3IyZbevsnKYynG22FJPe3xn4Ccz+Tuto/tryllPPenRJuCcISRkpfruinBRYScOpWHflhQpLLF6VtKeaNYfxvF8mH+u2X4Y5fiaOtrTA4Ln07Fq1xpfy7FuW5iciwtde0+aDzUopp9bzNuS5vNSkM860h/D5R+0LL8T2T9MSMMMqhvF5gOYfyGFWG7WMyJh92Ltm6mY3UmyrE6IaRZCx5SaHi0054L2Fet07rWH87c/kobZ7hXdo0HsvjuhGVbXmtkv8uQb1HWJP/J0J7Kv9aDxq5JuWQlSh5yPxeuS6krcturX0gCs/5db+lMPtWXVVhcAAQAASURBVMf85SWTz0rKt1ZQyiLQfdBTXRmWv+WYfmXoFxJaihLHJSKESZAk7yqg9wbTqtGsotgIguTmQWhS+tBs9ceSNi+6EJVoXOmYT6nmeqcJ/94SCkEUlUsBh0jh3R+JA1+0keKlpJW3D3zKwkjXyCBOY3qQQUKxkoZcXAMTVffegGk1biLPDxMv39HzAnNViJVvQm59JRkbOTtGzQbCkcNuFe0DoTJ1J+K2Vf2bCcFG3Cxgn9fSFF0bwucz2keeMPOYvWb9l3qxJq4C04db6guDajXug5by04bidSkIlxLaWDSIra4Vq97qQksY4VyaRH86CAp9Y1IwozRPyotzl3IKBi3HR7omZxpfPl5jLYnvREGdVJDnK6ekcem16D8yz/fXub4BFKy7dbf+rOuuAfkGrm4OQR9QB7npJqvbRMtyE5i8SSnFKfXbDFKQZx6zT2F82fmpvhb4OKMLKqapaCOOWMVWbkaTH9bUFzKhy57+GXGpL1K6+Y1MUgmpMepFVF1uGPMvMjqhIgzTyAf/j0uu/saZoCLvFNZ6OGhTitUBvRgSHTQ3Uvt7JjURKXW8i0wuxAo0NzSmF6F+VAkpSBN5XzIKvt+9T2Q+tHYHl7BRkJ4+g0kC9/KW0ZY360OyS1Z1qSlXamx4QiFNV3UjTUefmg41SJEFh+9lTKNPaJbuSRqNg42pdvL+1aVQrCbnYsVsOvl+6gtxSCtvoH4rqc/TZ5r6SvZjcxlproQioiYOtRHBtd4a2GvhR3s1ho9lGl93KralOTFc2SCCdCu8abMRWoNdiyuXGrS8poL+oZOmRj4trC3Vi4LJlwWqCJT39hTzHlNLyJzoUZTY8CYKlNsKVSlG0Cak3BJ5RVN5Qm/QVqxw99uKGDTVV5XwsbeSih42hTQhKcSwqBzRa4bBsHi0lq1L+gul5YA1k9ScFdJ8KB0kzyMyhiaKXa+gKUpBu6owNnD+9oh2KTSI2V+5okkULd9ZlpczQlCEoHG9pd8X0jAFRd9bFh/dYqxH6UC/E+QGDQ//2OFrERO7ucdXkeVvesprRfsg0nxeEhNC2T6MaA/b92PKrIm0DwK3343cfE8Q1eaNFK7xQcfw1zbMngtVa1jEMV06XlfUFxKWmdHH+lquReuPIsVaituo5djMww2drhuhECH89HW6BiwO57rKw5HssGfktTIKm4u/6lIQXdckh6dUfNqdOthjl7B/z0lTci4C/+6Bp7yVA0WXHjZ2TDYfHvW0Txx+4WmfCKVq9l9Mx8wO9V8fsfvA098Xp6v5Z4W8BnD8Q0uwIsR3M7G8tWuhQdlbyeqgkkbEN3Lsmx72DwP1haJ+qwV9XR9sy4u1fFbXpGtLhPZBkAYjB4/2CvenR2Ku0CcheYT6pRW3rr0MQpRT+ElkOAqUV3K9rK4EDUUlety9wPQrQSszNdTXkuBu1ha7VdgWmHrMxiT7dHH5iw86+Q5iQoDuDUlXY+CmRK8N/YnY8c5+LK5vrolsP3Y0j7cS5DiJ9J+06RoZKC+lQfd1AMTYw6wMu2dzit+7lX37vGb/xNPfc5idxi6N7Pde4edOrr2DXC9F56JozySdPCMj8WgQG+EnO2ksUqhgbLwgwIlSJWGYYkUsmhhDSGGDoyjdyL5AASbiF25scu/W3bpbf7Z114B8A1exOxSmNukysjVlniQqJzf+7VO5AWeOd3ZSysW/6Q8Fty+F5pA1DqaTwsI10vBAcq7JaESaxkMqyJUUFpkaJiLYyDCV35dr2Y4sxgv24IaFBnc2ob4JAmeHJGhP26m79P5VaqgSvzwWSQPSgGsUvgDTR/qFTo+L2JT6nvUq8PXmJzcjmbo0CpTtQX8RjRTxOSlZhLJSGI2pzvvkgrVjTEVXqXlwE9g/9Yck+qS32T06NCwxWQxrx5gEnQX7vkzmAfbQjBEO72062YehkibNdFKAlKtkLVnK7/N0OdNYiq08f/dAsX2oGOaBuLfEmQSHKSe2mwSFWRsRvSOUPNuCn3nsVvz4MVHcXlYW1ZqRhqH3MlXFIK4yXuxc6TXFtUyR2VrsVjMsIv1RhJ1lPmlp6gHfGexUJv2Z6qRKz+JoL4LQTo/aDFN50X4kPUdxJfa5Pmk5QIql5r01H3z3jeSIVD5pPzTRa4wJLE63GBN4OJfqb0ySz7qSm5LYHzQZMUqQoB8MWNG65Nd0vRXa1mQQJMeEMZTsdjmhLFxCOTy69GgTcU7QmXcthV1n2GxrYpSE9XIqB2z9y5L9qRmF3manOfkpHH1q6M8C1bWivoLuRGhJZidC3fmX4jpl9kI/ad4oZs8FtXRTMThoflLT/FczCS6dixub2YnbU3mj6Y8lFNNX0nB3Czm2io24KmX9WXcq55RNIvR8vWjPFO3pwTrb7tPgIk3RddKMDYtE1SwSSpl+l7VcsRDE0d6Ks1R2totamqnJM0t5q8ZiWu/E1Wr+mUVdVFCKfsF0SppvE2UCPkjBvvkPtvj7A9NPS/Z/dYcaxOK6fqtYf9ehXteCOCfKWX8iuisJ90t/ioQOOCXUKCNDgf37w3hthcNnk2syX7Mhdw96QRZqKfhVZMyqGBaR8tYQH7XoXhOMvLa6LQiPO3wjboV2nfi3mjGfotgmJFYfBh/ZsGSYCyJCcsfqHjr67+xpFi2ql6DWmJGOTYHZadyRxz/uoDPUb7WkkmtBI8xOM3lm2T2J+FNJZn/43g37txIKyP2W5tP6cAwkClR5a2BjOfqhoFrRRgZnmL4Um+H6jZHvf+YpV3Is2T2JHhdSwKVYnduVltyYZRLUFxF9U6K8wr+YSLPpFSprz0qhlCqnoDwgvMppQiHNCCbK9pci1o9OS6J8FWTo8g2oprKxzJ/3n7t1t34V604D8g1cdh+hEEeqYoNMZZGbVb5plGu5Gc6eSfHpkph7nK4ruem4JtnNWhimiTJRyg3o5m90mMpTfDoRilSCoLNdreJQOMdEN7DJRjOLTqsb4TW7GWPGiPKHSV4OJjOdIhSG5vUOvj9nFIIPB2TCtvIevjrQs6KWlORcnGgH3bHcfO0emuuA6yJlFGennBg+Pl+9U8jE9NrvNBYu7RPTSV6JHg4ZIzlcDQ7hkBl9yiL8XOybDnTSflRXkkdAm3IQgjxupLHcSsMXldz8q2v5LLvH8pruRILL7P6w/ySJ+iDA96WI8k0vomCdtDaZtlUtI+2pTDIXX6bCtI/0RxpWwgE3rfDpbQvq0lIuE0rjGO2QUUIDqS6NFFtWMlDcVGxUt+9FsJH+OECi5qEj/ZkI5+1WES8KTC/Nzyi8P+65XU7xrUFXkguiS48yERUD0Wlunx+hj3pIrjRhMPgBVBHkOUGhvrVDpSDCnOrOxGNN4PX1UaJ+Qdgbgo7YiWO/qmltQF2V/GxVYaeDhDRGceOazVvCrGO/LcWlKr3GgEHbkNzA0nkWEdpYKTkmo0D9uMMn57Dl9QxTCpISI7jekEN4tYn4TYE+6sfsFe8VtvL0mxJzVfDwDwde/nsF4f099ssGu4XVR9CfeqbPRO+w/G5qvu4FyhuNV5HVJ5H6Qqb60UbaB6nQnDrMm5LqVgYSrob+6QB7zewLw+yFHIvh21vcdY3ZyNS+O5XjuVjLceuSJq26Sa58CfkMRSrOpxHbKvoTyRPJNt4ZCQk2XaPqhAhME6WyZLTVtlvQGnSnRsoog0y0BWUAkMaDKBa2sQqUt3Jr23wrORq1gtQpp1CPW9R1NQYMKg/uvKFcafaPIuG6EgTvnmN44jn75xXrDxHnrEHTP5QMEd8EKWQjuLlHdyKON1uTAg4Vq7/cUz0vaS4OlLNhnoJQjWxP1tr5OlK+KOkeOSn85x59K+5Z7nEHrVC/7MtaAkwHBd4Q6oB+W1En3Y2KktGigliORwW7jxxmPsCrmvJGsoqqa3nv9kyS1iUUVaFuLL7XDPsavwjYpRnDWasLQTjKa4Pba2wnx1CxlGuKe9KhlgXusZMsDRuoPlmx/Ff3ie9JIxaWJduPB1RQNPd2tHHG8X9bcPu9wOwLw/qvtswWLZt1jflXc9HcRAi/swGnmf5wQvswDV5Sgzp9odk/EArscBTEPEOl8MWANGxlgEHBw5ZwW8rABFBFFKe5MojRwIMetSwIExGuExXhbBCHrpmXQUntiaviQNWyEdz/t3f8u3W3/v9z3TUg38A1zBT9YynIXZMoSOkG69METqcJerCJppntZlOzkDUEtpWLdPbpj0bQhvZ+YPKzCrOXm6HZSBGRC+7++DBNj/rgYJObDZsaiKwHyXzwKCyacWX7WdNDf2Qpr3bkBHXdCyWpvy8+/fFlKc1P/hyZOp9oUK6RYt7uIusPFa4DFfRo0+saRT8FZQ/T1LwtWSSb7W9z85PpI/2xcJoJagxH84XcwJVLehT99ellzhDRMCa4Z8F9tjnePRHHmeoqZbkMh5umbaFPjSbIfirWEAo92gyr1DRlW+KcATK5EPpVbq6UF21MsZWf9UeK2euYtjcSjGL3QGN6maLbncKXYjM6zGSy5xolVqobNWpKopLiQpoxRX/sUD6FHxZCX/ONNDOhRCw7Q6bTxDHJORbi/hMKKQp8Z0BHVCEFPUGhikAclFjsbjXmpMO3FlN5zC8bKTpbhb8/EJwSAfi+AC8uWgFpXKqjltXNFKWDaIg04tClYko9D5jCU3245tFixecvHsDOwkSE77t9qrYU+F0hr50S5TGRonbSlKiI31uhkHlJRTdFGAXvxgZJaU8j7ox0hM6KrkWBqR12aRisRQVFedLSLStBdyYD839Rcv4/KyRk7vNGjuFBpv5uqtl+7Jj+0hKVuKSVt6I3MF0KyQxyTLX3E21oYjDPZFrbHack55CsnJtIe18K48krRVhOmXbQngry6etIf6RoLqC9F2nOxY52/0A+y7vUxsUvpQEOBcyeKXaPhDa4fT8yfaHGAYAvZJjSHYPZAXVCRp0cQ/2xHM+zZ7D6thynplUpq0OhumTEMZPmplwqzLnFN9B+q4dOM/nSEqpEw/xoT2hF4B2sNG2xFFRJBigKFTXFUqEHze4jWH5HHqd7Ce0rrizDicfeGqHxALrThHs91ZeViOZ1ZFgEJj8r2T8OlCtNe19cB8sl7B/L/ouK0byj2IiJRHFlcYuAvZDv3U2DFPNOSQGNIBsmGVyEQqXpP187F00r+9U97tG3FvO2GRHf6koaB1WK7bGbSRGtdjkpPBIGJeeyForVcG8gWKFu9e9Jo9EfOaanO/bbiubTGr+pGI4D5lx0KKY1BF3hp9B8VYz3r/Yjj1obwg8XxPue9Q/2TH7YsPnIY1/V7M4reNSxexqYPpOGTn05Q02lYarP5ZrU3ZP9v/3uQP2soL3vKW8kMBISzSomLU0tN5fQi7tfqDz6uiRWUfJHlhZ37FCrQvbFIAhxrAJqaSULRKefr6xkh7hMu1V4+w2ACmL68+f9mnfrbv0K1l0D8g1crjoIw5WCmBAFIjRvk5PMPtIdCw86U7SypaTqYPOB3ICK1xAmQi9q70kjEQ2YnWb3nmfywghqEhOlKDUSOV8j29tmNAGSAD4F/uWGISMLWRwPqThPmR6+gPmPLth+7x7TlzKN37wnNI76jUK9KsVbP1n16kFer1gn+lQXhZpm5II/OZfCaPs0CVJvk6tOyvHwGflJTUO5ks+Yt9FN+JqbWLECPQhlpb6GchtYfaBTYrwUXu/mlGTBeShTI1gcxObF/iAElkmcfIbZM0Yx6LsBiVngb3r5f30l02A/ke0qRaaALwUM0B24So3NhfJgW6GlDBM1WhcHA2aIuEqxfaJkapi+xKgkmG6YSWFlU4icacU5xm4Vbh4lb2ArxWB3EjFrI5bAk0jxVjF7ATffE+779LlYhroTB4MaP3t1renOPM2tobpVrL+lcAg32586CUrUEZw0Ij5EzGIQrYUSzcX933+LNZ7Xl8fo1zXhbCC0FjpN9UDsVpWO6Dq5W9UD/m0j/O5eQZU++97AbBDNRlvwy819WFvsvVZcvED+bg2qcVRHLa63qVnwxIg4dkVQJo5IDESClwyIGBWhVwQjNBht3bjfxc5Xpq7lpKd/M8EOSFEzH3C9JLD7Nw0f/t9arn5HEDLTqjHLJ5QxHasK3Vn6I2kOQKxc3US+r+aVaJv0AOFhh35d07yRY7M7FUtms5XvprywlEspjrfvwfY9aVLrL8HW0ghU14J23vzlgeKyoD+S47lKupD9QzmmqwvF7mEyl8go35UI4Zs3it2jiOkTctpEuEouRkNunhPiaA9W4vuHojGDNPgIagzo80lTkh+rggxbZj8WJ7f9g3RdnQXMs4bZRbq2ekV3JkMHd+wxGy3UMqdEG2Ii0y8s3fd36F9OCFVE9YrhzGGvrVCurLheqQDmTTlaGfuJoAT9kVxrh7mc29GIU1XUEj6YhypRi612+VaSxlWv8E0YU7uDDpi9NEm+jtRvdaJqKhmalJHhCGnQ66SBeCr0IrW02JWgM92ZIJf7hzIYsS3svuWoX1nsWor6UILqJU+Eicc3yRzixo4OWJMfV7T3I5MPduy/WKB0ZPvJIEhTJciQDCDk2IvbglCKfs2933H0h7Wk3vcQbg1DqNh9S9yuxDxEEb+ocZPI9jd7MbgoJMej+WVBfxJx9yU9XQVgZRmmEdNq0Xso0FFJY1iG0UZXbHcjcTGg9lbsg28qsQE+cqIFsdKQsDWj6DzW8pqmcfC2Fs0HQIFkviDN2926W3frz77uGpBv4KrWjE4uJH5wdStF+/5MisXtk8MUMf8xLcxeRXb3xX8/KpmAKQ/dE5kwRiWNSLmG+tKM1phuJoVtFpK6+aFYDyUyCUtaCZWcb2wSfItQXgrabLmZtSPlWrI6mutI9+EJm8cW7WUqNXsun6fYSSEdb6TIz7Qx04q+Y/dArB51L4U2CppLjx40UaeJYIyJ+qVG6pZyInRV4aB1MR1jBsEwl2K/PUsFzArqGynkMloQCtifCcXDzQ4ZKZNzxTAF44VCkila+fMXicY1fS7f07vZKjnFPSQExe6TeN4mOso2PT/bEicTAF+m5iMZCAhdLYW2FVKgZu1Od6yYvAG1ksfYnQjYs0NXLNQhTV5LWKLdKooVzL5SEiT3jv5n/0gS3jP1TAUlzko72Tf1haK+iXQnCnstl5VQCgVHsh20ZEeELHxNtsURVOVHvQWDQq8sDGK1mV2I3l7NCV5TT3vKb9+yXjVENHrR01432LmInXLYoe8N9uFexOc2MOwFSYmFH3M+tE2ZIXMpJuLeQuOwlaOYdXivU/MRR/pUSMiNKYOEMKaaI/pUHA8GOj1yy00lr+22hWSrqNS0DIZ+W1I82NM1JZOTPfvXUzgacNuSj/+TgRf/wSQ139Ak84f9QxjOHNWrIlkqSzHV/KKSBPGtov24o/lZxfaDgPbifFQ8q1l/24tj0NnA2T8rKVaG7QeB5oUdDSH6hWhDQiEmFznNPJrI9v0ABhY/KXCNDAGGOay+J1kNwQoVyU0V5a2kcKt0HmZtlt2TzA7kvWbP1Sg6Hxbp3FmLHkUaaXlezgapLw9USeWS/u2e6ANC0lFlTZXdw/aDgF1L7oabCg1s/zjpGZKYPRqY/tLQncp2+iaiW02oA91ZxPx8wnCcitpEh3TH0tianXywaETAHBJhPiOBbnpwm7IbNWo6zE6Lk1YpiEW0EJqAAzkedwYM2KVQvezSCF3q4w57XtE+DBRLzXDkqa7MaFiiXbJaD3IuNa8Nw0z2YSgkFyZYOPlUs3kfdh8Inaz9Vo9KAmtVhOQyB+ZNRXkjjVooUwjhTrF7T5qM8MdH2Fo+Wyi0ZBWtjFiu94runmfyaY2voXt/wF5aimc1+wdi92vvtbhdQf1FiZvocf+7aWDyQpLYi/My0ZxkP3b3A7rVTH5e0p3KY3WvRUAOo/FFqKK497lkM67l3kHKWYo2EK8rcbnaGkLO/Zh4yS6KoAe5R0abso1uxDVP7Y00KsgAR9zdfv0NyK9Cs3GnAblbv6p114B8A5cvJBNi/b7cqI++9Nx+2zB5K9Sb/b1DgF/mnWZoffVhmox7UhCecLRRIm73xUHj4Cu52dsdIzc/6xrsNt2M8/vkI0WlCeV1ojilibzuBa63KSk927fuz6RorZae248raWYGxfZJKtZtsqXVMrkr1uqQlt4LIqG9UKCMFZoRQDQmNWZCL3KNGkMQq2tBLYpNZPtEJ8SC9Lz0+YtEvZpJQ5ULyd1DCRXUgxRBxQbcSdKenMoUskiZKVmkb3QKGGwFscpUuDH1PErhaHeMeSNRQblJIlQj75X3/fapUGxy05ffq9hKU6ZQo9YlF12+SRSzlMdSX4vmp5+rA0XrKIXM9TIxledFqktFmfQA2kkTBELzcAtPf2wk1yGJjrPr2u6RfK5iLY1eeyrf9TBLWRDXapxoFzdJzGrg+GdCDdu8p7C7gqjEMctcWCbnQlPaPY4sfibfcdCG1e/INrXbkhZR7hbNQF0NlCdbluvmnURxiKuCYaYoJ4IqEBR+VzAGLwZFvKyIC8f0eM9uU2Hmwyg4328qtAmiMzGIQ1fSqQQnWg+pJtOxWgR5TASqQNwWUHt8omqpIqCvSpmc2ihFUKdxVgT4XVtw9MES/1+d8vCPWn7xv7PUr6GvIXy8w99WzD8TR6LyTYGfyBS9OdfEN5VkLSCi5OK1/F97aTqlqY9MXhi600j9eSk2zhomLzTdaTqfS2gfik1sKOD2RAS9KEG1Jl8WtPcD678kYX1uojj6PDJ5ZqWhn4LpDaYV6uHklf7aMCJqafaLjRyz7tQRLqwge2tpNrrjdF7VMhyQ41Cak/pKBh7lMh3bJ4JeNC8N+/c8xY0Zr4PTl3LczT+XzzcsUsNSJ3QPkpFEpLgVehQKvJLrWH0lmrVhEcdzDR3Rnaa8tnT3UphfkShPSkEPsZLmwp061DrRdpSme+TGMNBiKeiAiqkB0lmzJqF9zorBAx5cmspHE+lPoP6iErS5U8nEQtE+dtSvLf0HHfqmoHmt2f5GT/G6PFBiVfq8BvwkspoIwpKtte1FIU2VBrUq5Bw6HtCdov+dHfpZQwxK7HrnUtRHI3bNbuEZPnTY5zW+Ttkf94LYEW8Mu48czXOLubaSWP6kpzlq0c9nxGcTeDDQPgiCrC4C9tZgdkIvPP7TguVveqE+dVponEq+t913BsxlAUaaN70XtEN5NVKvlA1ENKpOkxOXubGCmEYrJhqhFiF5OBZUxZ842OuUySLXFbMUK98wDUIZDXIdCU0S8G9+/Q3IHQXrbv1FWncNyDdw+QrUVm642kF3pCXHo1ajfkGFw/TcZxqQPUz4cxFMKpL1AENzoFi5nOeRtBxwEJKq5NIkjjJ8zS6XIIVCpjFlfYJOeoWs3YhKmpDqRrbPNUJDyOLSrAEhJtoVSJGY3ZycvH4O5FPuIGyPJE1ILZSjzH9W6XVy/oZrUgPjonDkE1VDfif7MGec5FT5rAvxtXyuXDDJ7wSOCkW6ISXBvwoHChokxCK9XrBpuwf5rGY4OGlBEt4HoYmocKDe5dwRFQ+uQMBoWWqSPsek54cS3DTSbNTYaGZBencqRZSfBppXJtHIBDmxa0W5To1pai6y2L5YQ6jV2DihEvUubefsOXRHKYNmdtAN1ZdCjxnmcsyZVh7fp6Y3f4acah80RGslJyU1vDqlcbuJHEdmI0VJeUPKlgk4Hdg6zXpoiL1BVZ4xXGzmoTP0XoMJkh0yaHF4qz1xZ4kLcVrYLuXLNnWPHwzBK7HvdZpyOuA6I/SaSSBomYQqk7QrADtLmDoRsgaFskHccVI9ooxkl4QyueXASOlgU+AnjqJ2LC9nfPjjge2Tiuo8NeLf3uIva05+aMahQX2RTB1KoTOFOlI82jH7z2cEU8h3pRX9XCh29ZUgZDJsEHRr/0goe0WiXYVSrF/LJ1v6l9NRXH36Y9jfV2xLQ3s/iPbiZSWJ5CtYfyjPb08P2o1QwuSVHq8rUYNbpO81/d5uwH5ux8BO08sxlPNB7C6dg0E0Ys0bNWqr8rmQTRR8pcR9KWnm6isZWhTbAzLsJoy2uPm5bppS1tMxlyfY2h3obmqQxjk0gemXEtTX3g9yLYhyToVSYfZasiGSO4FZilgbJSgVKbejWAt90bRyLXcz2YbhRNAptwgUN4bhzFG+tXQpc8dPAqbVtA+9NMJD2h8mUtyIRoKdTDa6E5IbXaajihCqWMP+k15yK9JxWKy0uG6lLA87GfCD6ECKV7Jj7M8mcn84CvTv9ZSTAf/lVFLAB4WqPPZZnSizmv5UqH16pemPPXo2sH+s0Ec9/rJCrS3tZiYNXBmxb6T5sZeWUAiqOP/NG9Y/PWH7FIrkfGbatJ96he4U3BQynY9pAKajNAsJNVU2olYF2inCyQBBy7kZlQwAkGtaPHLo6+S8FZQIzTsNTUCl7zVWQY4fnY6T/MdGCXANYtl7t+7W3fqzr7sG5Bu4TA+335Eirj+C+38iaAjI9K95K5qEbPlab2RyGMrUPCQb36zhDgVj0F6mJhWJ2kBCIQjSvBRbKUZz40EqNrtjRt1C5EARy/qHYCBMU1GupJAdplKEKg/LTzS6Y/T5fzczYP4sMjSKbCN79fsOnGLywowNQnalGrdBH3QvWcfxrlal8wKLSyq3UByUF/pZKOP4eNOq0W+/uk6IQ6JxZEewbNlbrNTIMQ8lo/4jWxrn8EWN7ONsFBBVooJF2SdjsKE9FGTZ1Sykz7V7LPsna2rsTqa/rlYMC+gVNJcJsWhkgq2iNHC+OOwn1UmxavZQ3ppxu4ZFaiSTPadKjWR7lr7zZEqgnDQqY7OV9nHWBvkGOkiBciJ2zmhNdyzv1R9FqltFdSNZNHYfcLWmO2EMSpu8TtSZVHRmh7M2CuI0faFprjzV7UBUilAoopYjPJSK69+w+IkVWksTBOVppPHAS3MSFUy+LNg/0qiFOF/5qwrTKexG0d0zkIqIXOT2W6F/FB/u0MCwt0SvCV0KQ9RRxK2tUDKUjrCx6EFLQWIj0Rt07QgzT2z1ONG2E4ctHUYHdq9nfPR/99x8t2D7VPaF3UH8oynhfmT9LflO519yyMiJkgsSN4rqZ7MRVeyfDqiNoEfljWbzOz1sDG4m50R5o6kvBOWor+T4mT8PmB9Ftg/n2OMkFL6vuPq+ZImoIBNvXwsVr7xR+ElyqXJibOB7xfRVQlcb+XlGzUp3GD60DwJuIkU0yGusPxH3Lp2ssk0rfwRhk6bJtIyudjlkNBr1tUYn1JH9I3BLaRzqS3HGUh6ac01/JNotX0HzWswWgpVjMLtahUKQn1gm6k2vKC+tuIUdhUPq9tMec1Gkpijip8mtbeFl+r81mK1kVRilR9cx00tz2Z957MowPO7lGgPovdCq6DVunh2opPCNNk1fFgNhVdCfhnR+RtyjntgZoo64hwPsjaBkBuxWUODuLMLeMH1mUsaSNGFhIjkYyin8qgQn2olYRKbfvWH15TGc9Og3FQQFP5sRFoHQeOqTFvujOd0DabjNVhMWjvK6ZJhHqivD0NVwMhDWJRwPVF9VtI8d849vWP3oDPe4w76uGOayLeEo4v7LU/SJXNc2H3t53SJSXRhxCRvESMFNZJ9EJVqbaCJ+Hiiurdw75k6ojxH02hDmwF6jBy0o0icb+k0peR/zAbUW5FItC1RvRt2jWRv0IOiPbvVovax6Razhm5QBckeZult/UdZdA/INXK6SwqA/EirBMJFpW6hEAzFMD6JhlNCItAN7LbSYjI7kMMMsCncTKSzcTH6fi2bdHYppXxwoNjlbIhe0+WciVhZKV3Zw0oM8NudoZEpQRjiqm+Q3Xx/cuEKyFd7fUyOSEwo4+0M5LNt78tq+YqRB+FqsK3OhYrv0+tewewLDXKgR9LI9ktQrzUNU8rlVULhpoLoSIafupdnzE9kXwxzsW7Gy7Y6S0LyH3ffFvz5YmeBGkxqqxcFOM2pQiYYWrDjT9idCqcp5LdONfG9Zw5PRheycle1Hcz4JQY4Fu5ftmL6Q/e7LjB7AkITsmYZm+kNTU64SzWvBaKdcpeal3MRk0qRG6pVpoVxG9g8UapD9lrNpfC3b1p7Kd968Tdu2O4jp9ZAaraVsx9HnUuRmmpmrRdMzOT987moZ8KVi+iYIYqXBl5r5C4fuAqHUFKsBtMLsHcXSEbUeRf1Psp6pMJjO0x8V+ErjJhpXQ7ewFHvYPYT6jYEL4c2r5DDXnUD91jAsNNk5KxSpyPCKYWfEElhBdDJlRUeikwkpTnH0I8vZpx12uaO7X7N5WrC/J+fy0ZeR7shS3wxc/4alX2jmzy3zr/ZEW9CeKXYPpZI++SxiuohrFLv7itkzKbK7M9i8L/va7mGfHKuKjRToUct5FspCaEqJFnj8hyX9Qr6//jTgppH2iRS/+/c9qtWooMesoel55Pq3kTyFvSRkC8dfSYGbLGCrG7k2tGdgt4pQRfqFPF4nB6VsF+saUBM5f6tLPTYn0Sak9CJ1fFGuHW3BiI4AVImuWO6l2FQJwVUhISb7ZPu7FU1Sdyop3XanmX+h2D9IjfFG0T4SSg/Rjo263Slip+geDqhO4+eR4kooQ2NexnGgXOoRsdVJAF2sFO1DT7E0CXWI2Ic7OtcQNOLAFBS9N4Q6jghteS3HrL0oRg2Be9wJPdBLIKdxQseKR444l9dhYykf7Tid7Tj/xT2YOvR1iXmyw7UN+rZI7wlhGgiNiOn7Y0kE3z1JFsb3BtTGYm9EZ0IZhGK4KiluNf17HcvXC/ku31b4swF9I/QsNSiU0Zg/nrP9ZKB6XYhGpFOYtqT7dou6LkVzNvHYt5Kibt6WdPc89WvL9tUZ2gBrS9SCppi1pMC394Rm1RpFeW0YFoHqUtCR4tJK1ksv24GWIVKmYdmlkTDNKmA2aUhRRXE900mrYz2hVKhXE8wgCFPYFKIB2ckXPIYVRnBNECe9ToPX0gxOvLjxLS1hkQTsd+tu3a0/87prQL6Bq1rD5jcjzVuZaCdtnaSQt5FhpqhuA8FKgRKsUA62T4XWIg4vjF77mjQVcQfP/Swor65lap2zO/Lk203lcXBAHnymdlnwqfg2cr+Um3QjRa9MztONPTlCdWdQLOX1Qinv66ZS8Bcb+fnspWf3wDB/3nPzvVKKlpiLDCkElVP4aUAvk6NKLduz/kg41cVKbg4iqherSrNPzVCeas8zD1u2czgKuAjFrf5aEFqwyVFqLVSj6mc1dpfcfZKDVU4a7o+lSMtNiQjmUwOwTIhUD7MXB0Gtioemw1WH/zdv5PXLN0L3ypoYl6hZaNmm3LioCKTmrUiT4X4uxwRIPY2WaXDOI9EuStJ6KYL1LP7PwXAARz8XK9X2nhToUYmbkYowfRWZvHGEUqG/jNjWY3YD5s0t+EA8mePnNXrfE+oCX1uGuSEaxTDRFLuIacOIXvlKjfszKmhebtHbDj9vMDcbUCqJbZz82xpwXv49DGAtsS5Aa9S+x6wKRDUOanDESUUoLdFqunsVuwcm0Q/FsWn+VaLbJQ1SsGBbxf6+7AvTQrwQIdEwj6kZj2MI2cM/jJjOs36/pP3dCpOc5E4/89x81/DmrKRawvq9itl5oFwr+oXi1b87AQ2T88jqW+I8Vl0l04WkTdrei7h5kODBI0GXdC8icFCjFbYbkqFCogSaXhrB7lQa5PoCypVm/VFg9rmFANv7Hr027B7K4+0OhqlCfWtL/GzK8GGLeVHTXMh73vxuoLyRPIr+WMTH3ZnHtHpsCKqrdDxNBEELFoZjT/1WTpr+RArVci0NOlauCcMiUr+RBiLTD/WQQlaTGD60cgzrdL3JOT6+SkVmCVEJouXm0hyDoI7dmVynZr80uAb27ztxddsKihCT6FvsaFORGZUEZyIIhC+lgFW9UD/dkSdUcmHxE6H3hInH3dZgI3Y64G8qzFan1HSVbHclOydPq2MpDYBaFmL7GpVoiCoxjVBarKPdZQ1FpF9VvL6tqB7uCEExBEU8byie7Jg1HTefnxCftLAu0VvD7mlA32/pmpLq3NI/cNiLQgTfJw7VanFzKgL1gx3uVKPPG8KR4+R7t9z+5Aw2Vih873eoVUHzWvaj2UhGkB4U/f2EVnRGnN5uDD5ZHJsuwcNTRzd1xEFTvi2EYnbmoNXoVlNdKtoHIVklyznQnGu6k4ifBezKkB3FBA2PI5UsO5P5SUDZQGiArHM56RhWFXqfBOtTj7pN1rtejVkx6EiYBFSnBQkyEeoAG0OxEh2I7jRqq/H3h6Qh0aMl8691xcgYUvTn+Zp36279CtZdA/INXP0Miq2gHsNC/l1sRVjdHYm7TDfXmD5SbKXIyNPnaKXg9TVj1kBGOSA1Jcm5yk0i29/qmfy0ol8wpncP8zT91WoMphttZtVB95FF68pJMZAn9c1bKdiBMXVZ96IRsMnyt70nzj4y+YvMXg7EQjM99/QLO9Ka8uQ/873R0iigxHlqn5qnzAHWDpliEUeEB3VoAHLyOICv0sRuJ45XdiuIyvqv74k/ksyFYsOYVKwT2pKbMDUcBLW6U19rSnwjRVR/JI2kS4hQP5eG0nQHlMT0ggoNsxT0aA4UE9NHfKHGLBYUFNvIMFEjghQVY5iZcvJ7CaGUybn2SPM5lc9oBkHRhpm8R7GB9UdSpOUcmf19NVo2T85heh7wlaJaeqY/fAPrjTQENo+DMzFf/lY3a+yVdJw6RixQaQ2Thlga/LwhlJpQGnTviYU8T/cBsxvQyx1Yg7leH06MEOWP1eClMMN5KKTZUNtufKjahUOjYg1q36MH6cia/UB9bsAo2gc1kwvF7oEZc1Zynose4PTTKO5OjRqdhuor4WUMUwVaU1/C5fdlf9nkNNfXMvHfPTYjbW39QWqmZ3rM1fENSUOhKDagvRwr1Y0cZ8NcmiLdCW3m+PPA9pFm+b2DXkNFmD4TVKG+ZNQvVNew+nZg+lzT/bUt6/cs5qLk+CdaUEUPR38k536xzTa2qen9N1OGKZJYDezvyTmQg+iOPpP327wPdi2TfbuVZj9UmbIo6J+bRupzM7q7Lb/zDkJYHZDV40+l2VUhDTDKjG7I9+Em6XdDQlj36ZhNh2Cx0QnlEy2A2YsxRX8kblTzX2qhLy4SGnJtE+1PKFd6SNeq1JAIAim6F5cC+dzCy+sXCrvRmLUUw7bL9rfyvZnaEa8qwtagvZy/wyKhDDsjmrAiEActzlplENRtIkJwkmZMFWKEwE2JsxFmHmUCxVc1/X1HUXi2ywY7HQg7w/B6wmo3Q72/h4sKddbDriIq8J3BLg39Bz1sDW4eUPMBdV3CaQ/rAqUi7bKWvBEDxWTg+henTD5Z0f58QX/iwQu9sF8o/JGnfiG5K76OmGTlq4w4iQH4WRhdwUIdMG/L0fXL7mA4iei1cGdDKQO2mBym7A5JOfdabM8reUyoRGci9wFJvY9PWsKqBC90rBy4FE572Fn8mwZlE1LSOOKqwM889lYswd00iHam05heBl0xiPOXa0DNHX0VUE6Dj9CAuSqSPbPGrjPp+W7drbv1Z1l3mOE3cOmk0Zi+iZJP4WD2yqWpZsR2Uoh3J3LDHhZSjB8mQpAzL/INMRYkKCTd1LdCOyheVqOfvooyZVcuee7HQyGWi6js1W/2Ujhpd0Bcshg8aqHsVLeJZuQPFrg6UYNUlMJAe+Hwu4mhPZYJuW0DppXn62S1KTkB4uAkIvLI7e8Okn2xEGcj06rUjAApJ0B7+aMio02l3TM6mOTfmxb2TyLdCRSfNyLcLQ9IRUZ0cho8vEOfQn6e6W4xuVzln8FBCAtpgpvE8GjZ574Sytf0jQip9ZBoagZUiGgXmb126EFuzFmDkYX52d5W9BeSMSD6F/kzptJHJEslOeJELXqT8ibpWoqEkCTnMNPC0ZeOyXnHyZ/eMv3pFeykOcAYKfKVkimZtdIQxAg6Ff9KHR4XAqzW0pw8v6D86pL6qxvKtxvsssduBpQLqLaXhsYH8NlCKULfS4OTJ3LOyfuM2xDk/5UgIRI7np6vRSCsBoe+WWGWO8ztDrvzaBc5+rzn5LMOYjquPcyfO2YvO2avBqZvPOVGmp5gEpK4kQLYlzL9HqaHY8z0sq9tQveUE1vb8lbOnWBg/yRg0wChX8DuacAlVLE/FgStujlcF45/Edifik6iutCoP53TnGuOP9VUt5Hm4qBtikaa89mX0lzrn045/pcVZiehgKvvevbJxay5lHNx+1jokN1JpuHJcdA+DAxHQSh1nZyH/QKW35YmX+yqA8Mssn8cRY9WSfOhB0FEQnlo7qJJFNOTOGbfgGwLpOPUyzUwU/qy3igjZFU6XqM9XHOycUR1LUJv3UtR7I68BG82h1yh7l4Q2o+T60C+dpo8ZEDQnWKthUaW9AXmuEc5RZHSwfO11qYMiFhIAatMJEw95uEe9Xgv9NTao6cD4VhSwNXEERsPUVHO+jTM0Qentq3ojeKgMQ/32LXh7P6KuC7onwoHtW0LMUS4qKmfbgT9agLqZY1da8zLWq5BZcDWDtMpdOHRrcaetqJnagJlI/w7W3rU1lDd20tOz6sJ0Ua2y5pYRmIZKBcd9XErhXenab81MDzpCVOPHhIi1xnKldDiopV9LdosTfNWGozyytAfRY5+asSUYqmoLzXu2EPj8XWk/agXvc08Jq2OaJDMVr6XPFwKZaT4eSN5J14d6JMB9HUJ6f4RK6FpcSO8ZFUE3LHDzQJ2I+J83ck9pnqbBI8gWp7LEtM47K3Q4uSYQBLWI/g6/H++sf9PsLIN75/3n7t1t34V6w4B+Qau/QOonITN1TdyEX3z+xa7T0V9sr8NVgSWdqtoT4XeI+LsSHsm9KGchmz2B+pCuZKfdQ8dZmXw9UHQrkhOSElkHdSh2IXkuJX0F6GU/2dEIRqYvk4ISYThGGavxTZ4fz8VDwbwUpiV60NBcvttuaGf/iSweWqploF+qpm8ShzzNP3PAYKmUxTPi8Sn1klYLTcnN5XHosQSVhKgU6GUmqg8TY1aEJvdQ9CtFBGZrqVdKnBSUZldxrqTVEQmu9vu6EBbiu/oQ0QEK4WP3eQmKn1/VUKWEp3KTcCXim6hx+yUOIh43u5EE7F9KBkqLgWYDTPZDpsyRVQUapW4XImGAKRpJcr+iEqKwfaUMXNh+ipRwbz8vNxIsnxzMdB8fgVdLzSnXPjXlTQb3kuBbw0SlJFQB6MPyIRS8u/cELyLlMQorzE4TNtD8NDU4vff9/IeRSGNi0vUq7ZLiEe62SuVGhMjPx8G+RnIe4UwoiXRalTfE6cT1ODABYqbFrO16N4R6oLTnzvsxtGdFjTne4ajimLVY/YaX1vKjWaYalytqG8C5U1PLDQnP1NsnxR0R0qKahLKmAwNTCcFeEh6LBHbK7rTQ4FdX2jRyhzLcXz72zJtr95Yjn8Wufg9cTKqbmDxZeT6txThKNI+AD9zqKCYfGFpLqFbCOVomOUpsmc4UuhW46aBxc/NqLvaPZBtXXwu15ruOJ1DQY7N2Rf6a9k1zbli90S2MRoJ0KuuZPpb3qavJSTziKzl2EoDsf4w0rwWzYpuhWJq+pTvcSLbu3tfCuRyeTgf3VQek8//fG2LWo5hN5WgwfqtTp9ZLmamU5hW0K3+6DDMKG/1qEEJpYQudvfEccruFKpXYg29Mti1TNqHIw9XFXarGc4cUUeqN6Jt6E/ErjVMvFCnOoveGcJ6QvH+hiEIKhCDwtSO4Z6CzlAdd9jTHbtV4ps2XvJpyoC/KalmHd3rKc4U6Dpw89kZ5vGe8LZGnXWorybERz16UOxvG5j7dHwp4tYQqkB1YTj97RvW//I+7UOPflujn+7wbxooorAYn81QNtK/maC9YngxxR85dOUFIVmKrmRxf0v/r48ZFtKMqKNBhhtf1kKjO3NQBsxlQXtPLJ2P/7Rg9e3A5Llh/yiIUUWXNDtrxfK7XnRWyUBCDQoGixoU9RflaNYhIZeG7kxMJjAReyuNSCwiw7E0F7qH+pVm852BEOS7ZOYIRxG1tcQjJ7zUQWPPS9w8EOrAkJHuQai+w5E0JaGKmK2YA+jLCjdLSEkk8Y8hThzxAMDerbt1t/4M664B+Qau8paUeQH9sUyUFl9ELv+Gx3TSiGSO9/T5O3alzaFQN/2hCJ68EnF6tpglChXi6Mfi7JIzO75mt5um6qECs2Es6rNOJOpEh4iHQtY1MnUNhRTGKsDtJ0JNmT0TuoZK+s9QSmMhwmF5bHMhRfjQiG1vRDJQip0UfPv7h2IkTyp9I9tqW0ZHHOXkPdoHgfIq2YGmbVcezFYaAskfkQm0iuLitH1fCqRhKr/Lbl1BJwpTe/iZaQ8C/6ghVu8USWkSrR2Ub+Xf3YkgQ5nWFtONdZgxCoCLbWR/Two+u05p94VC+UixSxP4ySEQMFsW29RARq3ojhS2jeM+ygYCw0Qme92JNE7FNtItpJlprlIo5Fa2Zfa8pfzF+aFxAChLQRh8gCCCcIpC/u4H6LpDwxCjNA3v8odj5L+n5eh6aBppPpSCfYvKqIlz0tjk5UNqXFJTYa08piwPjzFGttkkBCWjM0qh+gGqCuW8bKMx6OsNOgZ5jRhpbnZC83sLKgTM9ZZYF2jAFIZQFdSvgzRJabUnJSpEmitPsT383JeJqjVJTk0J2RoWQDhkQPhGBLj5HLQb0RQVt0aah5PI27/VU7yoEoUpishYQfNK7HHnnxW0v79l+zGE0z37m5rp55JWrh1UV5LPMcwkmX79kXDsM1XLXsHu0SHMcnIuRge7R3LuDjNBadw0UTX3ivax5/RPDHajRye97iwNO7RcO0YENfWL05eHkEvTJVqnTmYWCbWdPDMj2pGHHRl5zdbd+WfZ6KK+ALeV5sNPREvipoKOKi9CZV9GtDvkbtgtyYFNsflQBOYE0ZLoXlG+lYBGN5Pmorow9KdBtD8RqvOC/oHYL6v5IFSptUVvSsLJQDwaxDHwshG9wdpiH+0JQVHMemLQ9NsCVxj5EDnHBnA7i5o6hmcz4sxzdLpl6WaS5r0tME4RNgX2kw28afjoL7/g80+fUjzYE55NqD5Z0S0XcOJxM83mn9+n/a7kt8SnLf5NI4nlR7KDw0xzcrJl+dNTsbw969CXFVReBPC90M3Wr+bw0EtgZ+1w1zVMvGg/NlqarpQePnmlaB8GTv63r7j96gHdidjnunnK7CgCodLilDWXfdq8NOyfShPnlMVP5bpWrKXpYxCHLsmnkdRz3SrsWuOO/Hh/2z2J6K0RKpcGc1HiTpw41e0MxY24hGW0SyhbYpUtursw2iOrQeFPB/TKigGKR24o6esyW03oFSo4fu0rId5/7q95t+7Wr2DdUbC+gcvXcvOGxNlPrkpHPxZtRHuaGoVegvi0E2TENVLADFNFuZQptk5C1OyHb3pBQNrTJO7MOQ3rQ1AeHAoGuxH6lpuIW1LWl2Shdha6Z/qEaaW4aC7h0b9sRxvd2++lQK+EgsiUPr3HTp4zTGD9nhQzwUqhtntoGKYK00dmL6Pw7DeyHac/CSOly5eH9zapSCmvdLIQZRTIjvkCCMXDbhOi0sLmo0CxViO1KdsLZ7SkWCdnrngQxRZbEb4qn6xyi1ygJXvbVPx3R9Io9DPZPl8dXL+KzaE53N/XlJtIuRIUJFj5/kIp4m0VQPtIcxGolimro5DX9zXYLmLbOKI7KgjlapgoVh/LttZXYDrRlpQbOX76qaBts9ee45+sKD97KchG30uRXxRQpULfaGk6tBHEYZ89lfUBqXi3cWlqKItRj8Hgvo6IDIOgJP0gGg/n5W+lpTHRh8KMEAUFyZQsH6SZ+NoJ5A/vPTYjXrat7w/NT36eMWA0eteDkW1X+w62e4gR1TlCLTQOs94TrUZ3A6tPJuyeNqzfM9x+YvGlRnmhyw1TCcc0fRSkZBOplgdq0UiPRBykbHs47/xEhLT9g4H2fqBcKc7+mUxet0/F9crsNEc/MUxfRk4+1fRHMPlvpky/tEz+szn3/kVBuZYiv76U60C/kPetLwQBKG/l33qA5W+kc+lWzofdI0FiQBDZ1Xc8voLZV/KYYg3znxmu/6qjO4Xdb7f0CRlEHc6xYR7Hf9sNo8ZDeP3QnabsjmuhRVWX0D4SOld5c6BYhULOg2qZkMzyQM/yCQ30dWo+LtQ4mGjeaIq1Iod6yjVOptf9ScRNYwpWzRc++T58E0ctSrGU3w1HkfJGU94q9M6MuSLltSEuC3Bi7xymXpLMd+/M9wZNPHIM2wK/Kgleo43QomJQkmNTSFMZ1iWzs50kb5eChmx/foyuhZ6p9gY02FtLvxXR+uefPgUbcb3hg997SffLhVCZIpQfrZn/4AJTesKjjjBoVFCUpy3hbU1ZOk5PN1xfzURgfdrhNgVx6om3JWyNNAxnvThuzXvUssBdNBS3RlLDy4A78igH1ZcVfhLYfuQwW83FP33K6R+Lw5sexF4dLdqhYqXoj4MgHx7c725pHmwpXpcSZKmAmWNYeNH2FUJtc9OD3sZPgzSNO6FM5XuYoLpqpHPprZF9FwXNEtQQ7EoCCMUVT40Wu6GK2HVyuev1GOKqPPiFk0FXl5wCrTiu/bpXvt/8ef+5W3frV7F+/WfM3frvrWKDQMQK9k8DvpbpZHtPbtjFNhW8rdjEDhOZIL5rheoaxeRtHAc1wg0+NCnKM6akhyo9N9GhcjBXDoHzFVQ3CnRyyGqiiGdXQunSTp6faUqTc5i8dbiJkSLci/1lLrhAPltOJ89IivaM+olQSIGweyhI0O6h4vKvBTY/2LH93sD648jbv6ZSyFrWPkgBlLcJxRgumJuK7jgVf+miWiQxsISy6dFFzPSpiMo3s5EXLtuam8LNe2IJ/O5kFpVobknn4StBTsq1vJ9pZdpn91LcaR+FarWPVLdhFALXt5FqKc2I7iPlNjBMFL4UB6WMfOXPUWwidi+8elcptIvvULLg7EdQX0WKnbxmtRInNbuLTC495ToweblDv76SF93uhW51ckQ4O5KiviikCchohNFQWGkiFnOYz+Q5k0Ye6xzs9tJcDE7+NPUoVh/1G3llVAUOlK7cmOiEZuTGobAHpCO/Nkiz0aXuNkYIkViVqdEwh/eOMTVTiTI2ONSuQ+3T2L2px0bHrPco71G9x16sADj6xZbdA83spcduYfWBFj1To6UxLSSJvj3TuEac6xZfhYP99XBoQvJ5mTMN7EZjNoZYRrpvt1z9OwPVtSRlFys4+VS0O/t7itvvRqobOa670yh5IAnJXHwZx/DI6jp9re/JeZ9zWMp1ZPFzQUNsKwGTs2dw/JkU4ADTr8QydvveIVNIBZj+QqxsJz+siVoaieYNY45HdSXnvZtC+zBS3sprNueaUMk2DYvI7pE0Rd0ZTL+SpmH/OOImUc6bZW7QZf+M6EmUa2WmUjavBL00+6SlmSfaqE92ufcDppdQxnKpxkBAFRCBdTzYameBvJuKnsRulOhc3nNCAQLsraE/FgqRubEUtUNNhQ5XvTWwKihPWzARNgZTSx6N0tIshFcTaT68Iu4suvTMH6/Z70qK2qE7DRGm37lFqQjJLjdMPMPZIHQtDdgo+RWXFc//8D0++Msvmd3fUkwH2l3Jel9xuthSNI758Z75Jzf0+wJOepSK3Pz8FDYWc9IReoPZGHSVoOSg0A9a9G2BvirhoqZ4sgMlGTHzX2rKlwXNc4s7cTz5wQvCxKfsDNj+dkf3v15SXyqhws3leukWXoZfK015YfAPe4ZdAX+ywL3f0j4MMHNywZ15ykTz01szam6US3kyXm50YeqhOLiL6U6hbwvKpSbWAXt/Tywl78VsDX7uZbj0ssLPhfJo9ppiZYhzh1uICQEK/NxLIGSvqF8WoCHUkeHMyXbcUbDu1t36t1p3FKxv4koUqagFGtZJvJ2/LD0IWrC7r9h8d+Dsjwq6oySe1BDmB3ckMv0/iTh1f+Bl+0oamqhSsGBCJ0Y60PLrwuRgwPag9odmYljIRDcaRm//5ipgukg/N2OqdhQatWyTOdCh9HDgxSsvyMYwTQJpE8W6Mcq2F6ctISjQkXA0UM563IsZukuITDYhUYdiLueQZFG39knT4eUzjfqO4kCtyum6xfrA3VeB0Q0r2/dmXnx2R8o6Gh0OlLVRhJ72e7WMbB/KhFbfymcMRpAOmwqhaN4pyKPQqsaE5V40Hb6UhqWfK5qrkIrHKM3JXIqw2atIt9CpoRIEyzihBJVraT6IUK2CWOL6iHklVWpsO9TRXLbBefRuL5SnYSAeTaVI75JOIwZpOgZHnDeoISEQ3Tt35BgFBdntpVkpywM9yvtDIzI4wElzAfL/wh70HdZANZOGBBIlLO1klZCOrEfxSXuilSAa+h1k5r9rLamUvE9213oXdckP6RwYTbRGBgRAuYpsHxtp/G6k8cvHsmkj0aiRFtLPRTdSLeOBLhgQ2k86J0MVhcLi09S5ktT28o2lvkh2yEYGEr6J7GZC3xrmsHsUKW/k35v3oX+vo/qqEoQxgBkgpGa5OxEkoz+G5e/3sLFMXhnoBP0o1kAQS9xYpJT7CPXbdF6plCujDrRI7WD75GCrbbeJdriVc6h5LdqRbCgRypSfs5N/j9khSZthWoVr4mhkYVrGbJyMgoD8v7phzLGprpPQ/CQNC5JphAwjZGCweyraudEsAmS6f25k0L4X9GaYQ06/9lWkXCm6IgXRKTCDpKBHDe7Y4XcltJo48fQR9ElHvyslrLLX+HUBJuI7Ob71o5a4KcAG1KDxO8u6tZjGSQjm6cDjxzdc3M7kuuYVdtHjW8vH77/l2dszVOkJXqFtICwcH33/nC/f3MNfVZx+dIOdB66WU4bS0W8Lekr0rYXjgaJxtPuSeNZzdLRjt6+IpSdMNHRWtE9NwP5sMl5H+9NA/7ahfmPYPQ6Uj3b01zV6Y1Am8vyPn1K3arzXaBtwnx7hHsdkcKGw315T/tGC/aOIOxatSf2LGhVg/8hTflXjppHpp+VIud09CaiJQy16nJcgUPWyEdF9KzcYvTVjIrmKBwcuNwsiHr+aYouIvzdIU7gqxLI3ZZCERx1xr/EPO9R1CigcDGZp8PdEU9KfeKpLI85pPbhO3NT2D9+dsP2a1h0F6279BVp3Dcg3cSUY2dfiTqSCXICzTevuUZpmKnj6Tw39PFItRYgeNZz92KN9ZP3UMjlPdCF7oCz0c3Hkac8S57yVgtpN5SbdvJXJul3JlNXuAZ0Qj6QPCeUh6MwloWt/JOiDa4QCdv2bclMYYVzFaIurXUIqhoNY1RRC5aqupHiZfqXH4MPmLez0FHcSYOo5fbhicIbib12x/+EZTStITtTpepn0K7mxyDSsUEjOit2n1G8YE5ZziKLyhyKovooMcyVsoT5d3zXEMqEsIRVYNclhCmJCWFT6LpWXx/kC+pkEFoo1KJL1koTKWcjuarFctrtAMBpfyv8ltyJNyFtBOxbP1JgODaCHiN0JBWj3QEu6/UaKX9ODvQ7UN5FhomkuHdpF7NbT/PJamoMYifsWNUvCIG0OQm6dtBTbTpCDMiEVKmkxnEPdrA+FP4wWuYBQp6yVYt+lDTbvWFdmdCNTsyaNNBr7VhoRk7pKYw45IM7JNkJqRtLfJC1ICLgHC+yrm4SipPcKgn7EsgCjUC4cmp19O2pboi1RXX9AYAA1ONGRLLecXq4Ji4ZYGNqHDcsPrVhhPwtCq1Jw812VKJKKYW4ki+JVYH8mIYkhBU+6CagBbJqIu2mguDYMZw5fR25/O4yhc37uMFvD5Llm+4mjPQsUL0u6e5FimSyh12LSsH8YmT1To3tbd5LMFM7kOjL7UcXuqRTUwwTa+55+oZm+ULQPIpPXajw/8p/tezHpONRIAyyWh/M50xHL1eGcty3MnqkxZ6i8SXSWGoxTYw5Ofi0VEAOJ6cFaOA9mgknNTy9DCzdhLJTCOzbh2XwjZ7eA0L/KGy1hn1VyITvz4pakRZsjVsyKYeGxW8mYUEFoac1rjUsasf7YU96YRHcUiqx/0GOKQHHc4nortrlTR7+qwARMEYhXFebBHrcrUGWgmnVoFQlR4Z1mWFWo0mMqz/ln9ymfbglOo2zAbQuUjXzx7AF6ZSV/ogqYFzX+vZYv/s172Pe2hOOe6zcLillPGDSrVcODBytutw3HD5ZcLadY63GDIQ6a7aenuLmgOSpCsB5fS9p6fyKCcpyiupKGa5iLVqY/nzD7UrP5yGOuC9yDAT3rmU/3XK8m1H86lYHJWs4f04H/dEH/JKCOeuybimJV0H7So28txdLQn3mKa8P+sXypcSdIVVE5vDP4XSF5HjMvbmLRiuuVBntjxRVrJTeD/tRj9mK+oBYDcVvA1sLcwdQRWjOCsHFTYHbyHRQbzWAi3Yc9dFrQq9ITliXdewPl64L+TCZTplOUF+9cy+7W3bpb/6PrrgH5Bi6F3Kz7hVzk7V6mpcVafjd7wZhH0R7rEbWobmQqvnkiyEMwcPRFwA1C23GN8P+jEi727j3P5IUZKRInnwWWH+nRLrM7SWnWSbyqfLKlTQ0RSpCJrK/ImoNyHXj1vyhl2tUfEAbdv+Ncs5TGpZsfsgu6Y0a72hzm924hP30lXO1ypdg9PsPs4fp3e5qtvJagAmkyGg80l2zVmIWy/UKaj+xIVWykkNHpMwWb8jh6uPiB4/hPi5FOlUW6mdqVXXVCJc/JhVcEdo8j05dqDIQrtvL9uiblLqwTDW4V8UWigmk16j9Mp6hvPcNEpwIuYnppHkKhcErhKgiFoloG2lNDfROwe3H1mb1yKcRREsFFZyMCdZDPM3m5w7xdiTZCCZowIh95hdQYBH9oIGJk+VcecfSjqwP1yWihS2UkwRhpRspCmoWmERTDaGkgfGo28t0/Ix19n/QlSbORm5lsuftug2Ot/DujJ7mhCYmbozX2/Paw7Zm+ZQ0kW96IhbYX+14f5DMkqpZyafv7AZIFMoVNKIoUH3olqM5kP1C/Kbj5rRn9XLO/r2guIk//y47tk5J+kb6vBqIS61yOFX2Zzvk9eK/Gplt3sl/03qCCgqAkqM5G7K1l+kKx+r2OyWcVOZ9n8rkcb/0CotbsPhqYfFmwewT222vay4b5TyW3obph1J7MvpKiu1iD+aVJ2iGhXg5zeWy5Er3Q7p7w5OtLTT+H7XcH7IWcI/vHkWKt2H3ohaJzbcfiffUJ4pyl07UscLD/TnRMP5HE6/Z+pLpRow13pkP5WpCbjISQNCB2x2grrfwBrcx6M7NXB+MMJza9KMnuMK0ibjV6EFcuu5Pr4XAkk+5hEUdrY5S4julWKJDljRTLuhV6XLARfVVSX0mYXigj08cb2n2JKsXhym0K1MwRg0ann8WgcFEzn8oXsrUBBbRXDY++e8mbn98j2khx1hKeTXAnDr0z4oi1KVF7sdONmwIF+C+nFJ2iP/XEKcTBEEOgcwajA2+fn6A6jXscCMuS+jy5Sx33cFGJJqI12K3GLQLNC8P+A4cbFKbVUqQfeYori90qNh97dKdxx476WYndlGz1DFvK9bx/LAW73WUjBOhPI82n9UgjLZ+XQgH+cI++qOV73okxxjAD3WvCagZNpNrJPdEtnNDQbi3uUY9aWfyJiNVDoXD3HMV5Qf8wwfrLUgYpOop5QKI5KqcIVSAWATfX0Er6ugoKliI+915JCGIVKS4N/Uct+k1FKCPd+wPmF3/WO/yvbv0qbHPvbHjv1q9q3TUg38AVEbGym8g0LgcERgNBiyC0ujCS7nsq09N6HzGDTFmjgeZSioXuSKOiCC1z5kCxg9CBXZrxZl4u03MLUO3Biz9rKXIhYHfJ/almFG9nBIEI03Oxic3T+kxLshtGHcX4fM2YoE5M01IFfnKggamkC8noRTSwe6xwtbhcnfwruWn1R1JMuYbRBrVYpewAJTSSMVvjndfrTwKmFT66clCmZmSYymNO/7iQNOkTmD8DfZ0alOS+M78NYxNoOvne6huhQi2+kO0kyj53iVqWBcg+pZ+7So05IPliX+wiyscRuRlmIiQvdnGkdvlE4XET8JXoDlyliBOYnnt8pdk+0qKPWUd2DxX1tULtxFFr8ouEegDvJoqPGgw40JVywZ8E3vFoxtF/e54ajKSvUOpAf8pWuXWVmgzN1zI7nD9oMRIaQUxox6SRRmEYRIeRrX59EJG4TQ2AVkm0nq2SknOWTdqQLDT3Xn6XKV8hgh/Gf6t36Vi5YSosUWsU7yAyhT6I3pX6+n7SBrVtMes99663hEXD8nsLVh8qVh9XmBZOfhboZ4rb7ybtklVMLgKu1mPTbbp0TEwlJDOUEZVcpLQH1SvcsScuPOuqwL6ucH9lQ/GvZvQPA+0TDwqarwrmz6BdFxQbGS4U/2VNd2LEZc4dUIMxvyQNGMr1oQlXW0Fct09Fb5aRw/JGvrvZc/BvCnQQZLVYCy1l/jNBBdr7QqXKx7x2gvB1J7LP/SQw/6WR6weS1B6MaMYkSV10JX4tFLKMBLsmvVZ1uGhGLZ8hC9b1ANjDNShUUVyUejC92O7qVoTOKqiUYyTXSpSIy7MQHSWISLQQiijagJ0mlJHJC0M/l7BDPSjJAvGKcDygi8D21UxQhVPhxdrZgL+u8CbC1hKmTq5/k4HrF0dQC/IxaXraIkjzUUgWSb8qUWcDpvIEBfGLKeXHG44f73l7fiTXhmMRkfsiMFm07F7OoQhgYb1qRmM5u9H4L6cYJYOuaCLNDxuhnQXpik2r8E1KJr+UC7ibBfxDT3VuMXvYfeBRTnH0c8X17ym6Bx5fGXH4mwexvd0Yhnmgvx8o31i2HwRmXxg230rdoo589Buv+eInT9AXNWo45MisvtOB12Ck4a+/LJOle0TfFlRvSnZPA+aiwE8Dem3wU4878vLvJmKWgoqoCDgl27QTnQetuGWZnSZ4sVKOCtHc9NLYoSNmZQlFxG6k+Qm9kUuak4Z8uP8NcMG6W3frL9C6a0C+gWuYy5DVtgL515dqnJqHErlwf+JRwTB/JtPy3UOZtioH87ee7SMzuoGU6yQ2twf7XpQ0HcCoDdBeKCBZvJlRljA5oB6hFI1DdBC9vE4OGVx8GdndV/QncpMvV1Jwt/eloRmSA5TdS7JypmfhUhZGChLL9re6P7y+r6Vgqq7TZHYH1Y0eHXZAnldfyftki8ScqE6yJYY0KU32tGavR345SixOm3M1Fjo5hLC5kO3IqFDbyON9LTa/ykv2QrbH1QOoKAJaVylsF7n+dwaO/kTclGxyvSrXkc370mRWSzBtIGqF3YevTZ7qG2l0+pmmug34WlFsI+2JZv7M0881ZoBi4wlW4WuF6SLT14Hlx5pqqaiWMH0jwXuTzy4FXahK0XKAFNRZaxHjgdrU93JAjq5UBrXeH3QSm600Dbs9VNWoFflaAwDQOljMYLUhnh2hVtuDI5YPUJWEkwa9baURyba/GdXIIvjdXp5TV9JIZHpUpnVlWlZuUHyAaSV/Oyd/l8UBocl2wVvH6O6VDx+rUX3a/ozYxDiK8OOkQrUZ9cnCqAF92XP048j8y5L1hzXr96QZHGZw9IuI7UgBlIqTX3i6hWb5bTUW0sVapSJL4ZtAsVXy7zodFOuCYimuaOaPZ6LRCEoKtFeWYgOrjxjzE9xEULDhO9JwhtsSs9fUFyKAeLfhX/5GYPpM094/nIvNaym6ohaRuSJp0eYifI9amgbTpXPuHfe9cnVo/F2dkUBJfndTMwYJ9g8c9UtLsU1Ia3LJyi5z/ckBaS1vYf8oUl0rVEIy4dCY2FbO8/pKmhTRqsl11E8ifiIFuGjNEB3BVifqEcnVSNEvRCvi60jU0hRGI721X3jM0rB/GKiuNCpo/EQK2e23PMXLivDxDnPSY0tHaT2bVU1Re1wVMCbQPN6wXTbgFf1VgznuiF7B84b1tBL7Xq+IC0coA+WbQhK7bwqoA+bba7q3E25+PiPed5I18rpBm0isFbuXc0GCFGMgHwGoI8OjnvpLaTQWXwhy3j4KxNNeLIVR9NoSFw46jY+g95piqenLSPdARPt2aSjXEmRZn+6JUaHuR7SKxM8WDEdQrOSccgq6JwPV64L7/+ELun/5HvWl3COe/9F7GB2Zfe+G27dz6hcF3bc62Fhx7boppOF5GiSrJYLqYfedAfu2EBOTQlFea8JG05947EbjJsIicJqxudBLec2gZaATFw6/N2KHHcFsxKnLTwXJszdCr3PHnnASRJC/k8909AvFpqvozTdBA/I/oG/783jNu3W3fgVL/48/5G79T73yTdBu4OhnMj3MgYLZzen0XxtxbCoV5Vosd32VBKhPDLtHcrMPBbSnarzJE+WG7EtEXBmTVqI8cKqn544xS8SSAu5SBkYnz383A2SYS2r7MFV09+Qz5NDB/oSvpaXr7vC7UEhA2mhd2ydEpI6jeB1kGzLC4CuwmSqVghDz9DRTL1CHPBSVBL75s+dCJTth5YnzaHfsFP2xICqZLqYTWhGSPfAoStcJXQGya1mxFUqUm8rrVbce20XaYwVbQ3Ubx9RllHx/vsqp8DEJzoWKpQL4Qo12wKaPlJuQKHcyzSu3ETOIs1VzMeAazfoDQ7EN+FKhvTRBdhcp1xGz9xSrZHtblgfbXODrblTm0GBkW9v8WGsOjUFGPrLI3OhDkZ+fC4yJ5JsdaC0NjBeK1Gjr6wN610nzkn+eX8MnClXbSbFfFsQ66Uus/ZpG4yAk14dmqu2SpbCXpqjrRSSfG5QQYZp4QFH0IMp5+Xz6nf2Tm5jkyKXa4bDPjDk0atqguwGz2lNsA5O3gmYVG3F0u/mN5GTmhEZp+jiihDnRXvcy5TV7PdpCgxSBQvcRpGT3kWN42hPqwPSXluYNrD8OhPf3YwPePhB3tOkfNzz9v5Y8/c/h9EcyDMhuatn5rboSW99gZNpvOmk4ulM57rfvR+w2nSMpR+PkU2nUc/PfHct7Tl8mimOy7faTmGylGY0w3Ax8I3StaN5BN2Yylbc72TY3iVRX6Ro0EVoVSVyfdWa6T458SVPlmoPGJlgIdUwuexHXyHXTzcLXrr/lShHnTjQOg6J/4CQFvGBERMpbybzIupX+JFKspckJZUT16Tx+UxMDWBNwXmMrT1F4TOOIUbF9O0XpgCqk0FUqEq8q/MMebKR4VRIWMtVQGyOalEd7wiRQ3t+jfjgHheRVBFAbIyngC6EhmbOOqKV5QknQn+StKMyVHFBmB1ffh91vyDHU/KQm9gbWlub9NUoH0Vf0gtyhEFH9xElDknQ5bhForxv6i4bhxZTh5wuGhwPzf10KXe1WvjPVS3Pw/A/f4+yvvKX8W5cs/tIlxXdWaKfo/vgUOx14+INXmDIwebIhTDzdfU+oJLATEn3PKey0x0+CDHae7Nh/IOdksTSSW7WWc0W3Ss6dTcoHeSDQvdlq6DV60Y+DqzAJYo+9FD1WqKQINxsj1+25w+zFmODmr/X4JjJ9dldO3a279W+z7hCQb+DKblA5wGvzVAoTt4f6OqLCwb3F19CdKOrL5EB1IRQo08lziuUBeRCaj2RGlKtUixVAuqnu70vR28/NSJnI7lKuSVzsIlvKSnBd1IIObJ6osclQXor29pSxCcj0Ep/sRpu3UtCYVhyFcjiZ6DaU5I2k98yFjd2CWzAm4wLk/K7M+XZTudG5RMEwe8ZQM3hHh2IODZ3yIsjNOhU9AFr+bTrZtqjlOylXSWeSGAGukf2hg9jgEoXKZlrojhRRGcwQ2T5VHH9qZEp4mdyBNqBdpLqSxjFYhUnWucpHzM4Tp0Zef4gy4dNg9gHTBZQPlM+upWAuS/qnRzRvB8qNYfvQUN0GooKTn3W4icG0gWLZidNVXR3yNiDpMqSwHyf8IfA1m9qvicQNuO7rwvIYpbD3XqhT/ZCQCX+gd+X3Cu9QsDIi4RwMHOhZ+1aanVz4q7SNQVALdZtes+8TDSw1HAmpidcr8AFlLTEGEda/22Q5n7jg/h3qVa7ypQFS21b+nTQjVEmso5PmJE8HU8BiVAo1UsM8qh9ozve4yZRhqnjwL9ec/2AuNKcC2hMlaGOlDk5POW6lFQ1Gv2B0zNKdFvvStaY/CmAl/8BcWjGCOIbdbwrVJ2wKCaCcQ/1G6JXdCTz/D2H6pRkpWPWVnMP9kTTQ2YZ7WAROfqQZpnLeT19mwwppmkMh5+f0daQ9lWvBcOQpbw1FK/ukO8naJjlv6ktpqHePxdyhWGfUUI1GFVnvIQYOyTnLK+xWXk+75HJ1Ki55Q5m0VNfy3BxwqpP5Q0Z3TA9spWlRUZK4xTEvYtqUqG0ELtBLEXKFMqI6LXkPPiEhVvYNMA5KdKvYPxZxu+4UOj22WGraScEuKkEVWoOfakIvE3YzHwgXFZz24BXDukSf9sTWJHezIIiIN5gHLf62gl9M0XWk9w0P/sYF7bMT1CyJqU972Fp04fGlxl+XMHPYtyV+Hpj+0rB/Ilkpu/c8KojeplhpuCpQg6K9FzHTgeZ+z+75nOaVZDPtv9OxPtU8eHzL8k/u0x9Jgnj8yzvabYk9LwlGo/vkahZBryztA5h//4rr58cCgTSectbTNxWXf3qf8kbRnUbKT9ZMfuea0nhufnSP1T+bcNxBe69hnoZAGdGLSvJaiFD+qymbDwP9maf8bEaT0O5Ygpt5TGeSZkkRV5rdhw6zMfhQjY6HAOq8xh871KChDPTH6eedFlpdVPgyQCvhm3Yr1xI3j5S3iv3v7f/tb/Z/zutOA3K3/iKtuwbkG7hCAa4Ef5rsMBNFYv8w3XBnjOLpYZrCAZOGYJjITZok8CRKWGF3JLSo7WN5D9MJ7cn0EdNIlkhGGjbvCZ2rn6cL7ETeQ0V49C827B43mDZQ3WpMGzBD4M1flaqlumEsmPJE1U2EKpGRCN0fGopo5fXHhgIJRxvmiYJVMYaNjenIgxQ1pk8IiGF0tNGdwPkx7bMcrvhuE6QSdSyL532VXKyy4F3Jfiu2SRif7CTzNrnqIHZ/N1OkO1YJiZLH2x0y5e4Viy8k8yOjH/W1uFiFQtFcR5preQ3bCvVKd4FoxTwglIpi4xlm0kREqxhKQ/Mm+yUX4D3lFxeEswXalZxcdYTa4KZWhO03PfZ2j7rdiI3uRhyvDnkc+lDo50YjW9amYME4n4LVqKvl4UPnxmPfim7iZCY2vMlRi6IUetbN8oBq5KalqaV5sFYaF6VGPUfcbFGLhTQlZRK1x9SEwKFx6rqDZe+IuoSxiVITETwoW6UmQREnjThbjYiOPTRa2RI4Rmmg4NB0vdO8xMIIQjIMh6bFB5T3KRfFSRM0naC3HUc/HtDfPWb74ZRH//Wai9+fM3/tWX9gRhvZbMIAB+QuIxg5eC1UEbNNtJKdQnnNcOwxe0P7Gy32Rc3D/6zEdJH2VLN9AvOv4tjcL7+tMGvN7kmgWImbUXcMR7+UaX93LA2/HSSfYfVx0oIE6BoIm9R41OJW56ZyjLspqL+04ui/WGD3qem5gs17UqxPXgtdbPlbHt0r7EqLRu1Mtq26lgGGL+W6FrU0Kz7R1EgopZ/IUGGYQ3MumhRfJ9OIrG3YvWMGYWQbVdag5HgYnShZE6RZK4ReZXaa4XGP2oibmU7XCl9HYuUxKyPanOLQOBEFWbEbzXAcUL2if9yjb0qGWcRsDGplRBztFWEwsDcwc7hNIanjLxrckSAjvrXYpcU3gcX7S/Y/PiHYiKPErrWItG3AryrefnVK89LQLwzGK0JticcD6rzGIhobAN7fY4Dq39+zvZjTxoLy0tDf94Ic7KD/qMU7hbqqUAq6nx6hbYS/vqQpHfu3c8zKslw09E970JFm1rE/n1LcynE8ebqia0vKXzZ0DweUjYQjWP70FK3g+Deuuf35Kf6qIB451Ld2PP1rV/z8s6fsX80YNpr9AMrA6tvisuWOPNEGlNOgpUlUraZcGdoHATdRQkeM0D4d0DtD/UYnHZVmWERCFdg+cJiLEtVrlFMwCeiNTkh+otpNNXjQt1buExp8FZM4HYoboV0Ni4CfBiYvDM2bSo7Bnzf/Q7fzu3W37tb/m3XXgHwDlx7AJ0QgC7PdTASB/Rwe/cuO5ScVdh8p156b71hmrwL9XKgak7eR7aODD3ueYGSnJkTLRz8HlBp1IaaD6XmgWHtW3yoSHUqK/Yf//AbVO/pHc1YfGsp1CluzBnvppZh3gnqY7jDBNHsJ8NLu0AjAwe1qTCevGIXhOQwwNyui1ZDnKQ5IRb5B6EE+W1SC8ORMgjwtgyzoZ7QEVU72S30lCFOxzdxvRlcxn5ofk+yCR35+dtwR+rzY654cGh7lhNvoS3mvYhNxjdAXlEu0qS5B+imfI5SKaimIhGs0Fg1evt9haugXNjV1Crv3uMagNy1xVgsNqB+gLNC3W/TlEqxleHpCdbFHt04m+cMA00ZsdEedRkYjUnE9OCn04UBrsrIT1XKdDtBU6cXIaInb9UJJurw92PNmRGLfyuP6HmIh6IvSsFofGoCcsg5gDGoxkybGaL4WQkgSgGsOAnUnxf7YIHhPXG9Qx0fyvEnzNeqU6nrZxiyIfzfMMGlc5KBx8rusQcnIjHPSaLh3umaQz5feH4CyRA2OMK/pHky5/VgzfRO5/L058xdO3MtupJFYfyjW2N2JTPL3D+RcLbIgfKsYjsQSVXmVKEqB0Diq14UUW+cV5Q1c/J7oo7p7gea15vKve5niVoGjTy3tmYK9Gl3YdAdvfhDARKaf2xEt7ReH5rtM59X2vcj0hRobJN2lDCGg+K8XBCvW3dlRq1jLtgxzmLwGvjTsfrelm1iaF1aseCNj8yFUKzmX2nsycMnIRCiVICjVAakZklYkGjk0bKJ6DQs517I+y1fp/E/UzYyE+iahFh7aR54wHVC3JcVS42apcSulEFatIVQRP3ew10Sr5Fx3Qi0KhaAnvomYi1JQAC9J2aYFP5N/BysTdkElPOGmgvf3TCc93U+P4P09PB1gVbL92THunkOVntlRS7wHu4spodeomcPMPP7M4/eFQMEKbD3gCyvp4gHu31/x9qW4Xt28rbF7TdSR/p6nuDEEG+nuRfSzBlVE1OMWXtW4xyL+7n92xO5RB4OmXCp6NaV6f0P3ZkL8ZUUdxdpY94ru8wXuyOMeDqhOY6/FSt0dO+rjlutnx5hMf90ahqHm5b/+APuXtrhlRahVCsZVxHsdQ28wS0uxMSOFNrsqCqUuEGpgZXDHjuaZ3LeGKWOwoDQkBtcYseKNEHWkeWXoTiJ+6infFnRnHrPVB3rsLEho4dJSXhSjw5qvkWBDBe2ZuKj5OsLmGwAVvIPo/Lm+5t26W7+CddeAfEOXTmLtYQb3fjjQPF/iFw2hMrz+n9dU19CeKfqFFAzbR/qQ6DsT68LJhVBw+oVO9A2Z6AUrlCHige4wzJMFZx+5/H4BCqpbcdN6/M/WqG4gWs3tt2vOPu1Zv18wOe+5/q2a22/XFJsDvSrTtnzy4wfhGQ+zJAiHMbgwO3tlW9vqRv5drBhdsoIVtEa75NiTeOaZQpU1JShYf5jE74X8P9p3KB0qNTUJBbGtNEzVdRK4erBLRmobUd53//Ag2IfUeATZl3qQBkQPB5676aE9kceUb6TR0Ul0boYoN04j6Ea1ChQbj1qLdsQMkap19MeWcuVZfViOepPmSppMkx43ip+tIR5NpVAOAdUJXah4dpl0FgqamtiUh5TvYZBCO4ZEY8o8FS3NwTBAGA4aiDH4TzNa2eZGpO0Ysz20PtjYaiVp6jkAUClpPvpBxOM5Kd2agyA8F+8hyPbZLAg3hwbAB/DukA9SvEMBC9IUqUnD6LqVP1cekRdiuxsXE9RqJ9uf37so5H3Tfh1pasVBmD5a/2akI7t02YTU5GYo7Sd9vaZZtzxZL3j7Vybc/9c7lItc/t4UPYgxgGvMWDxkVNP0QicyLXgj2g89CBoCSGEbjLjLJT3S7r1ArAK7uTx+/zBSXElaeX2l2bwvlL9oD+YRUUP11ozDANNJM5AzPNyE0YqXkIYJioO1dTqflU80zfrrRX9/Ig17RnL16woqcekLiQpZrKFO7wupCekFUZy8UAwL0bERhLpZLhkHAtUy6bKiXEt8I83HSLtMA5GQPhMI3YwgJhS+jrgC7Epj3tQMi0j/fg97oe4oG/DapMGFQq+svL4VumioIigJs7NrKaB9RkSedhAUxecl1RtL91BSs+1pR2gc+k1NqAN+b2lf17j70gAx8dCLra0aNHpd0r1OlKEnPdSeOGh8Z/DLklgEEaA7hduW6BTYqhrPxYsTykvL8LQneoU7cpi3BbEQmDxUQutVHuIk0vxJw+79gL4pCUXA3R8wF+I2uH/qUF7R3taoiaf4vTWbrxbEI8fRvTVWB27WE8yPp7QPvHyetUXpSLeu0K2G9/a4zlL/smT/wcCH/5vnfPbHH6IedHKZKaKYr3xeM8wj4WFHaGuGU4856hmuS8obQ/etnvqrUu5xZ+LE1X7UY9+UuGmgfm3F2ERHcnCo7tPUSAmFLwvO3TSQg3jNTvbFYBX2tMc5xX4udEA1KHSr8FMZBgBELSh3d/zrF6HfUbDu1l+kddeAfBNXPNz4dQfF1qG2HUYp7KXj/p8Yrn6roNzA/r4UBhl1CAUU25gCujz7+5ZyFegXmpgco7RPtI5UZNsdY2K3L1Sa2svP6isHIRCtJtYlk7cOu3VUS8v2SUl3dCg28nRKRXltNxVYO+sqsgOWCkJjygVCdqSKqRHJOQHZdcu2km/SHR0mr8ozFmy2PUxNDYm6lUTyOV8AGD3o0ULnyCtzfXMTlP/OgYsZDTF7RpvP3OxFndCWnjERujtL+zmhNMNEYXpxKOvnivpabHCDlc9j+kBUChMiegj4ShOsYvuoJBj5eX0taeXtiRQ/xcZ/jTKlvCJWKVDPaGJpUdsItTlQk0YheaYxvTPtz01GttHNNKzCHpqP/Brv2vK+24xk2pZSh9fLFC+Q5mOzPeRxvCuA9/6gGQkRQv7dO4V/EqoDB80IyOMzagPy8yIhHGV5oFAZI49NFDC12kFdwqAPFDCTPv9uL9tbFdLoBH1ATGIkWiP2vT4J1fN+effzAqM1sVLYizWzVxV21aH2Pb6aMkwADLOXge0TTba8zmYR2To65+5Ek4ooLdN2lRACuxVBrN1pBgR1iFqOdeVhcg43v+M5/fCW6+fHFNei84qe0Rq6P460H/ews8x/kVAvL4MIorx3dctI7fR1QiurRKucM7pdhUkcbWuLlbzO7tE7qGWnRqvrUALJAc83kWIl16BQREChUi5RtJH2/sGaHOQ98+vkkMRcYGZ6llivAoXQzXIeT6jieC2xa0GYYkZHl1aS2I89am3F/SrdLYu1ksK4CEQjiFTMva4GoqJYSnifPa9wR579dzuqLyvMOrlBTdOLzTxmPuB7gztK+oOZBy/XBlV5Yi8aBDfzFMcdR02HNYFF1dK6gtfnx9hLcbgqtophFvGzgJ04TOEJryqGYw8bAzZSPyvozgKznxfs3gvoNn0GDXat2T+K6FYRy0hzbtg/Qextj3rUIJo91Rrwio2Rm4paWVZ1LZekQTM88DCTjI54EmBb8ODDa96GY3RQPH50wyt3it4ZfvLp+9AEyi9r+Q58xJx29McFk5eK1lcM95wgPC9qyla+C3tejih5sRTxvQ+K6loQCjeF4cxRXlj61GwUKQyRKCYHyikRpKef6U4xHHmKlcFsNfoXU45fSW5W1Imu+7iHdUKYeiVJ6ilI827drbv1Z193Dcg3caVJTHUthfLl9xuqD56gfaSfiSg0WnE2qq9kMujLA7oRtSAgmycFpo9sH0ua9vQ8EqzcaN6lO2TBOg52DzSLrwL9LNG5fnlDrAqUC6htx/RLT7SazeOJNB2VTCOHKWOj0R3LTb+8FYpCqMBcit4hhxqaIb1nmqTabaJh1AlJsOCRx0poWnL9mYgNaKaG5AJC+ZRI/o6jl0uT0JxlkpPaTXeY6OaGg4Rm7J4EqmtNdrXq56lx2slXEwyjI5n2jCnkIQl8Qyn7o0v6HTNE6MG2UdCLDopdwOwD2iouf9dCrLj3I0excfRHdnTAKraBcgO6l6ZkmGr6mbieldf7w+Qd6N47pjux1NcDrjZgFGY3QflAe69Ee5j961cysW/qQ5ORUQJtpOjv+0ODkR2uMgafNSFfO1b1ofmw71xOsog9aydihMERH56hlhsoS+K0Ap2E3l2fQgoN+HeE7TnzIzcZu71QqrqEVsyqQxME5ER25lPZhn17sNyNUZquvIwmNAXxqMHc7qAbDgiLRban62UfZaviZNOr3kE4voYK5SZkjFaOxKYaaV+zLze4o5r2kwVRyTk5e95SXGxZ/FRx+ddPcbVYvbpajsmsWco0ReOlWdAdDPckkM41hyFCsdT0J0GK8Yln/sOCzfsweWHwPznjJDUd+fX8CZitaCJmX1ZjAZ/NH0IJ+8ceuzajaxZRzmvWydnrsWhIcsBgHjxkdDU7VEX9zu887B8HmnM9DjFMK0GMpgWrUthcI9fCYX5Icw8pdNS06TOkc11F+b9ONLKo0zVlf9iX7Zlsa3kjGhDRiQhikVHSYik0P7PMrkfy/VZvDd19TywCZis8TBGuS8MUilTUanFrGhbyO7aW9ulAcVHgnnSws+IkVXni2woM2FRYh4igE3UQNMRGohUxvHvTsCykq1oujWSsLCL+Xi8og4LoFabyqK8m9NOAetLBWmiRqtPs3x9Qg2b7mz2Tz0qhX/XgvrUnrEqhid0biL1mP/fUzwrZl8uGOAmEqZe8kzqgzyv8mThu6V9MBdGyEW1BXZb4swFzVeAWntW/uE/5uxvcsynnlxVMBLVQTlGsUtr6Tkuzu29AC6IXqkh1blNgbhQEUIOfOcwmJaDnU7HTbL4zUJ0XDItA/crS3fcUS8Nw7BmUloYriraDFJKpgiLqiJ8EdKeT7iMSW8Xtb4fxnNA7TfmixJcRe23pjw95MMX1N6CcurPhvVt/gdY34Iy5W//dZVqINQyTVKy3cPmXQAUpYE8+EzRgf08mhTFNRl15mMIXG9A+JpoWDEeRyRsRoZs+uWU1SigXA+gVY6jX9qHm9Cc9+/sF+ED7aErz2Rv6D+9Rvt1w/u/eF51FL4Jx18i/XaJGgTQJ7X1xivK1OEKZvfDDc7AXyHPLNSO/t1gd6E/FkHQVKWAwoyO5uA+WMTHddEKFikaal9H9yh7eTyXucQ5vDGmSq7M7F5K0ni2CM61L7ZMTljmgGlFL7oevhdKCSg1gTI1On3U1coPzpTSK1TISjCLMDKGA0594fCUZD/t7JcNUMXkrk/1QanQfCIWiX2h8kaaiPqKXO7I97Oa379PPZPK+eVqlBlMRjXjXC8oSmb0rNDcm2eX6rzcJ+W9gzOfIKzcUGenIf2fh9rs0rHdXLtYXM2k+4OBiVZUHrUU9O+hFINnmuoPOJL+HD9KE9P0BpRnT2I0krmdKWVOLUB0O9K68TX2PXivCojmgNZmy5uJBe5I1JxkJCl4aoLyyxfC74Yd5u8sClbNOlmt0W9E+fMAw1RQ7cZ4rdiW332lYPOupbgMVsP7AYAbRYWSDhjKdG76SJsM3UgSFOspxGhTDImDXeuSlly8KNh8F5l9o1h8H6h/csP2jM9EjydOwGzl37TadWwlZ9RMprsolHP3U0B8xhoj6MqEfjTy+eSNaMjdJxhmJdgip8TCHBslN5f/dfTm2pPFIDnbLAw1s/OxRsh9MqzDX0py19yPqQiha3T05h8t9okf6d7QCChkmxHS+I8OMTLPUHnAytJHzXqhh/VkQ++NSGgg1JJTgNzfEZYW9zdwzAEUopHDVDggSRtidBXSnmDw34jjVa9yxx76SC6177KGTyb00PiqhMRo9GFwjGphoxLrbT+X1IqD3huHM4bdiE2sqj1KRcN6ggsJXAY48xbXB+1KoYmWU1G8l9LzirWH7sUP1iuraoD5vKG/kuj0cQ/OswNcw/+sXXLw9GrMzzNpCAL00uBOH2muYeIYPBJZSlxX68Y5hU6K2hvioRV9VzP/GBdt/dp/+Qy+hhy8Khpk4SPXHkfq9Df0Xc8LDDq5LzE6josLsciMbKTaCNvUnQYIBm0B5ndCPWq61dmnpHzjKNzZZv4teo7ySA0AMRSTl3jcxHaMKF8TBy0/C6MboHwzyHW/k+1YR+veFVsdlMV4CtAOfkZS7dbfu1p9p3TUg38A1TEEnLrRy0H4QICjMVgr79XuK3dPA9Ll4sLtUaMc0vVODFJztqRqnqNNnaqQLmWSjq7xQgvLNWXv5fbGNDDPD6b84B6VofnFJnDR0ZyWvf3BfEBMlDUF3wugDb/aMtobdaeKDV3nSmSgZRhx2hom8Xw4gVIFRaBot0CeedqLvRsMoAswBaNlmNxSyLaaTzzbMpaDKuovMj8eAKw56jmF2oIBkrUk06XN4UL38rF9wgNdTs5f/lLdq1LoEm4t9knBXxOZRK2wbU56K2OxKjomIQatbT3dsGKaK+lpoHZIPoogzOwrWVZD9U133UihXBdFqaTa0vD9ANDnEDkwbMQOc/rMXh+l8DNDnxiIe6EzZajY3IdYyakSyHsKH5FxlDihHCNJIhCh/j4JvLQ0ASEDhdn/QmJDG+v3AmCweEvpSWHmvojg0F1Ul73u0kCalSyhJzhwpxBo3VoXoXLw/NElVdUBRsj7DGmIjDZHa2wM9rSgODUVuPspS3ltzaIDSforzKWq3l880Ni9OEKV3G7gYYToRa95E3zv+WYfd9phVy9wHYmkoraW/P2H6WrH8SI8ubTodi6ZN37PJCGIkNB5lImHQqE5LQZtoTv2xIHr9QvI9/M/PKFIO0ObbnqMfG/wRo+NWfxzpj8WVavpaj9qNfpHOmXkylnBybYrlAVHMznduIuhiTj5ffSyIQ7RCFStW8prl8pAAH600QP2CcThR3TDmFcUywk7CEetLqFPzAVDeyPO7E/l3ttDOVLFsapFpqnnAMTplZa2IEwpYDAq7MriFBNmNxWgV8V9OKRJF1k8DZqMpVoruYSRMB7xT4mBVB3TSCOy+5Zh8aemPJUE9fmuHby1sBV0hgtlpccHaiP2uUItUMiBJx1DlCRj0TuPnHnttZd9oiK8ayXHayzW2vjD0x5FhERLlVo3ba1ozUuXMTmN2Ou33yO6JXOvsuegzlIarn92D035MAfd1pNho+ieDNMBlxLwpcXOP3UiRbz6b4k4D6rin/nFDKOHqp/fgd/aY8xrfBPqFNFjdb+2JlxXqjxb49z36bYXdK9F1DAqzV+hBYVrF8Bt7ip828pmrAF7hJhE/E6MFEQIJ0hMNDKnB8JNAHBTFWuFmkfrCjLRh08p5AhBqcbYKhWS7lM/KkcaYXRPDpkrvGSivTArslf376153GpC79Rdp3TUg38BVbA9FLMDxTwSWbu8xWnaG8nDzbu+L2w0W/ESyP/q5GnM/QApwn12wlOgSRnvaZGUrIXpQrYQiFJuSWBhuf+tIMkKyq4z7ukWt6RhFmfsHksPR3pP0WeUyciBTx+wiYhKj5V1L3GIjN89izehelYsR0cREzF7SjFHyPsP8cIF004OA1u5TQ5Accor1wR0rF+qTNwddSXd6EMhnCki+7tZXjJkJaNkH9VUqluJBJ5Kdv0KRMglKRXtixOq4j9hdoDvShEKhh0i3UNhS/h+Nwu4jvla0E2kqXA22Extlu5fp3uyVo7japn2i8Yvm4OyVaGPxnf2mApz+V8/TB4uHHI1Ml4qpWXhXR1EU8piUL8LgDnazRqcEcn/49z4ll1sLQ/h/sfensbZl51kw+oxmNqvb/T5tNS67XOXen6/9OU7yXdEoODFJwBBiQi7GSSBcCRSEiPkBCMiPIBDtlfiFkEkgiRTxAyKsSLmJ7/1wroVjJ07rrqrsqjrn1Gn22f1qZzfGuD+ed4y5tstOcK4dF757SFv7nL3XXmvOueaa833fpwPGI2Dp4W7uw5zO+fxNgwuOUnrt0tO0PR0saKIbKyH5G8Pivq4TagGAhb1yva5DjkcS2UctyqpiU7QeeAiwEZBtVnXD5ymLXtQuxS11MqpvYDT4fxspLQ23Tyv+Xd32+hMAflJCny36bbIGxdGKQXbTCqoRIwGjRb8TkB8vsdrfwM4zDkdvMmmw0GzyHM1mvBbYORsk1bA4CwZotxxCDsAp2FrBl4FZNSuhdI1Fr7EBDG8btBNg8iKRUuX5nPHz1EyIusxeFTC+QwQvirkBQRqr3gUrP4cUbh6Dh7w+LbfQF5ONgqkVmm3SX4LlYKQ8Bs6f4me7POK+Lh/xaBybqfJIoTgwCdVY3ggY3u2b7OjkBQjdU1AaLaeVL3pqFoA+CyhqRjQHId4CgwcMYXRDIiC081ZoNxx0RxqoHznohSHVKgNaE4BOIT/K2aQMPXTD4YLboa5j+WQLc2KRHxq0DbUSYdwxAK82dMyq2HB2Ox2yIwsrBgG+YsNR3skFmQ0wh5b0u4VBfiZ2wgC6iYcfONhlBjsnzQwaWF31wNDBmQA3AVTDvBI712xSGhb63cRDL0mJ00uDkNP1S2vuo7cs/JsbDmpu4AbcVyg2M27gGdxXBpRHGnhYYnXNA9sNfGVhjgq4XSaXdxMP5TXK3xtg+YjD8nFBfrdbtJYcXDvj9sV0enVQotkMyGYazX6L7MSiG1ODYee6D4g1gVqOc4rsY6PWbAb40iObGnTXaL3sCp57yvHcr64Q9TIrCZME0ZdgerTETRzsuUE3DGnoNry1ple7XJfrcv2BS//BD7lcf9TLlaQ2mLa/cdqK6cNQMm20wnMugWymeXNu++eIDlExKTwlfkc4e6ySO1Oc2gcFNGOgOG0x/MIxoBQe/F+3sLgmRZsgKEFQgeh0FSlgMXsDkO3uRHQeeupSbAAiHSoWNTFROGpCAKSk5Djdt0s2MZBk3+i6tW49GAMagwzDtONrxWMW1MVpaFzR8SdaB+t2bV+35KZmkVAkn7EpiSnLRpKXdWTjVLJPFsjnHtnSi4Cex1I5IJ+LE5BVcBmIeCigG6jkVLbalyavCTCNR35cQdXROYoFqLeq35FApARy3kQ6V69JELQh+F4wvR5GCPQ6CWMoGm9bFvyVBA9G1KFz/D+AEG1pI5LgHMzRlH8LsEjPsr4xiN9jU6QUf28N/CDj42Oy+JdoKuAcn3dQEr2RpkJF5KKuiXzU9cutcuO+xteL//ayP0qJG5a8rl4rKqyV5kyakXWHLaXYfAB9+joA1XQXHhsyC3Qe5mRB5CTS3Vo+TslzlMcdunIteVr156u3bL4ZBEh6DjSn9/BsSHSjUkBenApHp7b5qx0pm0Oip0f/l5A+Y9EVy0m4Xyfi8GaTX9G4IrrdRbteL4igGwDjFzh9bjakaOyA8oGBXWhUVzyKY9Kg8jNeg5oNQRLLwCFLBpgV8xkKKa7Xr292oZj1I9ecaNFthd0XdI9uQChY61lA8Tikhl0huXFF+2ArdqwqgOnjc9PnjJxZUpl2aslm8bALjWbLodt0gFdwI+ad6KVByBgm6Eo5JzqFkHuozAOlgxs5SVoP1CW0nKa7Aqh3XZq8N1se3cij2+uIvh5SHF/d7Ggv64HRbY3BnYzOZZtEs5pNvr+YWeilAToFXRMNQADKh6SaeYskqm43qHvIdipSyjoiQX5EpEGf8bWV5/sIAKZhgnwwAX6zQ3W9Q7Prqa05zWEWzFDJ7uXorrQM1dzu0GwC+ZlhxkqlYY6yhHC0NxpABdEUarhJh2CptbFnVvI8HJufoefP5XzQLR3OggbKB0Sq7JLJ59PXd2IsIOhcBkAHuMfiDStAtzzmQRMZAYDiSEO3TEgPmkMz1b4y0A8A/b3wa/11uS7X12FdNiCvwOVyuakG3igXN4D5zb7IdCV51z7nY+DBybyVGymQRKmG128UU4/BkcfwocPWc61QixS049XFZxRMF+eAbjxCmeHen9xBvS0FScYv5bht0W42JhnrFskdyuecpMYgQi90kSiWj2nP8edxxQLLlUh5IFFQqsX1ilQRldLgdYc+2Vy0GdExKBYeMbgwCM3MLoHhYYDLFUxLlKj635ZsJKo+M6SdIOlE2rEI0eV4x2LNzqVZqflllz0tzOWk09UbGvNrFt1QI5/5tB/Dg5aULCcc70Kh3tJMxs742hsvkrKVn7UYfeYhzMmMB8lohCJj0KDpUR0VgKBYWGSLgOFzxyyi10P6IgoRc0DWkYFItWo7NhdRzxGL9Kbh75xD0oQAUGUpaeSCWCgF1DXCZNi/VlX3zUwsvK3oOwal6Dw09CkRg+7KZi+0V7r/m80JsDHpt1PQjZAbNh1RD5LnwPZm37AEQXl84GONBvIMIafWKTVLYmcMgMclBicWGS5Q05zvG6nYjGQ2NVQhs1DLmnSvYYFgDcIgo3vWqhIKWyACFPNSfEDILXQbEIzC9nMN9n7Ho9kKybktZDJMkEIrmys0Ww7QohnIAyfqDTB8QHSkG/IasbweMLxjeC4roNsgRavaZ/HvMz6v7oBuEOCGwOA+0bjBQ0EuFT+T1S4kRBBiiiHaqgyYP85z2i4VsjmSOH34EhGG6ornZ62knqPeZlhpccKBQTd2yQkw2gNDsSCMVr1Beqv42TciMvdW3O48t9O0/QAmOWBlojmZCoIqDV4cLuiG1zDdKKIZNsAsiRowX8JDPSjRbXXAmGITuyAFDuMOutLQjy05XFnx8xZKR5enjNkUwSnoswyqUekLNiTqVvdIBd1qdDsdG6WNDn7oYI4tuk2HNgrjH1gUJxrdyKPZjI2XuIkBaHc6ZFONbKrhhw75CYvnZsej2fIMg+yoW+m2O/iJQ9joOOS5O4RqFELLwlsvTDpeAJCfaFTXSSts9jrYwwxh7JC/lEMvDbwhhcxUqs9eKQMwt3DjDvlBhm7TyfkL+Dyg23IoTjR1NkvDa/31Cs0TVWr+3JiNQTfx0KcZzwHJQWFop8LotkI2l+yYnAi6cmxgzdyk90I5uYd6BXWvhJ+woamvcKARTEBxaJCfaXRvXAjSTQSuvtohnwK60li85kuGHZfrcl2u33ddUrBegSs/B5qrSFNsUwHlCV2RTAOMvzCF8h6q6RByCzcu8PDtIyxvAOVDYHTfJwQgP3c4eX2Ge3+6w/5HM+hOod7USbcQ1tKdqy2Frec7HP5vQ3TDYdJvVFeo3yhO5Ma8Zo/bSQpxtdMXC3G6uO7MA7AI6IYBplGIYYgRMgeQdChxdQMkG9JmgwJE5QFvAwuGoBJ33Q0C/dtDP+30UShboM8uMMD4gTRdMuENGih/cwjTArU0GqurPd3M1D1CokKPLkUrUB8H9uIONDgklaoTm1JbEeloBwrlWUAzBnSn8PBtOfIZLYaHhw5dqVFtaQwPAmwNNCOFdqhQngZkR3OEIdO8VdXClzmqKwMUhxW2zmucPT1OyA/Abdz+vbO+4AeQtBZd1+snYiG93hBEhCL+TRSad51Qsr6kUB+UwKqC39+GfnAEeIfu1dcRrEb2/IFskBJ9hAO6WgTaeY+6RG1F3AYA9nguOo7Awr7xfYp53D6tE71LncoIPCajRwpWtBZ2LlHGVNXKcwQo74Eyp6Vq1abnDYXtH+d9j2TETJAovo/WwesaGmsoPgcQyozv2aREu1nCVB3suehjWkGNtOE4yBMdMeca2VkGNy6Qa4W937JwOa1sAaJydgEMFor/nrEwJBrQowYrcaCyoh1hc6Jow/qChlnRrnRwoC4E+qFEsmZttqk9mz7tUD4wyKb8WSbOdRHVXDzCJsXlwPgWryuu4GNUBOK8DC1andDLjS8qHL+jw8pqUtMaYOf3DBbXkRDRTD5rxYlGvSNhcjMNuB699aZHP9oNoWQ2EE0cm5I4oAiaw4N1XY3L+bmO15Cg5Vo2AHwWkFUKQStgahJaCgDqPKPGwJLqYx9mREHuDeFzTzvXmYUrAvxeA3QaethCPWQGiK6IQKhWUTQ+YqaIvldyeLIZKOZuNOyKuSN6peEHHl6GF3GQ0+x3GNyxsCuFap+am+IgS9o5fd+iGwYRTVMbAggyPHEwM9p8dzsdTCMNy5FFNyIFKRQeaDXvARaoH5PU+FcvgMMBjQ/uZXADUkbzc6IQiTq20mh3Oqhaw8wsukcrZHdKuMdX8CcFslNxq9ogcmbnNFtQd0v4EREOXREJ8QOeqyEDsikNWoKRxnnTYWl4vLoBktYjGKDZckS4PFEgXfMc5WdEwc+5DeV9I/pFB0Cj2/Awd4Z0kBt6BE3Ecfl0A3OYoTj8xpdTlxqQy/W/0vrGf2Iu18tWO2Et0g2Zsmoa8rGX1zRUB5y+dguDI2D3d2cw905gqxZbLxTY/+0GZtni9I0bKM8c7Nzh/NUFp/cPcgQdUoG6cYs5FHGa2E4UhocB08ctXZxaoizdkBPW7By9be4a2pCtCUfLE/CGYKipoG+6aEFE62FqEW0DRAKEtuVKpKRiFSlU0pxwKqtQ7znkp+L6IpaeQYGe9zP9Mi1GNqUmBtIU6TaiIUyUdzmbKVew8fFCK/FF/9x+yJCumCui1ihmXoF8e2lKggIGxywIyhO6V3WFkuPkoYKGKxRsTSesbM6/yacezcRgua8wOmARXm/wjWrHgOokdDCG3GUZ9NkMw+Nz0SNY7B7N4LfHOH9qDKPk9eZC8TG6L3Kj9qMRy9lOivKqFvqUFNXJjtb0FrSAoCYK2NpAsBrq8BQA0D3ByliL8NzeOZL3OPToSRAtRRSsr1YXEYQofhfa1OqNN1C+dA7VOOZu6IKaia5D2Bjx+V2A8jY1AGFjRNQB4GuKbiVoTYqW82uidN83PcpBVdJklQW1G6v4Zq81ZFY0J3G/gF60Hpc1bCxkn3yZQ+UWatUibx3cqOgfG583kyYmNiRtB1010PMa4cYmVLAwDW23uyFQbwUgKORnPGezhk1JNyTtiTkH/eeI9rYB2TltWM3Mot5DcoZqNpF0VoMDRRMHaUh0y89R+cDAleTDj+8otGMOSxaP8fWiFqHZDFAPOXVODXsQ7YVQF+t9Byhg8qxBtQvs/JbF9DV8Hijg+H9vkR9kiS61ukor2vxMY3xLox0zSE43CoOH3NY2mkEIghyF+04c9HIBD2OjEilcqTlyoh0TpLcbAcnAAryONNda6IVBKDzM3MCeWLhJbCIkcV7zAmGWCn4Q4K42cEvLEL6FZfMgSEK2W6E5HCDS7HwhdsByWgYDmOMMyim0Ox281wiG+40A+K0WqEyy6bWnFLv7nM1Cq+mIFnLAQolRACmeKpDKZCrFl58auDLAeMXwyk5BtwbNNmllUAF6YeBHDt4ahCwgv5cT4XhmhDCkrsfn/X3G5UFskr00ux52Sv1MN/Kw9wu0mw44y6E7lfQcxZHC6oa8rg3oSg+9IhKlhNqWTWmSwDyXQFQ9D6SUrQyF5UsFuyDK5nPADzzslHQsVwLVHtGZbEYnLtXxs6LmtKFvxKlNtwpmTspYfpAxJ8Uqaqa8oTEKXgEr0kO/1s95uS7X12FdNiCvwFWccjJfnPFGUW9LAd1xSuMKYHkVmH/3BBsvjLH3a0fITxv4TEPVLUb3Wxy9Oce1TzTY+80zqLDZIx0yIfFWoRuoNOlTHRGQekvoCg4pQVwLpSnZZQ4EYTCkZZmGeoWIeERbXkAcbnRfyATNxqAb9ZSrFGxWrG1fzPcQnrZywOA+8w4i/cwVpJyYU52ajugwpByQLYHx/YDVLpGRruBrZUsGNdZbimFvTlCnTaSAw6B5rNtsjWImepdoiwrIdomlcaShtUOFelOlm/DoYQwdDOgKBdMqNBMWaMMDj/kjBl3BZij+7eggYLmvUB4HZLO15kMbEXW3PZVKCnZ9PMP2JxdsJoq8n9A7T61ERDGsvdhgRO2G1j1KERuF+DpOhOvjEWlOZ1MorfmzqoZ94YGgA+JaZa2krctBMLpHEGIBb8QpKhbzWgFCCYTRGHzufiry3e4OdOug5xWQWajWCc3JIJgc6nQGjEn3CiMJR6vEYatuoYreMjN55UfhO8BttZYFT9tCz4Bk8QsAnSelKgQEq0FnnNA3Gus6FQjq0Tj4SQlzvuwbnlbDNh1RmVXF5s+HNbcsT4OwmMESAvJ75xhjE9VejuLc4cG7LEytUrOdT4HZExTSaid23LVQFAM/J82Opzj6wKJ4QI59O6F5xfKmR36fyEO0lG52HUYvGNEesOFhE6FQzBkimOiKC06Ro0YjmytJCe9dsRZPN8ge5OmzlJ0ZaSw4eKi3+mFDNwoYP5dh8QjpYUwwZ3MzeEi0lQMFTrfrbTYOMXgwNlV0LRPKqDQdUTBvqr4hgiCbZinUUAvAynVKBjDUewVkRxnFyI2BXTC7AgCFzccZHcE2AtTVCs3CQlVES+xmg1AXHJRE/wcNuBdHwH4LdW5plZuxudCup6raJY9nmBpBMlh4m7mGOTaSYxK1CkQq8hMNQKPd5KRER8S5Q9KiFEc0CohGIW7iOSAaesApIKN1cMiZeaIajWCB8r5Fs+2Rn2rU14hm0KlNIXg2xrpmI6wcqV2qU/BXa9h7BboRheu6ZQZIfkaqVj4jLdgNPZaPdzAzaayWbKLabQddsQHLpuL2Bp5/8ZhmlUK9R/rZ+JZOlN/ySGF1zcPMNIX6VgOSHxKygG4EWHHIyua9eYqpFeltA74PusnSuQfwXDWVgldAd2nDe7ku11e1LhuQV+AKWhyexmuTPAnd6wZIgmgEYPoqBdPswa48xl+corkywenTOba+2MGeLBCspqOWOHiYJiAKLzm1F4tYD3SlSknlgCAES8i0TDjnUuSbhvoGACLEFDRCLIHRidi7UoT7C0EYYuZGnKyKIDyo9QOAxO/2grpEL/9oI2xq0E1qzW5TN3xu3RCZGT70WO3pvpEpetqU7miT6y0RmXaClDmQhO2a2z94COiWtsZBRP1RcO8GFPQHBZSnAc1EIZ8HLK5xv4MBXKao4zj3aK9bOMX3IYa6RRSK+QUK2bKnhgWtYE+X/bHpOiR72BB4XFJWhTQbRvf2trGA9lLwx/RxpQGDNT1Il9CUNPFy4gAFTQtZ53p9RZH32+R8X3zHBkOrvglKDQb6bVnPG1kP7wtrVKboOmUtVOfhCwt9tobQBEGGQqBzlg9sYCyPR7AGqg29ZXDcxkin0mvb2tC9KoyG1GgAgGODo1bMI1FyLFUIzAmJyIc8Phgl76P8vVZy3samipS1oDVUdBxrO+pQlCJCE129fABsf0yU8+hKhW7LyrkmIvIhz+nxi0QZq30WTboRlMErIPOyXbJ9XrjzjWJm0EwomR5wE9E2TUmRqvZCaibgeU63IyTnn+g8RxoXUqhoHJp0I57Xm7+dUw+1zSwKs9BEKYUG1U6A/JQUy1YrLN5QIys71LpEccQJczZTtOaGUG1GLADzU5WcwuIQIDpgcbsBr8UFcIHkgGWE3hkMkc11k4norhWfSzdijesAJ+dxs+2hvII91Wh3O3QThrS6cQd7r4TOiASYuYGvdEJnALo7RcqbAxA2W6gHBWzDiX03QgqLhZh9lIdrdKIGcpEUpHpMuhM80G0EtBKQBw/Rr/A6t24SEkSfoTo2PsnudmnQjYnSKg/mfujA5sYGVEPSoHwG6jyGDmomlDrPrld5ohmDu0ZylzRcyNFtyTkJnj/ttoOuiUhU+zQXUa2CDjQhgON1oxsTOfEFm5p2gwnu/B2draIwPGhe12evpVOVqYB2yyObaegWyKeGrz3m/a4dc3tp685jTF0HuB9DNqPNFkhDs0qc5EKvQ6kVspP1m9g3aMnn8mv+nJfrcn0d1mUD8gpcLqfBkV3RbjPaw647OLlIc/fA6dMKdm7QjrYwe1TJFM9i9ug+Np9vUZxRX5BPOyyvZtBdQLakyNUgoB1x4oMAlMe0pm0nfP5mkyLT2AzELI6g4sQKye3JNLx5V7usbaPHvSvkwq17i0/dspmK/07BZYK0WBG6U2DOm2MUusZANt1yG/JpwPIKCzBTA5NbAV2pUO3opBFR0lDEqXG1pUS4iCSIj+LabAHUm+iF5VVAPvXwGS11Y9Df6IGDtwrVtsbw0BFlKTUDIsHjQecyxUbIE3lKIYwbRGGUJ1pTTAORkLXU9PG9lq5XAJuDumFRG7MpkhOTNBLrSd+ZZaOhA38eVN9AaNNP2Zcr0pJiMKGkfSO+h67lY2KTA3A7onsVsGbdG+RvXF94+4Do2IVmTVMRv8emBWvNRxSXuwD4FuZ8CT8p4bbHMLMV4ANF3UNL0XrRW99eaEwi0hObmxSyKLQqFYhEDErAe+pLYlNiDNy4hK0jotP1dLJIGbNRD+KhOjYXCAFq0fT6Fvkeckv0xANq6tigZbbXnmRWqmawUcls0pFkD6bYPluhvj5BMDnsKqDeUlhd5WdvfIdIn6lYLFX7QHZOC19fKGk2xM7UkObTjT2aoadu4dwwYTrQDCGbkmJlVz2yFzSLNd2oFN4ZnezyKTB7ukP+0CJb9KJzJYJ2l7PJKE54DtEhC4hxMABfo3msASqN/FYB6AKDFZJWy2dAt8VwvWbAybOdqaTjiAhKs8WskKRpUT2yGRER7XpHrzhsgI+IB5KVb37O53MDZmDwmks6m6noquRyYPiCRXWF1CfVaaaJb9B6OMgxN9sNcLfkdhZBgg99Stb2GZ2wvFW9EH3Ea19+BtS73IZQ9PvSDfmPSMnqxpze5GcKzWaQ9HfSV5VT8J66Cp8FtPLc3YTFezdxUDODbiwF9alBu+1gFgoBvHZnZzq9V/G6rBvDAMxFb4PbjT2GdwxW18T9zwLwDFXMYnZIzeGGqRTqKw5mrqEgYauSZ6MblRrZSC10Gx3M1BK56hRUC6iO2pLotOWfWCH/4oAMgidq6KMczbaDnRkUJ3xPIyVPtyqh7sGG1CC1G9LQGmB1jSYJMQ+n2QooTnnPWV3h/nW7Hpfrcl2u//ml/+CHXK4/6pXPL043I3XJVj21KXG7Y3MiTkjdgDdWog/A9PEMqz2Ddqxw/9tyrPaZObG4alKaejvg39U7LD4iHzlabXYDmXr6Hn3xmfysIyUiKCI27Zg3pm4QuO0uik7VBVvg2GREh6rYqHhpMiL9K97klGNhVZxJZkAN7P+2w/AhOcblCXnqo3ukQ/mclsLDA4/BcUC9yWM1OPGYX2eDZWoGIka7TkWtIZoJkv3x5gsezVhhfpOBU6ZhE8HihmGBG7caeKtQb2gsbkgDmPO9SrSSUqHaUeKwE6CbkASvpgImdzt0BcRyF5KSXmP4uYdA5xBGRY9exCYgz3tr2PX0cR9IuQKQROZAmran58hs/xUpSM6z+WhbcZRqL1CLEtKQiSOUVsCgRHdjm3+/Hl6YZXyuqC2JjUAML4xNCNA3C0JHcjf3EXY24K7v8teFhX54Bl23UsSzWdDzWnQqLdC0UJ0jYuE9zt5+hQ3Besq71v2Xke+Dsm8o1pcmzzvkQhWLjl15Jm5Xsm9RxO9F0F5LM6E1dNUgWGpQgtbwJfU765koqvMIgoKkY6E19S5rKJFaNSjuTbH32zN4S4SvOOJncH5TpevB/AlH+o6keqsOfcG8Al2EioD8VCM/YcHWjTyyc4XhXRayy1e1tEAN8XMoCecQalUdi1+itc0EGH2RUxGXx2KOSEjMK/I2YHmT9rLFMZ/LLika9jmRlvGnc+SHFsUp84wiYpDNKIzWtYKpSalRnpNtbgsbomgYoQSBTdcRGZxEQf6XGmTEfKTiBCmrKNmcT4FsqhJ9jAYUfK+qaw7tjsPiyRbRHlxXnLTrlYauNTMqZga4V8JNXHJd0g2gG41u2BezdqapabABxSkk60U0DIKCAzy2kf4TDGCWfN/sXPV5FS3pVt3IA6VHcUhBiyuj6xXfw+zUwA88iiNS7rTktbQ7pDypTon+RsENA9wwAJrJ496ykSqO168/CtkZww2VBy1yNxyv4x0ta3Wj0G45Uqu2aG4Qwxe9RbJW9llAuxn6jKWRgz21qTmxCzaMqqM1bnYuzdvdEt2I5//wmYIOa0cGpmYobjf2qK541DsBbuTRDSTPwzPDpNkM6IYhofZ2qdBO+FhXshHyGd+X6LRF2ts3dikgCdG/Zl/f6J26XN+06xIBeQUuWwW4DgjCR86m4iaTI8Hz+bSH06s9wtK6I0c6TvbbMW+2CJy0j+/wxpvcXgySoLydyORKJo1REB4tcQHRcyg2FUFTqxIMfx6nRQBvjnauWLAE0rN0LYL1zX77gJ7KEQuWbCqv0fQ3+sltWubaKiBbBAw+HiS1PeDoLaS5mBrYfsZj+qimm4m8xuK6RgCnXaYGpo9ruAGPUzPpmymz6ulb0U0Fmu+FrQLasUJ+HoQOI+5AkqXSTixUAJZXSAXJltJ0OSIx9USnYxcUsNrjexWbx9EBNSKmBapdTjPLE4/ipTOEQQFVNxSUawOOjCF0K0EZQl8Ap4I1isyVBopIigdSwjjQoyEAtQiAcFCUNA9rrwEp0FdV//u2JRKRWdiD8wvIAU8Y39PDImoQUY+E2MiJoHUfAgjAPDgBjIYxBtAKal4BeUaBedSxSPMSBjnUoupfR/QywSgiCE2D9vF9ZA9nQn/qKVOq7qjXcGuUqlhHOA97vITbHMAeTtlYxNeN9sBxCS0sKAWVWdx/91XsfL5GcfuMIvoyQ3V9hMG9ObdvNMC6uFN1jsc2NogRXRHNiarZfKqqhak7bNzOsbiWE2TUSDaztPAm3ccuFVPLlypl6riShbHPA+odz1yDlabb8BMN/L2ctqP3sxTIGQXki0epyWA2BpIGIiiNfMqf9Z9/oTfZAJ8pyQRSyM+FNrQkbUh1QH6uEp2l3mFB2WxCimFpdgZEGZrtwIRup2DOJQzQIGnGVld4fWrHQHkoVKZCUGNx7FrtI1kaK0/tVbUrxbIUvvmUmjFAHMeWSCYcEantLBJyYETDoaQg7zaoyQglqVDuRgV1kgNeoTjhAGT4gHbFPuf1RXk6XI1f1Gg3ZB9OuL3BkKIWxfSk56oeZR4IWlATpaCDoYIKpDSFM8vmU6x5u2FAccRhVDckKtKNwlogYYCZ6b76DEC1z89HfhY/u2Ldu0kbNKJEPLfckCF/2bm4ltX8eX5oGUAYALOgYN/ODJoNEdaDZgbNjlS/YgDiLd+f4gFtx1WnmFqveAwYgskmwS7pVpbNiFQ0YnhgZkbozfx9pKS1m4EJ6SM2WY08v42I/hWGUKpGIT818BnvAfGc8xZ0jVvgcl2uy/VVrMsG5BW4tOg0ihPeiJmrwRu2aQGsZIInN0hdc/rVTAj3RxH28KFHM2Y1pbveJtcb1escpKHwvi/CY4MQbXjzKZKIsxsiBQZGDUjkTseVn/FG2E6QtB5QLI50y3o5TpaCFl2LZTES7XJt108s54+KixaYVusKpFwA1fE58ilQnDqoR3SiXbBJCkR10KNGwwdERyKNC7Z/fLCgnYnnv0+eMhg+DChPApTjc/kcGBx6NBsKXin4DcCVnMgW50A2Y0ERKWdmDbnKFvydlkJHeWD2CBOXy7OA4UOPdihUtRBICYoFNwDAIGZZpLU+hbeGzUEMCzSgXkEpeY5O0A6DlAES7XBjRohz/fOt6yailsJo9OnpAW5rAHtXdCpRzBMLdAcc/4nHsPNbJ1Bn8357B2X/Ouv70VEoH/a34TYGUEJt0qfzHi2JmSCZBeZLKOd6ChfA49M5bP/afTZieYbs9hFQFqhvbqB89gF1JZntmyIn27vuaCWNim46hGEBdd5ebOyAXrsSm7kyA9oO13/5APfffRVXzwYpXHBw65yohtFsKhrXI0Pe9Ynt68ciBDZR8X2RlZ1W2Fh02HhB4egtQyyvA/mpDBxOVWrAIUMEl/NzDqH7BS2p5Fs92pe/lKObhORY5wYedUTbwMC6YFiI6prbWR6yuV4+5qBXWlyBkCic+RkLNZ9zuKCE5tQNiJyYlrs1uK+wus7U83qL174uIqqWr1k+NMhPFXSdiQaMn9/qKq1ufU6KFlTA+Dl+XmJCOtA3IVEHEh2vWtGtJGtdeQu0I9U16sayc9oPB9VbENslYGpmSngtTdl+B3tqYRzgRp7ozjyDkeTxiCwvr/P3+bG4Ty0V9JI6l3iNWzzCotiuFFZXPcpDjXonIDtXaHY90+Ub5l1A3m/lASeaDrMgomKXCssbkcrKHA39kPoMX3qEqAMR10XMxaDEBtgKsCudKF4ROQriPpWdWKFKUTzfDEIKBmwzapLiR5PW5krotYHzCSdNcs6GohsHFMcUk+tGJQZAN/ZQc4VmiwiKzz3cKMCeGSyecFC5A1YWQSiPjVDV7JmVEMoAX3i0Y000xoPUMWm+ovkIIEJ9Q22JXhiYSsIhlegaW75H2VSGUCMZWn2j1zrN9Gv5nJfrcn0d1jceM7xcL1sqkMPsciSLyMSTtkKNisniLYsOCs37It/nQDPRgnjwBpBuHBbiIrX2nBrQgiQoxwuqy/m6cRIab9ARIncDTj2z835aGbc1ZXtYfrmSP4/bEAuIeNGOzYa3REyiODT6+5Pa1e9bsEiBg6SeBNTbJiWsF2cBeeShS8PjSmBwFJAt+qI3WoSm4xOAkPWvlc9IS2smpFt5o2BXAfnMoR2SE+xKNkUqMIOl3lJ9MrqkmEOzoImvFyez8b3MZ3TAQgBmj/M10ElhnZCDNbQjeKTAv/VmJFKerH35z6IrVkRAgDS5p05DCvFYXFuiD6i/xKJXCcqhOaVPlrvrFKL4vXMwrWgyIi0sz/pt1kKPinQsoxH2thAyA/vgDOZoBn226BET2fdQ5KRixf2MhbJfo3qtC+OVBuoWxd0p/6Zp4baGCIJiBKNkmrr2FQJU0wpFyiZLX6IgkUoWEDKT0BDVyAe27RAUUF0ZQNUd1KqB6hwDCYcDJBpcdB5b15PEbfZf0gQC0oh4qFULFQKq/YKOVDXPL93EohhruSBAeYze7UjOO58D8Cy+VSfXBcuJvM842AiGqeUprC8Aw7u0YDW1QiN5DfmRQTblFDkoAFoKPrnW5IKWxnySdkIHrOVVft7rXaDb67DaF8RjLBoxzefQjU4mEwASouNzFrTdxMFnQPHQIDuxYuggAxsl9NRRjzrmM0F043UmFp6SmxkDWDNBmiPSm017BDgiS0GBzlFSwEaDCp9xgq8CMHrBpMBEFYDBIf8mOzFi3uGT7fF66n35kJQkJrRraeQU6n06mAUj190gx3dEx7PiWKHb8HCDALfXMBRyTmG4KwOyE4PlI3wR1RGVCYVHNwxoJyHdZwChzWo2H64kNanZ5v6alUZ+SlpXNw7UCK10onLBkx4WBDUIhudHr+9QIoInYhMskZNmI8DONLqJS++B8grtiL/XEtpY3rPiYKYBpxnoeH0FX3r4wsPnPr0X2UyhPDDJVSybAYMDDn/ifakbxM8GX99MTaKexVBabxniGJt7b5F0kZfrcl2u//n1TdeAvOpVr4JS6mVff/Nv/s2v+Dd1XeMf/IN/gMcffxxFUeA1r3kN/sN/+A/p93/8j//xL/uc3/3d350e8xM/8RMv+/21a9f+UPuw9bsnwvHlDTHyl7OpaAvkJqqCFB7CyU6Q8pDfl9eQRNamFrrBMiRvfVPzRhyF2q1MJn0mvNeKF+mg5IZsRaDZcNsi5SpSFKJQvR0H1DtEcXQnE9aOxdDwILAoEuoAgoi1l/JYh5Qx0o5xIZk50rKG95Fg+She74YKzUhDC/rTbPDG3Y5Umv6yKQgMYhxAUsNjWCD3za5YkG3c8hg+JOUrNjDdQME0FO2fvjZLmQbtkEL4jRcdVrsUj7cjPvf4vqObTBebINVnEBgiIvkspIZqeUVjcivAVH5NxGz478zy31a+RyeltfA7FuBOAghjx+mledA96mGkaI6vsar41bn+Z00LLCSrI2oeyoLP4YNoP3ZETC2aEKX577Jg46MUtj52h4L5KHCPNsCKxXzz5DVgY4ywNU56DH0y6yllzvfNkyA5oVxrsHxAd3WzR33KAvVT1+E3Bkh2wMEDwUMtekcxVxg0NyZod4ZwkwGfM+575xAzSlTdJhQDeS5OZBphQOQoZrTEZibSym585BDnT2Q4+BNXEQoKzNVsBdV2UB2bpFBYPk+0413Xx0SEZl3DIkvVDfSqxeiFKa59cgXdCCoaRLM14fWg3kXSQ0Q9SHSeqreEiibFZn5KJyWGv3nazs5JF1JOMTl7m8nZQYfU0DTbnsilBQYPFdotn4p27ZAyhKJlcDYnfbM8ZGNUnBCVHD2TYXwncu45hNn4IovTyfMK9Q5fM1tII6FJI8vPFAb3DWmNK14n2w1eO1JxmPWOfrYmvUo3vA5mcz5nHKIoFyk9fbMWkZt2g8ew2gvJklt3wPCWRTAB7YZDec+i3fAMfRw6qI7oThKKiybGDVnEZgvRSeRAvefSIKfdCGgFqe2GAfmZXEMKID/VWLy6Q3ms0I6FvrZLRytdiaOUNDL57QLthM0IAOiW0/zyUFP74nkuFAcMMIyuh6N7oskQG+eYaF4ccz+CHNvFky0HKx3RjpARGYnakUjHCoZNiKl66ljQQLvpen2hBrpJoNuVB0a3DfNsLG1ydUvEpxt7qEqjfrSFGzDfxj7MkJ9pqNsDamwqLa/H+41dkpJV3WzRTjxW1zyqvZA0HgDfE90SHexGbFp8BuhKIT/TqSnLTzRMBTQ7js3dEhdCdL9R62uu/5Cvy3W5vh7rm46C9eu//utwa1SFT3/60/hTf+pP4fu///u/4t+8733vw8HBAT70oQ/hySefxMOHD9F1PT/+v/yX/4Km6cPYjo+P8da3vvVlz/nGN74RH/nIR9L/TZzafrVrvqDrkqGF7mofWN4IKA/pv28FlYhOUvkUQGBacDtmU2GXAVqgbt0ID7phEZ3oGEp4zgr9JE0joS7tCPA7PTIQYec44YyUrqCQnEpMhRR0FQWbPgNsK1a3TvXoh0ZyH9FxaC6FuXJICcshkK7Rjbit5pzfddu7ZQFIVqJBc18jwhORomYDaEdsECJCERueSDnL5hQuLq9qTO54oYhxYtZZNjZx+0zFY8/v3AG7ol2vqfnvoIF87rEY64QoxQLD1BQP51NgcRMY3YWI1hXMquupOTB9QQz0Ben6+WUMGwZr+TfrdrohsHCWEMNUzEb6UNX0hXoMLQwBYVVBGXlt4+Cv7UCfLRDGJVTdwZc5fGH4d1l28TWBvsFZF7KLk1eYjKCmc2A4QP7iIdB2UKMh4D31EIA0TqHXm5zPqJ2wFqrqEEoLVeZA1cDeP0t0MrczQvHsfWAy6ps0pXuURDJN8vtTtFcncKWFzzSMVdDTVd/MRWQIoB3vLOalCNpRdxeaONW0PYphqGmJKN35m3YweXEJczSDn5RQDZuQaPGLgVgyfWmzEbflgnuYoh5mvsLy6X3c/9YM47vA/FEW9Bu3AqaPqWREEc9vUwNhi6F+plIYHCgW6jI574bA6I7C4lVeQjfjZNsjOzPIzjXaidjeWoN6p0cSfcbCv94G7JRZF+UxaUODB5rMv82+GcrPxInojNeyepeWtoudBoNnC6yebJCPGsxWGYoXC3RDyXK44ZEfa+iOtry6VSmPBJ6U1WzBz5gvgCD0nfwccJLpEz+HynHfbSfXJkFY7Eqm/nJNjLTQpFtr6eYVqaeuFDH42KF4iRkrZsVtdC2n9bqTRq1RUK3Cah/Iji3abYduRGqWXQI+02i2SUFyEmJaHgH1dgwRlEK/AcKBJSVWUBO7lMLcK5ilggoK3TCgm1CbwYEVzytvFKqnKpTPlBjdVVi8a4n8k8MLlLzVviABcwVApSHX6jobkdjcZceWFCUZgFFfQROS7KFGLc0agNS0+tzDNvys5CdGrJFDEs4XRxwSra6x2Q0mID81iUY3fEmj2g9AbZMBSzBx8BVgdhr4TiHMM9T7pKpVe3weBACjDvokQ6SV6UZJE0JtiV1Qz9fsMuTWCMpkV2L5LK8ZNUjdGMAM3/glQ72v+XNersv1dVjfdA3I/v7+hf//s3/2z/Ca17wGf+yP/bEv+/hf+qVfwkc/+lE8//zz2NnZAUAUZX3Fn8f18z//8xgOhy9rQKy1f2jU48LyAZufn6J9+xYAYHWNFoeuRLKWDJoXwPJEpmLDnibVjkQ0GfEtmTR1A6RAvfyYVrOm7W/EUECX02mqHbKYAZDCveqtQBGp5qQxZD0PO9G0DKBXPdVCS0OgooOpFSqSNCZwonXZWENygDQhMw2SeLs85PZkS94wkvZEbpiR7qUdRaUR3TBrRYhpKWiP1p2xqPAZU8y9BaodJY1JQCONQzbjDVkFcenK1tGZgGzucPI6UozyGWlX+dTDFQpdqZBPiXScP9FbVXrLbSqmQYLlqA+JE0g2A1Jwdl2PXnzJuZL0AVrx8bF4zTPa5SoFuLXmwkkjEnULkc4VG5KuQwonzDMWv20L/eAEsAZq2sFvb0DPV8hnS6SwQ6OJqUYtRURTYmPSiZahyKHOpiyoY2OvNfy4oKtVK/sKAFYTbZgMyUIUhER1DkHnRG2U7hsNo2EOzonKLFf9MfJdj/yIVXCwBva8Qna/hh8PoGdLJIF51MSEABjmkIThgC5X6bjJnbmjyFyFtUZRKFRXPnIHp992E91AYXljgPG04j5GrnbU3UR6mxyLJKaPwnagbxo7lyyBl1ctihN+5gcPeC7mU4dgWZg1I06S7Zy2usMDmWrnbOi9BXn+SwWXB7QbQH6sk/tUNwrIzoguuJJ6hHZM7cLoloZ2wOwJD1cEqBF59c02xequYNidK4AwJHJrhC6aLfg5OXudR3GsMbqtkS2BaqcgRemLOfJpjvrNLYX1Na9B2TkLdFJ3erQjXhezhbgH1kxsd7ni9WWCdN3qRvzc1dtsgFwOGBHFR9e/eF1J7lmQOizweYKO113qMXwO6DOLetchPzVi7MFperABbUnUwmdsKKJmYPCswfJ6QLvlAGWgO4V2w6HZNESqMkgIXj8IaicB+lTJEIiDKZ/H94eUomC5T81mYD5IQKK4mgpwGwHqsEC9G9BsAdnnh0m3k51TBJ6dMyG8HbMJ6+S+Y5Ya0HzdZpPnE+lwAV0gYgJQGO8LJPtiN5A0+3OFYDSC5nWv3fQSSKgk7LY3JYAHNp/TWNwE6ustVKtRPjBYXYuuVWyq2m0HJeGAutFQd0rkItJvJyEN2YIGRs9nqPYDuq0O2bFNFLr8VKO63sGe8/1zIs5vN3iOupJoWdTatHsBxbFO6GFzScG6XJfrq1rfdBSs9dU0DX72Z38WP/IjPwL1pRabsv7bf/tveMc73oF//s//OW7evImnnnoKH/zgB7Farb7i837oQx/CD/zAD2A0Gl34+XPPPYcbN27giSeewA/8wA/g+eef/8NtuPfQx1Nyf3MgP9OwC/QhgTK9s0JFUGBxHsWSQVOQHikIkY7hCrrMwPOmNr4fks951CdElCPmccQbralIr1ByU/ZJAI8LAX7KiUbD9AhH1K9EWkZMKo56CBZBgmYI3SGGitklML4bMHwYEt3MG9VrVCDWw0Id05H7Lc1FsHT20m2AaRgUGAMN13U1CEjhf8NDis7rLQ1vVdq+yD/XLVJSse6A8tTj7LUZtNDd2jGbmNljBtW2hsvpcOUzYHyP+xIMJ8BQfK+6IdDKtrkCaMcXKUZJHB2L/UjNSfoB23/lOVKYXUJLNCf3mTxGKaRkdADJ2Qrg70dDKNFKIM+Arc1ehK4NrWS7Dqgb1E9eQfXkPvzm8MsLy2U7w9YYzSPb/HnUQcRlLfT5sm+kjO6bAO+JNhQFC++mRbAGelFfbD46RzQnNWxC19rZgN/f5LZ0fdOl2g5qugCcF2vcNfRifTkviIXsW2ZJnSqz1ISoKS1wTt95NR3PMMgBpRG0wvymQjZzLF5zQY0Aoc2FXu8R17omRIPvgSA4IRfb5RCw8UJN6035LNXb/IwO7/Nno7sKgwdEQ6wgpJEmGd2zglTX2YLT3GhnaxcANK1H6z3aqEb77OFdjdW1gOnrO16fhMJiKuHVy4S42fUJ5YTmc9OWmtsyflEn+ubsMQ5bqiseq5sOQQGDO9kFd72ggfFthcEBi0HdgainDFDiJByiQUjTafBaVW+zMHcZi8YoiGehLMJ0oaRFBDeumA3SiU7ELgGzUsmeWAVg/CKbNQbsybWmUalBckVAvQNUT9aor3Wkr64UsjODbkSa0+gOmw+G5YkeR07b4gwYHEjm0Uoco7bE8rwRxGMcoBtg9doaZqUS/ap+VQ3/6iWNNsDGE5pUKd3K8ZRr7uQFlab+8WfxfLFLTv47GXRlMx634jiabiiMbpPGpBy3iSGF/cDHLkil8hlQHDKIsNkMbFos0S3mOinMniAla/R8BrPQaDbEEnjgkc0FsZgamKXma3ZsdpodT2ercyJlvmBDuLpG/YpeGHR7HbqdjlkfNzvoBQ0BqmsuUYGzmSb1uOYQrrrK9yQXa2ZvxZzgD0l4+FouFcLX5etyXa6vx/qmQ0DW1y/8wi/g7OwMP/RDP/QVH/P888/jYx/7GMqyxH/9r/8VR0dH+Bt/42/g5OTkgg4krk9+8pP49Kc/jQ996EMXfv4t3/It+E//6T/hqaeewsHBAX7yJ38S3/Zt34bPfOYz2N3d/bKvXdc16rq3aZlOp/yHBMRtvNji6M0ZtR8yCeuG5KXaCikxG2BjEbUSLhe0Q5qUbtRb4BJG5s18fkOhOKMOwYsdY0waV1kvPoz8bnS8icdsi+i25TLevIE1GpY0ABemizXgjNCjxIc/Ple0xTSN8LiXQShiUnRpusZ0A97wsjnSjTTeBKL9JoKETMl105WAqxVCQ4pVs6kQk9Vb2S5Th7Q/zUih2o3CcL5Ou8HXpbgfyVXMSyMTdTQRsYESyocWznmpUIiNb7BAsCrdjKMdcH4mTeYyID9riF4UOUKeQXXiXiXC7wt5INH+tm6BwvJ7pEVp2RilSMGqBO1oqVtIRW50kYpoSlmsWfOG3n43ojLi0AStkZ1WcMMMbphBH6NvjtbF6EpBLWvkcz6Pnww5/YhUstioRGRgXZAdhdquF6onJMJoQmYR+YlNi7WIwYrqZAq13mDF/Y4WwDG8cU0I3yfNS3Pg0f/MeajYBEa653CA1WOb2HhukQIElSApG88v0WyMYBdtolyFyZA6kCTG/5KmZx1VAlKIoWrluHf8GzurobqSerGMb/XZExbX/88jQO1h9qp+mt9s8HNpF2DycwdpKFQaDnQS8Bcd7sxSo73eYPDFHKtHOsApuFalaXNx36Ld8nDj3oo2Tuu7MbNG2lFAyADnJOtCGvcoSjcVUG+RgtgNSXdZ3AzpeuVzYHm1S25E09d3QKNRHmm0MjwpH1DUrgIn7r4gIhCtiH0GeN0PWiL6GulWugFW16hNUZ6f/a7okd1IKS1OenqWFXrb4tGQnJ6aDb4H5YFJSESibjnAlx6d1iheLNjQSE6JlmPtBz5lLOXnbASaTQmEPe5F0gB6rd6C+phsrpJlersRUD5fsDlZMZekazWcU/DbHmalMDgQR60FkuFJ/PtmE9wouSw0Ex6rOGiK1shuENBK8xvdodpxwOJVdMKKuptuRITBlcyYsacMI8zOdRpY0do2JHQYALwNbB5s4HG3AXAK1SMd9NKgutEBHTnBvvTQSw0/9gg2QNW0+V090iJ/yOYlHjcdAHQKodLI5pqoYKbT/TMTxMPU3J9qV0lGk0J2yPdVC63YLvkerrYuC/XLdbm+mvVNjYB86EMfwnve8x7cuHHjKz7Gew+lFH7u534O73znO/Gn//Sfxr/+1/8aP/3TP/1lUZAPfehDeNOb3oR3vvOdF37+nve8B9/3fd+HN7/5zfiO7/gO/OIv/iIA4D/+x//4FV/7n/7Tf4rNzc309eijj/IXIqYtjqqk1YgFwuieSra20Q43TuqUcJVNgyQci+Lmegsp1BC8Vwrvln+jQkgp4Um8GYWBke8qz6m85Fw0/Y2Znv9IoWUAL+SkBiA1AxE2jw3M+r5EEalpg/CQg6S6K3hL7UoUg0YUqOf/Ct2q6lEVWi/2+xlpJbrtC6BID7MrisvbEae88ZMRbC9QVSLijcch/vz4jQYxyySiK7pjsQPdN4T1pgYUsNqho09x1tPO4k1MO2pQdN31hXvk/Ud6VNv2xXFERnzgz1cVC+r1Kb61SI5ZAIt1LdqFKEyPKz4mheutNSlK8e8uPFeAfngGO61hFg3/rq4FydA9HSkuQSv0orqIlMhzvWwJHcltcewcCqFz1S2SSF0rREG73xz2x2M9F0XyO0KeAWV+8TViw1QTPQla945YkSYVm5uo+VjXiCgFt1HCNB7mdM73y5qEUphZRX5804/TlfuS7YsIyJceg0D7Z1W30MsG6DybkHjsFzWGR54NuVCQaE/tsflCzc9TJSLZhr9rN0nN8ZaFKgJS3o9pFJodhyjK0g2gzy1WVz30ilNmN3IoHxJZAUCx+hEr1/S5UoAfeqFoMlsinufNRAYVTb+92VzQiJHQpRRQ3ezIwV8B5twgGE72R89b7P2mEgGzR7MVMH8MiYbZbAcJP+2n9knPIZqcYHsENYjL1PgOUoHdit4sXhPj53Q9iDVeJ2Kmj26Yn+EKcYmS4xcUMLkVPy+0HFYOWN7wqB9t2RyMApuhoecE/2bF5uYRvkf5KYc4ESGORiLpmlPTejkGHEaxe36qkM1pN6sXBsWdHMUREYd6m1qHZiukBPlIOdMdKWS0rmUoYtCSq7Hje7Q5F2H5Ss6FDMjmSrQRgS5pMS9kSAvf7ChDeaQSyu1l+EKDAlK4eN8ickFnQzZX2ZmG3+pSY2TPDcxKw84UzFzDj2gHnZ1YmJoUMr2UkEMRsA8eaGQzJfcQvp4bxM9BQHEmNruDQI3lueotmgHMn2qpvVEcvEXjh1eEVsJ/nb4u1+X6Oqxv2gbk1q1b+MhHPoK/9tf+2u/7uOvXr+PmzZvY3NxMP3v961+PEAJeeumlC49dLpf4+Z//+T/wOQFgNBrhzW9+M5577rmv+Ji/9/f+Hs7Pz9PXnTt3+Is8A7yHeXiK4QGvap1MJCMdKNIR7JIC6OjYZNr+BrS8Bixu9GJsK2LNeovsIyOUp2pHod5Sydc+PlbJRB9BXj8W2b4v6uNE1Q2AaB8ZaWK6A7aeC3SZmaO35i1If4j7Y2qiOfk0IF+wEaq2FNqRTk3G6goLdtJCOO3sSplSFkB1zSdL24jcRAeZbMa/X+1TRA5w+8oTj40XHbQLaIcabWxsAo9hM0FKLW7eyAOTmjG50esG2P68ZzEVKSGqfw/iBJDOXKAlsqJ2Z3TfY/rqkGyQgyW9TDnQzrUsWJi2XU+vAvj/5YrNhlCUUgG7Ts/yoisQ+94wHCBZ9FqDZCcbl+8L5LjCcgVUNVKyefDUbcQGJ75266DvHfXIS9Py74AebVGK9DAAiRaW2R5ZiWtdbC9WteZoxuYDuEjTiiuz8LsTisgBpDR2bfh5MoZC96bltomFLtFG3W/PbAG1XEGt6j7zY43iFTKhTMXniYnnixr53fOLSIZzCIMct967i/mjAbNXj2kfPBn2qedG0B15ntSExOMqxypY3W9/VYtjWQesKgzv1Wg2+BmKjf3xt+wjO1pRzzUOKE9kMCHnbbbg65cHFHFnMzbXCEBxZACv0iDDzrQUmx5u7GHPLKqrAYvHPOrrHcr7bFD9gInSnbgtFQ9NT2ORBikYIGQBdsnrkBfKV0Qt7ZzaM7tQKO9abH+a9NPRXYXRbY1616PZAKavoftTechMB7vohx+D+4p2xHNOzuevEmMJsZ2N+jQrBXwMTWzHSIgs5BoQ0dpowxsHH3FQ02zGYDsZ8NQsaLNzjXYzoNlmcXv+FIv2/MyQYjkhamJOLZqtAFd6uBIo71u4ATD+7ZJ6nHNQ41H0wyAl13ifIzkKmgbJzazdIBoCsGEgpUlDX6mS9fnq0S41Baai2UBQQLPtEipDYTxdqxaPejZCU4X8VCdqWnZGxKobhtQYBcVjUhzT3tdUwPh5g/JIJXcrVwB2oZMD4vJmwPKmS8hHu9OhGwq9Mch52wH1vkN2kMHMTMotyc/keZ1i41GRnuVzaaJr5pO0Gzw/Vzccmm0K6c1CozzQQiumttDlwPIRx1yqloiNz0PSUA5uZ8jP2ci3E95vijNgeG/tWnq5Ltfl+gPXN20D8lM/9VO4cuXKBavcL7e+/du/Hffu3cN8Pk8/e/bZZ6G1xiOPPHLhsf/5P/9n1HWNv/yX//If+Pp1XeNzn/scrl+//hUfUxQFNjY2LnwB6AtNAOOXauTnQBQRxpssb2Isan3/cHSFTBG3CNnbBad5mXB4hw9YDCgn1KQCKE9k6i5OUeVJgF0FlMfkFtsVhZNRPA7wxhengnGClRylOt4kEYDVrupv2o43p6gbcTmnXqMHtOb1lnqIaJ1bbYv1pTQ3LpdiQM7aboRkzzv5oka1K/tzLNs0I2UCCmmC15XiTqWAkzdonD5t0A4VhZ6R/x1rw4oTWp8BG786hBN742wh7ldNwPi+w+I6hbbdsC9iukHfjBRnsv1Fbw+sXMBqT6M84otFm14AGBy2UK3jtD4Wz0oBRcYCPhargFCvRMg9KBG2J70APIUPcqkoyg6ht+l1DtGiNv0u/k1EPgYlm5O27UXWndC0kruVTigDqhr+6jaa11ztUZPg2TS1HUKRrzVJQr2K2xsL77pFyAx8mbOQLzNmaVSy3VUtlDSdaFL6eIbkEqUuNgKIVMco+gaQck9io9Z2wpmzSGGPMf1c9lO10vw4B7dD1S5RGSDkBt3umE2KZH5M37CDat9jeF9h9ojG6dt3sXjNFsKg13Qgs30jGd/rzPbb6wPpWuvNzaDkuVAUqHdzONFUZDPqHI7eBqweHePqx8+Rn/P8pmvPxSYaug8MjT9vN6kNaCcBnRhfFIcautbQSy0IAOlV+UMpoAcequXEOlKBkllGHrC66tFsscg2K4XVFRbQ3ViuLR1Q7cj3Xbm+dMDpGwPqbWD+hMfiMYqBixNuUy6TaiIIkNcMaDdJSW03qD0wS15P8lON6hrRojhgSEMVAPCkWkZrXu051I56jJhJFIMao7W4qaV5U7zeRJ2cnSnAQwTWmkJ9Jw1QLnkW8jW8Z9JEfXgf4iLWay/sQizRNY9Zs8nraKS8xmDZ6A4W3Q/tSqG+RsRA3RoycFEBw9ukQJmaFDXdKIzuAsWxgRuEXk8oQ6XihKhBbFKjQDzqe4oz/q7d9ESvrnisrlLgztDFgNUNUr/SvcLzfhMdzKJTl10qmJmh05jhc3YjT8vlU5PshE1NsXqzyeaD54FPLlpmpdANAq2FDVAca/ihR3FkkB/z/QhZkHwXumBFRH54h3khdgWMn82QzRUt6w0/H5GuG/U/Ln9lACCXGpDL9b/S+qZsQLz3+Kmf+il84AMfgF0PZANRh7/yV/5K+v8P/uAPYnd3Fz/8wz+Mz372s/jVX/1V/N2/+3fxIz/yIxgMBhf+9kMf+hDe+973fllNxwc/+EF89KMfxQsvvIBPfOIT+At/4S9gOp3iAx/4wFe/A6uKxZUPyL/wAKYNaaruZOpVHvPm0A2A6auJYFQ7CiETS8m2h+lNxcLbFfz71bWQ6EzVDtCOFbJ5SAUK8zHEbjYyROR3UQ8SCwxXgALrHMmaNgY0WZnORYctn/OGWpwxKHDjBTpDVVsKJ9/W4Ow7l0woz4lq6A44f0PHRmtTEnmXvMnbBad+7RhY3eB0MdKYUuK6cIlj5kl5BAwfhkRPUB0njKurgqgM184hEc3WW0BxHlL44saLzAcZHjrYmsnog+NoH4lkDgBwnwHReGi54Y4jxYNWnFGob4TGZpqAIHqHCxf+WPSvi5WlEE76CeeZNh7T0OPfaYUYYEddiBTZKe1cLgNRvB6LYQBqPOJjMml+xsP+9WOwIEARdtROGA19cIr8YEahdpGxWZHCX63qNXqTY+EfXzM2F1ph/ppNnL15EzCGqeHSrITJsM8ZiQ1H1G6k4yVFfHThynNuhzX99kcqG0Cx+vaENr/xmATf623kWEYkAsbAHE0RrEEoMijvMXt6G9Mnh5g/uQW3O0a3NYC3wNP//jQ5xc1vKhy9hXoOAIDzCFr3r7PujrUephjfq9QghZQ7Mrq9QH7Kc2/+mLgmLRTy8xanb9xAN2IBqDt+XpTnORpNLqLxhF1xyKArTr1jOnWz7dFssmA2NSHCoKWhfqxGcUJai1mSWtiOqSuIYuDymAV4caLTFN8ue/pNzC9xA9qNR8F1ecz8D92yOI0oYTeUyb8U2coBgwM+VywiOfBQSShsGgAeGL3IQUUcuAC96D5+B9jAdAO+XtR1+GhZroV6I0V0O5HPsOjeoqi7GwVAE/HpRgGjl5jibWq6eekWcEOG+7UjHvv5Uy2W13n9qfaQEtGVUMMGD/vCN25vtR+k2eA9IZqHELUJKO9auII5It2w13KU903S65hGXMHO2cBUe0QEgkGinroyJKqeFv1MbI66IbcnO+P7pGsiub4IMrChbqjd9Kh3ZBhlQgr9iw0Zr82kfTVb/A7Pz4BulQQYIjXB8TUiPS8/ZRNTXXPoJsxicWVIOVDZqekpu3NStJotitWbLZfog/VuQDalKYIbSAClUBjLhwrLa9z2aj+kUMJ2A5cLwK/+6q/ie7/3e3Hjxg0opfALv/ALF37/Qz/0Qy/LTHvXu9514TF1XePHfuzHsLe3h9FohD/zZ/7Myxgpp6eneP/7358o7O9///txdnZ24TG3b9/G937v92I0GmFvbw9/62/9rQuRCpfrG7u+KUXoH/nIR3D79m38yI/8yMt+d//+fdy+fTv9fzwe41d+5VfwYz/2Y3jHO96B3d1dvO9978NP/uRPXvi7Z599Fh/72Mfwy7/8y1/2NV966SX8pb/0l3B0dIT9/X28613vwq/92q/h8ccf/8PthA+JR2+rgPKIgWD1Fm9IVpAJ5YG6AMy7jxF+ZRfVLh1CAE7KdMMbhs9BmkNFsWCakOl4UyJSESlZo3sezSQ6kfCG0Yl1ZLzpRyEiQEQgpo0jCD/YIjmltCMReHZAvghoxgrVjhRDS2D02RztJE83+eimNbxtBW1RpP3qvph3hWxbo5IeJQrEIwUrWvyaio2EKzmVtEsiJNWu0E88/6bZFBqacIy5XwqTlxyKU1YsPtNoNiy85XGOycdR7NqNYiEik9q5bFd085FCqjzqp6/KCxJUBRSnvU1r0BoqWq9GzYRSHB0o1VOIFktBS6SwtQbd3hbs2bKf/sdm3PveDWo9nyOQqgVjiKpEUXbUlwDcjpG4Xc2XfdEcz1lxyvLXdqAfnNB9LiIeySZYinit0Dy2A+UCsgfTnm4mOpfJr99hlkddc+IvmR+qArdLhb5Ij/u93rR5f7Goj+hNFI5rQ/RDAhNVtBSOmSFeKFFrgnjlAkKRo9tlt2qWLZPalUIwCs1YwRuN4tQiv3OCYbaLe9+xm4wGohtQu1nATKuL27uWO5L2JR43F/oGTx6rpGHTR+cYnEywuMZpdl6R0mKPFlCPlehGpJs0GwEhD6jFXpS6Bb4l8TNjF0B1RRo9GyRDh+LcbhSg47VD7GXLLxSoxRZXOxlYPLqCf2aI+qpDec+g3gpCa1S0ND3RaVxcnCAlkpeHQDegGUY252ez2u0pQqZSyM6RnLTaMQt3JRRR3apkABERgaCJzrZjTq59LhN4afrrHTGhqKR4L/trXHRtskJtS/a2Vf9exoyhdM2ZINnTUoPmqVFYKNrdzjSyGa8zroT83AErFu5mZlHvOyAAdmpSIxKviXFIEp3+mg1O7yMik9Vy3ZePq5qJQH3Ga0ZEVIIMlKL+JzaDTlz88nMAoEmJy8XkZC6vIyh8pOXGVHYvzaFdAqFScANAL2kewvsNXbF0R4Ret7y/uJznbTdmI2GWGl6LS9tK6GEaCJlHsKRN6Yb2wqSLqRQKy/yngOzcsMkWOq4rCGH5jAMouyIqWJzyes6hkeF7MmcT1mwD5QHpZvWOoFty34nalOGRwuq60MiuvgKQArlvfc2f86tYi8UCb33rW/HDP/zD+L7v+74v+5jv+q7vwk/91E+l/+eRmivrb//tv40Pf/jD+Pmf/3ns7u7ix3/8x/E93/M9+NSnPpXy1X7wB38QL730En7pl34JAPDX//pfx/vf/358+MMfBgA45/Dd3/3d2N/fx8c+9jEcHx/jAx/4AEII+Lf/9t9+dTt1ub4u65uyAXn3u9+N8BVgw5/+6Z9+2c9e97rX4Vd+5Vd+3+d86qmnvuJzAswG+ZquON3WGsMHDZb7JX30GwCajjfRYjcY4PSL29iqBb5u+puhDX3DQC9/KSRa3kxiuJQTBEMpFiGrfQ1ThXTjVQ4XROcKSEnALkPKEvGWzVGbIyXl6haAuN3oLqTCytREQlb7hLqt/H9+k5OwKJqPVCY3RKJxRV2Lt+Sze8ubTdxHhipyP51l1sbg2MFbhflNw4mjuL5kQr1azxMxFaTIp81uNnfQlWPRV1rYhYKVYszlWhoJlYTupgLymYetAqaPG+RTyTpxoluxQo+b8GYfGyso9E5H0fUJ+JJC1SRdR1xhuYLKswt0IXu66NPNrUHvJCW0KLge/Yg/B9am7o6vFR8fvATmxW2o+8fFIr1zQGahT+d98d+2qci/QI3yFFh3A4NsfSoVEZdBKba6hiiBRt+MdR0bm/j6QN8wxcL9wudJk8YVKVwxCb6Tz1psVsqCtCsJK4zHP2gNFQKCUcwEMRo+12yc5LWzpUczjlbV/PwGo1Bv91Pk2Oi6QvI9vpTisP7v5MSFHrmR9ykoRScuaajyqcfsUYN2g85Po5doXlBvyTR+ywGt4gXBq0SPgkbK5InhoHESrbqIdgQ2+0uVciC6iYNZalRXHXSrOWk/Vli8usXGJ4aod4H8yKDZ9UBQKA6UOF7xfWm2A4oTCUKU60S1Jw5/K3Ht22CYYTYFuqGEgY45jbYVj0911WFwz6DeF06/UIe6sTQOOaTwB7oRLVtj4RuRIDod9Z/56AboCkAJDdOV3E5vAJX1Q5l2g9eaTtBdI65a3cijfKjROoNuq4NdMG8iWrZ2Q+oNurEHNOCv1fCVQXE/Q6c0Bg9U0qpEumwxlcZrAoQRNQ12oQHV5yhZYVnGzJBmi6GJ3RhAtNV1gJKPG8NXZV8msSmSYzIC5o/IPQdIWSPFqUpaom4IICi+vjRh0dUqP2OzmJCmMvQaRsXGAZBhlVLQK17j3cizEWmJwPmBXOccG2fqTCiiD4ZNXBxKRRe34oSNW3kojUlNZ7cYxLh6soE+zdB2ShzQeCyjLjI2aG7A7+2Og895LVBeUJdaQZ0p2IXC/LGA8taXXHO+EevLGVl8LZ7zq1jvec978J73vOf3fUxRFF8xM+38/Bwf+tCH8DM/8zP4ju/4DgDAz/7sz+LRRx/FRz7yEXznd34nPve5z+GXfumX8Gu/9mv4lm/5FgDAv//3/x7f+q3fimeeeQZPP/00fvmXfxmf/exncefOnWRE9K/+1b/CD/3QD+Gf/JN/0lPeL9c3bH1TUrD+l1+RaiEXk/z+FNmC1IRYwAAANC+wxTGw91uk9OTnkFAooVYMkIqMeocX08EDpm/HiVo+FWqDaC2CYZGcz6gFiRkDCLzxa2lGtBMnKCnctQeKcw5M7AKIYnVTA7uf8WiHwGpPYX5DY3mV23b6eiQqV71F2127BJZPdOxyPKkB66GKdMZCErtn014bEoX5uuF++pzJ0LoDVnsGpg0YHIfkkBUduaxQOiJSFC0uN1/okK08TOXgCwNXWmQnS1R7Fl2hBP2gCD2fBQwOPYqzgHzmUe1o1Jv6grC/OA3IZ2ITrHstiXbA+G6D4qyjAD2iCXElQbbqfxcbEaOhtrdSce83h8ygqITqFJ2onOuF30azyI95G/F5I1UroitRfB6DEOuGaEtEVdbpXN7DX99Fd2MHzWM7FxEZAMn+F2AzU9fInr2Lwe/cJvIRhdXRPWtVEfXQEjyYW/m9NAqxKJdCPURK2LrAe83NSq3ochWRkDAsLh7jQSmCf+633xox7yM2IRmpYCEnulHePpM3ls3V4NY5tp5bISjg9nfl6K4T3dHtGtLVcZKazTtqcnwgkiRajwsJ6EYjZBYhN6RsRdesaPGbLJk12rEWyqXC8B5w88P3EKxGvS1UlUreh1Yj2IBuu0O951BvM9egnfS89l7QzWJdS9pzpMqYGrAzI/oKBsr5nCJipQNmTzs0N1q0m56OROcK1T6ff/CAzU1+xsl8DBmM1JYoZG5FbxV1DsEgufMt3lpheZ1/UxxS6D5+USeb7OoKC6ZooRt/Xh6xWNUt99EVfeFtBDlgsB2SFqDdAM5e79Gt0bN03VPZyqO+2I95HczlYK6FboDynmUo4oBOV+3E051JCnuz1MheLJGdWDT7DkEH0mQLoN3yaHZCanaI/tBpqzgiatKNQjL5SKGNlo8tj0gdS1kccg6uOwN2AzHsiNlOUY8myG43EIvwJdJ+LW84NGI7O7wrTe4gpMZkdFdOt3FYy7Pi+2uWTId3g4BuTM2GGzADJbqGARD6FYh4LHUKeCSyLvkldd8M6Zb3IrsgIjJ6Cah3+bN2LPcpQaWLWzmKNSeuiAiu28sPHvJ8AIDhbUNR/TF1TmapYecK0ze3sAtBvbbxTb2m0+mFr/UIga92/ff//t9x5coVPPXUU/jRH/1RPHz4MP3uU5/6FNq2xbvf/e70sxs3buBNb3oT/sf/+B8AgI9//OPY3NxMzQcAvOtd78Lm5uaFx7zpTW+64IL6nd/5najrGp/61Kf+0Nt+ub5265sSAflffYWuQ+gUVEEBLqZzlKe78JlhgyEFc6d4k7ErYPa4BDAV/SQqXmwjypGfCzrQcbqlPG+mQI9mRGtH7YD5TfJpxy85+Fxh9FKF06fJAdCO2SHtRLZFckdcLhf6wOfOlsz0WFyjkw4E6jfCN1cBAr9TG7Lz+RWO3jzA5PMWpolcaI/J8xqdaEOUA5RZoxlEBlAGNi2xOZpzP2c3VbIHNY1BtvAYHLIgazZUEvdHtCaf9/+vtgzyuYcaWpT35yxk5xV2Pv4AfjwArMb88RFMFZDPHOptg/LUodoyKE8DTM3OzWeAaxR0R8GkCsDg2KEZa2p81nBuPyqgXYBa1VBJxyAj63VNgDGAAaf38TGdg1o2cNtD2OliTXC9pjGoaiSaESBFvVlrFgJ/F21jo5hdr9GpmqbXLSiNmJyuD8+gI1oC8HnX80qiO5fzpHJFNyqxxnXjEm6cwRUG2bSBbhy08wwePF+iu7kLc7qEmi1SKjq8R3t9E/Z4mcThIdOwR72xxAWamLhMqfnqYsG/lmLuN4dQywZ+VMCcMdsjWKIgaimNXcwIkdDAUGSYPT6AzxSuftLDFwarK1lCGoIRKuBZgK4cG7tVhbAxJgqyTrGL74Xutz9YQ/2MXkNGwGZ0cNhhfjOD6oDtZ1Y4/OPXsffrp4n60m11fWaj/LkasPAzJxZ2ycIym7HZ0DL97QYsfoMN0LWGH3kELXkNlkUgP+sKbhiw+Vu55DUYWk+/qka3slCtgpLKMljAing30nl0gz4wsEEKGGwnSDka+Rkwe7WHflAkQXa9HVA/2sEcW7ihh9lpgIMSdkEev+4UghheeOH3N1sBg5poSbMlk+5SKFaG1y0nzYvqgOFcE30Vqlq9w8EBTSUEIRnI22GJ2tiliM2t2AKfK1SPtLCLjBa1mg1dfqoBDzSvW0HfGQC5R3acobnRwDcaemngSw/70KDeoW1uMKQQuRIY3QOqXR7XbI5Eg4LnNtbbREryc6K0Qa7PQfMaaZdIoYtmKujyoNcGWdH0tRtyX6gBnymUh4Yi/Bqp+cqnCtW+R7sBNNuS+bLk9TWi1tlc9Ro9A2RzjXbMhi0oNh35GZvp6rrjTGSpYZw0HQ5MLT8xyWikHbNZtnNql1wB1FeI0CkH1HsB2ZlmEru4DJpKDAdWtEMe3mUeSbbg89mlDL4skAtNMBqLDO8D88cCupHC9q9nmD/K4EmcfeMpWPHe+7V+TgB9TICsf/yP/zF+4id+4qt+vve85z34/u//fjz++ON44YUX8A//4T/En/yTfxKf+tSnUBQFHjx4gDzPsb19saO7evUqHjx4AAB48OABrly58rLnvnLlyoXHXL169cLvt7e3ked5eszl+sauywbkFbhUlkGpDMmRKASMvzhFM95CV5KisLwmbkyCeCAg8XVjkrld0CrQngLzRwNGd8jTjjaL3ZA3sPkjvOlHLQQ5rgwobMcK08dYxFbbw0TBqnbUhSBC0/ZUjqg7yWcB9aaCaQLK057mtbza35SymUK25N8PH3p0A4ONOx1mN22iQmx9nsnKqxsOuuonvT5jgWCXFNk32wHFsZLJLDB9DaeFxalK3O52pIhSaNK2inNSV0wtrllnXrIDAtqxxuDEoR1q2GXHorWTYr9toY8boMhRjnP4TEM5Cj11FzCZdujGVjJWACwCglXoSo3y1MMVCtWWJi0s0+gGCs2GRTPRMLsW4xcVbOeIAozFttXqVHiqdc2DFiREnKTUqoYeZL3lbWxCmgYxLyM1D6uKCeNRzB4TxH0gytC2/JqMaDsbEYcsS4V3onh1jhVudJUC+H9leyqWUghbE6IRdd1TuxqaLphVBXNqe+TCaITCMgndGASj0F4dw0wKmIMzxOBE3Ti4rQHsQYPpU2O4DJgMLYoXjhOiEsoMarZi4xOX0T21CQCUQrc3hj1dIigF3XQU0gNQVdc3BoI8QSu4yQAqBLQbBVZ7CvksID/vcPZkiY3bDXSTkwbpkeiR9sEZn6fISe2KxxIAjKLmQ0N0CNy2oDX89giq6kMO0bQIgxznT2Sod9joPnjXgEF6WwOmVC8U5qWB2myAaYaQB6jMIzhy8n1Ot6LygJQoTts9iiOdeP52zsfZGQs53SiYmUK96wEb+HbrgPM3xARwFnqbv1Fg/nhANlVYPdamvBCX98nZqmOzYBeiCSiipkOahYecsNc7wIa43XVDiE2ugrmXod2gEDh7ZkBEtKSAvdqF6LL4/K4MMI3C8kZIjkzRDdAu0YvcK6RsooiOUpOAhJ7GPKRgkcJi47V4cYP5F/Ea2U4C7JlFfdWheGhoMRuITLS7HcrnBqgeaQFHTYg5yuDGHhuvPcX80zssjmd0ffJ5gD4jJW15rS/mmy3J2ZixEfAFEYLxizqhM5FmNb7TX/ftvG+qonZm+IA/i/tj50h2xNGVEQBWV4mSZYKiD++y6J+/xkG1TEG3c03kZ4PXLitUvpAB9a4XhzAZRs0lOT0LKB5SA9PudFC1JnXOA1GUDvSCe93QqhjxM7agCxbkHkNROf9OOTaeRijNw3s6Nd2rq9RbVlcDyoe9YxfNSjzKo4gq8to7fRII1yvYl0o09hvfgHw91507dy7Qloqi+EM9z1/8i38x/ftNb3oT3vGOd+Dxxx/HL/7iL+LP//k//xX/LoRATaGs9X////KYy/WNW5cNyCtxZRZwUuSJCFYdHMO0m/BWQWk2G9WeJAiLbePqSu+OkoTRFRuEjecVnbBE67B8UwV7p0yUC1+Qf5vLZNJbumPpFkDkIYtAMd6Q7VL0H1JE6I5C7yb+HXiDOH2txrVPtlhesSjPHLKFQjcgd9lbwBUKowces0c0xsFicNRgdEC0AAB0E7C4bpEfGxSn4k4T6UuiK9GdYoPVEnGJDVI2J+VDe0BVtPYNOiMNZB7QDVSiyOTTgOVV4fk6YHDscf64xeatDvZsxfdivuzdn0TUnX/xABgP0W0PYZcBPic1yM5aVHs5uqGG7gLyMwdbecxvWmx9ocbyao7FNZuaNQROaa1j0emHBfSqovC6zBEcjzuMAuTYXBBZS2gfrIFeCLS1rq2IQnOAOofoEBXdqNafLyaKx++zRd9kRB1I28JtjeCGFvntE0E6pLGJmhIv29U0PJ/LHCqGEGqTBOeYjLlfQL+NkS5lVEJRsgdTNiSt6yloonuxB+d8zMJj+zfu8HnHIzY91sAPc5hVQ9tceQ3VSeMhxb8vMui6gxuX0HULFQMP4/YAQodC0m5U1wdY7hsMHzrJoVGw8xbDI4PzJ/LkVmQEKdz5nOSHeA9kls2HBgXuuSUFLyIc0ugEpQCj0mPaq2OozqPdzHH8OovqSkgaiG4U0YEM4/se8xsam89qlCcFsqXH0VssRneB429tEXQACjYj1TUFXZGKMryrhTsPNNseuuG+u5EHnIIbe7iRFH4yIi0OLOodD11pFumDgPM3OhQHBt2IAXQRRQC4jc2En91IpYm5IdFNrzxUKRlcBQ4ashkwf22HwW3bP36pUR6zuG62eF2p9vmZGhwoTF7kwCE/V1je5PZGkbLPe7QY4DAk6sOC4mvrRrQkc6ATKlikgmYzogmRzgPF1+yG6ENYNb+bmUY3CigPKErXHaAOMmpsplaE/wpu6AEdsPjdHbRXWwRJDlcBGL3Egr3edTArDQSFdsdh4xmD6dMO2dRg8ECur5lY9nb8HrKA/JR0XZ+xsI4OW/CCpt9w0K1JyDkbQdm3IK5lQssd3lfpvXFWAhzB3I/Fo57FvRakfiHoxL6D6hTsQkN1vchcOV6rg6UQvd0ghU0vjITUcrhUSngiFNBteOiaeSXRebHZpL2w7rit3cQjO9dEtIQR4KV2jo6RMZC3fEjxfHmoUF0RQxfR0gzva76Xitsyfgk4f22AulfyfnT8CmC0fx01IBeiAr6G6/r163j88cdTZtq1a9fQNA1OT08voCAPHz7Et33bt6XHHBwcvOy5Dg8PE+px7do1fOITn7jw+9PTU7Rt+zJk5HJ9Y9Yr4BNzuV62VjWSrWicUoeA8a1VSkaPNKZ81ttYRgQicmijxiFYXBBpKw/gJEdxwht6N+KEi9QHpo9rx5tyJwJ1ACnLQ3fA8EAccuTGW54FFOcedulTCnjQCqsbHtVVh26oYRrStlypYVeeTcDUU+xuIzVMwRWGBUzWTymKM4/yiBqK8oQ3/fIkIFvSyrc45c1y64UO7ThOUnnhzOZyHLIe4XEFML/OzJF8Ru6yaUNvoSv7qx1Q3qOgWnUeKYF8nVqkFVA1sIczmJMF7OkSuvXQXcDgsMHwQQtvFUKmoDpmkNRbGVZ7Cs0kiu25rfksCE0rQM+W/c2kaqA6B9X5vmgGLmZ+rN98YqZGRDzy/OKNKU7+I6JhrVC61or69cem1HRBJrSG29/C+evGaDcyoh6pUNf9d0uEAlGz0LQ92gD0rxsteOO2ywqZ5XuXi84kUqCqun+9EGAenLKZcQ7ZfM3hy/TUMjewbF7i8VvbDABCz+A2qBDYCMj7G3KT9l11HqrtqBdRCkErLG4onL/apkkzheKk6MTCmoYJQDZt5TkzBKNS4xUE4Uop7LJvABBKmxpMXTVoJxbHbxpiccVQG1AyVK4dBwmjA06etiiPOuw808FbYPaYwvy6QTsOWF4F0BIBUbVGfhIFAhJItymHKAOyKQtF5QDVUnRrF5ohbscK2blJhaSd04o3mwM+9zBzFsvMqghwI496z6G65tBsC0VKCU1Ugv580dOydMfrWT4VncYImL/aYfKMFbtworjRyGF1zQGB14fJ8xTjr64GzB4PCQUNio1UdTVInggSwsHzIE645ZBEkb4Fzt7aIp8SIdCNUFZFP0edTO80pQLfb1MrQJOuBrAQbzf7a7Fp4jBFJbqZ8gooHej2wUZP7dXwWx11EhrY/gwTvv2rlxjcNai3AXtu2DBsyt+JnkU52hoXJyoJrLMZ92t5I2B0l3SroIHt3zPJbYvPxUYu0q2iA1izEZILYgyUNbWk2wdgfEuj3glEq9r++cxKQzmVqImmoiYkmqUop9CNnWhrSKtiHkhAu8EsmWjqkJ2ZlHuCIHSrhZI0ejYp5UOeg9F4YfqGjuL/wHtENyRyHd975QXpEntqVyLdX6K1OxQRpGyq0vv6taY+/f/LOj4+xp07d1Jm2tvf/nZkWXbBGOj+/fv49Kc/nRqQb/3Wb8X5+Tk++clPpsd84hOfwPn5+YXHfPrTn8b9+/fTY375l38ZRVHg7W9/+x/Frl2uP2BdIiCvxDUqAbf2fyno7Bfu4pq/geM3j7G4iZQ6a1qkgDGgTx0evxSwvCpCaQcMDomSaJlwxvAx5TnhsSvAlQxt6uTCu55grgJF5l1Bu8x8FuAy/rsZKQyPPNqhhqmJLNRbQNhsYQ5yHL1FoThGEgQODjUdehpOt5oJb77tSOH0qUxuZoFNi1XIZx7bz7RoJwaYB/hMwVQe2gHVtkZx7mEahfNX2eTGNborU1uhS3jLY2Vq7gOUpJ175qC0Q8UwtwUbHihg44UG+nzNbtaI3sFoUosiZalpAOSAd1B1DXM2R9ieIOQW2d1TlM8DYVgwI6IEzl5Na1PT8oa+vMLJc3nmYRa+n7yPh0QrghToq1aKds0p+jqUHAJ/1nZAI9qK4JHmDOuWuc7zdxH9EE1I/fgu8qMF1PmcTUFQ1H00LaA8wmQEVTeoXr2HbqhRHncY3J0D2sBd2YA5mvWalEjpMqbPJYm6lYhuOC+In+sbkdgU+YAwylBdH2H4uYf8fdzHzF5EJsS0IQxyFF886ili8joqBNiZBBkCULApeDDk8sERTYWerog6xEYqZXa4vgGN9DCrMbwzR/aqzZSUbCues4vrTL2OXHlX8GN9+vohiinzRiZfmKZUdLWW8RKUYoyMBCRq0by4rRHCRGO1YyTMT6iExxrNFrMm2hHPqWwBzB7NsP35JfZ/1+GlP1ak6W0wgD2zCCakSbmdahSnzAmyC05+zQop4yemcfucXH2zUqj2AnzpYZYcIWdzUoHazYDikBQaVwZ0Ow6q0oluE52WfEYbV1/TrMFbDkPi0ASAWKuy4M8rAMGk0M/yCDh9E5sOO2d3EdPMz1/PAl43irkbNYttu1RoMwVdqRQ8GHNRIjqjPFhsG3FC8jQPKE4yrPbXhOpBkJmc19tuSHRBBf4+0k7tlE5hAMSh0GNwoIl4rojW2LmCWRF5ggZClSO8eoHymRHaTQ8/y6BqjdlbG6hzC7siLSn/3SFG/8chpr+xD90Ci8ccJs/z2C+e6DC8ZVMuCLwMjE6JnivHBO+u5LWo2ue5W5yI9e4S2HiB1/LVtQDVUuuBQHS5Hclgq5FmSzSEToTtIQvQEgQJCEp+rJI+xlsAFnADomzMWFHwmUGwzAHRNZPNQ+FR3Mt4DnuVmiPveL5AGv1mg8hFdcWjPFAJgewGvJ8V9y3KE+5/Nuf9rt7lpS6ajyweCX1jAyI7sTHthgw3tMu+Uc9mCmr58lv5H/WKesav9XN+NWs+n+MLX/hC+v8LL7yA3/7t38bOzg52dnbwEz/xE/i+7/s+XL9+HS+++CL+/t//+9jb28Of+3N/DgCwubmJv/pX/yp+/Md/HLu7u9jZ2cEHP/hBvPnNb06uWK9//evxXd/1XfjRH/1R/Lt/9+8A0Ib3e77ne/D0008DoBvqG97wBrz//e/Hv/gX/wInJyf44Ac/iB/90R+9dMB6haxLBOSVuDoRtsbguU4Kn6KAeeE+soVHNuV0NTo+FWdIIupInVjtqsRhjjeGboCUGqzFSrI46ad23vKGD9XTEKIlrl0FFOe8iZanHpufn2N8r4PPgc0XG3ij0JUKq30WRdkcuPL/yqEcBa6upLuNckC9QR/2boA0nVr/t8spEG/GGq5QaMcaB+/MML+pUe3Qc35+06zpUzRW+8wWgQKg++kVhPahG2Dykoc3RGxiGJnL2fg0G9TXFOceyhOVKe/P6fxU1f0kH+D35OhEmhyaBinIbzSAOp1BH52nYlkta5THDbI5b/ZW6HEIEnYoN+niuGKwX3Km0iyoM0v6kzV87VWFGBgYqVdxKp+S02PhH3UOdcOvmGoeQwDbFlgskZ1X/XkYm5uYCQJALVfwkyGaTcum9s4U6mwGaEVNRifPF3NG4utHzUlEU6qa+1PmRGfyvEdO4ut6j3a7RH4idLLlCkm0HsXkWiXkAG0LPxJnqxh+GN8va9hYrCMLcrzUqukpVRpJcI7M8Atg4xICQmbYsER00gW02yUGRyGdz4PDDtnpiva7IvQF+Hmtd4HldYWjt2icvs7g8H/fxuy1Gz0KYgwbHsvmptsbIwxyHHz3q+B2RnDjDN04w+DYIZsDm88FDB9wQpufUfMwOOTntTwL2PpCBb1s0UwsHvlojaDo7lM93qLbdOg2eXx8xmJv9roO8ArtJDZ3vC7YlUzhO8DnzGtotwVtODNQrYIvPdoNcu0H93VyWtKtwvCWpT4gFolbAdUeqTfjF7QUc2yGuD1Irx+d71Y36Jo1usefje5K4zTXCDmn2HbB16j3PJRTKO8b5CdaQvmoP2h2HAYPNIvjti8sgzQ8WlyiOqETEYGQUzOIi9msb0JUx2vd8hoRTSheWyOlKYq5swXDHbtRwOBAUxifE9GJSd5e9Hn+ZgXdKagvjhBeP0d2roFWEyWZWoRJxyK+9OhGwPmn9km/GwYUxyYFo2bHFlBI+iC7IhJSbeNCqnk74XBqcJ+Wvabl4+p9nwJTh3cVtp7lueFK/sw04o7VsOGod4g8VPueehQRlBcnPG+U7ymCPg9wQy9uZ4IkSIMbDFGXbErtUXFoUN7NkkuVrqkfYeCuQnauKP6XY9xsBWQzjW7M97bd9HRxy0gpnD/Kc688BNww0G1t7NENA+qdgMGBNLIFEZyYBwMAvqRDWfx5MAGrRzrMn+xwuYDf+I3fwNve9ja87W1vAwD8nb/zd/C2t70N/+gf/SMYY/B7v/d7+LN/9s/iqaeewgc+8AE89dRT+PjHP47JZJKe49/8m3+D9773vXjf+96Hb//2b8dwOMSHP/zhlAECAD/3cz+HN7/5zXj3u9+Nd7/73XjLW96Cn/mZn0m/N8bgF3/xF1GWJb79278d73vf+/De974X//Jf/ss/uoNxuX7fpcLvF25xuf5I13Q6xebmJr7j+v8d1ghJtWkApeDnC6iygMoywHscvPcpCgrzHvHgtJEX52KKlHVhKgrKqx1BBERYGDQRDQBY3BQaVsubjxMalpdpYrZASjCut3r7XVMHjO53WFy3ksyuxI+dj5/c8Th5PUWI+TlDqZotuo64gjcuXVN/olr+X/me8hBzQGLj0w4VTB2wuKkwvB8nvRS7t0OkoLB1oX1MCI4+/7QgDhiceEwfN+hKYHDIBPLinALxYICN51fIPneHmo+IHkRbW++lwO36JiEW/7G4jRqKLEvFrt8cwo0LLK8VWO1pdCKniA3f3u9UyE6WUCfTXmsB9M1OtM6taiSTgmjLGylVzl1EAFq5MUa0pnNENdaQj9g4hK0x3aHWaVJry13bwfKRIUxNjcfw9+7J9kvlqKTBiMcoiqvjNkS0aF3EDtKPVCui+/g7peC2hzAPp2gf3eH5NbSwK4fs4Ryqbl6mz0B0q+p64bbyPn1fb0guhP4BPcJ1IfBR9e5YRiNkJp0HQWv4UY6jtww5jd3g+fb4h0+hpku8+H+7KYnPck7nQnkck0A/vGdYXFtg84WAzecWaDbFDWxgUB5UmL9qgNWuRjantbMrNZoRC7XlNU7udz7foR1pLK5ruIy0zMGRx8bnT6FWDZqbW3j4jgFWVzn9Z2BogJt4oHQUo5sANBr21MLdrBCmWeLpZ9PeojbadLuhh64lT8SSC2XnCs1+R/2aIBK+JP8+ZtzoGqhudsiObeLeZwteU6IdbzcUjYY4KKX8I7lmRa1Fu8HBSydDi3ovwCyZtj2+pTF/3DP4b8rrQbvJyXi0llUuUqSAxQ0+ZzZDSvu2S6Q8kE50IFFsnlzNxEUqipq17EM7lqGHOHApeZ9dEXiNWpHS1mx7sR5WiWrVjbndzc0G9kHO5mw7iBMZKVS6AdrdDsMXM6xeW2P4+QLdCGhuNBg+m9M98IkGo2dy7lMBrK6yYRm/oFOjN380IJsr2DnvGas90btsS9Ngee6urvVFeTQ4cXJ5cjmSJe/gQCVRf9Q9tRPqgcxKSShuSHa5CDwG8RpoVgrwzLLqBrQuZl5Lb5PbjYLcKyT3JbJUrxBFsUvuXDdgU52fahRnwOwJInXRUt5UdNoycw276hGV/FwlmluwSBkj7YjNRyYIUH29Q/HAohXEBWcVnvl//H2cn5//kU/YY+3wx9/5D2Bt+Qf/wVexuq7Cf//kP/mG7Nfl+uZelwjIK3EJxSesOLENTQtlpIjrWFxe/X/epv3tmqGPXULEn8DpGz3K45DCr6ptdQGe1aJvaCa8gean/Lso3AN4U569rhNhLS/+q6u88SyvA4vrgDcKt99t0Q4V6k3eHKOjSVBsGMYv9Y2LXZL+BSU3eBGAKxFv+kyajrXiJCEzNfUe2YrTznzuk/f9uh6l2aT9r4oTyAYpoKvaZRGoHXD2hEF5EpI71uoKYGuPYIiCZM8f9MV0bDzi0tIEtF3fHAA9+hCzNJQighBpNlUH1XmMby9x5RPn2Pu9hrasDTA88LDTiiLt2HxEpCXPe8G4nAPM3xBtxbqDVZz8h0D6VqRqFQUbhEipCkLRqurULKlGmpJINwJ6yhcEJVBI6EzYHCNZ8UaUZl0DEhue2JjFBsB5NiJtBzQtXa4AYFAilBna65uA0TDTCn5njHZskR0uYFo6pflR0Td+8bgDRJqqls3euIRaLLl/6UNiuF1xO75UCxObxpjKvqatCUb1FDHvsXpsjMO3DbH3OwvYmgiWXQFulMNvjlI2QTZH4sGbBsjPNLIpE8J9BlTXHM5eq3DwzjGO35jj7LU5po8aHL59hPk1DQp/FY7fbNAOKOR1GQCZJh+/3mK5rzF+ySOfy+coV0R2rIHynFibSmH78x7dSN7XTgGNhjIBpuyglwbdhoM+KAAb4EcO7Q4RzuJIDt+KE98s2rpKUZxNhQr2wIr9qQJUQNhpUJzKsZdr0/CW7YMAK2Dx+prZIgs2RnapkM2JtkQtRbXLpwiaxXG7wYGGN0jhrLpRaB6vEUqPbkh3Iy80Uzo0qeRUlZ/z71ZXA6pdvkf5ee++ZVf8d3K7OocgK/y7TgYmzTZRi+IUydI8NjYxvTwGHuoWGDwUq9hhQDfmvoax43VsRNqnbmlzPNxcMZBxm65julIpRDEoYPhihnYEbH6qEKoZkL+Up2TzvY9lWF3hex+vh6MXNeZPeOpWSmDyglBfN4FmzKah3WCjpVtgdd2j2SRtKupAvOkthl3O5y2P+Z4tHnMiAgcQxOq25rlnap47dqGQzUjLqh5p4UcOfuSQTTW6IYMH2wmblPy0v1cEzeY9P1VMP5fXdwM2H37oUB6yAe1Gsclh41Lt0EHNl2xqos308I5Bfi7N4CbfD7vg71Y3fNrPwSHgBx52ptCO2RQV9y2zbpr+fvUNX+Hr9HW5LtfXYb0SPjKX60tXCMCqgpKCUxU5opVqiFqAuoFdMtgqWGYLmJo3pvq1FXSl4K1KzUNsDGJGSL0FEV7z97bitApAEvS5oYcadSmJl6I9PsblkGklgGsVCwSpAeNjI596XdDoyl7sGHne2iHRNYLp+dMx4TeK34MGulKh3uRNpSs5tVpeo9Vv1G/kU96wYoOjnVAFKm5Ttgiot8SFpg0oj0hX2fm8w2rHIFsEDB6sLlKsgL4Y9b7XHcTGJBbZ649ft3cFAGOgOgd7KuJyF5AfL7H1HA98PvcUPtdrzlXB9zSmL5eKvp4sHjUSNUXOF2xy43bHgt3oHgFYT9mu6163EQKblWgPGwL02QKm4baXB8tETeIb7fqGqKUgPAnLE3okxyhunxy/YBm2FzJStcyi4fNVDeACTOWh6gbZ0QrFaQ03FL5MK/qYuBx1JX5rBDew6Ri1+6OeHhcRjKj9kMC/hIDE99SsNVIhEFWR96C+sYHzx8VmufVQLiSkrRtlpAAO5HNXEvVzef+5iC5CrkQS5HrDaXGzgSTctiLOji49i0eArS+2/WetIK2r3gZWezppnRbXKHKvb2zi/MkBymN+hkb3apSHnBIPHmjolQZqDaUC7M0FUHi4oUe2VUOtDIoDCuujc1QzYaFPsTsnzNlUggoHXqbjiqgIgNHvlpi+rUY3DqkgX7y6RXh6gXYjwKyA8otFmqbbOSlK64OIai/QwUhQpMFDGbSIK1+zxWK6PAL2PppjcNvyOtJxm+odXhurfaSBzPJmYAChFMZQwudXcp0S96dugBS6qjzfk3ZClMbH92gp6NcYSYcX9SERDfByvWzHSILsbEb3L0jWR/HQwOfMDMmmCst7Y7Rj7kM3dvDXarQTj27Dwa5IYY3X9xisaGqhhzUcqmx+QQldlYG1pgWGdzQWb6kQLI8dqWwB7Qa3vzzuz63xLY3hAVJmSrPJ5iyK2oPpr82mBiZfNCmLI94Hqis+ne/x2l5ddfBlQHk3Q3Evg5lZuDI2WqRtMUyR1s/RYjgoWhrTuIP0KXigOCJ6t3iUKEd5wGMYVI+Ct4LiKaEWx3NKd6TsDe8rdINA6mQH6ErJfTBgcR3Y+V3a2CsHNDueVNqlRrfX9e/x5bpcl+t/el2K0F+Ja33S7gOCEwQk8h8ld2HvYw8Q/tg1eKtQ7SiM73uoewqrRzIMHyjMH0MKXYp85WpHpnMQGH/CC30+DVAj3oztClA+wH5Ow2clRai+nw5GCoQRfvPkEwNEC1mgF5juf+ocqnV4+K070G1A2FQYHHCb6i3xkwefIz/ntmRz0qOUJ+1qcV1jeOhRHndwpUYx9SiOKqiqw/T1G7CnDnbFsMDRgYh/rxqYJqCQYChbe1RbBl2pUB4B9SYpLMUpiza7CmgHCt5oDI8cBndmUA+O+oYCWGs81qhFEgKX7GTjWm9Eoj1u0/b6iPEQ5mSBqInwRYZr/+Oc7kpVS/RjVfG580iVkul8LNzbVqhKgRP+SAHL17QPdd0jEEZzO60RoboC0PXJ3zEzxLu+EG86YL5ASkMvDJav3YOddwhWQa3aPhG9bQVNUGm/0HWSou6AIiMNaiXZH8l5i42QCgHBKyjvEDKxEQ4BYTKAXtYoDk+ByYjOYAsNk5pAJpbXewPoNiA/nEPVHfSsgj5bAHmO9vom8nvnaw2PEh0JqPUASP/ynlkhVXtBhK7W0BsFoL0ywfxmBlux8F3dHKLeJFKRz4B62yI7M7ALFm0IpBNVN5mD4YZeUqzp1pOf6kTzCYZvCy1q+8I3WwasFAuqo7dksEt+jpNb3ZAI4cmb6f7UjoHzt+xg49kpqrcVqLf4Nj3/50uMb4kYdxpQXeVUujsuAROA3CNkHvrzI5jXrlBPDMxhxtyPphek6w50uCoD6r2AoEUXMiGFZXTLoNoLWDzqYe8XCDYgmwHLmx72zKL4fIblo578/Rmft97h8YvT8W4EsQln4dds8ZpVb8ukfsJhg8/pStWMGchq50A9hgiaNeDFJUsaIJ8D2aECpKHxthcfx4FFdNVSMinXDS6ECtL9iOiHE5OBJEyHCJ6FupYsfTXpRsWhRnGkmFt0oqCPqAepr3cycTZwQ4/RiwbLRzwQALXRwr5Ukno2lhwly8+Mz4H2XTOY35kwmG8EQAGzt9SY/E4h6CowfTUzRMa3NDZ/rcTyBo/H6esDykOF8d2As6d4XJaPsNqPKFI3RsrEiI1XsylNWQ20chwjimCWpG1lc4XiWItpAK2iuxEwuEtr5nbTw40cVKuRnRnSv3Y83dQgRgfyuWm2GVIYNUTZTIlgHah2HexcY3BAvU+1H9Btdxje4vCmGwmSccBMkPg+NZu8j2VnGoubpJlFy+JsxgGXPVQ4f0MHKAtTA8WZQlAq0fhGz2bcprXbxTdqqRCSPfjX8jkv1+X6eqxLBOQVuELTANYiLFcIHYvE4BxCnC5Hys1yhZ3PLHhxnwDNSGO1p7D5WXLLsxkvrqZmyF+8yXrdT/tUx4licU5HqagjqXbE4URcWqJWxM75HHbZw/qAUCFaaXhaYPvZCvruIdT5HFc+foLhocPiEeHzVgHbz3oMjgPKk4DVFXFMUZESRvQmGIXyJKDe0Ji+igVyO9QwRzPow1NsffRFjD93jM0vLKC7gNWugcsUdj63Qjb3WO0zZbwrNKodhXzuKSRUIsY8CcgWhOPzucfeR+9h+Ft3oI7OAGN47GMWy5owGkBvEOA8i3agf2+ihgHoi/EonLaGzUXbJtTBHs2gpytSZtaF2Er3SEJEM/QaZUgaorA1Jr1qPILfovPWywTySnE7VxWzTJYrNgCDkg0BwMYk2u9GcTogCAmRt+HnHiB/4SGK5w5oRRv/Vl4jbI7F1cr3NKsyx+wNu5i+cac/TuuUtljcSxghHI9VyDPS0ZqGTdV82dPMAITxAKHIoVqHwfMnKG4ds3lomr5J9B7Z7aP+wyWi9ZAbakKcvJ7sv2p5rFNj4j0bk0GOULKJOn1qgMmdBuO7rRSwCsvrtFAOGlhc1fADi/F9/p/oooLqNLoNh2ymUT3SkRJzV11AJmNiNBTRk5hB4TKFK7/p8OhHVhg+CAmljCjfld/k8209w+aj3vPwmcKt79liMTwDKT8LBZcB43sOi6uc8OqlYXZHo5GPG6hWo3migj8soKYWbuDhM4pxgwmidVAyee+pQfmpIToy4TTd7bUwS003oyxgdTVgeE8zDbvk1DoiRAwVJNqRnwHjl3gtKc6EPumJOijp89sRaTHK8XerPSTqkSuZjVSccLLvM2YmATzO+bkgE2WPuNoVC9RuxCFNRC6ips7nvJaWB32VqQKvh1BMZJ8/TpTL5aQeNVv82xjupzwpRcGyqbFzOY9FV2GmRnJYKMhevKlmKnjNc7F7pILywOS1p3QnK0LSaZjfnCT92/IRB2+ArU8WqPYA7WkZO3pJIZtpolnSjNVXHIb3OJBZ3FAY3+a+jV8wKI80kR1pjNsJUlp9vdMj2+2kP45RTF9dDRjfoUajuuaI7MxVoglXVz285XmslwZmoVMDa+ca7U7Hz0IJFA/ofKVauUdIk+NyntM+DyiODLqxR71NgXi2UMiOs3Q/iwGS1ZWAwQOe99G1zjTc9vFtaj9iECU030eXg7bPHbch7nNxihRYWe2H3rTgcl2uy/U/tS4bkFfgCssV/PkUwXs2I5L2jK5DaOQKqBTgHMzthxjd9xjfYYHgBpJgW/ICu7rB4uroLaQt5dNeeOkzYHAcUEw92r92gvr/mMFWfb6HlsleO0SyzgRYFOTiAhNdpgDytHUD7Hx2Bftrn+V2D0qoRYXR5w4xvqVQbxOBUB2dsOotha0vsBGJnveuALKlR72hkgCwK4F2pLHx+TNO5WMBO1/A3H6I4e/cxe5HX8Lmr99FdjjH+IUZdj6zQlcqNBOF4jyg3tQivOc+miZgfLfFzm+dYvv/c4fT/Fjcx+Pctj3vP1KKoj5inZolYXgJnYg/FxtVeMfHJNH4moXuevBeXEXO/5sv8xFVCiGmeTcN9RNtB6wq6ONzqNOZNEaBdK4oVo/bFIvzqubvJdG7vTpJ1KuwqhDqum8S1nJC/P4WG56oT5G8Db8z4XM3QgErcm5D1cDlCu1Ywe1t9PvsnFgMS4Mn26Lk71W03DUGfjJE9fobqJ66BjiHMCyg5iuopmWT0rm+wVNrup0vzRZRDPNTne9tdgG6W11AHmXyJ1qes7fs8DmFJthMLJZXLbafi4VSwPBBlz53568pYeoAu+S5aypANQqwAc2mR3Zk0Y0CltcCimNgfAvJeUoJRUu3tEuNyEO1pdGObEIgN19wKI85za23DCYvNdAN/69ahaO38nMMiKXqgghKyICjtxqsbjBx2i400Q8A7sURYALsSyUn7Bsd9SAln9fnAfUuHxuNKYjCqMStR2ChmN/LETJJ556yEekGnKTXeywU6205/iJ2Lo45IafFMBuHal90DFPFQl0Q3XYkxbHltakbCirbkRLVbLHxo8sSUZKg+dz5GVGgbC6P3ZBhiu/pTD4XytWGmGpk6F3NFB9rar5+NmPiOFT/3uVTocce99QsEwFDSW7vYjaJYVGtK+ao6FrBHORszFYK6iTH8PdKIin/7x0sHnOwN5ep6O0GQHjDnDSshUZ1xSeDgPm7VrBL6vc2vghsf0bh7C0dmm2P3U8xc0l1QPXWFdoxkhFI/WTF4MJz0ttiI9WOer2hXSJZTJNCG5KTYXTPMgud6HSr6zwhiyMNX8TcGAYvMo9DoRt55IcWyinmbwwCz6k8iNWvgsvjZ4XaE58Bo1smmQxU+y7pb1ImCBgwGHOg7JINZLSj7wZIxi6R4mhWvMfVu0guZdmc59jyep8sXxwphnp+o1e8L32tvy7X5fo6rEsK1itw6Y0JMJdizBiEpoHSmhqCWMBmQvtxDlu//gAP/8QNFGcBruCVsx3L1HOkktvU9MmArc/RLao4EQi9Uzh9nULxf+6jeqpFvkHf9GwhN5oA5HMiHPUeMDjiBdcL99cbdrFKprE+B+xnXgRGgzVaTwC6Ftf+xxTnT0/QjFiMRqesCgrZgjcX3Qa0I4VsGVBvkceczQPyOTB80EAdHF9IiIfRCPMFj4tSCG0LtVxBK4Ws67B1eyNpHPzWCO1GgexsBdV0UOeLHkmITUbU2jgHNRwIhanrL8JrNoAoCk7bOwfA9cV9RCkAxLRrvikt0ILTfC3oRnRdiq5ZQC+aHg+FPmX4syJPNCxVN/BbI+hlI4hKd9F5K1o5Zxle5vYUV0RnVhUwFOeBpukbqNi0BGlktAKKAs1OCWyXyA+X0OcLoX+1zEsBWPTHBqvkMdIdzxc3tDCna+iQRr/feZb2I1gNVbVEQZyDXlRQe4P0d6qO7mMKfnMIPat64Xi0+m2EpiZp8MHGk5WvrzpPtGgtf4PaEDYwAdITG4XBYYugNerrY7icFtBdCZjGoBlRNLy6YtENWcjMSgW7EkegMqC54mDPLLrSQ202CIsSdi5UmoyOVvlUJSGzF71IvQGUJzQoGBw16EYW259fJqev8kih2c4xeGmObqMkHXMf0K3kFKzRuKhJEBemisJb6IBsCgwfaJy/1nObN1j0maVGqDX8yCHkHt1AJvaKn/fopjc44PZDUSQcFHUizX4HvdIpHFU5Bfe6BaaHAwzvMgcniKDZztkkZXKtieGEQbEYL075e5/3RXw3ZmNBe11geF+scxUHId2IDYQrea2r9pmTUh6z8bGLXiQdbXZNQ+oQkRKen6rjeeAKoJwTcQjy+G7AYxBTz7MZ0O6wYI90r27E5/CGNKTiVGhJoofzgny1mx5hp4F6qaTIOg9p0t46TZerLQdXauhOofzYGNW3z5H9+hjVFYfNj45x/o4Gm5/K0U4Uzt/UYfychb4/SNbsy2vcpo3PWngLHL2zQ3mfpgDDTw6QrYDZ44C3AYPPlQzoU0jhts1OzHwhxazeYTE+eAA6GXo2A/kZs0XaCY+jtxDbXwZWuiFtcpttUqfMgg1Ju0lKYjdmcGMrVLryBKh3NJY3PRuaTqUk+6DYKESKMDyQTU1qeob3mWNSnvD9imGJZiWmETJEi6jH8CGHadn52nMGNh9BAYubRBKDAZycH92Y+365Ltfl+p9flwjIK3D5xQJKRLEh5i8MB31hlWcXpxLzBcozPq44Q3LesSsKDOP38YsKs8fR2yfKxXjnMwH1LqAqhgKWwliJYszoJJPNeDPoBkhUKoA30GgzOb7rEKoaajDg1L9uhTqkoI9nGL1UYXDsYFcU7WaR0lVBRIa8gS2umASRu1LB5QrZ0Rwp1C5qG8TBKUiToIxJU3tlDLdhsSQ6cP8YxQtH0IfnpFlFdAO4SLMCePwjdUnLRD0+d0Q2Ih0ohL5wV1/mJuT8RZF6nLR3naAQde/KFJuP2BhUdf93bcsvoWSFTBqOLEMSwq+LywE+Ns/6bVu3Eo4OUF+qddFERFS+dpxjAN+qgpKkdtV0PWoTqVjrqE5scKxFNyCaVe19iVJTXiuJ0XPSnOD5HCpO4DoH1cp7ldmE2gCAajqEMuuRqWxtrqJE7+EclBzjkFsiHpK1EaK+ymo6XYnFLoD0/+y0xtmbN7G4nmF8ny5CrpQAzQD43KMdxn1HMliIk++gAV96oFUIrYHPQkpcjhQsXYtw3XAy7nOK0JUPaCYK3cCg2jKodwsgBOi6gz2vkE076JMZ7FmFjVsNBg854Y85N1Ek7Eq+ZtBAvUMHObQs6sqTgK3P07IWOekx0XHJTFqiIblQZhp1YaK/vEY6UDf2DI5r2JCVdy3yE438VArGuQJuDYm2aO7f/MkWdi6IaiNaioborM+kISl6eoty/QQ+2vNGu9tmi/um675w9BmvW8UpUB4prK7RrEJ5FpSDQ/6u2eLPuyHD6bIZ9z2mncdj2RVIrnuRwtXJwMaukFDcZkOoPxVpYH1+iEpUO93FwjkgZGy0QqcpvF4R+ehGPNeaK+yCQs7CPD8lmts8HGDxhMP4RYPZk16aDx6Dnd+wWN4MyZYc4P7lZ8Di0YDiDBjeZvPhCg6YZo/zmE9epBak2gVmT5AmWxxDGsqAap/nQqQg1buCwmgZVu36ZLbQTpg2Ht28ykPF5laB9DIvrmee543PidzojsfTrBQWT3bQDsxDgTS08XIwj9pBOScqEdxXSHks+Xnv+Bg0EjpS7fOYFOdiIqCAehNJ5+Tz/vNp5P11ZUh5JNG0oBsFdGOHb/gK4LXza/l1CYBcrq/TumxAXqkrz6CvXoHe2Ya+fvWim5LWvS5AGpGNT92nbe0yIJ8STYjUgihKLM4Ctp8J5KS3PayeLQM2vwDs/ZZKgsnJHYd8ypdzJakQ0eY2wtfKic1tx4v99rMOk0/cYlaJFJ7JVajtgK5D/vxDlMctBcPzgGIaoNuA81erNA31ps8F6Ia86W8/W0EdnnKDuo4FdWw08gxK6Z6etq6jqGo2GYIWoa57lALgz7zvm4tI2ckyFtUhsICP4u314L/1Yj7+zTplyntccIECiAhE+lGeEdUYDvpC/ksbzGi9G0JvCytBf+ZwyiZlVSHMF31DEx8fKVSLpdgFr6ED668h2TL2dJnyOpSS9y+mjsdtCwHFS2ewiwZqOhd0KwrZM6EsRc2LT83QxheX/XFZO28THUyaFdU5wCjSsDLL5ienE5cvDOysIWpRNQmNUqsGalkntzC3OWDjAPT7LO+Bqjvo6Qp6xYZMLxsK4I2SpkSQtIKUrGAtfJmj3isxeNiiHSk8+BaF+RMeKtCq+vSNAbrWOH9toG6qCMwgyMECMg9QmWcmxtQgv58hZCzgnEzQfUZ+ejfktL4b0yGq3gS6oYKtAo7fmCGfOaKN5xVU66Cqlo15lkGfzVAcLDE4ZMEbLWwBiPsQp8/KSVZCAJB5IPNY7bIwLs4AVIaPLVjsZs8MYE+sOF5pBhFqSK6FDCMWCsWhgZlrJq1nLEjrPY/qkZYi7oIbk58YUn1WwOTzGVQgXcdUbCiii11xLPqzIwaZBsWCMNKmVBAU11G3EUSL4Yt+CAMIciL0Kd1Q9K4bTq6DHIbiWCGfyTVtzsfXO6R+Me+I75MbgqhIYGOjPLc3hro2m2w0nDQq1X5I1KVuzO2PgvSYU5SdKwwekB5X3Ml7ncu2w+gOAx2LBxbZDBjcsRjf4XOsrgWKTa+BAAEAAElEQVRsPGcARaRhdEuj3u635ewNAcWRoFaGTmzbn2czt/1ZHnNSlIhcFcdyT9Bs5updnkflAYdCwQDdxPFYnTPNXEXBfmy0Fd/D7EyuzR59XozmecLmktQ8nwVAdB3loUJ5KDTZIw2Xh57qdWJRyP1qcECN0DoaVm8jHYd2JCh9QZvkepdIlwqiNZRt6UZI+VCLG/zejSBaJ0GvBtyGdZOI8Yta3NACLbZHRBSz6Ro6frku1+X6A9dlA/IKXHpri8Lz0zOEs3OEoxOEruNEHyA1R+hGieqyWmHvo/dg6oDVPsP6Ikc3W3BKWW0rzB5VKTsjXoxdQTpURCFsFdAONZuZGS/I4ztsNOotOqr4DNAdC65iGrD9+RU2Pn4L/nwKNRlzu6q6py+NhonqlD97D5Nnz1CeOLQDhXZEWsT5kwHVHm8cpqFWI5sBW893yO+c9gdoVRHxWFV9A5BnRC3iBD5qGeLrrxe8sekA+r+P9CmA1B2liGpEC2TnL+ZCxKajaaSZ+JLJfiyso34nboM0DKlwd67XYoTQF++AvI4gLTGPBODPmpaNheyXyrNeOB+RmbhPkWYG8LkjehP/DxAhOJ31rxvRn6btKWJtR9F6XcPcOkiNXRgO4Cdlr5uJ6ETStmjYu8cyfVdEK9ZRJVkxZVytmoSEBEGiqid2UD5/DHNwxqDErrvY7EXaW2ZhzlekaGmNMCh6hCi+L/JeqGXNz9maPiSUFt1mCSiFdmeQkJKH78hw+NacYW4Fi+Fmg5Qa1bGwdRudpIMrPib2PTZg+GwOeIV2t5Mil24+7ST0WRFLlfjl2Uyx2AULxXakMb7rcf4EKZghM9x+rdg0xcNwNsPkVoXRfTYwCD0KojwzSJgVFGBXCmZqkB1bLG/wszd/lFPpYJgD0u10aDYCup2OGhY5VN24T5Z2RSCtphCa1ZDuRTEvJDu2RDXkcaoD3NBj9pSjgFmLXkKLrqMU29QJnZvqPWoDhgdMro65PqZa269z7qddqjSVpzkHNTZQUlB7akDcgD8jbQzpOmeXpMTFJkR1SGhXpGrFxisGTLZjJDeybC7bMxP9jUefgaG4vfWeS6J33bHZdDlQ/H/Z+7Mey5osOxBb28zOcAefY/zGHCpryJoINtGkuiW0hEa/9ZsE/QL9N70L0JukNzUaIptFUsWqZGVW5jfG6OHjHc5ktvWwttm5/pEAi0BlZ6TgBwhEhPsdznTd97I1XUmJooUCzXtfmJ/xJGH3GVmF2z+kzK25Emw/U6x+7eH32fPC995+yXjkuCCDsXzNwXn3XDAczzHkqeI5bT447D7RIqvze4KyHFVb3/OY/c4BxuBMK/6s3j+3a9qS2WovgeFpxHAeMXzWYzriveYGsoX9E6afhQ5oLx2mVSo+v5xQpUIWcWop9aq2BymJ4O8zdfwM7p8rxlP+fMtx69OSv+OmpfJcXvN61bc85uaaALm5NhB4T6DqO/tj0iw/SPEZTUtFrJULBCsCq+GYP+NUADlIT/9dbTkF6x/7z+P2uP02tkcPyMe49QPk2RNq/Dcd0rKGu9sDN3eAF6YBec8fDHmwdA7oexz/1Rv0Jy8hEVh/T+mGRGD9jWJaMM4yx04u3/AHeApkHbpTwdH3EXefe1S7hN1Th6NvI3zn0NwmbBYe53+bMBwRnKRKcPKbiKNfUtKk+868KjZE57I+cUBjLELPlWu5vsfq6g71T19g96JBrAWnvxD4UbF7KiYhUzS3EatfXgP3Gw6/MQFugkiYgcCi5TCe2QHVUtRXxEWHpu98vg7lV6rQceQxeM/ulUXL/U3ZowEUY/OhN2QYufpfhXnlvwrlWH/oMQBA4JI9G1mqpApdt0xySvb6Obo3AwJVYIzzMQzDwWsaADhkZzIYOUzPyubq4Hk/TQdSqnw+Fu2DCF2M+ViHuZckBGCaIP0wMxbCiEoZp4fvV9c4/bvtPPgfgClt6vlxCWS3lg19LF6A3YD27y/nY4mRIDy3q2e5VFsBCXxvY7XEIquRE7asv0Wdg65ruH6klAwAgoP0CqeUmCEqbn6+xuJDLF6D3NKtTUL91mFqOTROx5Hle6sJk1Mg0t+x/tph/xTYfZJQX3mkwKG4vjat/DXLO8M9itQhdyDICISBrER/AmxfOqQGuGwrbL9Y4w/+rxXCzR5u10MXNeOCU0L93TXcZy/RXivGI75PdYeyQuxGrlBrIGCQCPje/CrWcC7RIfU0B0sEZO+h64gJxghYupUoICOZ0/4ior7ykJ7nJK80pwqFwVi+cugulFKesx6iHutXit0zKelULnKoDzuumI9HM7vQXWhJDPPW0wBQSuOtn2L/nMP3tLQh/cuEcO8oXboh+BjXlCJFS7cajlGiZemdo+mdHgYbiAUlsSsb1CUSPOV+jzyYqyeIaa55fvszDsYs+COwSLUijYLmUgobog7QisxLeynonvJeCfc0cu9f8GdW2PM4118Lbv90wtm/Cbj50YT6OqA7B9IiQjcBrieDtHtB4/v6N0zZqrbAZpkg0WH/8wmrXwesvmdIiHqeI5mAcIPSizGcM4LY9bw/w5b3VArWEF9zcevuZwn1e2+hJ55BAp+MWP2mwu5lKv6j5CkFbN859E8SIPw8xAaz90ZZksiWeIKg7qkiBUXzgT6i6IHFa4fuKUsxsyxvXNvnrKaULEvNIOa5suvvJsZDV7cOOX2uOyKgWrwV7D5LWH/lsP2c96Pv6IWprx3GiwjdZd/gRzCoK+bfNf+Yr/m4PW6/he0RgHyMm3fA3T3k+gYaEyQlaB6KvZnPU2Isr22Sh8J9h+X7iP7Ew/eKdC6o9wo/As1txLRw8L3i/nOHYQ2c/mrC9mXA+nVC6BRXf+wRdkB9E+F7xbt/5nH8a8W0cGivFHc/dli8A6qNormd0P76AyNdbTVfzk8pM4o2hJdOCmMVTO6Th+bq129x8maBzZ9cAGCfR/IOy/cRMinadzvgg7EfeQA28zGcoxE8RjIsecuswuHQn2VW+XUyiOgH6DCQOcjm6c8/4Xvu9vNzMqDK8q0Y52uRDc/DOEvOYnwo6cpSqsPNeSCaRyZ/Pyq0ChzoDz0bWYInQslW10O3JmuyXgvxntKppJinWZnPSX6P7CvJBYSHXpAYZ/AhAmgySVJNMGdpbEg6p12V887Hip0bXTAiNwMFf7Wdz8dhg3lUhiqoQnpeXxkIvNSTvUhHLcbTBZqvP8yvcbiN47xSdwjWpjjrQ3J5pCokJUhn4M28IGlRI1UO/VmFyz+3ocID25eBp9NRxpRqhQyMKA07GlHhFbKaoDc1/Q73gu7LEfFtxZX5rUPKSraOUbX1HYf+sOUKbzYtO2Mu8optc5OwfJfgu4TNZxWmheD833nc/sECx185VO83hS1L6wVSQ6nW1FKekwfqLPuhHEgBr0jHE9xthVQlhI1HdUMPQmyUOvyB5mBJgO4dU632DnGRIInJV2Erxg44TEc2pA5MBaKvQ8xoTjNwfcchU24rDCeK7Qsp56a+pdwzVQASStFdf8ZhtH0v2H0WsfzOl5Zy9XPbfNiYAdqih1Nlcp6WA+d4DIwrytAKc2FenOw5GYyVCTsUiU3YongHfD/7A8SM9Hn/qzsb4FszJtuCTzZHp2Z+P4k8b6kB/M48doE+iPpaMByDoPFE0b6lrK354Io/wY3A7Z+NaF5XuPsDRf0+YPcZn+vvPcbjhNO/dZgWlC0NF4r7Px/RfFvh/ktGAlf3wPCMnpMcCjIeJ8h5j/DVApsvyD75Hlh9LeW4kue+5T6S4YRm8/0XExbfBvRnNJT3F/T+tN9X2H1KgBpbekKCCMKGQNj1At/zPkiNIi7BbpmBX6vu6dPxHV+v2vCeyilhw6kibAjmZeI1a64ZJc/mep3/3wPwsB4SsnVZ+hVbFH+JGwS7Twk09s8V4Z73+7QggI814O98abaXj6EI5HF73H6PtkcJ1ke4qQ14ctByLTUBhm53HIKP1pC2hVTVLM2yleDqdkS1TfBDgh+A3XPBZL/4Yg1UW/o7XAS6c49qwwHj8s89Lv5mwpP/b4fuIiB5KwkLgu6C9Hl9Q4mWeqD95mY2ctvAp8crGnjzirZ3s2n4PxXppwpsd1j/hyuc/GqL+mZEbAXV3QjfJ0s3UspONlsOpbn5WpXvP0UOw11PJiQnRwHmHzgY/g9ZkBiR9nt6RxLlT+7ZU5blZQlTft7h80UIeJaLEq37YJ9yi/gPGZf83MOtquZ9LSb1/D4HH8/8/rngLxfx5fvDe+6DdzMw9QbQDl8jsx/ZwJ+PsR+g+/1shi8gzaF0dGRJ2eG+ZPN5TA+Znrxv+TyIMIWqSMOULISXmcnLjFQIs/Hd7iF336F+T8+Jnqxntiefs+k/AUryfhzsA4KHNqH0fGgwQDJMcPsBYTPg9se+eAhO/p7yEm/yChWCEJkoMRqth0AdkHoPVAmpThzwB4fh2chm74ZDXklb6rnfvkNZRXYTh95pOQ+3LpoBfclz5SZ+hpGAzWeCFDLg1SIR7J80uPrDgPsvZV6tN3ZAxTwIQYGnPbBnC3d94ykb8xwGw14Qto7HvqckSyIlWFpxpTlsBSkokifDQXM6Tc/DRWSqkTWgQ8hceFvFDnvK0NIyYvMTXrvhmEyGTAQSkkzLX5Fl8B1X5lffemhAkVDldnN1HOaz4X5c83y7iV6c8ZjnoboXaEW5kMuG92YerJ2tvA9nvPaUFx0Y2w1s5NV0Sr9QvBNqwzkMaPie91L2iiRvHpTsqTP1Zo4BLn6L04j6ht4QCNCfKoZTxf5FwvbHE1wvWH5V0fg/Uk6UKkV/zq4LPRmxewFsv0wY18DyOw/ZeownlKV1n44YjoH2VYX9f7NlAIIjMHHfLYq0sL9IDFVo5s8B7BxDCYriKhHkvQ3oz62A8JKG9WCSuMUrgg91KOd+PI2IrcL3guEiGvMhBJ8nI5D4OyeZRC2fp9xUnyoDiDv6THJUbvmsRlBSZu3s1Wa+Z6bl3AkSWwOVgZ/V+gaAY0wwwTDfOy4pg4utBQtc8319x4WJ3/l2yDr/Y/553B6338L2yIB8jFtKUESuaAdLYwI4xH72HOk338EdDsdV9cDXUP/iO/gfv8T2syWOvhkhn1RQL9i+4KohJCB0iu4JC8TafcLibY9x1aI780hB0NxyKDj5e/shP5Fef/pXW8Q2oPnmil6GvF8xQo6PgKs7lCQi522QTBaJGh4O4SlxtX2zBa5v4Tc7eAAvvm8t8WmijAngsNtPSGMPyX4L7/m4EOa/nQ3ozs1xvdmwXgZz84dsdwRvbQNpGhTfRz4mkfl18z7kQTd3kVQVk6GaZn7fwwLD/H4Ar2M6+IGe4sw0pESWIQ/6KfG8FdlQMEmWMRDZgJ2BB2AMRJrfy3teo7aZmRsRYHEAkMYJer+hx2jRQjWVtKgCgqaIklSVTekZxOStqWb5m11jud/z6wZQZQJ02cyvbferhnw/gKzTalnOtWz2xbgve4umvttxf3IzPMDHVIHyr31v53o2uJeG85gsflbmwd0BMkTIEKGLGp/+P65MBsfnrz8/w/t/0hAkRLCxXVEMt3Ir2P9sgruqEI8nMgvLCI2CsJyg9wHquErsBimr1wD/zj0K9b35HzY0OwsAFUG9TahvI+q7Ef2px+otAFVMKwffZRkauGgxUcoiysHZd5SU7J+TcWF8Lu+/dF0j3HsOiEJ5iRsJJg4fh9VIlqRNBCKWgjUepwI6wp4r1X7nsPucDMXu0wj1gv48ofngSnv1tFRI4uIGNCCuEnY/nnD8N6EYhfdP+NjmCkXG5SZA4+xdy/0VYgN6fcNhVECWpT/j+4QNsPqWEp3MOkyjYPlmXvWPLQf47WcKv5PiJ9m/1JJcVd3hQRpX7kEKWwOSmNvZpyXIYrlZ9gYFtCKIKhKhW0qG+gv72G7Z1j2ugcV3BFrNdQZ+QKoSz+0fT1ayx2E/N8RrpWjfOWx+GoFNwOoV8OHTiO0fRDRvKkbcLhX7l4qjX1TYfs5rg1+tMJwmrL5x2H2mqD7fQP/mCBoUx790GE4NKC14b9XXwLTifdBfJNTXvqRikZFI8HsmoCWP0nZfbQTDWSpgjZG+wiSwoBiP2YIe9oL4vqY0bY0ZmDn+ceD5ay+FpbqY7/XseUqWVgbJEjFjybaALghoJNpjHAMMsodoWvM4/IDSjRJroP7g4SLBCztPBONZRLh3yD+GH7fH7XH7h22PAOQj3OTkCDKx30JjhDtaQ3d7Dt5fv+KKvffQJ6cclHZ7YL3i3ybRcb/4GsffLDD9+AVO9xHjOiCFvOqasH8W8OTfjujPOMhuP2sxrgRn/2FA845SGQ0BCA6p8tDKwfUT/PcfEIqmPhWPg+47AhCgDLaoD1anV0vuX11zsI7p4bB+WPaX/RzTxIHY28q5d8B+gqyWfN+8uj8MM9DIhuMMDqaJACIbwe3fOtK3kdkjPT2G3G+hp2vI3Xbe70M5VT62QylZ9odkWVKydCvg4XNC4HFDZ4/IgfkZzhKgNts5KSv7SXzg6x4yBXn4dwIMCYpUzN/ijEHILEn2ymTZU2VgoWeEjNQ1pG2g48S455x6JfQV6ekxZN9DVzWmsyXUO9RffyipYNpW9EyUAABHpmrRWKqV3SOZAUFmHmxFc8rn0ZX9VC9AqCAGRNJ6we6WYTRQo6aTcA/eUwDuVwaSBh5ljPM58w7wYe4aWdSAEtwVTsm7ct1v/rDBuOaly8BBPQDPQxhPFau/rbH7NEGcQkKC7gJXcq9bpCVNtxoUMSi0ywwKB6I8MLmJq+O1GaAJcBQf/szhy//7Hql2OPuX7zA9OYLf9qjvj1FdbjGdUn44fHGC9u0Om0/Y8dBeWUrVyFX/7kmC3xtzUTHiFaD8Z/cZ+x3SAkiriBwnG057xJEFb2Hr0Z9ZiV6lcJ3Ad4LpSCH2kanugfrWY/flhHAdAKdov3dMhzJTc33Ds5xjVsdjoH0VSveHjBz+wm4ueiudD47/zh6FbA6uTM6WJVlqTIbvODD3Z5SA7V+Q7V19J9i+BMZTav9ja4Dnkp4BFwG3o0wqqxmnFa+TKK9TThhTn1klYyBOeZxxiTkuVnmczQc+J9WAm6T0vTgr/xvO1JKlaH7OKU+p4nlBEIzHwMm/qnH7TwdoFEACYstCyeV3HtM/2aD5mzWqDXD9pwmrv6/QX3C4x+mA5lct3ADc//GIk7+usP2MkrvjXzlsvlDICIx9QHoasfyGfpX9S8qn3EAvCJSgJ4Pq6tY+E6YAzSELqaL3JS7IHE3HCTIKtFakOsF3DtNxRLjzwMajuqdnKbMW04oSPwhK6pYzzF1tBcHM97G265EI1AAg1mpfE7ia57a6p/k+J15J4vPGBTtidp8oxmNg8YbARhQl1MAPKBHWYePsnlA078nsLF59BBKsBOAfezcegdXj9lvaHgHIR7jp/RbwLeT5U+DyiuDj/BT64Rr60y/gpgn6+j27LHJfxb7jENw0wG7PJConCO/vgXFCrQkQpgJpG9C+d4jLih4L2+pPVkUOI1OCbBnt6vJq82GDdu5OyIM9QEnSZouSbiQO2NuKdpb7pDgbrw+p3cxmHMbjApShZRP1OMEdHQGrFV8nS5GyabofHnov9nvKo86PaZLPPo+RDIKsV2Wol9t7IHjIh1sbhgNfc7efpUEZLOX3yAZzb0xP9lQclhFmr4gTIDkAaWZnnIM2BCIyTDNbkZkE7/jDP/d7APNrp8jo4exlcT/4rZMff9jQns95LivM/w+eBY6LdgaPIhzKRSD3NI/vv3iGceUhSVF/Rz+M1hWZiR9Ky1QJFrLR3rliTGeJHsq/X/935xAFjr6LWP/NyFSqBEiKRTblugHj0zWqt/eccHLSVlICG4BgxeKe/6Om+czEZTCrCtl0QFvPrA1w4JnhY7/6Pz/n6bRCu+TIDISdlGG0uueQWt06DCuBRgcZLI7WA37rsHwj2H6qpTsgD/iAAY2RQMQNwPrVhNgQRHTngpf/7xGp9fA7giVJCTd/fgY3KHtzGo/90xrVPmH3+RqjDWqjeRBYhgggMG64v4gIW8c/O7aSu1EwPRuhUSCjAIGelqkPcJc1Fu9QDNc3f8Lhc1onxBMayqclsHgt7BNKQPt9gO+B/QtjA4Qa/umEMcL121AkM/Wtw3DCnoj2nWOiVZaLHXEIL34LYxBiq2xNDzyPWfuvDqWdHJAim2rf8xzUtxxwuycGZjauJJD15zz/6qm4kQNTefuBr9NdUG7l7LqxA8JYkA0By7SaJT0ZfOSSu+GMz4cniwA3e0Q0sKfUd7xvVt9RlpbPn+8ojQPYau4vK6y/pcHc9zKzan+9hv7FPYa/PUJ157D74x7YBBz/ymP7SYP+IiEtEhZfVxhXYIiA+VjqO/PP/N3CvDdkWNp3nqZzALhmCWD3FIDwOvgR2F0YmJ4AZ0AwtYq9BTdk4OYnMjXVtUdcKtq3HsOxMU0yyxIZEEC/lBtZRjkePfQ09aeAegKi5LT0pEABmchgpMBz6PfGbNlhJD9fH4YowJ7HNLbMcGQAkqVi9Y0r7JWbzLcSCIQet8ftcfuHb48A5GPcpgmqE3B5ZSvYjoNwCHDvr6FdB2lbxM+ewF/vOPTnFKZsVh6GmRVJCdr3kBAgfc8FEu9pAHLzYLra9pgu1hZhmsFCLPrXeUjj8KrHa8jNHR9TBa6oH6Y+GQCYDdBpTi7yJgTuLep2+sFQHwKH9HEsg7zGSGAFUN4VxGJiD0znqxXft0iMRsjVne2+Da3eTN91xffPno59x79v7+ZB3c7VA29Da489MNOjPmBxDtmRHA5g1xXjCBytucrfVEyE2nf8+vHRfBwpzceeO0kSk7ok96vk/YsRiDDZmwGfg0G7ROhm8OIwRwBPdl4z+DB2RldLAoZs+g8ewzGLKkNvr9n1kOApHdvtZxCW9+EAAGgVAC/srpgS1JaP3/235+ieWot1OwMpmWIBb2ppXdXb+/kalGvjIKoYnq3hJkV4dU3gm/fhELyJ3V+jSdkSwajEDNZ8AWDxbI13//wIq1eK/ROmIdFLoARHtnqfB5hqY16LDwFxTaYBialz6hW7l5R6xUVC854eE0kocaw8Txy87z4PWH+fcP85U37684D7dYXjrz0q7zCc1hgXAiwFcMDm8wbNbcT7vwio72hon5bErrHljw8IgYIoW6JzRPDuRyOkc4AHEBJk9MAyQkKCvG9Q30tJyfPmUaju+LXm0qN/EuH2DnCU9TRXPFe+5wBaXwuaW/YsyCS4+F8Cti/5fb8nK1DdAEiC0MmcdPSEg2jYGJuRMmtgcrVbGo6hc9LUtOK51GAeEs/vJ09fQF75zr6MnDoVrAyy3s5f788VeSk57Lg/wZqzaZoGnHLfskE9VXbcea2gtthX80/k7pQUeO1TjeLRyWEBi0hzdQq5JE/RvuN+jEcEQjd/MWL5FWW1d39gslszRU9/soV+t0T9b46w/1kPEUX1bYvmCth8qTR2Vwq3mDAeeZq5nw84+5c19k95XN6hFD42N+xgcaMYG0Wzd/fEPjLWCL79hD0ewylm6dkp43Wre4fxiCWVEIVGh+Y9Fw2qd2SBws4kfB0wHptUruPxS6SJvj83D411uuRgiPa9GEgTYCvF15MZtGqLIuGKtbEeCQXsxAYlUa3KUdNqDJUluPmebF9mvXxn7e52rO17Qdfid779NmJzH2N4H7ff1uZ+1zvwuP0ntjy82QovAPM3CCN6K0ba+ts9h9c8IOdV8+x1yH6DyNXyB8PwDw3JALDZwd9383OBh0zF4Sq3dxAzxOs0QdqWQ/Kh2fywRC+ZofmHx3eYTFW8Dz/4gWevIc4ZiBn5Z9+hJFDl/cvSm+XyIaAB5uG4rmf5V/Y19AcFfqcn/H5j5yvLpZzpC7I0q23Ma+HmYr/DeN/83rnLozApsZifS1Ru28yliRmAZBlWjEWCJflaZw9I9qc4N7NUh8dshu+H3ptZzpX2+znEIDNJU7Q0qhlA6fGqUPvtdxuT2NXAdg/J75W3zKBko/s4AlYMmHs1AGB4cYTtZ+yYyQlNuYEcKT1M2VK1+4WJVfTFzIzOcFbD7Yf5ev0nzJP9j5/MzIn+J1g4Y2TikyO8/RdH1JaLDY8BWTEGN9mxOJPOKIcbgMOw66izLxIdR/OqOoXfueIHyElPAIrsp9rSULx97ookaVwImruE4dhjPK7x5p9XHJ4FSOsW1SahO/UEHq15JByHYw1A9yzCjSZ76m3IX1KH7+8CUNlgODr4kwFwCr2t4D/dwf3ZHY30C+5rfw5MCy0GajhbzTZQklvCZWKnQ/fZhPsfK+IiIa4Sbn/G89I9VXTPGDGcAo+/P1VsfhSx/VzRvjMvxYqD5PKtGqtjiU0tSkpU90Sxf86OkfqWgICFjpbeFfI5VmNiZl+GBmDzZSpJVttPbXjd8HhyH4jv8CD5KTUGHGD3hsmPkFCCBmo7tmjgQyZez+FUOcwv+FpuZDfG/hmfT7ZNMdggnq9lfUMpmb8L0MD/N5cOfucwnvB6ptdLggIHtL9qIE4xnsYSZQwBmnceuqlKTHLzTY3rP4slTay54j00nUaoA5avCPByOZ8GPi6DzMzOpBqIS8V0nDAdMaggeQYSaJOACEhPT0gGF4epU9OaZne/l3Idq42g2kqJP86sknqUcsh8/0icAQUEJfwu97jk4AJnyWVhb88z1iMfo5hHq/tkMpaOjE+WflH6p5jW9jnwiu659e48bo/b4/YP3h4ZkI9xM8mOeA9FBMbIgr+6BmobXPcd9G7D8r28cp5XevNwvTN5lepsRM6DdB5yy1DKIVU+3HKwbC09Kns1HshU3AxuvCfLclwXTwGcs9VkAwzZj+D14LUO5EgZ7Dhnw6oN9ZlRiRHaD/SYZOmXCNLJEu67dxyaVQk+JhuMd7sZBDnHVf3Nlmbx3J0xwo6pmtO0UqKULLd6H7BKuu/okVADFTHORmjz5RRAcZiElSVDeYXdO3omimyunlOfDv0dAD0w6nh9q+oH5nYH7QcyGPn8NQ33vetn5iPObMJhrLDuO7jVkvdPDg7Y7ApoJQAg2yV3Wxz/Bwe36ef7ZrR978f5dQ9jloMHfIXh5THq72+htS/HNXxyhG/+hwarV0Bzm7C/cNbcrXNnB0C5Vj+x6FDInkjUAmKQABHF8tsN3H0HPVrQFyVCw3tKZJkABicAs0Qr//vgWsnNBuOLIzz7V1tsfrTA7Y9dAR4QlCSpHA+bV89VaGLuLkySBbHVeMZ8+r0vMa/ALCkCbPiqge1LruwvPijQA3dPWNYmCdg9cWhvFNsXbMTeP+VrPPl3QNhF3H3paRIWDmrD0TzcShIM5xF+4zCteS+HjSuJQeE6YHoxAKMg7gOwDUCdML1ZIPWCpuPq9/ZL3pfVnbemdkHzju/bn2vR72dZ0upbwbQMxsDILDVys2ytP+VA3nwQiArGkf0ROamoueKg+eEvFcvvzfzvqcfPhXhhJ8WQPq3IUrXvCLhzXwcSsP6aK+XRrGPjGogLRX3jSvfF8o19nbcbUmMleCsCxP3zhNW3rvgRkCifmxaWlLUwidZAsJbLYH1nw3Pk/k4roLoluKlvWMi3/YTvkcDzE7Y0Q3fPFMvXNMQvXgtWrwR3P6YXob5xaG6AaeDnJ9wIxpUitZSztX+9wHgETGtjp9aC/lmEDMJAADtXwxlN+ftn3K+wZYeHOsq9sjywst6YQ7YntiZzWnEgd71DXBJ0aq1o3gQ+fgBy4lRsTV51rKivrLPlkgxdfWfg0v4dKzu3a0qtyvse85wOZ4wKHg/u+VhjTnzLn4sJbGCfGIgxHlNKmTzgI2ZQH/jY1a8Dtl9G1B8Y3pIlgxCyedoyXYyMm5SOoN/p9ttIrXpkQB6339L2CEA+wk1OTyD7yeJh09yCHiPSZmA61tML4N0lfQ0jE4xKSlOW2oRAmdS7D/OK+MHw+iCeNH8vgwBN0OWCK+H58YcpR05YiFfawwcUo3NJT7IJq/gWkhm2Ex40WWfvx6F0KB9HTkoaR8jRyoZdPs+9uSor9hzwTe41khEpg7kN22K9HZplYPl8539kIAGYtybMAAaA5CLFceSgHzx1GGb8L8WEzj2UCdVmhnd+bkzfdzPDkc9B0jnRKqdfJYUOI2OYVeeBOcvUdnsyYiIEo/l69AMwZemRXeOclBYCE8CO1igt797NILaqyJIcrwky7Nq4213pOtEj612JSqlW3nJill2j/uUxhpOA+rWxBk2F4WKB+88qSmy2wLgU+MH8ERnwIhE0G5DJZYFah3I/lQJBVbirDUH7tpuv17abj/0QQGcQl6WBByED8ZNztL98C9Q17v+3K5bj1bNkJuvKVQ5WRM0Y29xydX7zubENEwBLjwt7AHsbktcc5lhGZ8Odxf6u3iTsnjn4Hjj9leL4Vxtc/dkam08F/YXM8h2ToexfLHD1h54sjXCAnUyGpACg7CyAo3dF1xGaAO0Ew5pJPqkF5JZMiL9xXNG+pbE5LhR+EPpe7j3SIiFa7CtjRwVxxSSlcc2uhanlh2r3ggN9Xr3uz3i8saEno3vKc1Rf00w8roDxLCL2jilZGz42thxO8+AX65kxkyyXGchqwI55PObgH2sOjt0z5cr9nZRYV0mUzqhDiegdTuYVbnUCWLxusGbs6o6G+mwOz5GwEGNeFigSrfrWPByreWCPLfcvg6y4QLl21YaArNra8RxzX5prFgQuXgv6JzzO018q9k8cwxESWalgfonldwINUiKM1QF+Jyy23AFx4VDdiQFQxfYLlvptXxJEuF7QPyHQGk54b/r9LDdST2DQPUFh6VQAtIpYKVO+Ogc3ODSvKdESJaujkhlDhgz4S0qtct+KJGD/hGB+PAZ2pzxfat0o43oGCXAKTAJnPTMAWarYKJ/jhI9Jlny2UsgoFrvMn7vjitJI9fSfpIZx0gnA/gUZy7hgNO8cwc1rTNmWINyxT0SuDhQCv6vtEYA8br9H2yMA+Ri3YcT4x1+g+vo9dfYAwUhuxa7rOQY2S1ZyDKyYrKltgM0WcnUzv27xANgPyrqegQgwpx8ZuyHb3ZzIVF7bGIss91kty8DPmFjY6nKcB/I8SA7jLF86TGjy88p4eR3AmCAHDAPcyTFwfUsmpKn5mpn5qCqW9+17PnffcRjNkq+6AnY2wJppXocBbsnfWtoPHPCdA+owA6P7DXLbt+47yGp58Fh5yLJkf0EGcLkQMCdihcD/D8P8eI3l3GqMOIzozdIqdYnHEZNpW2ygDoG9HXVF+VseorM8LXt7jo/oaclDuKWFyflpYZce+HaS8tplEHgQl1uOxzmyCtlcf1homLeYoLVH890N6ndkYiR5yJQQP11h9S6iPwuUOAUOEFMrkD9/gqO/vYZMkYyJtQtLVGg176f048wsHZrqD7ci/9P5PncOadWyiPB+P59PA+/+elfOS6pQ0GmWeIhHSenJK+m+B+CAzaeC+g64+OuE659xNRfKwQopy0zsFl9xyMyykGyWXbyfkEIFPyiqXcLdT1c4/bs99k+XjBDNfR6OEpa7LxjVGhsUhmX/IsLvHcJOSrzvcGyr8ZeBUpd8qoICTYS/qyEbpkFBgP7FiOZVhbDla/ieBXkqwPIN26Gre4fhhH4XDqLWkn1ssavH1M7vnwPpR3uEXy6s3TwP/5RDpQYYTP/fvPfoLyL2LwD3jce44kAedgYA7infCjsOkuNJhOsdhvOE9h3Zk1RZsaHyvA5HKAN3XMzPDzuUmNUMAt3EyGJ1s68nlxi6gc93A/dn/5TXIzMbh23o0ZiQxXsChuF43v+4AKKg+Ih8h9JZ0lyZV2WYGZixmVO+8j7e/UiwekXANJzSqzEZq3D38wnrXwXeXw5WFJgwPAGqaw9nJvfhjMO233FApzdCUO2AceswHhlwBu+t8YggB5rLIlkMOJwqksn4Fq99+Ww4YxVyb0ZuQM8Rxur4vdGARwpkOeob3jO+R/FK6WTemFrhIqOsoVKAaDLplAgISgYDdirF75EXCsiSSNn/fHypJnBJbbLoYPbfUJbFosQsqxSTn6mnnA5KNu1xe9wet3/49ghAPsJNuw7+roeeHkE+JExfPEVqPOpvriAiTMMyeUwxJOehPa/A56Qq52aQslhwOI2J0hkDHFpxMCzafYCyKmBmM8IBOAkyr9x3PWSxOBjEjR2Z5lVlruYDpWXb0pDK6nphP9xBvKybB0hbsUdKkGdPoJdXFulrMbqLFpKlW/qDoTQm4ORo9imMCbJeQSbKczK7oNMEycxAloABgPdIz87h7nfQD9eMADa5lk4TJV1VIGMAD1QO8A1wv50BXWaRDgFcZjoyeDNAJ8uFMT9kQAR+jhNOCdr1ZLvs/MnReva25NcSmdvMh2E+58YuTV8+o9cnJcgASt2yvCvfQxk8AjN788MkLnsv9QIkQSlQjAqJvB/j2RJu21MCVwekRYU3/3Uow0BOlwI43F//oQdwhqO/vaYWxQs0gq+dTH51CDSmA7DkZPbiHDbX/6DpnS3oB3G++R4FkJYNZJqQFg1Ofp3Qnzi2J3ez7Co3Ymf9OARwd8CTfzdi/zRg99Sh2nKomRYoBXpZkpVXUUUB18GSoDisXf1xjZOvJsRaEGuH4djhw58vOYAbyEA1y0T6M+5+c82BONaA31FS1L2c4HcO02RyqzqvHHOlV2vzpXyoyXRsWaYWtg6LX1ZlpbcM3j0lTdOKEq7xKMF3UkoVVYDdJ0xNUseo29gA0yph+VcLxIU1mptcShKPW4UgabSYW7/36F4kAp/B5E+m2yd7YsNopcVQ3773iAtg+1lCc8V7s3vC7hPAGCGTQ7WXTLyiT4TXZPGax9afE0g1V/xeqhidOx4bw2Qyou5i9qi4icfjs5J04rmeFoALZA98BqudmaJ1ZrGmlfkhGkFaJEqRJiAtCEigFtls91L2ldz+jLKqXGYYOvpowi3DIrZfMFpZomD1lYckYPOzCc2bYKWHBMy+Z0hA2BFwDMezvyKnQoWBwC7WPF++F7IISimXJAK83trKIdxfsR/nYqAglwdmuRQ6xvq6nqAibKVEXmdJYT6nhxJISXYf2+cg94OUWN0T9rmI8jE+8v4tBZaKUqyZ0+jqOzHGSBBivj58wOwnUfPKGBs5CVwC4LRktfxOt0cG5HH7PdoeAcjHuI0j5OtXHDSHEf5vv4YbBmhdc4A6WrO5OnsR8uDoBCWzO5cX5vjbYENyHoLz90KAdD2KXwMgu5BN0VME2jCvoGftvbfX6YeHsqM8bAMceEsCk3Bgn+LcBXJosi4r+342EVcVgUY2cFcB+u6Sr/3jz4CvvicQixFyesLXaSxWtTW5VF0B769m1mecoHFbhtHcGi5tQ0C38DMz0DTAbgf5+hVQBcjJkSVlMWlLQpj7UFZLHktOscpFgMMsGSubE6ZWddRx5GNACNAuazsMfPygUVyO1gUgSNuUYyqSsSKrc3MvTL4f7BqGV9d8yUXDgTt4yqgKwNAZYABAXUObABnivC+ZcRhGiHOMh+1GjM+PUL3fQKuAtGrgP9D0kNYLSIz4/v9wVEzYxTCqli7kgKYDds882ssV6rf3wBAZE+wcNASLW52gVcXSwcwYZYAZE3RRszV8P0JDxQ6QQxmWKuLZEv6uw80/fYLuzKG5U+yeMYL0i//bJW7+ZI1pIWWwizU/Wg4chMc1V9HHlQ1jFXCbKjS3ihf/z7foPzvF/Zc1bn+SJyiUldTcKQBwmFq9UoxrvncA0L7vkGqPVDtUG4fNpwHq+P245FCZV/pz58X2cw5xsVVUW66Gy51HPJvgPtti/GpN/XsU+K1DfDLCX1ZIlSItEsK9Y2u0oyxrOGZR4LTkQFffcDhv3/OcxKUWCUoBRTWjSYcT+kG2n3E1e/UtOyGiWqLUJxNWvw5lSA97YPeSg2LYc/BznUP/1IZxI/9iY56ABVfX61sxg7diOKE0LuwE4wmPRytFClJK5JINn/SgcBXfjYDbSWlB95ZyNR7RgJ4N6yAxVFbuZU/vSvuOfREBKIxDMv+BqL2WlRzuXvKe2VoppMtSvgGQhaC+B8Jbgo9qp0g1h/GwMzATCQ5yo3y45ntnEBFbYGmSp1QB7TvGGy/e8nH904jqQ4BMwP7zCavfBLiJYMoPKD0qucCyPzf2YsH7XaIB1D0BdH3tSmu7741puicj0l7yMTnmJr9elr7lpLDugqlaUGMUKhSvhu8MEHhF8iy8zFsOfcgmdNhCQKr4mAyWoSi+oVjzsxpbMj/8wTH/mGPilsm1FnxfSVxccUVyx585LNPE3D8CwG8/BgTyuD1uvz+b+88/5HH7X30LAWKmadUEqQIN6GYU1u2OuvjD0r0s8TkYtBHTvBJ+YIB+kDwFWBLWVN4bU5y9EH6W9eiHa/MqHHhBcg9IBhOqM4uRv2bDYU5wml6eIj49ha6W3L/Dfalr7m9dE0AcGt6HkYDBOeCb1wU8AGB54TiZzMuO5fjoAQDQPKinVFb4JcuPLHVJTb5FNiUVmVHxjYhA1+183r0xOPl85S2bz/O/899ZmpX7TfK5OzSti8zJVMADoASATEhmk/J5OzS6l/vogLUIge+xaC1aN0L2PVzHSVjbitetH+fXLH4emeVW9nUNDmlRIZ2ukFbcD63ZVQEAMk4EH8bOiF23+g4lfjbsUcAHhANWjsi8+0mL4eUxtK7K+RNVAg1jx8TuvdJDEmwfY476FWhN5kUrzz+eX5MpEaRMwOKSCUKr1wkv/6cOMkSETtFdWJxtJnsS5pVrGz60pk9iWtjQ4oDh0xM0r24Rm1myUUoMxVaBLbkHjrIrN/B7SEBcBMTWI1bOVp0FsQKmo1jAR2xm0EZWRpFafs7GI0atxkWCbDy690vENiEtI+LRhLhKEJeQnvfA2QAsIuKCMp3q1jP1xwrejr6x4fKYhzG1ME18shQlHqA6+kKmFkhNKj6N2PL5lUXcSgKaNwH7T1Ix9ebXXr61U+U5lLuew6woilcmNjx3/XnCcMrV6PpWMD4Zi/HY9RzCF29cSeTy1u/BSF2mL2UPUn3L6yNpfn8A2H+auLp+AFxSMDAwUNY1GlswrlGatnOvhDrMQLum1wUKrL+Vwmg5Y9RymEG+j7pzmsKrO5S+EZY42mfGnh92MC+QItYES+MRsPvUGKQ9y/WqOyDceYwvB/pRth7dU8X+KcFYdWddJ+alyXKnqc3Mi0ArLSxEfYOSAlfd8rpnVqK6J7iCydhyrDIwyxfz+fF2rfL55b2UJVL246YzdmQn8IN5SlKWUqEgAN8DfhBIlmjZ1wlgCB5SsPd0PK85npfyKwKs2JDloUdHrWcE5e/sw1Kxx2VAlRf/fpdb+i39edwet9/C9siAfISbOM9W6kULNf8BvKf3ISYgOOhuz6/lITQPnsMwN4IDKNKoPIjm4dIdDMDh4DbIxXves8Bv0/G1UyLLMI6zdKo0gYeH79nUNgzaEI+DiFrnIInDY+mOaBogRejRkqvVm51JlRI7T8zLIU0DHA7iQFmFV9t3qWvoMEBiIsOQzeAWT6xDhHtyXoZavaE/Qvcdz+WkSJdXEOcohzIgIcsF97Wq2CtyGOGaOzREgDHNRvPdnsecE65E+IkTN3d8HDJAgAEkNaAlwKgPjzUDvHx8h4bqZEN4HsSdXdd8eXNbe36vYUA6WaF7ucLy794T3C4bypO8o9SpdlADEGnVUE4FMI1q6Ms50CoADvRmxMT/A1ziyE3oIlYuZsOCJQPlQrA8TEsETv6+w9XPF2ie1zj+5T1kP0K6DrpqeS/2E7T2BB/B85ekSCkxLKB3mGY2Z0qQycCJc0BwaC8H1G/v6S+ZEmScoG2F4/9wi/vPzhAbYDxBiVGFcH+BeeUztkz7gQaETnD9Ry2mv2yLST0bjn3H4a6ABvDfl39elQI3yow83JDgk+L6xw3a68QUrHe+aPHdMBeg+d56IFquzOaYYJkE/vke01ULiYLqeJhVdduauPc+AF5tuFSMpzTqjieUiu2f8Nw115QKVffA/rnQO9CJdWzMzIdExeobj+0XETIJJgXUCW7/0AzANVfHp0HIIjnKnVJNeVYeQqeVQoNSTqX0EDSXgrjEA+1+MeQP1OtDAGff6y54DOq48i2Rw3S1kSKPS2eK1TdSIn6rzcwir39DE/a05ODZXgr2nyTIIADIrPgeyL0w08I8Hg3meNppBot5KO8ugPYSqNMMapLwNWIDTNbYPa75ehCg2jENKqdq5Xji/XOyKtUtzdzjCeB6YPm9Q3/OpDIZ2c8hEahe12ivgF3NIb26BzZ/wIS0LEfyxh7kZCdRQJSvU+14DMPZLPsaTrlfvkPp3ugvDFyeoMiwimHd83pygscskzJGqLTDm58mBZQIYYlAMAa1/Myw19GAmV1U8B7tUdhDHgigKuVeSSIlmY0MIWVW7BkR9hXl75lskgsRLF/09jnExOSxx+1xe9z+4dsjAPkINx0HyOkTDlH7DvLkArjfMHJ1GMiG2Iq53m/ohbAhVJ+dc+jKJvFpQumhOCyn63oCBeeAZJNSjqc9PS7yoMKc5DjapiIA6YfZe5CSmeOF0i3A3ifNyVlFIhPhv30/709d8XEhQO53837nc7HvoCJwJ8fQ+w2kaaADZV/iHPDZS+hX3wL7yNhiTZQmWWO5ThO062liB+BePAM2W7bLNw09HcsF3+zuvgCcAj4s0lh3e5rP89cyKzBNNKsnJRDJhYSZhTkEAhl0IM3MRznQmcnI7IcOA6VfjUUoHxxTloyVcy0mxcuD/8jrnqVRUMX0yQXC66uZnakC3O0Wy/sddn/0FH5IaL6+LmBW+gHqaogIZNdDupFmf/OoaPAQZbt2ievt2datufAwAdoGXP7FGpsvKWtpPwAuKmLNwS8XugEoWu7rP1rADdTF7z5fY/nNPeV7BzIqmez+qoJ1g2BmS/aD9btEts0DQO4gEcG7/80Zti+56r58UuP4338gO5K9Km2F1ZuE2586+B2Hm1RZVKcNLzIBfusgjUInJuVsPmP5YH3DYSXLeLLZmZG0puU3liD3jOTNdxF+O+L2j9dIgSlhyYYrDnqC6ciWm4WFb37nMB0nVNe+eDO0Bsb7mrG5zwak6BBvamA5QTaeTx+BeBQhvYM7GYskRQCk0WFXBfoIjjjMpWCr7olSofVrACq4+xmlNOq4+u53DnGdoJHyn1QrrWQ7we6zCImC9q2jvOeIMh/1BAzJc3hMQrAlI6Ve0xoYTxJSMO+HVw68a6C68RhPab4fTxLC1hrOt4CGOQJ4MulY7rKo3gj2T3lPSpISPDAeKcYVTG4kha1r37oi5ZoW80p+fZsHaw7J2TwNBVBzEG8/AIP5ibon88AdtgQU+TOweMuLEDrYPvB9hqMZ3ISczrWZo4knAyzj2u69naC6JViQBAzHlGP1ZyZVUsH+ZQLaCP+e4Fbz8I35NSA8b/WtLdoApeskl/GFHe/nzY8YSpCL/dR+NMWacqbozMhunpFDRiTWlJNpP9/rMABSgFqtvJcURG35R6ixTQDBK2AsSpbDRYLm0hZvqVe5C4XMJIEJvSFERm7MXhc+NikDAeAyaAHZx0bpVfsdb49FhI/b79P2CEA+xu2LT6BvbiDiLK3IAWcn0Fdv4J49gd7cQZqa0bQ5ZakfgPNTRo9awzUA4GiF6WyJ8M17lFhYJzNLYYMoYpz7PwBG8E6prGxTAO/K8MlV98wsKIGHdyhlgymSAUkHxnbnZpNwFeYBHnhYOpdlT7f3XNUeRjI+VsYoz56YEX+AvHoLd35GWZpFEqccuRsCH+McdGOm8H3H6OIQyDJ0Hf/EVEBFkT9NEXCpdIJoP0Dahqb0D7c8jgwOxpFmbic87ny8IvO5yGlReZCuquKZkaYpjeS62UKO1hAnM8ioKn59vaL3JMu22obys5Oj+Tpnyd0U6duw1wjvbufrD/BaOQG6Hs2HDm5n5YODSc8MsMp+QHx6TPYjKtKqodFcFUkEkq8hAG3ozYAD9p+tsXvqcfXfd8A7xmjW9/Y4xxXYwxbwYjINJo/wAkTF+hcfMJ2v2EGiSiDUhBlkZH9MpCRnOlvC1wHuZmt+HgUqj5s/O8X+iWD3HFi8Y0SsJKA7dQg/PcPi61ukoxp3P11BvaC+i2xJt/2KR5gL+BTmw7Db/SjCXwWoV0QPdBdSCtOglKi4g5XbvMoLISMkkcMrmYAKOK/QXjPYIOwVl/8swW8YCRp2Ar+XEiWqwjQoABieTIBTxCNOb+F9BfxoC3m7QNx7yPEIva/Mn6DQGpDOQY5HpOsGqBLq8w4QYLirgdWEqfLwO362YwuM5xOe/s8edz8WdBf0QrhOMK0V6XgCJkFcJ2DvkSpF91RLotDwZIIGRXhfYTjjMDecKtoPlJqx0M9K7BqyS847Jm05GuxDAqOAB0tPO4oIG4fq1mNaJ/itmxONrAekv4iorzzCnvedJu73tBC0lzMggJokaSOlKd2N7IyYFmQ9pgVZJr83X8YRAUZ9A2iWYJncTj3ff27cth9xnYHagFIqmBOjAPolxpHDdGZlqnuU2N9pBay+RxmoJZl8a0k51WSJXP0TMiIa6A8Z18aE3HM4d3uHcF8TADu1UIFZSpaLF+vbGcRlkJPDCWIzB0M0V64M5mKypegzuOJAH2uet1SjxBnnbpfuiZZ7E8kAwSQPAIZMQqAE7l+WLuZNFJCRkrH8+ZT8ayuzfYmAk59HRhSnxooFg5aUOK0SSxRHAjFUgmRxwm4SpDoZ86zABo/b4/a4/RdsjwDkY9xevQNQAadrrq6fnUAvr+BePgdu7iAhIN1vKDdKE+TJOfTte+DDFWS5nFeJUwKubxFu7zmo5cE4RTOP86ezrlrIaD4JWyGWYbJV5bzKztfUCRyMs6QqA5i65vv1g/ki7L3qmu8HzP0STTM3uFuHBfbdLJ2x4TltNnDrNdxiQdAAcEi/uZulWDESXGSfRFK4zz/h6w1kjAAcyHCmuT08lwgmhYJeG+16vk7uiFBh8lTuXukHuDeXFi3syvMfsBAZzED5GAGK6b6qgGSDviq07y3a1kznyRicnGiVk8VUIRdnZKYyE5OZpZSA3R5htyewzHIs78iE5Gu+XDCO+DBFKimwWsK/veF7ZabLXlvuB8B7uG1PeVxSYPJINUGrVh7aBkg3wfXc5/ufn+PyLz365wwPqL5awA9c3cxSCjcYA5IOQAdmGYVQeYOpEVz/V09Z3PjFAqf/9gO0NWN5vgeSQCYDJyLQixXcfXfAhvTAFHD2ry+x/x+eYvnGpF+WQiQeuP8koD8+o//kS4eX/9Me13+0QH03MxduYEyoClfGcyeCTALsbegFE6I0WOGZzivivIF5jHnwSjobvZ15JK5+7rF4hzKoSQLqK8ehScF7MmiRoOjRBHQeaCJkdHAbj9Q4yMBVX/1qBa9AahVxHyBOkU4i0HnElcUKbStqguqEYV8B9wFYT8AuwK1H6AKYdgHNmwD3NuDux7bqXivqLzaYfnWE8NkW3iXsrhbA5CAL0lvtekB/WsF5BfYBSMD0sgfuK8hSUN8KumcJrufKuO8E00JtkOeNkAsU3SAIWw6DosBogEMiV7QXbxyGIwCJx0vPjqD54Om5GGewV98K+gvFtJRifs++lbAjKIitpUJlydcEK/BjelP7jq3dwymwf8lCxVRzMPd7YwiMsejPZomWt/QzZ16E6djAeE9GsL7hfSLJgEJvoKIH6j2lVvtnMxhQM2JnuZ9ElkPWNza8A9h9ytK/4SIhbHi/uoGAbFjxsW40cDHNhvtpSQmeczzO3ozjzshcifwcM4ZW5gE+0Y+hQRnn3CqZjgalqyM2MjMgDSzSWCB7A/BOZqlVsoUJZ6+dGZY0/yHgMCC7J9NFOZX9CosW3CAz45QZFelyapaSlRUATuDu/OwPsueJV/qeegJr2buPggF5TMF63H6ftkcA8hFuLB3EPITu9jgs2IMTGtABrvrf3vG3Q0xzqV9mF6qKX1subLC0pSCg/F3AxsEqUgEfpquX3G7tZWYtsiE4x/cOoxUD2hLj4Rb8zAQMNoCXId/2Jyd1AUBvhYvLBU3FoYHmgsGDFXcAjNEdpTxeFzVku6N3BgZasmH+qJklXuEAkImUBCppmyKFKuZv58g0lEJFG9Szyd07HnuOP57smDTNrFAe/A8lZimVIBaNERIO/D99z/3O5+eH/p3DOFxn5zcb3HP0MXCQemYSO3EzGwMgLRu4fYd0uiieiZIqZa32WcaFmCApwaGFeiFLFlyRYsXjBa5+7jGulWVke1dWdcsQjvmXPzAPHrn9+vCXvUsczBwEkqwLRJW+lMOboDVQGxPTsw6kWgCgixrTSUvjqvVvuBHw/TzI7567MoimxnNV3LoIopXr5Sbl5Knvz8lHbnCU9ni1FXaZ2ZJ8vMkWaz0g2YQODqrjMRdRmxtgf4Sihe/XQHMz914klaJPTwvr88iARAWIYpISWzAIiukkwu0INsQrYEM9FpReERQlyGRgeWPgYxt4rIOHhAQELf6V7pMJi28D/CDYhzVTtb5ZYawUcjJyPyL3p7troJPjbOQVYTVh2gbIMmISRVwIQZt5gWLW0outWNsqs1YJMgX0FxFhw/hdrk57jGcRGhJSQxaquuOJ9wP7HmJNY/R4kuB7V5iNsGG/xuItsP3MGAolm5A9GFopEgS51A7OJFA927d9TxkVxFKrrLQQxoCJybHCjkyJs3SoFGbWo7membV878sIpBHYnSrSacLqW8/7aOJrH0bdxpaMXtgD918yvjcF3iv1HQsOw4bgo7lkepUbaIaHAmmRgBs2fjfX/AwMx5SBkfXhfoUdpUpZCpZ7NeaABvudYuyCiyBLamxKCvYYYeRu/uzlON2SZSvzsJ9N37Hh89w4d3sUhiODESVIzEA/BS5K8AfQzBg6YzSyPIu6MkUMoCcqmulewSb1vE+GTNwgEBhwMtZuOnv4e+l3siVDWv/Yr/m4PW6/he0RgHyEm07mzM2r9zFC1qtZPoQ8dFsDuv0fq1VhN7Tv6R0oaVVpZj6qigN09nOME9AskFu9VfjDVR0HSwQHjKTZXTdCV0uyEABKx0JO0soDuercP5H9HoddJVXgIJwZk7xyb2xI2u3K6n9ughfvCRJyClL2StjQL8sFzeRXd5Rs/eRzyG++4/mxNDDd7vj//FzzUwhA4/00QcQh9SykU4unlbaBPr+AvL/mfhWmRw6O08DKMP5gAD4AY9M0J4fFBKkqmuyTkoEZx9I1IuJ4D3hP1uh+M/tAup6RvPn7h83yRf6m9m+Zr3VyhWHKPSluswfaBu52y8dXFdLxgpKsmGYWRRW6oMcnSy608kiVsxXnBr/+Py7gOmbqOyvuKiVvuQ5FubKZk29KuZexI2WV0YYWMiUKNwDdJ0dov78j4DlaQrqR+3pnkcNtPe9v9us4we3PTzCs3cx8aJaI8LUXHyKmBWmYsAfe/PMaw7Fi/Y0NW2Kr1nZMJXrTCuN8b6V/twYUTFqTV1+nJVeNY22r1ie8LfzA4aq95DDTnaNIglavFONKcPMzXtfuKQfvHLmaY3fdTUBqE1dhT0ZIlaA3NVKb4J4OwHWDdDYSeHQOWEQ0xz3GLiBlLwi4nzo4DugTJzvXC9R5oBKyIxcR4c4j3Hl0LyK0SYU9jScT/GKCjg46OUgT4d/WcJNgPOVnw289sBrhmgidHBmORIZDlJ4aJGFewz0ACMYjYzzM1wF1PN5JEG7pXQg3HuopUWuu6AORkedHPeA6WJzwHB07LVE8DHc/S1h94+gzWdEELsYmrL4zEzPM+N/MQ3OWVGXGQyKlXdkn4AykMqIWRZInE6BmTk/eDPh234etgfVEqdX6a8G49mQ6PJB6dpPkXpS4AJaveV/HZi5QrLZ83f3LiLB1CFvB6mtHxi0CtZU7qgPWf+/ZzWFgZjixY7B9aq+B/oSvnw3n6uiVgVNEGBMo831ZWMKgGI1tnJOv1IzomFOrcPCZsfdVB0ZPb135fnQKLObXgwCp4fXOkjEUeRW/n4GdG2UGeX6OfWb8sMn+Gj6nunYFDEsUdoDUPL7sXVHP//N3Sl7xedwet8ftH7I9ApCPcJOqgniCB43TbIxuapblHRicdbTvew/Z7R68BoCDVXMB3IEMy9KhtOHyjuwHK6ujTyOtGkhKpJUnSnIEXEl+IOHJvhLvGHubWZqkLOMDZiM7YC3h9hvBo/g6yr7GdCBhsscnhQ4dNCcbwZiDw64KM4oDgN4aOPr1tzS3F0/HVIzqwMykqKVn8Xgih2sRMhJmAtdn55C3H4CjNc3q+TWriswCgBLbmztVxgk5namco4PoXe0JnEoXCTxbzTP7kDtNmoZAo7Ssy+z9ycP24XmsjOUR4WopQMBRmC+Tnu07M627ObI3kZFy90w/02XDZCvbZLtj8WOO6930wNkS/naHX/+fnqN9y8FnOOaAsH7NCEyuZM6sgJsUqZq7ArLR1EXMA4Oi6M5TAHQpgHhIPEL73S1N6N7B3e7mc5A3Z6zUFHH3T55jXEpJ1AEwN4En7tf1HwZUG1v13fEYik4+ApPnfvmeyUAOimkNDBVX2yWitEZzuFVoTbbE74mq+ieJRtzFPIhOR1wJBugtOPpa0NzSY3D5T5nQlFvTQx7CvK0GAzj+lcPtnzBSS48n+Dohjg4wiVbcB+rhl0B13KOqIvZ3LfpNDd9ESBLoeqSEyyv8zhGsGEugFdOP3J1HXAn82YDUt0jnA7ALTNFSIHzwcD0wnAfoeoK/98DWIy4U1XvB0V95XP1FYiRq7+Eva8QnI1JQIFgR3d5hWpuBPKLEobpBitE3t2m73tF7UAPVLQdPMhkO/RPT5YuZtO3jNB4TWOTW7LxCDwDVncPmL3qs/roBzoh8+4vEdDErxMuFlG44WLEHfRpZ2uNGQKw9XiKAyozpk3l8qvney+3forYusJ0Baaysp8SYwfrOCO0N/UTDKeZ0KJ09GbsXwNHXfP54xLb5sSdIG07otRmPCXpyYpQ6u+/3xtAMwPJ73neptujiC5NkRTN56wwW/NZhPE5wkVK13I0xLZlk5vcCeFDx6xQy2GcCBoDMJ2I/BKE5sSoK4Of0tCxnzKxSannfQBgxzM+GmdSBWdrpLN2qsS6TzGxUBG+S/TrGbsaG92SqjVkcBerTfOECkOoENziCkopsbzHE/y63RwnW4/Z7tD0CkI9xWzRIHzZcmW/MW5EUc/t2XdKdcheImFG6pDBZWd2DQjmAg2dOtRonJh2tF0wAWjZw3QDZ9/CqSE3FyF8RSsJMflSiTbP/oAqUHqU9WRjvgGgDc4zGvgzzPlXVw9X6yX5oVhXQ9TSOVzyOMpw3DWVJGVwA0Bjhzs+Qrm/4mNyfso9l6M/nT42xkBAgKnP5nwECjZailRJcXUHOT5HO1pDLW+h6AXz7hoBgt5+lbsnPrAfA6NpFjXiyRPjucpZ45Z6WaZr9FQAZrAdD8wGwy34MVWBrQK4UTtq5i5Hnv21QyhqPVnyPDPpMapWWNdzba/Ou8JjT8zO4N1fAOGF6+gz+fk+vBchsAADGyEQrgKzDamn7AACUYLndgPf/u2dYfUcpUX8GHH2j8L0VwY28fcRWKwFjHqZZQsHXN3nSwe+77LOITuCiYmoFehEg8RjN6zt2emSGL//yrSvKwnpOiLExg3OWuBwMgG5iCWBzA0hSTFHKCqgbLGb0CPNwoRZTWmnpChjOGTmbi/ncRI/IWHP4ytIiSrSoOa/ubIB2BBO5gXz7Cc9r2ALNB1cK8qYFE4mGE0VzLUgV9fr3P1aEO4/pdOLADwBD/mwJfBsRHYC9x5SAWHmIT9DkkCZ6VegfSfDvK8Rn2dUMAo/eIew49Is66K6FNgr/rmYL9AgMzyZoFzCtuWouYyiehOreYf/5iO4niuUvanRPFRod4sVYVqhlx/dg1HH21hjY2BEIuCGvmgN+76x5XDAeJ/TPE+pLDzcIuqcJ3vw4vjMQcZ0TsXhtfY8Spaxi5vMENF810ApYvHY0Q0+UKOViPwg9QGFrX8+xr9kgb68zVfneIssStvPzmcqF4jWp7lA6SYYTYwonDv05qnpcE8DMoOxg5b+iZK19z4hiNwD7JwYAFhaWaPfc6lvB/ZeMJA5bflYPP3u7TxJW35IhOYyejrY2k5kTNxr7GRkA4EaP+sZhWijG49nILaPwsYnytZySJpF+ES4uSJFj+o5Aw+8EbhKTVElJxout2n0Jft9u1bhMdq/az3xrOC/Jco5SLDfw9bMsMgX7UDda2JO0SgSm9hkno2LekFP+PEm7vIjH57vePkf+YzCBPG6P2+/P9ghAPsZtjJCqoofByvckBGvBTpQZ5RjW7KPIhuo8nOZV9CwF2nf8Xn7eOEHrCtraLWBeDK2tGX2c4PJw7R0L6qaJw93SpF0ZgCxa4LRB7n+QvRmls9TocH+8n8EHgFKemEDT+DTxeO3bIo6rZ9ME3NyS+TA5ltQ1AUmWY6ny3KyWBAaLFuh7ArX1Ctr3PKfWfaI//QL4u9+QUQCM8bCJeBjhvnpt/ocemofbLL3KICoEDvlbSoCkGxG21zPrkVkdTA/6QPRQqmYMFppm9vCoArs9xj/+HKl2kDGh/sV38/vma9PUnOydAnUz+3Fiwt1fPoMbE9b/4QpaZ4N55OPbGu56C9QVxi+eEHgkEGAt6QXJUboaAtvHD1wXEtUYNDaeb18y4aq+AZbvc0mdlNVcGmON9TC9uAAP5Fe51btIJByKRjybYqeFoNomVLcdjzU4gqXgmHbl7B4rviKPVB3stxoGMYZFvbEyAvRngmrLQWs4RllxFUvsydGqqvM++h2HD678KovlOMugunGYVlpWeyVSmuJ3BB/VhsNX9+kIt/UYTyKaS4/9M8p5ckqY7/lnOOX77J9xiOyfRoR7h/T5HnLZQJsEHR3190tKoaZtgNQJ7nggIGgnDLsKvo6YNhVQJYTbgFgp4rMB6D0HxiZyUWKS0lYPGGAYbeC2FXnfB4gSeMZWoRUBhAZFOouQrUf7rcf+pSUKddR8ud7YltuA4ZS6NomCmAdDcCj1e2fmamf9J2SfNChqk8kMFxGud3C9YHo6wt17DGcsVswgMjVqzAevc/KcGTVwJby55rWvb4HmmmAvp0ZJ4jWQSJDjBkF7KejPjb2ZyDCEjZSAgfHI0q3WABJKcSBA4OBNFpYqMhyF7atnJiJHCfdn/GxUGzO3G8ip74BxlftR6K/IHg2Jc6Hg8ntBf05gzJhaKZ+HaUnguHw1SxQ1mO+onj9/KgQObuJwHnYCufNkAZyw4HKyIsCeKW2aaNKfFsYsGJjwHU3svofF8s7HNB0xxjmb5OMiFbO8G7n/U8PfJ8nnDzRKD0d+f4jSZyVWzNkkMhUWAZwXDVJF9kOFYDKzW35HViPVvKfrb2oMz5niln91+b0rQMnfHaym/M623wID8lFQO4/b/z9ujwDkI9zS1TX88vhh8Z4q/Qt51V4E8uIZ0vev4ZqGQ7yxBmXYPzQw56+PjoNuTLNJ+eBxsh+sLfugEftQxjWMkBzDa8WCUDMHO8euhhQBbz+Mq4rxtKWob5z9H2qgKYMQlVkmZBIa1cQ44tWSPSBVRRmaHrAjIUDOTpDef6CUarJErN3OAIyn3Cm/rhnS3f0OODuF3t3TP2LJYvk86jTNwCQzFRl8OJkTqkYCMwAEem1DTUU24jvh8QYQOORUK5NxyXJBhib3sAwjj7uq0J9VcINCwgHoycxGfq3Dc2fM1vTyFJKU/ozNDj5L5QCUfhbb3H6CpAQZxtnz4RwECQoHeIG6UKwsYgECagyPGnNT3SvaazqtE+aVyzzAJEu8KdrpSctzs6k0D92l8MvkWCqWHtQr+hOHdSSQyyZ4ZK/SodHfgO7USmE9chpO1oo3NwnTQtBdSFlZLklJC9PiVxy81BmbEe01BmMGosxyjwQOPCqMP805ByY/Kcdqki4AcFvPlX9rMp+WaklJtt9m8k21ludVGyAFV1gdrRRoEmTrgWUEkiAsJ2ZOTA5xFyBJMDmCkP62oQEdQFxHIEtMAvsMxCuQBGkVoRUH/+qWgCpLjyBWiLdlIV5edU51AhYR7i5AxwCtFd1PeoQ3DXQQxCeUeKWgwNZTqjYKwr0HFBjPIqobX6577pgIG0H/5QB3VXHAHARxaZKbSZDORrgbfk7rD45N6Q7YfRZRf/DwA++/LB1KbQYlBA2Zgdh+rli8ptE4VTw1/QXlc6e/EEBd6fxwgxRPxLie79nc5j4eoRQHyoDSDJ8jnFOVgfUMcFOwdnZ7HT8QHGVpY7IUrZBTtiJKmV4YCBr8fpY3tW9ZRBgsChi2v2xKB69zbX0kyxlkTu18j0bH+1cDKOtUFH8NAEyrCNc5SwhTSu9Mmjiu5/s+5TCGZNfAJGlpYfLaQQr7IBGYTifepwJrmk/AMkI2HtW9Q6y5T9WdlFjjHHddpL4Q8zKhMHNZxpiMhdSGBZMaTBoWAPXJonZ5fw7nEZikFH2qz/4iM6xPBwz24/a4PW7/2e0RgHyEm1hXho5jYTY0JQ7eWSo0TcD7Dygm7WCr2znW9rAxvCQl2cq5DNDlgkPmMM2AZpg4yI0TtKmhy5r6+q63lf5AYLLdWmJVKrIpyav200SfyTShNH4feiCy9iFv/WDyJA61xdsAIPeMaIyQfphXtoOHtEvrQ2nMwJ4YUzyMfL1VA3z9CmrAofhAxBVmpBQI1hW0Mzfp2Qlwd0+GIsu4cuztIfuQlGCjrouZW1cNPRI/3JICcSz7+eBanx6Tdcimbmu4pySNA7c6wPX/CWAZ48xqACYLMwO6CJK39JmmNoncgbdG7ZrCw7+7nr1BVYV0skRc1ai+vYIEmpS1DoClXgEoKWkqgu2nCxx/pWhvIlIQjAvhsG7eDm9SiTy8pyr7OvK+oPg/civ6g1SbBMoohK9ZbxKGZ0u0v+mMhakgdg5yYptMPNbtz87gew5AsZmBiCIzLEodvH3j7mc5XpOPzelTeQWWq/O2wupAyc1KAXt87uaYVjSMV3e8BnGRfQLKroq9YxP4jiv8qVFgcDT1gq8Tj3lM1YcABVdkXUTp1pAIxFVCXUcMS6Iif9FDo+DsbIvb+wVWqwEiittXxwQFPmEaPaRK8KsJ+q6B9CbdGh3vF6dAoBEcIUGTIEXBeEKQkiplmtW9B8xPwRjWBBgQ0kmKvwNJ4D7UmJ6OkDpC94HG98DV69zbMR4lDvM7Aydicp8IxFpRDYL2qxrDGQfDuFDEdUR1FZCCInomYzXfVeh+2tOj0nvUl74Ajdgae3TKfa7u6VnIq+9hA6TK2IIdQd94oqhvHMIGuPtxZqMStFK0b3xpuHcTGZGwnYMKFED/hPG3TPjizecm83ckoHtOBiJL/tzNbA73Hcr+UUrF58dcYmnyqMrYR342UbxOkujlyLIj33FYh93/+X1iy6JAJAJgPlYKIKfci107KZDJmNoEiYKwdXCDNykhPzOTAuNRYmLVKMXLIznt7gfsptg1Vw/AK8Imsw+uyPJSoA/EfQhQT+kjQLDUXxiDlgTaz7LHYvo3r4wbUKSDYSsFwEly5WdDNtbL4AzMyLxwkQxwGlNSPtsjmJD1u94ePSCP2+/R9ghAPtKNq/qnSO/ez4N9XUN++gXk3RX02Tnw9SuI94g//xFcN0K+fm3G8QiRmT0AMMfdGgiRfW9lgA6pCdT31wHa1nDbDmnVYDqpUe8Ga6BOQB85zNbV3OMBPGw/nyLg7QdWnPi93KpemsUj77zhMJdVgRCQrq7JQogQcB32ZLiA7IXBZodiFB9HmvGtjFBTglstgUXLr2dp1qIlwNjty37oMDDqd4pIMVJ+pkykKsN69nDk6OA88B8f8W8DIHK7BRYL7mOJ3038t3cPQKEOA9xyybJFZyxGTJSVqS2jhoDF1zfYf3GC6s5YpEULjCP09p7HM84AEkABEuHNDdyz51j95n6+/hkMZlleloGFwPMxEAy6qw3cOwskmEAQMrLzI7VkQjQ4uDFCg4MfEhbvJ8TWIy4dUshRsEDoKcFykYOq2i9tYPZ/ZJCRI3jzsJRBCA4xqwL9kUOsKtTvWrh+hOsGhiYMc1pXWjW4/tPjosX3g1pBmpRV6tgA49qhP6Yxt79ISMsIv/VMZNoxojX7UmJtmnUDRsgKRdOuQ4G0isAoHKItNhRKWcq04oCd5SGA6dpVSorPoeG6fRUwrhXj+WRMiKD+4DGtaNSOL3tgW2HY1Tg63SGZSXZ7u8D9tsV61SMlwbIecRsFvo4YP7TzqvYW0BVbyVEpkFO+zwakLgCjQKOxM4vIYCEl4+O2LP3DesI0OBp97W9/XSFVieBkYGJVuhjgbiqkE2WkL8ichZvA1e7RAI9TW/0WhB1lbYCUQABJXCUfjxM0KKoPgcOzAZnpfELcObgrC9eIFr3b0bfhB8G41vmagSvnfs9htX+iaC4F+5eKNAkWbwTq2R7en5OZSDWw/tph+xnZoMweZKA6Hlmnhkm3wk4wnNHbUN2RDdEMsm313ve8v8bVQ3ZgPDq49R1Y5KlkW8Y143anNYFEf07TeX/Gx7bv7TqbpwngcyKDE7F4l2VzKD0ng3WHTMvcNs571Bvbl7tz/F7gBhZNZjDhe342chN5c+VmQ/pCITsO7Zk58L1gWkc48yy5np9Nt+f7ZwCaPUFuFKQ2IR4p2Vin8PcEnQgKia68donMNnYSALQC3E7KOdHqIdCaVgQSDL9QICRgZx9+I5nFrsNwEQtQlkFosO/xuD1uj9t/wfYIQD7Cbf/f/BH8+wnyq2+hP/8p/PWG3RZvP0BfvYMmhby+pN+iaRB+/RpwDtMffQE3RHoXSrGdzgPn4fDZVBzAaw+37Vjuth84eHsHv+ng398gPj2F8wL5cEvp1jQdrKJr8Z2kVcs415JeZUb1vPKeZWKZAciDc5aGOQfd7ujtsESn0sshjv9WJVjwnmzJQQmgVHYr1xUH66Qc5HOh3tGaIOT6luxRlkHVTJrSaaL/I0u1kmmFDhO6gLnBPSWev1VD2VrwMwMhUvYRwGxGHw4AAGBxyzZxe8fSRDsOaa1P5W6D5rKmWVyNdYGxMs4REOYW+ZiBagVME47+3VuUskiADE4+9hD46c+gVHVmQbwDXH4sgH1HILsi0IyrGuO6Qlw47J54rF9PmNahNFln4zgUGFaC0NM8HjrF6Iw5yHKrLFHypjPPRFVeHc2eChuGSsymgP6P5CFjhNv2SKsG7m6P6//6Ofa5iVy4qtyfCKqtFqlU8kC9UeyeCvoLrtbiiHIPrpAemNZhi6CVYmrBXocSo2VJQoFD2QRPoJVXXifBdMRhGU4he49sHk5BzYSbgCjm4RDENgEKdC8nuM5BlhNwXXOl+id7NH+3wHik8N+3GJ+M8FXEdtMgjR7Yc8V/+AKI0SH2AXf7Yw5LUwucjhBRpC5AFhHVm4bMxWqgpv06IN7WwCISLAqAOkL2AbIaUbe8J4a4AJqE3AItnQPaBOksInc9QgeP9rsKsXUYj43VSNYPYp0avhPKbDqH+oa+DTdwNTpasWOqtXQ1xJZJVlOyod0Yjdha8pF5T9xgA/XTCe0rWzE/JeNUbUxa1QmGY0V9Jw8G6/EEaK7Y0D6cshQxNfTudE/VwgD4mFgD/fOI5p0voQpuolk9g57+nAArLjnI+w6l9JCdFJaw1aOkTuWV+eqOoAH2uO6C329ugPYK6I8JiqYWqK8JKNzI5+1f8DPjJgKsaW1yuRcEGbvn/FxRzsd7tn2f/SNSktZyMlR1TzCWGUuZAD8JJgMEEskCqUmcpgWBQ7URfg4WM7vnLNnKWUrctE6U0y0S3J6AJEsSpXP0WlUMXIBYuENAAZ/SC7QYzG2/c0Fia4BzGZEWgPSOXiQlOzOdTFwr2nmgPniuPQejK0lqqU287yeTEu49dG09O+cHC2q/qy3/3vpHf83H7XH7x98eAchHuC3/l6/gXA11Dv71B0qc7jg0lsQfR2lCGShTQvjV9xwycypSHoIz6HAChIrDeXBAcDQTjyOwqJFOV5BugGwHYLdDevmUjIr3HHhz0Z3DPEiHAG0Cwcc4ms8koqRkHXo/LOp1+PIJ6l+9MR/DVB6nfV/icDV7UDL7UdfQGPl1zD0b4j10GB/E65Z/54ha7+ldyfKuIRVZmsZY+kmkrkrPRi5yK43lFvEr2UR/tAaqQPCR+zaCnxOostkb4OO7vpwzHUY4Y0/UCheLTyRvIrO07M3VbFTPbFjbcF9z3wowX+f8/Py1pmKnS59b4WWOSz5M1noARg6YkSSMMN7sMfzkGQCgPw/wXcLFX2+hXtA9bTAunXV8wKKMgdBpaR4eV1J8JDl2Nw/5Ek2/HTGvNsZZSpJ123kQiJXg+k+PUN8nrH59D7ftCMBEcPKLO8Q/P7b34X40d0rZSrbyDMDyfUSsAt9THXBX02icYMPuHCXqespIUqVwiYk/eeU02Sp2bFDMt3mfIRzgKOGgLMlHgV700C6QLQoJzUmP4cMCKkD1tMO4qYmdPRBeN5ieTKjeVtDtAsN5YkJWy1tGLxukZSx9HONpgtwGxIrpVhCdB7WbCtomSM0TmRqFNglOFDI6xPOJvSJO4dcjUh8Q2gkpJMRdheqox/Z2wXLAKHCLCWkf4I5G6Dh7WfSuQvPeY1pSolJfO/RPI/x14MBXJWAXOLRuPTX4E1B/8Eg1Bz03zWb9PET6PbsaUqXWEC4YLya4Hd87vKmRFgmpomwqdQ7dT6x1Xc2+EID6mqvxYU9T+fI7R9lVByTHFfLqniAEyv6Q2JDhyAAiJ1wtv/HonnD/6juybJlloKldMByb3KsB0ppgQz2BQu4KycC0NJHvZmlYfW+SKwMu+2czaJ9WBCVxmY3yBCJhw/u8u5iTtmILAxKYSzYXlphlXpTY0HTtepnv4YSZOarsvjH/Qzbhl2SxzGglnuv+nB0vbu/oI8mK4EEwNor4bIS/D8b8HCRM9e6BbBGeIB6jw/RkoudicNA2wi8mpDtLZjPwWd1lbwv/L8mbd4dm9OL/2fCHQvuOn+f+wiSGG4c4GBPXoiTfrX5RlYji8SSS+WsS3OVHYEJXY9z/sV/zcXvcfgub+88/5HH7X3vTaeJQvVzMsbPm61BLxULSUmBXdJ952G+bh0lAeZDOEijvjMJ2SE0FPVpCnYPbsMQPw1CGWulHuF1P2VMurwO4Um+r6zLEOWL2MPq3aTiM5z8Vo4LrX73h85NyP3OaV+7f0ESmA6AMa98dNJJzGFaL680ABQD3xXwyDxgTVegwQPuhAIkSYetkPqa8Hzmtyrn5XFdhlkrlVLHcLJ7b2/P+5R/YKR7820CPczxHalKy/JoAAUdTz+fr0OwPzNc5RxbHGUiVdnlVaHMQ4ZuN4nXguTqM/c2dK2Xf3QOGZvaiBPO6eIgqfB+x/maP1Xe7stjmJi2SqWLWVpM9eYGbtICP2cxOf0gpKDTWI0tQDksK89ByWFCWzMg+PGM0sAwTNHi4uz3Wr8byPImKWOFBGpYbFcPalbSg5poDWgpc2c2yMImwCFgwQSdfisChPrUEJeMRV701cHjhcvwMZtRTO5+jeNWiPeGUpXymM0/LhOG24dfrCByNHLRvA1KtaK7my+UHQLaeMaFVguv5uU6LCDcK3MkATAIZHFAnpAWLAzE4YHCQ24rnfhLEXUWPyG1AWrEhXV61Ns+QkZBRsH27AqLQvwEgdZ5DYhKg4yq1dA5yPFK2tkp2TgA4DrcSBTo4YDGxSb5JCLce47FieBop2TIWSCLQP5+svwEl6pYsBlPHMAna94yWBYBw76AnE4bThHDn4D7U9NrsHBZvOTCPR4pqy/u1vnE0lI82LFvimhuA9q0gbMhkSOJjMrvlRiZfTUvuj5tmb0ZhQ6wzJBvGh7No8byKWDNWOIcvjObV8B1mr4T5PoZjlIjecU2AJDozhjkqeFoyXndxieIFCXu+Xn3H18jAg0WC3Gff8zWzF4QSK97nbiKIdpMZvRep9Nuo9c2UtvKWkiRJNpxbFK+3EsksQ4zriPGEPzfDTSj9LqlOBUDmz0xaRKBKQBvJJFaJLFqiNFCiAO9aAn0A8cmI+HRA/7MOw6cD+qcR3acjYqsliSsFBZYTUpPK/bZ/kTCc8H21VgwnCXGZ0D+NmI4j0irCGzsznCdMK0oQ/dZBOlfSsR63x+1x+4dtjwzIR7hJVUF3I0SWwE8+B16/p9nWVus1JchiMQ/lKsCnz4FvXnM1PUfNHkbxAvMKexWYGATAXd/RE5LjfJeLAlgkJcjNhp4DAxjFkO09QUr2DuShvaqA5QLxbIn9yyVbpl/t4G623K9hYFeIs9foDmRSdW09Hh07Mp4/JcsQE9JuB2eJVairWaZ1v2FRYG6N11AYE8lDuAEMCTTzynJBIBJjYUn0Dz6HfPfu4CLI3CYvQrM8yJhIUno9NAE789JkRioDgyzFAvjczCyo0rthnS1ycgRc3xpzRC+LrJYGDmZ2JocPICmwWszHlVO4Fu3MCo1xBneWlOV2PbQJkKaiVtkZxTBNB4zNzJ50PzpH83YDTAmiinTUQsaI4aSCGxIkKuohwo0RU10RZAzs1PCDIjeYZ6XStODA7Tt+L4Grkzl+01utSja8wmRXCpSh/1CWBQM6i1c7ykK8I+Dxgv1PzrH9pMLU2lDYziu52QDsR+5fe0N52LjioKY9V4QLWBKY0dbYk4l+DTgbxBSldyOuI9yeEi44ynlUuP+SzN9RUWaig7fhzCE6xXhX0euyiBAo0Hno5NFcevRfDPAfKqRasX/JVef+PJFtWURUHyrobYV0OhJAVIJ4NkEuG+BkJDgIyjQhBXA0AtuAnCwER3Cliau8mEwOFikXmzYVqqsAtAnuzmM6J0KTQeBGT8BzVT8AkHjbUP6zd4jLxPSs3ozpTaIUrSNDgkSZmowCv7HPqnMYT5ms5DqTwKQs6wFgcqnYKtq3Hv0ZZVfVloN89YpM6njCCxkDV8L3z9U6RxhnvHg3sxWiQH3tyn2yf2Em6w0lVzmOd1pSjjQcU0rEFm1KvJor3tfRCizVzeyCm4DmA6VabjA2pAZGn+VLBCzRWr5hP9IqYz9ixffJkio3GYDIpYdqQGIB3P2EHx5JgmrD19k/5f3scldshZLwFGu7/x3/rX4GIuoJJDOr4TpXUrx8l9vhtURWxzXBcHXLaGlKET3iMsGN9Gk0bwPTsp6MiEtBHFzxVEHnezItI5rXVQFbyQNwlGD5HphWNL/LJFCTV7rLCjk9zpkBHnDFQ1Te56pGOp6APaOrtU2IRwTomdWQnr4mKO/T2CbsPqcXRRLg32evkTzoL/qdbY8m9Mft92h7BCAf4abTBLdYAP0A+f7d7GtwAlkt6SdMCZh0jod9czmDh+Bn+REwr2qP4yw3OjSHLxcEBzmlqa2hVQ25vofujTHIOtAQyGz0vQ2voayU62qJ/U9OUd2NiI1n227tcPcHa4RuhfW/eQVMbjZDN/UsLbIo3gKqqgC9vikmeqlrxuU2Dfs8cgnh1vavrugVMdN59kholh2VUr5UzNelVV4E7v0tNEakP/gM/u9f8SmNmetjpKQrWXRufp3c2J69Fd4/ZBQsxav4M/JrHcrBrm4OTOAj5HjN17MOGNQVm9qtsR5tzXOVpXVJH/bAxNlTU9iTgQlisou8l6owg9O6smjkagYgKaF7ElBfeUr+bu7hNjtMXzxFd+YQulxMB/guIjU0gg5HLMgrBXORRYSiHMbY9SFlwMiRvNkQzvODwqoUiRb4tfJ/G+wgwIe/PMLFv703wCXoPj3G/Rd1ARoAStu6ClDfK0KnZEUa+lL6Y3ZF5FSgXLwWdgCWeGhmtaQbrRIkKFwVoV1DCcpArTs8ByIIV4EhAKKd2ygEAjbgAYDbeSs1JEukkydgANB/PgI7Fg3W76ti1A97ruIfemLkjoZut/VIZyPSIqF+1SAuE2IA/N4hnkyQfShsDuNJBTgfgDv2giAJUCnkRQfpPf0pQVHd2sW48UjB9jlRQhVsxRzgUC0T2Ehuw3w6HQnU6gTsPbCcEN40xbzPXhA5aDvPsjUAA03JYUcJn/rZpD6ttJwHCBOMYqvQkxH+skb73qHacPgeTyPQJsSVQ7h37Po4tntEZwCsnnKj5soV/5FqHrgJKPoLLS3r45o9E9Udo3+ba8q0uicK55m4FBvKu1SAuNbiT3AGGMLAx6SKgCMnZklkPLAkQCzCN+xQ5IS+JxhJ9vkZj+xesPhYN/I149KGdEea0g98XmXlgOMKGFcEViHNiwfxmEDXdQ5hz2N1g13Tmt0ZXAywNnBHrwzN6WQpsJ4weaC6ZnCBHo8YzhRpHxhru/UlCc6Zb2Za8XPn7/yDBnQyOAbyGgI2iWKASEqsrzp+VsMeyKsg0WKFVWZjutxVRebpLx2GEzI6koA0eYtYduX9s+m+vg6YFopgAM13wJAeBSWP2+P2X7I9ApCPcJP1EroZyQaME4eZmgZp3e4sNran1yFSxiPJzS3jZswuW1PPAMIJ06EqD7m7B85P59X0/HxVyP2+GJ7Lfh2tKe+6vaMkJyZg7IAqIL48R3/WoLodUL3fIDiH2J5iXAlO//X7OW1p4R74PnI606EXo8TfiiNAyBKpHKnbNBDvEF9ewKuSBWlbaNfNZnSAMqwYIacnhaWRpxfQN+/5/nUNCQFpv4fsPWS5hPvVdwRYOfFKldegCtA0kX2YIo8/x+eWnhQHxNHkatOcDpZmFmZ2WUuRTBXmowpkS+z5quzmkNXy4eODJ5sV3MPXAuV105M17n66xOLdiLjw8PuIxdc38/X0fgYduUF8igSeXiCbAUe/2UH2I2QYoccrFix+d4knrzx2f/IMu2cB06LC8u2cCpVZDkmGIUTmOF0zZmcPBwyUHKYy58Ehr3ZnwHGYjAWYL0RNq18JPvzlEZ78q4jppMXms2ruHzFZSgp87dVbRbVL8INif87hor7usQoN9hcO3bnJYCquZEukpMTlldVJEDYO0zrRezE66F0wQy3gRgILGLDIpms4k15VWuJltVKyHbcVB+qjEXpbA21Eddxj2taACsKqx6g1JCQMT8g81O8rDqsLgoXpsw71b1r0P+oRXjeofnaH/V0Lt3cYP+m5SqvWazG4mWWYDGSJYJps381wq+IQu5qdIm1EDAqVgMU7totDbIV6kVDdMIoWoARITaVY3fNc4UkPXDXQ9QSdHFelQTmO7wnadB3ZI9k7TMcJfuMgYsPdIBgXCeMRB3c3EOykivdBXJtx2VbJl987bE95D+xfRuyaBL/xCBuHNLgCdMYVsHgP9KeWlLVzRfZUm6cnN6XnaFbfOYS9wN9QfiVRsP6GII6RtoLdS3p06jsCp9haAeCCA3P2JuTzBeBBPG/2feQty6UgBCP17fwYPxDwpWCvfT//mNHA8xQboL7JaVJ2XPZ68eDzF/aC8YSgMq4S6g8eSHZ9PEoKHAT08+yNLYIBuJL6RuYlLpjWNlW8NuOxlUW+rxFXCd6KI9WzyyXcW2R1S2O8OinnY1rydeEpdaxveRzTiglnwyl/BoetK43pSATB6XhiJ42bfS0hd3kYEZzP2eItI5jVz0EGMInZtE4lBW845bH1z2wlBgCuPgKm4NGE/rj9Hm2PAOQj3PR+C0hNkFHXXNU/7PUw03X2LMhyzX+vl8DdxgzfgTGx3gHdgN2fP8fi1zc0Io8TJCaTQA2FydBVQz/HvisMSmYJpKk55N5vUAzmAHLrtv/Nayx/TeCTbm7hjo6wut/i9l98jpv/6inq24jFN7d8ys1o8qexsAdSUR6V+0/EOWiaSixtln5lc7q4Cv43ZCpgkbmSiwGNAZDM6GR5kRPg6oaJWDdkPBAj3NMLgolh4GtkBgGgNMzOdQE3wUNrD0kmz8ryr+2O+9I2XK7M52e7Q0mYyh0tB/sJgLKsgWEAueVcQoC+eALZ7Ocm+8Pth8lmqkA3YP/iHM1NRFyQhUpHAfrjMyy+u2NxnwhQL9mVEdPM4IwTZDcCTQN/s5v3ozPTvzFC/RnN05IU/alH6BS+S5DkUTL+Yb8G00PQAQCiimhxuCVpKv+uNy25G1FWV3Nreindc/PX1QHjUvDun5+VYjfAhsYVB5fmBmg/WBLXXtC+7wHUGI4cJCmqTcT2OX0AqTXDucmTcgpXBjWpBqpbj7RzpoePiJXA7R1jSD1N187kQQgKRFstrvIJsGO8tbjaJbsxtGXa1Dg5+I1HOp6QXi/hn3bQDw1wPEHuA8ajhPqGBhmpE3Bds5ei92zN3leov63h//QO+9crxIsR4bLCtE5YvPKYFraSa3GlvhO472uMRwm6jsDWz8VtPakjlrQp9i9MbpJkTiWya1sK8BY83ul0ov/kpgaOR+C+gj/rkYYa7rpG+1YYIbuOwI6AMC15z6kH4vEEf8eOj2Cg6VA+lPe/pCYFavy7Z0D9TcMyvFuPFBziKvF1tnys3wnGk4jNUtBcOYStQ31N/4QbCTiq27mc0u/JyvQX9D+kwGsdtkD3hMP/cJGw+N5BIj8AsaYBfVqirJbnborsDymSQ2N76IMwlqMFfOQ5BQA1CVZsjd0zYJ/amQWD8DPkB6oI1ZlXyAZ5iKVmLXivF+/GMsFde6aSrRT1lQccyx9FgXGpBSxoMMmeB+9fgB+Sak4wgwJy0SO9bclyjI5BDfaebu9ms/g9QUEGP2E/A4r8Wa9uZWZCOotS3rNDhwDCGCvHD1jY8bOfAuCvKsodJ2A8Tggbh/GEXhMMFpxhCwPTdr6XkiViTcZYFWYOgNjnu7r25XHYHKgOHrfH7XH7z26PnOHHuE0TZL2y1Kesa6DpXJMBB++x/d//MTb//c+x/7NPcfXffYHhGZOZsFggfvYE1//sKYfI7RbqgMt/cQFt6pkdqfPgyfhY2fYEHkn/Y/8IMCcnlVQtNw/S2aOiClkurU19wNGv71lOt/KYzpZM3cqv/QOZWE6YEktmkuXComoPBmzbMvOTTeJ6e1cek/cDMVE6VQzsjn/2HWS5KIAiPj3lc/JA732Jw4X3B+ZwM2NXVSnkewDEgNnknaN222oGDpE+D2kaM6AbK1TZY9oGPwwVkMsbSuWqYMzHwXk4TLzyzozrEdV9hHqxBCiWh8XWYf/lCeJxC1S8fzSQMYkXa+5bb4le+bpkk/ph43pKmIzYyWWDUIUG+Y+ARhmqVPnHZFluQpE5cP/nxwKcZdgcbsO/RzH+lsfn17cFyFSjDPY5fhdA0aX3Z1wxHVdZ+pLstR1SJaWfRMzoy+Zx7kzua8hSkxQY/ZraVAbgsKcpOi5MUpRLAxKZE/VKhkEBDYm9GwporQjLkb6IJEBNf4TrBehMSrWpgLMB7roiiKkTh55K4etY4kfDjcfwx3u0/36B4dkE/Otjvuae+nt4xf5lRFwqqi1XtrvnEbFVjF+SwnD3nvsKFEO927tivmWLtsDvZH7cAVAcTukFgADVVTD/hgD7QO+J8JjT+YDumWL4bLCma5OtJUrUstGZ11A4LLdaUszyda42s5zGd4L6loPtcMEvxiXPa3Xj0b7zhZ3SoFh949FcOowrSonGkwwAtAQPTCsOokxA4gp6bj8HKEni93kfdM+1xNrm+zVs2QXiO0p1smQnp15BZ6Yu/z8zI/lz4EaCiMN7mn08/DMttCRoAcZE2blKfn7NFBgLPB2n4tvwe0F9ZX0aaS4qhJGqAErRXlym8v75OkNpUGcCFRDXEz8blw3v+cB+jfFYS0JcXmTI8rTuxwOTzRrFcJYQG74XAx34uRr/aI/9TwamvyUrbRwIqJpLV5hOmustJKIxJkN4LesbBzcB1Y1D+13A8rVDdUeGpn5PMB3PJpYitvlnO6wnJGE8jUzlWhIsqcwdKvH4gLb6XW2HQSX/mH8et8ftt7A9MiAf4SZ1A91sy8q77nY0nQ8Dh/MvP8G7f34GNyme/M8foMsasXW4/uMFTurnaN5t4d/f4ewbM1UvFxy4XIDkVfdxmmVEWeKz2c7SqLyFQNP1YZt6lgKV1Khpbmjfd5Dz0zJIy1evcLSqsX/WYP+8RfXVe670Z/8HYLHBkb9hO5NnVYFyswwqst8EmP0TImQ5clKTlTACoPfDwIGal4L+jQDUtt+2j+6X30Cams9xYqZxmcsc1yvzc3iyHXWuHw5kkOqaLIeIvWYExCFdHGE4a9Fe3xcQpf1ASVXwZEVyqlZMKL6S3N1RhwOw5+m7WS3N8G/Aqq4MNKIAmtiyDDAFDtM5TWpqHabPllj/5h7ubk9wBMB/d8nXypIxgK/ZVA89LSYNe/Ivr9C/OMK08uiPHWLtMC0E7VVCd+a4Oo0D6YiSLWEqliBBHxqWgZk5sV/qWRqhYQYfAhCUGBMimQXJ34/z84dTW/U1XX1s7HEQyBShvsLtTx0u/0mD1XeCxaWiO2diT9jOwx6lPlJkYdW9w7RUjJbShHEegGl4hcnN1EzSPH5tIjsqxFG+FQXxiOlOqgLxCVgmOK+IXjE5T8lUC6CNEGdg4GhA2lSYTiKwd5hiBWnsfksO/tsFdn/Uw1/W6H++h/u+RWpgyT4J4hXJAd1LFgc27xh7W33dItZaJE+pJfBwt1zhnV70qF41yKxTashKpJbmZLUkt/aShm2/JwjQQ/N7EqRNBdc5rP8mYFoBQ6oKWMxN8ye/8Lj9U3aDuF4wPRvhrwJk4rkeLiJb2GGpWgrIIBhO2TCvQVHdHBQ2Lrh6v/9ipF9l4xCXwOYPJlQfAgMC4mz29h2Zmcx85H3LrItWiuhoQHfW+J4aDqXNlcO45udtPEoE5pOUuNzcyzEtyEywbd0icJdKL0cCGpNMZdO9rowtMTBSGrxH83LYfehGoH8yM4jJ0r3yewCgPKqReREg/2g3qVlOpJpWCjhjOZQMgBuFkiQzfoeNs/dR6HrCVHuyVtaz4QYA0Rtw4eNTrYjHEalx0DpRGnUfTPZEk3rYMrzAd9Yhsk7w37ZoOn4+hxNK3ap7h+3PB9Tf1owPtmji6o6t9H7nLMmOIQSx5Tl3Jl0bjoBqCxz9ved12wqq2wrNNc8Jwyqs6X4wYOeNvZoMgPQZmD6u5z5uj9t/yfYIQD7CLe13cHLg2xCW1Eld4/p//Dm6M8HZL0cs/s3X0K6HCwHLv9lhvV4BJ8cchk+OCChUgYGPXfy1raKXmFkbfnOXyGHc66KdvQx5yD+M9s1AJTMAFicrTcMhP5vdxaH61WuEm1NG/B56OgBgt6MPZaIkKze5cwDPiVIc/nUYID/9AvrV90zHOmx7945G68wQ5I6MfDyJf7TvZ2AXI1vTLZWqSKw8+D1NlGR1PY8pA4XJZGo/9H8AD/wt7vIWteqDhCmpK57b6gBcjBPP35B4rjtrfw9kKspWVxa3qwWM6WEJYzcAmrD62/e4+yfPLRlHC7PgJiUQ6Jh8Jfc7oK6RXl7Afbjn++07W6k/YFdyaIBdf7m+R3u/AxYt1sOI23/6gn6OCqg3CfsnbjZGJ8DFA7OqgQDuO+ZUKxtsD1fTgXmVNQOWg/4/i9hFSQAq7Ifjqui4moFECigxpjJG+D4i7Kq5J+Q2YvE+oD+1FxcOGVmbj4RiRoZTG4Zp6vUmJcnxq4ANdjpTO1IpsKehFp6G3Tx8xZsGsh4hTpGiAMJujvpthf3SIRwNiHtLoXKAv/dIjaJ6sWPZ4D7AH4+Ig8PUergb+mDSVQM8HyA3Fdr3HlPrOSg6Y9eiFDnPtLL9zK3OAON4o0fYCoGmrV67QRCPIsJVgEwoxX5ZojYdMb0KCSXJSLLJfi/A+YDhpkX/5YDwuqavvxMMz0a4ncf2JYCBsqjxgr6XLF8blwq/5ZCavQZuAMvwxIbCRON3c+kwrfm+00lC+11VWs8hgvo6kBF4QSCy+yShuSKATh5ANXdWTI4DbHNtPRiVxQCbKbq/SPB7G47tHlp+79BfKDs/HN+3v+CKfH0DdM8V7XuB9NYpklPTwHuXhYbcp7jIn+GZ0dAAHCwPIC74x/UzcC8MYv7RbosRvjfj9LExiEHR7AT+g6B7luZuj4reJn4WMqUDAolGeX3M5+TuQwlhqG887ynlOYnRIR4ljE/Y2VJ9YKy07AJ8TyYpbCmh8j1N5bjlcccGaD4wxap/EtE/My+HU4znE/z7qngyIFoa7cP9zGKpFVQ2lx7jEUqnjwZFWgj2jQJttOZzYDye9yUHE0wXWtiOVClSxe+Na3pmxvzh/11uin98xuKRAHncfkvbI2T/CDe3WkHqGu7kCLJoIdZ4LiFgXDM6dPFXXyHdb4AYkX70kulQMULff4D2PfDhusiXckFfabvOw3Je8f+BvAnekxnJcq8YmZQVDobhg86MBxGxwVt6E6VK8I7sw+VNGc71IJZWhxH6+h29JQBwfgoJgY3ouRW9CvS61DXk1XtI20CWywdlgzpNZGL6weRZJg8rsipHgBRo7MdE/4dk0z4MdOQOkZhmAJiN2haVi9E8ERlY2HuXx+TzqQr37qZ4VCijMnDWDfPr5nNfCiTdDFAO5WNA8WUA4BA5RXo6rKMlPj8FVNHcjKaRl9JFAQC+SxheHAG9gYquh7u85TezxO6HpkMRQBzQD0hPT+1eCJbM5nDy1x8wLij5mhYcXObiQC1DPrsTyIRkw62zVVuJplXPwMNWiv1o3Q8K5GjezDhAQEbEH/wf9lo9ew9yatHJbxQnv6EBPbUVbn/SsPBtBJIDUhA0t8q4XccBzlnyjYY5bvXBljiMpxyjOtp+D6RwsvwnBQV6G5oTgJCg64mJWIMATYTuApxPcIErx+IVwzkL0/wvl0Bn8iFRpBc9+zyEw/bF8ztAFIujHmhouk3nI1fvlf0Xw4mSNREyF35vQMe6C2QkWPAdv17dONPuU4JWv6sQdkyeciNQXQYmKe1kBpeBUpn6ysN/tmN6UL73FCxBrBP0toJEoP11bRIcxXga4e8DGROlbC22ytQsY1y04h9RFP8AuyU4bIZ7h/7ZhGmd0P+oR/csERRfO0bNtsBwYl0PBpZSRekaACxfOcbcjrZKPlr/y0jvkCjQn2mR+hCA8v5iUSXQPVMz19Mwnmqa1fvnEd2zVEBSZkOGI5QUpixLyufyMOYW4P0oiSBjWvMzlLtRMvuXU6+yRCsPz7l40B907vQXlEOmQHlZd6FMlrJEqswGJetxyaltcLxeqVL424D6MsBv7EPoLS1NYQWC0UCgffvWI9WzjCs1iv4i8rgaplYNZwm7lwnjMcxTlTCcJwznEfW1h9+wGV0mQbj1iK1FK1v/TlxHqFMMT9g1IomAKWyyQd0im+/5On7rUF171N9ZkeHesddloE+ofxopxWsSU7zsvGTPUWyNDbo7+P34uD1uj9t/dntkQD7GTYRDsOeQrylBnCD+waeotopxKeyxML+De3VJaU4GCF1PNqC8XCivixS5ip4H4WSSqtwAfjhE5+d4b0N25L+zkdoSmcrCT5ZGtc1DlmOzs2MxT0ZKlJVVVUny0q4nAyKO5vlrmsSlqiDqyALlToxhnKN0zaSOmDij5n1YLXkeLLJXLNlK+wG5mDD/LSGUmF0AbGM3SUkGcYxVPQBrubCwNfYlA4QsrRrH2eeRr+n9hnKuzNjk9Kl8nqc4R+rm7wNzOpjzBcRoXUFy5HBK0EWN8XwJ1/M9m+/v4PoVUuMhUaEiUC/wfUT1/TVKQWIuQcz/z9ftQSu7/buq4DYWd5QZMdtPP/KXf32n6C6ksBZTK2bkFjiLIlZhMWGySN686psHu2LMNfYkeeGpH+Zh6tBvko29qgBs0Mpa+vaarEQKQDJfzHhco71KSMFj94LG4+7UYVzLA5CjAqRFKj0UuYmasbwoUbEAiizM9eYZiSgsgzpLCltGft72HmgTh+kocHWEfKgwNRV8HctrxqUV9J0mYBGBgWyHTuwpEFFoFGz3Dc6Pt6hDxLaecL9pEQeP+JzRuumLPdLooYODmpwlr4SnhcmEhvlY6mtHMPXBo7oHdi+1tGfn8xAXiihAuBcMZ+xDqW4dV9XPEuTVEunpwMJBAHLHsrm0ELTvPLoX0aRbQPZ/VPeCIRB4qGMZXJ3N8Z4smts7rnpvuPyv5kkZnkT6PF4HDGcJ7d836F5E1JcOwxnZiWoDfgY6xtBOCxvqB8G0UAwnfG830nztBkBqlOjjWPO9mmtg/2weyslw8PxNx8liaHkfNldsbsd7X77WnxHg6LEi3PC8Fl9RnYGEQCbem9mXkkZ+DnKAQI6lpT/BQPM434/ZGyWR1ysFCw7YUkYlo5gJXaCqltJG+V3YOA7dymE9Lk1qV/GeI0PIpKu0VmBwaD44DOcJ4zE9H+HezP+riHAdEO6cAULPdLCjCH/PrptUA+PLAd0Z4G6q8utnMvN7tRVMLdmfsGMEtSQC7PY996ewPEKmsbp0GC7MT3IUGU+9iuU+0ops2vhkAkYC9eIXWRJYELiISTlpvB8vJtTvA2QUi/nluR8P6dnf1fbYA/K4/R5tjwzIx7gdHwFO5gZwM1Sn2uPs392weGrRQrxnOd/9BrrZcuC2lKhZKnXwwyOXDYbw8DF5kARm5qB8z74+TvPX82+HnMTlhO9TWSfI/YZpXAdGcLVYWQD8+sg2c5YGVtBxhO47+hxUgfWSrIo9Xg8HZku8KtKrQ58CAB0n6Jt3mD57Msu5sjQKKB4WPZCPibjCZOgwEOQcnrvDfxtIUzWgcGDa73/2nN6J4P+jXwaSwVsuEDw8n/0w97Sk+PCYkloTuePfwdPLU2Rwiul0ge2nDdx+ZBP6OEG9Q2w9/GZE8+013Jhonj88lsxu5OsZAnInS9lHd/CL1UAPvEdaNjS7t/VsLM+r3fY3gJJkk7ytWisBUSnusuGh/P6WeZDK7eW+n6VkYr6WZDKTDBjy9zP4ACztp2JSlpso57j7ooIkRdjr7B9RlCb0FPi85pZDWtiwU4FSFi3maK5AG2hND/9Qqy8PgUqyVdokZD8ago3UB0pmRsG0y254hVtMHE7bRAZEAYwObjEB6wmaBC+e3ULswF+9PcWqHrBcDDg+3UGcon6+Q7qtIS4hrEfgbOD18MrXDQpEQTyJ1Oa3imjMwLRUTAu7dhb1Oi0tMnUnCPccmH3Hnoho3Qyl9yMRgLk20hh8McEtplJmpw5orhyaS/pdoiWQpYWBM5Mq6Toid1vAAeE2kLEZpNx3fkPPwHCa5mbuUdC9iAj3Wb7D703HCbEFyw8jTeJxQfaGbJxgWhmzshdMx2wvr6xpffcpZXe+J5iDcvWe50gxHcXCWuS+iv6JAo7sRbXhwBq2lIhpQImVjY3ODAZQWthZcKgYT9QM7ZSC9U8Suudkiap7ApxgBvdDs3jYEIDV17wXh1MzeVd2r42C6sbNx9MqZDpgPRTQWmfNV+61sWG+vnVMCEsG+BveJzIImjeB5/3JhHQ6YloRwLPQkAB2PJ/gbirU39Ff53oeb/ueiWvTwl5zwWusnvsXFwkpt8/bokEwVq5/klBfO7SXDuGGzAsGh+oqFPDBMIcELBLcJJhOIlzPAsbs9xouEsbjhNgy2Q2ijOS1xLK4sJ9f/iMY1PPvhX/sP4/b4/Zb2B4ZkI9xu99Y/O4It1hYI3eN3YsGx3/1S7j/9ozSpRgZqxsoUYKj3AmdsQwm3ymSFe/oCwGAo/VsOl8sDlbC85R3wIBkmRGABxG8eZCPkQN8P9DDkLfJvA35/W2o1hjZe5EBRkpkOuqqNJuXfQQIqjbbwgxJy/hbnSaIcqAvr7VaAXd3gPfw//7X9IpUgYAiAzDnoCY3kqYp5YUQNqgDIAjp6cWQnIB16CkJwdrYGVeJgQDi/rMazV/fzeegPvCiNA2H/cxwHJ7nHBk8jtDjNQFGZlDyKa3CnEyVmSknSMsa4bZD/GkLGSZoHaBrfrQX396je7nG4maL+qv3dh94QMIMgFQBVz0EG7kTJjMxzvbVEfRpcHD9CIwTxs/XcIMWyVVzmxAbQbVJmJYO3amQmTBDt7Om9P9owTCby2P+hY7SH5KcsAk6oSRSZVnWg7heY0Ty/30PrF9N2D4PGFdsPKchPRTGxY+UhrHPhJp13wNnv+ix/bQp+zLZKrV6lFhdb1r5Ygw2Rid/5qihBzQIVJQH1iTebtsANAmwgji/CQYKeAAaBWkdCWAieFCLBL2poW1Ef9fg9a5GtRgxRI+jkz2uNks09YTdvkbVTkhRUD/ZQ5wi+ITdpsHy03uoCmJyGN4tOCh2NJS7zsHtZgA4npD9iK2dHytYlInfS21CdUWjethyZToPtTo6y0+gaVv2Hv5DwO6LCc2bYOZ4YDi3xvORvoos2dI2YfNThbvlvewGwXQUgcpAHRRqzI0o4HZzceBwxrjVcEXQpM4AbCJwqm8BmQhMxmN6DHJ08/hkQrgmY6MCrL7y2H4ZKdfp+Py40AIO+2eK5j1X9RevPdxI+RUU6J4qmg8CLMigSATScqb9vEXKqqO0zXcCv7cQhYRSgIfEc+8zqDBWpronqzAeG8tpnioVAAHQYB00HhhW/DlEj4VgMvmd64WgbJFfjzKy6tZjOiJIcb0xwg5Ii4hwEywG12M4j5QhGrCMi2TdHoDfOUqsokA2LBycVgl+FFR3DuMRZWmZrp+OmU7nBsGw4nnxPUraFPtW5gJAttpbR8nEPpfUshfGjWyrl8QwgWry7De5BaD8t0RB9aoux+z2BCXT5z00kTHEXUBakXUL1wQvKgxDgEkM/c6h+e4jYEAet8ft92h7BCAf4aZ9D4QWrlnxC94jfvEC2xcO9/+Xv+AvGItzLTG9eXW96x+Cj7y67WzYzADC/BKyXkEXDeR++3DIPuwd8W6Wah1uzhVgopogMIP7FAHM7eGYJg7iyZiQcYJYhG5J5TrY5/TuPf0eJ0cWUStzD4klbcH8ISX1at9B/+hH9DOMU5FvAWREmJhFn0xmXGgoz65hDtdZmgWAIKNp5s6SvB1G7g7DA9bo4q9uKP/KgMdYIEwTgR5gPplhZh+qgLRsIMMEaWvG5O5yMIAAsLSsKZLdkPla7r84RvtmB0yT5f1HiPWO1LdbQBMWtxu+T2aM8jbFWbZ3CDido8+jxO+6AtA0GOBy7MEQBMTGQ5IV9jnB6b/9wMbzRLZjeH6Eqz9py9umapZMlC4QmeUkWX6Vk2wz25GBydwnYgO/DV0SD/T02djugXHFrP/hiKyG7xTjSnD+iwGbTYXuVHD0dYe7nyzKPjHxiMcwnfC+lyQmERPznmjR3vP7B3+LRbhWJstKNJhLAqTzcFGQlhHunl0tXPEHNCRI71Gd9oijgzQTvE8YLhfQOsHVka8zUGePSjGiwg7AcNvg5Pk9bt4bcDd5kwsJcR/Qfl9Bvxww/uIE0+cddBuA1QTsA/ydw3gRIWcDhqopuvlcFBm2HPj6c2MR1izl8xumTEkEuk9Hmu0BYBvgokCPR+C7Fl6A+GQEdhX8vYfvCfYyU+EGwbSilMvvOMT6+8yA8hpP61SK5jQoEBQJDtU97+lYq5nMuYLtIsGmRMYGQ0DJjBAgqAMW74BYUcIUGw6x9dtQgGRqFH0tNFWvEyaL4mUXigIbj7DjcTRXgv1LGri1UgxPE1f/lcWGMvGapHHet+wnADg8IwlkbQ3lnmA7VlmGxM9FtI/SYTw1/T72sV4o6hvBcDZL52JLKRVZA+u12DGSNtWZjeDnx/UCLAXD8xHN66qU8OkiYvFNBfUOw2lCXJB5cXtn4QYoTfbTmvKluKIPSqKgvma/R3PlKHl7OqH9PpAxa3hdZeS1zGBsXFMmCCVIr2/oT+nXlIRV9+5BpLHfC2T0ZNGSoLq1ckVbFHCdY6JVBMS6ZfI97kZeh7hMqL9qed6WinQ6wt+wMDStDCB7BSpF9dZ+x3hF9+IjYEAeJViP2+/R9ghAPsJNPE3YOk0EEDHCX97h5f+rR/fpMdr/z6/4u+bAbC1NzaGw62bQkRTqLMkpphmEBEp0ZL3icH97P7/5YbcHMK/W55X8cUJp0rb3yI/RnGLV9/MKPcA+D/NewAzr7niNtNlChxGyWpDFWK+gVzcEDjESSGRGxHsgx+HmuNr8/k5Y5Pf333FRvG2ArudxB0+/TGYLfvo5pI9w766Qbm4ZGbzdz5IpEaT7TWFUNLedO5lZFgM2c4rVyNdPCfL2Az0wToAxkRUKYY7O9f7A6xGBFDE+P4MbIiRG9M+P0Pz9JZ/vDtgSO14ZIuV5wbwXXcS0rhHuEur7iOnpEcKbWMolUTUPr2NO8Qq+RBeXZLR8TEABHyoCtHPs8QMJnoGraemord8nuDGVwR0AVATVuw2aTxsMR/MqKoAHfR18LJA9IZKBiK1oY5qfV57rwPc5YENyQdtsegfGJYd1Z4VsokBzx4Hp/K9uMTxdwt93qDYNqq0n29ECbkxYvgW2wRKgHFeUxRgLSRy4XE+Dc/KzyXc8VpOJ0Kzqtw4yiHUvWIdIEqYNmTQrPh3Z2Hw0IY4OVTuhu1og1glYRh7SDdvSZWK/hkaFvw4YT2nKvXt9BPWKxbcV9p/Z4sBNBQcOvPU3NabjBPe6Yczpuxrx2YgpAdI5yDqV69I/H9G8tYShDX0wq285wOWUsGllxvDBobqs6FWoFTiakCaBu60MXAr89zWgQHUHDGdaZFdhS+ZC2wSNAj8JXE9JldvzfTmE8n6CAAgKt2NPypQquE7gB4Ga6TrsKO2p7iij0YrXYrTfeLHlCn93wXtmOGOkawoo/RgaFPU1Qdh0xBvT28q7Oq7CV3coxYvDsWD5ncP+k4Rw74AoXJFvaOZfvCMIVg+MC8zeOWMzgrEZ/7/2/jzItqu878Y/a609naH79HRv9x00IYlRIBuRYEwSINjgvMbE/iMY42AndjlJEdshjjPgVAXiuGxnqMSpctlxEmK/cfwLTgLklzKYH+J9YxPMaEAgMQrpSne+fXs6p8+0p7V+fzxr79MXiUEgXcl4fau6pNu9e5991tnn9POs5zvYzFL2ETtk/5FTLUmiuosg3fVJ6v49VvU8rcsAXoRe9ReTK11KIS7Pm9bgoXV2ixx1v8bOF2+wdE+T31iJ8HvX0L2kqVPN/ETd7vjXS5IwbhPnnbV8Fk4mhX7Vt6Kp0Hi6mp9caIgnivgwohw4lC/8q5UKNRNOZbXqMGND5wqUA92muCsr7mJNAwmNTa4shs6FnoaRptMUUOc+NPBQmrjSWxrbRP5bdeVc0UR0P3ZiJIjyUKEOFTZPJGV+IjS5JrMlnsj/15lMuWwnTEACAh4LQgPyVESaQOlkhz8vpLieTnHbV+nMN2Vc3+8tsi60Fj1FXogI2zlJR2+oRXW9oNI0AvLGUresWyoVzmsNrF3Yzh7VWDQTFN/EuJkIkpu0dADn8y7sbI7SyovEHViLnefgLLrfwfrcDBV716wo8o3AYgrjpjMpxOOI6XNPogtLsjNFW9+ceL2I6vag38WdOSfTjYZG5J+zylJYGVCcWGZ2PEVXjn5VoQ7Hi9C9Tge3uyfPx1v0KkB1Mux4Ik1R4/R1dA2PToVawb6fHPjn4mazRfPSoK6lyo408aWhfC+OFs1HXkhj0GgyGt2IXxs1K3BpQnJlzPSWAdEBJPsF0dVDnw+SPEKfwtwHASSJNCpnr1479fJNmtO6nXIA7b+dMei8xBmFHk7b6Ug0tZR9g5lbommFyxL0JMd2E+pewuiWjCpTLT2mpQRCKz9prEWBa/z1m2TzRlTL4rC26Wj0H835GwpPM2XR1aJA0rVrnZmUBT2ekU1zZk9bE8F7JIV61YPt52dke47B/XDwdAW6eRBaAbeaN0WjwyYWO5ccCuepVXidith5SgOCgmhtTnWQ+omNfE/vxdjV0r/VFMUsJl2dkw+liVSxbw6Q52YHJa5WuOXKW+8KJcqMItlZn8pusbKqzbOwsS90PY3NZg419BkbJ+ZUexmseBuzwrTZFqoS16R8qyIaRi2tR+5l0Uk0kyu1VOKGCcosKD/FSi2BdIWmWBenLOsdxupMtDTJdkS1ZKXxmGuSHRHg18vScGGhXvILUHqR+FVx56q6Dut5PDazOC0Un2Y6E481ZuaLzgKhTvr7zsYioJephCO74jMkJhJSqCtF7CcY+YZQhqJDTdkXFyl9RMA/uUGyK+rMU5/8619FjoPnid1vfKgWQZccudd9Vkc01cxPVpirEckIbKKwpW9wc3kdlKdkVZHsyNepaimLynpxNP6xE4c2vsnteUrVXJq+5EDWNb0cUS65VhVaZ47uFxLydUfddVTL0rAnVw3FhjhguUpLE20Rh6iBcL/ivUiS4TdrnDVt4rsZSSp8nblFLo8C25VGJb0YS7Myl/fm9LaCw468TrpsjBIU1Zp/yzi531wE8UjyPhpXsHRPMzvhmHf95MML/PN1aTSLVb9BUMv0zaaO0uuOTKHaqZZ8fshrY332h6qh2nCUXrfmjM+UOcOTjzABCfgTBP21Dwm47khi6Hd98Wlxm+syKfA0K7W6IrkVXs/QTiyqClYHco7ZfEGjanasm2L06AdK87tfRrW5Ru+g1aIhqSq/c+8nKk0auS/KVb+H885TtqxE6N3umFtU5FPOtU889xqTNvUcaIIImwyTtliIFHo0k+fWiMSbc+8PJQ/D78qrLBUNiTHQ7VCt9xnfkFF1fZHSS3HNtGZjFTfyug1jFuJ0/2GumqassTRuBNqzuTQKR9eqWb/mGK1RnU5bzAstq5mEePveRnzeTCmU8voLs3h+Hk5rXBJhl7pC1QJU6VBFJY1M00Q2Dls+KLL9d1lRr3Y5uL3jGzS7uIf8+VVVi3NWbHDxgqKliwoqS7WcLe4FQBcWk1tJOy9qqCx1P2N+vLvQUBz5pNGVa4vXoxOQxma0tXVtbhu9+H7bZPBlzYZvKI5a5V4jDK+PHO9/Vmca101hNiealHTPDNsgM5zY+DbTlEYT0VjXWgP4nVspJiW5WzkWQvMjdLHGqleej6Mapuip0Nl05Wk4zVposLMI3WRd6MV/danQU4NLrAjTFTA14qI0V22BWy7JJMJ4epKNvPC3kiJb136NtTwfFznqUUyyMYPDCMZRa8vbrH80VkQH0qzUqSM/Jo5CaNnxVoUSdy+nRNyuhYYjdDiFOTSiWzgwVB0p3l1icRu5NBE9ERmjpKCt/eSiuRGUFYtUocDIt6vVivxGGTvZRB4TkLR1r/GJZmIGMN+y3hFKrHHrhPY+rDuOJuW9GEigoq5kCtG6knWkUVFegK2cTEuc8bvjXdtSApMDT/maqnZ9o4OoFbo31KnaTw+qvkMXtNk40X4kkwxv12tmIi5XVnbqk33RjDQFOMh91ziV1d40QFUKPZfm2Xq7WHNoSK9qyRdJhbaWr1tsaonGimRPivJ8zV1jDqEsFBs1ZqL9546nlTmEklZozFgyaorj4iylc0XnimqtrZsskbovr3N8qEgOxPbW+YK/WHaSRTKKpMGZa5Jd2QSpuq79AKh6IkCvenZBV+s4yr6j7kB2VdG5pEh3vTU4sh6NfbaLHbYnb8pkX9M9J7oREenXxGPaQMe6Y5kf87k9Ke0krO5acfMam7bpCwgI+PoQGpCnIqpKtoaX+1R33sr+nWuoTiZF/YVLuJ092fE/EurXaCEYjaV4bRqKolzsgB8RPrs8h3mOm3unrSacsGlIjmZQxDHYWhyqPFWn1VA0U5aqQq2vem2DRseeRlaUIuiuRHR+NMW8zcYA3Hze2g7jc0+wFpIYt39A98MP0P3ijhTrKwNxgvINhzscL/Qh1qK6HbnmeU596hiHzz/J4S0dopklmjmqjsJcOUB3OnL94+k1rlMiiE8WDUQsWSSt2D7yKe0ryzKtahpBrdvnQ160jZqbTL01saHVYjSvh3MiTvdaF0DOkyW4NMHFES4y0ngYxfTWFS69dI3Rs5aZner7CUTF/IZl6vW+F4h7elXcNKi+weh2oNfF7E/Z+PBVuab4yOuhlThUpZG4VBWVfFmLKsRFTJUV0WjeTsEoK+JRTnZ1jqodZjxHzwv0LKdz4ZDu5QKTu3a3EzyVwknB0ExEmgKhPa7pkZuhw6M0F41gfVFML77XHKtr12pFJIhxUeRVHY2LDXZ9gKoduy9Yk6YD+bkpHL2L0nk0VKum6KBX4VLZTXZ+FxqkuMcp79gkBXVT7JQD2waiNdQikEKxzTKodFvQ1bOIYrsDcyMp6qWm3iilwF2bQ69CGYeZSaPQ0E+qrmtzDKq1SoIHdTOJoW3uokONLuXx3KAiWZtTzGLQjvjYnPTkhPpGqapmJyzVkvNajJq6421ZE0fdq9sGDO3EejexmLGns/mise6LwLhcsl5Q7jMVLqXUmXDt9dRIk4EUeXomRS3+NW1pSw7qniW9HKMP4kXzBpiJ9q+VI91X5KdLilVHdOjzULqizXGR39F20nhUPdq08MmNNfmapz06X9An8homB0qaI03r1lR1ml14aTjytWYyAaqQBPC6I65MNpagzHjsG08HWCX2tU7oYA10AcW6pVhdXLeuPO0rkuYqGivMXByu0j1/TyVOGjrflJm5ItnTJPtaJjBOXLN6FxTZtqJ3VjIxcLLbX2fikkUzxZpq9EwTHWrf0EvuhSnUwoJ5Jja2NrbEuxG6EgH5bNNR9R35qtfozBXpVUMyVOTHanHB6nvam3HUxwuwSl5H39TnG7ImTS5KtVy3nwNiByzBguLY5sg3LJOba2bPmzG9uSJfsz7UUZGMIDmA7LIhOy8alKrrmNxkWwphsmeYH3MygetI45buavJV1zaZLpL3XvNenp4+Mtp9suADdx/3r8eA97///Xzf930fJ0+eRCnF//yf//OanzvneMtb3sLJkyfpdDq89KUv5TOf+cw1x+R5zk/91E+xsbFBr9fj1a9+NefPn7/mmP39fV7/+tczGAwYDAa8/vWv5+Dg4Jpjzp49y/d93/fR6/XY2Njgp3/6pyka3WzAk47QgDwFkd+6yfjOLWY3Dhje1iGeWspbt1B+F11lKW53XyYg1qE6GfqGk6hedyGqBq8R8TvbjT0vtP9tm5baC8CPirKbghr8NKWp6FQ7DWjP5bNK3PBQwhEBffyYp4NZeWxo07upa2mevK5CLS8tqFDG4Oa52Apr3dr/urqG0aH8ezKFOJbzektetEYlsUw+atn5d6tLzE51qToak0tzFU8tSw/Pcbv7Ijg/fQI38hoY39CobkcaqmTh6KUicdMiMjCeyDHz/NqmLUuPTB3q9jqUT1qnWQdbg3XMb98kv3UTJlPsoEu11muvwSnhMaORvA9g7/nrxKOSk++6SDy2TLYibBKRXBqRnRsxO9EF66hXOtdOY9J4Md2qa1xiKI/1cYlv/uJImo40ZvScdWanl8lPL1OtdHBpjCqlOVWlaEf0yGtqIqFs6eEUPZ6TXBr5qVCJyqUxTS4MWf3EDvHYtYX/0UbBKSnujk4ymh135WQHUpKaaalPsGhAWvgmoxW0125xPrWYQLQ0LgN1otBX9jm4Y8Duc3voCiYnYXYMlh9yrN2zTzwqyfYs/YelcNG5by5KyeKgVq2oV4IRfZPjCzdloV72lJWlCnq16BFKRTWopHjv1a0AX880aiSvixobdC4heg3fI+6U6LUcrR3Hj41YO3ZI7/YD0SCsi/1rui+FHbUiuRJL9oGfGNhYdufL9Up2oy3EIwNjQzFJ0HsJ9GrKacx8mGErTX66FHpXtxaKWL/CrBW41GINJFcjdO6pZ7W33j2IqNdK74Yka5FdNLIjX4rVrm3WYUPub3UYYVPZidelNFJtw1ZqmeI4aTBUKTqRyouCXSRNl6q9k5aV8MCqA9FV0YhEU3kteucV6Z4U7Q2fX1eQ7jeNJ2Tbhu4F+fyrelLES5K2p175BsdpmQRUS0JBSw6UNx0Q4baEU8p6pzuGsi+7+5PTzmshFs1IPBKaYrqrfV6HPHZ2xdOL/G6/NSI0P/oeKFYd09M18+NSiOtC+bA9BVa17x9TyOM1zm75KqBhdkLoWdWS3EfVoJbi2gvq2+LeC9J1LrSlxrGq7sjrXHcsutCUg5rsihZaF/79YLybloJ8s2J+vF40NbXyjnEKvZv4EEP5m+Mih8ukOShPFdBoqzQUGxX1WiXWvzE0QZuqVFAp0s93iA4MZi7v2/mmZXKDZb5lmd1QMt+qxY5YQ7LnndgiKE4XEmg61e0UqxjIPVYuiWMWtUxt0h3RX8UhiBCAyWTCnXfeya/+6q8+6s//xb/4F/zrf/2v+dVf/VU+9rGPsbW1xXd/93dzeLjQor7xjW/kne98J29729v4wAc+wHg85lWvehX1EXOc173uddxzzz285z3v4T3veQ/33HMPr3/969uf13XN937v9zKZTPjABz7A2972Nt7+9rfz9/7e33vinnzAY4JyLhD8nioYjUYMBgPu+iu/wNIwwkaKyVZEPHUsPTRFffp+9MpAdvyTWFydGlvdRoweR7Kr3dBuPJq08qP/bWhczlmhCZXlNU1C24A05z8SwOecRS31JYNknqP7PchS6guXMOtrrT5FDZapL29LmvsRC9zWdresWicvffwYbmdXKGhlJU2Fd7pSaSJ6GK9TYGUgE5naLrQNjV5lSSYB06dvUPaN/0MttBMzq+l84Qpu7wBuOQ1nL3nBeIVaHUAnw13ZWUwjGqpb4ov4yOCGh+LQ1WSjWLsIPnROrHS9gYBz/vcbCpvX1bjlHpNblsm2c6KHr+COraJ2hwsKFiyoVF4kbpc76L0xLYVLKWa3rpNdnuCUolzrMLolYeNDuzLJMApVu4UBgVLXTHqa19kOusxO96kyTTKsqLqGOlPEE4uZWbIHd+R16yRi8xvpVgCryqqdPl1z3ygljl2AmpdUx5fZfU53sVOtaJ2qjnLh28lFBcpPL6qOeoRwvRGhN7QqaVSu/ShzWrV5H1VHtWGInd2adLdAzwr01SH0u1x5yTHAC1QLmNzguOF9JdGkolhNMNOacsmw87xInHlih+1aXGwxh/I8beSLrMKnnyskQFCDKxUqaZLOgasZdrWQhRiblq7lEu8alPvddB/Ih3KoXC8S0LXDdCqSrKKqNM5q6mEiYW+pT2aeiAi6cRBymZUwtsSSXTHMn1YsLEhXJBiQfoU6iMW1aKi8xatoT7AKuyq6ExxEvYpqHJOuzCl2O0JPM04GfMahRpHs/Kd+rYxr7VF1oSi3ChGdj2UUZiNHNDYi0K/l+uuObzAS6STtcoU+iKRpm5j2frJd6WZVIU2ImXnBfyn5F8VgkbfRUvwadmEtBX1j6dpM48olJ65KTn5uCsn9MFPdHlcni+az3ChJrsRtenfTBLjIEY8U+caCZqWcd6OyEI008SHiztQECfppVdWhtZ1VVuhJ0cQ3OF0nTUAmWqTsqm4pcdjF8ytWxW7WdmtILVGnxJ3vtlMkVQoNyswlH6TquvY1qjsW5/M82jTziRgEuMSRbktTZXJFsVFhxsanySuKY1X7/uyci6i6UGzKlKudEEYO+hXpwylVT5qgdNu0ZgB116JzsYg2hzLpK47VpFfkta8zT7WL5N7T3h3O9kUsr3wQpi5Um9WhHMQH4uJXJw7nnepsZtvwz0ZYr/MF71P5zYaFRRq+6RVxv53NefDnf47hcMjy8jLXE03t8PLVHyXSydf+hceAyhb8P/v/9zf0vJRSvPOd7+T7v//7AZl+nDx5kje+8Y38w3/4DwGZdmxubvLP//k/52/+zb/JcDjk2LFj/PZv/zY/+IM/CMDFixe54YYbePe7380rX/lKPve5z/HsZz+bD3/4w7zwhS8E4MMf/jAvetGL+PznP88znvEMfv/3f59XvepVnDt3jpMnTwLwtre9jb/21/4a29vb1/01CngkwgTkKYjObiWpzbEiGTuiuWN+LJNC3e+iN8F5Kkn8DvuR8W/D6W/+e0QDolQjTHatS5RqiuOm+TiqO2iyRVptgxThWIc7GEFt0Z0O9mCIvbKDimQyoSKhANm9fZmEeF2JSmL0Uh+1LlkmKo7Qg2URfu/sAoig3vnrA8nx8JQm56yI34tCtCGR8XoZoXuJgF8mI90H92XnzzV/TLxIeu9Aghwv+0ajtnD6BNXJddjZl8c0Rr5SCf5rBfnjqazFbC7fbxzCpjMpxOf5ovloXMwa8T7I4xmDGk3QpSM6v4M9voYae7etxlXMOUlx7yRt89FMICbPPYHzrmfZhRHOKC6+bAUXKXoXK6oNsW+2PREvuzSSace8oNxcwiVmMSExhmK9S51Iyu/sWEzV1T7sb0EJq1d6VIMMm8njtsW+p9FNn74u/24odmWFmuYyCTGaaG8idChvl4uVBiOeSYOgKim4JAhO6FKSzyENwVFalTyu/KfNAPE6jWTkWq1FtlezfKZg9ZO7HHv/FTY+ccDGH23T+/yuXM9wKvfO4YSNe/zkroTjn5iy/IBifCrGHM7pPHhAdFjQe+CAaOppOhqoIdkW8beeK1+k0zo6YRzOhw7qqYFKY+cRdiQFgtIO5hr6FXQX3Hpn/LShU8t5Mk83cUCtxK2q1NTziOqBPrbSVJMI0ppyrRInorWS/MZCtCrKiVC9V4pw3irmpyvSh5O20Eq3I+KhQe8msFZg1wuKVUsxsLjEUvdrcQA7lCwEZRV1odFZRXm5C2kt6ex2QcNStaLcLLG9GjPWxLsRtmOpM0t5MpcmJbFEE6Eo6Uq1UzGM0Mast9ZVpefujyLisSK5GmHXSgmXU1JoRkNDNNatCDwaS/Ff9YS6E00Ucy8iL542R9VCxRHLZa/FKcTBrKFo2VhoXy7yjVgp57aZlaYkF+2HTcW1ySbSVHQuya64TaSYn91YER1KcyRCa++ANtPUXUe+4TyNSOhVjZtbNMVPcmQHPt33DlhKGph0T5NdjOid1VQdyWYpVi3zTaE2oSDb1kQTEYdH2zH6i7322pI9Q3yoF3oYJzS+pnFCQXbJtA1JE97nIkc0NNSJ6Dhs7Ij3DWamqHtCW0quRuiJQXUrZjdWVH2hZh01iFC1gsNY8mMUJLum/QxI9hXxviEeKbJLQtlSDowPliyXHJUP0ASZ5DUTMzUXgbzz06C6Y6mXpbO0saxRvllSL1lUCdVmIa/hVFMNatyglKmlkuObMNHoUBGNtHwmOblX8nVL1bOtvuVJhXsC6FeP4x71mTNnuHz5Mq94xSva76Vpykte8hI++MEPAvDxj3+csiyvOebkyZPccccd7TEf+tCHGAwGbfMB8B3f8R0MBoNrjrnjjjva5gPgla98JXme8/GPf/xxe04B3ziCC9ZTEFYrtE+N1qVDVw5q5+1ovQahrlHGRz4f3dVuCuUS2pyO5oPk6IRY++OqBU3rywXPaC27+o0bU9vIWGkqmseNDKrToR4dYvo9mcJ4ipbudaVhiKJFA6UUqjrSMFUV6sQmbncPN5svJiU+s6PRmLRPsZP5KY93ovLTGaW10KCOwGm/c+ebEDP104kkgTyXaZB1qMMJ0e4+TXCiq2u5jmZnvxFp5zlqZSANUJIIHcyYRQijVpKHorVMaLJ0ETLYWN76tUn2CygKVF0v6FntTbCguB3ecYx0vyS5cCCN1cMjyU8pK1RdM7thIALuytE9s4fLvBNaXlMe6xNfHrWvebQ7Rc1yee19in2d+cLXUyyiXO45+RITgbofE41y0YLEprXadam8VpPjhvRKFz0vpDdoGhznvFDW0wed85OJhmLld4WXaekkyUR2vZVvUpzW2Fhdk5R+NAuk1Yk46GznRIOYOlYsfWFfJkD+9dPjfPHH1N87zqg2L2Z2DKIx5OsJ2b6lymS6pWY5xlPqGttNVYF2WgqeQYUeJW04tEucNBdKiRNU0ei0FKZbwijDxhYmMapQwhTTIsw1nUpyOwqDM1pE1ZWGrMblWgq32BEfGMpNS7VS4+YRndU5+SwGtGhDtIODBNersZFMFABcZOltTZmeXZJU7bGiOC7NiT7fkWJ7P5F8Bd/4lX0tFqmVUHqKVYseG5gYEfEa114XVqGTmrrRlviCu16uZffZW726woB2MpGJZSffpo5oTDvBKJds+/o2hbxDKHumgPThpA0+NFPZlVeVaCLIrp1wNBODZF+a696nMkkSX5UCMz4U6k3dEUvVYiCUKJBCNzlQ4giVSdHvtGhYymWxES79BEkpKLcKbByTHCihRKWyLuVAHJjqjgR1NsYDDS2p6lqiqUIV/jnHYKai1XBK1lHyRmTHnX7F3BjiA9OGYKY7itrbwTb5H2Wf1j46HovWRKaGPsnd20C7WN7TyYHyDZg0SfPNGro1yflEpjYOH8rY0J48DavrRKsUO9SMtlFxoxhdajFf6FuiQyOJ4qXk8yT7mnJgSfc08+MSWhgdyoaIhJfKc2lygJKh2F6rCtIrEXUiAv0qkyDFqiP3ivXud3UqrnR6YkQPNtd+QiIfGvWSbbmZTkE0MtQ9WcNqpSZaKrAXOu10yRmZrDX3ZjSRcMVGL/OtilFj1OKRpilpmn6Fox8dly9fBmBzc/Oa729ubvLwww+3xyRJwurq6iOOaX7/8uXLHD9+/BHnP378+DXHfPnjrK6ukiRJe0zAk4vQgDwF4WJF7cPamuYjuypiUDebLyguVSVFaJIsdp67Xdz+gZ8eeKqUkkKzcaxSSi925hsh9FH7vmv0A0doQEUplC//M5VIwe0mU9TaCrosUcc35Noub4smBdriXSWJ0K58M9HSq7pd3PaO6CUa+9iyQh1bxx0MUVmGapLPlS+cS0nhbkXfIDSoI6gHop+RP/ZgZhV87kF0tys0NqMXmSlNlkfjNtZMRpxPeu90cPtDoa6NJ3JMUbTWtW2OCEjwYVUtnn+SSCNnDHQymZYA0aU9nwfiFgYBzfr7dVPjOf0HhvLtNMJFkRQi3a7YMc9L5hsR8cQx3YoZ37DJ2sd2oarJN7vsPifh1HsnqElOcdM6xSCi/7nda3a1VOUwWKKpw8bSHESzGlVakiuHuMiQnN2TqYtRLc3q8kvWqFPAwdJ5y+jpfVY/sYOLNIroGvtmNctZuX/O8NaMaGapOuJME08tyV5O/6ylziKiwxy9dwhKY9ckUK8cZIxvSMgHqtVKtK5aTaPi5L0S78+Ihjkui1CVf/yj7mJHtExOa2lwOinOSGFa9UEXjsFnr4ioHzydUWhmukCK7BrUTB63mhpaDUvsU7c17eQCT9FRSY2zSop2JZa0bkk8h5XXethRQh05VFITdUqqeUw2mDMfZrh+LRMTDeVKTbQTEY0V8xM18ytdCRU00o1FaUU5KGESQWRRsTzvdJAzmyQ+lE6KaD012NiS3HZIkUdIfoVCdUqKWYzeScT9yjYTAYVdK0WrUitcalv3L1Ur7GEsHH1fqKEX2pm6a2X6VfixlfIidYSKVHvRtE2lyHWRUKPqVC3yOWJHcTrHzg1mHHkhshTMqpS8CdFMuNalSheiCbERVKmj6oomJBmKhS1AsSaTrGJZrGCrvtCd6p4lmhkvssa7U4kOIsplZzy9apifqFC1QQ9jCctbE31AnSHF+dYMO+uSXTboGubHRdfQULiiiQT8RRPRfOiSNjRP12B9k131pBjPHkyouovmykWOckmsdWufcdEGEJay/jaCZE+erynkudtEGhyhMcFsywr1zMr7LTo02KJxM5MvU6hWrO5K0YXEB0amGsZRZ9Y3VxptvS4Hf+94KqCupKFq8lpsLNqbJvukaTKa93pDyyoHPlfH60biMa2hhc4hcjJJ0/4a41xRl6ptRJ0S3VLVl8mVnmpqY1CdCj1OqAa10AqvdNFzRe0S1GaOqxU6sn4/S2FLjU5rageuMtQNL/XJhGs+iB7vc8INN9xwzbff/OY385a3vOUbOqX6cndH5x7xvUdexrXHPNrx38gxAU8eQgPyFES7a++hHOjRDGeM0Hf8rry9cRP1pXOSLl4UaF+wSw7HrG0Qml19YJFH0RRjkZZpQlOQai2FdSNYznOZvIDs0huDKwpUHHsdCSJAv7orDcXu/iLEb563FB1xj/K2sdGR4tQ6aWqa7BH/e3p1RahSiehZWlqT14MwnUGvt7jmI4JxACLD9GQXUzj6D4xEu3Bpe/HR3HwAZalMMSq/k9skgzc2uc6JtfDwEJzD3vl0zOcekutpqFKWdtrk5jmqk1E//QbM9kimINPZ4ryHE7/e1mszNKooWQRi1ItrM4bihjWSh3dBK+ygi81izMGM4bMGzFcVS+cqir78cS36it6VitnTVuh+bps608RTUJWVtHvr6D04xKURaioNUbXeJ7skOiJVScikKqoFDcxo0Xk0DS6g8gqXxZz4f69ycKdQr5YePKTqJ9J8lP45HGniMJr43B4bD9egDa4vcc5qLhMxlxjMcCaNmtKyDs6hakd6bp/0rOP8952gsyMNZR2LAFQXMHgoJ314vw1YtGs9zO64pf210yulUE3jUfrXLzLi7HX1EFV3OfUHE6KdQ8gL9KyUJqZ5HllK3ZHd1jrBF93QuWikEKwUzipUbEXzESETjG4tkwDA5gaV1sRZJYO9YSobsc0EQTs58dyguyVrG4fs7/dwTW2TSjMRXUqJZuKQ1AS5uUkE/Yq4U1IcJpiswvVL4k5FPkyJeiXl3H/kn5xja4WdR6hIEtYdYPdSXFYTDSOKNYXpVNQrFWovEkpSshA/u36N2Y2o1qy4d2kn2ScKHxSooRTnsGisKDa8zsR5ilohAmSbenetQS1UNZ84n46g6imKFcnWUKXs2perNdHFFLdkRQvj805s4tBWivO6KwumC7kuKWKlyI7GkkdRLjvUgZ/QJNA9ryhWfNbGmug2ULDxcc3ec/3vLTnsakF0KaXuWdBii2sjydIobiiItmNsChhHsSI/z7YVedWh6tdUK6JXiIbiFKWsNAtmBrOuNJc2kYI/HilPy3Jk275ZMKIFSQ8UnatIaKFS1B2hLVU9JAsl9nSqUqFzcZLSpZIcnybbwt8Ouhaamx6D3fBi676j6sv1N+YO0gyKON6mlmhkqFarayZZzoFp1n0jx45iaVLnptUSYRyVD+UEWqMJaUBlatFkncj6KN+sSUPSUAepFMVAJh7lWkWVa5IDCZ/UlXRsTqu2IQXveNYRK+1Gz6JnmmgnolyvJNl9r49O5TkSW1xhiHoFttLYWswndFJjKz/RqxTxUs63Ms6dO3eNbuKxTj8Atra2AJlOnDhxov3+9vZ2O63Y2tqiKAr29/evmYJsb2/znd/5ne0xV65cecT5r169es15PvKRj1zz8/39fcqyfMRkJODJQdCAPAXR7Pg0uQcuUtjzF2ktYSOfkn7mIq6uWxG325edcrzlbZvefdRKr9FxNEJ0uGb3nrKUYj5JxKrXn4+yao9rLWp9k6KPrcuuuM8Mcb6QlYuSx24ey5Ul9oZN8m+7GXfymJy7STL3VDA9WG6/z+pAaFm++eDUcXGtUkqK1IY+9uVrqERD0/3SHurgEK7uSePUyWBjVfQdjT0tiLakqjwlTRLl2yapCR6MIswXz0pRnvpsEKVk8lLXi+e5toK5uLeYkLROWU4mSkaT33ZcduUb4Xzk9SxxLF++GUvO77eWunUv4eAZXSa3rxDNLMmhY3osEvpL1PwRV9hIgTGUPaHBbP/541z9zg3MtETNCtSskOspCqLtEXqao+oaVdTSmFT14rk1zx+hT1E70aX4vJWVj2+z8sdXsFlMcnGI7SaL36v9OSKDSxY2w8WNa0yeNhB9CMjkK68gP+IS1u1Q9xLUzoHobWZzujuOYkneHN2dmt6lmu7VivShPbke/94we76hhYUtsXVy/Z7K4jpH7mE/cUsO5b3GPMetLqH2D681OJjN6V309DD/dqkzR9lrdv/9zv6ssZxSuNIr5bXQslTunZUKg600nY2pBAz2SmlknUJVmmR9TjFO2Ntews6NaCtAdp+TGnPbIcWyawttNyiJ1ufy2CDF0STGWU11oSsJ0xc6uGGC9Y/tKo2KhDqiI0tVRODzKvoPKcxuTO/DXZJLC5tbM9Hy3KYGKkW9XqFy0XdghcJjRkYyP7wjVbqjiCYQHRix/i1EFK+9sNlu5q2jVLtTXkO+6ik7Y021JMV+3XV0LhiqY6XQ0pYr0Xks2YUNrqdkNXQsPdetla6kr4vGQlVSrJd9R7laU3fkORYr0nzYBPIbCvafJZbA1ZJY8GZnpPlL9jXxUIrZuie5JenZRKYRavE5Xi1b5sfknOmOQc8M0UGEjR1mDqlI35idkAT1zgUjz2nZMj9uJQFdgU39xGAgxXWxJBMSZWWa0bnU2Fs74gNNsq+8vkamCcmB9vkVrp1kNFk3qpZpg02gc1noT/FYfh+LPN6KFYrmRDI2okNfvE9Nq5NpKXOpWC67wxicIt6JicayIBLyJ42GcvKalEsWm4lY3ng9lZlpoplaXDPSfDXOVECrU6l7nmJV+wycTJyqqiUxPzBz0RkJBU5+J/Y0L1XKfViu1mIfXCiq44WYIShQh5FsADzUo55FuNyAcdKIHEaSzzMxlIePvSB/3GHtE/MFLC8vX/P1jTQgt9xyC1tbW9x9993t94qi4A//8A/b5uKuu+4ijuNrjrl06RL33Xdfe8yLXvQihsMhH/3oR9tjPvKRjzAcDq855r777uPSpUvtMe9973tJ05S77rrrMV97wOOPMAF5CsJpJVMQ3xR0HjpoE8obPUVjfauPH5PCdXQoid2t2FkKW4efejhPvzoScKeSeFGoaU2Tqk6eLwpmwG2uoYaHUNWtMNw5K8VoXaPGU3HnKsqW7tJQm9wRcbzd2mB+oufpMlaK3bWV1oLXjSdio1uUcn6AvQMpLI1GRQa294TGBIvG6lHaaFWUDD5xRYrJ4UiatEgmMe6q/4tflOB8bohzuNkcRw0zaWxcUYhF8DyXtW60LebI1MhaGI4girDjoWSLDA8XYn2gFd94J63JszYASJssjaqS4g24JhgyibHdBD2acfGVm+gS1u+bySQmNZjCYOY1+7f7PwQO8oFw90fP3WDl03tsv3iDeGJZ+fSeNB5H0s5VHLU5LmqaLxqH5tpru2hcfTOmjMZVEjp4lLoXXZHJm9kdL0IkI7Nw4vKaJiKxDU4uAWXFxe87xfGPT4m2j/CLleJLP3KMbBtOX0ylCdCalc+OqHsJ4xsyhjcbOjuOzl69WLOyAh1f4yTmIs381DK6dMTDOfpwDspQbPVIzw9lHXzjfPxDB+idA7m/nMMNeqjD6TX31donh0yPr/jMAtlNFdG78nkXSGFlHJQK1Vnc/24Wya0wlYLG9Sqmu110VqEjB2uykVAXhnyYkq3Mybe74B1+5J5XcKFD5YATc5jGuCXJA6l2M+hVlLMYJkYEuMMIVQr9qO5aSSOfGfCNh1SJwEM9sWgthBo0/HZxmxrdJvw2XWgfoCcUM51r9ESupzxWUncl4K55/s26JIeyk5+v+V3qJaEY6alQcMrVmt59GdM75mQPZpQDK8WsdyYyhyL6TnYNdepIhjK9UIdRm/BeLteQ1RSnK8hFiBztR63GQiYsUuzjxMnIzBXRXJ5+PFKYi4bZcUA70Qwo2XXPziTkx8TRCquY31KQnE0o1oUTdVQHgJPJQLqryTdqkgNJkreJaIbmxx3xoaZ3TjG5QdajWLPk69LgdC5pZics5Zoj3jNEI5l8uEhMBQqbiF2vd16SoEGZgMQTKAf+rdoVl7O6K5Qkm4rYvu7gDR0W4ZINnatJbm/E7/MT0liaXFLgzVgS2m0M8626bSb03Nsd+4lI06jqUgT2QoFzlOuVp91JyB+Rw4wkJyaayFSmyeDQEy/Q9xQtMaIQGq0z/nlb+f/oUCZsVnnKlZ/CNK5XupRJaZl6F7bKi+nnXlNm5Xk1U5Vm8hJti0GDWA97BzrjxPHOgZtpmeIB5kImtLJ52M8FGI/HfOlLX2r/febMGe655x7W1ta48cYbeeMb38gv/uIvcvvtt3P77bfzi7/4i3S7XV73utcBMBgM+PEf/3H+3t/7e6yvr7O2tsbP/uzP8tznPpfv+q7vAuBZz3oW3/M938NP/MRP8Bu/8RsA/I2/8Td41atexTOe8QwAXvGKV/DsZz+b17/+9fzLf/kv2dvb42d/9mf5iZ/4ieCA9RRBaECeinAOdST8RxU1tiylOIeFYLmqsJeugFboE5toY6RJKb0L1RFHjFYHAoudX5DGpsngAN+I+L+qWgn9ane/bSzcETF407zYw0P0yuDI950U8kdxwxblRgdTWmykSa6M4XBM8ewbSD5z1gvOvVg7jVD9Jezlbbm+qlo0Us31G4NbW5bphjkiiD+K8QR7MGqth/VgWaYpjStXQwVrntNRXYQy0O9JITrPjzR2atF8HJmMUHrtSL/bhjW26xxFbVHs4oULTGvj61/LBS0uEmrcbI6uajCa4388Rc8K9p878NkZflpUSSGnrHd/UpAc1uQDI7khU8fy/RNGz1oj2y2JD2YU612cUWTnhygnFr8kMXU/wxxM2ukGWmF7KWpWSlFdL/JJHMIbUv76QKZOcr+Wi6mab6xUZXFpgvL6F+oa1++w9UdDivUOkbUS9pjFqHnJ0sOQL4Nd6mI3B0Tndpif6NH9wg49o4jHEaMbI2xscHqD3me2ZXIyt+30zfUy6l7qCy1DnXUxqxl1IsVisblEvDeVl72ToL0Nsl3uYNOIfD2ld7+VLJRpDkWBnuYtxbrRHoDPilDyPTXX2FSyN8gN0VJBXRiILeRGrGKtQk0SXCzsSGdkSqLjmrhT4hwU0xhSr5mI5HdlnYUyU++nKOXQvRo7jkX8q0DvxdjYBwXGjtqHFbqlSnZzU8vSyozDy32ig4hqtRJHpKGiXIL+Q5piWYrNzrZicmPd6gkiT1lRVqhBZg5mGMmOcCoE+2iifWEnUwebCTVIWURovI4PwlPYRItI+iChXPaFv4NoJLQmG0thqSv5b7Hi2p1ym1nqJUuyHVMkjujAUK1VxFdjTC7aAmekSK69zqQJwmscp3ShyDdqsf+NZTMjHum2+M03LJ1LWrROShE/nIhW4Yqh6smERhfiDFV3LfG+8UJ2I4+fWrILEfOtGpdYKgeTVBK6q66c3yWOKoV6IAno3TMwOSVi7sg3cKqSbIzpjbUU8h1JCs+uKkzhm+EZzE7WREPD5EZL94Km6kH3kjQp2rs+N5Qv5USeJJ8fyhfhcn/1HhRtTTGAqivTnKorltDJnjz3JoCz9AJxXYiOysykEZVcD6iNTL9qb2EslFV5LaKJ0NpUKdemKyjWaroXDXUKtiMWxFXXtdQpMUbwv7ssEzLRt3i9i7ev1s2fIN+sNIJ/Mxd6WeOe5zSSEl/LVKzRGsUjaV6UpxU2uTTxoabqO8yBaX+mZ7o1oXhS8QRqQL5e/PEf/zEve9nL2n//zM/8DAA/+qM/ym/91m/xD/7BP2A2m/GGN7yB/f19XvjCF/Le976XpaWl9nf+zb/5N0RRxGte8xpmsxkvf/nL+a3f+i1MUwMAv/M7v8NP//RPt25Zr371q6/JHjHG8K53vYs3vOENvPjFL6bT6fC6172Of/Wv/tU3tAwBjz9CDshTCI2X95/9y79AFKWtsLb78CGcOS9aCk+pstPpYncawGh0p3Ot6PzLft5+kMTxNXkNLfxOcku9ggWFy+dIHNVi4KlWdjzGrKwsktmt8ynoXkuSxEy/83ZMbtF5TTTM0QeHXnchhTbQUphUtyOPNZu1drbivJUsmqilPrPbj9H5/GXcUrcNvgPaAtqNRrjxBGcdOktRg2URzDcJ4c2kQSnw4Y7tdMgYoUvlRZvkrvtec9JQ0HodSZ5vRPEA3a6nhh2xHGtyO4yhODWg6kXyR/4T52RaoI40N82EBWR9far99NY1omnF5FRK2dOLBrVpZpwUpcmhxRpFsSxFm9Ow/rFdrn7HhtAqpq51k1r71IE0WEkElaU41iV7eF++58X9dilFH+YywVAKKrv4f5B/axbrCaIRiaO2aVmsg1s0u/76yxvW0EXtk9ahXkqIr46plzoUaynpjjQsevuA6sZjmOFUzukc06et0nlo6B/TJ8+3hgsa28tQdY0zBtuNsYkRipVFnL+0kumivwfUUHQjrt+hWu0y28xY/vRV8htX0HlNfHYHOhnn/6/jzDekuIqmsrNcJ1KENcVU6/pUK1S3Em2IcaLT8KFlVc+nhzf0o26NihxRJvdSNY1pMh1wSnpen3OAAj0oYFsctXSupQHoebVyJTu8qlDtz8xM+914PxHJfBjeSJEfr4kPjIiWS0h3FfMN2U2Oh+JS1NBjGovb+rYZ7lIm4uVE9B/K+V3xqWotlG3iaUI5zDf854qV3XldSXFY9v10JRaBsTNIEVkpqp5MTZxxpHuK2XEpSgvvnOSUCMZ1CVjlm4KFy1S6C9NT8nOb0IboGR8wpyp5TiZXlCcLoktJG5So55p4LIVvYxNcLoublTVQLdWtBsVlVtagkgYzHgltSTlfoPZkDeteTTQypDuye5+vLwIXsZLJAXJ/FQNpippwQ6eEbpWv2ZYHqGpJ6dYVErhpYb5p6Z/RzDYXgvp2KlDIa2Hm0lwot6BgVX15XBvLZ0c0k8+WYlkmSSC0Jxc7kqvSiIjYW6YXZq5a3Uq15OmKXpdTdR0klmg/avNtokPtNS62tfp1Wq5PGl4/xTJIpo1//HRHpkvNY0uwqXwmSQCkwiaW5MAsphpT0Ys06fPxRJyzGg2SmatF0+T1KaaQ9zZKrqlp/gHKnmTDFKs10aGB4ZwHfvFJzgHpv45IPc45IK7g/xn/f56U5xXwrY0wM3wKohEGNh/edT8Vrcc8x44n1MOR11xYVJaiV5bF7vZI+F2rDWmyKjhCh/IFPXBtA+L5nsoY1FLf60ikUHOlCJNd0yw4JyGC8xwVeYGy59KjFS7PqZ97K2qwDCeO0fvIg9hEkzx0FfeZ+6X5mOcwmbXncc6iNtZE4zEX8Xvb1GjdWhCTpkyec5w601Qn11CVpTg1aO1nJXW8aJsPlYimws1m0txYJ2GKR3QpbngoFClrF5kqlde9GCPNh9bXajQOJ4t1i6KFED6O25TwtmHSGuqa4S0pNlJ0zo1FAN9krzS0oahZc91OTlxiKAaGved0KJYXzUeT09HkY8RjS/fClKUzY5SFsieNyOWXboijTC0NQTRzxFPHg39llYt/cY1yJUVZS3buoG3KlL8/6m4sU46mkdDI/7d0LVDzUiYNeeUnHZE0Kca0aevtxKiqKE+t4nop9cYy8YV9qB3lSgd9cEi0P4WyQuclunbsP2cZFxtIYmabKWf/8gbbLz6GzRK6X9yRx4kkJNH1O7hO2k6e9LxAVRbbjdF5RbkU4bQi2T6kc260eB5KUfdTJneehNqiDsaYSUE0qTm46xjFUkTdiShuPobtJmT7jnJQI1kMUsh1riK7y6U4BCXbEXpmxOlqGokWxIHqVdCxlCcLdK6ol8QO1EWNPsRRF4Yqj9qJh4ospltiMt+8+Z1nfa6D7cjv28xi5ho9jKBUPqsD6NfUy5UUvsuimbDrJeqZh9jNvKUNdc8a6q64H/UuKCY31UQzETCXA9llbqYg9VKFTaD7xx3P0dd+qiMaEV010zlZk2TENandqpbdel3B9IaaaCJFX2un7CdL2jtpHW2c8hWfi9G3sFxinzmhWLVivev8lGVXguuimbhV5WsigjczRXKgMLkXjsdiq6srqAcVNnJ0P5+0NrPRyBBNvPYhXdDg4pGmWKt9c2aol2RnP9mOoFfTOyfaEJNDPNTY2FFulKJl0FIMV8s182NS+PbOy9TITLXPlpBMiarn6F5UJHuqLYpt6qhTiMaadMeQHMi0oRg4Jk8rmZ+qmN5UgYPDZ1aSV9J37do34vM6E0pYOXAUK/I1ubUSitVxS75eU2eOfE2+ms+ZaKyIh5rOeWk+4kMZWfXPKnpntZ8oiR4GK02NKqWwT4YaPTESbhjL2rQBo01z65uFOvX3Qi3Nlq6kCetc0SR7hnJZGsameXARkjHTte29ZmbiqtaI2OcblvhQGlqT++YjlsbDaVn35u8uGpkeNjIH5SiXJaulWJHsDzNXvgETt7Zi7cum/k8CnLVPyFdAwBOBQMF6CkKXDtVouDWYcY6rLXqwJDvxx/uiA9jZaylXFCUk3pnqaAJ6XsiOP1yThC7fUFL45sViGlFL86LmOaQpTfI5dS279dZhxxOaHBE7m2P6PezpTdSD51orW4Bob4IbjmA8ga1jZP/vvbg0xRzf8Lx+JboRK42UvWETdXlPGo88RxndpqWrKJKU8m6HydNXJSXbOoqVhOjqIWZcSkhelqAfPC/P3Tp0J0MliTRjlYMs81qYSLgvTdI5SHPlnDQpbcZJ1GoQAGka5nkreGae446voUaTVqcjzk9WjkuTlqJV3ijbv8l+gR5OwFlct7PQR9ROCv8m/CmWAMGdF6xgjWoD+rI9S+/smP07ltv8CxSkw4p8PWNyIqJ/vmR8KiaeIH+MCyf3lZ/Q15nipndNiHbHNEJsF0njo440Icllcf9Cy/1SL3VQzqGKClX5Aj6OiPYnLYWsbZCy2FvyihbDdlK0UkxOpszv6LByf8HhrT2WHprKH/xuh/zEMtnD+8xuXGbvGRFVB2brfZbPdrjyZ5s3BUxv6lN1l7n6bbrd0T39v6dEe5O22RN6XY0zPVCKdE9E966bUg0yOueGHDxvjcEXx+w/s8vGxw+kCZ3n6GmBKTt0L1Yo68jXU7ZfnIDqEI+ge95Q9eT9qTVtoRJNhbZRLdu2YFWFFqqHVeh+ie6W1IUhetqYenfRRJDVkBus/z2zVGDzCIfC1eKwRbcSDUliqQZgDg3VoJairSu0Kz0TkbZziA6l1Li+OHEp5VCjGHcuIQaK0wXmqqR361yRHMDhzY7uBUOxRGt5XK4f0Skhj1UMhHJD7HD9Gj2KqE4UxBcSz52XHfSGIpSvSKaFTeT1mtxo6Z43LdUqHiuqWuxxbQSl12o09LY68yFzY42ea6JzKfFhiurLz1C0SeXZtqFccsQjed82E47aO5PZSOhX8aFMN3oPxJ4S5ejeNmT+2RXqnqXSDoxMMJxGxO5D3VKtdAV6qqmWa3SpiK7ETE9LwzbdqOmdM6ANOpeiOT7UWB9CWKzXFOuKfEOoaemuwqaKfM2JMN9qxpsQXYmJxorOWFEnottA0eZ5RIdybWY7JvKSpbIH+lAKcJc0CfSymx/N/E6+12RUSxYbQ3QQeU2MpNdHU0U8kulR00goS0tdynZExK8Lxfhmn9DuaLU5OGkMykGNzjXFMXGYcssVahi1AvpmulMnPvG92f/pinYo3dOUfUe9XDMdQHY+IttWzI85sh0R4/s/aPLx4Bt05/fF1FxJZsiuJppAuaSY31RCrskuGfINb33sE+aLVZlMJiNx/FK1TIacdmirwGtSqmWxYtaln5AVT4H93KcABSsg4OtFaECeglAWEat6ao3aHUoomTGyqz+etOJl1ekIZUopscEtysUkAlpaT2Nfq2BB83HO257KzrvLC2lOKm+76ilUdjYTeldRLnI8rMNVBTpLhRr20AWZiuQ5esk3SGcvyCWsDHAXLqNvPCWi8tJrBJpAQ5Drf+iiv34jE4u8aJsDspTps7e8heSCRmQTTX7TKvHOTJycpjnOiqBcxRFq6zhud0/OWdfSbIE8l34PN5nK84Q2U+Sax53noqnJUqk0cz9Vahq2LBWh8lFdjfV/QRt3rLqGJEHVjmKgSK4cyhrEMWoyXQjRvbjeRYbyWI/pyZR8ScvOcik7efmyondFGoDObk3Z1RyelgJ36SyUfYNTiskJcS6qE0U0O6Jt8bv+y58bofNSHKIAZa2fXsQ4/FqZCJWXuDiiXurgYo2ZFDitcX66oSoLdSGWtke0IMo5Eb1nMYfPXPMOR4rOToKuYPmhkviwID4ssImh7EdcfM0GN/7+IaPnHWN4syaaSdGarzkOnw4uLqXI3HREs4TBmZqtj9Rc/TbDje8+YH6yjzMKM5bARDUvIRNKF4Ae+sZqVhDnJbabUPY0l/7cMr3LFptEXPgrJ9n4dIkpLE4phk/v0LtcMTm+aH7yddmxr/pCt3JatdMBSZOmvT8bVyZVSANhK93+ML/ShcziakXUL6TP65aU46TlljsLyoAdJehBgXMK1S/FiadTYzZmVPveJslI4Jp1oOMaVxhU7EBb1MTgOjUcxigrouTJt81JzmRUPcfspFCJps+dkzyYMT1ZQ78mvphIgrSnzKMguxhTp5Bv1JLiPophLkFzahgJRceqllpVLvnL8/a2vQuKyWknbksaylVZz3hMGx7YfA4qK9MKXUKxKhqURmSMlSI1HkFkFLPnzFn9o4zRbbJDnV7VuEgeOxmKq5Wu8U2INFGVd1GadhQmV5ipYvqlAc6nYiu7EGiXyzW60LLr7fM/8o2abNuQx55adSifZ8XJguhqzPyYE2vcLm0uiapVSzkC0MfnlGVHhPqFIruiYDtjcqOE8knKthybbWuvhwF1eJQyJE1cuSTNlckX0wQ186GSFaTThaajToXSlgwbjYvf8JpD6jNDbLpw11JWfp6vyT1uu7K2NnHYTk2pNfFQk+yJ01i5UUGhZUJWKZSVnBCsTKt0SZs0Xg0qzCii6krjowuZTEQzmG9Ic+MmpqVJNeL5si/6jWRPMbuhYumLEVVHMT9doeYyVXKxozLSGJXLDtutia+ITmh+3GtILOQn5ILifbkJ69TTArVYQEe5Jj6U+7nqCT2vWhY6XXyoqPOngggkIOBPDkID8lREw26pHCa3MukA6GRoY8Sd5+o+bn0Vd/5Su2PvfG6FBNtJEelmc59/oKErPpOuLCQPwRfp7e9ai53Nxar2iH2u7nRkstKIjI2BSOEqEbsrpXGIzkGvr+IOx6jM5zxoLf/udlr3KaU0riw8jasUZ67m3F7/0VCkWk1IJ8PMLcWK36Ubi1c+IBSZuEe2PZVmoKEmdTIYHYompp+Ju1ejZ7FIE9BYBvvJg2o0GQ0lKkslqdy5a3Ujzc+PiLDbBiSKFg5djQi9rjH7U7I97/VpNG3mh3U+VX0G/a7kUgxzzHrC0mFFPjDo0lFlitlxmG1G6Bes09mGwYMlS+chX9aUS4Z8oLGRFMXxTKZEZVeRjJ13jpHC6fDpy8RTi5nX6MKii5qqH1MsR6R7JdHBHNuJifIS14mZnZD1H92csfrZQ9RUmjZlpWmRUItaqFA+E0XVClVZ+g8MUZM5GMPw245Rp4r+lybSJFiLmc2Jzzhwp7j04iXyNTj+iZqDpxnRWcwURVd2aBtnmslpR7qvWfnClOSmHhdevsKJP5rIBAQWE6yywiVCI3NptNCkOIeelWx8Ysje85bRFVSDBJNLoZWePWD8rHWKPhx+R0TvgtiPlgMpwqqOUExc4nC1Ij9RoToVrtYwExvVRgQuxZo0pWYvQW3OqaYRyhfvKrYobTHGkR+kqNiSLJcUh6nIg2oNvQpbGN/cSD6HrYzkffRKXK3oLuVMDjpQKUxSo2NLvZOBz8pwStyaogkUKxCfyYQ2opCiUIG6mlKuWNIdg/MuTmomwXk4hY0t+Q0FeiTCczWM2wZL1Yq6X2OmkTgTIU2FjWXqUS5B57Ki7Ittaj0xFCuW3llNseqT6Oe+0I1kZ7wpAqsumKkiPoS6I/SmfNVRr1VUexEmVyx/NGP4jMalSxqgqiu75LMtHxDp6WHRWLbx644U/VXPSpbOMRFxVxslzjuJye+IliaaqQVVR+HtfiVwcL7lKE4VqMOI6EpC3ZOckvmmQs8V2bam7gjVx0w83WqzxJzvCP2oZ6ljx2xLdCfL9xvqTJq2OpPmMt+Qc5UbYtmrLBRdh7IyOcL5qUQpTYjc69LYWT+la7QM8dgnnjeaopwjepxFw2EKoSuZglafEY0X2h6nFPYgwhQw23J0z4tjla7ks7ocWPnI9C5bVR21DbbNRJuUXI3F0neuKZekOTMzxWxTJk7Vsghg6o6TIE+vtZEJnaNchqUvRBQrMtFJrkQUq1auuVJtBogzDjM22MhRd8BlNWbPB0DuR60RA0oMBsxEU53ISc6nVD1HfdsM86VuSxOMRvKerPpCs3vSYV2rDXrcECYgAU8QngIzw4CvCAfpxZH8v9G4vQPc2jKcvYQdHsKVq6242eW5BP81fE23yN5oHJxc40AEoukAP8moFqL0JjsEhG6kjzQd0FKRXO61H00SuNdO1JsrqLVV2WnWWpoAaxeP3Yin9REhM0gj4GkzrixFz9Kc2zlsLyO9NMIaRZ1pXKz9hEhoRTZRlKuZNATNFMhTcMhSEbpbtxDpOyfXlMSS6eFcGyQo9DLTXldDYWszVJzDLfeEPgUiOD/qpgXSXDRWws3EqBPTPycThFb8fnT9jMZ2xEZWT3N6D4/pPDwknkhyeGenIp5IUZfuyg7g5ERE2VPoWlxfornD5A5dOeoE6hiUdW24pY0UJreY3DJbN0xOJExOpQxv73Fwa0rR19SZYXZDn3I5xvZSmXhomTzpGmYnuzLh8LoOlZfYNPahfvVC/9FocipPKysr4nFN97L8oVaVp/dZadLqRLf0jqIv4lTnrUbNRDIM4pGE18UjxXRTUawk9C9b+hcss62MarUnmpFGN+TF8DiHiyLq5UyoZv49oodT1j45BOdIzx6w+vmS0U0xlBXdC9M2rM3GC60NSgTJZq6IRrK7rGcaV2tMVhGtzVFpjV4phCp0qFGln3w4+X3TqeDQByfEjmoeUc4jlAZlHMU48YWhkzC/UkvyeG5wtcJOYvRBRNQtpTE5SJhNE3orM3RWU81iTGRhqcKs5dQd215/titOQ7qWhkTPNWjX8ufjA02+bilWauxaCZHDrpTY5QpdSoNllyvwTlSqyfPo1ovCMhK+fNkTvUHVc3S25ekUy45027RTosoHzksyt3w12Ra6kkLazGUXvvK77pObKyloDyLiQ4WZweg2S3QoAvC652lFE8V8XTI4oonshoM0JvK6eoHyxGeNIBQeNRc9Q+/MIs/ExY7iWCU0t0bzMlPkG97it1dJE1crdC3riJYmpVqthHLkv18eK8UOeFfsgps8imhtjotFbzC6vUbnsHRGiSZlaKh7NdXxEpuJLqXOpPloczJ8TofJ5e+HNb6ZqOSxdY0PEpRGo86EruW0NIhoWft47LU6fnISzeW/upTmA+R3ioFvbhLIV8WAoBhIs1N1RcdiNmfY1FJsluSbFdVqRbVcY0/PcKmI6VUtmpC6Iw2HaHTke0Abtgmgcu2nFgrbr31iu+LwWaVMfSqhQfbOiXmCmct9YHLJ/jBTn/KeS+aOM5Bd1Zi5Ij8m74H6ZC56phr0boKZS/aJeaArj1EKhU6mdjKRj7cXYa0BAQFfG2EC8lSEk6JRVQ41yWUE7PMxOHtJKE8glKuqEkpWEqObnfsowu4fLKhWzQ6/c7j8SMq5z/1wdY1eXsLuH6C6XSnSMRS3bUkK96H/i6MVbu5/X4k+A62wk6kI10+fwDx8hfqmTfSX9qUI9UFu9fNuw3z+YXl6DeUJWueuhsLk8nwhDi8KdLeL3VpDX9mHTsbSmTF6NJN08U5GcWqFqit5E9FhIU2EtdL8RJGcezJtr7918DLy85Z6ttSXhqSZukQRxLFMbxqaWJ7LpCJLUdt7sg5xDNOpdxaz8o5qxPuNoL2TwWhMvtEhu3goNrbdjiSMN+Jsr6UYPmtAcliLWHq/IN4t6X9+l/yFx6hTzdrnZRoz2xCqlTVS8OnSMV+Vom5wJmd4S0rV8b7+DqyRpqR//wFqPAdn6ScJLjHYfsZsq9M2ANPjkTQbpaZcWkJZhy4t87UIXToJO0xjoXAphSor8q0e2SXRk+hJLta1PvBQ2bpNle9+5hJ0O9IETGeybmkCZcng3h3ywXFOvXeXg+euUvVUSzeJGk65kaLJRqAS2LkzZuPTJd0H97HdhPPfvcLJDyj0rBA9S1GhigqXRuhpjnMJ+Ykl4mGO2RfqnM5Llr4kjX7n3JDp5jpkCVU/aXeT8wF0dqSAm6/5dQWfYwC61OQ2pl6BuFdiYims9Mkp1eUOLrFgFXZQwShBdSpxrFKAcrhCQ9OzTiP/GeCLrm4tOQQa6FaoSSTTFwXVTkZyfEYxMygHkwt9oUUpR3FZLI7qXMNKiTqISQ5gfKOkt89O1nTPGebHHS6xqFycmuolCVazK55KqJ1MYQpN3a9QpSa+lLS74/m63+jINbZXUw2ASopwmwinP91T5KuQ7UgTIlx8CcezBnEmS2U3O7KKqiPNAUd2zkVPYMm2NSqpMbnsWE9P+mTxiSbfqmQqUYqwv9bellWJ8L3q+TTvziLEsQk7xMrraGMvLu86JjfXJHui93CphUKDcZQDmRJVHYdNLJOnOdKHUvJjNbZjqZQmOlREI0O5VtE5GzPfqtGVQdXQORdL0vhaRV1oqKWIVg/20Imj3ijgMGb0nBJlFeklSU2PRxFVV3QcxbJPHs9q1FwzP+ZaqpQqFDZzRGMt0p1MGpQ6lVBIlzm6l5VYIteL5lqVEFXeXMFPPFC0eSO6hnlHmrT4ULXOYjhvydxMUZaE3uU0zKMOCoiuxjKJ0GATi7qUoRJpBHFCiWtE+vkxobtJcyHXEE1k+tSkqSd7UJYiwi+XLPHVWKZ9E7Htnd6R0/lcxmxLNB42kcYhnkHdlabHeJvjYkX+bX1EztofZIxu9ecdakmRz6XxTD2lrnPRSEbMTGNysE+BAYjsWjzOovEwAQl4ghAakKcgnBf8gsNuX11Y4TaFcFmJVsIXr+0EI45xs7JtMFS3K5qNvJCiGtoPE9c0JD6t2+WFZHnUVop260jO7YmblBNhtSsKn9VRQyQFs8qydjriLm2jogjz8JVWBqeyFNZWiB64KIV5JxFdRVGIyLqhNxmN6vZkWrGzJ5OHNMVtraPHOSz3mdy+Su9TF3F7B6heF7e3T7yzR7K+Kg/mJxgqSxfr1U5eLMokbfOj+suekiU6FDebS9OReicrrXHTqbd29ba7USRNRWO567NW7Onj6Mu+IRlPxIq3QVXL9CVL6Xz+MljHzstvpH9BNBDmYNo2ivkpEZVXqdAzkgsHuCym2Fxi7eO75CeWmR2LMIWiTr1Y04GufeFRO2yimK8nrH/6kPlWlypV5CuaZGyJD70uIo0lgK8oUQWY3TF6I1toF5RQtZxzUEN8WJNdPJTpRlUzfP4mF1+2Ikswl8Jk82NzrnznKp0dS2en4OHvyUhGcMO7DtCeFjd9zkm6X7jK+Omr7Dwv4sQf9UkfuNJOjupBh3hq2fkza+SrqrUCVbUPWustaCF16qgzoZHsPjtmeMtxls9V3PCeffLjPZJZIZMX54QiJo8AZU12brh4r8URqqqZ3LxE5+IMZS2Tk4roznW6l3KWzzj2nyUuOtFMaHDxRIqtaC4FS7EsTUq2o5i7mKLSqMSijCXqlGzctsvVqwO5P3Kfcr6XCe2pK5MEZRUqq0SjUQq9xHatFP9TA92KaJBT7We42HcfucJllmK3Q+/EmPkDyxig7mjINXo1x44kP0JNI+ITU6pRn2gqegoz00xuLYl3fW5IWuNGMenxGXnZa/UnZDXqIBZaUyJFZdX3xfvA7zjHnuJUSiNFbLFaYaNa3Ii8RerkpG+cunLvqgq0lcbA5DKhmx8Tu9poqihWanRh/LTBZ3SUkD2Ykq876n5FdjHGaRGrp5cjcTjqivg5ORCKTDkQcXq6pyVLJBKtQWPBW6zV4tbUqYn3hOrntPPvBf9Z1qlQk7S1ga1T0ZaoPcPshKSEp1eNNCGJxT1jjj3fJbsYMX9agT6I5fmsFHBVKKqdszHlkhM3tFKutc4s5mriaWyG6NiMepCTzyN0bLGjBHxTFB9qbOHtayOvL/FaJD0XapnLpEimludXd6UpO3yabal3uvA2u1rLNeYyeYjHkiyuS/9ezBVEovuoOjIFKtdquU/TGjVcTAHydXmNwU8yNLharsvMhAalHNjUYhNFdlUzP1mJq9mhwflQSFUpmTicKoiuSECgix1Vn7ZBicdyf803JWcKDeZCJvfVfDE90XWjG/ITlhFMT1u65zWzLdeyl4a3AdqRXdXU3rrZeDF7nQrlKpop4gOZ1GY7MBl8+V/ygICAr4bQgDwFIUnoEE3F+hZfUDcTD7SWIvtoiF1tWSQvger3FtoOPA2roWU104ayknyMpX7rAAWi0cDo1v1JrQzE/er8xbaxoarkd8pKGpEo8s2Mho111N7IT2YSycqoahHLl55a1aSKNzSxRKYNjCUIT3U7uK0NKEXEbc9eoPPweVySoFYG4q7V6Cums3bi4GYzaZKUAi+ab6lORSl6kqoW4XnjfuWbFOcsyim5Zq+BUb3uYgeoLKUxWVlCXWlyJxT6wtVW54FSMhFp6FpNIv1yT5yynKWzVzPfiNBFTXHzKtmFEdVKh+EtKd2r0pD1HjigOr7M4c0dsQVdSyj7GpM78uWFI5bTi0ZEaFLidDO6vY81imjuSEYOUziZEHndioqgOr6MM4p4ZyJ5GPWAfC2SfINMKAtaQzIsRFfkdRXLn91j6UsRLjbkaxndL16FOMLemXFwu2bvWRm3/vcRKi+9QF+mct3PbYOR56AsXPxzKbdcFNqcS2IufecSxQptfoSZ0+6+Vh1fAPmJThOoJhoBrzHY1Wy/cJXelYrLL1zh5B/NqXoR2fkxqqpwiWS8uBqhZTWvv4nonRlx+PQVir6s5/S4ZuVTY7LVhHTHUC7D9JikZ4urmFyTyYXSNN2S60hGijzSknSegbMKox0r62OcgzSq2dnrC2VGIanklRSEapbgliscoiGRa3Oi8XAKW2voVKhaQ66kwZjEuNgy3umiG567heTAoPY6FBsVamZwqaW62MWeLGEmVqbV02bo3VToWUa0LGpQkg8zks0pxSxGRxa7L01MdlUzu3OOncaYicGulJK4rvBTkiOUyiP/2+ZDHErmhcmFIpMfr+g9GFGsSpFZrFqSfd3a7orYW8wIioEjKbywvSPNiJkqemdjpqccjWV5sVaT7squeLJvWmvUhgZVWUWyZ6S5VeBScdZKt42I1Pc1xZq4ILlBid5LvF2vZemejPFNEi5YdRXVSkXdMcSHnibkZDIX7xsRYD/QI5lJ2GB8MaE4XorWoczg2By2s/Y+jg6EjlduVET7EdVKBZ2a6HKC+UJPsiiWa9nbtorieCnuZk+bUM9j4jMJRRfioUwv0I50R2MjRd3RLSWLoehKTA5Vx1MCtWuF9lXHi+9r0U3kx2pIrehhjOgmcEKFNLm8Lp3zsnbFqkzAGgvoJqTRzDT5yRI98eLunmg86r68NnoqDeb8ZAWpRY9989Gz8hpuVhA54ksJ5ckcZRz1XAwWknMJ+YmS7plYNEYXDckIrJamturKepm5d67qy7023xTXMhtruheEapUMZRIdTYRaZrwGqVitOf4RzfBWoZbViYjebSSfA8tnHIc3KdKrX/ef+CcMzjrc46wBCVFxAU8UQgPyFIXTwnluBc4AzlE/40aiL10QDYdWYnuapihjJJywQVnRpJq7shQxuNd9uErcrlQSt9kXqidNBV1vM2utUGW6qfx8dyjC9brGDkcoY8RON5cJiau8VW5tqQdddBKhdyPJ+agqaZgqI8V8r4PbkYlBk9juGmtbgNphTxxDzwvYO8COxu06qChaBBce0Wm0FrBN86H1Io27zayQxoskbn/HzeeiAalt68wlx+qF9sM3F87bC7tIS0PX0Kyar8ZBTCmZpMzmcsxSH3U4k8d2ju6XDrC9FDOctrkp1ckloplD1Y7el/ZlbazXWFSOeFKT7RbYSGOjmCJWbaPa7tBamYY4/zxN7qhTOUZZxexElzQxmAPZ6Y92xnLdWoMy5GuReOMbJQ2LF7FX3ZhkNMd1xGZYFTUqr7jy8i2OfWzIle86ycr9OZsfPpQ1VYq6ExHNCy6++gZO/n/P+mrPQZaICP2co+oqLv/F4yw/VBLNfDFSet5/CbbCh5TRhrDZRKxcG7vbOl3QsQ5Pi8h3cipCV/DAD8nrd/v/nWBGdatfajUh3nK4GmRcfX6XqgObH83pbms650bUgw5lVxHloIby2K6Ua4tmDmsUkxPS98dDPBVINAAOcJWinEdcng3oLs2xVlNWhuXBjKJrqCpDmUfYWYSjsUgWgwSXCiVKOY2NNUmnJB+m6LTGWSdWsuNYckUqjdmNpaDLatQ4InrGiPmFvjQCxu8iH88xFzOqQUVxysJ+ijk+p55FaO2I04qV/oydz21QDSPiU1OiqGYWxTgNs1MWWxmU8UGEVSyFspMdahSQ1lCI4F1lVihlVuEmmtmm7BrXHXE1ioZGClqr2l3tYsV6AblQqpqGMxmKM1IzCWsanHJJuPmTm2uSXbG7rVOhCNXdhh6jKDfFdhUn1C5xtRLajWSdyMQj8VaqdrUkOZ9SbFQ44+icj5kdg84VzfTpFfW6xYyi1k43u2yYH69J9g1mDvVYgiZ1odG5EvvenZjyZI7eTeh+ssP4lpr5LRXJuRRVizV2ejkS++KhIboYMbuxpCq0UO+GsegeUuuLdoW92EUZJ+5XnZp8YGESQbdmvpFjDxJ0pSjXLWYoND1dCMVNWdHqgFDhlPVaJ+8KrWuFHhpxrzKyAeCUTEoaO2WbWWanRQOl5wpVRcQjRd2RrBLjX+/sQiyZK7n8XSv7Mi1ThZKm29PQXK2Ibh6Tj1IoNcXpHDWKUWNFuVWIs9tMs/q0A8r/s8bkxppoL/KTDrn+0W0iHo/H0NnGWwXL9UcTEemne4bkEGbHPaXTb2aYXGyHO5cUk6dVmJFh5bOGg9ulwUz3xFnQRdIE52tQdRW9C21sT0BAwNeJbzkR+s0334xS6hFff/tv/+2v+Dt5nvOP//E/5qabbiJNU2699Vb+03/6T+3PX/rSlz7qOb/3e7/3mvP82q/9GrfccgtZlnHXXXfxf/7P//nGn4hzC0cfaMXg0VnZZlHGyASilsmCK/zutnUi/G6KZz8BacOEjPYuVpEU6/6xKEvJE2n0C0rhshibRKAU9mCILauFsD2JZVKgFWptFbXUB2NQaULdMdiOuDo5b0PrJtNW6+DGE9FoGLOghHmhNmWFWlmWZOzZfCGWb3ZhOpnXcCw+7Ztj7Gy2aDaapqC2fppxhBfb6DIaoXttFyGE1h/biOR9poQryyPndIv/b6hZ3vmpaTLIi9YFyw66QvcqJdiwHnSYb3VkCtM4YSmFyR3Z1Xmbo6JKv9ZWmoKqY4hHOcv3T2gsMxtXpCavoWk+VC1877LbNCmKOlHovCI/7cP9mpBEJ/kj/bMz9p8Ns03ZHa0zhU0UNlZt0d4EQlbHllj7zBS9O2Lts1Muvyjl/F9colhJ0c11z0uWztcUTzu+WPuiRJeOOpFCu+zB3jNiRjelQpuYS0NRZX7i4SlXVYf2ObvIC2p9swJSGNUdWveebAfMUKYLw1s7QsPydD9xAnPMT/dxWmNjw8EdFf3zjtEtCee+y1PrEiO7xEixVScwX4P5Ouw/i5aeE4+kiHGJw/Y9/SZyMmi0Uljl84RiHjEbpxwedqhqQ5aWrK2N0R3/JGILpZKCPrZ0T44htZjYikDdKlxj4xv79OxRLKLwxEmOCNIIVJXBLVVyPiMNSz03VCsVemZgLlqGxhbY+uppOM3o3TrEHcspdzOmu11ILLpTSVG6F0OlKG+eU/ethC3mWsIRtUxR8MJulYhAWM0lxTweizVsciD0F5OLNqMN6fPJ8S5GGqYmD6In90nVE/cuZ6TQbCYjOOicN34qKOGDzQQJRFvAXMT2Zqapuo75iUrSuI0U5Ha1wEw1+c250L12Y7BgxgYVW7GR7limp8SamKnxaemAdlQd6D8oa5iv+oA+oFyxmEIEz+VGCWMxRZjcZGVS4xTFWi3hglO5r+uub5CWHGYYER1qtJ9C1X3J0ohHkn9jM5/6PlWYQ4PZiUl3Nen5GHUxAyNNhhkZbCbOTsVqTbVUUxwrqdcrya3pynNQtXct8/RHG8nal0uOfL0Wl7hKMTtpmW/VdM8bsosS2BjNFNFY9BG6pA34i0dCXYpHqg1YtL1a1neu0Aex0LeWSswwksnbKJJpyH4iTWMi1s7RUoHtWA4/typ5KE5R9y3prjQPuhRHMl1BtifPoVj2OhVks6BppiYnFoYHzn+26FImay6CZCdi9fOimYqm0L0EnauO5JB2raKp/G655D+jnmw4+8R8BQQ8AfiWm4B87GMfo26SrIH77ruP7/7u7+av/JW/8hV/5zWveQ1XrlzhrW99K7fddhvb29tURxyN3vGOd1AcEU7v7u5y5513XnPO3/3d3+WNb3wjv/Zrv8aLX/xifuM3foO/9Jf+Ep/97Ge58cYbH9NzUNaRTGvsF86g+702QBDrWv2E8xoJvGBaHVtHKYW9dEUoVFphZ/OWbgWgj60vaFHOSfPgxdaUZZsBUp86hrm8R7XSIRrOsZ97YNF4GIPu96Uo3z+Q359MhV4FuGOrmGmFufcBYcp0O5AmMuFotB5KciSapqClhXkBOYM+ajSVBqYo2kJZdzpC01LKX7vPJKnFZUv3utjJVFLLPYUKaBPiW0F+UeJGY6GpFQXO1aiiFI3LYHnRQBhP2SlLaR6cQx3fQF3e8VklvnmxRxqY1grZinPZ+qqI5n3DVJ1cJ7p8QPRwvjAH0IbO/VfpVJW8Nn6ag3OYucUUDoyi6BuUy8hXolaPAL5Q9xQUM7cUy5p8oNpMChsr6liRDi2zUz1spCiescrVb5P9h+5lKfgnN1rAka8JBaFJJx48GFMurVH0Fet/vIuLNGbktTVJQnzlkBt/L5emxk9U4osH5Detc+UFBpThpt/fIL48gtmcyVbE4U1Qd6QYNQ7KvtAk5utCc3CadgdbEsctqta+wBQnHmfwlsPSAOAtdPEag5N/ZCmWNFfvgsnWMje8ewdV1rjY8KUfXieawy2fn6FWM/r3R2QHFfGwYOlcxOS2VapMka8o8jXvhJWIGxRO4SwM+5p4aMhXPY1mrCkyC33Jb1ATb5ubOGEnFZKV4UqwlaIuDXFS4axiZWvELE9I44p5HlNOYqbDDhhLXWqUchBbXKVRxoFxmGGMzSzJrqE4XcDcoHoVrgPlgfdc7dWoyMp1DBOUEjG1U6CMQxuHyyqOrx1y5eoybhZRzCW4EEtLzTK7qdByMmmS3DAmGktDgwIqBVahuwVuKNWejiy1VdiOxWnZDW/D73oWFzuyywYzMVTLlvRKJCLjWokLUiqiJKeloFdOCkbcovgzHdltL5dkKpPfVMDMSNPTtbjjOVFSY2cxdWJRcyM5E8PFnz5VQXIuxRno35dSLkF+ukTnsReqK/KbZCc+GhnKJbGOrbHY1RJzNUaXMgFr0t9Fu6SwvRrrw+rivUhC/xKLWi6p5indLyZUXaieNqMA7F5KtiPC/LpnSXaE3pTsgYsMdWKwqSPfEjpXelUCF8uBlYlIYqk7Sj4QujVmL27T3OMDfY1Dqy4NtQ+FtF66YRMpqCsfHthMQ6KZQheGfE0ayXio6VyVCQJ4t63Yke4qaiuNV3SoSQ5gfkxes7q7eG1xxhf8shFhpxHaZ7yoqynJvqKo5f7GSfBn3dFEk5hyWc6Xb1YsfT4imsP+t1eklyO6l2B0q+PYJxz7z5TrX35APs/KvkxP40MvqK9gvlajKkOdOQb3i0V0k85uDYxPSThn3YHRuqNaqVj+TIyuxHK4d17MFdY/W3Pp2Y/pz/wTgkDBCviTBOW+xe+uN77xjfze7/0e999/P+qo7avHe97zHl772tfy4IMPsra29nWd81d+5Vf4J//kn3Dp0iV6vR4AL3zhC3n+85/Pr//6r7fHPetZz+L7v//7+aVf+qWv67yj0YjBYMCLvufnGXzykhSyaSpNQ7OLH0ciQs9z0WI03/dTi0bzYEeHixNbh946hjsYtQ0AjfVsM4UoS4pnnkZ5IXJy5RDykvrceaF3ee2G7nVpgg5VlsoUJolboXyTiK5ObcF4KlqNZhpTVqLtmHo6UjNhONKI6NUVubbJFHs4Rg+WpbkpStTaikxPlPyFaPQtWNs2SHpl0GpimvBFSYuvWhcsjIZ+T9yxfAigm86EJpamuIMhavMYHIwWk5BGhN89ss1lTDtJaWlrcexT0iNxD+v3wBiKUwPMuMTFmujCbqvFaOha+c1rmGlFtD8VTUQaoYqawzs2iCY16ZUpLoswO4fsfucW6bCm6miqjmq9+QGSw5r+F/cpj/UZ3ppRdRTR1BFPHKYUu0jnk9fHpzSjW61smjc2l4p257mxVE2GtM1M56r88Y5m0N22bcBgPLH0vrjPmddusPJFx2RLMbnJ+iwQ6FxRbH1khqos23f1GN1uSXc06VAmC6aQ3UeQosYa+XfjelUNaujUqFEkVrxj2kZDFyzsenP5qjPQOXSvOoa3KoqBBODpQsSxxarl2B8rVu4dUhzr8tD3Rax9WqMrRzq0mLll9464zbCYb9Z0t8Z0UtFjGGWZFgmTC33ikXDYq558lNpY7mdlRRhMLcWzS/xWq5JpRZRV2FpTzyKiXkmalhjtKCtpVuejVKYXgFIOWxhMVmFzb9/rlBT+gJ4Y6uUKlWvijTnlOJHpB0gRH4nOg5mBbg3KEWUVzmq21oecP7eOMg6TVdRTqUad1ybY1MFqgas0ybmE9AAmp5wUh82k4UhKOp1qwUexnlIWy4QkvRSLo5Sf3iUjxfykhMYpKxkXLhZdRrKvqTK5D8qBuBHpSl7zarnGTLTXCClpVgvJjqiWrBTEqadgTTU2cz4NWxK0QYpfp11rgwt+CuFF8cVAtAorn5f8nSbsr1quxZlsGLXntpHDzBTJUCg+xbGSeEdcmarNgvThVF6uJUfvYcmamG/WIsxOrNj+lho7KGFmiMZiRVuseTrRRArjfN3JDr3frS+OV+jpYhqsc79+Bpx22I4F5TBjcVazmehbVKXaKUV+WuhpZqxxsWSkxCN/voqW5tn8V1fy/rf+e+mRz4d44sQWvBL6Z74KWJlc2UzcxoqB6GjMWHJ+ytWazoVIJokdfJCi/Ddfd6zdB8PbFEsPw/Q4oIXCtfJ5xeFNcp11V2hT45slV2ZyU03/IcPsuKNzRdY725V7R1XePjiS5qShYenST9bGshnTO6eZPDsnvpi2IvzOtpyjWPbTto7Xziw5lu7J+fRv/RzD4ZDl5WWuJ5ra4aXqB4jU42sHXLmSP3DvfFKeV8C3Nr7lJiBHURQF/+W//Bd+5md+5lGbD4D/9b/+Fy94wQv4F//iX/Dbv/3b9Ho9Xv3qV/PP/tk/o9N59JnqW9/6Vl772te2zUdRFHz84x/nH/2jf3TNca94xSv44Ac/+Jivu3t+jD0coxJJLlfGSBr56gpuNmu1CPXBAWZpSYpvrz1QnUwaFutQt92I2t7DlRVu78DvuDuIlQiq/QQFY8ifK1MaVVjMvGL8jDV6//tzfspQojuZTFB29+HkJvmpZbLPnBcqVxRBluL2h6hzl1AnN3GXr8rEwNO0iGMc80Xz4bUfKLEYdmWFPr4hQXb3PwzIxKa+vO2bHiMTkXmOOvq6HG0+VqVBaSckSbx4jG5HnnO3w/Z330C2V7P0uX3U8HBBz+pkMM9Ry0vSPPQ6C0qWcdKggKe6+d8pyyNp8mLrS1lJcwHy+7MJyf0zqhuPoUpP88JRn1rHXNyDvCA9syvHxxGuk6Cmoonp339AvrWEHs9wVUx5YiC77TNL1RHedrZXE81kpzDdnsC8wEwKOjsx4xORbxKEfqBLJzVhJLt9yheIyoquwvpPBO3dXlQN/fOOzk5FenXO7KSsfXY1pxgk7NwZM9vya/zn1ll+ALKDmqt/RtKPk6EIXfNVcFqRH0tJR+LAlB5IkTE7LtQblCR04xb0qjrytIiJlmFTZqlK2W2PZr758FkHzXIrK81HuQTjWNG9BMc+Zdl9lhGnon3Y+nDN5T8bs/ylmIPbEk79Qc3BrdJMTY8bbGooBk7EsqkIxmeTlNpqBt05SVRRWgOxo9ioiA6MOORkDvo1rhIdiBkb7FKNmwnVScTnDjU3VAq0kYKwnsZMc9FXAGjj0GlNryed5XQmU4U4qyiBehbJsaWW9PPUigNV5KgvdDn+zB22z62ie6UcW2mYS/Oj41oanysdstNjzp9dR88MLrG4/Q50LOm2Ib+hEMrW1OAOY6JDzeoXHLp2VF1NvqapEwmcdJE0VyqxRFlFWcnrPzg1ZPjwCmas6VxRTG6qxcJ1T5qoquuIDgzlqiSxK6eoY1n3YkXWou75UMcIip6Tewo/URzUbQii885W1ZLfWS+EmmYzSawHKXCTA0U8lvu7GCj/fee1IZpkJDSqaKqo+pb9P1/iDhKisdCeNv5YM930wumNRTNjM4ebSMOtpxJiaGNHdCmlWJXXWRdw+IyaznkjzZsCndaYq7EPrVTQqal6FRUKczWmWrKUWzVUimhP9E3lwBLNNemViKojuTSqAjSoQrVJ3WYmIv46oQ1dtInD9Wpsoam6kqViM0u9ZOV1PFZRAc4p3DSSJtf5c5dKwjdj+bzBKSYzjRvIAsedCqUc/W5ONy7RVUSsLXuHXar9jKoW56zsfEQ8FtpS54p86EhavDQIVVfe0+ufgtEtqp16xWM/oXCKg2dJ05ftQvywYu9OS+eyxpSw+hnDfA0624qkyTTJvbi8ks/CZBfGN/j7wn+0l8uOYsWx9UG4+u2OjT9MOLxZPjOqDrjv2qe8d5V4Ip8x0ViRr8PKZxUHN3+lv+jXESK6egLOGRDw+ONbugH5n//zf3JwcMBf+2t/7Sse8+CDD/KBD3yALMt45zvfyc7ODm94wxvY29u7RgfS4KMf/Sj33Xcfb33rW9vv7ezsUNc1m5ub1xy7ubnJ5cuXv+Jj53lO7qlLAMPhEIDq/DnZRXdFq5cgianHB0K5Wsqw4zHECltO0adP4rZ3wNbY+QSnKtR6H/fQQwtNRBSh/M43VY6rK8gnqDgmv+MGnM3BQZRXuLxC79WU8zG2rNCdFL3Wo7pyUcTrkxHRJy9Tzuey478yQI3GcGxAvdrFPHhJaBn9zBfgOfZwfxFmGMdgm+etWtcopZflmmPAOexkBMcHVF4/ohTQjbF1gasrmUgYg7M1yhjqyRBX5N4qWOgjbSOgE8Z/5jSzDUP/wRFOKYY3Z3Qv1Oj9Q+gvg6uhzsF6PU1hJT3eAo2tq7WwvATzQv4AWw0JQtmqLFR6oU9RDpeIFgKl4fwlHFBFQu3i8lUqaq+3SVCznPmJPtkXL3vhu6I8sUJ0aY/KFhzevCyC68MZ08yRXpzRmZaUywnRQ3ugNMNnrgvtYSMmH1S4osLVTtZjXiOGWYrZwFDWYC753cYETr93xPxYh+3nxxTLDj1WmAns3gzuNkeyH3P8kxPSCyMuv/QY8aSi+6WSeSLZCVjFwWnHwWlwE9mkjy4pNu6dsf3tHbZvh633nCE+vsJwY4n4ihRvpVPMtmTnMp5BvgROpAaowvO3c4h2ZdfSmYo8s9S5PK5LfPK1BlMrKg0qEhF7mUl6eXTVcup3r1Kv9VB5jd49YKl3A8NNhZvOGfehUCUqlwLHVqB2kde+C3VcoiaW+dRRjjQmisgnEd3lPWbjhGqA6D2mBjeymE6FiSx2SWH3UhGVl6KPMFlFVUZQyoDAuUoS2pvphFVUDqJuycFujE5rlMrRkWW+a3DOsjQYMh5lOAzaVdgy9ieDk7duc/6Lx3BmRl1AsjyhzFPRmFiFmtfYw5j+5gHjB5Zw2RyrQA8N+kCjFJRxSfyFho5S4wzkx0sONmUqFO+D7Uqwp3NCN3KJxQ0V1UqByy1urtk/G2M6Q0oXoeIYq3O0srhRB9sVdykz16hd//YrFaqAqmOhAuUUTjkflFdjxhHT1RpnHHpqiM5rXOJQueSO5AbUtlCAiC3xpUjySFK5lyqvHyq9pkiNpMk1V6SlyXsOUynUvkwrovOK6pYZNq+pa02xXjLvGrpnDfkxodO52pHuauanKqbHHIN7Ysqb5P2jFJ6i5qhjR5VZmMPktKX72UTcwI45yrUDdGSJ7u/K89iwuOWKOs3JzsfUHWm2q35J0bWYkSY3Qu/LLuo2wFHeD6APpQHWOcyXfE7KgUbnMlSzKdTdCpvV0sSW4DILqqa+ELcJ5dgSu1awNJiRRhW104xnCdU8Evqeg3itJI4sh8MOZSmp5zs7McwzoqGRhPUEVFLSf7BqNzmmW5Dsyx6YrsCMoVqRDYS6C9EQ9m6AzkWhZu7e4rCpv19qyB6UydWsC9MOrHzUMV9RTPuQ5lB7Gd74Jke2rZickoyQWkHnIRifAu0nOek2jJ9TkJ1JQMH2M8BWju1nS2OdJwpzcgL/vz5uaU5uoDpucf0Ksx8zXpHPEXhyKUsVJTzODy9bHgEBTwDctzBe8YpXuFe96lVf9Zjv/u7vdlmWuYODg/Z7b3/7251Syk2n00cc/zf+xt9wd9xxxzXfu3DhggPcBz/4wWu+/wu/8AvuGc94xld87De/+c2yFR6+wlf4Cl/hK3yFrz/xXw888MDXU548rpjNZm5ra+sJe05bW1tuNptd9+cV8K2Nb9kJyMMPP8z73vc+3vGOd3zV406cOMGpU6cYDAbt9571rGfhnOP8+fPcfvvt7fen0ylve9vb+Pmf//lrzrGxsYEx5hHTju3t7UdMRY7iTW96Ez/zMz/T/vvg4ICbbrqJs2fPXnM9AY8do9GIG264gXPnzgXe6jeBsI6PH8JaPn4Ia/n4IKzj44fhcMiNN974dWtJH09kWcaZM2euMct5PJEkCVmWPSHnDvjTi2/ZBuQ3f/M3OX78+COscr8cL37xi/nv//2/Mx6P6ff7AHzxi19Ea83p06evOfa//bf/Rp7n/NW/+lev+X6SJNx1113cfffd/MAP/ED7/bvvvpu//Jf/8ld87DRNSdP0Ed8fDAbhj8HjhOXl5bCWjwPCOj5+CGv5+CGs5eODsI6PH3STN3SdkWVZaBIC/kThWy4HBMBay2/+5m/yoz/6o0TRtT3Wm970Jn7kR36k/ffrXvc61tfX+et//a/z2c9+lve///38/b//9/mxH/uxR4jQ3/rWt/L93//9rK+vP+Ixf+Znfob/+B//I//pP/0nPve5z/F3/+7f5ezZs/ytv/W3npgnGRAQEBAQEBAQEPAnEN+SE5D3ve99nD17lh/7sR97xM8uXbrE2bNn23/3+33uvvtufuqnfooXvOAFrK+v85rXvIZf+IVfuOb3vvjFL/KBD3yA9773vY/6mD/4gz/I7u4uP//zP8+lS5e44447ePe7381NN930+D65gICAgICAgICAgD/B+JZsQF7xild8RSeK3/qt33rE9575zGdy9913f9VzPv3pT/+a7hZveMMbeMMb3vB1X+eXI01T3vzmNz8qLSvgsSGs5eODsI6PH8JaPn4Ia/n4IKzj44ewlgEBjw3f8kGEAQEBAQEBAQEBAQFPHXxLakACAgICAgICAgICAp6aCA1IQEBAQEBAQEBAQMB1Q2hAAgICAgICAgICAgKuG0IDEhAQEBAQEBAQEBBw3RAakMeAX//1X+d5z3teG9r0ohe9iN//7rMqoAAADWJJREFU/d9vf+6c4y1veQsnT56k0+nw0pe+lM985jPXnCPPc37qp36KjY0Ner0er371qzl//vw1x+zv7/P617+ewWDAYDDg9a9/PQcHB9ccc/bsWb7v+76PXq/HxsYGP/3TP/2IFNR7772Xl7zkJXQ6HU6dOsXP//zPf00nr+uBx2MdX/rSl6KUuubrta997TXHfKuvI3zttXzHO97BK1/5SjY2NlBKcc899zziHOGefHzWMdyTgq+2lmVZ8g//4T/kuc99Lr1ej5MnT/IjP/IjXLx48ZpzhHtS8HisZbgvv/b7+y1veQvPfOYz6fV6rK6u8l3f9V185CMfueYc4Z4MCHic4QK+bvyv//W/3Lve9S73hS98wX3hC19wP/dzP+fiOHb33Xefc865X/7lX3ZLS0vu7W9/u7v33nvdD/7gD7oTJ0640WjUnuNv/a2/5U6dOuXuvvtu94lPfMK97GUvc3feeaerqqo95nu+53vcHXfc4T74wQ+6D37wg+6OO+5wr3rVq9qfV1Xl7rjjDveyl73MfeITn3B33323O3nypPvJn/zJ9pjhcOg2Nzfda1/7Wnfvvfe6t7/97W5pacn9q3/1r67DSn11PB7r+JKXvMT9xE/8hLt06VL7dXBwcM3jfKuvo3Nfey3/83/+z+6f/tN/6v7Df/gPDnCf/OQnH3GOcE8+PusY7knBV1vLg4MD913f9V3ud3/3d93nP/9596EPfci98IUvdHfdddc15wj3pODxWMtwX37t9/fv/M7vuLvvvts98MAD7r777nM//uM/7paXl9329nZ7jnBPBgQ8vggNyDeJ1dVV9x//43901lq3tbXlfvmXf7n92Xw+d4PBwP27f/fvnHPOHRwcuDiO3dve9rb2mAsXLjittXvPe97jnHPus5/9rAPchz/84faYD33oQw5wn//8551zzr373e92Wmt34cKF9pj/+l//q0vT1A2HQ+ecc7/2a7/mBoOBm8/n7TG/9Eu/5E6ePOmstU/ASnxzeCzr6Jz8Uf07f+fvfMXz/WldR+cWa3kUZ86cedTCOdyTXxmPZR2dC/fkV8OjrWWDj370ow5wDz/8sHMu3JNfC49lLZ0L9+VXwldbx+Fw6AD3vve9zzkX7smAgCcCgYL1DaKua972trcxmUx40YtexJkzZ7h8+TKveMUr2mPSNOUlL3kJH/zgBwH4+Mc/TlmW1xxz8uRJ7rjjjvaYD33oQwwGA174whe2x3zHd3wHg8HgmmPuuOMOTp482R7zyle+kjzP+fjHP94e85KXvOSaUKRXvvKVXLx4kYceeujxX5BvEN/IOjb4nd/5HTY2NnjOc57Dz/7sz3J4eNj+7E/bOsIj1/LrQbgnH4lvZB0bhHvyWnw9azkcDlFKsbKyAoR78ivhG1nLBuG+XOBrrWNRFPz7f//vGQwG3HnnnUC4JwMCngh8SyahP5G49957edGLXsR8Pqff7/POd76TZz/72e0HzObm5jXHb25u8vDDDwNw+fJlkiRhdXX1Ecdcvny5Peb48eOPeNzjx49fc8yXP87q6ipJklxzzM033/yIx2l+dsstt3wjT/9xwzezjgA//MM/zC233MLW1hb33Xcfb3rTm/jUpz7VJtr/aVlH+Mpr+fUg3JMLfDPrCOGePIqvdy3n8zn/6B/9I173utexvLwMhHvyy/HNrCWE+7LB11rH3/u93+O1r30t0+mUEydOcPfdd7OxsQGEezIg4IlAaEAeI57xjGdwzz33cHBwwNvf/nZ+9Ed/lD/8wz9sf66UuuZ459wjvvfl+PJjHu34x+MY50VsX+t6rge+2XX8iZ/4ifb/77jjDm6//XZe8IIX8IlPfILnP//5j3qORzvPn/R1hK+8lo+leP5yhHvysa9juCcX+HrWsixLXvva12Kt5dd+7de+5jn/NN6T8M2vZbgvBV9rHV/2spdxzz33sLOzw3/4D/+B17zmNXzkIx951KaiwZ/WezIg4PFAoGA9RiRJwm233cYLXvACfumXfok777yTf/tv/y1bW1sA7S5Gg+3t7Xb3Ymtri6Io2N/f/6rHXLly5RGPe/Xq1WuO+fLH2d/fpyzLr3rM9vY28MjpwpOBb2YdHw3Pf/7zieOY+++/H/jTs47wldfy60G4Jxf4Ztbx0RDuya+8lmVZ8prXvIYzZ85w9913X7NjH+7Ja/HNrOWj4U/rffm11rHX63HbbbfxHd/xHbz1rW8liiLe+ta3AuGeDAh4IhAakG8SzjnyPG9H3M1YG4RL+od/+Id853d+JwB33XUXcRxfc8ylS5e477772mNe9KIXMRwO+ehHP9oe85GPfIThcHjNMffddx+XLl1qj3nve99Lmqbcdddd7THvf//7r7H3e+9738vJkycfMd59KuCxrOOj4TOf+QxlWXLixAngT+86wmItvx6Ee/Ir47Gs46Mh3JMLHF3LpmC+//77ed/73sf6+vo1x4Z78qvjsazloyHcl4Kv9f4++vNwTwYEPAF4gkXu31J405ve5N7//ve7M2fOuE9/+tPu537u55zW2r33ve91zol97GAwcO94xzvcvffe637oh37oUW14T58+7d73vve5T3ziE+4v/sW/+KhWfs973vPchz70IfehD33IPfe5z31UK7+Xv/zl7hOf+IR73/ve506fPn2Nld/BwYHb3Nx0P/RDP+Tuvfde9453vMMtLy8/Jaz8vtl1/NKXvuT+6T/9p+5jH/uYO3PmjHvXu97lnvnMZ7pv//Zv/1O1js597bXc3d11n/zkJ9273vUuB7i3ve1t7pOf/KS7dOlSe45wT37z6xjuyQW+2lqWZele/epXu9OnT7t77rnnGmvYPM/bc4R7UvDNrmW4LwVfbR3H47F705ve5D70oQ+5hx56yH384x93P/7jP+7SNG1tep0L92RAwOON0IA8BvzYj/2Yu+mmm1ySJO7YsWPu5S9/eVugOOectda9+c1vdltbWy5NU/cX/sJfcPfee+8155jNZu4nf/In3dramut0Ou5Vr3qVO3v27DXH7O7uuh/+4R92S0tLbmlpyf3wD/+w29/fv+aYhx9+2H3v936v63Q6bm1tzf3kT/7kNbZ9zjn36U9/2v35P//nXZqmbmtry73lLW95Stj4fbPrePbsWfcX/sJfcGtray5JEnfrrbe6n/7pn3a7u7vXPM63+jo697XX8jd/8zcd8IivN7/5ze0x4Z785tcx3JMLfLW1bGyMH+3rf//v/92eI9yTgm92LcN9Kfhq6zibzdwP/MAPuJMnT7okSdyJEyfcq1/9avfRj370mnOEezIg4PGFci7EawYEBAQEBAQEBAQEXB8EDUhAQEBAQEBAQEBAwHVDaEACAgICAgICAgICAq4bQgMSEBAQEBAQEBAQEHDdEBqQgICAgICAgICAgIDrhtCABAQEBAQEBAQEBARcN4QGJCAgICAgICAgICDguiE0IAEBAQEBAQEBAQEB1w2hAQkICAgICAgICAgIuG4IDUhAQEBAQEBAQEBAwHVDaEACAgICAgICAgICAq4bQgMSEBAQ8ATh6tWrbG1t8Yu/+Ivt9z7ykY+QJAnvfe97n8QrCwgICAgIePKgnHPuyb6IgICAgG9VvPvd7+b7v//7+eAHP8gzn/lMvv3bv53v/d7v5Vd+5Vee7EsLCAgICAh4UhAakICAgIAnGH/7b/9t3ve+9/Fn/syf4VOf+hQf+9jHyLLsyb6sgICAgICAJwWhAQkICAh4gjGbzbjjjjs4d+4cf/zHf8zznve8J/uSAgICAgICnjQEDUhAQEDAE4wHH3yQixcvYq3l4YcffrIvJyAgICAg4ElFmIAEBAQEPIEoioI/+2f/LN/2bd/GM5/5TP71v/7X3HvvvWxubj7ZlxYQEBAQEPCkIDQgAQEBAU8g/v7f//v8j//xP/jUpz5Fv9/nZS97GUtLS/ze7/3ek31pAQEBAQEBTwoCBSsgICDgCcIf/MEf8Cu/8iv89m//NsvLy2it+e3f/m0+8IEP8Ou//utP9uUFBAQEBAQ8KQgTkICAgICAgICAgICA64YwAQkICAgICAgICAgIuG4IDUhAQEBAQEBAQEBAwHVDaEACAgICAgICAgICAq4bQgMSEBAQEBAQEBAQEHDdEBqQgICAgICAgICAgIDrhtCABAQEBAQEBAQEBARcN4QGJCAgICAgICAgICDguiE0IAEBAQEBAQEBAQEB1w2hAQkICAgICAgICAgIuG4IDUhAQEBAQEBAQEBAwHVDaEACAgICAgICAgICAq4bQgMSEBAQEBAQEBAQEHDdEBqQgICAgICAgICAgIDrhtCABAQEBAQEBAQEBARcN4QGJCAgICAgICAgICDguiE0IAEBAQEBAQEBAQEB1w2hAQkICAgICAgICAgIuG4IDUhAQEBAQEBAQEBAwHVDaEACAgICAgICAgICAq4bQgMSEBAQEBAQEBAQEHDdEBqQgICAgICAgICAgIDrhtCABAQEBAQEBAQEBARcN4QGJCAgICAgICAgICDguiE0IAEBAQEBAQEBAQEB1w2hAQkICAgICAgICAgIuG74/wOOrdq+Jf5gDwAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot only the blue band\n", + "fig, ax = plt.subplots(figsize=(8,6))\n", + "image.sel(band='blue').plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "Since this data is in UTM 22N, we can reproject to the standard lat/lon coordinate system ([WGS-84](https://epsg.io/4326)) and map with the ICESat-2 and ATM lines. We must first assign the correct projection to the data using `rioxarray` write_crs. Then we reproject to WGS-84. We manually add the max/min longitudes for the altimetry data." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "91ed9cf9472e42e3ba94e063df72b046", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7xlZ1n3j7/vssoup8yZnjqBEEJClSZP0AQjHaUIVggoCH4popSHJtKkBcUgAoIKREHpiQpBiiI/gYeHJiDwIJAQ0qbPnLbLWusuvz+utfeZk0zCBCZDSO736zWvmdln7VX2Xmfv67qv6/p8VIwxkkgkEolEIpFIJBLHAP2TPoFEIpFIJBKJRCJx6yElIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICUgikUgkEolEIpE4ZqQEJJFIJBKJRCKRSBwzUgKSSCQSiUQikUgkjhkpAUkkEolEIpFIJBLHjJSAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxICcitkM997nO89KUvZXFx8To/O+ecczjnnHOO+TkdC77zne/wnOc8h7vf/e7Mz8+zsLDAWWedxQc+8IHDbr9nzx6e8IQnsGnTJrrdLve5z334t3/7t+ts9+EPf5jzzjuPO93pTmRZhlLqBs/hV37lV9iwYQPdbpd73/ve/PM///ONuo4jPa9zzjkHpdR1/jzoQQ+6Ucd74xvfyOmnn05RFJxyyim87GUvo2maIzrW5M+uXbt46UtfeoPbTP5M7r9vfvObPPWpT+U+97kPvV4PpRT/8R//8UPPd/fu3WzcuBGl1PW+t9fm+s6tLMvrbPukJz2JO97xjszPz9PpdDjttNN47nOfy759+476sX7c69q5cydPeMIT2LJlC2VZcuc735m//du/vc52R/L+Tbgx93vTNLzsZS9jx44dFEXB6aefzhvf+MbDbnvZZZfxqEc9ivn5efr9Pve///35yle+ctht3/Oe93DXu96Vsiw57rjj+IM/+ANWV1eP6DU5HDt27OBhD3vYj/z8m4LJfXIsecITnkC/3z+ibXfs2METnvCEm/aEEonELRb7kz6BxLHnc5/7HC972ct4whOewPz8/LqfvfnNb/7JnNQx4OMf/zgf+chHeNzjHsc973lPnHO8973v5TGPeQwve9nL+OM//uPptlVVce6557K4uMgb3vAGtmzZwpve9CYe9KAH8clPfpKzzz57uu1FF13E5z//ee52t7tRFAVf/vKXD3v8yy+/nPvc5z5s376dv/qrv6Lf7/OWt7yFRzziEbz//e/nV37lV37oNdyY8wK4zW1uw7vf/e51j137Pb8hXvnKV/LiF7+Y5z//+TzgAQ/gi1/8In/0R3/E1Vdfzdve9rbpdm9+85tZXl5e99zhcMiDHvQg7n73u7Nt2zae9KQnrUt+du7cyaMe9Sie8Yxn8Ju/+ZvTx2dnZwH40pe+xMUXX8zd7nY3zj33XP7lX/7liM75aU972g8N5q+Pf/3Xf2Vubm76f62vu0YzGAx48pOfzKmnnkpZlnzpS1/ila98JZdccgn/9V//RZ7nR+1Yh3Jjr2tpaYn73ve+1HXN+eefz/bt2/nHf/xHnvSkJ7G0tMSznvWs6bZH8v5NONL7HeCpT30qf//3f88rXvEK7nnPe/Kxj32MZz7zmaysrPDCF75wut3evXv5uZ/7OTZs2MDb3/52yrLk1a9+Neeccw5f/OIXuf3tbz/d9t3vfjePfexjedKTnsSf//mf853vfIfnPe95fOtb3+LjH//4Eb8+iUQikfgJEhO3Ol73utdFIH7/+9//SZ/KMWXv3r0xhHCdxx/60IfGbrcbx+Px9LE3velNEYif+9znpo81TRPPOOOMeK973Wvd8733038/7WlPi9f3a/WUpzwllmUZr7rqquljzrl4hzvcIZ544onr9nN93JjzOvvss+OZZ575Q/d5fezbty+WZRmf/OQnr3v8la98ZVRKxW9+85s3+Px3vvOdEYh/8zd/c9iff//7349AfN3rXnfYnx/6erz//e+PQPzUpz51g8f8wAc+EPv9frzwwgsjEN///vff4PYTXvKSl0Qg7t2794i2vzZvfvObIxD/7d/+7SY51o9yXa9+9asjEL/0pS+te/wBD3hA7PV68eDBgzf4/Ot7/470fv/GN74RlVLxVa961brHf/d3fzd2Op24f//+6WPPfe5zY5Zl8fLLL58+trS0FDdt2hR/9Vd/dfqYcy5u3749PuABD1i3z3e/+90RiJdccskNXtP1cfLJJ8eHPvShP9Jzbyom98mx5PGPf3zs9XpHtO3JJ58cH//4x9+0J5RIJG6xpBasWxkvfelLee5znwvAKaecMm2xmLS2XLsF6/LLL0cpxete9zpe+9rXsmPHDjqdDueccw7f+c53aJqG5z//+Rx33HHMzc3xyEc+kj179lznuO9973unrTT9fp8HPvCB/Nd//dexuOQpmzZtOmxLw73udS+GwyEHDhyYPnbRRRdx+9vfnvvc5z7Tx6y1PPaxj+ULX/gCV1999fTxH7ZyPeGzn/0sd7nLXTj++OOnjxljePCDH8yVV17JF77whR+6jxtzXj8u//qv/8p4POa3f/u31z3+27/928QYufjii2/w+X/7t39Lv9/n137t136k4x/p6zrhwIEDPO1pT+OVr3wlJ5100o90zB+VzZs3A/JeHG1+1Ov67Gc/y9atW7n73e++7vGHPexhDAYD/vVf//UGn39979+Rvi8XX3wxMcbD3j+j0Wjd8S+66CJ+4Rd+gZNPPnn62OzsLI961KP4l3/5F5xzAHz+859n586d19nnYx7zGPr9PhdddNERndv1cdFFF3HnO9+Zsiy5zW1uw1/8xV+s+/l4PObZz342d73rXZmbm2NhYYH73Oc+/NM//dN19qWU4ulPfzp///d/zx3ucAe63S53uctd+PCHP3ydbT/ykY9w17veddrm+Kd/+qc/1nX8uHzzm9/k3HPPpdfrsXnzZp7+9KczHA5v8DnvfOc7UUpx+eWXr3v8P/7jPw7bPvnJT36Sc889l9nZWbrdLmedddZhW0kTicQtk5SA3Mp40pOexDOe8QwAPvShD/F//s//4f/8n//Dz/zMz9zg8970pjfx2c9+lje96U38zd/8Dd/+9rf5pV/6JZ74xCeyd+9e3v72t3P++efzyU9+kic96UnrnvuqV72K3/iN3+CMM87gfe97H3//93/PysoKP/dzP8e3vvWtH3rOzrkj+hNj/JFek0996lNs3ryZLVu2TB/7xje+wZ3vfOfrbDt57Jvf/OaNPk5d1xRFcZ3HJ499/etf/6H7uLHndemll7KwsIC1ltve9ra86EUvYjQaHdH5fuMb3wDgTne607rHt2/fzqZNm6Y/Pxzf/e53+c///E9+/dd//Yh7yn9cfv/3f59TTjmFpz/96Te43aFzJtfmTne6E8YYtm7dynnnnccVV1xxvftxzjEYDPjsZz/Li1/8Yu573/ty1llnHfVjHel1XZsf5347Gu/fN77xDTZv3ryufQvW7tXJ/TMajbj00kuv974ejUZcdtll655z7W2zLOP000+/wXvyh/HVr36VP/iDP+AP//APueiii/hf/+t/8cxnPnNdMlBVFQcOHOA5z3kOF198Mf/4j//Ife97Xx71qEfxd3/3d9fZ50c+8hH+8i//kpe//OV88IMfZGFhgUc+8pHT6wH4t3/7Nx7+8IczMzPDe97zHl73utfxvve9j3e84x1HdN4hhCP6fPTeH9H+mqbhIQ95COeeey4XX3wxT3/603nrW9/6Iy8kHI53vetdPOABD2B2dpYLL7yQ973vfSwsLPDABz4wJSGJxK2ENANyK+OEE06YrqLe7W53Y8eOHUf0vPn5eS6++OLp6ue+ffv4gz/4A04//fR1q3/f/va3ueCCC1heXmZ2dpYrr7ySl7zkJTz96U9ft5p4//vfn9vd7na87GUv473vfe/1Hvfyyy/nlFNOOaJz/NSnPnWjB+j/5m/+hv/4j//gDW94A8aY6eP79+9nYWHhOttPHtu/f/+NOg7AGWecwX/8x3+wurq6Lqj7zGc+c8T7vDHndd/73pdf+7Vf4/TTT2c0GvHRj36U888/n8985jN86lOf+qEr2fv376coCnq93mGPd0PnOxl0fuITn/hDr+lo8JGPfIT3ve99fOUrX/mh12WMWfdeA9z2trflla98JXe7290oy5IvfOELnH/++Xz84x/ny1/+8rqqFchK/KFVqIc85CG85z3vuc5+f9xj3ZjrujZnnHEGn/zkJ7niiivWVU6O5H47Gu/f9d2rvV6PPM+nxz948CAxxiO6ryd/X9+21159vzFcc801/Nd//Rd3uctdAHjwgx/Mnj17eMUrXsFTn/pUut0uc3Nz6xID7z3nnnsuBw8e5IILLuC8885bt8/RaMQnP/lJZmZmAPiZn/kZjjvuON73vvfx/Oc/H4AXvehFbN26lU984hPTGZ8HPvCBR/zZ/PKXv5yXvexlP3S7k08++Yhen7quefazn83v//7vA/JZnWUZL3rRi/jsZz97nST7xjIcDnnmM5/Jwx72sHUVq4c85CH8zM/8DC984Qv5v//3//5Yx0gkEjd/UgKSOCIe8pCHrAuA7nCHOwDw0Ic+dN12k8evuOIK7njHO/Kxj30M5xznnXfetI0CoCxLzj77bD71qU/d4HGPO+44vvjFLx7ROR46qHokfPSjH+VpT3saj370o6dVoUO5IQWaH0Wd5ulPfzr/9E//xHnnncef/umf0uv1+Mu//Es+97nPAWutLTHG66xWHtrac6Tn9Sd/8ifrfvaQhzyEHTt28JznPId/+qd/4pGPfCTAuvcFJGie7OdHeQ2cc1x44YWceeaZ/OzP/uz1Pv9osbS0xFOe8hSe97znccc73vGHbn/t6wV43OMet+7/97vf/bjf/e7Hfe5zH84//3ze8IY3rPv5ne50J774xS8yHA756le/ymte8xruf//78+///u90u92jcqwbe13X5slPfjJvectb+K3f+i3+6q/+im3btvGe97xnmvBfX0JzNN+/G3P/HI1tfxzVqDPPPHOafEz4zd/8TT7xiU/wla98hfve974AvP/97+eCCy7ga1/7GoPBYLrt4QQC7ne/+02TD4CtW7eyZcsWfvCDHwAiaPDFL36Rpz71qeuePzMzwy/90i9x4YUX/tDzfvKTn3xECl6Hq4ZdH7/1W7+17v+/+Zu/yYte9CI+9alP/dgJyOc+9zkOHDjA4x//+Ov8fjzoQQ/i/PPPZzAYHHbhI5FI3HJICUjiiLj2iuNE6ef6Hh+Px4BIhwLc8573POx+f9iqbp7n3PWudz2ic7z2SvMN8bGPfYxHPepR3P/+9+fd7373dQKXjRs3HnaFeDIncrgV2B/Gueeeyzve8Q6e/exnc9vb3haQVepXvOIVvPCFL5yufF944YXX6XGftJf9uOf12Mc+luc85zl8/vOfnyYgWZat2+Yd73gHT3jCE9i4cSPj8ZjhcLguqJ4c79qzBRMuueQSdu3axfOe97wbPJejxYte9CKyLOPpT3/6VFp6Isk6HA5ZXFxkbm7uRgen97rXvTjttNP4/Oc/f52f9Xo97nGPewDw8z//89z73vfmZ3/2Z3nrW9/KH/7hH97oazjcsX7c67rDHe7ARRddxFOe8pRpAnPiiSfyZ3/2ZzzjGc+4TlVnwtF6/zZu3MhXv/rV6zw+GAyo63p6r27YsAGl1BHd1xs3bgSkErJ169brbPuj/F5OuHar2KGPTc7tQx/6EL/6q7/KYx7zGJ773Oeybds2rLW85S1v4e1vf/t1nj8530MpimLaBnnw4EFCCDd47CM570PbR6+PI73/rbXXOe9rvw4/DpPvhEc/+tHXu82BAwdSApJI3MJJCUjiJmXTpk0AfOADH1g3YHqk3BQtWB/72Md4xCMewdlnn80HP/jBw8qm3ulOd+K///u/r/P45LEfZUUa4PGPfzy/9Vu/xXe/+12yLOPUU0/l1a9+NUopfu7nfg6AX/qlX7reqs/ROq9DE79rH2vyek9mP/77v/+be9/73tOf79q1i3379l3vsf72b/+WPM+vs9J/U/GNb3yDyy+//LAB2+Mf/3hAAr0bIz88IcZ4RK1P97jHPdBa853vfOdGH+P6jnU0ruvBD34wP/jBD/je976Hc47TTjuN973vfYAkTofjaL1/d7rTnXjPe97Drl271l3Dte/VTqfDqaeeer33dafT4Ta3uc10n5PHzzjjjOl2zjm+/e1v8xu/8Rs/8vke6nVy7ccmAfm73vUuTjnlFN773veuC+irqvqRjjlJvm7o2D+Mo92C5Zxj//7965KQa78Oh2NSwbn2a3Ftf5zJd8Ib3/jG662wXTu5TCQStzxSAnIrZFKKP9Jh5B+HBz7wgVhrufTSS4/I5+LaHO0WrI9//OM84hGP4L73vS8XX3zx9bYlPPKRj+SpT30q//f//t9p8O2c413vehf3vve9Oe644478Iq6FtXbaqra0tMTb3vY2Hv7wh08TtI0bN17vF/2Pe16Tlo5Dv/gnK/nX5kEPehBlWfLOd75zXQIyUbt5xCMecZ3n7Nq1i0suuYRHPepRNxisHE0uuOCC65hqfvWrX+UP//APeelLX8rZZ5/9Iw1Sf/7zn+e73/3utBf+hvj0pz9NCIFTTz31Rh/n+o51tK5LKcXtbnc7QPr73/CGN3DXu971sAnI0Xz/Hv7wh/NHf/RHXHjhheuqKe985zvpdDrrPGEe+chHcsEFF3DllVdy4oknArCyssKHPvQhfvmXf3nagnjve9+b7du38853vnPdUPQHPvABVldXedSjHvUjn+83v/lNvva1r61rw/qHf/gHZmZmpiIdSinyPF+XfOzateuwKlhHQq/X4173uhcf+tCHeN3rXjcN4ldWVo7Y9+amaMF697vfve5e/Id/+AeAG1zgmcysfP3rX1/3WXxto9WzzjqL+fl5vvWtb91oYYVEInHLISUgt0Imq4hveMMbePzjH0+WZdz+9rdf16t8tNixYwcvf/nLedGLXsRll13Ggx70IDZs2MDu3bv5whe+QK/Xu8HVuzzPrzdAvrF85jOf4RGPeATbtm3jhS984XXaQ84444ypCd7v/M7v8KY3vYnHPOYxvOY1r2HLli28+c1v5n/+53/45Cc/ue55P/jBD6ZJ0qWXXgowdaresWPH9Pz37NnDn/3Zn3HWWWcxMzPDt7/9bc4//3y01rzpTW86oms40vP6z//8T175ylfyyEc+ktvc5jaMx2M++tGP8ra3vY1f+IVf4Jd+6Zd+6LEWFhb4oz/6I1784hezsLAwNSJ86UtfypOe9KR1K9ATLrzwQpxz11FC+1EYDodccsklANPWpE9/+tPs27ePXq/Hgx/8YIAbbNE788wzrxM0WWs5++yz16nt3OUud+Gxj30sd7jDHaaD4a973evYtm0b//t//+/pdh/+8If567/+a375l3+Zk08+maZp+NKXvsQFF1zAqaeeep3r/nGOdWOu69Of/jTnnnsuf/zHf7zOUPMZz3gG55xzDhs3buSyyy7jL/7iL7jqqqv49Kc/fdj9Hsn7d6T3+5lnnskTn/hEXvKSl2CM4Z73vCcf//jHedvb3saf/MmfrGuXes5znsPf//3f89CHPpSXv/zlFEXBa17zGsbjMS996Uun2xljOP/883nc4x7HU57yFH7jN36D7373u/zv//2/uf/9778uqQFJGM4+++zrSMAejuOOO45f/uVf5qUvfSnbt2/nXe96F5/4xCd47WtfO21BfNjDHsaHPvQhnvrUp/LoRz+aK6+8kle84hVs376d7373uz/0GIfjFa94BQ960IO4//3vz7Of/Wy897z2ta+l1+utkwa/ofP+cRZErk2e5/zZn/0Zq6ur3POe9+Rzn/scf/Inf8KDH/zg6RzM4bjnPe/J7W9/e57znOfgnGPDhg1cdNFFU9GDCf1+nze+8Y08/vGP58CBAzz60Y9my5Yt7N27l6997Wvs3buXt7zlLdPtD/ceThL9733ve9PHnvjEJ3LhhRdy6aWXThdz/u7v/o7f+Z3f4e1vf/t1BAISicRPmJ+cBUniJ8kLXvCCeNxxx0Wt9TqDt7PPPjueffbZ0+2uzyzuU5/61GEN0d7xjndEIH7xi19c9/jFF18c73e/+8XZ2dlYFEU8+eST46Mf/ej4yU9+8ia5vsMxMfa6vj/XNrnbtWtXPO+88+LCwkIsyzL+7M/+bPzEJz5xnf1Orvlwfw416tq/f398wAMeEDdv3hyzLIsnnXRSfMYznnGjze+O5Ly++93vxoc85CHx+OOPj0VRxLIs453udKf4yle+cp3h4pHwhje8IZ522mkxz/N40kknxZe85CWxruvDbnvaaafFHTt2HNbw8dr8MCPCyc8P9+fkk0++wX1f3/0ZY4zAuns8xhh//dd/PZ566qmx1+vFLMviySefHH/v934vXnPNNeu2+3//7//FRz/60fHkk0+OZVnGsizj6aefHp/73OeuM9Y7Gse6Mdc1efwlL3nJuscf/vCHx+3bt8csy+K2bdviE57whHVmf9fmSN6/I73fY4yxruv4kpe8JJ500kkxz/N42mmnxb/4i7847H6/973vxUc84hFxdnY2drvdeO6558Yvf/nLh932H/7hH+Kd73znmOd53LZtW/z93//9uLKysm6blZWVCMRf//Vfv95rmTAxIvzABz4QzzzzzJjnedyxY0d8/etff51tX/Oa18QdO3bEoijiHe5wh/jXf/3XhzUNBOLTnva0wx7r2q/TP//zP0+v56STToqvec1rfqJGhF//+tfjOeecEzudTlxYWIj/3//3/8XV1dV12x7uOr7zne/EBzzgAXF2djZu3rw5PuMZz4gf+chHDvv5+ulPfzo+9KEPjQsLCzHLsnj88cfHhz70oevu7et7D08++eTrfAY8/vGPv47B7uRefcc73vGjviSJROImQsX4I5onJBKJRCJxM+WSSy7hYQ97GF/72teu42WT+OkgvYeJxC2XZESYSCQSiVscn/rUp/j1X//1FLj+FJPew0TilkuqgCQSiUQikUgkEoljRqqAJBKJRCKRSCQSiWNGSkASiUQikUgkEonEMSMlIIlEIpFIJBKJROKYkRKQRCKRSCQSiUQiccxIRoQ3I0IIXHPNNczMzKxz2k0kEolEInHzJcbIysoKxx13HFof+7Xd8XhMXdc3yb7zPKcsy5tk34lbLykBuRlxzTXXcOKJJ/6kTyORSCQSicSPwJVXXskJJ5xwTI85Ho855eQ+u/b4m2T/27Zt4/vf/35KQhJHlZSA3IyYmZkB5ANsdnb2J3w2iUQikUgcXe76hr9EeUXIIjGLBCNOANmiIWagPBCh2eig0aAiMY+oSmPGCr+5ITqFHhhiETCrhmghFAEzV+FrC0MDQL55yFd++fnH5LqWl5c58cQTp9/jx5K6rtm1x/ODL+9gduboVl+WVwIn3/1y6rpOCUjiqJISkJsRk7ar2dnZlIAkEolE4mbLGS/6c1wXVABdQz0f0Y2CCHYE0YDrRlw3UuzXuG7EzwRMp0RF0FqeG6Nsq/oKHSEqcP2Aziy2NvLvWkEOYYvDGIXJPK6bocaauADYSD5X0evCcGRoKDGrmmj1Mf8u/Um2T/dnFP2Zo3v8QGoHT9w0pAQkkUgkEolbKae+9s8xdZsEtB08UYMdyL9dD3QjSYZ2UM+3T+yAmwmoRhH7gIKAVDWiVehaobwiX1L4EuxIkS8booJQSHKiG4Wb85iRJtpIaJOSbFnjOwpfSnUkFBHyQKw1eIPrKjABupFypmK8VNKs5tiZEfP9IUsq0tRd4mJ+rF/ORCJxhKQEJJFIJBKJn3JOfd3rCRYwEVWraTtTyCSIj1mEiFQpgrRAZcsaNJgKmh6oKH8AqoWIHSlJShQ0M1LZ0BX4EnQEu6xxM5FgI/mSJhhJXnwZCTnYFUVocwA7gHpOzilbAeUUKLArBt+VRAYNBEmGQh7QjSZOxhqCxlSa0PXgNGrVEDXUBzOUiZhasTJbMtcb0e3UNCd5Btf0j/G78JPFx4CPR3+ficRNQUpAEolEIpG4mXDKu15NDJIkqFULEWIZyPbZaUUg2jbKVKBrRVRALsF9jIpokecpUF4CfZw8JSrQHnRURC37iBrsUAL/aCBYUEEqEMopTC37Hm8OqKAwI0UzEzEjhR4rrFftcyBbVTR9yJelHSvkUjnxk/EBDa7bnosBVNui1QE358Ep7BDMWEs7V60gKkIeiTZiVg0EcPMeVStCBrH0KGdpdnU5UPUkoXEK09y62ocCkcDRzUCO9v4SiQnJBySRSCQSiUQikUgcM1IFJJFIJBKJm4DbvudV+EaTdxu0ioSoUCrSVBabezLrGa4WRK8xezOyVYXakJOtaurjamLfkfUamsWCZt5jBppQSFUilAGCggChK20yWknlJBqZr1BO4TtB2qpi2/ZkIiGP6Eq2AwhWqhz1bJRWKAAVcdtqYqNRI4MdKnSjiDbSzAa0UzSzkVh67EFLzCNRsTbPYWU/dsi0OoICvFQ+fC7qVnqkIUiFJd9nCJnMfIQ8tC1asj+ZUJfqT1RyLcorQs9P/yYofB7QY41yaq1SdCshEDjaDVNHf4+JhJASkEQikUgkboDTP/RyACISQ0dAq4jWkdjGuCFotJZgLUaFNYG80DTaTJ9LlJ9pM9lu8gMIWyvciR6joFoqKK/MqW8zphlk6H6DubwjLVERQi7BuArg+2GakASk3QnaVqostDMfEPqSiAQDmIgXhVuyRU3IZNA8PygzGyGDoIEVi4oKskDIDaHjYdLSFRUqRBgb/Kwn32eJGpqZgB0qmrmAGWpCLvMgelGhQqt8paXFCwfoiO8ozFjO2VSyb11rfCfiZkOboEirWSg9yulpaxqRtXPSUaR7o8L3vbSYJRKJmyUpAUkkEonErYI7XPQytG7nKCIo1crARoUPbbTa/h9AqYhqt1ftH60DE6VVc0jCQbtSrJQ8HtokxAct1Y+giFER2sg/Boi6DZxVJOs4lIp4p9GlY7wdzN4CNlWwt8D1Zf6CqIgdJ9WPGuh4YqUxA0M0Uh2Q2Y5IzANBSbCuGiXVk0ZJ4pMFqDS+jGQDRT0v16lrhesFdCUVhqiBRku1xLcXHiDqSCwCqtLoFZHLJbQVlgL0WOY2ZIg9Mjrekx006KCoFzyYiFkxkvB0HY1T6EqqHbpufUImA/V5JBQePTDg5PVTjSYGMI1BuTZB0ZFQROIkESlvGmO+mys+Rnw8ulWfo72/RGJCSkASiUQi8VPHGRe/FKWkEgEQoiIEaXHyQWNNIEbwQctQt4IYDEpHlJokIW1A3cZYsW2RUiqCahMQ1jZRh2wDTJMLAKMjjZNqh7Zrga81nhC07I+IsR7XGNDSkkUEk/vpPrWRYWs6jmADRbfB9CvGwxz2lhJ8ZwGlIzFXKBMJXkm1w7UtWLMNasmixhrf8ygbpZWqUVLFiJJc6LbdqlpoEykbidn6wW3tIZSB2LY8RSVVDDPShLaiEjNp6QpFlCRCR6m4NJIw4aX64eY91HIeZkVLa5YDVem2muMlcbJakh0TCVlsf66JM07OfdUQ8wht5UfVCuWYTrVGE6fXmEgkbp6kBCSRSCQSPzFO++ArpkH8JAiH9YF+jAqtA6YN2rWKmDbY9EHhvCEGRZ47YgRrDq1MwKFeasErYjDEyLQVaoJSa9uqa59TVJIwBIUPkvgoJRWHyXOb2mIyL9tdi2ZkKbqNVEZyL27flSXUBm0j1WpB3q0xJhCNwtiI29eD2YoYFUWnYTRrKa7K0CdWAFQ/mMG3QTkKwownBtA2EDWEjkfVGnRA2YDuesJiDgbMoJ2tiO2sRM9Lq1Yvgtf4OWnzCk5Jy5ONRAf0PfbqXCR+y+lLgy8lcVJOWrsm76RqX2JVaUlgrGznZsXbg6E4muuOg5GVnZWeGBRqZFAzbq3y0mh5vecbcFqkhp0illG2rxWh0ypgDRT+VmYDklSwEj9NpAQkkUgkEkeF0z7wium/D00gUOCdJnpZsc8yPw1rYtA03mBzJ91IKk4TDgDnDbp9zAem7U+TRKSuLTEqjFlrgZq0VcWo2qrFIclIi9KHJjeHJBuHVENQkuAAGBOwOkyTHcz6wMx7jWrPObTP0Sai2kqKydeuWbetXa4xKBvwtZaft0mOtZ6mMYT5Bu80WPGjVpknnF6jAa0j9sQBcSTXr8YZZm9GNBG/IPMRykYIEb1oCfMOfWUHlckQupv1oCO68NKuRMSUgbCvIBZt1tAOraumlfbNokjgnjiGgzmx72GsZXZjVUOl8P0AjZLnlAFvlAym55Fg2patth0MFVHztSQTyxkUAVM6QmUxpUP1GqlklA2ussTKtFUVaTdTTTvIUnpio4mtfDBRBtkPkwcmEombCSkBSSQSicQ67vTPL6FqLNb46UwDSMvRtM1oUp1AigahDdgnTFqZFBKc+2FG1q+nVYfJMHcICjew+EbTnRlPA3atIlVjRTWqthRlPd23D4oQtMww60iWuanKVAgSxMeoZFV8XVWlTWDaOQ41kYeanvS1zh8I7YPe63XVkdAmN+qQ5MfYME0igOlrpVSbdMVrnY9XZB2ZGg9BtYmLBhOkFcsp3CBHz1REpFWrGVlUL6KUJ3iFtpEYI3rLCHegpHONIQwz6g0BRloCckCtGpqNDj3SxLatKV/S+NLi5qTK4EGSkn5DaDRohaq0tDnZAJWRKkQtBoYMTfuCRNyCwyxZ6Dq5zhWLXpWf+67MlIROhCwQgwYvz49G2tFQUM6PqQY5OIX3mVRMsiBJEm01RSMeKXVbArPAwKK6bjocT9SEItzqWrACEZ8qIImfElICkkgkErdgTvvAK6hHGUWvllX9yHTF35ggVQRnprF31s4vZNYTowTG3tvp/40OEoAHTWRSKVgLUvShATZriUg5N56GMoe2KNnM48jAK8bDnE6vniYTk2HuQ5OPxklFpBplKB3JCmm78lGSknUHPwQZKJ88rqYVkOnPWP/UyXVNE61J5cXr9u+2ynFIW9jk9Q1BryUpapKitcfScTpLkpWtZJUC0w6q0/4sBoXKAyZbaydz+9uep14jFaHGUHQaQpAqjisCw5PiVGkq32unqlghU4RGZjh0I2aCIY+iSNW0MxeVKEjFfQVYSQrMULdu6pKAxTxCFolWZG9VLlbpCvAzHnMgl/mWIsq8CaCHhjDnoNYyo1IGGYIHlA3E1Qx0pNrfkZOttcy4FJJ8KB2JXpMvjIlR0YysDLyPjLRxVZpYSzUJ1c6ABAWN4pR3vZrvP/YF3BpILViJnyZSApJIJBI/Jex4x/lQa8xcLe0rKuLGFsYGM9tgrF+ntGQzT7VcYruO2K6wTwJmo4MkF1FTDzNM7umUzTQ5iNcKpCdVhwlay2r/pIZwaOIBSAtRK5cq+1MyCG0Dea/BVQZ1aBtTe1ytIj6IKpV3GmPDNNkBGequxjnayEC3bpMhpa6dcbTtXJMKwKS9SjFt7wpe42pDVji0CdN91LXF10YSBN0mIZPzM3Ld5pBB9ekhVSSi1un1TtSv5FzkfTFGhsiVjtMqTUStVWXaXZrcT187Vxtp+1JQr+QwMqjZhvH+jgT2PUfWr2kGGZiIXspottfo3BNWcoo9Rnw82iKLCuB6QRzHjbRWqaAwA43vBspdBteV6oWKYJc19YKX1icbMCZMkzGlAnFoxY+jE6AjMy5qKOcYg4KBQdftsPmmRlzO92Q0G7xUL9q2NqUidCDUBlVpYqXBKWLP04xtm7S1yYdCrl2LWhY5QEQZoFbo+VruwUQicbPjFpeAXH311Tzvec/jox/9KKPRiNNOO42//du/5e53vzsAu3fv5nnPex4f//jHWVxc5Od//ud54xvfyO1ud7vr3eeHPvQhXvWqV/G9732Ppmm43e1ux7Of/Wwe97jHrdvuzW9+M6973evYuXMnZ555JhdccAE/93M/d5NebyKR+Onk9q/4c6IGNyPtKW4mYJfN1DjODDS+13o85JE416BWM+mldwpbBHyjYWixC2N0G8z7RmMzT1NZog105sdTZahJG1BTWzxmuooPayv53oufhQ96OkNxaMUjeAn2p3K2rOtcQqnIaLmEVSsr2CMtQ8mdgBkaQhbwe3Ixz9NA16GyiLaevHRtchRxXuEOlMR5SbaMDVjjp8lB2a+m1ZWJjO61k6DJ6xG8JislyZhUV2Ayl7I+QA1BY23ALRZQumllYzqboqJcs147NrDutZrOhxjZNrZJyKT1a/KCTeZMgtfSmtZWaFRrumcmCl9BYTKPvbrEdyRxCF2PvarEba2xBy1uBurlHLNiCT1PtqxRB3OqLZ5844i4Eep9HcqdhmYmMnepIl8yuA403mDGCjsUH45gNb4ttuhKTtbNBnTTKooNDcFG6EkyoHNPqOR1jEVALVkZBjeRWBuwETNbU5YNMcJotQAlqli64yQxXbFSGRlrmUGxEboeKqnAKCNVkHqlENniTeKRgpJWNhUV+oDMwLBQEytDGGSyn1sJSYY38dPELSoBOXjwIGeddRb3u9/9+OhHP8qWLVu49NJLmZ+fByDGyCMe8QiyLOOf/umfmJ2d5fWvfz2/+Iu/yLe+9S16vd5h97uwsMCLXvQiTj/9dPI858Mf/jC//du/zZYtW3jgAx8IwHvf+17+4A/+gDe/+c2cddZZvPWtb+XBD34w3/rWtzjppJOO1UuQSCR+Atz+5X8uQbYG15UWmHxJ4bqycO5mAvlBkR0NWcTUilBAs7FBDw26Uhijcb223SYLBCMSqNI/r2Exg4VaEgWnpULhNHpO2pN8Y8Rbok0ilBZ5VtqFYn1osF4ZkVWtJNhTeaDI3bRlaDq8jQTPqk1OYlBijJd7stLhnQTrkypJjApXWdSyFWnWsUbXCl9GzLLMA2RDgxmDHRm8tPuL5OxijtsUyKynaqzMOjQKv5RDx2EzST5cZaeVAYCmsWgTpsPaRkuS4ZzBNYbQGBgYmqgo2qQlBt2+Xmupk0jiKqr9HWlT6jqs9euqKxMPEO8nVZW1CkiMcW3wXa21ZRHl9WtrI9NjTao7sqO11zmipgnLJHmyhSMGTb0giUm2rGH7kLrR6MWMzi6omhxfRFRQhFxRz4tDOB7q3V3sqoZZT71B/DVWf3GAd3JtzUpOWLZUGwP5oqHc2xoGKqg2icQuUZzTYy4/ULWC5UzMAZesKGkpkfKlcKiBQc01xEajly1h1TBUJXGugRUL7fhIXMnk7zyixlrucRXRNmBtoCmlkhYbDbWm3DSiGma42hC9wvYbfG1ERWtWugGDM6h+QxibNWf3RCJxs+IWlYC89rWv5cQTT+Qd73jH9LEdO3ZM//3d736Xz3/+83zjG9/gzDPPBKRqsWXLFv7xH/+RJz3pSYfd7znnnLPu/8985jO58MIL+cxnPjNNQF7/+tfzxCc+cbqPCy64gI997GO85S1v4dWvfvVRvMpEIpFIJBKJ9QQmdphHd5+JxE3BLSoB+ed//mce+MAH8pjHPIZPf/rTHH/88Tz1qU/ld3/3dwGoKtFOL8ty+hxjDHme85nPfOZ6E5BDiTHy7//+7/zP//wPr33tawGo65ovf/nLPP/5z1+37QMe8AA+97nPXe++qqqanhPA8vLykV9sIpG4STjtVX+O60XsYG3ltJkJ5IvSYtL0I6YSYzXlkapGTx6LGrLlVr61WNtnsVfTzER8J2JXNfVmGcjN9metJGogKkSVqIjkuy3BQjRtVaUfUJsqoleyou8VMZOh4NDoqfQsSmYU3EourS1aEQPSvgJUVYYbZJhlaZHRThHnPFnhGI5ywp6S7kkrNM7gncaPLHm/xtUWpdue/7blSNqGZHBa6dbT4mCOHWhpKxtrlIOYgRkpWZlvJWB9KSvsyimKPQZfaqKGeGWXlW5AzTToLBBAnLBdRrVqybeMxI9jb4HbKtWIZmRFBWm2wS/nmNlaZmOGmZyriehG4+u1CkVmPfVyQYyQ9WtRuPLtaznWMOfo9KupHPCaM3r7Ol8LrSL+EBPDQ9vBpn4i7baHtmxNHp8MvUcvVRDvRbI4rORte564fquOSOZW2xxZKzcbTWT1lEhxQHw2XE+qIHGuIa5aaetyEMqIrmUmRzeKcFmPUEaUU2Stk7iKmmY2iCu6kddeBXEij7r13ChAVQoVxe08Ggh5hJ4nNkrcymlNDVcydKUJXQ+Ngq7H7srxpfiFhHmHyUXNy2QeN8hlmH2Y4VWkaV8z1VZXCIrx7q6cx5xr27IUOE0Ymen7IUaEE6OYVAFJJG6O3KISkMsuu4y3vOUtPOtZz+KFL3whX/jCF/j93/99iqLgvPPO4/TTT+fkk0/mBS94AW9961vp9Xq8/vWvZ9euXezcufMG9720tMTxxx9PVVUYY3jzm9/M/e9/fwD27duH956tW7eue87WrVvZtWvX9e7z1a9+NS972ct+/AtPJBKH5TZ/8WdrRnFBTfvZ7QjquUgo2vYmLa0ydqDQDdgVRcgAHckXFQQtpmYKST68tFVF1QZuDhmqHcg2o20eu6rFEK0C1wMzVphK2pHwokLk+h470IAEcq4nLTZNT/YTskgoA3Q9WoHOPUqtuWb7RpN1RAWKVg62PlBKz302GWCmHUxX+AOFKEHpKG1e3YDeUxDqEh0h9AKr+7sShEcFMw6tI3WtIRr0gQzmHX5kCT6I4d2kRas26Erjy9YN20TCvEgw6YOZuFx3PKxashVNMxPQDrRvHavbpdZiryEsGVxfzPSYbYi1RpeihqRMIBYBtyQZnh4YmTfYW6AdqMUOulEUHqqNHrqeMN9g92bUeY5asujNFd0NQ5wz1AdLzJLB9wP5PoMvI96vDYT76aC1/Hsil2tsQBMPSTTWZH5z69uWNNa1ZWktkrkEjcrEbC+qdv4mtIpjtcHYQFMbVK0kYZ11qNqQLRl0Dc2sIqxaWKixpcNVhnFhMatGWvyGmtDInM2kFSk00g4HcsyYiVcIHYftNowHOYyNDHUDFJ7YiYRGYxct2isZSK80sQzoFSPJ4JYxMWiya3J8R5SvohWPDj1aSwKUV5huQzzJEVYzMTdU4gUSRplkYSYQlzJU30ErpICJaBPkOTOSksSlTO6DyhK07CMa1mSSaw01qK4Hf+uZYfA3gQzv0d5fIjHhFpWAhBC4xz3uwate9SoA7na3u/HNb36Tt7zlLZx33nlkWcYHP/hBnvjEJ7KwsIAxhl/8xV/kwQ9+8A/d98zMDF/96ldZXV3l3/7t33jWs57FbW5zm3XtWUqtX2mJMV7nsUN5wQtewLOe9azp/5eXlznxxBNv5FUnErcOdrz5T9f+o4COx+7OJdgJMiwbjQTtflaCoGycoTxkq1DPR1zfoyuNU6AbIGrMWOH60hcfrKKZCdhWCUh5xXhrQDUK5SRh0LUmW5HV/GzREAqpbMRMVpZdL6LnalzMJeiqNVFHmnk5hm5kVd73A/l+g+9E/IyXlWMV0bWsLgfTDjPbiCmdqA4FUbhSOuAbA6uWkHsJBF27ot5zU1XcGGWGIttQEa7uopVUbdycp5ir8I3B9zxhg8iXMjCYVSOzGw6qjmK8r4PqOtTeXFSfVo0Y0jWa4KUSFIogsyyNIphI1FGM8FbkK8bPeHHibhMR3yjyg5KshExW4W0FukaqIx46uzSuhDoz02SgWi6IXqErja4kqPXdQLHHSCWqiOixVAaUg3K3QTuDL2RB3F6ey3X5ksqVuAUnK/RFxC6b1hxPDP8mw+rVMKPoNmgdGa7mdPsVo0FOlvn1/iiNocjddIbGtJUTH9beC/lOWBvqVzpOlcRgYlwo77M2ATPQ1NsbqDV2VeM7kWxVoRal2haGBVEX2ADNtgY379ADQ7OxkeuoNGpPQVYr3IzHDGXOKNqIXTGETMM4Z7wsnhsqKKKOhG4g25uhG0W94PELDr1o5XfMgl42RA2+F9AHcuKso1lwkEW5P0Ir8zxWNPPyOxdsJFzdxc947JIhZpGApZwdMwoKm3ms9biuoV4pMPuleuP7npAryEVpiyyg52v8yKIKDwMr19redyqLUMlnhFq2xFl3k34uJRKJH41bVAKyfft2zjjjjHWP3eEOd+CDH/zg9P93v/vd+epXv8rS0hJ1XbN582bufe97c4973OMG96215tRTTwXgrne9K//v//0/Xv3qV3POOeewadMmjDHXqXbs2bPnOlWRQymKgqIorvfnicQtldu/4s+pNnrsisF3JfhVXhHygF2VlVoVwHUitIvxGk2+qKjnI2asiCsGU4MztG0gbeuFgvIai24kmK03BEIhCUN+UAInO5IqgwqRZjbI8RRkK61fgo3kiyIZGqzCjNt2KNMq/RgwI43vSlKRL+q2HQY52d0l+UgqJfV8xK6oqfuzXVW4Wv6vHfiAGLZpGTgPJTKZnYkhXN5WMprKkhUO54Cru8Re+1ptCTRjK47YupHqiIJmNZekJo+4WiRvs8W2bWubg9gqZi1a3OZGqiJ5a+a3tcbszUSxqfTSDmXjZMEaPZSWKV0rabXxsvIeW/Wn2Pcw0pIcurbCYSF0/XRV3JcyjK+8DO6bWk1bs+yqJIiqATu2hAyqBY3dOsINM1FJqiWIBRhvF4O9bEljR2vdNyGHpiPKTqqhvc+g3KcwQxhFu+bvkUWppDSKvNtMFcHiyDIOmqzTECojQ9GrGcOxZX7LCkqB8+Kp4oOivUWmVQ8fZBjetu+jVuLQbVqlMZABdNcYbC5BuPeaerkkH4O6JqOZC5I45JFhocRM0EqShxOncbVqpMK2tUYNLWZV4zc3Evg3ipkTVlhZ7KAP5OSLmmohoD1iMtiKEQQNdtEQjSSH/rhKqnX7cgjg+wEzFCNDu6qpi0BUCrs3k4pgjFNJXxQ0G3z7PgQoA8GIIpovI/mSJg6hWprDOqiPq2lWRMqXPOC31jC00vo16VOzsv+sdHR6NY0z1F7DSIMBPTIE5cV8UcXpYPytBR+PfsHnVlRAShxjblEJyFlnncX//M//rHvsO9/5DieffPJ1tp2bmwNkMP1LX/oSr3jFK27UsWKM0/mNPM+5+93vzic+8Qke+chHTrf5xCc+wcMf/vAbexmJxE8VO/76dbIquSyqRSGPUz8Auyh92W5rjVqxqKDwPY9a0OhaqgyxrSSoAKxIC0wzK8F1zCN6pPEbHOXVlmpTQDeKZlsDI00o9DRZmPS2a4dIi/blm7N7laaZZSpn6zuR5oQGsyfHVApdS3JixvLcyexH02/VrBZl1TdqWdGdVBfsals50VC3gZbyimxJy2yFhmwJmj6gJaDWTp7f3SWr9KOtUBxU1HOSfJgVSURCKRWFEKHpKvSeglhEnCvEQC6L5AcM2TIMyy5mpHGznuBFLUiNDGrGSaAOhMpQLmmqzR5sJC8d9WqOPpDhZj3ZrmxaPdKNgtVcEoC9Ga7v8ZXBjhVu3kuLjomYkQR5IInfxPzOVApfyWvg+56YKZSJqNX2/tjQiIytDZjSUa3mlN/PpYoVZHYmGtAjZKZlDPWs7Ft/r0fc4lChTVC7EfoOc0BW60MGToMZQTNDmzhGXKkIZSRbkiqZbiBkck9gpf0u5tLqxrKl2tOl6njxmtDiSB5+0KV36jLjUY4et+7gqm2bChoFjIc5RaehyKVVKLRSxnnu8F7jokEpj229RGJUOCeKXEpLoph1PVp79MYR7sAMphYzQHXKgHo5RzlJxF1XEaK8Z1FBnHP4sUbvywl9j5uXOSOVB8hgZX8Pc8ASLVTbxHcjaMCrdr5J47oRv7khOiXPPZCL6aCBsEla4cIWmY2pN0CsNWoo7XIgsxoxF5d15SHOOplrqbSoYnlF6Hpi6WlCu+hQBoiQX5NTbXGoRmE21PhGo/oNel9BNJo44+QGGRuqUYfKKZF5Lj2qlLaumEkLo5qrp8M1sVmbDbmlk4bQEz9N3KISkD/8wz/kf/2v/8WrXvUqfvVXf5UvfOELvO1tb+Ntb3vbdJv3v//9bN68mZNOOon//u//5pnPfCaPeMQjeMADHjDd5rzzzuP444+fqle9+tWv5h73uAe3ve1tqeuaSy65hL/7u7/jLW95y/Q5z3rWs3jc4x7HPe5xD+5zn/vwtre9jSuuuILf+73fO3YvQCLxY7LjHefL6vukncfLCne2cYy/pkvIRIJTewgGmG2gsUQjicVkUFTlAWUCzoNdMdBo4qxDHciknSlC6HlZXd1Q4auOuCZ7RbZoiBaaubZlZMZT7La4ngy2BiDfKa1VYlbdzlUEmbdoZqTlKuTSdjIs5Hh2RYvR2lgRlwuCgXpOqh/ZqgS0g1McZkVWkjFRWmDmItpJ0K9rhc+kDSbkUBxQ+FxhahlGd722SlDJqns9D9mKJDaT9qKoZVvfaWdRZpkG8qHnyfdZ6k47+1EG9K4C3wuUe4x4Q4wgZkqu0cDM9zWuC9mqIWpDtSkQdQQkEGRDLfKyJ9WwarGLGrfakxXpnpd+eSXnFzIJzqORVepQtNlWHgAj94WVFe5oZJYgZPL6EGSUhgi0rVFmVfwitJOAPVu2OJ1hV6RVzfsC60Wu2M14iv2SiGYDSdzsaG0Qv7NbU89Gil0WNxvwnTbpUZGw0OAbTb7XTu8FO5RE1JdRkr/x5J6Wx1WU+8T1JBnUtcY3mbQbLVtiIy1JeizJi58JDK+eQQUo9mvGtxVPC63jtBUrepnDcV7c2p3XUwd5Vxts4VujRT0dZve1BMjaBLLMT40LI+0gt1f4TiCu5tJmNNswnoP8igKzpAlZW/FZtCin8GWAwqOXMjEFHLY6zArMjgHNNd1pS1ezqaHYKRUWNleEZUlKQZJt342ETKpZjAxkgeg0KgvMzI4YjXMam1HMVDRjS1jMUX0n959XMDAyh2GjXO+GGmqDGkslJJQBTMTOVTSzBtVK8vr94vUR8oja0KCtpygd45WCqMDONPjKyMdNZeQzx0ZowKxaWBYvlMnnUSKRuPlxi0pA7nnPe3LRRRfxghe8gJe//OWccsopXHDBBfzWb/3WdJudO3fyrGc9i927d7N9+3bOO+88XvziF6/bzxVXXIHWa+ZUg8GApz71qVx11VV0Oh1OP/103vWud/Frv/Zr021+7dd+jf379/Pyl7+cnTt3csc73pFLLrnksNWXROJYcJcPvxjnJbgZLHZkZTBbC5RiLTMHKg+YLOBrg+01NMsFqgzo0uEHGSr3NAcLyEXZKHQDvtOui9Ua1Qn0F4YM9oiPjuo44moGjSVblf56NdYE1a7sz9Wwr0CtGlGAGmRiatcGSdNWnqjwcx6cYnyc+GUoJ6u1wQIa6i0OCk/newW6gtFxEhybsSJbgWK/YXhCa4bXrq6HQlbv7QhMLQFctdVhlg35Hiu5QDvUDZCttqpWHcj3ygBwPR+xQ8VoWyA/IElKtqIo9yqaGTm3kLcztK3QnetJkG8q2ZfrSrVh0iqmx4rYGFwnSo+8hvJyMYqLRqPrNjlQoCvwuazwu24brA9kP9myrGQHJW1izmYU+4ysemeBZoPMBojckAzmm7Gco25NprPVthWtVuga6gWp6MjcgLTBRBtlhdspPGAPSoWrWXCirHTAtvecVInsoiQH0URCLklhzCUwVQ3kBw3KMa1gaSfvl/LSlhVyee9UlIqAbiTh82NJjIrFtg3MRqJVjDdJQjutzHhJsHwBdiyvYWhnQ3Qjx9HLCt1k0m6mJaly/SDVOcSXhaioNgd0FjCtGeNoVVpps47D6CAqYlFLO1sU/4/gNFmvnvqDjCppccu7Dd5p8lxmFYyOjMaZVLNyCcJj3rY2jbXMQgRFfVKFyT2+apMlDXZf+5U+kr/1WL7HsmVNtgLVcg860kfn5j3Zvoxqe4NqNOW3O4y3SEUy5gE/G1FZwByUuRk10HJPdD3RG5bGfXGybzTVcttKPOMoe7UkChFUL8CqlfdgxhFbV/KYB+KMh6CIThOv6BI3NdJa1h4fp8TDw4IfWUYji6r0tDqicy9u6V78SfSyRTmZb1K+XUTpBLgVjYAEFP4o95yFW1MPW+KYomJMNpc3F5aXl5mbm2NpaYnZ2dmf9Okkbmbc/kMvB6S3vF7N6c2Ppgo8jTOMV3N0Fig7NdYExnVGZj3WeFZXO7ihlRaJWqNMxPZqgteiXpR5lIbgJAg2HSeBXa2nBmRmqFGNWvuC7zrMnpxQyGq9qpUMHrcr6rQtFnqs8FtqYqPFpTmfKE9ByAKxDGT7ray6d8J02Lbco6kWYju7oacr8jGTykRsW0+KfRrtJRAPBooD0MzKPEe1UVbDtWvbetpVfhWl+pGtSAtXd5didceaWWAzGzBjSTyUkyDWDlrRHj/NTWRmIUowGw2MtwSKfZpQ0AbbMhxfHEDUrWbb4XcFrmyTEyVqTd1rTDsPsbbqny3L9q4vf9uBJB75ipzHeJOcR2jjzmgkeSgPRHwuLUmjLZLs2IGi3iDXFa0E/b4nK9BmxUxnWLJVSTqUl0RpOk9h5VxDGWRA38rquh1oqYQUYlgXCmlnI8rK/UQlzM17VC3zCig5lvLy+ugGfEeeny8zPZdJEgKSgPgcfDeiGqbO3fW8yMAq115PBDPW+E5oExXVzqvIPibJlh2270NX/q/82j3SzLTVh3aGJbRJlKlaV/pZR9aReRulo7jOe0XWcWTWT38vndc418rSRuiU0po1GmdinpcFTNuOVRZN6wIfcF5at0ZLIhmvCy9GjPs6Ulmw0pqovMxlZAcl+VInDmXw/WCBmpHzC0s5mEi+T+aiqo2BbPuQephJu9bGmrzXUK/kUBnw7etXhlYZTqqQdL0Mdfc9unSElUzaBHteWqzaRC90pPKgdJwmHLojw/l+bFGNluSglVq2mcy8KBWlFU1FghOpabvP0mx0MgNSa/RMTVgRY0qTB/xyJu9RJRLEUTE9D3pOVL105PInP/cofQpfPz/J7+/Jsb/yra30Z/QPf8KNYHUl8DNn7E5xSeKoc4uqgCQSPy2c+r4/ma76KxVxtcXmjhgVzdgyMzsCWhWjoGgaWfKfDBij4zRIia1iTtGvaSpLVWXE3GGNZzzOyHOR9lQ2wqpBe0XMIs5amRcYa0JXqiNKR1Tp8LW4DqtKvsxMrSVgDHLsCKixERWcsUaXjmgMaiQSnWokgWnIWzWcPOBqI0PIYz1tj9ADI6vEbXDbucZQz0kfdz0XJUBVimYuEDqB7IAl1m3lYNj2/LcBpHYTtSvIlyFa6OxSVAtQHISVU0TdapIAmLEElsVB2U//+5p6XvaTL2myJfl3tRF8IavqoQ1klZdkYhLwVAuSOBX7NM2sVEN0raYBbdTSVhTbFfiQyTk1sxIId3Yaml673aps09krgXDdlW20AyOm5zR9OXZsB/CVk+fmS+3Pe6p1XZfEJV9sV+0nBuIqEnOmlZ7JKrtZ1e0sCKiJU3WrhqqdPE6UIWgV9fQcJkyGlEGSq5C11aNemDpSRyvnS2Dajuc7kiiGIuLLtQSo6bev96SKUUtSO6mWTROzkcKVTAfeRQxAEhNRJgsYK9LHvpR9gpyDHbYVKAfeSKXKjoCgqDZHMHKvgCRZoeNRY03tckwpy+vKSCKiVKSuLcaIo7v3a61WMSpWFjuYwrdO9iLlm1kvFZN2lmQ8ziiKhtFyKcl/BD/ImNk2gs1QD3Lxzui36lleUZtI5ypLfU1XpHZnPBzMiRGZ3dnkcDtG8nnRaKqDpbSrdeTzpB5mdOdH0+qLrw1xbFG5I2wI6N2l+G0AOIW9rEN9YiUeMJXGbBnhFgsZiB8Yaa3qBGxn8kKLx4rOPbrrcKsZamwII0vtFLHjMaXMi2BAW0/Wd6g5iN/vyz1ZBpQG1WuIKxl+lalMNIUnDlo39kbLYsjQEIsgCc+thBCnAmRHdZ+JxE1BSkASiaPAKe96tQQUuW81/UVWciLFOTzYoZirpv9XSlaBJ/3hKncSiHuFtoGVpQ5KR7QN6FZZKASJurJM/BDqYUbebUAzTWBsLgZrdVRSwdCRcaNRS2I8RxFkHiMPstqponxJtyuWYfplLcGGGSsZTJ2RVqiwoZ0ZcEqMx5wSHX6noe2ZZ6xRczWhKdC1rG67PQVZK5MblajVRBMJG2tpw1iRdp1qoR2HaAP7YMEMFaEAXbftPxpoZDV8cqoShDJt4Zn0+Yc2OHZdWb02VSvHuiqBbDMTGexw6NKh9hWoAOVuGbANReuVoGS4PSpZPde1BNF2IImCqSYr7pJkhFxNH/elGBQ2M1KNyVZl1X68qU1osojrKvJFOa96IeJiu81mOZ4dy9+mhmpOrqU4eEj7UM3UAyHk7VxDp00iQrvyX8gMjFRTIsU+qS5hpB1HeY0aKfysR++z6CjXpt10PEWCVZCp1IlJXauKNWmtUo3CF3LN1Yk1jIwoNHmZs4jt/MikKjGpKGFaRbCOnLuZJFVyi9K0C6+ThIq41sIW8khoqxd2tTU0tJGsvcd8GdcqV0Z+plqp3mamvX+c3E+uK8lvVFL1yg/K/iYtWMpLW1AU6xbiQJS47MIYrSPVUkkMYLqOprZkuaMe5mjrpyaOvjIwskQb8LmmHmRkHUfV5OIBsidjuNlKhQkoOg1GB5b292XBwEq7pMk9YW/B/G0W8V6z0swQ8yBJ9eU5zYz8fjU9jR4Y7NUZ9YZALGURoDmulgpBBIJieLDN5G2AkbQ2qVFGmHWY40b4lVyG9r0S0YWVjPygzHI0riteNbWWmaCxxpuIB2L7mVLMVtQHS3zpKRdGNGOLyQLWekbX9GVUo9bE0mM6DcFrmkGGOWGEtYF6dwe/lBNtaBdEoiQdpUfnnphF8t2ZVLDmA7ET0ANDtm14lD7lE4nE0SQlIInEtTj9Qy8ns54NPfniarzBec2gytnQG7FvpYdrzLR1wjuN0kgvfGXxlYaibS2YOCIHhasMtntIu4Gb6HUydT6WigiY3DOxkAleEYOWvmcbqMeW2JqjxaiwxuMbQ936FZiOwx/MMSMJBuKcAy2qQ+goWv0jI4PEeUQP22Sg0uLv0PaamxUzDTpVJaZ6oe9bxSOF0gHqTFyJS/myD90gSY0Xd25TSVCnamnJIUTIaIekkSH0jiOYQFzNpsGeXdVT2VfXD9ICNtbilzHWRCWD8JOVfzuWAHN0XKB7lZ5WA+o5WQVvZtvZAKXJlxXDEzxmpOnsVrgVC1ipMlSyGm4qWX3v7mxbuRakHcr1JBFw7f6jkSFyaXtq24XagFbX0FlVDLdFyr0KW0kSs3pSJF9SMtxeyaxKPXdIspBHfFDS8tU6ifsuNHNrLWa+s5ZYhGwt2SDAyo5IsV+RL0myUm2WNqI4mUtxkghmKwrnW/lgK883K2aa+E3a1kKrgqT8WqKhnQyZ60rjC/GrCMWkOhGlfWdoMONWLlaLOaEdyD05abfypbii60oqNsq3rU9OSfKn2yQhrJ3jpCXMjJQMovtJZUYqFJMERzfSv24ref3MWOFzKPcoXE/eS0napGIVcqZu9iGTIeoY5TWfXHOwa8vBvu8lIA/I3FQeZDHBS2WjLBq0DozJ0TYQJsZ7IwuFJ+s2uP0lxdYhc90xozrDFZrRwKCWrVQLS09zZZ+q68k3jKVCuiiD2MXsiHC8Y3Fvn2xnjrWRqDXqxCHqjhWqtrCSybD9siYbAFpT90SC2e7KiVlEHyxottdQaWSYR2FmG9zAYjfWBKfxS7l8HhUBlXlYFP+demNb0Vyo6c2NGY8zVKPxY9uW6BR6KElO7UtJdgaWelGklEMeaBqZL4sRio2j1jRT48ZGZo2CyBnnW0Z4r/GVwc84lI3oRQu1JeSybbO1EZ+Y0pEVnsZY6pVbj9S9vwlmQI72/hKJCbee2mQikUgkEolEIpH4iZMqIIlbPLd9z6tkZbJtMYpBo0wgjCzZbCXO0gpQEWMDsTUHG9Q5mQ6EqBjWsgKYm1apxgS81xgb6PfHLHSHHBh2ZUUZcN5g223yzDFqFVtGsZhq00evoN+gTUDrKBWKthriW1MypdsqQKvkMnELrqoMm3k6RUPdGGzuqKqCpjGUnZpBrfHKSsVDRczGCj+yUtmYbfBeiWRo26+tKj0drKbSoMWpG4+0VYFUN7x4OmBF0Ub1G+IgEzWe0ohnR9/LIGkRaGbaVok8yrn4dn5AQb5PU80HQqMJlbho60rhFhxNO/RuRkp8OSJUm0WW1y5r6o2ezk4zbcmZDCr3rtAEs7YiHi30r1BUG2RFPOp28LkdLB9tl+H5zm6pPjUzUG2WFf1sBQYnRLJlaakKC9Lm5fPWyHCmbR/SMncy2X9UopZkapkvKA7I0HdjZHjcjlq39NaYsGlXGIOVVfqo1lSZ6vl2aLpVaspW5LHioJxHMPIYSv6OCvpXSjVhvLlV3Rq3DvFGBqknQ9/1XJRWspXJ7EUU1axulHmT8Vob3mSmwpcRbCR0PWpVHKjFmI41WVUl2+q2aqaaVo3IRJEpdvJ+un4rZoC8T7pRqNZp2+dSmbAjNfXsAGhmRCig2uLb/cvPopX2r5BJdS7GCLVq50CAAPW8DMS7nsz8TOZ3dKUYb5HzmrToTedU2qqKbWWXVZBjhJ6X3x0rUsCYAJWeuqkrHdFaVLJm5kcMBgWdmYq6tvhVi849xgb0lhH1KGPf2JKVjnqUSRuTjahGVLSy7UPK3JFnnlGVibJYUAx39bELMlHfvdMBVgclWkfqlRzXaFSvEclkG6g3KoIx9K8EO8yp5yLN5gZ70Mqc1qqFmQa1nKEGUm1VgBt3ZOB9tiYrHL2y5sDeGfTGitho8m5DtVSgxgbXlypup18xjAq1mBELj906wjeauLRWldW1IqAx8xVu3Cp2GXGFn6BsQNuI0gGtIp1uzdJKh1gbdOnkM2chSDV4aDBLBr/RibdIbQh7ClhoMN2GHW/9Uy5/ynN+7O+SmzupApL4aSIlIImfOu78L3+M1hGtIkYFfNT4SZAcNMYEVgfFdBZDGwhe4ysrbRVegZFA2g1yTLfBVxZlAn6YgQnYmYqVYYlWMlhqTUCpyIGh9EmXhSjMjOuM4ShH68hCd8iwycmtY2UsEbFWEaMjnZkK5wxN25qQz1S42uBrjel5vGuD8EyOYw5xTW4aSwzt8GhVUufS3uKLgJprjdC8xpQOP7a4zDO/ccCinxHlGBPkS7xwBGVEPz/3xJGVgLEQWU+8kpaHPKALT6wNKvPEFQl6yAP5bEU9yMBLO8lE5cYvZ9LOUrSSt72GUHqolQSoTcT3fRs8iTxoMxslmYmgGj0NeKeeDN1AtmqwA1g9zVFeZak3TPr5JSmYtC/lS2vD3ZPEg3ZWYDSZpRjILIEvWuWsGnxnosAkCla6EiNBO5T2JeUkIDZjGQqvZyWgnQyPizmhHN+Va6pRZgzD7SL3qxum7WJNF/JFGG6XC50kHK4b2xkFacnSjVxDNhDH9nKvvDQhl+sYbYFyn7R+xUwSkclsysRnRLl2JqaRzjdlxP1bpI5bZayhEjUyy9SocTITEKwkAWYkcx26HSJXlSa61h+jiPg5abtTTos6WTt3o5p2aNvKTEg0kC/J3M0kCaQ1ootB4XXE0CpOWciW1FQtDB2n+/Vl6+nSqmvVW8RUL+qIHejpdUzmRyJyLFMrXCeK0aFtFcrGapqUTVq7opa5I1/G1lG7vZ/aZCRaUQ3zMyKkEL3MPVEG/IwoQslsl2JUWYrc0etVbbub7C8MMiqvibXG9hxzs0NCVOTWsxqBoGXWxmnCzi7DDTWDRlPMV3S3DIhRMR7KooguPIt7ZtADg+t6TNdh5zzdsibTnoMrXVyEJgusWCsqZ42ivFr8P/L9mkwpqpjJgP1sm0QOxDhykuRU+zs0fSvtYXPyerjWwyRfGOMaQ9FpRPXLacoTVolRyTB+pqjbxR1N630yMG27acANLYwVTdtuFRv5jPJjQ3QZrtKMsiCJZhDp4mqQS6KXe5H49gq9bAlFgCAKbFQGP7wVGRFGRYhHN2E42vtLJCakBCTxE+XU9/0JbpShlyx61K68d1ofCAWUHlN6jPW4xhBWM8qNdq0CYQK9oqbTzlusjAvwUuUoSjFgGI1leVZnHizSUzwZ7K4MbtDOMeTAWBMzxWixg8o82kb8SkY2X6F0pFvWzHbG+ChzHLn1VEF6xY0OZMZzyswB6p7l6sEszhsWBx2a2kolIhdXaa0jtvDYbs14lJMVDq+iVGd0FHncQ9RHlI7YXiMyliYQvfzq1mOLLby4DZuIMoFqf4f+CRW6cHifEWrTDr7H1tVZi8KRlhVxpSDmQSR6GzWtxESvYCRLzyooYqWp95dQBjBBBmIz8axoNjYop2RV2oNvzFSNBi1D7Ga2Juwt8bOeOGpXeYMijCx20Mr92ohdEkM1EH+NekFkNut5keT1hSJb1q0TtgT7IYNmNsKqBKWmddEuDsjrF/K119KXEoDqWoLBaiGQL2p6V2jqOabVCZDXyOdyXuOtUhnpXqOmswm6apOedkjZteaCdiwKXL6UWZLigJzP6DhRDcsXJSBvZicSSRKcR9vKwM7Kfk21ZsZXb5A5lGZu7ZqnKldLgG5FrSbqV7U8Rqtg5bqiMDXxJckPatxMRFftz3tBTCPVWgKkQjsHkkfcBocay5yQGou/SyxDO5chsxC+FDdxtWKJhcwYTYa6Qx7wucyYTFWxbOv5MNbt7MlalWZtsD5Oz0M3ajrIHm2UbzCvphKsulbT7UPWJgxa5k0mFRo1Ce51m2BVqk2I2rfcMd1XMxumKlqT3wMzlKqeHhhCXxYKzEjjNeBEYW5wsCMS1h1PnVuZB3MaN7BSbXUKVizd7QPq2rK41MUPMsqFkXw+6UBEo3IPvYY4siivqJYKfK+RSq7TqMKJCl6rLpXnjmq1oNlXsLJF41bEjMb2G6mAbXc0GmJgOrc23qBgOZMkeWxQw9axvOeJXS/VkJ0lKo8wKIkLNfpgLgnfUk6cD9Q2h1VLtVBRlA1bti9yYLmLG2Z0t6ywvEtUBOyiVFxiGVAdT72cU8xVZPOO8Wou92oW8TEQxkZmz6xU3SgC2gZM38uCTK1FUENBzOR9ipl8bygjs2wxgm5aVa5EInGzIiUgiaPKyW8/X+QUg5JA2klAnXVEFjaznm7esHP3vAQmLpcvma1jCbKth0YCZreaoTT4WouHhZOAcXSwRJdevoyMlOczLW0/mfWUVjTnu3lD7Q2mF6hqS2gla42RtirvNLYvqlXea6mSxLYS4BSxziiuMPgC/AFLM+fJtnu80ozGGQuza+oqSwd7LB3soU1g7Cy9vCZGRSerWVIlmzes0ARN4wxVZskziXa6ufgCOGcoCifVjKDxrVcCQGiMVGdWWx+PRkPXw1jjgxXNfCIqxmklYzjOxVxQiyxlBFG3adWuUIjJWBYIXibfi15N1Rqq6SwQ2yBeDOvaJGWsRdGnHUrN9hjciWPUSiZBWBmnyV4AQimOy2QBv79At9r+sfUxaEoJRH0ntKvDEeUV+UBar8QRPZIf0DTzEmSIo7h4guhakS+pVpFKWmvy1TX/iJAzVSyatCRpx1RSNF+U4DHksLpD2nomruBECayzVVqHaSOKPzNrA9+hkCSk3iAVEVGEYmpuNzHPa+bUmn9IRJIFi1QgAlOTRDuWfRYH2rau1rckzIpyl+tBsU+eP1Gpom35cqW0fTWdtsrk2ipOm6jly6odJIdmJmKGkqyBnFd+0Byyyt9WABzErK06jbW0aBWO2BXfmBgk2DOFtBjGRqNXrAx8l235wcuKu3atGWQm7XXRSnVEeTU1fwyltEK5vogEEMEOxJHbDhTZsqiJyesaiHnrtt76z4RcBB98LwCSfGAj3qrWk6atnATQo7bNbU4qLwTweWzff4Wb9aKqpVqVs25oE6SIXdW4fpAko03k7bIkZSET93JVBmKtCSpSVVYCZhAVLROh72kaQ69bkVnPsMypa4syEW0iRTliuFwSKsOW7YsMqpzhUofQaIpuQwTKvME7g1/J8E4RXIHZXOHnIn6xEMXuSouBfdeJpG8lnyfKBLKOCFi4jkcdtKKSV09eH41aMeg6l9eg/RUlKNgylnu9LkWCd6mArsd+v0NdlBxsZnHbaxgaDl66AZVHsoUxvnRS3dCRolfjnaZezUUkwwRpQxtmKB3pLIymEsXVOMMPLcqAG2eSdNaTz0EjJqWhVWYbakK5prI2+fvWQGrBSvw0kRKQxA3y4FOfC5ncJqHMUd5z9S9upHMgMtjeuiTPSwtH1KB7Rvp+C0+8vEuY8wQTqaOijrKaHjcM5Zus0uiOw87UNKMM06vROrJhZsi4yVipDNoGkZZdzVFdT6ha51snbVcjrxhOXIgLN62MZNazNCyZ740ojIMSFsedqUGYD4pGGzIrK5jOG+raQseJBr6TlfvBKRJ8xbZVaLhaYHPR8V8ZFfh2XqTTr6irDF8ZDuzvs9KRyK7fqSTBCYrSOmaLMbW3dLOaxhuaILMi42G+pqrVGDEGG8iyvc4kuMtmatzksdIREGdgvChbhbbaoLxifFUfs3U0TTbQEEcidRtNRFmwhSN4PU3kcuupjawUhtYfBCD2PbEj1Qo9X2Nzj99QE3eXuH7A7CxahSVRCiIqwmomK88T1aJay2p8aFWeyoj20oKVHzC4vrwvYr4nPf7FbkM9L8Z++QqgNE1/rQWr2N/6h0SpCkz8HHwJ0bX3pJFEoOlJYJ15NW3FamYC9UKk2G+IBno/MBLYttUS0yYrk9mOiUP3xMxOO6gXAnEWsiU9nVMIFpq++Iu4bmuQ1yZLuhL1KDcv91Ox10wrKBN3c1Trf9G0iY6Sik69QdSamlZ1C3mpcX1JMMr9cvx8uTVltFI9CVm7faskZcaSWIm3iFQa7EiCDN1IG5hURORe0rVCjRWuH/G9gFmxMtejW3fxTiC0BnaqrWC4LZJY086BRCNVpaY1sfSdNhl2rdJUJnLQuq2ETO4JMxbzRBWkLcr11hSu4tAQCi2yv6tt8mQh2iBtWB1pqTNLbdWlI++B6wV0rVpTwUM8PqRIiR5LW5py8v6hI2rZQNsepNtZE2CaMEcTCap9PGvnuUYG1Zp4xqDQ7WdCDBbVa435asPYZFSNpVrNyXsNM/0xRouRaN5r6BQ1lbPS2qQiOhMlvDDI0Jsi2gR8EaC24u+zmqEaSbZCJ8hMSqUJw4JYBGgUeqPDDzP8WKNmGoq5itCvyY20tnqvafaV0Kqg2W0jskwMAYerBewuRTksg/j9Hsx7aGebVAPN1gZlA93jR2KEOihpRhZTeIxx+MWCKioYGEkiWkNHo4NUiWvDaE+PUS6to7aQz2mlIPhA1nM0mSRroRJVvJhJQktUbVUuQs/LZ0+TguhE4uZGSkBuZZz1mD8jX3ZErSivWEJVYhQVeyWq8WsbxkjMLfRKotVEY1g8o89gm6I8AOMFxXhzlMDKy2qZdsBA03QNwQZCRwIDNyurVNhIDLC82KXsV4wHXenlXS3ozY3oFTVz5YgDIxnmnpkfEaKicWIeEUcWVQQpx0+qA05LK1CjqQcSGKlaVk6VV+ycLVnYvEIna8i0l4qIjtSNRalI4wzOSyKSZY6s4zE6srxa0u9VLC93CKuZBB8RYqNpvPS11FVGt1sRoqKurcjlOqkm1AN5zth46toSI9Te43wH7zV7Y5/Meua7I+a7I2bKikGdUzeG4BRKK8p+RdPK/ZqyYTzMJfGopXcaE4hWWqZikOqBKR3BSXLn9pXEPGJnahlAz8S9WpuIzTwhSEXI5p5OIfeBzdt5lLFFt1WC4BV6IEFcXDX4LWP8ckY2UtPB3WqTrGqLw3XrCVFp9LjtC3LSbjPxU8gXxe08vyoX4z0xfMbUbQC619DMylB0MxMZbxe3Z6l4rM1i5IswOEkCzt5V7UDzxPHcSlLSzLTGcqM1cz5fRMq9bRtXK2k73iLBZLlXKhqys3bgvC9JSHFAgnhfSHKQLYrk72QofRLcFgckODNjtbYqX06CVpmBQUmw7rsyCC9tU0raq9oBczuU44y3iQBAPR+n25hhW6DyIgE82rI2vN70ZT5GNbQu5a2McCE/L/ZLRShkcs2mXkuc8qVWpndZT+V4XacNxNvV+8kKvm8DO7ssfhgBqcaEiQlcIU73fmSIIy1JbK0Iiqk8LwFxU5/MlMx4opZWMPFsEaf7iUFj1G0FLG/PvZJqWdOX4XnfyvnqsZY5lVy2zQ9qed9iK+GbtxWk1nU+ZPL8SRuccgrRnGivuW3bk2qdVBaibtu6Ck9czqRapCKx1qiy3S6XFsm4lEnrkYIwssxvWyYETZk1jJuMKijq1ZzMeuoon1PN2FLmDWVbMS2LhuEoxzuL7jeMFjvTKhRdDybKR2PO1JGcSmNXrLzWlZH7d2TJ+jVutUN0GqMDvsmoFzOy/dImZZS8JmaoaUaW5kAro9tzqC1j9MkN1VIpfkJB5ramLXADI4q7u/rETH4/6XjmZ4c0zrDafvbELiJOMTIEDKODuXxPaNA9cUoH8UtqxpIhTj6vOkXNuM4IViR8fW1gKIsswUglTS1LtdWMbx2Cnx6NP8ripv6Hb5JI/EikBOSnmB1v/lMwQMcxv3FAaR27ds6z6TMZC19fxfcysoMj1Kjm4D02k68GuvtrzMEhfr5DmC0xS5GoJko0spoecwtWQwgoL0HTrrNmUB56u6TyEZW0RthBq+XfDfg2+FS1JnYUsQj4nnwhMzSQBXQRiMsZze4cG6GKXZRXDJdmGBSBfeONhPmG3tyYMmtoguFex/2Asc/YM+qzUpXk1lE7y8GVLr7R4qcRkOUxFaHnpE0pSCC+f+csSoPpOHq9MVUjVYfayXBimTf4oOkVNbPlmIOjLpvnV9EqUi44xrNW1GeA2c6YTt6w6+AsISjKrGFY5zTDjLxfU/tJz1KEgWWoxc3YjS36QC4rtwo4YUy9XDD+7iz2NqsYHcgz8f7oz45xXqN1nLaYVW3CZHMPuaceZjIArtoVv9boLVTSRqFXpYoTVJAB+yyIaZeOaCtqM3nucFr8SEbkWOPJc8dgtYtu/SCiAjMwopSUSe++W80kyIngZiLVcU7choOWAKhR01mBUMiKKJ0gLWDLZjpMXOxT2HHbSlRLm43LA9myns4BmUoRlcKOzFQBauIYrisYnhDo7JTAcnBSIFvS+FyUrPRIrxn1WQnoUdB02naeFQnU80WpIkwUmUImFYdmVrYLGVP/h8FtPMVuKy1abRKsgrQF6VphRpqoZV4kW5KWINeVyoX8jrUKUo1GV4p6s5PV6Z4EabLqLtUaMxavkKjW2nt0JUF6tRG618hKr9sAB06QSlHIJdEwYzm/1ZMi+aLCjNbmZVwH/Lz8PBsomp54cUQllZBoZLtJUhgyZIDbQphtnb/bOQzVyHvuNzWy0hxlaDXmAbtocbN+6oCunASpk3kKPZLnToL/iccLbcVkopalorzX02rWTFxT3zJyj03eDNeVQfSJ/4zb4NADQ35QT+dJokZa2MoolbKsHdgPkvjpQ+5JdJT3Pw/EvHWPBxme73nskpFWrPFk8j7K71ow8pnXESW7GJSYN44M5AF0ZGnvDKjIqNvQ61bQilUMlss13xAnnwOjOmM4LDCZp9+r0P0xISo6GxsGVc64zkSwol0IUftzwrwjOoUZGsKJI9hdTmfr7N4MduWEzQ1qYBmNe3L6/QbXdcTVDEqPLjx+X0Hxg0KqlpUiHjSYGkZbRNUKmH4fiJqZtOv5ScuWE0PUWGv2752h6NfYVmSjDhmsWklWdUTPeHq9ijJr2HdghrirQ8gDg46FoSH2PGExZ7GUN0KNtSxI5bK4ErUk3SqK+poKCj1q54YSicTNipSA3Az5mde+Cd0tqU9onWpLz7Zti+w9OEO/PwJgaV8f3WTk21YZr+YMhgXL12xg++cj9Yxi+bQ+popUGzJmvrqLDV/ZBz4QeiWqbtB1+03qPEopqXgoJYkHoJeG1CfMU89lHDjNUG2KbP5KZOk2ep1aTDMbps7Vk6AhzjjYXcJ8I4OSXpMfNKh9hmpjIHY8vu/Q+3PoBKKK6MVMXHxLjy2dJAVRMxznfPaK2xCDBMy9oqZ2lsVBB1cZOv2KbHZEYT1aRWpvaJxhNM5wh/Rdo6Q1YaBaKV6vsZ0GawPdvMEa+UJsgmF7f5nSOq5cnmd7f5mxt9iZQG48ISo5zoxleVSwMiqpq3YgfCWHkZFWo8LLF2NQMDLT4Uiiwm+rYCWb9qrHyhJzz3iUy3V2GrzT4oAeocgdM90xTS6zMY0zaCMBil6yorzT3ju6HUolgh0r6oJ21kbkd/NibebEeYNrB9RtJqo9TWOkbaaWL++J03VszdhC10ubTbs6SgCzZKetQkHRBmpS/YomorQ0kMdaE/NItiiB8kRZaGJypxxtywrkiwo7VIw2Mw0iQfq6XVfao3wprU/1rKxkZ0uirKWrVvpVR6JR0z5wU7ezFkHR2ynBkc8n7ViiCGUHsl8VmQbA2bKsmCsPzchOA9V6PlAc0G2CI+0n0xa3RlqWQhGIWSBUovaka6nWZQfM1NTPNAqzpKemeiCVE+XBNm2bGVJdyWsjbUW1JBLNrFQzlJfXVDt5LFuRn3d2qukguhnLdWWr8v9mtm2zmhRmfKtAlcvQuG5d5d1MkOStvZ9VpSWILmR+JxaBcqZivKuL3TTGLYop38SoTzmFXdXT9iszUrgNjqC0GBW27UyqddE2IzGcNItG5IxH7WdNv73HXbvosUHUr3Qt1YxQBrLFyesq15Pvs9O5F9uObMn73hpTBpmDUb4dYI7SUjYR/olFEHPOtqUpzjYiWYtUWIJFVtlnHKrjZH6t0RSz0no53t0VFaaOlz8BSdIjoiQXFVpHlhe72NKJbHe3wdXyO44JLF49i52vQEX6nYoDu2dRuWfDhgGLgw4xKuZ7IxYHHWzu6BQNfmZMZj3j2jKIXfS+Ato2ON/3xM01rrIoIjObBxgTWF7uyJyFbWd3Gg25J3Q9fusIN8owe0Xtrm4lsX0hw956rHH9OG1XNGNQK5p6PrSVsFZyeWyo2szWdKQNLWqmAhjhQMHy0DLsN2gbiJvHUFn5Huw7ee2V3CtmvsZbWWhSNsh3TS49nyI80FZD8jhNgm/pxJtABSse5f0lEhNSAnIzxM1EzClDZjo1VSvBumvnPCoLDIaFSBkuW4KNjJcLOpfl1HM5OsBooyZfiWz44h4O3GsLG756AKwRh1xAOUfs5Kiq7dG2snK3cocFglVoFwlWMffVitGmnME2TTMHW78QuebnJbDRlQSP9by0QwXT9jwr6ctWKxY/KzrtQYEqA24sVQrdKHrfzxhuE5+JGEGhYOsYnMhSemPYv3dWhp2dxu6WZKlpFHtnAnpzhc0d/dkxx80t0bUNWkWGLmPPQFqb8hnHiimJpVorz48NYU9JnJMKiYsZ3gYOREWnqFEKNnSGWB1YbXJ6ecVyXXC72X10TE0VLFpF9o5npu+VUtKDnc04mrElTnxEAui29Un1Wl+M3BN1lBaMSauYioTKUNfSY44JMgjeyv/GqKgHOVu2LpG3veCZlWH+oQY6DrWUy2rfQgV7SnlPtlXEfYV86ZuAMpHjNx9k99IMZTv4Xo0yYlREr6lW83alVrdKVhLA69bpOWSTIeYMt0Gc1QFoV6Czg2baYqQO8ReRAylZ0R1a7KqoZNlhu0qP3E9GtauWvl3priTRsCOwI5Hfncxu6DZIjwaa9pgxm0ipxqmKVb7UVhOyVklKtwPHlWLptpGs9RfJVmCygp4vt0PfBui28xS91vtjKMFwkBiMfFF8KGSoWxLxYJEWkkycv/VYJGsn0sIhlzkH35EgTwVFuVdNg+uJdKzysq98Uc6jWhCFqpAxdWwHKPfA4ORI7wo1dWEPtm0ra8QB3K62K/vVZBZGqkLZ8mRwP4KeuMkrXEc+g+xAKp14aUXygO43BCy6dKj9BWFDjckD430dAPzuDrETJNfWch0xj9RbG6kMOA2VxaxYUZlacDJEnk+c0cHPeOxBi+/KErpq10qk3SkSMvHzoJEWOrzCzUn1xM0EzFCqReKQHgk9WZ13XdbUzdQhSQcyTB+NtHRN5gjEgEdJslVG8ccZG5krUNJmhkd+3mji2Eh7ko4yWA3Q8SITW4nMLLlIxOrMi/9QWwkoezVNO5w91x1zMHRlP4OcYtOIue6YlZHMuuWzFfXeDgcPbMBsHdEppQpSD3LKfkVVW2JUVLWlU9bowpPNVVgrixxmZ0kcdtBRBAYGB3JpMSsCvS0DhosdaS/zkWBFfUuc3ltp8FpNFxfK7QOc07j9JXZVT9sIXaf9DGpn9hhamRHyitjI54bHyoJJx9OdHVHmDuc1g0GJX87R/QZ2lygbCZ0gCyJzjfzemIhvpKqVz9RTqXSA0VDUtEKj11oGJzM7iUTiZkNKQG6GFCetUI3nWRlm4lExsujFDF0pmo1Ogv1OQHUccSlny385rvwFQ7asmP9eO9NhDcWyJ9r2LTaGiJHEI0QwmtDNAYeqHDNf30OY7+G7GWa1ghCY/c4Sc1+r+d4TtlIcaNj6+Yx9d2kDnL6HLDJ/3DKnzB9gz7DPVVdsRM80IgfbKljl/RrztT6jE0XC04wVK7fx6A01RonClT6QY3dmNCePMQctxQFpd3J9CVLNWLweZBhX4yqJ0lxj+H69kbneiE7eMKoz5ssRlbdUjeX4DYuMmpx9S9JeQMcTexFWLaoMmFKGH+uVnHqYkbUrkE3XoFVkcdihaiy7lmbZNrdM1zYMmlxmR4KWgfFW8hdEUSrPRWlm4hsysAWushAUppDjTWWAMwlG0O2Xo0baEDJJWLSOeCczITHCqMkYjnOqgyVzW1ekCuI1+cYR9b4OcTmHnpe2KSWBWixFC7/cMObKb21DbxlTt0ve05WtdmVSD7S0UFQyoFxvQFZCkVXzpifBv6o02ilZiTaADtSbnLQ8zTniwEAZpA/cSKKpgqwgg3hldHYz7fFXnqnMqh2uzSxMiVDuaWcNhtJi4UuI3VZCNYDrB0KA7lWawckiN9X0JIEgtknIQFbPXQnlPkW5X+6r4XFt1SRANd8mGG0iVC1A7xpJSJr2NtJubVB9orJlhqKGpDQop6dSsL4jwXLIYzs8LZUQtFQT7AFLsQijLTJ74XoRPRavjHxRUc+vVWOilSqNriWxGJ9c0/ufnGKfYuV0R/f7Vlbzzdq52VW5vmxVgnvdSPJRLwSiEc+ObFVatMZbpZUy32ek5aobp+ICKgBZIA6tBJ9jWWXGa/yKkWpIZWGhJss8bpShaqmOKK9khbvWqNbfRXmFm21nX4ogLVGmDfwjNAvSmhZ1K35QSctUtqwI1kwrriFr750sEIqAWjUiJzxYew/yA4p6YTJroiQBGyuaBWkPU62070T6d5IoTpSv1IoVP5AIamAIrQJfKJHE45AFGJn/MGuVyMnvmRJvE9VIy5DNPQsbV1hukwrnDW5sMf2axdUOzcjSmalERctrFlc71AdKwqYRvjEyZN/1UBtWJtLYOjLe222/RCRJ8s4QVzNC7glBExpDfvIAVxts1rZyrlroe7JOw/jyWRmid20yPDAU+6Sy6AtJ7Pykha7S1Ff2CRsa6HhCLdVAN9cOlS/mUvWJSs4nKkIAPTLEUobDg5UEffyDWYZ5QM/X088kP8hQG2vynlSE/CCTCrONhPa+AKhBJIDLdkHLSjk2thLPqtHE7NYhw5tUsBI/TaQE5GbIaHePLGYiC2kD+VW5DA52A6oNWvVQXHi1U3QuW+QENU/30kVZSvZRWqkirJw2y9zX90HlIEax1I6ROD9DKDPs0pCYZ2Az1LDGNh41rAhzXfTKGGLktv+4nyt+eSO9a+I0MEMBhWfpsnn+y85Jq4ISg6j66p4ot4ac0Guob1ujTIAuuEZPfT2asQWvsScMqPd10PtzOnsUx/3/VrjqF2dk9fLUIePaiBleGbC9GsYWXxvyboNvDHv3zolySqMZzOQs9IcEFKMmZ3lUkGVe2plA2qda9/LlXWLUR2tw1YwLXNVh0Mzh50TxRWUek3uWxh18oSmMY+QyOplUEerG4q3Mbti8IQSNCxrnNT7o1u/DTYP9Se+z6dSyrZNERhza1+6Bfq9Cq4jzmnGVsTTsEIMS1arSMRzldDs1S7tn8CGTQU+v0K1XiB9ZqXhVms62AU1jyI8fiOGb19J6tZKhR5piWVa6JzMW2aqs+JuxojmuQmeBam8hJnMKiv0a12mDdBvJd9u2Dx9inYlvRFdaLuyqmPqNtkvgPjHvm6g8FQcl6Fe+XZHv0KpGrfX7TwfXD6qp8zha2qLcjASl+X5NMxcZHR8o97QReFuR8GWrBpW3ici49fA4xGG73C/JSjUHxSKsnijnFiwMt0jFb3KOo21rFZxq41rb1CSADbm0XpmhtNjELMoq/XzbSuYlEJ3IwS7vWGtz081aC5rrxelcxmQw3OfiDeJK6FyaMzxO2sC637dSgSmk+jGZaxEFLDUN3lVoEykvq9QqSMVDEjRFtmJoejKzYoftoHYjwbcH4lxD7Dj0ngI3J6v9FHE6E6FWMhprpQJWBMyylSpZlHvT7slwJ47l91kx9RSZjE0BkqBHpFowMjT9iN8cKPZJBajZ4MWQLiK/u5PWm6Ak4W7PN/R8m6RIIiwJhQy+u5ko1Uqj0FHaSn0vTOeAaOdSzKqWqst8I3NlKqIGVgz7bIAsYDMv0rAxEifzDkHJ73xUxEbRXRgxHuaiFhbBmMCoseSZJzfSPjoqLEZHhuOczkzFxpkBnaJhdVRQLxd0twxQCryWFrFsX4aKGb5oh//na6IJqL0FjLSYgu7M8RtlbidERdZpcJXBFp6Z7hjfqVmMffTk8zhrPVTKSOw77N5M2ma1JO8idyztmdFKy61etDKbZIGosEtGxADKiAwpQozyukyNTpdt698RW8UyMXCc+BlRevobRgx29ml0pOg21FHujVAZST4KSQT9WFTFCArlNDQWSi/3BICTauOOd76Wy5/wvB/lKzmRSNwEpATkZki232DKdjX0YEZ9Qk1nboy/YoZypqKuLGFo0EuWky9pUFVN77sHiFpDjPgNXfS4odwzYnhcl5gZyC2EAGREa1ExQoiEuS7EiHKB0CtwczlmkKOrhv332UIwMPf9irlLA7PfW2X/XWZkqLjnYGSlNN7ISm7YXlFf3WP2UglUx/eV4eoQFRt6I3b9YEF6+Fc1oV350xH8gR7FQLHp656Z7+wndHNO/NiyBAdjRygtqhlz2aPnmbki48B9avKuaMi71QyzavBdjZ5pGO7uM9zVl9aaTWNC6/uh2yrDfG9EPufItGf2lDExKvYu9alXCgkOVasStDOj3uKIzkpbgA2sjgrmeyNcWHNez6wnA2aLMYM6p9cZMWxykbIMioB4coSosO1A+WSw3HlNiBm+0dPqC23QUjeGEMTscFIFCbURlauxJQbN8jCTfvyZBrsnx29uRCK4MejM098yZvlAT1S4giLLJGgaHuyCkbYp7SaKPxLYysC1BOf1QqS8rGB8vMM0aqo65Loyj9DZpQmZBHW+IwHixPSuaTIJYNuA2Aw02aoiGAnms+XW8yKTgH943JqylHES3I+2ezq7zJqMbt5WSzzT/YiSlKLa6kXpJrQGdpOOCyWJhKnkOaaSl7h3AMabmM6yjLYo6jn5/2ibVBrGmyQQ1w1kS0wdxst9osIVjUjDQjvQbOV1iVoqdRP372hbo7og7UioCO1MiLhAijwvyDFE4lZmG8TwUM5D+dbvoyPzLK4nFZ+Qt7MtJYyPd/QuszQzSJI2lnPOllvJWRkhk2qBF7Wu8XYnilGViBmEIsJqO5Df+rqEWSdD1UERxwa/wYnQQWvEh5V7OlpRP/M9L4FsEdBOkR00NFGSB72/EPPBgPg3RGSeYyTVAZmh0bJC3vqC5AeMtK0hK+8hyvlHGyUgHmfTz8+YB5mt0hF7wOJnJipjMpsUbdvOo4GGqShAzGURhUq33h4Kv6mRhKgS003TbVAq4haL6aJC0Zd+OF8bogrgNFjQJojfjDZUowxtw3Qg3QfN8mKXotuwYX5IjIphnbG4KAsNWzcvk2mP81oWVHojcuvwQZP1Pc38KkvDkrnumJ3f34SqFfayDvVmR9zQyO936WhMwey2FYajnGqxoJivsIV4f+y/al6qn0UgLx29TsUB3afTqxgNCrSOxBM9sZLPk+AMebemGVsZkB+J0pnuN/Jam4CrDcFrWJHWrTjroJpUiSJqJMlgmHOy+FO31YkI5BF1MCfMNzA0DEZ9SVhWMkaVKCEqu/a+UxtCO/8BoqqFjqg8kPdqkTGvNcWmEdXeLlRH6Qv6ZoyPGj8Z0jxq+zyqu0skpqQEJJFIJBKJROKnnIAiHGUZ3kDKQBI3DSkBuRkiK4eiXW+HCpYt4cpZrIb6B/2p4VtYaFg9PqPYOWlIB1U59KBG1Q5lNb0rVomZQbXyuqqWAeKoNMrJCmyzoSTfvYquHdlBeSwUGfPfXkX5yBUPmkXXsHTbWVGkMZHs6gI7FP+HUAQ4cURYzejuaQewI6hv9XGni8LKrp3zMnQ9ceF2itD3REBpTX61olhyhIm8Yu3QjZfqDeBmS7Z+ybPnbgazJ8OTgQa9pSLk4jMyMzOiu3GZg6tdQlDM9Uasjgs6RUOICqODuAnXGeM6w+jASQsHmd8yYk+vz149J+aIGOq+h1bGMeYB9bUZertgz88W5LPiXOy8bv03WmNDZ6icna6MTtqwVKteM64zjAn0i4pMe1arYqrAdXDQlVYsr/CNpjFWfDq8rNRG30qcrsgMCisT17QIlcH35UWvlgppZZgLjKsMnYmpV6+V9q2HufgG1CKzqxtZUbdDmYcoDkh7UtRtn/zpI9hf4OZEctRUUjHRtZ76SaAU482a8XEN2f4MqtbhO0p1odiv8B2ZK8kGUPfBtH4V2rWeHhmUe+Xeb/ryR2RWYTwbsSORzfWtEaDryX2U7xePiM5eQzUn0rnRyHWEDGkdah3CQyb3q0jZQrUpYJc15V5Nua8d2i6hmlc0s3Le+TKMtrZeIgMZjNdOWrqqhdYBeyjzMNkKosBjWwndeWkBUV7M7+xQSRtTxlQdKmbiSI4S8QeZiRE1rmhhfFJDfk3WzqOIE3y2IpWlbAVG2+V6soF4eJRXWeq5VgWru/YaTKR1J87o2inMQFPPRbIDdiqN28wEaW3ryTWEUl4jlmUoXI3NtHqRbx9S7+7KTMPeTAbBK0WYc6ihmQoVxFaFazrrpGT+xYyU3LcKzAEr/w6q9YyQGaLQ8WT7MuqNHjOYSOm2K+ZRhsdNo6ftqH6mtXb3Mk/i50SNLsZWqnvimTE2UDaoXNrHyINI5GZRZsW8QndrafexURTAxho/sthuIxK1NhAqy3ClreZmQfx2TCArHPVI5sqaINVLZcPaZ0Mln2taB3YvzzDc3SfaIK1aV/fZWW/AlA5lIss7Z1BdR9Ft6JY1zmv2H+xTdBr2HJxB1Qo21MyduiKfb8slE9PEhROWpt8r/U1DRoOcXr+iiuDztlVRi5hJZj32ipLhfCYttZNWOKcIiJJXvbfTvqlId1XpRd43Qt3z8loaETXon7DM8p4+pt8Q94lZqdlY4ZdyiTy8CFyoXP5tN4xxg5zYaPRcQ9FpyDNpN/W7O6iNlbz/Y4PSIoBS/CCnOXVEOJijvcxYmbFCVzlmVuau6nEPO1Yil5xIJG42pATkZkjUoghk2sHL2Peog63CSGuUFXWEoWHDN1fbNo6ICgFCQFcNMTOEIkM1HuXbQD6AGlSo2uMXeuhBhXKBzAXUuAGl8Bv7Ym4X4MAd+gy3yb9H22SQVXnIVtRUrUePRWc+u7JLbwT1jARsvhPxZUBf1cUDWdUagmWtEsrmCpZykdkcaqpNkO9elTmVAH6+g1kRmSSze5ErzjuRekPkzLtfxkpdsFyVdPOaXlZTGsc3r9nG0hVzLPUdZb/Ge01A+rBnizFbu6tY7bl0cRNjZ+kUNcuLXb57xUmtZKOCfiDfNBIFG4UMuraBU70xMD5Bgvx6kOGs9FF7rzFG1Mm6rWqZawzBSVtVPZDWkHqYSSuHjoy6GUXmKDNHEzSDKqdxRlRdQIZwRxmxadtEnAJ3yL8tMsA+Ge4cymCm0u3MwEAT5iOdsmYQCsJSTtMxeGcwV5dikOZFZjUaSXarUhSZ7Ij/P3t/Gmvbmt71Yr+3G91sVre7c07VOVXlatyUzS2bixvINYkbuLJxIpCIZKuEFGQiGWGc2OILUvAHYiTAgIK/gLmRkQyykugmkkHXKUgIFjHYvmUbu1x2ubrT1m5XO5vRvU0+PO8Ya+1jEwGqwsd11ytt7b3nmmvMMcccY8znef4dw3GgODUM90aqT9eEk0Dx1DKeeJI1FBcSBrh/V8JupEgJi0j9ukPnELxQi5h6cqKaUsXHRnQKMdOopnRxu5fi2G2lQK6fwP4FsmOW0KD6I6FThQM59+xWkrFBzrv6iehW/EIaiWhzIzVC1KKJKM8U5blst7jU+EqaovZe1nQcyf/dRlFewv6+hPAt31QMa2mSzCj0rfJsoqOJaDdaNTcfdoeIdisp6EnTdc1swUseNKjsMhabbMu7E1pVKIG9NIriviXFeX8n4C4M3b04W/J2d0ULMhzK64cKikuhaZk9oKG7kyjPFPsXI26jGQ9Dbo4msbmc62EpnHm/RMweliISt1dGaExWiuj+shR5qs7BhCrB3QEGoeKJQ5uc/6HO+UArj9oYsJFQi2OSymnsasyuWzphTi1hLfQu/8IAWyPua8h5ymSf6zXppBfBsxI9iQo5F2eUZOykE6oJJJ8f31lYiQWsOM1pcdwrVdaEJXGuGgy6DNJYdJbyTsvQOrRJksCdk8mVSdKwaNEuhN4wbEo5ll6LnWxuPJRKpKCJmwJqj/eGYScudkRN3zrZ/0FTHkkB3rtAe1HRJUV3VZK8Rrea7khxdLzDHuy42ldc7mrKwsvrRcX4sOHM1tIgHvSEoFksexlMGMnNUDqxWrWScN4VxPft0UERNwV6r+XariN2qwmZ+lQ9kiyfcZ3QRx5/pEijFs1TyHbTvWb72lqOUyjElKLXpEfZ1cpoVBVmi2gshCeyrwpEmO41XdeIG19QpNOStPIUd1piVEID+5oNS+dpbeRkvePpxRL/qKbaisV5+YbBbTTtC2IH/OW+bkXot+sP0rptQN6By7YQDgQBIYF9ZinPpEBLWhGtorsXsRuNCgFCmjUdKAU+gFLoNEhjEpI8ZxhJdYk/aTj7qgbbLTBjwu4jSa84+2pD9QyKTaQ71uwnsW0rrkETBx8lYliVuJ5qH0ihNxWQySjGhXxRhYp5wgoi1vVBw8ITBy388t7gD2ve+I6G9/5fnknzoRRhWdK9d83L/88N+xcbPv+F99HeT7j3btn/8glv3g8cvvuSRdNz/JXnLN3AEA1r19MFy7mreXi55tVPP0AfDNgi8NLRBZ137IpAvNvhikB/VaIGzbB3VOtebHOTwucU83jgUSbianG3iXnCeLjes+8KyiIyesPYCz9am8jYWYqFcMj9IBabyWv6bUlqFKX11G5k30kIoK4SCRhaJ45BPiNGVSCNGtt4sRNOzFx1cdQCykjaOlQV8PdGuCq4vCrQBwNqPTI8qUUP0YGKenYQigZx4rI5TLLJ7jb3PdVRh1+OqCcVw71RrFMzcuEbCRKcnJbA0L4ysjjeM24qMRR4LG5NekSQiEL+Np1oMVQU7Uk8kcdcJ2hIqGT7YRGJrcHusw1uKwhIcYmgdC7byW6yYH0t2ynP86R/svSdkI27gfTMSOr5HRhfHGBr0V5RnEmTo1LWxATZF7eVc38Sxfd35DX0cC1AN60gENGIUN43sPvKAfNMnKBCJW5dE9qUlAjVU7ZvlUGDuHupoNBBLK5VguqplhDBBSzeVGzem6geG0IpzVb1RLH5kGf5WUv7gjSWySaGZWJci7bEdNDdTZTPFP1xksarTrhLw3gYxMBg0II8NCmHuchgICykmDRtTnSHnGGhUCuPXQ+MO0e4J+coILkYVcQ8KXKquGK8M6J3BnPqmFLEJwtnNeWUtDn0sZBzUZBSDSOw9NJ4dKLTkgyOlLUdRkzFct6D6cRhi0bstpWV5khZwEbMesBvHViNLcfZ3AGFIBtGCviTB1ecPV1hKg+Vx49y7QWvqRc9IWr6y4rYG4rVgO8NSkO56qXx0OJk121LlI6YQswwrAn4RhqPYV/Idbz2sDXEiwIOR8koMpFhtMSkuP/iBe3guHq2wOw1q/ddsN3WnJ8tqBYDZTFS2oDRkYOm5a3HR9Tv3qAU7C5qfGdpjvZcPl1ias/YSrZGcadltxejjuFZTX1vR7cvMIc9zQsDm7MGfemyiYFmXMecd5MRLK9npCRaaRTMTs6DSb+TTBKth4K4FCSVpFFRjApAXMxw2elAiVNWrMPsXhWPxtlFcOws6cqBS3R7R3xmGdeBRxcl9qDHrzz+pZ7id5agxLAhLQJ6a76E39q363bdrv/UdduAvAOX24HaSvGg0nUBpwfyZFEoFNVTxfa9K9afPJNRvdEiNPeB/r3HDGuL3Qeaz5zx9Fvvs3p9oP7cGecfaoSSMSZ8pbh4v8VtJSdg+27JBmgeCeVERUE03A7GhYg4VXbqmawau5fEwSQUWnIUsvPQ8s1ccG3BN4Lg+GWeqO7EycS0ilBr9KDYvrviXf+qQ4XE4//ZHc4/HPngP97QvBUgRpafOmf5OcP51x2iP76gPBuIhebxf31MtFD+9hGv/yEpjGdnohEOThPrz7e88R0Nd77pEWf7hhfXV/RLy8VFQ1MPglAA+tLRX7k5E4CEQP+InabvDdrKl2JVjJic1dH1TiaqOrFYd2iVKJxn9IZucFTNIBSrqPCjYWgdZ0FzuN5zvNzTZbG7gFmKYBKpBFsGqkKEr00xcr4Vm03vNVQQvWZ1r6UfHB2lTHmLKOFgC3HqSl7npGEY1zpP5MXalBKGu1lQ7BJqMRIyPaQ7r0BB9ZK48Vy2h/gyofPPo4NYR8a1YvGGQkVHeOuA1SW09xOb9wcJqXvLif2rl8I/2kSoE4s3JcG8OoPuRFCSaY3rKKni5jrTggTtC5HiTDMuE8WVIA3d3YS/4zGnNjcF8vlXz6T4lkk7LF41hFqcvlCw+GRBqMUBa1zKY9WzjDJq8E5E3+M6h/4diLOVSXJdFBdilxvLRBgFsZyQM/ukkODASy0oppZtFlcqJ60rxlqGA74RKl0qEKvS7IYVyoTOCd22hc37EsWZkpT3XuGuFPuvb3Gv1/jMjHGbbF6RE9NVUHR3heY1HCB2t6U0RNEmaAL6SjI59KgIVcA8LggHIYvodc7SCEJTurLSfHgF5wVjplWlQqxoY2fRQaFaTVjFHB4irn0mT9STFvcjckq13SnGgzgHM07OWKmO2GcG3yTUlRNXpkvDeOLFgrYMpCDWvulwFEqPtzlbxBKxqCKiLi1xIXkc2ibCYLALL+jOYHCVF7pjkqECgO8cl5uactWTclhgDBqlE6G3DCrhe4tbDsSgJX1cg7FhDhENoyGZSL3qGHqXnwdBa+4ebnkyCIrqnSGOGnM80DQ9m8dLvHJsnlUU98Vi+8mTGupAsRoIm4aLxyt0a+BwYBgsQ++43DgohR6HFmtfoyPHdzd0g2VzWfPCS+dC09qXBOReFAaTrcKhvaxgbzh87zlnnz2GlScsPe7UMbw0YB8V+GWkeqro7kb0kwo7Mp/jE6IRmihDkSTmBmIOkVCtUEmVz1P1vK8qqDknZKLZ6dOCdLeXxjYqwrnke6QiQQ461cN1jk3SSahaBx7/hQZVJvoHHl0GuHR8kbXZ78j1pRGh32pAbteXZt02IO/ApaJMdZORAihachK10DJC9rEPlTQRSSkBSVMiVY7+hTVXrxRUZ4Fxabj4+rvYTlKhxwdryVBQ0B1qzj/iOfx1i9sl2hOxUnzhF8TJ5+EflZRid6WlQNOgW02so0wbl5L5QW8kbA3Yv1+m4O2zhrO7isXn7Dy17o/EFQeFUIlAck1aw/ozivMPKYZ1xUkXMEPi8Lc0ei8ojvhPSnO1fKPn6UcqQuFYPBxZvZoY1opnH4FYRfbvSZSPxeZx/Wri+FelQevvlZz/6wdU33LKZ5/eEZeUCJefOxQ++1nFFFA2BZypBOG8hIVHm4gtwuxkc3XRzIiIySFYIYj2IwZNP1i0TjgbKJ2nHy2reiCi2LUlMSna3uGDpilGKuvZDYKGWCPWvlUxkpJi25YUJrCoe/ZdIQVRduK6umjQNmEqj986bOl58cVTtn3JZldJcVMH4qYQq9SYcwRK5kYtNsL196VMgm3jic9KkoJeVYyVxb2wZ/xCw3AUKS4kZyEWCcpAKBzRSXGbjBQcdmOEtpFRMHHYSpj37qj+xyXFpVCnQpGb61yMmEFOD0nFVtnSU/azfKblvO8lp6J72VN/zmG3ThCVoGbEI5Sgtbyur6WJNnvk/bWwe1EeCwW0X9sSB0O57vGDRb1RUVwo3B76E9m38mlGK0opot32+vXae4nohGdePdH09z3lE8u4ilRPpZFKmmv7YoNM5kehYSV1XXyFRs4lu9P0R0KpMr1kofiF2CCTsrvWq7VMpVeJ8pnBL0Q3lrTQnvwqJ1F7K81MPm6Q6V+X+Ssg63X0uUOPCvvIzhkbdieFs74wkvw9uRAl+bxUTnL3hwmzMySbxFmqNbgrLQOHzNBKSig9k+1uspmmNGTHsCJPy21Cbc3s8KWCuG9NU3Uq0X0RRKOlLzOyMihSqYgH4/UN9WiQkEudiDkUMgaV83tg7OUYqKnJMAllItFrxqgwNjK2VhLKR4O2gRQ1zZw27mQbiblZCV7jCj8jqU3TM3jD3fWWNx8e8+R0xWIpWrJtKqmWHVontjtxrTpsWrZ9ydW2ItmIrgQ9qauB/t2RuC2hGnCVx7+5IBaR9buucDYwesOiHDjbNoLADJa6HFmUA4X1DEFS1lcnLfuu4Hi943zT4Ke8kiJx+voROijKV6Xo709itiFGNCPvG7APC/xBIDYJvRxRTyvR5+hsST0aKfqjXCNRSVDodB6g5POWhPlAsRiE1tcJncvuFOP9JDQ+JZ97WAWUSVQHHV0htsZ6L40IvSWZhL6Q3KWwENt69bS8DSK8XbfrHbhuG5B34NIB1p/zXL7XUl4mdg9keqmC8LQXb0Fw4FrQfRT6VUq89SfvZXpHTnCuNSpmv/wE7R3L9iUnkLSG8hIe/H80w0q+5JdfkHCy7lgKnK/4v+7ZvqfGbT2Lz5wTS8fTP3LIcKDpj4ALSTCuLjMXXyd05dldCt3nzi9aumNppsYlDEcBIqQq4q4sJEVxrjn5RMTXIiLtjuCtP75AJXjp/7Whf2mNe9aiYkT5AMNAqMSadfuSwpcFaNELJJNkAqgS/d0AjWc3lNivPcK2iQ/9ww3b967Qv3nI6Z+KHN3fEKPiKi3pLyr0IFSIlLMAUgLVa8xO0J2YFOWyJ0SFdZGy8CyrHmcCtR257GrONg3LumfXiqjTmEzN8oIa7IeCphg4We3Y9gVtV9DuSro6oxU5iM2YKDS1vB/WBPaD2PtOSEqKGuMiVTmy25YoI4XauCl4vbsjaIiVDz+0FlwUhMXIRsN09QeF2Wp8k2RyfxBIUYq56qmiP1YQHb7KxYOL+KV8obsLg2mFajccCFecyV3WwOINLZawCsavauELFfZXliQFu5dELB5yMndorgsTd6EFMbkfKDNtahKf252a0TT32M32vX4potNQyITf9NfCehDkI9pEOAhUb1qKS0E7zAD1r9d5HwqKNlsRB0FmfCPaifJM9lmPMCyl0VJe/j8FIupB0d9JlI8soUmSlh6l8UAJqjguZQKcgsLutWilvExyi0stVDWkaQ+VvFflc3ZJfj2ivOfdKwG7MbiNHJ/yXGhWc5p4HcUiuxQr3+Egi7Wba0pkKiOMRoJOl5FoA9UTQ1gl9KAItYjfJWCOWWcRqyiWtqMhrMKcTWRaTawBmxiPpcNVg2I8EO2Ku9JicW0SOovVo0twNMBlkS2+BTEJTZxtcs1e0BjqgK1HUq0IpyUkRcoNR5juoRNKWQ90rQibYy+ZJEQos04sjJroDab0RK8pm5F1I9qzi13Nsu7Z7CoOT3a0vTQ5SoMtPOu6ZwiGO6sdpyxIQOk8bVfgnOjDDpd7LrYNu95SNwNPr5YYF/F7y8ZrFgcddw+2jMFwerkgXBXsombfFiyaHm0S1VEn1rdBcXW2kOs6KkHMgOqVK1JSnCx2s7HFoycHoKCPinIxMHpDaT2XbcV2V2FMpB8sd9dbdkNBDJpy2ecEdY29ENpvstmAYasJXuHvjphTS+q0DI+8pKLHQZMaCUFVLhJDNiHI5wn3B/TrNToLzyeUZPF5QS3TqWPoNaoMqGBwGznv07OS1OTspI0RzdvO0m8XpCZQHncMRYHaWJIWe2Xu9nIPj5qUjU/0KDk1X+5LXLC+uJqNL/b2btftmtZtA/IOXHf/3RmWguUnPed/5D6hglf++Y7tK8Kz6I40wz1wexiXhtoHMDIZPvhs5OoVKd58paQSRAoq2wpMPgW7hQrCoKhPY55swvGnAuXZwHDoUD7SnmjWn97C6NHDiBkOMIMUY+MaSAq/TNitkoLstZpqI0Xl5mWZPo93RtyZpTjLuROjYVxJFkR1Cm4bqB97bFvSH2j6w1xotT3l5V6oZSmx/8AJ+/tWGjErXH8dEkOjcoaFQp9KIBtA2hdUp1CdBUFA7ja0Jwa/ANXDxesHqNXI8f0r1mXHW2eHaBN54eCKg7IjJsXT/ZJdX7DblkSv56ZAKUE2nJEvtae7JVZHjldCp5omn+Tnx6RoikG88oNm05W0XYHvDXEw9Hn6bUtPGA0+oyyUCE2itZjac3iwR2vJcwkBYg4qRCHPd0KFWR20DN4InWs0hJ2VKeAoU85YIsVUVEIr6hS2Ffen5CLptGT1mqSJk5T462dqkt3o+ZwKTcQvoH6cC+11QA8yvdRdptsYKJ+B+3jN9isCfi88freVz1klaaijkXNTBNiJoY4U5yLYNp2aqRvDkQjcVZTn1ZdCuTKDBOeZqCS4syCLwUX4Xp5mc4dXLVcfjCivKJ8ptu+SfaieyTnZH2XXLLLWKcp2koHh/oi9sCIaTnn/w7X+SVx4svuUVnMCu9sgxXumUw0HCXdqCVVCT2naUVyoQN5nqPLraugeRKrHGt+I+1b1VGWBub52/EJ0K8or2XaZMgIhIYShkvc5HshnNF0outMZmUjieBXzMc66FdCEOmK2Bn/gsZ2SpPJRY7YZPWil+WARhMY/aClAVULvDLGJJBcZj8gZG5ILERuBg1IVUecFqQmoQaM7jV9Lw6P3hrTyBJ0keXzU+FgITJau6ZbELCKPimAjdplRkISIzJORwNLeMOSGYNSGYBLWBUw5sj9v6PfiXoWC0RsOl3u60WWXOk1VDSzqnvNdTek8m1Cyqjuu2gprZCCwuawp6pHLfS1oSOkZBsu4d6SgWJ7sGUdD1zlC1Uu2UG944ZVTnl0uCV7omFoluq0EEw6DpVr2dG2B31vUzsBbS7plJCwCn9+UlMsBP1ge3Lvk4eNDijzYuDpvaNaSe2SdyIqdDTzbLPCDpSg9VZn1aMsRziyxVNnlTXRe44GiPeCGPkfQp1BeJ5AXtWfsrJzTOlG8tMPoSN87/IMBfeZILs0U1/3LAb0SJGeiuMa1p20kkFBZKX+VSaTlKFqfRSD1GrOxjLmBTUuPOXOEOhL3Vs6ZnFEVi4QecgNzu27X7XrHrNsG5B24VDeSjhag4fBXTzn6/7agNNtvWYgFqofl6zJVDaUiOcvw4grbMqeUj4trkbiKEqo1ISHRZfcjhwgIb5iDDEbhrjTNq1eofc/YrHjrf77m3f/3HWjNsFbs78s+APilTJ18k8XBSIGkgpJE7SphNlZSqMtI+UxjOinCEjJhHg4c7/ofLjn/UM24lALw5DcT3bsOuHqPo3kSiFbRnmj64yycJvPwr4Q2pgcR6aooAufdi9A8BruXpmtcWE6/VmO3kyDXMLyvg7OCs63j6rhjuegxWg7G3jue7pasq477iw2v6iMuzxZ0+wJXeS7PlpRLsdYFiFExDBbnAt5rnAt0bYErPM4GQlScXS0E9SnH2YFH6SSFho3E0WBtFEFsgqoZCFHP6elF6ecARO8zOhIRq18jglfVjITBsHm0lMLvZESZiD3p8HtHUoqoRABMErcZ4zXJwnAgrkjm0hKXgeFAozziPhQU7sIInWaUZkNpoUX4RWT/bnHOMvkcnAqXcSlFvSJrOTpNdZrPnSbT8pw0B/2JPG73kJTC7gzDsZgtTNsUly/RR7hL0RVt3z+i9wa71XO6uRTaEbvTFJcS5jccqJnSWD/UjAvYf3Cg+nxBeZGviQKaJ9mtKzcPpld0d2UfF59x+IU0G/sXhaqYykj1UCh/eoT+WK6z6hTau8znZKjk8aQFKQlNnHVG6dCLIH5QoK+F776ZCkB5b0lL+OGwzpqSC6EujUtmlKO/FzBbaSpVlOdP4m67VShviGXKCEPWizjRoditZlxnilYlSJfK9qZhmVGOMqFbQ1qPRGNEr1FF+XvINB2TsJcm61DAbDShQdCKIso9ocruSlV2r4oKcyUDhLAUS1c15iR5BWrhSVsnxgw5gV3VXpDAIkho51WddSQQ9o4+KQ4P91xtK2wRGHtLvc7uejoStaJqhObYj5byoBOxeR76OitUyInatDpoCVEJKrJs0UpE5aebBQdNx6rsePP8kIOjXX6NRGeEAqVJ7IuCRTlwvmlQKnH3cMsYNdu2ZH2056qtGC9KKCMXZwtBJ2tPXY50e4E8jAscvrBjs68YVo4X7l9werWQ91aOUI48vVhSNCNhNBgbaNYdRifaTmihPmhxCoyKlNl0be8YHtew8tgozcfUNIdamhB3Ksh1LBOL914SoqLbFygtaJM1gW3QxDu9GG48bUguUh70hEFc4YhKDAichAbGweBlxkRorYRElgE2jlgF7HIUGmyU8weTwCTKVzZyXAbL/qpi8YELNle1NCxbi26zuH9vxLSg+PKnYUU04TYH5Hb9AVm3Dcg7cRmNzha0tJ0gAKVj9UZk+6JGjVIo6SDT/VRYHn9DSbFB+PeZYyup0dJ8JCOFlwj+cqOipSgag8JtJT+hO1EkU7JsDP2BoTrP7kVKkZqSu7+6p7tTsnvBsH8guzhNSn12PJooMtGKhWp0E9deiZg323smA9VjxclvjoRVzdHvdFy8v8J2sL+nePoR4fRuXha3HuUjHA2YtyrsXgrEUAhFwG0BBfsHmTOexFr16v1wFqy8XxL9nYhaj4xPStRpQToeYOvwFyXnVyXlYcfp4zVkofVFseKN3ACgII2a4VLsIvttQ7zbiRNMguhF0Lk+3DOMlqIcCUHTj8IPn1a3L9Am4QqPcZGUAikpSe/tLFUz0G5LmXhWI31vUQq6bUnX1aKvOO5EOOq1uOgUMqGOh6Nwpo8GYhFJowI0PijU1sp7KMVOmElaYyIxi5BjHUnLiH1cCMKxyADImFGGvZak7OxaFKo0p34TZbI/Pbe7K25G43tGis/LZ9Z8QYr56pl8fm6bG5FjaWqjFXtPOV5KCuJDmYSXT8SSdjhKxDoQy8wVv7BUT6Vgn3QLoRb6k+nkHJ9soycL3u5Erp/DjxeMC2lYxxNJBLdbjR6Exhgqaagna1sVZJ+jk6YAwAxCO2vvixjW7CXzhCTbSBr2L2ar5yxGn8TqeswWtRsrugqVqU1GnK7Ki0ypPIfuLnMux8SjVwnaB2LBO1o5fu7MzJqxsZbifdLY+CaRcjZIdIJq+YU0amYjaKaKEFyc9VCpigQtyMJ0vftlhFaKvFhF8PK8ZBKqFI7NqMEsRsI2wzNFhEGjbCQsPcprsdodRGumdzKtTsi0OqwCKSqSi5hLK8etkEZHHw6Sj5MgdhoKhTYRn12VlE7oMhC96KcWTS80SDXpNCLWRErrMTpxua9YNR3DaLEm0hQDYzRYfT2dWTcdIYmDX0qK3hsKExhCweGilUl/sBQ2DwxmHZdn3xX0nePocMflvuJwKc3G0/MVSkfKUgwrYlLUd/ZonRi9wfeGRdNz9tYB9Z09+22JNvIznYcYX3j9hPW9LU197eKgjfzM2MCwLSiP98SM4DR1R4iadlcQByO5JkD/rEYdjKSg8PcH/KhRnaY803T3ghgWnDvR15jI5ryRbJMrBzaxG/RsuxwbaVb1vY4UFMOTWhLsa7n3mE3Wh9wfM3oLsbeYjQWdiIOW+0hvCZ3B3WsZzyr0uhejgytL/I01FwcZqasiu2eH4LLhQyUGCPZxgV8GxpNR6Flf5utWhH67/iCt/wn4QvwBXN7Dbk8qLVQlqRHqVb/W4hSUvxOVh1gowrrENxLwFpzQTcjFydR8JCNTZciTWCW/r0Ke9mYKlsuUj+AU689sOfrtPevXPcNLh0jWCJx/yMg0exBRsPbCzR+OIsNhEupIK69hehGatvcjw7E43YA0JsWFwvZw9iHHo29Z8PBbKrYvg9slsffdytRVQvHyxH/rhJ41hcGdSEGYlDQjppdJL5GcbyCTNhD+P1GhH5aEVSAa2R4JycVoNeOjBjoj07NsAZmSwhSByf7W3unm4sw/rokXhfj69xo6w+ZKPq8QNXU1oJUIxo2J2EmYmnUmznlcKbqToRWax35TiVtPL85Y2iTCoFEmohYeFkJX0Ca7XbXZPetkgL0VAWjUmCqgq4AyUbIB1iOsRnEGCuJMRCFFY9KZWmET+srCe3fyOXaIsNgkcSqqo5w3MfP284R0yrRIOVCQTPWzG0PaSFEiNtLicBWNNAO7d2UtyTZvo4pzLkQsE6FK2I18HrGQ8EAiFE8txblQg9xGmgMdMqtIQf1YmmLbToJxNed8dCdS2I9fuefij/SZQgbrT1qhjZzLvo0raO8LyuGXURreGnbv83R3I+OLA6FJDIeSEyP5FKJFSRY2XyHnjG+kibD7TKlSmT44CIUo6USyordwGyVOT0uhgSUl6E13J+cxbMRprr/nZ2tuu9N0L3oJOmxkW8lkmosXwwoQPj9cDwzEbUg0IZCpajk7xe40dmPEkCE3ZURpQP1KhMYpT7GZGtROmgt6PVMPw96CV5iNwTwTlyZtozi1KTEwwCTJzzgZZ3QoGXJTI6LjeODhaECvRsxJL4hh1tHo2qN0xNrA+oUNxXGHLrNZRKYgDqOdzSAK57Emsu8KNm3FGDVNNWBUmimWu74gRmkyei+NiFYJjWyzLOQa3HalNBfeMniLDyIAL0zIOURiSjH0jqoe0CQW1cCmrdAqcXywxVrRiQ2DZdg72m1JjIqxtRgXuTpvKE9axtFwdLSjrITKmQBTBBZ3dsSkCJmOOYxGHLiiInjD4kjomLvzmthZut6xfdbgKk+xmly8sp2uzrkm2V43LQPDB1vK+3uI0hxXBx3roz2m8tSLnuJuS3XSiuX42sPxQHnQw9FA6C2xt6QiiqOVi6Lhee8W8669WCAP2X64E41PWMg5EQ+83JN0wj+uIQpCwqCJRWR8f0tYBPyDQX6vEq0SWoTtrDz+wZC/KzXm6paC9fux/sbf+BsopfihH/qh+bGUEj/6oz/Kiy++SF3X/PE//sf5zd/8zed+r+97/tJf+kvcuXOHxWLB93zP9/Dmm28+95zz83M++tGPcnBwwMHBAR/96Ee5uLh47jmvv/46f+pP/SkWiwV37tzhB3/wBxmGgdv1+79uEZB34rKWeLACqyW/I0aS1XR3YPFQrHMlawMuX7Hcf9jy3v/bKY//2AmhVDz4tz3lZx/z2ve+TDUwJ16HG40J5KYkF23RKXRImD4xrBTDSlNWlu5Oga81+3sG3leyemPk4HOR6BSnX6PmnAW7U4QAYRlJVvQgEmBlyBlcIljMYt3hQAqkYS1wPkoKmvKZoT3OBeUorltocfbxC+ZiWQINszh3mQtiK5Qvt82IzEo0DikHpdmdxh950mgonopIGK9QmSoeyzQnL4dGshFopJCZlqkki0MvRoK2YoVpxQUmdpJOnrym2xVoG9kMNVU9kKKl31rKdS9f9p2hGzX1QYdzAbsOeG/QOjH0VkIJk2SCaCv5I34wEmSGki9ioPhCwXASUDuDPrOiIzjxuIcF6n07opdCJKFmFx8QWH1qsJRXlGeSO9K9y0sz96SmvpioF4pkzHzsJVVbptXFpaK7F9A2oyAkdq+IRsM3CdODaTVuI4Lw/iRRPRaaTn8M9SOVU76leSxOddanSCER3RTsJ5a3ppUwuUkEX5zn6Wy2/1RBUJPuRM6pUApFL9ZisBCNFN3dS4Gjn29ICq4+kOhekHyCxRuG/o5Y60aXWLwuAZ7dXUEqkkIE5lXCnhWSTt4r6iea7q4U8yonjrsrg9tmxKRQhJo5GDEZuWb6+15oTVWUhisL6vVADvMUpAkEaUlKBgjlE8vu5SAOVRaKx5b+OObQRjn2ulfzEGA4yvovA8lEaS5SHjpka+Dosoi/lqBCuUkokpMhAkY0PkAWn8u1aQ4GOV93Vnj7ixFtI77Lou1qJCgneTZeocqEMaIVSb1BNaK3UCqRlp7QKHTp0VnCpo3QEk1GIv1g0DZhy8DYOnSmSfkgmielE3HjqO60NPUwIxYAWkehIvUOZ69FySnDSWXh6fLPdL7u921BzIOD0k6USo011+iID5p9V1CVcjMxWsIHh6jpBofNVMynTw5YHLY01cCuE0rVqu6kEfKa45Mtw2jpR4spAkXhMSZKiGDT0w0WoxO7rsCaSL8rZvtga+V53mvJC1KJlKDdFdgy0By2FPkYDntHd1FRrIbZxS+s5d9pSm3XStzAto4hKtGcHA4olbi6aDAu0m5LtIuMvZwvNmtORM8WUMpf69MAf16QMnqsB40O0hgnI/eMVCT0mVB26TTc64iDIfUiQFcg2h+VSKeloGBK9EQMmrCSpj8Zcc+KTZhzZuKD/j/q6/cP8opo4juIgvXLv/zL/MN/+A/5uq/7uuce/5t/82/yd/7O3+Gnfuqn+OAHP8hf/+t/ne/4ju/gU5/6FKvVCoAf+qEf4md/9mf5mZ/5GU5OTvjhH/5hvvu7v5uPf/zjGCPfY9/7vd/Lm2++yc/93M8B8Bf+wl/gox/9KD/7sz8LQAiB7/qu7+Lu3bv8m3/zbzg9PeXP/bk/R0qJv//3//5/9vu6XV+cdYuA3K7bdbtu1+26Xbfrdt2uL9rabrd83/d9Hz/5kz/J0dHR/HhKib/39/4ef/Wv/lX+9J/+03z4wx/mH//jf8x+v+ef/tN/CsDl5SX/3X/33/HjP/7jfPu3fzsf+chH+Omf/ml+4zd+g3/5L/8lAL/1W7/Fz/3cz/GP/tE/4pu/+Zv55m/+Zn7yJ3+Sf/bP/hmf+tSnAPjYxz7GJz/5SX76p3+aj3zkI3z7t387P/7jP85P/uRPcnV19V/+oNyu59ZtA/IOXKmwqJS4+MpV5oxrupfW2D20x2qe/muPCM4PS8bjhvv/+hl3P37Fk28oQZt5ypwyB9xMQYbkv7MgVrjhMKzETcruRQvS3SkwY6I69RSbxLiU0MCDjz/i6JceU57LZLS/7xkPhTNuthp3JTadetA5XTuSnEyUx2NPny04JYsiO+GQXVU0jAeZsx9ELGx3kgVh9wp3Zeb3PjkKzTanWhCP/jgyLmXC7K4U5aloBcZjLza9iTmbIOlEuDdI4vMg0/Xx7ig0Fid0H1d5jI2UywHrgkz2NJQHvegpglBBmJyrVCL1hnhZEK8KulYmncpcZ3eY1SihYkEzDJa+K+YpsNLyhzyNdE4EtvWix5aS1KzLPMk8DrjjDnOvxbyyEyvdc4t/UaZ9ZTNiK0/ymuFchLhx1EKx0JCCQq1GhsMo9KZCKFCCUsG4TISMBoT6Otl4PAg5EV00IMlJwGSs84TcJerHEkLmDzzdHSguoHqqZg1GtNfnYHHJnLBu93KKRiuZF6aTz1ZQDvn94kJCLH0jLlKLVw2rzxrqh6LfsK2ieUuMEAAOPqWpnom5weJNRfHU4v7UUzZ/rMVdKQ5/3WL3aj5vyqea8pkhOti9L4gLV1QsvqCEPtUrkkLyUKrE9sOD5HV0cm6GOuGuBKlr70/nqFAY66ewe+8o53iviaVQq9Q4USSTWAr3SuhIVrZHyiL3k5TzRnJORoDhJGRUSihudnfNd4+FoFA40XqkSmgtySZJkD8UmlksE34VKC4yfapIc95HLBJmo7FXBqqAKsTVKpWRcFpKgF8jzhSxt4wbyY8wlSAH5nBAlwFdBrEfdoF62VMc9JgiUi0GimakWAyCfOVQzgn1sIXH6IhSidWqFeqi8ywOWsp6lIye7Eg3dhbVCOIQbyAfMco2+9FSOEEWdEYqJpvslKAsxvy4mEu4vA8pKYZgCFGjVSJEyfywRrZRlSMpMYeP+qDxQbQay1osbstVj1aJbVtidGSMhpCEAlbWI+fnC6FdqsTRaj/TN5u6Rylo31zR9Q4/irW3NhFjIymKTbgxkfGqFAG/Shgr9+Wxtew3FV3v2LcFoHDLgWFTzE5ZtgyU9YipPfQGXQT5TI46YivUTu2i2JEvBpSOaBfROmFcwLiA37v5vNMm0l+W9OcV47ZgbC1pPZKcUECTyUjjwYg67gn3B+IqkF4WalWsxJhD8l6AnYVedGDUUYwPEpitRfWii9JZcK68mmmmyQoll7PiP+Vr+A/kCkl9Sf4AXF1dPfen7///I0p/8S/+Rb7ru76Lb//2b3/u8c9//vM8evSI7/zO75wfK8uSb/3Wb+UXfuEXAPj4xz/OOI7PPefFF1/kwx/+8Pycf/tv/y0HBwd84zd+4/ycb/qmb+Lg4OC553z4wx/mxRdfnJ/zJ/7En6Dvez7+8Y//5xzi2/VFXLcUrHfgUoNHjQPlZRARuVI8+fpiFq4WT6SpSFYKkvKtq7mVfPoNa45+x0PpeNf/e8vr37mUG7aSgs43WYSetyXUJyBxLeLNGmAzJoJTWC+0rxf/+1flG1prMJp3/z8e8dt/6R4Hn7TsXxCrz5Q55CBFV8pWr4TsFvSWBKLFgiyEVfgkuQ8xfz9Eh0Dr5oZgN4Hu5f1O1JGkMu8/MyG6uxEzFW35fdlMd/H3BynsL9wsBE42onsNl05oaIVYhqa7PdfkChg2BaYKUpCMRrQYmV+uGi8BXYAyEdl4dnExmpQQC878xay1qIfDIJQSaTTkdcbO4nXClR5coB8MupQCTmvw3qB0wlUeBQyIyFebyNA6VBGoX9zSXlbUy552W6LqEecCI0JLGHYuf+gIxcEkaZ6Wkv1RPCzECnbh4U4gdCIMdZcKr8CvAqbTRCXNR3EhVLFQ52OZNNEmiq2mvyOFrTt1mE5sm0OVaB7mYLJCmk27y82IEtF2f5Qwg0JnAwMV8/muQUf5ezjKDlRLz/I3C8kaIV8TOTNkovGZHnwprx+NkjyNHrY/f5dFK+nsk+tRLCRnpL8jjlJuA+Yzhv2LibgMbBZ6dm6ye2k43KXGPixoH0SKcy1ZJTnHYFyLBa+KEO7Ia/THUL3lGFd5GhBFzK8HJeGMa3F+UkmaibAMlI8csSA3PYqkFP1JnJsF04nwPLgomg9FtruFWGU6VhD3MHNlhSs/5FNBy3OnbY1Lob0lIy5z/bEkwAutMYnd6SrkY5YwJ7003UGsU8OVQy08SksBHJWiKKQ5SZNW4axG1x5bBHFHCk60UEnhGnGJS0mRomLcFnIdLQesjXSDm1PJJy1V9Bpdj7kYjmgT2e1Kinz9AHMezzhYqlqa/7IYhe6kI9tMiZqoVf0omow7Jxu60c37n9Ik8mZuRFSmO8XcnCiVReTezAJ4HzSFDezbgjAYygNPP9jZmjsEzcnRll1f4Gxg01aEoKWQHxzdVYm91wJQZqqXqhJjLza6IYidc3koGjVnA7vLmmbdMuRQ1KG3qIcVlIlwZVFOQhN952Br0KM0xFSBshnx+We60+iX95JNki3GL3YLlE6UC7EGTtkGOWxqMQOorimeCVBGQacxq5Hlva3oVZ7W6CIQB2k0dK9JG4PK95PYeDHMMKD3WoywbMr6oUQqI2mfg1XrgOpF+5F60Y2pPBhSa/97ftferv/49e53v/u5//+1v/bX+NEf/dHf87k/8zM/w6/8yq/wy7/8y7/rZ48ePQLg/v37zz1+//59Xnvttfk5RVE8h5xMz5l+/9GjR9y7d+93bf/evXvPPeftr3N0dERRFPNzbtfv37ptQN6JS77ZiE4RFyV+Kc1HdSqFd5xqyFyAYxSxKnj29StUhOatPd27Dzn7qoLmcd5mnjTPBhk3GhAd8s+NFD/KgxmhPTE0TwPJKE7+3RMoC+gHwovH6M6jrvbUDzXDgYh+o2MOtzM90Ik979RAqL2VROyMvkQnU3EVtCAoOXlceYXJTl2S7yHb1EG21R9kjm+8FtPKVFzPYY3jKuKudBa1QvX5Qib8CuLxgLpwlM8M/XEkFUm46QnioRT3tvHizOIN7A1BS4OhTCQFTRoRB5l6JKqURbGaFNPsFoQSQWfwGm0TSUs4WdEM+NEQg8I5EZIDVHXA2UDbO/HSr/JEORdi0/KjEW7+ZKEZlTQ5rUMvZHveG8rFQL8VLUp92NGd1iQ0bjlQrL00KEDyGlUIvzppJ7zsjUWNDtWI6DzUaXZOS2b6jK8LZz2qGdVKi4BfKHT+eSykEDaDon6o6E6geQSjuc7pCLUcN6MF6dI5c2RONPei9wFmO97iXGPfKti/mCjPr+2Yo5UGo7yEs68fqY46BiRV/vJswcHxjqYY6b2l7R3h8yuiVfhaxOP9nSRFvpaASxUl4C9dCDd9eGnAnIm+YfjqFvPZOms1NP17e+wjuV6jkwYo5msilonUCYLSneTGChFdx0XAXFr64+xOFnLiuoL6dSfHL7uERZv1Muc6G0qk+bjYKz0PHDBi4lCcGoajKNbTh4L0EWX/zCAaE5Wvx2jTjDAWT+SYFheiM5lQmLAKIiY3kRQUoZMTQhcyFbAnndi/usCwd+JOpUWf4ZxH61wkIynkrvbZjlpE3tM5r/K/7WKQBkNfI4gg571S2fHKZLQjSohnTEpyPrK19aQBSUDTSJhoTIp9W1KV4yw+N3mwMHrD2FuaVS+C8YyUaJ3mAny+NvOfcKP5GEbJAmrq56fE/WCl4c+6DZcbkug1rvKM0YjGY19ibKQofHbvSrNeY9rP/b4k9IZiMWBMzJbBiX17HYRYLnv63lGWo2hknpXi1NYq/JEXPVVnxTigCVAOmOtDLFqSVjRKwWsuLxqaZS/NVC0OVt4b4lUhuiCXiDYjXVsn5/iUQt4a1GIkjhK0WBSeoQnYIjAMRoYeB5HFomfzeEm601NUnlhJNlIsA2wt5rgnDEYctxKkIqFOevSzkuJC41uNe++WcbDSuJrIwarFB80r/+e/yWv/m7/Cl+sKXwIb3pCvwzfeeIP1ej0/Xpbl7/n8N954g7/8l/8yH/vYx6iq6j+4XaXUc/9PKf2ux96+3v6c3+v5/znPuV2/P+u2AXkHriSKSla/8ZR40PDsD1WUF/KzaQqqUp78J4iLkqcfWQoVYw2PvkVuEqbPQu0kKMqUEZImwW6cXk8ajpQgajCA2wpdpDs0NI9HxvsrNu+pOfr1C86+Zsn2XYpkjrC7XCxVsh1fyRS5PJdGxi+lwDJ9tsxdXzs3FVfXdDJ3IcWU6eQ99nfFCcWdWnFdSkKzGo4C7tKIMFYnhrU0LiCFq0DvUJ5dJ0r7Jr9Pk9CDRp0WxDLSPciCRRdRSUofc2oJdxLJBMLeoVyExpMGA2USqkc9MrYWOkMstDQeKTvyOPG1Jyh0IV+uSie0koJg7C2TKt/vHanSxKCwRaDdF3Q6icjdSmp5GAzBRHHCygJyYwPDrkCZKG43Rn5H6Uj/rKY47ugvKqpjcaYZO8vQS06F6jS+rRnrwOG9Dd3g6E9ropdpYdIpO4BJ46C8IiwjapD0Zb0e4Il8qUSXsySyODu5TMcaxM0mOoSOl9ErJf1fpvhla9gkFCB3oTE9M5IxGSWUpzDkIZjbZITNgLnQ+FosrxZvTdQl5pBKFJz/IU/50GE+79ADtGtwFtrXS4YBTCtMxTrC1deM1G84fCUozHAA/u5I9ZrDtICW8883Wey6DJjOot6osDtoX4iUpxr1ZkmyieE4YPaaIock9idyLIuLayH6cBzz9StJ36HKqMsV7N4TMXvF8jUJH5yshGNGPX19fb8wncIvEu5Sjk9018jh9Pmw8PjOYfby2YZaPl8zBQZmQwc7SphjUtCdpPlzUEHOAwJQBYyLhBz6V677ucB3NtD3FlcKxcnaOOfgmNnMIWKM3G9CRvXgGl2YtgXSXESvs+WuPH6dnyPNwIQMTsW/UolhX8zIh/dmplv5YNA6opTKtMc0i9R1ttwdvZkF6pPd7X5T0ay6OSdoakIkR0M991jwhm5bzjlBk8h7GCyhkwakOWrpR0t/KrbaD95zyhg1u7bEmIgxUcT2SmidQ+cwRcDYiNGRIVPGXDOidKLdSdNrC9nvvhNESatEUXhC1PQXJcolaQiCknyN0xJbeexSmrVwUaJXA0Xl6VtH2jmSixSrQahtNz4rlCS/73Ylej3gShneeK9JUeNzQ6LNtTVy2DlUKVQtf16hFiP9ZSl0qdYQlp79wwrlEqotGEwhKK2L6NYIyvFag4uCpoa1p1z3DLuC+l1beBdUOrG7rGAjcH5aj2z2FWNrxVjkdv1nrfV6/VwD8h9aH//4x3ny5Anf8A3fMD8WQuDnf/7n+Ymf+IlZn/Ho0SNeeOGF+TlPnjyZ0YoHDx4wDAPn5+fPoSBPnjzhW77lW+bnPH78mLevp0+fPredX/zFX3zu5+fn54zj+LuQkdv1X37dXo3vwPXf/9L/AVKie+8xfuEITgr7iSqlYnbK8eJSdPW+Rgr/nLdhhmuNhCAl18nQk/ZjojFNBVsoIBpJVw8Vs9tR0tDec2zfXTE2ioffesT61YE7vxE4+UTEjMx2vrEAf+xxG8WdX/dUZ3DwO4rqKYyLJI5AVxrdatw26z3W2cb0SGw5+/uB8YUB3WrMpZmbDxWkOSmfmdmFye4U7txQnmmZ6C2j0K2WSVKwO9k34dRLqrbdZnrKZFVq8xeqlS/l6YqIvUGZJPzj3kgBfuEIrWV8JgW4anyeSCpiKxkbcTBiA1kGYm44UlSCSBRiW+kKL41MMxKDmnnuU9FW5okvgCk9vnUz2oFKBC/IS4ryu2lqRAcDUUlzEhT9tmTYSHBiHISmQBNIpXCwL56sZP9ttt40iVhJdkc4GUlLL37+nSYugtCKrgpMJ+gGkJsU5qm6OGVJ4Wp3Ytk6TratFravJHx2g4qFNKhmd6P5SDcoWVmbpHMjnaycAyA0IdtKsbz5up7ujuRh7F+M2L00NweftIwHkWEN2/cEycV4cRAUY53YvRzxjbxu9ZYjfPXu+toaoXrNzef1ZIdrd4r6Tcvy0xZfS8MwHErzFUpJSo+luEmZXpy7fMNsMdw+kPOtvyNaGzQUjx1ml3VTXvanONVzY+8bQSaiy7bIg9C6TG7q9CBOZSoXZbEQbj3IcVZB0XymmK8Ryf9Q8vk0Cd/Itv06StBjm5GRyb7XZM1UFahf2NGsOlBJ+P9lIHhNGM1MOwqDmd3WtBaL2b53M1XJ6ITJblQuu0ulqPD594KXgLypgVBG6E1h1DMCopUgi5MdtVKJEDUhaoxOVM0gr2FEoxByk2FyEwKChDT1MDcQIWopprVQopRKVMWIs4Fm1eG9oevFKrsbLMMotKqYFCHmP0HTnldoF/J7FHvgfrqGR0257sXBaluK7fOdlkdfOGLbykR5d1XhRyPOXvk+YEufbXXl9fTUXPVyzIyLcv/QeVjR2lmbEqKm3+RpdSkDFaw0JuWDPUXh5T2clqjFyGLZ021yTpKNKJPEbezcsVzJBWhNwJqADxpbBMpqJAZNty3wnSNcZk3bpSVdOdJgiBsn53xC6HqDIm2c2IF7GX7YnPeSXCKufdZegVsNxCbgVgPm/RvGl3q416EGzXBaUywkO2l/XrN7vCANBn3U07y4xZaB4bRCPymFzvVlvGLSX5I//ynr277t2/iN3/gNfu3Xfm3+84f/8B/m+77v+/i1X/s13ve+9/HgwQP+xb/4F/PvDMPAv/7X/3puLr7hG74B59xzz3n48CGf+MQn5ud88zd/M5eXl/zSL/3S/Jxf/MVf5PLy8rnnfOITn+Dhw4fzcz72sY9RluVzDdLt+v1ZtwjIO3SNLx0RreL0q2vMiBRjZWZN+Vxcx0RxCeVVZPVqyxf+mwV2x5xSPiWgSxJ43nAWsjZPE+vPtSSjefyHK8kByWJu08O4VJSXQrtJSYqS8ioy1orNywXdkWI8kImwXwhfV0V46WMaUuD0w1bscT2cfDLSPlAMh5lS0U7Nh4zEUxnBK8bjgL20qEuhHEy0j1gm1KiITZ7EJxibiL0w+MOAOzekIsmUeh0onhn8MtGeBOyFIS6CCKdVbjRMgjIKX1gkGTINNJZgNObM4Q+8TOEWoxTvozQu9tLiDzzaJFKYoKSEyuLwmLKfvoJycU2ZiEGKm7IaZ6rENLlNUZNUIowSQmhNxK6j5BB0jhQkQCxma01tIyl/KfhdIfQpE0nByLTQ5+KtF+Fxf1lSH3a0oQKfsxoUEBTDvqBY9TLddBC1FD7JK8kLSYqw8kI3OgnoXjOug1hoDmIioIccTqhvoCD5O2vSDgwHoivQncLtmGlGcbyhTfJCs/MLKbCjuBoLBS9IYzKuhF5nd5riAtoHiea3S1SC6qlmXEkAot2J7e3RJzW7F0GPJtO8ctbIqEhlxC/V3Ni7314wrhNdCcsPnnP52iHrz2qu3i+6FzFSkKZhOMiBfTndvHpssFvQo7umR3rRa3QnkpNRvSrha9v3XCMfpvaky5pYJBaPFPuXpIGzW7EqDiWEMs1o5bjITc/xtd10dNKceSev45c3oE2yDW8OiHQbSYROLpHiNVKSlNC30PKa43EQu1Ob5O/ViKv9XKwXhWgOnAtZ2zDOWRSu8jMFCKQJIUlGRowTyYpZ4zGhHkohzXTe97nZyMnnb89DszZO0TzSgOTt9aO9vtfplAXoEvJXZGH62615Q5QsjMVC6FmTDsRnMbxSsi1jIiGjHvEG8uGshImOo0ZXgnxO9rj7i3rWx7h1jx8N1gbSqCjWkkfglsNMrSyylgWg2xUUzSgoognPvX9tIsZdU8JikPuI0imjUnJcotcwiN4LnTBFpFxvqQpPN1hi1PTnFfWDPUolNucNySvigUf1Gt14Ym/gjmhZjMnobG7Shl2Beebk3roKNEd79tQYG0hlEKtlnSjvdPTbQlCUUcvzNRQv7Rh7SxwMAWCfEeQLhz8IlIcd/VWJchHnAu2TBclKLk8q5HMK3mCKgFsMeC/ZSf1Fyd5rDk92tCbCHSjU206iL7P1paRg/ceu1WrFhz/84eceWywWnJyczI//0A/9ED/2Yz/GBz7wAT7wgQ/wYz/2YzRNw/d+7/cCcHBwwJ//83+eH/7hH+bk5ITj42N+5Ed+hK/92q+dRe1f9VVfxZ/8k3+S7//+7+cf/IN/AIgN73d/93fzoQ99CIDv/M7v5Ku/+qv56Ec/yt/6W3+Ls7MzfuRHfoTv//7v/49Cc27Xl3bdNiDv4PXk6x3FFUxhbzoXaMqD9gnbJfoDzeYlCy9alm8l+rViXGR0w2fko7ymXTVPEke/vYOUuPzAkvaOFGBTgTPpLZKC/V0lSc5KGhkzJPojmToXV7D87Sh5H06aD18pFm9s0Z1n/RsDw0sHvPWtFRdfoameyHZnmkwhE3JBYEQ8qS8lM8QvoxQ+WdNNEamP9jLJu6xQG0P9lpVguSDJuUkhEzWXGF7uISn0xgqFxCtMm4ULh7kpeFsqbthISFoqInGUisxkoSeIbiUlRbLZXcUklBvxbY6VVhC3Dr2U34leEbSe6Q8ooR90QVEtxEvfmJinuOCKwOAd3V54Y67yUqjkAMSUJo59Ph+yficlSJ1B2YRykRQNqjM3Jn1SyHaXVQ6Jk+OgbCR5qbyn6XDKDjPJJHGVaY2IoRsvmhOkKVJBzfqhyTXMTEnevc76g0TMVLtQJ0GetCSgtw8y/YqMLpgk5gGjoAzlqWw/VDmg0Mq5n3KTXJ5K+GV3F8pTRX98LR7XXvRI3b3E8jXF7tr8BLdRRGcz5VBBTmN2l+Km1R9H1p/RtPeg/+Vj0ssjvtIsXzUMa7mG/P0B88zJZFZJU+bOJZize9GjFyP6rYryVBy1xpVoPyb6WCiyg5YGs7Goc4s/CLgLEbqjEvVDoa31Rxm1NIniXM9oRqgFnTAthEwvjLnmCEWm0NlEWETMTkuhpjJ9LOUBRcyfIVO2SkYLM7VL9wo1KsKJh/zY2FpiEUUXEMEtRrRKz1GCUlJSXCdm3URKCpMpTXF+XVkqo2WT80V823Up27xuANIN2tP8uBGXgil7IyY1Nx+iC5FzUqvE4M3csJD/npAC4/ysBQkxX2NcU6tmZOS535PnDKMl5vdelePsqtV3BYujlhgVQ5+NKEzEe2k2YtCoJC5WSsdrB7z8GuXiGqHRSlLiU1T43OEHrwlJiSNV1ps5HUALbSwNGnNlSQdCVbI20G5LChcwKmbNmcGuBvq9k1RzgwRF9pryTotWiTG7bYWgGYecdxQUIZtr+EOZepnKsztrJJdDQdo4+bidp3/aCNKRNW8sAq4e5TMbNeWqF0F8guQ1cSnhnv4LDepAUON2U2EOe/zWiclBI4+POyfuXXkFr8WlMCku3jyAMjf7/xNIQ/+DsP7KX/krtG3LD/zAD3B+fs43fuM38rGPfWzOAAH4u3/372Kt5c/+2T9L27Z827d9Gz/1Uz81Z4AA/JN/8k/4wR/8wdkt63u+53v4iZ/4ifnnxhj++T//5/zAD/wAf/SP/lHquuZ7v/d7+dt/+2//l3uzt+s/uFRKb58r3a7fr3V1dcXBwQGXl5f8mT/5f+LxNwpsoYJMMbWXL+vgrvUc05omrvIL8tckWJ2mnCe/OXLxFQ7bJaqzyMVXmBz6dmMn0nWzIwUPVOdSHNgusX1Jz9ssL6F+FjNtRTay+sQzhhcPuPhARX9wnYg+7cNUyI1LKcqmddMByy+kAUk2yhfMGzXrz8P2XcwC6OgSYRVwp1L4RicTZYoIeyNcdwuxiJhWbBn9KpAKoRTMS4Eps8NVTuxOWpoZdTCi83NDJ4F+JIRHbAVFISh05YleY4pAGMw8wey2BdrFmZcdgyIMhhQ1i4N2LmZipp/EwVCsBvxgSEGCAyd6i7YRv3VzwvPkAqRUIvbShJnKEzqZKagroTKoJKhPKmRqmRKoUQu1oteYVhNOxHoz9Ba2hlQK3zppmVDSeAgatTOSaKzBbE1uhNUsTk4mkZYBc5aL6lPLeGdE9ZriwmB30B9LgzEVumKjq2Yq0YTAJX3dFE+fk91JUT6dU8hgHT1Cdy9it9fIS/VMzmUdoD+E9NVbmVBvC9xyYNw79Fl2P3OJ8kxDhO4lj16NxIsCdyGWz24rqMwUEjihN34hRVZxqWhf8qgEzat21mmoJMijioLkqSCi/ClF3rR6Fru4jaI/lmtCeeheCBLCqaQxcFvReditEpMAJc2CykNxsfi9pmHNyIiR1/Er0U5NlETtJUhSrKfJaIvso4rM1Mf+fr6pFEK3Wi47Npc1ZTNibhTgU+Efg8ZmhG863ybnq+m+pN42hVZvvwXlIjF4I+erTuh8rk+vNblkzdtQz1/TE0Up5nRvc6MZmp5/c3s3/765Jl3I7/W8qQmZaGY3tz9ZAO8ua6plT8yWvZMd8DhYwsZh1oMU8SphqoCxcn3fPCYpCfVqOqZTgxL8hDBdNyxKJ8ZOEtTHbSHoVUKCUi8K9OFA3DqO33VJnMT23jA+lFDOg1cuxHFrW5BGjbIJ14zU1UDbFehpaBL1HD6pB0V0CWppfJROmCJb8vZG7sl5PwgZVQtTdyf3UVMGQrb+daWn3wrvMQWFchFbihX62FtBdIKgXcomTOkJvdjOGxcxTuhhfd7f4aoQC+jsnvXZ//Vf/V2f8xdj3fz+/i89XZ9e+x/8yjdQL7+4c+V26/nffv3Hf1/e1+368l63CMg7dD3+xoUUXS3oQRAIX18XH9OX+SRI17kQmWhUKtMrXvxX5+xfWdF85oJwUHP310aGtaO4HOiOGjav5OlnvLHNxNyITE48Ol5v0wx5GlwK6mE7KaqGpebq6+7y7Osk+XoqglBidZoUHH0q4UvF9hVF9xUD+sKKXWIUfr+KouHQ64GyGjG/sKY/houvikSbxOrVyBeY7kTsbLL+wO4tfiEUllAJ5UflRHY9aKiioABeg4nPvV9bBDgODKc1uhpJhWRwxCIXUzaKbZNOYi85TtVUEgcYk7JfeqK/KiGBubIi9H1xK9x0m/no3hDj9cQWVHbQUiI0z0Vbd15RHvRCS8iizxQ1yYNtRnxnSRldYdD44IT6ddDRZ541mWamMiqhdhkBGTXubsd4Ju4B4aIUcXGnUdPUvImCTJmEujDE3PypXDyI7avkuJiNkWZlKyiKvRBxvL2QAiVpZq1I+4Kkh6solsna5wl9LedWeQ6XX+NlmybRvKGxHVx+KFI+lcZSeaFtlWdCuaofaXQPsQSzl79tC9uXpTgzn1piPBQd7N6jMVvRDYlQW83OUuVji/28RQU4/M6HPLtaUlYD3SePKc8U4/r6erOtwu7lvDWfsQyHcq6rhFCZ3PVQwG4V3bs8qtOYTufjJ8gP8VoTYnrRe+lWkuWTguYx7F+Q5sA3EBppttxOhOK2lWNJkuZivjEkoVr5jJxFl1BaKIx+EXGXgrQkLfov5eX+orIDXXfPY1eSfTP2FqVg89oBHIqFbQiace8oVz1+sNisbZoahGmJjXT6XUQOnXUbxoRZqzBrnUAQAa6v0ZsNws1mQF7rGhGZm+Eb0+5hkK86sc/NFto3hOcpqefoXHBd2E/L3GhGwtQkRUVMQlu0JrDblzT1MNOzmnVLSgo/WupmyNuNuMJjT+TksAfXdK2pcRpHaWgmGp02caa9TSiS1glrr6lu8/0sKsbc1OA15f292B4fjCiTWNzfyX5HjTWBrnOiC8sUu5gU9aqnvahRNuJuIENjd10ymCIQlRhglOuekN26wt7JPcvkwUREzDw6aRKSyahXETGnjlBE/M7izizgGOokVrqjxiykcfJB4U0iDZrysJf7a3Y7q4qRnSrzucasM6rqga4t0JVklFgbf1fze7tu1+36/Vu3Dcg7dN0Uv4ZKzdPcqfnQY0YdZKhDcDK5HJfXU1E9wqM/dsSDf/UMrGb/YsXizT3Vw4H25SXdiZpFvX6Rt9sDBlJgLkbGhaK6SGxe0qhsBZqM/GlR6KBmB67uPrgrWL4VSVqhojQnJ5/w+EZz9bJYmTZfgPVnHb4Wylh9Kk5d+xegPDWopzVmV4sDksqUkCEXHUoRS4HnlZLCamqITCvC31QHglNSxKIIi4gqArEzFOvnHV1IIuYMe5ebm+vJNIh+Q9tI8oIIJI8U80kageCyE1cQDr3qNSw8YSUC7vZZAxm50C4SRk3bV5SrXuIadMJWHr93hI2jvrOn3YrgZzitUcsRv7fyJR4VykZ8Z9Euawly02K20iT0bYNaj9A5CewKSvZJSZEpiFRivCjRvRLdiknoc8l30PuMfgDKa9RTKxNOncSJxkViESlPDb5OFPnnfh0xGyNuWjZRXCqGgzS7PukgVtLDqGdReVLXeo/hQI737iUptm0rDUp3T7RIi9c13d0EUWEDlBeSI1Jnu9jurjhs+WMImW5kd4r+gSfclYui/nTJ8rPSSflazmHbiouVChq7g+6e5GY8/LUH8h46iC9H3E5hBjnP9ZCboFquufHYZ4cdPdsFQ35vpTzHXhhMp2Yxu8q6lliAutCSw2OkCfMracbNAN0x+INA9QW5duyppnsQGO5HqjedDAkyUherODfm07nNZEbhspYk21eLs5yc0yojIgxKHKdUPp+6in4RslV0goU4YMWgCRcFNJ6xtxKO+bbibm4IbqwJuQMYs7WuDyJgl0ZZpvx+NBKihzx2023q7Svlxn9CB5QSBGEKNAxZOwW5GDYJn2lENlNOFcwuWpNb1+RyNRWtQzCzeN5mcXuMag4cDEo0MaM3z1G8BL25RmWEQnkTWbl+H5Pltjbp+ge5qJ5oXfI+5Fj4HEY4PdZfVaAT5aqndJ6ri4b+4QJ9MOCq6xMz5uDCGMT5anqdbnAolWgfLaQpufGRptyhaSM0vHhRgEvoRnKOTBkIrUUVgbTLCGwV5D6VT0U6McogKmgNYS3Xpa4CvDIwbgqhk15Z0iLIYMYlbC0GHaHQVMWYzx8zHwdtkgQdRkGi5b4aJScmwXIhdshumtR9ma6IJn6RNSBf7O3drts1rdsG5B26pgA2NRUQwBQmOAnQAUFG8vdHKASp0Jk+MTZQbODivzqmOgv0h5pYLDj8pUc0ryUWv9Wz/Zq7LD5zTljVdPdKklE8/q+F422GXKQsIG6E8qHH32M/EyweRpYPE+ObmuASoVQ0j3P4mFVsXnb0a0XMehTJeJDpt/aSPxKn4MEkjVB/dE25Skq49FOCbqoijFq0GRmR0IMmlEmaAy2oUVhGoQZ0Yr/LMuAzTSoEmbhOHvyxDKRRo10g9uIhL+LPSBw1biH2u0qpa5rbJLR1MX9MkiyOAt2MqFUO+rtBnVBZVDsJXbVKjKPB1B4fHfvTBrfuURWMOxGhz8iNSpJijiAcaYLAUnaVOcpwwmUhVIe9kWbEWyhEvK5bTSogmSiC7F6TqkBYkovXnDKcqVqxRI5pr4l1EDrHaAibzPvXOZtia67zQIKkcosbUyKNiu2hUH5Me11I2ha2XxFY/Y4RZE1J5sb+vkc9MZIBMohd8+7dsl/JJIrPOsaFaDCiNWgvyImvyfkyararrd+wDAdmbk77IyjPBAnQndCkivPrpsivM5XEJNS5hByuPicC9+m6GFeIGN8r7JXGXkpzMaW6TyiNSjBmmqP28j5MqxiOBG3qXwiYK4PpFcWG7LbF/JmOK9Fo2EvDcCRhn/1JhDJSvyoUsuFIjknzlmHwZk6YntzezMZIk36jfjedmvVeapTmw20yHSvJ/ocmkdYepeNML3RNz/iwkfuSkfM9DoZyPc4F+aQpCqOmXsjU35g4F9C+N0SvsZWfkRHFdfPQ7cW5bdI8zNdYFqLPjchEhdLSDExWvDGjGSkKJUzn4FB9oymwORhx+jlcb9cH9RwKopVka1gnSEU/GqpC7h+TmH1qklCClEz5IDprvap6kITzt6EqN5uPlClsgNCMVJqbMNlXNetgUhIRPmRmk9eM2wJlEtWqpypHtrsSvMbebVku+nl/u85RVSPDYPGPaxk+HArinJKi25byWM7y8JXH2oA2CedGul0hx8qJc57LKLEfDcoK5XS8FDQ25eJVbS2sR6p7e8bxukELj2vSoFFHvdjyVmKoUb1LKJOLup/1Ne2+mO95202FqzzBG/rBiSOXNjSrdj4H+t5ii0CM4vi3Otmx2f6Hcylu1+26Xf9l120Dcrtu1+26Xbfrdt2u2/UHfIWkCf+Jtrn/Mdu8XbfrS7FuG5B36CovErFQNE8Cl++R7AsRkJJVm5MGYfq/oB8guo3mSWSsNbZLrF5tAVjFhOkC2UORuK6F128MySoWn73g1T9zZ6ZlTYnTRKFhTZa108+ImQs/P1+hxzTz3rtjS3ekOHjN4/aJ9kQmrHpKN8/2wCrAcAjjQcDstEzR9SSmvZ6o66w9SS7NKELK4nXdC/0pltna1+dE6DJD7kVEbYzoMkrNgMPd6cThKyiGTSHUlMpji0DQ4LduTgnXNjK2DleL3330ahalp6iIvREReGvBapJXmEZoAxixrDR50hp6CxH225LlqkOpxKIRi8vQW2g1Y7ad1GUgDiLOjL1BL/yMztBaEWMWEVVEwkES1MJFSRUGqHNKe3mtW4mlaGKi1VAGcVDKNqGxDvP5lJygI7oTy91kE0Fr4k68+2ORsHs5BspCcllnECFZ0TeYTnjsSYuTk+kE9egP5XNvX4jUbxnGTDnSAbo7CfuwZDiMmE7hzmW/ByXOZlNCOkDzhqE/Suid6CMm3VF/JxKyzW30WtCML5ToUWF3QtXqT0QEX1wKhcvtBe2r37BCGfOyr1cfiPR3E+Wz61waEjRfkNf2i8TydXG9Ki7l9aMCLLOtrIrZFMIl4skAeyu2xIOlPBOkrz+S/QpZe+ObRFwEwnHCnFvSSU/cV1RPNMOg6O4JRcZdaUIheTrJyGvMlKtOExZCy1IBofAlGA4FgXEbQR6LS8W4yuZp1/ImdCnmBL4TXcCkpZgpXluDOekpC0EsrrbVHMo55XdMYnTfC2Um7S313f2sxYhBC70vT8WL7Iw0XTOTKHvSRs0aDj1RtK7vmyGK5mkWsOfXVokZlZhWjHJuhlFjnAT/JS9URVMEUNd6EWOFdqZy5shk9TshHAAYZqqYVkk0LEqsfPW8LWYr4mlPJtpVuvH+lI7za4qj2I19RihHMT+3vyph1NjVSFkNOCtaFK0TbjngnGezrbJpgKKpB7reiUh9PWIrPx/DoZN7Cl7hSo/Pn0m7LTFFYNiVct9RCYqIrQRhiN5IdpIVimlxr6WpBy5Ol7h6xB50WBPF4jeIeFzpSDrw2Gpk0fQM9Uj7cIG7L1bkPmjanLvSt27+7LZXldyX66zz6ByhLymaAX3zs8mC/DSKqcd2U926YN2u2/UOWrcNyDt0Ratwu4Sv9ZzsrBNMdMyZm5vF4ZNV72RdOyw1h58PLD/5DHZ70Bp9csD2K1Yov8ZsOvyqRPvE2R86zLkftTQGSQq5afChwrWYXKxXMyXKZdeqRvj4TO5Zijm1efE4Mi40+7t61rAkk9/H7L4j27RbLRz5gyhc+FbhD4JQi6Y03Sii3ckBhUHBKMWxHiUJPWXDnWQyjUYlojf4Iy8FupEieXxaieNTGaRYysWRN0J9cOse3zqUFltdghIRZpJ/Y+L8haZ0InRW9m9QYkPrNYOXLi55Rcj0MeUmC1zoRyvhYZmaUTQDodSE8xKCIQQlTYjX6JxJoitP2DnZB4VoDxKo9Sh0r8x5t48K/AuDNGte9tPstXw2tWRh6J0jHHnh+KuEvnCSzO0m/lkiLj2xM0LdqoK8nkoUV5I2P9nDgli/2o0U6lMqtx7A3HBb2r1LDALMFhavaUItjlLNQxFdq6jojyQLIzQS5FedwnAojYJfBWkkNpISjpLGJeZ8jtBEijPZ32LjMN01tWk4ipTPNO19KaKLCxGSb98TKM8MxaVoUVQnTfH+XZHFqyLW9o3oP0Ij5+J4mNCdhGp2d5gNIPxSrhs9iL7DryLFqab/YId+WFK+JpzJ6bwfDmW4YPfiDiefUSLUUTj2FxbdK+znqzkksTxVxFLR3Q05eFGc8cZlphlNVEWbG3Wd6YsuwSghhFOjH8uEJw8HRmnCpus/bB1mJyGWQxkkrG66SSmgknN3zMYKZenZb0tSVFjrZ1vplJQUjSaiFtmammualHFhZppOOhFjJOdjUq+/3fXqWoguBXoYp4kJs3vWRPWZCvep0BZthmxcWaFPlfX43HMnqpPJ4mVlnhfST8L1EETMbiY78BvCiZSyfW7Wd9wsfyfK1qxj0On6zeZjc5M6ZnIjNjUeAP1VSbEasCZgtKS6b7c1SkeqHGza9tdCl8lKOIwaWk0qoTkaZjpoiJqggUYoVVUz4IOhXvaiS+sNBFBrjylE2N09FS9oe9iTgsKW4kK12VYoLRa5o3YoHVkd7dE60vYFdTmw3VVEr2m7guAN6mBkOK0Yxvzlsx4pFwP1YsjBh2Zu1JwNYurhNE09zEn307EbW0fRDAxJzEhSdjn8cl4RRXzuLPvibPN23a4vxbptQN6hKxYQsj6iOpOi4MG/uWQ8qBjXllAo+rUUkypA89Sze8EyLuDkkwPuaqS/WxKXJcoalA+olGge9cTS0N09wLaR5W+dsigtj/6bE4KD1auwfbe8/oRkTMVItICd6emyZADOTZQ2OtGl7B8oYiF5BZNtcMx6UMmbuN6GCHJFSF+cS0IzIM1HFaWA8pqYg6eUTnOwFn3mnFeS8K0SpDJkR5xrVx15MwlVhCw0B7MzxM5IGngRIWji1pEaj6s85Uq85MPgUC6I6xTIv0dDIlI0I2NnJZwwpx3f9PNPo0IX8rs6e/0HraE3DKrANaO4B0UlAW7eiCNVLSnRvreUi4H+sgIvaAsmW+u6CFcOFp7YWty6J144YqlEy7AzmMXAwUuXnD5cE+4MMp7vRWielBKnrLxSKcJ2NlY0SEGCCCXBWKH3IjKPLs1hfHanZvclu9XXBaPO4mglDbVpxbWpeib6AxVEoK2imAxMLlt6yMX8SiyeYwnblwW5sTtN+VSctoajRP0FRXGuGI6u0Qw3aVMMtPcjzVua7p7oJ8ozfX1uq0l/BKvPGjbvD+IENSiqZ3IeTYGAu5dSTi5PLF/T9MdQXGQL4DvSQNm9ek4jFV1uzkbFeJBIe0u4N2BfK8Wqd5CGqLjQ+VjlBhvktepI81lHdzcR6oTO+o/ymcbXou/SvaY/zo0GzBdmLKMMJ0J2dwrSoOhhQnakydOjmm2QbQukjMJUst9qJUV1XEQqFwh1JPWSM6JMErRuqAir4dreOgE5PPNm46GLIBz+oIhB4Xs7Iw2TU1tMYkntSp+NvOT9zGjIhMBmB6upSYhBE29oN+bC/iY8kqGrm03ITb/bm9oEyPqPm5bdXO/PZOM7z4GiJqU061RuPv85967fYzvzUGlqqtK1XkyrxDBYikmzktGVqdhOXkshrhIhKobBonSkqYe8X4KuVJWcmEZH0VSMBprA4rCVe0zWh5CkkSuaUdCV3uXwRbmnxTxAUToxbgrMUScNrknEJxWxCcSdo7y/FUG6i/L+ek1y0A+W4awi2YSvDUXpiUYaMVd4aeRWnVgEj2YOf4xRgZH9b7uClKBwfj4vRF9k6LYladDoWhqksbPQii5KNZ40XAv5vxzXLQXrdv1BWrcNyDt0FVe5eNVQbCPHv9mi2pHy9Iqy7UApNt/8Xrojzd1feAo+sPwfO976s+/F9BH7bIN9ckk4XrH7yhWrT57SvrSkfmtLPK6pnvRs3tdQvQrqasf9X3Q8/qY1epDCalxNBRHXXIEsEGcSx09UHQv7+5riSvIHzJjQQRFK6F8ZsI8LyvNckFrgBpVMj7INla7dtVRiRmJQSGp5UOIklekdpgqkCDGanG4ervcRpBAzIp5VSgqJScQ57AtMMxJaKyDCNHqdQvSiInaGYdQS3mUCepkYeovSQlFSClQhri0haLTLblMqoWs/U1BCP03kpAgjcV2o1R6imie9Y2cZWifTxkGLO00tosx+W4qLVxD3LmUyqhEkt0PtDUqD3zv03R71rCQuJItDP1myKZZYJ4Ws3Wn83RFGRSg9SiMi/SBNhkIQEgZFOvCSomwTk8xeQvgy+pIRp0nQHE3CdNJQkNEM06m5ia1Op8evTQ2SFgRt87UD5tThNkqCC5HPwu0k5wMryMmUPm630nhEm4hVwl1qSQrfKbr39iw/UTK+OLKzlsXrZj6/3EZcqYoLoU2pCONa6FzTOb95nzQsAPsPijq+et0xHMp7rZ4JfdC2cr0UF5Jt0h8LGmM6oVQBsw10+dAyHopL1ngiuRzFuTREKuTrQwuK5C4NmEj7IArl6lA+u/qhoD7JyBTAbRXjMmGvJI3eN0ksucdrxMsf+RnVVF6axeEo4q4k+FMHEdaH4vpa0AOkdcI8dSJoLyLj55ekQy/niYvoTQ7Ts4HoDVoFMWzoJAA0toKcUCRSnVCnIm5m6UUwPeXYBElvVtmhyBZi++tKKbqVTuipuCfTlLiJgNwo5t82rH27E1eKkhYuHYq6nqbkhuJmzsbkpvV8xsjz+SPc+PmUhP72vJMJtZgoZFODos11wzG/D0VutMSieOidOHdN+5Z/eXfWYGrPwf3NvD8xavzOsTzZz4hqjIqqHGdqVzc4hl2BdoGi8lSFWOz2oxU0KirWh3v60VLYQJEDJDeXNfpZgbnfUS8y1akI9I8buf+YRDoYKWpPkbe5OGqlqdOJ0YkgXKnE+oUNbVdQZNpeP1rG1tKs+vn/vjfEy4LibkvfliidGHpHVQulbHq/Xe9o6n62NDcHQjfWKnH1bIFqJYdEdTK0UcW1qP923a7b9fu7bhuQd+iaUIKDT1yi2xHajtTU4JzE9KbE6lfeonrlLuGwwTy9gqrkhZ+/JDSOy4/cY/2JM8zTC2qrGe6vSEahLrcUp5ewbFh9HrpXjnBXPeZ0y92PGx7+0cWcYzBP98y1Je/UFExuVdOXrR4hlArTJ6FyeFi9nli/6njyR0dUdKxehWITqU49r32XxV1OeQjXaIhK19tWESmyr6xM63OOh+qscOtzs6BMkuIeSK2VCb9XsEiEi1JC9/IkXpmI0pGyHBmza0/0mjQYUkxSjLcaVYkVZFyMM0XCFkGaGHNN7dCHPWNrKZuRbijya0uDEPtMCUkKtppYaEwzigNQ4wlXkr7et4560VMve7w3hCAOQR5kYmfBVIHQmTmhGBAKls5F19LD3kJviKMm1RFlE/6Oxxvx4Nd7mXqaM43XohdQOh/jnMkBkovhfUaSBi0Bj/56Mh/qjAak7HKV1BxGphLzRD06UBkRCKWcI8MKYiVhhKaXotd00nyWrxeYTmxwi3NFeapmOpCK4I47wvmSpBP1Y9mfcYU0B0+VpIInsZZe/5pksaz+fcm4lNfoXhKUYsqyCZVoNrSH/YsJVStxWhth8aZi91Ki+YLC/nYhGo2TRP1I0d1NlGcqN95QXDFfLGbINKZGrpdQpzn3Q3ukSVon6kdGghcXQgWzXuEb0S/pXtLjzdNCUt3vJspn8nq7942YraW4UPO1Vz9RDAdy3E0PoYqYLqMqNok+oFVCXTSyr8W5NFs6iBWvHuXzLi/kMwkVqJOecFmIi1ybm7NBqJSxl4YnWeFV2tKLNesoehtzakGJjksNioQVSppVqAuXBw+KpN3cM/T3xjkNHGBoHbaUJn1y2AJpEBIqF+ZT4yGdxtsDEOf76YyMJGlCbjQmOhf8NxuH39V4vG3duPU9ry15W/MB17qQydJX0BtBfWK2Ep/eFylTrPL2tInoQtAOm4csfe8gwWLR42zAB80wWsbByjUfNEZHSuuJWj3nvhW8xtXjvH/dYOm7gqIc0S5i9HVWRj9arAnEKDbk8WSkaQbJMLIR5wLDwktxrxOmlGDKri1mZzEQRMXYyHBVUh10jN5QV8PzyFBS7K6q68931KjViHPXtrk2N0NV4dl3BfurElN6fDA4G9i3jn7SztlIddgxFI60dRJsGxTlsv8PfqZfDisgzfwXe5u363Z9KdZtA/IOXUe/eooKCfYt+ADOooaRcGeFeauHGME57GVHWJagNeF4gbls0U8uiC+/TP+uNeWbYB+eARC+8gGpqVFtT1xW6CFQPdsS1zU4i316xbv/+Z7LD5/w7Osy1UhL8Td/neTpdVLX/ybkAvIy0R8oqotcd2uFCon7P28JhSA5T/6worgsOPqEFF8JyXJQ2TJ1opIIPScJJWjUYJhzMKiiFM6QhTH5SyspsZoNClUgv5eTz+cGJWjSoNl7LVqMqMTe1sYZAUiVZIwkm4QOUvk5N0TsNA2FDfSDFQFq5en3TgqIXMhI06JEmL6XoC/IlqJRkVS2sx2MNBkL4XibwhOTousEUlBJ3odb9xgngXIDGW5IWhCSlGlfTZiDB+1qlJwGwF45ig9eMgyW2FvG97ekvUWNkhAvCFKm+XQ5hNDe4Lt7hdnLdv1RRkyyLiCZRGjEXlcPYrPs65ywnQvecZlwW6EA1U/B9Ir+SIrcpCA00qCEMlGdKsZWLHyHwyRowQriKuDfWkAdWbyuGZeIHS2weEMoUXrM9KFCqF7+2FO/4dADbL5CqEvJiOaiPJXD190RsbzKTZPZixZi83U97C3b9yhoAuWbDrsVoXv1RNEfS4aH0nLeFlcwlBJm6Juckh7F7ndcSa6Ir6UJmbQXfpGPlYdxFbPhAjcyPaC9L9sINSKA1+CuFN0LnvVvC+VS6JGJ4koRjULb3Ax62Z7pFKGUUMK5uc+NYsw/V0HQHF/LZ9LdFQ0TJsGQjQh6hR4M9Vde0I+WMJpsuiAWveytmD7oRMop7BONL6V0rS8brhPbTScNY3RgX5PzNVTS1PoXevzeYZtRUMtSKIlEJXTGycZ6uvYR7daEOMwGALmwnwpebXPw39sscW82Hm/XbEyP3fyNBNei5t+j8ZjQjRD0jLLo6R6RNzA3UNPvXveVkmXxtmDHri0EYTJCuZoyR9pNSdGMVLWgE90g9whnAzZvo810Kj8IWhpUoiwjTXNdlIcogvmJ0rV7thB0qDPgInEpN95J6L046NiFhuN7G7rB5ubKMwwW5zx9VxCflqj7LaYZZ7rUsHMyzLGR1bLD2cAwCBJCQmyA3TXddtaoBE0b5X2sDvc3Phs5YLoUlKXOjVLKVDN97ohWMQw1t+t23a53xrptQN6h6+d+4//If/ue/x3xZI3eD4RVjT8osJcDhOxklSLb962pH3ekymGush1V4Vi+If8OhzXDKwc0v/WI8w85juOa6vNnqMEzHtW4biAWBtUpFJZYOlaf2/DkGw5oHkN3wizqBpicsJ6jZiEFZH+gsJ0gJuPiOiEdoHkm0yvTa44+JQ9uVloKoH1GUCqwGyXFG1LA6J0hLgO4CK3BHAzEJxU+KMxilAYk052IoCtRwcegUDkLYZowxqBImZqSgoK9k9BFFwWqD4IEUEb0Pk9495Zhb0XormC/dejFiB8M1gXaqwpTBqrFwJAbEj8YdHYJKgpPHxUxC2RNEeaiZeZIJ9hf1jSZPmB0oqpGOphTjifutw+aajkwjoaws6ReUBFJwk7XGRxPS/QdSQz2tcFf1Zg8TZ5cocj0t0kroAfJg9A7RYAcIChNRiwy4tMa0iKQikhSGu0zfcVfnwzaSyGe8t0lZeoUSHMgqfVyniTHrIfwy8S4UHOw5OJNRX8oTUz92LH74CiFRtK4DZhWnM+GAzDt5H4lyE7zlmJbG3yTKFtFcS6IwOTw1p9Ik2sGxbiW87F+qCkvZHvlvxedxngA+klG6iw0D5kF7KZXeCPb3L8AbivvZWpkQpXo7krjE0s5Lr5Jc16IX4h2IwXRYbirLLJfQGyk6ze9pj9JqFHhBnCPHMU5qGjp7sh72b8UKE+NhD46KdB1FBMHMY+4zgAxOzmvdZ+L8YkONJlOJBiO5NpLg0ZVQQr+ThPrBHd7YlKiJWhFTL9Yy1R7CAp9ZYmHnngwCnUvKQnuTHIe6EGyf4jSUEWXz9ecb0Teb9OB3ZX4ZcLfUdIg9xaTkZY0yACBIC51JCiacRZsWy1BqNO1I4X9NX1K698trU3Tn7dRrBJwM0RlaizmxkBdNy9T+zFf43NKeXbLutFwJK6T2IG5+ZFMkYyaTehOft14WdA82IogPdO0fNCYIlJm6pM2CZebrGG0c/MkGhd5IW0ixsS5OQHYbiqqZmCMZm6cdOUFGTnsxVEq72vwGt85+p0hucTZG4cUJ61Q5yo/oz6u8Iz3EnU1zmGK1gSWdY8PekZwxMnKAonYG+xSmpXdRU3yiuqomz/bqdmcBjVKSRo7IM1ZUOy8xpRBkK5Oox60WJWIDxu+4sf/Dp/94f89X44r5sb5i73N23W7vhTrtgF5B6/dH3qRxb//AuHeEaGxuGct43GNcRZigmFk9ZvPGF46wL61Y/MNL2G6SPWkxX32EelgRVyVNJ89g7pi+WbA15rxhQPcw0uefMcxd39VUzzZ0L+wJlpF8/lzktWz244K1wXic0s9950MSAPhazC1Yv9iorxQ+AqOfifx7GsN7QsSr376YYPdgdtJltn+BVi8JcVdKPPGAbsX3v5QKwjiahR8SXGliZ1iBCk+EGvbubjPlYTYgWbEYZqGerGepTN5xCgBeyQkuE+DspFYZMeqIojzSxMEUcniWm0jYy+XTxg1wWoWjXyplllMOTm21M3AfluilKAz9WKg3Re45SBC3Sj76b3JVJNM8VDy+mkUga0tAsZCtytEvLvw6EuHWfdEq4mjQe8MaeXFBnZvMY3HZZF8elSTFuGaB50gHXhM6UmPaplWe8VwFKGIlI8sfpFwV4bx2GPPrThADXp2X0v6uphNLmUUJAeUXSq0g+AmdOv6nAq1NA2hlKK8eqIwnc7UJSkw+kPZzeahnFuLTzn8Qh7rj0TArQMUp5piI8gDWqb53d1E9URTPxNTheJS0I5klIjH6xv7UoqWIjq4+OrI0ScEKWnvZdohGa1YRBZv6YyeyHsuLqU+tLvcmGenL/Tk/KVoXx6xlxYV5PhOrnLJJmlkvNCjxmWazRpWnzZsPhDmht+feIqNnRt1PV4fPz0aaRYHRXaWnRugWCaKCy2J50Flypy8hs50sUlzlbSYT4wnWZvUiCX1mDUdi/dcsb2qGEeDH0WspVyk3UtIny4D0VjMEydIjk2iJcpISFLS+Psmi+aTiPynhlX3WRfkmY+D2yjclSPUEIpEsg4TIKwC5qKQJjfJcRmqAo4HmkyzmSbjdqIfBXFvu1noT3QtuG4o3k4Ner7wvb633HTZuomcTHSraR9uUjZv3D6fRz6mx3PzoW9YDE9oRNeKJmJqPpRK2RlKY2wgREVdjtKE3NiuNZGz06XcH5MgCjFo6mp4bh8mzU1ViGZkc9GgdBQb5q2cWLEIjK04WqVRsX5pA0DbOYZtweKofe59eq8py5EQFT5YtBI0YwqlHPM9T6lE0QxU5ZhF8UZ0JIctKQkyc/MzG0fDsCtgZ9CHA9VioNsVEqpaRnRuWAEoI+GqQO+M2HTfVj2363a9I9btpfgOXotPn0PbYV5/RHr/S+htS/nwqXwrlQVgiMscg+4DxZVHjZFkFOlgheoHzOVGnm80izf3nH/1Ej0mXIzc+5WO4s0LUuWIpaZ+/YpYFehuwLZSOFanZNHrzCKY16RTSSq7dlVAhJf/2Slq20FV8OZ/e5fqPPD4G0XkrEaZGKsA3bFsu9hke9Mqoy1ZpO6XkXQ4wtaivCIug6Q6WzJXX0GRXXaCIqicgJ6pVGT6EnnCrFLWLPQiXFdWHFpULZPJ+feyw5YqolCbMo9eCkxBSVTevC7EbWvYlFLkRw2Zf9+cSNbBOBr5QmwtqgjSfJQeayK7s4Zi3TNsi1l8ClI07MYSV3n6vsR3bqaamNx0lcuBvjeEJ7XQdhYejgfKemTs7QSSCYWh9AQtsfUqZ5NEr1G9JiSLedASnlTiihRAXRmGQ3GdClW6pt45aTiivT4RdNaF6C7TuWJO2i7lb7+IQgXKKEVo5DwRdyxx0ervZDrOII1pUpmOlAfI0/nnm4SKCrcB7YUu5jb5fAxgt/Jcd6XYvi8wHgh1KBTy2GQdrQfYfWhEX1qqJ5KBYXo4+JSmPwDbg7uE7dd3cF5QPdWUp5rNe6B6KvsVMpsjVMxudHYnQnSVhd1aQfE5x3B4o1HL56+7lMYg3B/QZwW6l/evAmw+6KnfsLP9rzuz7N4jtCvf5GYLaRbMpcm6Go2KmfqmJdvDL7LjWJSmTkVprIsL5n3JA2WxS+7BNzLVjlcFfiVFajoeaDuHelYynCiqxUAq/Ux3qoqRq724sYUVQgUsI2pj5+uJoMTFbtpHm/DLSBzVTDMT6pr8fHofbieNks7opQrgRzuL9lVifhMpyFS8qQdJhc9ojTURnTUEY9ZZlZnuCNMtMs4Wt7NQfHKym6ENlTUoz9O14IYWJPFcgjlwIwfkWqfy3HZvPjc3H+YGRcwHQ1mNFFmAPa1+cKSskXG5CYHrBiulTNO6IayvK0EXpsYqZC1NXQ0zdWu3FQ3V8cl21pjEpMSadylJ65OmxQdDWXqMjbMYfMhDkiYPZZRK1OWARFDJRT3tw7TPWqfZnlmrROm87E+SXJd61dL2TppfwDUj3kZc5dmfNqAT7q40QM4F+s4RMWgXCNl+/cvdUjZ+CTQg8VYDcru+ROu2AXkHL3/YoA5qzMUes+mgH8AYqCv5d0roqxarNSjF/n5Bdeop3rogNSVhvcY820DbQVML1WoSkseEe7ollZa4KLE7z+aDh6w+fQkhcvKJwNOPiFC2vID2rnzxTxPhqThQAcwoIW62S5ghEZsCmgJz2VJcQfOpZ3zVb0XOv+mFLEBHplRbI8LnSA5pAyIMdyIq6w7UtmS462ERsA8LVBKtQFIIXao1uCsp+IN3Qh1xUfI+ijx9dZHocm4ICOoBc0elTCJeFmJrq0C7gFpFQm8wjc9ceCVOU0noFdpEbBFz3kEgFH6e7A2hRHnF/ryeKVagwMb8uzKB7EaDcoH+okRXYZ6ehqAxeqQoJC9BF9NBlzA3pSRzxMdCaB9akJuiGfGjod8VQgnrxNmmvyhl5NoEKUC3ToT52eIYL7QsjgfCpcNujFj4IlN/0ymCgvHBiN4YzF5jINOIIqGWnInJUte24no1LhK2Vdit2OaS9UTuMovH1YSGZHpXpoT1h+IylYL8znAozxtXUD8SBGH/omge9CBFtC+F1nX11aN8zq2hODVoz0xrMr00CqGWfxdvOdGM1NLE+EbQuAmh0QMsf7VCJbj6rwbSqFj+jpOi+Eoaj3Gd0YhMo99+wFM9zGGJpbyeuWSGC0OdUQ6dSFrhDwMMWtyvmkT1umZYSxhif1ccsKpTRXs/SkMS5RgVFxlRGiyhTrO+xfTMAaJzQ58tdiUzRQTnocrX8w1HOxUlw0RF0HsNKRF9KdeLF1oeJqHPCrptNnvQCWxiKArYC3UnVRFde+yblTQYRRT7ZuktRBA88Z0QVCg6QYBikcTpKSmx5Q4TFVCeP6E0ds+cTVRcymCjv6OIoSCaxKYQBzkiJK+F0pNpSdYGyiLMtMaJFuVzYawybTPmps3oqXC9Lur1jcZjRjByczFpU36v3BJ7Q5x9bSMsVKyJdvXcNvN2qmL8PQX2CWkcjE65AeJ3Pa8fLcYFjI0UNjxH+wLm31UKChsYc+OmizAjFVrLYCH0Zm7K2q7AObnvba5qjo+3aBJnl0uadZuf47B2ep+RYTTU5UhMimE00hhmu+NxsKhSXCvGcP06fhC0ehiNZMSonLG0cyiv6EP+HGzCX5SYraErEmnlUVeWpCzFRmfUTQYit+t23a7f/3XbgLyDl339Cf6Ve3B2gYqJlCLKGNAavBdHLGvQ2w6MZvlGR6gM4WjJ7uWG9ce/kEXnHckZUIqDz+zRfba3bAe2X3uf5b9/BHfWLPYj3YMF9Wsjq986pX6yZPvuivaOFpHtAajhunCZppNuK9afwUFxEfCrguLxFnzAtYn+lSOefW2JHmH9mQ7SIqMmicWb8uUxFXLRwOJ14cwD7N7jUYPCnhagE1Ehrky1cNP1mcROi/uPZGPIm0MmqVP432R9O9UEE4/ba+LOSihfLyEnEUCnnN0xiVUTLMVilCghhriEqj3eGOpmICWhL4TazC5dKShc4wmjIQZ5TZ3TndOo0TahtCfmDAKtE/3eMU5WnD7773uhatkiyGMKVKvhaEAt5ed+NCyXHfu2EEpD5Rk6OzdRpgiEvZOgxKRg5VFbK5kiOdSQlccnBRrshSE0EX9vpHyzIFoJ4RsfDCJMbnN+SqfQQRMrCZBUo8paiFxAmsRYJ9yVni1v9ThZ4YJfCOffN1JUm0EK9/5YxN1TurnbSDPiV5HyqWyr2EhBCtDdhfVvOmwnxf/mfVFsbh0s34CxgeTkdeNX7hg2hQSeqYS5MhSXimID/UFuahrYv9eL69ZnC/wyESpB8JLLTcxmQmbkT/2GFTSwlP0Vd7jcoCRmm99QJ9SlHCtzPOCyWL67I8ckluAuNGYv55HdSXE6rDKKVMu1YnqoHyoxcsh96riSJiMp0aWEQihwIVsVxzIRSin6Tc+c9xMzqmJyAxkLsINC5XyI8YVB3NgGLRRGjdAZeyN5M50WrVCniVExHnuKZ5YhO9DhFVQZARnFnnkS3Y8LuR9MQ42kkxy3Vp4T8v0g1IIkqawhKS4zqlUJOqlUwm0ErUQbhhdGGVpcOeJQktYeMnI1pW2DFNjem5xqfk25mhqGqVGZEJIQ9KyF0TNScR0aOP1/QlhSYtZlwPP0q+nfxkT6wVK462RyEL+RqakIOa8jBI21oqWY9nVCU6bfbXu5DzgbKGt/o0GR9zM1YEKPMvM+thc12kVc6dE6sW8LykIQjqGINHVPStDUPW1f0HeC6G7bksIGDtb7+bVszhABGEY7az6m/Zr2tS4HRmOoCi90s+SkSdk72FloAsU6yP71BWFQM5VwOp/Igb1THpQ+c9nwIc1Oi2HpxQ3wy3TFpIlf5NyOL/b2btftmtZtA3K7btftul2363bdrtv1B3wFFOGLTDP7Ym/vdt2uad02IO/gNbz/AXY7kO4do3rhWw/vOsT9+udR9+5AiDz7prscfmrP8P5jCIlxaeiOLbZL7L72BRafPoOqJBUWe75n/54Dymc5r09rdB9Jy4r+bkX1eE/5eE9sClTnsWc77J2CsdFCW+lk6jjRQKa/dUAQGq3wjab+1CXtywc0nz5FD4n+0HH/3+343J9p8PWKl/+Hkdf+lyIW3Hw4UL3usFuZxIYiT8HzRNydG7H/9KI1iBZCrcXC1sv0HqUITZJpqbekk1644Z0Re9XsbZluoCAq88nRCE0rIwBqzE4+RyNh5wQ5Mdd2kPI3pEJQlbRxkF1XXOWxZqCqB/osgExKs6x7YqXYtwVjb7E2iJ4j5hRnb8QJSSeMjjSrfhaxpiiid5Ji7Cy2zNPR7E5l36pmulRxf0+IeuY/Gyt++L4VlMguBoKxYk08ZuvenB+iLoW+hk2kjC6FRcRdaPpG4ZdiiasS6GeOcBCITvg7YRExW5k6l2ea/ljSvUnZgnejGNfXOgl3JSiIkOjlcb+QKfeknehPhK8zBQXa/TVNr3osE7nyQhCBcSli8FDB9n0Rs9OzuDpZ8Ieey1pTPdHYfaYn/c6CUgmKoKIgedFmE4UevIHhgWf121aC/RJEJ8jQNJG3mR7kG+bMDb/IGShFYlyLBmZyjYtOAhpDE3Hnhv5YAgrDRYlTkuxut4r+ONE8ks9//6LQ2MYTj3nTZqF9yunvouno74i+RoWslahz8KOdNDci+J5seafz3vTMgniSbAMyuuKylmajctp7gr0R9APAK3SvYa9n+lZ0iVhFzM6QghgRDHc9utUZjQR7aa7z/wz4dcBshRqaqigBiknP+TZ+LZ9nLOQaVV5lRzb52+5lEq4SRC37m/IknAT6ShDLZEX4ri4tY68Zy0C1HAhBE3J4YBw1rvYSphi06BzSdfJ4SgqN0Iq0EQH4TVQDrqlR0/PN2wTsb6dW3QwxFJ3E9WsCc4ZHSkJBcjZQ6EiyanawukZTBNkYvZF91AlrIy5rXyZ9RkyKEK/RHWvSjJaEQRzy4mAIJtIry2rREaJms6lnW+CJNtZUA7EQt62yGJ9z3ZqRHX2NNI3eUBbjrG+ZkJKUFC7Tv9rOidNZEr1dsgkGzcWTFab22MKTghYzjdaIzk8DKaPdg872zmoOH52opMVTK5Te23W7btfv+7ptQN7By33iVZ79r76S6jxi2kh51lG8fgZHh6LrAJonHvvaY+zTGqyhf/GAZBUqJrpjx/ZDxyz//UOiM9htR3EhdlapLvEnDfUXtigvzllqDJASoamw+wFCxLZRRMGZ7kEuHmIWCIf87+FQCz1l0KhupPn0KfGgIVk4+4CmemZ44Rcidh+pP/2Ur/yJgs1XHvPWd0S6FyVtWx/3RK8pXy1JBopzcShKFoaFiJTXn4fqmWbzngoOAi/9q8Sb/4tIrKNkVQRFuixyoGHWFmQ3ouhyFkJ+D1NRhJef/f/Y+7MYybI0vxP7neVutvkeER5bLpVZW3Z3VXezF7KnyRmqhugecQRqIAKkQBCEwBe9SIIgCHoTAc0LB6K2Bz5MAyJmBIIgRZEiRYKkyJ5euHUXWV1LZlVlVWZGRmTG6rvbdrez6OE71zyym5oRNFVTC/wAjojwcL9mdu2a2fc//w0V0VEThj4NLR98auLR9pNlZfiUWWqT9KE2UDpW60IafnWkby3RKy4XlSS96IjNPUUuH4BdJ10KMcpg1TuDVxJNqVPOf+gN2npUJjHCvjeE1qD6FM9bpW4UuTf0vcFaT1Y4gtcEr7FVT/Ca9mgkkbgrgx97zMIS91sY98SYCShJ8cGq8FBrul2PXptN83YwoHOJR9atwk29NKtPA/ZSomB1J4OuG8mA6AtJZeq3AuVa0+4JCAlWQMMQXZstoZsJkDVNkqslCVNUAkxsSn7qtmUwf9nXIY3kmm4H+q3A5EONH0H+nqW5Ealviak+3Ksp36kk7raMlC/kOshXEoagPZRnkF8I+PCFXOvVibwGml25Td1CfSgAq90PVE9lkDU15DZJC6dyrbmxyKJCETdxx9K/oQijSDeTckXtoP9cg/2w4vwtz/R9Q30TzMLgKwHRdi0FjVJyKD6YkEGW+jR0CnEA8NOwkW/FYbZPzw8mHSPF9Q4ylWFjIZtLd4nfDWQLTWiNXG9DwAMQthMqbY1IJecGX6RjFkkalLpLQg79riM7T0ESZXrN6iggZSHoaIgDjmmo7Hc8ZqVFu28ETPmxgBk3SkNuiu51EwFx3b4ES2RzSWzrtyKMPbFOnoYs0CwKWFrMfiMxrlERPh4R7tQYGzZFfCgIQdN2VvxZNlBkbuObkOQqhQ8aa/zGf/H7wcW/q9hw8JpoHTdGdc1V9Okg73q5I2j4+U086gCS0vG1DvjeMEk9GVpFjAoYHem82cjHQCRS0o6ekY9S8V/VUyRvx3D/13WOsZ5R1aXbF79c1xsxoSdzfJY2V0IQsDEY142R4sJPFC+mx+qC3hRNrlYFYZnJZsZ2s/G9hUUOeSD4JMuKwMJKjGKKCo4nBXHksWslgQ/pdJtapVRHRXfDocf9H3geflzWtQTrev0orWsA8kO+8kVk+q1TKQ68XBPHJTG36GenxHVN9bAST0hmWb2xQ7Z06CZAjMy+s8aPcvytHezTU7pXD+h2cqona0hRu6rtwQeiUqgQ6PcnuInFrDrpChmbVBoG42eRZid9MLqr9J/qxKG9RXcR2wZilaOaHtV0TB+sWNydcvJTJbvvdly+luOqm0y/ecLsay+YfSUQxwWxyHjyx7dYfKYnfHZFX1uULxg/hZu/fYLbHfPiZ6u0qw6v/sMWO2949ke3kzegh6XBz5wYutOAriuHW2WSeLWSNK3BAIyKG5Ou9JWk3dShaTwXA3nsNTHFY8Yo5VkSLwUxEzNMNJFunpNNO9lhdJJ8FZN/w3uNzjzBaVrryTMnQMUE2mUOpac7Kyn26s0OqEq7uMFJ90d9XqKyiC7k8amk849FQBWe5qJEZQGfp/6FeGWoNTYQShmOQnX1GEMtSUvoSKhkl1k3GhUsykG20HQ7suNe33USc6kAE3GTKAlYZbwqNCSZiocCvFz6MoaywsH8HPKrQdc0sls/7Lj7Uq4vm/phQi4zri+hOBcvUn6ZduZ3hQlZ3ZVhfHUvafY7xeJNj6kloKA8UZvd8vBhRfNWTfV2BUEG42igLaB6LildqzsyROcXybwdhaXJ5nJpVEdyHdqloh9D9VzT7qaErmSU9rk8jqGMz42DnINdh8o89uOSkEdGH1p8BatXPHZhKN6pOP/5juqDHLSATLPScg5bAQ/aweiJxBb3U2lmz9YSHSwgQ8BIqAJqrqV/pFWbIAlfRJRKXp1k5h78F+LbEfYKdZU+FSphzkj+rajkZaBr8VCFKoh/SkncccziBtR2+x6z1Jh1SiUrJYGOoNJzLsABlTwsnfyeXWpc1PiRBFMopyVJyytCKcZoFa98QnYtz6fupddGtwIoQ65x2sr1OnHi5WrlPdCflOhNPHJEJ8BgTSAERdsbvNOEXjPduoqZ1bBhKn2Q9vEQZAPBx08O2sPPvbwGoDIwHPy+wdynYV2/BF40bDYnPuETeYk1qducrHRkOkWUR03npaXemECZ9bTOUlhP6wxdZxlvNfS9oW0tk3H7CY8ISCv98Ng3Bvg4+GSG9K30npJseG2TyXlWka0bC/mZxMD5oag1RfB2vaFtM0IvhYcqsSxGB0wWCCNHVjqMCYyrltOjmbCRmYSB+M6gvSI/yjas6tB340cRXwaqwxUcjQnz/A88F9frel2v/+7XNQD5IV7/+OQ/51dv/k8BWP7EG0zeD4RRhn34AnKJSzz7uT12/+4zwuEeUYNddPhRRrSamBnsyYL1m3uMXhjyx+dkpzmqddJ+Pkyo1mAu16AVZtWTna5QrSPmBlsHfGHSsCcmXZA3+NFxpDh3jL7xhJFSuHv7uHHG+rUtxt88QjU9xgV2vltx/AXL5Ws5o2OP6SOLn9hn+q1TyCSFq75VcfPLNTvv5biyYvrBivZAUz5d4XZGfPylisN/2bG4n3P/7x3R3t2CAHvf6iieLYjG8P7/xqPmuRi8dTKeR0U26TYt6W5tN8N3LIMM1DpJQhSom40M5VlE6SBsQ2MItRGp1lgM46TkFWldT+GOOuJaS543xEz6E4igbcQHSdrSraZ/nsMbC/LMiVGzdJJ+paBdFOhZsykTs1VPDJqusdixI4Y0ABSeqARoKBsk8nKrZl3n0k6d5E3aevrOym0EkTSoqIiVDA3ZucGlIj6z0oStHr2Ua8vPPKEQqVynNNmZxd3oZBfZJnAVJ6BRNwABAABJREFUlMQcJ1NoNAJkzFqjHBtjqEh80qC5FlZLOwEe2UIKL4f+h2wpYKPbhvIolRemAa3Zlb/bFbgESEIm7eT1zcjosbAeEkMrfTO+FCbCF5H8IoGijyr6sRizPZLclS1kWK23IsWJRPOGTECHDjKYtzty+91MGBAdBACJoVsASzRinq8PpFyvmybQNfZEI8V5+pm4qkMe6XZSN4GJjJ4L47L3L3POPydJX6TY4X4nUD01uImwLPUtAQh2IQxGsyeDuCuFqbFrUMHiJsIauIkwDrEa6AvIllc7xb4QhqmfRvJLicW1SwF6gyROdpF7TOmIvUGtEmthI4w8cWUkZWvq0bUmlkFei12KCG4UbhaIeYQ8YE8MroqYTtHecvK6shGzMJuY4mjihuULqasHEwhGNhP0ytDtDvIvkf7pVmFrYcpMo7ArZKPARqqPM9xIwMawM+7GQVjQiWwKFJljfj6GhRUZnYUwcRugMZToXZ6NiZ3BjHvG4/YPyKFeZjKGYf5lY/rLf4Yk8ZLfjxg9gJFIH8wnTOa/30gOItdyXuN7w+7WcgNQrAr0LkvvN4p1l5NZT9Nb6kbiv8VULkEaw3GHx9l0GaNps/k5uAJcL0vQruRUGh804TyX9MKq3xjPhzVIsNZNTt8biqIXIGa9tLQ3hhAUWSYgsJq01Mcjxnfmqd9JoZ1CzxxumaGbBEyVln6bTkksuAY/DkQTqZeFMCP/DjD447I833vPhv+eHu16Xa+rdc2t/ZCvmFrPZ7/7MfrkAl9ajn/1NfzBNsRIeeZBa8zFisnXn6HnNdnTC7LjJf12Qf36LqYLUGSQWfq9MbHMqG+PsccL3O4YegcxEosMc74kZga/M4IA1aML+gmbXVftIraOlGeBbOnpxwZ/dx+0wn50TPnwjPJZTXd3Rx5AiJTHLdkCth50nH7e4DPF6pahO5wBsHh9TL1nyI+WTL72lK1vnIFRXLyZodses+i4+W8d1aMLqlOP2xlj1o7uxgi77Fm/tkUsLfv/oMIsDPG0gJWVhCsvO4W3ducY6yXSduLQBw1m2qN2W9RWh95v0butyDamHdp6otfYsUNN++Q1ETaECDQpsjPl/UenN4ksPmhcJ74OZZJAPQIjT9jp5UPRa+omT+kzCt9IgzBRpFlNm9F2yUcSILRW/tw0KyNJYF5u2zfyO+NRC61Bn2WYk4x4VoiOOmjsuN800xMU9sIQiiieiVYJ4/E8R/cKUyf9tQKc2nQu6MtMzgUk8JaGqiwKqGgVqhOfQyjiRoetO+lhyZbiJ/HF4IkQJmGIh5ZOhyTLctDuQ8wi/dZVQlK2koeQrYVpiFqazbVLXhN1BUwGf0JxJuyKG8kuua8iIYfyVAYZ6TwRoFKcisQpS76kbhvWt2B9U8BQefqS7GsuYKTbijL8j2SQb/bkvvUTQEdJb1obilMDZ3KOu5siBXH7TqRxc8P6lpQonn8+SnN6waZ8EC+gaEgIC2OPWcv5lAsl+WiCyN/cKL1mO7kPyov0SzlJDdokZI3l+Rh6fbK52pQqDr4ds1YppjegGg0vSimB6zRqt0UftBLDGxRhy2EvBZioRrpm7Nwkj0x6vZiInls5fkz9Lp3GLrXIHt1AB8i1IyBCY2qFnWvyY0v11FA9tiLFWyvMQqf7qzZxxyIvi5vix4EhQb3USD8JIrusAqbwdJcFy/e3YZ3ioxXE/Zbx3nqT4uS8kX4NE0FHxmPpu7AmYDYvMlJc7/BWqK48JYnhfPlrWFfdJIl98IZMewrrMQnIbORaCSz4oFitSto2Y297ufk5o6WbY+gPaXtLkbmUfiXvJXnm6HtLjMhtqKs+j4ujqbzWrN8wHkNvR4xq4+0AkVy1TY5zwhiVt9bMdleMqu4TfSnD+Wg6S98bYWeDyEVjlIhzlQXyXO5Xt87E27bTsq5zlutCNpmmAqh0k1hZJbI+3alN4WC358n3alTuMUfStaOuJ+rrdb1+KNY1A/JDvpTSLH7pdfK5I3+xpN3NMC0CFADdBZpf/HQyADeYFxdgLf3BBAI0NzN2fu+EmBlU75m/XrLdBcrjhljlmHktnwjOoeYeYkAfX9J89pDyXFiRV/+LR/Sv3eD5z1foHqaPaqLR5M/n9DemuFE2MOvQtJiFJlRTcA5/cxt7sqSYjwhWdiXXB0YasEtD7gOz78y5eGuL9ad2qB5dgo8sXh2RX0ZOfnGfnW+vGH14Cc4zfft4o10wyxxCoHttRDsbY7o0BDeKmEOcW0IV6C8zFmXH7nSNmkWWTcG6zglpyNE2EpwM6dEp1MglBkGGh4ERGfTntupxKmLysInbDSsr8bYa4iR90DpNALLKCWPhxdPhdx3uosROemFZnAxdPhczpW8slA7nDJNxy3JVEKNEAueVtBT3nUk70pow6lEmSGO1iqhJjzd2I39RJmJzJ/G9I0dcZRJPbBHtPTKcqQD9VAzk/bZ4OlAR5TTdgSNOk99kiLHMxQ+guzSwugFAKFR9NVENWn9XiQzINAoCG6O07q529LNlYh6S6ThbpqG6lyF1dKE23R7rmymythJJlBtB9UIYB1+Ih6jbkXLCfiqMQDTQHjryI4tpYHU3UJxp8nPN4osto3cL8VpoGd77mfhB6n15LL6M+FJRHstt9FMZ2qvncr+6raHM72qH3dQKt+Uw8zSUe/nZ/EVGKCJhZYhlYPyhpZtBczOQnxl8GXETCHcb8ncqYZ1Sw7jbkqCAqMFPPGFpCRVJXijn1bQM9SMbI7xdqk2ZqKsEmIVcbYoNBwCjfAKNSX45gBCiAKtQyZAdigALkRAS0jWxMiLJm8qkp2uD2xZGxC71przUrNWm1yPqJJcppbndl5F2V4b77FLioPVa5Hk2SbZIcdFXQQLih/GlAN12T9gTs9a4WcAu5LghS2Z9B6pWOCPgkJ1O5FgJP+hO2D2/17O9vSZGaDsrr7/G0vmcfNQRMr+JlQWRPOXG48JVr8jLa+Pd4GoYH35uYB7iS2BFKQhIP9DLsqphoF83Oa41mCywM11/8jbSn0ZF8VqoSJvicCGVAerI9mSdjqvQCOtyWZdMEuiCK7nZy10mA0sDiA8kcxt5mNHhE6zHy+zQxeWI0BmRt477FE0eUEHihccjCeKwKRBguK955qibXPqVznNC5TG9kkj0RsznKsh7ii+AkaNvLPpcZFe6//EGINcekOv1o7Sur6wf9jUZyc6wj7S3pvQjxeioF98HEDNN+a/epfqd9wR8xMjyrQPsZUPx4IidrxwTxgWq95z84gFb79f4yhJyI59+PhJHBTgPQUzocXtCNAq8h94R9rbIPjph+wPP5OMGO2/JH58TRjnZ8ZLF/Ry0EfGvtbCq0a1j/flbqNYz/6kDDv7Zx4y+e8yNrzS0O0ki0njoOvS6Y+erp/QjjXIB1Tuqox7bRmYPGi4+M6a5MyPMKmKZgVZgNKpzKBfY+d3n5AvP0y+ljoGNj0H+1Dsd83OZsNZdxmpZ4BtLvMyJa4u/yKm+XVI8yjELi2+NgALEf6EKLx0GjUYZMV+WE5Er2EKAwZCkFW2kfzoiLDKRei0t/XmBn+fyQdpq0c1XjuAUWeYFVJhI6DX5uENnYuT0vWY+r6hK2SlXJtLVGdZ68lkrgOigodpqsIUnKx1dnZEVTobMiZOkmLRzGYOmmrToWfcJ4AHCXMS029wdOJHqGNm5R0Hx3G6M+cNOOaXnpc1eOd8v5fOHXAZmuxCZ25CoNDAdvhSGIKaiwMETghL/SPVcgIap1Qa4RCM+BzcSGVa2lmtp6Lpo9gEtQKDdEyYELaZ0nWRJZi4729pJoIHP5Tazp1LYaNaJQTFSiNjuyDFsLY+h3RHWI+RQHwZ0D6v7QTwh66ET5AqwuplI/fyW3yR99VsBP4qEG9LjUD6xwn683lGcSAGo2/Ii7XpUbfwBUcu5yc4EYOYLKI4s0ab7XAwhADJou2kkFMmbMpfzFyz0M2FYBOwJkwPyf7pNX734c3Qy/2fLweydnmfkvOhGrnOUmOWJCnfYymvGCdg0Swl3cNue/k4nxYbjgNvyItFKmwF2paUjxanN+eu3vHhH+pRylZLI3CxIslYtQNQu5RrotoMMnyqZ4XNh+XyZPE6twi6FmQPIhwb54yKlc0VCIZ02oRBWJEYxonedpVnlhNpSTmRILlJfxsYwrkSqNDAhRg9m7quvEK7Sn2L8pJ9jMK1nWmSSA1sRI7TO0jorLEU6fjcvKKqe/a2l3K4OG/ZjI5l6yQi/XhZoJSleeebEQB816y7HB42P8lUV3cZc/vJ9BTbHGgocX2ZC2ianXuWsViWrdSHsRtC0XUbd5FwcT8QboiN22lGNuk1iVzXuNkb7trdiqG8N3TKnWRQs5hXeaSbThjhOARk3WqIRuWK2TO8HpWwA5KOeOM/QjUqdIFdpb9frel2vH+y6ZkB+yJe/tcPo6RrlI91uSb4I2GVPfH4EWlM+XcIrt1Hrlo//k9vsfbOnPOnQiwZ/cxvz+AT14oR492ZiCDR23ROVor43Y/SNJ9KsrhR4Ma+r1lE8X0nreteh1zIkTb/8kfxsjMRxSahydN2z8+4Kd7iN6gPm6Qn9p25hT1a0b0wYPeiYff2Is1++x+5vPiI7XXHwdYMbaexcjhtGOXrRUJ7I/VIxkp+ucZMpzUHB1ntSnuimBW5sKY4bdN3ipxVm2UBmmHz7lHtqn4//k46wtOx+wzB/LUltFhlq5HhxMpPhV8vOaiwCuha5R7ed0rF6ZJiaOCnnCwpdOWIhbtfQGfre0CWpUPQKbSNx1oncx2moBADE3sjtpAJC5WQQt2OhCgajK0CXe2JvpN1XR/p1hs6lvXhxWVGMO1xviK2hL0waWCK28LR1tmkI1jbgOkO23YoMLABO0y1zlA3Uq0Kig4uwiTWNVkCG6hV+4lGtxt3oJN4S6I2cK9VqaRaeOimfG3T5eRRTcIpHJUphoW5kp1o7kblEo9GdIr8UwGFXpPOuMJ1ImvrtgF1qfBFZ3wbTqQ1zMkicijM2Q2g3k2GjfrOFeUZ3zzF6N8c00Nz0VEcG3cLkoWb5aiC71NiV7KQPQMhte/RJavHWkobVj8H0Aj5MLV+6gziBoJPH4yaMH0lEdfVME3KRRmVLAJUkUApXihmbVuMrOe9DFFvxXkm+SCWfr61QrSQ7hSKibMCuobkRMK2GyhOXmj6H8liYomYvJY2NAq1OBu9KBu5oIqqHUAIxEnJ5PsJ2jz3OUAHa11vG3yxY3ffkZ+L1GqRXIUuAp4N2V54Du4LeKGwKQBCWRxGysCk/HPxUxYmhfbUTtqQZ7o+CpZFgggLMUlgM5SW8QEBRxPaK7MLgxpLAJdePtKP7HOxKzqEKAjrcOMX0BsjPhWUhvX6zOZuUL6/FQ9IlpochHrkR0BbF/iQx2z2YnQ5tAl1v6Tormw1RNhAAJuOW3AhA6YMwXJ1PTJf6ZATt8L0hIesqsvfKpD6kWxkl7euDSdu8xCSA3NYg0Ty4dbHxVAzvJwMwUAoy42nbXIBAVGyldKyX29Kl/VxSrYbbBHBeZFYDKHq5rT2zApBe/nmlIuNxQ9NluNawNWs+UbQYgqLI3eaYRd5fHWtoOX+JaVnXxeZ92IwlGj2btSyeTDG7Lc6n2+9TQp8S5iNYee11ZyX5hUE5Nol5/ey/6VP3R3cN4PF7fczrdb2+H+sagPyQr/VhxfT3nkDbUb7IKL0n7m+j7twiPjtCH1/y4ldfIV9FTAurW5bR208FSPQlcW8LVZUwX7HzW3PCwQ667QnjAt1H/N19zJNTYTsSq8JyhSosYVahLwIxNyhTguqg78Fa1PkC4wLdrSn5gyPaN2+SH68hRuy5pGyNnnXQtGAtxaWHskAt1thVRbNXoS/l5/W5iPpViNSvbDF6/xS1bhm971l+dofFqxXRKLSTHVHtCvQkIztZyePsPGFa0o81n/m/tKj1AhUjZ39khraBeJnDeY6ppQU6mrSLv9sRrYaF3cQKKy+77T7T6GRQj30GYy8xupMOV2fSMdIlCcxCw8hv/CCADCo6GXdzifI0mce1FrdKu8WV20RVZqXD6SgGzF6YBtFGq43WW6koqV6NdI/owhG8ktvyCl15SbrJxQBfjDvayxLWhlh60Kn7Y+TQFxnBRkIJMU9m/HHYGJLtixx3q6N8mNNPIubM0N7qMStLQJKzAime1wR0P2j8PfmxxZ5KH0j1QuML0K1hSFry1dUupWkE/JnEwKheNPsmyboIMmw3N2KK2lVoD82W3M/iQsBC8bBA91C8m6M7WB9C9VQibHUrgKc4EY9AP44UFzIA+xzMQjP9mRNWv7NPfStQnmq0F8ChAslLILdX33UULxLjcCbDr3Kk5CV5TK6UOFjdSoRsdiZeG3pF2O0pHuTU95ywShpWt5M/4+mIuNVfSZROsiQl0yKXepTLcHWzIVyWlKkNvr7lwSajdpIyDTIwYXTEfK076Pc8amE3AIalJWQw/khYofrmlU9CBQFaQ3SvbqUPxK7UJq43Wym6LQEh5ZEW3f0O6OOcbidAq9FLI9GonaH5VIc5kmtvM1MnI7hdw/owCDDQkeJYAZpsAQR57Q5MULcjkqruQGJ9oxb2qZtJPLO3EgogADgN94kZIgrzJ74msEt5neuU8OV3/Sbtyy8ynI70QYGN6NIRO0NUkXxWE4KiCVcfo13ydF11YOgNGBhAwgA+tJZoXJ98Y5n1G0/Hy8bul43pOr1AF01OmfcU1r3U6K4EtLwUyeujwvUZSolHY1o16VhX93XoLIFPMjH+JQmZD1f3YwASwKaL5OXjNJ3E5JosJIBydcwYFV3yiEgsr8YHxbjo6J2hazNihGYt7DRFQJlItVPTdRYzklAOIoTjEjVz+Npik8cs2MSaNvI+o9cSROGqJCVM8sIf1xXTNfC9Pub1ul7fj3UNQH7I1/jRgnh2Aa/fA+9xOyPavYLJv/0YlWcc/cor7L2zIhrF9tsNocigKomFRTUOHj8jGgN3b6LO5ujFmjAd4aY5+VmNqntJ1Kq9SKiKAvoetViDGkNmBZg4R5xWAKimh1KnHMoIeU7xnedynMkYdbGke/0G+fFSGJOmo943VNtj9PmS7MMjRtmhHDuzrD+1w+j9M+y8Yf7aFtUji6pbVAgUpx2jxlEfjkgbjHQzS3nSoVygfmWb6sEZqu3pRwq17lDOg/dkjwt4Y0UoArGKhD0vpX+9QhcCKG4eXlDe6zlbj0SmdSkxjqqV3eSYp53KSyspRl7LoFd4gtHy1mwiygRCYyi2WrzXYJR0C6QPaGMDxgas7XCFlg9RxIyuTaBrMmJQFGVHjBZfW8w4YAwEG2hW+Wb4QkUwoLRIxHQWRKLhFUpHfGewhaNvLbp0eK9EDmYixUyYkZDLruHgj7dLTX+nxT4rNgZy+zyn25KB071ek31U4aZi1tWnluJS021LHLHySuQqc0k1UoWYx9udKLr+c7354O8nEhtr1ynB6kT6JpQWDb+KIqOJeaR6YlLhXnroXgaMbMmmRK88kbSpi59vWXdiep48NGIyP77axV/fDpha5Dbrux68ojjVmFZR/8t9YgFb35VhfzB0ZwtAweq23P7WO5b6hiRcmQbyBZuyM+k0iWSt7NR3u5781Ig0KIrkxz7OiV9YMPnylHZXduTz1LeRnyn0KzX98xzTipzKTwM4RfVC0+4H7FzjVplE7OYCOlRQZEdmY8iPCtoDz/iRoZ8IOPLjgG4NZmHk+RyLDEuM6VDf8RAFiESdGKq1ABLTiHdLgIFI5iTxDHBsul7C8H0dJc621ZgzK5KmPNLPIqwEiNqVop9FyjO16VlxpYCAaES6V9+MyYOiKC5g8WYgW4gfRKVOleK53RjMo5bjqgjGD9eLnPeQSxGhqSXyLmTJ45KuKV9FdCOMoD0Rc7wfieE+X0iMse4haouaeigjq1WZivmuWAxjZfwbQEjbG5FDmUDnTPJFqPQnG0P3IJsaPCDD+v3gw0fNfFlSlT3TspWeDa+vgEeM+JRGFRA/h0d6PCajlj7I/VHET0jDJHVLwBCKK3YmAZl88IEMJvqh1DUtHxRaC8ghQpG7JNFi83u9G277yu8CUBX95rZcm3qO0nWsVJRggM5KnLpTEr6RRVStiLW5ArLIJgAkFm0tr41+euUJ0T/G4ON6Xa8ftXXNrf2Qr/Of3JLB/vFz1Nk87eBE6HvC7Rvc+IcPsO8/QXceNV9hjs7xOyPU0RlqvkTdPKD/qdcIoxzGI+K4pN+tyL/9GH2xwu2NwDkBCnkGZQ5K4Q+2N8WEAKxq1KpBrRoBKjGiVi3aRVaf24cY6e7tgveEG9vkj05QS9ltw4q0AxdoX9uD6RhTO+Zv7cFyTXHSQNujzxb4XHH8S/sSzzsdYVc9zY2KybdOmL19wuhZw+wrz8gfneK3Ki5fyzj9wzdQrePGbzwDIFpDrHLKE6j+1ZhX/xZsfSUnzHM+/Vdb3vwvHdW7JXv/tGT1T29Q/K/H+H+5Qz7uiUUgzAYTupi0B727XhuoJd0qJo8InYY8EOcZqhNZQei1GNyDyL0GUNCucpplge8MxnpMMq92dcZo0mJyLw3MVYfKBHQoFZlULcWoJyud3O5gMFUxJWeJ7iX0SfphIr43GzZDeQVjj55bXC8D4GBWJqXIhDwSO5OicCNhN32SK+hfaSi+VeF2HNmlYfv3MjFz33SEkSfmQSIwQ5JhmTQMzo0UG+q46fmQeFi1KcrTosLbxO+GItJvBVSE4shcDYqp18GNRK4UMvF72BqWr3vqGzD6dkH5VAz2ygNBfrbbTtKqC43bcZKKdWwoT8Rs7wtYv+IImXgi+pmAoJCx8QmYJhVxcvWnrYVBiUqM6qZNkqsKul1PcZIK9/KU9rXXi8To0YTmIGJrAV9EGYCjhdXJGKLECiunyHabTUeF3GhCaEo8IqYT/w4qHb8Xj4ZyEkssUqooZtxdMYorD+1uwC6VSNLWMH5oGD024l8ZXw1y5ZFca9lCZFj5hUQN+ypK4WCTzk2dOkaClP8Vp4YwChsgpZzC1JrixFCcqc397icClrSTxnbdJzZkpVIPi5yfbgtUev5Hj+U1WZwK2MgX8phcihcO2XDdS2jAkISmnABc0yiywZe0lO8RwO06QhnlOcsiupFwAtNAfi49MvmlonxqsS8y7HsV6r0xPBwTPpjgmgzvNM2ikIZ1rzct6n1vyO1VSaEP8v/ApsxwACM+9Q1dMRACPlpnOT8bU5U946Lb/P/ArAyG9SG2F3gJsHSfkIINS78EEoZywZfTuoa/+/DJ7w0Mj08MhtGRpstom2yzUeKT6X2I5zU6COMbFMYErJF/D8AKwOQeM3KYUY8ZyUUYvcJf5qhawHHsdOqBCcIyk8IshrQ4JX405O2NkEXcOMr7i1iUeOM/+z/+gXPx47AGCdb3+ut6Xa/vx7q+sq7X9bpe1+uHfP3y7P/Jv935X/F/2vtPf9B35Xpdr+t1va7X9fpvva4ByA/52n53ibJWujqKgvVhiV15YtejHj4RGZNS+CoTE3nboVctTMbE2YTV5/bJv/0x5mwl3R5PXhCNIiyWEOLGCE7Tym10vWzRacB5otbp30pM6Xk2bNkBYJ9f0I/kZ/qpha5Hny2JowqcY/3aNrGwdDOFPp9TfHAiv/f4hPHjNYwrVOPwN7dAafbeXrH/e5e4gyluq0C1PaNHc9CKMCkwFzVhZwyAOZ5z6zeO2PvyCcvP7+N3JvjtCqxc1nf+6Sn778jju/UvLzj8LcX8jQn2fM39/9cZxWXg4Kst6/tTiHDz/1ay/Q2LWljUXgt3GvwoXEWZZhEKLzvsNu2+FYPWA0lbaqzIqxRX3SFOZB8gO3zDDqE1UuIl0bqirbbW47xhPGuInaZrM5pO4nVjUJuULEnjivh07NhLhHAM8hUag68tfm1R417+b6/D11YSaIIYdkMmzIXfle6GbjtglwY1l5Qa1UNcZLS7MSUwwfyNtOtookjVViZJmyAWcr60A19JkpCpJYHItKLRB9lR9wX0W5KEVZzJjrVdKuxCS4ld8hlAMouPw6YdXfcvJVU9N7T7frPjbZea5oDNjnzUsjMaNWQndmO0DkakZ/kl5MfS/A6QX5ISwURHPiRzZXNY3ZNd/9Fz+X6wcqx6X34nDtIUlSRKKtLuJ5lap2luO2ytqJ4rmn1JzvLF1e/ZuaHfd/gq7eq/qAhbPWtbsWvgdtaQH4lnKT+ydNuB8WOFG0WK5xn9lsdNI3alpXPlXoOfObInBVSOUESaO478Qp6vfhZo9uLGmKu8PHcgz9XqfhDGoxDGImRyTsojYQO6mZzXfiuwfsVR3/Ybr09+aoT5mjqyFSLfQ56LZl8kUf22R3dyXDfzhLvymvPJgzIwZe2BJ7/Qm86XmEnPiU+Mha0VxdlVBGvI5MuPA27H4bYdfuo37EiwkF8K+xFtIpUaeS3ZFA+sOyUMWSkslivFb+TGIkvLz6E4FZ9MvgB9ltHPC2zVb17Lg8+jyN1GXjUwFr0zNF32iSje3hm63lC3Gd7rjUwpoFjMK/FD5D3W+MSaaBpnN96QQTI1mN8v5yPy3G3M4yGIZGtgWYb1suRKv6xp4ooENzpsHsPAvsQoPpAhrctm6TkO6t9hwE8+toG1iGI+74PZSMm0lmP41kpq4FpijykDsfIoE1E2hRk4tQk2UE68WN12kPcYFem3w6b3Jr8YWONBrvfJx/jjsgbG6nv9db2u1/djXQOQH/JlzlYijwJiVaB8JP/6A9R4hLp1wOqnbkNZkL//nHg5hxhp7m7R3dulvTOjH2mi98TM0u2U+M++QvneC3RVQV2jLpefvEHnwGii0RAkElct1hKvazSsa+g6ie01GowhWwcoC8bfeIq/tQtljlqIQbx6eAnIsHf2R+9BDLR3Zlz+4XtcvjkGH3DbJbruqT9zg2g1etFgn18QM83yjW26/TExM+jLNWowrccAeUYYF4QqY/R4hblcY5atSMQCKBcoHp6RX7SgNaMXHf1IsXxjm8u3tlneNqxvZeQXPXd+a8Hku+c0+7D3NUVYZuRFL8NRnozrnZJysnEPvd6UkOncw8jDyJGVjqzqJeGqcJjMb8CHUiLFikHSWZqPpgSv6daZFHilhC1rPKsXY3Rt8Gc5TS3xmCEounW++ZB3dUYMGt8ZkXrZSGhFemVGaYpUbPwm0Yk/Qq3EMB6zwQMQsCdijB+MuiqlA8VMpCvxoCU7N/RbVyZeM7fikckifr+XtKOUnOXGAd2KYTwaNgVgppEPs/pmxFUCRLLVVerSJtZXR1RSl7lpkDSkS5HDZAsxWKsAq1eCpE1td/RbMH2YkpHGAZ+iesvTZDZeyfnoEwjqtwL9NEh3Ry0+kaGcb/B1KJ9M7mciAxo9SzKZQnwntpGyRBAgNcQQF8fJsBQVYeRp9wL5qaF4bnGv1nTbMHqSeilyKI80/SwyeqpQzVU0sPIKOs2T6gYAd42j3xaJmukgjD3NnjwfbhSxS4OfOnwVcZ9eo48Kxg8y3DhQflCQLTTFMzvcNfILTXGuMLXI0KK5UvgVF4riRNPuSrpXPwsoJ4Ze3afI4Umg24qMP9bYS4NdGPppkH6PdP6Kj/P0d5V+X6RWIRefSHGs6e62AuiPC+xCS5KYktsJmVwProoCHPO46SixqZvENGw+zQQwRPrU/VE8s5RPM6onVoBxISDFVanTJGMTLaycGNeLMzE661bhJkGSxToBZyEDosj1fCmPM1i5L8op3DpLUbJ60+cxDOQ+XCU9KRUpMofRMSVJyaaE0VedIpJMZaWNfNKyvyNRu20vcbyD36N1lrq3LJpCXj5E5pcjbO7IMwFCcjxF3eR4r2l7i09xwIOkSr/U3SFJVaQ0r5jM5lfmdOe1vG8lQNO1Ga43ZNaTJ3mpUhGf2tSbLtv0pZiU1mXMVWRw11m6OpPEPi2BGGa7JSuddIRYkXfSamIewUpSnEjqpIQ0m+urNLZOoneHhL2Qy/tCSK+t63W9rtcPdl0DkB/y1d3Zht6hRpXssI81SmnizpT61R36iYZVTVyuUFszqErsqseNDCpGsnVAGQNPXwBg338CZUGMgdgL2xH2ZnK8n7wLeQ6jSnpCjElsh4a2g6YTIBIiBE8cFcTcMP7WMdQN1A3zN8eEKhOmBOgPxqjzBSpCdezAeVaHOYu7mtn7a8KsYn2Yo+qO9Q2L8pGYbjs7byjOe5QP9LsjuT8gre7GCGOjFItPzQi5pXllh1BlqM6j6haWaylY7OXDPDtdy651pph9d8Gt3zqlOPe0OxlRay6+uMed327Y+9old/5Jys1PCTrKDwk6A30RiU6B14RW2AKTSQSu7zXBidE8zx35uJeh3Wlip1EXGdtvW2bflaZ2AN8YQif9Iz5odGppZ+KksCsofCvFgK43YoZX4C/EJ6ILSeFSWZACxN5gKieFXQF06aVk0Sl0ozBriR+OuaQEuRu9RJxOvZR1OYnkDds9sQzo5wX9ntt4CFQCISr9LOuUClZ6QhUwjd7EwaoepBdEBji7lGSr8lSGuW6WujZU8leo5GtAQEZ+pskuNW4SqW+kMr6UelQ907hdx+j3Krodz+qOMCPRSru3r6DZFbCBRozWj5Lxt5bjmvaKKWm32ZTjhUzuV0gt4cPvq2RQ97mci2wht1OciS8EHelea4St6aB4nhEzARrNoaP4doUK4k2xtSLqSH3PMX6k6LYgW1wlPqke6DUn2wcA7Bso3EoS24IcWzsZvPILhZt4KTgcedwyw+/2rF9JLdj7ge52R/uqsILd/U4G8THUn+rIzsR8DVePjwTcyhOuWsG1JJKt74ip2zSKxacd48cSlZxfSGyuH8mQ2R54ur1A+ULjRtLlQVTkFxrdKNqDQPa0IDvOBHzMxRsCAv6UB3tuyVOPSbRX4LTbjhvfiiuTmbyX5xAQAJi/9JgqMcgPm/xRyXVEFD+I+ESudsuHqGmzFpZGefHtDNdDyOV6EG8JjB4bWFn8h2OaZb5hDPLM0zsj3pCUeJVZGdJf3mVWSprJVfKO1G1OnjmMDozyDvdST8eQnmVSB0lMt9V5w7wuyaueMsXcKsWGecgytwEXXW+TL2NgSK5GgpeZCrkttWlYBwEiWe7oOmlXL0rp9Bh6TjbHjMLKWhM+AaxsAh8+KFZ1gVtlDOWSJpeiTd9KNLnJPaZwmxJUu9OQ7zXyvpJBvyXM5BCWEPPEPic/2sCQmKEg9ceTAMGjvy9f1+t6fT/W9ZX1Q76y85q4MwVAnS/Y+Qffgl0xiJdP5uSLQHQOVeTE6Rh6R/ZMWAdfGsbfeCaxuUVOyBXROTi/RGWZAJPeoZ8cc/pze7hKc/5zNwjjgqgVscpTPK8StiMGScTSCkIUU3qTJFtbU5hO2PnqKXrdEScVGE3+3jMoC8rzSMgU6y/exa6DDKIfH6M6x+QjMbZvf2eJOV+D1nSHM/TFiuxsTcw0/SyT+9L1IjUD4rgkGoXpI2bZUH54yuremDCrwBo5H1WJqnuJ/HWB3W9Lp0q0mmgM+WXH+KMlzY2C6YMVZtkTc8vkgwWrsxHhfp1kHTK0o4Vl0IVDacBKP0jsNH6RETtD6A3RaXwnO4TtRSEyrMQOxDJw8ROe8y86iZq8yKFNv9NY2mVO6F8aBDJJ7BoGotBrbNljco/dbchHPTb3VOM2sTJIKtfmA126SFSbjqkk4ScWAZUYnvxxTrvvyc4sbhJkNziCvsggC7htjykdfs+JrEZSP9GtFjOoEvmVLrwM6BOR1viRROqadjAKi8l7fSewvhtwFYyfklrYI92WGLZNe7X7HXKJXc0WivJUUm2ypezK6w6qjyUWuDySyM12ByYPzEZmlS2kDLGbCauxfD1sGBG7huwSYS3ORU6jU2dAyGXwzi5lEB4G25AlkKNlSNetHKvfksdoakX2qKS+Jbut/TRQPjcUpzD+0FLf9vSTmPpCJMrWzM1GNubLSLzViHG7UUw/0NR2xjKxQ3ujj7E1tDuRbt/JeR2LiV152bHPTq100mgoXliKM031QmOPcsoPC/JLKD/IaT9fM34C2bOcLJm5s5WAqX6aGIdCzkf1XFLPbC07zFHL/wtojDQHcn7tShiF8kiLMTwiZYWJ0diUKhpwN3p0ozcmf19FiWfuBKiGXBKrQhHptlK6Vie72iqCbpSUG05DSiITJmgAyQOwdKNISKWbKiQWxCUwmUts8pCuZmu5HuxK5Hi60VIamfpyNisC6fihYCPJGz8W+Vv2tMA9nGw6NgZQ4V8q7htYhc1rPUX21k3Oal1QZA5N3EiVBiAQXiovlIjf8BIIieTWk1uJuR2M3zDIoK4YjyES2Hm9iQR/WZr1MjvzskFd/k/M9VXZE6PaAIpBYtb2lvnliLa1mJQWNqSDDX0lbWJ3mkWRwJ5cL8Fp8kmHzgJ4vUkRJIqUsV/mdPMC0saQrwLNoScqqI5g+kCAsWnURlYYUzeIbtUGaF+v63W9fnDrGoD8sK/Hz4m5BWs5+Q9fReUZ8eiE+OIEHj1l9O0j1GQMZcHJH96DGPH7U1ylMWuPP9gWSZJSmDqInwRgOoFRJUO9Utgmsj4wzD5YodYddtGJPCtEYT9SASHOp+00tfndOJb/CzsTmntb0LR0ByNwnnC4R9geM3rWcf5py/KWpTiXoenp//BVVNNjH77gyX98iDmaS/zuXHpBTv7oIU/+w118rsmWjub1fbm9whJHBapz9LOC8YNLmttTYpUz/dYZqnPCzoxyiSW2WprTQ8AeL5h8sKCfFeimwywamsMxwSrWd0Yo78VDYzXlk4zJpBEPw0QGnPzcSPFaJyWDpCFPmbjZLd0UD15m+E6j8iQfSJn2ADEL4iPpFXHiiJkAGdXIZD+wGEpL+WG3EkZJ5x5TSJqOpGhBV2cUmaOp800nSGiN+FX0cJtqAxKGbohNSlYvu7umFjBhakV3kNrZt3pojUi1LnP0whC2E6OjIOQB3QqbYpapXT49xjCW1CXdSvQupIGuh+JUUx4lH8JIBsHRE8Xoufx92LXWXfJuLMQTIiV0V03o/UTkU+vDuEnUGj9J/osoO+RwJaeyNWSX+moQVi8xHFHAy9D9UVyk4VqnndU0sBYX0sbuC7kf3U7q3Ijy57ALn59p3DhQnGq6nUhzEOmn4o0IeRSGIUK7J0O9m4QkS1P4dSYsiIbFZx19XfLYydR0Z/ECVyX5UeVpPtNQHiva3VRymJauNdV7Oe39DpBCw5DJfWt+YUVz6FFPShavyvdWrzmiknSx5RuObKEkhhj5Xn1L5C7NocON5Tza1I9SPslk0J8EbC1SNRXlsRTHBnejY33f0d3paW54STubBkYfSCFi83pHc7eXgTEBrX4KYSTXa3GaUsGWwlDUNwPdTiBUIm3LLzTayXU1gATdaCEs03Vua0nWsmuVEsvY+HvsQm36Ikwj1wpamK1sKf0z2SKVYVbp2k8yvWgQIJL+3aeSzeJMwGhbZ1yeTVjPS9o2McO9Td0Z8RMDf+8Mzhv61pLnDq0DTS/yJZ/K+2JUiWG4kk85r8n0lbRpkFIpNTSiD2WD6hPJV3DlzYDhLV5vWI6NNCsdZ7jdoTRwPGo/IdnqnaFzhra3IqHK/AacDMDEeU3TZtKUfl7RLgroNKpI/iGvCE5jrWc8bim3JE2xKjpmd+eEkUd1KSFsYaXc9NRQPpeULF9cPbZB2tkchI30UmRYP54UyLUH5Hr9KK1rAPJDvv7xyX+OnovvwraReChSDDWqUDf2iUVO//pNutdusPvOku7NQ3xpyZaeaBQx06x/5hWwVnatrRWDepnJ3/McnGf7a6dXht/eYVJJIAA2SbGSF0V+SAkToRS4IN6N0wXttiVOKorvPMe9ckPYEK1Z3ZaCuN1vrmj2Mg7/wUfsv9OwfmMPtObwNy44/eXbyYNi0L2YmSdPAhefylAu0M0MZDZJrDqoG6JRnP/UDvlZSzQGFQK4gGp7VNOhm44wysVM37TgPco5FvdEdgVQPl0yfrymetbQ71YC+GLErmTHbvS5c4qDtTSGf2aJmXXi/cg8unCwEokUI4cddxvVWiyDeDOU9IQQAJc066UDHbH7IiMYPlCpArETYzdtGqZimpSBohSDq1KRqugYj1rySmQWww4hIOAmGdKJwohQJfmDSsTIKsX2OiUN3b1EW7pJaj3vNKwsZqkpnxliERg/1PJ4i0AsPTGPhJkjznpC5aUTRUdU6uMYPBfFmaKfxs1OMQq6KfhCBvNsIQbvi897moOwGRzE8JzYkMFWkUzDbiQ75TFhal8JOOhmcnxbi9EYJcNmPwuYmo2ZfogFHkzq0k8hAET3aWe8SoMmErUbgfXNxJys5bZNK8fWney0KyfdEyrC1nsau0LiipN0LFuK+b295cgvpSCx2w4UZyIH63YCKvfYpdpIifSl5WkUVHbDHBNNpDl0VN8tsB+XNDcD+aXE04ZK7kt5JCWP+eMc3QpgCHlkfc+jvjMmPzP4SRAD+CSia42K8tiK55Z+O9DN2DAK+YXIvMzK4KYCIqKC5oYXCUwLo4819Q24/Ike1V9p7+1xhuoU1YcppjXK8XwBo2dgjjORk7XCvLiRMDrZuSFY6RDp9xztDU+wkeqFFhD7Qnw0UUsstO4kMjdLgGJgSgZQ2c/CBjgM8i0V5PH3U4lsrW9GAWfuKvBAeTkvppEwApP8PyoVVkYrrynTym2KQT5dJ+9X2Oc55jjHnxcizQoCCOo2kx6P9O+mzVgvCqYzQXYDK6E3AOGKyeh6S9dbXCoUbPpMwEH4ZKHg8PODiXyIxR3WFai5Mqa/zNDAVY/HIBmLXPlCfGJZXLqvfSuN8UXuGFUdk7G0oZtUmBijolsUBKdEIhrBbrWMpg3FuGP/8JLtvRWZ9QKsrE9li4bL4wmq0eitjpg+r8ojhW1kc8M08npdHaYIZtJzt9KpMDRK4aT9MQUg6O/L1/W6Xt+PdX1l/QismGewt4PuIjx6KixG2/HsVw558qv7BKsJuSYUkoilQqR6/4TiaCXDbhegadF9JFxcErYlRSpsjaDrNrIsQLwfQyJW7wh7U/m389D2xKoQ0NL1UKRtaqPEqA5sfe14cC1in57R3Zpy8fkJ5ZmjOg3ouqfZ1ZDn2HlLtIrVT99Br1uKS0/91m0IEbNsaXcU21854vbf+ZDs6QWjp400l2sl56QqKY7X5MuAOTpHhUDUGhWHD54IPuBLK+WEudxf5QKzjzrIjICNAKGwuElGs5PhJvJz9/7RGfOTMfPTMc15SbSRbp3hawu1pLSEzkjHRuGxhRPdtJMP+GiEvYjJs2FKjxo5xjdXIpXIU0lh6cj301ayU6hcJEIERaitmMY7jdKR+sWYbpnTtzJ4XJxMaM4q1usCbZJIH/ndAbzEoEUC1gmosLXIEIa0o7DXbXavs1MrBuqxgAlMxM88/SySv8hYvRI3x9e1EaCSSzqNmaVCscuMUAYpdVuLDCJaGQzNGrod2XF3h53ssqdBuzxW2LkhP9cy1BkZKIaEpiEBa2BfUFDfSGzDpRzj8s3I+m5gdc+zvh02ki+7lGZsabxmkzLVbcmwqLtUhOcE6PRj2YEfwM3QCeLG0O0G+iks74lZ31Vs+iKKUyWDUAf13Z7Lz3hhczphl9zNjuYgop0wFMtXg6QoXWiaVzt0j/hm5hkusUblE7kTT4IUgd4qTjGNonhu6bai+BryiHu1JupIfmJxE/Fp2LXs2ptGBvvycIUa9/RbAV9EiiPphZl8pJh9oMWYPxbPjG60DNb3Grpt8V10X1gRUqGfXSna/UBxYhg9EbDjJnJ+p+9muMnQESJMQH5mpPDQRqrnySjsYP7zTUrCitJB0gpodhN5HQwgySwMZqEJt1pJLAuwvufxE093w0nK2I1ItyN+m1Ak0LHn5LVkhPnLlsLK6UZtAHt5lAoMO4Xyiuw8daJUqYPEyzUz7K6rIGB1AMPddthIE4cOFV9cXcMiQVSULwz5xwXRK5oXI9pVLns4XrO6LHGdYbpVfyI9KoSrXeiB2VjXBSZ5KgbZlhjKBUiE9Pff/wVX+0oDSNmwH7CRYA0sy3BcnWRTSkkpYZF8KgOYyawnyzzeaewgGYVPMC/DfWqbbFPQCjDdXVOVPSFo8gQ6QMCXD5rVqqDrLMvTEcpGYh4l3c/JBoebgFmnMIBcmDoV5JrziUWMRsIySKDFrK5Hn+t1vX7Q6/pV+COw1HxJ+OgJk3/8Ni/+x28RYwCjU/IKLO/lBKOIRmEXLdmTc8LWiJBbzLKheHhGWK6w6168H+99RMwt3V4l/pGyAOc5+LvfJvvuE5FsZRaMIWSG2HbEkzPoOkm3CoG4PQOtidaIZMqHBAzSNnVVQlWSP75g9qCm2bOMn3botmf6Uc/zL91CPz8jWzh0G6B3jB8ICIrjgphbDn97wdNfvSVSMWOwx3P8rBJZGNDvj9Gnc1ylCHszVJ1a0GO8AlEhkJ2uRC4WxMMStSZ/vqDfrdBruU++MGTzFhUiugvEzAirszKohaToZJeG/KNCYno7BethOkVM4qkIEJtYgMQGYALaemIQScJ6URBqS3xR4k9K/EVBt0pgrhOGQfdKpE02ECdSnjeZNjByycxuWL0YU05bzLjH1xbXWUmPMSmNKqhUmqiETfEy9PWzIIVrRSojrC2mVuIJESWYyMhAphIbN5rpqCMYGZ51K3IZdVwQ11Z2JE3ET5zo5recyJaSF8ONZEConil8DuYko90P9BPR/a/f6IlWCvpMw8ZoDYmpsGLcHmRZ0QhgmH/W4Qv52eq5eHWq5wa71BL/OpLBuDhVm6E4ZPLaGQzW3Sxp/4OAjPJM/m/wo6iYUo8qxNicyfGGuFjZXYfmlsS2qgCT97NU0phYlUZjSkfMouzUX2hiFjdlfFtfzem2I34UJc2nlefLNBB2ep7V2wAc2ktQ0B72mFTIVxwbRl+rUEE07+PHCldF8gvZ6V98zqEOa/RXpujnhZjHXxWpYzZXXP50h2lh8lDjZp7iVOMrAQDZtysBjw2Y74wpzjSjp1K4OHmkMZ2cv+q5IptDfb9nfSeSzRO7kNiAfitswgXc+MroX7xXCpOVTP5ZAoujj7WYvp8ZyiNFeSzgIP+wFMkb4u0xS0kXyy5EWpct5Bz0M0k5y04sxYX4e2zDxrg8eiHf2/hc0nWXX4oPZmDRBs9IsMPjSIb2Un7WjcTzYpJ3pN2Rcz74ntCQn0P1Isn4AoRlhl1qiIq2tawvK/SFJF1JUtbV+7/ItMQI7rxItIb0KJeieoWQ1ht/yJC+9bKEZgALnwQjwmA4Jyxu8HoDRPxLhvSXgchgfh/8K4M3pOvsRlJmTdjc7mC2H9gcY4UZNrmnqPoNu1Lk/ZUXJbE4wSvywhEjjHZqqI2852SR8UPD5KEWj1dz9TpVQZgOPxI/iavk/Ut1aVNGpxjfH8Plo/q+fF2v6/X9WNcA5EdhxYi+ccD5/+gL3PpnLyBEYtsxeRrY+U5Lvae4eCNjfTPHj3O6+7vya7kRQ3meofd2hAmwFpXn6EVD+eAUpdIlUBao0YjY9fKJ0rbE9Rr74Ckqz1CZyLXizpSYZzLodx1qtZafzySZSl0scduVMCZSf0v28SnZKpB/fAY+sL45aGY8q9s5x1/Moetobk8pnq9Qy5p2v8Jt5Rz+1rnIxbTCHcywLy5FRtV26MaD0mx/5Zjjn9/G746lBT23nPz7d8VEn2fEIpO/ZxIlrLpeUrZO1/T7Y2FBAF9lTD5YoDtHVIqjX9jGrDXTVy/pXm/oZx43jqi9ljjxV50PGunh8IpumUv6lBWPhy48tnTYxBLoAZSkmFnG0r+RP84x87SdiuzY2bsrdOFhZVGtZjkXCZzyCmwg22lpLku0CeSzFl+L9EGlfhKVdiKVDXJfdQIXJqbtzpT448FPxT/Q3hKNvuqli4OgsMcZYbej3xfKxF4awthvJA7lkRhBQ28kwjcBHbOw+EqMu9rLwOlLaA6S0biRFK5sKZr80ftZ6rS4kjY1B8JidIkFEblT0uVfyg7/5H0rsphkHC9OkzncswFAIu2Rf4dC/ly+7ulnsss9+xBML8+ldpKc5UbJGJ3L7+pOfs9PxSvRT6926d0k0t3uIcj9b/bFPG2WlnY3EMtAKALhqJSfmYgHpDg2wuYE8ZUMzd/KX3lW3ASoDc/UDgC39Yr8AlRj6HbEA9JPI8tPeWwtg/7qjnRVSKqWPD/Zt0bUtwJ2rQj3aqp/PsGNRMq19Xs589cj7o9esvWuod0LZHNNd68T6Vwmz5vysts/dLes7kuTvJsF1ncCy0959MoQykAorjw4+QVMPpTUsd3fs/STyOg5VMfQ3PI0+2HDHqggP+/G0B042v1AuyvHMZ34ifxI7lN+KXKr5nZPd0OuTzcWyVZxqjf9NP2YdM2xkce5UfIIJKmdT/JA5YQNU37wH10xYRu5nYdmT5LW7EpAnEngxrRQnCt0kveZWq6rdufqLb14cbV54Y4r9HlG3OuoV3nyegxv/YPhWxiIwX9hUvfGAAJCUH+gvwPEu3EFXpJvIhnPwwAkgsK1ZhMN3C4lWY9Iiv/Wvy+aN91mvEq6Gu5TljmMEXO6Tt6SgQURH0hAm4AtPEXR472m7+W2l6sS5wxdZzex48YGusbiO0O9LNC1xiwM+jyj2RcgP/i5ynMJdph+qFPEuLxXKi+M6cAUqtQfcr2u1/X6wa5rAPIjsOJqTTw9ozz3cDkX07lSbH3tmOKbH8ngZWF9oOm2MqJS+EkBMYp34vYU2o7s6w+IKdXq4mcOxFy+v0NcrUVOZS0qz2AygrpBZSJzil0vv9d1qLO5sCC1GANRSoBGSAxDWWDWvQz8zkPviJOKyXfPaV/ZI+aG3a9dMn7hYTJm58svZBieTai+9Qx9eknY36L64JT8+QI1X9PcmdHdnGLWnXhEvAfnMEfnch96x81/8gTdJE1RlJjNfm+c0q4UYVIKq1Fkcn9TNK/uA+tXpug+YFY9Kkb8OCeURgzH53Drf2e5d+uM7KAh2khwhq2DBflWKx0gETGZJ6M3cMV+AL6X+M3JuGF7XGMLv/FfVB/k3Ppdz93/qmXrfQUTB2UgjD3teUk4zwWkrDTFByUsMjG/R+iPSzARV2fCoNiAtoHQGkzhxf+hIwQlnpTEpqDYJCz5qU8eFAWlRzVGEouAsN2jd1rcjQ5qgx73Eu86Fn+JihAnnvXnWlQtnhXVaaKNAjhK2f3vtqU/wq5lOMsWajM4jB8Y2hueqNNO/euBds9LdKyC8lh8CaZJXQ9pbui2r8zAbgSrz/abYc+Xcmy7kiFWopflT91LqlU+h/zMUB7LkN+PwGdQHyRz+ViGzmFItSsxuudzGD3M6A963CSQX2i6HU/5QqEvrAy7+33q/oigIuWRZvShpXouhY0iGwnSO7KQxz2kV6kgQ7WrpKiv2w2bTpDnXvxfd3TL8ic6qhcas9OhXxSE3Z7yqZGh/FxTvVB0dzv6LUl3Kp9k9FuR/FyjfmJB9n4lqWC3G7JTmwZphX97i2YPsttrtIPyw5xQRNTnF8LyTCOjpxo3jtR3AuWRXCv5mUZ5YWJ0qxg/MKwPxfTubnW4MSxfk+d2/iqE/Y75T3Us70lUMxNH2Ovodj3tT9b0f3hBe69H1xq71JhWiU9nmBuDeGVWr/d0OwF7aTFLAXN2JUPn0FdDHDpfxN8RbHq/vO+o3+g2SV4DCxPyK++HG7GJ39WJvRh9rGl34iaxy42gPvSEIrEsyyQX9Fe9Id0M/ChufEeQGJ/GUJxpCWxIq++F5RgG/5cBhNZxYzQfonWHVKvh7wMzopNEqu8t9bLA6LC5jcz6FOErqVxKR/plYmHVFfDhpVP+MmsS45URfQBLA6AJUW18ahuDfJJWWRPky3qcM3gnt+29Jss8VdlRlQJMujZDq0heOuIyQ5/ksmGi5L3JjwP1rSugODBoIflx3L747Ez6naEoNWRXjO6P27o2oV+vH6V1DUB+BNbAWozfOyfe2N0Ahfq1HVCKw3/4MXf/zkfsvNeju0Dx3Wfo2okJ3ShM7Ql1TXz9DiqzxK5n65vnUlzYtKjpBBZL4vkFcV0Tn74g9k7+fnpOfOW23BGtBWQkZmOz8jyxIJZYZvQ7Je2tiYCU1Rp1uSJaS3bZ0B7OUCFQnPWc/PItcI5bX25w2yMYV8SpgIYwq/DTCjJLft6QP5vz6D/e4eIX74jDO8sS66LBGvzNLerbEylOrDvGz3ryJxfgI6GwkmwF4D2xyoXBAfCR8bunAj5CwG0Jy2AvG/oR7L7r0G2P+c/2qcpOBnhgfjlC6YjNPfm4gwCmcGL2RiRZG421lhbzus05erFF/2wkDdwXiru/vqKbaF78XMHoTz3HFJ5qu0anXg3TSHRqf6dl5zuBz/3kR+zeuWS2s4ZpKugygfFWLaDARCkhjAqdSQKWLrxIJUyEXgBCmAiQ0LUmu5BkL4JCbctAphuNPs0JqwxTevS0J6yyqzIwkhzLKfBS+KU6YU1UJh/yIOZrFWR4jCaBkI5NepIvBYRIp4Zi9FSTXxim37G4SoaG/mYPKrVnGxkMTSsABCXHqD7MqF/vcBO5DV8KkFAeYmq/zlYCJJavCauSXyRDvpYm68E0XB0JI1KcpOfPS+Rvfqk2DdvFMzmoacRXUB8G8bCsFOWTjJ2vWcpjRfVMs361F+kWKc72qWL6gUhJlm86sqV0YtilFuCjhdmxKyVSER3JX1iej6Xx8K51mKMM9TOX+PMcP/NkT3J8BZMvnqKcsBXloxy7UvR3WtrdQLjRMv5Dp4R3pwQrrED5TiVsQPLENHd6ooHqn09QDvrPrmGnI747ZfRUbVrC7Vp8RKYB/5kV3VYkvxDz/eipor4dN30y5cOc9lCKKvNzQygj5QcF+jI9MVFM9toKC5e9W9E/mjD+boZZJ1nVXKR0/bb0uYQiYlpF9SijONb4MuAnfpN+FlP4gS/Fm2GX4lkxtcLNgpQqtlrOW/J1vNyBMqRbqQDrVwTcrl/pk7RLbsM0ahPLbNbiAVrfklS0bisxLq2AWV8I8HaVMGk+l8eQXRi67SDyyEUmg30rg3nf2ZfYAJ1M4n/w82GIvn25xTxERdvZjXE8H/Wbn7eDGTwo6osKt8rk/coGulVOPurxTuOdScWIYgAfVrPMaVY5XSv3rW3F/K7SfRiAziDTGiJ3Q1Q0yXTftRntpXhhgpcyVWF1BkmZgPehDV45Rdjp6fd6/ChgTuXacJPA+racz3Y7Sc0y5P1MR9ws0O078YBMHWZpNmDkel2v6/WDXfYHfQeu1/W6Xtfrev03ryNzB4BdAwWLH/C9uV7X63r9sK0YNSF+b/eV4/f4eNfreg3rGoD8KCytiHWDOj1HZRnh1i46BmKmifvbqOen+DfuUL3zhPkv3qfqOszROWZVy+96D1mGmtesf/51Rv/2Id3+mLw5kBSsvS3CuMB8+IzYdlJq2HbCeNw/JBZGlEUxigRqVH2yDyQEMaH7gDqbk2uNOjqD8Sh1hWj00RlMxpQvzpn/4n1mv/MR4+I2GEP+5EK6PbR0dehVi6o73N0dYmHxpSUeTHn1b73AHUyJkxJ8vDKcW4O5rCl8ckQqRfFsAc6jgOzphdzvsthE76IVqu6I0xJCQLc9qveE3BKt7KTd/s0LmltjQpGRnbfMn03FmHpmcduetpYCPFU5dO6JXmFyT3ApwjII67A9W3MxH9Etc2KvIZem8Nv/vEa3PfW+YvX5juZ0a/OUx0K26PLniu33ArO/UfPRnyzoVhN8UCzmVSrhArwYWfNJR7fMyUY9fZ1JczAQOiPsRyNN6ioL8ve0Bh8DJhCX2UZGBinJyyt08pGYzBOWdpMoFUxAn2ciIVEQSvEmKCdxsMorVC+6eRWUdKhk4HOJ5g1FMnePItUzlRiNSH1DUb2Q3czqw4xgryQwpobmQORxw+pmkfG3c3SfvB5efBnKKexS4caR7n5P8TBn67tXvoCQy470+ecj5bEiW4kUqx/xiRSn4lRYhW43bhJ0dK9Y3/OYpfSg9FPobvSYpWWN9HJop9h6Rzoy6pvQ7zryE0t5IrdbPLNyX0ciF4pGUqDcjuzWbkzb00i/PGC+DTMNt25/wMOPvgBZxMw6+l4xempYfnUPP4tkc0ke62cBfZoTbSQrHauv7BGtnGO/5YiZZfxYsfy5muLbFXpl6PY83UGkemwxH4wI00B4Y8X6eYUfBcpnIjUzjTSWh2cjsqWi3Qvk55r6JqAi1TNN/YWapsoxS8PoY41toB8p1ncldnj0HDEKjxTqQcXitUi7H1K6mKK4SObvkTSVEyVtK1aB6mNLsyfXRXlkriJ1xxFbi5fGrA39tnTbxJiM9GeakF31gAwmc7muItWR2kT1KiUt7PGtJeq4Ei9KUGinUnyzeJyigfXtSH4uzevlKZtOCpuYt34qEq0hpIAot9nPJJ1J70hfy8CYKh3xnUGbiLVXEq3hrXgjiUqvV+fFSF4WvbyEdUQBee42BYAxKrreorX4NfqmRAUl70tOwdjR15YYNPmoIwTxdhARNqa2EmyhJErcdQabXd23T8i6lP9EmleMiizz9L2R98YsYgtPX2fk4w7vNVqHJM2S96pNgWIQxlUp0AudZFRx8zz0U4ngXt6VlCzlFOY4dekMb2idxFBHhSRiXa/rdb1+oOsa2v4orM3QrGE2QX3wmHh6jl05eHJEuH8Tve6gLLArAQb+1g5szwirNdy5CUB/a8bo/TNi25EdL2FdE5cr6le20N/5SFrDU7wtSqEmY1TnMCcLSZ7KkmQiNZEzTolUPn0AdZ0AmBenkGVSHGgtYWfMo7/wukiyuo7Zv3hA/dZt8ouWk18+BGtQrYNMmtn7vbFIr14sQGvsSiQQ0RrMopHzYJSYzkeFpF2ta8zxBW5/AjESylwihG0atJWWnwMwKpU7Guzxgu7ejnSZKIW5rLGXDar3tAcjlI/M3xzz8E9Npdei07gdhxr3EpdrInFtCfMcv85wtcgZTCamc6Li9GQqOfiFl7KtIBG47V6O6hy3fnfN6N0c86Aie7eifjrBzA35sSVbwupQ0x2MuPW7HYt1KbGWTiehs0YtLdYGrPECPlaZGEiH4UBFScLa9JAoSdNKzc4xE8+GfZFjL6QkL+pI2HYiBdPyOJRNscGp0M00Cl1rwsRDHiRCuE/fG3tUus1BiqN6aG56XBXx47CJ4w2FpNL0MxnEizPF+DGs7stA3m3F5O8QwNXtyDBSHwZWr3ryS/DjwPIzPYtPyXHdTNrcTUvyfijG38o3wAOSiXwspvQw9hLNGyTpSvsryZgfQX0noHtFdikStj4dv3pq5F00DaGjh9lVf4eW9uzlK9ISHsqAvTC4caDdvkrPylOKjxTZRdxhi2pFohc1uHuNAJHtjiepjHBvdYxyihuvnaEejhg9NbS7UXpFzhX1Kz1dGryzhULttXQrefzRRtTtmuqjDL/bM/3V56gnJe2O+E4YO7a/YWn3Im4sZu7Zr4+pnmnMSuRyIfW0tHsBu5DnpTjRtLsBd6Mnu9SSVPWiZPzQyHnTcPHZAH/kUoZeDYs/vmL+x1fM/qNn1P/ekmBlQAwzR3xryeq+p3urJlgxvQPyvM4kaWtIP/IFoOR6MvWVx0h7klRMyTWdX3kw3EhMzAMYcSPwU48vJCp66KtBSxrTEA2MkjI7iTeW1wJAliR6EvksQJYoZZkDOBqkiNFG8gsBQtmlwTQaX9tN+Sggpu7KEbz4LYavqxjdZPDuLW2TQ4Sy6NFJAqVT8/qwnNd0zoipO2hWJ+ON34vSEysJvIheEzsBHl1rWV2WEj8+z8ULVnp0SrAqSpFHokR2qlUUgBElsWuQj4H4TkJQeGfIS0cxaQleY8teWtU7S1OLCR/At2I+90fJ7OU1+tJi17KRMbSaD+d1fQv8VnrfiSK9VE7J9e5FKhqtRGeb9Y/n6ONR35ev63W9vh/rmgH5EVjh/AK9s01YLFFNi9qaEi8X2Ll8kqoPn6LGI9pPHzJ6+wlMJ5iPjwWslGJGj6/ewc5bVm/uol/Zpvzy+zCqULs7VA8vhCnZmsDFnPrnXyc/26Xbyhm981RM6VpBl1iRtpUSw7ZPKVM5qm7l+3dvwtEZxEj5+BKsQdc99//+CfNfuMfsXz2EECifLXn6x3e58Xs17eGM4jtP6e9sY5Uif3gsvpIYWX5uF91Hxu+dQdMSR5UwH0ZjzlZEaxiyIP2tHezZiphZzOWaMCpo78woProglhmxzFG93zS4+60KXffYywa/XaHX4gMhRmKR0e5YTBc33RDKpybkAmlAV8l8rqOwAFVAlQGdBYLTAkBUhNrgagNFIDpFtpB42MVdw+Wr+wQLWx8Gtt45Y/npHdYHhuV9GZBWd2H0WGFXPac/NaZbR7oggwBekd2o6WJOfVFixz1Z5gmVIzhNkQoKxXQuiVbag/cKZUjxuhHVSuRrKCJ4iHkUIBIUqIj9oKLb95jtTk51iujVneywRxMTQwZDy6FeSyLWoNPOLmX3u/NGYlsPekKf09yQArx8IYNaeLPGnxZwCOWRptuW3fziXIznIT0eWytiq3AHNYvXCoiQnYr71G15GUx8Gi675PfQkri09W3D4lUZRrNL8adkZ1YiVUvxmkgCVQIAFRAU2XIwsysg4stId+CoPsrEB9BCuytDvDBKyStj5U5nl1qiaaN4AdxIyvPsEOccpfG93xWzuM/B320YvVPST6DvDI9DwefyNTfDCeb+iqMPd9H3atbzHLPTstyRTYLqUUa3JY/RjQLMc+nA+OkLXJNR/Zsxy5/sGL2bc/z0FvazC/z7U/K5wV8YLn6hZfytQtiqEub/PYnsjS8q8rkwVa/9iQ/5+HKbxbwidobsRYaKkD/OaO935I9z/MxhH2abssdsrmnf3cIf9ISRYvu3xyxeiTz/cCxsxw7oTy1pz0v6Op2XpyXdvsdNFcWxtK/7hxXRREkYy6Jcm89K3E2HajWjp+LJqG8MKWACzK5igQfjv7ATzQ0B3dUTKyD4VFgQFPiJJ/tgTNkisdH7PWZu0b1cU/22eJ5CYWhv9RTPM9o9GD+V94pkZwAv/qduC+xS4SsBnLoVv49uM/w4oOocv+PoYg6VR+mA7w0m87hVjhn12EzK+do6I15mmFrT3ejk9Z/8Gn1vsDbgkzF9fVEJ8+kVXSgEN0d5HyAixaOZ5HCr3FMvxA+XVf3Vc1F5zNMCXllvon5jYim0CTSXJaZyknhuA9ZeJWENfSZKC7CJQZEVkpoVoiLLHc28IBv3xBgBDRc5yqW0vku7YY4IUi64iQdPIMNcGvmeAbNWm6S+IfkvFgE7zzbf/3FbIaWTfa+Peb2u1/djXQOQH4GlD/YlPrbJRBMwqmC+lLSnzBK9Jy5XFI9OibszVOcIl3PUciUG8zaZo30gWzrmrxSUMULfwxqUnYDSxI+esfwPPsvkN7+D/9wrjN4/FWDy5Dlojb+7j/n4mNj3qKIQQJJZYmk3cbz9wYR8WcO6hr4Q1iPPufyFQ3kweYrrvVxy5/9+yfIP3cONNMV3wC473HZJFiPqcsnT/8E9bv/dR4SDLUmwGk0JRUYoDaZ2mGdnqHVgKD6cvz6im0y48bvn+FmJXrUUjy/FqG4MqnP4aYmuk2n8bCURv0HM+mEs5nTdOIiRbipD4OxjRyhlB9WuNVEZkb/lshuKlaHTrDXe53grg3xxasjPJd5V95KE081kt3to9l69Epi9p9l65wzV9PRjTbNPap5WVMcwOgrozlPvgy1EThHmlmgi/UmJ3ZUI3kGLkWUeMtlt7NYZ+ain8wq8pCQBxM6gCi/SqraQ3WAPoQqYpcaPZOfU1JruvtRJ+y6BKlKcaQ7Vc0O7KyV7yksyFgFIgC1q2YHutwPqXI7rR6COC0IuhnbVR1avObLTjOzbFbqSAdGN5RjtgfS3hCzF6c4kYjZksuuKidJCf1TI8xEN2iUJjU9m9BSvahea5R9ZY78zwi6ls6LYbulfVOjeUJ5AyBRoGD2HxSvJFL5SG3mPaRRuGjGNFIDW93sZ3kzEXlhMYkCypU4dEcmUXED7aSedFXPZdS9eWKJJpuQ80BslA95PLOhOK/Ca+kaEWw36tOBpPgbWHMZzXOqd0R9X2E8taeeFDL83ezHU35PCy3BWonqFeWUFv7WN2ZYIYn1haXcjfr/HvjfFzTy6M/R7Dn2eCfACursto2+MabcjeS3Rvm7iefDPXqO+5TFrjQqK4hRMK+3m+tLiRpHRw4zLN0VSxU5HaKwYttP160rI54r2szX1ffC1pXh3grrhBHhNRUqXnQlwDTkb6VK2UPiRojmImAcV7Q2H6iQQYTCHZ0s2srxmX2R/pr0KHAg5tHsCct1IkrWqp5p+Aihob/YULzJCFmluOYqPM7oopZrRJsOzU0wey/VZfCtj8Zqkoy1eD0weanolwGN936N6RfVUb4DPJqBBSSKa6bQ8vs7KayBAyBWq1biJglbjlSX0mtZrYSScwo8DedXTO4NJA77NhZkOQbF+MkX79B62FClSKCIhEwDEOhOmMkDI5LralHAeZdiYUqU6jT9s0SkFKwxsxXkur8Msok0goHGtBZy8HyGACCA4LQWrhbxH9U0OSgALQF9bTB6gNcSZQx8Joxu2HGplpHfJRvyIjYQOZKMh5AlU9SkBTYNurySTsdf0ez26Nrz+f/4/8OB//r/8b/35fL2u1/X6/29dA5AfhRUjcb6UnXtjZLgH5p+Zsf34CKU0MTi6uzs0BwXVi4bsbES8tQ+9JyqFulzQv36T7Bsfsv/+iPP//ufZ/vopPDtGtZ2UG2rF9F9/SPuzn6L42kNO/uSn2f+Nj1F5TvQeczQn1o0kSa3XqKqCPEc1Dnd7D/vBE/LvPpN435SSFQ730M9OAZg8qkXG5Tzu7j72w+d0U8PO18/w9w4wF2uMUjS3xlRtz+2/9T7+lZs8/aNT7BomzzzZ0lO8WKHqDopCbid1kuz822Pc3gQ3K8hOViK50lokMiKaxh4viIUVJsRoVNNDmQmb5D3RWvqdCtM4TCeleHbp2X3bsPPtmvf/THUlL/IKyiAFfBoI8mGoGk2wkXbfE5WRD3or5WrKyVA0euEZPWvY/iDn/NPJM1LlzB7ULG+PCGNwO4HJY8X8nsa0I6pjqFtLPuoJOx0EjSmc6MQLjzaSmQ+QlbKzSFD0jYATvd3h14JAVB42WnP5RiRUkezEXu0OKuj3etTSwMjLh/mzXGRnNkWdkrobvBYGxV1ptlXSZ8c8ojv5++ixpt0VEOZKRUi3VTzPcNNAb8WzMX2k6MewuhcZPdF0MwiZ9C6YdhiUIpzlKKD4oKCfSc5/caZT1GpERyXZ/0slBYNHinAxYn3Pk58ZRo8y3FFGBptkKO3ksbczKZBb35WBMiqR9/TbgdHHRpKtbBQWzEfMXFgfXwpwWt8JMuxZOb9RwfQ7ltU9aevOzyThqdsSWYjyVx4Yt8qFmZr2uKkmf1RBhGfbU+CYQzvHrzIUcOtnn/HkxQ6qNnTbHntu6W/2jP/NRFK17vSSBPadCav7EQ4a1FlBfqppPtVSvV/Qj6WTxK4hWgEHIiMDFhn9F1b484J8bokqDXUR7NLgbnWwNKwqRXGi6W93jL6b0/7kmno7I5t0+Mcjym+Xm4jb5q2auMhY/qSjeJRTvV2lrpGAe60m+6ii/GMnxDbDREVbZ7izguJE4yphm5avyfnVjaKfBsYfXoG5+nMN1aQlfHULIoyeQTeTa6DfClTPdGLsICqRbBmloBEvjy8ixRtzwnsz6fEIiuxFRrsnvh43SvHNu+J7cUnW1+5Fph9o+i0Yf6Rpd8Sb4HPIzgyj5+IFAmH8TCf3IVul+OdK/m3XIkXM5gZfGYKB2KQEOwwxGuxcEp2ijeS31/SNJfYGOo2edrTnJSo1u4MAXILCVwKifSlJZSgZzgdp2uCZ0EJ6EXIB4XpuMWtFWBiUV/S3WkwecMsMNRZAq5YKXzjCPIci4LC4RgCF77QACxCgOA641qK0+JO6kwo9FR+M77XEfjuDr0Rapy8toQz4UUT3knx2tekhsqshklf8ZhB1ED/aKAhTXWvMQq7voXPpx2mF74MJ/Xt9vOt1vYZ1DUB+FFaM0v1hLazXkMzl3VgTmzYN2Zr8mx+ReS8+jr0d+OgZ5Bn1z79O9dvP6LbvYX0gnJ2z89vp2NbSfe4e2dsfCtc6GaP6wPyPvcH+P31IXK1R41FiNHriK7dRHz+TAkOjxTyeW+yzM7l/Sok3ZFWDc+jTBd2nD5k8qqVjY3fM+ecnrA4V+3v32f2Nh/h7B3z8pQmv/hen9Pe2OfrZnFceBJ78mTe49TtL7v2dpzz/E7fRLlI+EDBDZqHpoEfc3skYb09SOpDRxFyG7VhalI9ilgfwiZbPkss0fb++v8XowTm+GKGCYfy0p3x4Ji3xT+VYb/xNxaP/RaBbZ+gsEE+LzYc4QJw5Yiv+jGgD3R7yAV9rfBGhBPOxYvLBAozCdJbb/+8T8aUUGfZsRbYaUR1HxkeBoy9auu3I4b9usKuMs5/M6BpDtb/GB8n6960Vo7mOsiOZDKoRKGYtMSi6qDBZIJYOpSNF1aNUpF4WxImXGNSldFFkC0170wlIcRqz1sRWSzt72mXsZpFsoei2RKKm/PB/4hlwo0TIaDAr6fLwRcQfCIBwo7gp4HNbHj9W5GeGfhrotyNnNyKMPNX7Of2Y1AWiNruy0YgpWSRamuaWx+412A/GosMfdpcL+bmhI8CXV89HeSKD7Pz1KC3pYzGe5xewuifnoTvsKT/KqN9q0M8KMTeTSvkimKUhf2xlmGxS9Os4oLc6OCk2hldfyeDabSkBRk7OgV1LF0s0ETvp8esMvTAU7xfC/DwpsQjYUgFetLvAA26rlRhtV5rH370h7NtBLzvUBz1qYZPER87D6GDF5HZH3WX4L29T3wz0s8j2vym4+Enx+rgdj5v15N+s6LbEm1OcSBS0W4zhpkj67Bpso2i3I/5Gh5pn7H/qlJMP9jA/c0n+9hbN52tGXxkJaOszaQf/worbe5fUXUb9/h6mU1TvW1b3Aq5SZEsZlm3h4Y0ll+/syaCcNterI5HI6XQN2KVcV3YFbhalTLASKY46y1lf5pipGNIvb4jfyS4lGnloNW9v9YweZZvW8pBBc9uja0333kyM9rOYhvDI+CNNtMJkhhzGH8u/h66W4lShg4DKbgblqWLxRmI+nmvabQG6+TyVZaYSPZR0rKBFFqhCuo0iYurEvpXJ29Ek8KRjioWO+GVOdDoxQBrqEpM8SEOgBWmzIZSBaEXWNDS1D36kkMn5CzaBk8imtG+QK/oyggnYFzluFKHy6NNs44NSA+vQatnYmA1x4YrgFdFrGHlCK162qCKUTljWJPVSThOcgmmfms1Deo8Rj1nMIjpqwm4PlxYdwE091TMj7xfhKlxDR8ApYhUIZYBeC9t7bUS/XtfrB7quAciPwtrs9DthQKoSFktu/OOH4pUoUoHUAD66fpNSFbue0TvPiMYw+hffFXO5MdSfPyRbOsy7j9Cth8MD+OgZ7f1d8ucLdBcgs6j9XTn2upa0qIsFMUTIZVdEtQ41XyXxaSC2LetfepPx735I2J6ij8/JPz4X47o10LTsvf+Y6Rde5/QnC8ZfN5iPjrj3TyIUOeXDMw67Lc5+8SbZEs4+P+bgHx9x658+I47FHE/fEyYVerEibk/kceaW5asTZt883Zw21fUCzry5Ah8giV+LGrVqNqlZWEN5VOOnFeWTOarzZF1H2JvhJjlm7VDJ/Zl9ZUL3uZawzIiVxzYW3SvRpjf5pnEXryWRpZddeO0UO99U3PjN58RCYnbypwtUCGKaLyy4wK3fOuXZv7/HyectIYNP/c0l7c2K0Tdf8Jn/65jHX9pmVRTIJ376wyn8eYHZafHznC4oTJkkGF6hTcD3UvqlTKRrM5QWk2vnNCEPhLH4QdwoUmy1YiTtDGBfkmfIAKN6lfL2ky+C5IXpJP0pm6fCvUxaq02tMJ3sunb3WsoPi9QmHsmPrezsWja9DyGHuBJZC1qGTFQqGdMiy4lKSvfaGx7daNxZSR7BVWKa92WUQaXX+IkM026CpFN5aH5phfnahJBH1p/rMMc53G5Y1pbRBxlRQfE4o5tFpl8p6cdQv9FhTjLp15hGypM0lI2CSGWCNMUzrzagIWhErnWzpd3W0GiJtgyKbjdg5iKj6RSoVhK13EjORSgDwQjzEorIi+4GAPdsSyTgdoI0zt/sGH27oP3CmvhM2JJuJ2KXSoIT3tniAkkb84cBvdvCs5LyTx6hvrtPeazwpaX1kmylgkJ/aknnJmLc33VUDzLa/cjsPcXynngqXFMQcjh/+4BiDe58Cz+OqKclzUEk3G0ITmOfFqgPxjx9NEI5RS5VNdS3pJ8hO8lp7jrGH1jadiLswl6g+PScynoujqaMfmLBVt5zfDHBnZbM3jNSRmkEjHQ7kqxlavCVJr+U8sjinE2BXT+NrG9HRvcXtB/OMCvxDDQHqbfEI4WOhUjPeF5g14p6t8csLPUt6R+xjYBw3aXnvE7ekgLqW1IkqleG9Rs91Eb8N0to9gXARQXtviTHZRcGlQswD1ZCEfSGjZCBP+QRU4t0ihsNHJeb9Ct0hFb6PrCRQEiariQRDbIZohDgHRL418nPZWoBX/1UmJFsSfJypUJOsYJJEEQLUStCmaSJS01sUhqfFtYsLDLY6tEX2WbIj1FJcIaOsDYCbPKASoxId1aKl6zXUEighe4UYWklsWrwnbWKmKX314iAHMCnjpn6U528FV1kcg23YkbXvSKM5FyIH0eJ9+XHbAUU4XtsGv9eH+96Xa9h/dhxa0+ePOHP/bk/x97eHqPRiC9+8Yt85Stf2fz/ixcv+At/4S9w+/ZtRqMRv/Irv8J77733X3vMX/u1X+OXf/mX2dnZYWdnhy996Ut8+ctf/sTP/KW/9JdQSn3i69atW9+Tx/SPHvzviUcnxIs5cbGEppWG8dVapFNtR2waic4dJeG286jdbdThDeLFHJVZVGZFxhUjyzsZZtGgdrYJhUGdzfFvvU7xziMZ+D46ktt7cUx8cQxaEQ73rhrQjRE5VdcJ82E0ZBnh9buMHs6hLNDPT2S4X9dQ18TM0nz2EA4PMI2jOg6c/3v3CDd2qe+MYCHJXPl3nlAd9WS17DILu+Go70zksVclyjni7gw/q1h8ZofF61NCriRmt3cb+VXMjRQy5lZkWzFiFnVK9brC3253jFp3EsfrI9Ea3OEu63sT7KpH1y24gDlfc//vHXP//2HYescy3ltTvjnn/j+p2fog4F6v4W69SWkxK4PuNNlc8+Z/ecn+Vy4I4xLlAs3hREzvQLc3ImQiF6tf2eLwt8/Ze9dx9zca6tsVo++e8p3/2W2e/9I27R6YQqqeo1fELkm4bNpBLGSXDwZ/fkRpCM4QnJZ0mV5LiX0q7Mpv1FB40elvOfrWSnJX5vHTgDtsZSCZeQmkSdIpPwmEImCXkkgT04e6r+JG4hJsxBcRN4psv6sYfafA56IxN60MBMHKEGfEboKbeIpzRbcTICRtdy/af5Dd2AEUqV6JZCgP4p25lGEz5JHiRKcBVdHuis5eBTG4C7iC0RONPs8oXyjUo4rZ2xnNXtr1NjB9KLvw9T3H6Lv5pgxxMKkToTi+kvSEPOJHgXyusOvE3ryygrMcnXnGN1eb8xS3emIu58deWPKDWh5vGXE7jrDdUz0X9mn8SHNxfwLAbe0pn2ZkpxmmVuQfF9S3A76xhL2OMAroVtHtecZ3F/Rbge5+hx8HsFF8IyvFyTcOUEFAR1Qimxu/dYY76AkPxuSX8pjspaF+oyO7VFz8QoubetpdScly25Iu19zwdNuBbKE2skOOSlhZTCuxyb6M9Hc6utca9OcX+HGgfJijHZiFYXXf43YdzR1JaasfzFi8u4O+sDRf3eXyt27izkowkflP9oSfXYhsrlPklxrlxG8TLCxe9+QXivmnPfVdT/1ajy/FA+G+viVRrir5inY8bpxS1/YC/TRgnxeEItJPIuVTOc/qsKG/3dLc8PgtR7ctLES7I0N8tkhSuijDMrUhuxRpXn1wlbglUjTN9D1DcSbXvS/l/a6fSWu7TqF9+YWieiEpYrpXhFUmKWEWwm6PbqUANGogCGOFEcZnA1KGpKosotd6k2IXs7iJHLZrCdkYyjmHwr78Um3YR5+AUnapxaifJ8YpAD7JvdL7UdhykEVoDKHX4kMMipgF8X7ZSD7qsGWPqhx27KAIqMwLQzEKIv0cuw1YcCNhE81KSwrf0ghTQ4qcvshgJUlZYVeud+WFxVFLI+clynm4OjnX63pdrx/E+rECIOfn5/zSL/0SWZbxj/7RP+Jb3/oWf+Wv/BW2t7cBiDHyp/7Un+LBgwf8vb/39/jqV7/KK6+8wpe+9CVWq9X/1+P+5m/+Jn/2z/5ZfuM3foN//a//Nffv3+dP/Ik/wZMnTz7xc2+99RbPnj3bfL399tvfuwentXgUQsB96vaVLMsL60DvhCFxjrBec/5HbhPPLiRu9qXdfwCM4eBfHUtcbtPiKkNc19hHL4jeo3xk/VN3iW/cgzwTwzmgHz2X4X82SbfZy4TrvTAcVYl5dgpPXrD84m3i7jZxdwZ5hnv9kPbujOyiRV0scZOMnX/1BLsO6JMLVjcN4c4BWMPq517FNJ6d3/6I8jxw+TM3wRhGbz+VNK6mo351G7VqsM8umDyYo33ENJHm/hbta3tgDNEaVN0Rykxiik2SXIEAJqXE3DyraHdzVC/m8zDKwWqiVVRP1qzuj+kPJoRRhoqRmBlGDy44/Gcn3P/femZ/cwpKsf32OZ/5T5fE55XEzzYyEGVzxaf+5jl60aA6RyxFtpbNO8IoJ4wLykfn6NYTyozy8ZL25hjVR45/usQ0gQd/7ibTh4r61nA5RMpJh7Kp10OBsmLclIleHqfNPaGT3H2Giuj0/31jCUGRVTLpZJWTXdReZBLeGbSOmK1OGJRXalRK8crPRY+u1zLsdPueYAUM5Od6I2dRgc3wYNeys+9/doFdi9RJD0FdQXZgh5Sb4tQQFVTPNeXpIG+SJCwVJM7XrlNrdRkYf6SZvptt2quFfVA0N8IGLLlJYPkpTxh5uhmoJyXNZxtWnxPd+fJNR3x1zfxzjlAFutcbijNY3o+SXHRuaXfEyNzuiS7djWRXOBSi2R89U4T9jqgjzS1Pn3bJu5NKWJ5e0zvD3ivnhL1ewGMy0kcF3WmFn3nUzQa71VJMOtav9kQbWXza8yTeB2DHgN4+l+E/SdmyWwntrK1Ifj57gZr0+K9tUZxqyg9zsnPpFvFVoNuWc+PHXozZVYTdjuV3d8ifZhSfntN8sabfCriZJLi1B57yg4LyyOCrgJ96Rg8tphlCFzT1HTl/Yb9Dd1A+M4RcZG3FqTBAobH4706ZfGDwJdSHQUDYSpMfWybvWXSn8VMvz+deR/9GLYbzpSY7s+hLi//OlHyOMAlvXdLcddJ/4cEuDM2NQHZhKF4Ypm9nxK2e7S8e0970ZHNNfqFp94UVDJWnO+w3PiLdSXCBrwLtgae72ROflYy/VTB6Yth6O0vXdBRWw6SktrEnP8rEd6PkWjSdDPAvsw1y4Qtgqu94Qh5x40Aci98qZANLFDYRyX4qGwDUmlAEtPXCXlZhczw/9RIEkdrNB2A8vA5DETaS0ZAJ0PFFYjKVxFD7Kr1+vXhVBuO/GnxuXtgR0yq5z1e1Qmj3ycFe9QrOc2JtYW3k/corlAn0rXhEYtBoE8AGQmuk1d5KxxAri5r0IiVTIs30dxqRWtbiGStOhGUKeUgbGAF1maGb1P0xETZYr6SjCJDY4R+z5aP6vnxdr+v1/Vg/VhKsv/yX/zL37t3jr/21v7b53quvvrr5+3vvvcfv/M7v8M477/DWW28B8Ff/6l/lxo0b/I2/8Tf4i3/xL/47j/vX//pf/8S/f+3Xfo2//bf/Nr/+67/On//zf37zfWvt94z1+P0rvnoH9cFHKGPQX/suanuLuJbkKbW3Q7xcCEC5mKOMDG/cuQEPPpbf915M400LIXD8Rw7Y/9svUNYyevdI0qnyTKJ0Y+Tscxl3nixQWSbMCkAlCVbx7EKkXtoQp5VImVIXx9GvvMrB3/4mk3/zEeHWLsoFulcPyN99DJ+6TbRapFZffwSTMaYNNJ+/zcFX5gISlCJbOlSItG/eojxuOfnCiPWv3Obw149gVVN/7gbFcQ3e42/tYB6fYG+M6ceakClCbtC3Zphli4oR++KSsDUiFJl4VcqCMEqRvEqh1x3ZohCJWIxSiKgCZt1T3x4z/fYZdD3d/V3CKKffKcnOZKdaec/W1882z9Pis7scfAWyVaA8bnnyx0bMHkX8KEdnBrXuMJe1+FXWLd2dbdrdnMl3esyyIRoj93nlMMuW0XsN7/9PDglZ5OKnHMXzTDTcnSGfOLZ2l8wvUkxyVFB5Yq8lDCqAa8WgHhqLLpwwIV5ASAxKShNtIAZhRJSJqJEMtb41uJXFTnpCm6HSh7eropTCIfOAbkR77kci/YhGdqTdjsNeGLJz6RYBaHbB/ptpikIFNxUjsV2JX6Mfy7EH8LJ+oycG0LWhONGpoA7ycymeizpSPLd0O4lFSYOg7hQgO/QYaG7LrmnsFOWpkYFOQ/6gFNP3tscsDXFRoWwkVIHpV0sWb3om7xvaVHhXHCkWb6bkJwfF6mooW9+W4Sd7XODui2fEbXuRVXWKe59/zrOzLbp1xu7eGf2O4fJoIuZgDTH3qEZL8tyzEl8FQqNRhQx49tIw725xuQ1bBg67pzw9fUt24cce89GYvBYZj5t6FhcVtnSym96Jrt8f9Gx9NWd1KN6b8pmhuNAsXhXwlz0sUT6xUF/fwh86sqVE30YtkqduS4Zhu9KYU0X7hTU284zLjvOzMfo8T/HLGl5Z06xyshcZ5ZHeeHDMMrECNwS4lZ+fY0zg4tEW2skOu10oymMrj6e2hCaibzb4swJqAbRDTLLyUD+YbR5/e9gzfpBJcpuDfitKF8dlxuLBAXpH2AY3khQoX2vs0pAtBXR02xLAUGy1GAX+4Rh1adA9TP+DI06+dgP3xSXdaUVxJDKuds9DFcSMnYb06qn0pmTLBIxzIMDoqZjdV3ej7MoH0ActvjUUH+W0uxLtWx6Ln6zdTR6WM5ErKqdw255wkYvM0ySZkpI4YZUBvZINiSCSOsKw84+wmcmM3m8JINDuqiNHBXkdR5VYydSLM/g84gCsGoVpRS7VTwNkAd1oolcbOVUsA6rRcm2DABEgrjKRbSlQWRBGMiiU08SUiBUK6duJZ7n4yVrxkYSRx+goJY4RCYnQ8Sr4wkAsPYxAdVrSs5DnwI9C6gF5CTVdr+t1vf47Xz9WDMjf//t/nz/0h/4Qf/pP/2lu3LjBT//0T/Nrv/Zrm/9vWxHWlmW5+Z4xhjzP+Rf/4l/8/3w76/Wavu/Z3d39xPffe+89bt++zWuvvcaf+TN/hgcPHvzXHuf/w96fB8map3d96Oe3vFuutZ6qOnufXqe30WyaRYCQBBoN0iBzBSIMdyTCvrKxIzxe0B+ICIUJgwRh8BZBoDCYCBDbOGQQcX2FWsM2FiPNrumZ3qa3s59Te2Xl+q6/3+/+8byVrTZISFiymPZ5Iiq6T2VWLm++mfk8z3cry5LJZPK2n1+r3CCRDf7VCyitIRVUgjOKlTG4p66JDsN7+reL5ca/fv9jKKVZfMtFoR1pzfrf+ypqOIC6Jn/8nNCVxm3g4GjMxZ8/hBBoHtpBGSN2vyuDt4aPKIKmQS1K3OYAv73G9FsviRtMa3uL1qiqId6fMvrOawCMH+3IfawOCZ2E7OaY+KTg8H0DmC2gccT3xlQrMclLtzl9NKN3ryEZB0FZjCa7ftIOD3L7xZPnSe9PGbx0TPflA7pf3yW6f4qelZQ7A6rLa+jRnGAVzc4a+IBqPCqvUI3D9VLivQmzx1ZFrN6WTyNM4QmRwfc7MnSEQHSS47oxITFiDxyLFXF1vk/39ozk1NG9PSfaHXPxn81Z+8IBdu9UEt7rhsVDK7iVLr6XYec16ZGcl/VGl4MPr5Bf6qOLGteN8YNMUIEWsKlWnQhE9xLm44zYOHTrtW9iR9ypMFmDHlSy1W2MDB9pg3daRKBtyjJIwrkrjWwda2kctA0Ep1HWS2Mwi8RETLc8+baBiSZviVqjqUKXGjuTjxRTQHxocVmgXnFC45kLReUs4K/phTbQThqJM/cp5dvLu7DxWYsd2WVw2NlWFuQ6ulHUj+SoRpCIpt3c+lgoVHbaUjQahUuk6cyfKCDA+Wf2KC8KLYe2qaGluehCszgfiEatJakRqk09gO4NQ3Ki2gFIHoty0L8hgv16xRFfl4TpZNcuN673vrpDPYuJ0oZZlTA56mG7jWx2Ow06dpg14bBHM0V8LC5Hdmpwq00rSNbcddLArQ/uUq0GQdmOJFG9HnhcR5o+cxhjX+lKxosN6CsL0hsxs0uBzr4gE8FCsd4e87kkxpfnHOW6p1r1mKk8BpeIZbE8WcnzcFmgeTRH3ezg3uxR/NI6yevy2dqsOOjX1DPRp8XvGlOuSYCjGVSonbxNqZamfHZrwGivj3KK6FRsaqt1CQX0MXTuSHOqb2dy3xs11ZrDX82pNpwMgyNFteIkyFGL7a2ItIVapgKEnqPuB3zsBeHwUF8o0ZXGX8rJLzjq98xpzlV01nL89R72V3pCqXIiCt+7v4qPA/arPTFYcDL8nlGf4rGcayaXobrcbulStj13zwwrWvepoMSBLHkho/9CjHlmTDzWQg1835jiiWIZntesNiQjRTyF7K7B5FpE6bXQn1SpJTC11XdAO3zUqh1ug1xftaYOGkEjWgAlmFaMHsvw7uMgdMl2+HCZ/N51vby3h77VcvnlbbiukwDTWknjHwSlZK1q9RztMUgdQQdQAT22hIUFBbovyC4KQuKFyrVWYTaKZXiqqjR+2BBiT1ipKa9UBAPZvgjMBQWT42EWIlpH0S5JwKV+SYN8J9WZC9Zv9c+DelC/HfWOOrOuX7/OT/3UT/Hoo4/yC7/wC/zJP/kn+eQnP8lP//RPA/DEE09w5coVfuzHfozRaERVVfzFv/gX2dvbY3d39zd8P3/6T/9pLly4wO/7fb9v+bsPfvCD/PRP/zS/8Au/wF//63+dvb09PvKRj3B8fPxr3s5f+At/geFwuPy5dOnSv/2Tf1AP6kH9P6LuOmnqdzj6HX4kD+pBPagH9aAe1L9dvaMGEO89733ve/nJn/xJ3vOe9/Af/8f/MT/yIz/CT/3UTwEQRRH/4B/8A1577TXW1tbodDp85jOf4WMf+xjG/Mbg2P/2v/1v+ft//+/zD//hP3wbkvKxj32MH/iBH+CZZ57h9/2+38fP/dzPAfC3/tbf+jVv68d+7McYj8fLnzt37vya17Vfvw6Xtglv3ibUDYvHN1FKow6OCXUtyeDfuIXa2kT3e0R3TmQ73zTEb+xDmhCPKlSLiqhItCHTb3uY7FduyJ00DVzaFl3HdA539jDfuCWuW1ozeWoN1e3gL23hN1YIiwUhjjD7Y/T+iP6X7mJyqN5zDb8+RO+dMHtiHd9NSCaefCthelkRsoT6XB9V1KijE1RRsfUv9uV+0gRmc3QdYNCnd6/GW0XnQLavfq0P8wU6r0Er9GhOvmHxnZhqZ4Bb6xMG3aXAPN6bMr2cMPrIeey4EJveqkJNBG0JWYxPDW6lQ++1EcFqlHPMr/YJRpHsTVG1QxcV9VqGqh2qdthJiSqdaDoSg08i4v0Z+YUundtTCfNSCjPNKS+vQCSPMXQSsrtTQqRRIVAPEu793g71uR52XLDyZkV285T8fJfZ5YzyXJdqpd3WNbKZ16XGLhQsDONFxnCwQJlAr5e3yAZLepWJhU/jcisc6wAEJXa9KuCqdrWpWxSgaWkSlUabADOLTlxrgSlZH0GL3Wy1KhvS6MRSXGxEbF21wW+tvkB5lqiGS+W/VR/mlxzZntA3moFHNUKH8XGgGgTqvmyM5+cV6bE4jJ3pO85E62f8ej8T7Qft/atGtrvJsSSopwciWMcE1MUF9m6K26w5/NwO1Ir4VJPdNxAF/LCGC7kgOeEt7YmulGQQxOKYVK4G6vVmyeFfXPTMLwoa0blnaLqBeCLBdsEEwrARVKDQNKVhd2+V4BTNrCX6K9BRu0I2gSYTHQNBHKj02KILhY8Cu7UI0XeqU3QhZgc+EV2PcorzTxwQHUWEM5F1A26rQr3WlTTyqaJJ5XjW/bA87uW26CfsxKA8JCeStVCvOuJTSO5HshHvN2KDPNGoW1mbZaFw75tSPZFj5xp7aljfnKJqTbQXkd8YiOZFQ/blDu4oxaeeZsVRnHOwVpHdFavrcsuha6HZlRsOHwUWD9dCoTNyTulxJJqI0pDum6VmwhQafRRjDyIJXyxaZKwrxza5E8mx6jVUqwGXBdLrCX69Qt+WdPVqGhP3K/LdLs3AMb9WY3OhGNm5wowsbtiICH/QOs1F4nYHUK153MDRPJSLPmRi8FbOk6Ba/UQm2R+mlETvpiP5MeUqFLcGVDs1iwue+NNDBl9I6dyXEMH4yJJveRZXGhZXGkGMxhqdG9I9Iy5WY4MdiyZCF7q121WoRmFPJMFdNW/lgdiFXOYt0hGYt5AB1xF9ictaU4H2Ip/61rpXKGS6RTVUqdGL9rv0TARfa3HkOolRdWsT3GrWVOSF8mhA92qSXkmS1YLgWLHeZW4IczHFeMs4QEuqu5LPKrsXo2vF4rzDdZ0gHtmZlqYVnuuwpKGFxItZxzusPJI2/1v688AF60H9NtU7agDZ2dnhySeffNvv3vWud3H79u3lv9/3vvfx/PPPc3p6yu7uLs899xzHx8c89NBD/8bb/8t/+S/zkz/5k3z605/m2Wef/XWv2+12eeaZZ35dh60kSRgMBm/7+TXLaNThCAC9MiBYRdjZIJQlOsskIBAI+4f4yZRwdIxaVChrpakvSoIR0bV71xUA/OkY5QPVU5eFLjWUFPXiW65Kk76xJgJzayGKSMbNUng+enaIShKU94Ss1U8AW/98l/lOjJ4uIASSY3GPOnzGkpzUbH+horg8JLpxABOhfNUbvWWmSHVpFYBoXIk17s0TTp6U5HPqGj2aiyA/BPyqNGLpcYNeVMR7UxaXOgSrOXnfBr6ToBY5a8+fMvzGhNGzq/hBxvS950UzEVkRsp/m6FlBMArVeJphSjR1mInoYUIrXI+O5uQXB/huIlS3yOCzBD0tRdehlDiAAWZREbIY1XiSmyegFapqoHbgPWZaQAjExwvWX3TUA0ux3SXZm6EaTzRt6L85p1w19G+0QmUrXH/fdTSdQHxsqBYRJwd9fGWYTjMRltdG3LFqGTJ04tCxw9fyha10KwLVbxelB6fAaVxuMd0aEzmIAuooWZ6GqpYGP7TOVrponXDabIJ66IXCVAq9w/VEECuccRkQbA7DVw3VQOxlkwNpnOxcGqGzYUKsbYWXXlyplkFpwbR2oEp0DNSKptcOXi1n/VfnOswvtS5dlaIpLfX5ks4wF85+09KO1gLmxKJmlrCfkh3IYyNAudVQbtcSYlYI1Wf4miK9Z8nPiRg9OdSSzJ1Jk5OcyPOPTzXpoSa+K81XiD0mltA206mFphLLAXKLCH+YYMeG9Fia57PAtGAC3adOUDsFu418TpzXE5IRRBNIjiTUMb064fSfb4u4uNCU655yuyG9nlCda6jXpfEunskptxtpPr0cm3TXCvVmu8LONOWap3fD0L1hZAirJdeic1Msil0iVJxyu6HZqtBf7Qsf/11jmhXH6NV1Bq8a0QrkisHqHLoNi4uBeKyhtXOOTw16L5GAwYXGzDXFOU+10Qjv/+EZNIr0SBHNxSrXJ55kz5LcjsW61shrHY0lT+RMJ0EQQbWE0kF5tSJ0HeYgxg8ayZDZceijGHehWDbqzd0u0bilwI2sJNuP9VJzoOcGu1AkB3aZvu06HjW2qHOl0JwOUqKZwuSKcsMv7aXrvhzLJhNht0tF9yQaEdFwRHsRwQRmF2FxXuyEz3RXZqFJ71uSA0s8aemOI0U0gc6uIh7LAC5UOTkGyovjVTCt65UVHU/TF/E/Wv4dzqx0u0L1xMpi4kzzoVz7nt23mFzoTXYqdtEh9oQ4LHNDoDWhaK13Vfs4XL+BTkNYWELrRBcSj68M5SQhH6fEvQqCwgxqSVfv14R2UMfKEHxG4TJTS73W0GzWS1mH6dao04hgPWHQ2onZIHoZp4Ti1bzzGuvQ2vD+Vv6E3+QA8lM/9VM8++yzy57mwx/+MD//8z+/vPxP/Ik/8a84hn7oQx96222UZcl/9p/9Z2xsbNDtdvmDf/APcvfu3bddZzQa8YlPfGLJIPnEJz7B6enp265z+/ZtPv7xj9PtdtnY2OCTn/wkVVX95g7qg/ptq3fUAPJt3/ZtvPrqq2/73WuvvcaVK1f+lesOh0M2Nzd5/fXX+fKXv8z3f//3/7q3/Zf+0l/iz/25P8dzzz3H+9///n/jYynLkldeeYWdnZ3f3JP4NSoUZes45QnzBZ1fel2E1CtDQlmiBn1UryvWu8aIoHz/UP72ZATdjGivbY4nOarfQ6UJvV96k/j6Af50TJhMYTIjffOI6snLhDhCxTFohTu/hp3VEEWom/dZ//SbzD5wWdCUg2PRhGQpLHK69yrwgfLx8zTdiPvfudI6xERE04rxtQh6HeYffIhw4Rzx/hSqmnJnwPx8Im5a85L8ygqhk3D55yeMHu+A0lRX1ynetUNIIvKdDn6tR/baIWoyxw0z+q+coKcFa185ollN5fHOcvTJjJVXJqiypv/ysQgqjCZ0EhkolML1M4LVmEVNNCllyCpqVN0QIoPrp2R3xkuxvC4qzHiBqt/KCKHxqLKWn6oR0X0IBKvlNoZikxyMkctqR/fGlOzujGhac/rMKtXOAJPXlJspg1cnVEOkiZgZ4Xf7dmvpwe7FmOOI4BRuIcOHTdt0s6BwucU3Z/kfHp9LaOGZHaUyHm1kE2m7DRixyBRNiCFeE70EtWzf0cIDD7bNuEjEcnaZUeBaMWpQpAcKlZs26OytHJHkFMoVSE6k4ar7Yn/qkzb8TLNsIM945fG9mCZtefTNW9qL+NCCAV3JU47mrZC2/Ttdyya/6QVJhR5H6JOYxSTDToVD77otShEFepcn+JWGfFOGKRWg94alczOStOoUFhcd5YoMOZ1dRb7jlja2ybHCt1kQxaYXDYNttS+ROJbZV7q4nsOPEux6QdKTyUpP7FIf4GK5n7BSo6KAPlcwfX0VdSdlV60AcN7OpVlMgG8do7ZzFns95k9UxKdiChCfaszYUDxUQeKJjiyde4r0xQwzMTRZkPyaVBpTO9WYQ0Eisj1NvhXIzwtyFqy4fpWbXhApKwNSfGjRpxH2A6f42lB+Y0i6uRBh+KZcr9psmF1fYeUrMasvSuDlypdiurcFLXLrNeFyjr+cS8J1rTAT2eT7V/uk9y3lCuQXa/y75pB46qEX7UUpovNwbU75WIF9doydy1BVPlpQXSxJL85oVho634gxIyuNufVUOzJY+sSjjhNInBxTG3BXcwkQ7fv2OMs5aUpFcqyxC3ltdS2okq4Udq4Ju5LRkR6opY4i2xU76KYblja8yovOyc7bxrrVbdi5nJMYQa9MKbbMwbxlI60aqC5WFOdkSPcxSzcrl0A8Fpc50V4pzEIGEWnA5bmE+OxN8qu1TDJsqFITUglkVE7u3/X8cohxbTCjKeU9Gh9Y0l1LfGSwc43P2veUFpMKk7carsTL4mNq39KelFoQ1sjJEmRuKccJlBp/mKBnBl+LhThdCSxU9uzzK+B6juhEHLZ0LuiKrzVh0KBzg5pYsf6t2xwSHQQ9CXD1r/7l/+tfzg/qbXXx4kX+4l/8i3z5y1/my1/+Mt/5nd/J93//9/PSSy8tr/M93/M9b3MM/cf/+B+/7Tb+i//iv+Bnf/Zn+dSnPsVnP/tZZrMZ3/d934dzbzmX/bE/9sd4/vnnee6553juued4/vnn+cQnPrG83DnH937v9zKfz/nsZz/Lpz71Kf7BP/gH/Kk/9ad++w/Cg/oN1TvKBeu//C//Sz7ykY/wkz/5k/zgD/4gX/ziF/lrf+2v8df+2l9bXudnfuZn2Nzc5PLly7zwwgv85//5f86/9+/9e3z3d3/38jo/9EM/xIULF/gLf+EvAEK7+vEf/3H+3t/7e1y9epW9vT0Aer0evZ5s4X/0R3+Uj3/841y+fJmDgwP+/J//80wmE374h3/4t+S56X6PsLGCBkJZoZRGv3wD//Bl1OlYkAmlCO0mXvW6EMeEw2MZWiYzVC8IXevegSSeR9JozL7lPL1XEqgqyRnJC+I4YnF1hWijiz2Zo1++weL3Pom911J0ipLuP3+Z0cefZuV/36W6skrTMXQ/P8YuaprtFey8YnxBgsx0DfNtg53HbP/vt5h88BK9mzPUeCa31+9gFw2rn92T4EWgXDEkh5p6kNA5chSPbMp1Fdz97lUu/aM9CVxMIoLV5FspvZO5DGpFhR0V+EGGnuQQaVTZHiOrBfEJQehVswKfJZSbCe5CRrZfEIwmO2zwvUzGdKXQC/l7lCIohWoacSyKIxk8qoYzm9+QRPjUClUsapPYXRBxvffUw0Scrtq/y68OqYaG46cVp4+k9O4mTB5SRLMVmm6bh3ImpPVtyJ5CrD4DmKnFr9SERmhUyoizlQwaSraHgIrFJYtGQ+wwkSOKHPkswXlBQFABHTtc1YrW1yWkz6XyZU8i9pihbQJC7KnXgjRyKw32yNL0Hc12I8iKVyhviKbSsC0uSEBePghLN6CgQVWKuiu32XQkuLFck+Gm2S5hYencNW1Q3luOWfGhaXM5ZLtsF3J5sRlID2UzDIKsNKsNq9tTql9awxYweXcNC3Fkik4N5tMr6EcC9apj7fIp5f11bJs9sjgfiCaK7k2xjrULQVuWYvF5S9dqID7RRFMoNuW5uQTiI0s0sWy82HB7U6OGFZsrM0JQ7O128asV/ZWc6XGXZvtMFdx+ANzJ5NM6KPa7Yn5xPipZXHYihH59QLPq0P0adRxTXK1Jb0YU5x12oknfbPNLmjORvpw7QYsLVHKixdJYy8BQrtbU85bSc6IpzjeoStO5K05zBMlWqQeKauih21C8tEI4VxOu5FR3u2gnuRL+Wk4aOco4ZvzBQMgtZlBRXHR0s5J81EWdJLjcEG/mVD1B+cxxhC6kWfZBzv34IMLciXArQndzaSAYhc4NnHSIakWeJaiupNsv+pGcP/cTOnMo1+X8qlYE9Yv2Iuo1B5nDlwE1tZhS3itNbqHnyO5a6l4gnC+IX8sodhz2tM2QedeIncGEvIm4d7hKc5jI+8IGimdK1G6KXSjK1YBbb8AETBGLcHsotsTVSiA+bd2blDzfaCy5HkHLe0HVLaIYy+/yi5I+bgoZckyuWOwIKpUeSW6NCu2wvypooGkDA8+yYKiV2Pc2YiChS4XrCToabJuIHstz0W2ukDfgBx4zk2yaM4MCU7TvYSfuZHZuqYbyWJpum3FSKxg0mJNo+b0WjNC5yBzBK0zWEBZGPp+Q58BW0Vr4RrJYaDNK0IFQaczc0Kw04sbnwIwtbtDIENXmoSinoNfIx7MCzhLo32Fp6Ge0qd/q2/zN1Mc//vG3/fsnfuIn+Kmf+ik+//nPL91HkyT5NR1Dx+Mxf+Nv/A3+9t/+20ud7d/5O3+HS5cu8U//6T/lox/9KK+88grPPfccn//85/ngBz8IiDvphz/8YV599VUef/xxPv3pT/Pyyy9z584dzp8/D8B/99/9d/yJP/En+Imf+Ilfn3HyoP5vqXfUAPKBD3yAn/3Zn+XHfuzH+G/+m/+Ghx56iP/xf/wf+eN//I8vr7O7u8t/9V/9V+zv77Ozs8MP/dAP8eM//uNvu53bt2+j9Vvg0F/9q3+Vqqr4w3/4D7/tev/1f/1f82f/7J8F4O7du/z7//6/z9HREZubm3zoQx/i85///L8Wffm3KT+ZojZWYNBHzReERTto3NmVpjcEQSCKlqeSJITdffl/a1HGUDyxQ/zLL4uLVlkS6gZlDMlJBSen8vcXtlBHpzCe0nmtZvItWwxuHBDiiM4vv05wHtXJRGMRxzSZQmUp8d6UWItVk7l+H4Dm4QvoOuAS+aKqMzh9NKb+litc+tldCIHqoU3spESPF9i8wm23TlQhUK5o8gtd0v2c+GiOyiv2v3Ob/p2a1dcksyMMOrhe0oZ0BWZPbhAU9F86QjmHmrep8CGg2nR4AD/IoKwlQf2hPkErXCJNTn4uIZ44bN66IuWt/iSJqDe6RPszlNWU5wcU65Zk5EjvTyVrw0PIIvSsRHsvtroATly3srsTCAGrNYfv67L12QoVKZLDgvlOj8u/UOBjjZ3VeNPF1EIBq1YkmMsrcX7Sdbtdjbz47gfRhETrhQwbbfgWQGgU6uxLG1Bn6cSVoXGKZhGhY2kAvFOooHBeYTuNaBQQzriuwCO88mDC0kXmbGvqM4+emxalUIS5BRveCgpUivyix07lvWUXisWFQDSV41535faWvHTH0p43HMZEE3GesnPZxAcbpJFU0vA3WUvLat2p0kNFcU6Cy1ZfMIw+VKEWhtO7Qx7+/XcY5R24vUK6JVaxK9dOOOqtyxYVzexX1mmezSl2U0yh6N5WTB9xKC+2q8FCMWBp5+pS2pwUof00XWnI4ok8Hh+3lLAtS3IM9WrFyaxDltSsPTRilifMrw9RNmBycc+qB35pdaoW0Dy+YPfkIsRw0TjiE7FZrTYkDd6cpDQ7JdnrCfmjJb0XEhYXPWUWpNHTgcHLEU0G3VuKxQVYXJK/PaMAmUJJcFwjg27T92R3pKHMtwPdu0rC/qLW3SiAPYipNxriw4jkGxH5dsBfyun0CjIdOL07pHNLrJOrDYd9rUM0hvFmH1uLw1TdDYTTHrrrwSvcaoPb8NjdhKbnCWsV6jihuVySvZxS90G1Gg9dy8DnI3FXS461ULJODcEGSUW/II5NZqPAvt6BPKZac4TIS0idEqTOb5cwirGnFpO32TVdT8jFXle32/y6F6hfX+FGviqan5FQAZsOmLEme90ubXfDaiC+HwnlqUUrzvJyoknbyKfye0p5b5/Z5wYNbtgQTyLKTS+6n1wTT1R73gm/zJ2rYGop1wRRCFooR2duW28NIRqvW4RlLsO3T9tsENfS1QxvIQYGvPLyGVArCTdtbYaVg5AE+S5y8t5TXqhl8anoSkxOey4H7EEsCEomQ5DqNOC15OHURrI5eoKEqEbh+w4m8Vsp7nEAIzRGV2tULEGoJB6nxd7ZFApv5HHTiL4tmLcoV8oEiGXYfGDw9Ntbzjl+5md+hvl8zoc//OHl7z/zmc9w7tw5VlZW+PZv/3Z+4id+gnPnzgHwla98hbqu37YUPn/+PE8//TS//Mu/zEc/+lE+97nPMRwOl8MHwIc+9CGGwyG//Mu/zOOPP87nPvc5nn766eXwAfDRj36Usiz5yle+wnd8x3f833AEHtSvV++oAQTg+77v+/i+7/u+X/PyT37yk3zyk5/8dW/jM5/5zNv+ffPmzX/j/X7qU5/6jTy8f+tS1qJOJAldrQxRcSS0LB/g4g7+5h1UO3yoOMYNO5h5nzBfwMUtggtEk1LoWcbI3zlHoOXpGk1Y6aGKWkIGncdf2qT/6ogwm6OMYfq7H6H3i69BVUuA3/09Nn9+QfXUZcysloTxLIUsJeweUK3GNKli6ysldc8yetQw+EZNvmkhL6ge3SHem+KziOrSKvHtE8z+Kc3OGvZ00X45N9z9rj5X/uZ10Jr+7Zqmoxl88S7Vw1vEexP8WkZ845Aojqm3B8wuJmA0bpBhixq8E2vgshLtRxyjT2by/79Kh2gqoaG4RFFsWLr35HgGq1GNR88L4kUJRtN0E1yqyQ5r4v0ZPo3JL3TovbCPatwyBFG1VC+0ot7sYfIGPSuwhxOU73L4rStsfvmUeiUhKEV854Tx+7ZpMk3Tgf5rDaPHIxFftrxtGtOKsCVszw/bMLq5WaabK43YXQaFjgW2jtJGEI2gcFWbD+KEsuAKK+BO7KQRa7QMVCpgJvIx4RO/bIhCLJtTItmkLjnVQSxkix2hb9AGF55tR+ORXqIawQo9JSglmo1OG4ZXSKPk4jZbodeA0/hEaBMuFp5/PNHMH6uJ9iOimWxiUS2/XcP8iRp7GBGPDKfv8mSvx9TPzHGV4c3Xd0h3LeFSjX+lTwwcnq4TX5yLXfFRipoYsq9llO+d4291mD7mSfcN0QTyHcnWSE5YpkhHM5ZiY9U2crqC2UMO1YjYPViYXZbnpQ9S/PkFRRnRNBq3n4GRpG6XBuIF+HYbb4oWtbifcWguApIFYteOyJu19jUTSktyMyEo6L6YUK5CuqfRNWinmTzsKdcEvZm+pyR7LYFTgykh35LNuwoQTQ35IyXmKCbZ1cvQOZW3BgDIIOgv1oSTBPXQnMR4SjLq857+8zG5y5gMY6ITQ/zYjO7lnKOTPqE0lBtQbsqAoIJs1k3ZHsOFplwTa1bfdS09SYlOZMWhnOSJmFwGl+ZbZkSRnOPuxSGqVpQrMtiaAqpVyWgJVkIM9fUO9UMF8fVUjluhiSaGelX0SuowERGzZ6lFQoM9teTbjngkIv3w5ByjPflhh+jEUq0IJSk9VPQ/eEj2nprbr22JKHyiqa8WaBvgTkp9tSTUmuzNWOiBtWoF6XIO51tgC2nqo5mi8pa6G4hHLQLdIg9NJ6Ar0V/ZvZhm6HB9ybTx7aLB5HJ5s9qiArGgXmfvaV1pQqch1AqVBEEgQms7rCTR/UwqtkQ9lZwHvifNfZmKVkm3KehByx+cabokJV5RbrSInVOEzBNmkVCpFJjVSj6XbIOfR5JrUmoRi6uAswGdNUIPHUkuCJkTXdVJtFyw1OsNamrbz6pA6HjwYHs1bpSA9vLZlvp3XBj6b4dt7tnt/Z9jApIkIUmSf92f8MILL/DhD3+Yoijo9Xr87M/+7FKf+7GPfYw/8kf+CFeuXOHGjRv8+I//ON/5nd/JV77yFZIkYW9vjziOWV1dfdttbm1tLdkne3t7y4HlV9e5c+fedp2tra23Xb66ukocx8vrPKjf2Xow/3+TlFpbWdJ/qGtBNVaHIhK/uytZHZm4coWyRL30hojMrUUdnBBiizmZCzWraQjBi24kibFv3hda18EJYXef/FsfgYtbmFv7qMORZIBUFf1fuSeDSxxBVaHXVqkeO8/0UkK1nspleQGHJ4KSBMhO5Es9PSy58E9OabqG1Zcm0O0Qv3Yfqhp9cEp8/UCeaOOwozmul7LyRoFLDd3dwMEfuAaZaDB6N2eMP3QJO6vwaYyLtQjltUJXjuGrU07et4GeV/huSuh3BPGwVh5jVYHRImKPDNNLkocA8sUZtHzhmkk70NWOZq0rjln9lNF7N9B5Tff1kehiXEDPS7pvnhIy0cyoEAgd0ZYErQlaM72SsbggInm33mP7XxwyuFUxftcQ5QK9+zVuo088cZxes4yfrum8cYJ2bbqxab+ArQifzVyLUDpvlZeZoykNxjq8U5jIY9Oa7XNjVtfmDDs5w778xJmgOkoJgqBjB9ajI+Foq0gS1G23wadehN25Jruv6b+p6b1hCYkEjOm6Fcn3HKHnKNc8nduWaKrfEqNngXrYNpqLNp1YQ/e2bIGFxiHidZ8Gmr5oSzAQ30nQp5ZorMV5qQ1Nm1/06Kmh+8zJkjrU9KQ7MrkivRG3WQwSmlc+maNf7xLdTrFjQ/3EgvRehH90LlQeDeU4JYoa9EqFClBsBOxLXRH5nhqKKxVND+KxJFtPnpCkbrxoT6qBDAoggX11H7q3DcrJQKUrGSbOmsL6JCU/TWnmMWZLuF7KQXqk0GdC+5VGtv2upascrTBqqdCb7j7RRI6zrhT1qmtzHGD2eI2PxK2sGoruJh5pXOtk1nk1Eeel9VYH0vNUG042+11IbyTiQHW1EaesVsuyeKagXPNU6x6XW1ipSL/QpTzKwCvMQUT5kRk+Dkt6mrvRZTTtEOaW6NhCx6EHFU3P0zyaU12qaPqexXlPfqnBdx1qJye9Z3HnC9R2jut6Orcs6Y1Y9Dlezhv1So/i9QH6/xiKoPuhltZpJLskuTIluzQlPjHi5pQEopsp9tkxJA7dDm5nFEJdte//UlFdrOT45roVtbeoUDfQ3O1iPzsg2bcEE0TLgSAjR2+uc/eFHUF+Vx3VmkMfJDRzycZRxzHRXkw9CHTuyZa+yQKLC77VcMhypDznKFfb/B2nljS5asO1eTlvDSm6EiqanktK/Vm5TLRMei6ZONk9GYjsVGOnBuVAn0TYsWh5zoT4vn3fnLm0uTZNPFhxD6s3anGcij0hEQG67zp8x9H0nQRI9vzysXgrA6freny31XskojnDtUsR62R50qilTg3roZQE9TPRulkrZUCcWhlmzpXizmYDZipDbThDPiqNThzNNF46fCktCLGKftUG6kH9unXp0qW3xQacUdT/dfX444/z/PPP8/nPf57/5D/5T/jhH/5hXn75ZQD+6B/9o3zv934vTz/9NB//+Mf5+Z//eV577bWlc+ivVSEEWei19av////KdR7U71y94xCQd2wZ8xa9qtclHJ3QPHsNO57K77wn5AUqTQhFiV5dwR0cEeIY1e/B6zfxIVB85zN0fuU2YToj+IDqdfHrQ9TNe0snrc6NEcxzyDKYziRFvdelubCOGY3lfpKYsFgQfe06A3eV6JU7MtREEcE5yIXCFL85BiCkEWoyJz1KGT8xIDnp0Hkhx20OMLcP8BsrqKoRFMcHfGrIN2IGL52QvV7h1vqi5xgvqDd7DL8suS27f+AC574yE2cspdCzgvzSkLUvH1Jv9ghaMXp8hXgeSE66kvpe1zQXBtj9McXDG2THgdOHNfEYknHAFgHdBBZX+3TfEGteMy3IL/TJ7ozJDmrRf4RAMJri8hBTOqJ9aXyqrT7R4Ry8x6110bOC2WOrDK4vyLdS8qsr2HmDajymcPRvNpjxQoYcrUkO5ly427D+ypC737tFdbGSoK5+g72TYnK48v87JUSGvY/0mfQh6xdUlcVVhmoeC3XCeuK4YVYkxFHDwf0Von4l9rq/utoQQ4CmtBAUSntspxYdSeopN0RMmoyhs+8IWjG7qkVcXgODljvuFLZUFJte0qxzRbnpxCnHSvPd2YPZQwE71Sx2pHE7s/cNRlx2fMwSNahWJA3ZtULc+FQ49dFEbIHnL6zhN6VZicYKlwq/vnNfXKuCVeKoNIuorxb4wqBiT/8LHfJtqGcxqiuNkGo36e+6sMfLbgdfGeKHc/J5LMdiauE9ExbTFDW2xIeGYl0ac5dAse1IjmSDbBeKYqchWHFMqi5UNCBNXg0+9kQjQ70qw6Rr05rdwznBeKppjF4Y4sNoSXnp3DXUfbjrLKum4dJsj/36WexU0/Q98bHBpaJ/MDcjmo7or1zSWr4WLUK1GcTKWUmzO37Mo3NN/7pi8qgnOBmoTKEwbbK3bNwhfTUV8fNqjQqK6FbK4gMLousd0RdcLGjudVEOqosl+jgW8fI4QfdqVi+NOLi/grmf4ZNA58sZLoZ8R8TenVuWci1gNyRIkFGMnmmUFlpbUAiiMBB6WHpuwXqn4DBZJznS8PU+JobmsZzkzYxwO6LqB0IWloGL3fcdM3t+nbSE4rzDb8/RN7vY3YimJw27SwLpLZkmo4k4nOlKLV9Xe2qYPl2LNqvUmEJRDZ1Qi7IGP4uE2tZA1A4neEs0E1qXjwX5mL67goUhOTRUiQRoVhuiuUnvG8oNT91S43Qlr5mZabxpqZFeHLXEuEHOO1cbfOrfMo7wEr6ICYSpDEEExF44on19A/GppukLbcuODaggblggyebQajACqjAQ+9YauX1+NkCuwYjpQmgpmKiWhtiiMjpx+NJgsoYmWFTSoK3Dl3aJpJ7p16K0oaq0iNadQiUeV1pBYdudXFjYZcDimftdiIKIzxWoUYyKWwF60yI6iVtqTd4p9dupAblz587bdBO/FvoBEMcxjzzyCADvf//7+dKXvsT/9D/9T/zP//P//K9cd2dnhytXriwdQ7e3t6mqitFo9DYU5ODggI985CPL6+zv7/8rt3V4eLhEPba3t/nCF77wtstHoxF1Xf8ryMiD+p2pd9a77x1coSODBZHF7+6Dc0TfuAPeo1YGqDSRNPO8WCac6zRBra/KRv6hi6gkIful1wiz+RIxoK4pzndbDLylZ80WVI9sEUanQqkCwiLn9LGO3E8IhFKcrlSvS3TzUIYUYwh1jYojVJZip6VkYHiPKmqqKxvoWjZO08sRYdDDHM/AOfThCD9Ioa4ZvX+T6LV7osloHMzmmNt71KspJx/eJt6bQhqD0ex8eg9VO2bvWidYje8mxKcVJx/YJNqfEt8+YevnbrD6i7exuaPZXsFvr2HvnxCymPhgwdrn9rjwi7l88Q8UVV9QkGwvly2bh/xin2Ldcvz+deLjBbPHVltqliM5XOCtpj7Xo9ruC1VIy9/hAiGJcLFCl2IHmd6fYccFTT/BjkvMeIHrZ5hZiS5rfBIRYkt6b8L5fzlh57m39gQuDTz0M4foRYWel5z/hSNJ366NOL+Upv2S1bhRQtMYJkddJl/bID6McJWhKQ2uMdjYEaUNNpGUdKUQRyzj8aWhKS2uNLKB7Dh8zzF6xrH7exT7H1J0bxv8aoXredRcrH9FHwJhWFMPPeWmUC7wQsloeoFiE6JTvbTV9Yk0V2faDxk0AhhxyIomkgB9RnXycbvxbaRpqnckPVwFaTx0LY1z3YXJ4060JGNxEAu1Jr0f0X0pYfpMjW4guxNhVipIHWvrMkR+Y3eLtfUZ6Uohx7Y0dF+SrIF8r0v2eszwVdEdoGD+sFjGdm8aXCJi+KCg/6olORZnsPXPxqx+IaZ//SyDQUtzp6UZNLmS7IabGeFGV1KtG0kxr1YdzbNzmvfOiN815n4lX/6bnUPqvvx9fKKXNqk+PqOGtS5KiaTNFxuBfCvQDB3RFLKDVsw/kQZ6+nAg9NxyOGm2K4qdhmLLEYxs/st1ESjb3QQKTXWuwb7Woel5zE6Oup1hp/Ja9r+eYBeKeKTRc0P6UsbkS5uYqUU9NoMLOfm3zsXxKxFUo3g6x84V4ZW+oDU2UG02y/dAciqv8Zlrl/5yn9Hzm6QHmmLbiUaoGzBvZpgnhTaSHqql0Lu8WjL76jpNJwjyqQLhboegA01PBucwrCVRXkOx6Sgu1DQdaeaLCzXZXYtdyMCt5wa1fuYRDWZs6LyQkt2XwdP1vaSvG9F0VGt+ORyYCvQoYuVFI01xI8hX55alf10oe8q1/CfE5U3Xgs74OCx/zhzpfCyv81nKvJ1pVK3wq/WSnlhcroWqlQWqFfk8doncRj30glqa9j0YlFgmq0B0YsTStnXPMoWkq5uJxUyM5GyUklOkc0kfV41aitl9LGYaJteSCZIb3EksCEaj8JNYKKBpSwPtil2v9wpVaWy3xg4F+QjtUKN0aOlUjtBv8JmjXm/EPa5WksjuFGqjlGGEt7Rx5AbqB5vw32j9nyMDfr0B5P9cIQTKsvzXXnZ8fMydO3eWjqHve9/7iKKIf/JP/snyOru7u7z44ovLAeTDH/4w4/GYL37xi8vrfOELX2A8Hr/tOi+++OLbQqY//elPkyQJ73vf+37jT/xB/bbVAwTkm6Se+/qf53vWfgScfIiqfk+Efz4QWhQk1LUIzFPRQFA3cv3FAhVHkMT48xuoGyISp24IVU1yUsqQkrT5FuMJ0fML1OY6LFoLIKNZ/0cvE4yWIcR7GPQF2WjkPvABpTShaVCdDoRA8vI9SBL8She0wswKlE/Z/MqU+aMr9L62C5EMIzqvKZ++wurndnEP7aBdYP74Ot1XISSW5OYJ+cYW80dX6b50IKiHEX1GelhSbfWIRgVKBYavzbj/sS2G1xu6z98Da6kHlux2AVbjNleoVxN07YkXJdGdEy6MUkbvXqPJFBAoNlO6R1N5HocF0cxiJiXKOfovHEIImFKcryKt0UWFKmrceg+MwfciqpWEdHfG8KURrpfSvT0jxBa9qIiO59QbXQDsuACtqVcSoiM55iGJUIuK3q0c9a0d1Cji4f9tgRtm6Lxe5pMM3lCM1kRIbns1UdxQlZaL/ygiqJR43FCuafb+aEFkAqHdVoagaCoj/w4KpcA3Bh25t6gJSugRgqhIToBXGtPIFjc0GiKPzi2q/T4KJsDcikNPembdiYTczbSIYp04+pyJY10sXPuQeEg9Wb8gv98jdBsR8lea9EAcs0wB9VCcf+xC0YgRHbpUmAqhrDTSgK9/xTC92qIpI0VdRzSdQHKi2PxFsXadPO7Q+ymsVTivyWcJUdrQj0uOj/qsb0w5Li31ELp3FU3HUJzz6PdPmZ90ZGPbKKpVj98KdG8ZdCVogcvEjWvlG5rTJ+QxVxdqzLGVXASnUCeSv8GFQoL9ciguNCICDoJQ1EETpl1MDrWF+2tdYM6WHWFP1TJUULQLaknhaTrQuS/0KxWAoGi6nvS+pe7D9EJNMiyp9jr0L02Y3u1jD4VPH6JA55VEbHQHgWazRp9GxKO3eP02t3gjTT2TCN7o4juBZqumv7pgNk2xd1KqSxUmdiy6kaAFuaK51yHdk0F08i5BFOxCUWQR/mqJPo2EZngs1Klmu2Jtc8ropCvN52GCcopyLRBPFPnlhujYMrvmRLvxcEV5kmGHgXJDGmpdadR+3FraKuqHc+y9lOZcDXNZHJTrjuRGQv1ITr0CVIb0Trx0nsvuRJTrns7lKebGAHtpTnO3K0jHxJA+eUpZrhBNIb8gWTM+CvirJcnrKfpUk+94oolm5yP3KJqI4hFL8+aKDJyRnONN2tpWnyiKcyIAF4qfIDGmVMssFrHLVehCLI6JRcgf2qEDAmahcU7JoBcgpIIAnEkGQiy6F28lG8Z1PPHoLMdF0/Q8ye1YBPLQGjHIUKEqjapk+Diz6kUHQLUid7ltU+jlY1KNIiRyTFXsMb2aOG6oygjXEYe+Jo9wpYVug1KBphBTDJ04gpMHbjqNWIuf3X+/kc8sJZTFM+dAFXn5nivOwkJaitc7qM6yO36rb/M3U3/mz/wZPvaxj3Hp0iWm0ymf+tSn+MxnPsNzzz3HbDbjz/7ZP8sP/MAPsLOzw82bN/kzf+bPsLGxwR/6Q38IkIiE//A//A/5U3/qT7G+vs7a2ho/+qM/ugx5Bsl3+57v+R5+5Ed+ZImq/Ef/0X/E933f9/H4448D8N3f/d08+eSTfOITn+Av/aW/xMnJCT/6oz/Kj/zIjzxwwPp3pB4MIN9EFcoS3esSHr5IuHkflSTS7FvRaKgoAu/x3RR1ZyRIxegUQJAE7ym2umTXg/yNc6htEXIpYwiLHGUt9XsfJX5zX8ILp7IR9o9dRb96W4aWugFjUEWJaprldQD5gB+sgPPoWcn8fZfp/sodXGaJDmeovMIUA/T9I7qLAaEnuRi+m2COZ+RPDklezhk9cZ5k4lFNoN4eoFxAG4NLFL07laS2ayO0rNM5JgRU7dHzEhpH/vA6dgGnD1u6Xw1Q13TeOGX2xCqmCnTeHGGOJtz+Ixe4fPtEXL1cYPjGnGA05XpMdmcmAYvOU6+K6Fz1LLPzEed+6RCfROhSghnNeCGIklLoSSG5IKklPi6o1jvExwvMvMQnEWacSygkEB22x07LtjPemwoKVTuoAKOYX8y49g9zzLxCT3Lcek9CECOD8jIoRN2apjKkacli1AHjOXrKsv6KW6JOK5/uMHlIgYam7/GZE0csj2R/NLJp9XVrmdUogm+/7INCxQ4bOZpFRGM9YbuBRYSZGnynbXh0qykpJN05tALis2qyQNzSpIKGaAblmiQca4eITitNHlLpmJUkRdcD95bz1SrC0zeSu+FSS3Iiw0ndF2pR0wlEBRx9qKZ7PSLfERpXfCrajWoI02uy9ZWEbej0C06Pejz10D3GVcr90ZCHLx6wNxkwXJ0Tb0w4nXWoxomE1X19CGueeHuB0R7zuQH5ubBs6KI5TN5d0XspZvyoPO+gIb0ZLVPhoXXRWnPovRSiQHFOnndIHcEbqqdz3CIieAi9mmYesbsYAgec15Pl4bULhY+kKa0ey7HXRYc1fVh0BvNLnsHrirovIu5q1TN8IaLuRZhhYHZrQDR/y/5V3MtkiEGDPYyIJtLwp0eK4umcKGlwN3r0XkgkC8W2wuaTiPnJEN931CsOcxCBjrC1Qj8yozrMiNYLqm0wr3bpXrcUz+SE2JGqQH2rJynW1xZ0vtShCgpXGEZvrsrG3IjIvLhQowpNkUhuSL3WQOpJbsW4WUaWSyMfzrIiAsvhqckC0RsZ1ZonvhvjskA0VsTvHzEdZETXM6pNR3pfNGKmEFvh/GFB3OoXh+g4EF7vYRt57q7jqb62IoZSiVDF7FxRXKtIbqSSWfLeOQYIsy67v3xBNDsG/FaFsp5wElOvgFor8U6zujlB/cvNJW2u2a7wuRXNSupbqpQMJj7zy6XBGfWJAHoU49J2oLBiABGigF+pUeNIhlOn8Cs13kdLXUa1KpREXUs+yZnlr0vbUMK5xm1VskHwYt/rM4c6E6OfgTdB0B+X+aVoXvkze/BAqDW2W9E0RtytjMc3Gt1SIv0soplbSTcHwjwSAXprO87cQNcRMrEZN2mDHwYx03AKvEJbj/dGEJZKFifvNBX6vws2vPv7+3ziE59gd3eX4XDIs88+y3PPPcfv//2/nzzPeeGFF/jpn/5pTk9P2dnZ4Tu+4zv4X//X/5V+v7+8jf/hf/gfsNbygz/4g+R5znd913fxN//m38QYs7zO3/27f5dPfvKTS7esP/gH/yB/5a/8leXlxhh+7ud+jv/0P/1P+bZv+zayLOOP/bE/xl/+yw+yX/5dKRVCeIftAL55azKZMBwOGY/H/9oJ/XuG/wFc3JFgvKMTacKB4L0MJ52ONK/OER69jHrzrqAixkAIqH4Pd2ET/cYdaZadJzxyiWIzI/ulbwiiAKIjWeSCdFhLyAsOfvBJzv39F2TwSGKqd10k3psS9g5RkZUGuq5RgwH1xVWi6/uEtYHcZi12tmrvGDZWCbHMvaqo8YOMciMj2ZujT6dM33Oe3vUJqmq4/fFNojmsvVKia9EdFJsJ6VFFfOMAnMddWBeR+CBleiVh/YtH0DiKq2voymFKx/EzPdZenGMPxuADi3edY7Fl2fjsPotH11EukOwvwGr06Zx6Z4idlJw+vYKLYfhmQd21pPtzVNGAURx8ZJ105InHDemdCVj9VvDgmVlACOACmPb/lSLEFp9YdOUkl+SslJIB8cKAdG8uv/NeUK7aLQMN3SBDlw2qdqi8IiRyLKePr7L7u9rQsLilX8w1K68FNj4jiNeb/8EF7EK28tk+jJ/wmHO5uD7VBhM7lPa4yqBMwE9icQXq10RpQ11aQUsajZoZwrCGaSQNybkaCi1be1oHHdtaYaogAYptMwQihkaxbGiUZ5nt4bIA/RplpDExJ5EE6yVvUayaTrvtB3ShcF2PnWl0pd7SK3Q96ZGmGkqz1AydNNWJx4wtfq3deoOkLS8M5vyC+jjl0Sfu8cTggC8cXOHgYECoNcmwFAexex2SY0X0rSOm4wx1nODXJLnZ7ke4VILnnMzWlFcqaYgTEQTrUqEb2VTrQiyIm62aUCu66wsWB0K/ik819dCz8siIk7tDSD39r8cU6/DRlU/xV4Zf5J/kHf7k6Z+TjXghIvx6rcFkDfFrGeW6cPTTQ0PdbV2ajlrHsADza4740NAMPKqSpPHiSkVyJ24D+aDeqLFjCe8706K4tNXrFNJ7VufEYUkFhO4zs3RvyrEt3rugmcbYiRHzgVaAbMeGbF8Gx2pFkDJdCeUsJJ74MMI/tMC+2sEloh1q2lTzurdkJaFrKB4riG6lND3ROsQnct/KsdQW6QbKDUe6byguNNiRpdmqYC7hecGAurjAvNqVYMaLBfZGJnSvp2ZUR5nQmTKxpI1PjOR0dEVvFD44Jp8npJ2K8lYf1Ujj3vTFejpoQMv5bRYal3myS1OaF4dioNCVY0BA3NamUK6zvI/4VHRUummHp7kiv1hjpvIZEKwgjHW/teZGhkHTDpW6EVG4mWtChOSo9CTTw7UuVqLd8OJq1yJC6ACJx7RaJJcJwqGa1hEv8WJtuzDoRpLOVeQJtaAyeEHjSFu7YwRtUbUMLOgAmRPzCxUkXLAyKB3o9EqqyhKCaLVsp5GP1XmE6daCbKiAb0R3hVfE/ZK6sIKQtPRGnBa6VdrSsJrWuY/AzR/607+Rr+d/Y/2bvr9/O+vsvr/3F/4/RN34t/S263nFz330f/kdeV4P6p1dDxCQB/WgHtSD+iarPSSU84L51/OqH9SDelD/z6t/FxCQB/WgfqP1YAD5ZqoQ4P4+bG+ihn3C6UQE3CtDUAo/OhXqTxyh56XoNbygH8F71LCPvn5X0JA0EzteoPPVW7C1CYucMJ3hpzPRknS7YDTzb71C/04NV86TXxyQjEri2ycU1zZI7u1J7kdZovo9qqvrBKNorpwjWI09zVGTmQjfz21AUQo9oZ9hqob5pS7dO3N0UVE8tkU0l82+7yXLrXhy6xi0pjo/ZPDVPUInoXx0i+TGMeZoCj6w/10rbHy9Et1LXZO+cp/m0ibjR7uc+z9EtE9k8R3ZDnUOHX6QEc0a7NGcZr2DPV5QXFsn2Z8TlCI9qkl3Z6LxuJdz9Lt3WP/qKfmlPud++Ri1KOUYrvRR80IseENYIh++m7wtyBClUFWDyWuIDK6fCm2sqAQ90ZrkuGBxuU/QEE8aov0ZPonk8thipoW8ntZCpzUEsJr5tmH9a4HBzRJdOt78ox2u/HxOdG8EWlFeWefa/zbi+h9exWWB0yeFfhC8xlihO4QAvjZLpCJY2WyGhZXgYBNQOuC9wncc1Bo9rHBdDbkRkadxmJmVLXbcIh+DBjU3QvOKA7rQYkXatPqPpL1uu7XVlcLnFmqFXUhAXn5RLDbjg4igRYRrxkJtCU1Edt/QdGUTn92xVCt+Sf0whbjqqMhj+g1uHOMzT/flmKYrqIrrBFyvwR+lDC+NuXc65LU3d1A2sL19yt79Vap5TDYoOPfUPvfurdGzDUXWkD28YDLuwEmEyySroX7PnGoSk+xHmMOIcrNFX6KAWoj4XNVKXIh6kuisGkVZRiQbOXVhqdcBBWVt0b0aP4mZPlsSKsNBLSnCl6yjHtToyqK8xu2U2MizuTJjfz0R/nvPURdtsGASqAaS05LuGbo3DcW6UOXiqaJaDW2Ggoit03sR0a1IAv4ySX6vNyQ/IT7VFJtCbeu9bpchdGovwcdtsJ4D7mRkc0X5SEF0M6UOEI819Yqn+ta5CIlnieRQLCyh58RKNg2kX++wuCLoSvFtC/SLPYoLDarToHcT0UWseOydFJcEkiOF8oZqKOL7ctMRjQWpKFflNSg2PfbEUm/UQgOKA9HOlPJWn3CvQ32+Fjvb3ZThew7Z7k154ZXL6FLj45byBDz+u6/z6sE5Njo5x+s9uv9yyLCEci2l/60nrGY5d54/T3QqaF89dNiZIR6JXkg1ivCVISqCuiubeZ23lK0tRzXU4jQ2tdi5XqJ/9SBgWpph/9VIDA8MlFsNzgvq4jtiGqBci1q17y07FXcsgtDr7GpB02SiJ2l1GnpuBI0qNWGjRB8kOBvECty/1YwGE6Dn5L0die7ER3JfgZYGVVpxW2ztcMOwQY8iQmg1OYMKP4klWLBFXl1plp81i2lCaDQ6diTDEmsc+SxBp60pQQCbOKrWPUtlDdVJKhqYM/pnm2eEUuAUOmnwquVJ+gfN9YN6UL9T9WAA+SYqNehDWRH2j1ADUd6qLMWfjtHDgehD8gKcZ/7YGp37rU2dUqg4hqpGndsg3NvDj05pPvguglIkvS5hX0TVKklQm2tU232azOASjfKBamhoshVcqllsWbJzKclxxeLb30X3hV1YH9L0JAvEFI58O6X3z14WOldVE+oa9g5QnYzpe8/Te3NCs9al9+oIVYulbfrmkQixd4bsfiRr7SsDs6fP0Xv+PnZayiChNcVqRPJmEI1GWdDdDUweismut/SnKMLePWJ12uX+R7cY3HF03xihD06xg5R4f0owCuMCzUa3FYFDev0YP+wQtCa7dcrpt2yw8gVx0TBVQE0WdL42wV1Y5/B3rbP9z/ZRE9F/qFr4yeXFIdGoED2KUUJDCwEaD1aDVSIgD1CtJQSdglHYWUM9sHgj5gJNaoiblr4Wgtj69lP0oqbeyFBNwE5Lgtbs/JN9fCeR+1OKi//MYSYloZeRX+qT7Of4LOLa/ya2wsW5Drf+kKKZRcTDEm082niC0rhK4xuDajRUIka2sVsKQFEIfaHSYk0LQrMyAYrWDUe91fyEoPA9EeOe2YieUaWaqE12zxVNJi5DulZ43fK3tThkdW63YYhtArm3MjiQG6KpWmZvqEICHKOp0NHqgQw9dibaknCaiUbg0DB7rEZpJMhwovCJhswxubGCWWiSBtJnRxyNu9Aoso2cfLfLPSvC8+NvbOD6jqrOJE19RWGThlJlxK92Md1Ate5At4MYoo2pN2vMxIq4txTdhvLi1lPbGJc4EXT3a9Y2ZigVKPJYBhgFpltTdIYwh76GXhizsGtUm40M95OYUZSJK1CjJavl0gJ/p0M8Eg1H95Yh3xIxfnagKDYULoPuHUXTEbpb54ZoVXQJ+XkZWCTHROMS0e8oL85TTceQX6lR1qOPY9T5HK0DRW4ht+jaEN1MhebkxXZZeWjudwAIXdcmwCvMIqLpB1YeO+G4N1w20M39DqoXsCcWe9dSXGjwpZaBry/0rcVDNXpuiEcaH0Ny2FJ+rDih1Rs1ZiYGANGRUIrqnQr72QHqd4+JrCN/fo3qQk1oLId3VzmZbhAXkgmiTyKyfUXThVd/8RrewknUBSO0sOkzFWpmCV9aYw9wFxp8rPFdh5lKpkncKwmTDF9pyq2a6I0MO29pUEDzcA7TSOhJc9u6j4k7V7HThgm2ae/zS34pSDcTK1bSDqJjsdq185Ym1Yq+66FDOUU0VVTna/xpghpWkpmxiIiP5LwMjVDNmEW4tRoWRuiUTsTwYukLyniCMpIqPmjEWUoFYZRW4qCnWmoUUSDUCj+sJZ28MmK7mzqaWYSqNL7XoHQgSpt2CaKog0KZQFMaQqSWw4qvDKHW1IBOGkKssLHDmYDLrWjX2sdAUKhOQ6hbumniWn3bOysH5AEC8qC+merBAPJNVGG+QO2cQ42nMM8lDT0v0NvnCMcj1MpAUspDoPv6iObpa9g370tuyMERIYlhV9yjVJJQ9yzJcUk4OiE8ehk9ydn/rm1WX8mJX77D/LseZnZeNtC2gO6eQ/lAMgl4q1hsJ/hIMfuW88Rj2fLryqNC4PQRQ/9LfdGpKCV6kqqGJCaaiSDeHk5pzg3QeSWahkUJIbD3wQy8iHibVFH1LfPty2z90/uiQVmU2MLLbVeVPJ/QctNXxFVKz0uajTXs0ZyVGw2dN05gtgBrsJOC4tKQ+DgHFyjXYqJ7I/ywg3IBn0bovAJg+PUTSCKoG7LDdutmLeZ4Rm83E51GKsPdmUNZcndMtdXHusD0sQH9NybyuHUQPUxkaFZT7v3ulHgC2XHA5oEmjWWD6GTTbMo2bU5rQbDyCls7QmxJ7o7xaYzyHoUjJFYE6R5oPNn9gC5rQmRId+fgAqoKhMigqoajZyLsaaBeddSFiHNpbXi1Be8VJK51yAKtWzjh7MsoAJEnVBrbr2iaWISvvnXTaRQ0baK5siJMRfjgqmGZqQDCRQ9G3J6qoQScnW1sTanETWhHhOrpgaZJWiegNoyRp6aEl/siKC8U9fkKPYpID8ROOT2UplsvDN2HxuSvDqlWpSnJrluarmgD4hND05PHWG/IcFKddPnAozfhInRshb7o+drhBYrKUixikthJo73fEeH9muJdz9zmtftb+EmEzg3xiaLYdsvNtF6YJff9TLDuMo9eqcjShuKwIxoap5nMUpSCc2sTdscbMLN44OjwPMersG5gq7rP9WyFZEXcrEyuqMoueq0Uf4HjiNqnaAPVqgx5PpLXO3+kQp+22S81lGsyIMYjqAdQXawoa026a/ExlI8UJG+mqACzq47k2JAcGKrHc1Rj0CexCKV3M1yAqJCm1zw+ZXs4oXSW4y9tkYxgdjUQeg2d12KajqbpBcrtmvUdsc493htgujXqfirag80KP49QlcJUGntqqddriswTH1qUg+x2JOhLFnBpwCgRXLtzFfo4JjqxRFNFvu0gKLQDexAzeapGjTPJaOmItatPPfGBbRcFIqS3C8X0sQad62VwpDGB6iijHmr6awumeZ/ysQJGsehinCI6itAVqHFKHadEQN33DHZy5k946lECjcLkWlK+M48qQFWK5ESGKRcjdrjncpr9jOKqnOfxqaLuiTW1iyVRvemG1rK6fc960UkRZCCph74dKgKhNvgzC20lZgZNJqnxPgkEb5ZoZkg8wevWWtfLgBR7ghW7XTIJnpXPrSB6sdhhs4Y6j2RJ4dpMjwCYQNorqSuLTxRhHhGyBtdoQUJ0wCbyueuDps6tnLitQYVq5G+idUENXa1FlL50vnrLLStMIhGq1wqnDFEmxh0P6kE9qN+ZepAD8k1U9buvsXhoRf6xtoKfL8Re9sKqCJxPJ+KG1evib9/DvHwT+j3q8yuolSGLh1fg4pZY10aWcmjQRS05HTfvw3jC1s/dYnItpXj3FQZvzgXGFpdW0iOxhI0nDSb3mDpQdxSjRw2nD6fUfYu3imCELhAmU8Iixz9+WZrzK+cJwx7x0YJqS2yEm66lXsla2pID5yVMK4fOgWN4s2LtlRLlkAR2H3DrPbpfvSuJ8KUMClVXMbhVYUYzsfpd5ES3j1BlRTyqcCsd8qcvQBShR3MWWxF6UaG8p/vaCLc5wHVjfEfEt8svUas5+cAm+EB64xiA2bu3QSl6X77D/T+wg88iqstrYn3culLl5xJ8J2Lw4okMYI2nXkklef2RAeNrieRYxDDfVoyvyltx8OqEwSsjei8ekNw9ldtsPG6YUW8PcL10eR/6TMTuvQwpZ0iLkfT14tKQ+bUhqvHtcOKXlK31bzSoqwuS1QJtPcO1OYNBjjZBkoiNUHHMxKIKQ7WIlo3MkrbQbibdJF6KPUPsZfjoyOY/KLHHVYWRZsFI42AWakkRcWng4r8oaboI2lNqVEt3MSUsLnnMQlx4XCLbXFOIXWlQUN/ptfkCgp7Ed2PiE8XivEfXsLjQCk91oHp+paWfSGJy9VSOywLdm4a67/F9h64UyV4k7jmV5ss3LvPlrzzCL37xSf6Pzz6D1Z4sqTGRx7/Zo58VvOupO/j1mmeu3eXlNy7gxjGXHz7ATmVbrktJlI6OpaE9Q4KKTc/Kuw+hL1ksxXFGsrmge3WCih2DXkE9j9h7dZNoZFqrVQmhu9fI/mjb3F+6DqU7c9y5mpB4fGOwB7E0oZ2GsF6SHii6dxTFOU80Vgx/RZCV+EQeT7XqiMZQrbZuUROLSpwYABhIX0vFHtbK61+crymvVJjbGfHtGDuXjBPflaTues0R4kCZR9z52nmOvrIlzlzPlsTn58T9ivypgupCjR9Ko3n6+pq4XeUGDlKa1QZ3vkQdJ6hujVkIuuU6ns6tSIaBQoYEbyVt3s4U2b5GOwkRTG4kJMfSJOc7jpVXZFNvp5IxoypNej3Gr1WSVxEFolNDdamUb8koEM4XlA+VZPcsYdjQzGPsS13C66KIdz1H9fwKutIkr6cEHcj2Ndm+DALV5Ypq1YtIvG4pbF9aw7zYRc8N3Qsz3HotLlHtewcF+UVHue5wXU+yG1HPYggQ7ca4YUP1VE6zU1EPgrjKbTlcz+ONhC7qWqhbBFkQoFqb3H6zzMY4y+1oep6mG0Sk7iUI1OQaMzXQccv3cDABnTVCezrLKakVyniibg0moK0XBEQF6nmE0u37MMhjIHWQG4p5LMxVryB1xN2aNBUTirRbtcsP5PYUrVmG/E71a7Jzc1xj2kyQ1vkLxJXLy7FUxqMGtaAzUYDcUI8SwulvrWD7d7rOEJDf6p8H9aB+O+rBAPJNVPE37hKsIuTF0v0o5AXmy9+ApkFtrKH7PcJqXxrNqiIcnWC/9ibNxQ26X71LuH4HqppQlKz90n2agQQNqlToU2E6Y7EpHzizK93WRpWWA26oVmKajqFaMdRdTdCKeCyPTzVhubW/8rdukH/bE6h+T5LOH7+Mqhw+iajXMlykcasdlA9MrsqXgF/pM/7ATrv9h2qgMYVQkFwCTOegFXd+vwwvpIkEJdY1a9/IGT0WL52msBbiGJzDvnmfYDTZzREhspBEdPYFKVJ5hSorzOlCBqJ+Qt2L5J3hPL4Ts/LSWFzDtAat6H3lLscfOge9Due+NJdAwYnY/xILWpIe15hpgcpLjt89wPUS0Ersc9stZXrSOmYmkB0FycXIa6FytfdFCKi6QZc10dEcFQLBGNwwI0SGEFuCtQSlZMhohx3lHOmdMfG4Rh2P2299lg5dxarB3etQnkp4xyJPmC+SdnMoSEjoN7hBI/zumZXQtbRBxQ4dO0ynluAwkGC5RqMX0thRSYL6WTgatLabuqVQRdLgRnPo3Ffo0rVJzIp4ZLAzaXzKtUBypElGEqoXjDSUZ9oOXSt6107lHI1lCGmyIFkKpegr4pGm2RK+f90PEoCYOcJmiRvHqAbmV12blwBNz1Fu16S7Fr0w6N2E7ccPsVs5Pg5MPrfJ8Z0VAJInxhxeX+do3mW4NuOFF6/w/iducvHhA27fXyd994hmIMFqJpf3VYiFaoSHtUdOOBn32D43ZnNjwsff9zxX10+4uHLK73n0DWaLBHQguzTF24CZa9JDGcbu1/Le3VJHhNjTSSv4eh9tHSRO6DLXZgQbiO4laBuoPzBjdlVcmcoNx+nTDemhDHPxqaJ7xzB/V0W1U0OAbFejj2J0I8e/emrB8NkjeGIm+qz9CJvWVOdqqk1Hte7QpVg4u64XR6W4pcIgOgj/2BxmlvpOj+Z2F05i4vsR0X4k9KzMEXpOGmUtQ2o4jfGrNXovwTw6FXcvG8gfLQmJp1oVp6+mH/BWzrEmg/i0tTnuSRaIaqB72whiMDGUWw14Rf91Q7Uix8nkCrsXU200hMrw7t/7mmTd3EsJldhL61GEnliKbUc9ENvZdNdSbjpcr6EeBHStqQYwvyRDrd2NpfGPvGSNjGRYqtY9vuuY3+sR7cVkuwoKQ+/KBJ95opG4UcUnmvJ8jZ4aydjpiUbLjWLiOzF2psi3PWQyyDWrDfUTOS4NVJdliWMKhW4DLpmZZd6POIUJLS4YcF1H0IFyzcvxj4K813WAKEDWbmh67ecDSBigU1QTseR1eUubbDQmdYRWX2ayhrhXkfVK0s2F2P/OInCawdqcJGqoG0NwmmIeUxeW5mwB0mhcceZ4BWFhyaepIFaNxlemDVMNby1KCrnf0CIjeHH6Onu+D+pBPajfmXowgHwTlZ/N6fyLl1HdDupkgtKCZKizBPPJlDBfEN68jTJGdB/OwdULhEhDVVF8x9NLi9j933+B+I291iq3XuZYXHruhGpg0bU0ZEG3GzSlCEa1ib1QdfVy2+QSmO9YZpckgHD+3ksibge5faUIWUyINN5qjp+K2P+Q6EzWXprhhh1Gzw7JN4Ty5SOwRaDu2eXtEwJozaXnpmA0fq1P+fg2dDuoxrP6WgV1LZoM5wlpxPS956HfQ+eVIATtYBGfFPLYWgoXStFkBl05qqFhfqW/FJU3gxTf7wiCEFnKR7fRDgkUrB3VaoxPI/KH15k8uUb+yAa7H0kkoFEr1l6acf93d5lcTWj6Mf035vRv5ay/sKB3z9PdDZgq4CMlQwzIsGI1+CBGAFf6BKNQRYUKAVUKjU2VNbr9QSmqc10ZwHx7vHzAXdxAzQpwAT0vUXnN+JpqMzCES13nEXUeUZ2kIhwNEtylYye0itby1kaSnq7alGRtPSSe5EjRuWNaq1GEvhVYIh4hafMJ2u1r0xPu+plFarCaja9BdiiaA5cKPUl5CRYsV6Wh1A2cJTr7WBrU6iur8lKueBlCCiVbXANuq6Ja8cR3YnSp8ImnulaIViW3hMjjBo74WOgo1ApTaFStKS/WmIWc4LtvbhACDC6P+eD3vohdKelkJUURMbg8ZpAWTE47qH7Ny/tbvG/9Dk9duc8ij1GN4sMfeoV61dH0peMptxroOEanXXyjGM0zLg9P2U7GnEtnPNQ7pgma9cGcne1TmsZgr83waWBx0eEyz12EbnieUwiK03sD/NMz0pcz4o7w9uvdDutXR+jHp/jDhE5asXpthAow/IYMBWcIUX7eYT4yQp9GJHcjaVo/OIatAvXElO6HjjCvdyh+cQNe6clxvppjXu2icoM9NaTnFpJwbgURU4UmuZUQ70YQkOHypS7R2GByaWx91+Eezuk/e4zqiD0uuaZ/cUp0fiF5NKlDWydoyBt9UJKCnr6Z0Llp8Ss1+cVaLJk7QRCRdUd+LlCuiRbibNAqNuVcrtcb7NjQvWGYvruk/+gI/9CCpuvh6hzbq1Gl5lc+9yjJnRgfSwjh4KkT0isT9M6C+MQQnxrMXJNfFOpg52YkwYPDGt1AemiEFjV0knSfG6KJYfqoo1qB9UePUd2GEAfqgSPfkffI9F4fO9HU5yvsWkHTC9hTS3QqqfXJiSa6H2NyTXhsjntkQXQuh9xiZnI/7jQmRIHofoK6uCB6ZApbhSAYtUafxGKf3Q56PvP4gby/m9UGTGizOxRh1mrAzvRfTZsXpMNbegunMVkDOhAPKgYrC6KswZ+hJEHhS0O1iKlrQwDiXoUdlthuxeS0g/OKOrfEXRlSQm3QsSNO6rfuqw1PJfKiK5lHQu+MvGTmLPM/5CGHhZUQzdsJnddj0nsRqhAq5MP//X//f/m7+d+VkvlK/Zb+hN/pJ/Wg3rH1QAPyTVSq1QKcfvsVVr+whyoraVSLUkTeZxtwa8l/1xN0XrhPmM5Q9w+xN0pIErLPvtremGLrH9+UBtw54VSsDFCLnOnDQ9LjisN3p+hatonrLxcQINkrmD46IDusKNaFjoES3UKTymY6HsRE0wa6HfJHNkgOF6iiodjpUXc1x08bNl5wFKua6UVLsdZj7asjevcNh88kmFrCw8qBphxo6k7rptPvErTGHJ5CCPgsJjrK5T6OckI/4u7/6xIXPn2Empeo8Yz+V3NCP+PovSsMblcoH6i7hsWmpXe/DUGMNXbuyG6d0qx2MWXA1CL6rgcJ0bTi+H1DNr7oULUjuXVMvBej6ga1KMmsxpwusMeQWo1ygZ160NKhDDqvOf+Lc8aPdlhsxwQVM3xNAgjjqafqW6qeIsrbj3ofCPYsrVcTjCI9KsEYQTqqBlJLfnmIqTx2WmEmBdROggyVQmlNeXGIWTT4SBN2Vtj7YFc477m8prpUwuYqTOsUIxSqdFjgmlY03SanNzqAk+R0pcFEbunB71Sg7oNPAumRJr8k+gkTN3hjCKWW0DSDNDndlsqh3soM2ftAisugf1uCBkGGjBBa0XIkupigRI9UdyEeKYotT77i0Lmmd0svnZhMqWRLXmlMraiHntB1dF+LsK8aZh/OaRbtx1/qqFc0utDL8LZ019B05DVIjxVNbnCTLtOLhl+cPEKnV7LIE56+sMtx0eH6/c233MOC4ouHV1hUEZc2RuxFjs//0rsIK41kWySC0LgeuEZz8coRsWlYj+f0TMFB0eNrB+dZ785xXlM5QyercE4TLs5pSoNvNHvzAbDPjprIc54aqighLqEapWgH2X3NaEMGldBvmL28KnqC7ZpqVRMfWnwSaAae7m2Du7WKf7ihjOW9nN8c4GOPej3j+FyHxMPs4Ub4+6nD7KW4VEIkm+1KhtejBCJBa9xmTdlxZNdjXCzn3uKig8RDrrEzQzTRlOcUk9vrxAUU5xuye5ZFPiQ5VjTbHjOOUD6Cnl8iai4VtMN3PNn1mHI90PTFaapcDWT3jSSJj2D8dE2yF1Fv1EJr0hbTulnNL0mIZv61NfzAQxRQb3bxWYCuww8b6pMYnWuK8w3NS2t07ymqC4HqYgWVCP27NyLworMxuSa7GbP6B+4zKxNGJ136X02F5jYUjQ0YgoLR1zcZ3pVzev54TXBqSbdreh41tiTDnHkqj81HbV5TowQd7jrMbkZYq2TpnzX4KpKcnlxE5X69geMU35ohKNOiS0uBuEdVWhYGlZb8n8yhZxJ26BXy3ggKb9zy74JrdVxpg4pFg+Zrg7Ie12jmi0QCBU3AhxaxyS02behkFUUZ0dSCWiRJQxw3svxoM0GKhaDj4TghfijH9SqUCpR1OzgpUKlDZ41kgQA6fes2QqPlPN2PiWZKcpASWXp0dgWh0s2/9Vfyv3P1QIT+oL6Z6sEA8k1UwXuU1qRHNeFY7FXDvBTdRBxJsrnWqE5GvmnpOIfqZIJ4VBU+z5ehhFgLITD+9kcYfvEuzHPCwRH3/4NnUB6mlw26EfSje8+Tb8T0bs/R84Jk3GH8cIKuA0kB5arYqSovH+bKBxY7MUGvE80a9P6IsLFCUNC7NWf0xICTxw22gAv/3/vUF1YJkSE6yfFRgm+/IIoEencC8QzKgaLe7C2Tw+fPnqdz4xQ1L0lbi1qbOwa3HPVGj+Nv32Dnnx8SIkO10QUF42sx0Vw2600G04sRydSjq0C5YqmGGxACuhGR/fRx6YR9lNA5dOJAVTagUqbXegxePEGFgDmWx9Rs9kEpzLRYDgIhFg3H7u/q4i3YQpEdBeaXu5QDTdVXNBkkYzCFoB2ig3HtAKNRpUO5li7W6jhU3ZDVTl5bJEle1U4skIcpdlQw344pVhN69x3HTxlJXI5lWPRWhM/KqWVQmU89KvJ004qToz4QhI+d1CycxrUhgyFAnbehhIBJHE3f0bljWHnDszew+PVaLH0DS82F8rLxNhNx9jGVnC87/3LC3e8cYHKoegofefTZ+ZRrdC3/b+fQ9MRtyOYSYBedanStKc556p5YvyontxviIM5DidCwwlRTv3/G/ChD76WkU0XzaA53U9xA0pFDHIhPNeWmJ8QevTD4XKhbulSc+4WEkycV9ukFT1/cY1InPDo85OC0T5XLlr+YJuwtIuJOzQ888lW+0r/CF/UVVjo59XnDrIiJI0f+lTXK7YbRPCOyjpf9Fv/sjcclCVoFZlOhWJ1bn5LXlulph/7Kgmoao6xn160Dr3NBL5b2rWGnYX7ZYEcWl3k5/ocJPgnYU4O7UKAPEmynoQmW8HCByyP0SKx23bMz4m/0qFY9di8hmoFLDMX5t7q06MTiLhTYOyn1TgUzKzScwkDs2Hz0mIODAfZchX2pT90XqpQeRZTPyIZe3JLAnS9wgJpH+NSjry0w9zuUa55oqllcFZSi6XpCKva/yWoB3+jJ0qMTSA4M+SXRIyRHhngE88uIzmWiWWxBejeiWvP0Xo9oukIny3eEIqhqSeRuekHspYOivlgSpQ3+ICM6TKkHHp+KuULniVOmdoXuw2PyV1bwmUcXmsUlh5lpkpG4iBUbsPvF88QTiHowvxzI9oQW6B5foE3gya19xmVK98MVd/7RQ8T3I9zDOc1xAp0GPbEkx4oyH6KjgBm3wZU9L/TIoFDW4/sBYwPeKUzicCsQKi0aDCt6rmCChETOzVvogUK0G2cubbkm9BuCU6igBA1pbXlVJcsDznQWKqCSVtheG3GiCorgFdoELm2eMK9iam+YTDJ05HGlbbUasMhjGUya1pnKymdPXkb4xlCXSACqAm+8WF2fictNIN5aiFi9pfdp62QABlTklpqQ0Mgx0w0sLgQGryuqAFVffucf6NAf1IP6HakHA8g3Uem1VcLpmPRzr4r97nSGimPUaleQjLohVBUscqKZl0T0spImVWv01iZMpvjxFP/0w9jbB3Tv5YRuB1VWNE8+wuobDfMtg0sU0Vw2jNlhhYulEV48so7NHemJpxxq4qnHW8lg0Lk0tqPHYuJJIHl9j+bihuSEKEU8qcl3Oqy/5JifMwxuVYRexujxjHP/4hQ/7JAdBYo1GWjEshOaBEwZKNcTmo4lPinpvrhP6KXUl9awJ3OKnS4+VqTHNflmzPa/POHoQxsUa4pkJENH3QEXt774QZrVwmhMJY5K2gnVzKszkXUgaEWwCl16lA9CqwqB7p0c5T2+m+A6EdHRnNETHYZvFoRhSnQ0Z/rEGt1bU+5/uwxfKsiW0y4UxZpZiu1NKXSz7r1cKFgtdSoMOpKWbrTQsbSSZPX28anaiRNW07wtLT0ohRskrH35kKA11fk+TU8LRcELH55fRY/CSzL5lb87p+nHvPHHB8LVnlmq0lAlgiSg2nT0VGhiyr7ltR8ST7mhOepp7Lyl5zUKuuKKo2v5+wCi31ho2YjPYXa1h6khmoKpA/FYiyWvkQ1tMIJ+5Bc8PvOYsUHXSqxDrSIagXZaju28TUHPID6SzsLHb7k+RV/tEbpQb9e42mLezOSyRhyqkvsyRCTHmmogOR351tlApNj7vQ3KKeaLhBeabdZ6C2Ld5cLaKStJwaO9A/bLAZmp+MbpFj9980PMy5gnNg94/XiDxDYsJhlVWjP8wBFxbZnPEua5ZZJ0ltSSUFhC5qDUdHdK9u6vYg8jpqWG2BPmEXvZGgDnowo9Ek1HnDg6104pvrRGeqSZPiZoglnI8YuvyxY+7pTk2mNe7aIVdN5zwuylNexLPcpHCvCKRllBHCvF6vOW+Q5Ua57VayMmL61R9z3R/Zj6QikHd2ZIs4qjVzcg8VSTCP1ojq819n5Cs+JQh6m4ga00cj54RaiMpFkPHO52F79RoSNPvaqgNtiHZ9JYniSYWuGPezSXS85tTjg+7VFOIuJ9CxqKnYZyQ5HtGopzQsWKajnHdaMp16Bel2R3MVSQ1PrFeUkNt6eW+NoU98oAbxPYrqhiLbQwFQhGsXhllXC+YHq3z+azh5zOOqhXu8THhmrFseiIO1uIA67rqAcG5aF/dYy7qmEe04xSkgPDqy/0aLqBZrMmPFVjOg1+GsmHhfXonQX5moW5mBe4gUdFAZM0qNKAV+jY4SvT5mi0nKNGo2JPKA2hVpKL0SjMcUQzbMRownoZPFdqmESExEsGyMKIVKyRpPIzHWCwQSiZp3HrhqWEgRtE80MqOotQy3Bz93gF77QIxgO43GKOIqJrM4pxim8C+iQiXih8FIhXFsyLmHKWkPRKrPFC44wdKhFnrOA12jhBXhstt2+CaNaCwmQN2ni80xjrqGqDQqEfmlN5hT9OybfaxQhQDzxm8c5hoj9AQB7UN1M9GEC+iSrM5kv9BmmCWuQycExEm6Aiu7TmLYcahgPUbE7YWEHtHcF0RvPIBfABezSFyMpGH2gePk+TGTpvnDA/t4lqIDtsliI95WF+rY+dS4NcdzXrvzJCTXPM01s0mcbFClsEokXA5tKou67F3q/Roxo9AnuSMXrPOlEeKNYtLhsA4FZ76HlJduJpMkOTyfdavqnoHATiiaP7wi5uexWfGupHNolPcuxoQbPaYfR4ROfAc/x0SnoMB//vVaKJOMDUPbVEZ+RASpPqLYSe2L/aEGhShS1ANzJ4mEqet7cK0BSbKdHUoktHtRIzu5Kx8vzR8vWxJRQbMfHUEbb7mNJz9L4VoStoud8zIXVQYCukKc4DKy9P0Kdz6vMrNN2I7NUDiu0u2e3xW7oQHwhJjO8nkjGiFMq1KIj3qErcsEze4FODT2N0WdN0jIi7J1Csy+B1pv4KCpITzZWfm4D3BKWwY9vqK4TDH6C12PSgRRciAWPypFzbBLlMY+eGaALBWtlat4JRVYNPxA3qbBsZtDwWU3l2/sWE8VND4onDzi0uAZPLIKJrhUshPdCYQpNvvSVs15VsmpueF4veDktLZh+dZVUoTEs7qwaC/MT3I6pzDWZQ0esWjO8PUJXGdYLoS5JAdGKWg1DwbYZCqYlHhqpWNBoWnZTdeIULmyMGUcGkSVmL5xyUfYom4tLglL15nzuTFdY6CzyKd1+7g1aB1442We/NOT8cM69j7r+0DTrQvaOpVsDkhsWVhjdf38EMK9x5J4tnE/ClZr+8ABlctA5nHdHEwEmPSTfgz4uzkz01FJsOk2t8HCh35DmXez0ZMp+aUt/vMpsnNNslDaCPEsmJ2HR0Hhszvzlg9ntz6qOU6NSw+MI6bsNjZxp3JUcdJ2K9rGExSWXzHHtxY9tPMTWoa3PCJCZeL6kLSygNoFALg8o82XpOcbcnYYK9inK3SzQRPVi4GxF7sQCOs5riQDbhp1/eJHLgzon4Ha9IDizVmqNcDfSva2ZXhGqUHEtooikVvTciqgFU52rM3LB4tOLChRN2X9rCrTU0rw6o1wTNUBNp/MOVBb7WhGlL4yoN2iuOX18Xp7dHF7jThGhkRJR+eUEzSTh3/hSPYv6FDerDVXQFqZb3wpn+ycfQfSWm2AqoE4vvt8LvwtBMLaYQzYeLA87IcXaTWDJhOkJ3VJGX8M4I3CQSxKKUvBOs0CdDHAhNQNVCsaLvcV231EKc0eJ0JQ50IRFkx/fd0sOCurXuVaBsQEcy/AQDfhZhhyXOyDCU9AQRMcaDhXIRYa7OKQ46hFjyQXzmKfue6ChictjFdhtMO2wY7XFe453C2kCSNOTzGI9kFaEg6VY0dTswqYA27XJEB7QKxJ1qScdqpgmqX1Oe9dPtIiWU0W/F1/ODelAP6jdZDwaQb6J67uSv89HeD6OMIZycQhyhnJEG1HmCE9RDJQkbXzmFRU716A7xK3dgZYjvp9g37omWoCzxj1wUxyWjUJUjvbfA91LWXp7jI41L29MjgCkaylVLem+CKhuGpSO/2KfzRk33V+7QXN0SwTRQrcSku3PczjrJi3cIdU397EPENw5FSB3A5EHsfAtHOUwxRxOqq+voytPdV4wfarnKXr6ofaQ4/j0XWX15inaB6O4ItzGg2egyu5AQzSFoRdVvRaYeXNaK19sNnnIQLWQ7DtIEm8VbwmYUlENF/56nWGkHEBfo3F1Qbqb4SBEdzVCzHB9vcPxUxMrzCEpRN0wvKs7/ywJ7NOPO929hKoimgeFNj4sUxbqm6gsKYop2ENHQuVnj04jR79ph/Zf3aa7JZju7dUrQGmU0Om8k7DAEzGghL0saEWJLPRAnK1M6dF6hKxlAAHwS0bl+yuJjq+x8qiLenXDrB7YotgLxiWHj657+m6dLsaYKIthVE0V6DKfvaoefTuvvXyu8Eqer0CiUlRRvWvF505Hhzcet1SdAEGtW5UV3AiwHiPS+ovv6iGq7z2JToSstbkQzoaqc2dW6Nim97sltaNe+jgqavjRLTVfQl6YD9UZDetfiLdQP56hXM6q1gI888WnLuUg8YS9jGjJsLbfjUt9SxTz1xYbuywnFusZtVZhDsT+thu3ByhzMLC4o7u7ucGdzDRM76kkiHPsAB2mfc+tTZkXMaCqhe1sXZsSm4YnNA/YXPV6/dw57M8Mi9rxnA5Z6Yg6jlGDh2tYR1/c2l9qb0GnYL88D0NMwrEYs3Ab10JPtaxZrns51Sz0ALpW40tD/ekK+Ca7QpEca9/Sccr+Ddorkq13ceRkq6oGnebhA76VMjrqoJJA+38UayC846sTJJv1cTXwzo7pUMlhZ4Lymm1TMhzGz4w6qENchd66C2x10HNC3e3RzmD1ZCcK1ECFycbeHPlfgxrEMH+dy/IaSpn8SYQr5b3UcgwF9EuMfm1ONUpJ9Q7npSE7kMyMaCX108q4GYkFplJNB2yUwv9ZgJkboeT0Hjebe3XX0VgG1oV5xkgIeh9b2WMGtDmHoCFEguxORX6wJw5ows5A53CJaCsYpNMlXuzTXGiZf3sRLPiD5jpPBTIGZGfrXTsmfX4OAOHTVQlHUhSaaKFwiz6dZa3B9BMGYGFwWCIlHWdn6+1LQRZ1rQiWDhgos0c1gAnZsCBZcT4ZorDh5+STIeYzoJVzXyfnfIrZ+pYYWZSAI6umdwnRFq5JmFblPhHradWRpTakDdWmpyxa1QWOsZ/38mPE0W34ec7acMAF/OUc1Wpyzmvb+h5JHZCNHAKrKyvvKK2zaiD4tKLQOeKdp5pZkWGKMx3lFVVqUFke/prKYTk0UOSoTsJHDGE9ZRKjmnWPF+wABeVDfTPXOwR4f1IN6UA/q/0FVqQ5H7Xx4Tt/9nX0wD+pBPagH9aAe1G+iHiAg32S1tNy9uAW37gvnv0U9QlWhjBGxuXOEyZTo6wvYWIOTU9Shg26HsNJDNR7z5n1IYshS9N196m+5Rrw3Jb+yQnxcEO1PCYmV8DvA5p7qXJ+6b+i9ckznaEpxbZ301RKXiYgcpUgPGvQs5/T9WwxfL1FJTPzarjyBewesnM7wGyuERNCb/q0Sgie+cYjdGEIIFKtDfCSajDpTEDQrr805+NYB6y/m+IurRPtTFpc20E2g6SiaTNG/JZSrfFtoAraUuz0TG7pENBfettTlFEjBVELXyo49vddG9CtHsIb8ypBqLaHz2hFutcf0iTUGX90DrYgWQFmjcgfWsv5yw/U/1OGxvzHn0j+8z60fPE80g/SwBB8YP9xFV4hjVAzmSJ7fwXtiersRg+s5IbFkN0YQ2daGF9xKh7ofg1EieG+coCFzh0/6IngH/CClGaYQINqf4fsJLouIRjmP/L0Sl1qOP3SOdAQXfjHHTAtcNyHEdol4NR3NyuuBzl6Nt4piLaJaCQKQJL6laRjZ5ILoStr8jGACrufp3DOUawoftzqN1NF7LSLfbt2LWvF7eqCweQDnqftCFynWBMUQMblw0GmdsIIGbwM6KPQCQjfQdCRfo7GqFUwjGod9u7SIDscJ9TDQuaeoe4ZqzZPua/RJxODREdNXVkVv1ChU3bp0VZoQYP6EpE2r0wi3WdEdFMzv9aDrMEcRbq0B68F4gtM0hxlmrRSZzr0Unxj2vUJHnmYeYdKGL9+4zGC4YDzqsrN1SjhOqNadbMAHNaERV6Vyr4MygArcOFjn2vYhtTMcznrUC7EdvdtEbJia9cF9bh1+C8or5lcbFFBsBGyucKcJZI7pNYdeqdAmMHh0TtkYxp2IMKhZmJj0QJM/WqJOI9hP8Rvi8GSGFXygopdUJN6QlxFlUOhpS1GbWhZ7K5hCcdSXBO5YQ/rkKUUZoa93JQul46h8RN5riPZjQbY6Hp02pKsLihsDWK+xKyX6G11cPxBWauzMYOegnMZlEkIZDKjrXdIc6n6gc8dQrgtiVg888ViT3ZZzIL9wpo+S88mOLP5Sjp/ERMdWHluj8FqE8dsPHXM46hMOElQj7l7mOMKODe58Qd03qEKoSGatxFhPeZoweOqE6dfWcVdyOr9nRFfBpadO+drd8xSnieSy5GZJFZy9topbF1SFuZEMm56T87yL6Cpo/5t6CedMWl2UCpJCHsnvTaGWZg8uckKdTDwhCajc4HoePagw+ymYIBarmbh/UWix2fZy/uMV2iPvg7mV90WQ1woFKhHaFQoWow4ma3BziwN8Ko9ZW09wkgWiFwZnA/5yhY0cjfWoNncEQEeeKGnwVv//2fuTWNuy9L4T+61ud6e7/evfizY7MklmSqSkkqoMlQBTgABBsAxPBMigRhppQnFqAQIkCLA19sSADU5tGAYllF0F2JZUpigxkz0zMiMiI168eM19tz/97lbjwbfvfcniQFKJycig7gIuXsRtztlnn33O+f7r39FvHaoMg6pUUrZsIV4Q3xucC8Qk6XspSSpfiorYvOk0aV6Mcfe3UhQaFcFrXO6xJrJd5ZJEtskwhSe2Btf9CX9If4HrlgG5XV+mdQtAvmQrdT368RFcLEhvP0Qtt6jtFmZTOD4BYyQJa7ERn10IpJMz1GRMfHiA/ug5bLawv0tKETUdk14co8qC7PkVLFeUXU84nMJ8gcoy7LbFH83IFj1m2ZL9zivYmeHv71I8vSTc3SU726LmK+LulFg6VJUz/rxGzSakxQo1GcNaigT9o0Ps+YrmcI9uJmlc2QsL1qDP5qRRxeTzjsW7InmpLgLZ0tPt5Ox83GHPN3z2vzlAdxUP/vWW5iAjnyuJ5LSK6TMZQDYPbqLnRacdhghGQA+xswxm934sfoLR60Sylu7uhPyzS2wTMFspLTSLLeWpJc4q7Kpj8sLi7+4QC0P2ckF+0XLv3xYimwqBO9/t0J3IotqjEXYzyL2SmKr3Ptiyeqtk94eR8nWDHaRVGE0aCgNV26I3CuM05lyStXCWlBniuED5SP3W8NysGvGurBrah1Pykw2qDYQqw9Qes+nIzkRmlQYj+/Z+gdtEolP0Q6+LrRN+ZNgeiLb7up1crwxhFEU602kBI70Wk+p1pGeSFu1QiUwEQHVa9O0/UvoVs0h5bgZzqyFakVeFIaULBp9IUDfPoXg7BGj0E4na1R6I4pdojsRQen0/0cnxZHNNtxNZf6NHXzmSTtTvylDZ/ds90k/JMHoNPogKXWvUVhPGgTAO3PkfDesHOe0sh3utDH/3GtQwDMV2eCud9jK820SqJEkr/6yge9iRTTp8a0hby/p4l6xTnFweUZwrfAX6qyuay1IG3WkQuc0oirTtqiC7Gzgq1yiVOAU285KXIefn6LnHuZjQLw3ZlaV5u8O8taHdZhDBFj3ZtKbe5MSrjNPWYAuPOXcilxsHupli99/lLN9OhH2PyQIBSKc5vC6pBw+V+DECaa8jrZx4DJ5sxdTs5Xrot47+xYRsLsOvXRrCtMc9WrNbtlzEHUlGU6BOChqdYx9vUN8b4ysnMamvFLzM2DyOJC1SPFMrqleKzQPpkun3I9mJpd1LhCpiNzLgt4cRFUQCVj03bB9LSpZdG0IVyX5Y0o8T/n6LWkgClxlKNV+f7EBt0EG9aYMPApzTWo6NsYdWE1cFKSpco7iqd0k7AX1acHlcoCKc7O6iOonLLU4N0UC7n4hlIDuzhApUJrKmpNWb53wAHCpKvLVamyHVTUCY3hqJp0YPgRriuzErLTLJSqRWyktAhIoQV5nIDgezPa2R5z6TVCrVK9lYSApVa3mND+bzmEWyaSeypa3DVp6y6FivCmzmSWN5P52WDbV1ZCZwMR+jopSFZg/XzC9HsHQCiisBIXavwTfuJvZbmUhW9fhejHJKQwiSCqd1Il6XCyrktTT4O3QesLkkX2UPNvjOEjoxwNs83BjWs6qn2zpoNaHOsQtDt3PbRni7btcXsW4ByJdtGU188QpdVfDpc3h4D1KU3ojr9KYw7JBPJ6T1htT3qLZj+6Bi/GGSn/c9yhjWX91jdHxKatrh+x6lNeY6Pcs5wuEUe7bE35mh17UAG62wlxvaJ7uEQgZIU4/ILxqJio0R+9kJ8d4+arGCbS1sS99jX13gH+yzfuiYPO9IShFnFfr4grQzpT8aY5qAWyeKq4AvNPkn51KWGCP1zzxi5yPpPLn4qYr9P9gw/mBFf3dKt5vRzgz5MnL07xe8+F/uSrLVwHjMPokkA+v7WoyTVsCAad4Yo7dPxow+XYBShNzgS0MREnrdoHzk4udm7H1vjVt6Ym5wZ2v6OxN0H5m/a5j8bgtKEwqNaTz9Xkl21TB9LsNZfWCYfN7hzjfMOukWibkYIa+BAUYSr/oHu2zv5iQNky6gVy2q98RxQSgtugmUL9ds3p5StZ7mMKf5SsXouCdZTSwcZlmjVltW37pPedKgm5764RhTR4qLnjD4Ra7BR1LgS4WKibvfCZx+y5K0eDLkGJH4zU4SmdSAEK5TtfqJ7ERnZ5ZuV/T0YRzQG0OYeOg1+blhexeq14pUWLKldIaEsbBCZtjZ1r2cj2TAuyTm6JmwWCoKoJTiSokJzRbisUEN3qGhXV23iojFbhTeKEJUhKOO0TeWbF/vyMMPYorW97eE3hBqO3QtJC7/xhbnAuHlmPxZTj+LRC/a+NgbUoJ82hK8IZrB/zLs8JqfWsKyoN849NxRHctjavdAN4r0rRUaaBcFuvCEBPghOKGTDpSURb73/ceQB0wRKMoOErwKI2DNvbAAl2jv9WQnwrT0rUUtLOx1qE9GbB+2lOOW9x6/4g+ePiRFTTjoKX+Ysa0CxXtL1Nc9aVFR/WFJP3GE3YA6atmaHNOqmwhns9YUnxUkA9uvtmiTsN+ZkDfScxFmieLtJfUsx+Ue/6rCvCygLbh4WECncYc1futIBy0paMLTEean1uA1/rhk/HOXXH62I4P23ZbqDwq2DyP1f7VFPR1hVwpzpvEjCRhwQ69HtyMdJAChTHR7Q4HfStgQ5SVWmaMGFtlgqJYd+xQHP8W0I40VxYcFoZDCxbTIyM8M/TiRP8twK2iO5NrvD3rM0opfRL3xONmFIRSJ4kRe+6EQH1J+YqXgtdbQyfUpQB7syhBbiZ+OuXhCUAIwQgWMAmlz3RMkbAaZsBkpkw6SOJjO5ToSdoPrDQGV8DuS5oYbwE0lwFt5jbouCHUSy02StKt+6whOBv2U5HaMi3KdmUTYOi5WI7RKzDcj8XgEhXmyIQQNa0vKI3HmYWtJNjEetWx1wgwpVmFgNIwR9iJ6Td9ZlJZjj1GTZZ62ccShoNBmgW6TUeQNvTf0nSV62XXSNqJ0InQGl3u0ShKS4BKYIKELzZ8dJXpKEin9J32bt+t2/TjWLQD5kq3rMsIUAhhDfPqc1d/8OWa/9ZrkLHQ9AOlyjpqMUUcHcHxC6jrG//oj1GwinR8LaRMf/asfoHampPkSNR5B00p07wBQiAHz+SlpW2Prhv6dO7j5krgzQj97Tb7e0n71LjYk3PmGZCRyMo5yzNqhL5YkpWi/9oDsux+hykKieWOiuBRjc36xQZ3PZcd/syU7EVlOVVpipnCbAM4S7syGmFmoTnt0G+gnDjvf0j7ZpT5wTD7bMvr+mjgtIUbu/6sVl98cYxvp9lAxMf+KyB1ABttuKiAkegEH2Sqy+OldTJPY3DNMnvsbRkK3nvIiSLztzLJ+YDn4vYg7W0uXyWbM9mtHFCcbyuMtfuTox5bsdINpIvP3HHf+3RK17cAH2v2C4tUGO99C3cg5zxwxz6TlvPbY2mGaiDlfkfKMVOW0uznZvBMQUveUr2v0pkX3pYCHBM2din5sKK0i27Zi/p/XNI+mjD6+on6yg2oipgG7iYS8oN7XlBeR6nVHN3N0Y82T/8eFxP8axfO/sc/2pxoZ8FWC1sig0mtU5UlDmZlp1Y2sCZ0wa0N0Mghe9zeYRrF+BDs/LGj2HOOXifWjN4DjutHcrRQmQDKShhXKiGk10QpY8aWY1pujQIOYh3WrxEwfFc2hJGTZWtHuDt0ijcaPIhdX+9hm6BoJ0N6RhC+8ptrfsjOqefVij3hcUWeR0aMV7ZH8PHta0t7rZRffRtm1PctJpUSeokA1hvp0RLZfEz4fsfs9KC8DJz9v6Pc9ykYq5+l6S4rAxpFcxK4MvkrYtSY/g3ZPUqz0NKB0ZH1eoYvA6zABTrjnljJwbTT9XoCLHD3sYKtjCSlwhUd9Z8qH1ZR0v4cM9JUj/Nya4oMx6dMZ61I+FLaPAxSB8pOM9KpEF9A/aDFZxDwt8ZNIuw9+FDFZpD+uOPxvX/Pi2YEYhYOi/XRKqiL9pcit/FFHHxT5K0fIE/rjEemOtG3TarRXhKcjsndX5O9fcXk6gbEnrS3mNGf9vlAw8VlFKiLRQHcnYBaW8kT6dHwlIQrXSXMxY4jZjfgjL10vGtJ+jzkuoEjkl5ouDlIjBWHiibWBXqKi27s9OinMboffFeK03TX4CyeSr71AudvQuJzsRUZ75FGdsC0qQjaXzhrdyzUd8zdgXkVwS5FamkGeSWKImQY3vAZUUKjeCnBojLg3A3BtMHdK2ArNTYIdeujeGcoCaaXxPBkkOavwJK+Jo4DeGgHNWkIkVEI2GLxsMujCEzuDthHnRM7Ue8Nk1LCu8yEWNyP0Blt0EoUbLYw8zgY2i1LeC4CIRVdiIl/MK9LSwchTTkQv27eWrOzRDOleA+uRopYQhqQwNpLlHmMiPmhs0dP2ltBLQIZ2CVykKjvqxpEXvYCgYcNAZYG87GlNQm3zH9On9Z/+um4v/5O+zdt1u34c6xaAfAmXGlKsUArlLLN/9UNS10sEbwb0/ibp6jqmNYWALnLSci0g5HIu0a1ZRvP+HfLfXotUysoloXJJNrlJ25pN8A/2sVdbwrv3MS/OIc9I6w35Hz6n/8oDSdTSmn5WiswoRGhb6r/8FarvfkYyhtR2mO89RU3GFOoAe7qke7RL9vJUJGHjEclqVIh0U0M/Uhz8xhmEgF42dPcnANhVh59k2I2H1QazqTATSzfLKGrp5rB1T7dfsP97S9oDKWQ8/baTqFYPex8Gytc19Z2C5RMrw8YO+FJTXCbpskhI4WFISAFgIL+SNuXxR1f4cp/mMCc3Cvfyiju/fsnZL+zRT6aokJh+7wL0FNX05Kcb9uscvayJkwK0RP76WY7ZGkxK+N0R9nSB9oFU5YSRo3o6p348A61RbcfJX7lPeREoTj32Yk3KDM3uiHCvlHjkP9yim0B7WDD9/hVozepn7rA9MpSvC/zI4PdGEtc7FECm3DB6saU4M8P5bXEXW25inzUkY7j7GzXnm5LVX6phSMRRCsjDG63b8HmlW7BaBj5hKyTd6RoYoCEY2NzLKC4DvrDY9dD5cTgMZ6sfkWB5QEs8rwoimQu5DGvdLOGWg7zmSlrXo5XbMLWmuTN834qWPZsPsV1AfFjjN05iOddWvmxie1FRn4wgi8TdDm0j67MRZquxK023H8gmHd0iR2eJ2Fh0VKL17zQh99h9GarU98c4D9u74CtDeHeLUwk/z1mcjtG1gSqQ7dd024ykRW4Us0Q/GU7opGcyqTE6cbHK0DZyYnYBeGC3qI14HNyV7LqHiRcJzNZg1mC/M2L9tkTy5q8c3b5G60R3UcATYVRMHgiLDDs3ZCtpFI95IrvU2OMcf9QT9gL56eD/KCPZByX1ncjV//cuI2D7tQ5TeNS0ZVp2LK9G2KIneg0nUup35yvnnC9GqEUuO+Uu0U9E3lefVbSNFgJ2Kec55JKCZrZ6kFpp4o4MzsW5EglWmdCNJKThJSVNd8KIuKUmBHlvS0qkfeGwp5rW1Gki14aTHpm6kmK+5KQhXvWa7KUTcLNVEg2dDd0WxVDweDXB2ETIEnZpMI14ygCarzao8xy7Fcmg3WopBI3Q7ia692uRcT0rCO/U8po6y4lFBJ3Izi2mhvpuxAxyMLcRwG2vLGh5TUUnTGAcB8yVJRhFKoQ5SCahXCT1WlKwikhsJb6WKDIt3MBquigs95DYJWgESOBrJ90bStKljE5URce2yVClx28HtuKsQB20uCE6F9KNlyR5hZ1Jl0e3yinubH/ks006PUCidKMXsKFVIiaJ1u1ai7EDQ5LetAh2W0c5bnE2sJxXlOOWtrNMxw116yiLjm2dkw1t6lpHiqojPPkzVIV+u27Xl2j92eEe/wtZKUZUWaB3ZqRvvCvfqxuIkbjZitcCJI736ACmE9Ca7i9/Q9rPvRf2Q2sxsxtN8Xz+pk2961CZAyeejPT+YwE8owq97VF1hx9lLP/iY5FsAeloD/fyCq4WhHFOtBpT99C2UBas7lvStpbbNUO05MMDzLol7ozwpRyHmoyhaYlFBkYz+4MLRseeMClJZUb91gyz9WSLjnavQPURtKJ79w4x05hefAjLr86wF1v6wxH56w3tQUm26Cg/ueDJ//X1TQRusyPG6/J1ze6HHQ//h0v2v+9RCbqporwIlBcRVYtMjBBRTY+93KC7QHtvyuhlg6mlqRxj6HdLDv/dOeNnG6YfXOL3x5htTyozuoMKP7Ika9DLGhUS2bkM+X6SEYuMbj8n7oyGBvQe3UdUSLhVD9aA1syediKdGmX4gzFxXFB9Nqc6rnHbKL6TppMOESA5Qz/WjI8960cV5UmLrjvM1mPagJ/JDqDqPHbTYxoPWhNzRzKKVGSkQkzwdtUSCrBPSzFLOxmSrnexAZJORCcD1jWzYFrxYphGMX2aZFCyYBvoppp+pAm57FyXFwm3lmFQ92+aipOV4ka3YpC5iNdERcAkusMeu9L4cpCu9LIjbBqwaxkwTfemXyQ8aPBHHdXvlKShLA24KTm0k04YumMHSWE+L0WvP/Xw1bXIzRqLLj1pLbrydNCSskgsokiyaot6VnL3N3ryKxmKl+8k4mkBzyqRwARFmniq3Zr8N8boS0fMI+GoJ0wCoYzEsYCjxdmEy7MJ1V5NCooTcwDAA92RJh7KgBpa5FWrqZ5a3FLR7SS6Kex8YFABusctZiOm5mQS7mUGG4PfWuxSo97ZYP/CFX7XoxtFuy/Ps3vtUJ2ifatFPd6iF5b6oUcH2D4M1PciamGxWcDXju63dqHR+NphXGT07oJYRk4+OpDH7xXFfs3d+1cw6UEnpvdWxJkn2US3F9CdEr9PozG1wjRSqolXqKDYPgjoXlGcaNxK4askLNu9jlAk/E6QQj0tjJzuFGpl0S7Ad2fc/coZ6etr4ttb6ofinTC1Fu+DTVAE2jueMIr4USI58UvoXt34jbojQRsqiEyNBN004UsoPioYfa5onvRsv9qyfb+neaelvhOl3O+5RNNGB+4HJcWHBW4ljIZqNX6UJKY3gt0oTKdo3uok/vdBQ7jX0u5FYT0AtuLdUr14SujkfOkrJ1KzfHjNAioL8lV60Ak97sWQHhRqbUm9/G3shT2wZS+xuAmKvKdpHXUr5Z2xM6hG068y4m6PUol2mRO9gdoSpp44CZg7NdpEgjfQK/reoHWk7w3WDQb0IJ4NfR3lDegBNLjcE3pNt83oLgu6ZU7oDa7wdK1jtSjFlzVE9PZ+8IoocE4Ymes9ff0jr/s/C+vahP4n/XW7btePY90yIF+2lRJxsUIVOclpVFmIfyMl8F7Yj2HF3KGbjtT35P/uQwEjmXgNlHUwHsFiBTGJWfxyLsxHiFJ6t91KkSGg5ks42IH1hvz3V+R5dlOQF0Y5drmBvR103ZFtOlJuSL0nPtmlmA+7cF2P2pnBdos9XdA93MU0nvLlmlQ3NN96i+J4ja6HxxOi9I6sG3D2xmgNkA5yQmEoXq0Ik4J+4siuOuzpksJo+sMx7nJLGBeUT69IZcbmawdEp7Br2dTb3lWYLqM8HwrPtKY4bYimxG4D5Q/Pqd87EAao7cBZYpXhpwXufM36GxNmn9T4yuCWPYufOyRbePSsop842Mlpdy3jz2tClbG56xi/6OjuTuinltEPr1AhEQqDqb3ovzcevWpImUzdygfqJzu4hUS1+MMJ2cUW1Xjx2ihFyixJiYm12dF04zF7vzeXYsHMUt+rZIhPkC88uvVsH43JlnKtmHWPn0gWvt2I90fkU5HF16aU557sooaQUDFKMeRKcXFHYQsZRlJQqNGwyx2NDEMK9r4f2R5oRq8j5z+jKU/g8F8dUx/eZ/sgUh1rNvelKb2bMCSfScP5dTeJbYAogKPbkZ3UbAH9VAYyANUpTLJoL7vSplUkK8BH2BFFP5NhX1IIQJ3mkn7231yhPp+h15ZkEmm/oyh7mnmBDorwbg0XOf2+mLbDQU+7zKWIL1fSjWCSAJEobcwBS/+6gqln9gmsHjuWv9CQeoO5sMQ8ER+2FLmnWefQaOqzCn5WWsWPjhacnsxAJ6pXmmZfnpOQx6G/QpOXPcfL+2CkjNA+t+ik6WdxeJyK7Vc61NpiakW/E2mCJj9X+Kkl3muZTBoe7sw5+OkNVgd+5/Qh827G7H8cEd2IsROfw/TxgtWyRF1kAgg+z+GrPX63J3lhfYwXvX93UmJ+b4wdQ3NfgIReWdTzjDoD+7gmFgrfG3TuaY5HvFYVjAIUkdVnM3RURBdRsx51kpPuNnBSiBwpQr/vcRfy8RWtPKd+6NcxtSKUoOdWGJOo8KMIBoKWa8DcqYmvKtq9xPHHh28kgzoRR4FYRpEMuYRe2MHDJD4Ot5BSz83jKDKvWUDZKA3vWSK/EjmY3ciOv+5FWpW/cOI164WF6ScCFJsHPWr+poui3RMAdd1NFAcmwl0NHSAWsucZfiyeKxKknR59p6NvLARNCAp7ZQXc5uJ7iS6h547ofqRHJGjp8RkM3IDIrbAkE8Xbkwlb4XuD1mIGty7Qe0OMismoY76oULUBnch3WsZly+XZRBLyNkaehxEUR1tC0PhOmuXzA2F/2ibD2EC7yFEuUU4avDf41ty0qacwIKztmxQ+XUrZobaSlBUGwFTN6uHjUtF2VvxbQePsIOG6LjmMCmvD//zP49t1u27X/+x1C0C+ZOu/3/wqvzj+35LqGvvZCamX3WpiRL/zBLY1KsskmjdGwtEUfX4hA/3g60h1Q+olqjOuN4RvPMZebuSzbL1BTadvfvdoD/X6ArxHrWqYjElXc1SWiQSs77HHl7DeikTp9ZmAjK6D/V1021MdN/IzZ0EryDJhNO7kzH7rirA3wTy4S366QS3Wclt5RvfeXeymp3kwpfzsipAbGEu0aTs1ZCtImcWeLLCniu7RLslZNl/ZRcWE7iPtQY49W9LvlizeESnD6CRSve5ZvJPLcH2+JeaOWDnag5zxJwv8TkkaFZSfL+gPx3Qzx+jDC/S2wzhD83CGrROnf77i8Hdq0IrpD+YSgwvYrWf9qGD2gyWq7tm+t0N5GUBD/vQC9WhP4m8Lh6k9/dSh+0j2ekUc53QHFcWnF7Rv7VAcbwR45g7dBdbvTCkuOkm2OluC1ahegMXoNLB6YImFxU8yuqklWkV5GQi5pvpswfbtGeVJQ3NY0E005ZnGrTqSVoTKobtIMgrTt+z84ZyUWVTnBZhozeaepDapTsOIwQORCO0bOUQoI+WpJhrFne+s0duO6YfQ3h2D1tz/NxvOvj3i7r+5ZPFTO5CkBDJm0I8UuhOWSnXDYDlEZdqtImRSNqg7+dc0YGtF6uR7ppZhEgN+kGGFEspj0eLHUSJMPe7cEarI4mwszMYkYE8y/ETTPxvDzKMOWsIikx1jr8jfWbI9HaF6LWlFjSEEASGpE/153GSM7q5hD5o6w1fQ7AFXGXar8bteUsWel/SPayBRHNR4L4Vt7Trn4g8PyDoBV91UEr+ihdhq3ELj/YhuHDhNj8FBpWHHn7Otjwi5DMK4iLmQlCs/iuidjjblFEGMxiRYno84sYEPPnoIQLW/5e2vHNO/Z3j5gzuo/RYSbD7aIVWR/OGGZplDEUgvR7iton/YYmthHtLHY7jb0R6Ih4GgUEkYJf9ujcs93asRaeJl0F05yvtr2saRznPSMBwzlFtmnxYSNPCipN8Tb4XuNZOPLKuv9TL0DjHQpoXmXkBvNfmVIqmh2V4n2dXPImwN2ZWmKXPyRxsxLz8VyVs/TRJNCzcejmSH1u/BT8GdBv1Wz+aziZiXB9+FvbCEUoBuyAQEh4Ne2Cyr8JM4gACFWw6hCuNEcapwl5ZsIX/XvNsKO9AZzKUjTCRSN44CKkhqlboBW4r+bidoZmvonSW2BjMM/P1USgVRCd0aohvYu15jSk+8zMFFdOXF0zX4RYwTz0cKirSx9Esn4DAoko10jUFp6BqDG/XUrSNsrQCYITZ702Rk447usiDlkTB4PJwNtFj6s4Li7lCoCqQI3SofShIDbeOwWaAYmswBtlelJF7NOoqyY7sqSFuLHgsrkztP7wRMdJ0lJSkxdMP3em8wRg1yLiXgYygt/LOybk3ot+vLtL4wAPLtb3/7P+n3lVL82q/9Gg8ePPgxHdGXZymtYTwi7UxRXS/pUgCrDfHOLunuLuZqS/zkc7q/8g3yGNGP7pP0EHWYkgz5fY/6ylvYq62AjINdVO+hrgWw7O+ifARriKs1en9XTO69B++JRzvoswVptUblOfHkHH7qXdIPnqJnU8LBhJgZQmFwVQlFDl0vzMqoZPqHl4S9Cd1+AXsiAypXDfHxHdQPn6P7iF43ZEaRckd2vmH1/ozqVcPev3pG+5V7APi7OxLl+/yK5p19Lr9quPdvt8y/MiLkitEPLe2u7D7my4htEnbbM/1cUXz/GP/wAN15ur2S6tM5qvUYq2nuT3ALidKtntWE3QrdePS2o1w2mDsToss4/XbJg//XKf3RhJhpml2Higm3ieitTM71nrQzTz+RSGNT93T7FfnrFdrIObLna1Lh0NuO9YMZxYc91fdPSXlG/c4O0cDo0wXlaYt7dkaajujv72AXIsHbPB6zuWcozyLmckN9t6Qba2ydKF9u5LnUmvLFmjDOyc9bSYjqI/0kE/lV7VF9oLk3op86kobipBbJQkqkwpJfgd1Cu6dIp4NWvQwiwVKiNze9ot2B3Y8DyWiS1uhtS/F8ITHGZyuOvpuY//QO2yNhSGwD+kySuFQUMNLtCePh1iLF8iNJxkpGQImtgSjMSNzrSccZpoVgxTOig2jO+3HCj8XQq1tF9rk8Nn9X0oDM0pCswY8FVJiHW+g10WsxhVeib98ej9GzjrhxN8MnSeFGHaHX2DzQrys25yOKY4sDfA5uLfHEKgFFJBURnxlYSExuu3DS5t6LGdt0in4iTEYcolFTGXAXVhK4ioiZ9nQXI06D4sgkdvaec+kPiXlE9YrycEvbSBRq/mBDPS+oHq6pd3LwGnWVMX2yZF3nHD244uyzPZqXY56ejnj7/WP0QYv5pKQ79Oh7DdlnJep4QnrsCV3C9ENYwEmGaQQMhjKRvczodiKpDJjlwFJkEc5y2iyTMIQ8YDNPd57TPptIuta+eKts2dMv5f2gf68WYDLxqE6TXRpMC+u3AtmJE3Zhmuin0uKut3IN1u9If4tdK/wk4c4svkwU54r+5zaUH4yIJ2PyAO27zY2cUG0t5tISxnKOo5PrT18NzPFxge9K0qNGfEOlR9uIdw496Wn3DCaTx+avCuxWeklArkc/ioRSEfOI7hTN3UR2JbLB7shL30wl3hYi2Lm46eMoDHK0wbdUyGsZhRzvYSf+jqDIrrRI5hAZFhXEMqAbTdyIMZzTQlKx1GDuzr2wHJsMXGQ0aolJ0bhI7DWz3S0xKprOvfGF9CKTwg7HC7ijGmeFbUgJsjOLbqH7Wk3XWeplQT5pcYcN3mtS1GJYXztJ1Jv2aBeFaVGJzWUlGx2ldPO4/YaqbOm9ERnedWiglr/JnGe9KQitoRh3OCtMjdaS1heCJiAJXtdsyO26Xbfri1lfGAD53d/9XX75l3+Z8Xj8H/zdlBL/7J/9M9q2/VM4sp/8pfKc7ptPyF7MiXUNj++gLyXq1k9z3G99DEcHwmA4LXKtVyeoshAQoBTUDeneAaruYLkSU/vrM1RVko72BKx8/BmEiN7fHW7L0B+Ncafn+MeH2NdzATHOkeoGNSpR8w3pyUPSCyke1K3HXm5E1qUUaVLRfu0exWeXqBBRKaP4zg/pv/k27g+egtLozRbGI8z3n1H/wntk85ZYOszxJdPfmJMOdmi+fnDddnIAAQAASURBVJ9+YnCXSZiggx3O/pu7VGeB3Y+DGKwtlOeB7bu7ZCvxdhSnDau3StzYiYHdCiujNy1529MdTTBtwF5upMjwYk2shpSUa0M2sPr6HpPfP8XOS2BKHOXYqy0pszS7jvGzDXohrFDKHHt/uKK+X2GvNsQiQ6WENRq1FOapXGyIsxF625Jyy+4Ha9J0RHIG1QfcosOdrKBu0FUGzoHWNx0lZO6mh8N0keQs498/obi7I+Bqv8Sue5JR6CZg1i39XolddZLEdbKFkEhO4pzz84ZQWGKm5XnLnbBYjefwO3P6nRLIiRZmTxOv/1ImO9RG9OMhT1QvFMtHljuvtuh1LZ6izBIzA7OK1VsVy7c05SksnwydBxbi1aB/D1C+luQqgOZuID8TGQpRjMfZfIgMtQl9JQOpGkhBEICge+mUSBrqhx7lNbHQhLFHL6xEcipE8jUUpMVnFQrQmeyAx61BTTxmr0V/WpHGgwQkQZx5+osCykB/mVM9WrF9PqGfiJQmmyvqI0gTT9gPsHGy8zztCFuLWdk/EimcTKLbExCh729JJyX6sH3DMCUlqWKt6PJfeMuR6bnDCZ8mcHNDPwu0tSPueFgbwocT1IFnVjVsL0vslSUcSY/DNx4d8+HrI0b312xeTEAnjuczQmf49l/9iN/+/BHhMqPbCeheS6fHrpROJpso92S43Jluuboa0c002cuMuBa2h1yYmLDXi/TNBXhZ4BOYx1v81sFWiu1YW/SLDPWwg7VFLQrinoetoXxtpANmiFkOVeJaPGPqIVa7jJi1lr4XmyQ1rYqYezUqaLb7Gv2ywiRJi1JeYZ8X4hXqJFEt5onkInrh4KCWNDOdSMelMBtVhKWjemXQnSE6iR7WpxZbi2StB6wfEqlMwi2M3G4RsRcW3Wn8ToBO0xxJVDWdGN/11ghroCWBCpDvWbmtlEnkdMwjbAwhH0wMg2SrfuDRjUbvdtgsELcO7FDs56JER+/0UItnI2URY+JNSpTLPHUjgCvLPB2WxVUlMrBiSCLrhwhuHamXBTpB8XiFGWRcUSXaeQlHnmp/S1wV0Gj0RHo4tE0oHW/idfVYwKc2AiRQ0Kzym74hW/bkOzVta1nOK9npD4pyvxYzetTUraZd5uTTlvGouWEDMufxQQv4CJqi6EWxHDTeS7nhV//v/5gP/1f/uz+Jj+cvdN0WEd6uL9P6QiVYv/Irv8LR0dF/1O/+83/+z3/MR/PlWanr6CcWOy2JB+/THuSo+2Py8wbdBtRsSrqak7yn+t4JKQwZ6usNrDfoUUXyHnVyIV6PrkNNJ2IqjxFSQr86hbIktS1ptb4ZvN1VTQoB88Fn+G+8hW7HqKcvIQT8T7+L/b1PiF9/C5NlmOdnpL2plCJ6L36T1Rp1d0I6u0AVOcpZVJ6TvV7C4T4s19Q/84ji1Qqev6b88ITmK3fEZzG+g+ojpvEUPzyj+3P30BcL6HuSM+z/7oLLn52RzyPN3YqD35oTxrkAJa3JjSaOcnZ/+5yUO5LVhKMpKkTCrERvO2lzR6RdySniOEfXPd3dCXbV3fgtyuOGVOUkZxi9bNk+HFE9W5O0Zvx8i55v3kzBRt7AR987laLIlFDLLaYPhLu76FqOX7U9cVKg2h7VBtTlEvYletgdLyQt7HPpAkFrCIHLb+9gGxmSyzOPShL9mTILzqDbnvrBmOqpSKnCKEP1ge6ooj50jHxC94l+VkgaltXoTQvJ4Ibj6nYLskvxgOhGGJ10UDF76jn/GcvFT5shZSdBBOUSquio7+U8+e9aub9Hu2RPzyCz2Ksti5/ep5toKR8sREUCMH4pyWC2UXRWBjs/SeigpB8hk113t4XUKWk+T2C2GiP2CewWOic748W5oh9BcxiF+Th14hFpFDHTxDJSPrf0X68JG0t+7Oged/g9ud7LnYYQNGXRsfloB1NndHc8ZmHgYUMMCjqDGvfSIbHbsXk1xtZKSuA01HfA321vdmRnR3Nene0QVw7TSEeKysS8rRKoo4awzCSp6aSUofM0l4jY4dh1p3Ar6bM4tgXkPQ/6c0kOW0M/gzjPsAcNPihCq9Hjntef78lO/+Mt5kWFaRQfvnwb00BbgHmyJcxznA10V47vfvoYbUUWpWtD2m+5c7Tgcl2xN95y/tt3iCcT4iyyelqiRpE0CeivS7eJX2eQFH4ayF8MvgUc7u01zTpDnZTi95j12FMniWZHHrW02LWmnwXU2mBqjVvJc1/fD+TnRqR4e57sxNIdhoEtgJSJebw4FdYxOU1YV8IabQSoNO8MBYQjLwzHxhAetMIIbCzFK0d7FDCvJK2O+42Am5XGDMbwfgzRCiOXLYeuIQ35hcRF604YO5KSokArwLmfBpEqxcHEHiWqGpVuZF0qDGAzaGFhejHcJ5NINqIbKzHYaSgaXA6FkAEpUHSJtHJ0zkqb+MKInMukoYMjCripoiSf+Wv5ZLqRAirA++tCwERWeHnOdCL18vt+kYtJ3SbxbAzBDLEx6MKjraSamaUhPWiE6QiKNO1IJ5UwY2MPUWHygG+snI/WSJT12KNMxC9yYl1KgtlMWJIYFM06R+mIHiSgk72tGNCjvPf23pBnPTFK4ptzPX1vyDNPTIpu6/BOOkJu1+26XX+66wsDIE+fPuXw8PA/+vc/+OAD7t+//2M8ott1u27X7fryrVd+DKy4Y6+g+6KP5nbdrtv1Ra1bD8jt+jKtLyyG98mTJyj1H39hP3r0CGPMf/gX/wtY9V/5Gm7lhaloe6rPFiifUD5iPvyceEckU8oY0vmFpCGFgL47sE1KofZ3ISbYmQq7MRlJmtaoQjW9RPvuTFGjCrU7k537qxU8fYGuKlLdYJY1MbcoJWlcuhNBhP7+ZyTvSduaMC4I9/dQ944GI7wn//3PSG89gCJHXVyRDnZIr8+on+zQv3uX4te/j1pIX0kalywfZxQnDdnrFe73nwLQP9xl/NmatDeFmNCLLcpHDv7dOZPvnVP94AxVd5jFViKFjR5M80FkQKUbdvS9FPitRN6nNw0pNxAj5UspVgTpHSEl9PMTktPY8xVqJeV/2fGS8nUNRqFCEDP3/pgwq6TvA4m4jZOKVDj5790RqbCYpfg3lBeJmmp71GqLnq+Ih7ukzLJ9Z0dM6G54DDGC0YRJidtI3Oz4RUs/MeTziO6FqUhW0x1UrO9b5j+7TywztvcKll+fUh9Y8kUge7WgmxrspiMVFt1KnGi3V7J5e4rqww37AdAfjklak51vcWvP0Xc7igsIBz3ZqCMbd5jck4LGV4ns1QL6IJ0ixogkzRncOhByMQ5HJ14NKRUEW0eUh1AxNG8niRm1In8RXb7sMIMwHrFINA976fkoRE5THouxV3uJ4XUbMWfHcSBU0tegInS7ibCUqF005M9kl1fZRHNW0c9zth/sSiRukcj2GvZ/+hxeFWI8RyQ6bAyxthQnhslTxfg5+FnA74jJt9lkrK4qXv/OXdzHEr3KYYuuNeZUJEOxiKSTArOS241VQM162WlvFW4pUbTdfiBa6Ul53c0AuO9WJA3NfsJsNbrTxNclem4Jk4B9WkKvoDb4s5J41BJdEv/GSHbo00mB6hTrZ1OSTuQfF+inpZjmG4V5WfD6w0P8Z2OOnx6w/61T+rca0lTSrvIzjVobmtMK/8kYfZXhXmWULyz+nVpYqIWifTVCX4gfJFrpmYlOGB7yIOWAd3pMLZG4sYhs70lPz/ipkf6XAPmxpXvUoTpFGA1G7ywxemZo3uqwf+GKaKUnY/KRITmRH+38Zo7uFeXnjvzEEvNIWmSYFwWq0zT3PPnhljCTDpJwJV4dFYShiXs9/Z6XZLJRZHsv0u0m/Aj6MRDFEO9HUXxINqE7YSJEQjX48X7EAK17LccxXAdh4iWxKovyOhg6PVSrUb3cB9OhbEQlqufmhiVRkx5VSbQuOklgAmAuBy9LUOg8YAaJF0BYSLeMtdJunpCoXaUjobE0xyOS1+RVTzFr0IUXCZdJqFlPt8rplrkk4mlIa4d6XmAX0osSV8LSmJ2O2BviXoeedWTPc9TSEuYZBA21EU9ZJtKr1AsbEgtJGstGPXHtcMcZrA2pN4TLDGUjbW9pe4saukuMibSdQ+s4tK0DihtJVjlpiWuH//Q/LAX/Mqz0Y4jgvQUgt+vHtX5iUrDm8zm/+Zu/yenpKTHGP/Kzv/t3/+4XdFQ/mStZhW6DyHZ8JDlDdtHAB59IZO7TlwIY9nak8+O6r+PsQpq2QczkZQFNK7+XWdJbD1BnV9AOUaznl6jMEc8v0WUpUqy3HhCqQV714gSTkpjgrUV/8FSGzBBIfY/SMqinMqO7O8G9fA3GsP35d6h+/8XQNWJRp5eQOfzIoBK4shBwVOaoqxV73ytRMRLHhRQAFxa7aNHbFubSdYEPJCsDOn1AJU1/MBJQNHg3VB8I4yG+99MLUIr2yS75J+cANO8f0k0Mk+9fobz8nd5sOP2r9zn6f7+ke7JPNhQlptyirBHTvhIPSXtvSn66wayHksiL4diMlsczGaHajpRn6FUjSWFKoXrP/L9+ws6vPycezgSYW0meii5n9FvPoSqHuBj5YPW7FfWdAl8qxi87Ln6qxBcwOk0Ux2v83oizb41w20S2imgP/dgOw/11zG2ivzOhPjBoX6K7hB3MpDHXN2AhZobmqKB8KZ0lqcpISkkKVw1H/3bL4q/kBK9xLtA3WkyqNhF2K4ig255U5cRK0tOKkw2v/usdyjOoc7j36x358ZLNe7tsjyz9CEwtUbtkkeJgS70qeP/xaz7+/A71Djfm1X6qpXAtStpQ9VrTTQE3JGlFyOYQB4+FO7eEKuGPelJQZHNFh0SIdvtBdPIKsheZGH/XBj8L4BVhFvBXBafnpUiTIiiNSEtGHr10dLNE804PJNTCkYoES4c7qonPK/wk0u8mzMbIADUO+BLcpcWPA0QZpkmgGoNaWhRghuSqfpqYfGTodsU3ctruA3DPbCnOFM1RIoxFkqS8pHXlp5Zub/DQ5NDveUbfK9g8CRANYRyxS41p9E0CGQiYiy7BOBCDIlYee2WxtSJUcPrBIXESmB6t2dic5p6StK+FDPuqh/Ckxl/m6OOC+LimO8uH97EknodaS/O4TgJ0rjKaJx3lZxn9VBK8sAndSrxyfVfavOPDhrjI0AuL6hV+FjBrg1tpmiPxBC2bKabW9E8aukOLXRjUhWP+F1pYW9K9jniVoTvN+Jli8yDhFpq40aiXE3IF7Vst2ec5oUz42WC4rjUEAVPRiZTqGkDpXtLafKtEMjSUSvpZQNdGunOawUy+0wtwLSKqNuhGoxKEIqK8gK+guNkqTFp8JGEs5ndOC3l+TMJsIbvS9LOEfpWTHjUkHYh1Jtd0rwlFFMDQqZshPXqNzQIhi8TW0gyGcHJP5w2+caheUz1Y3djgmm1G7Iz0sxz2hE5Lm/20YzKt6XpL2zi8ytC1xt9tyaqeGBShM2gXbro+up3ByVN5tIuQy+tJtRqfO7ARCqTFvBWj/f7DOedqR8oNN3KtpagIXlOVkpy1XhbExpLvNnR1JsWJNmJNwAdDugZ/LuJ3/vM/l2/X7bpd/2nrJwKA/It/8S/4O3/n77DZbJhMJn+EGVFK3QKQ/8kqjmvMs2PCO/eJucWPHf3YMP60uOkBSV0vIMNoum+/R/adD+WPBwCSZiPU6aWwHs7C1YL+F76C++gp9V/7JtW//r4AiQ7xjHS9AJlnr9BAevshal2Tzi7EyF3kMlx7L10iSbpEsAZ8JHu5kPjdEKh++zM5hqaR33UO2hbdJ4qPz/DvPsB++kruv26wz07eAKbMkX3vc3ksWsnfDsb6lFlCZnDHC8LeiGQ06ycF+dxTfHYF25rLn31C9dpD3xMPZoTCQO7oD8fUh47d3zwRs7QVxqd77w4Hv7MglTnZswswms39nJ3jxQ2rkjJDmJQUn54TDiaSQDbO6d+7iztfi9HfWfzBCLPN0PONpFddbUnOoC9XZMsARU4sHFppsOIVMedL6R8ZFWRnElsZdgR8NLuag+9ccvVze9g6UZ1GJh/N6fdHuIsNh78DMTdcvV9g28T4aUu3l2O3Hj9ymEYSqvY+2OJH7iYFy48c2WWLHzn8JEP5SDbvSU6ja2HeVIwkY4WZqRz6RYEfR8L1Lu3aMP2h+ElS7oilQ9c9/TQnu9iCFi3++q3IV/+PAgDjKMeXCl9IbG59N2Iaxd6DBW1vKScNHz+7CyqRlT370w3zspTEnY/HhLdq8v2eydc2bLuM+Yd7uLUatPgyCIoRWHwU9qWjOww09wKUXhrQhyGYKtDtBsgjaqdDneeo/Vaao1XCb4ZG6F5MspRDi3qCOA5UH2VSkHfYEnrZJU5PR6RcmAazMsQyCvuxkOI4f7dFz50UODb6Ztg0S/GGXDfKF+eKfiqEjVvCi3vCbD6wHdsHAwu5NtitNMSXLzUxh+zS0O0KS+AuLJvHQVq7OzCnhqTEb5M34mnwFRKtqxGTOAKIzNsbYlSo1yXqXkP+Scl2OcN0Q9/GboefDSA0KJhn6F5hGkW3dphOkYqhj6PWkmRllfgzbCKMAu5UwEeyifxSpu/mnodkhbWpNbwoMQH6nYDbaMxavEjRCQBo9yTlKex5WMgxRIcAu4WT9Km6IGvkGln8dE+x20jb9iqHwtOvMoyNjL99wWpTSARua8me53I9WW6SuHSryC8V7W6iOZT/1520n/tquK6UdHHoDlKrSK0iziQaN+UR1ZobtoIiwFqM4WEcbt7zVKuh0UQjb4Gmlce1/IbHXQ3ejMMeeg0ri4oK3YmXI+kEPTAKRG9QJt70f9hRRwwaN/NolVAq0fdWzOqjHmskSWpxPoZafDkxT6TGQK9RvcJmgbZzJARE2N0GtSdMT4oKf1bC2JO2WjweLqFbLf090RFHQcDdOJCCoprWKAWbkxH23EqKWGe4eLqLMohnZ9qTVT155m/SrZrOCZjBE4MY1pUF31miifiBuUxBkrRM1f/nfzD/BKwf2aP6E73N23W7fhzrJwKA/PIv/zJ/7+/9Pf7pP/2nVFX1RR/OT/zSP3wOeYZ5fUXcn+L6SH7coXZ3YL0hDqZxVRYo58ifXYiU6NFdkdLMl8RRjr57IN0eqzUpJfLf/YyUZYx+86nsuF+3q1flG4M6kEIgVhl2sRbw0nb4x0dwNMM+PSZta9L7j9HPXovxfGd683fqOjIYUEUh75YhwGzK6LefQ9tht1uoKmhb0tv3UZcrue8QBOyocNPqTlWSLq+o/8J75JctvrK0P3XI6NMF5vUV2aucOC1pH+6Qf1Sz+/0Nqg/gHPp8QQFQN7R7e+z84VxYCVvK+bEad7IWE7kzxGqCn2Ts/N6FlDD6ACmitgHbBQiBfpZjrrbSXn6+RnUBjBFzdxcgJZp39imeL9i+u0v1vRM5FxFS4SSKt8xFDrVqBpCVvykdHBWY+ZbxpqX5+T38bkV10pNd1IRRxvatGbpPOODkF0a0e8IuzN/LQINpI+1+TnHSEHODqXvpNtn2+EnO9kGFrSPJaaKV3g8y2ZXVbUCFIAb4QRJmtvLB/f7/+ZzP/teHmMaweRQ5/C3F7h8upEVdKZGYpYRbdXL+dUJ7eOv/1tA+nLF8krF+oOinCbeEJ//tM14tZhyM1xzPZzTrjNQZ7Fh2W7vacbzdgbVl7605q/cUVifqVcHzqxLVaMy9hu4sR7dSCKe8Qtcat5GyNxLoVhHGATN3YgreytzszWASzoK0g3cK80lJ/1YD8/y6SBqmHWlrobHSXzGOFJ/kbB8FYQE2BVQRlaSPQfVQHFsBHEokNxhJvlKtgTAUxnWKuBdQGwEI/VjYguxS45awfD/iFrLTP7+4D/vw0EbsXKG0JlSRkClMrdg+jIw+17QHYsL2OwHTGJEpHSaa+5782KE9mK26CQZwK2mFjzaRXRi6HYmODZ+NJD0qQmoKiQWupIxPLSXhKB073Frij2MeRep26MlOJUZY9Qq7UfhpJNzvSBsn5+TAk79y+GookwzDcN8Nka5fXcHHE3QQZsZtFH6i6HcCZqNRcegjMYAZnuOlJe72cOUIo0B2bunHgW5HroluJtIed+FIJ46uSDAJeBSq1+jLgsUrkVLGQiRNDIlzKsrxJSVSrGQVbi2AIDoBQ0mDP+olprrVqCBxxek6zrbVmNoQsyjHPaSxsRXjOHDT+g4IsxQUZqWlHHOr0b0CpQUApqEMs7ZQBTnUxoCWn1EGtA1Er4mNkVSsXg+lhopgovjiTaRfZyQbMTaxPB+j1kZ6f4IilEOrelAoF4lDSWHfWaJX2JkAdmFaFL414KKAgUISsFJSBAXRK4kMrjVMvEQKp2v/QRI52cKgW30j5VKdAFaTB7ROdN5QZD0haikabA2TnVqAlDOSCuc1pgqkqBhNmzdszo0J/3bdrtv1p7W+MA/Ij66XL1/yD/7BP7gFH/+RS40qGcjXW9THn6O+90N4/po0KoirNemn35VhtWlJbUcqMxmO90fSAaIU5umx/M18ISxF5kgpovZ3SV1POtqj+8ZjifDd1m8a1oeGcrOoiQcz0loSrsyixp4uSG0HWqM+eSE+kPVGdssvLlF5Rup7YV2sAJdUN5DnMvhPxzCbkLqe7vGelCvWPZufucfqL71NGvwq4a270LQi5/rqAWp/j+2RxZwtKT+9ZPwDKV5Mk0rSuUaOzf3sRirVD2WBcXc6DPkG/aNluHWDuVqzfm9G2K1o702ImUWfzYlWE0uHv7+Lv79LqkrS7uQGHBWfnBOnAtjCrMIfjOnuz1Dnc/S6odsrKZ5eAlB9dAFFBllG+dkV9SMBaqpu0etWAI6zxHFBzB3JqJt2c5Ti8DfOMZuO/MWS7UORm7m1p/z0kstv7ZGtEtVrSQEqriKqDdhVS7bo0X3AXWxIWvpO2oMSP7b4SmM3nuA0+XlDfiHN89npFt15ue+hFPG6M0SvJCb58b+YizejV+x+b0XMrcjVnJaI39yRtEKtG1Td8e7/5bV4Uh5nqCB+kGShfb/hw2d3WS8Lnj67Q1uLPyPfbQi9phh30t68sTD2XJ5O6DeObuMk2tNGsjs1MSiqxyvcO2vsVmG3bzwnbqnwu578TJMfO1SviFXA7wT8EC/LyOOeFaggBYT9LFL+oBAZ1/0taSw9Am63FZ2+SWSf5zcMht/xhKmUT6JkKFYJup0oXgedMI0WjfzGYJYGt1akWU84EHmY8opuSPOqnktU8eZRYvyZlsSwTnFqpBup1DBLp1Kc1ys5nwbcUrN+3xMnQbw2tSQr9T+/Juz3mJVF94OnRsk5AvFbRJeGaGLILzTlqQzCYRTpd4Ps8jfCqOTPcjlXf1DePM6420uvSaPITq34fYYIWT8WtkOf5uLhqESa1O0HYQ46kTTZtYCKUCbihxP8ONI96Oj3PPVdYXTs0sgQHgcwr8GuNG4ug72eW1SA/MTSHXhGn1gBV0Ukm0vRX7IiwQujSP7aoi8c6ISfRNLgtzG1FBSGfIjr1XItFRdKAKsXEN3vBMJQahhGUoB43VsRx9JMzlBuqLdyYehOE8tAyqOwX05SruiFKYhlfANCskh/0MvtBEU46GGng3HAHUmSn86uWZOhDyQp1LgX+ZM30n3Sa2FKktyOyb0kYKlEDFp8HibhN5YUwd3bksZeAF0hrzVlE6b0qMbQXJRkeU8x6nBuaFcfBA1pa+U+1gZqI6lxKyuMzjULc9AI46IkzaytHfU6R11KWWQspSsk22ukDT1CaCxaR/pGygd7b1ivCkDR9pamk9uIvYGtpds6ilFHCJoYNVkhSVt/FlZE/Vi+btft+nGsnwgG5Bd/8Rf57ne/yzvvvPNFH8qXYqX1BnXviPj0OWpUooucuN6gj89Aa/TFGu7fJb0+hRDojibkixnZD1+TdsbCeLz3CPXD5wIopmNoO/GCXFwBiIG7dtLfESNqPCJta9S9I/E9+IA6uSJaKz97dQL7uzf8r8ozASMM3hOl/yg3PJEKbRWCDOE+sHlvl+K0ZvULdzFNQr99D3u6ID+TeMz+aEzWiwQo3d1n9dVdivNOujECpCpHNb0YQO9PWD9w7H1vTT917HwgkinVevKn5zLYlw69bYn7E6pProYBP8nx9D3jH1zRH47IXy2pH88o6wo/Mugul6jYyw1hVmIu1qQ8Q2220ptysSJNK2GhQkRFKY7sjibkrwc2xyMAo4c0ylGtx9aDV2dcCICclujnJ9Rf2aP6bCl+jHGB3nb4nRKzEWM8VlM9W6O8x7yuWf75B3QTxe5HHX5k6EvN+HkjLIqP9JMRdtnidytUH8nPa2Ih5tTyeUuoMty6J4yknd2tevwsx65aktE3Eiw/ctgoH0/XJvpuB+xGcfxXphz+To1pxZvjdwrc+Rq78NRfPUJ3kfn7OaGQoj6VJHI3ukhqBslRLqZRrRIqC/SNxeaevrOooLD7DfG4kqFNI23kSXwS3TIHG2kaJwPK+zWTaU3bOULQ9KcSb9seigzKz4Yd/KGoTbUGs9PSP4nQa7bHYygi/PkVbDO6jWjTU6clHCAp1NLQ7YvPQqJYZdhVk560djLMO0QWNAmyg95p0jhIB8Kop4sKfS7ljm4lO9t2KwN1tze8/pWcq/VbkeqlJmYFr73irk3cMS/Zbu4OTACyU6/ArAzKSxGjXQkjlD4cU9YitWLwGSSTUI2SPhUHqpGo46Sg34l0uzD+TBMKLa3yDsIkQuUpZzXdqiAsCqpXivWTRP55humg3ZEG735XZF/FiSFZQBvyS2FpsnPpyjDNNYMgPpFooTjV9JNEPwuQFPZ1JpsGURrF46MaznPijqd4mtHNpOMjjN5E76rrAsu1of7ZGk4K3NzQHQSqZ/JR2KJxK5GupYMW8zon7Hv0XkOTF4NMSmM2Ep8cKvVHInL7/UAyiezUEa/7OYKCUv6OBGYpjeZme13cyU28LFvZ5U8zDySSVyg1GMtdJNofYTh6jZ10pKhxg8E6+iSvGZ3oh94YtbTC9BURbSNh60gJlJHY32Tlfhh77ODN6GuLLTzxOmRhaJsPYQAsAJ1GB0O0idAYGHu0kxLC4A1+K69TooI8DOchQOtuPgtSEVGNRrUiU4yvKnmdISxP9AJW1CCVIiiyUuRgnRcJXwC60jKeNGw2srmUlz3ONmI2j1qig6MSc/7QhE6SyOAUNPnktmPsdt2uP+31hQGQX/u1X7v577/xN/4Gv/Irv8IHH3zAN7/5TZxzf+R3/+bf/Jt/2of3E73UqCIdn8pAPRmL0Vwp4kaK7zg5Q03GqL0d4vmlJDgVOfHVa7iao5yjuTOi/DiRYkS1nUijNltUnklfyOtT9Il64xlZreXf03MIA1MyGaEzR7qcg9E07x6QX87l9+pG5FlKofb3SKfnKCPyq/YX3qf4/c/BWuqfeUT5g9fE/SnVsyXEyPSjSHNvhH1+Bk2LXa3Z/MV3sNtAcpZQWEI1FO8phX98SHCwfWtGdGL8nL9nqE4T9d2S8W+/HHwiWpiWTBgh++yE+psPsXWQdCw30PBKQeFQfcBuevzeiOpjMa2P/+CE7vHeTR+G3rQkZ4dG+qGwsOtQizW2K8SY/vFr0mRE/mpBHAlI8ocT7PNz0XSHRMotZt2TcmEY1MUClTmwFtNE+t0SN2/kGH3ErFv0xZJ4MKPfLYmZIbusqR/PWLylyefg5i0xLylOG3Qn6V/NUYlbevrdgvyzS+LOCFKiH1vyi4buUFhIFRKm9vTTDLvxLN4t2P+9Dt30cn4A0wpgEiDX0d4Zy5A5SiSjqI9ysqVHh0Sz61g/3Kc894RcsX6QyeClB6M50N/vRKaik8zNCbJJR187tBPZROgNSiVGdzYCTN6Zszwf3+z2itY7sbu74eJ4iso9OhO5yeJSUnyUTui9FusCxWFP83u7N8MhQyJTspF4Woi5vdOYYYDbXFRMfuBYfb1HmcTu3RXzszHKibkXG1GvDboTE33Slr4IuCtDf6/DnEsDe9IKvdOhn5f4aynOSSH3r4Ql8KOIbjXtHU/xSq53u4HmCOlD0VJ6lxS89Ja7tufInvDhLJFfKEwjIKI9DFJqqJDW+CNPfiJ+lesSR7WV5zS/lO6SUAiDkaZDktJGDNxuDaufa0mdZvp9R7RI98yZoc5y0t0OFKzeC5i1pp8mOpOoXsr5dStLcxRpD8TboTpFfUdAQrcXUEHhdwLZmaWfyPfDwwZeFoSptGGrKJImtTGyCx6U9HUosMcZ/UhYk1CKwT2MRK5Ggu5xR/VhRm1yqhNFuwPkge1D3uzUa+mHyZ4VmBZ870jGobMEjdx/tlR02mA3Apb6fUmEIomXpd8Xxlh14u0giRFdQNXgibBvGspTlqR4cdiIT34Y3AFcEiYhKWFSRoHQGNyol3LBJCWDsdeY4XXQrzNhVbIA+wJwnYn0GydSQCPPabLphjGiMbQxRy8slJHeD50k2cCINJagrFznUUzsSSm5Zr3CFMKeXJu7r3twlE64UY8ad7TLXCR5k17AUHBQBelkqcT3YTaaEBRUgXzc0lsLTUEY5F5aJXzQMHhAVFD064wtEHot5vxhhahpF4WUX14/v5c5nZLW9hQlFa4JxX/8B/BP8LqN4b1dX6b1hQGQv/W3/tYf+94//sf/+I99TylFCOGPff+/6NWLIVwZQzy7QJcl6uhQIneVQpWFFACezwHQH39OAvRkLP6QwQh+zUekbS1gISbUqEKPR6T9XTg5k+8VuQAKpVC7O8QXx3B6LjIqY2RQVori4zOR2AxeFLSGrie9PkUdHQgI2d8jf7GUOy5ysqsGfEC/vpRjKAvUi1Oq+YhU18KcTMbM37GY1hK/nnPwBw3z9wpUTEz+YE4qM7QvWbxtmT7z+LHBbYbEo414V/zRVIbsky16sSGVOappKT+RcybpWUZYgkFuFmcVetOyfVDhTjX0nsW37zL5dCVFg8bQ3Zu+KS8snUi6MgFayUhSFKMSta0lKWy+Yf3TR1Qvt5C5G39IMoZQWfxEvBr5poUofovsfIs+W8C4QqckMrrO30jIspMrNt96SHtYkV+27H2k0G2UQsFQCGiIAhSyRY/edMKm7IxuIoCvTeeqj2ifiFbRzTLyi4ZkNTs/bKRNfTWY0VtPUopUODFeFxmm8Tz673vO/txIdnQN1IdOBmqfyNaRZt+yPVRUZ4l6H/xYDLpxGNLIBsK/05JOM+ziutzTtrl8wJLoe0O3FTrBVD3jUcPReM2qLTi9nLBYViIdaS1Z2dOtHeQRnQdS0MRe0zWW/nWF+coGaodaWtJOL5r2LEqL+tKSnyu6nUR2Zej2YfW1/saoPj8fC+hpNWavI7QG01wP9tBPIqwcfhzJXmTiT7AJuzakuiCWEYwMyroXz0O4bllvNOmwxb0sxBuzUHQzhqFXPBKqV2RreDUq+XP03DFnlMfCfqgAykszuu6hn0WyK02njAycIL6QrZYhepooThXNgUi+VFDoMydeDA39NOJnidEHOb6C7X1hGVDpxhNgzh1+JLv7YRQxtaY80bS7kC2hfjB4Y2yi25VznF1pidUdomn10gj42Gr6wx61tfhdjzu3+HEk5gk9l48u3YqBP0xlkDeNQnVyvCjxS5iNpp/J9aWvHJt3elRUbIdaKXvmxI/xqMavsiGZytJPI+0go1IR6DV6GKrbPWklD/kQD1trSXGu9U1judKQvDSbk8QYrhdu8P0k6EWOlBSoTjBonHpM6UmdQdtIbKxcHy4Q5xnusMG3hqzqJSo3Klwh5utkIr4f0p1sRM0d0Rr0TkdK0K0yVKeldf36vV8nopEhPgF6PWzsJFC1IRUB/BC16xWqtmJ6zxOxCuJpaTVp4sVfYSPBa2JnUCMPXkNjCF6ThujfFBSxtgIegeQ1YexvWBZ5wUfyWYPRkfYqx3jQSpE/WpM5T4yaNkDIE2a/pSw6QtRU5fYmitYHLcOzV7ipp9s4kteS4FYKUzSaNTSZgLXbdbtu15/u+sIAyP80avd2/Ses0Qi6XliLejAqD5GuKQTSeoN2snuud3dIi+XNsKuMkUG/yGFbo7IMlTmRSw0t6OztoC7npAGQ4Jx4LoalH9wV70jXk7SCWnwfN7+zXBEf36XbLcj//YfColiDenCXdHyK2jjY24HlGrNciefkvUfoF6ek6QjlnJjXH96Ftoe2Z/eH/mZItuuOyXPD8i0HMRImBfkikLQhaYVbB/LLRHG8Qa+28liB8tNLaFq6d++QffRKjrVpSTtjVN2h6kYef54R9iYCRlLCV0OMbt0w+85LKAvipEJ5L/0FpcN4j+o89du7lE+vhNlYbLBe0sDSpMLvlNhlS/mqRi8EgCQnaVv9O0c0BxmT71+BM0i+q4LMEssMNRmJMX4j51iFhOpaUmagnFF9MifslOhlQ7VuxKthJO4WpcAqaWBvPMp7wiRD95HoLMonzLZDpYSfZNIFkgyhMCSjCKXFbOW5bu4UFGfSbp4KjYrDLihgFw1quWF7b0R34Fm2Euk6eqHE5LtNBCdSis2Rwo+vU4QUYZIEeOhhd3Xkia2RQcpEutrJIHaRwZH4UlKvUVakFYuXM5YjAR0k8LXFrCxxr6NvrMSKqkTyQ8/AMASq/VbSrKwYqfXg1SDJEBf3OurSDJ6QHuU1rJy0NwOp0yivsQcN/SpD2cT2YSQ/1zSHEh8LsqPtq0TcE5lNeNBIW/S15MYmgk24pcZtDM09j2kU/iqTtKy7NepqBHAznMcyYltFfTcOZYRL7uRX+JIheQkYfMdJD8OxBtPIc+DHEXu3pt840rkj7nc02hENbB9GilNDP0mEd2t4WZBfSNv85mudPEdrg+klxjg6cAuNnwprYTqwG0O7F/HVIPkyUBwPKU2VojgVQBUySSe7/n+SkJV+EnBnwoaHKhKqYUgsguRhmIS9sqgozARRoQbTeqwC7lI+3vwo4pYCEGImgMDUGn/UQVJ4q0lZxBxLtLLyZmAGBqZvq2X47sWnYho1AC/pHDEbTSgTSolHAZCI5aiIZSQSxQfUSEqX7hRxGsAbQhlvmII09phc2DrjIjbz6KInBE23dbiDBmMiqhB/BoDNRMp3vUutRFkkT/qePE8pKNLW3lxnHDYiVyuGi8OrwXcCcdSLN0Un0tJJX4liAM2aMI5EZF6/9qOoJK9FO+pp57lsOGQBrjJ5nWWRuBiigLOhgb2XJC/VaigiuvKExoKT10EyieaqkBjqKEAyKYYkLmhaJ0BKy1tl/XyCPmrInbwue2/oNplcF8NxFuNO2s+jIp81pKiIUZHlPV33E6FG/89eMSkJvPgTvs3bdbt+HOsnwoT+q7/6q7TtH9dgdl3Hr/7qr34BR/STvf6fn/4fAEh39mXwHxgPAOUcSmv8kyMBHgMoCF95TFquSCFIpG3TSipVORjX+56bQsKXr9/4N5Yr0tV8KPMzAnhCQO3ukL76lhjdQxAfSN8L09G08P1PBXyAeEu0huVaomvLAtZb/Ft3BEwBelkTntyRwXZvSrp/SL9TwNUCtKL66AL76THFBy9RnRitD7+zIJUZ5gfPhHkZ9O7j335JcbIhVk7M4SFgX5yLR+HdO2QvrkQuNUjE2nvTgQGR8xL2JpjzpbAcdcPk042wIlqDtcQqQ3mPar3InArpY1F1h916+rtSjkiekbSWSF8f0b34aXTTsfnaAXhJEyNGshdXFBe9+Ej6IBOYGl6eKaG6Hr1pUasNLNfE3EHvBYgM5YHR6QF4DLK5zMrP+4Be1nKOfCRZi+6F+dBNQPeBmFliZjDbnpjJjm02bwmlQ7eBmBkZ9AbtdiyE9fKVQ6UkHSwxkiYV937DS99BlFjSaKHdhb6ShCVfQbsHJDHohir+0R1Ik8SwGhW0cizGyaB19PUzUlK08wLlItoFlAI96cirXpJ9gsasLMUTYdqUSQI6lk58IllEuSEJqLHElSMFhZt0aCe+DpMFsqqnHLditm004byAywxGXqQg5xk6D1AEwpDQRRQzu+5l19xstOjegTD1qJXo4pPX6K0hVoG428uu+TjQ3e/pv1qTn1j6e50MhVnCz8Uvky3BbiTlymw0oUi4leZ1mAFwz6zp9hLtbsKu//h7h4rQ3+1o7/Tsvn9Jf5VDpwlHHeY0k91wkeDjC2FbeFVgGkV7J9DuJ6qPMspPHdlc49YSmaySfJWvNOUZ0v3Sw+iFJpuLmbwfQXMY8RXklxKNHJ0Mm8WpsDa6E7ARCzFcxzLid8Ig+xFfkLlwMBImxe95KZ8cB9xK0c/k9rJzS7/nxbg+ClQ/e0n/oIOHNex1MnxvDfZcrjNlpb/DbDR2o3BzMYSrTt0kpSWTSLkECCQjSVahiPT7njgKRCv9Gugkfh8QadLgsyAo0sQLO7MZGIBCZG5mvyUbd4RGGIwYpNMiRE23zsRjNLxGRGYDsRNmods6+sbiOyPeDp1QRqRQSidSL8AnTTxq2osR3oCqPHrakcoALpHNWpSNYhCfZwPIkvdUZSPJyfMKA6BtpJPDbDT0in7jhpJETVpkUr64NSKrLIKAsuE9Gp1gAD3k0j+iFBI9/KNMyHVXiRG/yGpeMr8Y01/lxGow6ycFu/J5tVqWrOYV3XkJW4OZdWSHNVpJOld3XqKXAjaCN8SkqFc5fv1HZd9f1pXSj+frdt2uH8f6iQAgv/RLv8Risfhj31+tVvzSL/3SF3BEX4KlFDx9Qeo64vkl6uQCnEXlGWpnhv3kFWpnJklUMWL+8BPUbHpTRBjvHaKslYG4qtC7O3KbId6UCSpjZOiOUdrOnaV7/x6ESHz1mn6ao/d2AVj8V49Rbz8UVqUq0Yf7qGsp0tmFDM4hSO9HVUJK2Kst1LVIvKwR8HF8Kk3szpB9+FLe/YwhlRn1zz3h8q++Rb9bsvi5Q86/NZPixJgY/3DO/m+cMvntV+KNaTwxN2y/cZd4MJPH1XVkJyv6+zv4uzusvv2A/q1DimdXkgQ2HoHR9Ds51LXE/DpHKN1Qmijskd52hFkl97PtbiRY9D3uxRW+sqTMSOt53RJHOXQ95nLD6is7qLMr8bsA5vhS7icE6Rm57sDRSu4PkXIRImq5Js1GkGXo1ZZwZ0YsnfRn7Fe4eQNWC5vTePSqQW2E1YnjHDMfjtPqm1hcgFBadN2KVGtYyWkBjQr8SD6czbZH94mYaVQvk4hbNGLCBmKZE6YlyidGzxXFmaKQig9MC/2IG8OtDtx4QGI16LOTevNvFm98FSkqfGtBwevP9klBDxMvhNriMo9xEe812ojR9sk3X/JTRycSa9sPJXc73RsPyEkuO65m2JENmtAZQmNRXqN0pFvm1KscpSNmr5O/n3jYWtga4n53M0zpIV4UL0Pf9kHALQUo6CtHKoPcbgR92EgJ3k6PXViUjlAFeUxbQ1hktAcBaoPebWHkyfYa+gct20eBa+2k9rLj3u8EXnspI3xgtkQXcUtFzIbEr43I3NCS2jTd32AXlvb/cyBeEK/Ql5l4LBJifm+FxWifdJJ01UPxyhD2+gEUSUxvMkP5XieAI+RikBcvkLAbzaHIwUwH5WtJ4ArFcB14kfP0k6EFXUE219ilwW40ekgJu/bGXO/GUxsBXxdW4qWXlr2/cEIsA9mVph18LtmlYvSpY/t7e6iFJR2X2M8L1AAMSArTKorPhpSlIhHyRHckIFNFhVup4WAhO7fCTN3tiFkEJ/4HXctzey2/AgFXKoqfx6zlGtRXTpgDJ3JAXQxyTy/+JmEkBtN0UrSLXCSZkxalk5jAh+WqXsC3ky6P2AqYVjqhTcLm/uZaUa1Graz4LjZSNHj9dyoIoOk3jrQZUqmGksjk4k0scJh4YUrG4imKZUQfNYQnNYwDNGb4uyiPr5EG+2STbCQADMWaN0DEJlIvMj5MvNlwUJ1GNWYw6SdhKyuJ5029YnJ3jRr3pKkXMO+igIgkrGRy4jOxQxJXs8ylaX2Ql7XnJX7taBeF3OftJv/tul1/6usngndMKf2R8sHr9eLFC2az2RdwRLfrdt2u2/XlWafhTRkh3Rd8MLfrdt2uL2TdmtBv15dpfaEA5Fvf+hZKSczgX/trfw1r3xxOCIGnT5/y1//6X/8Cj/AndylnYTaRIr7PnsNsCpdXIhG6vJLfGRgMZYywGs4Jo6EU6rOXqCKXRmrfouzQwRKjROhua1K65tsTqZXuDne+xj86wHYd7t9/H44O0eMRs3/9ifgl3n8okqi7B6jL+c390fdvzO6nLWp/DxYrwqM7mPkGXhzT/cWvUrzMuPiLR+z/dx+x+m/eY/Jvfog/GGM/esH6z+8w+bzHbnpmv78aBM9JzoWPrL9xQPViw+bxiPyiw51vyJYbmq/eJe3fp92zFOee6BTNvmXyrMG9Go6xD+I70YriB8fiGxk6SrKXYnRXemCI6gbb9cI4tZ0YGQC0gb4nP68lcvfzyzdP2FDgVx034Bxq29Lfm+GenkJV3UTx0kdJ1BqM8XFSCVNkjcjXjPwbDiaYk4VE9gImiRQrKQVaWuFxZpCgJdQQr6M6L6lVy0b4z8xil0O/hxZmRNc9YVIQSkuoDGYbRLLV9mQLy8VPV8w+1bhlS6gcdinRvX6SYWpPdtGw96Hi8quW7T1ukn2koVo2O9vBgHyzQzvsChOG3eZr4+1VBuOE0sJsRJVIUbwfSiV05YlR0dcWk0Wi1yiTePr5Ed2DS1JUaBtIBUNqj6QJhcNOyKYEyr0xw6agcLsNvnESddppSd/qtOwENwaKgM4DcZmJfGU49uhl55hWYkPTdf9CBKISydAsQCulhWrpCLseaitylKBQVZDdXhNJa4d+XkKW6MrBjNyqG3lPPxUfi1kYTqJ0gTy0EbOCmMvPk0vEUvwL/k6PeZZRf28X18Lm5xq4zN54Azpps+4ORCakghGzt+JNK/nzjO3bPWZpya7UzXPrR8Jy6R5CJU9hfiVyu+q1yO9UgM1bgdHnhn48sDMriFYR8oTdKJE3WZF++SpJtwcMXRlDw3ut6FzANIp+ErEbYQUuvnsH66QvpHpm6acJf6dDLYTBU14Rd3tUcJhawdfWdJuM5NUgMRw8Ikljr6x0TnSK+n6QvomhaJCo0JdOZFz+TQpUMsImqI2RDg+TblK70kFLaixRD2ELSZGiJsU3r4HQGkzp38iOermWbSGGc5d7tBGTt28sJhdpn1IQekMKimy3Hd6KAu06v3n7SXmEVhOuctnszyPGDEWAeURthL1Q19fCEMtLL/4YOi0sT1DC/CDPRYi5SAy3Roz116/lqKRbxSTpGgkQrfi7SIjhfCOJXirI6z0N5wrDjfzrxtAfFGnlcHsNKWo6b3CFF3maTsJcBiWmfZWEXbIR31l57XYa8ojKAswSrJwUk64NYepFSnm7btft+lNdXygAuU7C+t3f/V1+8Rd/kfF4fPOzLMt46623+Nt/+29/QUf3E77EiQerNfrBPdL5IOWZTsVYbsxN83hqpS8iTUo4v7iRWKGHksEQ4BocbLbiBzHmTfmgMQJWRhWstnSPZoRvPib79x9Kp8iRyD84PsX8wScyyD4/ln+tFd+JHxq0QfwRiyUohVlsJf737hHFbz8lec/+rx+DNdLxAZhVQ0qRw/9BontZiZckPL6LPg0o524Snk5/YUpxFck+OYEiJ+1MiJnGLXvWpaN9N2P/9zfSFv75OWlcojYtbDawO5N43JPFTYIX6414VnwUnwOgNlHO9fV5LTPU5fKN2b7tyZ9vCbtjMAq97Yg7E/R8hb3asv3ZB1TfeYrre5qv36f4wTFhsoNdXQjAUYOzcjDPqy4Qp6VIqtYiozIXazG690HOpxbJlAoSJ5wKAWWYwSjaiGE+MbSSOzlO1bWE3Uq+54dBPLPo1hOdJrtsMeuWlFmSMTSHYjLtJwa71phVR31/THG6RaVEKCzN/YLlYyOGYkSuY9eisEhGZDpmK+eyn4ipNBkx8aIEeISNI3iF0qBtQGkZ0ETqhMidlCItMvxeS1b1YjrtNHrSM9lZc3w2Y3qwYb0s5Hafl8Q7ncixTCINHQeJNESTitYk9FIMF2qLcoG0dkPBnSKNgsi4Lh3sSambKSN9bQEx/BYnBruRhC+JW5UByt9rRb7VaFQepUfEi8GZbNDur67TnUT+46cBiki5U9P3Bp87+ftuiA3OIskaLtf3xXakYS+ccHZ4hFkYYpKUKV8l9KVDRQGEvgD7eSEgxoox+tpMrpZWunSOxHBNEuN6UoqQwfQDOR/tnsi77FYif7upAEy3EuBR35U44H4saVzdDti1pr6TcEtFypOk550pNm8HeiuFhXYpEbXJJvRGSYIVDAOpzMZmK4Z3vJzf6BLpsMV+XOJHifrdTobaXpNGw6DeafLPM/wo0d7x2GcjtJFj8zteAga8DNhhPCSTJXBX5qac8loliE4C3HSSgTwpUi6t42ZjxDvSaEIZ8W83pGUmfxeRNu+dXqRHw9J5IraK0Dr0pCfLPXGItA29luvf6xuwYbLB46HkrQKVMFUvv2sS3aIUP8cQpqCH7gsVEQDthuK+jbs5t+QBSg9pkOR5eQzJDf6bnR4WjpRHYlJor6AaJIlGACxKfDIqIdK0Rt8ACEA8G0W8ictmY8jvbGlPK3n9j71IqEZBNgY20gmUH9Q084KUFNpE2vMSvZUW96SR+1egMg9rK49RJ7QJuAwaMrl+1o4U5PHqoUndXlqS/YkQg/xnr1sG5HZ9mdYX+qr7R//oHxFC4MmTJ/ziL/4i9+7d+yIP58u1qkoG8TuHULcCNEKQdCqQVvPxSPo7rtOtUkIN/gtcBd5L1G1ZysBdN3B0AC9fy+8oJSAiGz6k2o7Vzz9i8t0X4kVQSpiR569o/vLXKbc1ab4U0JHisGOvUUbDbIpaLGE8krLDYbhmsZSI38NdwjV7kksylztdSSxv60FpwoN9otOE4pDsssa8PIPDfWKRoS+WhMOK0XGgfN1AVdI9mHH1lYLdjxrc6yUHV1vUSsoCbeZAaSkuzB10DqzBnq1uWAaMkfPQdqRZhb7ayPetkaHfOTGuR8TXorWwD85ASJi1RNjKwA9pUqGanuLFGqYTaFrykzXxzq5E6+aDF6brQRkBFDGSMoPqvNx3LQlQjCvo0+DZ0ahNI5G4cMNiXAMmvR0S0qIS4NH5G69Jygfz+QBWVB+IdugiiYlQWcy6BR8FYGSK6dMOXxnMphVDfkyDuV3jrmqO/1JBFPsP2VwGT/8j/o9QRexaS1HbyL+J54wi8o+9pFKhAS/adrQMk8FrbOW5dzDnyeSK3zl+QL3O8RgpEnQBv7HM+xF4zfoiv4nWrb5xxWpZyv0kGdzUoEFX2VBUNgx9qdfCgNRWTOxKBlM1JASFA2Fr4mUuO8hZEACTJfK5JRrwZUJ5iEdiTk+dRo978h8WdNNEmAx9F7NA/kx8H2mIdA3TwRfjIihoG0eWezxgZh3hMsfsdoROo3ugzjkJins2cWReMr+4j93IbvT2USC7ElAUrYDBZOW/x5+Jz6e4TKweg1u/8eZUxwJyQiEekmyuaO5EmqTxo0h+qWn2E8WFopuKx6OfiCndl4nytWL7YChU7ASYtMNeRbcbSVnCnBqaA6RjZMNQuBghKkn6ymT3XlUec5zLNTNEx5q1DPh2I6WIoTGor24I8xx9JQyFQlLW4o4HE2gfReiHRKvJsOudB1Rr0JOOsHXoRkMnf+fv9MJGLZxcj7sdnOWyw59LgpVZWoni3Zqh4wViEQnjgK084VKitdU1WBoM8KoU5kHti79DF8PxJEke8p0h9vrGt6Scurn+QBgSkwdhZr0ibpy0plcDqzCkebmRxzfuhulTg6/q5nWQiR/FDX6U9qogjN70ZuDFk8XKwm6HWkmXSMySxOxGhAW0CcLAKLYWNe1JtSDGWAVhQgZgghIwokZR0q4ASgEfIK/LctzSzB1JK9p1huo1YZlJH8g145TkdqjEC6KGfpC0dMS9iFKKPO9pjSPWdrgexJtyfa5VgnAdGnC7btft+lNbX7gJ3RjD3//7f5+mab7oQ/lyrbYltUMqUttCkYvJ/HBfjOhO2mbVbCIgoipZv7cjA2uey64+oB89QI1HAggyB5dz1IO7UmRYlTKoloUM4zEy+bef4h8eCGtgzE0XSPndT6FuJNL3aB+V52I4DxFCFNN2kZMu5/hvvi2PwTkBUlqjzueYjz4XOZVG/q73MnAvlsIs+Ig7W1N8dom+XBPv7cP51c1AXX56yejzNYuvVCx+9pB2x3H0G5dkn19CjLz+X+wT7uzIMV+vlCTqtywEOFxH8Q6DPUpJyeKdkRjDGY4tJQEfICChzMR47gy67oV5qCWWlhBRq6ErpMpJhSXsj8Fa1KpGNd3wN/rmd+KkIBVWmAdrISRhka6fJz8MK2aICA4RFRKrr+6+OT6Qx3Q5JymF8uENGI1RZFdKYTYdoXLE3BLGAgyTuWarIIzke7GwlKcdxesN40+X+J2SZDQ6JM5+fpd2X85hKGWXXffQjxnkPMJypEFGFEaRsN8Pu5ZRIncZzKgoMaB7JTGeXlFOG0zVYyuPsYGTqym//v33CFEMqLHXpKAJWzH5pk6jskDxcE3qNToLLOfVzQAXOyMhYyrdpFcpkzAuYFzEDMOY0gm306KnnTAVtZiJkxfZiDloRNaxcox/qyB7nrN5kNg8kdSgMBLpmM4CyiZ5nEOELFrkQpSR9tEQABCUSFWKIfmpMVQfZmQflWgdMbmAIopIDAoaI+zFEl72AkDvqBNMIyb19iBhVwa3lOdB9wIQ7FbAoTzZUB8qTDeAj+twACvPW8jESJ0sFCcaFcQonhTkcynzC0WimybcCrIryOZKGJKVFoahgu2DSDaX4VMNu+P9WI4lVJKO1c3STfJULBLZAvITizrPiRmoOw1hFG56TOxBQ7sfiKMgJusfjmTgLaPIe4ZCP/cqw1w4spdOjOs2oTdGDNetpESFrTBEN5Ifg8S4XmZQRgiQ+muplpRE6u4a3MgOvGkl0lZ1AhbCRY4eInzTKIhcyaSb0AF92BB7I9JBLaxc7AzdOiNsLakzqOH6TVER1464cgI8h+s+tEauxyKIGbzTmFmHmsg15RuLdkFA3XVnSBCmhHxgIDtD97rCd8L+qUE2GMsgqW+ZAOE4GMMZSxiC2hg5xxoBH0FB0OhOHg9Dg7kaJIwpk24Y1SsBXIMZPbmIK72Y5aOCVjo8kk0w8WRVL2BpYElJipQl4k6PmvRMd7eYwmNHHdl+DSOP1vKc9N4QGyNvLWUgznoBmch17qsELvLk//S//0/5BP6JXHHoQPmT/rpdt+vHsb5wAALwzW9+k08//fSLPowv1Upti5qMpf8jRtK4HLT/hnS0J4lOVUk83BGAUVVMvncuvpGUYFuLNKvtIM9kGN7blRK9uhG5VZELgFEKnCXVDcl7dB8gd6jZBDUdo0YV8fEdGY5jEu/HeCS3MSohz24K/lRV4s43b9iDrkNVJeHhAaoaWrivVjBfiCejLGA6Id49kMdttQCSVprAQSRDDL6J+sGI8iLg6khx0eFnAp7CwYT9P6gHqZGkTqVpRcozYTRaYQnIM+KsknNU5HL8QPXZnDQq8HdmQxqWMCbk2RswMGyq4YPcT5bRPzm8SbRKg+xJrxvMoibORuL9CAlCoD+QSGJVCyBRPqKXNeq6iNMakcq1HclZeRwxgVZsv3bExS8cUL2qSVaYG+UjZtmQ7h2SCkuclhIXvG1RPhJLRxjlqM6juyDJVkoKCP1YSgntpsP8aPdIlMjdZDUhN/iR5fJrAlA2dy2Lr4wpzt8Mrskgw68FksiKwuQ6ehf5Sgwsg+jAGXTxSiFyqdJTr3MBBp+WtIsc30pcabvORY41SJuq/S1u0MHbLJBn/qYrROlEHJJyrtkSUITGYgrpHQknJaHThMZKelav6RY5obaYHUm90lcOnUmMb1hkqIWjPNHycALiuyii7CLrROwN1gUZEoHua7XszrfDTmynsWdOhtyRl4GsM1Ia10m8tPLg/3BGuMoFBNmIusgoXlm6ncj6ceJVL9fqUXaOqaE5kPK4mCeidDbSHsSb56bdl4QqlPgxlB96Wa5L8ZwwVzoIMxLtG69HdPIvyO9mCxlC28OhXHAlf6NbyOfy36ZW9NPE6JnEMxenw064zLzS/N7L4/UTibXdPgi0d4ekqKknvSpRQUmLtYb0vMLUmuxE0qniexswQ/LUmciFVIR+Kq+hmMlzpAZpkO6UdIl0GpUHmXCjIhWRMPZkZ5JWpufSUUEj0ccqCiMWs4ReGYmkHRgOvTFyvysrMqUo1z1GYqOTSei5Qy8t4SofJIZJEqzWZkhlEmCczQT8xt7A1soAHpT4Ws5y0sBGqCEZLHUaXCJFAQvKKwE1vXg0QmslOa7shQHZGpH0DR6QOM/kWIfXXj5rpTunk0Qy1UrClC16GIc3LeomSUnjxIvXZOql+8MK0BY2L6G8JhRD/PDANKoBpPS1hbFH14MULikoIiYL0gMU5ZjSIPVCi98qrd2NTKhfZXRXhbTK64RvDSFq8p1WJGZrIwlqoyDgZdYJyxjVTSLZ7bpdt+tPZ/1EAJB/8k/+Cf/wH/5D/uW//JccHx+zXC7/yNft+uNL5cNO+HQi/RvncxnwL5eoV2dv4nP7IPKgrhNGoe1keHZWgInR4gGBN2wHiJwnyyDLiHsTAShVidrbRTUd/eFYGJCygBCGYr0MdqakvR25zSQypbQ3pTmqBkAymN2vmZihl0R/+LkwOcP3Uu9FxnXN1Cw26OML1GJD6v0b38reDnGUyf9fzhl9dInPFcWLNe50hdnKLqD5/BQ3b6Tb47qUsfMifQLxU9QdKc/Q64GNi8PPykJARowSVTvIx1JVyv0OcbkYdcM8XIMSX9mb21GNH0CIF4BwzVIohdq0uOcXhFlJHAmTkKyW5yEkVNsRRznpOnigEOapfbwDbU/18Tn7/79jMay7IXygFRmW2g6Too+EcUHcHRNzh2qlAyRMStH0HxQ0Bxnd1L4xxpbS99EdVTR3K/qpE+9IH7Drnn5sqI9EerO5r7j4pqbZH6Q+NYOWH9m9NAm/40XyMhhWiTJso8VUrlyS4rSVyElSa6REzUQxmz9psOOe1A/+jU708Y/fP+Ho8RUhakKvObo/xznP1ckENgJW0sJR7NcS44uYzgEZCoMin7XCmHjZcb4eFlFipPUbKzKdsbSph8aSjLR+Z3NhfdxqYHy8QuVBBrCNoZ3LdaxchLMcXUsBISZBGeS8NBrWFrs0FMeW/MxAEIahPUgyiJdB2r1PM2IR8QPbFIrEqyQA9m55xfZhFKM1wkbU70h8bn4hredo8GN5bO2eDOXtrhx7P5bnJZuDH0k/xnXOAknAi90ICNk+DLilgAzVg11p+hk0e/I7phVvyPaJtI/nF4rmSIBAMsLISBiBlPvFIhLKhFsYsrmY+rNTi/L8/9n706DdtrOuG/2NZs55d0+72r12l4R0JIQuoQkURRcSVIz6QS0oIx6BWOARoyAqWug5KtIGLX1FDqViKYr6wVKPgiglSE6IeYmJMQR4E5LsbvVrPd3dzG6McT78x5z32kReaRL23vqMqlVrree5m3nPezbXdf07ieQTkE0H4lQNQLpW016SKJ0nZtiNFUVrYzCtJVT5PLPQH/RKUm8MxZmlPDJ0Fzrc0uY08eH8NZCM7HijIV1qNJ3vDez04+Qe9F3HIulnQZ/B5ayJlIMxiWCPStK9atQ8EY0a1NNSiFyjYtyfqAmJtyd0dyZCvOqMTHg17iZqf9nWytr2JItjrBK+43E5hgiqUFdjb33AToKQjqDHk2lhyasQHwbeJhjaswq/k4MnU35fA/39iT7rnop2u3aERRaj5zBRfMKfuFHYnmzSe/i8PblBIr+mOSmwPsKlBhIspg07F1bSuOTXM0bnUMrIKFHokjFZiN7avB+gOdbgoKs9faNkedsJnRlskVPMIZBlxD0z4YW+znNAztcLaT0vlFeD09Wb3/zmZ9nxDva8YSiQz9d2FV5Uoj4IOXAWxQf34DN9KEaJlo1R4Z+F6GbdSPcAcHyqgrrr1CyUBfFgH3e01uQ+JlIWVw/NgNm0FE0v8XVIanb6XjQma1UAN+j3XZDQ9PZaE/guSNvglBTOpNJnSOWWNnTpAK7flpD+3n3M7q5E4kVBWq+3mhRjaB/apfzQDX3GHHi4+75bpKoU/Wi4gs7y53ZOzVhKQk28h0lJmi5Eh+p6iEE/N4Y0qbLQO2LaMIoV085UGRtlKTOAaqHHHC/z/hZ9bfLkidLKI5hNI9cqL6qX6QPdtX388QYm+vzuZAPeEqsC2/aYsw1pdwapwB4tWb/iErMP31fhvphSXj9j/amXKY9a3NlGjdWmBWeJE+0D43LGSqm8D5wjGUOqHGHiwRr6SUnyhvI40zbmnpOXzzABZqVl+XBBdRJxm0j9yB7VnTW27bn3aofpodnPxWqe2MdCFKBkczbEYQ4YG0LGXETjb+kuxsIn6zLstCW2DleKix57C6ced9CoaEiiR5kqYF2k7go2bSFXHJM4Xs7oG6fXrSK+ClBGmo3QCxIqWBAdCyBY6IIXVar2Sm1O4GY9sXOYjWOxU9NNHZtbc+US9Jb+Skvdlkxvw/pxFXPGZa5+EaETHYyNx0574l4vvciRhDL+Romvob4k7n6YRboL0heQIB7m618w2BMvelSVcGcK4vPH+pzXd/eB61xLSyZ3LO1+Ihz0xDMnhGVYCfqpuPNhAosnRJea3IPN5UR134yjqdl1M+o6bAvVPTj7lMjshqWbKdm8PIPVwzDNYYKxyFoSC/VlCcQn1/X+yWcqXpDgHaDfiaNgG1T4xiopc6S3dC+qSa0jRej3pLXgtJA7Ewb/kSntIy3NFVFz3NJSZmcsE1ScupW+Y7/29IsMVbaG5jDTrQowdyvMQSd0JKeqpyIK7egdLhjCTq9jZhopjpRFEubKq6GReYBtncwDkgTnqdB5QQdxJ2GPvYTdgDt10uNE5eHYtVOqeq3mIZW5mAeZGWxUtJugphHAbhzJCoGIwWj7rbYl+YRpnV6ntQIXg9GxbZMa4GhGByuGMMWU6ZA+jY12n3Ni6E1Obze61u30xIGK5RRQGHJIYJhHndNDs+0GaqgE8sbqOzNFIE0M1aSnPpngL9Z0vSNEgysUVIjRe9P6sXFPwUC0LM8mavQyFa7YbxSM6CNp7YlWQ4S00zP/lYLooS69UJxC5zn2hV9p63b3iaVMnTcg5+uTtZ4XDch/+k//6bnehBfesk4F8rwCO1WxbQx21Qhd6FX4k5O4sZlC0/bEvZmEySk3D0Uxah1MSrh7S9J8okIWcMuauJATlOl7NQ6DLqRp9BpNK5SkLEgxQllgztYSXre9iv+MyjCfaLsOdtSwOIO9eyLql7WYG3elDckoQTo61mceGlHnREEzlvKJu6RLB6JmpYQJieQqCEn7JEKq5OpjUoK6VaNGhDIf/psas8zaCGPUfASlkZuzjRqGvoeywNYtLNfS2HjpYgDMyZJ4uIOZTUlTpZubutOQdNBpZB1LKhyUC8y6obh5SpoUhL0p7v4KQyQWBaYLQjB2ppimk9AemH3wJmkxxTadktTnEya31iRr6Q9muFVLf2UHf7zRvrOQKodZy443TivixJGcxZ/WcqYqLEVIdLsFxy+fEkoVqCaA6+Ds0ZJiDf3UsfN0YnnZs7m0y/KaePLRawo/vanCaPOQqD9D0nUsRUsyCTUeOUjQukDoPLaKpGjVLGQb3thY8bx9HNESf1jnsDbGSfCw7h4tKKqey1dOSAnuPH1AconqQGhWuyyzKxBCY3L6tRqeyGynYXVzQXXb0TzWjo1N6DzxuFTjVAVO78/1vhHcHTUQk7tKe1eoYtwK6I9K3KWakAw0TlSa1inEsJLDV3IqZtvSwDyAi6RguXDpjE1T0DYF4X6JW2v672pNbLvdqKL2xBG90IpbEym8r/k1/UzIR6gL6UFaWeBWl9fwSzu0D3XYU095bFg9nPQZvuCE4r17Q1+o70v1IcUp1JcSsTDsftjSHEq7AbB8BMoToWCg94oFhAX4pcEkQ30l4FaW5NR4TO4IGcHIGavbFWLT7wchQdHgb5V0FzvScQlOqAgG+r2Q7Y1zIezA3i8ojw3dTiLsBsKOCvPyyLB5RNcNW1tCmShOLM2lQD9NuMYQZzqQwiKMOZi4pDDMbE3satGokhMyaZxobbY1uBNLmKURNYxVwm1s1iuoEQAlp9MbiqUhFkYJ9wc9/thTnDhiaUd0RhqURMpmDoMuxa2skJ5Bu5AF+X4pSplvHP08jrQmEw0xhwKOqeFFlHi8zqJwL1c4IRcq4JPf6qBin5GnMEAjapYA3LQfzw8770RdTDaLw2EIMbR11jYVol4Nmiu78sRp0HZVQjlxiX5TsOycNFMJTP+Am5ZNauiz3TUG0v0Ks9dhnYYN7brQtaQuZIdcJMykg2BZv7JhsFK2Z47uQq9gxfLXd+s9X+frfH1i1vOiAfniL/7i53oTXnAr7YjvnbzNEyZpBobmI80rUunVdJyu9X9jwFvCrMCuW1JVSPRtjFCBPmxRjrZX4+LUxJguKMk8JNLBzpgn4daNKF73j9UQGSNnKY2owRg1L4CpW0wdlbmRMyqMMfSzEluWev7uXO+13sj6dm8HszPXTX/TqhGYTTFtbmIqv0U58n7QmxnMRkU6XhN/uh6GbJMBLTJGjc9spvTzSSUEBBhFHVkbkYzJHvqlGq5BlD6p1EihZicZgwmJOJ9glxu9b9sJFWk74u5EnzHTq0gJu2pIlae7MMcvW+y6VhNjDHGSE+WNgZ2MZBVO319KJIwaIyvEw521YzNiQiJWnjivZMUL2C5CG0gZGcEZbn/WVGhF1gooAR1ap0aknkB5Cjc/x+NaFY/FCtp9Wa32M1h/9kb924emdDsqyOJM1A4VbwmDyU2IIUaHKaJSyS+1jJUvedprI9YnQmdxRaRbllS7De2mILUON9d3bV3EmESzrLh9VlHMOnavnrE8m8hqNBj8tKOvvQTplShU2Ez56i3rZYXdbakLr0IrGJJJahIqFXTmzFOcWZqrHVSRvoosPlzQ7kF3EGiXOYF54+QAVOZ05kHrArIqBU1jq4hbio9uXIKNo7jY0t6bcvJLh/S7AXfmKGozTrvLIxX6i49Zul1lbux8VE3E3bMrcAmuFR0mqAkgSfcRy0RxoWby0zucvTTijvw2e6M0tPuJ2c/sESo1GtWRwbY6BkANZnksIXp9SdQpV+uxxdLQXNBrJQeTIzWw/RwIELxcrmw3FOeG+qKeP2TBTG5ZmouJyTNCeLq9RHexw52JDuhXln6eiBdb0c8yrcp2BtcIZevn4FpD9YTHbWSDHErZ4g65In5pRGXrtE/DVBP/ZJOamtZhA3J4anSMpCw/SEYFtGmsLjdFEiqSmw/TG9HjNmYswJPVsZx8yhbIOevE5ucvPclDsHJFcyunpj5rVwhGzYyDWMTxc4eZRPAgG2QT9dlFdVTzY4IQJ9sbTA8myfkqlpEUwXW5KTDARu5Rps06jt6S7lWkRdi6YLV5SDDkfThpqlKhBiY2uZzIKAkGvWaXz/3OkKKTJsslzFLIjWl0LhCN9BuQxfHKURlydoamg95A58drCi5RXlvTtx6Tc1bKWUcoLf2ykKYFpcOHTghrquVcFiuEBgWH6f6nt93n/Tq34T1fL6T1vGhAAI6Pj/l7f+/v8Yu/+IsYY3jVq17FH/2jf/Q8Cf3XWKYLJG+xy0bFdx9UOIeoAj0kzFktsfKkzMW5ROc+B/gRI2k+k+1rWZIWmSoUc+aFldiYkDRxT0lNzaqGvsfMStGs2l7i9tzgsAkq7udT+n3Z/vrThv5wjjtt9Jj8GTARt+4I+3Ns02XXJ4spt4dmdPq3qbttw5CpVCYl6Vm6QHK5yTBGDUKMsDPPyEgUba3rhB5ZA61QovDYVdzN+3pN2P4+JjUsKYlqVShbhVkF0zJTzyIUjrCoiIVV5shRg0kJW7eECwvc/YwYGUOalrjTmvbKDsX9NdhEdyhdTHFcU9481favN5kSZ7Bna1G1jno1DSFonxdCVKTiVdNDSsR5iW0DYSZky5029PsT6oen9DOFfbVzw8X/dgYW2v2KlGv/fiFEozyB+nJgcseNzkjRi1a1eaTHzHq6mxV+ZWgOckGSOdTtfqatzER7MjYpRLDPlqJGlIvYqhjh4VqFRTQqMmCkMIVaXO1wWuB2OuwvLHA7ieJFS9rak5Ihhuy4Uws16RpLN/GwyoF/PtKvSnARN+s1gW2tKFTB4iY9oXUSxGZ6kHGJatZRn0pjYic9zGHxgSl+WdDtgttIL9HPI+UdFdhhx0hg24n37ib96MwVj0psp4FB2JGAl0sN7uZEj91Y4tkcM1HehFvLcWp6G1aPJBZPGtZXYedjcPwq2eIWJ4bTl0bmT1hu7T4QRlj3xFJNhumNis31jOUXrkm3JxRLTfWXr27xt9Tg1pcY9RL9DNYvbameKjG99Dyba5Hi2I6T/vpyYnLL0FyA4tTQXIw550MFfPSAhfLIUF+K+HWm2flEcaaiuZtDeCBwsNtNhGnErS3VzYLmaif9jdNz7VGBXxu6ItOUgG6RKE+VUdJc6eg2OaOmVhhimKjZsZ2hvhgVZrg2amgOOuy9Qs2IBbPfaqI/NBSlkIFkkQg9QdrtsfcL6XsSQhqCPo9pM+2pURMSqi3NySQhJlhZ2ErPonNKk3ynRjNfnpNRVgUpGwME6VlSkbUY6ooyypnGnymzRc2P7TW48JtMuyujZkON0Jbko85BLHbtlGnSKacmZVqSnffE0zIjJGCmEoaHU+0DY1CzlulPzLK7VbboHfUu2QaYRKa9DahLHjok8rbk6/6qyC5a+TG5Dk4ZmRped3JlLfnNxmNPvJrFSw3GJPy8JxyXlE9XuBo2VyLmsCFVQaL9IYQx5u/6fJ2v8/Xbtp4XDcjP//zP86Y3vYnpdMrnfu7nklLi7W9/O3/tr/01fvInf5LP/uzPfq438Xm3YlVg140yIupOhXIfVCg7K5qPM1kP4OQV7xwsZpjNA4VxpmGlSUGyllQ50bNgm2EBWz1FtpzFTbGnG0hJqdz3V1lH4kk707GRCBOHP+toLs8pzlrwVuhK6Yk7lTIoNj1x4kbeeSoLup2C8rjBbjr6vSm2jWq2ylIWxFUJ01KC7hD1s4t7pKqQO9ZgI9t022biVEU9BKEaIcB0irt/NmaWMJ1sAxhJonvNqvGz94dzkhX/OTlDeV8aG7tpcUc9cXdCKh2hdDArlZ2xPxdS4a3yOUzU871Ep8XRZvwe4qTU93q4u6XInXXEypEmpcT+zsLdI7h2ibCYKHwwU0Nsm52xQoJCtLv20oybn6cgLttuhb/NhQl+1XP80mJsMLpFIuz1dIeW4v421yAZWD0aoYi4M4e950fxMxbiYSt3JlA43sDtPhPFImbalQqMbINrULbHMGEbipFkSCZnbhQq5u2iIwUVmeFCR1iVEqwm6FuHKwLzKytCsLzi8m3+20cfUWFogJXcdVLjVAQlsIuOWHvKnYZJ1VG7gnZdwNrjlxYsdDmbxFaB2HhSgtOXwOIpia7ri9JEFGeWfg71taDCzgVMK9vP2Cs/wp2J0x/LhGssk4966k/bEDYeHyHud1CXKtoPWvwTE6I3stI9hNkNw/JxFfwnL5OTVHug3eY2muafrhRGWBo44BbHm4cBQ7fIFKsS+m6GdRKWby4H5r9YEgsozwybi5qmtweR+dMGvy7VlM6hTTC9brfhkl6NRcjI2OZqpDiRQ1QskxqAPh8fKAwxOQg7UUhDUhhiv9DzhuYFA37lZK1bGvyxlx5kFnUstJbGATudGsxLHdW0o3lmjl/ZUWsCKr7bfajuG4VCat6BSWqSbWcUugi5qEehkzudBNIRzMbJtnVdQK/GkKzrSDaRnIp+NSP6vlz9q+g8Oenb1nY8xm0rNMhENbBAntSrgfFnGfWocpOTMpWqk0VxcjBkiwxNUD9XwKMa3IRtkV4jZRMBKz2OO/NEn7C1ASyxiGquLtVwUurc7UUDo7XE1mL3Wul28nEdageTgBmSGecKJLTzjpSku8ElIRVDI5f/Np32RyqUP5IGWmV2oxqcroq9hr7OAvwkx6xyv6HbFNIYlsrZ6dpcxjg1lJik/JHs4mUv1LQzD0vP7BnHuiiYXlqz6WaYOl8T5hpCvNBXZk1+wl/zfJ2vT8Z6XjQgf+pP/Sne/OY388M//MP4LPLt+56v//qv521vexv/+T//5+d4C8/X+Tpf5+v5vQIFN3rDw0XiYvEMx+Hh53qTztf5Ol/n63ydr//hel40ID//8z//rOYDwHvPt33bt/G6173uOdyy5+/69+/9f/GVr/4Lo9AcIB3ucvQZh0zvdEyun5G8J16shE7U7Ri2l7zFntZgDd2lHYrrx5h1JO3PMY3EygD2rB5F1qREmlUjzYeQhISEJMeswYrWW8KikoWsM0RnMClRHtUKupt6TFC6bSwt0WX4PTuqJGOUQZHpCZvHdqluKQsj7uYU91kFLieOL8CuMuXpeEV3bR+7qjIaZKVtsQW0DenKBbmC5RTzNNuVzmRWYtatqGh1KzTJOdK0Gj+7qTvSfCJdRR+Jpce2PWFeEmae1UOibRTryPyJJc3FKa6N2DpgQz9qblLhMHXAr1qwytIwKRFL7T+7UeJ5mFfKTgHcdEJ584w0Kbf74PGryvRIiTgtsdna9+jTdjER/EYi2W5qOHmpaBq+ZivCdnD7swtcU1Bfyi49CQW6bRzVfStefZnGx/u1oZ/JYcckTbeTRxPTlZf+IbvbkDUWcaoAPgZExMZRAO7KQDgq5XZXKQAwRUZKVQoG6xOuauka+fqbly35vIef4RfvXubsZEpsHOVuS+gsm1Aymba8/2MPK3V8p8OYRGxKWHmqixu6WsnmsbPgIt2NGe1+h/UKQuuiobi8plkXpLMCMwmkZYGZS8C692FZzK4fkS6kvpTEge+MkpynRvbBmfpFo4mxSdDtS+uROsP6RYHiY1OYSohMZ+l3I25l4W5Fe1E0luqOo7ovqtfhB2B9BcpTg+uy01gnWk9zKMvbZ/qCh4uWK8VNPjRw2g00F3ROu43BnxnaPVmkbq4k4izSbCy2MZRn0pecfFrH5LqC+Yql3r9s9e8w0XuFUla+yep15XxlmN6U0Hz9cMTstdTTQtkOeWKvqb82rTi1lKfQ7UG3F3C1pduXw5RJSlR3Kwmo7dpjWkOYJuy9Uvv9dkXjS8pjO1oD93Nt5+ZKFupnmlJ0ClBsLgT8mRMNKieiTw43NKeVjt/7JeZiQ6RQcGAwmqyf+WdRhmxjsRkstZ3eAyM9ykC/GmlWjSUWQjxsL12MNFIBOgtZF+E2BrMZbGvZUrKcxPNhquPN1TpfbafXiw56zOiQBjouYjkIt/V/uVdpO+JE4nSSkUPXqlB445mHHeWEuLX0JKmuSPs6oFIwEp/XXmhDZ+U2VURS4yQYH5zddzsZTGQrXpMpZVsDAdkGm1o5JGaWA0AngW5Zjo8xEdykx7lIl9B21so26dfSCRmfpFNJSNuVUA5I7Zns17Q2sQaKe554Mb9uGbdhiQNF7AW8zjUg5+uFtJ4XDcju7i5PPvkkr3zlK5/186eeeoqdnZ3naKue/6u7vGBzucQ1keXDnvqCbn7HLysplhe2vP1uh4u/0DP78H3RrEqPXbfEWYk/WhMOd7BNR78oCRPH6qrn8P0nxKJSQjfQ70+xbeDolXP2P7TBrlqwkGZu1GqbnDvilg31QwvCxLK64ulnluqkJ3pLtxCVy/aJZt9RHxrqCwW2g0vv67FtwjUR1wSOP3XB4norR6igULfkLd3hFFf3+PsrUlUQdia47GBV3FlmIb5sgZlOpFtJCbPc0F/ew98+kWYiO3OZo6V+fn3N6IJlzDanA0PcnRInBf7OmRov4PQVe5w9ooI8TDKFwzpOHt+jXGqfHH5gJWrVXEJ1aXfkyhWmep/TxyYsnqolXC0dcVaO4X9EpcgP+7bbn+CymDzMS/zxBtcFwqLixhfMtvkbRkXpkONgO3HAlfeRxKNfZC56bwiTTO/YOGIR6RZpFE+nHCTWzxJ2YymWCpRLLo12okyzRedKKd0ArBzGAX0WohaJ6KSzMEUQ5WESMWtlEoTJULWghjdaQgPxTkXaUyGzd7Dk6eUep8fSzdhJINyYEh2kaaBOkE5KzCJnNVhgFjAnnr5zlLOO9pk55GKqenhFW3tib4lL6UzqWzMVmTu9iqtpT+oc9sTT7SjA70EHLkJ2SAKoLeWBaCLmpMjnhRmLVrI1qakt7ZVO2Q8bh7tYqxBcToiVGpFYpLGont6F9RVDqGDxVOLoVdJdiE4kAXh7kLjRTWHactXdVRFckgtbS5hHujJJq1RAdR9CbwjREstEd7GnPCtYP5SYPlWM30VzkEXTpShwxRnESgJn0xl8K0esbke/a/dQM7UxxFhCIacvf+JIhUwL2j1GalA/lVOU31i6vUhxrOaj3Yu5WZGWKBqwRaB4cqowRCfKU7ejY7PdT0xvqkh3tWH2jM0WwtKY9DuRWBrpcLJI29WGODWEX1mQDoKO372e1Dr8fqYAZfG1qFY6Nt1G531xpkag3UsUK+0fkzLdKwdPxkrBgK42dHtRYYhiCuGOcxGfBzGxQOLrlK8nTn/bxmA7CcljAbbZ/i5mjZbf6PqfHPgzPS56vZ7tZCDgapNpXXLvSi7helHGkgG7Kgi7PWbj1bzn90iFaFGmkCtdrD0pgrEGN+uIvcsCcINZ56HSbg9HpaiWVcTUjjQRTRGb5PoWM4VsHtSkBEM57wi9Ja19Fq9vdUcxGqgdqVCieiyS6GGd0uAHm+DkRPcMtUoca9Ko1QnzSBgE80UkGYtZe5ieBxGer/P127meFw3IH/yDf5Cv+7qv4/u+7/v4gi/4AowxvOMd7+DP/Jk/w1d/9Vc/15v3vF13PmtCu5O1Grl2K5bZgWbKmMXQzuHG53uKV19m56nI7odWPPOVlyV+zAPrbgGxZPTmX13bZ+8jEb+J2AD3X+7HyeczD8/Y/dgUExPVUSBUhn5q6eZy1OnmjGFntoVux+E3juZAolP7wHV+SGDu54mbnyeHJdBN1STYXKx4+KfWmC4QZ45YekwO9ovzijAvceuO/lAj1VBJtzC5fiZ9iM2NhnfQ9fibx6RppbyPvpcmxDnlb0wn0HSkspD7F2Q73Jxsnl232otzjl9asXxc9qQYFWAm07X7uT47Ca5/0ZyLH+gozjpsLccpgnQT7UHJyYu9rGsvTvFrKFcJV1dM7ncUd5ZqnrpAqtS4FffXhMVEgv2JJ85K6ssT7r7aM6RKt3t67+TBbxSSFgtNqEMGdYbmY5iSJsuYTp58VLAaEqumedBU3yfiJNDMrJxoQH/7pJu/Tyo0QEXVRDoODFSXGupVKWOcMijXw2g/sJtH9UGZIKnLTjkpMVm0FAdrzo5mGB+5fzrH2iReeBlJyTB5dElTF8TWSWuy6PHTToFpmded9pUp0XQl88fOWJ1McFUY+ePWRYoLLe31ORQJu9co+8NHCecbS3EqEXgskpyCzjz2Uo0xsg1NncU2lu7ORA3JTk95vaQ4g9Wj2enKANNAcaekLVPORUmE40qC4IsdJAg5M6WfW/xSqEuoJKreXDb4tb7fdie7T1lYPGm4/rIFcMKl2TH+psTX/dRSHcPZ44a4iMxuyjHp9CVqPm2nZPJQWfqpilS/1jG0eixSnKrY7qdyPovZptmvIe5my+UZhDKRduTyVN21NAeavtvWMLlrqC/mRqbSc/sZuFYuXTsftayvqqGJXkJrv7TjMekmgXBWEGsHs0h3IPeqxUez055XcdkcJEwH3U4iekNxBt1CRff0llC94RoXK+i9UJB+L2QhuNzXAPrjSlP7YMZmApMwIWd7NIZ2V1a+tlNz6NdZ7F3os/XzND4PYyhOVTQnhwITy7S9Hj7QdCSEWAyuWrHQz12t2j1M8nU06z8gNxs9xEV23cpoE9mJy3Z6Hbeyo4B+bHJSFqZPonRTfZ4+lBnZCGbM8rBlJE2yMH3Wy+zw1Os1JxpEhLmQozQLaiDa7Pp2putUnEvDI0vdCGRnrGClxYoGqoi1EombzhBMSb+x2UUrm1xMA9WsY3Pfjxa9aRIpFi39SSVXMZ9oj3dIh0pvj8HAqsAvOkIzfHi2O/KFvM5FIOfrBbSeFw3I933f92GM4Q//4T9M3+tqXBQF3/iN38h3fdd3Pcdb9/xd64cyrSWojosZ1h/sF4ebi+1yk7ED915jufNZC7CaEpocFmciW5cRq2Ln/qssyWTHqizeJKk5OHmJwa8NRy/T74ebuu1yAZ7gwWCn4kwe/eWJob6wdb1JNsEg2IzZNrPR67lW0+b14ztMn1zm1w/EUkVHcylPwduAO20wfU/RBom0UyIczPSai4Li3lpoR4yYPpAKoSJKgs9C+6pQrkrIKeUxSiw/LYiVp75Y0uztsHzYjKFsGO0PTakTpy/OxaFVsjQGbry+oDouuPrOFaYJpInn/qvnnD1mKI8h5sau29GEs507+qllEZME6sZg1i2pFGLiTjbUj+1hYmL1cMXZY/oO+jnbiaXf5hTI6jRRX8pNRdpOZ8Mi6nuaiPKTOqvi2SC6UNmruZhkW1CToIoS3waT0RHRUlJHzhPIx6GVxa1JUJ+q8zE+EnLAYOytBKvHhaalyZCixU564rKA1tJXPX1uVlLniCDRehmxZSB2ls3pBJYes9eO4nZjIHSWdFLALJCi3K5isCzvzvBzXWeG4K7UWXqX8Fc2aloMlIuWdlWMRV4s88T5QgtrT9rpcb8yk9PRXAJ9DlrKSU/fOlLn6B6v6e9WuNoqKbqxUETax1rc7SILaQ1hKucwVlaNWxWy8DijDRb2PpLYHOYcjbtw9uLE7Lph/UhkesNSH8KNdh94hmtuSbu7nZI3B2TnKye3q09ZE+9MME5hg+uHdWxUWaweJlBfEoXJr3Kv2Ep4P4i5+5loec2lyOIjdtxevzLjoCEZCLuB1cUItcNmZ6/hemF6cBvL6lrOudgYylMdy91ObmhrS2wqOTL1hujItCZDc1GvQcrUppJx0m97baMKdx3vbqN92R6GHOin5iEFJ0Rvr8NXge7uBLPbYe+V+fqmY9y0Fr/KYnsv6lUsdR22nfbb8Pgw0XWvn6bRZc4kbXc/Twoh3xhCpoLFiZonQ37dHGA4CMhNb7YDml77cBC7DywZ10LIIvXk8zbna3wyQmN8o+/YNQDZDayUKN2tLWEawCTRxnbDVlzeCAEJZ4WuAZliGBKYgxZ7u8KsM9WqlFNWf5bds3KzY2IedORAxVSmkYJmOguTwGTeUt+ewSRQzHv6SwlXBEoX2VxfiFYHonM1lvZeqUDBNjdNPtH7Qt9nbrSSAXvq5Xq2LHSPi/ocbpqvN/8rrE8CBYtzCtb5+iQt+1xvAEBZlvzNv/k3OTo64n3vex/vfe97uX//Pj/wAz9AVVXP9eY9f1duPgYUwwTkSFQyFk3J6abL0GQgSohfZh/8iuxco993i0S/yOFxThzvWGlK108z3WEuxGRzSTf4MGGc0HU7iX4uv3rlEIh+0s2Rz/ueaDv9PE/ZjW6UYRrpF/pZu6cb4lCk3Pwcz80v3mf5kl0212b0M08sLaHKtp4hEWcFqfT0Fxe0V3eoH91XON+O7tBhURH2pqSqIM4q4rwSrWpWEvbntNd2qK/OpdFIiWQMcVZy/7MOuPV5O9z8vCm3PsexekiTzpALm26h/dzP4eSl2Yoz5MIvqDiyQQXgE79rzkd/3z7Xv2jB+rKKtXZfj+tn2r/rK7JDbfYN9189ZfnSPfrdirCYSFdTONLEM3nmlNVDBScvkTNRc5gdblrGfAOQ69JApVKeQC52StFikstT+JUn5cIbn5sK0MR3oFkZIIgmYaJh5//yY6EsNx5D6uXbb4v881L0GWzClkGajjIQGq8sDpK45TmpmoiCz2Y97mJNfzQRWpKX9YnposEWCgq0hQLTqodWolj4hK1ygNqyoDx24rRHQ2w8LjvvgLjsxsDu3ppypyU0jr7J4WdAe38CGIr7ntlT0mLEImHvl9jdVsfzpZ54tRElZOWItac5rYhHlZyU7pXK+QjAWkXuUImGyx2xTIQLHSx6NTCzoKR2DOW8pboPm4cCfgVnjxrafR1bZy/RBL6fapK+vhaJBdxwFwG45jcsnkqUR+OlYns9qGH6nhnXfjoxf2qbqj29qTyP5pK2d/a0ZfaMnK42VxLNBVnmdvvKFQmzRKiU4VFf1iHTXejByt0qTBJhJ8rV6WY5huj103xe9BkN2WSkrkq0h4HVo5HNI50a596Q9jJEMA9qPmZBoYQIYQjTlJHffK3q9HliqcK7ui/Xq3YvsbkWaQ8CLmte4jSqOXCanNsi0tU6XsydSsMFt23YTcwIWLaLDdOoYj8PW0K2cn1woGO77CgFOY9ji0wOlrSYvE+6jKZME36jQYff5IbE5wbL6nob8jU6TJLcxpKuvwoqTGP+hs1OWWGaUZtLYbw/DK5lxNzI5fPCdkJnzHEBAZ3X86C/o4HaYnqLX3QaVKw8cRale2kN5qQg3ZyO2i9cGtPU0wN2vFRyzEtRyCtAvXygq0rAnYr27lTI5yyAS7KoPmzGPBVbq3FP+Z5CnZGSedC+zRbJpK39b7JAY4Wadnbr4ne+fkvrB3/wB/n0T/90dnd32d3d5fWvfz0//uM/Pv4+pcRf/st/mWvXrjGdTvmSL/kSfuEXfuFZr9E0DX/iT/wJLl68yHw+581vfjNPP/30sx5zdHTEW97yFvb29tjb2+Mtb3kLx8fHz3rMk08+ye/+3b+b+XzOxYsX+eZv/mbatv2kffbz9RtbzwsEZFiz2YzXvOY1z/VmvGCWbTNakK/XptcNSTcW3bhMhDDVjdE1ZisefcB7f5i2dbsx36wM/TxfzIO4w7FKzxqEDDfklG+i4u3n7Qq6KZgEwSXKYzvaXsYiUwOsGpFocpBWb3QTjIbZTRXsJigXwNWG9RVYX7W4xlKcwoUPgqsjxbKn3ysxXcRET78oiKXFL3vC3OM2AdMKIrJ1L1G9k+Vv9AWmj9x53Q7zW4HprYYw9awentJPLacvzugB2hY7ZBwm/bvbyZSHUsWPX+cJpcnTySwGjflGanPxoUYuF0utIUzytHaeRr1FN7e5qHIcvXxGdZT3r4XJvcj0dsPp42pihIDlXIWdpIKy24bXDRSLoakI0wgDBWQeVIhXykeIM92wJwc1zbLU9xTNaCVKqwn+5BnP2St6XKHJf2jdtuiy6QF6hp5vcoGWEsTWYb0sbjG5Edjr4H5J2u1JrYSvu3trTjNfv5xp54feUT+9wF/dUJY9m1VJvyoIPh/4QIqG7rjCzHraS+B2Wwof8S7Q1CXFpKc5raj2GkLnpCcxCNVwOm7jslCfYDSZr3Ihv3o0EWcBe78iTXNy9rE0J8mAO9OxlWyCRUes1JCF6SBU36KCqbWYWZCGKtuP6gDTdx0+Nmf5Emmf+jkjsrZ5tMefOMI8Uh1Zut28jffhXroCF+Fa2bJ6WFP56j4sH5XYffaxgsl9WF2DZ96UMLXOy+JEjUF5Ygi1o1vk4nYa8SuL2xhCla1bbUYYGhW1m2sR2+ox1S0vEXaUwDxUCb9xyuo40XnQDxRNFKxIRmexickdJ6rXqXQqGEtc5mN/0NG0lvZij2mNtq0WCuTPLMnmc3A4RxewuZqY3rCESUZ7e0u/E2BAUjpDt9djvI5b2+Tz/nINncMeFaImdRkZJNPD8vkL+Vy3CmtsDmUP65fmWcjEICgPGd01vck0ST0mFmoy/Jptzod5AC3KtMpodL0xUWhQmOgamRy6ds9S1iWxTWQfevhk8KfKAIlBTZ8N0tMMKez+2GuY0eRrcjL0WWDPRMcjhdCPfuUxvZVYn4Q5KQh7QdqK2mFz0233O+JJKaOKbHEM0vREa5/9/ZLfZ+VpUiX0daZzPWXNCy5h70xIcyFZdPpj9jrS2mNqK71JGUkbSyqGQb4QXGqhOWyc8koW/bPf/wW6hkzeT/Rr/kbWI488wnd913fx0pe+FIB/+A//Ib/n9/we3vve9/LqV7+a7/me7+Htb387P/IjP8LLX/5y/upf/at8xVd8Bb/8y788an7f9ra38W/+zb/hx37sx7hw4QLf8i3fwld91Vfxnve8B5fzur7ma76Gp59+mp/4iZ8A4K1vfStvectb+Df/5t8AEELgd/2u38WlS5d4xzvewb179/jar/1aUkr8rb/1tz5Be+d8/VaWSekTfbj+xtdqteK7vuu7+Kmf+ilu375NHJyX8vrIRz7yHG3Zb+86PT1lb2+Pk5MTdnd3/6ePf9l3/YCElDkJOHpG8eKQtpucCv64CLgTR3kyoBCo8MkIBKiZSC5lKFs3weF3OCXWAmMSLjwwGUyMqcauNvSLODqYDDd6wfu5yYGMjuj9B2qCpomMqcpDU5MsmeKgG71fZrrHWjf22a3E3kck3G4OdMculoEwsURvmN5u6HYKkjecPio9S7uXtTL5xmtbslMPz6ax5c+Fyfs4NyPNJfHjBxG+BNtqNLpFeiB0TM1imGzdpsI8jg2FwsiM0o1rOwZtjU1EfkzKA7qBF+42ZpzukQYHoO17YIYJrQrUtAhynMnUKWPBnjnShRZ7q6Lf758VBGZcHB1udvfXnJ1OiZ02wuQMjrTxEmlHM4b4aaMUJEiCdFbgDhtib7GZgmVdzMhGPhZyc2ROCswFfY+xESJji4AvA8Ym2nXBqx67wQefekj7Imj/Gx+36eYmKUG9tfhJT78WnWukbYU8xV07zE4HxyXFicW/+oTN0ztw0JJWXlkhvYOVY3rD0c012U+TMNIS5h/zrF/aYs48aa+DjYcccuZWlv5Q+zT1arJtbYk76gxt1RN7NWODiDd1DlMEbG7q/PWKMFMwX7HU7vJraPblalZfSExvm7GpffjkKX725X+DLsFn/ffvYX3N4taWbkei8MWTCg5sLuSwv3sDZQm63e1paTtoD3QsJZfoZ4ndD1uWL0oUJ4bmQqQ4s3R7gfKek9ZsL43uTWkSqG4UI5AWCyiPGUMtwyTrw3aVTj65D6uH05YqVcP6sSCUohAVyx/73EBsDxkTjHRYDJkfGSEot+dwfVFN1EAJ85s8ACgy8rHITXgegkiolLYCaa/QQ9MbYhUpTp2azXagfKXRGY4kR7Bx+4brB9sBkdLR9bthqDGEfPYzoRkmQXFix2yPIY9H1988EPKJ6BPlsdN5nwdM/TSJ2tdmmmRGQcJE+7q9GLAbi9+oWRm2Ky4Cdp3P74yKDe8XJhGmUfkgtSVOJUZPEewmI3sGNT4JJZv32Q3OJVEkk65dtraERXa7CmbMB9EDpAPDQjlvicHQn1TQGdHvhutZY7FtzjDxmcZVRNxeS+ws6aQU6lIqaNHdLQiTKHrjA9e/FJEGpbekCE983bfxm12/0fv3J3IN7/3if/AXsLPJJ/S147rmo/+Pv/Zb+lyHh4d87/d+L3/0j/5Rrl27xtve9jb+7J/9s4DQjitXrvDd3/3d/LE/9sc4OTnh0qVL/KN/9I/4g3/wDwJw/fp1Hn30Uf7dv/t3vOlNb+IXf/EXedWrXsW73vUuPu/zPg+Ad73rXbz+9a/nl37pl3jFK17Bj//4j/NVX/VVPPXUU1y7dg2AH/uxH+OP/JE/wu3bt3/bv6Pz9fHreYGAfP3Xfz0/8zM/w1ve8hYeeughjHnhTyJ+O1YyYKOmfEpSzpzxQUCcEYVkwK4dJhqai5rgUmUe7lCsQp4GSmBpWjPeUNI0bG/AMzmXDE1DGhJ+15Z+X/B62kmim/jhJp75xGWiPHJyoyny3Xpwl8k3WBPUiIRpGj8HA386875FWVJRHSa6eSdnOH75BBv0OURbcJp6Ouhn00wJI9uFZpvMqKIjVrqBDm4x3V4audN+nSkRK+2Tbl83MbcWF9yvzFjYpCy8B0O7vy3+Y2HGhgDHaC2pz2eIXq8ZZyoCUrblZBIxS5cnztlWcww60/4Z6Bn9XJz9MBOtwS+daAkG7Kwl1l4C08F60iUF4AVLvNxgQtb7OIlO08rDNODKwMn9uaantwv6Sx0pWIyLuJ2O0A62uXZ7HGWBeFoVuIOWcFzBrJcrTUJN6VIBga6MhE4k9Uc/9SbP3N1Xc2J1/MVVQZPtc8tFyy987Jrerxusn+PIezY2ETeeaBLGJfrGq5jMtrixc6KCucg0i9vZ64iXe9bP7GAOWuLGg0+yJfVJBXYDaV+FsF070YIirB/vme1vWLfaP25lCb2KpbAbcKde0/NJgDIRq0g5b2mOJxkByqGMRaSoenqXiGcFoYpMd2vaxyNp45k8qQJ69UgiTAzFiY7r+TOGbkdNCcZwsn5IGZQGFosbxNuPMr+euP8qNR/rh9QIT25Z2v2Eaw29U9ihLH23Oq6Y7V5DpSDB+iJMrxtWjwfKI0f0ML2uc6y5ICSlvGupL0ts3O8I0RsscvtZ1qO5bYE7vanmaXNZQ4VuLwu0W0N5z2nSb6C6W6hpmAWYRCYfKUfaZ3OoAtvVshv22aWtONV5ObkjcX3I53jIk+5Y6HlpY/EXGtKNqS5JlYTvumbFjAILsfVnln4eR4RmsGC2iZF6yXAd67YNSKjABaDPw6JMxesnuhZUx9rPJuhziF6XByP9dt/1E0RnbA3BgVursSjvG/qFkDJXG2IaGjEhotELoe0XifKuI0wT3U6kPLb0szReq8NOj7/vReH0Cbe0meZrSC7Cxqu5AAZhfZpnVKTVMCBZhEDs9EIXegOlxOTSpsUsPCdb4Kp7M61E7qm3+dx1xFVBsd/gfWBzI3s3J0hl3DYlOz1m3pN6S78sGIwe7MrBVO5d/b4QDpu3wUwSuAjByTo4gZkEXvR/fD8f++Pf8lu9NT9n6/lmwxtC4F/8i3/BarXi9a9/PR/96Ee5efMmb3zjG8fHVFXFF3/xF/POd76TP/bH/hjvec976LruWY+5du0an/Zpn8Y73/lO3vSmN/FzP/dz7O3tjc0HwOd//uezt7fHO9/5Tl7xilfwcz/3c3zap33a2HwAvOlNb6JpGt7znvfwpV/6pb/pz3W+PjHredGA/PiP/zj/9t/+W77wC7/wud6UF9SKpdCAgerTzzLNJ2RhJIjranSjjEOsRS7mZ1eW1E/ujPxw0w9NxxYVGS7aGIgTTbUwCA3JTj10hn4/U0mGqX6G/W2TJ1xemRDujqU9zI4sPuVE3JRtWLW9w+9cLcRk0DDQGcKVVqJlC9j4ABVMjVS7H6GMhCNPmGjKqyngthgYLWZtkkVs5gcnL9tJrG7afqVmJFQqZvq5igZ/ZgmzpP0RVCiUmcKSHJiJaALJJwYb2ziNaurmYUxZHr6M5CPGAtnbP+UbKAbsvYJYRfp5FunWA81IhWR5ZEcLYNsZ4iyOVJ5+EbLnvxElqohbylPmYctaUzd9bMo5FTYL0yOcFnQT8an97YL02AZyExEbB1mvkNZOTW0jIWnsHa7qufqSO9S959RFupxOnDqryf9BS9h4wtC4uMjTtw7yZFU6ElOCsVF2qBj6J+fYK7VQjN6IqrH22J1WWTJAudfQN06C9nslcb/LgnUnIXpv6ZcVZ9mik7Un2AS7HbFxeQKbwBrsUUHyovHESj/3Vzd0ayWcU0Q2T++QZgF/pxgn20SdI3GakaJo8POO2FnadYmpgt4r6jOkYGlXJUSD2+2UYdA7DveW3A071Jf9mP2QjLanWBpWL+nxp45QqlCt9wuu94ZHi8TB3tMcxUdZXTXKL7nAKGxOjoyG6pgtj0WdrC/oGlKcQSwt3a4a2OKmwQahhtU9l/VhEYwyOqr7lvpiJFyJsrnNy0TZPbtGSEWsVEhHJ2poLNU82Z5xWBBngc1DOYPCqzhuHmuxx9nW+MTL6W8/YGtLdddsjTQQBat6UsV9qPLnCWpqmovSPAzXA6EVlnh7omyVKmFbC33+vodaO7uFhUnaisjzMMR20sqZXtqOoV4bGq1khqGEhkWu1XXR15lOZMzozmU7UTbDNDuI9WqwhuGS9H4PvEexRVYGmuywrbFIGTnW9x2dmqs4DJmCUu/90o73C1Nb0sO1GofTQuL0RoMRA0pML6IE4xbMkO+SbbaH4j8lA43TNSeowQi7PXYl8XmcG6qdhq7xasZaO2ahDIn3sdXzu9oTvIVFyPoxB+ttjgu1I3VGCM1wHyuF0LWlXsMYNKiY6Jw1Sy/3yHxOmzO5eKXBCvx8fdw6PT191v+rqvo1Nbr//b//d17/+tdT1zWLxYJ/+S//Ja961at45zvfCcCVK1ee9fgrV67wxBNPAHDz5k3KsuTg4ODjHnPz5s3xMZcvX/649718+fKzHvOr3+fg4ICyLMfHnK/ndj0vROgHBwccHh4+15vxwlt2yw8ebsCxyFN2m4hlFlj6nN9w7EaxLBtH8+Hd/LwHRJKZDiQ6gooOE1T42NbgaoutrR63sfhTUYXI/GZjGcV8Q1GfXBpRmPpSHLUn/sxhWyPYPxqqe6LGuLVuRoMF50CNSC6RMi2HeU+q4kgzC/Ooxyeg3t5QY6XiH4bppG6SxZmm1cPNGlSMCEHRDb6fJWyO4+hnWwoEBkwnisTQEPTzLIid5PfN759yCJ9JSEBZu60AMg0hW4YUEdoRjG7aK4c58cR5yFatkEqJ9/tFJF1uiNNIfa2nO+xpL3eERdA+sonJM14C7OwwwyxITJ6bDN20bbaGTWPTaKzoDKkT78zstWpWoqG/2BMajz2SM5QtA+lMB6Dba/WciQL9MInQeJyNvGjvCOv0Xfqq5+JDJ+y+r6SadJgiYic9dqLshXS/UkjgypPuVsQsFDdOTap9eE1ste3kJmp2ZUk8LoUoJOg2XjqTImAe2qj5aDz+dqHiK0jkTrCk3oy0rTQUzpnob85kkVycMtqZmmEfoUKYVtalJIiT7bEWp1GULJOkhekN/bLA2JQF+vpMyaBjGlHNTCGb0Ng6Qmdx2Umsn0f8Mp+bScdVP0v4YzcWo/0s0V4IXO8lCnuI20zu6nfLR2D9cGDvQ9KzTO7qWuFqFbCrxyLNvtDBAflztQTm5ZGlvpxYXxWlrrkcKE6lg+gXQZkycx3jbi0tSJwF4iQSi6h98QDbLpSiXg3F/WCiMCCg7tSJ5lQw2sn62wX+TNeKAeUr7zqIw7mXL4k9bC6n0ba420lsrkaaQ6EDgxtVyOdad60lFnGkbcWMTg7FbaoitpGT24DIpqERcHLC6ndyU+e3NNiBWjXYDg/0TNdmK2wrS/LkhR51OwPXNFvtdqIJtQc6tpSHktGMKo2OdLHQ77udvP96DZ+6naihkJVOZ9het7LZpETDDNPla3uTr+HTSLpbwWkB+bsLs4jZODgrcr5GlCtWZzQomfVCbhuDbS1m6WFjRUUE5WtUAdOq8YmTiL9VKo8nQTntdG0qRJfizI9UMB3YVuc2UFbdSJFLxZaOxTyAl/2u22tJvaW9IGcsu3aYpSP1MuEYwgpJYJZudOSitUJhXshrOMA/0X+ARx99dBR87+3t8df/+l//NTfjFa94Be973/t417vexTd+4zfytV/7tXzwgx8cf/+rWS4ppf8p8+VXP+Z/9PjfzGPO13O3nhdn21/5K3+F7/iO72C9Xj/Xm/KCWoNWgWCyk8tAA1CxZjJ1gKjCrbvSyYc9il4wuKIMN6DB73749+ROFjBuZQGjoNnmXAgeXxMvtphodKNeOnGRN9nO1WZhtd2GdyUjSkB/2BN3+/GG0r6kloXiIwplc2sJkMnvl6UF4uj3uomkSdBN04lbTLaBHcTcbi37U7k+Bb33JNJcCgqEi3k/RsYCYmweHKPAd/h/vxvk1jVJct3JU78wk9tPLOWyYyLPdpMqIvbUw6wfHXMG1xc5mBnsmdte8AfOdxZqDxkFrrb4U0f5kYm2vcz5EtFs/w00L61pH24zkpK232G+8TIJY8YFoGJiKYpWMuRCoNAk04AplAVi7xeYHqony/E7AAiNG2kV3caP73Xj/h7/9aOP0m4K6C2hcxwdz/FvuMcjB8e4UmL02DnstGfx2KlC//Zarrz8LiSlGYu2laTnADlZdRZ7t2R9NsEdtko7nynVXJoQk9PUI7bqcZ+yzNbARo5fLlfAVSTdyzbBAzKGCuzkM5UmZwyYItCuCopZh7nYjNQuU8QtQjisjWdwDqOMSmzfeOloDHpeKaEsEcLGq0g6LXC5eLv55CGvfvEzVHedQvUmQukmty3VkaE6NkzuZFriQY9tDM+EKQDXunucvizSLwAr5GL9kBqP+mIuaHNj5VdWFJ6ZriHrh7QP2gOJlBV0p1yN4r5j9eJArBLFiaPbk2OTqDFqku1Op33hwJ866dQm0O5Ke1HdM2NDMhwrYZrzaCaJbi8QdnpSGUn7nZqry70GK5VoXbEU/dEMlMtW53J1XzQmYHxssRRq4VpDWERcne1iTzyufmD6njUgytDIxWtg1FMM7lk6WPK2R11TButfYMw3Sn6LfkQvZGmguhUrfdbpTZs1XWztzvMars/JKlxQ9M88cOoMfunGu3h5ZLPZRN68Oud6RDVPaUDFja7JYZIRaKfvza2tGuBZ0LBk+Hw2nxMzUXFT50gpD46SgXV2mdvriQddzhyx435MvdW5YPV+JhiZAADm+oR2VSp7JWvt0iRqW3PTmoLO13Le0rZeDfwwlBg0IWceeku3LEXzNHnw5XJzOCAdwUCXkcl5yO+Tr+OTkMX05+t/tJ566ilOTk7GP3/+z//5X/OxZVny0pe+lNe97nX89b/+1/mMz/gM/ubf/JtcvXoV4OMQiNu3b49oxdWrV2nblqOjo//bx9y6devj3vfOnTvPesyvfp+joyO6rvs4ZOR8PTfredGAfP/3fz///t//e65cucJrXvMaPvuzP/tZf87X+Tpf5+t8/frW9bAA4Gpx/NxuyPk6X+frt3UNLlif6D/AaKs7/PmNRCSklGiahhe/+MVcvXqV//Af/sP4u7Zt+Zmf+Rm+4Au+AIDXvva1FEXxrMfcuHGDD3zgA+NjXv/613NycsK73/3u8TH/5b/8F05OTp71mA984APcuHFjfMxP/uRPUlUVr33ta3/jO/d8fcLX80ID8nt/7+99rjfhBbmGNN4h0Xr42YB8mESmRxnCraks2XMwk20NO0/bnAOSJ/2dJnby0I+0+3b7WtGM9q5xMkD/hnhzKl4weg4JTGtzunYap2d24wS9r+W8YltLTHKXGUKvUqekbNOUI+3LLW129NqGcqXjUgFSSy9dyZEj7AXiBeVJpCpKUO0S6fEN5l6lbYnZbWXQX4TMk55tvfBB0+5RaJkMZFFxGlydKmk/wqAlGUSapahKuES41MllySdN2pPBXt0Q14WCr5qsh+j1XIymrDaY0Y0m+iGpPNMnlo4wjTgsAYM7c4QgtMSAkoV9wlSRdFZszQSyVXLyEvQyZFFsHKYKEmHmQLZwVohy1VpNQeN2Aut2O8yxp7/aEJKRWD35rX9+ld2Eag87oh+ZD81JF3tNwxc91iVC6zg+mXH/1i64yHSnYXNWkU4LTmuHcYmw8dy8tY9xSlOPtZdjTSFXnVg73LwjzXrZPTeO8q6jriYjgpE6i7tTEB/ZMJ23bNaiJhWLlm5ZYm3Cznpi40i7vagjZYQcLBfLxM7HDGcvHgwBgoTvvaFrnPQ1PslwYRJHml0Mwwg6jYhUioZuVbC4uGZ1MmW6aGg2QnNiYzHlllfPLIyifLvoWPeF9FFmQM7ycVHB7Abce62mtpNnCrq9yJ31Puw9zZXJGWYjDdOAjoZdfaemNcyuSz8UShkYzJ+0bK4kkjXMnzasHkkjAjlolgaXt/lHHe0+dIeB4shJG9FttVbxWAF0A11ToZgKQ5RWS1SjlNO7XcxBfjmPKMyyKNmAO/a6nkwiMRqqO45uL456h8GeOMxEoVICud6zumtFgUqM1x63tpr6G2AeCGuXxdOa3JsHhuC2sWMwKj3bHJfxWpH/HlLHk/ZP9HIFI9OiXK3taneFPE1uGbq9bLhRyclwcLmrL8si2J0N+rVEP09U9wxtkRG87NwXZnHc1lCZHPKYzTUSJBu34vh8nRkS2GVFnkg5BDMsdP2SHi1TNwctGFDutLS2FPUyGlEMozRstgqkjQIL4wxCEXUtz1RHagAD00i0SkdPZVJx21jShK3rns1o1OCMVwbKWSdReu8wLo56NmwkFULuU0aJsQljDfQIUc8WyyaK3mpXTjS4dQ5DHDIIl36rzXuhrgHh/kS/5m9gffu3fzu/43f8Dh599FHOzs74sR/7MX76p3+an/iJn8AYw9ve9ja+8zu/k5e97GW87GUv4zu/8zuZzWZ8zdd8DQB7e3t83dd9Hd/yLd/ChQsXODw85Fu/9Vt5zWtewxve8AYAPvVTP5Wv/Mqv5Bu+4Rv4oR/6IUA2vF/1VV/FK17xCgDe+MY38qpXvYq3vOUtfO/3fi/379/nW7/1W/mGb/iGcwes58l6XjQgf+kv/aVf1+P+6T/9p7z5zW9mPp9/krfohbHsxmYrSoiziF1LQ5GKnPExwPE522C8SdptWnG3m0YK1mjZGu0YjgV6jVjFnBsR801WkDtHRaYE5ALEiP9uOjOKE22XQ78q3bvdRo2AzTaz/X6P3UiYHb3oYwM0bnLxr0LIbIuhhChVFvrDXtt0osO5OCnoH6lJpwXxTqWCG+S4UkTIYuWwE7Y2wp0oF7GK8qpv7LbQK5PqjSGnIWY71SrK5nGSSLUbmw+ike1q9QCfwiT640p6lXUxisBtJQEyaycnnyXUExUdxalsToe8jjDLVJ2s9bCT3DzUuXAdnLNaK0F4AhYRd7dg9oyhOYT2Up+DBEUBcycFMdMO4kEn8WmmV8jxLNOsqkjYWLjUZQ1Eopj0tNHKPjZa0f46i9lrRdPIQnl36uDRjfI6NqJHRAAf8VU/FuJM8n4nbgv3fsgxSBjH6LZlykgMVqLUVrzA9rF2+z27yOGVM+63+5hoWJ1MZMm7KoltbhwM0pskg616QpXdeBo7Hvu2g/LIUL+oo5x1dI0nNYWOm0VOifdJzkF7QVqenB2CMWpo+m3mwPLuDDsJ1OtypIGZzONPNuGqnnimDJVy1tI1no8+fRmTKX7lXYevGe1sj16dWPyKY/1IUmjdmeWprKd7xGw4+IBlcwnqS4nJXQN3PfVF0W9CLszLE4iFob4sMwXl78ihav1oJFRDaJ7yNkwv5y3bGKpbLlveGtmcVhEmEXvsRaFMohqNgZ3TRHlqIDcf/Uw0qlAqOZw4mGsk/InE7mEhapu/WSrA1GeWYiuxdpgwOjX5DdsmaBLpvKE4NZlKmZPbLwQ15aW+EyUDSic30DGH8/xBG25Zjcvq1rZ5H7RqOJKTmH5zOVEdqRFzbc49yvqNQWxenEkMTzL0+z3FPT82dv082+oupL0ojx3BqqloD8CfDgMZtvbaOfE7Vgm3VvL5EDxr11uN0GDbPWQ0EQBvRHlqdb0j68KGAUy119C3jrAqaG/OSFUk9EbnyFTXtyGoNBlkDpHvO6k32CKRUqZKRd2DsCkPtbI+JhlYOmJpx/1tXJIOrMjnh0GW2IiSRTKQnRo1RLEKAq0ylcvpmqRhikTqJoGpHbHUsMBmGh42YYMZXcDO129t3bp1i7e85S3cuHGDvb09Pv3TP52f+Imf4Cu+4isA+LZv+zY2mw3f9E3fxNHREZ/3eZ/HT/7kT44ZIAA/8AM/gPeeP/AH/gCbzYYv//Iv50d+5EfGDBCAH/3RH+Wbv/mbR7esN7/5zfztv/23x9875/i3//bf8k3f9E184Rd+IdPplK/5mq/h+77v+36b9sT5+p+t50UOyK937e7u8r73vY+XvOQlz/WmfFLWb8ZH/KXf+3ZABUA/101jmH4NlpLFidt61eep/3DTBGVSmDaHb9mMRgz2sQMSkEWArtnqITDPDicc7HJttn0cOL0m+8HTWfHJH3hOtn7XOmwlas43sDFHJMGQpgv5JjagOXGLVthN9qcv5cZk125EasgIyIi25GwBOpMTwvWecZo3cPDAL9UEDdkcqVQB5nY70o1Jfk6kOFLRMAYzDtttVChMnyrYPNqpWRhE8UlaC3PqZWXZG/yRpz/ox89thpvtJOiGvsn2xhmlMa0RUtHZcT8N2hKTb8QEq/fqsjC0s9sGI6c0p0kUBzoZUpe577047d2QZZFRKVM8gCIN+3Ygny+dQr3Q65gsWk1rD7nQGYpxsyOlbgriibtJnwsYk7MxBuVy/u6SwU56ueNEIVNDo6XpqSOlLI7PeRoAHJU6ng4bMBBWxagRMa2E86bMjeAQuJjg4N0ltoOTT4H+cocpA7F2mEbZGrFKY97BkNVCeoBvbrbfMY2FzjC5uqY+rfR55x1h46UFGWyFXcJPOmJvib1lsmip702ZfdTTXEzjEKG70ENr2fkVy9nLApNbyuLYXI28Ov6f/H8v/jOe7Ay/8wPfT7crl6viy+9x+guHzJ8xnLwysPMhR31R2os4C1S3PO1+JM4D/lguctObjs2jPdUNr1DQjYr+4kzuby5bZsPWtrefyRWrn6Uswt5mZ5QnOlTqi2kcZJgg8XtzuM3AGJ35YtZBRCGvtlbR6dfQHkaiTxSnDttCeSpBe/T5vLPgV3LbKk6z61aRdTSTiFvqvI+H3Tj9HrKITBRaM4QqDjbbsvzW6/iVkJbijDFg1LYqqqPXYWuDQmAHDc2QZ9Qc5hyVg5Cd3BzlPdnjDtcin3Ururglwly2zoMJgT+zdHtxqxMpGPVlcZ6NDho7uucNDl6DTfCodzMJCjXeMaMd2ISf9eztrjldTkjRaniQm4+0Iz2O9XLVGizb3SS7VAF+2glpXDnppRLExm+zN5Kux6mzujZFxuu5nfY6H2sNU8p5S7suga1NL7A10lg73XcmMhQYdVkZUU2D0coD943h/0R0/cuDpY/+P39zNrzPhxyQx/4/3/FJyQF58q3/7+fkc52v/7XX80ID8utdL6Be6bdtDQ5OJkJxZrdoRaubjl860YxMtml0aj76K63csvLEdhAoDsjHMFkDUY5sp8IsFinbO6pK2IZjpQemhKgohrFAHxqYwZUrVZqWDtuUypQnwml83mjrOHQoRkjFEK44FGMDiqEUb4VOuVNNw+yDjyly1sZEjYJpVOyGSx2xioR50A07C97JHv+jvfBM3vK2toTTgnjQjQnJQ3L8tmFiG0DWWerHRFdgHoTUdCqqqPOEf6Omr98Jzwp6HCadLL2+k51++7kjSv4NRnSJJFcb09ttoGBGHIxhK7AsotCOoO1xtYHWkhpHau2YGRMvtPRXWzUyeQ0uNTTZzSsBtcPeL1UEHLS426WQgeHYyKL01GrCSW7kUutk5bv0KhZyA+BvlIR1sRW5JyN6VK2iHJMwK6d9mNGKdFaAi5Q7rQoXl0axLActaa8jrAuKqh+RLFMkNUs2KfMkGBkFLB32WGL71cPQXeyEbByVW0OCa7W+h2ZLU8SgqTqMBZKE/kaN305PfVZhikh1UBNbR7GQoYIt4oie9I2X60801KcV8494Vi/piUVSGCHgjzzTm5bNVajuStTe7sL0hmX59MMAXPOJ1UtqmsNIP4P6nReY3DHUhzB70rF6JNFd6PFLQ3nH01ztcRvL7KMFoUpU94RK7vySp9uPErvnc6Gfp60xRG/kKreWsYWrDc1hHAXibm1z/kdi/XBk81BU1kdGaZurHetrcURv02FLnAdN2xeB7rCnu9SpuC91/YoFlPcskztuFI73M8YQRW2HnK1co6agnyWllzfKGAmLSNjtYeVGp7rBYcoE2fgWZ2ogbCfXqiF7xG/0nq4RlazZT9tE8yw8H5zKUpmEYJZ6/2QZGzfTmZHCODQeJkCYB/odCcjTpQbTGdyp1/6xmt63h2oybKvpfpiH0VXP3986SdlGzcdglqFreH6vxJaiWeTraiskMyWIyaj5aB2mzAnnu32mOYkqST5WUzSE2ul4B/ray4FuGonLQrk6ebDFmRdy2qr5SD6KPpovW6mzMsbIDnPNSaVtzNe2QYhuJ710CsMQau22QvPajUimycOKsflIkIqoAQaMyPoLnoJ1vs7XC2i9oBqQ8/XxKw4oRqnGwHRG1AW7bRSShzGTI+lGZ49KTE7fJic026zxSFZ0DdtmZ6tWgVwDTSmVmU9r0phGTDJjE5N8diXJU0wgw9xsnViiGbUjDGhKQpP+YcL+IHqStSvAaDU5FueAaYUe+GM/9ivlfUfcCZTHstt1p+5ZdqAp0yNoLMz7sXkapoiACuUyYXpZtqa9nurRpW5cKz8mlw/amiHtd3TlIm/jxjI53JB6wfwp298OqdGj01VU0rCp5SIGuUgYGooBvXFpe5NN2e1pY9WEwdZSdkjtHpywsqtV6sx48+0vdZRX1mP+RXJ5Qny7xBVCk2iEXBgfVbRP5LtssjaCy7XsOGsPFtzSqbkaKFTkojwHiJneiH40ONMklO8SDf1DDX7R5fwZIUQmovfN+8ReqrH7LZQqYlj0GJdoTzPa4bLD1HEhW+Bo8Dst7TNz3EQ0NGqbCx25VJkiEPc7dj/seOgdCd+kMTPGTfsRQaHIhddQTA3HUz5OzZAKbfS38VFOQZmjbn0k9Hrf/v4EU0RC47MblpFlMcA65+8UUN32lMdZs/HYBkyi29F7FKc6budPC0V44rHL9Am8gcc+covqvrRethEVqzxWQe7Xht1f9MQSpneguumZ3oLmYmJ6y8oudyFUYXJTaEGYKn/ErYVchErXmX7CGNQnzYNyK6r7umaECoqVdCflfUtxJqQhzCPTpwplUVRCJ+3tavye/bEfrxf9pY44D7SPNirkPXTzRLuXj+OptCMYmNwy26TxPOW2nWFyTz8fbHbt2uka15vxWorJOo4y0e5m5MKL6ilb4GwlvND1o9vVc/qpkJmBBqYwQ52X/kQNTywT/SIjQ5kyaRsrVNaLQpWKRHlHhX2/32NuVySv7ajuic7aLwK2sRRndkRoTGOxna4BAzpneyFHaaBkOg2EYm5W0o5c+YqDRvkdhdLCk0uEVcHJ8YzQOIppx2KnZrpX46oeX/W4IrvuWaGYA9opnVYc92Wx24yW2QyIrmOkSKVBzzHY44Kyknpdd1Jvn3UvMTZmJ7kkN65KQYixVNYIJum1DKKLuoSZ6+cmZOvhTJ1MUddWE3Q9DIv/BVyw0if4z/k6X5+kdd6AvMBXmOWk6z6nYxvdOP0mowJVGuF4EuM3nqwmlUMGiAlo0pwtHjdXI8nn4jnm159GUZQC20K3SCo+syd7qtSopAHazxaWyUq7wIPX97UbL3Bp0E60mnCPYYYpF66JkXaUsrYi5cTi5BNM5XsfrzTE/Z7kob0QsKeijsRSHGnKuL2RdRJeuzNRevyxw6+N0BvLeLO0WSh/cOWMS5dO2JxVusGVUcL7PiMQUTQwt3RbbrZBlKNFoLk7ldg4mGc1F2bQjiS0fYOeYyhi/dbzXsFscVvsDgGCSRoOu3a5UUSoSlDGSIpCOYYclKFAdncL6HIIXlLmBnPZUYaLnegUs35sVlJ4oBiIjKnpsZfPPr0ZnYSru6Jx+WOHO3W4Iy+qyZFj9oTHnBaw0iSflZcV6NJBsITjUrkwK6+C6kDaE5PzRMLGj0L+YjeHtSQ1CvZegc9CWXOxoTmaUMy68f8xWIodNS+j73/tMPcqzKknOjh7xHL8cglzTW+IA+1jaNySCta4341ZFaY3mJUyB0b9VTQqgqZBep9e0+RRBzQbmqrcvAdDWBe4MmD3W2wRJGh+uCVZ2P/lxMV/P8Evs2bLyETCbWD1CMxuGGZPl1zP9sqLT32Cbi+yeAbqS1AeGzZX1NR0L6pJVvSs05dG+lli9VgiLPrcMGjXxFIJ483FKApWzrEIU6EgxVJN2Gh/a9TcDLqIYgnVfagvBWlBHjjn/VkO0kyiHJk+n/M+4k4doUq4lZNBQymaIqcFcaKMDNsb/MrSXAxCPdbSe6RMgXJ1znFJUB4pg2OgeD2YAQT5nCsSYRJpLwzW3cro6BdZvDxNY2CgH/ZFHsJEr0T5+nKQiD6fhzZoX02v58TtXk2Aa3Jg4Ji8buhz8GOYJbA6H5LXQKCfqyF2rYYrtpF2pp9n/cdmi9baTgGy0SHaWraeTRkFHii25tRjJ4FuU2CcxOQkIQumiMRsn9uelpydTEnJ4IuA9xGX7a6tDzqWh8GNgZTUkKRg6e9N1ARMe2zV54YjabCR0VHj8nWuzM2AS7qWZAt301khk2UY7wuptQosrHPnOJG4XdfQ7fk0GGlYF4VE5myl1KkJodC9h9aOaPr5Ol/n65O/zhuQF/iyjWEQFo7e5z7RXA55opgn6sHk1Nycpm2gy3kVNk+kBxcsiigEJU/dbaYq2dqO3v6mtkJPbBK0Poy5W0taaCI1hBwOzzX5uUPxOvjCDy5SJmeXmGYolHVDsqd+LLJJmbef3y/lcD1gzLVIUXQEIgpCm+TJ/jAFBKpLypyJGTmitXQXegk8o9FNbEAp5gHKyOmHDrjz9ME20CqjOCNCk8WiYzNVZo1Gq0me2+00cR8oVunZN7uRzpabDRB9K0W2YXxDw5IfBwgpiCom4jTk4EmXHX1yo+OTKAidFeUjfy/Fi5e4M6dGxCRpRqLZajwMI8JCNArfG1yerAoNN1XV6KY9ZtqPjkXdbnYc8kK+QpURgahpsVtbXGNYPxxGTUf0SXkosx4+/Qx/odZE1SbSMtOyBtTBJcxJQd9sk9ntU1PiIhBuTHGFmiM76emWJfGkFEITjJ5jE6mMVLc9e78oHYFfWlaPRU4/q6E9DHL4WTnRTRqP21jc7UJ0FJewJ8WW2kHmoO/2OhY7q0DJrD8Km5yz0trs2IOasGFSi5yGjI/0dXbIOi6VEN5ZqiM4+RTD7c/Xl1Pds9hewYLdjibvzYGm79dbPf/K5h6zpyztjormfpan+0Vi8ssTwlTfR3XHMr1lKI8N06cK0Z08VPfU3LjaUN21IzpAkpjadtJU+E2mQGX6kUITVZAPTns7H3ZM7jFqz6a3DP1OzDkr2g7XCHl197VfyuMhi8gQj0vKY4dfbfMtuoOg9zt143WtODVy00pCcLodvWe3J+QiVHkYMQRBZupPcZTdsEq5x9kBIbb6v18ZbK2kdWm7GKk7crFKdDn8bwhgDDOFAoIyUFzOSzGt/o4Oob4ZqY7Z2XDIDjGtcpmq28ojSR6ax1ohIlnIDxklzdoO0+jabIYZ0CJm85GErQJm0WF8JB62GirVTgYSVoiC8fpbuTdZr5WP73pV0m4K2trTt17HrWG8JqTOYUzKZhHScqVsxJB6S8z6KyrdY0yrRonaiYaVGw56Q5rIDdCdeF0PHboGLItRLD/QPMuddrxej0hKNBr4+Cinu+F62+j3pogagsF2EDBQsl6gKyXzSflzvs7XJ2M9L1ywztdvfoV5HDnoAxc45htoKhO0OdDPakIfZlEgRMouIMO03avh8GcOV3u63SDUI6cE21bT8VQw3gxMb8bCa3DaYtHjpx39SaVtcJoq2rVVc5ILx1RFTe9BFqaD7WOmuMiGEVKAsOgxtRvtb1MVobVbFxOTb+pZtG4y/SlWupGRkqZeGXExwdDcnGkSut8p2buxmEYNjRmbC904ZRVbU1xYcXo0wyz9lkqGGoKE7G9xaQzAw0BxqaY9K0WnWA0BfVv0AxgpXyZTGbacpbyfm22ooxkD00xGhXITFhi/i1RE4lAYDMjMfYn744UOV/X0KxWo9bLicz7/QzxxesDt23tqNiIYn2kVg8Yop6Fz2G4bgCTEKubPFAfal0vSmZTD51BxZ4pEvx9pDrdC11EMyraZTNFgjwuaUyUvM5O9b/JxfG/jE64MxAMVWimo2eqzlWjc7aVTyTt5frhms1Jaelp7ifltYnZTFJazTxE3nqjCx4SMLLmk1Pk8CQ67AaqAvV+ONDo2FjMT1c1Pe2JvVIQVETykexVpGvELie77lR9DI9NuLzpc+cD37hK+6unrgulNl6mG+rs6AhMU7NccwN6HYfkYTO7A5ko+ZGpyGGHDI+093o0agYF21B/2lHd8nrRL5wBqFNxG14Z+oWK2X6gx7heJMEUUIafmIkw0zR+K6qFpsfl54/kR1HD2M7223+g119cS9uoGd3OuRiig5G+gOLG0FwPhYp+D7sB2lvYg4JeW4kii9mKtY8615KZIYvNuLtTBr3W8JCsKGiX0WaOr64WOz+gS4WKvIUubURK7pVHGKhEncqbrp4liJYpZmOZgvYWE/Canpg8ooNsYTBIyNOybQcieCon4zaoUfTYwGmK4jRl1Gq4xtPsSrYcyKQQ0NxtyAhOCUqzMSLWrbuWmM0HM1zzT5cY3GJj3EpCj5tZNe0JrFeJZQAyGYtIrBLSUIYSxSYV8vn+YIlJMe4xJNOvcjPhIClZIBRKdG5uvZbmxoMrnPtlIIw+cpAXJ502UDi1NIv6ehysdcakw0wHF1XAhQG+JUedcMoz3DuOywL0McgwMA3SLBkzRwDTgJoF+7THjY87X+Tpfvx3rBYWAPP744xRF8T9/4P9OyzIK8KJPWfDNmJQb5pl3vB9GzrrpzWgtqWyNlMWburiHaVLuRX78IDZNBnFnM71kmPDr/9vJf78qVbxnKpPd2DHt2yS2bktFbjyikTNUetD1Sn3DiHoM6H6fb6CZLmEH0XhkKwSORom8RYQdQf6p082GaEQfG4q9tRdfehBAuuyznxinbP5WQb0SBcHYBIts35sThYERJRgoZIPtcXd/qHa21q/jh/FJeogBqcgWlSMS1FuG7JJUxSwW1c+TYUSCUqYRpFJ+/mbQ1/RmTOaO04h/bEXqRPEZ9i8R/s9ffjG3b+6pyCvyvokZacroTsri71iLaiWNSaLYabEujtQoUt7PNsmmNmuHuodawpVWE89uawww2G4mlwW5k0ja64h7/TaLpbVKYM+oTXWjENoTDGnlszBV7+8uNKJZgL7HzB9f3VgQ8xSWacD0MLlj2VyNrF7eyfL0XnahOvZqSDNSEWuHm3WYLBZ2d0oGN52YU6QHFK5fFuMk2U87NVS7PaaMhM6K0par05QL68GSGaBv9R79vYmE/AHa/cT0liF+wQnNIZRnmuzPbmbUwUF9WUUySLNxPcnS8mpxIsemtZqH6S2wS0d7IdAvpJ9od7Nwe6LXbQ51/vl13lQH5X2hIyFn5iSXrzdlblCm+ZrzgO6iPNK/YwbXMGlET+SUZSg+MB9fQ2ntlvLISuTeGopnqvG6FWeiz4RJHrZEQ3u5y9eIvB8u5VNrzZiN1M9k/9tcjHS7co0qTi2uzk19tgo3nRpu21hds7wajgG9dWs7unMlKyTFtqJL+XU2JOgzsnhqZUs+ZiQJregz4uQ3Br+0Y47TQGlLTtegPjuLuY2h3YsS+FcaPIRJotvVMWNCRrVXVg1OB+WJGpE4jYTsjJhcwq1sthrOg4PjUgYSk0C/LJTXYSB0lqLq6VtHNe2InaWaZ3MHhH7btSO1jvZEYXR2ooba+jwAOCvG6x5ue3wzC8orWntMa+WoVQkRMb3Z6tAyCmzqjBjfmUjvNRpp5CaktxgXZVoRrWhYAwId2TZNQc1V6nTvwKWxkYl3K1FPY37/F/JKn6Q/5+t8fRLW8wIBeeqppzDG8MgjjwDw7ne/m3/yT/4Jr3rVq3jrW986Pu4DH/jAc7WJz9tl11bCO6vgLruxok6ZPMWf9aSuUE3pgEJFuG1Fi+r3gqwnLcRpwHSaDA90IJuh+7jbi35x4olZGG5sRhaiwRbbkDZgDL6yrYrpONd0yTZWLkplGgXVJgFdbkiyI4ppLOWRCiXj0tYedx6EpLjBtWY7FQdgGijnbXZNMaQHbN1TbyRGHKbck4BziXCmUeNQwJki6TU7g9vp6Hcy5SujIdYHohOiYzP1wjh0gwxGFADIrj5RN7c8sRteP/VCNtIk78eN074Ypvy5yaO1o+2mieD2WkKnn+1ePeX49o6KLwymzi5i2QY2lVGT/kkk+Uh7Wmk70kDnUoFuymEfSlw95FLY3ZZq2rE5nWiiv/S4XNSFSy1kPQOQtSFp/NxDHgqAvdTIHaezMIn6cW6AicAiqPG5PSG2eXtS3p8uc9krFSR2pRC62TOWdHPC+lpg8aGS1WMqYkKjBslurALWBkrZXJPaFMQlD4c9XV+oCfEJs+hpL+f9a0vRwaZBjmKdmhAGEf3DHdyajA3faCVaRGyposa6SOwtroyEo1IC+jMP02wxuvLYhex2BzrcgHilzuL2W6bvnxI9TG/kQvqDe9hMX/MbWD6mQjzMI35pqe6pUW934d7RPuw9xdViyeZaZPdDlvVVNRnVkSGsHf0i4ZeW6R1YXcvHfjSUp9nFabgGtNDtJFybrxttzu/YbI9T1wp5Ub6Mft/tQXXXMLkDZ6/sMfMe+7EJ9eVIcWppdxNhJ2JrS3Fq8DkvRKGFQifaS5nOhs4FuxTVqtsVMlvcKTKNSk0HQH0p4ldCd7vJFhmW5sRlPRj4MzNmF9k6IwQFarSnifK+G00pXL5GDpTV6HOw4Y62Ixz0mJXTAAhoSyiPnLYzs3xMp+f2ecDT7QXcSp99sPZ1G+j2dG1zG0N7GJSxMovj0EONkwwH/DLrTHL4YZiqKSzO8gXRSicmF658jA2Icz7HjE2iKmU9F8nQd46w9tT3KtIk0pxMwEWq3ZZ+qt8Ng6H2/kT00gQpGvy8pc9DDpICS00h4bgtAtHKdYwyESPSbQxmHmHrnmfyfUh6HWDjxsEYG4vJphSx9thpDjlt8nXG5yyhNpt5dBDnDwyB8ral3pBmQfk7vfRn5+t8/eq1Wq34mZ/5GZ588knatn3W7775m7/5OdqqF/56XjQgX/M1X8Nb3/pW3vKWt3Dz5k2+4iu+gle/+tX843/8j7l58ybf8R3f8Vxv4vN2xQvdaEOZTCTOZW86BjqdFMrGGKYYmSYTfSIc9iquHJmqM6ThMtKhwkDlydaOYU9WjGbQBWRkI4as0wBN9fMNH9gKtV2S/StAdnlKpexwRc3SDbnflfajudKPNBhyeB6gm2ZjNRkdCsVue+NojoU6DEjNgJiQeckmIzmpdYQBubF5O5w+z+CicungjCuPnPHU6T737+xsG50qaDq322OPCyJRN8VhM/J7mz43VHb7s9SbsSi22Us/2ITN9C05TKGCeaKCwFoVCtZFucAEy8mN3a2IOos4TWtI2DxZT1sLYod+lr+XlMXRxqv5YZITsqMh5SFj2Hg27dbKkv0WblYUL1kSTis5yMT8/o2aC5aeNA0YMppTJmJvdNyZTPszjMeYCYa0dJgLPeGw1ePy8UzODInzIEpHUCFlekN9YSvkXz+qqXYocgCkjyo2+pxLUMteGJ/GBpnG4muJo9s9S2pK8eE7uz1eAKY9zJMKk9Zizjxh7UbNBq3d2hvnwiZlPj2gzz4PohEtAsZFiqqnOyrFrc7NmLFhRE6m+zUxGlaPBqp7jm43UZwaijMy8qAAUdujQi5Btx9I1o2i7yceugDANb/h4H1WlrJLOVwVZ2ocymOD24iSNCB2tlOxlxyjYHygArUHAX/qpEnJ2wHK9iCJzmW7TD1qDHYJ9RUhYG7pcticmh6/gWYK1W03IiKw1W64VsiFLFV1DKYqkpJVfz6JuN2Wvihxp47y1BCm0qMUZ0ozT0YNVZhqHz0Y2jfQpkb3uiZbWLf5i4wP0MxGhCURjd6jumeVdJ4MtoaYHIMl8UAF7bKNrttkJOtiIK0tfp3pVdEQ9gJhZpST4hN9AeV9S3O1J07MmDIfi0S5NHSLNDqA2VruXEMwYZwIKXG1EdLSGWxwOfPEZdt1nYdM4mg/HDu5XMUoGqWfdIROyEgq0lbT0TradYkrg64tLlOWGkc4KjG7ndCGZQGzHusTIWzzgx48R0j5HpBNTgja7jCLpKSGiDpTs2Km2ubr1nCvYuN1L/BRzceZKJsDvZGEGnwXc5Mj2p6pgq6tCUyB0KBhkPKCn/bnadcn/DX/913vfe97+Z2/83eyXq9ZrVYcHh5y9+5dZrMZly9fPm9AfgvredHuf+ADH+BzP/dzAfjn//yf82mf9mm8853v5J/8k3/Cj/zIjzy3G/e8X3mS3WX4P+sMhlDBYSJn6i01SA/IVqhRhSLZgncIZXqWUDqKXlC8JIcQdFmMnnIoVdZd6H2fnSmS8qRdE2+F043ZDUUS8jE0ALWT6NPkwjlpCkabp8RVwFa9eMalRIxXX35HVo6D/uFXuZikhOhgjV7DGORkVKStO1SmG9n9VvtiYzGLDhY9Nz92gf/24Ue5f2t3pFjFPhflB3p8mAfMbjd+HYMActyv2R1qnOzVQjBcEeGoZPH/m+Hy9K9atGoMcuNnvdAAc78ERNHpG6+p37xj8tBKny8jVSZBeXGTERuFTqZBvwHb7yMXyqnPn3XYVxMVwmbYjQ8+tnO8+Q3vpq2VUzFShyIqaBoLsyDqUmdUyEc9jypgqiAaTRlldJAtPzEQatmOjsGFnRoGW8ph51mi2Ikcz/pFgKnC6OIk4U8ddu2YPFEy+1ghMW7OJzGD3S6aTM+edIQKTj9FE2UFcBrlknihiXLe8aJKbRRAmBY9eDnLmWhECUlCs8iapphpVrG3FJMekpAVjKhs7aoUzSyjQtaHsWFJ0dA2nvDknOqew2cnqn4Gm6tJoupdWeHaTgLl2XWd+36j3/UzuOnFRXrYdywfFSoCsPthM4ItJAXphanMLCb3RBWqLyaaAwXtuSZP/VvRfEzKIvPNVj+xuRZp98mmDxJ9xyIjGbVhesswvWlyMKCh3wlsHg74taG+1tHtCBGQs5QOuXY/H1u9GWsqk9FUt1Fuif3oTLbbnjEYsDjR6/QZCTC9ROmml5A+5QZoKITLIw1CBlvvMEnjdtguX0dT1r20OU8DIUIpG3+EebbqzvsJm8bvhmjodiL9jsJKTVJjY6IE9naVp/pGFDkTpYOxtXQuumCooRsaQZL2IwjxoFSjUx6pwevnomgNlFfTa1vcWvcAu7HYo0Li8LXydbpNQTiqiLWn3xSkVhQrSDJNOFOGB2tHvFMpx8MkXBVGum1a+awLlDV2v/IPTIF0cUx3M6UuD5BIRgho1rLZHPLJyuGPPLa1yn7JAbi217U6PTBQSkEGD4NGDtg6Y2UESD80mCpkelamk1lps2ypjtX4xIt+5Lt5wa70Sfrzv/H6U3/qT/G7f/fv5v79+0ynU971rnfxxBNP8NrXvvY8Vf23uJ4XDUjXdVSVuKT/8T/+R9785jcD8MpXvpIbN248l5t2vs7X+TpfL7h1214DFEZoU/Mcb835Ol/n63y9MNf73vc+vuVbvgXnHM45mqbh0Ucf5Xu+53v49m//9ud6817Q63nRgLz61a/m7/7dv8vP/uzP8h/+w3/gK7/yKwG4fv06Fy5ceI637nm+aiex3eCelDK/32SqQbulBNjejFO7EQkZHEXKND7GrtzWvrXPU8fDhvrudDvdR4jJIBROD05KbM6rsChNPCIEoFXwl6kznaUzz0ZiBjpEFg4nm6Bx2HlHuddAsFvEopBo/cYN2eICskVduxyOlfJELE9Sp0E848HlJFvVmGzTyiwoXA40zWszl9gI9k/5cw90MH1mg71XUu41pGApLtVbZGfej+JwoUXoM2/c+D3FYLj4Kfc4+/yNKAwuKQ0c0a9IEDtZ5D7y6puyyBwCBb00BvWylI1nTgyODtKHF6OYfZzOZ8SINKSoC5FxMyWpX75you9hcCZLPCsBHQP21PMv3/+ZhFp2ssPnGDJMzLQXLWsStqGFg/vNgKT5KLrXJGpaOVHmiKvC+NgUTc4hCMRg9ZlBFsaNprKmzJ95k7e3UFaCX1r6WaK+HCmPrZLnBzE9sP/fvPQJu9DtKl+kudLLPvdCKx1NEp3FNpm2lamGyTCmVptO02uzEepC5qWnqClqaEXT6hovfQuieow8+9plzUggrgrlqGRanPOR6p5h/gxsroh+pRwJQ6gSfqWJebcTsQHWr66Z3rBEB5M7mrhvnniYLoEzcDFcBwPrVzSECZSnQgZcI/rUgGTUF6RBqI6l2whTISI2P3ZyT25OA6WpPBZC4E9FqWoPk1yYOj2+PQyUJ2ZESPza0LysxraW6rYyKuYfLYTmtLC5MiSkC60Y8yDytWY4nget1u5HoF+EUUPRTyFWOgdsN9CtGGldIEOM7iBga5MpVtq/LucmubUoqe2+QghdI8THttDnTBihQDmTKNOu7Nril5ZwsaM80jEZ9mR2YDshkQD9Xj+GEA4uVqNjH7qO+1UWPuQVvWhzfq2slOS03eWpjtPqph9F8cnK6RAns4AhgLHbV36GX4qGFHZ63NIL1cpBo0OeDY0VMp0YczoYEXEdKyaCuT6hPyvlNrdR1k9520uM7xNu1gPSgKRM/Up7fbYcllV4cgl7rxg/55glkhF80zEao9AbYr6OmSFjabjfDVTdxmY2gCXWfnQNBIS8jg5+Oh+tT4TO6ro7XNuHbXghrnME5BO+iqLAZErAlStXePLJJwHY29sb/32+fnPredGAfPd3fzc/9EM/xJd8yZfw1V/91XzGZ3wGAP/6X//rkZp1vv5vVi4E3ZmlOFFD4o89F95d4M9UHKlAzbaqQ8hdYjwCTCudQJgpx2AMZ8rpuOHuRDeQwXo0Nwxm4yhvFWMi9JjmHQz+1FHdHBLRP77RkZ1vDkpc9OP/H2xyUhEJGy8rW5Ny0rauiHbay62okwtSMrB4/FQQv4/bhPbeYk49zHNg1iRsm5YyiiIUH7gxDVaP+cJrDFtKUuNE4crC4XjQ0a2VWTB7x1y862lPtdtgiojfa2C3E20tZx2kSaYhAaebCYudmgsvOhIlps0uUzHTgUj0+z33lvMc+GeZLNqx0TTZztIMDZ/JeRvR5KT3/Lkai90M4s84amLiSryO27f3mFzcqIGwjFQG7QB9H+lis23CBpF54lkZAHYSRrqdtv+B1zDDPxBFK+bnWggncuQhGOmWWkdstpkCJmcY2Gmfv7vczOz0owtVnES6/UAslTHSHkTsUYHbGKqnCqZPe+oLOobdBjUmKz86HtlsHzw0Su7aWo1zUIFps9QjPeDSw05H2pN9a6pyDk0wYxK0ze5cQ0MXc2NCpfexPo2uXQNvvT2pOPxF/Wx627B+vBd1aSFxcSzABFF4QgXVr0xkgVuIpmUDpOR5Jh/jhzvXsT0s/nvF8rHE6St7YgVEaPZVuJJkYTtoL7odNSMh29Z2CyWvdztZBO2gviwXqFip8XDrbDdb6Dwqjh2bq3Lhaw+DGqZbFXESaS5JX9DsJ5oLgVjA5K7FdtDtqdC3PSMlZyj0SWpOQpU4fmWSbW0OHUweihN9hkEvFn3KdKoc+pepemGm4MWhmI/ZPKDfSTr+g8HXatTCNBEmyrTxK0NxYukXkfKOF50LnTPtxZ7Z/1VSP9YRFgG7zEn2s4Ct1fi4HIyaPDSXlNUUZvlYyY1eLNPYIIaZBPtyisuPqUWpil7X7X6u7yRMJb7HJvyJGymZxZnBnznpdko9trhbKOspB//ZjYwbiNJp0dm8TyUgTzZhTj2pSKOjYSrU0JV3Hf7UjeG35X0Nb+KykG161lWl1m7pkGUk7EiDiFXTqDBH2cGbzozHWRwowQbdjyZZrP6gVguwJ4XorU2+1nrRQoeQxEGvoiYqYQqZbrBxDxh/ZCev83W+8vqsz/osfv7nfx6AL/3SL+U7vuM7+NEf/VHe9ra38ZrXvOY53roX9npeiNC/5Eu+hLt373J6esrBwcH487e+9a3MZrPncMteACtPgfyZboru0gZOKsIkcf8LWxV1nVH91+nxqVP2QZxmMfcs6HG5t6DWzSsN4m+rwswuHWEvBzZFNC03ie7hFn+rUAaDBdDz4uWG5qzA7rWkVUE04v7a3igcsDdgVWwkctEw3AgWcn8Z0J3kdQOp9mua0wo3kb1V9Ak3lfjRlJHTu3PtFsuYl2F6o8lbthM2jtH5ScViGv/Wk+MDDYm2kdbiVo4wWPButL9SIU6121j4ivtUbUF9VtEsS2wR6Rsvnn/MXxYobTg3NM2ypHVK7i4mPe2moFy0TMqOtvO0tefi5VPuHS+w90rSpUaoh8n6mATFtKVvHLsXlhzfW2xRnmnA7ARS0FRw75Ezzk6nEly6hLGRVOUGxkaadZEbjzxhTHaceAIZEcrHXURNSG3HZkoWxvk5ychNbHB4aq0K7Vxku2l2nYn5tSZ5n0Qorq3l2FWoOUy5eR3ctYxBYnOLrJKHdPsEtJZQ9vizgu6ichnAUh0Z2l1N5f2Zoz1UanacRlIV8JNAaLLOo0jQOLraobBFtjbI5Mbv7IFMl0EHlH9PbUl2m4UwimFNwuZQxeE76NcZTXJCsNJJybV3wPFLLc2hDsXZk55uzmg2IRRCCES3A/XVwOS6HJjsJtu/WngmlLyoqHko3OYDlxLVXaFfk+seE2D1WKS6t3XPsg00F6Sl8BuoL+r4Np3EzmYjB61+moP3rJCZMI3YKmtLMoKXnF6juxowS0d1zxJLaB9pYekoj5Qq7hqDa7LI3KrBKU6ECHS7EXeWnalmcp7zJ45+pgLdRPKwQ4J45YhALFRkmygEJxbk7I0kQ4wk3YfbSPsRyzSex8Wp0JjkoJ8P1wNpMEB5KLYxFGdC2vxK1wm3NtjGU19Sc+6OfM5WArtx0gy1VtfHPMCxnfJqzFKmIWEipKW6Z0bNjj/VfktBjVW7l7U5OXG+PLLZ3jfhci6SaS3dxQ5/JGSkW+SBTZtdsqy+axOMmoCQtXw+aRB0XOg+MCCATQ7QHDI7fBpzSnGJ9lKPP3GESk6CxamhvOvz9xG2dtr5XCHKcWwcSkS2pikxI7RdTpk3jDpDZmF73udcIFsGXZesnBJNY7GdlTsijFq8MTupjMqpajzWBZkHVBlByTBZHIZTL8Q1BNB8ol/zf+P1nd/5nZydKSzpr/yVv8LXfu3X8o3f+I289KUv5e///b//HG/dC3s9b860lBLvec97+KEf+qHxyy7L8jfcgDzzzDP8oT/0h7hw4QKz2YzP/MzP5D3vec/4+1u3bvFH/sgf4dq1a8xmM77yK7+SD33oQ/+3r/nDP/zDfNEXfREHBwccHBzwhje8gXe/+90f97i/83f+Di9+8YuZTCa89rWv5Wd/9md/Q9v+m1kf+4Y/AygRmFmgXUusnKookfMQ3BcN7sUr3QNaFV4jvNo+MPkaUA/7AE0r3ygufupd/X8SxslTyna6/TzTEwbKVxlJq4LDx4/HZHHTGzloXd3oNXa6UcxOQha5C+U/2GOPWeYJ+iTi73tMZ+luzuRydFTlVN1EPNVnJmecjDSBYTpWSRQ5FIhjGJfZiufHRN88cWcQgg+BVVUg7PZCXR5YJiFB8SRycndBs8kZG3mCPwgb4zyo2N3Pgu+McgxNRFd7utpjXaTbeE6PZjTrgthbbt/ZVRF8qVHxm8Wbzkdi4wmdw1g4O5vmG3PK03gjakHQNpyezCgnvRogkpCf/Jm1PaIIDciK8XFLS3jwAw8NQWKkW40Hy5BSb5IKCx9lXbzTMpoluAR3KxkGWAnNMYm9/1oy+VgJv7SQjaaRUQAbBQqm3Kyk9AAiBfp+hm2sIqZItJd7FSO1JRaJ5UsC3Z7EwmEeRxqIaQ3Ujn6d09TnQvxIOk9MNjUw2ZY5GaDOadzz3LifKqPEuLi1ek5GtKpgROHLAvgUTXbmycedT6Kb2UTsHYcfsKyuWrkYha0FbndBCfMghCIWQiQw4I8d/VxDiOpIU/Lk4UY3BeDy5K7O56jg0jDJlKo7VqLx3W1aeXmcT6WMkLiNkr/LEzU1Q4hfcyjjB782FCduzMoIU1Efi6UKSnuW91Wpz+NvlrjDdhRst/txFJCHMlOSelGNsCkHAOr4shuLa7MA22ZExAp9iZWOSdvl65tnvK4ImSU7UgllMd0woNBx7JZb9GVMOA9CGkIlYTpRNDIbckaKS2qGghoZv86Iy62Cfr8fMzcGVzc50pEbupwhE3Nhnw0jTITmQK/V7SRiIWTKJGguJKEiE8DKQMBlu2TXmPHabnpDdbMg7IYxs0XodaaOWTVksYxqih4Q+rP2OgdKIeaDex1zic3TJCgQdLgUdNnO/XJHd6ETSl1kytpOFsLnvA/jhNIOTmF2nWm4bivoB6E6wBjOmKoHBgwGhlBdE4wCSPP5mryQ/jgLFBdqXYtywvkYLmsS3Vm5PT8zzXaw6E7RbtHx83W+gNe97nV86Zd+KQCXLl3i3/27f8fp6Sn/9b/+Vz7zMz/zud24F/h6XpxpTzzxBK95zWv4Pb/n9/DH//gf586dOwB8z/d8D9/6rd/6636do6MjvvALv5CiKPjxH/9xPvjBD/L93//97O/vA2pyfu/v/b185CMf4V/9q3/Fe9/7Xh5//HHe8IY3sFqtfs3X/emf/mm++qu/mv/0n/4TP/dzP8djjz3GG9/4Rp555pnxMf/sn/0z3va2t/EX/sJf4L3vfS9f9EVfxO/4Hb/jt4cjWIXRPYjhgh9Fa0lZK4FNNMcV9lJD3M9FtGHUXWChfGyZ73R2RBCAsVG5fWNfzcVAbZoG3cALUXrc2o7uOiZPpe4/uU9aFvJbzzSh0PiR6jR/yo16hZiLObt2mLFJMpgThQXiEouPWWa/XFFeXWPnnYrT7JSVEmN4ogrhPL1OZK3LA58HsgtUplNZMDZmNMSOTcjwfGMTbqD/VFGakkmesjWO4pGVpnGtik6sqBwEg/UBN+nHQlP7PjdDvSV1jnLWUUz6jDyoIBh408M2pwfTxiN0G7nMhMYp5K6zVHv1WNzaTO0hW13GxlGvStHYMLipHJoGepMKaJsL/wcq/KEZ6XKD2rgtylI77I08qiQ3bCZ/dqvX9pN+RADMYIV8pcbPO1nr9o75ByvcG+9Rf0pD+2iDv17hn54o3Gy/1fE95gQkTA5MHGh7KU/DB0QleeWgDMe6yaFwNk+JbWPoZ8qIwOUmqBY9ym62BXWySUVXRuQm130OfUsj95zs7JUympEGB7T8ndkh3TmjVtZHJU7bhPVy0bJFZO89JcevTKyvbrUXyakY98fZIS4x5lIMk30Tt45V/VzPcQ1c7xVG+JA7YfGEpTlIuKWalOTVZHSHYUvHRBQuvxZ64df6+dYNCoqVfj7qIAY9woloTiRpSAYKV9ztx9f3S+lP7Memo9ajuqfvY/WSbjzWY5mzMIbJdwBz5rGtMjT6HVn7qnnQ334p7UbMxkuuzZSybIE7aDCSzYhIlRuywbq2MfT7QaGZO4n2QFTGMNO+ri8rADFU+tNPRIGLlZrZsBto9/P3UiX8kaffCfq912cJOUQxLOJIZbVZUxRmcWyGfE5BL04MxUrfKUlUufYg0i+ikuWnar5CDi2c3TAUSzU57cWwDSEt8nV3JxCm+ry6Lsg5axwADc12Y7eDq2EwU4uu6IYBTBGJk5gT44GVtFDJaDu7nS21zIwNjj5z8jrvhmwfUg55zHSw4W9yw8KQC9Q4nV9dRpImcYuY5+udqS3JJrqjCjPrpRlbKrNkCMA1PiO3GyFP4/Ap6doxIuEvwDXcrz7Rf/53Xl/2ZV/G8fHxx/389PSUL/uyL/vt36D/hdbzogH5k3/yT/K6172Oo6MjptPp+PPf9/t+Hz/1Uz/1636d7/7u7+bRRx/lH/yDf8Dnfu7n8qIXvYgv//Iv51M+5VMA+NCHPsS73vUufvAHf5DP+ZzP4RWveAV/5+/8HZbLJf/0n/7TX/N1f/RHf5Rv+qZv4jM/8zN55StfyQ//8A8TY3zWtr397W/n677u6/j6r/96PvVTP5W/8Tf+Bo8++ig/+IM/+JvYI7+xlVoHrVUBn3MH/H7DEE74YGJ3yJQsuxnEHzCkV9en1ZienfLUnGjG4D8ytcMMQvbh52u973ADH6ZUw5SZga87iN+XDlYSCK6vRaoLG8YMikrWrGGmZsCtnHQji0ByifYLzli/sqG7MZP14mD/++BNI2oaOEyyTL65pKGAhi2HeMgzSSr4U+vG5kh0rUxH6pwK97UbNSgpqhjEJ5qzithbbNXj5/1IZUoR4mlJPCnzhM3k4j5vR07sbY4mtOuCUIuylbKV7a+mBdhsfWuKKDpPnv6RP0u7KYRKlPHjP+8gBrcJP+nGQMJhm4YmCwPWZUrCmVfzkXIxHsx4LNmjApKhP+jVvOWmTQdabu4MhM7hyri13QyWUHtip/2FSWw+Y8PpcqKi/H4pasyL11A7JZhnLrkpVMynYLfC05jRroEnnu2hTTBqpvN01HQmB1pCf9hjg6ao/khWu6mIaq7KSCxzinSRbTxzMdwvRNkJUzXqar4jrgrs/LLH3y622phcLA3hiLJVTsTGP3AcSCcS70xYX5WIvFipkO7mKjC7nczTry1hHnGthOYum1vZnpyB8cApUMCNeADANbNk+aI42s1uXrPBdNBe6WDaM82Cc9tlWk4l297kVciHMlNkcoHfHKiBc00WfOepuuyz878zpcjdLSR6j9AvJBTvF3FMEceAbQx7v1Dk65QaF9sIfRi0a8lCvxsyVUxFfizTuA/62YMW44zBfuVJzhgx2wIbGG1d/Zmoa6ESwpIs9HtB168ijbqJ8p4jFUJABrvebpFpTxbcicIyQ6bBpULHul/ZMWvELaVfS34YCmlbRRPU9vZzbW9zraO+pgFCeaxm0SShAXEWRuvi6BlDI1ePRtbXpCuxa9HMbM5kwiZZFzdWiFLeT+1B0GMGHVeRLc6LLEh3SdeTnDcUz8otvTVkm+95UICmT8SZmi4slHezJXypxn/IViKp8bMDKmiz5mNtdUyEHAqb8tCgyoh7Nqpwsw63144IamycGnqTSDu9jCSMBi7GJenEku4LdLnJmvdj4G2s/ThQeZAee77OF2gA/avDBwHquv5tYbn8r7yeFw3IO97xDv7iX/yLlGX5rJ8//vjjz0IZ/mfrX//rf83rXvc6fv/v//1cvnyZz/qsz+KHf/iHx983je5Wk8n2Tu2coyxL3vGOd/y632e9XtN1HYeHhwC0bct73vMe3vjGNz7rcW984xt55zvf+et+3d/skiBQNxU5R1m602qkpZS3lYlg12pUKLK+IztKJZd0Mc8ZCEDmV2fqSaEbuB2CoU69XtsNDQ45uDARrza6aRVxm+kwCWNOB9FI37EnIXXx0JpmWWpqPVz4i8y331hNUH3ELB3+2NOsSspZR9rtxxv3oDkYim2cbmhADnd7YKo10K7MtjnbBg+mrdvLsC357xSB3mBbCd5nexvcrJcAvghZdGxIyRCG1yIjGQNdbWgIxiCG/BbRSMfANjXYlDEnpltpbZJEnGGT0aOwLcr14vp9CpkClWkf474xbAPBEvSNH/ePdXEMQUw5jCxFMBamD60kzvZxnH4aLx3G5EWnolYZSKti/C5S3GprBsQm1HLKYUAsepkDhI0artg6yjIjMleF4pgnp5paDgYHRSR1uXDPE1VbBDVID5gG4KNQiSLBTJQ+fBr58UQ5vYEmz/0ii8AHOsYQWghjTo2tLdU9TXhTFWEnGzXUDusioXWcvSzQX+62CFjWyRgX8fMOWwRSBFv1xNrhCtEkU9zmeLQ7iKq00XHR7+S8kXxcupW0B67Wd+maIcRPk+4hFNA2cHctB8GHipryyCon49Rin5oSK5g8U1A9UREqKE5z6F7M9Kuk//fT3IjUanRiyTjlH5LB4yQRpozH9ZBMbnv9rltAeaTXbB9t2f2wZXY951qgz7t+KG2fbyHMJPw2uYEEISz9LD0LselnerzfGPp5HLUbIed6wIAIDccMz1rJqZkaCvCw21Pd9kLMnLQmtjG0F5VhM+gS/EYi6bBQAT8kumPU3MZpxOy3Qmt6MwYFpjLK/Wk4rlFjZFt9nwNlyh97UetyYxnLJKeuaCjuFTJc2Msi9knSZ9/r1GROo6hLTvqcOAtZn5M/dBD6QEJGIjnQ0gSDqS1u6UWlHbJ8WhksmEhu0uUyNVB2TRkYs4CSwTZCIfp5NgIJEBfSZ5jGwjSMOsCUUZQ41f5L+dIZi0isFDAaz4rxXBtc8kIOKZ3syOwj9tnJqnGiodV2ROFTRsOxSch1q0GT8blhcUn3PgOxcxgbecGu9En687/hev/738/73/9+AD74wQ+O/3//+9/Pe9/7Xv7e3/t7PPzww8/xVr6w1/NChB5jJITwcT9/+umn2dnZ+XW/zkc+8hF+8Ad/kD/9p/803/7t38673/1uvvmbv5mqqvjDf/gP88pXvpLHH3+cP//n/zw/9EM/xHw+5+1vfzs3b978DeWN/Lk/9+d4+OGHecMb3gDA3bt3CSFw5cqVZz3uypUr3Lx589d8naZpxqYIBOn9plZE0HO5LfLd2mYaSiK+ZI25PRlvyDR67OD+M1iqpiLfLAeEA3TBDgrwS4etEtB3kgp22BbYWVzIymfUxOumlba1ODAiKUQPRaSrPWy8miibKSbBYGc9aeWzva+QkbATcXdKmt0sFh4oAkPabZ6w2zOJPvWG22n0CLVHCaQnh0s2N+aY3U5F7dABZerUg3aMZpjqLnrM2rM+K6CK2NxIpWhwVa+CO7/HEHwo1yS2jc9gfZxRGCU2533Zb/frsC3Ghsx11t0g1h6/02qy/sC03TjdbO2kz6+f7+YG2QhmKlXqRTFL0RA32TYzgruyoa/9KJQmGepVKQqRTcReN/3Bralel4R1gV90xGDwZRj1GV29vbSkXoLsa4/c4/bxjn7nc/Hik1CleWB9Z051YUNXex761NvcvL8Lx5U0SVk7YoqEK0MOLrTE3GUZl3SfHG6YRhbDoVZacuoNJlo5kgUDZ16GAp146NGqEE27QWHRGXGwLaS1prjdjvQHzQ5yx8oGDnEph63NSxtS68bvZgjeNFWmiwXRsWJv8AsdczFY9n5mSn0B1i9rcXcKOVk1Ssk2tR3djVJSIrbbbNO9XaNtSlaBe+2e9nmYwFN7lwF4pOjkUoWm7LaHdjdRHRvW1wK2s5T3NZHv9gN+5YSItGpGok90O2pqfa0mqTiRZiI5lMhtGAMKbSexdrJyjIoeYiXXp8mvlJy9JFLes9geNlcDkzsOm+1lXW22jbNXE2fbTN/MTWfyZitaDoN2IrsmWelS0ENpDmBy19AtdI7ZRts3FPpuIx0KhSbfdu2IOV28PHK0D3W4+x5bK8G824nYztBcCPiVhjquNthOjaGthZSlRYCjkmJp6a622FMvCqOV05M/kjtgrB7QIlnpMlxGYtI0EotEn7Uopjf4UyunwnJw+WOkG/o7JbFK+dqPXN6A6BLlwyu6sFBK+jxu7aV7UZ7Gmchw3ZlG0trpNYzQpjhXYKboU0lNTNT5nUqZlFAm4mEHS095bOl3Moo4BNYGo3BPg65HnR3pfckmwk4YA0wJ0ixRRiG0KQ9Mivj/Z+/Poy5Lz7pg+HcPezjDMz/11NRdXVXpTmds0qYDhEGjvDGgDEF9wQ9shCAooAEJIL4Ysl6JREPejyguxYiA8Gn0ZRFRWAGMDIlBIBISCEkn3emp5uEZz7iHe/j++F33Pk8RlAY6VBWpe61aXX3qDHvvs8/e13X9JrhpBtt3mO+XMD0HP814XSo9Qs/zdyfaq25AIUObNKCKVoYpB6bTSZLOeUvMZf9w644I/VlbL3nJS6CUglLq96Ra9Xo9/MAP/MBN2LI/OeuW+KW98pWvxFvf+tbu/5VSmEwmeMMb3oC/8Bf+wjN+nxAC/tSf+lP43u/9Xjz44IP4m3/zb+Lrvu7rOhpUlmX4yZ/8STz66KNYX19Hv9/HL//yL+MLvuALYIz5fd6d681vfjPe/va34x3veMcNSEra7sMrxvgJjx1eb3rTm7CystL9ufvuu5/xvt6wpOHgRsg0tB94UXUK6qk+ebWpnlaAGcv+WimGdUR2PUNxxZLmMBe0ZC60rlYxEboywJT/xtRzQTo8iwIzMTj2Xk3ReUTHQ17QUsSNxHMCjv2cN+08ijDR8MYxI73KHNguJ0SNLW0jIzrhplKAWmq7zArTc1h97i51MQELxCMhAYkmFID5qER2pPq9bzgJIUJc6EcSkpGaroqT+0SlCa2mfkMu2DEN0tL0TdxvYjxEw5KC/nAj0fGuFV/c6TFkH8yghd8tkPjM6pAeQSXdx6FCXP0u4Xhvuersbcv1OWIRUJycQovw3thAXUljaBObThvRL6TXxqiweXIfg0GFst/AOw3fmk5MjwgMlisY0YBcvLoG15AWEZ0CDGliarnlBDUPaOYZYlS4dG0VNvOwa9Xi/FEAvIIf5URQIpD12k7I333HUkX5lOVSCc99qV1Q0rIomSx8nWpYiKEy1DI1LGbdkML1hCI1mzyvzNiyORzR7Wh+VDQerTQagkjaPlEdP8qgbez0RAAbtXilxP79Ee0AMDsZtQmOBR4bQzapynPf/DI/PxuzkE4T+YRSMPGbX/f46VMAgOMmIp/VIkYmMpAf0DK3d8Wgf1GhWacoun/BiEAcnXDcVHwuNIRqxa/E5wACUOwC/ctiG1uwKYmGqezNKq8D8y3SmKpjHsV1jXozoF6LtGzVQLUVEHKgXo9oVsW1SNLXyc0XOpHoa3g8eN3SjVAuRWytPBb/L6dEali04+tCxt+wLyKQBZgRhxpQzBbRnuhKdjXr0s99vvgtZCMDtxSQ7yu068z2SG5LUQNm13bCcrOTISo2iGaqkY2YiJ40HypCKGMRumFBHgaksyqniLz0Qtc0JRQl37bwfdGwTI2kubNZ0CdmCGVgs7NvUV/td8gIAGbYOHHikuOkBVULWYAeWWjHriQhNEpQS9UqivZFLE5XxcXgCpHXz2adqeP5daaUQy9q2UTNRfppiR03NwSdrhAR1GZZXn9j0AhOI18iJUbnHqHVMINEKRUdZLpmyqAFc7twOgxsaO2A152owQYpgk6Jh0037qxP2fXkk0/i8ccfR4wR73vf+/Dkk092fy5evIjRaITXvOY1N3szb+t1SzQg3//93493v/vdeMELXoCqqvAVX/EVOH36NC5evIh/8k/+yTN+n+PHj+MFL3jBDY89//nPv0EI/tKXvhQf/OAHsb+/j8uXL+Pnfu7nsLOzgzNnzvy+7/+Wt7wF3/u934v/+l//Kx544IHu8c3NTRhjPgHtuHbt2iegIofX3//7fx8HBwfdn/Pnzz/TXb1h6VbBCI3AjCyLOXGXUhFwqxQkxkKExDoirDJ3w4wkWE0m/m4oF/oskqolhRSc4v9rebwkNQRCt8mvWxx7t8bRX4voXWu7Yl2vNgubVgDFVfIuYiYCxowWpp2WY5kFG5zcLI5VFH0rwvQxPfcQXSrpAaAZALdzaYVajkQfSOhG0iAAnUVqM875PK953BC7RmlR0BLhUBO6TSkTu2lhbDXiNEMcZ6QhJcRFnFdiairSfxM6kgpmDaI3i7r5EAoSiQ4dcuiCigwnXGu6ZjO9r97LxBoZnZC9Q2dK3yE68/0eKQuthn9siRkFTw3RXO0j77cIcvM2uYfJPIJfaERiVBgusSlQKmJnewmzeY62XTRiStHRSemI2aSAGzNkMStcR8tSuQixzaEGSxCZ5CBWH5RwM7qKdYGShoWJEgpGM85p1RukMk7fm+QOqCxADVvSRLwcm6B4Tol+RqVpu45AT0IJs8iC17FAM3OFINkfqu8Qlh3gef4CAAZiT13KtFYJ1Spxy5faG78v+X7zPZ4LzVZLRKNamDUgAnGjZqHci2jXHczYoF0mHaZdDnRnArr/Riv6kaWIq6tH0ERAK2BlcBGIREvyPRb8rg/M73aYnJbAPCnOAaFfDZhXEXIWyK4f2XRArF3lkM+PRTSri21wPdKKim1F04hLQD5SaE7V3XtnY0EUVgLaYWTWhYnIJgrZWMGItXW06FypfBEXRXnGfY0ZkPIuIEW9z6XZaETD0qNw3sypWWHWR4Sd0BI8202WysyP0TI00S2REDsTupCV70ehywVphxFwzOBABGIZoBsFv9VAeRGXixaqPtVAOyCbENVJeR5+4OGHXs4xiuPtnoWZ89975zPAUJviVhzMxJAWdoJFeGpe4ooIxE1EuNSHmbJJCDkbG2gK+LXQU1OQok50rT6vs7pm0xfkGh4yIm+JgutWPPwgIKw4wIB6QhmyRI2OzqQ8aWztsvxm0+fm3IaU8aICEPp+8dvQcRFc2yqi8Ek2k1HD5VsN32iitSbCzyxs31GndyhANGU4kR4XmUMi1xO/W3T3jbjado5dUBGnf/SZ1x230upmTc/yn0/Fdc899+D06dMIIeChhx7CPffc0/05fvz4Mx5a31n/63VLULBOnDiBD37wg3j729+O3/zN30QIAV/7tV+Lr/zKr7xBlP77rc/+7M/Gxz72sRsee/TRR3HPPfd8wnNXVlYAUJj+G7/xG/ie7/me/+17f9/3fR/e+MY34ud//ufx0EMP3fBveZ7jpS99Kd71rnfhS7/0S7vH3/Wud+FLvuRL/pfvWRQFiqL4fffr91u6FvtLE8m1TVxa4TGvf9Dg4N4IVxBy1jODkAXAgJqNKdEGd7TB8toMo4vLUqih82tPCEVHS4qqo0QgKtgJsPMijcEDu7h7/TqeeuIeRKPJ31VsOPTMsNCZGuFXK3FSUYup/8x0XOIYyP+N4oB02BI1KrCxEY6vysPCYSn3UuRr5GsV6oOis91lIJVGCAsNBIReBQ1yg7NFw5SaEGUDyrvmmI85co5Bbmp9xwmgiMBR60UA2Vq7QF/S26Wb4sQiLruuSMah53FCzv/vbU35mSlvQ3OjfPO79CQKwFaFLAvw8p0pExA808O9NChh1dEW1/LfGDzZwrXkZ7fnh8BWBdQGwUQYC5jMw9gA11ggRkzGJd2dTIQKUWyAD/notwZqbBFXWh673EObSHSj1bB7FnbGADV9vCLiIlqRIHoXtBp2uaZfv11QwmIA09GXW5jMo63luy0WAYhQEO0FX6PElSsiSnAlz6PsSIW2sghj2zXo2kToEQXHfrhwEnJDIopKs4GJEbT8dbqjP3bnjUK3P9rQLCAGfQPKpXVEO8lhLd2LwnbGoL81z8Ymj1AVEcK47ODHFvaAYXLKK/gcsBP+zttl0X8pLZN7oHdFATC4cEzjbBZw3F/C1f4Z5CMGGrI4BNAqWMmhcD3AmMWUOhsJklQAzQrPMV+yMUPOv6emSTnaxOZ7CtVWRNys4ecli/4cqI47ZJcKpokHoN6k1asZWYR+QDYm0prQk2RZyxwPohzUIMRFMSpT+VBEXj5CQmjYyHQNeDd15+uzAwXXF/2IWMDmu4a6hCxpWGIXfhgsQxV9Ebtt82Xstkd3IvLAc8FG/taO1rAXS7ijDdBo5BdzVCdZ6PbOW8zvdigvWkAx4M/3IrDk4I3p9HcUwmuhYGm4VdoxR0XBtLmSk1IVQWRaA6rSCDlF3sozfd3uiaakz2MV0/UW0qzVGtCAnis6g801dFQd4qxXGqgrpWg62MDHVkMVHrFAJzBPjSAKyRiSEEIzNvyeGoUABkumhldFDkxCzsZDtwx4VXsZ7IkZXGMQGgPdc2w0hi0pjgrUxAk107e8luq+h59ldGYsHK9zQ8eBmegTURueS40hRWxigb6Hqi3idBF2e2fdWWl95CMfwblz5z5BkP7FX/zFN2mLbv91SzQgAPl0r3nNa/5IkNbf/bt/F5/1WZ+F7/3e78WXfdmX4X3vex/e9ra34W1ve1v3nJ/4iZ/AkSNHcOrUKXzoQx/CN3/zN+PVr371DQLyr/qqr8LJkyfxpje9CQBpV69//evx7//9v8fp06c7pGM4HGI4HAIAvvVbvxUPP/wwHnroIbz85S/H2972Npw7dw5/62/9rT/0/txZd9addWf9UdYll+NsVuGovXqzN+XOurPurE/2Sg3gs/2en8LriSeewJd+6ZfiQx/6EJRSiOJLnOj1v5d++c56ZuuWoGABwI//+I/jcz7nc3DixAk8/fTTAEjN+s//+T8/4/d42ctehv/0n/4T3v72t+NFL3oRvud7vgdvfetb8ZVf+ZXdcy5fvoyHH34Yz3ve8/Da174WDz/88CdY8J47d+4GUfq/+Bf/Ak3T4K/8lb+C48ePd3/e8pa3dM/58i//crz1rW/FP/yH/xAveclL8J73vAfvfOc7f0/05dleye1EBSzsdQekMg1OTHD3Vz4OnKw4sS/9Au6OoNbiEM//4NpQUqlj5yICLdanhvoNLRPThH6ojFSQUETs7w5wbrwKdZ1WOolKojwtUIsH9+CXHcXxqxRLo/RdxkTMJHvDLqaJAIgARCII0UTkK/Xi8zVgLxUIcwuMmXEBw+lms9OjeDsT9MBr8omTla7TwFRsUgO5wGokvvEJHZEx6nxUAlBiOct9Kp4uaK9ZBhTXDJaOThA2Goppk/vKIeqVajXQkte9cEtSHYWh+0wZ285HJaCA3pHZwqELuJGWJVP/4IXHHBjQFcY5Hjx7Hv2NGbQNsCdm0NZ36MfK2hQnnncNpvB46PlP4f4XXoA5MQMisHX3HvrDGt6Tc93WFr7VnV2l0hFuki3OQdFoxKigCw99pIYtHRPro0JINsAAtl58DeqFY/iNFqGy8E4jtEashoX+1W+pQTEy3fcL9AOCiARPwX1MdsRK8krSHbMyyPrUB2mxRYbYPGPo4GqB0IceGHoidNcLioGzRepz4qIrDegxhQZJe5P4CabfQpkAfWBJCQRkvzXacQ6fqIAgytPOLYoLGeoNj2qTCdchj0DPdY5M2QHpKRhbIgJhcY6YmvSiZAJhKkWLYENNxvwoRfPvGd+Lfz85jsv5SdipwvykQ33Eo39JoTrTMDU6o2NRKPm+dkaakKnl1L+BAig2ukM622UTseMtgN5V6lLsVMFcLBEMMH1BjfwAGH7ckqIVBUUR1MBUCvmOQbPGKX5yxkIUqhSAWHpq2sQaNliiMHaWdAfoUtF1yz9uwEC8aDhpj4qIh64V6i3fXTftVEPXmuiGJqpS7GoU10WLJvvYLnvYOalWdkZ7XSXBp2Glpe4kj933EbIIfa2g3bPYVTdHeE3WE4P5XQ5otIRCLuhGeifrrk26FXdDBehjc1oFT01n+hF2C35vAy86IbnupUA+GxG2am5jTgpfcoszcy2ufmKvnTEl3neuawtqbzQRuF7CL/kFmhQBMzWiCbSkhU1ERxPBa1WjYQ7ofBdyfm7YYAhllAT6hObgUA3nhx6x0QirLRoJY80GNG3QpYdviH5oG6AsneRM7pn5UfN6lahDvrKigZP7UKOBViNbrYnsVJr3TLlPhVK0k5/iRfedtVjf/M3fjDNnzuDq1avo9/v48Ic/jPe85z146KGH8Mu//Ms3e/Nu66VivPkxM//yX/5LfPd3fze+5Vu+BW984xvx4Q9/GGfPnsWP/uiP4t/+23+LX/qlX7rZm/jHskajEVZWVnBwcIDl5eVn/Lrn/D//X0LlXsEvORbcMwO93FAkLSFwiKrj5SobKDBPnvAp4yPwxtyJGiVECyl0DSAHvrKLXD8JclMm4sSRfVw4v4nlD2UYvaQW73UWG1FHDDZmmI1LfnZUUAMWoQw0FJGuJVUmKizsc408lrIfUkHELWKoVKsQl1v+v6cbVr6nUZ1qF9tuSIdZ6DykURAaVBcUGCFBgFJ8HtabyGuj0+idz5CNgPFLagyWqY2Y7vcojqzNomlId25J9e5C9GQflFBHFs8/9JqkGcBC/B1rI+5K8rygkA0bCSdEd9NVohnRue8ak7zfoJnkUFlAVjgsDSoYFbE37qOdJ8rToeMbVUd50NYvtB6i62hmdKBRCmzODlGQQmM6BxrYgNMntlE5Vpnz1mI6KxCu9BDWWpjcs3gQxy0AwNjCrDcseGyAP5Qgn5y8ku0vatMFIZL2JJzzoGCyAKUDfJtCFMkXSbS9TuSuAFSahYo0j0wRl2JXR6jeIrkcYr2KLEAXHn5moUu/aDzTe3jN0MF0xmrAj2n6UB2ntsOvONKuhh7mWga/wvRpzJOaWpyN5LRJIuCkVTCVfC+SCxJNhFv1sHsWWiRDvkAXxGhn/L27AQXW+Yg0J9eXn9wcaIfUXvmBR7ZrRQ8iOoWRhhWKVbIGTlkhvhdoU1tG6CM1jPWoDwo24JGUH7/skG1L/ofobNio85ilZsQNgmReyG+wCLD7C8qUktwIK05avojI95W4fbEBSaL6djkgG2lSqOR1Kl0yhgFmQm1KdaJFfj1bFNyGjoJmptEue5iKjZtuaVcbytg1atkBHbGovVCIWzUNPBLNbyoaCSe0Mvk+QsEGUqWmL4sLB7dGIzswnZC+3mLSum4U3Kqj9u9YBX2uR1rliuO5GQ5dQ6RJMjM+HpI2L5MhiJamoe4uOGzMSg+7b4X+puDFAl05alTSGDNkUQwb5DtMujv5fCV5I0EcvKJic6nqQw6O6bolQ4asdGimObJ+i1aaCWXk+iBGJqqQ5kOLNmypRdzPgaWWlNoI6hpTkxbA54jRiUrDp6WW98q5AYLCU9/0OvxB1h/2/v1srPTZd3//90D3yt//BX+AFeYVzv/d19+U/boV1ubmJn7xF38RDzzwAFZWVvC+970P999/P37xF38Rr3vd6/CBD3zgZm/ibbtuCQTkB37gB/Cv//W/xnd913fB2gUr7KGHHsKHPvShm7hlt8cKeRSbWrkxHFig9Ii7BdDwRqFq+rabqXixzyXzo9aLcCYTu8yF5OoCxZsg+pLlIcUUnVs4HVa1xpc/8H582596F15z6n/g8x/4ED7/r/8PWvKme5njxX+60+fUTMnr93M6DhlJs44sYlOuyGHXqihe9eVy3TUAVIQq9I9OkB2byWPgfgWF9v656D4UkiAbALUmgjwwV4CWjXE/BQYyCLCbhEWiJdoSuTB5wF98yW/jtX/1v+Dhr/2vGCxXmO71MD3oIeu3CG1KGD70Hml/0t9VXIQhysPahE5Lwe8kSEGWmi5uawoHTBoQlXm084yog0xN0/4qG7rCXumAZpovAgwB7O4MsTvqQ6mIcth0xTrF1JHohVk8FueWnG2nUWSu29YYADfPEDwRjbVf6rEpANBfm0GpiKevbODq9jK2DwaY1zl8a7Bx3w5RmfTdAbTx7LUojs26Zsan4tWGzjpaySRUp/1JBUq7QBy0DdAmUE+StCHynaZ/T/odVBooAq08rWQvQIqnVoklKN3P4BUFslIY+7llIyZNMhPlpWEQJCe5taVcmXo9YPCUNI2thm40zLUMw+ftQU/ZOKLniWgOPcLA090ok+mxiai3vKSHB9RH+X3ke0QieudtF/hHhypqIJJjVb3GQMBszAFEO2ADE6ykqksYabYjblCBWSR2IlavLZ9r5qpzxfK9gGJHc4KvgexjPeCjQxaxeUB5heF/dt9yKi+/Q9+LaFYWOhoAUJ6T+ORCFwuiXW7ddenhUa5TIYM4eCm4AbfLziCZGAvheEoO7xLURduRX6fGpl2KyLYztGvM2Uj6NF2rrhnSjeosgJ0kmydEpFnnuWOnGmHgaVNrKARXig1dKJlz0WlOTs0XyeFedUJweyUnoDvXaNcd3CDAnZ7Taluu/SoNeLYL2ZfIe4BoHlQ6fooIb+gFhB41gAA1eei7TicXMiLqUQFYbhk4qymohwyItOSz+H6AW3ULpNpLYyyolHL8bhMyf7j5SPsaywDTp4NB1/h7jSiOeqbwcI2R3438eyQqqhoFWzhoySiKeUCoaavb/c7zwOemoZOJNAzJBclueZxCJci3jfy93Vl3FkixSlT7zc1NXLp0CQBF6r9bc3xn/cHWLaEBefLJJ/Hggw9+wuNFUWA6nd6ELbq9VjbSUEGjWWPhpGYG2eWcHuxR0fGn0aQ1bdVQzSKZmRN58KLeEIpWTiE7NqN4G+CkqVWL4kmaCSU3nd6xKf7DB18mWxNx7OgB/sqp30R5dIbqoOQNsfBsSJK1oggZQ98jGzbidqRIT2pE1CzuN0k4rgIbqWpUyHQfXWL7bCRTn2TxayPsXVM013tAGUiZ0bw56dIj22rQzCS1Wm5KKgDF8SnqcUE6R+ElS4MFozKhy8LwrcbPfuSF+Dn9Ajo5eRb6sTVo9/l65NI8CCUshT6mqaSS7USUfXGaTxf0wRQOvj70E42L1HYK5vViWirCc/e7LEuSRa1SsaNPmYLOVjoLaGuLlbUZRgc9wAb4FGQoiynkvOmbgvQHs9R2iMRob8DPMb6bXPqWuR+rX3EePW/Rsy2euHKks6FFpEWul+3b2Rt2x5CNhMLSyTFm8xwGFMzHQNF7TJNVoKN1hcbAlg52XQwHIAGFgsgEr9FOcqiMOSXaEu0KnlShfB+YnQzQazUpG3PTgT8hB887merSqlOyBVQEJla+Ww1VEuEINY0MlIrQ1hMpQeyE6Ems3j9vUB2JqDZpKxuzALNnYO8f4WB7CLVZd6YI2kTmvugIFBGwCt4qoAwwuxZ+yUNPDczIoFlnuByd8ehyxMRyoFkPiFojrDqUT2UAKLJOzYQfBGBK6pduue/BkpqiawXtaHjhTUSxozE57ZEdqeDP9ZkC7hTNFU7WaMYF9F6G/st2sPf4GkKfVCHtATOmAUIqTL0IqXuXDV2sZECRHLCCZYK46TmEcd6hP2au0C5F2BF/C81a6CzJYzK3EnqNqelolpAHoj104HJDfpaWwEK35lBctWyqxNqW1rkKqgXadXfIJpkJ6a4fkY0VGkMXr5BH2p2PRIBdKUTNwY9uF9epWDDXosuVqTVNO+byuhlF6cUVi2Y9IDRyfR8GSVxnI2InGkGQHd3wWhEkdNasNHR9ygOvP4Xv7KnzA4VG5aQdHgpHDEUgtVVS53XFfcou5Qg2wg85sFJzA11puCWGMna2uqC7lRnbzuUQVkJwFTrUHUHRNc8vKHVETmTgJX+1hRMbXgVMLFQWoZZbuCoDIAGiJiJbrdHOMv4OI2BKB1/nNJTQbKpVkO1JRigtf5cxymcnBPZ2W3KsnvX3/BReL3rRi/Dbv/3bOHv2LD7jMz4Db37zm5HnOd72trfh7NmzN3vzbut1S/zKzpw5gw9+8IOf8PjP/uzPfoKt7p31ias50aI6TltdVWtkJ2bIX3AAtVF3lobJo76d5N2kJzqFmG5IYrkbbUDUQDPPoOeG07VyEaSWcitQerGYjZhfHRC1EDvbK5dX8c/f9+dQHZRiBwza4so0FVkUa0VOsNtJTkRCR5jllv7schNKdJn0mVhrFpSZRi8oU2MWU6or0COa7d6iGHGkHykNxKlFM8kFwhfPeLGYrCfiM6qiWNnyit7RvoBFgrXoT4LQgrjNCwctlS2sJTtUI03h9CKNXml0xzJpToz426Mm/7mzlm0FqXEKm79uoefiwFUEoMdpcjfRT9uR9C6ezYSv2YD6UQ6TeYwOejBZYBMIojBJS6I0gAm53r4RvUzkc9JU0uQLWlb0C3rUsf4Yk7rAE1c35Xiio02lcMO4WyB7vNdtr59liBGYTgtaBQeFvHBMYwfEhQqyDRF+bqWhEoQni8gHzaH94DnWW53D5KRGaR27RiTeM0P74BT2yJyvKTzPbSmEoriThSySApQodK3u0MUuG0NHoSryfA/O0KUnfQdJc1IZLH2wwOyM63RQvkfNk+8HzK8OYPstp7S1gblQIlwviEKJe1z6LZkdUmP0nIF4plEwM4asBUNUJKVLu0FEsWMQyoDsSgZTA/mIj2djUp7sSLPobakBCYbNh5lKI64A1bLArI55LD1hoB4bIByrYTcr5l1cylFPCpjrGZaeUqj/+wbiitCEnML8GBE6M9NECfKIbM8g3zVwfTZ9fhA6BEV5ULcTFZsP+U3bsV6ksReR+zGSfCITu0BBX0a4pYh8D4iZaCHigjbmhkSBUiig7wdkuxbtMgtvU1HzkYIpVQTy6xbZmAdWNwwo7F9k8Z1CYFPOByCozDBQQ9fwew490XdUmuhQ6aEmzKZRFZvNMPDcn5MV2hWei/ZqjmarRej7zgmMVCyPUASxNic61KFzuwz0RHJqq404VQVS3SJpcTGL3R/dLnQ6iYqaggx9n9d7U/OeoBt0aHIUG/eYsykIRUBcckQlEmXxkE08Q2tsd90GgHzQQBnmDkWvkPUcXJXR1loBGHqonhP7bbmW2AhkvC4RIebv100zsY4Xmm0eOlQEORE1tdRyyCRZIR16crut+En68ym8/sE/+AcIgb+bN77xjXj66afxuZ/7uXjnO9+Jf/bP/tlN3rrbe90SCMi3f/u345u+6ZtQVVUX+vL2t78db3rTm/BDP/RDN3vzbvn11Nd8B06/7fu6drIZFdArFS1wgW7i1NnUmsU0XOkIsyqT3wigpfYCE4ZHqVYhZKpL8U6vSysGha17dnHt8ioREeFv881lklRQc5IPGjTXeohlhNJgoN7MsqgseXNOtooIijoKr5h83WoWlCk9W4G0AaeBEFEen6IaFYhSfCunoOca/kjDibXm5BoAVCG8ahNheo60oknWJYTzSWBDZaK8jjvGifoiYdfv51DDFjFoEadHBKFsKGCBfATSmKCE/pYaENw41Y8NU7IThSgqoE35IipCWSB6TvXGr6qBCwM2H0BHYwqt0IMEXQlBUI20T45IjBm2iJH6CNcY5EsNglfMATl049GrDYpei7rKoNZrGGmygo7IezWF4dAw1iNIpkmeO/zKI/d2XO6ODmUoGNWPDaAC0Jyp0KwB2C5gtuYsAOW7BgDfGtr8SkOoDcXncBpqYrB8zwizWYEYFNrKIu838C1tOwEgtMwKmE8KFIOGdsCzrDuXtFgVD4dz5Mbj2uVV2L6DbyOi0oA30F70BxLkh6gWVtJRipYhm8QUaqlyUvWU8OZjJAIJUIRcr6ffD6fE+VqF9nIfoYgoLxnMs5yFUqvg1hzUwEELQpWaIhQB3pIaZqaSjq4j/NBTWwEphjWTye2YuRtmqmEaUqxUAIo9hXqd0/sg6AMT0Pk7sCONZsN3zXwoI+xYw8wNpndHhPUGmFm4Judge4P+qnamcPBCh2zbonw8R/WcGtmlAu3xBl5Z2Inu6EswTPkG2HCoVrHIDaLT8DzmYcUBNbUHIROKVsN9t3IMzIz/5oahy3KJJmJ+lELz4ppFuxSQ7xH5sFOiF3aikI2B2V20xI06IvYCfGthaqA5WyFOLfTMwPcCsn0KmP0gwI416g3JzlBYIDdl4MAlIQI5NSDZroU70iJYQZM1WPgGcdmR79juG36vV0v4ZWaAdBo9GxGWPLVxReB1QBBtXrejBGryONnLOdoVSXxviTqYluJ4LZo/BCxC/OR0B0Cr2kT1MtKcKDY6ZmLgBrET7cNG0noVeE8qPfSBJYpVBN5XoiLNSbQb0JG21nLtdA0bMV8bGaiA10qvO9v1hE4rHRFnFrrvEGqDYrlFtVfyPpD5DiVVtV5oHjVochJFC2TFIKTvFsO2O+vOAvCqV72q+/vZs2fxkY98BLu7u1hbW/vfBk3fWb//uiUakK/5mq+Bcw7f8R3fgdlshq/4iq/AyZMn8U//6T/FX/2rf/Vmb97tsRR4txDebzXJFxNcSJE0M8BKK2F1i/RsP8t4w1NxIbosAi/IHp1wNOaHxMlJtxCB69vLkjCbtgOkbBlBOgSVaK73ZJJJRAI5kC01REDA901JuygDQiuT+hosRCJI4+olka8CpKhratvlXEQPQusDj9gw2Tr0QidSjNAL73kNIguZ7G8eDsH/MqUTOk30TDFXoOg+HORYPXWA/d0Bsl7bIQIU0cuBTBO75EEvU76oKdruhkviOhZtgB9lRHvAQrbL+ki9kaGw/J4T13HResz2e6QUdbSByEk+DonAETuhabFRMZPDK4RRDp8HwAa0c4sYNGzZIgSNOLcIPYdy0MA50yEKANDWFqHmhD8bii/6R4cYXgGqTWB6zCPfnMM7Ay9UD106mI8NUN/dQJ+ZI4xzlI+XqE44uvaMc+jSi3Zi0SjnSYCqSUMypQNyj1g4VDURk9SgtDWfZ0pHuljhu6a2rai16MTuis2MUsB41AMUkC810CYgy4EKOY9ro1lE1tL45Jxem6lmsVtEuL7qqHWkyYkAeGZYaKkIlYGTXkFMzHIDP8pRXLbQ54Zo7qsBrzE/FTDYmOH4ygiX9ldgTcD0iRX49YYFV5Dm0knzMdfQDgglBdBmxiFCyFnI5nsadsxpcyryXZ8NgnKyLZKC7Uu6PiV6ku8RPTAzirOjBtRYw1RsYLIDBbVboL6vQixIvQvbBYKJqE83sFdy6BaoTngUTxcUpe9ndFzqs3Bn9kfsKFO+z2tJMFJcFoFhf8uO17Cg5LWmE99roZspT0QHQhHzJZsCUylkE2pempWA3hWN+ghpZe2pCmqnQLsS4PsKcbVFnFgoz5BCX0b4foQ9X1LzseIxeMpidkIoZTXRjXyfjb7v84caTYTdrBAu9RfNSBF4Oaw09MiSojTV8BstHdQODUCiJVqjsog4Iy1Vi/g99Ni4Zds8aG7VA3Ne63wh1/GBZyMQFCLE2aohvc73AxHvYIAsIPQBVWuU1wzqI9R/2KnqRPEQE4BsphFy1d1rVCuzE6FdKa8QXeyoZUlrFqwgIrmHHmWk9E2oCVJZBBrwWu6IRGeFg2sstPFoZxlaGaBo4xGEmoWOOwyYlQZumqFcq1CPCiTDFXWQwRydU4eTSVZRANBomrSIFiTd35Cu4bc7AvJsv+eddcNaX1+/2ZvwJ2Ld9AbEOYd/9+/+Hb7oi74IX/d1X4ft7W2EELC1tXWzN+32WjKFjTNJQm+F7hFUl3Ku1usuZbu7wHoNmCCFv1mkQzd0GdGNgreRF2dAtBCLj1U5EYeYIHVpalJgW5poRaEJqYYiX1jqMUK0C6cWK0jJEl2aoAQuR+wcquLQddPERPcxWYCfW6w+dw/jcQ8xAiHXwNwCiBSSpmn+StNNx1VqPrzq3L9ww/4lToHwgz3QuRttFzBHK+xfW0KxwkA7UrxCN51eHCQsGoikA0F6jIWfEtG/kn9X8t0lXQzFz4tmCAAu/MIpOhadrA/RjaLY8RJ1QaL+JP1FYJHeheJ1KBJF5abn4GoLkwUEcXuqzw8R1lpkpUOM4BTeaRQrNfSHhvAvbAAdcOzll2BUwLQp0B4M4J1BcExhjwFY/h897L/QY/jhHCoA1RGgHUQUVyx8Qbej2DBkkEYAdLOqt3tAq6FWG7qYedVR4hL1Kk1KwyRDlAY1NgZRzqfgaYnLG7Tq0CJtDqXVA/BOwzUGJvOiFQFCQ/th1fPILuVoV8RxrgyIRrOIFycu5fg8pSNCJaGWh9y50nnWHPFQ10pgpUVz1pGS5hTUjkVYdZjt9/D4qAedecwri/zuKXxr4KaWoZs2INZ6wbXP6eZUb3jkewZuhRP+kCk0awF2otH2xA5VR9iRgW4ktTywX/KlnPKaf9wKHYqUZ+Phc1r/un5E1Ar5/sI+WG0XKHcVfAGgF4Fo+Jl31cgeLVBeMaiOeKiVFqE2KC9kfB8rCERPdZ+tG2oszMgiDCQMUoppFUmHMzPqHaKJ7PE9hxohB/Uvc41mlVoYO5ftL4iWhCIyjX2fgnS1myMUAeVlg+okbXOVI5WtPtHCHAiNLgB+2SO/blG/aI7yoz02OBkF581qYML7hLSuqIF2nDPcUgwtzHYGP/RCazO04h16mJ2M9r29AHtgxEVMULw80P2sZvMRbYQZGfhhkBBCRWrTWgO9zyYpFmIJbaQRaEmdMrWktisOSsxco+2Thhp6AdVRcfFaCghWvocx0QjStzi8SeebbkTzIY0sIuDXqfsIiZpYCWVuZBAyvQih7XlaW2ceEGQmjDgMa3O7sNrOPbLCodorEcsIVLQi5u9aI3gFN86hCs/mQ7PRYdMBxCpbXG/TMCgqBqb2iYBrHTvNCLzqjFnurE/N9Zf+0l96xs99xzve8Unckj/Z66ZrQKy1+IZv+AbUdQ2ALgN3mo8/+Ip5QKgsiwevOh608opFZk7xYmxkpKVxaLIuTUrPiXAXgIkwmxXU3TMROnIC1TUuwvNPDjbKxEWid3J4UujoUABYpIkdIpJuQgShkMlUDArNqOiai+6mkfjzh4rFRJcKnlD7eFLCt0JBmtMJLCWRRytFY2W77e8am5w0CZWFTlifoP3OvldDMiYAc6lEsa0Rr5Y4fnK3+w6UlqYjKhhBIKABNbLCZ5b3Uott7453WsklpjEdhQBZ7Owsqf9g0X3kFZdw/NPpyBGkqUgFeRKedyiYkv3L/YKi5dl4LG9OsLQ2w/G79jqEI3gFW/D4Dc8coDeshZrFm3U+JNXp+J++QD3INMe5i5u4OlqCl0ZoMKi672r1PT1EQ97+5MUN6pdPsPxp23jg5Y/DPnAAt+qgG07zsZd3dDY/szArDQZ3jfl15RR1R2mYgmOjZXIWVXa1hi0cjBTpiICrjdDE5OuR8yzpSkK9yBtRisnvREjkBQVpJno3Q7viu6KfL6ZeQY0sz/+SzUeUVGbVJ/rRGQDItB6FR1wiBSUGDb+fI85ppaoyD5UFFMMam2sTToYjvxMzsZJTg26qHm1kxoXj8WuXWXD6nC5Qeq7RHG9R7CkaVjiKfZtlFtXaiUNUTVF3sKRf5dds52KEdKnQwNpHpEn2pDkVuwrZiLQnX0T4NQe1UTOnZJRhfraFK4Fim4VssqG18+QaxRwh34twy55alAPmE+mZ4dR+ZKmTGHjkB9SpQEWY6aKgdUM2HFGzKYAC8yYs9S1uIBSsHVKv0tS++x57QLZWd4htyCA2wSzK2+WA/lOWgvlLJZLGIGaS+1Ervk8ZkY2YJ6K8Qswj/HpLiqlQgJL4XgUAnjkdRrJF/CDw+hzENcrxeh4yyUKJQH5AypryCtlYjsFujuZISzQrGVwoQM9Mp5VRXq6fOc/ZdI+wYw0zFd2JXCLdgCYBYeCFfijX0UZ1lrrR8JyOGZjSLlkl6dh0VCwjbo1Z7PYtUQxDy9+nnzON3KzVCI5atXSdbyteQ6M4K9pBi3Yi+TrjrHMF1LnsYMp7SoiAoDQ6Z8YVep7DjCkbndgY3isSAn67Tv0758Vn+c+n2FpZWen+LC8v4xd+4RfwG7/xG92/v//978cv/MIvYGVl5SZu5e2/bjoCAgCf8RmfgQ984AN/LKF9f2JXRId0RKm1lI1A5m6ggnTZEcACVXC6c1JS0sAoAPbRPm9cJxsWvdJQ6NKR7pOaD5v4uHGBileGVCkAqu+l4cDis0X8HW3oXhMFfk/NS+fUFRTsSg13qHmIre54+HHJQanYCX5TiGBsOa3D4SZEx0MXVLnRHN7uzqWKFLPYGKg8kEYkxzW7b4QHjl3G3f09/NTHXtwV7UpHhJp0H99w/Bedgt2ao53kXYBYyjpIxy06EXunG2YyBgCoKdCR1J+07TL9v3B1jZ8dFYtU0ZnEoNjsyTFWyfVmJJkLuRxj2Z/RXh/Hj+3j2u6y0Ie4716+89F+nw40l3rwyw524BAaFvA70wGpTU5BTQ0pv0psAAEAAElEQVRmqkTbWvTKFuODHnQWYAwFsZOXzxCcxrHNEXZGA+yP+pjXGaa7fUCDORhzg1h6GKGU2SHtOasqQ9ZzaCtLZ6nGADPDr2+lgZ9kMAcG4WSFrHBoa418qYFr2KwoOfGi2C3DxE4HYnqOOpMkTpdipUNGVIQ+MYNvGboWhf7EbIEI9B0zQKTBj4raooREqYEjdTCySA9rDJ7Ilxp+vgmIQ25bkZFW5hpakO7HHtR+BjVogL2cg4UySK4KCzxfxC54ExEMyZOJtC9Z+Jldi0ZEzImylYrRdghkE9FN9CmqVhFwy6LB6HvouWHAXy9i/KopMh1hzy9JIB/QHA0orsvvda7R+1gP9TpQ7GrUNiKUEaEE8idLBAvUxxyzPBqebxSCK0TLz1ONRjbSaJdEIxJZpKsJaVcxj1BzUisTxVI1PNftTAT1UyBYhXbFIxsZBA3YBqjXA/oXNCb3OeTbFmaqEVY92hWP/NEB/PEWZmzhh7xW2hEL+GykMT8WUOxq+Jx2vVBsqt1SoFbmiAcCYGcG9Sb3I9/TaJc0A2ATervkYK7mgAZCQTTGDSPybWo+Qhb5W9uznQYmHpJyze5pYUaWWo7OAldBzwzckRZqbDsr9aip2YiajaqZaQRpDHyfJgXtBn97+b7h+QR050GUDw45ERflZVAAcUdzCqEFUQ85V0IROnpaMFi4XyVTlKHvfocKMiyRoYwb5wwYnVs4p0m5BNjgZ7xm+sZwmDK3vHQL2h6mGY1SMk99W89312RlabWrC9H9zSzMcgs/zqAH1MPFMRtO9A4h2HfWp9z6kR/5ke7vf+/v/T182Zd9GX7wB38QxrAp9t7jG7/xGz8lc1GezXVLNCDf+I3fiNe97nW4cOECXvrSl2IwGNzw7w888MBN2rLbZynDZiNNx6NXhL5LCq6LI3M042JRjHslEgfRRkQFNBrlZf7AqjMNygd3cbA7YGEr1qXwCnG7oJYkgo4/0jjonRzxSM0LuIRAoctCEPvRQwWuSpSjVJSn7qRznyKtwg6Zio2oeGNdZoEQN2vYSwXanNQxU3o2CjYgRlKE6oOC4VQpmC59TgTH3ToyaXqZ1BBVGU4cl1v0lytUsxxKA8Xv9DA920KZiPm4xPum9+B/6lMUBktjpMQm1De603woC7hpTsei3C2SyiECShsQvVkEMKbvRpK7qYMgTY5uWqFDFYIzFOgny3rFIhaON/ZsifbG2aBFO7dYunuEybhE2Wsp2PcLa+W9SZ8OM1FBZyzwo1gUKx1hbIA+NcVqr8asyuGchm8NptMS2cd7aFciBmcOEKQZq1vbNUxKR1R/8QDPXdvDvM1w8X+eRLELREnKTroYM+Gxz69maAcZcPechUayYVZtRz/rLVcYbtWYNTmqjy8D6w5+iRzyFhbqcol2q+7QoOB5rKIHMDcoj87QVNS8RB+752kbEA6J02OgA08QxCQMHBvbAe2B3TSDqmgpDK8x2Jyimuds0EcZ1ErD76/VKK7qLvE7esUARxXRek5we4Mak3PLGJ4aYZbod/KTqA9KukJt1cBBBj23LL7nzOPIdhmuF8qI6NDZ1CbnIhUPZXZUQLXFwt6OScVKdrPldQVf0s42agBrjTSx0vvWCr33DjE9AVTP98h3DOlMI41sDGiv0LYGs5MBvcsazVoEPJDvkR4VMqC8BpjKMmfEANlIoR2y6LYTagyUZziimWtmUtiICG5HyFmotytEekJOnYvrcQofJ+YGPZpuhAI0E3Rv4NEua4Y/9ohcZPtG0r+JGKgWiMMAVXGa3y4H9C9pRKU7u926x/ek8J3H30yIztRbHsU1QxrTEpurbEyqoZ0B9UaAafg9tUOiQHYs6JV8Z2aewQ097MTADcXm2pHylO2y+Wg2HXSlaeJRaahawRu5hq234i4IhCxAt9TuRAHBGRwYYPdst+9JzxGWPMye7aySlQdQgvbAE1LE7ITX9WhoTKBr2qTH5AangLDsu/uDakRjlxEpSvRczA1iIde9PEBhUfxnwwZuvyBydcWiubsBBEELWewyPJRfUE5J/yWF2De6Q8HRiDZKhmdmueWBkNfGoDk0q0x3/7ndlpAPnvX3/FReP/zDP4z3vve9XfMBAMYYfOu3fis+67M+C9/3fd93E7fu9l63RAPy5V/+5QCA1772td1jStENRCkF7/3/6qV31p11Z91Zd9addWfdWXfWnfWsL+ccHnnkEdx///03PP7II4909rx31h9u3RINyJNPPnmzN+H2XwoLfcdUEpmXKEpXAJpJvrAGNcIziejcg2IEhk8ZzF88B66VsFdzHOgBulAorzr6gD02RzvLFgoiDX5mAFb/e4ndz5Gptg2kSlnP6VKyoxXkA0BHFwNwg8NW91gehAtM9GLlzD72dwYI6w1WVmZYOrqHo/0J3v/xe4g8KE7WTN+hGUmQYumZ2ZBze5LLlpjQIzsw0NsG9d0tYhZg1xv4xmA+KTpq2fz5FZQI+GOjgZxaguBpx5tsZoNTi2MGdBQvlQeZ5ssFS5yekL6PoLqprbIylYvkhSkt7lORrlZmLIjLZs19rjX0sF1kcYiLl9spEfOAZpRDmYjxfh9ARC2hjykQT+kI5zQdw/otfG1JIXIawWsUgwZtZfFp91zEhy4eJxUJ6dwB8KIxjNeoG26XF8esMMno2jPr4e/+pXfg3zz12XCeU1jTAPsvblH0W/jMIF4rOt569rJ9ZACm0xJGB8RA7rZvDLQldWq+3Ue7Qv0E7pqjX7TIrMd43IOfW9gTFU8lcSEzue9c2/RqAyffJTUlC+//9BmuMZKgHjsqGpQYHsgxS5xzVVIsa/ot5pOC22gD1GbFaauKiD2Pep0IghNqmc0JXdXTHEpFNI3Fypl9tM6gKFrUdYYzR3bw0HM/gA/u34WPb2/CPTWkNqLiNFe3Cm3Pox3y3C+2Ndol0l3sTEmgH0jJikDvGjA/CpTXNdoB9R+J4gOv4IZ0n8oOONGPLV2s6DzFc3q+yXNx+ITB/FhEsatg9wFH51O0ax72wMANQERlbNAsRxR7Cq4HtCt8XjYm/cuXIqyuRAsxU9ROeaBZpZVuAKljKYm8ubtBfoFhfMFG1BtCg6ypcTGUFHY0qfQZulYwY4tmk+5Tei6/K3GOikbBzHnciisZQh7RbrbIr2WoNhfuTsEaFDsKrs9rmJ0Brk86nJIwvvpUQ51FEZDvWTRr/HxfAPm+hutFaKuQTQFbaVTHHcpLljQ9i06fEeVcM3MeHy36C19GFFct6k3f6TzCOulXIY/ILudoV0kJ044UKoBZJin7Q7WS/aFA0bgVXdDI0uJ4rumGVUTomUaQ71i3ov8Qgb9qJdwx8vyJGlCNAqImEFUZolfKdNkbURz6VCs2uJlYdgPQNsLLNRMlKbwhB+y1DKbivvsTNaKlQYQuPWJtFpo/r2ASVbg20IMWQWzhY6thRJuldYQHkPUcjU8E9b1tbXjlGvesv+en8Pqar/kavOY1r8HHP/5xfOZnfiYA4Nd+7dfwj//xP8bXfM3X3OStu73XLdGA3NF+PDtLSWhfFPF1nFJkWKzWaMY5oheLVa+hrhQIGwxfgqeYcXJfi43VGXanGaAYPte5OYk3urKBzQeAzvZXRWDg4AfA/Z/9BH71sbNipao7jUlKCe+0HRoLaLxzyxJIXieK1KJB4jYA+9eWSCsYOhzsDXAQB7ig1ql9GGWknIllr+k5OOHeJyG3yVtSZ2YZm5KBw6f/uY/gkZ2jqK8vIR8estPVEUW/hntsCf0X7KFqMjSjohOjd0nkWYAuGByodLzRkSomG1wsHLJkX5B0M2AzA6UWwmcTqVs43IyZiOLpDM1qwKc/9Bje98Q90DZg9a4JdneGixNBMkCKozMGKyr5/pxijsjMIAlDdcbcDt8aFCsVXGM7HQmPvUYzz6B0xAeeuHvxGYcoY21tmbchxyU4g2AUUARkm3PUkxzv3rsfn7n1FP7LRx+Au8uhuocc/uZ6j1acecRd915Fz7aYuwwXLmx0VsIpfFBbniMxAnrYwlUWtnTQOmJ+fgntsbmEEYauqYhe02VHvk+l2CS6hrSn0KhuuzsXNyUNhBx6pSgA1zbC1ZaC9QjSsmyEm9A1yXuF3kqFps6ACKENoqPaqWDgN1oUwwZGB7QtG6i8z+bRNQajUQ+hshiszxC9wuNXN/HEtU200wzl0zniCs+JdqOFkkA7O9UsynIJFZyorrFPCeftamDTYgAzB+rNyOLxkKOdqSX/o4hd+ntUFDy7EtSb9JKrnEKzTPqUroHJqYjhORbe/fOkME3v8Sh2DOwMqI5E+EJBO8D10ek0tAf0bJGeHfLYZXpEK4V6PyI70GiOOtrB5hHZxRzNOrNJdKQdrGkULXgj0C6ncMGA7EAyJUo2IlCRDdKqg96x8D02Ua7P4+dL6hf8ike2benGlbHwNxMFX1BDE7XQloykyWseq2gAnyvEOqPoXAHVvTWyCwVtfJcDdC1uWQPaHKtWIb9uUR310JVcV2xENhZqV63opKUAO1EMJQT3EzZCT+kKZnYzhKM1sJ/TwrfRiHmALwOy61lnOACgs1UPWly0hKLqh0GodaSO+ZLng50DzjBfyS3RjMFUCnbCpiplyMAwEBd5WOSf9IRC5hXUxCAa0QuVDENUlkJw5B55v0Uzy+ieF0H6ZRbgVjyyPUMdy1zx2l4EKKcRJxqq8LzGNZoNl46knwaajyivugwoP7MwfYe2oTayGRWdpgQaNxqD3Fmf0ustb3kLjh07hu///u/H5cuXAQDHjx/Hd3zHd+B1r3vdTd6623upGONN72//y3/5L7/n40oplGWJe++9F2fOnPlj3qo//jUajbCysoKDg4M/lLjp9L98C+0qK70QXM8N0F9Q2JQNiJMMZrUWfn7gRHs3R1x2FPYWLL4opFW0ExVHFXVgEVdknIoFR13nHp926iKuTJdwdXtZJr+4IRtBpeai0RQTilhatQoQe90o6eiLVHAW7onTu7o1xv6FFSgRDUK0JCmUyhTMf1Aq0lUoCwvrYa8kgT0dDHSakMPaGZWFRW4HgE87cwEfvnQMrqb7kN7NEQae4V3rbWcNC68XAsfUVIE3UOhFqu8N6b1B36DJgVOLY5OK/JQNEIHltRleeOQKfvWxs0RzFKALh+DM4jsJcpwjj68uHTNV2kW2RnItizMLPaC2xc/tormS7WIzwkYpKx18CjoUL/6U2ZHQk3RclQLU+RLrL97GtWvLwIye/+VqxaZoasnvLyLuuv8q/q/nvBM/tfNSFNphYGv83PnnYzwpeW7pyGJfbDmjfH9BkJjecoX5fo/C1XR8BXnSYiudckW6JY8V/RbVuIAW0SqATmcS4yJVPsi5mfdaeGfEjppC+SMbY1w7twaz0nT5ImkFJ6jk2MJs1CiKFnnmMRr1sLoyw2RWiPhdocxbzOY5ssxjPimAoBjeOc2BGXn9VjQG0UaxQqWzVbNG+91o6CaV77G4tRMW1rpNxTcREV0raNFZJLQBge5YSi4XplLUjci8oT5dw17J2Ti0QLGr0KwQXdGe4u7eVY1mJSLkQO8SERXdsulQDp3WAOD7hkzQF4WFPiEA7VAm/QHI95g50i7RxthOFepjDvk1KwnnCs0qAxjz62wWouHzmk2PfJfogBuETkyuPI+H8gqhjMj32WTRJplWwEkrkZytQsFGKOSyDxHID4B2mfsWskVxD42ukbFTzfR1pygAL8Qmd2oAQ91Lc6KBvZozZLChcNv3aevbbPhOYN81Wr2IUIbOYVA38t05BbfseU1N1zgRv8dAfUt3bg5oswwAdqOCS3a1E+aJaHnvkFOfk/R6ZqbhVj3MhIMr7cR1DEDKaAHQmQfEHq+VsQjUiKQg2VIQ+UYvTBQUs3jaeUZRfUEzB5MRCWXWkYLey+CHrrO5jqKPgQLvDaOM90KgG2wxPJYNqu211ObJ75tezrw3RY3uuD71t74Nz3T9Ue/ff5SVPvvUP3kjdK98Vt87zCuc+3v/4Kbs1622RqMRAPyex+FXfuVX8NBDD6Eoij/uzbpt1y2BgLz61a/uNB+H12EdyOd8zufgp37qp7C2tnaTtvLWX2qZwu+oAZUaDxvZVGTM2AiVQb5e0R3oIAOWHNOppxrhiIe5kOM7/8+fwo+d/0xc2FkFnNywpKjKjs/QzHIAauFGBABXSzzysXtJSThB+1VtAkKUwjcTflGlScsRi1dM6VASJRG3oyMpSCEtcHxDGtNsnmPj1B52ri91dKvQmE7g7mvDG03hYZbahZWjUwsqGUBRN/8FiArFSo1mmnUIDSkNEbrW+C3cBW0oOvYzC3vXFDEq+IGmeD8CyR0MYOHa5Z+ElJGiESrSD0zByV5o2VR1lsZRcWpYpTwWhegApUW0byJGe338+vg0krjb9ls2RmlvDC08Y2voBKMUQk3EQx++4Uv41mBrivksh28MltZnmE4pTsfEQK200kixIWonOW2BAwCDrijQWYAZtCyUhS7Vf38P4wcaXHtqvcsKgDfw15dw5IHrWD01x5cc+y3suiH+8/kX4x07D+F/XDgNawKRpu0eYhL1iyVw8CIOV4pUqYw5AvU8I3rTGhYoETyGeZDsAh67hGREcdaJUaGpLUzhYaxnaGKru8ZUW1JAuu++NmilCU2NXNlvsD/pYePufeyP+jwfO8cyILYKugiIAw91rocm9tFEIL9vjN2dIQbLFZzX0CriyHCCx/e2cGLjAKPcMZn9/BopKGWA3rXw/Qg/dDz35wtr6t5lwwm0AcqrbDpMpeB7AHREKCRsUNM61/cjzJ6GygA7liTwCmgzSHI44HoRVhwPTAWYqzkpTBUL7UpQFACoNgPWP0R3qGYF6F1WmNznoGxA+VTOHI6lBerSbHjYkYGd8/3qdWaLpIGGnfHv2ks+iWJzYOYK7WpAcdWiOVuheLREfYQC7vzAorqnQXE+ZyMmonA3IK2L285cFJOCQgOQ7y8+NxXazQaRCGg2F3amOnqlSg1wztT0qCPylCkS2IiYuYJbpXGHg7jEJYtdkCqmHRCg0NzVID+fczvnCs2qR3nNwNQazTqvzYlaowL/Xdca+Z5Bs+6R7Ru6Uzkp/nUEtGLA4dAze2TJM1Rz4KFaLcGN0rRkAa3QVXXPIWoDPwjwER3KoQwHGyoo5AcAYOiglQc2IlLHQ/Jsku05xeGm2+duyJUHmf2orvnQck9opxl/93OL0Brkg4aZQtOsu3eFFdDqPPIYouGQJxrSrDDwNwxhknVvovO6Kuuu16GyHVVTZZFhl/bGWuR2WWl292y/553F9b9rwL7gC74AH/zgB3H27Nk/xi26vdctATS+613vwste9jK8613vwsHBAQ4ODvCud70Ln/7pn46f+ZmfwXve8x7s7Ozg277tmU8jPhVXnNouHRnLLS/ANgIDzxuEBNm5WvJAhq6zjj35sov4zDNP4uWv/B38w1/7Ijz1xFEW45HOJCm8iTxZfl5ojRTYGtlYwb9wiue//IlDegi58WQR+bkCqDXsao3ePeMF/aogRUFXkk/Q6o6rz7OTIXOInEA3sxzbF1cBCEWoleYjUZXERjEG8ZEX1CXmAWapZbK4CZIrkooQhWaac1ouxyiutGzgjlZ8iufkX+UBzSxDO7dd5kYU1y4/IxUJQEc/04b0LJWFruj3jWbjJtP82C4yUehR72BKJ7kdobOQVCZw6i6BhyoLnR4DQtdiBgUnq7E1SJbEUAzGg5cJpNyUq4qJ6LZwohEBTvxUhrM/6XDP/89g6QMFTO6xvDaDLp3QoNBR5mJQcJOMDlqIMCnBPQDF0zmyfQPVSCbB0OH/+D9+E89dv45jvTF+e3I3dtoBXnnyY/ilx+9DXWeYzgo02z30tqbkaYPFvm8NXG3hneQFBIWwn/P4RUV7XkGZdO6Bnke+VCPUho2SJ2UjiqNbcAvKWGosYmRTZXKmsSOqBQUwKhTDhtkh6Y6sgLrK4L3G/sGgo1xpCfbUWYAuF1NYN+T3X+wD4ZElxEajaSxyy+c8fX0dJ4/vYWcywP7OEFpFqB5dtyCBgGZODYPdt7RJdSyWm7VIt6UWaFZJJVKB34NuWURqRzcnO9KLQnyu0CwLChHYfCgvjllF7LQjjqcG3BJ/t7rlZ7ulCF9GlNsao+dEVEdYrE/PsMEozudoVpgxkoroqIHysulSv7vtdEA2lUZDmhzlZIDtgHKbdr35DmlZ+koB3wMDD9c92gEpSNWJFq5HZMdINkfIIuycVsO0/iXqE7KIdhDheqQ82RmPk641QhFgJ3xuveE7ypUbBPiCqECxzZOhWQuSRcJ0dd+LyHYszHVBFfqki/UvGBTbBvk+NTzRRuh9S0evQ6hMteVRH3eIJsKtyGAjA9ySR3ZAm9tmw9NFa4k0pjA8hHz0HFGJPPC/NnaUQrNak0ZXhA6RTrkkDO8L0KvNojqICnasYOekgfmevM9MM/fG8VzQrVD/TFw0OGK/GyVAEQ2v83pmFtlOge5ZoZEBQmriJxax1WgmOZu/whOBFQpvaM0C2Q3czqTT05kH85jYrOvcLyiWch6GhOYKMqoEBYmFUGXdndL7znrm6xYgE91265ZAQL75m78Zb3vb2/BZn/VZ3WOf93mfh7Is8fVf//X48Ic/jLe+9a14zWtecxO38jZYZeDFuBeAsaVXfiC9Rw8c0GqmyCa4XGDpGIFz19Zx7uo6AKC3VKEtDdrDuRrAQu/R3ZhI6SqGDf7MSx7H2BX4n+dOda/pqFOI8PfOUeQO9biA2ymBgVsUxxaICAs0QP6bkIWkIYHYLJpBS5tYsZuNrV7Qa5ZaaM1k5rBGm0WVReS9Fs08Y3EI3Qkb6XkplAGvCMl3KIkgMp7HSRf0rrdXc4S75wi1pe2sIoXLTCyUA/yRBkqzyLUFMyagI1BJ8q4XPUYWoQygtITXJeQnsnlLQXoQHU1aKb+iE7FLgQ1A0A7eYU3PswlLiegAYDh5tIIA+MbAXi7gjtfUqFwvcP3/M0MzKtD/eIal8xHj7RKTVd2ZFUCsNtPUsLdWoW0NkR2vgGsllv/CZVz86FGsnd1D1VjcvbaPE/0DPD7exKQpsNWf4Fo1xKWDFThPO09jPdrLfQxOjTEdlWKbqzoKlElFhGTHDO+aYTYrEH1qUiSboLaADfCOzalrDHS20OWkabcXvrfOPKldXrPJi9xXBNLOXEub5IR+aBuo90nhkF4xgd1ExJJols5814h3a+DhygAVM06sbUSeO9SNRZE7DHo1lIo4vbaLj4yP4+qjmyzuCmoGvGQTdGF6A9Kwiuu0kzVz1VGXsjEF37pFR7tqVtlwaAdAs1h0fVKuVGAQX5rgp8LR9dE1D6YSsXlPLHJrBZcH2IbCd18yvbtepz1uvq8wv8uhvGgRLd8zFKCF7RE+Z3gOmB1fiJl9zsYgHwO+oHXv8BwwOQWEwNf6Ho9BWHUwlzLoFlA7Bs3JBmYnQ7bL61bSxdgZRekhQ2dx63uy/QPPgEQAEIG4aajlqDeo7UiTfN0AzWpEeZ0p66ZSqI4yh6TYBSb3tdBzA7fVQu8vtkEFBX2QE70qFaloFshHPLdZPAP1BvU79V0OZtciNkDoe2S7Fq4fu9G2W5Kw0sOMQi3f3YDZI6rwTDdPdusBUK2GKkTYLeiBEtQCoOA8OgVTaYQ8LMwODJ8YNWlVzVrsghntVWrMfMlt1xOFaEgRgwIbogy8hmYcfMRl110zO/ONdH+JRFSjVwzqdAr5sKEmJGemUFA0xqimuSCRco3rO0QxjwhOdD+V7WzFk6gp2Y8rE3gpkEMbBSVVDcMj9e2Yhv7JCA78FAwivLP+eNYt0YA8/vjjvye0tby8jCeeeAIAcN9992F7e/uPe9NurzVm+jdmBugFFltGeK2TjEVowUI+QdyHcx7aeQZlAqppjqznoDMWWrHl9BWFp9i6MYusirlF5TTe/TsvQXWCNxZlFvQjbZlc7WvTuf6Y9Zrvmwo0CU9UWSClKU2kUuLzaru4CEYWjqlgV7UmxWfJScaJQt5voO9pED60jPqeBohAW1mY3MNNMpi+6DRS+NUhjYavOV2DYmMT5Kaf6GvZUoP1TzvAtevLgA0LFMYGYKtC0Wsw2+9JdkeEmxNhUF6h2JijmROhMX1HtCTRtETjoqRwNbmHzR3qSc5JvehHMLeIPQ8gYrBSQauI8V4fSf6BVnffcRDTgLS0pSuMztgY2pzNkFvxiyTwoxXCEwOUE4XZ3R7P+fynMdre7OhKAHijj6RFeadRz7OFkBvAmU+7gK+9+1dw33Ov4if3H4KLBoVqcb1ZwmdvPoFfvnofPr6zCa0iWmdQXxoAaw18m8FsVaiqDEZQrSRAT9SmOLNQfQdtIuZVhuAUykGDakaTBW09dElkz9cGJg9dWnrea9lEALC5h1PgY5XtgtBiUDCZhw9E97wzC2MAxW2ANDxKx+47VAOH/qDGfFrATzPqYaRAJCIVgIkBhh7t0RbRK2RXcui1GYrcwZiA1hnsfnwdF/IIOAXtFakzKsLnbMz1XCMbsVDWjdB6CrBJk6JW14IaBHRNhm4lgT2K2HqJmhFEKczZ28FLQ8LnauZitMD8GHMw6jX5bWcRXjPdXDmg2eD35XO+Nj9go1BctQg5m5jhUxrzoxHVmRrlEwVCBhzcy2OUH3Ab5scjkY4eX2PndMoqdoF6jYVuvqfgjwLZlQzNhkfvEmmn/UdztEPuMxSdpHRLqlSiCCUtjK6VpJeT8x+k8TEN0RZfsng2Nbqcj3Y1IN+lxsVOiSCVonmZ3hNQXKX5gNoTp6lctCwOcMui9VilaYCSOUe0DAFEq5DvGbheRPl0xlyUIsDuW4QyMG1cU4AfSiIXyikEQ6oV5qRN6VojLjle702EGTE404zpauWNQMspSDMINXMlwl7N4MGmBzLwCDm3N6XM65Y0spDxHGh7DnZkYCqFepPnlC+i1PoR0fKancJP4RUwNcwtaYm2RDE1UDlpukk/FyUJtJlnfDyio7fWs4zDNEEYia6wkQwp1Tzd5yoOgGzp4OZEpKI0X7GS56Z7z8Ty2N4ZZt9Zd9Ynfd0SFKyXvvSl+PZv/3Zcv369e+z69ev4ju/4DrzsZS8DADz22GO46667btYm3h5ryXFat9ICUnShMrzQG0nE3cvoZlMzsA+aBTCdrRZT7Waac2qU7FoLD7QafmY716rsYo7iGoPi6tM1Nk4ckG6UJvdQ8LOMtrW1RrVfAppi54SMQEIBlWxHogsBEfpIheUz+0gOTmmpjBNwZSKyPcOwtA65iGgrC+816lONcIPB9Nw5nU9C0olYcvtTwxOcErRBOOFJSC5IjLK0ad3eG3KS18ik3C70IbODHvUHACd7M0OxaQTq7d7i5iqTfYgmASqKgJ1TweBU16z4ynaCdhSiwYgK0/0eaVOa1CdlAvK1SlCfRUPQCcXTZweFeKXsHLLUoEUY5VBXSvi9goXNAxOsn9pHEwy817TpDZwemtzDFgub4+ES7WaNJUXs6evr+Ccf/fN47Uf/Kj60fwK1t/i5i8/Hr185hf/34w/iws4qWmfQCEVveIrCvlSwK0U0w1eGJghed+Ju1RPetjyus4B6zsKvc3hTpFXdf88Vvq1QBQHAZB5lv4ExtNh1jSVFw0ZgN0fxVIF2nNMxS3M7ghf+P8AwwkQ9FKvkKEL0umawYLZcc8Iq53S+XCMftMDAI+u11NEA6L9gD60z2BhMsb8zwGhvgP6pcWdpGk2EmRrYfYvimoU9MB2VytQsmHWDDtFMzlLRCkoh2glTH7JvDSzWsgMDn9MpKrlf+d6i6qIYXHV0MzvRaJdIA+pdTc2MFPgPTDqBvIpsguYnPcxctidZ6q6Q4pVdKlCdbugkZSjuDgW3d3AhJbKThjU5HeAGbCbaFe6D6wO64obl24afISiPdtJEBP4XGsgmbAQSlUuL/kPXCtmEjUQ2FhG84nZEQ+SEonkK9pnMTuQjKsBMNdyAx1g5heZ4CzeIaFYDqqOB7l2TxXUr2RuHPIoonvQ1VWug79FseETLkEK3SvG8W6EA3dRCY8xJ9VIKtBKPC4E8giJ9SEeg5xGLAL9E6lgoAtyq67YFhZfhk6Cmte7MBiBOVSqwcYgGMDOx2XVgaGMSkmuxTxYBfBKDx4R+ANwmgBqQIgCZ0MF6HGjly41c0yNM7gXB0GKg4Tu6Z6jNAuWsFuh8MuogMpoGYBy8Jc0X5hausqQyNhSjp6DVGOSeYnjsYrZASW+7FT9Jf+6sO+uTsG6JBuTf/Jt/gyeffBJ33XUX7r33Xtx3332466678NRTT+GHfuiHAACTyQSvf/3rb/KW3uJLHE7iOLvhohGzIJ7sCmG1pRMUIKhC7JxBUrWRkIvO4erALig8CizYdUS76aBeOCZyYSJ2t5cQZ5bTN4Cc8q6fIE8YEyvuV/JeCqQ2yZQ7Ua+i0/CNwcHeQLYxILtI8btS1EPozMM8d9whLsl1KziD+qDA889ewgvvP784FiJYh0xIo9ek6yCKk5VGbDRs3/Fz8tBN3BZNFToNguk7sWvlzUyLvW22UQHiLoOBh9qsOXHsccwcW72gHyiiK8yjWNi2xkDkCV7E5jltLE3PdTdafic8Xl6mf8lCOKZk4IhOqwJwgmgyj3seuLi40SueI34QMHjaIB8Bf+70o3ho6zysCguqVu479CQ4jZUjY2gdUdVEQHxroEUTM50V2BkN8Pj2Jv7b08/FeFZiNi+kSAe53NLYVFK4Iyj4mlqOvN9ywnmIeha87pAHtV104lE6TYEFxpQ2uctrM3zs3DF+7eKO1cwy+Magnmdoaot+v5b0d7Bw2agRXzBBsVIvGjYVuW2KxzhGOuiEykBpwBYOOvPYHfWBqGBzummFlJlTONQHBXxroEzoRO7KBrhfXUN9aYALv3FS9jNidm4JumYhqTZraiC8QrxvinhqjnbVozrmUd/dkk5Us2jXjhQqO2XB7wsg2AhfsJiOlpoOX1KQ7Qah4/NHQ6RBN/xdRoWuydEtX6udFO+VwuykcPydQr0R0eyWyPcUG6YKqNdocxty6iVUJL0oKqBd9chGgNnJ0CyzeMVWhWCZzt4uHWpaIjB8QiMYOk3l+9w+N6TWxfdpYesGEfkIXZK3G5A+lvIofM59C1YE4g0bHyaEMxOFFDVpCDxIMRRHrtSYIAChFxDyiGadv0ffD53lsd63TDCveGxCHlEdd0SgKs3XZpBmEHSxEt0N5oauT40Su1+DZstBzzT8sl9Qmmra6mLOAxSLQCRDbMZ5gdJE20o2GVGaEQBAy6IbUyvXA0DNDZTQrpL7U8wi9NTATNhsRM0mUEnDgwjYEa9hCZ0jbY/PCf3A864klQul71APFER0oSK04e9L556op6y83yIXzZW2AVlyuIv8o0vH72TKD0zmIUrzOt+5L85sd+2HUD0xdIgtj7nKxexjlHVOfclkoDtmd9ad9QyW6qDyO+uZrluCgnX//ffjkUcewc///M/j0UcfRYwRz3ve8/DKV74SWvPq/upXv/rmbuRtsGIeuhtBclZK9qOd17pwglNBzYm7vN6p7gLuK8vGBEBYcRQvpxucBDqpvsPzj17FudEqti+v8CYg4VmYm8XNTPjJ0YLFfyD8n7QJIekrPN1elInIBzUn7C1pVnG1RfnCfbhRubBHBcgDPqRHSNkk5VqFj54/RrF9Wl2Tkg6YQrFSoR4XCA295lUG2rxGIOu3tINUFJNDAgf1If50KjQBQG9ViJd6aDcouFQKdOZyFoMTE8z2qd7U+xn1KSaQ6qCTvWREcl8KXgMGHfrTXO/BTFiMqL7rJvSc+MfutXG3gFprOn1IrCy53Vs1km1u8BpPX93obHVj0JyIzg3sFNj/tBYXZ6t4am8ddUNxdgwarkYn4vSVhRuYLrDPSPZJ8Jw6MnODB9I5IyiGQjzIYY9PxeFO3GgyFh956RACBeUpSDMrHVqh3IWDHHGphc4C7N0TNBcHiLmHtnTDUpnHYH2K2bxA1WSyrwpFr0XVFsj7DFSMUaHsNZhXGeIog9moEIPG0vIcdy0f4Nz+GorcYTIu0Vn46tj9fpxjUGOMgDERwcvvCNSJJDOIuNYgei22onbBbY8Kej/D7CQnrm7N0aZ0OSIuO4Sxhd2zcABQRsTSARImib6DyQP8bo52ifaxzTLRj3o1wg1YpJtGivZtUoFY2BJZcMuk9LQrHnZioDwRk6ipiwg2IljAeBbzCTHwPSIQfugQrIH2REac0qieVwG7OXzL/BC34uGHLbSNaGyO/nkDN2SxPbuvRf/xDPWL5sDjPZQf7mH2vBq9xwrkB8D0JFBuA8V+xPgeBTsD5mukXikNCeSTqbyXy9GAgvKoRXBe6476hSjidtlP3QJ2Ls5fh96jc7fKIMF9Ee0KaU26Vmg3HMyEKFQ2Mqi2aJMbNeAs0Q7XExtdK7khMwu34uGOMHMpISftMCLbN2g3HOyBgXLM8Ygmwm+0nYOTN6RPhTVxpGtFxN1oznAazcFGLe6CRiHqANX3pBPlobO5JWKlgT1NrYjQjbQXtEIp+A2xFT/IO5Qj9DzsWPPfZRt1w2t1ccV2ttAAmypEhZgF0lcbaTgMG1A9bOUeRAvy4BVsHpEVrhOY24LDDN8Q4QyNpRPewC1s4+VSH4sANZP9FEQ/XeMUeE53+sBWL5oTxWOXMrMgqAmt0LlvurkNC8pPBmJxBwF5RuuOCP0Pvm6JBgRg9/j5n//5eMUrXoGiKO50k3+I1cHKhy6yEDtYXVJAnag5HUoycFLo4hDXHR0qksS0USmomvawKXE21AYfePQeoOJkOsrNsjOX6vlOWBj7gShA4aHmFqg4CUYu2yNFf6J8NRN6tOsyYOueMa5eX8Z4vyeFbewyIHTmpXgH30CE7fUk58QrwfFOL6wWbWSeyRI1FghMtI5BQe9kCBsAVKQIX8jAoV44SkVPd5XO8Sq5JQWF4vQYs70etk7u4fr15U4zMzvoiduMIQolvOSoIM5VuhOS+1ZDZZHT6KAweCLD7P4a6/eMsLM3JGqjIh29AMm6UPASjKivFAjHavKbhy1CT8Ok4yBCcm2kyQH39e7je7hcrGC8rvGXXvDb2K6HqFteHoLXyPsNvDQ7wWn0VitU87wr0F0wIo5H91g7t/B7OeJGzRDFfoszp67g0ctb8I1B3m+R9Rj86GqDkIm9rg1dw9GIAUHRa2GHNcZ7ffjWIGQaWG8k8djDVRamiDi4sAKz2sBXFKo28wxta2DLtrNG1jagqTP42kAtMdAwH7SY1zkujFYwmzNRLelOtAlYaJoi/C4D5lQW0HolqJBCGGdQA4dicw4And4keL0INjSk+IUyINsXoewgSLgfsHpkgkmvgJtnsFdyuKMNqVyNxtL6FOODHuLlErnQg6qjtGyNGuhfUvB9KbT7zMFIAXGdCDsVm1EBBhQaz5kZoluI05MI1YFuiKACkRjlgMGTGZolIiquRzeo/OkS7akKbZahuG4QjrboPVLSPevsHO1BD+HMDPmjfahdjdlzG8SpRTFj8xCloG1WgN5VTttHpyWBu1UodhSqrUC0QhNFQGSzY0fpdQrj5/Ca0y4H9K7oLmgxGv7JpkA7AGwlTl6e6Awij1+zKjqRgvuuK15DWrHl9f0At0rENz+fA8+foJ1lsJcK1EeENjUkKqKnTBk3MzbfWhoQ3w9EZPKI8pJFddLB7nND/SAw42LJUb/gLMJag45q5AXdSc6EpWfaeiqy88CwvlW5tjcMk1UT5nCEguddzLR8pxqhDLBzDbfsYa5n8EsB2svgaW5gxpZIUi90Iv50rhx2W1M+DZzigm6l2WTr3HPulHte30xEDDzuriFqqU2EsdTnaRNoXJB0gmIyobQiaqID2kbyqSw1cbExtBGWYF3oyCyrSUY0CIJ8pcHYsiNqIr/LNMjwEUBl+Ju8zVbHOHiW3/PO+v3XeDy+2Ztw261bogEJIeAf/aN/hB/8wR/E1atX8eijj+Ls2bN4/etfj9OnT+Nrv/Zrb/Ym3ll31p11Z91Zd9addWfdWX/C14MPPviMh+C/+Zu/+Unemj+565bQgLzxjW/Ej/7oj+LNb34z8jzvHn/xi1/caUDurGewDtkZJqRDKdEDCNUHkc4/UEC+NQdqsxA4C1oB4cXrA8tp97CmHgFCR/GKfu6Vhh4b6FrTjWpu4MViMQiykd4rBhDt8LqjSal+GrMKP1fePzhx3lIRg0GN3XEftvAAkoiaWo3yyRxHfrZE8VQBQPaxoU0uoQ6iCGn/mKXBx5BoSh2qoaEOMuBohaxH71JtA/c7KB47EzBYnXfoR5RskoQ2heQIVXjs7A0XzlCiUVEDh7hBKhTD5SjYVyKEtwPJ/hBRsc4pwPy6r/xZ3HV8F9s7SwitwcqRMSlAhwTtwXF7zdE53JocV6G16cx3GpHOynOewbeauRZR4cr+MrZWx/i2l74L//Xp5+E3Lt0No0mr0ibAe925dSnDZHKlA/pLNbfVBLh5JvaWEWonR95vsfHcbWQlj1fbGjyxvQG/U8CIPa5rmEkTg+4QpZC8/vuO545XqKY55omuJUJ0bSLKYYNwsY/oNNwkQ7E1g5sQ3WvmWYfYBKfR1rZDqoJTWF6f4t67rqEcNmiu9OFqg8mkB2MDtCEKY7JDSBGY4QKZThvRPqXwQ73UInqNepqLsxZgRXCufveVtgho1zzaVQ8/9KTAVQb7O0O4GR3r7H1j5qrMDJ5330UoFWELBxyt0N5TMbdy13RuT27AyX07AOyEj2UTIhVRCQIiCJXygD0w0LXC/O62Sw+nK1ZEuxypnWhJ50o6i3Y1YHbKIZQRftnB3j0FBo7ORzsF0PNozlbQVwsKz9c9cKGko9XH+hg+tE0K1OUcqtaYPqdFsQ0UlzNqRvqSer4CME08dhoWXYvDVyANKx+TegYQ4alXgezAoNjV6F3VnTYjmwBmBmQHCzqoaomyNKsUT5s5U92joYYlpbSnpHI7MjQHaBVURbvmZi3AnR9A7WeIGXUvKQck0daijTw2cinIRqSyekFJqmMeekYb5WgXOg7V6C63SR1kUCO6+KHwvO6uNbyOVAZxhZbmRF14PsArYGaZaD6m61S6vrsBrYOTrgVOwW21XZJ4ApIhqFRYa+GGoRPfR6Gy+jJ295RgqRuJiroPaHDbLam/zN2h254tPLSOsJmHLTxM5mGSFfphy9dO18GTVgtt2FhPTVUyCBH0I90/Yqt4rxENHxF5RSQoIeAZuUpKskmAQ+L1SGQJhcdtt+In6c+n2Hr1q1+NL/mSL8GXfMmX4FWvehUef/xxFEWBV7ziFXjFK16Bsizx+OOP41WvetXN3tTbeql4CxDX7r33Xvyrf/Wv8Hmf93lYWlrCb/3Wb+Hs2bP46Ec/ipe//OXY29u72Zv4x7JGoxFWVlZwcHDwv03c/F+t0z/y5htoNgBYbKQU8kOaOl14ioFTgV1rCcqTG4BkGXQOTLUIpA/pJ9LNkuJVvi5kchE38tzE05XkaGUlt0NcfpTY3pq1Gl4E4QBFiM2UFJ8USJioXenGo68VnWC2d0Vh9IIWuvQ4duQAV66tIAnNEbi/oTVI6eoLEXzkX7xCvlSjmeQM5juwpCT0W2ZydJkm8ho5vrETFVPIno55WjEl8eqI2IjWJShgTsvklOYNiMi50TckqgNAMWioLTgsjDaxy6JITUYSnZ89eR1PXDyyOF6KeRbNLEPWI9e632vgg4LzdJrSenF8rfGoaxoJaM1k4nS+pOC/1FyFVjOvI2gUZYOmsZ3InJ8N4VZHJrZHAF5j49gBdneGiEEjEytcRNG/NIaUuKgo9k4NmWVeR8oH0TbAVRm2tg5w7fIq1o+OsLs9xMr6FLnx2N5ZgrYRwVEHZWwQVyvdaWgSpc+nrBBp6rQ0rcFrmMyjGefIBi3coYY9iLA86axIWQwdJTBKqFpKjCftRHVUu6TJUZpaoqSBwowhodoEDJeYlF49uUzr13UPU7F4zCbi0tSwucjGtKyNVtyxLETEzr8ncbedAqGgKxNEbJ0K80QN0rWCnfOxdsBCvx0mbUlEsJEp8zkpQ3GrRhxntISFND1Dh+xKjuZIi2ypgfnogDqw+ydorvSh12qUv9PD7C6P8qpBddQj3zdMAr9uEAxQ7gAHL24xfCxDs0wKVbMM5PukTuUHpIW1y2xCohTEUOiscBlqiK7BsnN04vRswqat2qIo38xZsCbxvK40QibOV4bUr2gWtsbRChUsiL2v2Pyy0UDXfIScVCyAtrvFNcsclyJQIyHOUQBNE7CXA+sNz/FpRvqbJIlnl2RI95wp2uslxd0Nr0Nmoklba8TCOSiYCT/XrzvYbXExjDwG7UYLVWuYSsMXETo1Y5uOVK6lAD2nZkTPef3UrZLrPG16VZBt12zW2g1qmrDWAHs54gp1W0XZIiSdmAx/jF1kIBW5Q+sMggx22kTDTQGsrUaoLHOgxB5eS5MQhBZMCq/kfsg9SeWhy5jqrtlJG5IovemakwZk0og99VXfiWe6/qj37z/KSp99+o3/CLosn9X3DlWFp/7Bd92U/boV1t/4G38Dx48fx/d8z/fc8Pgb3vAGnD9/Hj/8wz98k7bs9l+3BAJy8eJF3HvvvZ/weAgBbdvehC26vVenp0gTfnGdSinQSFaiEZ3Dz9KxCV+s4iJzAgv0ICbkQIHc8ULcTQQxSanCQPq3gJgH3hyDAlraH3afERSnfHkE+mx08n4jwX8azbiQBkKxIJtxem0OCXnXn7+NP/M5H4I/XkO9Yo9NRmVw+coaURKx5U3JuqkwUTosXK2i6hqGtrYytYtQd81g+i18Rb1KypjIei2PmdewpYMdOGTDRqZ7hwIDlehGgoKRhsIOHG+MUNDLDXnRTsTZgQW2XWqkUGVjaHKP+vJANChEGrSIoXUWOkewmFCrLODxj5zsmpc4o6DbtYb6BbGQnU7oSNW5ZkVFbYVXmI1K2MzD2IAQFLJBu8gJ0YKgpUAvw8bCtxqzgx6C03BXe0g6kOAUfGUpHJXty4YN9vYHzE8ZWbjaIO+1MFJMmJIOQ9pEbJ3Yh8488n7ToTEdojHJkQ8aXN9ewvGTu9g/6EPbgPG4h93RAEpHuBktnw83RSZfhASmc0npCGM4IfWjHOFcH2XBIMvgeQzaytKuF9w322tF7K+7EElfGzEFAKe/OnY5JAndS7+r6DXUlRLlb/WAvZwT7qCAAXMYgtM4uLoE/MbKIqMiyHRdQVCKBXIRNQv0qCgYtxMW4LSUJZqByP93Q+pa6AwVO+em1IRAEY0IFlJ4s6mojzommC+3nLgf0FAhiJ6mvHeEwXP3+dsPCu2aR7adAU8NUB/xtKm90ofZqGHO9RAKADaiusth6XFO7wfnDapjHqamaNwcWEzPOpiGzUfIIqqt2KW2uwH3NzUVUYjFrs8GzMwXAYeA6DsCdSBR87gOzmnJLmETUexq2JGmmYQnkqEb6mpUUCi2Kci2UwYU+l5EsaMWeSty6Sn2+Ls0lYJb9gi9gGzHolnzCMsOath212vTb5Et14hOozg5RRxncNOMblRj/n7UyMINA9oVD39ZIskjaEDSKiIreWB6esuMkJTFYfYsfC/CDQPcMMD3AoorGVRQ1DTJdrhBgJmaTpcUpEEKliiNG3qKzeU6p8S+PN81DLacG8TVFnFu+V+x6A5R8bBECILM30Fu+XufzQo0cq1op1l3f4pBwc8tQmXZzLVyP/CK10Xwd9H9nmc0UFGF5/VcBxppyDXSTA3vRZXhn72crmVyjY1OUzN42MDkdll3EJBnff3ET/wEvuqrvuoTHv9rf+2v4Sd/8idvwhb9yVm3RAPywhe+EP/9v//3T3j8J37iJ/Dggw/ehC26TZdMWJVMpzpFmgIbgLmhdWmrEVsWQ6ExiK3CeLffFUna0i7RzzI6hzTivJLyMZR46ovPeyhFRCuwd5roq5QkbiOnfAPeaMpLWZc2rueaIkqviD44TavINFEuPW0nBxQMLvIYArZ3lvDep56DzQ0RfyUkQieYhlyBzgVFARAaUSrQlQkdLSl6aVo0AwRDKyF0pYcp2CS1kmGi9y18Q6cWV2UIjUGWOzYVlUXxWEmb3iSSj0BwCnbQordU8bgnhzKvSfWRwMbUOJmSwYFbz9nhL3UvFzE09yWFOSoJk+Q+KKDvu+m+HrZdQax/F0KTUsFj0OKGhS7XIngtTYOCFeQhrbamM1Zeuu58QQSKpRraBvTvHiOJvXUWusmikqThkESmXkFv1oijDN5reEF5mLvBSeTO/pCFbG2ZwSGCbpMHDNZnaHZKYD/HpQvri+8Y6Ap903PSvKBrmPzcQm/nyAqhqkngYTNn0dM/MsWRF13HZFRCi9OYdxpZ6brPSA2bLR3ypbr7Dhbfg+6OO6l6/K7KQcMGMipaiJ6oMDsRUJyYwmQe+TJTBJkVomCHLaoXzpE/Z0x0Y6VFe7JmsRgAP2TehBtGzJ7boB0C2vM8b5cWgup6jchH/woRgXxXsyDXQL7HwEHfC9A1RdIqEFFolyMtexumkOfXpbofZTCDFtFEFMs18qUGcZKh/Z0VjHYHKC9bqEZDzzVF9nfPgTLAjhWKXY2wXaA91jDU78CguGIxPRXhe4HBimAj4fpAeZ0Wv9WWRyjo1FVeUyj2+V3YOS16gwWdpKT4tzM2T/X6QoRvKjYi7VD+u8zntkvMCil26GTVDiOgsQh7LGNnP4tARKXYZSaJikRbXB9oVgLcGilp7XKAL6X52HSwE1oKh16gOH3PkmLUauhhizDJiBICzLYpAt3RskUFGMXRMLlKYejpjFVrxKHj9XTgoIQqqzxRCj8MbDRnRJ91zbRv14+klXkFM9cdShBKoZJV4sY3dEwGTwwpzfeFYnOmnEKz5RjoF8BQXIDWwlM25TEqzqsaDkOUAowOqOoMzaiAm2QIoxzhegE9sgsr3YMcmEnYa1Td9Rpp4OW0ZJfYjuqGiaHlu1NsXFoeZ2gxR9FEslRKendsLBOKfCeM8M5Kq9fr4b3vfe8nPP7e974X5bOMNn2qrVtChP6GN7wBDz/8MC5evIgQAt7xjnfgYx/7GH7sx34MP/MzP3OzN++2WU991d8jDSti4UIC0OVp0AJDmR55BTtsyNlXoI/8oZuLn1neSAQaR+SEKWqQ3xsB5RXWP2iw+6DvgqcAvhcA3iha8m75/+D7zwzC86bAtV73eVGBN4KSn4kiIIqjU6w1lHwmTIS+UsAve8R+RNZzeOGxK8i1x5MH6xi1GmhpRdllikAtkA4woC965nCkv6uRhT5Sk9+f9iM1bjoClYEXxMZuZ2g3WuT3TNAIPS3UFrpwqMYFlAko1iqsnZri6s4yC82IjqITWo3aZx1qkTJM2jl/iul5SVsQvca1ays4fmwP840MB/t9CcNLacEpq4KTRSigXKlQTRZaqigdoWuEeiQNmRNNRJhYFi1i/bm8OcX40hLMaoPgFebjAhhnwBI1GabwiBFoGyu5F8DG6gSTqkDUEZn1qFJKuOyTtrS7NCag2e7BTDV0EVFsNli5d4Sr28ukWDkNIxzxkML+gkLWc6RpOY0ojZTzBisnRnjB5lX8+q8+D3a57pynzMUS8RTdqJpxAS3NRhQ0A4MWrl3oYtwkg+k7GBswnxRwznTHKTVuQegZQfjnWr6jAAiVS+iOUUFn5Lsn5EeZgDjJUE0yTr29gt2oeH6sNzi2MsJT57a6kEKlI7KygRPEqq4yDJ63D//rq3APTtD0LQbHJ6g/tgJ3pEV+KUN+McfkdEB5TUNZ6kBiho5iVa/zdxglNC7kTLdO9rqDcxr1OqAaBTuls1RUQP+ixvx4QHZihuZaj6+vNd2FioB6kiM2Bma5QVwPyFWEeqBC9lHSNdzdNUJl0V+bobm2Arfi0T9nMD1L1AERqDcDdVleIxzkKK4a1BuBk/arFmbE4jIbEaVxw0XuR7vEYjHfV8jGCtFKDgqA+rhDeclC12w+eteB2TEgG6VgRCIo0EC5TZpVsUf3MF/wM0I/IhtruD6TvVnUSzBirWipO+FrTKUQgkG0DIBsjggdqdakaCVXMa/g1xwRpPVGnO0ATCxRC9HrZBOFesuTUrXmGKQnzUbQgL1G1yrlFDCmG5bayZnH4diUoU93q1AyRV05Bb/ZUldSKzacXs6HRkFHwBXUqIR+ADygd3O+d3LOQuhotlFH6FYjiPtVR/3sOYaAlgH1QUEE2HHAEQ0R1ra1Yo2NBfV0lBHdqjUwz6E9B0lBghgxtdT2TQyQRyB3HFKB1/8ux8NENh2B1/9YSHMkDapq+Fg0EcrpjhIcs4jo0TVjt9O644L17K9v+ZZvwTd8wzfg/e9/Pz7zMz8TAPBrv/Zr+OEf/mF893d/903eutt73RIIyBd90RfhP/7H/4h3vvOdUErhu7/7u/HII4/gp3/6p/HKV77yZm/ebbVULgGClhffpL3wc4swYSp59Aqu4nQIje7QCKSpmaPAXE1sZ8MJCMyvWFD2n7Joh5KKqyNi6clm8osbLLLAz0jNTQRQerTXevy3fBHidcM0K6E3NlK43SoKxKNC/7kH3QS6mWX4radP4tc/fhrXrgs3VRqnpJZMAYMIoNhZRIm6IEpgCs/8jggAnMwnC1YE1eWdmNIj35zD9wKtHaXj8mLVGzztYqPTaMY5ru0uw08zNjutJK+LziJIkZy0LEk7Eg81FQmNAiL6y3Nc3V7GwV5fRNUyGZxbTuUFXUnvV01z2RfJgpEbSPr/7lyRZsSu1ohTGg5kucNsniPfnDPPQ/EY2SNz5sQIYmRsIFIRqB+5vr2MprFwjcFo1IPNPLLSIes5bKxOoDTgpqR8FVsz+H7A8x44h9moh2t7S52g2xQefpYJ0qQ6vUnSbeRLDAn0FalbdZPhd64dx/Nf+hQpUlcLxP0cL/8zH4bJPPxB3r2my+rYLRGENlUIjUrlAb1+w/1N9sZiVewbI9Q1SE6Bo26kNoLYiCGBNJj8cjjpVZri2RgU9FID9FxnCuFmFMnHxuCp80c41W6N0K+YQB+kgen1G57eL9/FkZUJyq0Z+nkDd6yBHhu0KwG+RzQjGhFlry90H7plQWYaORdaTsGVV6T0LAXMTsTut5toSiGPXYJ5eGIABIVsue7ss+1KDUwsVOHhpxm802i2e6guDLH8km2EM3Oo6wUgjam9b0yb7PWI3gWL+UmHZi2if0FT73Ng0Wx4tEsR2YFG74Klfe5YwU7ZIJgKbAbkUJtaMQhREZmgJoShfygC2mFEdSzAzoGD+0QnY0g1itKomTkbC1/w30MGoSrFzsrXVCyCkx0xwOMT8ihBgZFoT5/nj1txsHsWYaNhSF8RoBwQRDuDlsGw5lrO32gE+hcM/IpH6HkYaW7ybYN22Yt+g+hEfpG0oWgA9BxCz/MzysBtjEQmYhbZpPTYLPk+qbNqZGHm1LckUTki4Jc9hf/punzoehFthO+zKdStpp2t5XU62Agzkuua9AJqN2fWkSAsbmq763toDJpRTk1Vyt8A0dhYBsSNhgMPhU7Qr2oK6qE4CIua57Q2AWZiJMuEyEbU3AZmYgEYSIAreG9EJo9HMVXpOaQkeWUlbT4s7n131qfu+s7v/E782I/9GD7wgQ/gta99LV772tfiAx/4AH70R38U3/mdz1wjdGd94rolROh3FtezIWK759+8GUkUeQPCIA4n0YomIwtAbTr/+PT8G0xIpKBWESzGCy+6BYP+8hx3r+3jYx+9i24jXvjjU0Ox7FEm1aoAIGMRrGzE8toUo50B6TdzetN3qHqjgaGT7RaxulBxUAjykgWcPLqHC08e4YQt/q6NThB8akLSf8XlJAoMn4TkSnQbejdDPFITYdlqYHIKh/0sg8oDtKVu4OzJ63j86aNIQY95v0W93et85hP1KImb21GBweYUbcuCOUY2NV0+CSAoCvUidth2YVvRK4r/i3DDcxMvOgbFsLGB78SUnXOMZFekfTzceCBSc5IE11CAkUR31xj4uUWxSlpRe24IHK0QvcKRzTF2R324eQbMDJbvGmFe5fCtxtraFLs7Q2Q9R0F1YH6GF5ofFBGrEBSyzLO4Dgo282hrKw0Nv2stTVNwunOhSihEW1kaFMyyBTdZUagfo4I1FMtPRyUQFPorc8zGpbhaydPFUGB1ZYrpvIBzpJtlBc+nZpTze1AR/V6D1jE9vdsOOa5RNDqANBvS7MeoFjqTtB95WDSOgRVfbHTnvEN9llShCh1lhfvP15ls4f5TlC2qaU6HuqgwnxSkLO7mKK8ruAEdqJRTnUOTnRJpUDL9TZTKqIkMNMuChjTMBcnGCtUJCsjV4wPoFmjWFtovtcJslTDJUFyxqLc87JqEOi7NMf3tdYSzM2ytjXH5sSPMpahYzfeOTjEflTA7GXw/wI418j0ms1cnW/TOZ53+RAURzmfowhSDpXYj5VEgkrLV6VwsUK8HmLlmiruXpuzFM9hH+6jvbmCv5WxmhqQhpeYMgBS3PB7Bxi5wUIVDAvW5mA2YCLfOkMKo5bLjgbDqSC+1kXk8jYSzRgUz1vBbLc0/Ck+EUZqSYscI3UvSxaVBMJVCs9Uiu55RwwMs0s9lyp8ajyRIj2I0YGYa7VIg4lHwnFOeNKxs1yDkEX5ZAlYb3Tly2X0K0ZkkrmDHhk2MCPGVU3ArDsor5NcsoIFmw0OlEL915r1EDdiR4XPzAEh4IICu+bIDBze1UHnoKI2hNV2obShDR/uFNB8MuKXuBJYITiwD0GjEnudvam6Anu9+99GJ/jCTa8KM+VbJsZH2coEDuUGLJ//a38czWbeCCP3M//29nxQR+pNv+L8+ZUXod9Ynb90SFKw769lbKgX/2UihXd8TVk62uGJ/G6cW6DmYnRyhDJz8SOEDCcaD4jQ0mgiVsxnxjkXTfFLgSb+B++6/iMeeOoZsN+P7bNUImQcqOrfA8a5t9jPoRuHAHUqVTtukIlRliIg4BT0zKHY0quOeN4maGgqKCA0uXNzoEnW7FcAGJg9Aq6EHdK8imiEOVjEumo+QmhP+f+gFwGuYM1PExjD0SkUGWzmZRCvg8ceO087xIOMx67foHZlhttvjzUym3cntyPRbzMZlpweAV9ClowlAs3BxAYByfY5mnsHKxFXbwH4qKug9UiCw2iBIcR+9Rr7F1yRKEACEKNzsQza9AG5oQopeCx/0YrIvGg9tA/K1inbCNqA8PULbWsAC13eWYHOPrN8C/RYHV5dgl+jUM56WyEoHV/M4FWXbOWKVSzUTzsUFq3Y8tsOlCmXmcG2yLIW90Lay0G1nCAq+MoijAnasUbZAu5RDH6+gTMTq8gx7ewO0tcVgUGMyKjsEzJQOs/0eVjYniL+4jvGfqqB0hG/o8LW3N+jcsbShO5ifWww2ZnDeoJnkmKvFdwFFW91Ei8p6jknwyRggSLMHKR6TC49hQ0XthzSINgA52DTknvsdVKeViVFDFyzIzMQi9Dx8H930uAawvDrDeNxD3CnYE+UBYaNBOy/ghgG9SwbNcgSOVNDX+6iO+86JSTuFdp1jfDMymJ3gkCI/UJgfC8hGTOsurmTAlQzNOrVYxZWsm5DrCyXcOkXp9akGygT4qz2ooDCKQNh0MFFhUhV4zgsuYlSVOJj2sDqc49qVFeQXckQLlNclhK8EXC8i287QDhYp5a4v32dFUXqzGlDs6E7LkR8A1RZT4esNJqYDQO+KRnUkws4VggFm9zYYfLCP+fEAey2HFkevYpevyyakb1VHPIptFuVRRxQ7Gs0aXbIiqAsxFQcu7UqAnWhk5zJUJ2WKbiLiXAO1RlwSWpHowKIGzFjDrdMhzJ9kgnzUvDZrp9CucCijG6DYVpgfFzpUGWD3LHw/ID+ga5UfRhTXDEIGNFst1NTQuSuXID8p0n0ZYeZKmjTVUbQSWuDWHMzIIvSlabWRCE0GWvnWCr7P0EnlD9nxGsAeWHqd5NIsjjSpXybyHBkG2Ep11D01M/wcCXnUtUboLRptgOd4+hzVF3vy2rBimR2yFFdyvys99YKiiYvR8v2Hjg1erRGdYYJ8EZge32qoqe6OwWHrZFXRICXOb7MSSZq5Z/097yw0TYNr164hhHDD46dOnbpJW3T7r5tGwVpbW8P6+voz+nNn/QGWVxTkpaZjvJg0AaAjlDiHRKexdN8ekDQWAAsnpzmlahYcfjVhcjeREqIG1ng8du4YKV4nKqgtOrjckDnRY74BjlWIp2e8qUh2RpT09KR7gGIDle9rVGcbDD9OVCBmsRNsq9xjaW3GAj7ZloKNRe/IjBNoQ11GEowmRIBORRHFQEadEQur260ZKRQpgwKgYF/S0yH+8tFGLK3NoDZqoAyoJjmqaQ47cDD9FuWg6abjWqb3S79VYOn9JeyFUuyAaZtLkTobOysuS7Glu1P0ShABirvvf/BpvOjTnlrcYIPCYHVOtzC5cQenaKss+9Y1PSDCkRqRGIG6Ih0qCdqTU4xvDKpJgTizQFSoqxztJIdrDEJN2kSQbUgNQ/CayIlsL+T9o2SF1LOMwvV0LMHPrOoMOwcD6CzAiQBdmYh4pde5SrlxjtUjEzz/JU9j+OAO/twXvx/Fc0Z0Tcsd9kd92f6I8fll/t2QRpXnDrrwGI96eM5f/vjCFAGAKZjjkZarDV2wbEBd5fCtgSkdfHLrUegE9KE2iAc56oMCcbvgv+kgyAWkyTEd5S39SW5YpkPuQKMBQb904Q8ZJpDWly01KO8Zob81paDfxM7oYDorsLQ0x/DUCGtn92DGBn/m/sfgRBMwP+Hhlz3yD/fR3NWQLikaLTckkqGnhsXwgUK+DzQrLFR9QQSkubtBuyyi6YlFc8TBH2lo8SoNrS49skt55wAXygB1qZQcBqBuLR7/yEkczHooixbTXz6C3uM53JCUnvmxiOkZh3IbKO4dIWSRjlv3NF3ydsiAZi2i2AMwdHADfnY2ZlMyeFqhWQvoXabuQXk+no35WjeIyC5TG5Ed6C7p3cwVsgmQ7xE1cv2I/gVDx64Vj5hFFtZSlNupXI+MuGm1Cu2S0L0azWyV0iEuOeiJgdnJoPczoNEwY0t3qbUWZmLQvwIM31+y+G0U6VUFkQYVSe+qjtDSNxtpmAmT2AFaKEcL5NsG9eka7YZDtmO5bXZxDkXDYwkdu9faGa+RfsUh5hy+qIZNS9JwxCx0w6eQRfhepO7CC5VPinXdyLUmzVHiokEzM1oC2ylNTNjIkGJlxqT3qkYj9Gl3vnApjGzQCz4eGzEDmRMVjnkEPKjbUETFtSDQJpPfYaNJsxIqJzzRmpAxhR5zQ/Rk6EgXC1hoJg2pbLpWd4rvP8R605vehJe97GVYWlrC1tYWXv3qV+NjH/vYDc/56q/+aiilbviT9BVp1XWNv/N3/g42NzcxGAzwxV/8xbhw4cINz9nb28PDDz+MlZUVrKys4OGHH8b+/v4Nzzl37hy+6Iu+CIPBAJubm3jta1+LpmnwTNdjjz2Gz/3cz0Wv18M999yDM2fO4MyZMzh9+jTOnDnzBzs4d9YN66a1929961u7v+/s7OCNb3wjXvWqV+HlL385AOBXf/VX8fM///N4/etff5O28DZfqdBbctRhpGlsBCfMitzX/SvLXSFhdi1wsoKvxENdEAmlI/KTU1R7JadDUrRPtwfky5qIOLMJ7EBUGqrnYK6UaDdbqL6Hn9MONkHdtGAEecReIS47TrZsRH2MYsvx/Q5mauCH7gZ3ofF+H9EpmAOLsNnQrnYnwzyyGNI2wM9Z8CaKUZxRoKlzj3qnx0CvJLJXQD2hatVNM96Ehw52qYHfKToussoiTB4w2h6QB953ovHQiMYh1Ja2vZLFYjOPptWYPFhheWWGdm9ASpWIl/Nei+aQWDyMc8QswJRuEcgVgXqa4/GwKZa5rPBN7jG5PoAqPMpBg3qWdYJ0nQX4xizyMrLQIVfJdliZBdWps+z1Cnm/hXcad53cx9NXNgAAdtDAbZfIj1TUoARqP1StYZeb7j38QQ57YNCuOxSrNZpphuKRHtxJD/QdtA148alL+J2Lx4GoOsF4aqpS45bfPYFreBzNoMVo1MNo1IPSEe+aPo92uoHieJ0FhMoCcw29Xnfhkr428JmHn1msbE3w4SvHOhqXLVvmm9QWWeG6yav3WgIviQiFVne2u2XBDIPpfg+9lQpzXVKmdGzOTANZvqVLly3bLlskuZWljJAoQwJo0rOUDcifKEn32Wr5mxI6natsJ8gPrYbaLqgxKNjcTqYlsszj1Ooeihc7/OZ/eBHWX7mNnXNryPYMdAPM721gr2YsEo/U8GNau2bbRC3NyKJdJvUqatB1ySvUp2uY7Zy0GRMRjYaZGPie2Jt6TpnNioc/PUfxWA+mAaZnW9gzM/grfcSRBY7PcPK513DxqU00tgBe0CA6haVHMkw/rYY9X0I3BvufXsM+tox4gs5omNLWFaDAfHYiYnoX0Pt4zoIfYg+cEz3J9zTqNSIiPjnUGjpTFcenML+xRNtfsGBuVxjI53rodB4IRByK64Z0szyiXSFyFCwpaINzGpMzHrrWUmyTHpbvadQnWqhRBjsxCGWAG9JaWTmFMPAMX201sgM6Yg0vR9SbGnYKzE4JrUsBZqrh+9Ry+J40hX1ur24U2uMN1NiiuauFvVzA92iti9LT/SmPCFERXcgDQh6R7xi0pyu0ezliHlFezNAuSebLeHHf8EVEtkOKY+gFBAMoh+7an+1ruCFfxxwa1TUhvs8GSNcKulEU8ecR2Yi0PuUBPTEIhTQ4olX0SpyqEpUVCnmf+Ucq0RcHngMwQSdUADNBag6jTM/BTbKO9puoq0r2KwYyAsLMkA44td3ABInqC96TYp7c1A6h7LfBuhVE6O9+97vxTd/0TXjZy14G5xy+67u+C3/+z/95fOQjH8FgMOie9/mf//n4kR/5ke7/D4dQAxR///RP/zT+w3/4D9jY2MDrXvc6fOEXfiHe//73wxj+YL/iK74CFy5cwM/93M8BAL7+678eDz/8MH76p38aAOC9x1/8i38RR44cwXvf+17s7Ozgr//1v44YI37gB37gGe3PV3/1V8Nai5/5mZ/B8ePHn3FC+p31+69bQgPyl//yX8af/bN/Fn/7b//tGx7/5//8n+O//bf/hp/6qZ+6ORv2x7yeDQ7p6X/1FqCbRqkuhTtNw/TMIAyE6ys0q04XUnhmGiQqutj6AlgIuxNakdxYxC2FzyVlC4VoQtLvNAm6TQQq3ek50BL+NhNyfH2PvFsstVhZn+JgZ4iTJ3Zx4dwGKVo931GndOFxYmsfl66uAgqdBgEzaQCS7kTHRfCgbIvJA9zM0h5WKEgAYPpM7O4t1QhRoZkf0hkgcf4DvLhJhdowWDA5UelI2peKWFqZY7zfA6Do7lRbqMxjfWOCne0l2MJ1lpsmZ4NmSg8vXPAFYrNAMqLXHW3MyHQ5tAblsEZTLWYJwZlFKCJuREJw+NopTeDC1pfbDqeZgSLhXkWvxVKvwt64D6UAJ+LqFGSZldR2xKCkoCdVL4i7jVJANmygdEQzyZEPG7jawM8yTotbQ5eqVAzINib6mDJ0qVIm8hhVBqgN9HKDvHBoW4MXnLiCD330FMoLFqYC2k+fwLcGbmqRLzciOkf3XSW74XzQsLhPepOgYEyAd6RWtZVl+jjQhROqR4bI94Dxcz3MasPnXevBHpmzcXG6yytJiEZsSTdJjbSSbJouCHGWseFtxLDABqhRRjFyz3Xoim81Oe1ZZMO+1JKqV1tsHd/H89ev4ld++UX47Ff8Dn7ll14Et0YhdKJKZTsZ3IoHeo40wmTD6+kmRZFzRFxpqW8534PfbDkl1mHRUHkNs5Ohd4UF+Oy4fGeBBWw0gF/y0HPNpO45U9chRWdc4uS5/7Ecs3scdMUpeXldoR2wOYAC7JjBdqpm0e4GDB90A+ZZFNumCxzMDxiaWB33WPmoQb0C5GNg8rI5zFM9aEddSO+K7hoO5UmLcgNAO6FIzamVKXY1fMHLHq2JKT63M4V6wyMbGbRLLHK1U9BzDdMA9ZZnI1Bxn/3Qw+7azmkqZhGDc3xubzvi2kPA4ILC+AxdmrKx7hAeP3TIr2VEhZLFsIoMDtxsoHdy+CVPpOiAtCXfJ2IVswBVcagDFZFfs7Q2HpI25vuc8hPh4X75go2GnaguDd7UaqENGgaYKSlTqlVdwGKieSlBQIKNi8BCAWV1rRAKOrD5fkDUIujfqBH2CnQBtn13g2mHsmIkAmYlhYbUWtS6Q3tUF+4p97vSd1k7HT1XxIb2wMANgpyvRLRooxaIjHjFrBu5Hj31jd+GZ7JuBQ3I2Td8cjQgT/zff3gNyPXr17G1tYV3v/vd+NN/+k8DYFG/v7//v6ztDg4OcOTIEfz4j/84vvzLvxwAcOnSJdx999145zvfiVe96lV45JFH8IIXvAC/9mu/hs/4jM8AQHeql7/85fjoRz+K+++/Hz/7sz+LL/zCL8T58+dx4sQJAMD/n70/j7Y2Pev6wc89PMOezj7TO9ZclVSSSmUiDEmYJGKAn6jIH2ltEEGM9FLSIMTQrUtdrg6gNjQuXQoI4nIBDr8GAtL8RBRIi5IACYHMlaRS4zufcY/PcA/9x3U/z37LoCR0YlXBudc66z3vOfvs/exn7/3c13V9p3/7b/8t3/iN38jNmzc/peczGo14z3vew4tf/OJP+7mfrf/5ek64YP3H//gf+cqv/MpP+vlXfMVX8J//839+Fo7obJ2ts3W2ztbZOltn63m04mfpC2lybv+q6/pTOqTT01OAT6LTv+Md7+D8+fM8+OCDvOlNb+LmzZv9797znvfQti1veMMb+p9dvnyZhx9+mF//9V8HhCUznU775gPgNa95DdPp9Bm3efjhh/vmA6SurOua97znPZ/S8T/00EMcHBx8Src9W5/eek40IHt7e7z97W//pJ//7M/+LHt7e8/CET2Pl4rCke3Qii4PwwvlKnboQ+L59hPnQoLP6ETiia6jEm2J2ghdKiKULqd6aFZ5lQTiCkrfU5+6TAOxzQV1ajEz0ZJ0qbREmbLFi5VMsSYt+bDl9HDMZGfFzXdfFCeTzgI4D31435Wru33i+dHBWMTak4btO2aCxiTh8Ab9QOg5jabYqpMlb+x1A6E1aBtYzwvqZb4Rk99GsQleSWK3EitfEben39Upcjgo5idD+WFM1q2jhvvvuEVpxTbX1TYF+CncXDQfvjbyOqiOFpW0Msk6mP8u7C60GuZW6FCd9CNunJnC2m7oVrdZ2YZFRjwoNuGCabqOF9elclr1aI82kbY1zNYlrrK0t8pkBSyC7e65x6DwK0uRiUWtNqIh2rkwJ9+qxUFKRfbOz3C1wRZeUp+DgrXGVyJYFzpWus8uOLCy/OlX/S4vvPe6WAPbQL6/phw0hCjUpA88eRl7ZKkfrFg+XNMscoJTbJ1bPkN8H2dZrzna3l+IDqZ3mxL0wiUkqMsdcbXF1Zbm5gDvDG/4k+/mi7/+PYwuLRiNKrbHK0Z3zkWfYULPQwd6aplNHHednLI6rUjn9KMSCsYsQ9kgNK4La8qdqn8fgXDcVdIbMRLRc0iuarcOJ7z72l188Ze9j4UreP0f/x3O3XUsCMJARMZ+EBg+ZSgeL/rPb8ig2ZY0dLR8ntVJhq+shM+BOHbpmGynIbua4/cb/GtnzF8gepL2UkOz7ymOhW5kFmJIkA8b8v01l14iBUa0kd3zc6g1q3tFu4CXpPDlg23Px1dJE2GmDfmJptn1MlW3ou0oDgzNdqCZRtppkCDCAnSlWZ8Xt6yt/+0aW/9tQLvrabYDceBxQ6guJveyQuhXyoOuodl3+AG91a7yCVA9lUm6CiKCz09kip7NNNmpSUhCpN7z4qh1kBGzgB8GspTB4aaekFz/VndElndElucVg2sJZQ6iNXFJbxGKgF5LIrmK6ZgCFAcGPwroo5wwCBI+WGn8nhOtzkpvruu5oByq0bTbAV9EdCXXXr0WWllMqGo7TmhCq/rz0rmQmZXCrsAuUnBfjzgITUs7ySzhNpew7rhjugb7hDr4QXI+TBoTv8okQd4pcbFqBF3v9rNQS46KXH+Tg2Byo1PpNSEXp65oI2rgNvTataSdq1pCMaMWpKaz4u33w6Bkj+uO10Z0ozfIytnirrvu6rUW0+mU7/3e7/19/ybGyHd8x3fwRV/0RTz88MP9z7/qq76Kn/zJn+RXfuVX+P7v/35+67d+i9e//vV9U3P9+nXyPGdnZ+cZ93fhwgWuX7/e3+b8+fOf9Jjnz59/xm0uXLjwjN/v7OyQ53l/m99v/YN/8A9461vfyjve8Q4ODw8/qRE7W3/w9ZywePh7f+/v8c3f/M284x3v6DUg73rXu/jFX/xFfvRHf/RZPrrn2equl3mQJqELJNTpd4mPTJ4oPkXSZHShcV6BN5vJRxYl2G+QmokkcMdAsCGJxEMf5NSJaUNtwGtIKdlKQ5w4zOVGqDnpGDs9STwshCOtJGk7G7YYExi+7IjTWxMofG8JLPQkvTnG9NyUCoTWcHIk7kak5kHZmJqQtLsoyRABKQxdlQjlJAoVG6vb3hI1qD7PoROpx7ARt8fQPVdFMampF6JPkKJaROCVy7g1G0vzkoIIiaByT0xWtZ1DklJRnloWiAeFaGR0hOMcvV8TvOIV9z/NOKv5jSfukcJcSwHcuV+ZUdsX9V1jElqNmbQwIQUXRvRTA4YvPmHWDslyh0vUoI4iRMpcMYXHI+L4rBQHqKx0/WOjYP74lOKOJc1KXLuqd+/itiL6jhVNZWkqm5ohOaZ82GK3Ks5PFjx1sIPOpEAPi4x8t8K1Bp15fuGRl2Izz/i9JYtXVjSLnNopEaBaKfp3XnGL11/+KGufMXMlv/bYA9StFc3IlRIuV4wuL1ivcuLasipzeU1ThoefZahGU9yxEEF9Drv7Mw5PxigFlx68ydFiyK9du5/XXHyce3eO+OBjd6BmFrVXM9las1gMyAtxADN5QGmhYnVWvL426NyLVsQEwnEOEyffNwa13fTvsRgV2uhenN8bDCCvaWdo0NEfs9LhveY3r94DwM5oxWsuPMHP35qibxYi/8kjzVYSOwP5SbrPOqV9j70MGlIuT7snLnDoSJjn8jlsNfGBJflHR6wuawbHmmYrkl/JabcC7SuX6KtDiFBcXtI8OcbcseLarWl/jTq6MhVazMRhKvD3VqjTHCLUd7XSbM8MfhxQt0rqc6J7sTcM67tb7Im4QaGhuKHxRcoucUhRm4NdK65+4CL6nijBl42izSJuIkLkmITczdSjG40fwNaHLas7hObVTCOmSU5cW0HcpUpxw/J5pLylaaaS/ZEdGzSRUIhrVLubMkByseil0fL3hRTrIQsMrhv8EOpdoTx11rbRRsKWkwHQ2vYaHLWwqFbE9mKjixiNBBFcm0PZzkMRhdKWROCdBbuK0lyEQZAQw6VCe0Uw6bGdDIN0I7fvqG0hE1qdipsclGhjT7kKuSTHh0Jsj2MuwbaS2ZKajFGifZW3PceU0aHajcVu1IiAPKiUGZKGYTYILSuT61F0Cmyy0VWpqfdyPYit6OxYG2K6JqtEB1NdNpUiBRAqybfqGx6IZXKONPEZKfTPixU/8xqQbvjx1FNPPYOyVBTF7/un3/qt38r73ve+T0oS72hVAA8//DCf+7mfyz333MMv/MIv8LVf+7X/40OJ8RkajN9Lj/EHuc3/bH35l385AH/8j//x3/M+vPe/15+drU9hPScakG/8xm/kJS95Cf/4H/9jfuZnfoYYIw899BD/7b/9t2fAa2fr91+qTu4fKqK3GxFCH5d0V5HOnz10r3ydcj4McmHPkh7EqyRcF5FgDMmZRKfJUZcfUsn0vfs/Sys2h53uIyjUwkjzUXqaZU4/FtOpg9DCvVZOEZFCvl1lnKylMVAp1K5ZiW+pWFqmi0encVlY4sg9M/8jAQfcPsVKx6WSV347z9FJyL2elbc1FKrnu4fGoGzsrXg7FEjlqblSEWUCYZ6jRi31It9M7jRAxDWW0raSeB5v01sA1EYStFXEDARB6jjPoTWwlaw8a4PelQmRUpEPXr3YB+p1YV6dcLrTdQAbPYKKvRWs3LcUxfaBBfMk8m5q2zdNHOWwn0L8WgmctGUrgnOn0SbSLDN0FrCZZ7i/ZHxnzcHpGJ15OMyoznvMbt0X4YNJjXOGEAT58QHCds3Vkyk6NVD2dybs/27LE38uNYmlJJTf/f8yzO+N+A+VuFcvUmOF5IoEzc0bU349u48bpxPqZY42AXeaocctd77yGldu7UhjYAOh8KJbiRvNx+DciqaxtK247kwna2qXhPIRrh1sA5Bna3796n1UdcZoe836ZGvjXgU0jTiISRK67h2vIKZgTNVPaLNzFe0yI0STgggT1/1YBOLs1qAUYZ6JriAKAtRljJhCfhZThgtRUBJtAjdPJ/yn2Yt42X1P88GTe1Gt6BRCLsUrUfVaA3Tc6G2TPiIfNfjCiF5qKdap5iTZbR9loh2oNfULKtRhDi9eEm8OaG8OyNYKNwoSirkjTkb6esHuQwccfHyPOHKYucHnmuq+Bn2jhEGg2FvjPjEWB67dCAOPuZ4njYqi2QsUN0Sb5XYkb6fal2LRLjTtvmP0Ccv6UqBNGRhu36MWBl+kUL9tmcA329KI2Jl8ru0KZi9tMaeW6oIX0fZUbqNr1V+3ooJYRhrFbZqGSHlT4YYKN/aYucHUCjdNxWzpCSSt20h+1o5kGh/ySH0+oQPDINfgpRXnqonHHltihoT9NZLhQy3IiF6a3lo5FBHdgp1LMylahvTyOno0S6dMk2DlOceh/M6NY9KBpMTzqHqNjHYiwFdO4bck80RFev1EGHuyA0s79dJopT3CDcRxzKw1bhSk0StFgC45J0mLEdM8yQpi3yEPKg8bLZiNG2Tj9pXeuLpRxFYQupiGTgrduy2i5fPiY9o3WtGQKKdSaKE0IqrWYGMfdHi2ZG1tbX1aGpA3v/nN/Pt//+/5L//lv3DnnXf+T2976dIl7rnnHj72sY8BcPHiRZqm4fj4+BkoyM2bN3nd617X3+bGjRufdF+3bt3qUY+LFy/yG7/xG8/4/fHxMW3bfhIy8j9av/qrv/op3e5sffrrOdGAAHzBF3wBP/mTP/lsH8bzfsUUoISCMM9oYr5BCmyiZylpKujcQkjXcC0bg6rShjZKDi6BlC+in5GaS5RJaSfiVk7J9EhvpusxKMz5Cl/bZM8rRZZZGPJTy/quVgr5PBW9QUEldqEqNRehMTRdQnqXlrgWO0cVAAPFhRXVSSnogd6kn3ei+ehUqseFmtYhKCqT79fzMokd1eb8tQkNSR79vWVtFii2G3xr8I3uUYuYnKUgUai6zJFE+3rs+n5K444bUb5C3LS6gtIG2jZLqeNxU/SENN0LqhfX+zZZvZooTk5xk3weUwEcnEYrldAM8I3uJ/Ndo1GvMmzhcbXpg7/O3X2E2Ztz62QsTlql0BraRS7NUpRUdJ0KiGaV06wz6sbiW43NPc5E7F7Vp5mDpLTbwqN1ZHphLsF/zohLV0K/itcdc/KFkYuZ42ghVLbcej72Vwq+7pX/lZ9492vQa0lVNqWnqcU44RUPPMXjJzsoBA2QMEN57lcPp+L+tJ3oYDbg1gnVcVJxO2eSgFzQp9PZkOBSqGBU+Npics98PsC3mt29BVtFxehVRyzbnKvH05QFQgqTlMcJTpO8ePqmVhtJUnc1CcmQ5kHZIOn244ZmlaUm0ROnAfPxIc2eB2dhp0FbQeoEgQJfG0zhaSu7sRjOPB+5foHtFxxz8rFdKcqiUItETC2T6ZBBGAX0pE0iX3EF82sr9JXzFWGZYdYKzjcUFxvWT02wc4M5ENvawa+NaT+vIqwtey844ObhhLAWF7LTGxPiIHDrsV30fk08zmUiXWuGj1qWL25gbaivjWAYUN7gJw5VGWwF1XlPdmJozrfyeUjTawYb6k3IIvktS/M5S7IPj2inkcE9Yu9UHW0RbYcOKLKForrsoDG48y3F0xnNbqC8ktFsi9C62fG9qFulNG/VyrVQrxXZDNxIPrf1RcfyAcmPKA4N7ZY0efmBIDVBA1ttCiKVlO1mV4TsaiUGHNEINai8mkmuysxiZ0aCJJcKn7TFMZnhRRPJZiYlusv5cEUUB64s0UrLQH5s+twOscVVPXUpZOJcZefJsSrlfIRSKG3ZQqhobizOXNpDaySDBCTs0E1FBN9O5XyFIsg1NjULroiSnB4VYerQJxa/JeGF6JS5kf6GkJLJnaDzXcNhCt/buysdoMl621yVyfWkZ4WlfJMuyVzlAWoLoWu2ETSlkj2kCx5UKSgUK+/LaCO6dJ/y3vucWN1e/5m+z0/n5jHy5je/mbe//e284x3v+JSsag8PD3nqqae4dEncLF796leTZRn/6T/9J974xjcCcO3aNT7wgQ/wD//hPwTgta99Laenp/zmb/4mn//5nw/Ab/zGb3B6eto3Ka997Wv57u/+bq5du9bf9y/90i9RFAWvfvWrP6Xn86Vf+qWf3gk4W5/yetY0IJ8ud24+n//+NzpbfYJtV0SjxA0Fm3i73dT99otKTDzaIM1HGHr0uVpgfyuOKgQFrdpA4gryad1PTTt0RGmkYF2ZPhfAzRPqEQAvF34uVOx/4TW5Ly3H3H+fpXFYnXjXaSoGct/oiNltpCBPu86obOR+O82GAlP6/oKs8/R912D0zU7XEEB0OlGh0u9WKcgwEz96lTQzsdU0y1zSr3XSyEAfMNiloUOEWSaPJcyvtBTltIIgVpP7u3PRDuSC/CgTZNPUsad9EZSgCtCf1674DF6hjWg7uvMPkunRNYpdDoXSEWMlUbtL5s5KCeGTRkHSrAFunYwJTpM9URIPC3xjyCcNWenIh41Qcbo8i9xjsoBrDZOttegoztXiRLXIEl1NXkNXG9qTgtmxWDJ2FDZx9dI4r7k4mdMGTfAK9+SI5Sem/G8Pv58bzRave+jj2MJTbiURZMoj+dC1i9IceE27zFAKLt5/KC5jrcGeGPRHRigdRIMybCVEMDmGxQhb0xUm8ymcUcIGY2oAs0GbNB5edEqzIbcWY07qAbcW416rE1IWTp+8biI2NTGdrsp1bm1Io6szsY/u7JGbwwHmQHRIWkcG7x5KEvhWg11I8xycol3khMZgrBfnMxVFJ6LleWkVaeY5x0cj7nv505hKpvnKK6pznmgi7Z7DbTspuNK50IXHH5Rs7S8oLqzwjWGwXRGN2EXz7in6XI27IH76ZqWpvmSOebrEnhquP7krjV7hmV2bSFFpY0JaQbeaOG2xC83yRS3l43lfUObn1/11yZ4YwsML9HZDe0ctzfwofd4mLThxZDJrjT/X0lxqCU/IubILxfLGiPaD0xSeGFNGiDQfHe1GLQz1BYdZCUUom4kjV35kpJBN1KBoIm7H4bY8vois7gjUu4H6giAeEpiqqHcDYaehvqtJGSFRrmWVQZ3avtDtXLFcoieZSmhaoysyMAkD0ZCYSm4vYYSd/W1MtDGhTBW3DGatyY8M7SQ1ZHkkOzG4sWgyhFalaMdCmXIltNuBbJb2itihEkLhMrWi3vc0O6IPclMvKedBSQ6IkmwR5cQ1ylTJ8UwhewWSCcPYEQZioasWJqEm6fGCvC+UJjkWRshkz1EdOtJRrDr3ulkm1C0FaikWvH4lwbdKRwku7JysuoJ86Im5uOmBPFYsg+wthZd9oFWbgZyVfbO71j5vVvwsfX0a66/9tb/GT/zET/Cv//W/ZjKZcP36da5fv856LZ/rxWLBW97yFt75znfy+OOP8453vIM/9af+FPv7+/zZP/tnAZhOp3zzN38z3/md38kv//Iv8973vpev//qv52Uve1lPiXrJS17CV37lV/KmN72Jd73rXbzrXe/iTW96E1/91V/Ni170IgDe8IY38NBDD/EX/sJf4L3vfS+//Mu/zFve8hbe9KY3fdqOXqvVio985CO8733ve8bX2fqDr2ft07Wzs/MM14Pfb91xxx184hOf+Cwe0R+SlaY+ZqXBKeECd82HV9DxyNOFH+jTw1UjeRx23HJ+dyZUoA7uHvqemhGjbJ7tcdGLI6PTcj+N3E8o06YX6UW/HaeXsRQQTz2539OE6ETsYUN1IPF95dhTsWClyPJ1ag5aDUsrnHIb+2Jd0Bd4ho2jiuTXMrn/Rs4PZRDxYWo6VC/Mj71IPwYtj6ekMFM2PuPC3E34Y0i2xkFE+bHVFJeWqTGTZsHkXoSaToOGZp1xdDoWEXct4Xd92GCbJtBZEL/7LugvUa264l9E4Qo7FW1IJ8zvdSzQI0naxmQxexvClG7TpX27WwMOU/OhdOSu1z3F9L4TyVdxOn0Z7LBNiIsEIMYgdK/FYoCxMr0sBi37l09Fm3JtgM4C5aih2FsDkdYZyQNJFDKbMlAeeewSx8cjwtUh9799TdhrOJ/Pef32h7lYzrDWUy2KhPwo8lHbfwRilOYzBMX1a9soFdnfnXPxVdcZvfqwD06MMTVDa0HnfGtY1znN9SGhMdjcJ8qcnOdmnvcW1TEIwuS85tZsjPc6mQHIObeFx5/mMpltDC5lFXRooR2Jfa5KtLZOjB4qy/qkxCw7KlYuIYsvbtl9+S32dhY8+LrH0mdJ3o8YyTSxiY4lTZUgYW1r2L90ynBS8+jT52m3PW4SaKfyeR5cXKKXYic92l/i1llPEbvjwZssPr5Nbj0m91QHA9q9FnSkmYA/zRl/QDI5/NgTPjpBezk/+U6FuZWjTKS8YsEphk+kUNQbJWHg0ScZ8f6lIHYGVPq8uFYQ0MHTGe6y5MmYxweCeK0kJDUMPGGRUT6RYU5FlJ1dy7EHlnCxZnhDtAnRRMwaTC0GHPqOFX4Y2Pqw7WcxxaEWITyieVAeTAPaC3WoaxiiFRvzmAX8rpOfTxw4sZfVtUZ3U/TaoOYWxul2JmKPEuGglSFPHHv8XivO1+PA+AlFeV0zu0+obSqF7rmRoDtmrfrAv+xEJ6qSDI9cEpB39sIhBelJzkYaSAyEoqUbRXGsehteX0Zp2Jbyt2adAgjzSHFgUhihvK72VJAp3yEHpbyhzdzith36WGzEJadDKH/qNJNsDSOi71gEdEozV104aadTSdc31e0X6d/QmqQrTEGEpQwJYi7akJ5CmK6/t9Nu422DN5UGUWYgIaWsTS8+7/eipGvc0ITP1qezfvAHf5DT01P+2B/7Y1y6dKn/+nf/7t8BYIzh/e9/P3/mz/wZHnzwQf7iX/yLPPjgg7zzne9kMpn09/MDP/ADfM3XfA1vfOMb+cIv/EKGwyE///M/32eAAPzkT/4kL3vZy3jDG97AG97wBl7+8pfz4z/+4/3vjTH8wi/8AmVZ8oVf+IW88Y1v5Gu+5mv4vu/7vk/5+dy6dYuv/uqvZjKZ8NKXvpRXvepVz/g6W3/w9azlgGitedvb3sZ4PP6Ubv9d3/VdfPCDH+T+++//LB/Zs7c+Uz7i9/7w98kFvxRIvBOiq1rL9ElHaURsJN9fS2HlhRaAFfeq2JqEeCDC8yQcVGkyB8jP0sRIpYLHnFpCx2NutIjcTSQ2erMJdBNBkIKkE1+3esMJzlL3sBRfdl0p/LkWNbPEMqTp1qZZUYGe79xrVboNxKs+g8FcLSTcbNLK/Xv1jOeptxop+rvWvHN86aZpSdPBPENNm14gLMiIFLXKBqGRaTDDduM2FZ55PF0YXZei3SEJPjkz9eGLrd7Qr9rUUCJ/1wXldULwXpTsdbqvRANqDXbQ4lu5eIe1xXRFe7oCKA1+bRlsr6mrzaTQ1xKoF73i3ssHPHWw06eCd45YnbC+16SknBBJWJcmoSgbdscrrtzY6YP2jA393wWfGr0I2ahFf3jE8AZMv/YKj3/kElt3nzJ7corerUXH0RX0qXCJEcpBw3pRoI5ywtRRTGq800wna4yKrJuM5bJ4hjOWW8pzLbcrgtcYE1gfDQT1MhFjBNnJCycaGS0oRUhNbZd/4horyEkSnHdidJt5aTCdoE79+yXK3/kUeqhMFPoTUjRlhxZ/uSYfyOtkTWA1LzY6nlQ0dYiXTghGjODWGcVEEKIuzyZ6DbWkdXe6BdWCv9D0oWz5/pp2bYles3tuzumHdjH3LmmOS/JbFl9EyeuZOIrHCurzHr3VwI1SghW7oYaN6EkDN0vCboM+ykXTMPbYUYs/LrCnhnjvKhWIEI4KcfZaGezc9NklIAVu2G0ZTdesnpxQHGraLSnM1V5NOMml+Uqi8U7c7IcBfa4m/+AAu4b5gyION43khizuEfRBKFxQHiQxu5dmxOeSaRISDasr2PMTTbMntLCOAqWTmBqv0I1ONKB0mQpC34oW/JZDr4yIvQFfBuxSSwr7NQlGzBawuiyFvK42rla6Ur1GIioSOo0U/E6E1qYSoxFfxnQe6AcXUQsy5LYCqpF8D1Mp7EqOxQ0TOhGgPFQs75IQRj9Mx9LlusythMom+hIJBVGN7DGqkQGSqnSPyt++/6hai7FGh0IrevqwypPhSHf966hU3UAoBZGqLMg+kq6d5IkamntCZVBV0qmYCCMxU1BKrsn+NJdGqdOadKL1XAxVgF7/8cRf/ht8Kuu5kAPywN/8HsxnOAfEVxWPfs8fPAfk+b6+7uu+jscff5x/9I/+EV/2ZV/G29/+dm7cuMHb3vY2vv/7v58/+Sf/5LN9iM/b9axpQO6++25+5Ed+5FO+/cWLF8my7Pe/4dkCkIYjIQ5x4uRCm6epPqCiTAebmThZqJA2ECXFa0zFtuqajyJtMmOfXEroA66EsythVGG3FWF7JU5ZMf09yT2Fjpse0sYFoMAOnRT+qaDrN5mBlz7iQoub5QzvmrM8kkA8THI0QYqEjgJB2nSUDdw+2YpeMX7oGK0iR4djYpNQl05vElRvMxoDqQlJm3hypgopjXx4x5y2tbjOutFJcacGMoWma/g6BKezRU7PTenbmiTYBPulAjS7Ukgy9rYkY3dBdjoldXfhgh2NCrqNWrQqtmx7RMavMlThe/cuomzCvRg6ITi+kkn1eiYbmM59/zgdOvGJT1zEjORvtU3ak9R8+JsDJvecMjsYU26vRYwN/XPMrOdwPmIwqqmrHJsL9as+HJBt1/JeMhJ252rDcAl/8zt+gipk/HD8Ep7+2HnYarmwN+Pm0ZY0XakBUiqSD1t2xysOo6I2keGgoa4zlIocn4w25/m2gEOiIhs3bI0rFr+zh79XaAKj/SVtawleC7qQe0mWTg5s7kZJHIuxgjaCDAUn5yQftrjWUFdZ4q+31E3ea3NU6vi0iaKzqE3vYEYOo1HN/GTAl7/+vfzi+16GGrRk1tM6mQJHF/uGejyumB+OMIcWe/+i13/EVlMvRf9lutc+KLYuzVkutkXQnCbdRFDjllCJY1hcZuithpOP7zB68JT2vdtw0TN+5SFHT2zDwEtDoSA/MvhFid/yvbPe4MmM+oUV6lqJH6dm/FxNXIqY3bcaNWnx45Z4UsikfreBiYjVh9cNq3tayisZ8aULQaT2Gs7tzzj53XPEiw3qVi6BhwOPvV4yuG9O9fQYUyma862E992/Iv/okHpbs7q3FZrPUj5fuhGbXrsQGlN5S1HvRnwh4mwTxJI3O7K4IkiRP3H4zAhSbCA/MDT31NJwzCzBIEhyh/wmK18ROEfCMA1LOhepXGx2h1cNvoDiQFHvy20WL5DjtTfFwjdk0sy48w5SAjuJwqUi0nzkgnYEC7GUxkpFaaI6FEcHQUKEagVq2qDnJW4QRVCfwhajgfX5SHGY9CNGE7pBSUJ2+mt7I4MjQWw67RGQBQGj04/691rXiKwNDLycH5N0iUl0rpLrYU/5dbo3aAA210SdmocmNQ2yJYlFukuobKXldbOCdntlBV2vzYb6C6hJC8kcJJrNtfls/dFev/Irv8LP/dzP8Xmf93lorbnnnnv4E3/iT7C1tcX3fu/3njUg/3+sZ60Befzxx5+th/5Dv6KVjS0qwEghGRZZSsbVvXBTtBdB0sMjsml0m2edLu7JkjF2GvBWCVwOvbaBLKIWSUio2DiLeOik3wRSjojeeLZ71evK3WqTAyFPIh1DHtDWC6ffRFbHw94aVhLGs94atKMs9BP9hATEVqNyj8kDJ0ejdDxiY2pyj6ssoHpqWTRRUJp+7JiK/db0dKpx2XCwyvsCPgaFSpqTjru8e9eMwxtbdFqc/rgyeU4AobbEKkNtNaKBqCwq94xedkRpHTdupYlTEsKTKD4R8cvXKXeFpYWRQ5kgAvAm0ax0ZO+OE46PR6IPcfQJ9zEquoyU0GrsoMVOgqTAL3L5uRddjCehLIVM8znJoVLsfQhuvdYTbKS8vGR2MqScVjhnyHNH09hEk4KqyXCt6VGPtrIMRg1xSwkNLIrmwjWGwbjm59/8j/n5xUvZNQtetXuF4sUOqwM3FhOM9RSlJ888TWvYGa25djDl2sF23wisZgPG789ZvkI0LTrbWBT35yAoxsOWw2tbXPicWxy9fx/uXVHXGTbzeKcZTyqa391Gt+BevBa63ZajGAvC0FaWeFgQp47gA3kRUjK8NPLVKicsM9RQMmBs5mkWOXbY9toYm3uaWY4dS7Px5175bupgeckDV3jkvffQXqjQJrBzcU4IiuWyJAZYLgpwgg76gwHTyzPmswHbF2ecXpkKfUZv6CerdY5ZCWKIAhqFebzAlxBHgeLxIasXNgzeN2D54ob5tQllauhPHtlFnauJy4yw01IXRtK/KwVzAxjsfQvWgJplklWx0ug7VoSrQ4q7F1SnpTS/N0rROzx0hPOGtjWSOn9oWd/fcOHiKTezLVjkjO6cszwdcPrb52jvbGBlROB9rGkmjuJAsc7Gom+43IhZwo7HPj6kfWANJznDS0vCB7ZodgStqPfpEdmoYPmAQ1UaUxtCLsnmnRVrdqpppwF1asUBrIy0NlJeN5QfLzA1LF7Ykh1ZoTMNxeVKBUUok4YkTza+UxE1q5lNqAqsHmjBBPy1AnehIX+6QKUMCnehgcpAEeTykXRxMQHKHVtVKWlCOhcrzMZquUOClE8IUZrL+C0HtaG90KIWRuyFBwFlZBhl50YySRAxej1EntvapJwTcYoSfUdCyBMyoyot+02bBi9dMa8FtVGtSs1RQqejvB5qYQiDTcaUPLigep19vM49obYb57nudUxDhTiXY+ts0YMSs5LOxr1731N4cOK6CLftPb09/Bn96mzBcrns80Z2d3e5desWDz74IC972cv47d/+7Wf56J7f63mmsDpbn9KKQo2KpXjnh1neIwPYCK2IzVUKaYI0rYtIk7CWbqOz7I15EE1JgvHJQw+7A9Aq4nYrUPttNoakAEGUTO/66VdISIhKVJIkDFdZKuAVKBvRuzXluMavbkO+1rpvnHxl0eNW/tYk28QsOcLY2AsIzbAlukTvSTSm6BShMbilFNqdK1QnEu4E80Rk+pb4yERFXFtu3traOByFjTWq6D80MWgOb002HOJIsteVr5B4zXbUYKYNYZHhV1bE52tLaR2zdSFFbFByfJ2WJcokf7BTEb0UsPn5tUyane7zIoITcfpsMUjHJoLzvsns0IAozUhwmmqZ08wKTOl60bxqBCFRSeBscxGU5jPFyQsV2YEVHUJj0SZQHYpL1PpgiD8ohe6Ve5p1hpvnglqkBqhpLKNhjVtkBK9oDkuUEkeq//tTf4Zds+D9q7vQKrBfrjhYjTg9GaLTcZ8cjQhBc/1wuslnWWT4tUVnntWr1ugsiJNUaj6ICpv5hDpElouCnYtzRnnNS1/7CQlsVLGnXc2Ph9TnPS/4E/I73xpM7hkULW0ldL2LL7qFKYTm0dTp/Zqmt8pEvuDhRwUBsGL5O9pZp3OuGIxqfKvJJmKbfTof8L9/4HP4D594iEdv7WPvWPbakdnpgMW8xLdia2xzzxe//BG+8MUfZ/fOUxbLEpMFaQTPrSh312TJwYyjnBgV9eWWditSn/dCL8pFM5DNNKvLHns9Z30+ouYW1SiqexsefMFV9B0r4kpmVvlTOWYpBd3Oq24RsygoyAcn5DcyzFpT3EoUmKeG+Emykg7Ia73tcFPP6cGYndGKtrZCJ0z22Tef2BX9iw2snpyIQ9bFtr8ere7yZC87RelAsy1Dj2yhyK7m2Os5+aHBXRIjjeLQ4D+8RTsNxDzgtlMT4BT2jhXZ5RWDJzMYhJ7G6XMob2pBiSybPAinMHPRg63vbkHD8m6PXhncuVYQhNQ8xCz24a2q1pKxsrCombiYSTBkRM8srC1uxzH5nQI3Dv3z1DMLAfTcYA4teq2xCxkudXS3OJC0RFMpmn3fNyV+FIgG3LaHnQYVxOa3e71VR19aGezFtTQLCbFQQZoWt+3xU0+9lx5jnmaWKlkQt2I4ghM9XifsjyYhDDpd87tQWBBKbiECe7UWOmDnOoWSgMS0jQmq5nSfZRKd2KJ33VcMCJ04WVTHjkacAmuzZFQRNb3ZCRHRruhN4G5MboZdMG2/PuOhGmfr+bZe9KIX8cgjjwDwyle+kh/+4R/mypUr/NAP/VDvrHW2/mDrOWPDe7Y+c0uCApMNoQc7M8lKUjiutGnjMbFvIlSQCZBq04bpIAxEa9GJCYMJRB0E3k7UIuU3k6R++hU22pCOqqWS3iG7sKI+KZL2IYqoMCCbSdIndJtLqCzr1W1vUYUI2BP3XjUaj93QrAYSZEib0IyUSB0aEXeDfN858qiFgZ0mFfnyEPnemvq02CSLd9SFhSWOPTQKPW4JzuBqQU6I8jyLqegNfJeInhoaKqEamNyRlY76tJTmpTGCvkQ5hypZ28YBXL857RsFFAmtkAAuO/TECE1tyQYtzTynrg165PomIST3pBAEXeiyQaRgThQgK5awxaiRn5uIMZ6YsipimlqavXrjqBUUvskYHGh8Ce1WYHBd064M0XpxcRq1xMNCQs7SNFhroTVcvucgNQsKdVAQLq1ZrgrsuE3nDXyrMdbznqfu5H3XL+G9psgdVZ2J2D0JvrNENereM12TYXcrBmWLD4r10xPUft3bEvuUdg/0An+Oc+YmslgWDMqW7emS0/kApSLVomA4XWN3A1fm056iiPHMTgfyHolw42ALv7YMd9d9zgkIapaPGt73f7yIeG8LN0rMXUvWy7x/XVenA0whSJxLTlqT7RWrldAjy0HT319ncZ0PWppVjmsM/+0T94vLVjI/aGuDMpFqISLwuBLx9/b9J5zcnFBcF2c2e9OIKNnD6pJoBnSjac9JgGU+qalPC+xhxpNP3k180QozbfAHJdnDp9SHQ8Z7K24+tsvw7jnVkxNJG08J3vVdjWh5TMBfG9F+YozaEwpRcdXgRhF9ZLg6uyBUwSJw7uEDDj+6T3YqFsHFoCVcFDOA/EqBu7vC3CooXjBjeWUsiOcwUF43VJdkgJGdGpodjz7O8UNP3IpCK1KgGk02F7eraMA/NsLvOdReYPCJDDdK4XkaqvNipBG1UM2abU8sAi7lWKhW02yLULvek+tq2G1gbuW4nKIbuSun0EsjIX0B1HGOXSn0TAIPVaMobxrmLxc7Yl1rQp4ctJKoOhQRs07C7CKIRa+G/EZGtMlN68TgJh67MLCWhsMsNbHO8RMvyESHfgclQ6ihpz0qYeqFymVjL6bvBOzY2A+xOkpVd03unmvMvdC6upwmlWi7Rej1hbgNJVVpGVCpWgsisjbEke8dtABYG1QRiMiArNeBBNWL+3vzk84B0kgQosqC2IaXcm0VblaUsevayL6lZA9SeSDWpqcIx7ZrRp5nNKxuz/hM3+cf4fXt3/7tXLt2DYC/+3f/Ll/xFV/BT/zET5DnOf/qX/2rZ/nont/rrAE5W2frbJ2ts3W2ztbZOltn679bX/d1X9d//8pXvpLHH3+cj3zkI9x9993s7+8/i0f2/F9nFKw/hEt7JD+j0uAV7X4rlKxpK+K7PPSJs0DiKgexTAwkhxyZNCkj9oZuS6ZFyiviIpMJUpfb0YrtK43up2N6rdP9yaSqowDXp4VMyIIcoz61fWBUjGKPeLveQWVRrBM1UOsekUBHccxBjlE5hc6THiJPE7f0pZLAOjgRInbOOmEkbl/RJVqWVwzKRnzuk0i7O/Dh3XNBaTQ9RB9TmGN0cqzNKuun+MTOSldhpg2S22CoFwUYcaUypRfKg9lYPsZWY0vJNyAoobR1DlxKROi+1X3qebu2G2vgdC5cI4F6PtHDYlCMRhXaBrKBw1eWont+SlySlBEHrX6pDUWrs0dWaXqY71WozzlFN6CmDW4Ieir5ICA5EeWdC8YPnLB75yl/4Uv+q/ytily5vkMMcNelI1772g/LQyUhubmVCb1lluGd6SlaWotdb/BakBUr9KnlaUmxVVMt856/PRrVxKBZLgvqKufhVzwuCEKyJ9ZGHqut5bxFryjvWOBXGXnuqBvLfHm7i0ykemyL2fGQk5MhKCjHtQjGu/dBopO95qFP0NRZ7w5mMy/ZLR8eM3jtId/1Rf+B8w/dElTOSdq6tgFTiKVoPmxTHohoNVCRLHesFgWussTHJZQxKxyuNWSDlnLYkBeOdm1p5nl/fzZPaJSJ4kQXFIOsJb+a4fNIc95R70ZWlyPrc2K9OnlCMX5SUV7JGH00w/zuGHts8aNAfW+DPy5wSwmAa1tDuV2xPBmgG03zsS3UhYo4bdFr0WhQG+JjI/zHJ5AH/PkWXTjsqcENJb8CBXG3QZ+viDZyPB8S92qaByq5Tn1oQnNawMISH1iiDnPGLz5mdXMENmLmBl0pqvsbsmODWWpMlV66cxXZoSUMEjJyaYUKYrGLkTwNkjC9y9roxN4qgq6VUE8jNJcb1LTFzCxqLdoXkrap2Q1yLQqixdKNRtedI5e4BkquRBola7HCDVaoXsp3YngwhxnDK2J1a1ZCPVJBKGDZqe4DBO2pnONQCM0qJDA25IJiubGXx9QiYA+ZnKswFBTHHtmebsXKyLlA7Nvzk3Qel7p/j5uZQadz0blt4cV+2Z4mGm+innXX504H01/8gyAWsdyYj0QldLAwDH22CEUQmrATXQlO9bQyai1Cf93Re9N1OFF6u9dEabkG93tC93nV0JmUEAUxJOVHAZvrbtoXlVPc8y/+Ic+X1emCPtNff9TXv/gX/4KHH36YsizZ2dnhG77hG/jZn/3ZZ/uwnvfrDAH5Q7iCkaAvoC+2AXFrObWETNxjVCOC9NjoPmhLOUXYFipP70RlAxGByfsE73R/ncBa2Zict8T+l8psUsi13KaD/GOZKFsmsvXCY05uTvqQRJ+oQL1wO6i+Tc4PLM2lVnQj6e97R6NC9BGSeiuJ7SK6VpgysLO7pGosq9OBbE4Jvu+FixGUDb1w1y0yufAWcn6W18fi9BLALyVLRGUhBRc+8zi7ZiEbOMrpmtmJFI4xNWhdSq9fCv0hagkZ9KsMOzO4pe3PsXKKOHimWxWInmSyvWYxK8WRKvMUZYtzct5jpG8wtIkslyW+SnkPuyuqtSSSu872NSh0FvCN6cPoevpXQOhfWoIT//JLfp2feeqV3PWGj/LI4TlmQaGBZpUx+HDJ6ItucboacO/0iEdv7vN/PP1Q3wzZwmFs4PrJFjdOJ33yeKgM2b1LEb9roamc+8UBhw8rqp3UaNaSXDwYNtRVohclWog2Aa0jdXLe6lLeH7kp4sHO7hbA5uJapXSUhOUPbaG2AvUgTwF+kjKvdGS6u+TOe6/ywScuy3vTKdSwoV2LY4MpJNdFKfitx+/uG0NtI9VRwWB3TXjJgqODCf/w1leirNx/Ma6lGa3ks2fHLd4ZCRFUYvMbgeq0hFZR7K8Z7S9wXrOucrEuDorVbEA+akBtKIBZ5qlXmbiUOcVgUrGeldw82kIbQINZGPwkgIew59HHGSFLhSUiDva3JWxzagkD0SHpwxw/G0mo4SgSpi3kHvPYkKwGAvgBFIdGPi8lhFKTXbcSgLflGVxcUj09lsL3JCdsN5iBkxySVmOGLXouf28WYv7gjkswMHtsW3RiXq5VtIr8iiSrZ0uFe2hJnOeo6yUqQHZkiQqG7xizupysZs/V+IMiicyFitYV8LFSQuFqNO35Gn2cow8ySVLfa2FhxGkqj9hTSzON6OMkyh47GWiMXdJAiHWtubDG3xjIEGhlxbGqY5wG0K2EAoYiUmmNXhlCKU5loYioWqXU8vT5nzjMQSYp9nkkP1Y02zJUUY1Gt1qyOjIZIOnOuRDQS9PrN1Sij4Zth5pZlEfcxbQ0RgQk/yk5ecUtuV1fzJO0IDHRtTotR7p8RxDXMJ32BUUvJgdxqOpuH/KIWlgxM9EIjbgzBbEBVUsmiV4nl8bOAj4LvT27WPECrcJuN7hlLsOZrhFSMkRRmbizYQOMUniN3mgSVbc3dFSv59M6axg+o+tv/+2/zQ/8wA/w5je/mde+9rUAvPOd7+Sv//W/zuOPP87b3va2Z/kIn7/rWcsB+e/Xr/3ar/HDP/zDPProo/zUT/0Ud9xxBz/+4z/Offfdxxd90Rc924f3v2R9RnNAOp6uYpPXoSMqoQZxZYUPXAp/NpZebBCL0E/iVZP4uwl9UK3Y8HZp5L14MJOpVW/L2DUcWexvq5dGuOGVeMp3TcvtwYP2QFxk+qApp/rHZuhROkgYlUrU3FSkx0Zcrno/+DT1V21yYknFaJfsDiRReZp+ddkFjWhnYrKCHEylcOs5x53GpXusztY2ua08I8wq0jtm9RkhXvUZJbExFDsVzVGJHrW9TWpMWhpKDzoyma6ZH8nkncpgtutebC1J6PJ99nRBe7GV3BG3EaoDm0RuHVK4oJwPm3uZpBdOsiKQZsWtLGYgNpvRJftfE0Rb8tQQfddKGjZFL3jvHmO6teLo5kSQLOCu/WNuLcZUaaKvdaRdZyKqTw2qzT3jYc3pbIjNnWSCPDkUF6CLDdt7C+rGMhnULGsxDahrscj1a0sxrWnmuRxzml4WZduHA4odcdwUILfba6pIWbbsjZdcP96iORiQ74sVb7OSY1anwrGPNnLnPQdcvbGNLXxveRu8GA9kg7Z38+ruN0ZYzUpQm8R5leyu5TUkZaCo/vW8eP6UGwdbaBMZj9eMi4aD+YjpsOJkMegF/ECv1emCEeV4NJPJmpPDUZ/vYXaSjico7PWc9ly7Cd8rJHROTVriSU4sPXptyI/F/SlkaTAx9JiFxY8dKigmFxbUyYpaXS9xU0kX160mO1X4UopYU0M+g2pPTnknBo8a9MARKiMBf1tSvJu57Ruh4kjT7ASyEy2BfPmm2I02os/V+KOc7NTQXm7IruU051spwhuFH3t2fjvj5HMbeR8f5Ni1otn12N0KHh+hW5IYfxNmpxz4LY+ZSbEec5n461qS14mC+vnKSvZFLuF6dq5pzjlBf700dB2aIuhEsssNKZhvy0EAc5T1Q6CYRfJDQ8ikOXGjgG4UpkpNyCD0SIOuFaYBs4bV3Z7yhqHZjoQs2eJut5gbOX4sjlRxKhocs9UQbpYbrcrY9RkxIZfn313H/EB0FWahxdms1oSuSUhakmifGS4YuyFSeu5+EDcW7IXsOSTTkmhjb3giF7O4Cc7tNBuQUPP0vD34ke+HEv0gKr0WXQAtkBpaR0hot2SNBMkoCqoPueW2rKqYwmZV2hMe/yu/fxbIcyEH5AX/t+/BFJ/hHJC64uN//49uDsj+/j7/5J/8E/78n//zz/j5v/k3/4Y3v/nNHBwcPEtH9vxfzwkK1k//9E/zFV/xFQwGA9773vdS1+JcMZ/P+Z7v+Z5n+eiehysJv7sNIG63kv9Ril1tbFKi7LSVvIoocHPvEgK9XaGqE72qa1PblK5e615gKMJ2tfGBT5sSTqZHHZRutlpCJ0hXgk70k3odiXdVTO49lQ0xBU3FiPizIxQVaag05tiKH32yhu0E311jodaG4YWFHLMN6DR9E294oRbEiCAQnTNK9kynlnUqHDtKmGyqUeggtenPB1EJjeHU9rkkqIg+FGqQTuGOZtTK+U2bY7PIiSahPmmjVYVPji7yfOZXJzL9M4F8b72hSUURMA8nFVnpCPetGe2u+kZId9kmikQ/ord89WvL1nSNaw2hNRKg5wWJiAGGO2vZmLsmr3PJ8prJi45pV5nkY6SmpbPDDE5x9NgO+nTjWvb04TZtm7IfUoGtzMb2UmloljnLd+9hPjGguTISVOaOite//nfQ1nN6MqSpM04WA0ZFg1YRt84YDBt04XG1IDu+EkMCpaCuMrzXuFsD/FEulLS1lcA/LQ2wP83xtWFxa8TpupRCPhN74ObWgHzYMBjXQlMJ8IIHrnEwFxvnNpkHdAGQ+bARZ6rbaGx1bXHeMNyqeNm9V+Rcpfdpnru++UDFlIouQZTXb2yTFQ6lA7PHt7l+tIVrDYcnY5pVhquyJIaX86eTrbG28nmJAWazAVs7K7bunLF1xwyiIisddiCfIXtiiQbsMjVsNw36WoFuFPbEololIYO1ws7FuKG8mmHWSmhIlWb9yBT9gTHcKPFjLz/3YuHqRhJY2BX3yzsj7VYQkbqJ6LURSlBtUBqymUYfZ6hK6FDFkbjd1ffWgixYKQrLm0JLCvuNIEcfG6BTEnlHrdFLGVKEQowqZi9I17WVlebjnBT97awgn8HF11zF37MWh6jdVsIE0znyg0Sd8qCdwk98jwqpa2V/bcsOLSpAc6EV17hGPociaE+NUxcOqCBkkuauDzPszVxQiN0W5YX25YbymWq3vSBNjUK38pzMSpqraCPlIbhBxA2RUMShNB92LoJ3fZTj99yGclbJddt+dCjn71RQJtZyPZPjk2P0o4CfBAk2bBUxY4N+J4Q6dkYmUSzQYxlEPD9M5ylZEetWhlWdkQYdLaqz4O3usx9KscmJ8gldGaQY+JR63jluqTZd8/tro5Khk9PgtVwb1hZlZBilEmoZ11acAwNyLAPfN05CfUv72fMpDyR+lr7+CC/vPZ/7uZ/7ST9/9atfjXPu9/iLs/WprudEA/K2t72NH/qhH+JHfuRHnhE2+LrXve7MZ/kPspJuI9ooBXaXju20vOKtFFpU4mwUhl681m3sObR0RX1iGMU8SAhh8sa//Z2j1mZDxer0G0VI07zQJ3/7edY3RaqR5PMe3q4MvjKc3hzLNM5E8EnrkIr9+rQUN6vCE87XKfiM/pijk2yPGMCeW0tgoet+p/vU2w4lUd0xK3o4H5UoJ73rkBSreuD6iZrZq2XTbBJ9IACl5/yLDuQ2QZFdKZi84BgqSb+OQcH1UqxfEwqirFBaZHIvyeXlqJEN2kSyQYvdrVLytaI5HIhTVealwdCR9aLoQ/CqKpOG7SgneHHBeoaTVnI6u/fumwAEp8lHUjhr6zGZvOZNnW3cnqLCFC41D4qTg7HoGpBi2ea+n/jv7C7ZvveE0X2nqCc7hyhJAO+aDz/L4CinfETORQz09+cGafNPFcl//N2X0iV9+8T7jhEGectkZ0VVZZzbm/fTf9Wlo0dxO7OZJ7+wojhIzaIJvU4lyzxq1GIKz4U7j5nPxDpYZYFi2GL3ql6H8qrPfZR7X3Sdg+VIaqTCJ62FQx3mhOMc18pt+/PsFb4x1MclIWg+dOUS7bG4WtncsV4WNPMcXxkJIrwt1EFbcZnLMk95x0KQlKCwuSMbOPJhg6uyZJ+cGrmOjgb9OVutc+anA2bHgiwpHeHxEXYt034AN4oUtzS+gGihOFZSLHopTrO5Ij+R9Ox2K9Kcb/u8h2Ch2QlSXCfEIZtrzFoLaqCh3vdUlxzZaSrKkwZBX1oJ7afV5Fcy6kstZq16OpIbSQ4FK4tZaNotTxh5/ED0E7GW3Ao3kmuWWUsR7C/VFHcsUY0iO5a08VAE9HGGPTWi5ah1Tw9bPdDy9PsvEQ8K7FzLFDxK00QE3SrMUlCdkEWyI4uZi72wH4jzlWqlAfIjacKymRE3qHQ/OjUpKsix61qGNXpleqdBt+2hksfoMj5CyjRyk5RdshfQtcLtOlCR/FizuhTFyreFwU0Iafu0K7mWhWSXrheC5OhKi2ZnO5Cfyuuka7Wx00V0ML6I/TVceXlPoGLKh0rXykx+17ti5en2WzIwQosGpWsMO/2cqkyP6PaDn6j6QMLe4j2yGYAU6VwHNrczyN95+qbpGRqU2655KgviBqcisTai2+oQ4ttyStTtwza/OSdn64/u+vqv/3p+8Ad/8JN+/s//+T9/hkD9bH366zmhAXnkkUf4ki/5kk/6+dbWFicnJ//rD+j5vqIUEOTSZKhAPz0qH8up7haKQrShT9HF6Q00PvTExmC64CwdZdNArHmB1GyoZM+YJmEdXzaAniWqRrK81QtDGHlpjtIEMerNpKnzo1ejRL2yIj6P8ywFIEK0gXBcSGJymywTO7qVAlO6NGGXCbnKwiZcUQlHvrk1EIpVahS659Kll8fkN6+AziZVG6EuoSRh13foR5/xIZvz9evb/WO1W4HlqqC4bnFDgz/fUN43EzpORCZzuSNAogEodqcLDg4n2JHDt5pmlstzAFhZsmODPd9Sd3QpG9jZXolwV4nGwthAvLhOeRVyzOpQCl9zeUX+nhFP795BuHMt2Rw3B+hpgzKRZpmhdMSWInIWsTc9AtKlsfuVnFude7zXfaigT+dzXWW4bU+WGgaXaHPGeBEEjxz2noq2yjA20NaW+nyixJDOuY7sXz7l//Hin+MHn/4yQlR85OpFTvywf14295wsBknroNmarmhai/eaclyxWJT4tWX8ilMp2JU8D6WgWkqIZHCag6Nxb29rCk8ISux6TaReZbz3iTt7m9vgBUFROmJMYPyCYwrruHZju//46Uy0F8WwpdhesVwVKB248/5bXDvYpp4XmMKTbdU0KeMmOMn10Ec5XKgIXtN4zfndGddubEtgZmOFSqjBFK7/u+55dKiYUlEyNZBmybdaQv5yQdbqXUEtfSbFcHVepup2JZawdiWcfVTEDaXAdMNINlPYZSbi51To6raz3oZ2K/Z21qqVolE7hT0xVHdK0B+Nxi41Pve9TW07DWQHMpxQ3fENfDLRAFMr0ZRczWh2AqOnNZMnLCcvCahawaUKryPFR4fUd0Xco2PihQZ9R4O7MpLrUqNSyJ8kqNe7cqAq94SBRifBdzSR/NBKwZzOoduW65iqRdydzQx+GKUpSSnpfhhQlWgU/ECoZ8oJKhBSoe7PtYJAKKRpWmqoRWujnOotb/MTsSDO5hrvNdlCUd3domeWdtcJjXWQwhZnhuJI40aitVEByltGjqHWxIkThEVF9FL+Tp6nNPzBRkyryE/05pyk84COqLXGbTspxFNwbMgjutaopTQwYZjou618tkKHqMMzqFixS2TPg7xnnAzCVFR906FCslBPSEhMSK6q0/s7UaO0U4SYrsERQXBUyjfxSjSLSWsXG5NyoiKqa/YNGx3JWvJKGDooPWqWST+SSehkj8Q8D9ZnQzT+R1GE/h3f8R3990opfvRHf5Rf+qVf4jWveQ0A73rXu3jqqaf4hm/4hmfrEP9QrOdEA3Lp0iU+/vGPc++99z7j5//1v/5X7r///mfnoJ7PK02qsoOM5pwjO7VirZ4FqsuOmCZ7FJIGjQbTaHwepVHxsmHHFFoYOxQkE3ep2DkjIRMm5ZFmJCJNTNTCz+348AMnk7hG0JMOcVCw4fl2QVNeCV2KhHzYKOnbdcrvyINwdpNOpW8CgiK42xuDBPOnFZ2m8UWfXRKj+MbrTBypOtGMuv0TkTbdMGmlKK+sJJCn1HWGHtV1HCsjaI8Smo3alin18JXH7Jc1V67t9FqADi0KCf2JUaELx61bW+A1PgQm22saZ6iXEiKpxi2DO2bMjofow5zhNUX9eUsOT8aCANwoyOcK/YpTcY4yAZcE/eXdc+7cOeETN/ap9yKXP+caV27tSMHbaPLS0dQWmxo416TN3GlMnmg9XksCsROhv4ioJctClw6TBVbrQhqfRvOSFz3Nozf3CUHuwzc63Z9Hp+K9C/UjQrZX4VsJ1nNPDQmXKlZVzrf/9v8JQG6nxOGrc5jyiVZlb+Rc/C3P4f/Z0SYR+ulJiR23KB1ZLQp5r7SaOHCY3FOMGmIQdMa3GhYGs9WyvbViviopBi3GBElyD6pHlEyXYB+EhnW06oTroQ8wVDqgraapbHLEkttevbktzUMpWhXdZTGkkDZtA+pi1e/40SsO5yNGWxXLWcqOaY0gRkptaFepyNKlQyHnplllaAsmvSeNFdF6fgpVrshmVvQdKd/BTRO9JUDIk4NTcmAylVwv3ECm4ybpGaKC9oJj9NGMejeSzRVuEIWqEyA/NmnqD/lN0XeVT2vWlyTjR1e6d4ZyWx7VKuxSYz1wqmn2HXoteSFosBWoI029A+uLURALBerRgQi4LZjS0+5K81dfG0miuYmEMpJfyXH3r/FrK8L21qAWBrftCKNItrBkh5Z2x5MfGtqtQHGoab3oaKKRz2676wQF8QqiFr1I5qVxS1P4aCPagRuHfthCogzhhcYa8kgYiPug0Mwk5yNkbBqXAM12Sgjv6LKtUNDMgWR7gMGsFO00YJcaNxAExI1h9JGc5d0pqTyhOqYGN5RmRXt5rNaCXSlCTo8AxJURRG6lCdst5igT1EcDjdxfzKLodzoEOSYUIaHggngknUbY7CGqQ65zeZ8rkHDADhH3PMPUI9okmk8Uv07ORdIdhs61sb7NEUtHyKN87gN0eUvdtV0NE3pbChUsNhrltCS7ZwHWEgLZv25n64/Meu973/uM/7/61a8G4NFHHwXg3LlznDt3jg9+8IP/y4/tD9N6TjQg3/It38K3fdu38WM/9mMopbh69SrvfOc7ectb3sLf+Tt/59k+vOffSnqFZk8utu22F9pCa2RjrERIqeeWOPRSAEWT7HIVg6czmUImOlU3yes4usop0T5kqRExqR8xqamICtUCw+R6oiOhC4pKG4hKiAdW0BOVCcRORDQqtUYNnYi1Rw1VW8rkrDHiOmSQ425FzBiDFP4iJCSJuAWNiZ3QfZU6qSxICvHIE1Z5f5ydFW53Ds12Q/bhAdVI4aqMztZF2chgdyn2r1HJKK30m8yqzkFMReazAbOTYe+qImm9JKH+Bv0I6A0NwETmJwNMvuH2X947ZVaVxFYThoHtN9zkxvGW/P1xjt9x3PGKW1w52BbalPXJ3lVRVxmfuH6OeK3k87/4Izy12MbmIjy/52VXeOLGHp12wq8sduQkNX3gaA9K9HYjzykhVSbzNFdGmFqR3b+gXiUb34QOjKYNV2dbzxBkT7bXrKtMHsNpTk+GFB8rqe6vKT9RCNXkwYp6VqDP1yJM/p0B7Q64HUe+V9HMCvTMSgN8eSW0pFsZ+Qyu/GlHPCnJxg0A5e5a0IWlRe3U6NITskA+aGlr2wvT86LFW40zAd9q5kvRglTrDFuKY1eMuqc7+Vb3wn+i0NA6cT0IOtE5aClNonEBTmOHbWq4UrP+/gn5Sxe9bTI+UUUSikcE15i+SYtBCcrnJNhRm4hrBIEqtte0rcHaQFNZdELOvBMao2sMNvdUD6/hoKCdCoWnnaRmJ0AsA9EiaGNQ+KGXa0VCO/wgYheabAa+lCm9Oba0Y7GBNYjmwZxCvS8FOEG+Lw4UzXZk+YAnv2XJk3uUWWnyObgBNHses4Z2Ehk+eEr7xBblLaF6tRNNdV6oOuJcJTSizqJWNyJ0VldLdBbhxhhrwF1qYCm2sj6PZB8fYDLw96wJRwX5iYZo+2BCosLM5bZ2Lg5lxZGiHbNpQlbiFuXGMm0PRYRGE2wa7OgUclhs6Eu9QP82i/M49pshSZpjZHNFdcFjZxo3DuJeBZi1xmUec2rw44C9nuPOt+JIBUnPIxbEbihoSHaqqc5F7FJeQ+Xp7YZjlmhRRZD7HAhaoFqh4mVzEf37kScohT7N5DkEQYJCcuPqxeNd/9EJwHXS02Xi5kbpJVSwFZG46oTvrd5M2J0SFMSI6F8FelSo+zcqsQruND+9VWw6jjBI9NZGCxTTGYyk62rnDNg5kHVmGkoHyDRYjzaBOEtveoPsg8+XFdlQyD6T9/lHbP3qr/7qs30IfyTWc+Kj9da3vpWv+Zqv4cu+7MtYLBZ8yZd8CX/5L/9lvuVbvoVv/dZvfbYP73m3Hv+/vCVNoTYQeGffqLw4YvUi86BQcyv0KMAsLK5Mdo5BbBIx9AURKqEVNm4mTVF+rxRQGfSkEc1IEhvGNFHnNp/4GCAm0Z9qde+KojSbTSIVdfWikO+7bBCN2JfeztdNxXw0ETV0z0A/iMjGV3p5/l7Bfi3HNEiWwam4VomOpazoS/a+6LoU3oHNJttqVscD0Uggk+vY3W86r6SpdKc7kX87LoLoHjqtw8ZBK4IN6X5FQwDgG8NT13eZnQ44f/mEe19wnVuzsVjbOk0cO8zA8eSV/XTuJJPEzXOhpiVx8uiBU975kQe48VuXcK3BZJ7Hr0mQkhTLmtHeCt8KstCuM9RWKwhR2LwmvhF/f7/l4X2TlDcR+sl9XVsWiwGuFiSGqFgnzUJzWkj2xrCBl8+hNrQvWfWFsB06YhKxN69eEu5ep4T7yGh3RX7XArVXS/ORedyFhupCQJ9kQuOB3hWqHDXs3X+EtmIvrFTE6NC/jqHVOGfwTtLRd/cWvS2xSla8XcaHSugLgL2eU4waQYc6ypGKhEUm50ZFjA0ifE10LXTsNR+oiM0926+5SVtZQrI+3j63wObSOJrMYwtPqGxCVEKfdK60OJXp9DgxKup1Or+1oF7dbYPbOGzFCPFItA7RxFR0y/WhE0vrtYaRx08cyils0la40ea8uSEUx1LwRi0Fmk5aTDeJhByymSIYWN8leoX1XQ6zVhQ3LM2+p9lOr/cKmi0poMtrhup8IFsqVh+bMryqaccJQTlNk24bU74GmP1KaJytIDJhu8WXolWzC6EKmcIxvLTon2PIUhH7uGiUQpr85yea5s6GkEWG1+S97keB+qI8sfJQtClEeSw3FrSh0zbohBaFQgTXdiWDm/xEC4LcyHU0bDmyY6GjdtbfplIMrsp7qx1H8gMjs5BaoyuFTk2DPTXEDIpb8nt7I8esNb6IlAfyOvgyvRZRBOXZQtAsuxR0ph3L6x2yQHYqTW+nU3FbXoT7AZqdtB8sDbpNyHVlUJUWkT6CZnTucDFL+0CjUZVGza0g3l4JlanRMrAqQn9dZ2F7Z0F8Gmop+qZEr0xfocTeLIXNz9LMptc7IrQulbR5nWmIsgGVyb6ldNpXBn7jbJiGVLEVO/PYGrGnzz8LfKazdbbOVr+eEwgIwHd/93fzt/7W3+JDH/oQIQQeeughxuPxs31Yz+ulnSKY5BQSRGyubEz+55GIFBVmpfFIsxIGHuUNqtGEkRdHmUBqNDSstHC71wK7Ky1TL5Um5AqIh4UECDqVqAUyDZMcDSm2O869yoSy1XGCSZqRmPQdHVTfcd917sU5pxBxe0xibFJhBhDWVjawtcaPfUJkFGiFPl8RlpnoGLqeqttkak3MkWLl6ZLhQ8dcP5yyd3HG0a1J3wB1AkeVGo/gzKZxSoJGlXlULtQvWekxFLC0hKETe9eRvCYmlwLer7KNrS/003aditBbt6Yc5b53XzKlwy0z/FHO1l0zlqtCHl9H9LAleIVbikVt3Vq29pawt2Rd5RJi2NF6kvC5rnKy0uGU6R3DepHzIkNPGkzpefXnP86sLdh6Wc27n7wLpWA6WXFyOkLpIFSlVPQaK3a/8vxFLL06HKLywOApSzQW/YpT2lasdcuLK6pF3lvrFo8XQIED6jslzC7PHa0Th6m77rnOR993lyAjneUuiIsZMuGcbK9YLgt8EBtilOQwhKDwtUHncPyJHeJUbIw7VyrvDEoHfGvERcp4lruW2Ehj4BuLivLeN1st5aAhRqjrjNHuSsISxw3BaYpBS5G3nB6P8IuC60cllAFTeoJTzBfd8cr7y9WGrf0F89lAmuAOIVOQjRtCT4NM78EgTYrJ5b0iLl2bRh5g9IRmdTmSHxmay6IrkDA7hT21omU4tfL+DkpQ1CA5EqGQwtNNIqtMURwKEmLX0GwpEbLrSLMT+6agvGoxFfiBxudQX3TYI4vbkSFByI2EnEaIRmNqhSuhOFSs7gjYuQT0tRMpnIsjTXjxkvqgZOs3hqzPpQm4h3pPskfcUFNdiKLNOC6oVwP8ODC4YVhflAYmGmDoMUcaX0bsQsHcoh0023K9VLUi5GInXO+lwUEjgnfTKNpJpDjQuKGEG7qB3E+zLVP47NTQ7IiFrnyII6wN7nyLOcxEcF4E8mNpqMaPGpqpCPDDtkPPDW4iKIiSPo7ypuobNhCkpTgShKNrPEwNXmRfEvhYi/tW1xy5oVyjfCmvk6mVoORr3YczEuSY/CgIGjMSelg3yEJFsUtOhb9ZiF4wpiYkZqlhjYro2Qi9ExIdyyBoS7ILJjUqnTBfL00yRZH3oYjGN3tb933Mk7i9DLAwG81Ip+trtdB20wBJrNDjJpNJg3Ja9oEsORIqwASUSp+524dZz/F1pgE5W8+n9ZxpQACGw+HvaXd2tj79FQsR+ulF4ucmrmtsFdiAWmsYe6i18L9N7L3Xo41Cp+oyPrpQJqcEDXEatVsTKrsJKkzQfMwDMUubULJoVFFvNholm5GepUDEXCZbdHaOXVZHq4lBJmAqOWLFEEUs321qis3UDHrkQaXJl0+WnLEM2Itr2lWGX9tNYxPV5uLabVQJiRg+dEzTWrLccXRzsqFoqWRv22iiVeRPFmgH1QN1GsmRQA6dxPTJo36RCdUrgtlu8I1hcNecusqJQaxyewpYRBqCTmCvY595YYYu0aGSK1RQ3HnXIa+/+FHedXgvt3RkdirCbN9qbOGI84xYKLzTLNtSXMIKTz5scY3BFE6cmIw4Xfkm65GcTu8y2Fly973HfOzKeXxr+K3H7kZpOW6d3Kdmi0FqPDbPp11kYpu83WBzoTS160yyVID6JWvG40rE463up/ijaYVWkVdeuMLBHSPuGx/ySx9/MdujmrqxNI0VgTuGq6dT/vc/80/4c//v/yu+MuTjBu81e+dnHN7cIhu26IREuMaSF22PGBgb8CqSFY56qjFZ6EXuMW6Kd6UjbWVxyvDgA9eE0ha00Ny86ul3i8Mh+5ekmWoaSzluqNcZg1FN9fgWYamwL1yiSkczFySlWQrxvmt8YlQEp8iHLbPjESb3DCcVzmva1pBlnqaxtGvTu6GdO3fKfF1S5C2tM6xmJToT16/QISFO9Be6kSI0v5LR7CaaVR7EcjYPKCeUL7NW8lnvrglRaFiqFc2G242UT1uqfSl+QxlElJ4m4nahabcDPUsnJZf7YcAsNunbqlUUh5p6LwjFaykoSzf5F+QhNRnnPer6gGyhWd7Z6SQUdqEwldjX2qV8rpudQH5kBBkYwuqS0MJ8Cs7TMzE/KK+KaBsVyWaael+eox9EyusGs4ZgxQ2supDOw1AsjN1IjitqxJ1JC30pmkg79eiUc6EbjVonitVF8PsN5mZOQLO6U26XLSSfxFQatZSGfXDd0GzF3q1qdaeguHauaXdFyO8GyHE4hV1BvSsoRnaqkjg9YipBZZpdaeqAngrWWQPHlNsUkzVuNAl1sbeh6EmLQYTQhc82irAjGS4CL0VByFMaetSCbvR5RyOPWhoxGkgIiI6CXIZCBjGh6N5L9E5akjEjNLfudY8d8DoXlFa1arNf3fZcgBRoKE0gSfskTZx8H136vEe1yQZJ93e2ztbZ+syvZ60B+dqv/dpP+bY/8zM/81k8kj+cyywM4XyNmhn8wItQMPFnda16/rCuuqTdjk4gnvUUgdily3UTVLMR/4VZLjV5QlS6zInuTzBRXFFCN61DNBxeSaLtbkOskrhT07vMxLHvE4RFexL6lHSV6DB64ESgbgSP72gwNLoXyKvEfY9lgCzQriUjIiYRdUybqB23Yg3b+c+nv58dj1JhLnkPunDScHVUqWQdee4LrlPalkefvHAbTQ1BZDrkx6WwrfTLjlq1mg1SGJbuEQhSSF1H/YmNQQ1EXKwK0ZkEp/spubGew/mIfzf7HNq1pRw1G0enFEqX768pi1bQERUJztKmfBKxe3W9g1bwmqilqNY2EnPfU5Ueu7WHyQLtrVIcMvdqtJHjGU8qVqs0dk07fvCKfKtB6Uh9UsgxPTGAiw2sLWoiBcm6yiXLIwuEtSEuLU2yPH7nE/cSnObDizv58s8Rwd9pM+CDNy/gvOHc1oLXX/woP3H4Wt761T/HP/3ol7JYiMXvqsrJxw1tZVkhyJCx4txlc0+zzoRWVRkaI9bDbmm5/74bXD2ZUp2U6MJLPkpqnk0W+PjT56VQUR1/PH1MTGB6bsHJbNg3ju06Jx+2NI1l/MAJi3lJOC5Ro5Zyu6KtLaZwaB1FM0Oa0ppIs85QRtCk5aI7t9AklKezZA5ecTwfohQsliX6sSFMxc2rHnh07iXl/rigPJWiDhTag10Y2v124wgXFHEkha2PEiIXrRSwujaSDbEVyA4lR6TZTmLrEeTHYufrjVCwokKakImIud2QDTUmmVx0wZFukChdDywJHxrhX7Am+8gA5WF1b4tey3UsO7K9jqHdijB2mOu52PYuFM0dLb40lAcykQ9VTj4D5QzNHS3mRgZ3rLGPDmingckjhnpXwv6KQ6GK+rGjuJaRnyrW90siu64V9a6EASovyEJUErDYTKQBiyoV80mjEnXSKmw3Yo2dQXW3Q2We6LtAVjnndq2oLrd9ans20xCkEYvJMlk7RUzidTcO4OV2biIhgwqo9+V7AoSiQ0MUWYpE8qVY/Xa5JEDKahGEIQz9xnHKRNxUwmPNWqhkIUTiwGOPrYQSrgURZ2V650BMGmAlfQp5SFoiI3tIm1wOK6FlCRKRmozODawbEnUGKOnzJsfAM5Ca7nOBSmg8CdXohmjlBk2PCR3unA+7PUYpZADWIfBpkKSTDvF5s9Jxf8bv82ydrc/CetYakOl02n8fY+Ttb3870+m0R0De8573cHJy8mk1KmfrbJ2ts3W2ztbZOlt/JNdZA3K2nkfrWWtA/uW//Jf999/1Xd/FG9/4Rn7oh34IY5Lw1nv+6l/9q2xtbT1bh/i8Xn4QUCe5cJkTf9bODG7qCAMljlCRjSVit7IUHpUmUZKZkehZjUYNRTyJEkhcpbBBpRHbRWIvOled13pIIsyUMByzIOhHWiogLlKjlrjMRCvilQgWW7URqhuZ+obOkjeNnrsk7pjoXTRKUt9DmqQlepXqtBWJ06tswM8zQWA6i+Db4HZBP5AU4acGhAvisBRdcvQicuXpPcppJSm7OhIa06MksdWihckC+aShWWZCy0pISfQKrCYfN33GBCSRd0dfS9kNHd0qBmQiHyFeL2nP1WKRm3mGk5rVvEBnAd05jQFl0bJYlOLuEhX5sBEnqPRU2/Q8rfVU9QbN6sTLJHtZ7wzl7w64/L4Wu/KsLpZc/+qGYtBS1SIAd0vL9oU58/kAbSLeaaFYWUkjDxcb7M2ccOcapcHmLfUylxDGsmVZWbbuPsV5jfMS0hdqy95dJ3zw6CKH8xFl3op43GtuHE94crrLSTPgP3ziIYrMiZVvbaiWObaQsESxBzYJAdJkhZMJp4mMLs2ZzwboLDCc1Fw52kbryM6FOVUtieoxiqC27VLrO1q/jhjjcU4TgmI+GwgqEXSPZLjWYGyQFHcdmSnJMGkr29PXQsqbaQ9LyvMr6nWGNmL7G6PqheUbu1/RWtVlwAxblAZ3Kona+YtmhEaQuxgFmQGhOrmRoBB2KdcEN/E9TbHLDcoOLG4c8GNPKFWaPBtCFjCVxh5b2q0kRC49LOT9U11yIkL2QpEJ6SNu1uK2ZZcqBQnK9F9XmrDboI8yoYHqCIclcRxRTw4IVj7ik49krC9ElBd0oLokQm7tIc5Et+F2PcWTFhUz3DDiSjELaPcc+UzQmvxKRrsd0NdKoobyulDS7DLlT7xkQfPECDO3NHc16OOM4umM6pJDr+XJ+DwyuCk5KSpAtZ9E2EYm8vmxwGJuIJQls9LEWwVh7CEo9KklFDqdu4CqJMCxudygF7Z3HAtRUKfOjcuNhG7W0WO74L52z2EWRly3hoH8WNPsBLlAp8udqaGZCnrQZTCZlbhx9fa83XU4ZYeQLHhxSfivBHUwK02bB0F2jKSuoxCqbKLfoePGbCSLm8Tyhe01GnppBGm/LUi618oEhXJgOqvfdH/KCUKivdDzmu0IAaGubacQxGaT59JlGHVIj1j5pvwrudQKpSyhHr3db6cfiao3GjlbZ+tsfebXc+LT9WM/9mO85S1v6ZsPAGMM3/Ed38GP/diPPYtH9vxdXUCY25aNDxM3jUC3OZQBd74hDLwIUYsEVXuFWps+JDA6EVXrdCFXlSRGa08SfyOc5YBwZzudRJm0Jd3LqoSDa2a3NR9tcixpDOE0738eU5EtTcjmbRo7j3lI7iX0xaCkvSdXlVZjR600HVkgtpq47iqiSHEjE4F4ETZNlEnjo0DiM8t9q1OLO9/QWYeZhREKF4ANrE9KYtDiFpUeu88ziaSgxFTIp42OqPpCv1lmuFrEziYTFySlI2bgyEdtTy/orG5FkB/J7l6gO9oXsF7J+fONkS+naU8KTm+O2Z6uegtYn/JSQqvJB5Kyra6V1E+NCSkluHf8igpdOtraMv3/Dpg8FWm2DNe/oOTkBZqt3ywZ/qdJSioPjPdXhF6fIonks6MR0SnKR4UG5c43vTtT8FocchD9RD5qKDPHelHQLHNCLenFh9enXLu+g7syZLkqxN42KKaTNb/+xH18+PoFfGuYX53QLHLyjw0w1wr4+EjyQlqNSoV4MWjxzpCPWmKE5arA5h7fGFZzue96nTGbDXpaVPf+Ul2yc/oMtZWlWhTS7CV6h1vmfeFiMmmAvNPcONhinuhhbWWTeFz3ic2+1ZTnVzinyR8tU8ME7TJLRRGb9xkQt1ou3Hnci+qz3YrhpQX1OsMkV7LQSEK7bwwX3iWUoeJQ9AztNFBeNzKEqDT6OIMA7U5qehst1wunCEMvTUp3fWkUdiHNSCgCYbftC01dicBZu2TLW0khWu97aUouVHKNiZBdy8nmCrPQlNesaCWCkqJ512MaWLzQ9eLnUETsiZEGaeSxC3HiotFU56He88m9KzElt2qCEUesNtn2hgs1di2OUaQCPGw5/OMjikNF2G1hIWGEzbY0SiDPwQ8ibiTuXSpIaKCuO9crEcs3O+IOJfoPCMOAXpj+uqbTMEZZuTaGQqipZi1fkigvKe92qXCTpNWYeHHcqrTcdqUlzwRxCrNzTbsVhVY78pKNktHnOCkvTYIKqdCO4obV0bFUkNdEJXcqFRHdmhE73k4rYuZia2xPDHqdBlnpeqE685DMC302iqNisLc1JSZKfomNvR25dqq3fFdeXmefx14HpNwmlyYYoexJ0ru4uemUEaIr3QfbRh1h5GS/yENPLZMPrup1JQQZrtFqcd6qxe1LRYRe/DwUoX+mv87W2fpsrOdEA+Kc48Mf/vAn/fzDH/4wIYTf4y/O1qe0hn5jlQv4LS9NBmyg2nThvV042CUUx5RgTsqaCAMvt88irAx+lArsKNzhXqSt6YWAMRORoq40+dO5bEjbrSAzud+4pUAq3lMD1FnaLqwgKzrKJhLSpC4odCGC5+iVPIfOKjaAmbS4ZUoMn4k1KVm6HyLqxXPsuJXHqPXGnjfpMHSRGjcViVuO3fNzQGFyT9xtem0HKYEar3rROaUXnYnfiNLrWZEahwBaXIyyUSsWq1mQNO8UzOcrS0j/dhkQYZGE4U7jK4tbZrQJRdIppRtEXK6tNFNhnjG5sMAMHLNU+Hb6k3zQUo4bSdduDPFyhbpQoUtpfrpiWydEyOaeZgyrc4qDV2jWlwNuCIt7IkevbbC56FOaxrJa5/hU+Eav0McZykbqF1aYgUNlgenukqyQ4EMzFAJ9uV2RZZ4bT+9QDFts2aJLRz5puOPOQ3mdGtGqmEye89HRWPI5nMEfFvKerwzq5TNe9rpHeeiLH6UcNJg8NQK1oaksRdk8g1ogSJ3CFuLeFSrJ5miWuSBT8TbtjY69ON3kHpUyRJQOZIXDjqRZtYWELobuvQUyVU2vlUpTWp+ya5SJVIuccH3A/muvo63Ht4atvaXog26UxAjDrTUxKIZbFVUrblwA7dqyOh1QDFpxHYsKk4LXzJWS5QUtgmkD6/MwfFqLbWtDygCRjCDVSDGqK52m5anYXBr82OMu1RJEaKNkRhwb9IklTlvYbnC7rg8y9CMRt+u1ZnBNggnNEwNUq/ATT7vrcOOYNBAO1dKLunWbsjXW8p7NZmJrC2JFaxaWds+JjWybrIKBkAplX0bcSUG0kqYeJw4/8uibBe6VC6o7W0IeqS868qsZoYw0U9CHGXq3xqwFnRg/rrHrhABU4vblBnKMKLHxrc+Jbbnfb0X0XkQppPOAXomZh65E4xZK0UxEp2DoUNM2CaxvCzAcSLMQMnHzQ4NeGskZ6dCIdXKGSpd0P0iPWQrCoBuVmgtx1lKelFESe5tg3cprLAL69J5eaQlCLGXv0GuNPbGpYYm9BiXYhHAkvQXlbRbXtdnoQdLAJXZuhWsjJgQrLfc9Ty6IKafE1NLUxUwaPWliVW/1rJ00MXL8G4TDVKlp6j7XMTUWQ9G0oUn7TQdfdqiIEqfGZClMYLP/RNmTztbZOluf+fWccMH6pm/6Jv7SX/pLfPzjH39G1P3f//t/n2/6pm96lo/u+blCEdFp0yCkMLebGe2lJm0MsPURy+IeuVqHHKikEelCoGSahLicDGQzssfiYtOjGmWX9JsamK7QmltJmvUSYhgGgTBGEqmVTMNichtSbbJtLEMP+0clhUcniAX65keoLYG4tuhakmtBpsgqk+A4t8ik2Wg1YSJuXxuUQ/U5GH6WbZqvgDQ8k5ZQpcmiiuSThsNrW71LVPR6Q+eKoDKSUJ6Na9Xa9iJ0agNFEKF5SnFv1xkbiCX01r7+JBeXrHmGHrViEZt5KfaikuIWsecNpzl62qRUcIPNHfHDE7hvDYCZNigVRSC+zgmtZrK9Yl1lgjxEpMBIydyhMel5kUIFo+SVIEF25rVz2tbgT3PyvYr6tKC4muFaSfX2ibKl1CYbJZ80hFELtU2Us0AxcMzngz4AzBgRqaMi9WmJygMhKpn2O03rFVfX2wzPLTEXIvOrk962Uw0dbpmTjRseevnjHKxH+KCZFBWH1ZCD+YgmpaO3y0yOx6v+Z3khKfARhR20eKcpypZQanl/pIatE68Gr1O6eOyRLRGCp1R3hJaVD1sGRUPVZPjaCm2va24aQz5sJQMkSJPQuVQpE7nw4lucrAYp+0Mzf2KKPlcxuH/G8mTA2heY3LNeFtxz8ZD5bNA3RcoEqlXeC21Vsj2ePAn1TpoROBheF6tW7ZDP26nBVEpsY1tFNpNirt6VCTlDjznIoDGQnKz8KCab3CjT69NMHLZ2HH6/xS8sdqV6Z6qQp0ZhHFC7NSoq1EEhVq9LQ37L9rVhsFK8V5cl1yd7uqTZFpcsKbRToGmiTsbUKJu1XLOaacSsFWGQbGeRQcXo0QztYHnBolpN2G2xN3KaOxrMQYa7VKOPcrhR4s614BRLbSiOpADWrcI00I7ArBCEQYOdG3QLxZM59Z4MY/zEb9LeE9pAoxk8bVjd10pzd5RT3lK4sWR0mErRTpJ1byqAdaugVuhGrtNRR5pdT36UGrouhM8mS9oOvZT5CfWevKahSPklC40bpOtdV1srKeo7ww+z1LhtB1qalWanC5WV4jybK9wkDauSiFuuy6SxubyvOoQDHYmo/tovtuwphNbr/vkGI5dDyQERC2TJqKGnmQmtSho04+VvIL0WCVVGSeMWhr4favVOjJBc3eRYQpmCC0derHzzKPlQ3WAOxb0//H08/i1v+VS332dv3d6AfSbv82ydrc/Cek40IN/3fd/HxYsX+YEf+AGuXbsGwKVLl3jrW9/Kd37ndz7LR/f8XNEGdGsIWWRwS7Eci1sKzWZiP3tFI1N7J+hBLEIPY0crTQMmOZUki14/9f3G39kY6oXBT500MKUnthpbKbzS0iCU4mUfBqlZsSR4Xqgft/Nwo0ccUrqmo9I9aqMU4ka1yFKoVUrZTenIRMQ1ygb0sRXKghHrT3W+lmIy+cH72uJXStCKzraxsajtRixzjaBB0Wvq0xIzcBIsZ6G3e9GbAg8Fio43vKEiQOztfftE9tvyQjp0qqPhDC4sqVY5ZiL0IFN4fKvJt2pcYyTBG7CZR51f0VaWtrJkqYn48q96D79x4x6OH9mDS2tmRyMpcBN1bX5lQswDZiDjxNhlSTihKJnMP/N9FBV+bRntrFneGDF4ymI/74RR0XD95oD2vgp9nFNcaFlXOT7pRWzmcYlc3jeMXjI3uirTLTIpymcZ+fk1wWt06bjnwiGPPX0OWzqmO2vm8wGhspJQXltiFhhdXNG2oscY7qxYrgoeuXmeZplBZVheWEqz5Ax+ljF42rK+5GmWQwmwS65f9SqTNHOE3jQYNtS1JSscrpXzrU1L7CyWtVClJHgxoSJadBZRq97NKkbFyfEWZtQSnWa0s2a9FIpcPpJGJysdMapEv4vo9Jm4dnWHcqsmXBsSthwXX3jAwelI/l6BtpHivSOqV6x56tYucWVFqrQlzWh1NCCf1tKkpueZLSLze8Va10Qp8KNO/1qhsGgnTlQAza5cC2IuE3Bzamj3HOU1S7MltwdEuxHk2qCCUJ3sSdJL7De4iSCDzkRCpbELsdxVNwa4EbQTQUjbB9aEpaB89sRilxAz0Yqow4LmfIvyCofQvzoakV2I9W6H3kZnRP8WEopTK7hzjX5siDm1rO5K1rjzjOzY4O5q4d4l+cdHNLue7EqBacTdK78mehLdKmloKoUO4Er5+LfpPLhRGuIUyDAkKsxcSfJ3BLfveltY1SjcUIr4/KalOedpnJHrVOc4tta981ivz7OSv6JraSSymRE9Sy0NnVnJ9VWvE6JhpCmMSs5XtugQOENIQyPlwRcB7ZQU67kU8G5LHsfMLCGXBlQ7JTkfS7F19604DupWpQYUOf+BjU15Lu8hFdigFGvZk0wt500nSliX1G4r0LXky8TUjKRtBhXAznSvkxEkCMKQ/jl3mhZdJ/SnEfSos3Hu8qaUjei5lcGZTo/T5ZN4BUsrzydLwbZnIMjZOluf8fWcoGBprXnrW9/KlStXODk54eTkhCtXrvDWt771GbqQs/Wpr/KKbOaDm3KBNyuNXSS6lQLGDpYGeyJcZ5InO2ygeNhsADFLqIdLom4tyAitkg2tTfkc6f79ROhefupSNkiHzdPzjQGBx7MgNKu1EV50evyoSL7zKUG9VYR53mcSsDbSDGUbnYgyUShJ5+s+ayJkkSx3ojXo/PobnZoBvQl5K6R5YiBNiWr1JmywlqIqNEYarYSWdMJgAGotX1USoqeNOB81qRlR6CykzBNNbJXkdDQmUXigWuYi+E73EVOz2KwybJYm6F7hGiM/K+RYvTO4xvAfP/YSDg8mXHrpDc5tLxhsVVIceymI7n3wOuVORTFoMSknYrq9kmbKpCyK9L22ImbPRi3L4wHRRtYvaNgaVPIeu7AizjPC0LM/WkojlAkVq7O69U4TkubEFJ581DIaVUkj4+RcjR2uNn0zdv10SyakUbFYCnWsnFaEKCLwcqfCB027zNAqMk8Ce4DBpObSvYdU69QM6cDg3Io3/Nnf5FUvf4y7X3xdKFw29BQ26BqJwOJgiG/kXMp9RtpVRuh0SJEeCQF6/YWrLTbzNAeC7GgdueveW/JYpaNaiyA+tBpXi7jedzqR3AvlbpZjrMeUnmqZw/mKYlpx42BL7r/wTHcX2Nzxgj/5aE/Qzncr8t0KX1vqgwF7l083x5+Otx111EYwa3DjjU1rjzrkkC3ka3hFkx8p8kOxoI0a8gNLs53oOxcqwsSj10L1Qcd+UBByEUzr41xCDU1ETxv8xNHseuq9QDsRJGbnQ8LZV9dLaWIajTvXUu8HuGMNQyc0pmVK4R6kfAidxO07PomSNWrgZKqeC21SBMzA0wPaO2pCEcgPDSEPZHuV0JVqI2jgC5cy9UZ0HKEIokGoFbqF8kDhh5FmmiiJS5nImwrsQtLK7UKaiuzY4Lc8fupxw4g5tr01rllL8OH0A5biBIZPGHwp2hIJxUvX60oKaTeIvUjczqX5MJWgBdmpxo9S85FLuGS0UtyblSCt2TzZHaf70E6u28qJTscudY+MQKIe5WJAENNgKCpBV/SxDH50suTtUtCzg0wMSRKNkFbL/7vBVpcX4jtr3dhbNBNF86Jr+V2zFaVBC0Ip062g+eiUB5PQjWwpRituHLGrpMlxcl9RCzUwdsh2TPvXbdRetTSEgSeOZZ8KQ9/nllAEGLuegth/QJ4PK36Wvs7W2fosrOcEAnL7OnO9+sysdiI0qnpbbXitIXntm4jPQ+9GIy4qug9kIk8hhh2EHVNGR3HbJgWSWtuN6HTEzAx+jIi485R6XqTMja6pSNM3ElLe+60fZfipk79Zi3d7777VUSwE7tgk2ZYJJl+naVvK8Ait5Ih0OQ3DSwtWswHjc0sWt0YykRuIVkCcs5BpWu4l68PL1J4syGZaeHk8TUJ50nMugzQwqemx44ZmsRHSE0CPW8lzyL3kgXTcYhtQiWZkhi3GBEJQKK2lIHKaYCKsDcX+GtdKweprI85JTkuQYG0YjBoWt0YU2xXGBLJhzfXD6ScF6emdhidv7BKcYbq7wHsRgs9mg1QEazjO8edqKarXadRYayaPWOYva1Bzy0t3rlNox39p76eZNlLMB0M5amgTapAXLd5rjN3wwqNXBKVYLEpBXiJMLixYzEqi15jSYQtPtc5hljF9X8HRKz12r6KpbP+cY1A0NwfkF9YYE6jXGU2ria0hu5FxS28R71wTWospHW1r+Ln3vxKI2DLpTmxICAS3uUxphrtrlIqsFwVumYNTmK1ONC/0qxikmYopjyMGCQ1s1hmjSwuqKkPryLXDqTzvoAitJjjREAWvBQVpDVnWUtcZ+bjB6NBTw5SKaBOoF7loWkaOZlbgSmks3v/k5T5/pFlmYlqQe+y45uhg0gvuxQFMcfwKz/jjhuocVBc8dmEwtRS4pk4IXpoQx4SO+EIKbK1Ek9BMA+UtmZSbR4dQRPwo9FTH7MTQ7jtBNREKFUE0QMQMthxMEuqzFTEHOfO7FdsfUqwuQnZqqM8FQT23W/wsx54Y2l0HI6FPDocN9XJCGEpyt1lpslNNfd4TK0sx1/hG4ceKZt9R3LCCUKws2bkKvx5K9skwg51AdpDhLkTiQYE5V9NOPfmxoTgyNN1WFGF9eRPgJ9dXEaC3k4QeeWiSyB0lKE6XXeFLQTVAiunBVcXysqBHZqXJ5puBTEjMTEEnhEbmh9JIuIE0bbpV1BdaiuuZXKNt7Js+FYTC1QmHfZHmLCkFXbfyUui17AVutNGoRI2g1J0eJU80vpUFG/GFk4azFm2P6D/E8QwNaiEIQjRRrvvJlUqvTNJs0OuB0PJ4diGNkKkVLhetTrPrMWtBy6TJExpd30AHyTspb0m2THXB99S7Ps4mE62dXpmUMZIQTEXfVNFp/swGKYlFEMpWqwXVT0jaWRF+ts7WZ349JxqQ++67D6X+x1OGT3ziE/8Lj+YPxzK12CfmpwJno6TYEKqFwlzLyI9heY/wvbOFop2Az6E95zEzQUbMzIoYMdGi9NIQOkeaZKurkuOW30oi9e6CrgRpUFlArUwKNyTRtyCOU+iVFleU3gI3bRxhkH5v2ARTpd8DYgscZRLXNR8xpvvvxPYmsDoeYgaOxcGwF7MT1AbpSbuWX6WPQzfJ63dxgeyjV6JrifSiYmXEbjc2mtra3okLhEoW5qkhGbUibs8kNV5EkTElkIdnpJ5rE9i6tBTdRuGEAjZsUzig2LASFPWs4PylEw5PxqjCS5PiDOt50WsC+nRtpzFlQwiKvBQNRmgNxbjG3RqgtkWozYV1cl9SDLYqrAk0zjDTA9RKnNE+cnqez99/kq+7/938+6sv46kn95kNS1ZHA+xoQ+3yfoOmdMcO0gzlA0lhnz89Qe80xIWh0RmhUMTDguzCmsUbIqqyuJUU6BSedm3Jhy3aKfxjI/RCkb1sIVqXwYJ4QSULX0lVd87QzHKm5xdCR0vNmxyjIBUxIU1ubXHJTjm2BjNsObe94OYj+5iLa4wNuMamoMeUwqxVslBWaBOleQK08TSnA5n+ly41LKnhtEFoVyZS1xkxSEq9jxu0NwYNj5fEXcdgf021KCimFcFroeLNM8x2Q4xC6WpmBWSiK9GZGAmEoNAa3GnB9gcM83si+UxhakOzLQWcLxT5KbTjNGFGtA2+lCmzWUsRG8eR4TXd02F8KVP1/NBQX3Di/jWWgMJ2z0HhYWl7qla0MTlmSVEeJw43deiVYXG3xtRQHMPgQDO/B7xT5Meaet+jsog+ycjuXLK+NYQtx3BnxfrpCXHkaYNQm9ROS7MndMxOTN9uCU3Jnhj0zREa5D4XVkTcNorrk1PYjw0IO4HmzoYmKMyhaOj8QKg/toL1hdBP2tuRBBiaSpy4VJQCVtUi9vfDNH0feELs0uWT9e9CiS36KMhxGDn/ppImJFg5z26cCvc8ScXS+SyvZLRTQWj8QO7DjZPhR9slioPblkm+qaVRcLm4lEnoLOQnYvFLEORb5R7qTArxLEKtcWNBoERIn+x7E22ru/72TmFeSXift0l3IeiHmclrnx+L8UEo5G/cONHKUiChL4TupVvRI+UnmnYaeivi/ER0IboWKls7CWQzObfaybnrxPwh0WV1LXbGqrmtxsgieGQwR9KqOIXyMvzSjSIgAnY1E/vg58P6bLhWnblgna3P1npONCDf/u3f/oz/t23Le9/7Xn7xF3+Rv/E3/sazc1DP86WCWBv6UqgVfiBXkXYQGNwQd5l6N1k3bgf8QFEcKeoLjsFTmbjPJBeWpqB3VQEIHhgEEXbnAcooVBoglh7VymTSlwkCXxtJ2O142U2amlWdS5SICnFJozEIxILNhCqw8WbPQ//8uk0fZMqsbOwF7J0bSqeZ8GtJXVdrA0NkylUkMXFyspKE9NTddMm7XZOjkq6DdLxaitaYmpOOIxxb3aMdqIhO0/NOuB696gtgkwei8n3z0a2sdJweD/vsBzNwfQHvW9ELdKLoo9MxWeHwRmNtoJoVYpFshKctQmYlGo7TEm0D1VFJtldRlC1NLY4/oTUEFTFZ6DNHqqQ5yArHH3v5R7i+nvDvXvjTbOkBf+Xp13FlPWW2LhnvrQhBMdoTXUbwmjZN8kN67SKKohAqUgygPjom3Nmye+8JJ6dDhhcXrGYlbp2h92pCUFzamRG3FEeLIet5CURMHjA6kN87Q6koyeLLHIi0tSU0huneAqMjdWsIQTE9v6CqM4qJ6CK0Dak4j9SnBZfuPOZoIU1q95oW0wrvNIezEVsPnLCuM/jgBF643rzfEv1KW0FPYiQl1SuiVRTbFc1SBOE+JZ4TVRL4i11yJ9bvBPmusvK+cIrLr77KTrHm2mILYwJVJYiU0hE1bXAri8oCXiF0NiA4aWiDS2hNjEIt1JbyUD5LnYaj3ZLP0fKu0CddF4dQ7yduvUUMFoDiRKFaiDliceuTG9ToNlHx2NNOW8xBjk8oZ9htpHk4TRoDK4+lbuT4YSAMAs3UwdpQ72qymWL3g5HDlynquxv5rJ1Kg1DPCxlM7Lb490+Jd0pTHwaBmAX0SQ5jh1oK5clvOczC4ifyOXcKimtiXFEcKupzQQrfLTF7yGcZg+uausooD1MGhRJBe7RQ7wplqTnXYm5mck01QvG0C7HcdVboTe2OF0e2lUGtTe+CJSJsaM47ph+w1HuadpRQKKTx84U0LiL+Tg2OoXeBCnmiYQWh0Ckvwny7kMGEmwiVTHQdcn6aQq6N2imiiv0wxw2kAXBZFAvapOfrBivZPNGtUm8cc2koyqcs67u8UGvXcjsCtFahbhbEYYA8YI9T9ocTO+Ko00U7oQr5iaLaFxTNJP0RQdGcF4SnnaZkdxI6Z8S1zQ2gmAFR940ea2mOQkJNOm2T35KsGxUgZlGyTAqHrg3apWbaJp2Llb0ubDuh0wJqr35GbtVzen02KFNnDcjZ+iyt58Sn6tu+7dt+z5//03/6T3n3u9/9v/ho/nCsj/7Nv86L/94PEDLI5nLhVk5hlNAGypviStNOUo1fRFaXZZNqdsRjXzVJIF5pwtSJiHRmRJS+TLB6EpETBbXQDbitgB+EDVKR7EYFnVC4bddnBmAAT7/JhmFCUQIypbIyqVJTR0yZEcolyogJaSKrNmFSsOlKEgULI7wIRUTvOkE6NP3zE9/6QKwNKgvYQYurMkE+onCJlZX7iI1OwYlJpAuCeCikwUh2wCoLUngnfYkygdgY9MD1SIDNneRBREX+RIHy0L5gTX1tJE2BE7GzzUUQ3U/uk5g9T3kWbWXxqww/cCKWb4SulQ+bXhRe14IcKB0xwwbnDU1jJavDGWKj8U7hKyQ/RUshnQ9agtf85pW72R6t+abH/jQAh9UQowKvu/wYnz95jP/nB/+EoCVRCunO0cmvNvSztjU9UvClX/U7/NpT93NyOiQeFqgrAwYW3MuXxAi7Wyt80Nw8nhC9Ynd/zuH1LVTpWC8L7r98C60iWkdOnpqS76+JUbG/s+DW4QRtBEnytWVWW7JBK1PeCIOy7Z3A7MhxNB+Kw1jmKTInyFMK+wtBKGoA4Z4GHcFYeW29T5Q6RY/AAWQDJ6J/IB8l1GnU9C5Z8hqSGgRpOJt1hjb0SMn2+Tmfv/8kHzy9yOHpSFzGGiMubUC2X6HHDUqJQ5nSCaHTgXiSEweeaAK+sWQDRzspiFqomeWBYvFgS7SG4VMaP5SiNj9V1PsIdTDx7dsxorEQ8zXaMZhGCl9TgxsqfEifXRNRy0wC81LBHVotgYa5FH7ddNoPJF8jX1i5/eWKkFtaZTl+saI4gtGHMpqxYvZgsgg+yvBbcu1op0HeV/OMLhS1u9ZgIn4SknZMri/FoVCx2olcG3whk/HiQONORGAfLL3YvN7daC3sWmhCnRaiuJElNBmIWihCSUPRu4J1A5BUBIt+xaOb5Fw1NyzvkN9ni+Q+VmmxRDaJmjRI1K0OqE00Kfleiux2SxzGdJsMBRL1qLhpJPxxlV6f5GzYZ3ZEyOaK6pKHlcYuEx231jC36EoaGcnfADeW18CcigOaG6bTfWjxFxpcLch3zJL7WOGxtzIZQgHkCXnWMjgqjkTHU130ZCeyl4Q7K/TTpXw+lobmnCO/YWnurtFXC+xaKFhuQE916+jFdimi9q758IOQaGOyL9GdxpAyatYixo9eAndl2BY3bl2VIPjq1BKm9BTis3W2ztZnbj0nROj/o/VVX/VV/PRP//SzfRjP2+VKKSTcKLnf1NBuyXRseXdIcDUMrguPOmZJlJjLVFM3WiZHEfGtT44o9kS0EzEXmF5Xwp8NRcBti/MUBrniJ+93En0H6FPN5T8iGvWDAAHym6kn7kKxWoHH4zyT+6jFaQsQf/ZEl4qJMqV0RGVpl1X0+Q4dAdivbc+3jiltXLwqNXrgsIOWdp4Lh94E0YEgaAXJ4SXazZhJ2SSCz29zj0oP11GtzEGWnLKkiLQpt6NZZ72u4IVf/BjuwbU8n6SryIctMSqZ7LedWF4K13zY0qxkPG1zT5m0C762ghYBzToT56nkntXcGlCfygY/KJo+qRsVpTEqPDpZwnbnzyUUYX0y4ObRFo/cOscHrl7ixumEG7MJ/+WpB/hHj7weHzTrKktIgOqTx7vmY+/8DJcsbYNX/NpT97M6lCpm6+Oa1cMVn/+nPsCDF27SLnJOlgMOTseEVlN8ZED7y3uYU0s7z+E45/H33MnHHr8or+/QE1KS/MHRONHPJFU8HzbYsiUEsV7WOjI/kobDV4aibIROFaE6GjA7Sb9zuk+K78ICp7sLBkNpKLwzySxAMlvcMhPxfSMUqeBFM9KsMzkPKkr2iIopcDIkzo40ECSEqwsnXK0L/j+PvpSPXT8nj9PK+2RwcQkjR5veOyEocS6Lcpw6C2zdfYopXZ8EHbwgns1Da3Y+LA1EcS3rQ/x0rZh+VGxeCfL7bCkFrV2TMjlEuJ6fQjaTXsuNRIydn8h7Wy+ScUJyFTJLjZlb7JE4l/kdB14CDE2i7/gyXWueLlELg7q4pt3xrF7UcPwi0T2c+y3FzgfETc8MHJMLC+zlFXGRoaeNFLYmSg5JKijNXM6p32+IeaTeTYL81FyFTK4Ldik/y46sUMkSyjC4oWjHSRyupKgdXlWYROsKQxHDd6iwqboQPSXUUaewNzMxs/CKsNOSH1gpyGNyslpKKGQ7keYs2ih0o2UKaZwr3Fjsb3t6XGqKuqFRsJF2S7JWJi88FrORuaa+SwJMhSKmEr0oaUBsJGZQnQ/yGq3FMYrQJdinN/7Yi3NiojGZpZaMl7XQsszMEDOEaucg7sn722171NziJoJwdZky5ijDFxE39azudmJocGqIWhqc/JFBHyrIToOZGZoLjvEHCrncdjrGVaIYZxvKVbMv199sLvtXh0jrSm/2Bi8ammjl/9mJwaxlD/HDIO/bzqEw2TyHQYC5fd6gAGdBhGfr+bSe0w3IT/3UT7G7u/tsH8bZOltn62ydrbN1ts7W2TpbZ+sztJ4TFKxXvepVzxChxxi5fv06t27d4p/9s3/2LB7Z83vZFJQFgIJmJ/ZcbxUUzW4gOxHYf31RpmHKyQRRuTRJMlECnCqDXgkaEnJBVPQ86wWJ5BvagYqICLXRormwkVh6zNLIdC0irW9I1Ckt7i1hEGgStK+CUJtip69QKXSsCKi5FYcWhEbVTbRiLfQGmYgCURyzQIkmA6FJYYRzT60lRCsiz9NpXFCoFHYYW43KBFXx6/RRMRGVxmEiYk4CcqcFDemCsILq7Xb9uQZtAiFFJ7eVlcyJSZVC4wKPXD8vifKNETeuoPCrTFyEBk5cyWzAry0+pol4out41yELGlM4QiuZHqpLpUem7tO7Ttkdrnjy1i7OSdK6TMolz6QTuIeTnLDV9rQem3umF2YM84ZbszFKRUnaTu8tlx5fKUCHTWhfbbDjBhcU/z/2/jzYtuyu7wQ/a9jDme/45pfv5aSUUhJICJWYwmAbAxFWAeGqiurClo2NqYowWCEwLhfujrbcVMtjgdvhckGFO2xc0UCHG9PWH0CbbiTRakiBJSVIKSmVUk5vvvM90x7XWv3Hb+19My0BslE6U/BWxI1337n7nLPPPnuvvX6/77QsMvJhTblO0VbcnvKtAtdqtr7zJv+7C5/mF158C4cnY7JphVaBxhlCq6l2PPU0WmyuDcoLPeXR63e5cbRJPq4oDweCItTSbbaJiyJtEX4naSvxN63uM1AGs5LEul63Mju/oG4sbatBqT7N3WYtwWtO9iaC3g2EI+/XKXplSC6uBW0KSDr5Ou1pWTZre0SlaWNyfXLWUhT73yD6Ey+Urk6gb4wXxAeExhegqA3aOpQWCl/wCv/cCH+uQUVq2HKZiz20degUsT1eDjC/PWD/ayUHAxMY3NKEBAZ3oyvTSOhA1Y6n3IXZ05p2IHOHLYT6YuozCoxdQjuU+SDf07gMXKqicFvRbsQQ0UHobbLDuYqqMiT7iXRXHdSbDlMKIuL3cmyh8YUWNDXR+Pia2x8zmDpn/uCA8MYV5JJur7IWBSTW0TpNtisaKk5T9KF8Fz71tJtORPJbog1J5opqU+hnQUswazuA4qLExaenQlNFCaqzuuZJjwVhEKRAOudd4jgB6qnofJRXtBOP3UuEynRqqc43jD+XYAsozumIIsdcEye0K+VFh6CcCM+Htwzra60gBUr0IW7isSdReF1HhHi7Yv7cBtZHXc7S4CYi8m9HvtfpQMxqWch8q1a2z2/pbHJNKS5X5iARutzQo86XkqWyZ3uKmc/kPLaLmMVymgiltVGo7Qr7wgB3rSB/1lJtB/TVNe7OQM7TpcUPHX4gKeSzc0vKo02UExes5GYuyfaZZ31F0InkVNOMI3Lt4xweRLivvKHZcOg2onoxADLE7045CeO1p1aQ/iMjov1W9SGWIfNQqz69XRcmovkBtXhNLJV+/3EGzn95X/P+uD9egfGauKq+67u+62UFiNaa3d1dvuVbvoXXv/71r+KefWUPn4hwMWgIFpK5CEe7CRcvvNlmBsk8LtA9pMfiOKJrES22E3FySe8m0ase6h2HM4F03+IygbObTbHFVR7sUXTDUSHa+YZI99C9i1bIRMjeBZ5JateZoJUiWiOa0HO8VdXZBdOnj6tayZnc3Wwi9aSjfoUsJqA3SjxFIVJFgrhz5b6nHEm2iFCtVHJGHyOJrjAeMLK4HM3WrPZGJBsVzTo5SxYOZyJlO6rFCUoHqkUmOpFWQ60p3EAoC06RjUUjkE8q2i4VO1rF1vsDyB0+iFWw0qKzAHCt2LJ6p/uFa/CK0azsLWarMqEtLQunWa0zoX/VCdm0oqlsb9XbrlLSaYU+v6ZaJ7GgEK3DyemQZZL1AngdszA64TVIQdZpJwhgjy2tDaTDmqaytF2+SBTIN5XFrRJu6Q3e334V61/dJc2h3PUias0C6kLFpcfvkWjHC799mclzmsWDnocfv8WNo03aVpOmLWrYovYz1MUCEwsggKawaOspjgaYYSPfqwq4xlCUOeqzKfXDDRvnFixXOfbpIe6hEp14lIbBsKJcp1JUJSKWTUfCh3HWY2YVs2FBM6iZzwesb03ABtJDQzsK2LlcY+FyIY5omeu1SZLxolFWdDsEsemt14noNhqDGbZ9nopNxOmMII5N9YOl6KK2W2g0g2lJscxkcWa9FFBOM/0XUw7fGCcFG0gOFdW2x6fSlBjeVNg15EcKU8Ii07iBpzhPn769viANjXp2pinTTXSIWskisBlxlifh6e1WcQrfCaPvZoStVgIMc0d6KyW/Z6i3IvXHQKuFNmSWGrfbUIwlV6KeSgGfnoJ+ckT9sNhQ558asH6swsf0+ZPDEZONgqUCV0nWkd6o0bck3dycJqhWqGTtCFRQmOJsnkTLvFler3sziXRfnKGUl9yMXuMWwMyj61Wkk9HoPpivnTiGt8XSNznV6ArKLai3ndCa1lpSvb0I0NuxI5kb2hgKqLqQU6ekr2FFrK08uCgIt8eWdpWg2zML3qBD3zBSmzXqTt7vo10IJa8Ljywvtti56RfrIYlBhKWi3o3ezCcZ4VpB+tkBzkeBfBakiBhJI0hXGlVIPgf3crkfzFOKi56QBuynRzTnxR0NwJ4aoaelmtXxBn4mmr78rpFit9CEKun1K8FAvSMUMFNEoXoMi+wCM3sKF1FwvohujDYWFBpMpGn1qekdvcvFYi4e7zCVrCzVWRLfH/fH/fFlHa+JAuS9733vq70Lf2hHMwm9BaONPvCqjJ09ZBHRTELPAQ7RU77zXA+GeMPS1DMfbRQDZqlFnJlKx0w34Dov9iTQdAnJSv7/0rRyVStCIpO8qcS5RBbvMY291tJF8+L00qX/hniTCGmQhY2XfBISeU5QoIYOkzpJ3FZBEI7oNKSHLaHLCKljuOGoFeF4kLwPUkF7cAoG0r3WHkIeNSC2s9HVrJcZetzQrJK4P5rgObMMNjFLoytuQPYjdajMSdigCVAaGiuXYlWILSulwUxr2tqw9cAJp/OhBAoGaCsL3mAy1+sGBuNKRNFedB3rpRQaLCT/IMla2trSlhaby6K2uT3EXihoikQQk9SRpw3zk6FY8kZRtauNLIyLpO/oy4dRZ1kjUeNiUycheDagrq7ZGFUsFgOM9ZKe3FkQI1oWpwVNOVkNGP/xffbvzVALS73lSHcL7FNj6m3L1Y0T3Ffd4cWNXd76uhf4zN45fCyEQHQwD731RZZ1xt3DmVgS15qtnSVFlbCxM+d4OcQHcRxL8pbEOh76jps8e7TNyb0JZtBy8Rtv8fwzF/CThnTQsD4doBPHdLZmsRiQT2qqMpXCWgeypOXwZMxoVKGNZ3R1Tt0a2pkltAp7vWJrUHK4GJGeW1EsMjlGlcE3RtAYFTDa968ZLDSFBEIkg5b63gAmLeZzQ/xUePXjtx5hP7yFLeDCn3mBz905RzHPY4EqWiOlA/ZuSjMKlOek22tPLOkxVFc8LjOYtcI0Ykah51DsQjt1DG+KI121JRkUpqEn7NYzKTqaiWhC6imsroi1rHaQHWjqacAWinpTrnlzHNPRcwnma2ctqjI010o4TuU5G5pkKZkP6YmkjyvjCYkiNGIpa48lDNGUitknEqrNhPLxAntjQJunFJfhwSv7vHB3m2sXDrl5uIHdKGli4aaPE/zQk+4bigtiLY4OBKN6m3I7F5vi9HYKXux03UBshKstL3OBU+BilsZYbL2ThSA3buBF4GwCpjBUG0HmL6tYjcS+XNWKwR3p6PsEmSezQHZoqHaiMFtLtkh210rGiBPUws7lPZNTTbMB7XnJ53ETJ5bPt3JBLqYOKk3y+QGmFkRF7H2l0AxW3LpEaK7wl0tcYTErI/qRoRSPZqVxU4dfiDuiG3vcTJpF6b2E5kIDQ4eeG9qNFpIgAPBaY1eK6mrN6OmU4kK0DR459NKKKcJWw3CroLw5jtoZLWGPCvxmgz5K+kaTG4ojVjLXtJNo7ZvQB052yLRPIuK+sLipWLmraLse8rO5WE5IaYRJTolG1wqXeAlRPBUHrzB20rz6Shj3EZD74ytovCY0IMYY9vb2vuDxw8PD+0nof5ChROSonPzb5gK115u+t3p0mXTfOmepTkTadcDEZz6w+SnF6MUoHB2ciTODDfhEuncg3S/dKHFvcfT0KaIotdsvdJA09kuSqo2J6AIIZUtHhMKpHupH06fziqY89GGBfuDkNdaGdm2lqNABImVLleYsCLAUMXt4qe2uCrEQUZIhknqhUtiA2qnEQckpKWBCdBty+iz0EBXdvqJjVhLOJu6g+lRq4gLYt4pkJGnkg521UIVWlnTQyLaZwx1LEXF8PMKVhuTJkThmDRrScR275rL4ropE0JBoo6t0IMlb9GZNs06oDsTJqcsGqVcJakdsabd355J6bj2rdUY6bJhNCikoEkc2qnGV7YuP4aBmNJQFt6AdkoOhVIi0L1kAN4uU+XzQC7M7w4BsIC5brtUMNwvcKqE4GeBRTLdXzB46Id0VUf3XfNunOVkNeO50m6/evI1KHVZ5CWVs5XWLlSAzz+7tcPdoKmni1pMMWpZFRlUk3Duc0rYxhTwWQnVteerGRUKA2bklygT2l2NGF5ckuTiP2UHD5uaK1sk8VFXCOzNGsjx8dM/qXLXKKsF9boJbJIynJc5p9k/G1OuE4t4InXjqRYpJPDp1JGkrbmmBPiU9zUWsrYw8ThKkkHzTqWQUlBrvNfabjjDffshnb57HHaVQyPngSgtOsfHrOVc+2HD3jzk2PyGd9skLsL4UGH0mod5xpHMozoHPxOEqWcLwpiFZCvLRbrhouytzg13LHNJMIuoR/00WCltIl78dSoc8GLnmbaR2up1abFFHXpyJBi2hsISxo7zg0K3QhwCKy07EzHsZ9sD2ZhDt1PXBdMV5WXxykNFerPEbDfqpMc89cxG/SFnVqdhWK6FQ+ixIYWA9ySpesrVQn+otJ2F4FysRK3tFfbHp50rlJDjQDzxmYcR4Iwm0EykExJ1JDCq64DqzsPiYQm7WQtsKVig9ptBUmzKXqi6DI/pY2IXBFiKuNqWIrYXm5cnvGBGVA+0kdvErKVbs3BBOU9oNJzkbK0E1mpmn2gzU1yr8RivzfaB3kDJrTbvZEhaJUJd0TICvFYPbhvxQEt5VpQmvW2GW0vTBBgmeTBxmL5FCqJLmUXquEIOFgWS4rB6r8dMWN3KSBzNwuLE0e9xTU8KsJb+dkB4aaZht1yR3Url1jB35gZLGThuPRyXZVT4VpN4uxW1N7hOC/vhZe9ZEGbdCDxu2Z1lQyPesKjFLID69+/5CzL/C+DOXtfvj/rg/vmzjNXFVhc5u5t8bVVWRpukX/dv98fsPcReRDlszkZttMBI+lZ4odCsLC9Wo6CwS/f4jJ7iZeknhPdXMHxYeeGfHiQr9YsSnAZeJ5aOu5ZTyicDiIY0uKo3oPYJGHmu0UJtu5y/bZ+VUrw0xhehTaKXbqCvVB4ypDsHwCiayoA02wKTpF/6hEUvJ3smjEjhdNYowFjtPvTbowohlZ93Z3MrnC05sd90qEWqZRoqcwkSffEXvaQ/yebpjH5CCKeYhuNLK+8dk8E4X4J0Sik+rUcO2d7ZSRjJEJJhQktarr1ozGlYSsFcbdOLwpyltZbCZAyXFRT4QhyvXCG1Hp47B7lrcl6Jb19bOUooHFTg+GfUUIIBhXnO6GOBOMtEuVJZ0JJavwSnWRcpymQvtDNBGqGI9LcsrdOL6glbHxaM2Hm08dZXQri2usJK5sFWQzUpOFwOmg5LLk1PedvkG9TrhI89epyksJ6sBH7r1MLvbCz5zcK63F9ZW7I2bUnQcPu5vZ3nbUbDcWnQ3ad72OSBdTkrTWJaLHGM8q9NBTHNX0im2nsU6Z3VrzHRaSC5LpEIlg5a6thjje/2Gd5r0daekWyVFmdA0hra04BXpToFSkE5qKUKsFFIhFqhJ3sprVpbZ7kIWcJVFjxrMdkWxSlGDFnOuYLXKWMwHnJwMUTqwdf2EdKdAW086EurQ1qdKghKHp9PXBbJjxfKK0FHaEYyeN7Qj+dp1DfUGFOcF3Zg/4mkH9I532QlU24FyNzC8Ix10XQt6Wu0EKUbGkcKjID8SipPkVECz1ZLezGJTQLru+ig9W9iNW/yVErfVCPWz0CTHBj924hzlIto5cGf2slkQithEOv3BKYorDaQes9Ts3dlgPIm0tFoW1mgwS0u5HVPGU6h2pahrJh59mOKGAdUgVuOZF5e1SEvSRVzoRgRW1zGEdSC0MZeFaLer8Zkko9uYT9HNyV0QK4imQwVIVgqXR8e9LoMlyL/tyPdFTJfJ4UfuLEi1FeRYnizHt7MAtivp/vuhl+O9MqhHlhHNNkLnagQd0LWgC8mppj7X0Gy3tCOoNqHeEnfD+jTDX6hI7qQyL9caX4k1r8miA2ISqO8OcVst7VaLn7XouRVUuxYKmxq2kAqi3k496lRQnmbq8TagD1JB4htFdsdSz4IczwDpCRDUGbqfB5oLNYMbQtfqHBSJx1k5hVlaOTE7am60N3bjaHumpPDwm80ZzbdV8rN6TRBFvqShXqGf++P+eCXGq3pl/eN//I8BUErxz/7ZP2M8Hvd/c87xa7/2a/c1IH+AkZ5CM5XfuxuXaqR7GOxZV1M5FXNCkBvzWibgYOWxTvdRbUoRkp7K5N0OBTlJFhEiT4ncakW9SS9mBylI3Egm9+TIyk3VRnqWiTqR6HOvy3hD7WgAMQlQNarnJ3viejkTFEN54Uh3KIZKvIQjGuFrq1a42dohBcPCRpRFXl53epMmvo4JkHb6FUcgLoCifsatElQaUY2YOeG7WiraDIceVYod0VkttCtNHxZH3GdlY2YIihBCnyBv81aCDKMIebXO5PMpcI0mPSeL4nqd9Inn6+Oh3OwnTW99W5wMZNG0tDBpcV6hXhjQThx6o466FQhBS0p6q7CbpVjqNpp6nsaCSD6isf5MZ1HaXqgdIgXAV1Hg3qWgm/CSBHJFNqtQKtCUlvI4J98s0SZw52CDm4UF6xlOSqoqwSSeprZMBiVXpyd89LPXpGBLhF6XjGtJh+9DAQVhco1kn3inJGTSQ11KWj3Q31ldq/G1wZlANq5wz0xoL1aERnJYvFek5wuq2sY0dNP/2xVUvlXYzNGUlkoluEoSybXxjGYlq1tj6hCbKSpw8fIxx6sB5XGOajVq1NBUBp2LbXHdWHQi9LrJpOhpcdZ6msbgVgk6FizBKxarXDr9tcEbsVW++46cdigL2vREsXpbQfL5AXqhyE7g9E0NyUFCeiKNinbk2fiMdObHz4uOYfGYx58aqk1oZy0bv50IF39LKFbD25JIXU9hsA/ljix8m6Gcr50OzSwNLhPUVJ8k+JEI1JO5QZ1q6h0n8qqNivaqJ3kxp555VHkmKnbTFnOSwPmSthWaUbUTSO4mQpMaObkmncLF9O5qZqWw+0zG+qqT63m7lm1WlhAtc4NRJDslzd6A7YeOOLyxEak7iObLSx6GjovXdiwajj74bq2lwbPSEgw48pi16A/qK7WEKXqFXQodNjuB4nwgO5LPV217skMp9nxC/3fdgI/oarCKajva8q5MH4rY5SCFCyX2Vk6rAyEXbYhPA+mxIhhDebGVps1nxrDraAeCCOEVZmF7imx1sUGvjaAKI0GCswNDdb0muZfgEyMU23ErhcJUjrWrNabUmPMFyWfGrK9AemlNeGYsZgM2MLxtqDYD6lYuOqHHF2Qfn1DPxAChuNqQHieUF4WaOHouodwWO9zda0ccPr1DcVE0Ym4YYlMrkNxJqTeF2ha00LdYWTCiU+lX0YXptXrBirYwZF5+WhUNTnyPtgQrxW+YtH/g+/F/knGfgnV/fAWNV7UA+Ymf+AlAEJCf/MmffBndKk1Trl+/zk/+5E++Wrv3FT+6IsObMxebGD1AMlcxPEyQkY6K1fnahxjo1NEdCCJY1U40HF1SsC0UdeQ4m7XGpbIwaUex+FAwuqUod6CZiH7DDWXCJyjsShPWmva8JCZ77aWz1yrcbg3zRBytvHjX60r1Ggu9VPhGQSpOXXplxI0LRNNRy/vZEysUKiuFRRgKL1hHxxPVRNQnkb+rqF1RHhFAdh3LGFpI5jGnFj9E6FoBvBeKUYg+8l3mSYhCVZX5WHwIBzl46Xr71qAzh1IBX9lIRVPozBG8Fg1JLHKcF3F1aDUmb0V0XhmUpkc2CJBOKrQOkkYeb7xm2LAxXeN2pMBYrnKyx06xXlOuxJlKafCNwjyXozIJBgNBY9REoK9Oh9IsU8ygJUlffmPu9SBG3LC6m71vFbrLF/ChL5h8a0gmNdUqFfqWCYy21qyXGdXnp3C5pClloX+yHHJ0OiafVvigMNpTLDKao1yKJa/Rzw9or5aY1JEkjjRpxR3ofCEISaMxWooRkGKo0+UAVKuU0etPyUAW+k6TJE6csYIUWNp4EYWnrg8cTPIWH7UlrpUQSB8zPVqreeyNN3n6uYs8+MAeL+5vsX8ibmLZRkWWtFS1JZ8VQuGymqpI+u/u9PYUXUiBlFxeis4nc/jaUMeurrZOMm5iivruB1LaXM55b6Hc5eyc1lIobH4sYfmAFCjlBdEYLK9Avi+Ni2QhFKpkKTQte2plngiQHiuqLdGQKSdFRkcpSk9EY+aTM0RE15JD5FrRMeAUutFiVJF69KkEErraMBhXFBdNb1ChS6FhCuoJ6sXBWdZDoEcs8jui0SARCmPwhvbGCM6XjL7hiPXhGLXWmP0UN3aYnRLfaPRJhssC9TyF3HF4cwMUJJfWNLeHZDsr2r1JRHtjtkUMrlOV0FLRkrsEiPg6ABNBJfWJdN/tUjG4B+WuuG+pFpppRFsaJRkgC3m91RUvGRVBoYJo7uqZUILMwhBspG91Jh4m4E9T/Ej0DHotdLz0RFzNQvzu9VpTXWwkyX7WoqwgIz73DG8Y6hlRO9HS5LGwGDuSqwXjJyasLwplTHlFKIw4zt3JZKG+Em1P9tEx+bccUJyMRGcG1Jdlfi93ApuPHXLy6W3agUc/NaE6H+f8KzXDpwYUj1YkdzLaDddrl/S0Zv/GJmxJCn0319WXGuxeIvS9WFSQe8y9tHe96p3KsnBG4e3ovoCqtIRoVvoszNYpKUQQ45TwleKCdX/cH19B41W9qp577jkA/vgf/+P863/9r9nc3Hw1d+cP3XAZsjhOA/XVEqVBf36ARtywTAUhC7hO81GBjcJTW0jHLxjhcwOYWoSaplIU5+RGlO8rskOFy2Qb5TT1TBYlHcKxvApoEWz6SvQjuhBL3mbTCQ1gKXaQHQ+XgHSw7Jk2xBsIeUz0jcWBXWka7VE6oiZR02FigdHiBVnp/pbI4scPfN/h9CNJ+VWtgoEjREF7cmxotqSL3wuuo1OXHzlBYLowv4gGaOPxlemdu1S0EQ5N3K6ja+noGGWiDsXGZGcnRZuPnXoVqUyhFU2LUoFsUlEuU0iVaFDqKMRPPPZeSpuKOJ1bOW7kGZxf0TSGdZnSfG6C221Aw/iXBux9nSfZLnGNZvzEALsSkbFuFatrPrpaBUzie9crVxtBHbyirmxEbujF1UoHTCqi8/65SuNb1dONTOqiBa0ny6SIaSuLVoGySAnLhMnrj1mXKflA3mt9NMAMZKGPAh/EPayxYldrhi354yfM98a91W9VJpjzBerZEf5Cjckd2xtLTlYDsUNuFMmgZXuy4u7Tu6jNmiaGDForx160I6KrCK3GDBvcOsE3mmTQoq3YJnfOVn6R0IxE60NhqL1iPs6hMLz45GX5Tm4a2q9a4RrDaLxmkDbs3Zsx+kyKf+sKH3Sffn7loX2c19zdm1HcG0EmqE8TEqGhJZ52Fc8XHVAHGfmRY+9rLMHA6BasLkH2KdEBhQTSYzj56lZCAo1oN1waZVWFFCyj28AtoSl1nXAd7WG7rmh6CusLMl+4DPI90ZzJOSSND58KbaaZAgrsUuhOAMmBpd5tReeVeuztjEan2GtrwkDOGXUvw6w0zU6DGzhBNjMPJnDu3Cl792ZCUWw0ap5E2qNBV1qsaA8yTg8yTNQNlBcd5B797JDrX3eDGy9cxU0cZtiyMVtz8tktdAN1M4DMU98cEYZe9nvaGXTIol+3KtJ4DCGXIk7FgFSzn5wF3PlAMw1kx7rXzgUjaK+pRVvjcqG2VZuIDs7I37wS1yxyhz5OcCMpgMK0FeMQI/ot++yAetOL1awNtFstbeLRcyvblgY/cmKyoYLYMROtZgeO8o21nLPHKeZUipBgxelQbwcGf3yf+qO7kkLvFHppxG75YoU+TkTT12jqDVjdnpHdSaLdOrA2+MyjZzWHBxO0hvRIxP5BB/J9Q+UyysdK0hdzcWEsZC5PFgp1MqB4qMbsJbiBGCPoTBHmUmC4EWJgUmlCLYGJZmFpp0KXc6kkoqsmBkU2Gl3oft5XZQzcrdVZx7+SwMx25Am549o/+we88Jf/+h/0tvyKjlciOPB+EOH98UqN14QG5AMf+MD94uOVGJECYVcK8+IA9eKAZAn5HgzvSJGQHQuFqutYCmVD4VKB/3X78tez6+ikFYuCZiyLDZeLkFW5mJRspPs2uKvJjhRmrfA2MLinSE80yakiPRb+sct9z6Pubu5EMGz8edMnDKsgnbdOWB9UtJVcR3pUKwskU8Y8iCT09sLZPYtuRUOi60itsJKeHLqulwmSDRJzRdqdVugxSwtF7DQG+u6i6uBuL6gMTtyxlI35I8PIie7yQYKC0sTcEOluhkaTjJo+5Vxufme2w2GVEOqoHXGS5F4VkW51LwclfGqdOThKSV4ngnLXGNTVNcl2SV1bfKtxXpM8smC4UYCHvT9RS+d1leAKS/3Nc67/xWdYvqXk0p95vkcMQhC9BCoIymAD7d1B77QUIjLTrBNMTHkPQXJLlAm93iK0kubdUaA6CldZJrRHOYNx1SMT6XbBcpVRL1JWpwOqMiGbVUxnBc6JWLtaptRrSZse76xlP1Tg/JVjyW0JCvYz2tKy8dX7jDYLlPbcu7lJPc9IBw3ZsCGxjr2jKf/Z1z5DWFua0tI2RrJSGoM2gXxUM9wosGMxDsg2yr7I6lzBmtKKScB2iUkc+ajGblRoG8htAyaQPTRneH7J5Bv3pZi9lbMoM/bubKATR/JNR/i7Uii4wwybN9w5nHHn9iZhbSX5u9BRv+IIa0vwoHPXI3AXfj1w8GYrGi0r9rjukUIQkCDXanlOFpZ+4PusoJCIruvk9dIkOHksCKqRC9Vy+0k4fWPD+JZQiLKjM02YKaXYUK3MI8lK5oJ2FPpGRlDS9GgH8r2btYiIVSVopT6xtBNHOwy0a3GPC42ByyXthhOR8q1UrtdSM/5ESvi/73DhwglulZDclsRs5ZWgKg2oVmOXWmibeRBnrUYxfDqlmTluHG7KHHkirmRHN2dMHjkW5FIjFE8lDZpmRwTcdi6p7CHzqAbSvYT0KKa7e2lOEKDZlrkl6ICda8xaU087JBaSUykwmnHA5cQclZguvy9i7HpXigx7akhvpaADdi5oK0vpH6rTBH+c4YZRG7NTC+JRasmvcAq7n6ALTX7HYtcKu5TCww88dqWlgADUYSaJ8loQL9Uomg1Hscg4/MwO9fmWMGkJO5XoYmqNvZviDbCymFOLfnjJ8PkE+6ZTQW2iLXp2YLhy/hgKg760pr5cy3s3mvKcExrUXGx1swcWjB8+wSeB8pyjuOz681e3ino7mp2sFUmkBFPLd60aJcjNRGhcnU24z0WT02VPBY1odXLR7yiPFCcd/UpDO3GCOq1MXxDdH/fH/fHlGa8aAvLDP/zD/NiP/Rij0Ygf/uEf/j23/fEf//H/RHv1h2ski1hUjKN/fKUod8XCUjnpSrpctklPpfhI5iJGTU+F2w2CoGTHqg8l07UUF834LLzMZaBLqDc9zVSKGuWks1eck+eZLnArdtmTFfi17ikczVRu1nLzD6hSs3ykjf7tsmgJJlBc9C9z7XK56EJkpSCPtWOPLhUuD2SHuteWjG4rltdCb9s7eCajeCDi90NHcEosaVuDnhv8dkPIEBF6pQlDJ5ziAKSe0axgdTTssy+Ii29AumxNhPLTIEjFsEWFMytaFcP/unyNTtSuZrVkPFiPydue2qUTsRRWNnDx8Xvc2Z/hW0PwgQcev8vdkynBa6azNcvlgPPbp9w9moouwikI4hyVTSuqZUbYaFCnCcMrC/K0RRN45MoeuWmFwjFqcK104wUx0OjMMbl+SlknuMaQjWrJp4gaBG0D4W5Ofn1OWaQREXE9UqJ1wLWSF+KdFHxms+oDDVGSPeJbTT6thEoGOKdZlymuErcvbT1+mcC0oaos2gRW64zSJKQTyVW59Pg96tayqlKKdYpSoAciRK/ujMiONMUjBRuzNZ/cu8Du1WPmRd4HPCrte5pb5/Tl9gao8yWuMpi8jd+f74MbWy8Fau1kwWITx63jDc49cAzA4VM7tNdXQu96cIk1jtHWmqYxDJKG9HWHHJ6MYbuiLRKhh+moISosuhZr1fbRgsHummIuhajJHO4oRTcBn4qj1WAfFg96Nv5/A1wmZhQ+l+unjZTCajPItRkXXaaQTrxPpPM++bzBZ4rTR2D2VEK5CfNHPdmhOF51dMyghZKFPrN8TU+F7lJvxCJlLY8V54luU2KK0UzjQjUJkLeokwSn5VzIBzUubdl5eMmtu5vYuxnBwvLxhnpaUd/bwCwN9W7D7KmEegrs64i6GupNCd4zpaKdyHxQ7ooTVXt7SLgsVsCUGntsWc43cTNHcmBpGzkm7lxDqDU6xKC+QvcOVS4JhErmNXZrXQABAABJREFUo6CF8um2GvTCyjFNgjhW6YCNmha7VEKjSoPQh3LQLmprljJvtTNHdleC/+xaUZ0X4ww38DKnBIWeS6CfPbLRxlfh8kTmHSVFpW7lu3DTlhqhZbqx5GnYI0NzqSYZNOjPjKgutITa4Kct2c2E6kILtUYfp4QkQKMwE4ffz8SydiJe7eLShTRxnh7jU2iem6KsmJmEzBOU5sVbO+jCkOw61J0R9fmG7HZCvQuDm5b68YL8twesNnPq/QRGnuRU0HKHnDvrB1rSA4tdClpPBn7gye5ZmqlHV1HT6MQ0wBtEE4jcIlQluj6VOPza9PcSnwTMUhy6gpa5GQ2sjFD+vhLGfQ3I/fEVNF61AuTjH/84TSOBXh/72MdeFkR4f3x5Rj1DqD6JUCR8Il1H7aLLSuw260YWDz6R7pxuEC926NNxVQN+SnTIih28ZdR1qKg1SeTm7K2Ix3Wj+m6ormB91ZMdaVwuCxFTxAJpEADhencJwmptsAtFsJpm5qSL2SjpqCl6gaApFc1UNCjKqZ5Kplay8FEehvfkBl/PoNo6c57BSEdUr4SaEBrpntFoQuKlk+mBWrN99YST+RC/TIR6FbUi672RUG+IN6x4zGgUaiTBd74QFyQ1cD0FS7QSyGLgKBX6RqTwAIRosasj1x8V+pTtgDhN3bqzSWh11Isobu1vorQXZ606QWnP3aMpvtUSaLhOUcbDUYq5MyAdQXW+RW9XFKuMcp3y0dMhXZCiuG2daR7SQcNwSwL3uuIDpPPPfg7TFozkmySX16znAxHbNwYVaSKhc0KLTlkmj9Q1HS1nlVC8Qq3JZqL1cCcpatIQnIEQOXr7GT4JPPjYHV64t01iPU2jYnFjRJuSOJzXLMuUqkyZTgvmpwOSrAUFV19/h+3Bmo//u4dZRYvh40qq7uA1/iATVGCzROuANoL01GmA6AzWFSk+WjwHJdtI7orBt4bGC3XryIkmZOeNByyKjKa1NAjFy1g5rw8+eh716JIkbSn3hzCQQtDmjaArk5qHH7rNC0ebNEVKXSWYvMUVFlcbHv5/NLz4bRI6t74USB+dw50xq8tS+AcN+T1NM4mhgUFCSF0W6VKJNBh0I80JU2hWl2OTIQ80424eEZG6bqDckeaGruX7a0YyPwzvwOIhocvY9RmaWs8ESfUJ4OVfSaHWqFKjT02foq4aydsJ84SbhwOmFxbMF4mIonNN+OwYNsQed/NJ0QI0Y6inQRz92lhQVTK3De4qQXSc5EpkBwa9n1PPApOnLaevE2cm3cjCf3BXjlWDxXaZRQGyI035YE32/EtcGpXCpUpCFsOZhW5nPz7YE90M0Av/VWxEtANZ3Ks4N7uBl8VzFrCr2OApDKaInfmkmyhEkC45FrC+JFSxdnw213Y6kuQgwWeCQpetwWeBduwwBwmehHZTPpsudW/1a+ZG5nwLppR0evPsAHelwpWG4YuW9RVHtm+oLjiyFy3VriSnp58ZUj1cwXEqYbFvWJJ/Ykw9C4TfmVJfaVC1pt4VGm4zCXinqKcwfDpl9VCLahXNzAldTAfWr6ux9xKSU6g36a3Z0wMrgZ+zBq8DNnO400yaWdNGnK8qI4hUEnpzFFKPWhnaqZPejxediM4cYR51WAo519v7a5T74/74co5XrQD5wAc+0P/+wQ9+8NXajfvj/rg/7o/74/64P+6PPxzjPmJxf3yFjNcEqfEv/aW/xGKx+ILHV6sVf+kv/aVXYY/+cIzP/h9+qO8AgvCvx7dgdBMGe0S6hXRGRQ8Sw8dGIpBECS1AbBzl+cmC/nfRl8D2pzzZcaRXnCgG91TfCa2nApNX25Aea9aXoijbCg/dJ9IZNOWZQ49y0k3t3m94y4hrSyZ6iuEN6WT1YVpKHLiSU8k2cXmgnoae217sRjQIef30WDjhIfHC2Y7++/bEMHrRYBYxYyT63AMcP72NO8nEiafSgnZ0XvE2kOwn6MMUdWrlsWin6peJCIMTj9IRcqqMUKpWhtDoMw//RvW2sn167yImqRPzQqLjkdKBdNSgErHe7dypxNVJU68TscX1Ktr0piSDhsGoYvbQCW/9rk/x3e/8dcyogf2MsLLRrUqeY1In4vHG0BYJwSma0jI/HUQL4BjoF7Ue6dUlKhEkxu4nIkCP4YvKdOnxqs/qUFFPQkwzF7RA4wqx9M03yz7ZXc9qwmmnL4HRrGTy0AlXHt3juBiKfqU8E8OjAuUio60Me0dTqjLFHaey7xpxtaoM+8sxH3/+CuZiISgOoJSI4UOAP/l1n+DRx27JfjmN94r21pB0tyDUZ1Nn8BplAru7c0COR1OK/etoVkgi+aDBWM9gVHOyGrA+GpAP6z5DxLWa6iRj+2v2cJG69bY3P8t0cy3vEYT+Va8Snr51nuLmRPQty0S67bmgdYsHMtqxxxYwvKPwH5+R3zW4QSA/hGrHUW8EkmW8DmpFeiJIho7XdHWxJT8koiOqt+t2lyoIMS/o+IxuZQpBG7MjQU2SZUxI34DRi4JCEDrNliAsykXUNZccofRA9AYgSdt9vo4HjlL5PXesixS7XVI/VGIXGlPJPGVPDKev85TbUWtSS5L66vGq18JBRHYyQUKGtwztUEIVbaFYX4TsUOMGcY4ygeLxUo6NE+Q0OTFUF1t8Iud1OxK6mxsEql0JT9S1whxZyQixorNoJ47Fw456xwlqdE5WiXYluhndiMZNBOtRx4IEyPq0m7sC9bmG9nxNcmJIjmO4p4s5IlOHbkXrMrytaQeCnvgkiM7OCr1r9VArqeJRW2dipkoYt+R3rDxWKppHCtyO2PyaiP6YlabecGQvZNhTQ3HBQybHQZWa8NaF2BMfZlTbHnsjRzlFdmjwnxtTXnAMb8t3k+4lci0lnvyeor1Qkz+d02y3lBc8ZmVITgx2YUhPFPlti5rLdVruhj5A16w0PpVQxlAbwloygVSlhTYG/UonpD6aBERzE69wk1YeCxByJ/Tc04h+RFOBDqm6P+6P++PLN14TBchP//RPUxTFFzxeFAX/8l/+y/+g17p16xZ/7s/9Oba3txkOh7zlLW/hox/9aP/3e/fu8b3f+71cunSJ4XDId3zHd/DMM8/8nq/51FNP8V/8F/8F169fRynFP/pH/+gLtnnve9+LUuplPxcuXPgP2vdXYrhMCgahO0C5LZqMdgBuIM40zRTJpnBgl5AfiIYjPVGkx2BL2PoTd7BLzugLnYuWhTvf3sabuLxutSVUrGAiF/1UhOu6Ofu9E3Z2yevtKNp7LkQ0r5zqX6+eyIImWBFnlud9f7P2CUyeNQzuycLHv8Q+WEVHL5BjAPKcYKOYvuioC0q41lNHcSHg84A9skw+b/qsEFMq0gODboTCpo9lVRBi8eLTIDSuJIhwNVoQY88CDcNpCmuDrsR1BU1f4Kg6Zq80WgS44xaSyPV2IrIMQcWUc1nktrXBZq0Ez0UhtDGerZ1Fb8urdCAdNqQjycooi5ST5zd44rkH+X8+81V81xt+h+zqkslnRKhOK3qUZpni5lL86NRJYXOaimajG0Fev60s5TKTfQhRRxAzLFCyr6GSL2AwrvC1kdfzELzkmXSCdDtqzrQhyN/8IiHZLXGlFCmTvGJ+MuTe8ZSToxHZrIoLdOBzIwCGs0LCKWNtp1qFfX6A388oS1mNLg+GuNIyGlaSNVJavFdMZgWbGys+8PlHefbuLjYTbVDwimtvui2vF4+vNrJYDk6xvz/FZm1fxFV7Q6rK4ktLs0yp9ocUazlvzl06EQvhWPgErxnvrDlZiQC9qS0fffo6q5XoUYz1uNowfTIjeWbA8OqC7OoSPWhxtcHVBjtsOPhqyPa16DdmUO14ykcqfO45fb1n9hnJmqg2pSDJ9xTLByUZXKyoA9kdy/GbPOlcBNL5gdAc9Z0Mn8rib/lwiy2F2hhMFLdnkbYVwwdNIZoTHVlzPjmje9azgImi9a5BAkJtMmuNWYkrkY6Bo3qzEpvXo5w0Wj+nj84lQT1Sg0IaWF/0lJdbBveiHW5hJQ9pw+NSWF7zNDNHM4H1ozXpqSJZimalvlSL698qUsYqhS8kIC8oYNIKpScTZz19L0M5EdL7RJLI7YnpF6zKy2vYpehR0mNDtifUymCEJlZtRYpqK6GOysXAWBtITzTrK5527Gm3WuxSk95LxNVpICnsPvPYtRLL5Hk0x2hgfcVhI13LTRw6ugM2M09+05KcGmyh+iDA0YuawedT6lnAjR3VOYf9/ABzmPS6vKDFDc0uDdU5cQHM9jV2P5Ei8kTTPjPBJ5BfWBNMwA0DYaeiOic0ucFtw+INDXalaKaewf93THKQUHx1QfpCRnHJMXzeomqF36olByULlLuecsczvKUjHUwcGd3Q9/lRckFKIeIK29+D9HEiIbEDJwYiJkRalRQXL33MDEQbg5JiJeQypwfNV4QOpHPB+nL/3B/3xysxXtUCZD6fc3p6SgiBxWLBfD7vf46Pj/nFX/xFzp079yW/3vHxMd/4jd9IkiT80i/9Ep/61Kf4n/6n/4mNjQ0AQgh893d/N88++yz/5t/8Gz7+8Y9z7do1vvVbv5XVavW7vu56veahhx7i7/7dv/t7FhVvfOMbuXPnTv/ziU984kve91dqdJNnF3DlMlmotyPAx7Tikl4v0QlJTUQgfCri9FufOS9Fxjp26Fy3MIet3QUuDywedtGJJbpsebk5d9xvl9HrT4JFzj4lnG3dyj42I+nEuixIdsjMS9LtBEYvKPIj5KZRasxKkx4r6XpqualrR7R27AqkIAuxbXmsExu6FLIDzexzkv7bjsSNJz0WLUo79nKjW2tU5lBe9sUNPT4L+A3RLykF2c0ENxPLyhBzGDpXlo7HrqroIpVKYBo69E4sKCB3vVCS6JilljHHQ8WObCOBeb5V0R5XipKmsigd8I2hXieczoe0R7mgIhG5aApxSwpOMbt2wtZsyWRU8vxqm/c8/quMvn1PHKoiimEGLXrcyIK6s9PdKQUVaVXM9fDi5ATMtpa9rkXXktSuYuhMcIpzl4/xi5RynUrYV1zQy0GU46iiNsS14vLkKtFQmGkjLlxaCp67ezOCVzSFlYJJBcLaorQnPLwiTVtWR6LlUCYQPFx/422+9Ts+il2KsxcKxjtrRltrTl6cndkNW8+6SFmscnxMqm8rEz8rHCzHPHZuj4sXTnCtoa1NX2hlMRAxHTRk4xqzWaEUJOOadFKT767xjcY1hqPTMdm4Fq56bTDWsV5kBCDPG4KXxVAnbq+XKcGJVsNlsF5mFIs8Gh8AK0OzSMmOZPHcjAKTFyTdevw7GZOnRUh78tUNPhNdxulba2wli7nVFU+9AYN7imrXMbirWV/yJEsxo3DTlsGeNCTyPUW6b2kHsrBP55Id0o6lo19uQ7UtC2s4myeGd7vrD4a3RIQ9vCOoZTuMhc5YXKq87Qwp4oKylIA4XSvW98aEkxSjA/m5NX6rEdQxFVTSzKXYHe2s0GvN6prDjR329XNZkNaaetOTP5fKZ4jzjzlMqLYd9WaguOhwE4+dG/xQUA2WoocYPJP2drvthQpdKdJTWew222Ip7IaealvEzHjJkmimnnpDtD52KU0SuxYbY5/QXzvlrmNwy+DyQHokzk7ZHUtzoREL8+OkN8LI9g0uk8IKJZa1IWprgokmIcfRIGIkAX6ynRR/zYYEJlbbUG/IdzB8wZLuG9qpx5+raDdk/rNrhZnV6FZ0IuMbinYs83t6pKmuyLnlpi3mtyZMPm8Y3VAMPpVj55rtRw8pz3k2P5bQzDzj5zXzry3JHjuFvZzkzadgAtVXr0FD9nyGXUN2IAiMbhWr1zWkc0W95fCZNGhCInN6SAJmGXOVEoc/XwlysVOJ0HzVdaHOzpUwaSWXBkGY/Im4rOlao1dGXBAbBYnvM7Je0yO8Qj/3x/3xCoxXNQdkY2OjRwte97rXfcHflVL87b/9t7/k1/t7f+/vcfXqVf75P//n/WPXr1/vf3/mmWd44okn+OQnP8kb3/hGAP7pP/2nnDt3jp/92Z/lL//lv/xFX/ftb387b3/72wH4H/6H/+F3fX9r7WsC9XjpUC8RzunoQNWMJQfAZ5CdBlwmIsdmLAWGTwR1yI4R+kIKk89r0kVgfU7csJIlspiwSG7C9TXZp0cidDWySErnEPRZynpXAIn9YRSzK+SGyRmlo5lJJ1A3kh0SjCzU11fE7coUZ3SFrnvYdVdNAaAjDUuR72kJUKykS8gS6g0JV/SJotykd/zJTzS6gWpHioPyfCDb1xTWUu+IU1ZyKFahVFpuYipIwrBCFkGtioVV7LJ1xUhQAu9rhCoVXWwgClFjoq9qdPwdmIivfgigCqFq6egm1blhSWVCRCMk/C8EmFxasF5n/YK4baL97yrhpJyCEhH9YitnbCv2jycED74yUjDN6j65vHsv32p07BQGpwiNwc81mMByJSlsOnU0Oy1aBbyX9w5BcXQ6Ro0bCDB8YIFzurfTJYrvg1fYvBUhudOkWRP/HlAGqME3BjtqpSBxCpU4qmWKmTQRVVGUtWHj3ILT45HkoSi4cbDJraMNkjecEmqhaKwXGQCzq6csFoO+AEoSR111lKyATV1v91uUCTfmG7z13E2KJuHk1hRGrRRBQZF+dsBgD06/sSDJW6qDgQRLzmpCgMFE3L6ag5ywIcdxNCuoa0ltd62mra04m9Vakr1LzeTCkro16K9foz+5Qeui3RtyCpjNGlcJarC+6skfWLA/HkvWwqZsOnrBoCuDAsotmH08xaXEhbCizQWxGN4ylG+U1PRmEnATR34rOUNNL0ioXHakyA7Exa7eiO52G9LUaEewviiFiXawviCvbWqZV6ptmWvqmcxFQct5bEopSIZ3DcV503e3k0PbXS5oQF8oWD03w09bsB7dKtSxZEJ0RU7TWPTlNf4kQyUeHxSMHb6Ihy5ePu3E9TQeuzRCMTsyrC6LeYddJrgMZk8bltcCjYpF3iSQPZ8J/Woc+vk2RAtucyCp8S4Xuo8tNLqW+c0uFempZH50gnyfeXSrSeaGeiPgztWEeynZsWL1UIM5kaDS/jjUimpLPnsXMtkVMtmR7sNl5QmB0fOGZkI8zlBtC/0tRDeS7PKK9XRAcmhpNiR3JHsuF/Q40p2Sjw9oR0LNWzzsMRcLqnkqNtDRSnxwI6HclePhco9uNH6z4eipHcLIs/imgsHvDFhe99jbOatJAiOH/+gMMwuE5UAKmSxQbyC2v62WQurUSjCukqJOlRHdjinuQUNYRdpqRKfDUdY7v0myOTJ/D1zvRohXJKex6MqEhtUZhnR5K/6l6YX3x/1xf/yBx6tagHzgAx8ghMCf+BN/gp//+Z9na2ur/1uaply7do1Lly59ya/3/ve/n2//9m/nv/qv/is+9KEPcfnyZf7KX/krfP/3fz8AVVUBkOd5/xxjDGma8uEPf/h3LUC+1PHMM89w6dIlsizjHe94B+973/t46KGH/kCv+QcdQXcONoCnvwG1QykCqpnCNNGCdyX/VrETpuPjJk7y6/NKihKISekQBsCvbTCqhC7VDs5uhMkyoh1KaFldCm1QoMyZ9mR91ZGcGKFqNADxvXOhZFVbkRpyqHCDWGw4QUrqqSxqfCKLow6dUY1QK5Q7WxQUFyA/iKFfmSx0TAXUsggIKh4fhC7R8bt1o1EvWbToWm58+b6VwLUaysuN1BxOEawkFhNRGrS42kiYYUzitQGMRx8mYmWpQ89ZVo0CKwGFynryF1LK8w5lfY8auMKiY5gfCDKAApNIR321yvCNIR9X/WJaqB8S8BWSgNmoca3mIzevYayjqeTLMpuV2Ol21pX+jPrlGg2lIdmoxLVqBIO8YbXK+nMu3SxxrcFoT10kaCMp60oFAorlwRCdux49USr06EbwGhcEAXKNwaZONBFR52CsoymtZHFMasoiFW1I1JLUK3GFOj0a91oZEG2LV9A2ps8F6JLZV+uM4KT4aWvTo0tEW13nNDZvo6ZGc3I04teWj0BQpFul5KS0muo048FvusVJOSCpEhSQ7RSMBxWLVQ4K6lqOsZ7VaONpW0sSgwy7vJbQaEzuUNH5Sg+k8FEK1o3hdd/0PJ+9cy46c3nKE0G7WmcJb5vjjgfwmzMmtSzwm0cKRr8lC8dOC2UqWFyX1PJkHrfbbWgA1Wi2PzBg8UDM2TmxNGM5v1QLsydTmqFcl+mpPDc7lPljcBBYXhFN1+RG4OCr5JoY3ZL0deWF8tmhraaUa85loUdMlRebXt3I/IGRrBk3kG69XWr0p0fitLef0J6r8dNWUKOlxeWB4pwi3BiKPuL6muYwx2Ut+biiXA8JNlBer2FlyPZFC+KHjtlnNYtrgfLNLaowvTaj2WlYJnIdNdstdm2lcaKQ77OROUo1Smxx9xJxFKwiClxFnYURXYeKyfGmjuivBbsw4kRmIQwDw6czqs3A+orDzK0kl1fiBpjdtJSPVJh7KcHC+FlNvRlDIjtdyEIynZaPtqT3LNW22PkGK9+BKRTKGXQtGpbyzoj8QOh76IA+TYR6VypsLd/X8nUNZiCOcYNP5STPjmgf9mQ3pNjqioDuuzJbNfmgRn9oRjOB7MSw9hnr6y2jZ23vCpbfthSXndByfcxzWoseJ72RQqT4QcDlovmTxpbC5U6CGdNAiE2OUBtUKU5twQYp5CuLqRTthrhrsTao3EOlsStNuyFNJrsQS+OQCPqmkOMhX/Zre9wPIrw/vpLGq1qAfPM3fzMgiehXr15F6z8YI+zZZ5/lf/lf/hd++Id/mL/5N/8mv/mbv8m73/1usizjz//5P8/rX/96rl27xo/+6I/yUz/1U4xGI378x3+cu3fvcufOnT/Qe7/jHe/gX/7Lf8nrXvc67t27x//4P/6PfMM3fANPPfUU29vbX/Q5VVX1RREIJe3LPVS0uSTIAl3XMqGEIAsGNwTfyEJCedFx6Er1gWW6Fg1IO5S/VZvIQreKk12kV80fFYGi8LZBr+Vm2A6k45ceK4JWPVrRUUmSBX1nLpnLYyqcIRrtoNOExALDQbqW91i8vkHpwLkLpxx9YkcafUq4up0OZPWAj3aYAZJAO5QupPJC+whKUW+Kd3yyEkpBfk/sK0cvRgFokGNoC3nf4rzc+FYPCLk9PTYkR5ZmuwUlabxeedTA4QIw8KilEXvMWfSYr+Tm6LdrSWjvUIxoN6laJZkIa0P9aAFRbCxogHRBfRvv+CiSvJUCAlnIa+OxieszNACClyCyelOEo640pOOaen+A3SqxqaOpDe0qEfpPRCZ6+9wA49/JWD7a0qyFi25Sx2qZxXBFDdbTYs7oVXF0qehhlaAGktTuSiuflYCvDDp1/T41MdfDtUYQIB16sXo3qirBLxP0rIKgaEpJaHd7A9RG1MU4OSeUBjdPsBsVbZlgsrYXxocgwvf++CmPq6yI6BW40mLyFmMdrjVsbS9pnWZ+MmQ8LpifDKUIyhwv3tvCz1PsQhMeKGgXKZUfMNhdU65TkrzFNYbzO3MO5yM2tlacHI4wqdgnBye2yqjAcFBTVglNafucmLC2fLq6iDKizdFxddBWUljlvzJFbcD69RXpTaGwNHdz1leivWip0S2UF8WKmGNLcSEQLGR3E7nOUpg/1BlOaNqJWLuqFtpxoNiRRXOn+7ArsURtZiKm1t1i9bIiPxCksxnLHCMFRbTkjQvlZjsWidHGOyh6hMGuFU0qlCaQHIh6M0ji9zymV6/FPGJ9RVK1dav6UFO3U6NbjZo0TMclx5/fJIwcyaElWViCJiajO8afSlleEUG3cgnNboM61tQ7EoJYXWnQJ3LO+gTSI0U7gvZ8LYvZiDbrwogGLUTNxZ6mngWGt4XOFpSsZ7sirBnLvNJuONqxIKV6bag2BaEgQLJUhF2HvSdWusUDDcmdTBoupczVIN+JKQSJqDcFvbLHVub8GAYpmruAKcSAw641TTT4aEahp8Z2i/f2QkO7Nti5Ybyzpnh2ijKB1UONFEStoOL+gQJ9M8dngekzhvkjjtGTA5rpgHBONDlq1JA/k9MONdUWtFPH+FkTKWRBdHlJwKWBtJBzoN4QIb9ZRY2LV/hMzplmHKmrc4suNR6L2ahw0XJXpTE3KSAani2HmqcwaFGnom/BBNqRF9QjRBOEUQvzRKhXpxY/cX047P1xf9wfX56hQuiSB179sV6vefHFF6nr+mWPf9VXfdWX9Pw0Tfnar/1afv3Xf71/7N3vfje/9Vu/xW/8xm8A8NGPfpTv+77v47d/+7cxxvCt3/qtfeHzi7/4i7/ve1y/fp33vOc9vOc97/k9t1utVjz88MP89//9f/+7Bi2+973v/aIUs9PTU6bT6e+7L1/KeMP/8SdoxsScDnGOksV5fCyVIiJd0C/g26EsAFDgRbogCIaKHbuoDekW8ihZiJTnxfVo/ILA/z4VUXvQned9lx0i76lreT0V5H2CPbsh2/UZoiFuPFGoHqlZHcqyfnNJ8EpStJ+cirYEucECfUbJ6LZifVEWDqoV15tm5skONNVOdISJSEmIdAblhVPdDugLK4KEhXkbSE/FacZnMRW5FI64CmAXck7VO+JONHreUFwUfrSqdU+lMGuNnwnEb2KYGEgiL0FhlgY/a8/CDRMPrRZxtTArJFl8ZWHSxMV2EGes1EkREZkDfpHCsIXSiOZESbChbzU7Wwv2b2wyOr9ivcwE8XjJczuRezZoaFtBAkIAt7YMtwqqIhG0ojWiNQkKbQKjUclyKR16VxuC1/3i35e215woE6QoqUxEO2Qbbc5oDz6K8bUV5yjfSuE1GZWS0dK+fIEQYkCgrw0q8aSDhqayDEZCg/Ix6yQ4JSL0VRJRJo3NG9rS9scYVK/HcKXFDtt4XCAcZLBVy/5aT5q1kl/Sio5lOC1pGku9SLFD6dTbVFAPpaBZJ4w2CkFzIhrSVhZtPNmgoWlMn2/S58QcZkw/qzl9q3SkAYx12I+P0Q0U5yO9JvPYYyvUwgst9tSQzBXDu3D0dQ06b5k8MRAEZCzF++CuUDK761qL3IlmFsStaCjXV74vnf/iQmB0U1DWakOuabuULnt2+BJ00sVr34ljVjOV67wdSkPDrqXh0GnElJO/BRN6hLIdy2I0OZbOfTBQX6kxh4kU9Fnone5QSDDdboWJzmd+nsLQiSPdcYpZayYvRMrWHz+l+vwUrhT4vZzp5zTzR72kY5cGG/M80pMY6JiEHuUgIm3tyGNK3c+lbtqiVyZmi5x9JrRkf+ha0YfgRe1ZFyIIsp2PyeTEIsDnUhDWM6FfJacKNwh97ojo4cQBSzeRajWUBbQpFemxYn3Nkd8xUhBqqDecoLcTCT21pxKi2I5kQrMLKfyTpXyXdinfUTOJn3vsGd40YlJwwaEnNeq20Lf8ZgMmYO+muFyyOvJnM+rNgGpg8oZjFp/eFPetqD3sEPpy15OeCM2vfWxNuJcLgmsCbhw1OlmQ72gk+67myRl6kXgoDWalxUUx8dLwieYjIZGivAvqVU5QP+VFh6RiYyjEQtCeGj73N37oi95r5/M5s9nsy3r//lJH995v/r73YdL893/Cf8Bwdckn/q9/81X5XPfHH+7xqiIg3djf3+cv/sW/yC/90i990b87576k17l48SKPP/74yx57wxvewM///M/3/3/b297Gk08+yenpKXVds7u7yzve8Q6+9mu/9j/+A3yRMRqNePOb3/x7Omz96I/+6MuKk/l8ztWrV7+s+9EFjDVjSTPX0bbS1NLpTBbC2w5roU8EDcthTD1HFuHlZqQyvaRUVQG5Ob5Ev5Ee6WiDK0WKieBOiNQN7c5QFVPFwK08FijDMyFqdkJfKHRhie2I3o6yo1wBmNuZdEyfzCh35QZp1oJQdBYLPhHkJihiYq9QIexS41JZrHgbaWUrJcjNTNx1monQJ3wW8FZoXcmpoplKivH4hqLaMFQPOLm51Zr0SFOel64qlRGXnlEMacx1z1dWbdwXp1CFkeIpIMVMdMcKRv5u1pKgHKYS2KeS0EsAdOKEruwkDI9U6FpdAGBotQgwJy36OBHaglMMLixpGks2qkSjMWpZL7JeTC4IgOqTx0FC87QOjMdrFqscu1FRlQneaaq5RdmAzRuhPO1nLGMx4oMmiaF6rjX4RjPcXFPXlrZIyIcVVZGItbCS1HUf09IBvFOYxEnhESlSSaRMHTcjQVCOE/x2LQVKXMH5ymCGsjCp1wk68SKE18RkePClxadOqCVeWr+925dXEelpybKGskhJJ7WI7HXAH2UMry6oqoR2laCzlrq0EkDZaEzqWUex+Hh7jdGe5TIXW99GoxNPNqkoyyQ6aonFsbaeJGupikSOg5ZiES9anOR8wfW33OXZo22W8xxfGfw6I0xkEZwsNG63wd5N+2J99imLy8QZrtxVpLcSVEg4fcwxuhED5wae9WXVUwGVV1BICKFdSSc5P4K6Vb3ovHOja0ZdB14Wp4O9GGAXHfB8REt0c9acaMfR/tvK81HxNeLf0lMJO+1sv3UDycL0aIxyivEnU5qpXN/tllCnqosNZmkZ3NGsdUY7cNhhi9ms4NZAtAmR/3/yuCeMW8znprRbLeOPDak3YflApAh6EUH7NDC4o87svxE6VXnOY1dCF7KLsyZEO5KQ0+nnNO1AjonL5fF0rhgsZK5pJgE/9PjtlvzZjPKCI6QeM7diER4UZi/SgrRQKHUNyUICB5upFEEuj2GsLaiYBh68zDvJQmh02ZFi9WBLcmgpr9eopbyHzgUR0yrgT1Oyh+as90bktyw+hfpqhdlLqTcFtWiutdgbed8w0aWmuOAJY4c5sjCTJk/7aEFYJmS3LM01SZxPb2ZSuHhJmG8/tIXZkKJ0eS3S7GIoZnYkVKvqvMO+MBRn3KEcbzUXjZCbtHItFhaVOcJY0ttV1K7pRtHOWjmXO01k4GVOjKZSuK0GIu3O514Kk9RjFwYX9R/t7Etbi9wf98f98fuP1wSm+J73vIfj42OeeOIJBoMBv/zLv8xP//RP8+ijj/L+97//S36db/zGb+Tpp59+2WOf/exnuXbt2hdsO5vN2N3d5ZlnnuHf/bt/x3d913f9gT/HS0dVVXz605/m4sWLv+s2WZYxnU5f9vPlHp0lZrJQvcc8gEtgfFsW4spJ93N+TTG/HhduCf3f0pNIt4roQ7D0C/ZO4/FS6pS3UjBUG/ITrBQGqo0akUjz6PQa9VRuPpPn5Gbg8rjYiBqNZiy2nS4X1MDFJHaXSUGRLJQUUeqs29rxx9uBiFyThdwQlYu87NhhRUG563qqg+hdAvldg888+b4SoXv09K+nQZxfGtCtop4Ifzq9lZLuWfzAUZ5z0Vdeifh0LdQulwfSA7H+7RyziBkgdqXxm7XYxZ4a8GLfGTKPPTH4Dely6+NEhOpF5+iC2Nq2Srp6mSS6B6cJrRI/+wDJbkk6bEiurPgL3/ZBvvGtTzMdVKRpS+tE6B1WFm2F6tNngkRtRK+lcBrXGqpGsjJ6SlSrUYXBRF3KeFJizhdwkPVaj3qZxmwPMKmnLFJcbRhMS6oyEZpUFGErDaDwTn5CXHiDIDyuMlTzDJuJzkOnjvEjJySDVoqLMqav5w5XWJIXc8xeKgWNAhfpFkneShaKkgR230R0xykpmOLndrVhfWcs7lvLlNAVRyrQfmoGQTHbXaJN6MXw2bDBxwWPST3FOmVxOhB3sqirAagOBygV8NEBzCTymbzT+EWKtoLiuFoE+zqRzJenbl9gcTIgNIZso+LyByQbYfKcFnphq0jnMPt8oNltWDzoKS5IEnYzBjcUswdGjuKiJz2F/K4hO4jaJQW6VD3S2Ux93yyQoiNgC8iOBBVJ5/Qp6u1Arms3kMKi4/p3hYiIrmO3O2rHfHpmRdvMzhBau5bX6iy2y0uCCERtdY/G2jXktxLSU01+O8FNWtqRXLs6dbjTVGh/SFHhJuJYRQA9FwH78LmE1TXJ6khPlBg/rExcxCvWVzzLR9uIlsZ5KnbO/cChXdxvI+fG4I6mnol1scxhcv7p2ACqdr3MS7XC3skorzXoWpzz3NihakUSaVfBSGe+kyLoJtrgLhW2E2MTRe9IYdfNsS6FdK5YX5LmRjv22L1Umh1GXOR8adA3Bti5IXxshpkbykuOZuYZfkbE9m7kUZlj+MlcaEutwk/EkcqUiuxmzM+4lVNdq/H7maSZXy9Jns9Jj8UgpLsX5c+mLF7f0I4C9Utuf4KAhz6DxiwF9fBZIDsUxMJnQp9ScX4wo0Ysd6G3NO+d+QpDcmBFbD6X81s3qkdTunPAFGJG0Nn5YgLtRkvIfDRPeW3rQO7b8N4fX0njNVGA/Oqv/io/8RM/wdvf/na01ly7do0/9+f+HH//7/99/s7f+Ttf8uv80A/9EE888QTve9/7+NznPsfP/MzP8L/+r/8rP/ADP9Bv86/+1b/igx/8YG/F+6f+1J/iu7/7u/m2b/u2fps//+f/PD/6oz/a/7+ua5588kmefPJJ6rrm1q1bPPnkk3zuc5/rt/mRH/kRPvShD/Hcc8/xkY98hP/yv/wvmc/n/IW/8Bf+gEfnDzY+/X/6ISkkvBQBOtKgkjUsLgtEP9iLgnDfUbXkBmDKWMB46VYqH7uUQW5+upZuZ+d4pZuz50mnMtr2NrFYSaXQ6IIIY2wEgz3ZVxVfV8WOaUcBsWspHnQVO6HZ2c3WVPKZOnpYR10IFskGWcjrpqfy2WwB2Ynsb1dEJXOhDrg8UG0LBzpoSI8MxbnA6rpYXnZIiClVDGz01JuBdiw3p3pTupZ2qRnc0Zhji67lhuZGXnQn40B2NxFaxr7406tStCFUhuxYLD1BPos9ls6nPk6wCy3HptRR2xDO7GwVhFj0qNRD7O6qqM1wjYTdzYYlP/PZr+Vjt6+wqlLWi0wcnlQg3S5BBVkMxxyTEGlKskPyf+8UZfHyTJDgYfehw15w/tj2PlnWYi+vo/OXIhk2tMuE0bh6yfMUVZngVgntyuL3855mpJOzbmO3WO+eo1NHNquoVwntUoqX1SqPYYww3V1FCpcUJ9e+4UW23njQFzM68WgbxB3MxWLAKUIj2pxk0PYohzZebHgnDdp6slmJMh7XaHYfPGL8lkPCnZzVOuste/08xXuhiCV5G9EbeR/fanzMVPGtZnZxjtYB9fzwJSew2AynOwVp3mJHDSyFluVLS3uQ01aWDjLIfn2MyxWjmyL2RsHk0wlBw8Efq5l8JmH8nOg4Fq9r+8wPu4KN30oZ3NIUX1VQXpJFe7JQJNEVrn64xO3UEGB9vaXaCrhM7HjXFyVPpNN1KRfteNf0iJ5u5brDR2pNE5ETddbU6OaMfE+oXDrOGV1mUH4g13c7CCSHCc1IsjCgo46dzVfZkfye3U7QreQapc/m0hQoDS73qK0KVUoHHeRYpEeG8rGS9HxB/VCJetspgxsWdaHEpYFmLIvS5ECE7roS/ZjPA/WmAyfZFD6FkARGL4oDn0sl+NAuo4YrNnzKc1Gnksewwq0WCllcg9B9go3zS+5Jj01PDW0H0EyFAlZfq2gmQolrLtSYtTSbqi2Zr90g4B8oBFF2ivRIk8y1oCu15HjQSh5GSAKjNx5RT4Xi1LlfrR5q++DV7LmM9SWPKTRmrUjvJKip8PSqbYddKtzEkT2fyn4fGsIiob7cSOGZCG01WSqKBxpUo0WPkgj661OxXR/eVpTnXK9hRIFdyGNuKHqfzkLXHlu4lwuV6jBBdQ5+p4noikaOZrsl5K63Sjalwg+EzkZEQ1SjMEuNKuX4mIUhObRiyXtmXHh/3B/3x5dhvCYKkNVq1ed9bG1tsb+/D8Cb3/xmPvaxj33Jr/P2t7+dX/iFX+Bnf/ZnedOb3sSP/diP8Y/+0T/iz/7ZP9tvc+fOHd71rnfx+te/nne/+928613v4md/9mdf9jovvvjiy0Tpt2/f5q1vfStvfetbuXPnDv/wH/5D3vrWt77MNevmzZv8N//Nf8Njjz3Gn/kzf4Y0TXniiSe+KPryagwdKU9d7kQ7ABu5tu1AnGzsShbqdk1ftPhEqFm2EiRkeBfyY0EzgoYQkQpviTcref2uQHjp76aQjmgwUrz0z403mGYcnxJesjiJciDVRm75Goa3I20hPq9/z/jZBBkR2lWnG6k2RZRJp+WINAlJXkdu2nExErSgMM3US4FyZKg3JcCs4yN3jozKI/zigWhC7FoJVaW7WSlBPuxckx1F95vzDcorbBc9M25RdRSOzgLldgAbaLda2g0X90kyBmwhnG8MUBlJC94XhySBhxTqJEEvDONnEqEZlDrmYSj29mY0taUqEpaLHG0Dw0mJq41Y3gbRY5hIX5AOohQ2JpGFeJK3fRef/QxfGZJJTeMNrhXdxQvzTbxXVCeZoA2Af2EoAmvoi4zhVDQ8dlIz3llz+fX3Ynq7FBoqFkSdy1c/ggivTepJpzXGCkewo2cVZSIUrWVCaDWfv7PL/sG0t9X1bbQ3VohtJwhPfdRicke9Er5fhz4oRX8MmyoiRbXmZDnk+HjEucf3+11TKmBmdZ8TonSgnmdoE0hyQWguPHgodA8TmJ8MaUpL+tgprtZ9SKPNhbLW1Fb2e7sUfcqoRm/UsLQQILuRsvPJmtUFofrUG07sXqfC/58+meFyWD0QGN5RbD5p8QYGd8XxaPFgIFnB6N8NSPctbuBpH19RXZBCxd7IyZ/NGNzRzJ6yjF8QN7x2LCjB8gGZN7prtxmF/ho3lVwrwcBwPzCK02ozpXfZ6+YaU0RxuxMapU9kbjJlFGpXklNiKkk6T0+lk++TQDMNYjfs5XXrjRAbJoHynBQr+T0tQYFO4StLshBHLbuUjng7CSTP54RnxnCUsj4ZUFx0cDvHDQS1NIXubV87YbxdaOzCoGstTlVOPlO5I4t37WD11SX1Zui76O1EciVUi7g+lXHfvORd6ErRzpwgLTpALWL4ZiI6u3arxU1aMROIzoLryx4qgxsKSuuTIFlIGoYfH4jmwokWqD4nujNGLe5yCQqSucbt1Jzemcr3V2rIPclC9fNTdqR7Oq5PAvWOw2ViIgFiyFFverJ7YnahC037UEG2b6DWNDNHyDyDO4byggjkzUIL1e5SjZlHKqCFxUMOU8YGzkyCD+tzrWSwxLT25NCS35YQWZ8EGLfiKjiMRfZmI59lbtGFQVWa5FBQsHYk31+z3eJGEvjohlJQoiRY0g18/32b8isgET28Qj/3x/3xCozXRAHy2GOP9dSpt7zlLfzUT/0Ut27d4id/8id/TwrTFxvvfOc7+cQnPkFZlnz605/uLXi78e53v5sbN25Q1zUvvPACP/ZjP0aapi/b5oMf/CD/4l/8i/7/169fJ4TwBT8f/OAH+21+7ud+jtu3b/cIyc///M9/gR7l/rg/7o/74/64P+6P++MVGa+BAuTv/J2/w9vf/nYmkwnnzp3ju7/7u7+AGh9C4L3vfS+XLl1iMBjwLd/yLTz11FMv26aqKv7qX/2r7OzsMBqN+M7v/E5u3rz5sm2Oj49517vexWw2Yzab8a53vYuTk5OXbfPiiy/yn//n/zmj0YidnR3e/e53f4HR0f3x6ozXRAHynve8p0cc/tbf+lv88i//Mg888AD/+B//Y973vve9ynv3lT+UE+GoaoUL3Okvym0gyP87wXi5e8bJrqfSoVxcV71eoh1CIyHTgjjEyamZCOXCZzHNvBOextquS0Hv0IcuAyBZi81vJyr3mbxWvUHvxANn9LBmAodvbwVpiLQN5egtLTuKQvfc7Ch2ZSdC7RIKwBnNLDuktx9OjzQ+Cf2+J3Mt1qWtiBTzfRM58PLY4K44q3Si1GbiaUeBatv3rj+qlm7m4I5ifVWcZszSolrp0tqlxt7J8ENHsEHyQjSYhWgqcJCc6p6D3EyCpBcvJSjLG/pgRF1q1FL20aeB9WVx1FGemGYOOCVuVIcZYW1x84SqSvpMjC4tPfjY8Q+Sei7OVgg1qLToz4wIjWb68Ik878Uh8/kA32pcbdg/nFCVCdmswqRetBGXSvKRTPx+nqLu5BQrQQaCUzSN4eadrT7UDzj7N1rmulpHKhO91W9bRUcrp3rRevCatjYMt9fQCcITEaf76FbVaUrMhpz84q4llsG9U1dMYHe1EbF6I+JxV0ogYscxP1oIfco73YdBeifUuHqeMdgoyAeSlJ6kLXfvzRjsrhmPC3ExA9bzKBAI8vnaInnJ5z973XYlInqzVUGlufxrFasLCeuLgdXVwOiGIT2RkLrkVAwlJKBTrun1BUEyXQ7FG0s2PyXXQ7kjqJ9qFenvjGLmBDRTocH4VITZnaBatZAfytyxvijddtWKja3LXzLf5HItLK4pit2IZlbRgCIilsGeUYuyE7H1TRZCF22jOL2jcTZRT+VyQSSyE6E3mUJQmWYCgzviqJSsFNPPCa3RZUi+Ra2w+4kI4p2gLiIgF4F5soi6kdNE7IcbQSVU/D6Vl+vIlIrkVBABU0X9y8rQRARK9C6iW0ufy0lPVczhEB1DshQdibtSClqzLTovHwP07EmEjpXspxo3kHqanVYQ4lpjJ7XYAo8cYSKIGV5eo505cTPUgeU1T3YoqIouDNkdK/SlSG3Mzq/xj67Qxymkno3HjvCzFnNoqc635HuSl+JSmU+TUy2oVaQvKR01d2Nx3Ko3vLgBzjXDjw8oLzViAV1p7IkVk5FGkZ4oRreE4pU/mwrCuxQhPaOIrgwd6Z4l2EB6YMXhyop1bjNz1NMgmR8moI9SmQdPRYsSao3bbvCbNTqmqTeXa3Qj36Ubi9mIqhXkQokza/nOXRZ6TYiPgZLpyWscAXkNjA996EP8wA/8AE888QS/8iu/Qtu2fNu3fRur1arf5u///b/Pj//4j/NP/sk/4bd+67e4cOECf+pP/SkWi0W/zXve8x5+4Rd+gZ/7uZ/jwx/+MMvlkne+850vMyX6nu/5Hp588kl++Zd/mV/+5V/mySef5F3velf/d+ccf/pP/2lWqxUf/vCH+bmf+zl+/ud/nr/21/7af5qDcX/8nuM1ZcPbjfV6zWc+8xkeeOABdnZ2Xu3d+U82Xikbv7f84E+IiDM7c8Oqp9Hn3wq1yscFAEosPFWrev2HKSM1IjpcJUv6DICgz8LNdN2FRZ1RMkJn47sJBMkegbP0cVOJYLOz3YRYfKTC+y53orNVJa/dFSoqxFT3aOlrSqF0eSMLlc5lqxPd+/Ss0NItfUpwV7R02zZTL1SLtRaKRBTCirtX6K0pO0vOoGNWwTT01Cu7FqchvMLngWSuyPclKyU51TQbQqPwI8f46YSQyPZuJHkkPpEQLJV6zF5yZs07dCJCjQsiOxdaRogOVcor7Imh3TmziFWtgoFoWJQJcJTKQuqcBOgluWzrGiOFRlB9AaBU6PUSL7W4VTqQZC1NabGZYzIqOT9e8PTN871jE5xRljoRej6saZ3BPzuinXr0pObM5pb+PYFIpQpCdYpOWmeBiN0Tzix5O7tgpeXk6IoHZWRf63UCiwS9JcWGUvRp6jqLgY6RZ66t6Cz0icVvNmLNu0rQ0xrfaLJxzSBrODkcYfMWaz3VOiEf1VRlgrHiomUSJ9SrrCXNxdGKIMcvGzSUK8kFSRLJ81itsj57xUYhelNZXCG2v+3KYgYtk2nBcjmQ76sxbP67pBd6d5a53kJzocEeWEY3Y6H6Et1Benxm0dqZVCQLWF0J+AsVsydy2mgG0S36h3fE7GFwT66/48c92ZEmO5ZCogvWS+fShOjcsXQ0nxjek+LHlHKcTSlzhreywO7mhWrzTBsiXxZdBE5/vUOcCyL1Ujdnc43ykJzK5+0aEc3Uk8zlO27HAbNWuFF0FRs68ltiuVxti7YhaJknfSKNguxQUTwggX7Nhu+pl82GQ1dxrvAIRSrx6MLgNxvMvgT0dcL/oKUo6WhpXUK3XWrcyONGciCkURGbCfEc7LJydOJxBzlmu8IVlnRSibOcU3J9b1f4RSrp7olYMdNoQu4wS4uftui5xQ8dZB5tnVhLn1jJUDpX0B7kMG4J0WTi3OVj9vdnmL3kzF0wlZBCU8pnl2OnGN9QzB/xjJ/XkpkUi7xmGnAjR37HCoU2F4qWbhTtpnypqtL9fKBaobO2Y9HbtGMparJDcScMUejvRg6zMriRQzVa5sMQaWMK+T5tEGMFkO8sWh2nJ5rqai101oXG7TRiUx6Q7zVmYtm1zDfVVuDZH/ritvqvBRver/4Lr4wN72//9H+8De/+/j7nzp3jQx/6EH/sj/0xQghcunSJ97znPfyNv/E3AEE7zp8/z9/7e3+P/+6/++84PT1ld3eX/+1/+9/4r//r/xoQKvzVq1f5xV/8Rb7927+dT3/60zz++OM88cQTvOMd7wDgiSee4Ou//uv5zGc+w2OPPcYv/dIv8c53vpMbN270odY/93M/x/d+7/eyt7d331b4VR6vCQTk3x/D4ZCv+Zqv+SNVfLySo9o6E4BPnxXtwei2dC+zo+g2VZ8VFaaQSbd3upIg2l7s2eaymG9GsuBXsTjpUnBVOHPKcXnkccfgws41q0NAukWGqWRx0Q5lGz/wLN9Y95a8XYEQDPg3rKg3AsX5IAnG0bErqFhgvETA2jn49O8VFzOdw1eyFIF9Eu1BB3e1CEOHvhfty83T9wsGu5YuWFcYqADJXPXFTrUVZEG3hOzgJanHpQIN+T1NeqIxS0Nx2VPuSBc92zPgFMOb4vdv70qxYFeaZKExK4M9soT0zBoYE1ClQRdGdCMzx/BzidhPrkzv8NKlpNsLBebyui8M2kq0H51bk1KhLwrCMonp5GeFgTZSPLnWkOQt3isWq5xPP3+pz/MITrqivjmbXmzmaBpLU1pmbzrk8kP7TGdF1JnEjUIsNHq9Sej3K9RGHotogW804TCjXSc90tBpJ3x0v9FWcjva2mDzlukDp/hKQhJdIwiSTkUcHhqNPklEhB7ADFrs1VWfwk3M/VA6UB4NmJ8OeqeqNhZd5TrFN4amiBzz2nDh0rEEPDaG0GpCYfHLhLq2JIOWepn27li+EbMA32iayvZ6FjuSi8QMRT9yejSWIqvVXPj/WIpdOXzN1FGdb3tUMH8xwRTSbKh2oh7kGc3WJ+RYu1yudbuUhfbyuoTTqf2M4pwEfRYX5TrIDxWLRxwmht6dPuYZ3tJsfDbgLawvBdJTua6KczEnIxW0UDm5VlaXBSXsnPmakWSINFNpYqwvhJivEQ0ltDQgghHtWGd+0eUUdaiJXcu81Wz4vnBZXwo0IymWTAHDW7pHSpO5WOqmRzEXY89KpsU4vAT1lJDBejNqSaaB5FC2C0lARR2HWYmAWneauEGspDxQatEmbDW91qV324vNDVOIILzTsqhWi8td5vHnKyk+jJdr99gSVgnuJAMb5LxfG9rbQ7K8JvtcTnp5Jc5zo0bmucxjN6qoXVNS4GjJzTCTBnOQyHVrA+FiKSGAtehk1GnC+SvHTM8tmf/WLurUkjy0FEONVgTbKKguNbhcjnFIA7PvvI0fOYoLgfZCRXO5ptpxuIm4ylXbLtrbasyVNe5SSbonWo4waQUNzjzZkcIW8p3ppktuVzQTQYr9rBHNWxVzV4JCV5rBzQR7YjCFhoHr99cNonFBkPNRhWhqcDclWI8be0zu0NOa4S1BEUMSepRO1+C3uqr4j96Yz+cv+3lpiPLvNU5PpRu5tSVWeM899xx37959mfFPlmV88zd/c5/h9tGPfpSmaV62zaVLl3jTm97Ub/Mbv/EbzGazvvgA+Lqv+zpms9nLtnnTm97UFx8A3/7t305VVXz0ox/9jzkM98eXcbxqOSC/WzjfFxs//uM//gruyR/+oatohzmO4vNCEIoQF35tfmZ32S0wus5k5/OvHYQmFikD+T1Zxk6n6RbpYnnbjiGkZzeOl4rFu5ApIvLQdqnoOiINsVAhKLIb6Vk3zJ9ROXh6hCW6TpVCxWpHsg/VRN7DVLGbuh2LExNIT1Vv/wmCALWjlxynWLgM7soitBlHlEhLVogpoZ6Kc8rgtqI8J9u3QykI7Fo+uylUT1Xo0px9EnoLx3YYkZmgMGvVu4dV24EkLgaTU0W9IZapnSuQajXBSnhheqpoc9CFdPGThcLcFS/+4qJ0aMNYRKxEt6q2yCAJ6Gir61tBCHoEIoYXdmGGVBrvUtSsloTuxOEbIwuYFrwTETSJlyTwIMhCWyl0EsBAcJrkZkq908pCYaPh+GSEUkJRUkYWUh2y0RUx3egeM8OmR2bCQc65Rw7hHJyu8+jiBSZ1uFYTlglu4NAnCep8SQhgrGcxH6Cs71+XGCo4210CsBrmmIi2+IWFCdEFS7JXfKPR1mOG4obVllaE7o3pXzMfltS1Ffvi1HF3b4bN2nisPbtXT8mThht3txgNKyqfRecw+T6STL6btjF9ArpJxDHBdHSZvKZYZeTPpbgkkB3B+qKcF/mBorgkzj56fWZLbVdyrs8f8aBg9IIssO06zgEGtn8bDt4qOQxBSTK6t1JQBB2YfF4+5/qCUFKqr17TDodUF1rSAytIqJY5oGsoEBTVpmSKDO7B6gGZW7oiok5Vb7M7flH1lMsOmTSRqt0VIek8oqepILd9PpAW1LKeSaBcSANmofp5wa7lGCwfCIQ0MHpBi+lFiKngsTngUznGbhDwiSc9Mr2tbYfgBm0i7So6WGURGZ067IlQhfxmI+YKo0bohVNxqfJWUe6K2NkuNW3ucZseWunIKxPAiotdWFtIPRynUGg23nzA4Y0Nse6uNGovI2w1OKdY3xljRgF3bwgDjzpJSRaK6euPWTyxK+GAhcGNYxaQB+cVYerkvDq2BCz2fIFrDGHWEmrNwad3hKp13kHqKU5y+YqUfJ71A47h8wnlOc9qy6Os5+j/dYmtJcwfCuTPZZJknnuyuwntUOZDPNQPVLCWor/eFCSJtSE7lEyk9fUGO5bjV68SaBTJqaGJ4nwW0VLZKbJDjak0y0ca2irBna9hbSUDKfFSbK81bubAytymaoUbe0KhUZXGLg0tKejA6npLOqvgxrA3PxkcBlav9TT0V0I0Hl/v388o+1t/62/x3ve+9/d+agj88A//MN/0Td/Em970JgDu3r0LwPnz51+27fnz53nhhRf6bdI0ZXNz8wu26Z5/9+7d3rzopePcuXMv2+bff5/NzU3SNO23uT9evfGqFSAf//jHv6TtVEfqvj/+o4epYflYw/jppE92bQeIRuJY/m9iYycAk+cDzUhR7r6kSInuVao9o0opL/qNOokccy9dSZfGsMA0hgIGQR26cKlgQK/k/XvkJRX6wmCtMXNZgGen9InquoUQ09NXV2URObwjlqkuFlXKyf75lD4TRLdgFuAToaH4zho0LoIIMahxcva5OmpZdiyd2ZcmvidLCKWm2pROqq67Ti80RpxhtFZ9mnpHHQhK3js7VmduX9EtR6/P3IB8AqaF8nKLLgzFhWj9OdcSvBbpJ81IchyCgnQpoWPtQMIVg4LpU5o2h/mjDjIn9KNW4RMJ5esdpQJoG3CNRlnfB/SFeQKbsvoTRCPgG4PJW0nlbiQQkFZjYiBgZ8urrCymJxsFq1UGr1ui7gzxQ8dgVFOtk/4eKWGDIWZ7WKFEJU1P+QqNJh3XNKUleFnE692SvRubkHqx6o3FjKtlwZ5sl2jjsRsFxTqVLu0qxWYtrjGSir1OMLkjmMBymQttqj2zNE42KprCYlKPq3XvSNUVZ22ZEFpFvchIxqLtcI2mKpM+Q8Q1hmxU93QsbQKHpyPaVYIZtCyXObPdJatVLkVYRJnKkxwzaDGJxx9ktNM2Uug8yaClKqUwP/9bDbe+OaHdbNn6uKUey5fanXM6ojniimUYvaBopnKurC+H3jUoezFFtXD8BmCzJlQZ9ZYj3beM7si1NH9Lw3xLULXJs5p2oOBOFIPdtdhS0IZmAvPHHNk9g8ulYFBe9BnByPnWTCI6OpBrrB2Iq1N7LDSoLhHd5WLR3Tn0EecR5YAuXd3L3GGXUqgT7bSTUx01U122Dywe8qTHmlAq1pfOXKxGLxihojWqDzmV61Vsdu1K44YeXcN602NPDS6mmPtUcijc+Rp9anuUVKeOcJjhVxFNuFBS6Ay1XaHv5fhBwF8p0fdy7LlCiuighP5Ta0kSzx35oGbFAB8sx09vYy4WhHs57FToE4u+m3L+a+5y+zPn8Bcq9FEKsxqfGto64fCZbfwjFfZuKu93kHHuDfvUznC0N+HSpWPu3N0QpC/3hMNceBEOtFP4baFJpi9kBGvIHz+hdZoijAhaY5Ya99VL/EmGmVtMaVm+qWIwqQgvTGgi3U3Fc1G1wGNLsl8fY6qMakfQmHzPSDihES1RNZYvO3iFWyeRemVoh4LQBiPUsi5csNr2hGmLWhvaC1J84EGPWnwdHcqGHmzAHIlrlhsL3dbHLCY3EGey9MhEq2RLUsq5WF2vKI6TPiD2j+K4cePGyyhLWZb9vs/5wR/8QX7nd36HD3/4w1/wt39/bRdC+H3Xe//+Nl9s+/+Ybe6PV2e8agXIBz7wgVfrrf/IjaDg0v/bsLgsHf2XppeXO8iNIVKNdAvtUHIu0mPZTjIvzhCDvigZCWKh25imbmKndavF3rSS69EKGyFEhKXalGLFZ6DKDgmQ7bIjTXYkr2/LQDOUooEg+5ws6cOq0hOxEBUaw9liRMVMEN2Ci7EKsm/S5WzHgeRU9XafKhZjXSHRfTbd0tsHdzahLjsTvaen8vldLvs3eUE6xXaterSmtzM+0b1+puerG0n0Va0iGBGnis0j1FuB4Yu2tw9OFiruWyBkgsZIfomSjvd5+ZzpqVBaRjcUzSDqZBYG5xTBBNzYYRaGoISe0PHmm00HozbSn4Lwvkeu13CAoCPKevxejps1/f91JsVH8Oqs86YEVVktM0JQtI3h0uv3OFkPWM1zQTK658f0bwBtHUGLSJ4A6jRh46ETTg7HKB27wmg8MNhZE4KiOJbFum8kTLErptrKUHWhbQHhzTem164ko4b27gCmUQPToUFxtFVMOo8IUojCcKVF36ETRzDymdvKYDOHTUVrEoISTY2Llr3Gx8wPBM3JW2zqqNcJ86MRJoYpArSNkaT1yuCDIr24pj4YCKVmlVB7xXBaon5jxt2vl/OuPrY0AyjPSVd6eEexvCbXZnlOwuvqLU8zVQzuqng9KUyhGHw+lUIc6SSPP56zuubJbwrdqNiRJsHoU6ksFrNAGSlf3sqiLUxa3EFCMxLa4fCGiJXT01jwI42Jclt0FSDXczqHcicwfkFhSku9Idf44mEpFHQlxYU3UpR3IvWuUE9Pz/Ql7UgopdWmIj0RNLazEQe5Noc3NNqJ+Ua+p2imRhoRI5kkg5UwSJDPnN3UFOeF7mMKoVzZuaGdOcxSyxwRdQbDp1OKS9GpoY3IXu4hd5J/c3NEGDrwCnW+hKXsmN+qUTqQDhuqk5x8d011Z4Q/SbE7JdVnZmSPLigbEUaHZYJtFW6ZoGxg9vojDp64wPn/bI+D39ll/PgxJ89vkF9cwaRiOiw5PB3hLlZCL5w1zIuMprFk04qDj52HSxXJbolrNPowh2tr3N4Afa4k3MtJTjT1luRumI9uUD5Uk+4UVGmGzhz6mTHjE1i9sSIZ1ejSEn5nSqLp6a75gaK4GAjbFe7egOrxBrOwMleknvJ6zeZvpXhjo45HUTmD3re4cw16JcYdIZG5JTk1tJM4144cBI1a2Jj1IoJ0vEIvM2yraLZiOOzSyLxbSgChnRuZi0cOHTUi9cYZKtwq0fxlz2d9YfxaHioE1JdZ1tu93n9oWPJf/at/lfe///382q/9GleuXOkfv3DhAiDoxEtdTvf29nq04sKFC9R1zfHx8ctQkL29Pb7hG76h3+bevXtf8L77+/sve52PfOQjL/v78fExTdN8ATJyf/ynH390y/k/QsOWUM10v9gnRNQhP5tQkxVMX3BnPOklQpPijA7RLfAJ0lW0S0gXZynnuhHa0uhZ6WS2w4gMzISSUU/PONw6UqSKHXo9SCeGdzm4VPXuOOlcnjt/2KMr4RrbZXSrqSJNIwiHW9dIR9yepbPbldCivJVAMCI6ggb82edVrRQzppDX7cTsnfNN0DF08VSeq+uzwm3xgGQOdEnHpqAPVVTtS7q1g05QH0iOjXCpO6G8jWnO92RfvRWXrnpTbgDpsSY7lE5ieiyLs9UVCZNrJz4uNiNfPgaRdQjT+HnD1keTPrhLx05vfb6RmzWCNvhGQ6NgJQF9AJSa/FYiSeI7ldClOi1GayRTw8epJGaRsLT4ykrCcm24dWeL1fFAUtq9dHpDUJJMHaBdJdLp1GeaFTZr1kXaFxZmKHz4ME9oGkNTW9FFmEA6rtGRXuWd7ildHbqiYiHiYjHRHOXyHqtYaCzOBOIhKPJRTT6q0Ynn0Qfv9AGM3WuPRpXQpUxAJ562NrS1RUdDgBCvNV+ZHs0ZjGrGUxH/S+K5iKC7EZzC10aS1oOClcV+VOCyyazAzCRpc/qvJkxuBdIT+Y7boRTbs88KZ54AfqOhmUpKeTKPrj4jz/qiZH7YNUyeh2pDzul6chZQOryphSK1jA51b1mwviLi9Y1Pa8YvnGUCjV7UzD6W9nNIdy21Y0m2zk4gmcv3mR0q6mkgWco1HZRQnorzZ/RKbyDf0702rB3J5yvOh95RL2jZ/2Yqr9sJ6VdXA6aUoqsLMGw2HfWGvGe1DYsHPfmBHK9ukVmdE9eqznjDxGt/9YAkopu1pHfjFO1GK8hHFqjON0K/clDtRERkJB2QcGcAiSd0GTgDEXyb1EkhO2oxVmDVep1IkZl6mhtjoQiNHO1xTnuhpro3RA8EBdOFCNOzu5bk+pKTz25RPVCz/8ld/OWSk6MRoysLytOcqki4d2sD32iSgYQl6ZOEdWwCNJVl8lWHKCM6KfbEqUt9fiSC7RuDiKYFsgNNdigohTlIqO8NGdxIGH4yJzuE1UMt+jCFpybY5wYUVxv5ngo5L8odMeNIns+xKy1I62aDrhRbH0nlNSfynZ68vWJ9rcVcW4nz1X6CT4PQyEpNEhEo5SE91GT3xPEqOzhzLVS1NF3ascddFws45ZFk+2gaQBJwmy3ZoSI9sPiBwyceN20ZPDQXeu8K1KymeqBmfclT7Zw5MN0fX3yEEPjBH/xB/vW//tf86q/+Kg8++ODL/v7ggw9y4cIFfuVXfqV/rK5rPvShD/XFxdve9jaSJHnZNnfu3OGTn/xkv83Xf/3Xc3p6ym/+5m/223zkIx/h9PT0Zdt88pOffFmu27/9t/+WLMt429ve9uX/8PfHf9B41RCQ++M/3VhflBtqegIEGN0VdCGdy8JDR+FmsWNoB1GQ3YZoPSkniW/O+OLd4sClsLokC/LsOCII04hANC/5ac86l0GL8L3eFBQkRKG7boRWlC5BVREp6cSqY3EusUstC5UoRg+d1WXsptpCMdwLLDJBDHQt+6gjbcO4WExFdMNloMxZ4dRb/r6EotUn38ZCJtiIGsVhizMXH1Wr/nldYaQbhFueiONlr5tJAsmh6D1MIRxx1UJQMRFYS0GlvNC52lHoKW7ZkaLaku+p2haKSnYgGhWXQbUhDjHJUtHMPPmedHLLHUV2V5CV8rzDrKI1b+JRJwlh5IQzbQLDmxaXGqpLDfldS3W1YfBsQnHOxAMkHUZCpGgBZpkwuKNYPdySnBrqTGw+9cKK208sfPXAY3cKqnmGMgFX2D6g0DdGXKeclgT3vQw2W9zaQu6EjoW4dgWnsHlLuDmkmrUoK6nn2vheq6JUIMwTnA3ocdML6i88eEDrNB7F4cGEdLuknmcSADhuKOa5BAWWms+uLpJNKxGGNxqTetbrLFK2NCAd7HotXe1k0NKsZFGkoiMWIHSwONw8leP+Eu2Mi6GFKhGno3CUUs9gcG7F/PaUYD2DGwmnD8k5lh1F69ORvEA9lWtm+aBn+EwqhcVG6OmAg1sGl501BuqZnGfpKVQPO3ymWb+uIX82Fb3Gdc/lX/Ws9ifYeD0ur0pRXG3R28/aAmafV8wfEpSxGYFdiT6insq5rWspqpOVoo6W3R1Vqh0F8gNpOPhM6JnlbujNMNI5uEyurSYWSiAFUrUpYYgug8FtuS5MoahnAZ8GRs8a2pGgLwDJQoqr9DRqW0K0u1XQjj3tOYdaGUyhGD0vFEjlAski6qiGsrBVTkW9B7QzJ8dxVqGWqbhOOS3nz7ShPsxRtSbknnadQKNRg2jhrKSYD0MHhcHbgJ7Wcl0eJjgH2YU15dEA8ogCWsWlr7rDC/e2CbsVtBp/oSJUFrUyrIIiGdfUpxkqc4TC4mwgHdZsnDvl8GSMtY62MRzdm5LeSkTjp6HalOOmtiuyTw8oHojUQ4w4h80cyYFlcFcouuU5uW7zO5ZqS7QW7U4rdsRTT73rRV+xkqKyuNJKkbA05Psyn7s/fUS7N6FdJ1TXYsCmhuSjY1waC+OlptwNtBcr9HECcV5Ey/mfHsq9S1eSAm86kw6vMM8PCBNPF6jqk4Cyop9zQ0/xSI05kDR4hg5zklAdTjENVDvS8DCFFpF+F1r6Wh2voAbkSx0/8AM/wM/8zM/wb/7Nv2EymfRai9lsxmAwQCnFe97zHt73vvfx6KOP8uijj/K+972P4XDI93zP9/Tbft/3fR9/7a/9Nba3t9na2uJHfuRHePOb38y3fuu3AvCGN7yB7/iO7+D7v//7+amf+ikA/tv/9r/lne98J4899hgA3/Zt38bjjz/Ou971Lv7BP/gHHB0d8SM/8iN8//d//30HrNfAeE3a8P5RHa+Ujd9j/6ef6O0oh3df4igVF8aqlU6ly0WQvvGsp54oshPP8pLpvflBFg4A1SwutJszSlGnT+gca3xy5jxlqkjB2hC0oxOYukwe1w6SZaDcEgH31mdbjl5nhbZkBV3weSA9ltTcYjeK6ednuSbpQvar45kTKQCmjv+WZ7SqLlego3ChzgTppozd2OSMY/5SSlZXjLSjM5pHMC+hgrmzz96ns0dKSr0hXd98X1GeFxtKW3YFmnT/3VB45z6VxdRLbUtNdZaV4NKIYszOxLN2qXrhe0cDa4dnOS8ul8VTeiqLPF2f6VWCkfOj2BVEJYwcamnwI4deGbHtBAiS3Bwy4VSjAvnzKcO78l7VprgGnW0vzwlG3IOItLpg5f+qo3mlwslWTkGtyY7iouWRmnRUi8A8CtfdOiEZ1zQHOYwcG9tL1mUq1CWnMTHtHBDnLCVZI10xQCuJ4m0VbdlULKg6C2EVMKljNilYlynlzTHJxbXQzaJdsF+ksliMQvnexcspsqhb8a0+09vEY0elUcMWk7jedrctLaE2qFqR7JY0RUI2rmhrSwgwmRRs/19GHL8u4+itLSrxpOMa9dSY/EDOxeJcYLAnBazLod525HdNf503261QTzTkB5ryeg0rw+hFSZ/WXW5HvH47ilM9hfHNwNGb5HystuX8lHM/4HZrph/PCFoW9Shod8UCOD0RF7h6MyKoLZSXWvI7VtCGQoqZzsWus+OdPC/oaId+dvMIRMQ0XgcdEtmMZT6AqPsoBBkZ3lYUF0LUigXyfaFuukyK+y6vI9gzW28U0c5bCqrOvUpsX0Wf1jljBRvwA6H0gDQW9FR0P52da7JZ0Rzmkh2yXeEWCWZa4/dyuYYyj8kcw2FFUSakacv6ZAC1ZnhuRfXslHYaKZEBNs8vONkfo08TfOoJqSfdT2gu1JhBizsSl6xggui64rySj2qKgyGq1CSX1tT7A+ypob1YwcpKDsbSEJLA4Jah3hRzjQ4Vry60ZPcs7TDgtlqGzySsrzqhRenAbHdJ1VjMxyYUF6LIfuxJLq6p9wagwW6WbE3XuKBoWsP8aET+bEp2CidvanndI7e5t5gwvz1l+KLpdUPtKKLNtRQFQJ9HYiopnFQrKF+woiUhZnq0Gy32yOK2W9TKyN9zB7XuEciQerLbSX9PSk+loVZtRXt1R++w9tTf/aEvep99LdjwvvXP/p9fERvej//f/vdf8uf63bQV//yf/3O+93u/FxCU5G//7b/NT/3UT3F8fMw73vEO/uf/+X/uheoAZVny1//6X+dnfuZnKIqCP/kn/yT/9J/+05eJ4Y+Ojnj3u9/N+9//fgC+8zu/k3/yT/4JGxsb/TYvvvgif+Wv/BV+9Vd/lcFgwPd8z/fwD//hP/ySNCz3xys77hcgr6HxSk1gj/7dn8BbcYGaPetphtJ56rJATKQtNZHuAHD13y5QlaO8MqbNNafX5cbdCcm7HI2OOmHXkVIRC4pyRxYByksIYj2RBe/olgSj5YexWIiFwOTFQD1RvaNWGxfyQdM7SgVz9n5d0BnEQMOlLCK8kX1o4xwcjHxGFc6e13XOuv329iUUsZY++0BXZ4FpPtKVO2pH9/yOztYJ25UTekfHPcefoSCmkKDHYELvQ++TIIWSlgV5fk9Txy5kciI8c8IZ/U35s8Kno6IEJe5bHa2qyy7pNCjNWBb1wcqCIj0Rrcj4hmLxoMePHGZusUspTII967AHBYvXt5B5QqviKlEWNKrV4CA9Mugmcvq3ZaFi1rrXuJBJwJ9eG3QlzjPJsaE+J1Baup+gG3pHIV0p8CoKfxX+fCXajtKIcDwaAoQYKNiukogceHxhsZNaaGGtJrRK8lQSL0hL3kbr3zN9izpKCVvi9EUASoMaN9jMiXbDKbEBHrTRDcugtCcdNtGp6uxa804KELwSJCdml4AUJ3S6lMJIPotTIgBuFLqIx2ciHfXh9hqlAsUqY/qRnOLcS66lSyL0biZCOemyPrrzzuUvoSZO5LustuldiJKFXBcnb2sYPZ1Qb8g51Z3DPqWnwgUtNKr6a1eop0dsflZQgWJHi/NVkIK4s+1ePCioW7CCjJbbZ9eiruV6baay4M9OpCnRoRLt6Iy+WO5COxXaTXoaCzwD+X609m7kem8msaFRyfVmarHh1ZUUCr29eBWvs1js+OQsw0eKo+hkF12xTCULUFPIe7s86shGATdxJEdnBIJgAu1Gixm2hIMMP3KSaZGLw5UatITT9MydbmUkr6O0YLxoonRgsrVmcTqQIt86bOZIrGN1PMDkDm7lEjB4alBX17QrccginFE5+31KpcAPNmA2a9qliLmTQ4tPItLRXQPnS/x+Rsg8Zm7wFyo5v2+M+2wiP/QwbNEHaa/lqbYlh0M5xfCGEbT6Qo1aWMKsRZ1K4KFKxCHLF5bRs5Z6M9Ceb5j8tmiQiotOKF7jaI8762yv5bPYA4uKWg57YmjHHiYNZj+Vx7fF4jc5SLBFNDH4/7P3J822bWl2IDRmsapdnX2qW7/ai/AIuRSSMkFSJplSApYGJJ00zDAa0KNJIxOjgxkNOpjR0h+gC/wAQJmQJlBKCsxCCkXpLnd/7q+69T31Llc1Cxrjm2udG8IwUuEuXvD2NLt27z1nF2uvvYpvfN8oKjq60Y2QoazRMGMJJgIZJ7RqlUE/aOBXDDFM12IoTklCwefCK4SZx9f/0//F/9v77AGAHNZh/VdbBwrWd2AVN8DpTx3e/DsZ1p9oGJk4lNdCiVoHrD7WgzA75MDFvz1HcyKBfqkYgVA21vz37imLjnwrNKSeRUW2ZVcz5Wi0S/5u9oLjcd2RFmZ38n4K6OZqyAvpZpwUlNcstorbsbAGZOrSEmiYegQn/VQmKjLRSHx4aMBLhxMQsX3Hoj1Z4nYVHbuiWAbf74amFQ0F9cNIWvO1VD+ClDTpuR/SqPzotJXfAv2RGmhqpuPEJ9txP/UzMKlZKCzaKUliH22Bk1YmLduxa51E8rYmmyAKsKneKtoDN6TBxIyWp9EA8y81mnMt4DFi/wEDu6oL2k42x4rBYbMoKcp6zDvQFHGaVr7LAHQPHOzKSHEDqF4hu8kGfUs/ZzfazUjNIIUiDKFjCYQES662nwbAafjAbq7vkjCJ341vLOyUrlmhZSffr3KYRQ+8y+BPe3m+QnHUjJa5inoPt82glj2m8xa7VQVTOsTcUydS2wE8LM62aLoM7V0BO3WAimh3dKMilQYIjeFnmnpSyoSeFjcWqPxoMawi1LRH6MzQndaFZ2qzuP/YeYvm5QzLn2nkBsg3EdsPSdE7/jzAPdeoz4Hlr4DrH3Py0D50/H7yyITqjRq6uc0Z95fu1EB3dBUw/ykT1P15BzQG+ZVFthp1EOX1OPmLfzyl1uKRwv4pEDXD5ppznkfVJZ9X3LDoq97cywAK42SQAD8CO4XmhMerL6gTSKF23RGP5ek3ZsgUSlNH2vsC6AV8xDH/x014fJuaehhfCgB3tK2OhlbX7SmDCRmqqoapcLdk2rWXEEa7U2jPPTUDnsenaRXyO4v+SCYghqYY6ipDzCzCjKYC9rSBuylZGJcO3S5Ddlaj2+SIMwcFoDhqGOg56eGdwW5bcHICIJqAvrHothV0o+GjQjx2pB89aaC+niL7ZAe/qdj9F8CvnEI8a+midsFiVH9dwZTc3v5hj/LrDKZRaB5G+JMeWGeYvNXYfUJTiPyrEqYp4Y+kSfKwQawtpy5lQPzdPZptDvu2QLAamPeof9TTPa9nztHZb92gPstw8+oI+i5DKAKKsxpn/8013twcIW5yrH+7h721UIse5skW+g+PaGYiYOm+eQdAupz2QL7SUDcFKYhzOpMlgKG8kgYJaVi6U8MkK2rArrh/3dzD1LzGhF6jOKvR3FQwG8PJsKajWX5FK+ZoAHv7LS+ZvgUUrMM6rP9v10GEfliHdViHdViHdViHdViHdVj/xtaBgvUtWr/JEe5v/y//PgV/QnvUHlj+ImL/gJ3CRD9yFX8X7EiB6ucRpz8B2gVpCSmBuJsDx587XP+2RSjo2e9zYPtRxOSVuE0lKhBAuBtH0XawIiDfAE4E6bob9Qohw2CTa5pxmpKsb/MVH9ctScvoF2OnTKXPEPi4Xnan7ka9Sgo5647G52vhACdtipvIhEWcwAARvtv3tzOJ94PlfgQwZB/obqTEuEqoYhlTeHVPMwC753b004jiRpGHj/Fz9kKXS49TQhVL25C+06hl4pSoZOl7FO14eSl0NdG/pEwGBMC24+fYPxAHLQfsPgzkqgNQLROVo4nS5dbjc0tg95mD3hvYjYKbR6H0KPTHHtOvDXYfcuSVupW6J70jhV0CADynIbrnsZe6mP7EDRoQfnGafPvW8NjyCssHGzRtBq0DrGH4YPQasVcojlpoHdGsSuiCtsOhNUwajwpeEsyRrIH3Fij8QKUaRi8yPQEwOoV5jWpZo2sz+Iai5ijZKug0w+Nqg+LS4PTPArSPqE9JWZm+CSivHUKmkG0dQs596gsNX2loF3H3mcX+oQThKdFrlEB77pFfm8FxqFvGQTeUzBnScdQzQH0IIVURaE6AyTtg/4iPac88qjeGk4EAbP92Db/KUb41KK75GsVqPLZMA6x/QC2TW3hMnxvUP64x/2cVgmYCu255jjeno2bMTTEGnVoe2+0JP1t5xU3uF0B/ROE13exIEdw/iZh/pdBPxulr0molHVdxC/QSeJo0MElPwKyiiJgBwTJjp7oE9g+pv2Jq+L3Jjx5pWX6ShOAR5YUerqfdKaliWihPUDyn3LGDyiKiU5id7tG2li5oNwUwc8DOwhy38K0BNhkpUNMeYZvBbAzCgxaxtsiWLfybitPHox76NkM47nmMRkDNeuA257k8c8DWUqMz9cguM2ojTISa94ibDLrh9NHsOSVQPVO/7U6heeygCg+sM4q5s4g48yiOGrS7HNWsRX1XIXubSUBkQKgCJ6VHAcffv8HN9QyL5R7ruwn0RUG3wchpZ5o6YOqAPa1z8xs9ZHyERy2yb0p0px7mqEO8KGDXGm7O6VQUbV936mH2GsWtGibOw7W2EaONWg+i+nhdIJbU3KiV5bUnHz+7bhTKa4V2SQqWP++gr3NSb9v7WqCIr/5n//N/5R77baBg/Y3/0W+GgvWH/8cDBeuwfv3rWz5PPKxf13r0+y2u/hrvlqbhz9olXWPsK6C8ZdHdzwGzBXxyyFmTorD6lBSLaEj3yFf89+33LbItsDuOCFZoPV+pgWutein6LalWg2OUZ52HCPiMuon8bizSfTHqPZIFcHJEsTsMaeamZRZCP8XgWJVuUNqzgO5ndMzpF2PSe9Jv9DOhZsnNK4UK2j2GBPIEuNJzkrDcVeLIk41uXIMQna6XyNfA6vsR86/pDlTckQ6TAh2TyLc7ok1lvlZoTyLKa1LSJJsOdivfj+SxpPBFNxnT2qMWwXmXqFwY6FtuAhRXwPRtQLAK2kdsH7EISSL+LqPGwJfA4muCAtNFdEcaUHoo4AjEuLOTk5K7B4RSQKOKyQEponxtYBrg/J9p3P6IRc/0Oek7saDLUL+kaNpNI9yUAuJoFRObRYCrCo/YGqbBX2tkn1eoH7JobU6B2zgnYOg1VE7nm6zq4TPNjI7OQOWS6A6Ql96LbW/uEVqD7A09/9vvN9SerDOYrYEvA+a/MtTEtBoxi4hZgHJMVa6bKYuqXhO45AGxJyVGtRbf/9/vEI3Gq783RX7HrBtAYfNMY/VJjnwDRJ2JlW3E5kM1ZNOYDgO3PYWH+oLOVsUdMHkXsP5YY/JaYftRgN1rhghqYPMxgZ5Jpg1ynucrAo5+SVMBNw2YfWWwk+dX1xHFf1aiPVbYPaWGDIpgZfoKQMnvf/qNRrYH1h8TYOrLEuvPSHGyex5f7ZLHRj+LyDaSiv6Ux3EmICLb8pjtjkXLVUZMv9ZoTyFp7zxHJi9Jp4IeGxfJ9CFf8bP1MwzmCgNuTMYbltRHveExGhUfbzogGqHqGNGynbMot1uCoNCpQYxeP2aBG7OIySuDTiibUUA/U+lp1eybHE1DgY4xAa4I0Dpi8niL3cWUGpEsQFcO+kWF8KiFj0D2ooT6wRbuxRRh6lGc1mivK4Q8opq16LJA3dE2gzrpgG0GnXkExTRxe2PhFh7mpIXbZoitQXllqHsRZ8PukwbeiaZjm6F4a+GmAuqfNIirHPbKoonM3Il/skAVKPzGowbmRYVoItoTaiXq3ztD/EGLfV0Ad6Qp4lkD1xro2wzuiJoRdZcNhX/7mI2LqCPKX5SoHwZULw3MFxVpfx9Sa9IaMb/oNMMFy4j6t1rEVc4GjALypzuEn8+R3xrRREVkX1TojwLMnUHUPPd9JSYa0MjWGv0iwE2UnIcKcVugOw4Eq0ZTjB6oATqswzqsv/g6AJDvyNo+y7F/yBu58uLs5NkR9wWYxl2ON/AU0tfPRKsgxXLqUHZz/ry6jmiXCvmKWgbTjkLYqFnQr54FTJ8zBCxm1FEo6diqIMWCZgd0+hrsljmgPaGYFeA2JT772Z/1uPteRvF1BSyee9x9ZgYnp+S2Ew3fr7zh/yeXEU4seqMBVMduru6pO4kZu7Vlw0I/FRPDVMW9//r5VrptNWBSgxwS4ChFjRNLUlfdcxkSVy3TsSjUFkBQFOCKU1dyropagFPN98wa0E1mLwUTuL/ZtWNHt7iRMLYZu9u7p6P+pTnR6GaA6ZVYBwPFHQ0AkpamWEVoFxGMQn2uYToJ5wq0t3QTCueLK+pTohau/SLCrKgJSUn0dqfYzS+BTkECF4HqQqG4i2hP1GBxqhuNbC0WrA33x/LzOAihV5/xwGofOhSX7FL7ggV5JvoA/TrD0RcR2Y7ZD/3MIJPi0RcKtz+wcFOL5izg5M/0MO3q50C3DDCBQuSQAcWvyuE8oOGBYbbGO3aXXQnYxqBbiGi5AUJh4IvIIkfJcbJWmLwFnv935rA7DHaybqKGbm20wPaZFOE9sHvKCVBxyyI/aSnyNVDeEJy0H3Y4+sMcpgEu/7rG5C2Pq8WvNHZPeAy2xxFnf8xjIRhg94yC8gTEi2sCw34GTF/yHF18rrl9JQ/oYIHqncL6r3WY/ktaCUfDXJ6TP9Voj4Gbv+ahW43iyqC6APoJp3j5Hc+X9jgB+CTu5sR09zRKqCCvH9py++pHFJF3S/4/amDyWtFgQj5LdcHriy/EiEKuYVYmkSp5JnRAmIzd8SgBm4PrXQu4HBIyqiS3J6I74oQgKl7/fM5zNirAA4g54OceZm1QPwworunI1B0xiX7/NKL6aYX9D1tkxy18zwyasuwRZh3cVYldUHTQqkBDgpscbu4JoJ1Cd+6grktAAvj6l1Pql05b9L+aw0/pSBYVEOsC8ZjTkyhp7NjTEct+PkFY0pmqfUibXD8LcM5APa9gxaU2VAHd0x76zsI82cO/qaADJ5jKK/hdhuxv3GG3LRC2GawJwMc7qN4grjKEE4fmgYe6LqC/KVD+lTX2txXyryv4Iw8/o4jc7kX8HoHmsYNZ82duQmG7aRTa06Tf4APNxsj11Yqzmlg170q4qUymTnp0r6aIS4/y0sDN6JzYLyKNLUo2Oyg014g+wtQa3eMecAr9TPFaB+qlQklRfnmtsPvEIbuxmH/5LWauHzQgh/WXaB0AyHdk7Z4IJaoAHDAkexc3vAnU5+Jik5yVtDjSSBCfadhhtnuZoGh28/upghfAEQoWgimrI4nGiytazXoRs5ueBVWXyeMLdkZNy5tSKibLSwrjE81h8oaF2tWPsyGUzOyBmx+ZwYFnyO0Qd9UkjE+ZHlEC/qoLPt50kd0uM25vSmZ3KaxQ/h8EOCSg0R2N/45G7HsldDCJxHULZALKUgc7UbR0y8fqdnTn4nci31U2doYTmLO3LL6gJDxuJ9MfeZyr1JDTcl+47io+Z3IVUdzFcWLTAc2xpkh+AuRdhO4jXKmwe6KQ7djpjUWA2VgEz7yVYID2PKC40nz9idDeCj43Xwulrh23RUWgfigBkj3QHHNbk3B/+xEpO5M3zDRxFYZJWj9VyG+5u8srywL6nuVxdRlQ3AGmjcy1cRHZzsHWHmbXI4VOlpeaXW6rYVcNojHoTgroPiJahZBrFFcN+kWO/YOMU7c6YvWpxvQ1Q+fqMxbXkxUL3vM/JPDzJcFWuxwF0L6kkLs+42MTTSRf8zhIEwJfEtj7SrrxYq7QHrMAtwJ2m/OI/dMIxIjZT3NsPiFAMzUPxPVnEX4akF+bYQq3/o83KP7vC2S7iMUXpKuUdxHtEUXg/ZyNiOIu4vp3Wfzhoz3wx1OCKqHvnf5ejm7GY7x+QFrK5hOgegcc/cwMx2RzKtPTOx6z/Wx0sks0uygUpfk3ir+/56rXz5kL0pxGuKWH/dJyqjfntriSjYrmDIPLXXsqtt6VWKiKaUXMOXlNxhOkLfJ7igVdsO475vlJgJIRqq2B5qMO5iZDf0zHJLM1NFbYKGin0J7Q1Q0AmseettJeIb9lkdstI7LXBfpTI7a4EU2dk6Y383RcO22hX1RwS0+qUGdgbzL4sw6qMUCvYc4a4EWF5e9cw3mN9VdLuAc9oleIpy1d3zoDnXkUiwb1xRT61sIvPFSj0X3aIO4tehOhWjo7mZ2GF3ojIgCxydYbg+JGoa5KmActXecaC3QaCoD+h0uov13Txe2bCZRX0BlF2upKQ3len933a+hfLJApoH/Yw1xbZNKM8RXzafwkQHUafuHhjigyV56GGd2THqHWsHvDa56gpG4pQnOk+w4nfCoC0SnoCKhOo1swjT5/bhA17amheO1ySx6IqiPFzF5mcMcOtlakiHoJtt0Z+COP2hjkF6SYbT++50xyWId1WP/a6wBAviOruBGaQsebdbZhd9VNpbOvgaOvImwdkW0crv5qjrM/DfAFL7b1mQJq3tTzDe0bmzNJOt6/D1wQhS61H3M6+umYL1DPmTfh89EuN7/jDaSbs2hJ25oyRKCEHtaMfyMCj35/h2/+u9OBXpEJ570/GulbTlKP6zN2XxdfR/gcsFuCj/YI0r3mY5O7lvYAPIuepAFJfHNgBHApDyVqAPLYlBsSstENLKW8A6Ol532wkKYrISdo6pYYMlZcNWpPAG5fsKRvJTtiRG5Pmpjk6/H922OCgW6mADVadkYlOSLCkfelwuI5/852fH2z1zC3pEZFExE0O9bmUg+aF90BgGLX+pgUnpQQXb0V97MWOP5FwO6xHnQsSCCxYdGhxfp08kph9opgwmWA3UfUHytM3gDFKsDnCtOLAO2iFLs9O9WtR9QKqg/QdQvVeSCkLywAWiFWOVTdAZqdzOpuBzgPJlby98WuRfEyIswL9EcFsp2G6jkZUjHD6hN+pg/+byu4eQG7aVE/nUq6t0V1HeBKhenr/j1w4zMFXyrsHmmYHS10u5nC9JV8x1Ik+xKD9qhbkpOenHlUT6ve/QdAfqsxfQXc/Dhg95SJ5x/+XyJWn0iYZ6Pg/+UCd7/tUVwa0rIssPpEYfFNRFRqALH9QiG/U7BbIGym2P9Wi9N/WkC7CJ+TG6+chGnOgOlrdqyTu9DuWcTy5xKkqYQeKK54xgK7D0RH5OT4U8xXSLk2qXlgJEyuuFXMR5HpqO75uOQyl9LUkw7KlULhmsu0MVEh9UgD1U6aCxNOO9wkwskUQXcK1TvNIM88wkUNfZfRFhqaWghL+9qQSzaEA+xGA0EhlJFhfdPArIqpg77JYRyg9wbZWqH9mAV9dBpm0iM0GuG2AD6sMZ106H52BHxYI2SW2RxTscB+WyGc97j9/JTajyV1S8or5onMPNBqlL+ssP8ohznqYM481JdTWtZ6DV1rZHca7ZmH3Ri62O0Uw/9qQzphpxHzgHrugVrDbTNktwbFWqF5EJBtNDafRIQVEWXxgzX2mwLqqoB+skdwGt4ZmMsM/iZHeNZgsdyj/ecnaB55QHM/d+ekXE1eGbQ/rhHflZwUTwkaotEoXmboFxH9glOL7rxHdmNHTVhFPUn09/Qlawu/cLC3BDtYkVJo9jJlFeqr7xT1IVmUYzEKBUym0zVd2VQE0HMS0s0i8nd2oMV+G1cKe/11v+ZhHdZvYh0AyHdkbT8gHQdRRN8iNo9hFGgvf7ZByAzsi0t88FWFL/7HD+HLiOOfi7ZhwRv39VOOxRMVS/lRuxEyAo/2SITtLVCsgV46/7oXfYdkbQDS5c7fL/LTNEA76aILnzsa6aY7Cp/Xn03I73aAcQQntuZzkvA6decRgWzPgrU9Usg37JL7wlLAe6QGwTuAIfNDY6Rhpc57CkODUK+MWImGfKSMpOLaF9zXrkIK44Vu1SDA7Wcs0lQ9fkZSmjx0RypGcQ1kNUiD6lkQpm0q1qSZRUNQV16NNDjtBPjk/D6Km3G/2xrYPYmYf8MJULtkUbd5qhDtGHBIagoD2HzJbZ28ZfEKRSFztuFrNg+AbK0HEX1xwyLV7rh9139Fo7i9B1Yb7qN+woRt0wIP/7kDjOJnVIDPNHyucPanAaYN6KeaEyKroF3E9GdX5NuEADhHoFGMqeMA+HMjuo9tzX+n58QIGA1YA4QI+Ai12wNZBnPjYNYN/FGFqBSUCyitQnUJFBc7KB+Rv14hzEtUL7cIZYbqXQPlAkLG9+uWOUKuYNoIA5km/KTD6pMcuo+YXASZXDHNPK1kAhEyFkK+YnFmthp2RQpN+70GzYcG5fNssKq9+OsWzTMHOIXqNXnwkxcGzXlEu1eD3qGf8v3mL6hF8RmPx6S5KL8scPujiNlz0tKUA3QAghzbPuck0dYR9bnC0ef8rpszHqdJfxQsj7npCw3lKCK3MrFJ09J2SRCa9Fsw3JZE6UzWwb7gtGb7IberX4yv0c957NsaQ7hnmr7o7B41U64vSWhevWXYqptGivgbBbPV6J4wz8LN71VgkdOmqDFYdgcTEbVQe2wULhOYURGA/oj0NDeNyF4V6I+82DGD2qIqwO8tmtcl3IOedKaph+plZ+w5PUGrESoPfZMN9L6QR6izFrguYB7U2Fd07lDPK3TTAPWkhbrNEeQ60h9FaNEv0Q47ovoih90Cbmaw/9Bh8k2Gfh7RnzpkV5wMuIkGbET43g5+k8PsDCmaXy0AAcf2Z1MoN4YG+lOP8vMSHUrUHxE8uBkPoOkXGfZPA5PXrwpAR3SnAWraI/+6RH8U0B1zShKnBBC68PCloc2w5nuGnNOQbAPojtkzUBaTt9Q3KgfYLbUiSZvWnEeYPae+zUPS0kIRUVxpNOcBqmSToLzU6GdsHigHZBs1NLq+tetAwTqsv0TrAEC+IysJ9IzwoLUDTEMaRjD8/zf/vQV0B9hmiibpMcCOZj8di9r+xMHXGiHT5HiDhUH9gAV6eyJUrZo3+90TUkhSoZFtR/pM0pukAMKQQUQiY5DeACSS0FxRwH760xav/r2CWggtNA55XKJ/BAv4KV+7uAW6hRq6zCEDdo8sbCPi+G7UXehOCgxIsSLd+sH9pxVKGTAIW92UN8N+ITQQRbpZecP9nLIFUuie92oAMiEDlLxvSqWu3tIlKYGLqDjZSSGGiONUxItbl2kxaHyi0FAUaCDgJuNnTKJ+WyvU5wQQ1QVBSuLU2z0QW1KfQj4Kl6tLcTISEbIWRzHtgL2N7DRv2Envj+QAFPem5ecRu8cKD/+ggW49zF0NtdkhLmfw8xJ630PfbQCl0X10im6ZobzjNKG6aOFLA1t7FniNg+6E05PAhzH80/cEGEZAhTGcePQ9YC0fm2LIlSJoAYDMQm12wLTiz5wHYoR5dc0JSZ6j2rWABpQLwHoLKAXdtojLOcyuA3qPsCih2x53v300UBvbpcL0XYStA3ypYRsCi+ZUAxGorgPKW2DzTKNbijZEcxoVDRA9mBOSCiCnoN8V8FVA8xGL5X6m4BcOyz/JUD/AwGfvl+TCt8c8jotbmiPYncLFfy0iFh7TLy2KOx4zbspjbv61wvp7gQJsAxx9zkDSQo7J7TMRW4sxRf2YtLx+Ji5yFUYaYy8d6KAGw4aY8xzxhRTUJYRCB3QzCcoL6dyLCAXQQMHuqQ8JGQH/YBihx4llEApgfjdO+NxUxOp3oiUpIrzQdwA2Btw8QPUKamuRrei+pHog5hG6ZsBmWnZH8XK2MvAVKXp2oxByduihALs1cHNxyRKdCZyC1xns0xr6LR3DTKuAW0taUhlY+HX8sqONmHxjUT/me4cswHYaOOkQrwroBw3C2wo6UjDfnXlkNwbZ6xL7Dz2naY8axOsCttYDBZPX4MjrsFMo3lp0iwi/8LB3Fu7II7+wpEEeefh3FVQZEAz1XFFhcMJyDziK1auMgu2NRXvCHWtXdCFRTsEdO/i5Hpy4oo0oLpl63gko0q2CXzDsUd1pdCce+qqAqfn9mEYPVNZo2AhzMzqYQfF4sDtg/5GDaikyb84DTEOjj34W0Z5G2I0kwa+z4fcpwBIRyHb8jG4aEfL3qcWHdViH9RdbBwDyHVrRshZLlIbmVISAjmJVFRSKZqROuIqFZ6IyJRH68ieWBbcUvQmY5HejPoRUFLkR7FmIZht5XQn/M/JeUYuTk4CLFOpXXUbsH6rBTQuACOMjPvy/1rDfXED9ux8PLlmJDpTE6Ymy0Usx5Yvx5qF7oF1qtEecCM1es92sIilZbiop6QW3CRgpUqbFEHw20Ig6FlZpGlKsKM6/75qFOHL+q3fS3S9lH7uxO+sNi7AU6ticiiYgG6dDthW6WSDwU0H2beKzaxZ2ph0pKW4C+CW3e3IBeOHpp4Tp5ozvWd4IxWUjgET2ZXkN5OsI0wkVTI/72zakMlQXFPeGjM9LHenyOuDoj94BbYeTEFj0AwMIULcb2Bvhz2kNBIf889fIQyB4sAbwAVmWcWynNMLRFGGSQSdQkWUEGD4QkFgDdPK7EAHXAbmgRqX5Plrxd0LHQu84DekFoGglwEbzOZbuQKrzgPfAbMq/E5gJAap3MFcbhEWFo19ucfk35lAemL8I6KcK2TbCFxrZLqA5MZyQdcD2qUa2iZi+DZi+A+pTPdiL+gKImWgQPItYu6PLGDSYrA4+xt5ZuCngFgHlOy0hl9TldMcBxSXdxyavqQd58l/yO63PKHTefKRQXvK43D8CJi9ZKIZsdHDrjoHFlzwO2mPAFzQ/KG406gcQqhyDLE3LCWzIebwijnSrfCWAuYzo52wOJBMAuyf4UFGMHlo6yfkywm7VoLsKmTQdbnnM9lN5jthsD00OcadyJZCJY5bdasSMLnTKs4i1G02AcxTRfUh6EiYRqtHUcThOq0IZ0C89oEnNSt1xN+Nr6VYh2yYnOI34oEVzJGGVVhBPVAgFLXLbhz3snYXdahTf0PBAeX5nYeKx/ygCYumrxLVMXzJ1Pb6uAM0ppZvQda75rEMPADuD8rVFtJb7eelhthqmUwKeOJ2JZUB+y2mAXbZwqgDygG6pAEt9iNlrYK8plNcKplV8nXlA/iofdDT9nOLuqCVYtIjABMhvDOJOoz/ywHmDcF0gvzHoPmmQPS9h9prALQfKNxZuEtGdeVr8zjk1UmLdHXJOgMoLDS9AmxMRTjkAoHxt0R1FgsqQJs4Ur2cbTuzmf1KwubMQ3ZzcLzQIPOxeIVuzgaQ7oHkwAtBv4zpQpg7rL8s6AJDvyCoveWHyoq8wDQYdQHK5Sc5Nds8beXskFpk5L7yJtuXKe8/NR5F3cnCyDYZU7mRt60Xw2U2kmJDiIDlGQYnAVOxjsw1Qn6uh+O9nQHJ/mrwinx7ODV3iNMFI9CWd0sGrccKCCBQb/j5fU0sQjEZzAjQnBrOXcZwqFPeAUs19NuQTzEcb4n7Gwrw55X4wkiMSrBKQA0BR6Nodk7OciaA4FUVp6pI626aV/SZd4XwlU5goj+/5WVJnPV8LWNRAcy7g6tyjemWA+QiUqkugXfA77GZ8n90zDEL9fM337WVilBymAAxuTdpRP5D2ke64Le1CwYitpwr8+fmf1LB3NfUWqzWL/CKXjrYai//0b6UIFuqG/1bqfWCgFBBSsR+gr1fQFx4oinHiAfC17mesxj9XMKToo94RUMRI0JJZxDKD2gWCijQ9ybL3nqNSQETXA6UeJitqF8fX6D30zQYoCzz6L7bwxzP0ywK21Vh9bDG5DIhKKGRvIroZLT7bpUJ3RIpjcUcQ6ws5p6IaHNScJKZHTSqN8uzc+iMPv/DYF9nwPWw+igjHPdqtxfkf8Dk3fwVoTxS6M4fmAUGNP3bA3uDx70Xsz7n/klV0P5PphQbqD3uYjcX+kUJxQ4CZSep6ajpMX0fUpyzamjMWpSFX0J1CeUWXKxUUheVFRHHNqUgynFByHroJ97sK7FozP4YGCJNX1CAlEX22A5rjkUKpgoARj+E6ouXc8hPA6bEhkGiJuqdTkq8izE7DvCaNKmXV+DmPpdgz78OuDdzDDm5KbqXdaYQyQLWkY3UnAapTKK8UdjNDWlXlgdaweXNZQEcAnWIeheEkojnj/tEgSOoVEIvAjyE5I0mInV3bQXvXnnnYnWbj500+JL83DwK0UwhZQHbHZO/2pEfxlt0j3SkEAO2HvDD7d9VwCuleAR7QtQZ0hJuQxgUA/SJQO/NGoz2N0miR64PoK0yjgKARSj43lHSsCrcFtCN4wW1Oe9vASZNdGzSPHfIrO7hfFdcEc3anBhpdVtMtK7/ldMXI9Sjd66Lm+/dLGjNo0fS5KY8lRKG7yn2nOY8DvcvNCCxjRpvq1HQqrr/NHKzDOqy/POsAQL4jK4XNJftd5UdReHHLLmbIeSN3U7r2TN5RM9EuCASsdBtTB5PFh3T6FZ+XbfhagLgyCRgor+gqMzhMJVtMcYHSPZAE51GNgWJpwmAl1A9gkd8uM+RZhvIK2H4oegwt/G5zz4krjB3V4o7ba0Vg7nOF6jrANpyEtMcKxW2EbYCuVWhPub3lzVikJOcigNtf3LKYV0nbUo7UMYBALgnXywvN7lQYbXZ1z/9Hi2FaouM4dUj5HrYB7n4UMP1GE2hpDGGLwCg2ry64/6avDdrFGBo3UAr2fN0UPDn/mp8r2ZeannqARA1LmQf5JsJVCg5qsIZNE5ruiK+bgN7RLxwmf/ySk4NUuBeFTCI8UBajVqNpgaoE2o6/92EEHwMIuAcgmpaAIE1RMisTEaFRGU3alFJA2/P981wmGIq/c27clj6Mkw2A+hBrASXAREP+TtWYInDRmq8JyGvn/HnvoJoWUBpxUkHtqTcxt1uYyzvE+QTlmxzNowohUwiZwu0P6SQ2fxkQtcb2A9HxWIXpuwBf6EH/YEVrZHcUQdutFj0HhdMAgE2GbKXRnXpsv++AMmDyixzZBlh/Qnvr5c81XAHMv7JYfV+A/csMu48Drn+bmS+TNzye3ASDCxwATL7JoNuxwHdTXivqB0C2oitWd6SGY7S4AaJVmL5Q2D0TMH+p0B4zT2T7IbB/QhvbaIDmodB2dgrlpRq0TbqjCYGbKPhKDc525aVo0CY8j7QAjmAxmDzQIQmD1XUKHG1OI0ynUFxze13FiY0v6ZSk91qmvAKEegq/7dMduuuK9q+1IZVn6RnKN/EDmEhr/4mDrg3KC41uoeHPe2o6JgFmZ5DfaHTHpHq5E8eiW67T7UMChaTVi8seZp8N1wc/DaR3OWD6jeF1C/x+3CIgFLS67k/dQCGbvGQuTr8IA2DSHWlToQrIxRrbTUX3EEmdQlSwa4643ZGnk9Y0YD8FjAj5+3kA8jgAHd1J2KFMn7Nbgi9fcmrWzSncV57XQrM1BBc3lq+FkbaXbbhf+4rgRkXqM7rfqpH9qkJ77oGpQ/ayGBwLQxZhtzzH+iOZuG8F8FYRnRYqXsHXUpE0rW4B6K0WI5MI7dRobPBtXTGO19xf52se1mH9BtYBgHxH1lAQbwGIMDv2pB4YSXnNVvx5ecXH+Eo6j9NxCqK9ABGhNK2/B8yei9DUAu2HnHQkLUMnFCflKTyPeix+Q07w4WZSKMSxiLXJerYQuoYIbFXk65gmIJwewZfA8pcRu4csSMpLkMZVjKnRtBFmAZ1oUYlSBvD/07cR/UShnzObw/QsvqpL0mZsQ7eiIFknyWo0ZVQQ9IyOT06E54PGwwLxb63QfrFAca0GW2KKZxnONohpBcQkG9H9k4jpK4XqLcPh+qkCtIA76VDbK5lY7fj/bEeHL+2IFrUbO8lJ3J+AkfIEWcUqoF3qgc5ma96Usy1F78qNKezVpehhZH/kW2ob5r///N5BJ9ODRE/qe6FSedFXOJmCBBb06TFZJmDEc2KSHhvC++BDyQQlF01H3wM6J8Dpev6thGblvdycPQGDVoAWapaAFvd4Cfv6ZrzhJl2IBmKiXu1aAT2R75HnQIiI1rA77T23XWuoBKoGrYmG2jYw2waTtoefFtCuQFQ8OV3J72b5yyj2yAquVFh+4eFKhbvv6WF/61bc3UBAYfZ0A9Jb5p60J9Qf6NrAXllAAasfO5w8XSH7h6fYPiNdZQ8MrlTNOR3PErWpWwKLryI2CyWUotFKenDbCQShu6c8ZnUYdU71x9RSzF4oVG/V6O52LFa/4HsWNzzvkmEDwDDLqEgVzVdA84jF7u4DDNkQSvF9+jmg7uSc7iXx3UvjwY7TPO1HIB6EjlXcSvOk4vkOBXQLdsftmvkafkqhspsGZGuDkEe4V1Om2ysKmv0kwK75/VQvMjQPWW3bjUF/1kP1nIzUD+lchusM4SFTzkMRmdp93MFfF4CT9PFpgANgthb44RZ4O6EI/S6DO++h15bX5FqmLQ96hCxHJWBQO0A3TAoPlnQkX3AatX9KQFBcUcvnK7p76VYh21jJ+olClVPQjYIKdInyVUTUnOyoXsGuDM0R9pwaZGumj0MBMJEi/siJTZh6KGfhM75fuwSzmi60UH65DabFkD4fTboekf4Ucm4bANi9JJq/LtHPI+a/NPAVTQX6OV9LO0WqXDQ0Tjnia+d3fG3dczLn5rQmTpol0yr0R9Q0FTdqyKw6zD8O67B+PesAQA7rsA7rsA7rsA7rsP6Sr4MN72H9ZVoHAPIdWcmZKhp2+rQD1B7kkUsnMUgacBItR8V/21Z0vRmAHoNrlorA8mfMA0kTD1uzO+kLee7+HlVIjrZh+hAx6DqS8xIiaRLdccTsazVQkUwjlCALlLcRky9ucPXvPEC240SgvIlYL+mMU17zc9bnGHzdEaRrGkcqiyvYpAsWaM7G/RA1pyzaATc/YkdM98Ipls4pHakCdKtQ3Cg0j9gpc6Jx8dJRDaI9CTlwPK1xvT0arHqVUNHYAb4nCE8uWzKpKC+4baR7qUEIr8QdLNG0ll8E7B5q6D4O9JNsHzkx6iLqMwb8dXNxrQrj59GO2QZWnNFsLUL3OqBZkgJkG+pEbEN+/+SCU6VsH5FvPKZ/+oYTgf0e0TmoqhLNRyTdCeBEohdejNaI58dQmz1/XubA7YrTAuc4abgTYXqy1b1npztQs1rRkWQZsKs50cgy0q0KccW6LxRXeqRhxQA4Ct3tmzse6MkZK1n19j2UE95F0pmEAEwnfK8YoRw/XyzygXaVpiGxzKAamf7ItEdtathNDXuboTidYfNRiagVZq8CVp/xOOIUUGH3xAyaocFEwY10rNRxjhnFtT6ngFt5jX7pEfcG+x+2mP60QP+zU0kTZ6ZDccNzt35EGlWyAS5uqV9qTqnZUIFTDqfG9++OeB7kK05PVaAOSUVa+eY3zILZP+LxufiCk4ZkY2vEkc3NhC40FTvqjRoMKpplgO41yndmsKh2E9rlTt7oIZckhabaPbvU/UxsfY1IjqJcbjpec5IGLmnETCuhjxtIJ5/7XvfUiwCAbjX6OR3BVOC0yJ/0iMsO+m1JmlGn0Dyg7S7Pe3ljpwATEYtAZzgFqMsCRsfBeStc0qHKVxSDuwld9dzco7uuSEW95cTEXlm4aUA49gzf2xlkb3mObH7cwVxl6J+2UDc59h87VM8zcRTkRDRRW92UonomxqtBqwPQ4ctXY7ZJKEn1slvOANKUg/bGpDQpl/ZrgO4MEBTfU5FSZ2rLXKIT0gc5ZYloj5kFFXIgZhF9weOEuUhxEH9nK6aahzygfGvQz2npHDWtePdPGcQJzRDBUIqmo+F+7ed60BUlS3RfMkSR30OEbhT8MfUo2ZqTGbsXvWONwdnrsA7rsP5i6zBN/I4suyUXe/FVQH3GQiEV9SoCyaEpichVHIXYSRxu2pE6lYTmnTiHmA6oH3nsP/BDiBqEOqUcqRchHyk7CCNtCxGDADW5buU3aii4kn1mP+N2l3ceux+ewufMiqjPgPUnY6jZ+mNxuhFr2eKWr9s8IF3DTVhsNOcsjvoZ3rP6bc54g6wfsED3OYv2/og3Ht3xsXanoXuF9oyC1faMtJck2B5CrQRMXP/eIxS3BCj9ET93thUK1IUAAbFAbZcYkq+hR+oagCEhPIVqmYaPr081sj2TyIPlfummWgIRFfJ1hG0jijsMydOmxqAp6eako9k6MsU7B5qlxvpTBgKmgEkAmL6L6GcKto4or3pM/59fsODfbIGygKoqxNOjAXzE6QTQZqRhKQXkGcFHEoNf37L49+Iw1XZAnvGPcyNoUIqPz0h1QteJc5W8tjH8v9F8/z75dSZgIXqQrhf9h7xmEMqXFaTciaOWNvyZFepV3fB3zvOPD4gVd4zq+vetf9NnBQQYWf6syPj3robedTj6+RqTdz2iAZ7953eYvQCq6zgU3cUtiyUrGp5oMAR1puwMs9eDWYGvIrozh/yKPHz7Nkf9JEALTWn6ggLu7UeB9tk1sP0gjgC84J9+CuwfApsPQZpQMx7PRgCpkaLel6R4Kk9Qop2kl2eRbm7nFI9HC/hJHAMFbwUQeNqmuomA75YgJllNuwkpo3avYLca7XFEe8Jdq3sM+0p3GGyilYD/YAXYi/lFMtGwO3m8iJf7ufxcdF6+oI0u34TnvNlrqI5hkNErqDcl3NKxCC8kpftBAz/3CKcdlNMwtUJ+ZWHXBnHZM+fjUYOw7OFmgc5aEq6X32nZv0pEzwbVSwIwL6GJIePP7Zt8eG4/D7QC3lrkK4XseQlEhfwiG3Q0KYNIedK8lFfwVUS+pomBXYsWyilul6fQHAD0zkDXGv2Jk+ONORxRCwApCQbcTOxt5wGmZqq4aURLYkfLX+gojmakiXXHBNFDmG0ZhT7LRpRds1yJho9rPuvgZ3TcCjlBaVRAfmlg1gZ2m4I1SaHKRNeS8jza80DLY7m22S2pwwwiHK2ZoXledMeBjZid+q949/03uOJv6M9hHdZvYB0AyHdk/fR/+5/ANhGrTxkSF/J7zlVa7DCDiE6lwLX1yKk2Df/eP5FuZTV2Y6PGkCw8+8IMBYNyozNWSgC3ewxd/gRSugWLkKQD0b2IxAsWCFFh8PHv58Dt9y2aE4PmjCF4qQune+D4FxHl1aiF8AWGDpapRxcwX7AwKm7GCQIg3TvpJkPHwfrRtLS4zG8FcDX3hPN10tBomD2F3/VfrQl2qjG5XQWZukSZ9igWRNmOOo8g25qtMWR15CuGwA0TI4XByaVdQvIlqLMxHW+U2S5CBYrto6WYOVj+vlkqTC4DCtnfKck6X0fMXjlmvkwUijvqP0wXcfoToLyOKG8DJpeByd4aWHzdI994lG+2BAl9z/wMKfLVakvQAEDVLXUXWXYPIJgRFGy2BBOZeDonvUcSmpfFaKGbHK/S1GN5RKBgLV9zMeNxmSYUWvH5WcbHtR0GsWYQPUrK/Oj7UTzvPcHNbgdsd8Bqg7jdUTSfXhcArKF4PUbEnJ8vTosBiKj1Tt4rivC+E2BEnYreNdCbBvuHGUH0UYGzP1pj+csG1VVAeUUQUNyJRfZ2nFgWtzx38zWRh/IKvohQPS1TuxM/AFi71WhOeb71MuXM7yjOLW+A6SsFBL5mAuVDg0IDy58YMW9gwX4/MDTpQjYf8njUPaB6YPaCOos07Zu80BIap2TaGdEveK2ZvgamX1puw51s30oAzTp12gU093yNBHKG0EY76j+S1ot8fp736bqVwH4CKG7Kcygq0Z3JZBZKNFVSoENFCVRVMGsDs7ZyfFM4bRqFUAXgXQkVgfxFQXeyBx36Y8/rzM7C3Fqo5xXMVQ671ajeagIaG9Edi/A6jq5yIed3VV6YwVmK1sTA9CvLDBHDrn1xRUcquuQRxLYft5xuFPG9z+CmzL5I75m0FSryeEkW7GbPf/dnPfTeIFQBbkGAEXK+nuqBbhmo37E8Bv2EGhkooJ+HAVwwTV7ARc7rbHHNkYRumfOSbZiMTk0atSQhIyi1awP7NmdAYS/XR7FDtuKClu2o5wmf7uEqOjH6nBM0X3L7dK9hGslOOaWjV8pS0i3PB04TeewOjoXf0pWMV37dfw7rsH4T60DB+g6t3SM1XKxTOngKnEsi8+RylcBJyuuYvYlYf8T07qEQlq6jaYG6AIobjX7ByUO6ebfHY+FgdxgcZrrpODmxAkhSVz/Zy/IGJT8TMXkSSG+fKiQLRdPwvpkSzhN9TDvg+Msemw8y7J6MF1M/ERGsGm2HQ36PYhXU4PIDxGHiEczocmXuWXvSnYX/3j+jm0/5k4oZJBPSPBLQiwbQif4h055uDkze8sW8TJccAC/0rSFY0LAjna8FXIlovVgRXLRHCtVV4PYLrSQqQIcI21BkDyX7SArYyWWEadk5bJcGPmPnr5uTUtEuFCaXEfk6wBfct7YJ8JlCcVVDv7keD7BcBOOp6+8Di+yqGor19d98jMVPrvj7FAYIECAk8XdW8TUSIAA4xShEoZwctLQCrAZ2e4KURM1qWkApgp7gAW0QrYba1SNoSPa/zgOlRby8JgBSCmo2HackmR3BDgAllKvhvZIYPUQAgcLzzI6Uq1amLOmxznObWkHvPScmcVahWHusP7BoTivMXmfo5mY4RibvZB/fm0LpXtg9Uxbldq/QS26Bm0iBFcZiMK3umIVgLD0D4qJCcx4RyojiWqN+zO9h9o1Cc06gXr2RZOnAYz0JzVPz4X7OTUotV4ENgvJGAitbZi2U1wQcqx95Zks0CtvfbaCuCyACiy8UmhOZsD5wmDy3tOGOgHbirhVYYCIA9dMA5fTgshcNBvvglFeTTCmc0Bp9JtcOmSLZLSRcj+J7BgaO05T2hKGRSmxjw9RD7wxiEaB3BAXhuEeIzOiwO4XYWvhPa4SGVCRz1MFXBmplB6E/Ohb/7iG7L2qdIVszuTs6hfYkItsJWJvw38nYonnIPJR2ScCWbYxYykaEKiCUgOrFlWpjYcQBS/cyXXYKxtF2GFFJQ0nJfUEmylZAQsFjwmytGAgQePRLj+LKCNCj4LtbckqTwE1q8CQL5ZDTSjdknIgwVDKguJa8DZnORkvgB4ggvAjoTzzUxCHuLbJri/xOAikLWk1ja9Gc002sOeN+wCpHnBCc+RMHszLI70hb9GVEyNQA0PtFQPZSDw5rWu5bzVm6d0Va1h/WYR3WX3h9i7H8Yf26V3I8SonhqQMYDdO6tWPh0B1h6FSZlo/bfKjEOpFFRMoECZk4g/S8iQ+FtpZiumZHNfHVvdAh8tVIu+DNUBK/0yRCOMrRjNuSrHujlYJLOoDkF0sHUzM/4fRnLY6+7BByDS9AJgUnmj3T37MtbyT7pwHtWSD/WIobdggxcNVp3YghYC9NeO6npDc/bDB5zY5c8zAOgVamweDkpTwLnATierHjDUYKoHoEfmlKEYVXX94A1RV1Hf1k5LurQHAxuQjD95ntAkwbBxtSRNDZ65odwurGo5JphnYsrrSLQ2Dj5MJj+jagvKE7UzcXO8pSwew9Jq/3I/iIkYV6kY/OU2klnYVQkxZ/9JYUpuSQlaxz0yQE4OP39QhQejfa7fY93yflhsSIIcsjxHF7uh6xKvgz56BWu9HmF+B2aqFy7fZQ8xnUpIIyZgQpixm3Mcu4jXk20rC6nhMS5wSA+PH9e5mg9OLyFQM/M8D/63v+rKIVUastpj+7wtmf7rH4qsP0X7wQiiIdzB79kztUVwGzV5xsmQ5D2Gd5PU77ihs1hLGR2y4d7SCFswVMrQlQtxa6ZfFVXSic/QsC78krdvH7ueiI1qTAdMsIRGD3BNg/ilL4SWOhAbvuOcb8HUewvH3G4z7b8SNvP4hoTtlhXnyhka+B+R+WMLUknM/HCWx+aWV6EnmO38l5FGQCKFOYbsnueNS8LgH8eT/HYCfNEEMMVuTFSqhXga+Zkq7Li3HykCar82/UsG+ztYaqDXRHB6hoOXnK3uSAI+Wne+jQP+xhf0ntRvEi57/3BrEMLIZLcYhSEfnLHOYiJ1AMpPnonud9P4+i35AJTnKwEyoedER3JFPmQJCW3ZjB7lZ3CsWVYcNnr2G33D/5nVBAA6+JtubntpL+7WVCYbcK5TWDFxGAaCKCJfgxe2oq3IT7v58z6yhYafJENVgY8//39qvH4MBodxrtCXV1vgrolgHdUeB1U5pLk5ca888t9NsC2Q2zT/bPPNyRR9QRxVcFikszXFujAeAVqpdWhECA3htoR4CenCG9WAQzEFcP1/7qksd1ogWXl/wM9cOIH/xv/v7/55vt/6/WgYJ1WH+J1gGAfIcWu9fA4msWptUF+f75GkMysZuJ/ew7oSxMhK4hCcXllRTFijfBbiFZAJNxqnJ/JQF6EoimCcyQ15EDUCxY2mMW2SqOOhHaJGLM3xC+e8hYgKTX74/4nOoqwOcK7TJDfZ5Bu4jJVcDkXRxE4SqyaFMCwIprjeJSD/x20/A1fU6Q4kWcH1PmhuHNM9tiyPIwDVD8sqRmJgOmzwly0jQnFWQpYC19LmjZvx4Dda05IUBLXeZEAwlmFICnYsRVgBfxeDQKrlDDTdv0BCfZPsJ0nHT4PIFA+u+3R5o6mlMN3UWUdwHLLzz6qUa70FCRFAhfkjedbwOKX76FeXmF9wTZ2ryf+3HfdleJHqPrSH/ShlMK5wUEcMfGSTXSlBL9KYGbIJSppOtIQKBpWei3HVDXA+ULWlMMnsBEjEDbjsCgaQfaVdhsuZ15BiwXI5CQCUyclaMtsHMEE2kyk2WkZN0PSTRmmKYgz0ZA5kTbAmBIbpfwRX72gOxyC+0jtv/WB+inzCLoFgp626K6dChvA79rAca+oFapn1Pj1c85CSluGYoXNRCPevQnjkWZJU0lv9aDuNi01Bpd/t2eWqsFMHluYBpg+nIEuqZR8voELCn4sznleVBe0ko6ZdOYjteH6pLnSrtMFCl+J+VbjfaY5/3uaRwK/zRd3T/1nEgc8TP5Cth97OFKmXIEFt2zrzXylUJ7TFCUcku8THH76UhpNA23K9FI22OM4mm5lgRhASY6qC8xZJqUl8zBKa41dRSWk4R8xQbN9EvL12s19MagedJD32RABJqnPcxOMwld8fpG/YmGq1iw52vSlnjx5NRg+lIJTVYEPiDos7VCeQFJ9abmJVrSWRMITYLxJN5XntOcYHlN6hbM4uhPHfbf77jtnsdJqALclNTQ5jQO9C935GFahfaUYCHKPtOOYCdkcZhUDfkpQZosRQCCGswvIE0xu8MQUFjcaCx/rpGtNdonPZrHfjArcJOROhZKCUQMBLPdcYCbMXeE2SNsyNQfuEHPoVs1UFuVoxamvJKpUkMwUj/gNrXHwP7jnjqlO04aixu55GWHqvywDusvug4A5Du0UsHvKnY6V98D+inpDtEomDayy9OS0lOs+O98xUIigYUUHOjlRt0vIukESbxajt3EaHjD72csiPsjjF0tOxYSyZu/PuPFPtGLfEnQVNwSFOVr3hyah3EoKsrrNH2J2D2igHP1iUY/Vdg9MKhPNPq5QnUVMXvFx/sS72lOgLFTmvQWCWhpx9dPN8v7eQNWJjFJ/DsIywNEDCxd2S5RujDkHaTJTnHLm3NKOSc/Pb7vFiY88H7KxPFQJIAhmR8CCE0PFOuIYBXytcfkyiNqNXTSk0bEVaRp9TOK1/NtRDfn5aA90miXpHaEjGBn+tYj23rMfnqJQVORphZlwS5/mkJoRTpWVXE60Eqxr0TjsduNACXEAZSofS0HauSUQynExYy/957P1aIfSWnpSYxuRCiuzXuUKe5wJcBF6GFFMU5dtIaeTkaAo5MoXQBTWVAob82oQ8nz8fM37fj50mfZ13yuc/x3Ep8nDUwhJ06ikllD8bpSQNMif7uBisDslcPkImL5pQOMRnGxw+yLNY5/tsf0bRjOkWxzb1on+TLdkudkfquRvSpgdgZRR4RC0p3l3NM1i2HTKOSvcnRPOxaqQdylJuME0NRsQKR0c7tnAKKK/L/y1C+l1S1YmNYP+P98LQVclPNJ81zXLTvhmx947J/5Icm8uDboFpycFLfchvKNQX/EDnk0vCYkjVri6rcnkT+rxwbBQAMVWmLUfN/yZpyYDFx3zfPNVxhMGrq56MYsC9Mo+gojBW3zyEvwYy9TA03eaFQIk4D24w5K3KCiZu5PAheJ8gSIXm3L/ImQcVt3zzj1Up7Ft3ZAe8ZpVLckpS7k/G6iAfYfUNTuywg3C/Bzj+5Jj/xOiTaOwnMAMJ1C/SigeGcx+VXOz2VZqBdXNNnQPYGXcgQ26LVMnTVMo2E3Mh3K4lBR8HhR3D+RVLBsx+kbsz7kGDnz1NkByK/1aCTyCY/V6RcZzFYzJR08rvsFHdxUmu4CBCPn7TDBVhHIbw2ytUb13A6NMS+gSgWCiAQwbQ3Uzxzc0gk1i9fe6nmGbM3rbTJOKa7eD5n8Nq1kw/vr/nNYh/WbWAcNyHdo0Y6WLlHZjinE2S6iO2InL5duoXYsUEPGIqN+gMGxRjuhXlle6O2OriKhEGpADrSnHuWFgZfCIHUsXcWbvpUJg5NGoG5Z75EGJHxxmZJM3o60LTcBjr70QDSIRg3bkALx6jN2SaHEGnQXmbKb87WbYwq6sw1defpJuvkDk8tA8FKCBVI90jxUkBuQwiDC7ef87Gmf+GoEUyEbkb3dEfDUD6ToEdATSQuHFnCWr8RxzPK9t08VnYNO+PwkogUwWIamIMSQkRpVrFhE6z4gGgXdRUSrhsBDl2mYLgpFK6I+0Zg/9+jmpKlV1x4+1zBtQLZTUD6iPjPQXYTdeRSv1uziWyshgnosqo3GYGErGozBJjcE4GgOrDb3EtFlypEmC+n5AMFH1wMxQt3ciQOVYXHf96PYHCDgsAYoFIt+rQBleWVzbqR5JQetXlrdSgFaI+73UIsFQUHvuF2ZHZ2zUvK6D4hlhphb6Ov1OIFJExdgnLYECKCRz+NbAhYfAC+jtK7H4NSV0t8DQZpa7RDVEgBw9MsdzPUWUAqq7RFzC9UHlNcOpjPYPTLYPcEQyKc7CdSDwv5JBKIagXXHiUh+x+0MVgBFAcSSlKDJrygwiZoOce25x/wLg+kbIMhBnW3YjY4WQ4GqonTOCwEiW2D3IWk6ds/jFeB1hOnnYjFbScOjZkK2aYH6Ic8bV0VUFwrbz5gsjuMOcZ0BJmLynNSszccs5rvlSOnEnh32KLs6Ja4ryPWtG4uqKJOIaPm3knPflTJJkClkyOXaNCcYclNOILgU4l4jFAH5TSYBqhHQEbqmyNl3tKP104Ck67IdsH8Msb+NCFlAecmwv/IdXcr6Oa2V29MIuyF1CFNSpvolbWnLCy3XXcBNA0MDI+AmDKjM9pYi7gk/Cx2+WEQX14BuKa7Ottw3TWoCVbxWhQyDY6FyCvmGIAg5kF/xOIuyL4orNVyPveguSHGL0qWhKUF3RABVXBpqfY4i8hUBS9SAO/YoX1lalm8Vmg97uF5B7w2nYTnBTswishUNALCrUN4JNS8jLcy01Jfonk5kUaXQzTAI2PsZXbRmv2I5lCydfQG4OXU3IeN+yNbCEnhz0IEc1mH9RdcBgHyHVrBCQQoYHKEQBRTUcegABkt71aZiFzxpP6gHwHADBYCYAaodBdz9IgBRsaCWm71pgCgX9JiNOSPJ+59OUrxpUZgI2BXfsz7jz00NnP9xj6u/mg2FVpqyoODzrFC1lLg71WdqmML4fBTrqqCw/8DDHLdwuwxmY1H/e3tU/4TuSXY/fp58Lbxx4Vebjn9ChkEoGYQyomvu30SZStStq7/VY/mnGR+vSHFJtK1EN8t2Ec0ZqRS+AOYv6EKVtDPRANk2YvORQnlNYBYsO8q7x8xNKFakaFEbIdvRBeQbLdsrXc82Itt4lFcBpu5RTHP4iYHdOajK4O77GebPPWwdMH0XYfce+eVekr3NOLlIeoYYR/ABAPPp+5oHANjuCRo68UEt8vcpSc6z8AcoKk/TlemERX6y6k0raUtiAPowvn8CBiES1Tbt+JyyeP+E6Huo2RRxWtDFahC2y2vfp5htd1BdARzN+LqtWP/eX3ku1CzZN/5e6zAKIElJ7kZLinpAmJdQvYfatzJpyTH9egNVd9xfWcak9baDUgpKaxTvtgh2juWvPCYXFm/+jkJ1ocTlh5uQ35HCFSwAMSbQLfMU8jty3bslBuMJsyeNSffUOiAAdm0GTZibkK4DNVKVQhZhOgW7pc2u7sfi1W7VIORWcaRs2h2BS74mAFp/CsyfU1vSnQjvHxrllaKJRa8Qs4jii3Kwxw054Kcy9Ygy7ejEgctjSIm3W4L79zJ8DMFUAmbRAKrjOV7csQAH+DmS+USiQuYr/m3343ukSaWtDdoHDmZrSFc79cjfMbcDYEdeeQz6A+VBq+RLi/xGoV/wPO2OParXho5nO2pCyndKJjKjkUi+1mhPIqKiW1R1oaCCRtJMFFdmEHqbVg36PyaZc7s3n0Y6cBXUwtmdHvKWtOiMbH3PrEOCYNL1sDmPyG9ZoEPRSld3BJ29IRDLb/XgBlheKuyfBhSXbPZkGwjopKVyvlboZxHlK4vmPKC40WhPPU/tNXM9zEYz5byXY0MB0fC47adCTcxJEfSTgOLSQDlOT/K16P82epy03Sr0MwUnxgnJEdJV3O/1A4iNdEC3BKp3GvXDb+lYILn7/bpf87AO6zewDhSs79DqFiMtKhRJTM7ReCoQihUvNs2pGrncDW/M6UYccj63X7DYD7nwvNfA/EuN2TfMI+inGETqAAYRfLR8ze6YNKogrj5G+N/BcmIQMgyWiEdfBTRn7IghAm725y6KSgSa/UilSKGDQRxvdMfip7gF1Jz8KlM5LL53iyzzMP/hNYobApV4P5ckjNOGNKVAGCkmaTozBDSKqD7d5Jd/msHnLLBCxolGeS0WuELDak7UoD0ZwuZ66jYmlxGTi4Db3xFhZEv620BfA4s/2pBSmJ1tPbKtQ8g17M4j2waYJsLWAXYf4CYa+TfXMFcbFC9uMfnJG9hVg2zT4+Hvb1Hc9YgKqJ5vkb/bQl2vRIshhf794juBheR6tdmN+o6Uw5FsbRPNyfl/VTMyWOPemwjs9gQ5QpOKD06A2YTv07SkOO1rPjb9zDnRe8jkI1nwOgExCchMKqAqWegnLUchwvW0jFC8jo+ALIPaNe/bAmszgjDJBCGFTMCONQOd7L3JT4wEFz5AbxqoukOcloA1CFWGIW8EALoO6m7Nz7bZQYvl7+RX1zCNR7ZxePqPaderhYKUNFOTd6Kn0hGuioOOqVuSxuRL0veijQTXjUJ35lC9Ia3GTwOpXCtg9kIN2SD5Cuh/WNPZSGOYHCoH7B/HQRMAYBCA6x6Dxfb8ax7nzSkft/5EpjdvNGZfaYQyMAMHnAbkV2YIGKVj0Zg1EjIAGtj9oJccjvHrax5IflDB10+atiQuTkAqabOY8yDaETm/fSWNlL1MZuWcTWLubA0CvB6YfGMRTUQ/DyjeWPRHdILSLa+nbkZ9BLMrgOqFRX/s0TzxA7AxO00A8L0t7Jbv388JovJ1upYTRBQ3BJblpaJ1sqKOwTR8L05C6PbUftIifryH3ScQEbH8ueZ+vyI9qj/2yDYsuH0x3jdSs0SF8ee+ipJ9glHTBgzaoGytUL7T6I5ohhA1NWhmrwdN4P5JpGtV4FQlWcCnyU9/FJDfGtgbHri65b7THfdptqUmB0quz1Na+oaCE5Xs1lCHZzixMjWQsnPSxCwFDLoqItvwmHQlr7XtGV+rn0csf6ZRXBP0qXCYgBzWYf1F12EC8h1a5Q3QHolGoQemV+yGrz5TsLUiyBBaUyoM0g3HdEC+iWiX4r2/iFj8SqF+yKIjPSaVbu3JWCCkrAkVACh2vVI3LwrfOrnV5Gve6FOhESxw+hOP8qpDc16QWuQAKDVoQOK9ozjpTYLETbjJ6LiVxO7lbcTsD0uUt9za3eMKpgFuftyhkhv9wHuVokoJ1SlpQCiwHN/fTdkJ1g07qM0ZMP9mpJMoxxtaBLD9AIOLV8o3icDgvmL3BIaATHpMhJvqkTe9oOOX7mghmXIhbBNF5xGhYoQvDXyukIttbnukMXvdS6DdPRDRtECeQd/uoC9XgLXwH59i8ssrUo9mJYv+Vtye0mTAWk4CVBr5hJGWlKhPAAFHAho6kcTjOA1IS9LEk6Vt9B7qZMn3bfnh1e1mfH4KDJT3jF0PpRRgC8STBdRmj/jghOApaTt2NYXhmQWcR8wsJ0MaBDKJToaRGhUzQ5CSPkPa5gTElJJpkCboyXOhl5nx8xjRpdzXp2g9TDZoG9whLCq4RQHdeNj1DnFSMWU9z0egF+OQHp+9vkN8ukTMNGwbMXsJoewk5yiF6WtgdQxYCWCr3urRFWoSEOc9sDfwJYXr9s6gPQG6Bz2mX2bYfeIw/cqOuiklHfHP6fAEjOegm7HL3M9FVH3HQh4YAX22w3DdUJ5TPO3G7BFfAcUlE6+jZkMg2/Ca4irSqYIdJ4NJk1V+nQ2ZOsqR3hUNqV5mz/cu7gS8W57b2gN6y393S26LrWU7RDeSt9LckOYN80skr6cZGyhRUfgeZx7Fi0x0JrKDFOBOHPS0B76pSDdqeO2b/9IwvX1O7Uq2VegXEdN/OpMmB2lmRs5/Wu6KpW3GYlnLRCV9526atCQR+YpTEddreK8QToV+1AL1+QiymLlCOlP6LkLGYrs7FvOCW31PE0SqGzyHgsyH4THWLaPkQCnMnlNnmJo7ypNmC3D/mI7Fv5sFZo9ETrbaE/4/5GNDILmQBUuLZrsyCJkarKfzFUFytHGgx7oqon9KMwDlCRTbBWlZyfiDOTOK94s1BhMS3ashz+r23+4x/2lGWtcC38r1m9BsHDQgh/WbWocJyGEd1mEd1mEd1mEd1mEd1mH9G1uHCch3aCUhqDfsrLdLoFgpHH0Zcfm3PExrB7E5k4njkKKtItAuFbI90Cfhs3BmTSMCvQaDH31xw46i3WGgcnULdtWMGgV97QmGpO+UzK08hsRZNwXcRKM9zdHN1OBKBZk+JL6z8vx3/YC88n7O9ze1THPE+pbWoNRIdAt+Nl8CzcOAk9/PEYzQHYRSknjCAx2sx3sOX8HK9GFHZ7EhfRnA+tOI4laCEcEuKiIweY0xeLHjz00jrlZuFLbX50KFcOx+Tl9TGKwdMLmInGKoiLgGuhm7gtk2wJcUh5u9R77xcFODdqExfevQT43QsMR1yRqmd1tOKVRLWlT+4nbo8KvWjV3/JBpXmpOOJKLuE28suUil1ri0z/y93wN4z6VKqVFcDpAK5T1UUYh2RLPFGxynF0nkfn8dLaB6h+TGpVY7QCumsQ9aDs/n39sG1XZ8TlDjRGighQVAGYYKiuA+JnvfZB2c03FANf37GpREuUphh2nyMVDYOB1J0484LRFlupFd7eBnJR24untWxklrkyyAFT9D/noFOy3RVwu0RxrNuWQWiDC4XQLTF2pwsnMT0q6gSIdBnbPTHYH+1CG/sMxGcOTpVy8t9h966FZB1xpu7oGJR/lNjpQT0J4yANPseU4xDZuTDi2yn2jZZU8ZE8jFXKEYqTCupL7JVRT61o+Yy9EtSZ3sFhGbzyJmX9ExKWV/JFrU7lkcRfYZYLbssPeL8TqRNBtJK2PkHLQ7mQaIVitlB0XRjaRQQkBol4la6oFQBdi9hrKAvrNoTwNgSBXqiohYBJiVgboz6I88nJeAviLAbCisztcK9cOAqDWyjRoCJ6t3itfVgtfV9ng0swj5SFMNGWlGtqb8qJ+TjhYMJwdmY2H2ouHJ42DNaxqKws29aQ0gQvqYrs2ckqf9na69uhmv/1rzO+5nEeWlQnNGKuDuaRRRvka24XSCwjnZBjEzMDc8J7ploI1wkAldHhlYuddCo+OUJ7uxg5uVy6h58qXcOxwnTN1C9sk3+bCPTC32xHLvyNb8/ovb8V4VLRA72a8F70PH/zzD9gOh6j29py37Ni05H3/tr3lYh/UbWAcA8h1axS2A+H76d7vkDf/opxYhefo3BB/KA5AbjpcCXHcRky0v6s0Jb0T90SgKT6PrbkmqQMRI48rvaINZn2PI9MhXIzigkJHbWp+Tl6x6aiHWHxm0SxYLKfgvOegkahSAIWk9OXQlXjUtcO5TRSTrZMrtSkJJQIoNcetKdp5KC91DAFCyYUzBf6mwaU/Hn6cCMLkAKQ8JdLsnzpeQK6gxBDJlsOQbwIn7VrZlzsfiS4JC09KpbPtM4eRnHpOaO0D3Ebbu0S4zGACbZxS/l3cB/cww2dxF6CbZvnZAVaB5PEO+6oBJjn5RQPkIX2q4SkO7iNkfvODjM7HiSiLtVKwrRZCR8i/Suk/Xuq/vSDoII5qMRNOqSgw6kbblh0/BfdaSzpRS0lNRb8Watwe1GQm0AHx8CNR7AAM4YDJ6KyJvAVXpfZKzVYh0sEoaDh8IcsqC7x8j/3+fWqUFcLxHNRPthxNa1v39lkvFGwJ03Q27zfiIFKIIH4AiI/gBRnpbshf2AXrX4OgnPUKRIeolbEO6ZP0wGS+M50eIBODpnPUFC8WoANVosa1V0M6MVMOO1rIhi8hvDMKWOSGIkkFyRQF1tuU51h0JFWjhkd2ZgW6VqCspw0R3cuzLz600MdrTgNk3GtkW2HwaMHlNB6/pCwXbKuyekpalPNA97VB+nVMjcasG62C757XA2XEfJMpWAjyxIG3KbqXQdry+sJAe3ZASVTJbSSOjHZsUAFBe8Pph96AeRChW9WPq3PI3Fm4CdCcexbVBe+YHm9hk1R0VrW3dsUNxa4fCF1osdhWvW0kXkq47psGQ6u4q7j/leY3WPQFIccske14jSOHaP/PIt4ZBtFc0wOiW/D5ZmKvBMrxfBgB6yJ9JehrTUYiuvBJhfgQUM1zocsaMlH6q4GYBbkqQqiJgdhSN60GYTyG5FRDr5x5mw3PS7Al8i2szUF9VMjfIuP0JUCQL3faU1LWQcZ8ld6v6ScDkFWmICED9CKjeYnA8szVT1KNOQJZf8voz0uPa04CjPyyA/wm+detAwTqsv0zrAEC+QytoThxUKj6KVBDwpp2tyc9mGJ6SVHEMCeRuQneRyVUcBOm2TuFQvGFP3o4uMohAd8JCIaV5NycS4NeMN/Z+Ic45Iu6OilaivYgfZy8abJ9MCCw8AJkeDGnFUvz3U76Hl+32BSQlGYOQ1mt+5kxuSF7qUuVARy8vhZgAgvxO7IN7ADL9gBLBefc+l5zFHAbOsGn4Hu2SYCjKtCRk42QFwFDkMdVcAGJDt7BoCESUaFESVz7sFbJ9xOQdkO08lKMeRPcB9QO2TvePMrhK4eirHr5gLoovFR1i1jVSinj96RL9RKOf8WbfHJv38llsGwfNxBj0l7qlUgSHeA9smAFMRK2h6hYoc2C9RTxbciqRrG7bjsV5JsLrzRZDkJ+1uJ/XgRD4PtoAuYjDE6jZ1/APjmFuNgQMqXgvC25PI65V8jqq9sB+z23OcwyWuVoBMKOmIy3vMVjrJsF98BSba4Uwq6C3jQAD/b5IP2V8SHp7FG2I6gkuqANxw/4MiwrKBdHXaCCz3I/pddI+Tynxab83HTSAsz/a4PavzDB9G9AdsWhsj2UqecS06vKSEzO74/TOiYA527Jg8wULSWXS8UqnpQT+fRXQaMl4cFJQdixead/N68fkuUHziHaxruL1pVvGUQMhRWN5yW1LRfDilywQowKytQYUsPlxh3zaYbPPsPjjgufxGsj/NEe3hGgHRrAQcgzvEQqg+aSDfZOjupQppuPUMWSjSN1ngF/wdYq7ZEsuuhBNsKJb0UzcYTChsGI3nq5B3XIUSqcJAQDonseF3Rj4IiIuFfwkwK41vGhyyld2mM5UF7y+7h+NIbBJ9J0aLE6E8+laVlwDzQM6lvkSgAbqR9znbhJhtjxeyrdmyBlKAar5GoOBwDCN7hgamRLBoxkdwJozHhPpPmD3FHprZ4aGlO5BM4OdpklAANw8DDq3YCJ0q3j9jwQjulPILy2nJb1mcv21gc8FWApoo76Obo12Tw0SgZmCEovokPHYSgGU1RuN5pzgJL3X9hOCkvYE6DueBxim+wqzF8D+oYDmhu93WId1WH+xddCAfIdWP2cRnt+yqDWNZIGICFNFTkCUx+A8pV1Eccfnn/zCYfEiYPUpaQ2zV5ySJHeW+fOI5lzyCMSN6sEfepz/SQftpCu5A5JFLMDHDdQGNtmGrla+4p83f3tC+8ML3mRiOmqFymEkpCtfjR3V+wBF92KnW/HxviQIaY+5LUlAH4yAjW6kRzXnQrUQykoqmNKZo1zqKKYbMN8r2fembQtiP6zks/sSyPbsPBey3XbHDqvuxcve8HEhA1zBtHM3YUGT7QKyrUe+jvj6P7Lo5wbbZxna4wy2CTBtgK0jjr7sEa1i1kemhu8lhfJ1z5Zolgb9hI9pj/RgAKBdhG0iTv7xCwzhgHospJkU7jCE+KVk75Q2vtlBrbekDK23gNZQV3dICeRQSsBCkE5+8naOCA+P+by2I5DYbFnIAwQeCXwMk4QcZrUff1dko9Vv1yNOC+Z4ZEKL6npgNkU8WxIcJbADIFbF+xOM5OAVZGqz3QFGI06TD6uC3jYIpdjwhsDP7zyBz/3AxBihnIdKE5EQoEJAmHH7YA38NCdIa8eJiIqRdK8/T+kyMlFJFsZdD3O1xvybDrqPOP2pp+ubHyeF1Tu61LlpRDJmSFkeKWyvuFFjd/9KSTEZEbMokwQWuMqrYRrZnAf4ih1/J2neoeD0pFsG2v4uIoprhd2Hge5EmhPU+uE4oTAtC0Y3pVOe3fO8q36Vo/qnM8ReozkhiKgfRmx+6JhvcjtSkhCETlVgyPjQtxliFgf3uihTzZRKrsI9SpMb3ftSuntUGMLvyitpyEiBn6bK2ZYAJeSBE2fwfbrjiP4oIFtJd78KyNbjpDBNVPNbHnfT1xjCB7sjNhqU2CinxoASu2HTcAqhxVmqeRCHVHpf8HsuL/le+UqNYX1h/HwpILJd8vPbbZqiyARkzvdK30lqPk1eiQC8hNj9JuE392Eq/icvKV7PNpI5daPpStUqqE4hFBHVG2Z12J1GtBKiWMXByjkdU2lal5po6bNEQ+F9eUlAnG1HihUF9tyXu896TF6N6fK6B2ZfazRnkYGXMhnRHugScJ/LxEzzMyQ76G/duu8m+Ov8c1iH9RtYBwDyHVo//1//JzD9+H9XsbOWCpNgOMEwLf80S81ueR9R3USsPrLYPiEPN1Gt0g3YTejclN/xxjC5YCdq+8Rg/SG1FSFjB9FNeFOKhkVPthspBFq0H/0cmFwE7B+xI4rI9+sXvKH6Qiwb7VggDPxkR4DhJJQwFQtKmsy2xkBBSYAngaZkM5wcc/I7DFbBSS8ypKRr2VcNb4CJDtYt2Q0F+PopLDAT287iDqguSZFJTl9Q/A76I6GjRH7ObAsUdxHFOvCxhsAlGoV+ZhAt8PQfMdeDwYkEGsxuUeiODHzODrIKEfk2YPp8OxwDvjBDPggA0g7SfyNw8l8+lweGcQqgDQv2zOK9bI6uG8GHUu8X8W03OFkNOojALn948oC6juMjuE8eA5MK+u2NTDxkEpAyPIInANjt6VqVbHd3e2C3R7R6dK+aFAQXmYXqPJSPgFGIhSXVK7OcuFnNxwp9TEkIImlTQoHKc9K4nKclsA+c7HQdQUag89gQkAgQ0JT5uB/SlChNj6yBP5sDveNESin05zOYXcfXKXI+HwC6Hko+4zBhSvsnBAKq9F1ohfztBpPXe0xe7YcQPdMCyy8ClEtuRJJyfT1SApWXcMIKMJ0aKCzVa4XpcwKX9iSgemOkqPaDpqK41tJ1p3tVyJnSbfcK2UoPGgVfAKXkQCRL3KhleigNDYBTEd0qNA8DmgcR9VMv1tAZ9SLTiJhHmLVBtwyoH0fUj8OgoZq+oluf8iwmzV4NQMOL9aqSCYB2GGy02yXP88m7CNuM14U0fQA4yTX12BDRPc913XHfzr8w2D8Jw2sPhbXh9S6/0wP9Lb/V8JMoKeAR3UnA6jMGB66/76Gcwu5ZRL8ANt8TqqVMokwtE921Gq4hxS0zQ5LluJFplHIYnPSSo1l3RHfEQfcm530QHWDKMrJ7Hj/VOxb5AAZtT8j4maKN2D8O2H7qSe89BkIeEWwcaF2ANLoeeU7UPIYpWnsa4auIUNK6mJoiPVjEZ1vSuPbf401Mi+7PzWgh7SYR3UkcJ87SSIl6nJgopzD7PEN7ggEA6w7YP40DAM82AkYt0C89+vkIcqoLoP7AYfMDh8M6rMP6i60DBes7uBR40/IV4MuIfkovdV/yxto8CFh8wXG07lg0ZLuIfBtR3AX0M412oRAyWi5molVIScmmY8q4l+5Uvo6YXALVlcfdZ3agHCU7x1QM5OuIbkGhe7aLWH3MwjkJ0gGIGJR85aQZSUAmCUejIZ0rJfJm4tzqC+mOKk4dXAUWJJrTm80HvLFG6XZuPyKdIWWLpNyOxBUePuuUFAxgnIgkgb66xyEv7vj+7RIUHAPsnk4xcKuTDbICaS+peGI3kt1n00UW0wDaE4NJ49EvLLIdf2/3AatPWaTpDqhuOA1RPmL2zQ56tUfSQbiJRtQsULQHtI8I4Pd68pMNi+hkj+v8mKfhMBbSWlGErhSGxPEEMgD+LD12NkXMDdTNGvH8mNOOSQY9nQD7Gnaz4+OSVgRgMS46Cfj4PjUq0aGE9qTuttzGpoV/dgZ7vR1fK0ZSm3qH+1oV5aSA15pFfLITvg8mtEI0ija/KYSRGzf8P+QW5n6KuuhEePBhfE8fEAvLZHOj4R4tYS83QIywqwaqk6lSmY9aDy+fdTrBIHIHxumM0nIwi1al7aCtRtQaD//ZHm//1gSuAnYPNYvqC9Ix22OhGO2kmF6SrmN3ajCFMA0bB+wma/gqonkYoHpFfYfndUT3tL5NAur2cY/qecYAwMBzqT/iZrfLwMI743OzHTvj3ZEUux1Twos7ALfMjdg/MoOGxO6B0Cu4eYTdK8y/oS1t/UCS108Y5Am51pXXgFUE5W7CxsL+KQXriXaZaIeTt5x87s8VGyHvpBB3nGxGzQly0m0UN+O0pF/I9UYRZCjRi6Wk85hH4MKin5Pyo4JCcxaQrzS6pYfdGrIX3ynsPwiYvmAgob3j/pl9bbD7IGD6XGP7MbUxtpZGjOX1w8hEefeRR3FlaH87waApyTa8VvuKgCKJ2s1qLNaDHUFHyj8qr8cJmd1z+qR7hWzNz1hc6oGKlXJBVFDD9c1PCC70XiO7Jf3LFzKtFuvhkIkYPtI62U8DYq+gnOJ0rVawNxncNKIrOYnTnUK34HfZngdmrXjqlUJOylQoI6q3CuGeiUi/CIiWxibKS4p7MVJ23TSifEdb4t2HPF43n3nYOzNMlL5t66ABOay/TOsAQL5jq5uPnU5AKBlXQHPMnArtgH5Ox5z5NwQnLKBZXPQTMwiqi5XoP1rpRglYSHoI5eVG+IgUjvbIYvouYH+mh47j2U87tEuLxS9WqJ/MUKw0TEvq1/ZZPnDOE20r3ex0zxul8uOY3YugNGlCEiUqZDJGX4iewoOZGb0auqX9hAVXEpcaCIVAurH9bOyCKqFhFXd8zXQjVT1ghBaRgFECYUkg6mRilISuygEhiVAdBlcxV7HYIWhhMaV8RLYPaJYapqcQPaup/QiZGsCLKy0LJtk3zbHG4qse+aqDvhZQYQ2idNd9PtIxglHDtERf3o0HTip6B4Dhx0I9UYG85++sAbxQsdIEwRo+ZreHkiA0dbMGvIe9An+XyygupaKnQj9RvNJU5X7WiFaAu7cdMXLSojV03ZPWBDDHI72uDwJoNAGFgI36k2NUv7qSE0PdE7IHitabnlOQ5PwVwggQegfddAizklqQnWhsTNKyGIKO3gMuEPRYA/vqGq//+x9g9rpAcetQPL8BfEA4mkI5ByWCpDgtCUzuJ84D3B+VtK7T70S/ojoH1Tu8/A+XKFbjuTJ963DzQwu7BbI9AzIT5WjyjgA/5Dw/Id3naFgM6lYhv1MwDUXNfhLR5wHlhRm65c15QJx5TH+ZMbD0yMPUWrRinJDkt3rQhdmtZFzIcWgbUkGrCwKSFITXnzqYzmL2nEWz6QB/x0I8Wj0Ujb4EimuF+nGgON4KRUkyKphjRMF6tuV75ckIIwGNu3si6xMMoYppWpnyI1IwYXLYsls2U5LgO1qZkl4q7D+MMFuDfs4cjn7O50xfaOw+dYg2os8jZr+02D+lzq5+RH1EfxQQFg6TX+WwO43mTJ73ocf0ueHEqiEgChm3Pb82DElMNLsOqAREZNtx6pHC93K5tiKOeiHd8zF2T2MQ7cdJb3GjBtAWRG/nwKmMm43gwrSAryKKKwXAoFtyOt4uwnCNauce+YVFyBSiFdesANg1p0baAV6pwb1LOZ631Vs9XJ+7ZQSWHSY/KzkhmwBR88ZRXPGe1p+Sv1W+MSgveUyWNwQd9eOIyWuF8grYfAyEIsIFAFHBbvg+Zq9RXqrhvnBYh3VY//rrAEC+YytRlhJnOtspbJ+NBXu+isjXBCrdQo3UA0NaVV9JEGDgzTNbY3CWape8+WZb0YWshFMsAm7dA91UD2FUIQeKt1sUbyLe/TdOmdTdAnbvsX2aobzi81ksYHA4MR1f04sLit1Jl0aAgWlY/yZ3re6IN9R8PU5+itsxOThRQBKtKl/zfXUAuikGDUyafKQxfXPKz6uFMx6rsRBRgTfiIEVZyKTIm4so38h25uNNOojAMiqIM4xQ4aJGeRdYXFiFYhXQT1lYTd71aE4slI8IpRq6vrO3BHq2BqbvHPJVB7OuEWclVNMjFhma8wrT5zvMft5h/70lrXyFE5/tpci9LzJPNrlJiK4UqVH7mv9PIATmfe7w8dFIZwL4WsbwZwlQaEWqVRJXhzgK0O+7ZwEYROshiYZYpIcHS6i6R5zk0O9IwFe75j1tCTLLfbC/RwcTRy7TCd0ryxCnOWKRcVrkCRhilXMCA0DdF5mLva6qqfcIkxw6TUG8H2hXqunHxycdDIAn/+A1Xv9HT1CfG5xtZjC3W+i2R6gyKNfx/bteAJoa9+swXREQlPZnEuxbg1jlBKEnPO6Sk13MxslcJR3/mKZxBuinTOxOy7SAijw+GDKnEHWE6oHqyqD+wMFsDNyRx+yXFipobH/goBoNuzHUeXmgeehRXBjSnfyYuB0N0B+xAGyX3Jb6gXTdcz5u8kcW+4fA7e+wE+6nPCfKK83rzR0phG4a0Z5GVK81+gUL72xNKlk6h5Xi+bZ7GjH/mhObTMTivpR0c4w0T9UI4PASpFqKQxUw6CHSxLUrRmpWe8qOfnscYe8srzWWNMcUYtovALM1yNYK3Q9r7H4rAnvDqciTDqHT0DsDc5WhfkgDgfqxR7Yz0imRyamV7yZwCtWcB4RCjdetCmjOqCFrzrhP7RZDswTgdm8+8zRKSLqYjE2O4g7DtCg5lwUDGCuC/EJoudWopRsaRBs1gKQUGmga6ke6ZYC9s5w8Gx5byRI5TXGD/G7QsGimv7uJCP4d7wHVT0ogAv1JRPVGoTvmMZyAZfHOIr8TMxb5bPtnEeUFj6H2mJOdbKtgWj1cj30l+yrSsMHu8O1cch/8tb/mYR3Wb2AdNCDfsaXFQrFYsfvpxFkqWGD9vQA3UegnoiHIWWRDAeVdRDcVV5Uw8oWLFTMFurmIvuUGpXtIhxTwGXDyc4fyjtqN4g44/WmPD/7zFaLWcMsKxV3A8S9qtAuF9Sc56lOFbn6PMiB6k8TlzddRckrYMfUZYFu+dz8dBZwJhCQxqukkkVdAmBb3q5QbkhyD0uQlJasn8XbKL0kUq0RtyHZxABoJhCTdR7oJJ4ChpPhIdBLlhe6wJ5gxLbfR1Bi87HcPNZpTLdQ2/ola4eJ3czQnGq5UmFx4mDaiugrIV166yeKOte+htjUpSl0HdbfB5M9eQb+7hdrtMf2T1zj+vZeYXHqc/bMbLP/gAoPgOWk+gsdg/Wr0aCGbRNBajbQlowlOygKomxF8JC0JQF3FfMrHaCOOVZava/Qo5JbCOh7PR2qUOHilQhtGQ1/cQW12nPIA0HfCvbMWsJai8a4n+PB+3BbJ18i/vBhshtVqxymFc0Dw8PMK/ekU/fkUyAz8UTVOSO7Z7qqm55QjfUZAAFSahpjxeVqJpa7H+R/VKK8Drv7mHOu/9gCIEXrT8Hm94+s1QrpPovaUKwJgsCdO75cmPQE4/twP53h7Alz+boYHf8DXSnk+3J5Iq9IGg4j3/nEP8NjM7zhJKK+ZDdEdR8Ap+FmAXRk0DyJ2H3K7lFOo3vLca08Cqtek3hR3PAf3n/XojwIttfcK9TnPV7tnwdfPRoOHbsbzaP4VGyN2owdKZLYVrRi4faloSpM9N8WQvQPwtU1DgX17zI59uk4UN+MEI9uNlKqQk4rTnI7TocEdULQhEH1JAjv5igVweakAFalTOPboFwHdMtAxqmUh3B1HZL+seIifNeiWHuYqA7zC/Pu3KK8Vsg21M2avh6T3/ZOAfiG8TUWHKUQm3ue3CtU7anmytUJ5CbTHUXKaIl29ZKpha+6n6QvDho80SRZfqYEG256M12FAdG2K9uPtCT9Dcx6Ga1q0GDQcuuV7BnG7yrYEH2avETXvI7bmlMPNInxJSpav4jCBcqL30x0nFvVHPR2rQDe3kHFqlFLas62Ye2zG7z3du1xFJ6z5F2IhvSG1d/pKDQCjn6eGFb97umZxP/3of/X3cViHdVj/+usAQL5jq5/zZtuLtaMCBlcU+vwD03cBpgVO/2WP6gKDQD3ZxKrAC3K2i+hnBCv5hjcwI8Ju6LGI0A7YPLPYfKAwuWBFUNy0pIg4h2g0Zi9bIEY0Z6SD+XIUfPp8nDoYEYWuP1HojtjN2z3hTeK+NWJy0UmFgS8JUoIdOcpuGgkYBLToXqgDInbvjtjJCzlk7C+gQyYniPxZvuZN1jTkj5dXsj9FINrPMQRc6V6mJXrkupua9ZJOTkWBrz25jIACqmu6WRUrFhlpygGI+FMB+SagWxh0c3rub59kAp4UglXQmz0L5TTNcPcK5EEcbTD9szdQ6x3F1T6Q3pPAQ+/EUlZakABQ17gf7DfmfUQCj2Svm2hPia7V9wONKxY5EOX3wKhpSJqJpN+4ukMQ3ch7NKTeAU2LeDRFPJ7DP1gQxOTCk3AO6Hu4sylSVkmcVPx51wN5jvYHjxGOFxjseAGo9X74XLpuoTuPaDTaB1O4STbuQzNuZ7QGMRPAdj+UMQGFGBFlQuFP5gQNeY7s+RV8qdBX8v0qRceuthXAJ+DizwMOATQxN4hFRjetSUExvtFQbYfJm4ZAGDyHsi1QP8jw6f/hAtUVOPHaYRCcuwmLuahGSlG2GXVP3YLWq/UDiojNXkF3GmYngCCPKG408ncWdq+w+XEP/1GNWATsP3QIGbB/HKE9MPkio/NT6sKnQ1tJ8eqB7Wee50oPzJ+PVr9uEgcbbt2NTk71Ixbg7VmEq6K4W9FNa/qK1y7d87xTYjebKFfMgBgd9ELG19Q9z+/qjaZuayEAzWPQeUQt+2o3nuNRAbtPenFWUrw2lkG0ExrtWUTzyLPZsSe1x6ws9FcT6F7DTwNgIvY/OcH2ez26cwf3SQ1/1tNA4LXF9IWG2WvUjzxMrVBcmoFOqiKw+8Tx2iUi6+KW73P2R/xe67Ox0WH3YgzQ8zq2fxYJCuUUr95BwlzjkCNDNy66m+W3zItJNF8/CcO1z83iIIiPGVA/6xGmnpTWPCLkEe0jN+Qs2VrcrDakoPlJGDSH3TFBzvznmVie88DZf9zD7tWgw6sfBgKjJQMSu2MMtDHdK1SXMg0Sqlq/ALYf8tpimhToySya6QtqdlKuSHv27RsNJA3Ir/vPYR3Wb2IdAMh3bCUahoq8QeTriNN/GbD8PLJw9sDd9zV0F9EtzEivOhaNRBMxfRux/FU/OIgEwy5TSudNfvohYxGRNCGLr4PQuiLMuxU2P1hCbcmVV33Aq39/CrsnJ9c0vPDrbrQMTmCpPcZQxHRHY5GQtBfFHf9m6q6AoE4oA/JYX/CmFSydcthtE+qAw+B3n/ZTolWlZPcoXPDJW6C8IRXEdEC+iRTvyzQmZRmkqUfqyKogN/UghUH1/s+LVUQw1HnUpwrrTzLkdx7FKqBYBZg2Dpz16iagPjPYPpHgsJw6DlcBfQVUF9I5T5SmtFIxq9UIKHzAe5kevThC9SLSTja8Rovlbfb+a6bX0IogoOvGrv/9gEKZSqBtodZbxMWUgKRJ1CiP67/3oWhODN+7yKFXuxGUFJLxUZXAfAZVd1DrHczFmp8hTSEMAUF2sRmmJypZ3GoNfzJF8fkb6DRhCKJl0WoAO6rpYW/3yO5qlN/conh5d0+c74ZpjWo76H03WuYqJUnzZqBdqbrF7nceQHnqXWLO7StWHtoB869qoOmgNjtObdJkY6Cwpba+H1+z5ZREbxqoTQ212QObHeAc7LsV8k0csnK0A/qpwt1fP8OT/+wd5s8jsrVouZIWQop/KHGUm8h5U8oxbUmlaT7qKQ5ulGhHCJqdPK574JAvWoRNBrMx0LWWhG4FyBSwn0Z0R7TpDQULW1+w4dFPgcXnhs5yE2D3mOdMcQtM3iiUF6Qi7v5ag/1jFv/lpYY/omOWaRX6OfUHPifVrDuSQ3shtKEqoD3GYDebgFZqMKSGxRD8V/MaGpX8LulCRAtm97zmpenR/OeZNFTYmTc34r5mqH8prgzsRg+FXpgEONHbVI92sCuD+OkO5esMutYI6xxqbdF+3PH7ORJL3JeGDZIqDtlM+6cB2bUFNNCc0iY3Tbb2DxlUma/4mfIVBkC3f8jtK98l228M7oQ+50TH7uU63XKasfvQoz/iewBjoyY5sGnJ5XALDwQgu85QvM3owLbXCFMGD4Yc0JLKrnpO2EIeUVzx83XHEfkdHdk2P3BoHsSBylq9yIbrovLA/CvNCUkk8ErNJkCA1JzfcbBAexaQbYD510qspKXp5oHJKwZGpuuzmwL5zb3r2bdlhfib+XNYh/UbWAcA8h1b7/nfg4GD05cNTv/xSzz9L67x6PdWePKP9/CSOxEMkG/lAm+oC3GVwuYjcjKSZS1F3Rj80W19j0rUyuShUpi9cjj9YxKsF39yAcSI9iTHq/9gOlCY6gcsDIKlQL5+wAt+czq+tu54k0raj34uIMhJGFgSxdcs7v1k5CRrJ53LwG1HlDwD6XT20wRQ5Dn3BKjJrUo5ds20o1C/XRLMbD5QgyYlaV1SWGEqaNI2ayegSvFxxR1tP7Md95V2EftHFHoWKyaTA+yQhwziXkZdTrskUCvvIkwXJSckYvYmIP/6Euh6hNPFWFhnVgp4OwrHh4MkEJAkqlCiDkWZnCRReNvTKnY24WsZwwlCSupOj72fFZLoVQCnDyJQV5sag7WvTEtO/x/PB0oUAAE7AbAW/unp6DaVBOiDfa5QxZwDVpvxBqoUwnLKz+LcAIrMxZqfo27GSU0Svycw5gOD/q7XBFX9+PwhzT2TqUfSbIgTmEqfUwBD/+wYk6/XpFgpJeAhYPr5DXbPgFDIa5UF80Luhxum7ymBq3vaGNXI5y8ybvekkqBEjXbJYyQTCuD+IbD6WCMWFtunCs352On0ZRzMG1JGTrLmjiYOBZ3uAbVjUeiLKNRL/i5aWvTqvYH/ZorJNxZu6TB5SWcoN/ND0a68QnmleX701E0MYZ0CpJXnOVPc8TN0i1EfYFpAvy2QbVgwRgPMf2EpKL5g4dmcR/SLiMlbnvf9EdCeeQZ93unRXrvFYC+erpWDaUeE6LB4Hm8/CXSCkutBt+Brbz4joEl5Ik5oZNMXpK4hNSTkWsQvj8AhZBGTFwbZSsPugPb5HO5hB/2rKcJv7ZCtNOAUTK2Rv8jRngR+V6K9aE8C8KwZ3PZUr5indAdMXzK/af+Iovxg2eEH+Fn6GZtJykmjqgOaRwG24c/dVPRu0kzJdqPQ3JcR+Z2B2Suhw/FgKkSf057y//UHDpOXhsGWc88EdEuR+hA8GLhfQkYwq1u6raVME0Sah+RrhfzKonqjJJwwDo0nX/CeVT/gPcDuuE225hQtNbd0x8fnW2D2Jd3WugWw+pEfnBbrp4FUW4shFb0/ikNz7rAO67D+9dbhFDqswzqswzqswzqsw/rLvqS59Wt/zcM6rN/AOgCQ79pS5PbWD9n9KW8irv7qBMVHFe6+T5F5dcEx/d0nBgpAfSJWvLl0JSOg+4j2SGH9fVIFZq+oxdAeWP4yYP9Ak84h3f98BQSjsPkgQ/WLLbvUwePVf/zh4LJlvIzFhSKhPalcKWm8W2JIwU0CcorLSW0ImXRxpcEeFbnGyRs/iVCT7iN1YPmzCLOm738o2YVzUQ26D8jExItoPxOHq5CNicPpfZLonLagMgEytDm2NbNOfD5SuyZ3Ea7kFKW4i6iuPOozg/pcePgt0FcKwWi4iYLuOCkxLV8riNhSOQxWqKYD8q3H5Ou1TBF66MvV2Nk3apwSJNlD0mBYw+8ndfed40QkszLVEKcBO3b8OSVIXXkRjnc9ovdQR3M+ryyQrGLDw2OG7yU60XYHzKYyBVGkfKVJhDYMcWg7xKMp1N0W5vUN3y/P+Gdfj5MV0V3E6WQIWYxFDuU837Pv+ZodXauG/aAUkMsUpmn/VWqZVvzcPgA6jmL8++JvN04kEu0qlhmnHLLs7Z7/T9vrObV5+x88BSJw+4MSZ7seKgSo3g/uWrB2zDBJU5+kL0kWxSmFvaD+JVoD1Tssf9Xj4m9mg05Kdzz+Y2aw/8ADJsIXFlFH+EmALxWKK6ZXh4xTBV+Stpj0DiEDdENbXQCwKwUfeGL5MlJcnDOLYf80QBly8bOdQrY1g8ub8aOYu7xWqB9GmaLIOV6O57yr+P+UjZOmjHavKKaPnMLuH7FDze1l/kR2Z7D6Pqlo5YXC9LkZwvbaB8x3CAUnm8FyamrqkUqapqrJEry80ENwKTULPAdnX1Mg7qbjpDmakd5VXJMiWT8MKG70kKGSbG2jBroTD+UZXhiOge4ooPzJFN0xt9896FB9kZMS9G+tof5sQY3KO4388wrbj0g7m7xWtNN1cl1V1MG4SmH7V1sc/fMCoQKWP9PU23wEZCvS06IFyncaruAUJ78VapkIz7sZJEyQblYpVLV+AMye07Z9/6GHrkmD0h0w+caifhSgvILZafhZQDeJQE9LXLPTA1XV9nTLslvmc2Qb0m+jYU5NsPx+3FQmYbWioL/g+yftXZTHFVd0zWpO+Z3aHZPOfcn3sLU4Jt4C069pN689kF/zPO1PIrK1eu87PazDOqx//XUAIN/BtXsqgCAD9g84ln/3I17UH/yLgO1Tjc3HvBEPgX0QtxYLqBjRHDMwcP6VRj/lzai85s24nyjYfUTUpH3QYSWiPlN49g+uEGcl3vy9U7QnvNinYr075utnO+Gju/HG3y0koVZ+looiajXUEDKYsgWSC9XAxU5/O3H9UaOIVXcKEHG6Ciyq7gcLJp6z9gIgRHhPGkKELxUm7wgGyMEeQQAgwM0xiDFqNbxnooCZNiLfkMLSnGq0Rwa7J2oQfhrZR+0yhTsq9FIYJvG76QhcuoVBc8rgrsklWLymIj/Z6AaHIcAOGOlRMY7CbX2P0gQQVACjlsGosXjfNfzbB4KMthteWxkDbPcIHz6Evt0NNsBuUQCLYnSeqkpuRyKFGkPQEwMBQ0agoe627+tJkg3wn9eihADVO/7eeSjnmcNRd3zdBLCsQZhPKNJPVKmuFyAk1CrnRzpZcuACuF11I2Jw+z4IAIbcEbXZc/usZIH4yDR2WSpE9B+do58Apz+J6OYKb/7dOXwFfPAP7mj5m4BM50fAkfJI7n3mAQxJhooSF7HJT9/A/M6HaE55Xtka+PD/dAO4QPF4FuGWDvSvBuLMoe8z9BGIGbMo7F4NGgGUSS8gYaRrRQvYRFXKaOMbQQqNn0bEQI1IvwxjIQ9ub3vuUb4z1CnUpPEEC7TnAeU7LfQbuQZ4Au72mB81Wv58+32H2S8tQk4ef8oP2XwvQLca/YLhfymxfPO7HeZ/nDMjpNHMnmjU0ACx4i6te4xJ6eKAZBr+PtEnbcsGDEQzkG0wmHv0C4Ic07BRoTQLd90Kla1T6I49bEYwEqqA/MpK0yUCmwzIA7oldTZ2p9Boi/1HDuVrizbOkCnR70Rg84m8xpcGdz8KyNYaCBSQbz6N8EXE7GuN5e8X2D9mY2T/GIN1uK+AyRvqZVLIahThvXbj9ZQ5SyzqoSMQxD2xCuiOCGjMlsJtavAioqZGpz0LCCWQ3RkEyf3INmoILMxWBJQJnCkPNA/k2FhzX/ZzXv+yO16bneh1fA50n0ZU7+iE5fJR12P3yW5+/B7zFTUf3RGGBHQ3IaW1O4qIip+requw+8TBrCV8s/j2jQYU8GsXjX8LlS6H9f8n66AB+Y4tIzkdQZyloIDdB3FwEVl9zEMi8YqbE2D7UZCAQhb9zYkSnQJfc/qGhfzkMuD4lw7BMjU6vY4KvEEUd4C6W6N7OKPTSkMuerAANAFMvhpv3j4XH34jTlMO4mbC941yZcy2vOimTmQCJvcF5FGLqHU+cruzDW/mpqWgNWoCHytTnpTjMX0XsfzKYXIRBHiRP03ONzng9ZkaJh1J5A4ICOo4VYJS2D3S6GcKWU0RuWkjupkenK2y7ejMZVp2K5PgPN38Ex/fTWgiwH2lsHtk0c3oNFY/BEybdAceY0CdGjvvMXISkJbWvIvHMDhHvSdE1AIK8gwpWA+tFOtOCnopymPXI6WFxxig394AzkHdbREnBfKXd8if3yAezZivoe5NEpzYzor7U1zO0H9wwtc6WciBbLgdzo+gKU1s0t8iuo9VAazWBAL3MkzCoxPsf/SIwvakCUnBgVacurqek5K0EmhTipOGZB3s/ShGT7+PLF6gNB2tLJ2qECO2PzjG6scnaJ4uEK2BvatR3kbMnzeoH7I4ChnQPZjIgRSgfPoO5ftLSespGyS5hiXrYvmOY5ED2gzObCoAT//Rni50IcDuFfIbDeQBsBFwCrHT8DMPf+KgOoXiWrEY0zzudCfn6DRQxJvxWpIaAMWlhptIoJwU2ZOvMuQrBbs2qF4ZTF7QrSnbAvmNgW7J648GgxtX+U4PQXjJGCImR77I55qG14bqhUX9IKKb8/f17zTolgRJ2UahuNHIdjxv68cRxTc5QgGZngZEw21NlsMDmLJyDet5nVJ+vA4Z0a35nHq34hqD7kvL33YnzwtpWkPxeXmlUD9zcPOA6o2BcorOTK8sugc96kf8bmZfa6DjFME9btH/9h7FjYZdG6gI6EYPYGf3ww5Hv1Swa41uwbDC6kIA0jNg8pJWvvtnrFKnr3j9La8EYPW8DmsvRgJZRHsaUF5Jxz/I1FlhsKqdvCUAtaKZKy9lYjAXncZ6vHf4inoKu9XUs4BuV9lKU4+n6QbWngdpOKnBMpmWwpxwcHLB92+P6eTVLqXR5IHJa07Ei1veO1zF63q3FBv2KYbQyn7O53ZHEfktrYaDTM6VV+iPPBCpmzEbMx7T/aE0P6zD+ousAwD5jq3k8KQ8i33dA9PnCqd/Csy/Hm1dh/TjArA7jsfTVMHWAj6iCMJ7YPFNj/KmRzAyJtcYxe4K2J8pLL7p8PJ/+Cne/tcLUrkwUix0ew8sGG5HsNzG8hKDEDy/499KaBCQ99E9BscVnWgjapyUANzefI3BKpSJ33zvqCWscAPMXsQheyS/442ZNsIas9cB/YQhhtVFxO6xhivHfZKmK8pL17MVOoMBg+5A1yzlx/e3TZTXVOyGzxj6VV3EYaKkIqcvppXntBT9t0dq8Nq3tdCNFFPsTSs0IaUJHgZbW/m/UkiibnboxULXB/6+kqyL5AYVPB8vwmy1E7ubKCJpa/m8RP9JU5BE35JkcHW3YXHvHNyyQn82RVxMMORpJOG5dPfVrkX2/AoIkRkeadtTIZ6K7fs0MO+B3g1J6JhM+LmHnBID1faYfH75r54kMYygw/sxcV2re9a7BnG5eP95CUQN1KgIJXklqu0Qqgz6bgf4gGAU2iMNNzWIkxxqtcX2mcKL/1Y12LpmW+Dmh/ko4k8uXQLshn0gjmQxNwT+CZBIWrsSetrpT/tBGB2NQrQa+085Roga0HcZVKsRS9J/9IxtYz8NaM4jygsWdSZNJw2GLr4v4kBRSo5C2inAkwapa41eLK7zNTMj2lOKgksp2tuTiPYkorjma4cqsICvMWQ6pOtSmqCYTqhNgUVqcaMwfSVAZZvRGndLMNQfBTRn3H4EJantPI+mSfi95/bldzzPkqOdm/A61U8F+KwFiMy5DbunkanlIizvFnx8MsawItjWMoGNlrS02a8s8ms6LJmOGSauBFTLyUE/i9h+4gEb0c8ilIowv5qgPfeY/eCWTZIiYvIGUH/3FpNf5uinbKg0DyIm73jN2P29LUxL6u3RryKOf0Kgd/d3Gmw+8wOAah4QZK4/FcH2lwrLn+n3nAZdFdGIBbPuKGAfBNmK32PIOHHplpHGAJoWvLrXQzZSvwjoF36gw/pJ4NRXE3hEA1QXpKtFQ5DUnAIIQD+PQyhsEp+blMlSMs8mhVkmYfruSco/gdi6k2Kbpmt2rwZqcsi4v0n30vBFhO5Ik8tWWoDwt28CMkyyf91/DuuwfgPrQMH6jq3iLuL2t2hPmd/xou0zYPMhi9zZy4jtkcIH/7BGd5Rh84HlRRykQxz/VKO69PCFQr4J0H3EV/8D4OQPM+kS8sbVz4DiNqJY0TlrehHx5u8wlXn6WhLSJdMjana1UqcxdVmzvYzFHQZXrJTqG6107JIHvxopT4kClSYGaYY8aDgiaVYIUhhIuGK+AopVwPojjcXziGZJJ7B2SZpJBLB7TN53Skf3pWhqHmAoHNHJ3xpAP2YMrD6x9JR/qpFvSd+qLh18qXH7PUMudUPdx/QiwOcKjdAEpi8d9ueWBZ6hLifSzRP5mtvhKoXVDyPmX9HNxdSia0i2ss6PxSswUpwA/p266Ql0JAcrYCio/aNjmJVYnTk3PicFFSoFVCVUmjSkgt+HYSKRCmNojezLd4gnC6hOJi7AOIXoeySKDrJ7uRv3pwD3NRDAQOMKxzPo1Z4gScs+EEpUAlpq24z7IulZ0g03hf31bnztvh/2A7SG2o05IWlfxqwg9ctoRMt/h0UFve/oeiUUrflXWwAzrD4yaI/mOP4ZsxPcZKTWRQ1UN5GUNivTp7Qv0zYZTdCRMJiP709DtAZCRMwzrD7JUD8OQFB487crzF8UiFph+hq4+yGnoOWVQnekMXkL7B5X6B46ICj4uce+oiYBIADXHQCo4ZwNWUS0EaonBTDkEabRSJSs4oaJ4G4RYbca/ZzBp+1xpIYgY2HanFOHkq0MzJ4hdzppsQR4BCvgfsqpQwq3Mw0Gauf0SwM3A7ojAqrFF5rd8g96TL+gNe7kpRqyIYpbccwrOAiCYkPCTcU1yY9Unn7Ba0f9mEGf+ZqApp8TsGQ7nqfJXSvqkSIKmczmd5qTlFOH4o1l170ioMjuDBPIiwjda5i1gi8i8i9L2t6uDZrLE7QfBGDmUD/Mkf2TYzR/vUb+8wrZDjj5M2D3lA5gZ//nKS7+bofiRY79I3HRm0ec/qMCu8cK9WNSwkxN2mya3AKAKyD5IcD2Y4/pCyOFvzSwvtHYP+H3CyWgYxHh5gCiQrBxyN4wewbMag+YvZZJrkyD93qwLr5vB50m3knr5qYEmj6X1xRdku7YmzAb0reyNV/DlYAqSLVqHhBId0cYzrdoeOwrh0HzZGtqTKj14fccTZSMnrSNhwnIYR3WX2QdAMh3bP3B/+4/xY//07/PQMIJ0BveSO2ewXfKU7thdh2mL24w+aYCQkDMLUKVwxcGm49yVFceykdsnmVY/hm779WVhys1sj2tYUOmhulEs2Sn1LTsYqmA4abkKumqClhI05M0EUk3JQh4oA5iLNJSMeLLkd+eJim+ECoFwMI0G6cdds/tLm9ZOJva4+a3c4QMWH+oMH8Zsf5YobwSKpgGihvehFQAuiOF4597dAsN5XgzSjkf2Y43PihA9RSt2zrCZ4qBcLKP7r6XjZkgAKbvuLHtEdPNlSNQiUahWAdOXApSKqJYYqbU5WwbcfaHQHsknztCwIQIyUNkoW2EamUMgDQJkc65DyzSd/vRVlYmFwgR5uJ2fFwCKYk6ZS3/7xxgLeK+hqqEKgXgvUTwEIZtUL0H7tZ8r7YV61ihOCk/TiFmkxEQJJDQO75/0wLWwj1eoj0tYJqA8vJOwIFFXEyp/0iaCa2BXPQs3o+vmVaMiFZDhSRW10CeU8PRef4sz4UGFYAYEE4XUHU/goPMUAOx2o+gAACMgV7X8MUc+Qaorj18aXH0VcDVj0WE61hsZVuP8GAJfbvjlEPr8XU0CDwCqPUAOAWpKvhpjuxqB3cyRXeU4fq3MzTnGGgvbgJc/xWNyRvg9Gct5i8Nbr5vaeX6QQdfZuxM9wI6InUi1VuF+hGFxykTI8phZALtrKOJkhFEIKId4POI5kFAccVzZf8hNR+uIjhxFcXZ9TOH+ecW7bFBvsJA1czXI61RRRbD3XykNaXdUZ8Dk3ejiDy/BZQ31CDMUjPAon5MbYmCTDOCAL8eyGspTLVMeGXQlxoY0YiGzlIX4CoMdNB03aouSAtK9uB/vmGiAoa8jPK1RVRjwdzPuc/6px3y5wUDU21EeaVGe2BJBC8vNbIvcigA6x94zP6owv5ZgIoauw8jQuWx/BOL5gTI3uQwLTB/Tp3R7AU1gCpykuVmgVSoDKje0U482QmbVqYEOz1cV1NifT+FXA+Z8ZHdmiEwMFqZiFQBba6YvZRH6DUnIdTuST7IhLQoCvGp/ejnMpk5j0BLDVyigEUL+IyTifuGJ246ApXhPiP3lmylBl1hooUpzy8vZDzvjBxPUSZWu48iVE/A4SZscCTA8m1bv4ngwEMQ4WH9ptYBgHwHV6JR9TN2n1JA1PYJi1DdAy//20fINkeYvfaY/9kF/NEEIdPILzZQz05x+z2LR/9sj7mP2D3JoB1QnxmUNx5dYQgEmoCo1TChiFqC/+akN9kdQweduNwMVKzAC39zQvDRLbndbhKR7RTyW7n5lCPQGDIFHG/MWsBJfxQx/5Jdq+YUg/97P+cNU3cKuyeWHbSehYr27HzqnpkHIRdhfB+Hz2BrTpNCrrB7xNcnCOBN2QtIKG/IF/Y54LNRWL59zGLC1kDKBMk3QDAKIVdojsmd1haYvepRn2csOG6Y8bF/wG3thpsoU899Rq5zyIB+ZpFdYNQ3BM8uvi1H0XQSMiegAbC4vl+MJ4CRCJtKczBhzPvOVzAEDspSO+EcwYfSiPMKarWVCUik6FxCB6PVUPdF5JmFO5+za7zpoK/u+LtGJgFJbK2Em5GmFvs97PMe9l1O8BQi4nIKtdlDbcO97ZGpicOfAwZ6cOka8jkSyKlKxConWOoFvAUBYTpDzCz0vkOYFtTFeIJGvb83QZIJTCws/LxEfaaQryNMHXD3vRKLbzqokA+BcL4Epl/ccTv+X+z9eay2610Xjn6u4Z6ecU3vuId37915AkorBfo7x1MhhUZAlAC/oC0kiPGYiKWQHOGEiCRCiIj8YegBYmIcEojhoJ4A/VE1qBWltlrpuLu7x3d+17ye4Z6u4fzxua7rfhaD0rorm+51JSvvu571PPf83Pf3e30myZR1ABDew+eaqNEmsqQVhPVwmUJ29xT3/8w1FlmSOq5sQSqSsBR5c1nA2aM5tj+9xqW1RX0lQ7tN6pLXgOwkbOU4yyyA5WOOzkzaQ2SCblQekE0ozqUfzBNaQSrLyEM2bEbqqxZ6JZEdKzR7dIFyOQvAbuYxel6j3aET0+oRB7/VY/Lxgo5EQXei6oHilC2Y6RENJoojftcAvpatkWhhETnJTwTckkV+bDTykyBqDiiL8GF9YWa9D4J2yOHeE3N94vc9BiSaCjh7PHynT8K53Pj69HMHfSbRjz2KE5HorACL9fxEoH7UAEvel1zpMH5eob7ioVoBOyHaUD0Alg+zaHcFaUj9lIiEbgBhJGwpMdp3OH2cjmaqBlZXRAjqE+i2uP3VPmBPJfrpoMFjyKGHrkVojCjil4YFvSvCfWbOlPBml1qeqKNZPWqhFwrZQkDVis+aLlD2SiJHcXS7FvmhQj/yga5FRFBHSu6ZgK0GJClSwrKlSPqX+C+fFUMDCQBmMjhYec9jpldEDrMVj3v8rOzppkXDgdB0X/ZQq3BN5+FayvHSGx7pWnpRl3kxLsYXYVw0IC/DUR1QZ2DGQHEi4BQdT5h0zgcLqRBAs6dw+IZrGN0Htj+zxv7X7GFxA7j+oR5mpOGVQL5gAegygX7M4CmniYBELcY5DrceZv/qEIDmA7XCVkhJw7YMziuB9hB5xtIAVg3LjbOj8YGQrTYeQEuReNuy47JMaH4iFzs/GmbDvOJMpZdAs0OKQLTYFY7Lkj2bl34qMHuG63c5oE4GzUm2AqQhjaufAbuftGjnEu1MIFsAzd4gTo37JHuiK91MJAMA1QP7X55DdVxmvrBwWiBb8amwvipgJtTJxBC2bAVUZx7tlsJoGWlCcmgymnaYwY8oRhmml1NyuRqQjzDc7oxWvsJxeZFm5e1A9VIZi+LJeAjgkx7idAm3N4e8fxxOUkBL2hbibIWUxm4dfK6gbx3wfbFR8p5IQ89195ensKVC+dn7YeMcvDEQMX28yiGUDHa3CtEVKlkJx2XG4MOIzojwnt4Mfw+0MbFqhqYNOIeaiEADE52B6C18piADGuKz4TbrqwxeSiweH7GQygWyRYfRgcLpE3lyRtM1AAsIw2bL6yyt03sP9FGLIgc0qKNoXoxyrF+1h9nzHY5fnaOfAKO7Mpgx8HtfHnB2uzxymNxqIesex68fAR6YPUOazOoJS4RFAG6vhTvLgdKiq4jS+ExB1SLZojJMM7hPtUC35ejatJCwI1J8ikOFdo+FaXkg0TzRQh7lcIVHcSg5QRCE3cWhhH6hSPa10gJWDta7qg46i6ApMJMBOXIagOb9xSug3SX6gpL3ARHQWFNx0mN9LSAnQYNQ7yDp5brrDnpJJ678mHqTKIAuV9y2VnKZ3ZT3T9UOs+y2QKJtegDTz0n0M95PIpoLBFepFV2l9JEmHUgDspHBuUmgn7HRsBVw8rDF6HkF4QQnRkJ4arsN2DAJYcYei0cCapED9esMZp/WFPgfIN3fIlI9ukf9h9vtUT7D89LrgIised5jU9ttOeTHEsWhxPIxizwgH/2ExXx1V6F+yEIaNh+q5USNnTqohYQdOdo4jxxdyHKP/FgGNMWfQ1qi7fqmu5iqgdUNNi62IgVQ16SqEUUM92tDAXukjLGpJPLTTz2EF0Rh2uE8mC1ur2rYIE5uCqyvhK9cx8/lxxcUrItxMf5XxkUD8jIck9s9Dt+YQzXA6tU9Zh/PYBs+1CLHOj5gpeGDdfkIIFyFs8f5kNv/8oy2uxmCu47H2RMC41tAeeJQ73JmKlsBwnqsrouQbhuTaofP2pzrjWiGasKDPOZ1gNuUn9DOsd1GSjM3JTnfeoVzzYJeD8sFBhqFCTaZtmCx4uXg/W6CEJS2tkA/IopRnHg0OyJRxbwK6bmnQL5wsLlK1K5q36GdS3gBmJIzxLPnPJotyaYsiGhNxbpYdgPiA4DoxhWVLD6dZhMiPKkOplRQPVAeMmtFr4HJbU8UxvOhPNq3aLckxnct07CtHehXwKDxMGFeNhax3gOzCbAMlCEHQEU6UcbmIdOhmRGhGRD8f9R6RMvck1NgHGzSwsy/vHcEvz0lZegsoCEuiNoBwBKhSFSpKCqP+hIf9qFukD15C5n3XFfQjojJmPStOKITlrVAmQNHJ+caGl/lcFUB9eAYy6+4juK4R3b3FCnLI2acTMYJYTjnOuU83LSEaAzcuIBsOqISzifUIlnhRl3IKMfilWO0MxZH+QJwmcR6T6HZG+hEJhSm+2+/hG5GxGLnkyvINfNBoNj3QfPc2WkJdVbjwdddx6WPnMCWEtKGQnCfNK+TV6qgDeI6tj/rMH3yGKLu6Ex25nH4Jl673a6lfe7IkebXKaCwwEohWxFJgQN1HmuKpVUT+P1myIfwiu9xGdFQCIHyAQvSfgLouwW88ihO2CDVVwD1qgX8p6dsfILlq60A35Pa1G3x32Y36CwqJL6+D/etSMfJVmz2szOJbBHeowC1IlXRjIgYFkeBbrQOaEdLsbWwAqM7zPWItuAxHV6YQAPzw3kTlg1RctLyQ3Hf7HDdMX3cFoCZWoxuUauiGhbe2ZkI9tz8nB0hpIsDZs4bhewyFA8UujnP79nre5S3MngFdDda6E8XyE/5mdVDHsUxnQuzlcbiNQb5AyJNtgznbU6b3OyMxXj2fA744Fa1COLu0EjpoM2bPCvRbbO5y49VQify00E/oU9VoGpxMspWDqLjdQUvYCcOsmZDH7NE4sQRE+mj+HvIUYk2uQCQheWr4KBmi2H9KZMpNjDdcI6KEz4fYuMc/+Zyfk723N5oQdzshutK0ShBryTM5KUHDQgfjC9e5GVejIvxxRgXDcjLcFQvnGI+3sHxKxWmn8zQbg8QNvqBauAC19lj0GkUR4HCtUYK2VOtR73L5sOWLLxVS0Sk2QZ0Sz6xKZH4t7ZAChNTLQDPh2W2OC82F8XQWPRT3gizpUhWl6ojd1paDM5bQesh7YCS2HIQgdoSKd+DxunUWaiWDjS0vOWMeT9CEqHHJkP1/LvqgfUlBWlJY2PIoOTy1h7CkbJ19ijpVFFg3M+Cu1aOJEr1ktt7+rgKzQtCfgrf51RweamATe+66sBzWwXzXGwBnD6hMHvOothfh+YgG2b5gaGIToF5eqDy1E0QaQeUowwuTNGhCuD72g1HpijMBjDoSLIhNC8iL3lOK1znB+G41vy/93DXduEKDZcr5M8fDusCBgG4MaGpcsPfp2Og7Unz6i1RgDrQnZSAn45gtkqs3ryL7X/3PJEf7+Cq0KxIhW6mkK3sEE5YlfT/7/oBwQj8/nSsJIh4eA+5atkYACnjQ/R2OC5akSK17qBrDzFlMzx/1kKtexo9OBY8AqFY1URIIFjodrMxdj/Robx9Bp9rdNdGMCOF6l6N5aMV6r0x8oXHg7dtpespaq6ymjan82fZuEKAWqZ1C+QZDr9yG/mSDcsj/7bG3a+tYCrQiUr6EPDpgamBqST0gYYZO6jdFvZWxdnilteqmbhEoTFj7r+qZRLudnMPNzeQZzrNSHfbFK9DesiPTVOh2+zxO5yf8n3NHu9V9d5gwQsP5D1zOMoD/t6He42ugeregA72oUHyAqmwNhWSoDmzQLdtUd1TKOowYx+QBVtxQgLx93xAb30GqDBZ008DguWQLG5XD/N+Vu2z0ckWQeOzUsy7yD2Eod0xs0M8BfEjBijy3uGhVgqjWzyX7Y5HuS+wvu6RP8gAwX2Z/vcCq0cdYAVGtwSWb+rQ+Qx2r0d2O8f4GU174p7FuikD+r0W6LYcxi/Qpld2RD4AYP0Y8y9kT4RL9sDilRbFgYJsRdKvCAu0e0S7eFw85JoNlStdaFIEvCG64LVPmUg2RwqGlR3QjT2koZtWuzNQryL1zuW8RphNNUxoAUgCdiEHai8FWUgBmKYKWpER1+vCs6nbtbxegyGCXkp47dMkWX5MOlvMobkYF+NifGHjogF5OY51jX4sGdIU4Pf8OHirF4AOSIUOnvkAHzira0QxVJi1r/YduomkBWyDxI3tZiIlF8eZeyDQJELxLy0bBzPiw1sYutlEX3aAyysOB0pYtuTMluwRuqJAy6gAsRxoW9F2N1uGpifMQMYZNBX86osTQFrP3BLJMEUBPoiaHT4U8yWRkBhEFtONSSfwUB0DCFUH2JJNiLB0pPKSs9zZauClZwuGgcW8AwDJOribiGQ/HHMVYpEjwO3msoHlwxLlkYcpBI5eL5CfBmvJJY9NP5aQq5bF8mZSdyzchQRUoB1FetOyJhUrWPO6SQV5shgoS5EmBQTXqI3GI4749zzfyNZQ5xsUiaEpiuiGsZAPTiA33bSMJScm0p6cZ/NRB/cq6wAEipQMxbQM6wuNEYP7AH3SYOu43sgMkRTUh2ZrfLtD8dQ9OnIdnQHew1yaQK06ishjswYgOk+JLtgpWwchBXymBkpW0/N9hQYsZyXtrKRORJHyI3tg+uljiLrFpd8dY/9NGnYEICBiVg/haPkxnePufXWOy/9tC6eP6WT/vHh4kuxxu4lAc4kIQXlI04J+Ahy+gcX02aMSzR6w+wmH49dKFEeXUByw6zn4Mp67Z/58ickLvI5mv61w9CbAbBnIhSaCMDUwWxbQHu5BCT+zECd0cSP1iMtJVJeIOHrqCLz2KG5msJUfsjdyD194jG6zuBaG17kwgO54HPQqaD4mNHVYP8RjrVcCJjRbLmex6bJg2e1CZseU2grZA+M7HkdvpNORboh+xqYAHph9juYBqud5yo+RkrhtGSheCskcI6bEA+FcnSFRf1TD7R3d4zFodpCOjQh8fQadUtTsciJU2SKgpZI00OaaRXlPoRfcVlf4kF8SkNLMo9uzqG7rQOPzqG5LLF9hAXiM7gisfYb8DFg9YVDcZ/O3ftQgP9Do5x5226B8IaPjk/QwVwzaLqcO4pZGfspmNl/EfVWh6BdQPWA07+Uxs8gGbUu37SAtgk7FwxsF2fBZAiNgqtCktiKlknsNlAeCTexkONYu5/62uz6FIBZHvD7iBI3XpAT2s3iMAhonuA1EZ2h13m7z2ImazZANGSXwAq4k9U54pEBN4QBb+eSm+JIbwZTiRV/mxbgYX4Qh/+dvuRgX42JcjItxMS7GxbgYF+NiXIwXZ1w0IC/TMbrfU7sRLHijNiMGOsnAn5Um6BM8ZyNtgLm9BpbXyY0m35bTRLpmQFTM4YgaDtmFZbWBEpWHxNk4IW2RknCLEww2lWLYjpgbQkE4/0ZLRCTBYhTNAtxWaYblqJqzk5NbHuP7Hrr16McCi8doRxl1GKrjdts8WOeGADKvOZvpCmB9lVQzp4l+eElBb3Hiko4GGByp4n4AwPyz1JPIDin4THUe1YFL6EcMbcvqwIleI7kLwXPfVlfopFUeDnQt1QDFmUe2DmJz5wbL3IhixOyPTUE1MFC08hy+zCCXNZIQPWkfNqhccXmBXpSSxGOSugtUrIiEAIh2ttCaGpFM8z1JEG+DNS4/67ZnCbnx0zHRj7j+NmZ8eKQE9I1QwvYa4TthLORiDbGsh+3MNNcpSNEqnj0AipzvyTPAeejjNeRZPRybeLzanuLw8LrPFbyUpFxJSSRmEzGRgBcC3XaJw7fuAIKIFTxw+FW7cPMxTEFELJojyH64PoQL2iVPas6Dr9SBkjhkJHhQ05CtPLzg9VlfCtz6mrPEk5tAeewxvg0cv5ai6mZP44V3TRloGcGrU4HVdY/RA4+jN3CGuLiTQfYC2Ymk4hqAPtBEMDIHc7Vj8nnGGej4XYIIQYNuuH7LByqJeFUtUhK2Xgs0V/jZfkb6S6Rsju7wWERNmjRAcSCglzzOZsSD0Ox5mMlgwwoR6Ja1SPeJ9TWB/JQ5SHrJWf1u7hOdx+ZcfzcLjltbXEZzySfals9CgnZANGQfdCpB7O01UoaFcAFJ9jjncNZcdimzKD9DstNudwMtqCcFyimguqWgaqA8FKj2aXfbPdTxvrnbw+72mDyt0TzRYvmIp67ky1ZQK4nZx6gHsZc7rB6xUGcK3bZD/8YVskPNZ8BSAGuV8lyyM4n5f82prasF2l2P+hLSsfYyhAEa7lOzg4TYRkqdy5jnAsVrsryrkO9ryEYgXwRK3MxjdE9Ar6lzihQ0FVyoui0eK1cEvY1FQPtEompFU4JIW1Xr4VrmvVgkSqLsRUq4ry+TZqZX/HvKAmlECqsEAKdDTogfnj26Fi9JZCBqQF7sn4txMb4Y46IBeTmOpkVx6ywUvryJu4IPyeIourEMlKroShVdqGLuhtPUOngpYIvg5V4xpMzroBsJhRQEUlJ5dkpedHE80IraHZ/0EP10Q6AeKGIiNDPRqUpYJBF5P+HD3+YD7B9tRF3Y5uIEGD3wqA7JQ7Y509njQ63d9UnYaAoej+aKRzcRgSLBv5UHpIWN7gKrh4JTVcMb9NHrJI5ep9DO2GCYatCNJJ6yZlOjGmD2vMNo32O0z86kH4uUYxLXZ8qgZVGBX18Fbn9o8PoQkhZ1I8J5ZEsH2W84O20WzxuheYMoXfH/0wn/5twQaAeA6V4SKUncWpxL43Yu5GH4QRsCkA61rqkFCcnndLLq03XYProVNCKO68kyJqkXOaAV5OkqvS66fsM+WFFwbi0/a23SkgCAnVcM6LOWTYuUgwVvasQ8YAxcmQPFxt+CoF70G25ZsaGIOSlxGAtRdwwfbHuIRWhYrGVmh+X2tA/PcPyqDN1EYPz8CvkZC95mV0AYg3pX0flsF+hvNFg90cMWFPjKIIi2BSB6UknMOOiDsuH6ZxErcPm/WTzywTWbZkmTgtE+JwbKI4vxPYv55xgaePDlgcYYtfs+cOMXAkevpzBYGDq37XwC6LdCg+2CPfWpAmoFIT185mmvqpG0WLKlNgMI95Dco5uzoGsue5ixR7flSEf0ArLl/SPapIpAoWq3A/1pxftJs0utQWzsR/e4bdNnBbLQ3KmGTn4uTEQwvyRosfQw6cFQQIH6Mtflg1FEFmid5SFSgbq+Rupo3J/s7PdMomSDRi66eeVnw7KEpw7EjDxGNyX1a8FCOCaEy47nttv2aHY9yqNwD/V8b7sN5Aca48/kTAv/XA51kGH9kEP5TIH8NIixPzJGfiqw+MoGx6/3mP73Ar50UMEK1xyWcCGDxVYe+YlEcQSMb0pU+zxv6xuWRhfPDRM0tmCjOX+K4nBb8vPtjqfb1ZrLt5VDcaBQ3leo7sohk0kM963igNezjnkyCA2HYhNoKk5sxUkoG/QqSfQftB9RPA4gGRCIfrh3R00Ij2GgEgfKV7KJD7RhM/JJ/M7zKsJ5JWWQ92Fee6/8qb+Pi3ExLsYXNi4akJfh+I17PwdxcoZq3yWLW70MwvKKxY0NQVdesrhR4QEIOSAN1WHguztPfcRoaBpkH8K6AtdZhSYkohHRR99pFgrVfZGKbhFm1SIKk0IFq+Fh3c2HBiMhNA7nZs+iK8vkrkO25mxddKPqxyK5pxRHwOiOQLsTskECUjN9RlBo6JFQlagzEY4Fw/g+hbtRJ5KfMhWdDjPDrK8P+6lbFonTmw7VQYfqQQ/ZOowOLKpDi+rAQvYe+QKY3PHIVsDktqPm5tCxgVuxWcsXoSCzHtnKY3zP08WrdSgftPBb06HgjyniWrHYLgsW0mUo4qPAPOZrNB18kRMliCgFgBQKCLAwj+LwiHrEwl6GhkerwXJXydSoLN9wCWdvuQ6bSSIZ1nG7orUvQEF4bHQi0hKTzKVklkiec3s2EQfvYSYZymcP+b5xBV9odFemoSHqQ1aHA5SCOl7yY5nm8mNQYkobD9qO+FpEXVJjt4GqFFkS3ou6peh1Z4zl9YwCcw/UD41Ssyl7wJc5qiPHiYAMyJ8pIYxkqNtConnYQHX8flQPeI3ZPMwEd+EaPgkNeM4Qy36SoTz02H6yx/huj34siLLdq5GtHE5fSfSAydcezeUgNBJh5nnbw1Ye/ZSNxepRB1MKbH9corylUdxXcCMLM2WRKe8XcAoBBQ3uV9nwvREeaHfogOQVmx/Zc8Y7O5OcLa8c9IrfrdEdgenzHt3MAw6pCO9HQVj+ACjvi6TB6KbA/DOS9wU1aGdik0FROwtzeKK99VWP+qrjMT9lQTx9nmgIwGPZzYDVw5ycEGFygBqJMAESitp4z4v7m4IJtUc35/2y3eH9tb7EJO9YOMMPTaTsuW1R56ZaNkYuaGhMReTBZbw3rB81qaiO+RvNdcOJpAm3q/p0CX+5xeIVFuWtjAnrY4vygcL4NjdUrwX6uSMqHeyLsyUwuqnAdHOkEMDJ82w86kt02IrZKl4FlHjHQjigOGBH0U+IIquGuUyy5+ST7Hk8o4tZu+2DPTHfRyOSwRnLU5pBTYYaXoMP93uB0FAQOZN9aI5KH3RIQ0YNJ7M8K6B0rsKyNVLDASDpV2QnoDpBxCQ0S9i47bwkhv8i/Xwe49//+3+Pb/7mb8b169chhMC/+Bf/4tzfv+d7vgdCiHM/X/3VX33uPW3b4q//9b+Ovb09jMdjfMu3fAtu3bp17j3Hx8d497vfjfl8jvl8jne/+904OTk5954XXngB3/zN34zxeIy9vT18//d/P7quw8V4aYyLBuRlPOa//TxU51Gc0NFk/ZoO0ekn3fB1cIupkASWshsoBTYX6KYhoTbn7JywLAiqI4vRPmkLkf1PWP8AAP/eSURBVD5FMXkovCSCeJvbE1PPo1uVqZBmLGMgWBSUb33Wc2YxCCIh+DDPFkPhUz0ITVXJbexHpCy1W4G6Ej7TzcMM8gmXbcZA/ZBLQvxI73KBNqY6Ih/jOx6m4hMoWw8WoTFlPQrGo2e9V0Bx6jF/tsX4dg1VGxR3z6B6BxvcjqTx0MFZzEtgepMdYnHikJ9ajEMzVe2T1hCPWb70yBcOuqEr1urhCu2VMfxszAK9buCl5I8O/wrBf4t8KPAjoqFkStdG2w4XjZBDMxOtfb3n61nGpiAmonf9QK+KNr9lkahPqvPIz3r+nmfAqkbKF4kWu1IO22XdkIQOnG9yItoTGoji9hl8nmH5hktoHtlC/egctlSw13bPfxZITY8vNczOGFiu4bbGDBXcbDwA+ELz+BU6rdvnCjCWryUURYZGBTh5VYnprQ6TW32wiRZYPO4Tbe7+22YQjohItuJrIsy+dnOH7EDDjIgWxEI1zhhHgXe0fZ0/bzB9vgWUwGjfIlv2yA/WuPKhI+z8l0OooxXKu0s89O9b6DqmrQuodXCqqzj7SwQh7LPgNbx4DFhfR3KlE42Ez12gXtEpyxUuoDWBghMRPIGUGVHuyyQGXt+w6OcOduyQn9AYw0vOkJ89IZAtRTJxKE6DG944GEJMAloQ0Np4T6qvBQqY4P1A2CAKb8P9piJNqzgQGL/A/AkzYpF/8rohWVsa3u/K/aFZzBZEh4Tj+02wLldtmIDpkWhjsmf+RD/mfSFabgNsXiARMkq43QjUVldwn/KzQEdqQoG+w/VMnxUY3xZYXQeK+xr5gsisMAJ6Dcw+o+mMdUw0rd3xqD5ZIj9WzE1ZCci1SkGL3a5N1w+vudDIXHKJBsht80SaZsDyhg/3bwE7dqgfsvCS53z8HJ2xogWxDi5Y/dSjuktUop/yPusyot/9lFQvBDcstaZ4PFFXPZLoO6LKMfw1/mtLOokJIxL6BARaXeGJ/ABJzA4vQoPqwzLoxJadkhKma5HouDoEV0bUPQr9bfUS42HF++yL/fN5jNVqhS//8i/HP/gH/+APfc83fuM34u7du+nn13/918/9/b3vfS9+9Vd/Fb/0S7+ED33oQ1gul/imb/om2Bh8C+C7vuu78LGPfQwf+MAH8IEPfAAf+9jH8O53vzv93VqLP/tn/yxWqxU+9KEP4Zd+6ZfwK7/yK/jBH/zBz2t/LsYXb1y4YL1cR5jJVh3gRsDoloLXCrINjk2BMxvzNaKnerM9PGDXV0WiGqg26COywSXm6LUK1QMW1QAgs41ZPwS0JPCkow4lzuJFukF8GLtAxYoZBvXewPONsL7omRTulEA/BYpThzt/1kCVBtVHGPxGb3kMM1h+0JAAA73Mh5ngqFfxYXbXjGm5O3vewxTUfTB8izOVAFJyej8ZZl/zJTNDdO1hcwmncxQHNcSqRfHkCvl0DF9lWN2YQK8dxrc62FKhm2moziFb+pCrYoMlMPUnXgl0E/4IF5KprUKzI2GLDNlpBikERNNC1C18VQAObC5SAW6Hh0y01NUSKeVchoMTtSAu/tjzWSAAzJU5ZN0xsFDKgf4UmhoIgeXr93hNOA99/3RAPVRoPqrynJYjUatsQFnKIgQmblDI8gzwHm5cQNQ9xGoNvz1Dftojv3kMSMlGIbpkAege2kK7k2N0Zw1Z95BnNeTxilkknWHwoJTnKFcMNmRWBsMNAWE832eHB7YvcvRXZ8gOlrweJxrNtsT2Zw1sQWed4sTh8I20p83WMul/6ishbbx0cFs9/LIIadKhWQ8InbAsumMj4nJgeVUDQmN835CrfkrNjGiCnbBzECcL6FKjepCj3QpFWbCEVi2Lt37GJkSvBazl6wAL7m7boXwg0XsJ1wr4UMB5zQKOadG8njz76jRjbSYe+akIwX4e5T0V0tllCJ3zKB+wYO0uGYyfpjOYl8Bil5MEukYK0mu3OIuWn4ZjodkgRIe9VMCKAW2IIYZEZULmRMF7UHWHQY2cXBlmw73kPSjSkIQBXEBCnQayZqACFUcDVVLYkCUhhkaJAYHcJi8H7V1EYuIsv1qHr19Ph8JsAdRXmNUBAYzv0JY4alVkP+QkCSOwftij+lTJ+7VDSEx3KI4VZk9JnL7eQq0k5k8qLB/2yE7ouKXXwVFtyt+XN+hMpRqBZpfnMjpVmQlT3XXNfdY1tzHmfkTabfkAcLlIeo2IEDW7XLbYuO9HhEOvQwO8ca8mBTc8T3qRLNy9AtCLc+db14HyuuI1jUC9jdeACMiV6LmeSLmKx/wcZWzuwnkXcLlj8+KGJv1iDONd73oX3vWud/0P31MUBa5evfoH/u309BT/8B/+Q/yTf/JP8PVf//UAgH/6T/8pHnnkEfzrf/2v8Q3f8A349Kc/jQ984AP4z//5P+Ntb3sbAOAXf/EX8TVf8zV48skn8ZrXvAa/+Zu/iU996lO4efMmrl8nD/Tv/b2/h+/5nu/B3/k7fwez2exF3OuL8YWMCwTkZT62P7qffN1lixTUhyBQFw5JaN7Ow0PVDLOD/YQPvPoyHyqqZlEgPP/PRG+BfiIS7zo/I8WIBQ7h+Ei1imLxOKso44xioFa5HOcg86iPUGsW+bYQ0C0pYSevlJh8Mod6agRXBOpUsP/NzgKaE5AYYYOYMQhEy33agaaU4EB1qe4KlIdAXwmYSsDmArKn+Lw8ZJGga9Kk4izo5I4PuhOBfiLhconyzoI2uZqWsWKxgjxZoTjqMX52gX6WkUp12CNbWcjOwVQSzY5Gu6Ugew/Ve6jWUXczFWi3KFhVrUN16FCeWNhSQxyeUlMR1iPqlo3Busa5VHAASXQeUY44mx//3vWkMEUdxyb1qW2hn7oFeXh2vqHxnnoNIWC3xpAWoVj/PRdjRFC8Hyhhf9DsWxS3B6qT1yqhOaLuuX9VCblukT95h5+xFqLpabHbdmgf30V+9wzTT+xDHS6p3Yj5HsbwfRHNsBsN0IZo3+cRMfJswCSo+/AesBamUrDTCtM7BouHFJodgW4q0Wyz+K73JGIw3tnjTLLuthj8ZyYWeimh7+ewY5eokFFH1FwmtaefO84U+wGl8wI4fZwoVL8zYrCjEPC5ZvMlFdTBAttP1tANm+WoMcpPY4EuKNgNtqPdwx26hzsW4E5g9ZghylF4RLEuxgZeefRzC5cH2svYwUxcKiyzM4HmikU/c6juC3TbNF4wY+aN6JXA6jHOyI+f1qiveTQ3OtRXHcqDgKL6gYYWhd/dVixcPeCGbAdbhPtHuGeJgOyYCb/v5f5wD2m3iUZs3mdiVoSuuYxua8hA8pKvR6oPr/dQSMthokOECZp2l5/LVlxmccxZe1sNlFKbBzRnys+aCWAD/cuMgeJYpPvS+iobsvyM+zV/akCgzcTBC6C+7ti4Fjz25V2F1SMWi6+ukR0puMyj3gO2nqS4vZuez9bop0B2Kob9w8aEjwHyI5lyloSPjSGRjOIIGN8Oz4TdoN+IesCgs1GdSPsd6cCJJhUoV9GQQbVs5igSp37DjD36Gf81E2pQ+i2Hdseh3XXodizMxKPd4+927NBv8Zo0Y9JnXUlKoCtIO7QVdUouDxRENWSVQHrIlpMG3N/Pk5/0RR7Cf3F+XuzxW7/1W7h8+TJe/epX4/u+7/vw4MGD9LePfvSj6Pse73znO9Nr169fxxvf+Eb89m//NgDgP/2n/4T5fJ6aDwD46q/+aszn83PveeMb35iaDwD4hm/4BrRti49+9KMv/k5djM97XCAgL9ehFGeRG4XyyGN9RYSZcT5U+5B3YYtAZWpIeWKQX6AVTJEeRLKnJkE4QN/3aOd8yAsQlTAjcpR1TdSg3lPIwqxZEpYbdsQxQMxU5LbHB1EUIAJBbB4KDS8oyo4ZHN2ED7UoPixO+N5uG2ivGEyf1HzfnMUBgCH4MDRCkZ/chNlXEWac8yWwvsLPeEXk4/J/c2h2FKoDircXjyg0WwwfLI8d+lFwOGp9EtPDeyaOR3cqTyQhf/o+AGC8bhETzO2VObySGN2zEJ2Fq/i1bfZynN1QaTZRN8xg6ScZVAPsfLqBrLuhoLeW6MEmbSk2EsmFyqfU7tRcCMHXNjuGWJhr0o9gwzqKgk3E2XJoIoQgitC2UEcL4EpFBGB/TdF61Hk0bdBShBDDKJSXEr7MIM6ITpwLRLSOAvDY6ChJHQYAdB1zPVoDPyogjhdAWcCXGYpnD4NmhdOrviog2m6ge8XgRcnGJk7VCOspbhcCsB5eS6S0eKUA2EADU2h3NB68NUN5wIRv4YC6k1g8wdDLs1cysM0FbrpwgC8dEGgktmB+QXmf13M3Y6J1RCYAQK9kEt+qmtdoux0EvGWG+qrGE//fOfRJDdEZ+CqHUJKNJPidWT4k0kx8dDiKs8TdlgOmPbDWgGSBp1cCgEJ+xibcKw+320OcZPCZBwoHcarDhAOdhaJWw0sgO2Hhu3xdD7mgDqHdotBdWqA4ZvCemYTZ65OcKeEzFu4egM9ZHEd6kuwo2C8OJfo5qT4u5/tjo+LsMJFhA+Kzvk69QHYmgCw0BXn8brPBE14mtEUveU/UAeG0JbUt45vMW1FBxyPMcG/sZ2HC45TNRR+oR7Ijvctl/HtslkwVhO9imBiJJiCiB8ZHNMAQjtcVPPezvjxkDlX3JeorDrIhGuwl982MmXPiVIVmD3CVg74n0c1CAnzIXIkUJr0C+p2AZnUiiNUHjY9w3PZ2J2QbieH1bg643dD4hfMfJ4Fs4VP2SURJNp0YnQrBswLo8yAIj+iG43eG92DSrtI9sBYJXtl0wmJGEl+PzZUNKJ1sBHzmk7A9prjb0kEvVdh2D9kwkNAWRMFlD7jJS4yC9UUcZ2dn534vigJFUfwh7/7Dx7ve9S58+7d/O27cuIFnn30WP/qjP4o/82f+DD760Y+iKArcu3cPeZ5je3v73OeuXLmCe/fuAQDu3buHy5cv/75lX758+dx7rly5cu7v29vbyPM8vedi/PGOiwbk5Tq6PlBZemx/YglbTNHsIDnMxGIEnrzvyQssDgD+HR6oX9+g+lTJm3kJuIYP3NMnWHwLF4KelMA4NiVjYFEplCc+cHMFg8DmIO0rOMV4BK3JJFjZBppJCpsK+pHJHY9+JNBNgO6aSIGDke4xvskH/Ow5B/W8x+kNzSIhQPGyB1bXPfKjIEpfIol7TcUHa3FI9CZfA4dvIW1B1SLN5i0eyeCyUBBGrUso4NqZHMT5mYCZCVz6LycMqpOCBXgWROHRLtd5IhQ5Rdnq9uFAN5ICKs64+y3UuyMWPi0FuvkZz8X4voFcdZBtP2gwhAjoBQYEIV0PHVKIYBSSW4dk2ZvnbGCqcqBmRa1GREzi7P9yjZRaXuT825oWuObyHHrRw2fBtrYs2Hh4jxSYqCS3BwC8x+INezAjieJ0htEn7wNwXFfThhn90FzFpig2I1kGcbpC/fprEA4oO/JnaMer4acjnofYxBhzXmTftkxvtw6+pNDdx+lAyTBCSG6OsBYu10GnxCbl4MsErv9HgwdfodG/ooa8VcHv8eOiF+j3eohesrBRHvmxRLmvsXrMIj+WMBN+EfoZG5XieChWI3InzUZhvwRGDyzG9zzMSKLelZh8FLj1jhGu/7ZCfm8B0Rmg6eC2x2h3cqyvBOe1FZImYZNuCADqIKcAN1AV20sWPnPopILb6oGlBs4yzJ6WFG5vKdhYIEYtmWKzABG+40ZA3stgS49+DLRXDfq5TA1YdVclylJ0ustW4f6zFwwd1sO2djMGyAlLelBzKdCIthyqexK+J9qg1wLtDo+naljUT5/jhIotWajmZ4Crg9PYkonuEVlodz2qezwPOlDislOJbovXgRdIKIhwADJuqw2hkaoO2zsPwKLkfrlw3Psp73v15eH8ZgtaxhbHPFfNHpJzYQpzDQhZdgZkoVnZ/qREN2WTlS0EVjccigOJ9VXAVg5+YpHtZ8gWwOoRIllR8xBtxxnQKNDNPCm5h4KokwgBgFsBFapDByDZOIiey4rC/Eiv8soHJ0CRzEUioiJ72ihTCM5lCCuCUyKbFSCgWBsOVRFdi5QvYPhOeMXlyU4QrfDhOtdsXJwgiuQKNvxwgIxf8Y7mCFAesKQaehVRE8cFvdQYWF+AZuOPtEwAjzzyyLmX/9bf+lv4sR/7sc97cd/5nd+Z/v/GN74Rb33rW3Hjxg382q/9Gv7CX/gL/4PN8BAbiPvm//9X3nMx/vjGRQPych3jioVa56DuHiJfTCB74OiNQPmAcHPkMrucgtBqP1jUBmer6pMlymM2CX4UUnIDnaofsyDK+yBOD+noTjHbop2JlFkAIAly04PbI2grzr8GDJqNyPGVvYe0AiIgN3rFRkCEQiGiGsLxdVMNFLJs6bF+eEBA1tfZcIzvOpy8UmJ8SwRedCjGVhJ6yaYJ4MO/3aKH/eoqaStMV3bwUqDeo4i2PCaNZnyvJ0UpzrJrPWgcohUtLAvpJoi/o02tCQ1AsJdVqw7bnwHWV0vUl2Q6XpyxExDOAU03oBl9EIVvCqu1Pt9oRGQkulJFt6e6YTMBDIhGXGbb8W+xcDcG6Hr4vqeHfBlmybyHvnUQ9ikiP35oPqoS9aNzVJ/d53Z1PWAMJs+c4ejLt9DOJEbGhGbMJS1H0ot4D59zG4RzQX8ioGsLpyXsvII6rZNwPjYf3GaL+rVXue54LqLAXkqIZYOUIQIAjqgKhIDPJNw4hzAWPlM4ee0UxalFuQ8cvEHDTDzcIocEZ7bNhDkOwkhgZOCchrAC3ZZHcSQga0l6SE9Njw3fNwqIw4xy6M+6OQt62Qd6pPPQawe9dmi2cpiKlEHZ2tBAAcI75pgEnjw8vzdDjkOYGW4FXMliLd8X6OakSsEDsuaxl9rBKUCfSNJkGs70n76K1C3hAAEBCI9um00Wz0/QGjQCxSlgRhrZEqhCgdxcdtj6tEQ7B/o54AqPbs9h/hmFcp/f42gzHItXIDj4FT4hRKqWLOr7TdQoFL+ar62CsD4/CaLobRbR5YGAXoZ1bGjHzIj/j059/QSApDYj2vo6HSYjuuH+ZQKFTtVALoLd+Zrn0IyojVEtJ3GsotV3pIBuf5pNUrQKL44HxARymFCJ9KzsjC5VNOMQRG/OJFFkA/hWQJ1mqB7w82bkE3UqWpmrGgn5Uw2txTMbDDYMaVXRHthUHqKIzSyPc9T00I2MqIVsBVRAzKPbmHBsEGzQ2AgrIGqBpO0QIu2baoPgfOQga5oZqIYonK2IGCLQo6J7oROAzxxkK5I7FgXoAtAe3a4L2g46vomeyxNWQDZcgNeg9sOR/uUd34NyEEV/qY+bN2+e0018IejHHzSuXbuGGzdu4KmnngIAXL16FV3X4fj4+BwK8uDBA3zt135tes/9+/d/37L29/cT6nH16lX8zu/8zrm/Hx8fo+/734eMXIw/nnGhAXk5j7pJVIzJCzWEAyYv8Gbbz4IIL7iwFIeAeuchirNBWA0Aixt8gOrAaYYERg8wCB9HA/weRaEuR3BrAvKFR75g6Fl57BjMt/CJV1zt+0QHEQYpCKo8ZLEkLLUV+ZlHeUjP/OIkcK63gd1Pdpg/6+ByAeE85s902P6cwfxZg62nOhSnDuObAvNnPIpT2oLOn6WwfOczFvNnLCa3LerLbCZGtxkiZ0uuPzpxdbPApZfcxvVliW4qGAJ34iAc/ebL332BBbt1nG2P9Ki6GfIyouZgc/QBbei69DdZ9xDGY/LCCpf/8wku/W6LK/9lDdUB1d01RdR9jyQCT45VAZ0wYX1asXnoOiIVbQc/rUgvspaNj5Lc7rrhz2IFLFdc5njExkkruFnF7XcOKSAwohJSAUUOvz1Ff+MS3M40CN4VorsWG4DQFITGxeUaNqfexu3OB8rW5ohBhAAF9tGhK8/hpYBedERcXDiu8RhsWAVXzx5jsPvNBkSlN8H+V4VjwvMjmw6iM5BNB3W6hjqtcfSmKZpdwVyPbEMH0AmYLYP1VTr8CCMgxj3QqEAtEXCVw/pxfrGipbQtWZgCYda/HhA6iEBJyjgRmy09lg9plDdPUNw9w97vrjF7rsP8GYaOunEBNyux/Irr8JnC+hKbiKSTCIfdTpnLYaZU6qqVDFRJP2zryAJ7LZyRQGVoVRqoK8JzhrvclyzsCuoRigOZBN1m5LF6ZY9+5rF4zMNc7WBL4OiNDnDA6BZn75srdAcrHwjohcTqGpK9NV3pqPfKVqG4b5HoOnEGXDXhGvFIs+CRYqRqTrQADBqMNuLlvhhCQedR5A2MbnPZ+VkQkgMY3ed9wwbHu4hcbBpqxPPJoD9SqXRAW4vDIXAwO4tFd9DdBTrd+iqweAXPi2yHiQbZg7P23ZAj4nKf8kyiQ1pxEvQqLej25NjsNJeA5aNs2CLNNc3yh+YH4Gf1GqkJanfCMTHRoIQFfMzVYE6GPyfSjiJvWwZb3lZAdiJQfWOArUgTTRGNsyMXkDRqPaJblQ8uWU4TvZGNgI/wRXjmuNyn9diKeikzdrAjBzOzRIJEWIdmg5SyQho2Taql9a5eSkBQL8JJLQF1tGEf9hIY8Tp7sX8AYDabnft5sRqQw8ND3Lx5E9euXQMAvOUtb0GWZfjgBz+Y3nP37l184hOfSA3I13zN1+D09BQf/vCH03t+53d+B6enp+fe84lPfAJ3795N7/nN3/xNFEWBt7zlLS/Ktl+M/7VxgYC8XMeqHmZzuw7ZM/cxU9dw8KYyedzDs7ixQTaAf7sLc4kzf3EmTvZI3N7I43U6cKVLPvDKo0AtCGFbpmLoXj9BygGhQJEzvt10cMvyGLz+haWepB8J8roLind3PmVhRhL5wiWahi0lykOPbqqwvCahekBYCT+R8FJAWg+bKRRnDjuf6dFNFbKlhy0FTCmAMtKaJJ12eqI3McMkZpTEHJKIiGzKJHTjU2J7N5XY+a9HLObzbGgMgKEJCcF4yakpNiERrfA+iMYDkrGuobueM/EAilunMNtjXP6dU8hFqLqiYxTAIl+Kc9oHWMNlljn8fMrivW4oyo7NTnSZ0ppNSHSmijSonMiIlxI+U0NjFdPQ51PSsrwFesBPKjgt4acF8iPJ5RrDqUopABcanzwDfEbdCKZMrt+pUCzW569lSVtc0dvz7l4AfK7gcon82eMB8UlWwyqhJsL782gRMKAj4TsCpSDyLKFEPlOw05IFS2fwwjfPaVRw4FFfIhLmCkAYAWUB37LZkBbwpYPcL+BmBlAerrLwTkCPDNxawWrAC9JezFgkK2y3FS6JMJObLxGojCwW2y1g/fg2ygdrqGULl0ssHypQ7tcwkxzNXg7VOey/ZU5L20mg04Trt90CZC2DYFwhP6Z2qnm4h1wr+LElR6WXcIscYtJDPCjQzR26bY/p0wrtFlIBrVqBbEGnq0h98cEaK3+QDS5SL+QBdZVJqF1f8SgOREIw8+NA/5EszE1FwbMwg7agn3moms0DU+QDbWlO3n5+ytyTOKtuq3B/awenr2iuoWs2JfkJkQ0md4dCPDQAsXmLzYPLAJ8jheZ5FbQ53TCZEz+TBXSl3aWjV32Z7y+Oeb+0JUX85X26TG1/XKb8pJiBZAse63bXY/a0QLMDzD8rsL6KZCrQT8N3QcX7MnM8lq+wKPZVsDjnOYkaD9mxuSsPRWr2ogW6agCUfM1pnlNb+mS9GzUSEUkTloJx4ZDQCacASNKg8hMR6G9sKFQrYKYOsKQ4RnQiajhiSKAtPLIVjQyEGyhbkOE2HFEQAKIXyNeKU65hG4VlE2YmHqIR6V5uxkRE7JgoYT9z8BkbcWEFYAWds4L5w8U4P5bLJT73uc+l35999ll87GMfw87ODnZ2dvBjP/Zj+LZv+zZcu3YNzz33HH7kR34Ee3t7+PN//s8DAObzOb73e78XP/iDP4jd3V3s7Ozgh37oh/CmN70puWK97nWvwzd+4zfi+77v+/DzP//zAIC/8lf+Cr7pm74Jr3nNawAA73znO/H6178e7373u/F3/+7fxdHREX7oh34I3/d933fhgPUSGRcNyMW4GBfjYlyMi3ExLsaf9PFF1ID8UcdHPvIRvOMd70i/v+997wMAfPd3fzfe//734+Mf/zj+8T/+xzg5OcG1a9fwjne8A7/8y7+M6XSaPvP3//7fh9Ya3/Ed34G6rvF1X/d1+Ef/6B9BRdotgH/2z/4Zvv/7vz+5ZX3Lt3zLuewRpRR+7dd+DX/tr/01vP3tb0dVVfiu7/ou/PRP//QXdBguxos/hPcv9tV6Mb7QcXZ2hvl8jtPT0y96h/6uK//PYdbdB7rKZIz9/+MypKHmQxg6W0VXmBh6JjwG15E1uc7Z0uPscYrPPZD87lXLWTJXBDTkEFC9hy2IYqgmcI7Bie84+xkF3jYHxvccvBLktW+rRH04ewVnqC5/WKCdc4P6MWeg2y3ObnWzIaywuUTv/DiTBw9ktcfJK7jdumHAYBbdvBouJ7q0mDH3wYwi1QMpEyVbA6YEihOPfky+/OQ2/69aj+rQYfLbT3NDIr1HiOB05aihcB5+e0ptwroeTlakTUXUQUkiGFEPEalEmwnlm9a6mxqPKNqO5z3POPMfNQ9tQEuiriLSt6Tke7v+/ENOq0Rrsld34HMF/ew9+LaFUNR1UGvUBxpWQCfGFXym6EyVZYO+ommJ1Hg30KqC2P3kax9GfmIx+tzhgFQE4b4PyxWLFfzWhBqHeCxWNfx0DLGuuT2bSMdmnkgW9TB+MAQAQAvbbAhmVAxzFMYlG2NzaQq9v0hi+O6RbTz4ihLtDlJaNmfMPQPOQhhbf7WD0A5+rQEjIFsJ2QtqRPoQqtaJFDwIEJ3Ua87Qz14waOcK6ysifBc9qkOL8acPsHjTJWRLi4M35Ljy0RpOS5iJwvKqpuYjylkC3XFTvwAMVB0ztRTklg5eO6jKwJ3lAw0mzDTrpRo+F2iTCNk0/cwhP2bWSXkQtRrh9ROZUsV1QDBlR3FztOO2BffbjAZajV4j2bdGK1e9Ho53DFKN4mWviCjIRsJMLdRaIluK5PrVTznjH121dE3qk7nco3whg4qid4EQIEi3LTMm5Ug1IjmSxSyPKJCOznq2QEAXgGqfSEq08RU2oMtVuNeE+4takwYmzKCDgEO6Z8WZ+9V1vkdaLkO1vF/R5pcIQnPNYPZpjeVjDsUR3b2aXaDbccgPJe/TXUCzA7UtitzVRtZJPKa2BMx00Fcg3jY6ATsKv4iBfhXF3zFN3JY+ZC4F2lzUjBiRMlciZQ8ygL8rkc57P/VwI5eyPDZd14b754ZrlhzKHeFBlAUA1OBEB7cRZOgpONdnKm2PLT3RkbCfohN4+ofe97/1+f17R1z3/+NP/b+hdfk//8DnMYxp8Fv/5e/8sezXxfjSHhcakJfrCAWtbzskF6HlCpPbPWwuMLqLZH8rAsfYjINwNHB/veLDrb6MZKMZHW/MGKgfNXx/F9dJK9puKpLFZEw1houNTBCyLj302qM49egmErr2DN8LNXZ14LHzuxKiF7j/Ns+HduBgdzMKJiONAqGxKQ/ZJHRTum6ZEdDOBWbPeegGqA6YNZAvfeCxk1/uNYvF+HBXoTjRLRs0phzzM+srFNeP73qmzJ965Gcek4/cHKg9UQTebxTlQewtjs6G5iM2KVloMuJr1gEuCNilYPMSaFCJrhV/vB/eK8J6nAuUJ9KO3M6EVK0+NBc2OFpFVyhr6QgV3aoApIC+qKlQErJuoY7XgHMQIlCresNGQimuwzn47SmwqplP4kJz5Bz3S+tzFCoAfC3LMHmuxujpo0FfEnI5mG8h6GTlPbUevYFXAm5SAmXBbBAT9CxRAO8cGzkhuH1R9B/2B3mWGjYRPwek5sMrkRo1vb84993KDtdsrMXQLMBvuveQsoNawVu6YOmVJGdeeIxuKahaUj+hQqZMEHkDgXvfAstrGt1sSO52SqAfSxx/1RWcPqZw+/+Wo90FXC6hVx2W1zTpPdXw/Yv6D70ccg1cxoKVeR4CLgv7earhlhnUSsKNLGQrURwMs5Iu83ATi/J+EB0bprmrWiSqE8D9qPaBrc9Iiso3LIS7OWlfAIu9aCQhexbdAKlCXlLbEHM88jPuS7fFjIdow9teNbS3nTpkpxJeeoxfUNQs5Gx6YvCd07wvdNsx6RvI72apmWl3PXM1cqC6RxopszhEspuNjlrR2MIL3psiXcflgWYVJjRI4eP/uxmPUfWA2yUsabDZKY9ZtB1uLjtIQ0vwbsrl58e83vJToLqPFOAKD0yf5/Ev7mvYEigOJfITpGDB8fOkeRVHQXuy5XlOHD+fdCnhXLicdDev/TmDEL0KjURoXnVwDCQ9ilQo2YmklYsZTKTAsYFwGrAjZnDYnE1q0idVHs01A5d7tHsWUB6ylqTvdsESOveJNuYyNjXRtVAvw3uD/XXcVjhuo1OAq1zSM0Hxbz4LOSMT6hP5JQbczMDOXz5C9ItxMV7McUHBermOKNgdj4IQmdz46lN3sXj0BsyISIDTwe2kpyvL6qFB95EcrNZIs0dRJF49ALIFH3arRwbveFPyJm9KILrX9FM2B7IHVMcGZfvJDnrd4+TVY5THFk7HzAGus9kWqA4osBjflMhPgdXDLD5Gt2mPqJqAXIRiy4sB/Ug2jRIpXLHelelhKjvg7HGJS//doJ1JOC1w9EZg55Pcx+rAop0rmFJgfBvo5gLlkUemAFMFLnQmcOm/nkHeofOT73qIUcWCPkLJxgzNQhx5PiAW3rOIj7P00W4W4Hs6NySHG8MmQwSEom6QggTj36IuI14DSkLeO0LM8/CrNXUO0Y7WuUHAHpug2OxshhcKCbFYI6WqazXsY9dzG4LgXCzqIPYuuA+pSSEq4YVgenaVs5loWiDLoA8WgyA+NCleCIjeshno+2ATzP0TrYGwoeFSEpCxSfOADde8EgOqBITtD+hLRDy6jo1KmcNNcsijBZsa4wcUKzZjQuC577w6GDWIUORndElK159mkegyheYakkBZCF6n64cstSONRHHEWfYU1KY5g+5CboVeeawvhQLY8jo2Fd8f9QTtVoZmJ8P6yjAj38YiP6AE+QroZ8PsrwkBeF6DfPfCQpzlUEsFL4F8P0t2wPkJ82jytYBtdbKw7WcOqmHBZ0e0JzZjJN0GbWy5rcIB47vA6esNxs9ozvYfM6DRqwHNyEJyeXOjR3+ow+8eXgi4zEPVMlm8UvAtYMa04223mWPSj6k3iXoSIpwe+TEd7WQvsL4W3LQCkuElML4l0O7wvJoR19FcCveudjgnZjTc23TNe1G0y2ZRHK6NgGzEJijqRoqTAZEShg1jfgq0FREk1dAtrDhGCg7s51x2s8fldVtsarzmNVju04GtvuZSYj01bR79JDTXwXEtW7C5En64Z9oQzuj0gMa5DNR+WAHv6URFFCOc85L3iPwkIFoAnPdATmct2VFf0+46Nivx+Eguw46ox2DDwkkedapgKwYCyk5QPB40JxGJiY1zzPawFc97d8lANDJtn3CAaATsrgHWit+NVsCNHPN4HCC3W+jSoD0rgF5CnyiUDxTWr+kgDzMK518iQ3hPPduLvMyLcTG+GOOiAXm5jk0aTaQEOQd0HXY+scL9t42B8EDUaxbx3ZyCvdEt3uS9IPXIZgPlIFsD9R7QCwBB3Dr7nEA344O0mxLW74JtpFfDw9eM+FByGjh+TQHhCqiOtqInryD0EZsJVwHwEtufCjOWQRyqVywkI90hzoQhFHijB6SM2EJAdR6qA1TrYTNg++NLyMbg9PVzZEcW+VKi3lHIVg7VvsHsOYt+rNHsadhcotkRGD1wTDgfDSLG4oGFrh2yRZ+aD7pJmSH4L1KbgA2kIhS+bcvXtBqK82jVGylM0VlqHPhrNpxPHwroSGuKVC0JHoSYah5C/NJyjGVRHZpR37aDxX1EQ2ITlGxvxfkGJ743um2VxVCgB3tcNCF4sLMDT0IH4Xo4FiJQw0QTGhetGSo4HQFlNhyzcLy8cxCtSfuQhrHJ5S0d77j/IiAfkWbV9cwFWbeA+D37Gd/XG8h1PVDdQsMBMYQVdte3MLnt0WwL5jUYwJeDu060n2X6N4vD/IBhZ7EwJUVLBZtYBBtTfp+EDa5rc2DnMwY2F1hfVrSRXXDGePno7wkWVMDiYZlc7VwOuBGXZUaes7wA2j02DbEItlML0Qn4iYG3AvogpyvXCQvFfsJGnQnsFIwDIbekEzDj4ILkAnLpeMl0c86am4lDfqhgS6C+RvvrdhvIDpmn0uz5lBehl0EwHswvhAWwVvA5kVG9FkyFVyyezYSULxPYKLITMCWpPfHeZYMQ3Iw89BkttKWh+FqvBYojgeaSRxWCIKNoPz8h6utyOpT1Exa7ETHutthoeMnj48KlFptSvR4oV9kpEQ4zYYMByfc3u9xuVfOeqtvhteTCFZq/1UNcX3PZobojU4OZLUIDosI2qTB5cldC1bQcF04gWxC9Xj7GiaLo3hVdqPR6ELs7heTOppciUah85mErh/yEnYmXgDK8R3hF1ythiADaECzoOU8EL31C/thoC3iHYJkrNqyW6ahmZj59l+zIJ5G6LUnJJcVLEnmaEH1zIwvjFeRSDdk5KljvFg7TT2SoL9MNSy8kbBcyYy5Z+EUO+ZkKesoGq981cLkGVor7rS8K9ItxMb6QcdGAvEzHb9z7OepA+h6YTQfuPwD99G1cdddw/LoJLUUvcba2nzIxOLmYgF7z0+fPIyKRt+3Cg171nLVbPsIZTlsghfVFJCQ/G2YTAWA948NXNQLHr80we5ZBe9IgcIaB6EgVH0YIbjn9bHD1kT1I45oGx5NK0BY3IBQKHs22xPRmD3W4BOoGW//umNaywR3KjXKYaQGvBMr9GkCFbkuxkZqxyKkOPbK1R3W/gT5eU9sQg/qi81KecYY+zqyHlO9zmRxBv+GbBkLrIaAwFvKxAYnNyqoeaEtCEOWIuoaYsB7DDSX472ZwYCyy2y41R75tB4oTMKAXEa2JDVFERhDQi7ohyhO1H7HZEnLQgMQGIDYnm3qVuNyYvB6paQAbE+vhM7mRTE4q1PJVW8gWFuXnTEJQUkZY+HxzYxvl88cJhQEw6EbCulPWR3TwChoUe2UL6sEZEs8kWiVn4XxZh9Xr97C6wtvp6as9qnuc+bZFQN/kcD1GLrleA0UoUusrSEF9MUMCYCFoQ35EP/FQWqQQvrMbGluf6zHaF2i2JMoDA5cL9BONbsbvRnRdWl/nDLA0LKDbXSTExAsBN7akiB1IOk1puv7Y3R7yVCerUr2QaHccsgV3qJszIC874CSDqUjD0Sug3XOAk7SglqQpdfOABCkeTjNhMTp9VuD0dRb5kYKZOCynQHmf2yIMKVle+TBhIQDLe4PZMgwGbcGMHk+djVrLFGiXH6s0E66bjUkJESYuViJlhXgHqFpA1aRhzZ4RWD4cGgrBojhSv7qZSA0jAyjD1yWcu9joRLRAdWwIzTjY7YZzG615Y8CqNIBo2GyZQOcSPlw7HdEMYZEoX3FUdySaKx7TpzkZ0s0GFI7NZmgUj4ji6HpoitsdYPy8SCiF8Gxe6GTG42WD9iYuzxUeriDikZ0RUhaWx8/l1MVQv8Tj5HMPb/jddJrn0hXsSvWaDaBoiGKrtYTLHezUQq5UsufVC0I0PIc+beugPeE2gOwqFEc8Ka4IoYLSwzk+w/zU0Aa7kzh7naGORHt0pQM6SQ2L472pvmqRqGU9aXyyk1zvSwcAOT+x+GIu82JcjC/CuGhAXs4jFn7rmsVW1yd+vHruHrbdVdz/minKAz4oVUj5jv7w5QGALUBYisqj5eToPhsLGShP3ZSzeLF58IoNjMsB8ZZTtJ+bAZ5wt1PhYT8K4nQZArlCmJfwnA289OETyHtH8DsznL5pJyAQArL32HraotnmrPLZE7R5BFiI6TXQzmUS1ZsoYWipgUnC57oh9afLIY8t8ijEdg6juxlGUgKTEfUAizWPXaRH/V50I3xWlGWaMeesvxt0Fxs5FhACoijOayzi+qNGI464HidCw2DTsv2k2gjbs0ihgtjYxrKAPzkNf4uNioDINHxv2EzEhqHvh+30nu/teqBS8EcnbD6qEt47iLiNUgDWEKmJCe4A3ChQmfKcOg4lIDoeP59pNgVm43iWBWAsX88UEBZ/8FU7OH4tcOm/CZQ3MzYfAPc7HGevBJsP77ns2ABKAEpgfWMLo6eP4asRs1OECPvLBlIdLFiZhnR10tjshoBVorpXY/K7Z+gf3kY3HzHwchILQJF48/EaFx7JKlYaj8kLtE6VPSCDsUHMoUBAR2THJppNNQNAzx7LMHu2A7xCu61Q71HQHWewzRghL4JFaT/18JdImyFtkunuomGh1jzWQx1quMoB2wZwEthr4U9yNgxTF6hDpIh55eHPFHUPeaRRBiqPZXq7cGx6zl7loRchZ2jqgIkFgsXt6Rst8vsa3bYDpj3EaYZu2yM7FejnREdcPthve0leP4Sm7muL3xO9CrbdmUevKTq3E8BrB2EkZMs8kVhUO+1JAT0QochGsD7mMVs8HoTmkzDpYoHmMovn6h4/0495rvJTakSyM5Fsx2ULoOe1FvV0XrKpiA2F8IAzSKL1+BrWSGnpEdEVjsuNJgJ6tWGaseYx7wIVK1ux0RGe9sou6FZWj3iUD9hIyG6YxEl2vUHHJwQbtn7Cv4twK7L5INjOFizsY7hfP+FEhzBsEKOAPFvQUMEFtMAVPhgsUCNipo70LQEgc3Dh2op0v4hUeOkhDDVTwgj4zMFbAdHRIjdm1fRl0CytZHi2BDqWCFC9F/C1glrzmvBKsqFpMTQUTtCkQEXamU/i+bj/ZuJTc3sxLsbF+PzGRQPyMh5+XbPQHY+A0zMWgjWn78RkDPXsHVzfH+HWtz0CMyLSERELr4Djt3Uon83htIBee3RzkagFtuAsoc35AOsmwOgeUrCRbvgQM/96DhUegLYaONKkUwXP/SnSQ0EYoDxyEM/eAWYTiKbH1n+6jXvvegSnr/KYPi+QL2RofATmT3v0FXnnMWhr/pzB6rJO7jdOA/mz+ziXy+E9fBBhi8TvD7P1UTx+3KfZ8+GgbiAFm9QqKdkYdD2RECFJl1LqvC4jUYYC4lEWgAloR8iiSC5NGkMjYUlbGkL/iBi4SQW5WAd4KlQQm4X9ag2hNc0IED4XxerAQIFqWordpUxNKipui1+uIPIcoizgmxZiNEkoAxuw0Py0LdpXXUE35bGfna6DHkYOjZJ3EF3HQn9T0yEkfJlR12EctR/e4+wJgd2PswGGsRBZOOYxnd06+KqgFsR7COfg9XC+RGtQ3l0BvWFjEpvAtt+ga4nhHNtwLpwf0BRjmbDuHbySSWgdtRQRAREuiJuVCOgeXdeqfVKUykMWiggFIx2bBKQRKd8GAMZ36a5mS0Aee+jaQloPYTxMWUD1wMnrHbIzlWbm9ZoNUbYkFSm6ArnSITtR6C4bZJMO5rCEnQRXoQqAFfCnBU/jyEK0EnLWDd9HAPVEQpxmCXXQNVBfJlUrFs2rhwHZCKbCzw3QSaCRsBMLEVLV8dolxN0RfKvgJxZ2rSDGAtmZQHOFydfSAj5Uwv2WC3ShQOnJQsBdQ/pXtuAMCLUjEjbkO3RbDrKnE1PWcGa93Y6J2jzlLPLZ+Cy/rEX+QgFdE6mVLc9XfWXIpogaleKAWSU66OLMhNQ0Mwn9fc5mzEyQKHYJqSrBZjNmbhj+bkcbSISmeL/d4bZFRCZ+ho1qoJaNA6oSGIP5KbdzdDtQ5aa8T+cng/YEkvfseA3H80ckL2RvLMUQMBsQOz/2oXkSqQGNeSD93MLlvDbUmvdmEfQctnRwmaAepA9UKiFgZ4Zua6sMYmTgWoX8fha0M6RHyQ4wI5XyQFLjZHgNttt8hkhL7WGkOQpLBKSfyqRNSqiJ5TEgdTBQJSduw6ULyd0RINrzkhobaNCLusyLcTG+CEP+cW/AxfhjHDFgrm7gNx2OAPjligXYusb1f3MCveKDyVREM/JTcObJAmevYEPhFG/88eF09GYLGbnrnu9ZX+FNvpsJNDsUg8qOs3Uq8N3zxfAATw9zxLRxj+mv/S6F0jKgCMZi95M1Hv2/elKwJkRDbAGsLwnkS4f5sxbFKR11IlVGOM7WlseOiEcsMkNRL/IMQin4rof3bihO00HaQCeiRgMIlCg1vMexSEdvBgpW12EQjrNo9m0bPhKoTdbBny1ZpEf0ISILZcHt3NymeD43UAp5uhoaoVhMZxsaB2PhjYHQmo2HdfBhHSKmmG/Q89IocjZRWQaRZUCeETEZVUiBieHcJJTNOrRbdBTStRv2J1rf9n2ghoX1ZhkbASBYBXv4MiN3e1zgqe+5RLefOjQgMuhaetoS+zyD1wqiM/BCwOeaSeaZolgzNH3yZIWU3h6PS0So4jlUCn5SwU+D5karga4VBfGTCsJ55AvOCItAcYop2gzoFMmWur7Cgnbrcw2u/pv7mD/bJ8qNXgPZqYReE/WweUAvJJIwOGpDnCYV5Owx0gSl8SgfqEGIXXg0lxkWZ0rOJruKSEYKahNAf1ZAGIHZZxXgBPxphvwuGwsvQPHutIc7LuBOcijtoPNATZkbmGsd+plFfZUaj35KpEC1AfEQgH5kBbFSwMgMQW7aA4VFt87h54a9smHj5aVH+8oGCEnxXgBwpPVkJxJ6RUExBCAbFrdmHATHO44owVIgW4lExSoPZGgGLXUZBlyXRrLnNmWgKAmgfKbg++ee7nkTNhZ6RTc/1RKFqK+4FFgYA1bzEwGfDdQ7aajHiOGK/YQoibB8fwwujWgMBK+f4oTLMGMW1sURv/fZIqTAh2XpkAjf7gyNSbQ778fhcpYbgYozj36GQCULX+3D4X02J4IhDdK1Z8Y+FeBeESmiS5kI59rDTEifggeyYwVhiICYsSNtKxT52akCJgZ2x6DfsmFSSKC4nyF/skJ2oCHvFdAnOjll5adsNhKV1wqYkYct2CyYkWeqvSUy1u549HOHfotp52x8+B21I16Dak0aWKTt9VO+v9+xUMFlS1juu5fUWrWXLRGkaDd8MS7Gxfi8xgUC8jIfsegVVQnfdpzFDgWoNwZCSMg7D7D91Awnr6BVIxxpVbNPZJy5PQBWIW3clKGwb4HsSEG1HvkZeev4Pw/g1iXEB4j1R1efSIfop6SWILCBsjV1H8hCA7MGtp5cQ0g5OEUFe9fsmfvIhIDw19BNFWwhoBvOVJ4+IYnGFEHguY2UXQIBTJ9epQKYtsSC+gvJJ66AxmYmRERHRGw0NjM3inwo2KWEOzkDvIN84gZwdMJGJ1KpNnUfVQkhBLCuObksBF9r28E6NjYcEanZzK2IQvE8D1QhPaAx0EOBHV9PdrsC6D2gQuOz6dAFDGL1PEOya7YYGoR1zSamXUNMJxsXlue2xONmDGAd8lMD2Tvkz+2H5QehvXeDE1Us7ANqdPTWS9j5yD41IHDwRYajN02gGjak/Zje/25UQDYd6Wh5HjQvIGKSRd0KiLDE4w8QySjz4VhuptDHcxHzWoSAL7jsfm8CfdbATgrceXuFR/9/B1jcKGEqkcS6sfGIs6cmUE/6uWNBZyQOvryEfF2J0b5L34uocXIZWVCqA2SY5T19nLPM0TWu3ckweW6Jbl4gP/PoxjIVwboGXCYA6QAj0O/1KO5l6CrAji2E8ujHhs3BUQ6Xe5y9xvILVzh0gSfvpYdQHn6ZARkLub4OO7ZigennBpgYiP0cduworvfA+rqFXii40sPcG0HutvC95ARGYaGONdRhQbtVQ1cjsdvS+reXwCoDNHUdduygVjLpLYQDRA+40kOG4l12/N6rFV24SJkJDkm5RzN2mD6tUF+ViIJrGyyDVceJiyxMuLgs0LIMUmNAVyw2JzEzRfbA+KZEc4nXTXEU7GSrQCtNtDRAbWiCINjQCDMksMfrJjl/2UHPkS14n1Q1kY0mWKMXx0B5xPtyc4nIgwO3lc0TJ4267aF5tQWSHscroC0DalMCkKFJaAWc5D7wWhaA9EmnERFr4Sguj2J1OAF9qlKBD3Af3dxC1gp+ZtgQrDJ4KyBXtJ2G8MgWks1XEXVRdMPqp0g2vaobGjSK4pG+s/GYSQP0lUN+pIINNEXkei2gl9RDmRHQ7ViIhYLNgHKfaAxAUb6o6ayWrwSb+xYBhQPyFxTWD1k2US+RceGCdTH+JI2LBuTlPJzjjDVAqpEm7z/N6joWpgAw+/efQzt/FXTtUV/iDGIfHooyBIVJQxF5fsoH8+g+0I84s7i+CuT/9hKa1/TIQ50qHfM4VIvEYTYFHy5RWBgf/BCcBdTP3AV2tpAE18Cgo/Ae5afuoBxVWL1mF/1YotmVnCF0dK7JlsD8GU/nqxwY3+2g7hwEapGk9iFqObRm0TkaDTSpQL8Scd2RXhWbgraDX9fwkUrlHeS1K8DpAikPI6IZm1qR1Xooejdv+JHmExud2Oxs0IhSsR4dmUYFRN2FZidQoM6FEob3t90wex+RlYhKFPnQqOiNJmtDpwLHZsUtTyCqcnC6ihQoZ4F6gzaWaRQPVhCnS25HpHTlkk1WPBbGAsXgNFUdGLgyh1y3EF5g/cQY43uGaIrg9WUq4M7XbWHnSYP8sIU+WSfaldcy7b/wPtDbPKlYWhIJ6Q183P5Mhe/DBu1KCjYxYENz8mU7FBU/UmD6XI0bv3IfXivkZxanT2gWXQIp+yIaNMgu2NwWAj536LZ5TPMz4OwRSXrN9oAi0rUqiHf9UFgJw+/f2Q2JS/+9x+qRMbae6mEqiZNXqeRMZQR58fmxRD/29APYtUBpIXoJ1BKy18H2FPCFg1yrgRqliE4IK4G1IloBoiHIRNKOyFbAn2i40sHuGIilQvdIB3lEBMVsWaitFtUnR2hNCT8xUAsFrNiY2Mpj/AIpVs2uQFdpFqqhofBZWK9hwSwNZ7Hhg3jZCQYlRlRHcP/LfYl2z8HnDg4yUISok4BjIygcIOuhmFYNC34zZXEZLXrLfYHV4wbFPY28DvQmxferLjYJbD5j86IaHsJ4PoGAfrghGyRf8F7Xj4lgmBGvFy8QcimQMpZkz+Yj2oxHe+Bmb2iUVE16XhYyQ7IzFs3dnMsrD/h7uzUU6y5a1xqiAGolkoGCCgiDkzzmeiVJbwPXH3M3ZEeXKi/jNoScEBvCNNcCZszspvz5nFQ4JyAWbJjZdAeEsGTx3237FGgZ9T2mCvS4E9IJswXgauqDvBapuTOVR/FApaDH8pBNhOjZvBFRB6ZPKyJRlk5j0vKZlp2y0W+3BiMAeK5fdkEbo32iM74khsf558eLtcyLcTG+COOiAXkZDzGq4A6PIIqAenjP//c9hFOcLY8z785h+zM1Dr58lMSxej1YcaqazUN2NqT7qgZoLwPFAbDzaY/9rwDUQkOH8C2XURfSzdkY9FM2Lzanq1R+5tHOJaTx0K3H1r97Dm6xhMy2ObvdtaQ05TnpHG2HGKg4/l3+LVvtoB9LNjCnAqpxqPcUqsZh+nwL/dx9NgRFQftb50k9igW9UsBqNfx/M3k8BOEl5yYAcI5i7EwzYyUL6eHRMSoW+pFyFBuL2OzEZRlLRAIsNlOTE+1wvSdVSThuezhPvtAs8JuWNK2u5+f6ns1Mng2FvhSAdRBFnl7zdQPvHND1fD0ei+hotal5CdQyMa4gZjM2HOH15N41myLpYIzhtsVGLInqA+XJbzS9LjQIEqiePyE1rNAQTY97X6UTJUQ3QyGnWuD4VRr5FYVL/zGIJtoekEUKK0Tds8EIx1k0g02v8MySEJ2BzxSpTQCEtRCtgVzQJctria1PnkK0PXwMKXQOwgmMn1ug3ttCfUkkLjZnwgNHPtiK6oVAr0SiiXTzQGVxpLww/JM8dxHE7ipYqsb8DL1ksbT/5gzVfcAWCvnCY/a8w4NdkUTrLhNod6mXQCsxurpE/+k57I0abpnBaQv0kgW9FXBbPUTPQtFljpe2dtSEKA95lMFt95DHGWlRysNrUmzUGVEPrwB3ppmn4ACvHXC7oq3smYDo+ejxAPy2gTjTWL2hQzlpgSenjLNxgNhr4Q8LCCvQ7xrIWgKZh3AyUX+EIaXNWQEhQUveCZsuMwL0QqLfZjGMjgF05uEG8rkKxaFEN2OFZSa0oe1mLOSruyrZx2YLNi2j5zW6rWC7G75+XgNdOTSG5QmwetQhO+H1E/VnXg/Uoxi+JwKaDLCJ6UOgYGw+bQXIGikHxlvuq4w6IxOcx0LQZaRc6dVAA+u2eU2pVkA3QUQvkXQmuhNQBikVPqbUu4zNsRk76KWkM9qa++QyHoPuEhPl4Un1i9kbwrOZzR9odLsWduLgconiUIXckdhQEnXyAuge7iAWoSQRPB8Avxd6LdBtE3mD8ijua6yvOUgj0D3aI7+ZMwtGkToXzU68BOqr1HBEHQtpZFyW2eE1LzuB8p6EGTP40O8FgYsHZEvRu1oNzmpWchuL+zqlwl+Mi3ExPr/xJacBuX37Nv7SX/pL2N3dxWg0wld8xVfgox/9aPr7/fv38T3f8z24fv06RqMRvvEbvxFPPfXU/3CZn/zkJ/Ft3/ZteOyxxyCEwM/+7M/+ge/7uZ/7OTz++OMoyxJvectb8B/+w394MXftYlyMi3ExLsbFuBgX4w8eEbV+sX8uxsX4IowvKQTk+PgYb3/72/GOd7wDv/Ebv4HLly/j6aefxtbWFgDAe49v/dZvRZZl+Jf/8l9iNpvhZ37mZ/D1X//1+NSnPoXxePwHLne9XuOJJ57At3/7t+MHfuAH/sD3/PIv/zLe+9734ud+7ufw9re/HT//8z+Pd73rXfjUpz6FRx999Iu1y/9Lw6/WkJcvwe0fUvegFHxH/YKoStKIyiwJpfVTtzC69kqYSsCUzAfJg2aj26I7iwxc5pgAzZlZOlLtfMojW3msL4sUnEZuvEB57OAyiWYX2H7SwUuBgy+TqB4A43se4zsNfN1Q/xFdmKKDVKRjRd9f5zirvlxj/LEa5pE9rB6uIKxHN5XIlx7lUQ/94Ix5G0LSijYE7QmpzwuSNylWwJCxgTD1FbQW3hig6yFnE1LZipxIxPYcWK753jzja3G5QEA8zBBwJwR8QCzEeDTsY8wBcW5wierp1uSrapjRb9rBVjkGBEZXq7isGBi4YRcc0Q8iQGLY7hiMGEcMVQyUNYzHwS1LBSpVCAVUcrAmzvSwn5FKFt2u5Eb6uZagjacDMgUzL6HWPeSqhS8ytNemiDkEMmiO4IiEDJoLgYOvvoSdj59BZESYhDGAAelWnSNy0XWByiaTVkUEREYYGxDAcIoLDa8U9t+2hfU1cu5VA+x+Yg11ugaERv3IDHptMb5jsL6c8RKtARfQDRdF12H21GsPlxMpUa1IGgG9FjReCPz2+Hrk18suuPvEU6tJ21EtsHyIfEXhGQwne+YiZGcyoC0O6wdj4KEOaDWy7Rb9cQEx7yCUBw4KIjTzFm4sUZUGfadh1uG7sQgWvcLDbffUcbQSspGceQ40oWgDXNyTgQakYCvSxkjN4Sy6NALiVCeKlXlqyrwID7iphTgsSH0RHjLSvTrSylwWhM+O1rD5KSk7/ZTH2YxD1kROPYoLM+TCA7hVBuqSY7YFSO/q5lyOyyg6z8/EYJnbE60i1ShSwHi+AF4PMX+jujOgH8LG/BEByEGDkXJDAvWLCFnQhDi+Fh2qhOPfbUD7XIbkxhSzXoQLlK8ayfLZBGG6XomUzg4nkC+CtmSOlMliN1idZuKQn0iYEd3MYuJ51Itw3xxUTZcxp/2GU5SHKTyQO3RXiFqJmohat+XgCwd1pqBaCac9uoc6ppAvdEgzJ9qSnUnYYkClsjOJ7Iz7Vl+nwN2NHLBS6OfUpESUyVaelDwlgcwBRkEE+iNDFGkf7Arun6k81g/xXqhqAbSKzlyWiJItgX7XQJ8pJqj7gSZnphcF+sW4GF/IEN5/6bS3f/Nv/k38x//4H/9Q5OGzn/0sXvOa1+ATn/gE3vCGNwAArLW4fPkyfuqnfgp/+S//5f/pOh577DG8973vxXvf+95zr7/tbW/DV37lV+L9739/eu11r3sdvvVbvxU/+ZM/+Ufa/rOzM8znc5yenmI2m/2RPvO/Mr5h8t2J3y4v7QIA/NlyyIDIMxaI0a0p6BHaNz6CdivD0Wslxnc81ldDWnFN95X8dCiepAkP5pDjkS89ZO+xvixRHTqsL0nMXrBotiVUS4tS2XtUBz2W13OM7veoPnmHBf5qDbGzRcpRpCpFbUIMhzunn/gDmoiyCPoER72Gd4PTVV1DjEakHgGDXiOuJ742qii+7vvUEPjeJHqUmIxDE2SBrRmL+EiJija+m45WWcZmxRg2Un0/aDyiO5e1A4VLykFXEQTs0Ip0o0jRatt0zrx3QwMCsMHIs9RExEbInZ5BjkfwQQ+UqFHG8t8owg7mBCiLwY3L+yEAUcrhM12HlMY+GVFwHoeUA5UtOFyJpoeblpDL865sAODLDN2lCe783wuUB0iWo5GbDQz8+u0n1zh9RQXVA9Pnauh7J/BFnpyvmGHS8diBTTAF5hnk8TJR8HxOqtjdd+zAFKS/VPvh+vYAHHDpIycQxmHx6i3YQqAbh3yICZJbTz/ziW4iO6TsCtnRktdrJD4/qTc+UbC4fSy89DroP4I19egOkK09TEmKUEwojw5I/Yzhfkzy9izYCkv61F7HIDYPiFbCjS1kbuFXGXUf2rHhUR5SOfT7JVA5oJGpgSLdykOGVGjZCWSnEmbsk7ZAr0Uqlm1JNy4fwt6QhfNhBWQj4bYMRGbh1xoQAEoL1IpNTjtoPWBJy6F4XAzNZ7ZBdxIDvYchdGCw4lGWtBLtFQu1lPCZR37I/YrHG2DDVhzKRLdyirQ3teakS34W6HAr3vtStscG/c5MQnM0RXLecxk/Y4Pw21ZDCnlqeEKeCzDcQ1ODl3M/IxWRxzY24PyJmSzRBMHmwZQgWPrGbCczQko0h6CrUxRWy364Jp0OTXPB92anbEzsiHQmvZTM8hhboJNQSwlXeMhGDMdVA14y0yOeU2n4HejnvH5s6YOVLu2U4fj/aJ+cUtQtj5uqBfoty8beIhwYz1DLEa/RLIRgujGtpL3yULWEvdQDViC7n6HbM8j3NQNES6C90kM4AblWcJoUNhcaZa/ZfKq1RLkv8Mmf+oH/7c/vzRHX/Wfe9P+CVsWLumxjW/zbj//UH8t+XYwv7fElRcH6V//qX+Gtb30rvv3bvx2XL1/Gm9/8ZvziL/5i+nsbHJ/KskyvKaWQ5zk+9KEPfcHr7boOH/3oR/HOd77z3OvvfOc78du//dtf8HK/2ENOJ0Q+8hxY1fCnCxaCdcOZ7dGIxba1gxjaexSfvoPZR25j+7N8yhYnfBDrGpi8QItGaYfiSzg+BMwIePAW4PRxutgUxxbTmxb3/xTDppptCWE9mh2J9ZUc0+cbVJ+5h5T6rUIx3LZIIX5dx59Y2MZE8Ci0zjRQVYO+YrFMzUHUWGzqPcTu9qD1AAakJRbDxgBnC76+s8XjZS2EUhBVyeYlOj9VFRsIrYgmxCTwDf2DX4W0seASlRCL3gzp4XJjn9I2BcQhWur2hhoMa4H1Gr5t4fuAyoQmE2Dz4b0LuhSfmg+/riEn48FWN4q1nQPmU2AyTo2YGI2AcQX70C58nsFNCrhxCT8eDdsanazynA5TeUZdS5klLYvPFdy4YJEvBMS6pc6joxGCzzR/ygy+ytHvjHD2WA69ZPFRHHtIOxR7AJJP/9HrR/AKGN9qIFcd0aRNEX0fEKdw3YjOMlX9RkBBg/OYqDuIpsf4roOugeJoQ+zbeKje497/sYXDt2xjeU2iGwusHqZ7W2weVChI46xpRDHKByycdc1iNBaitgyCXs008W43hLRJ/t5c9oGDH4tgn4rvfjpw371iWvPmDLWsJfT9HG5iwfBKAVSWGR/aw7WKOR+9hNQeWWFgVhr9gwrwgj1vRrHy1tUzoAjOVVs9oDzs2NLhS7GoFT4Uydqj3bUwU2pGALBxaCVEJynm3e0gFwpiPxRQeTQlCDPrmsWuC6CVy4mguixoGgSRkFiUR7vXftdQbN0L6Hvcd1t5tLsO+kRRN7AMiMUIIaCQx5Gz40jp5sITdWuuUFPSzYmUdDNumxn5dB7aXY92L2SPTJnzoteg5sQTKfHhWlANkZa47piMDiDt26ZuRPa8boThZ8wIqQl3GsnONzaqLhveL01oljrmtXgFwNGqODsTdI1q2bBGF61+QqMArwDRBUvdmaMrWSPgC4d+28JVFnKhINds5tRKIluJlJruCjc0rDqiTR7dlmeDnHuUB0SKzNgzjwYhHT2gKHoV9FASGN+im1V+pFDeUSgOFUZ3icj1M4f8jJNj/YzuV2pJBKPcZ+Mtj2g1bcbMmXG5R/2qFv3UQZ8EMwkPQHvYCb8nruI5zU4VhBOoH9q4AV2Mi3Ex/sjjS4qC9cwzz+D9738/3ve+9+FHfuRH8OEPfxjf//3fj6Io8J73vAevfe1rcePGDfzwD/8wfv7nfx7j8Rg/8zM/g3v37uHu3btf8HoPDg5grcWVK1fOvX7lyhXcu3fvD/1c27apKQI4i/G/c7jFksiHVAxrazsgz+BeuE0XoPV6yLTIMgqOyyJYsVpMXljj8E0TjB44LK9L6NpDdR7FqYOpiGisrkr0Y4HJXQdTCbRbAttPWRTHPe59VYnZ8y7N4nIGWGDvYyt4LZE9fQ/JeSnaxgIhY6Lj7Hv8fVTRSWqTPhUL9r4fxOORBgQMhTYA37aQ21uBCqUHJEKFmX/vub66IQJjLXBM2paIouy0nW5YV1x3b86jBdYBZcGG4HTBZZTF+fyJquTn8zwgIXJAJSLlrOvPV+BxW6PtrpREMwCKu5WEUEQ/fNen0N9kvxv3M7qhRepXtN1VkoiGs1D3T0hXqjVQ5hR692agwCk5pJorBV/lbPy0AooRQwW7OojNBXxZQvSWzlZlBh+Oq9kqcfS6EsdvNihvC4zvhF3NuPVeDLsvbEATwGupvlygKBTsoxOMnl/wurbgsTMW8O5c4zf7ZLhmksmAQvfQHM2OhI5IXj+s0ymB4pRWwDIgE7IPM70uUGEsoNZERbz26CpAVgK2csjOZEqgBoZTGalCMRzP5YBsBuTFFR4+Z/7J4ZtYPEcKUKRmeSWggkhbBCtTXzi4HQdxqiFnHYp5jWadQ80MhPAocoO6yeBKC6kcTK8gMgc1NrCHBUQbGtbMY7GoWJw5QSTFhrTrqeWlYwSckGiuOvjMQWgHbySE9ECrYKcMm8uequCVhJlKCCNgx472uwKcSW8E7F4PnGmMbkmKqDUTsaE9zNxCHmm4HCiOBUXZa4Fe8Xhlh5rLBJetjzQgOYtvRywm+6mDzAXyU4HmMs+Lrin2VhsFfnTgEt0gdBYW6LYdiiPmpfQzzsqPbwp4ycaiueyxvs4Mi2wh0E/DjHrBRj+iRcIP6EdK3A4i+xicGm3OI3Uq5ofE3Bdpw+shOLHZG1AT5AN9kTkaA20OnmiNFzx+5YHA+iELvaQTGDwtkr0G3MhCLRVc5eAKQJ1qnqcxnchEvM1tG5jcQZ5kbJp7gexMhnBMxWDOYBwgFky9twWvnXidFQeCIbcjR9ODTKWGrNmjBXcK+dQePneQjUzCc5fT0cplNBNgOG5syGNuDJsPO3IonymA2OTd1lg87ojUNCqFQ0aUsjgUsMVLZx73wob3YvxJGl9SDYhzDm9961vxEz/xEwCAN7/5zfjkJz+J97///XjPe96DLMvwK7/yK/je7/1e7OzsQCmFr//6r8e73vWuF2X94vcE1Xnvf99rm+Mnf/In8bf/9t9+Udb9hYxU/BY58yYA+AcHEHEWPFJ/jOUsf3RLCrPm6tYBqusVsqVFMc7QTQWaQiBb8IGdL4DpbYvjV6lEH9j7uMPJKxSu/ucWD/27JWTdo7g2QX7SwmUSsrG0xdUBJWhbFvBdT6vXZEOrWUD2PZGaph1yMWKCeG9CKJ0atjv+P87SBz2G0Hr4vciBep0aAR/T0Ju4LRvBfH0f/p6FNHGkwj2d+7YLtCUxIDEZAyAxqqhPiDSvOk61CqAVg7Vt1HzE5qPrzlPDvBtQIK1JV4sNTtMmupOIoKeU1JdYy/yXrTlS1kVMBNeKzYYOVZYURE2cZXO0CO5gXcf1Z2P4Kke3N0Zx53RwiLIWflwC3kOsWvgxGzE7H0GuWrpPRRrYOCS/h1E/MsEL3+aAlUVxV5PfHoLduN9DsRazNpINqwbauYSpMujGY/HKGaafPWHxkgd3stiMSHE++FDxuB591WW0cyIVPhsQDOGpNdGNR7O9od+oOcsd8yFMAFQiVYkaEA8zc4luIrvhHiGsSMne8feYKA0BlA/YsDjB/XSlhxEs1JprDmqlkJ2JZMOrw+wzXZs8RpdXMEbBZBa21Vi3GtW0gZQeq+MK0ysN2k5DFwb9QUmM3AN2xSKxui9x9loDUVi4owIQpFOJzKUZeKw0iks1+lbDl2E/Vhro6SIkehaycqWgHmRJq6EXkunwOW13vfQQ0x7e5PC9ZOr6lYhwsNh1CpCNTAV4tMZN9r3KQzg2C2bb0GJ45AJ9TqB8ICF7YP0Qt6G57JJVss2ZqeEl3Z/idaZaridbsYiPzlZmNLhAqTYU/h3Q7TqU9yS6OVIoYJqZHw/3S9Wx4dlEM2wB+FGgtq0CyhP2UZhBCyItXdGEAVSYp7ElNSCyDQ2xCtdmxmMFEdyyeBrRT5gGbyYezR6T5LMzHq/ygcT6IYbywYNuaTn31ykA2sFNeKyqWxna3VC0rxXEgmhDvpYwE4fuEi2YbelTw91t0XVK9gLtHtE51XAdkDyPxaFEPxUQVkC3bBzMhNsWUUP0gG+5bOkAUwQ3MrFBTwsOXqoLuVWBwlccCYhe0VEtA9q5R+uByfM8d/HYtds+ZYWsXmGATuK1f+vv48M/+L24GBfjYvzRx0undX8RxrVr1/D617/+3Guve93r8MILL6Tf3/KWt+BjH/sYTk5OcPfuXXzgAx/A4eEhHn/88S94vXt7e1BK/T6048GDB78PFdkcP/zDP4zT09P0c/PmzS94G76QIfKcPPe244x43UCMKmaDlAWL63UNFPmQir05ug6Tf/sZlM8eYXSvx/zpHsUJaRez5y0mt1kQ7/0ui7rZMzVsDkxuO+iTGupkDViL6hO3oW4fInvmPtTtEFAXhdoANRbGwF/eGTIpoi5FcTY+0Z42U8k3xePx92gnC7BglxLe2iH7YzphITqdULMwGVHTEZcT0YDYnNQNi/KY+B31E1Kw8AdY+M+n8HWdgh9hLUXfJ2dICd7WUvgft2NcDduuwpRi1LukUMKNBjdQ1Py65vnqiXIg0+eSztH155sla4emKh6jIudxSDoOkXQkbnuWGgYAqSkSqwbNtQmkcUDbE1ELx13UHUTdoX9kB3Bcr+gtfK7hxgXsvIIrsqEhyRSe+wtbuPV1CvpejiKE2mVByy+ch3CcPY36omh7CxFmiyOnPRfoRwK2lKgfmQGax8FX+WApHA0A4v6E4yCNTzz4zeYDQSTsdBDA2yCO3SO1JgrDoyaBs9axWRTIjhX0mRxyPqLGIOfMuOxBmpEmVclVLPD7WaA49oArHFQtkjZBrRSEAdpLliLtigfEjF0qxOtlAfvcmAnmDhDKoV4UWN2eAAI4OR3DPTNBf1YwVHDcwwedhhl5rB7xkLWE7+SQa2EEGwTlAcu09O6wgu/YCfhOJZE58ysEhcaZh6rDfo8tzMijvur43phTssiQnTHUzisPn3mYS31ABdiYyZpi6ajbSHa3LbUD/dwiP5bI9zWEA0a3Jdx2D0iP+rrF8tX9YI3bUFsSqXz5iYBeSRRH4evRMekbgtQrW/B8xXMXz58Zsah2BQXpwg80vHbPod1xsCW3MYYMRv1HDGaNWg1Vs/nox0HXM3UJ6RNuQDx80HpEvU3URnkdULAgqI6IgQiWvk4xM0NYkXJBItJBPYZAu+UZJpkFO+Ogs3EjGxo2CX2koU812h0Kwnk8XGpUunloMmqVjlO2kGE7BYojma4nVQt+D1qB9XUL4QT6GRsxM7XothzpWEtJcwYftltyf/VKhrR5MeiO9PA9tJVDPw4ZHoLJ593co58C9VUK3NWa27C84dDPPFaPWTSXQgjntY6IkuW5by+9RGhYFy5YF+NP0PiSakDe/va348knnzz32mc/+1ncuHHj9713Pp/j0qVLeOqpp/CRj3wEf+7P/bkveL15nuMtb3kLPvjBD557/YMf/CC+9mu/9g/9XFEUmM1m537+d47f2P//QFzZY+Eb08/bjjPDXQ9MJxAhx8Ff2wN2tuCv7A4LyDKIvR2gaVF9dh/V86fY+y/HuPzBm5h+5gjFgxXGL6yQLXvMPruAPl5j6xMnmD7fwBcZ6TsxhyHkkHAjfNBhqCHzQgiIk+VwQ1RqCLKzbkA7Ykp6bwa3qtiUxGVvUrrC63Jvh5+JSeXGDEjLZDQU5LEJixka0wkdw6yF77oh2LFnUnoKJGw7iCJQxqImRWumhytFrYZzRFqco8h9ueZ2GEPhfFkEBGKjybIuaD+CJkYK0uSCNiVui7eWupBIP8s3Cu54TOLPaIT2RjjPEa2xwdWqyCCXNcRiFQISZdCSkA5WfeoustvHwUEqNDMmNDhKIrt7CtF2EIuaywkZIbLntrpxAS8EPvvdYwgLVPcEimNSSYpDFoCyB12zHM4LZAMKAvye1zVS7kE/VljfmKXGzcesk4gkFRl8odM11k1kajqS2N0D0rIxMZVAPxncjrIV/19fDY5FIsxEh8tC2BCoZoNLkwBsyNLoZy41Ol4jpS477SE6CmujrgpOsLhXpNHolYTb6VJ+iM88YATsK2oUB4qN0lLCn2Uw2wbTUcO7/1EOtAqQgO8lbK1htgzyAw2cZfBrDdEw6ZxickfEI2ZCZB6omKjunYAa9dC3SmoAQngipIdaklOmT7ks2QlkJ4oBfYaBhm7ECt1njqGHI4NyX6LbcrBTi5jLoO/ncIWHWsrQiBFZ6qcO0iCI1UmLijkOZkxthss9msse+fMFZEsef7afQXYC+RkLXy94jM3EIT+lE1U/G4Tgeh2MBAw/g0CVA0jxISICYGxgc4/6GrcvNrKj2xLFkUzicNnTOKCfeTpalUgISBStmyoU/BnoPCWJeHgNxMDWiADBh+0Pzmi8X20U6OGHQvzQyEXKk+LsvmoETOUDVYuNnh05+JyNrOyoHyruZkFv4kOgpIMbW56fcEz0UlI3EVBAp5lKL1uuo7wvkZ9INpUVheZ26tBP2Yzmx4rfEU30Kz9mQ5uYp6H5kIZi8+yMLnL5qUB1R6A4Dunmns2X7JHyTAR7Iq7fEi3Mjxjk2c8dTNBeudwhOwrfg5VEdjendmcl+fvpS6SUumhALsafoPElRcH6gR/4AXzt134tfuInfgLf8R3fgQ9/+MP4hV/4BfzCL/xCes8//+f/HJcuXcKjjz6Kj3/84/gbf+Nv4Fu/9VvPCcjf85734KGHHkruVV3X4VOf+lT6/+3bt/Gxj30Mk8kEr3zlKwEA73vf+/Dud78bb33rW/E1X/M1+IVf+AW88MIL+Kt/9a/+bzwCn/9wZQ45myZNAKylDuToBHJGNMC3LcThKWfS23ZoAKQMlq8sNEV0XgKApoU8BqA1u9x4E9MK+nRJzUYcm8XvptDahcI4cvSNARAK2zjzr+RAjdpM6bYWKRgvUpyimD06W8XCs+/hj05oQZtlQF3z36oarG6lSsJkby2E0EC+oSsB2Ig0LRu6GLxX5KRfRYvfqgqBh0EY3vfUgqRwQcm/RX1L3P9CD7qOaJMbm6HYAIT/+6beOMEOYjImUpMHah0wUMmEGJqmLNDa6hrF0/cxpM37wfI403CTCjK6bgGA5rnzOzOIkwXspRnU/VNqQEYVRE8LXPQmnVdfFSn4z+ca9ZUS5UEHJ4Fn/1xFcWko2MZ3mVoPkPYkHAs6LweXn2hpGtEPGXUaIlJVxFB8KQkYSwSlzOiAZT2Ec2yMe5uCEZPtqN9oQgQboNGBxfKaSoe62eOst15RPxA5+9IA3vKzKsxWRyTAVkHLocmph+OsswmzzDGEMNJt4FjEeeWDjkGge6SFEB7qXsFismVoX/4gg19V6HYcigPSVIQVkEuNw5tbEJ2kG1FDNALC01bXURPhS0tqVeHgV4qWwRJ8v2cxj14AXRaE0QL2UgdfehRHAr1RcFrBFWwE1EKlglitgDYE+vUzx1n8nmJmOKbEZ6UBRPge9NxWuVCAJLrjtyzESUadjGQxaMPbZQfucxGaA0HqjV7S+jUKqpUljQ1N2I7gsESNicDqukdxPAiZq3sCzSUEOp1Au837lVxyNt9U4bwZgeJmzsA9j2QcUBwGKtaIr5sZZ/LLBxIuDwntCAGb4asaLXZlJ1LYIURALzKKq70MydxgY6safn+6GRL6AgT6UWhc2/FQWLosIDktNSsAEiqknUB3pUdxJ0uoSH7Mxry5RI2ILdmsyEZCrHk92TI0fxMeVwFeI7LnPnjF8MNmj9vhZz4U9AKqUSmQs9tiYyoMaW4RfbFjx+Yz3OYxttAPMgZWroNOZKtjE92SOuZzT3ODVmJ0i++J9w7dA/1EoHuYJgzqlFa8WPO426Cf8conLVY89ra8KNIvxsX4fMeXVAPyp/7Un8Kv/uqv4od/+Ifx4z/+43j88cfxsz/7s/iLf/EvpvfcvXsX73vf+3D//n1cu3YN73nPe/CjP/qj55bzwgsvQG5QTO7cuYM3v/nN6fef/umfxk//9E/jT//pP43f+q3fAgB853d+Jw4PD/HjP/7juHv3Lt74xjfi13/91/9A9OWlNJqHJ6hu3h0cl/KMM+dKwjctWSxFAfvIJaijFV2kqnKYNV/XRBwApMyHqiSSEHUYwNAcxKJ5/wgYV/DzCUTfA9YPNKfNjIyAzoi4zvgjFQvvUFgnu9hoVxsds7wfrIR/rx5n83elUhMgAhLlHuxD5Dmtf41J+ymqEljV6Rj4gJr4ZoPWFPbDr2umy7cdfF2zIRuPiH7ELA4R9jXLhgbudDEgKmUBtBui8JiDEq17o54ECJQpnjMBEPmoG1Kyor1wbHKmE2C5GgT6SsEvlkOTAgR6W9ACCcmcE4DNR6SFBWG/WNaAVFD3jonATEqIuiPVSeQQfUBqpCSCUpWQizWwkpic1vCZQr9dYXKTvv9wzICJjUZyd5IiFfE2HwqsWEhEMW5sGlyglQgfZspHAj7PILqeqec6CqupD4pWvatX7UC1PJe2HNZJIXCYGdVMsm73KJDNDjVdr8JsdBQLuzyieyKJxFXk5jcUXyPoTOA4Q2vmFrIlhURZAb/bwjWaOoNxD51bmHUGLDStaUtmH7iZQ3Enp4Wp8NALiXbP0Q4VgGwEvJTwUwNvJDBnIymcIF8f4bhZwXMVnIMgABEb3Z6ZCxhboFEU3EddSu5gC8UZ5YmFbDkDXuwrun4tWZCT8sPCl7PrjgJ1KyAyB9NquJmHnxuIUw1EAbwC9JlCdqbR7TgWv8EiVdWcxfYu0qg8VCfgQkNnC1qxeglUN3VK2zZzi9FNlfQRXofkbMOsDNkFYfuMWgBbcvY+W3A9qUnoh3uKl2waVMfZdAqded6LI4FuC9APuM5sBdTj0HhUA0IRqWTdnI2G0+AcTBRDG4qqVcuvp1fM/LCV5wkRfF8skiNCE4+Z6vh3W5GKJREQmTnvs8IRUTDKo9u1RNMyoLlsoRoJVUv0ez3UQrN500RBkHnoI53QG2EFqn2g3eY1YiZsKGzJY2Gr4Ri2uxbS0JYZHlAOgBSwOz3UUUYkpJbITgKyFdzQ8udzIlRHmgiiA9TzZXIF88oDtYTX/L41l3xqhCISoloBvc8mxuceNnwvbOFhZxb6ONhDKw8niU5Ckib3khhfDMTiAgG5GF+k8SWVA/Inffxx+Ih/w5v/FvDUc9SDAIg5EyI0IkJI2rZaR2rPZDxYywKkBhmiJkOTwWVgPOIsuwlTVJsNRvy8DLP5UZOwObwfCv/oSBVRgs11Rava3/v/hBbIYZvUpnZBA6s1Q/8iVWoDhYn2ugDYCFhHDUee8XUh2GBUJZuQxx8Gbt+HmM3gpxVw8x4pamcLuOUK8B5yMmZmiBR0FcvzROESVTVQmlygVDlPCpiQgHcbzY0fGgCtefxCFooPwn3SuQI6IiXF5vE8ZRn8ek1amCFFS4xGw3GKVr+xOYoi9zyHm48hT1d8LRoVdH2ixfk8YxEfwvx8pigsl4Cwfmha4jkOx73fG+PsiQrtlkBx4oPzjmfDEYpbUw7/Z5Hm0U9Y1EetxaYTVERAUuPg+ZnRvsXoyQNuwmjDN997eC1hpgVOXl1B1x7SejgtYAoG/DktkC8cVtckmj1SfzA1QCPZgLTchjjLLRx1GDIU0HHGHqBRQ7Prk4ZA+EFUbUty6FVDPr3PQ5VkBNGJNiAYQaPhO+Zl6DWbluxUwkxYlNOhy8POiIyYCVEJPzeQhxn1JLstzIrNpwjFJe1rQ3MSirh+xxCZ8QIomR2iM4v2rKClruPMt8tJ3Yl6Db2SSaDfT1lQm6kjvQygU9XYwPcS2WEGM7eobtEpSTVEZYBwDlvOhqsmOG9VwX3JiPR3AMmKl7oHZoioFSlMcWY+PxPULdRRN4CBzue5XXop0c1pOZudcdlmEswBHFIOh8upU+hnLlGQ4ojoVDQWKI4E2ku0f9Vr5sIAvHYjEqMahOKchgKkMYVrvGPDAkfaX7ruypD3kQ3OaF6zwYiUL9mRohXfF/Uz1MtQNB5zN1zpMHlGob7CYxmJ2y6n1sOOXAoPFL04b4M8MdD7RKlsEehyjsiHDQgOJOC2O4jTLDWl2ZlEt23p0iXAjJlawk4tAwclaB1dKyIavSA10ArIJSlafmqApUa2YD6JC7bOPneQNdEPKFL57F4PeZIRXStdsoDOJx3sC3SSIBoa0EcRELcxv0fCCPz37/6+P/YckK973Q9+UXJA/s2n/95FDsjFeNHHlxQCcjE+/yFu3k2UHiEkqcfGwDcsLr2lkNjHYL22IwIAIAX/RWE4wCI42tuuaxazUcsRi+E80F6khFjUfD3LWNBuFrzAuYYAwNDEtNHZaaBRQSkW4nkG8/hV6HsnpAO98ACR4tW8+irKz95LRbtvKbBO9KuwHz66TIXhA8IgioLNVhSMq4DEKAU8e4v7dnAIHID/PzoGnB+seuNxVwrIczY2EQ2J+6sV91/zPdR8+OGYA0MjFZGgMPPlvUsZJlEDIgQRIZFnQ/Gvgj1vRyRDFNSNpCZP62EdIvAUYhaLBBvLYGIQw/zQtFh/+UMs7GNGiXWDy5WUcLkMqIOGcI6ZH0LAK4GDLxvBa2DrqR79ODqnhYKy8zDV4DYVhbW2CMgEkLIPZKA7uTizGQ698ABCo1LvKlSx8egtfKnTNXL4ZVPYUkCvuU42QqEAAQvD4sSiHwf3JSeB05yWrR2G5GrHole1gBcSPif/3YVEcwjAZxJuYiEayWLWB6HzlqMLlBVpptvnAAydgrxjjoKwArJysOuM+zc2MLkECosebCZsBfiWRbqwAv1DLYrnCopzoeG2DKAc5DMjqJGHyxzD4VoBsaLwmdoTFl6yZFCgbAScVcCpRqfA0EABqIYBc1AeeinQz+mIZEcs8gHQ4vVhSzRHAv5qA99oiJoz6eYyQxKj8Dg/DiiUC5QpRHG2QPMY0yijNsQFClV2IpN7mKn4mfxIop96zurPPHzGLBVVS2RLoLnkkt4lCrUBma4lV3h4TUvX4pDna3WDRbFqBOBEckBjGKBI9Ca1CoLobYPiHgXxxYFkrowFyn1S3NotD12TUhUtgaHY7PRzNpTxemy3qL3QS+4X9RtIDTo1Nvx/tiKSYnIA40BjChqc/IyFvl6GJswA1X2JbssjP6AmwmdEp6JORrb8Ysk26KQcEQSv/ECJXBMJG+ylPQRiA2cpXl8KYFGgvWqgT5it0e1aGg9oUhThwevpVMFOeD1FNEIfaXTbDmKloFcSZszr3IfmpJ8CvgqmBhZQZ5rfuVZSJF+IZPvscg91pmCvWGCt0bUVxJUW3gpIzQkAuV/AbfWwYwMhPfwiw+Bn/sc8wj3wRV/mxbgYX4TxElFOXYyLcTEuxsW4GBfjYlyMi3ExXg7jAgF5uQ/nIXZ3gMWSs/7RPcl5cgGcB17/BMSzdyCy4OqUb7hBbTpNAQMaEV+P+RpCwI80dQC9gWjcgHJEJKEsNpaz8fnlarBLBTj7rvX5dcbfFWfahaXmQ907ZnBgoJEVt8+4T8Ei1oeAPzmfwS+WRC2aNqEuoihoARzoTaIs4E7PmPvRdRB5PvyrJFGkqCcBkgDdB5oTeqJNPjhTIeaDRLpZ1IFsJro7P2hDgOE17wDlh+wTIc6np/dBOxNpUpFmF122shgIEEZcR7BghpNEWJSELzOsXrGFyacPSanKQtKeBWAaxABDveiZZl53gFKw2yOo0xrCWKJeDvC5hjAU1HstE+VrfN+hOOphxgrSepiK4Za2oI0uAKjWcyYcnJmXHZJzlAwuPxDD78BAzYpp2rACTnisb0wxevYUyBTkWQ1zeQZ9vMb4XoX1ZT3YugpwlhQAPFCcOnRzBeE8siVng+Ost60CQpNxfTJZngrYwsGHWVSRMwxQBPG1DNkYwoghAVpzZt6VLgi+JTCy8KsgsJ328Kc5vKdmAksNdaqw9YZDHH1uhzPWykOsFW1eBQW44iQjvaYVEHst9PMVtQ6XLFOugxtQV1HMKwzpYHrNoD6zLuEUkQi9optRd4lOWPJMIjsL4XannJVnzoKAXA32thBMr3Y5M1FgJDULhYVoNZwTqO4qNA8b5Pc1mss+5Xr43EEsNcyWhd2zyG/ncJkPQmjOrwsLtHvULHgR7HgnHs1Vh+xEodslfchnHnohoGugucLXZA/kp8zQiDP7wgLqRAaxN8/76gkDfaKRnyiYiYMJ6JxwIjl9meDe5XWwDO4FsFDo5w4uZ7ZIcUTUzJZBQF6LYLlLKpLqANVKuGIQouuATKlWwAdERHUMYbQFqXwRCRCGaJQX3F+G9AEyGBzEUD/dAP085F3koI4EFMp3uUexr9BtOxrwBTTElQ6yk/CSeTBqRXcvt2WQ3ac5gRl5dHuWFsgvaJgRAipG2la3w2XIWqbvXH4Q09iJuMTvtOoAvVJDhkdAP7NTIhhRd0PHNl67AGAbLqfbYxCpXCnYiUW2n/E6PtSw1ZC8nt0u0G9ZGj2sNPRWC3NQAtpDXquhbtO4Qzy8htwz6I7L3/tk/WMZF0GEF+NP0rhoQF7mQ0zGQNuif/2jyJ59AHQd/CNXIO8fwx0eAd5BfO4mYl6GiM1HLP71BgUpvOav7EIcLwYKU0icphtSKK6VAqAG7Ud0hLIuWLZu0Lq8h2+CkDrLNtLZQ5MSxeZxGAN1c39IEfchhdx7iMPjRCXyZwsW120LH5uch69C3j+Eb1r4vqeeIjY/3gF5DhlCAX3XUaifB6ew6YQi5uiUpTWEzKj5EILNgHVAZ5IORGzNQ8p5yNvoOjqEmeDiFZuCeMyadjgusUlREuhI0/K9GdLqdXDOSg3JRmM4ndBQINKokkZGDTStDdvh5au2WdxbC3X7MFw8ApDhuAche/78wbnrSx0seI6LnA/3oOFxFelBXkrIIAT3gm5Vwnq4kgVFPxZ0sAq7LK1nE1IIqNbDlCJZ7kYxKTzS+6MTVcoK8WxCpBGodxXg58gWBvmqgTqp4bXE6NkTLB69BNUG69ZsaD6kAYozh/WewvyZFgdvKlk0Sa4jujDpNYCK1B+pBGlhHalmEB7eCIqjc0D2ofBygVqT++RK5QyD3oQJRewpaSd+3sPXGr60QKeAdaCfzCybj7kBVgqylnCFQ1cCsIGutt3BrzI4AOpmxUJLechJD/1slXQr7SXL1HcFcuMzWg4zCwIpvdsrj/KOQrdD+o4tae/qNa1QXUY6XNQbSENHKZdTuS46AV9xHWKh2Rj1mu8NRWkMaBRWQC0U+m1mNSA0V8IImC0LBwmvPGQrIVuJbpv6Dae4Xn2kuC2L4HBm2BR1MyQtBgRpWQiFuey43f3EwxUO+QnvB+VdzYZkygtO1zxXdkTaFC2Cw/b0AtmpQLfL8ERmjXhYDSxebSE6yXySTCTbaNVweZH+JVs2uN2c4umoTRFWpHBEp9lsmZFHFihMMVMDAugwCPkdeE5UE2yAp4CXHs1jPcSZTonlImhZ2svBKjtco6LjNSsMIART76UBfC8gjjW6yz2yfdKTxs9pNLse60cNtUvaQ1qRvp8QbLbM6HyxG3UtyfUrCMrbHTYLiRYnea6q+3QpY0YPzRtoQiHQb7HpkYYTENmhThbC/Zz0QNkJmLGjkF47yGMmuOO5MbRg8KE9KYBtA/QC6uYIJvO/z9/kYlyMi/E/HxcNyMt8uKNjiDyHPm3gt6cQ9w4gT1bwWxPIGKh3dAIADLKLs/KZpig5WuTGhkBKiHXL4nXDGhYAf9dh5rxukkjc721xxhwAMgxISBSG5zlprdGdKc8H9IQbhpSNEbfDeWoTNh2dYjEuBDCuYG/fhcxzyPlssIh94S58zAiJ+SN5xkYtZIO4a7uQ948h6gbQIXcjy+BXa2zmYvi2YxOSabiuSzqP6DImyoJNgNZBk9IODmIAl2X4XnN9F3r/bGj4ohNWRDyEgLdsapLjl/dpGd7zWLpHrqC9VAJSYPTxsM8iiNmjNbAQgDVDKrwPoX9KJv0L+uDK5RAcyDaX5YbzHhPGo7lBw2tDSAk3ymBHGs2VEjYXGN9u0O7k6McyOUw5zUZDOM6GOkVkgJkGIjlkxQYkoh0pI0AMCElsUGSIlHAh7Ty/fcJtMxZnr9tDs82ZU6eD/sIhhZiVxxbdRCJbebhMIlsOgvrVFmeGiyPal7rSp9l3eKIZXnlA8XdbhtDBMLPPVPRwLiwgjQwWtpxpFrmFg/7/s/fn4bZldX0v/BljzG41e63dnb6pnqqiKxovjS0q0iSIUd9oYoKaGOFGCUHl2tzXBGxiHpGgiZpGbxISTdSrbzTwGFCUGA0gAiJSSFVR7Tmn6pyzz+5XO5sxxvvHb8y59oECqoo6VQU1v89TT5299mrmmGvtvcd3/r4N9CrR4i+VOKtQ2uOMp1IGXch9xUsSHm+DeXmpwlcKFYEZFthCU2UGPTW4rsXc26FYDcVyR2foB7qNKVjia4V8xGMlk41SGqm9WXhydDAh14SvXJJzICb4cIW6lKmJmRrK44VUq1RaolKBcsWG5nYtxu25bETLNYsZBfNwmCopB/MjFjPR6F5JeqZDOZCNop5rfOaogHgkH4JiVfwaNRkzpUxKMB49NZRhs2szR7xnSEahmRzonVW4xDA94UIXhhCf7JJscvP1YIIuxVyPV0RjIZ224ylWxZdickkB656TVC2bKZLQC5JtyuvZ0E7eJFvNws9DEjo0SognRoIFMoeLFD7xzQQi3VbSTRM8MPlK+KxZsIl4X2zfUqSOqFNibutJ8eFckVxIpAgxlimILmQiFoXpVrHssbEQBpuJPyMeKwmIgOazn2zEUoKZOqZXSQyznsuFBl2KJynZNpRL0lZuO55oppq+kjL4VFwSpmhW0rmUVeKPUoAOvhIrk7vZUd/4hOqoXjOTYISaUEEw+ZtFGpiqwkUOI54WPTZUK9XCdO+hXKtQpcaMNHbg0TMT2teFtDwh0KZgtfgCQktAnuSonncT0Z/dhrrvAemsKCvU7j5sWdmIKyW35wXeO5SJFzIhpRZyKJANvqnTqBYb8cawfKAYT0hAV6661xvlyzbW4bnKamFyr4lPbbSuO0hqs3Q9EbFONvLjCU3fB9BE8mqFf+Aiuu7fCLIypbTI0AKUMUIW5rn8FwiEumOMsxYVx43UilpqZUMUsEWu9IekKVUni5UVemVZ1lSb4K1FVdVCGlYb8uNYXheIzm/TGPSbVnIvhKCyYXJxwDgfh+Zz7xcSMe/QRSWb09zhBz0pd9RB4qX14r2pE8NCwlWyV2Hm1WJao/SiTyU68GtEKVCm6UyR837AOF8iaxp2sd2IqmvINuYNwYnHFcVS0kTt6lKMzzZV4T4KXQVTKjRXUeueEJBNZWN6PfBZ15amNVwDNobRqQjl1+nesYXrp0J+okBQ4kXMr5mLrKp7fs7saIYzCl04Vj8+Zny6x+4NWiJUVZ3aEzbIyjeyGhdLeZ834PoWMxbjcm3yluQjj5lpuQIb+jBUUqFmEeRGrvoah0OTpCX5PMa7MFXJHMl9MbNTDjU12J7FTIwUGZYKZxWmWxEllqXunOk8YeYzXOyIuiVVp4JxjIs8fqODKREJivFUMaG3xGFyQzQRSZOPxAxedT3JniJf9ZgdMcz7aFFiV0vUopkK7fVePh7aS6u6FsKkC4DQIzGoiC/FRHPIVx16LK9b9Xwz5fKhhNCuVlAY5oddkzTlIyEVbqXEFjEu9cS70ubtTCA1S1I8Vw4cnYuSzKQLQEsIQtWDsufpbCjKJfk6mmgkSlaig6slhZ4LqYrHimLFh0hX2cBHEyGZxaoYovMjjmjPML7WgoZ0w1D1FxvtbEMRj+S1QMhbMRSpVunka9v1WA9mqoicnP90MxD3eEH2qpAapQtF1ZdQAJQ8Lt6LKFY9bjfGDUIkbeKbnpN4pAOBookxrqVw8Y6hWHYyXSkkCtglHrRIv+J905wfqpD8tVqiRjI1wsm6yyWJ+nXhOlHVEfmYi31DLOI9LT+wjkAoFC4SmVVd9El4TB0F7EPZodehrLNSFMu2ISq13LE288NCKomR3xrp+UjazgOyB2IWfUAGXSqKQxVee9LzBy50PZ5wfqFLezSfs0WLK4DWhP4kh1dKInjrjTvgZjPZFKdJ8CuUiw12XTZYy63WV0UylMh9y1Nr4SqMkw1qUcpmO0uEFCgtRGGpF6RQGpUHCU5ipJ8gClfaw+a7IRF163ldJlhfmTm42QXZ6M7mgZCEfx/o8cD5pqFcdbLG9+GmUyEQIfXLO4fSWtrDw0YeEF+H1ovzM5eGcR822mpJGsF8UYhsrPbV1Olg3Q7M8yaBq0nIqns64mghaasnCPVU5FNn/QfkZyqK0P1eMwFqvDxxtJCEXdyie+8uZl6hLu1c7jWpE61qWZfz8vzdDsl9W5jNEb7beZBjqBaTmPoYI7NILEuShpD6pS5+uS+TJKPQhcTe4oVcVB2DyaUk7uDfUV2GON7wmfVGNSSluV+4WlyzjnqKUqfC1ITCayEf9ff3T0fkp5fZfuaQ+apqHlN1RAvfv9+FrgY5R737xvgI5usJF750ielhKfmrup50S65WK4skQQWJii7D1CaRzZEZmcYnAjQeFRVkWLIej0oczCJ8LKlYXoPfTlG7MfNpgjYOHUrxlPYUay74DzQ6q2TjuFSBBtOR1B5bGsazlNX+lOHaGJNZup0CFCTrMykDXC7wp+aoq6f4TLxG1XIFBoplKx6Gjmuig0GkQXW6ly7kP5MvNuZS5udEa2+hd/MOejuRqcF+RF3CqLysvXtPHHohQjJVIB+6UEQjufpsJqGPpFREGwmuZ7FL0izv49B1sRFLzGroVPERuI4T8rGnQuFd8E9kITVM0fTHRDPF+PqKqgfxmFAKKcehpxozEblgPJLJkJ6L58UrmUDkRyp0CZ0LksoV7Rlc5kh2DJ1zkvSlqkBiCsXsuCNfC58NL36PaBp+lELLd7op97WhmE9XqjlXxZoNPzPSGp5uyUY93lPBCySf66rvifcU0UiRbktjeLItRYDRWKYGupQpRLYh6/R9icYtVyzplpD1quspV2wTHRzvG4r1Sj7nYyNTPQV6L5a0sZH8XrAdmaa51AlZ0TJJcbGcDzPVTf9MHSGcbBu8lvMg7fahdLFQTQKXJI7pRjIZjYQ4R6HPRmKIFVk4h/UERLwmgdxqKVK0geC62FP2PVVX/rOZp1xyJBcjop1Fn0yLFi0eOloC8iSHN0rIRb8HwyV8UaAPH5Ir5nkhvRLBd+D2RkIAaqmQ0ai8kKv2RQFlRXxmc7EpNnrhQyhKKCt8L4UkEcKRSkeET6OF/8CoxYa4bgOvTdbWyuvkxWKTC+FKvVvIrQ5OZJwVE7qu3Y3iIak35D6X41ZJgl5dEZnUQVN43fmRxKhrT+HLEr222lz5r0sIcb6JJfb7I9ShNfTysJGHqWCyV+ur+EvioVB1M3kcL6Jsy1LWWB9HHOOz8P2D0cSwIA1hYuFmMzmeWh4FQhjrK1i1d2ZvRHzH/eH1KjGkZ6m8Ri1dS1O5LUvl9eNQ0ljKpMT3UiGRBxvo6/fFLkiRW+6Rn16GVMiXmon5Pz/UZXY4plgyTI+keKOxqRj0baqoOgqbyJVOF4kPpL6KrpxvPB6mWLQS13GR4tug8dfXhnQV4nTlSernko3m9o3pZX0iVUfuW3UgH2qKZSj6imIloeonmNxz8Us0VReSsad7XmJUbUbTzK7L8Hr1tKYK5uRgOK/lXboEnGp6I2xXJD4u8jA1+EgK+pRVYkKPpAmc7YRqIqTVJBKB61cL6UvoWdR2ArGDEDdqZzLa6fdnDDpzispQlBH9/ox5HhNnFVVhGByaEHcq7E5CsZeKhGupRKdiytWFFilN7FBruUyfFMT7iqW7ZINMbdbeE3+CCtHIdWGbTzzTW1dxXYs3HtexTdO8KhQq18xOWEyOFCfGYlbXhaIcWiE/mcNmQk5QEuuqZiEatlTSwn00xxQKvbOIStXlIm42X3dh462CgRyyLdn0m7z2Eoh8KN1eTNrqaNhoqsTEPBV/Rx37W3d2VAOL2TfMjluKJXle+ZDKBnp2qiIahehcTbNel/qmi2R6UiR1xVCO3UXih4gn0DuniPch2ZVjS3Y12XnTmL+rvqPqyQSj6vlGTlZv3PNDVqKBM/GBFKtOukQ6nmxbvDo6lymdchBtim9Cz6QEMJqIBC0aaVwmkqeq54h3DGhPNazE6+OFkHvjpXTSeKolJxHEuQ4/E4G0TjXRTGRr6U7on4mlab2elOSrriEPVScQc+MbWZXryM9QteQoDlniPfHk1NOWdFNRZSEkwspjq4GjWpZfGtFUgglMvug1kR4j+flNt6Qnp5ZRxqNPuSjzeOFgWe+j+V+LFlcALQF5ksPkkpRkT6zht3flCrrRsDwQ+VUm8iG0eBbUoTVJcLp4STavIU2qkePUDegHe0FCMlXTHJ6YZqLhzeJKeX0lvEHdfu4CudBazNMH06Gsk+OoS/kqK9Kr+nVBiERZyn/zHL+/L23kQWakgjzMHltrJiAqTVGdjpAvQK0s4+8+iz59Ar+3L8c+lxb22ueB0ah+T6YqeyNJy+pk8johzcvv7C76OGBBlg6eS6UXkwnrxNBf/yEwB0hXZBa31wb+OFqsKxAnKSI8QNhAiE1ZyjrKSghaFUICqkD0lBIpV7HwwzTvRy15jqNFZ0gUyXEcKIr0saHqhNcNz6lmBZ37dln9k3NUHUXVVcwPpSINmUu/hg/ejdrDAbL50lYmIcqB8tLTAYv7qiDNcSaQiKATr8vWdCiZO1iodlCGUV81NcHwq3yYlJiFJCbemlAs6SYdaXpYMThbNY/zUZD3DJxcBS5U09Qu0hIgbGQW5np5LpOL1MnMZIpB3ZNhFYQ0I4xMRnzsMTsR1TiWA3UKb6WsTdlAYCoF0UKyVo1j9ve6bG4vcWljSJHH7G32KUYpxTjBVYb9Sz2qcz06D5iQFOXQ51O805g9I5u1vkXNDa7SoU/CYTMYX+0pl+R8udSTr7vGVA1y5V08KoriUAl1kWIpV971XAeJkJjIq65s+lwmRYPl0UJIXF77DcLV7z3pmzBzMbXj5cq63koWki1DmMSoRQN2GUhjIpt6HMxXIV8TH4YP5nU8zNc9tuOx3SClS0Q2lewq8jXbNIwLMQpSpV3prUh2DLbrmF9TNE3oqgSVa8qhI19zJLsiF/KJx2tP1ZHXMxNJwKo/iyCf8fmaZ3LCk6/SNKbnq450TwzrZq5ItjTJnkxnzDyQwUqmHcpC57xpJHJmDvGubozrs0OQ7IoczOQ0ErG6Fb4OdZiesuJ1GsnUwkw1Vd9hRoZ4OyLZNuJ/0h67KlM5E97n5u/QVD7ztlMnXUkPyfxQkLOFY48m8pqdC+KncgmN50T+hshURB4jREnPNfnR8PM5h855aaGvBkKM7A1TmaLkCj0J5yOp33/fvJe9M2F6Ekon68SzulizRYsWDw+tB+RJjvjui+A8+vYzixv3R/jZXBKaikKiaOtkqp09ACmuq43fB4vy3AFiUDeea9NsntXueJHoZAx0ZBqiqjA9SEJ8rU5QVbX4G1XHzI7G4XE92dDWG/DKXu5fgMWGud48ayX3q48tTC68lYmDvv1emQQFwuD3R+hOR6RR81zOw/kN1NHD+I3NZjLjAW8t+tgRIWBK4b1F97oi37JWZFlFuZBbHdzMQ1MISJIsiFMdKxwZea3ILHw0EDb8ISUrTJxUFEGETEKyFEUwrafJIjDAuoX0qyyFEBkNygAit/u06ZPWUFXYoyuYi3uoWS7TpSRZyOLq951SJidaYzZHdKeFnPc0XUjlSokc1pWQiHzZoAsPiSaae8ruoi28KRr0YkaPCk+V0hCROq3oIFlpUMuxQkTqQUmWDxKXgy3qzb89pDt1W7RneBdEc0+yIz8Hk6NKzO+VEI7JEUOdHuW0SGaUD9p5X09FwiZJe5RXuESunMtti+Mys5COVevZw87TZw41ioSEjKJgzBd/RzWJ0anFxBafarRxlFuZeEiMg0ihp6EhehSLBt6BnRl87Oicial6UA1tE2NbrMjm10xkQ6l3JLIUj2wgj8+xs4hqpULFDrVtZAqUBt5XiPTFph676ohGGj0XRui6EtvrK4WqNNrKFXuXSGN6uWLJLojcJj9VoCYRvm9RowjXsygrZvyojktNPXQqbG5INiKKQxV6YjBBdoUC17HkmRAUHSshppHHzxWmlFhXEz5HZZi2dC4q8lWIJ/LmVF0hHFUHsouaYigm+HjHUByR1CfXWRA+ZSG9ZGQDPNOo3Vg2q9qTXZTUq3zNQeSZXl3KVGU3QlshCLoUSZ/XML26ouprMf9PFZ0NRdVdkN6yL1fsx6c9yU64cm8QghKmA50LMqGyqSSVuUQ2/Dj5d7YF6Y5qJojFMBDxSooXi2WaJDOXyH/RnsTiln2ZBrgkTOsOfJargXie4osxtuMbwl9P+7QFW9+WQr4mJYXZJUleU1YIIB7skqPwupGWVV0FRZCc7QohqPqe/OocRjHxSKOsoezJcZUDkUF2LmimpyzspkQH5H8SoBBkWxNNeTxH78aMnlmR3J9QrMibG01CQMNEYf0BNvW44kpMLFpy1eLKoCUgT3K88+y/5GXDvy9fGNP0VqhuB2ZzvBcJlu50JK42JER578UDURODKBiWI7NoQ6/N0geu1PvVgbyW96i9Mco56KaNlEiVNqRoRSIPA3neyjZTGYyGvJRJgUI+xXmxIB4HZVRKLVK6rG+8LT4vaFKzQhM8Ri9M5PV0IJAg3yQ7OfyFDZGoWSsTBufR3Q5+d6/x0WAt3jiReSklhC4J+oEmtcs3Det4j+pIjG/TMF+E2FxtgpTNNvcFFpG8oblcxTGsDIXQbe4uyFfwuRC8KioWz4sKCVd1hG6D+vZwrqv1PvvXdUn25b2O+zHJpSlqPAst9+H9zcPxOiGDKi8gMqjCLN6D0i8mYnnebPptoshXI3TpiceOKpPdiLRJI5v7ML0ouxLVC4FUHIzYDUSiRtMNUhJkGkGKpQ9cla/lWkH3bwqPNXK1M92h8ZVUmWLr6V2ynYxoBtk2TE7QaOWrHiGdCdJ9STxyiWxs5Ap1uMIdH9CuVwsipPyCIEmnhST35J0w8ZkZIVkgqU1zmXaYsaFKnZAPr7CjGJs66Erbs5rE+EElaae5GJWjsRh7bRZao8OVfj2XK8v1le4mRSzyeCOGYjT49RxfCVMzqSXOKuz1FZOdjHjHUA6tSKMIE6GxDleSZQLitUxsasmUMxIe4AcVFRF6rpmdLEGBHkW4jsPsy58rNZfpk95KKIdWpDA9R3Q+FdlP16MKTTQVCY6LPLrUmJFp4nzNTCRQya5uJEjJvhALXUC2IYb4qicbdYBiVfwd5ZJs+ueHhEDGO/K+9O6OmVxTkj0gPSsu8SQ7GhdDcjGiOFwRhUlNcahiflhSsrJLMunxyjSpT8mOItkXAlAMoRxYkosSTVytVNhVTz7T0HEk98cyNZgJ6dOFnHObyXsXTWRDrVyYCmrILglhqU3W2sr9qjAN0rWlS8n6yz5N1G2xUntMNHpekwjdyJCUU3QuKKYnHcWKEEpdhJjiWMgQyGfNDUvUXkyx4kQ6mMiGfuluyQm2XRYJdzps+o1ItuZHJelMfgd4+fnzgPbEe5ro7pT5ISdpZVaIkbxwCGWIhDzVCVbxvhZZ2ECmWb17IyFqG4n8rG4lQr4KRbojKV02k5+VeB9e8P/9RVq0aPHQ0RKQFs2GvS4a9K4MMqRENmbharhKU9l0g1xpD/0OjSm99iM0XR+xeDoiSUXysWzGMUrIwLCPmsxRI/kLrw7G9s4nQk7q44uQDXeWytVzZxcyrwNrABaeEKUXm/kaUYTb2kH1OpJKVUf9lnUPhpQJCiFZRN4qp/HaoUwgHlpBXjUyJbyXx3WlqBCQFK3amJ7E+OkM75xMVSID7kCvCuD39lGry7K2WQGdDvhw/LpO27KLaU4d0wsLcrKzJxfSw5SjOSe1ER/wZYnqdRcTmDrJqj5PB6czZcXs6CrZjqXKZMde9iPK/oBsI8FMCgkyKCqUk2Pwy0uoi1sLU30e+lick/e+XBCr5feelddKE9ywy+i6AVVX0z9fsXdVFAzJskn3gWSoMG1TTuRYukIkYeEjoK2YzGtSosNbXHcI1JIqdYBz1elYcPlkJR/C0jkvsjAD8zXxhGTb4TkNxHMYfnIKqsv0UNjopYruBdi/1mM7oaytntRoBTpMRuLFxs4HUlQOXZBQye3xdiRX8UHM4fOIdCOi6nopVOs46f8cJZhuRbY2Y7abydq7FXqU4vYjfOrwmejvbaKaDTlWUayEz6kVv4Xtyomqzc82JFQpK5GjbieBfoXei3ErkI81ai+GyFOuyYmN1ufY89IrYgcWYo9VHuZmISvrWig08bahPJFjNhNsJtGtJvSYVMdzlIdoIwpSKtk0mpnGzCVtSZUK25WpBRp86igH9ZsrnwMfgUukbLDqiRHeJR4Xpkj5qlzxth0xpefrdYKVXJWPxuGq/hzyNU88Uk1vRTW0mDwi3ozxCpKdRTCBT+T54+1IErhOzkjv6WBTT7HsSPY0NpWkLZsoyqF4MYoV8U2YuWLpLsPsiJC35FLU9GPYTMoBSRyUIi9LdkRyZPYNyb54K1QJ0xMhtWquGJ8Okr8QcVx1wfZFNleTs2poibci5sdL1NyQXdLEI/BauldsJue2d1Y3kqT5IU+8L1OLaLyIvVWlIl+XuGRVKpJ9xfyqglqDqOfyWauQ17bZ4ue+NqbrUgXZlJx3nSuqvkxKXJjo+cSjw/trUy9G+fDzVR+XnmnisSSFAWSbupmO4BW9uyKiHEZXh64aQHkdiiTld8XsiEzCBndp5qsi35s/EWRYbQxviy8gtB6QFmKGDklQKktFmhM8FT50PnhrceNJE7/rvZPNdU066o2uCxvmeb7whXgvRvNIS6uq9yKvmuaycU5jqmPLTeQrsIjerZ+zNmvDIp3JOvl/FC0ISC35giDLqgmGHEvd1SGRu6X4IJw0nNfSp3rq462VssEyJFzVMcHe4ybThb+jKPGzuUyI8hxljKRnlcF4f+0pITpXnxDyUSeLgZj8rV1MWOp1HXgP0OZyr009dbLuwLqjRibng5zLW9tIwJr32hg4cYQm0jgNkq96mhJH+NpHEjwj/dt2qDLdmMBrf8b0WMbseB89L0SSFUXQyWQy0u8twgjCRKQ5/tpvEpLM/HJfpkg7E4a3blGlkA8Wv5rqDg8XLZKvmrSlyi/8KE7IRz1FqFvI66unKkxRVCAl8pwLUiK+kgP/r6B3wRNPfWN2T3egsykbpJXbpwzv9pgcipWEzpZtpiXlEmS7jnRXSQ+BkimCTBRkU+pSj02gWBYPgE2hWLUikwpRolKEtyDafhbJxKMnE5JoosCJN0RFHlcYZqGVWWnwhcGul5IwtJJDZumuzKTgL5IpTLyn8UsVya5MP+LtcCU+JEZVfU/ngqIaWmwq8aw616j9GLdaoPYiknMp6aYm2TZEu0Z8J3f1sD2LHchmWO9HqHEkvo+JGKXRnmTLCMGaRNi+FWIz12LUXq1QuzFmI6EcOIp12xAEkA1zNJHPSm1kPghvJNY42ZFpTZ2wpZxEulZ9F5raw3muZXSJbFgBimVJeaqJTLEi5DFfs5iZpHNJLK2Yvl3q5f3sOHwsfhaTi6k63lckt3WCP0g+Z8V6hVuumK+JSTwaSxyz71tppF+zjK518n6PdJDeiVHcxbKWeCsi3pcySl3KlX0fweyEZX66ZHrCitHfikSuWrKUK5Z83TE94USKNQ/meStRumbfoCshwPFILyaEc2mK71yU/0s5pZAYM5e439orIaZ56caJ9wwu9SShSyQ9m2C2IzHdn5w1SVLRVKJ9o4lIzerJZTwGQgeIHVTy3o8k5cvMQuN7JRckTJA2FquO8uq5TKyOONA+yP1k0qVLMFPoBmlaXbw5PQL9+xSDTxrMXLN6KyLZS2jIT33BQDmIR9C9/4kiw2rR4gsD7QSkRYsWLVq0aNHiCx11P9Sj/pwtWjz6aAlIC/z6Kmoyhdkctz8SOZYxYhouysYXoU8dx519QORLxlxeQHcQJkwvaoN0kkh861y8Hcp7fK+L72WoyRyfxrjEyCXbJFztB7lCX3eBBJO174Ur7LXfwzmYTBevWU9F6u8f9DdYK5MOZMqhslTkSFmKm0wlcao2X2stE6HaH1KU0gsSXkdlKTgfTN/Sj6JCjK0PPRxKyzlQZ8+jBn04v9mYsFVIoVJKLyZOUSRTnlpCVje318cfRbB0wEdSlItUrKpCdTI5jiSWYxwMLu9sqbtANncXk5N5LlIvWMjV0iCXKmRqoUYTYDWkAfnmSrC2ckW5WusTXdxbTLxq70r9nLWpvp7EhF4VOhluKUPvTBYJXV6uUOoKsl1PsaRC78LC/HowBctr1XgnGnlVFIy1hCuU4fGoA88RXk7X0w8r0xPpAAifYwVVR1EsmWayYXJ5ne5FR9WNWP3InlwZTWPGV3VIdyFfkUjUaCpSjyoTI7Ry4cq28eKlgMu6Tmy39hmJT0SH0sJyYKmd8XommncfyRqkXE5jXYQfVKj9SKRoDpFbKVCFRq/mGONYObTP7rgjMb2Jw40idKLJ7k2YH174KcxUUy1XeG2I9zSTqyydcxH5SrjqbsWIbqsEv55TLIerv/uxrKmS983sRzJNST36UA4XMuLzMcXJAl8G+deh6kCUsiJ+IKVYrzCT0HqeOqxR9O4zzI77YOKnabiv+k6mOLWJOfN074uYHZHuB9t1zI860ktGulq2FbNjLiR8LZq+XeKwfZoJkFWhc2OuiMYyUSiWg8dnR4kUrCulgMmuohh4yXEIHojZqQo9NrjEY5csVIp8XTpCkh1NsSwpTOmFiGLFyec4lZby7gOGzoZhckyicF3qxRifi9QsuyS/hzoXoVwKr+1oTNZ4hetWJBsRypsQSS2fY5MDXtaoS0WyB/mq9PDYRCYUnQsmdKCIydtMIV+HalXeJ9sJU8Q6PMHJhCKawOSElDGqIFnqnldMj8s50mWYVhVBalhJjLE6n0mkbfCJ2G7dZ7OQWc2OWdJNg4sVNkQv+9hT9uWcxiNwiQpemCCbKsBtZ8yOOdKtICFdEt9GOQzyrVgRTYKhfioen7p5fr4Og7sUe9fLZyvdoYkEl4kPdHIYnwRziccf3tHEtT+az9mixRVAS0BaoPbHuJ1dieCdzoLkyIsJPcS7ql5H+isOdm4U5WKzCrL59mK8FulQuO90JtKetSGAmKRLi8rF6K2KinhzjB90Udvin2iSn8xCruMHfSEfRSldJLX0K0tpYnkv6x4pgkHaNDpWP56EjpNcWsmPHRGjdLkgKb6qFjKqEE2rOpl4D7SCyoMNSS6fQkxIIvFyxDFKSbGiMqYx9DepVFpIiBxUMHw3PSZm0WHivKwjjpvHAUxvOkT3o/c376HPC/F11Bv5up/DKZEoKSXvS3agEwXk61qmpZ0kZ9XyLKXw3RRKy+DD59l9/rFQqOcbj0Q8Konu31rohMsyhA8EElj7ULQCHS8+KyFYQI9zyBJ8EqGKCjvsEM3EtJ1uV9g4Iso9Zu6ZHjaNlMoZFqV9akE+IJAPf4CQJPJ1bVCvJVqN9KomHYGANLn/SshLVMp6XSzmd+XBZgqzYVHOoTb3sdccZvjxHe7/ujWqjhCEeOKJJ+CMIl8Rb0K5JI3leKDUi8Znp3AadKXEi+I8rie+Al0p3LDClxo107JJTZ2kWmmJhXU9i5rK+9qY8D0izcoq3Cim1J5Ln1yT1+tZorSiLDROw/y4h1Jj+2I013hU5GDFYg95/DQS0/RIU65Xcj6XStxeAqMYnzrS8zHF6Ry1maCLOi5atPV2UKHPZSgN+eEKlYukp+5qSS9FjVnfJR6VSyyvS1SQSCkmTytgIvIuX2giL++ZrsRsbiZ1CIXHpopkV1NcM4edhHjPMD9eoRJLfrrCjhOinaiR9Ig/QDdeHFUJKan6sqmXDbpvJDfzI+Bih8418TgUEJZitM5XxX8W7UbB/6Mkmetkgd6MicfiK+lc0MzXPfkhK4ECmZQn0rVMV2G+HocCQzkP+doiPWp+XM6hzULR42jRoyFN3xDNIpwJ3SV1jwwiITIzIX+1Dykeyb/j0Hxu5iEBK1yPqXttdCmyK4+QMW+Ceb0nxLvqCBFxifiK4g3N7KhI1mxHfm6jWbB+eIXtW+LtqPkZqAYSXpBu6iY+Ga9wwxKzKWZ117Go2KO0w+YGFXuSswmz0xIAMDvi6N+jUZVI0JJtI14QBd0LIjMr+5BuG5IRzA6H3wFG0s+SXfkcTE96lv9KsXuTZ/XjMD6hGF/lSLc1g7s9k2OKYiDnb+U2z+a1D/LHtUWLFp8RLQFpgdvekU15k8jkAIOfTlHdrkTTpgl+ZxfmDnV0BbfURU9zISV1BKwKG4CqkulJbYhLEpl87E+EzKQJbrkH1qPyHPam+JOH5b6rA2noDn8sqVvalUJNZzTm6OD7sMfWmJ3oonNH95ObC/9JUSyaz5NECEtIvfI+tJwnCX5rRzbDTb+GkQ24UmII73bg4iU57pB4pepIW63wCehuV14vTC30cCCekKJADQdyHqNICABAJ5XbjJGEqnrSkaVCIOr2eMzlEyDvoJApxehERPdW3XgrVBLKCmsCUntJau9MfoDEYBdkp3JyXtJ0kWYF4k1JI2Yn+nTu3YOioH92jk0N8X6O3p1QnFiW56vTyOoQgYPhAGVIK6vP8cFSxJCy5WMjIQDWUQ6SkIzliScV6x/YFR9NFtO/HWZXDdm7NpZpDNDkNNdX0Osr4wdSrprOh3raUN/vwGHWRYY1GakN7ARTu3hHZANaP352OCUa5bCyhLKerS9ZJRnJRiveljStwe17TF+8QjwWUuJihU8WSVO1n8FH9XkPCwk+m+JwKWlRCky3xI8NrmuJdiIhIomYctXM4DOLj8XgriqFXipxOwl+LqMCfU8Xe6SESuGtwkQOm4nnBCceFTWXk5adHjHZ6kLsMFGF389ItxSzY1amMJXCzwxkDroVaa+kUGASi12uMNtR01StLJixEU+Jlg4Nlwqpq0mDJHOppjFeecXsqGj8q75sSuNOSWUcyd0Z5TBM9WJQc4WZqqaTwyUhCthCck9GvmYpB5IW5jqKstRiCI9CkWAUvAxLQmq9Ee+LqoScuNADUfdlpLtQDEBriZ8tlsM0JUzbkl2NvX6KvqcrV/CXK9iNiDbiJlxgvu4wuZixS6uxQ4ueGvRUya+WSuESh8tgjjx354KQg6ork4yqU5f6aYqlivhSTLnmiMYyectX5LNlcpkaxmP5ObCpakzs9fSv6iz8UrqSr8UALgS+9kRVvZCkhZCTeBJIihfS4iOYrzrUao4fx+Tr0i1SLjuKtYr0XEy+5hpvDqWY/u2SkFo9NSgvBIvMwjxcdFCgr5riLnQwnQo7jVGzCLVU0furhMlp+ZlQFXTOa6qeHEt2Xgzz01OW7v2GfFl+PvFISIGH+SFLuiWTquXbNLN1OTedBxSzI/I7YPP/kHLFuptk5ybxmiQ74oHZfDZkn+TxR2tCb/EFhJaAtEAfOQxFgZ/PcdeexNx3Hl9WEsWbF/jxJPRvaPRwCcYT9GQq05ETh1F7E9mAG4OqZTY6uIQDUfCJgU4fSotPIvS5DfleZGCpj6oc6rzMsKUYL8jAnJPNa5bKBrYmSZ2M8sQKNjVylW/JsPecIyzdPUZvjWiiblW4Gu+cHK/3+Fm+OEbn5XkPJkDVE5zxFDWegtJ4F0hVTTS0EmlaPaGoezrC8aokxudeyF0c46nkvt7DdBa6VUrZP8cimWIapGX1lCCOLk+yKqsmzvbIH55fTE6iA6buOv2qnshAaFZXiyQtWExYlBKSZbQcnxMJm++mzE4tkQ80HQ3ldUfRs4rIOvL1DnFsSO4NmoMoWhCLekpTS+DqAslwvn0vReW1pMxIKpr3ko7lFGVfZDdR4am6ETHgkxhlPa4T41LdTF9qIlBfvazhD5CRTzWhe7WYhNRSpbpQEC0cT1deopONkIiDpKPpGzFylVdv7OLXhuxd30WXsPuUQGwcLN25j+2npLue1VvHPPAVS5i5wmvdkAc9NZI61HdNPCkGSC04KUbzkUdlDjuPMApUqSVVKhAkHOiVHB05qnkMHjorM+bTpJmY6bmiXLZEmxHxSDE7bskvdCWhKXJkg5z5OEUNS5JOSRVKGeJORTGLUes59lQFkxhbaaKdSOJetUJPErKVKXa7R+8vY+brYpAGIRgmVxSnxKyuy3qERWPON3OR1JmCpvuiXAodEpEnGosZ2t3dww+s9DiEj3a8r5pwhGiqKIZypT8eLzbKOkwz3FCIkckNZgaz45bokiFf9eSrEomrHOSHHOmmoewLSRLJlqV7zlAuweywmKD1zFD1Jb5VV4Q4X+mH0Z/oUgw9vXOKmY2pjhQkZxNcQth8y1QnX3V0H9D47YhiRUrvsouGfN1B7MkeiMhXpXRyckqmQT6WmNnueSW//xLQeUy1JL97bddTrkkDu8ukCV1XUvLnjZxXm4rMyScOPZPIW10IMZmvyZRPF9KBgvaLjozEkx+V7g6swnVkipFeiCWwoONJNzVut0O57KSxfqKJ9zRuoqX5vFR4J8ZxE8zcLpV0LD+o8LlG9Sr0xZRqWKECOXf3dTGnp8S39qRLxSmyMwmjGyuyByK6F2Dn2RXphYjueZgdgf45z/Ytnu79hmwL5ivSGl/LNGeHYe0jhtlhAMXe9Z5sUyR63bOa6ekKZRXd+wz5mhDRaCzSPF1Ix4pLYPkTir0jtGjR4mGgJSAthFyE9Ct9+70hBUnJVfMklj96ZSXJUZVspFUcCUHY3pcNrLWLjTPIFfiOpPEcbEJXu/uy6U6TRXpV2Lj7g6V6DukHCSlVtZ/EHV5ldrpPulUQb4yIlcJev0LVUQxu3UZVNkQAJ2ESUkoik1Jhz1ouJGJhqlFH8dYTDh+8Ir6U+/q6YyTPgx/GLdK+kE0YAKWTKZBRzfeUlnJAb20Tc6zWVvCjMarXxc/nIsWq+0fqvo9avlYTo3ryU091xhM5h0qJrKzuCznot3B+4bcAOYedbOErUUq+ruyBeF+53OiVQlVeZEeTnHg0bQhN5wIy1ahfL0zAqCOW66+BpshQKdAGZT0+i6Vw0ntUaWUSFiR0vTMTxlf1MHOLmVZCUDRMTy0zX4uoMtF+Y8WDIslYLKYaUUjCMmE4cmBC0pCV8HUt/4EFYQGRTNWJWS5SQkICwallW8t3zNCT0Oy+vU/nUp/tm2J656Cz7dh6mmb3aUNWP7TJyl95zP6c4T1d9q8SDbtLRWbkVkuiMwlmpiXeNvWQWrxTqEiubqPATyPh0h1JY/IK2ZjNJR7U7SXyPUDFjrI0sp7MitRrWIFxRBdT8cuUCr9coqYRGMVsJxNJ16AiH6fo3QitoSwzkSN1LZXxqL0YHYhP1XNkFw3z45b9zT5aw/71MkbShXQ/VD0nSVYzg18uMedTISdhMysbcSlutAm4TP4dj6DsyXmPRzA/JkV23XNG4m07spGtexh85MlXHMm2vFFlb+HpyS5oihVPtSQeC7tkIbNk96SghSzFI5FRmbki2hfyUZftTU9XmLFhdkzKFM1cke7ElH2o+raJTvZaOjOKTkgnUzA94Vm6R7GfxuTHS9Rck+zKhr9Yt0R7hvF1FfF2JK89VsyvKWBu6N0ZMbnGokpFdlGOiRNzXKEpogh985TiTB/XlelJ9wEjPR6pR5USsawnCm3ks2w7vvnMmxzisabsSQmkTX3oyQikwHgp0QyTuHikm9SoYmCaFDmvCRIwmB4XEj0/JsQz3tWgDqTnaZmoeK0a/1Ldh6NKhR+WdG9PmZ6y6PMpLvOY/ah5b/yJOb3395gdIUQgh7WMTEjlk38ne7DzNEfvjKbsKdJQZlj2IdsUaZnJ5X3KtmByUn6ebCLP62IY3KHZfWZFckkmjbYj0rbJM+ekd2ZUHSiPOXy/wmzFzI4oPvKG72X4E//3p/99fSzRmtBbfAGhJSAtAGTK4Rzq6GEYT3C7exKpqrUYtEE8BkUgGb2eFO+V1aLd++AUwdrFtEJrVJVIw/rRden9cHax0QbU+U3ZyNcdD/3eQrYTB+9AUaI3d+mNpjAa48YTVCejN5qw/4LT7D1zYZQefHxrsfne2w/eB/FjeBCDuVL4AxInNylRWotMq5TWcl9VUlxYk5Q4hphgdD+g4YGmI8UXwQdhrUw6QrmjD03tfld8Ln4ezk9t3q5Rk5t6ihEmHbsvupbl/31mcT8lu2qVpqGLxF2uK9KqISlu0EFvjxsi2EiwrBPCWXezGMX+zSv07p+Tbs4oez18P2vkcyTx5RMjWIQG1H6gJKbx5CiFTxN5/nDMPpJj0OOc6fWrdO/ZhXkhMr7SkuxbvFKY/ZkQEwud+0dE8y47N2Sy+dZgI9HSuzhIRIK6rHk/DNKu7pUMuwyN9wNYlBSGpehqQSiVkymIch5derKtCl3K99P7tkKxYyEErqzofux+dq+/WjYxE8fxP6mYHY7xRhGdvQSRwRReDLbBbKtzhS3kfVAWSMQ0TqVRiRPS1HFQaOl5mBv0sMCVmrRbUmx0QjRoIOyFhszhK41THjePGmM3ysE4olzy2JVKTtYokrLCyMEkJjkxYb6boScGVSpMKQRCDPEGtRuJSXfoQEu8bLHsGf6VIV81zQYuP2TF2B1LoAD1JvK6gqovBErPddPBEY+ERJq5yJuqDuAg3RX/ku0IYeqfkY3k/Hgpk6PgfSgG0sBdl9KVfYkwji9pZicsaA+lfB8FTkN2byoRyCuOzgW5vd7oKi+lkXggdUS7pmmAL46UqFxTnqwwlxL69xpmh8Vw7VNPtWzFeB5DsqPIDzl2n+ronjXMtMEnnmIoMqlo31CuVXTPRMyOWcp1h9mL6N2eUAxhcpUFK2S4XJJeC3YSCQgYWvJZLL8CYo9bLsmPWuxcfhdH3ZJqHpPdk1Ash/b2vhCMuhcHL2TPxZDsKdmEd2RC4xVEM7mtnvhVHVDBE+JiQpytIx5p8mWa6YwZa9IdmbLo8KuhISGBUFY9OT/FMJi/xxq9mzK9uiI7FxGPxWflYvlM6FLhRh3y1cWFA1WJXCzdltdKt6F/RrF9i7ynpoT5oeBx2Yc4kNzOJfGrdM/L/wkT1M5FGD2j5N6/94M8Euzv7z+ix7Vo8WRFS0BawMoQNrdFnnT+IqqTiSEdISbqUzecRsvURCtUloXN9qc85wGNP1kqxvN5IuSjqqDXWVzh3xs15nXZrB+YCBizSE+qzdyTqfgrkkQ230XB4E/PUF57hNnhVK4w91LUpVKOz3vxESwPUKOJbGpBNsgHSVCQfKk0kc6TRBrBvS0WBKJOtqrTsmqERKymd6PyeOfw4wl6uCSkpE6zqglbmCSJWfvA5KI2pNdFg95DXmDTICvTB4z2EG4zC0JUTzfiWEzkzuGyeFH6E5mFHMw5VOkllclovIdss6TsR6Tzks5GjuulmGm+SM6qz1llYTrFXn2UnZv7rP/RuYUsLEjDvFLinUBSg1RVoQrXyPKyBybyPGGSoiZzsnMVLo1RhQ1BAkKQknO7HBp1ufj8QdMe7iMC6RQteu3z0CE4SooKPU4pjJUNSC3hap5D1/9XRHOPrhzx2GETJUS2ngjVE7p6OpUFL1AaB9M9oIX0RNOK4R05qnINiYxHFd7IJl6XC/Nvc9xWoVKHtwpfKVQEGAcdL96QzOKCudsYR7Q+p8qjhV8KMGmFLQx2HqGMFx7bK2EzFalL7KHQqF6J78tr+kpDasnHCSo0odswvPR9ixobVCUFdsUhS/c+g0tlox9NFFUGsxOykXYxxHtyRVpX4AgG9CKm87GOGJUPF6iphtgR7UaNXyfO5cq0N5Avy7/LgaRc1bIhF0N6PpZN64TG26PsosMCDb0z0i6eXpSivmRXy4a4hKW7I/aeaol3JOHLZjLB0Ln4PKTYkEZyRCxelGgGZa6waxV6J0YXivE14k+JxiKLU7nGdRy60lR96N2nmZwWwtY9p5melLSraqWCSpE9EDG7tiAb5Og/X2Jybcl4IN0b2SU5dlUoqmWLSizJ2ZTiUIVKLW4WoY3H7ERkFxXFCrh+KLHciVGRp+x7XOaYX2XRezGqEs+K71uYaUmBSiUhzKay3nikZBoV0qjMVFMuOTAiQcIJeTYzcEbay5M9RdVVdC4adCGbfV1JH0jVkWlQPgw/r1+9zWyrLyfYavRILrREY0huiyiGkjBVJ9bN12RSka8IJ0z2pPBQChU98ViSvIqhSKLWPqLIV+Av3/p9n+EP3hcxWg9Iiy8gtASkhWzyvJeruiCb09qQrFSzYXaTqUwIlJJWcKUvv3pfb6yTmOnTj9G5e1cK6soKZXVIzgpypnm++MVWy4UOovZv2AOG6aJopEzKGCExOpi25znxHfcT7ayg5mXwrJjF81uH2tyGXg+cRS0PZYJT1br7ZnsuMqksXUi06ubzwgJGEr2sRfV7Mjmy7jJZF17IB9aJ7KomJcaI7Gp/tEjOiqMDscXlIvWrKOSyYb3p17D6kR25f53wVbeLN+fswATKe6rDA6KtMcxzdGxkQlI6KFnI32rpVFPqGJNcGjM/MUBPC/TupJliqOAPEeJWyr8HS5jtCevvmzaErfnceE9+ckjVM8TjinhnjidCz4tg9HaoInwOmuQveQ0VBYN9TWQBn0bovSnJeAkbh9vC5lWXIXEq3E44BF160n2Hi5TE4SaqkZXAAQ9IGB4p6xl+fFemRp3atO9FyVX7ZA4SQx/0SM7Tv99RLCk6d24uwgOWes17k9x7iejZp+TuIda3lv24WKYCvlT4Tp0UFuRmGiGITiYh3sFssyv/tgqTVUSJJYos0/N9zGpOFbwWynjcJIZUYn3tUOREzNNQjOihZ/FWofKQMBV5VKFxKaiJyLK8AtXPUdOY6SmR2KRbErc6vSane3tG2Rd9PUB+pJLJS4DtOqpcyg+ZSXs7TiRUeDH0lj05L1Vv0TaebitsR5FuKcZXO5buER+Bs4EgaLnybjO5cm+D/KkYyvfLgSfe1yJfAjF996B/p0i5dBmidUspvtPBaB1NJCDATETiVi45qiMVzAzRhvgtkhxKd4C0zDXZhl6UBCaeqqfILsltxRGZFpRLDjMWr1Ox4kjOJZhxwuyWGWo/QRXy2i71RPs6xN5q0vNC1qI9gx+ZkMwmn+XxDeJVSDcM5XUz1PkMKjHAq0qjxlGQVQFKSIuZS+t4dkHihHUZPsrxwnzugswt2dFEM5mYKCdEvupJohVKPr+dDfmVNb7G4YcyZomyCq09a4MJkdNs/dU6xV+tohMhM/0zcrEgX4ZsG4oleW1TiNEfD7f/kychkWjR4kmAloC0kA3f8gC/vQuA1xo/m6GShMs6MMJmWDpCEnZedDUrH9yAyRR3dJX9pwwY3LGPqhzTdcPm09c5+a5d9LwIHSCxXAJTWjbZdTRt3YVRPzdcPhGoqoV0CCBJ8JOpXJHuJdDvioE7TSRBKxi5fVmJZKrewFqLmkzk9tVlkUfBgjw4j7el3F5PZMogwZrOhEDE8iPj57mcr9Dh4b2DWdA2GBM2rGEtRSBpzgn5sLYhH36eL2RstVemJlywICVFidrYXhCS2sfhnHhwavlandkeRURnLsntSYLemy7ITZriIyOEIkiixjevMls1xFPH8q27mFnF/NSQeCfHjGayCS7dYqqlgjQubMKro8uY0Vza7eMI14kZXzsg3S4xc0fZM9ikS7JToEdTSVVLIiGLcdTInWriomaFTBYCMVKVbaKBs23L9LCcW49MOEwB2a6l7Ghcokj3LNm5Ma4To/MSHxtsN2Z0KqXqirSk7gOp/R3LdxUkm1PUrMAu9zBbY/lGLYOzC2+LjyM5fzVxytJGtsU8X6SRjSYLcus9K5+s2Hya+Dl0ePsOkiCUQsUit1KlQq3muEqmBWocoSdRQ578XEPksS7GziMK4zGrOXYWoSKHjhzeKXzsYCJ9HCpyJDsx82MVeipSIb0bSz/JklzZd2sllEGKE8v0RU8N/kxCHKZGNlvo4rsfyySxaiJG52JZvAA1/cgeiGVTnoix2Rstr4dv5C/WQLKPTJAqmXx0Lijmhz1Ldyvm63J+Zodkc2pTISs+JDlFE/CRap6vHDqyDY0Lbe/KiVxverpCFeJPcDHS99FzZOelydyl0rHhNfhYOlbKJUc0VTBJsB1HNIdqxTNfdxB59L7EKWcbmmLosYdLmBniHUO+JtOXsu9htYD9jOySTGfK1Qozkhb44oiFnQRdygQq2RZZWHXDDFcperdmVF3xjaQbhnzdkmyZEIHriQM5KQce9UAWpkIKtROhSxWIhZjJ0VANLHbVofcj5sdCv0iH5v0ulxDpmkI+P4crKsBVBl9odBY8eYVBaU/ULRlXmiixpNqTxBX7u11cJQle58+vcO93/BC87OH8YWrxsOG5AhOQR/fpWrSo0RKQFvjpDB96NfTKMm5nN3zDSzwqoLTGPvN6Lj27y+ptOfHOnGRkmV2zQueMRKkuv/9cY2Ze/1PpdNC7I3muIsSxVhaMSH+IDKrTl03yeLIgGXU6Vl4spivOLTbu81C2dyA6F4DJLGzEg6HdWtzOrhCMMDVxdQ/IpS3U0cPiNZnOZCM+nTalghgjyVdaS3pWHMkaBn05NbUvpk7bMkaIx9oKjCf4qpJY41BaqGrJlNH4UdjYlgti5b1D1f6N2oxeT4EO+kNqAlLLw8YTVK+3kKnJmyXHWsvE6udQCt/rLoziXiYf45tXWfrENt1BxtYzl9j8P1Y49McXITJc+tJ1eucz8WkAbthF74wXRMSJqTza2G8+Mz7SzI/30aUjX4lCfwbo0jYRx66X4hODqRzERjphAOKI4nCfvesy1j+8GyRiepHQBfRuvcj8K47jDSQzmW50L5ak9+/TDa+vpjlYi95yuLUhelZitsasnfGcf/lxOpuOdNcyPRLR2ahIN+eY7VFDKM3uZCF30wrXTcUwXwckRBofFFkqyMeWPnaJfhyB0dhDyyjvhfiF9DWcp3vHFurmI5IyNJOr/qoCYwGCb2InDrGkWnwcCjAe36+kuqFSmIkRn0X9nkdguhV2FomBPXwMIKR4LVX4iYFxxPyoRc8MbqWUmNPwUdA7MW61RGmHxyy8MROJRk13YfysOck9ssEt+x63XFGuKuKtqCFyjWfEKVzsyA9ZSB3MpfhPFUIIiGQzbHuyillH0bkoBYbxfijMA6pMji/Z1c3UyMceXWrSLZgf9uTrnnikQ0FiME2XkF3SdC7B9CjYDHp3ibG7WJFiOucUZm7E5D6VTf/8iPRyRPtaEqZKFTwRYpIXn47CdyzZ/TH5YQuVYnp1iao08f0J5dBSrlXoiWkK9+K7M4plRzGoiDZiUGCXrJy7mZbJR8+hBiXVPMUOLZ2Pd/AG5s+aYfdj6QtJIbtoKFYd6aZuOjxsBvGe+FhsR6RTEoMsk50oEBFdCCmIpjKxcKknGivydddED/tESi996lCJw2+n+NRBqbjve97woH9HWrRo0eLhoCUgLQCkxRvxfMg/vExBuhI1cu4fPJVs23PkfbuoO89CHNH5+Aw96MNSH3NuvDAjA8xzzO6+bODSNCRZlbJpPZh2NZksJF8H5F4iBwqTieBpUHEst4OYf6cz6ffQupEf+XqaEK7M+6JYeD3qKUsU4WYz/P3nhRws9SGK5IrtbC5m+CClanwd9bGVFX46Q3c6oXU8WRCjyFCcXqUYHCYeWdLbQlFgUUK3C6NxQ0q8c1JWmMQibVMJnpC+tTNrInlVmizkcfW6yrBZr8mIswsPiPO4tSXytYzOrfdDZKiOrxHtBKlYWQU5T5h+dBKWbt2EssLMCw7/z7F4N7opu08bEk89k2MR6aUMsztBFZWYyjUypdCacqVDMg3FkFrj05gqVdhUJE9R7jGhzM9sjSEWGRYT2YBiLaOnrrF/WmQp2sHyHSXlaof44riRoImpQ6YQa3/yQIgk1lTHVkVqFtakDvpt+l3sUkJ814VmkrH+lzN0XrHxJUsoB3FXE3UjzKYHK9I2n8VNXLDLEuZHeuGqsic9v8/0qgG6cGQXJkFu51FOUt4YLqGLitENQ/p3Ooi6uDQiurBLdWhJCtJOO+J9MeviIZpDHqYxulQyoQpeEB976Fh0YnFWoxJPtJyLCT0Sw7DuVNidRDb4HpmMzCIwDh1ZmaL0K5hE0LEwKPCTGJMraUXXYA4XuFkkpKdSYCSpy0w1JhcNfnxvJtOHCFzmIJdkqtkRMav72BH1xIfiPejtOCQLyVTBFJCvykYXr7ErFWpipFyu0jIp64ipvBzIW2i7ND0U8UjOT7EcpEfXSZKUmRPK8zyRl2StsgNmCpMTMiExOUxPOqJ9+R1j0zAB6Uq6VTWQyU20K4Sr6tUMDEyhyK/OMZuJ9JQ4RfeumOlxBx0piay7WcqBbP51qSjXJBa29tSYmaZKQiP7hYj5sQrb9fTOaCYnPUufNJQDw/y6HJ8bZicsqx8xFNMOk9MOt1LivKICzEbM/LATWZsoBYVsFCLF8gYGdyr2bpBeE28ksUo5MYff9qZW2vRFh9YD0uILCC0BacG7tn+Zlw3+3qLXopbxGIPPc/TaKqaAQ797F25/JDKTG06j7r5fJg3buyJNSkI7eo06yaluxS6lBO2gR6BOcrrMvHwwOra++l8TinqzX9lGakVlRQJViHwKEOJhLSgtj9FKjOBGS1rTeCLHXJRCKvZG0nuSJkLGDpjdIci3tMZtbQvpMHoh1YojWB4yuWmN8dGIbMeh+hDv7Uuj+uqylDg61yRiNceuNbrfw8/mKCPHhXX460/J1fO8WExC6k6Upnk+lCOWVXDhirl8fHWfaCrnxy91iS7sXn5OQzIW0FzVdys9Zif69G7bpFrtEV3cY7a+gpnDkT/ekOQqo/FaY9cy4vN7YC3jpx+mf8fOZZ8n242Jck80c5jCEY1LzN5MCgfr+OP6I4JC5RX9O3ZIdpeYr8cMP3yB4tSqbOgPelwa+ZcCL5+z8vQ6NjVEW1AdGmBGM5F1BV/Lna86RHYJTp5LG7K6d23Gym2TJg0rX9Z4k2KmA8zGDhRF02fj+x1UVZGdn0gPSaIpDi/ROTtmfN0SZqVDvCWkvTyyRFwUsD8W68Y1A2an+3TunzBfT9h93nGSESQj8S3AojnaJsHyU6gQhwouFeOvmmu8NzC0UvQ3jygudvCZwwQpjHcKehVJp6KcxmJGzyOR0DgVkrCQWF4QkhHSjtJhjtae+aUudCtMt8SqCOUUybbBxZ583dF9wDA9YemeNcwPg08cai630RVThtZ+sV/RQjDnJ0qi3Ug8EUPfxPqqXIP2Qj6cAie+Ax97CFGwOhd/QX64ond3xOg6KfDzSmRgOpcYWawKHhQ5r+kuFH0as/rsiETQDu7UzNfF5xBNYXZUEqmqoSRO6V5FtSx+nHRTk6+5pufDX0iJZPDJoQ8qNr62IDqf4MqEzgXF5LTFzALxOF4Q3ZvQORsxvaZEzQwm1wzuhulRmV5UXU+0J2RofJUj3tPMjkK1ZFn6aApOuiy2nl8SX4rp3aeZr6fidTlUUq1UdO+L+cSPt0SiRYBzgPucd3v4z9mixaMP/bnv0qJFixYtWrRo0aJFixaPDtoJSAvBtafQ928s5EYgV+V7HXa/7BTKwvgF19B910fFKHp+S8zPcZBJzebhin4wQ9cyplr/HofpSJoEM7EW+dXB0joICUN8+pRE62a64r1DBXO2z4vG/+BdSIeCIHPyEidcVSLNSmKZboSm8hp+IiV7xfVHKYcx6aWc6My86fEARBo1nsjUw1p0FInxOElwwy6T0z28VnQ3LWVP09kopQG9KGBv1Ew7VBShuh0x0adpIylT3Y6stddFDZZQD2wupiRxLHK0YjENuaw8sZ4cOfHPLN2+g8sSueJPbyHZqqdJeYFf7jO5foV4XJGe2UWP5vQ+MZO3YHeGW+4Rjz29DcvFrzrMkT++BJVldMOA+ZrmyNmt2mRAtdIVD4hz+G6KmRREO1ORJRWL11b11Opgf4oDn4mZPT2zTXpG7puc21lIz+pOkdoAbsTjQBITn90m9qGgsW6At7l4efox1/3GDudesoIfdCmXV0nuusjyHVP0eM6R9xaoeSldJHfvNOdvcWy+8abYQYyelxRrfXQuVwQHf3mJ8tgQn8aoufiV/KCH2t4H78kuzqn6MS6LiWaOfB3ydTFPL92jGF8lV+ULE2J5k2D6VYtzo0rR6/vIY6cRUa+SxKp+hRrFWA+9tSmVNRTjhHIeEXVKyv20KU00+4ZqWIECMza4ZfF+JIdm5DYj30ul1LBbofZibObECD/RFMcLMVTvGoqhx0w1k+tKUKAih0otfi/BZBUqTECq0qCMJHTF+wrbR9KYjIfporLepw41Eulj7TtQFljPcXlGdkkxOyLm9nQjouqCzyxmJ8bFMinQhcZmch8ikWrZFCbHZSgocimJOzY5jK4RozkayiUlPSsTDV7hU4e5mMrHMzxPPJLPXB05PD/k0JVikivS+xJJ+7KK6TNK0rtFnoaH7O6EchAM7udiilWHzTzbz3Is32oolxTpjkQYg7S4t2lPLT5vtBKsFl9AaAlICwB8bESmNJsF2ZRvOi/yoWbt43NsKpsHfdVJ2NqRMr8gW6rJgrdW4nlBHl//QjQalvqyGe5kMJ4uNnt18Z73siFPQ9t37ffICyDIrIIx3oeG7cvSueoSwTxfeEGqSu4TiIfPC/FV1H4KpYQkeE98670kcSzN6VqjhgM5XusakgJiyAdEujXoMT3Zo+poTC5a7M5GSfzRu+UUHF6XtCzvxWvSyfCXtmSD7ENUb5rIxjyJ8Vs7UvhY+19M8Hbk4sj1dblhPkYv9RfRt87JcZcValagvccfO4TaG19O8GQFqPGM/scKSaBKDD6K8FnE+HSXsid9GFVHsX86onvRMjs9pHPXFt0Lc2aHukxvPkrV1fTvGkmqVYhMVtO8ScIiFC9iXZMK1aRv1cQrMhKF7P2CcMEBOZ7FpxHKBgme1qjKSSzwQc9RWRFtTxjfuEo87uIiTefubShmHPmzjNENQ6qOYvVMzOxoxvaLenQvetY+vIeuPOOb1oj3K7xRpOf3pYNEOVlDnc6lNcl2TnRxD4zBDbvMDiUUSxkuViQjx9KsYvulV9F7oMLkjvlaxMZLYk78iSXeF0mQimF0dfAspR5jFfnRCtWtJFUoDglWu4kkGVmRGynjUWcz1NECphE+s6jYM58muDwKykmF3euIJCrxUCrsehla4T34CL2TYJcqiq2OhAMURjblkXRGRP0Su5NA5FGjiPjYlKrsSjN2x6HHRhK1Uonv1as5Ng/V8+MIjMcMC2wVkV+Vo0LXg5lqikNCfmTxSuRXGtAe5RTlwEGlcV3P9Lj4PopV8WZkFwxmHFEtiWnazAL5mKrgf5DoVq898URumx+zRKPQxq0ULhHyURvM3Uw3UiiXys9J3c5edcWLUvWlyK9c8uhSkW4ruhc9+9dIOlg8UpTDQgjHUsV9f/+RFdm1aNGixZMJLQFpIfiru3BPuQZVlFLy1+sIwchSls6UqMoR1y3o27uhlE8vOj2skw2182BoSvtUTTKiCCZTuZq/P77c41E3nddXx5W63EuShGLCwoop3Fp8UUhi18VLuKpEJ4l4M3JJP/LWorP0cg9JMHX72g8RJicqJFhJ3LCXpKa6m8MY3N5okWRVTxwAOhmzUwNsrDBzKRgzc0fnzJ4kUPV7+M3thkTYE2uYc5uNuV3WZhab7elMYnmNXhQo1r6PmqA5jx+N0SEcgDSR86+1TKG0mNLVeCLf02Fj6OxlUwRUMO6XFeWxVaqOwaYaXXqc0RQ9WaMuxCOBUnSUQlUek3umRyPSPYfem4QuE41PYjG51wSj7iypp2RG47OIciklviS+CeWc+EsCaVWVwxvVpIOpyqEKK1OSaqFFViF5rDy+RLQ1xXcT9NaIoq/pXJDEKwqZSuzc1GF2CIplTzw+yoXnhXOConP1EkVfs/sURfe8IRl5zLyLmVVQOfQ0h1gRXRrhljKi7UlDlPTuhMH+jPlVK4xPxOjSUw0TioGif86Tnt3BxatAzMazIzobskEu+6E0z8sx6AKUjSjWFSq1JJ2SqjSY1Ry3kclkoNJ47ylXLGo/Jj48oyokqcqNY1Svgv0YM5MkKD/wkGvpFhmETo5SY/sVKnao3Ei8qlFCAIPXhEEFD2SwWophfbWgmCbEU41bkVZxfSjHjmJMbFEJaONIepb9jb5ch9BQjWOZzFSG8nwXnBiylVMQOyldtAq6DvbDNLJrhVRNI5Jd3Zil80jM1baDEJZcU4V6FV3I8ygfph+Zw6Uen4Tkqj1DPIH5Ycf8mPhU4s04NGiDV4b5YY8upPlbooIDUawUd/zf7VSixRcQ2glIiy8gtASkBYB0ftx9FoxpWtCJY+xVx9i9PgYVc/T/+QhoJbIn50JPiJZkp1p6BRKvq5WY2mv5zDwPk5UDG2rrZJNcX/VuniNIb2bzkGS1kPH4UEao11cljlcriGK880KYjBHpVRKmKPXrJApOH8Pfc645DtXJFs9dSemdSmK5TVcyyVkeoNMUZpJK1UxRuh1Qiu7dO+w8Z51oHpY+t7j7zoHz6CC5kvLEGHPPeblT6A1RgQT4Up7Pz3P0oC/nM47l3JTV4rzlhYQCHDmMG/bQ5y9JWlb9faVAG3wvlXjg+g+HOUDsQKY6mXRsjJ92iGJJ071Qkl6aUg0TTO7Chlo2k6qCKlNc+sojZDuOaObpPVAQjXKKq9eIdubkR3uYWUW8NWkIQ7XcIb6wf1nAwOxkn3ivlHb02MDcLgiGlx4NNSuwhwaYrTG+k6DqcsdOjJqJwdz2M3ReEu1MufiidVbuyGE5ZXj7mO1n9ulsZsxXDC6WaY7JFdFUcf9XK1xXJETVMUe+lnDyDyuuesec+75+iSPv25WPWp3qZS2YGIxavPZqDz0JLefOk53dJbvHsvt/HCG9d5vjF2Luf8k6J88YzNyiXCKvl0nalboExYrE8IJsnJM9UNZQLmnySqM7IrU69dQLnL2wSpRYtHHk4xQSR5Ub/DSCKmzA5wl+IDG9BAkRmcWnQrLjfoktNW6UyOa/W4HVmN0IuxrieCOPySpcEgn5SJy0pM8M5fEcnELHFlcp0rUZttLhOFLKuYa+BadEahU5pvsZZiOhu6WYHXOkazPyrQ51uaJXXl5nqZTCxLkkf2WHp1R7S9IW7hVmoqWhe6zwxlCuWEmqcgqXelwknSQojxtUcswoVKWoDpdUhcaMNPe89v96tH5dtmjRokWLzxMtAWmxgDGyga87JazFXNrl+H8TP4KzVkgHyBTBGEmTShPZ5PezRUqT1rIPqiVZedFMMnwV5FH1pti5BTGpN96zuTSSxweasGt/h/f4vZFMCwAzHEisblF+2uTDW4s+ekimC/c9EAhHKROeopSukNkMs7ws5KqOcE1i3GyGXh7IcfbCxKGqJJo4TBJclhBPHC7W6MqLVCh4T/x0JpOO+lwdkEKpeurjPGrQx+/syXmv44LryUbtf6kqIR+rK1CW6AubC5mWDju6NKE6MqRciuncnkNVBkIXLeRwsPCLOBcK+TyzwzHjEzE2CVeT3aJIrrdhqVIFSpMPpYvBJZr7v3oo4VvzjHjiieaGycmM6SHFkQ9OZVpQv2aQ1/U+sbkgQkbhBh3p7ZhXkjxlFMQRZldkXWoevC55mFpp2LllnWyrYve6JbIdx+DekmhUyNTDOtY/kLP93DVcrFi5fcbOjR1cHPwAlULlGmUV0TjGFLD5jJj1v4TVTzj2bxwyOqXpbHpWbt1HFZV4WSrblA7qWUl+bEC8n2O2xrhuBz3N6d0vkyhVWDpbnr1nrNG9kLPyCc/uUxSqB9mWkLrueRaFgkamIspLU3ceaZwyqNhzYWfAysoE6xSJsZRpyXSeUOynItmaR3gketc7kQ75zKGNw08jIRoKir0UlVh85KRU0MXEO4biUCWdIf0SX2nsfgI9mRSoODxHpYTsEPJ1Ck1nZcqMmOpSB7M+p4pkiuFTJwWKkxgzUyS7iu4FkVOZDy3BDSWUknAFoBIHswivPaZfYicx+QM9khtGmI8vNVIovEyPqiMFZjvhrjd8/yP8JdeixRcx6gt4j/pztmjx6KMlIC0E1jZX9ZWTjbhKU/yumIvV4XX08lCmH6Gx3Oe5bKCTWDbXs7ls0mrvhgkN53VHR7g/ICV/BCVMFC36P0CiaENHRtPHkaXympWYyUlT3GQqE4OikLjbQYqfzJqoXpWmUhJnTCMnU8E8XpctKmPQ3W6Y1qiGACilpaQweECkp0TLsR4oBizXOwBEU0v3nl38+Y1QRruY6qjloZQPFjI1kob1snl9oJmSNOez/qVfFyXWkq2636L2ydT9JMGnUC7FVF0tE5v6Ps6KzCYKRETpZp3dc1NcJ2LraR3p6Sg8ziiZRHjZ+FWpYvDxLabXrrD1NNm0j4npXfCYQkiX8rB9s+HEeyas/JmUT/o4Ev9GLn0dPtIoG6Yc4TPiEoPOKyEjaSIErjavRwafRFA5lPeovMJ3U5Y/uoUqLPFeH52XTE8vYbZDf01ZosaOeOKZrSm2b+5gEylpkx4Jhdoz6FJuc5F4MjafGbP+lyXRzBJPI2yi0JNczPyJghx8FMk5qRzZub1G1qfnQozjS2P2n7FO2dPsXyNegeFfjshWYryJ8JEQDa9pzMrdDc98WUkk7BGPN4EkWZEQFdOEnTxq9hTKeJK0orM8oywN3ivirKKcR2jl8aVGaY+OHbZj8V4hYxHwlZbo3UGFGkUUhyqifUM19PgqIhnmFKMEFTmYRqj9CH04x5YyNfEdiyo1S0fH7O128YXBpw63kaEST3rRUC55XCKt6q6KGdznqVJItzXlEuh9cYp7JcZ6rOHe13yGYrtvevCbW7Ro8cTFH//xH/MzP/MzfPjDH+b8+fP89m//Nn/jb/yN5vvee37sx36MX/qlX2JnZ4fnP//5/OIv/iJPe9rTmvvkec4b3vAGfu3Xfo3ZbMbXfu3X8q//9b/m5MmTzX12dnZ43etex9vf/nYAXvnKV/LzP//zLC8vN/c5c+YM3/u938t73vMeOp0O3/Zt38Zb3vIWkloh0eJxRUtAWgAhhSmOxSA+m8M8Z+elT2HlD0P3xwMXZPoRpD1qOIC1oZics1QeE9rHa/i8WHgdYLGprr0hWbpoO68fp0NPR1407eJUUv6H1lLctz8Gvw/Bc9KUASoxcjft5ZUk1LC7J2brskL1e/jdvTCBCb6D5QF+NEYt9YVwQSA6HVlXryev9WlmbpgeSdClp3/rBfzunhCdToY6tIa/tCVTGmuFjKWJnBMdCEZVwSBrSBZGyxrq8xFFQsbMgVb4mqgd9HPUreeRwUeKdKcU4mKdkA+lIIkWxYU6GLqzGOUcW0/voEtQVvwd1Nymrg3Zq3jg6w7TP+8Y3Oco+kqkWV4eoy3gPad+dxedl43hXDkHXlEeHaBLhx7PobIopZhev4rNNDZRxFNH974Relo0ExPfy1B5iSoqXDcB65mfHtK5Z0cmR/OcKM/JbzhC/0NnFwQxTaAoGfzlJaLpKp2z+9z1t9fwkaQYmblMQuq0KZt5XCQEYPOWGJvFHPlQRTSx+NigxzMmNx+ic36KykshUZWTLpzYiCnee0nmKi2dSwXpjqazqemc2cMOO1RdTe9+KIZQ9aTzw8ylh2K+qqi64nc3M8X8eCXN05VCFRo1UfjES39HoXHaM680JnYo7TCJxRhHvDQnjix5VyYR870MnVVSQAioxJJ0S4pJAtpL4tPYYDsOVUkfhz3X5fBNm1w6u4Lql5hVS7GXooelTEK0JxnmjPcz2E3k4kHPSsv3nub2f9r6JVq0eDzhvVtc/HoUn/PhYDKZcMstt/D3/t7f45u/+Zs/7ftvfvObeetb38rb3vY2nvKUp/CTP/mTfN3XfR233347S0tLALz+9a/nHe94B7/+67/O2toaP/ADP8ArXvEKPvzhD2PC38Bv+7Zv49y5c7zrXe8C4NWvfjWvetWreMc73gGAtZa//tf/OocOHeJ//+//zdbWFt/xHd+B956f//mf/3xOSYtHCcr71mH0RMH+/j7D4ZC9vT0Gg8Fj+tovW/kHcsV/qYcdZOxf1yOaeWZrhvVf+wuRngyXhAjUnoPgiUAp1GBJNtSVbbwc9STisl9gzofSwgNXIOq28zgW2VFkFlf857nIvQ7A3nw1+iO3iw/EOSEPYXrj8wJVk404WsjJDo6R7aLE0FeVyKVqAlN7V0qR/KhOJk3u6YNfMXGDDnp7hB+NcftjVBJLS3q99uB3aRrNoZnG4DykiZzTqpLXCrfhvZCI8WRxbqwVKVhNPqwTYqSkJDA/vcp8LWb4Z+fEfJ7Gi8JGWEQjI9OJ3WevUXbl6rjJPUv3zYkvTRjftIKLFKOT8rhDf5EzX48pe9Junuw7XBQalStPNJcr2i5SxDOHmVp05TD7OZtfsowpPL3zJV5DenFKNUypehFV12BTITPDO8aY/XnzeZifXia9IGEFKq/wWcz+jcsMP3JR1hA8O6Qx933TYbJtOPLOM6FI03PppVcxOS6Eo+rJ1MErSHfAdmQa4g2US+AijynEDO6NyKQAdAnzNZheVdK7O+b02zcXgQEAzjE7PSSaWuKdGZ/8u8tEM8VV/2PMfX+tz9J9nv65kr3rEiYnJH7XJR63XDUfe4B4K5L2cw3lioVUyIbKtUwJammVEQkaCugKufZOoWJHlFbYUkzpOpIywCixpHHFdJqC8hjjUNrjrKacxZCLnE7ePDj9lIucufswXnvu+642yalFi4eDx/Pvd/3aX7v87UTq0b26X/mCP9z9z49oXUqpyyYg3nuOHz/O61//en7oh34IkGnHkSNH+Omf/mle85rXsLe3x6FDh/iVX/kVvvVbvxWABx54gFOnTvE//sf/4KUvfSmf+MQneOpTn8qf/umf8vznPx+AP/3TP+WFL3wht912GzfeeCPvfOc7ecUrXsHZs2c5fvw4AL/+67/Od37nd7KxsfGYv0ctPh3tBKQFALMvv5Eq0+RDxdKZEpN7bKro31+ie12ZKkymwccRko1cMIsHPwGwuCpvlEwuPoV81Bt8Vad1HDRL14/XWkhIUYpsK0AdXsdd2MDcehfOWvx40kwFfIhkrU3kKkilVCxXhPOnniL+wCdEhpVkQlTq5Ky6R8SKVEllKf74YdT5TXnhgwTpU/i63h7ht3dxszlKK/RSX6YeSokZv15THEvEsZX0Jj+bi9SrfqJa2pVEcm5BUsNgQSA6ncULl6WQtSwFb8E7dp+SsnxnLv0s8wJyaX73nQQ1C43ucUS13mNyIkU5z8ptM/av7bB3vWLn5g7dBzqYHAZnSpbOQT7QlEuGfKjxBsxcJgZVpjCFJ57K+9i/YxcizfSqAVXfUGUx5bUZynlQMDkWE808ZV+ucGVbJdHUoqyjWElkqpBEnH3pCtpCNAOuW6Wz6ZivadI9Rz7UDOupTpZiV3uYrTG6hGIJNl5ymsP/87wQmFWJYZUuB8iXZWJTLAv5cMEQnuwAKFwCVRdMIc/lIyQLYR+W/zJm7ymO21+9yk2/cEk+w1pz57evE83AxTHX/addVv9KHjs52eXEH+fo3LJ/TYd8KGSmWLF0j43ppCXeK6xTTGcpdmzQpTSg67mWVOrU4bXDTIwYq6cGYo/qhh4Q5VGpw84iMYnnYepkPFUBUa8k300ps4h7/s6PfI6f/gP42od+1xYtWrR4OLjnnnu4cOECL3nJS5rb0jTlq77qq3jf+97Ha17zGj784Q9TluVl9zl+/DhPf/rTed/73sdLX/pS3v/+9zMcDhvyAfCCF7yA4XDI+973Pm688Ube//738/SnP70hHwAvfelLyfOcD3/4w3z1V3/1Y7PoFp8RLQFpAcDoeEQydgzuK7CJRlvQlcPHCno9/P5+KHlzssmvr/AXIREqjmAyW0w/gmTpMlO7VjJliMzlvQ81CQnRqrLZj0RaVJu4lcJvCCFQh9cxeyOZjGgFdmGu9nUkLcBSn9n16+jCYeZVY+AGRKJVe1Qs+MkM1etAaWVq8MBG4/nwqwPU3lgkS3m1IFve43f3FyQpTG1UtyO3VRIHrLQS8qaVEILZXPwpof9DVUomQs4tJHA1CXEOe/VRzP1bC3+NC+ez211MQCJDtu1wkRbyUZcPVqG0Ly+g30WVFdHeHLOe0L9jh51nrdG5VKGriL1rFC6GeOoZH49AgfIem2qimad/LmfnpkzkV1amBQDZpVw8GzNH79ZZ8/5On7LO5KisQ8r0wKPQhcfMSvQoR+UF8QNw8cXHOfSBXY58KCeaFJiNfYqr1zj/woylM57B7fvo/Rn5deukd23CPMc8kEOvw9JZRz4QgjR9yjrj4zHZtidfVuLziAlFf4j0ykjUajGAdAt8HNaioOqAyQnldXLcyb7n2v9Wcu5rUu7/a0dAyW26hOFdnngqBYwgjxud1EwPpzLR6EE5WJQMziYp1mkGnTl7kx5RbLGHcooVLf0YhcYnDtOpZNCyVMBmhs9sO5Vo0aLFZ4e/Aib0cNFtf3//spvTNCUNRb0PFRcuXADgyJEjl91+5MgR7rvvvuY+SZKwsrLyafepH3/hwgUOHz78ac9/+PDhy+7zqa+zsrJCkiTNfVo8vmgJSAsAVj45xyYaF2lcLAZYU4GZW5hORZIUNva+rGS6kcRhEuKkbK/uzghEo+kFASEeRgdfSPB2HEjbopPhd/aagkClpbhQjcaLX6dBzuTOX5QeDKWkeC9JFjKtkK5VPOMqvFHowpFsjOD8JcgyIQXeiQTKOkjTZkoiExot/o9uRwiQ1kyuGZBtpES7U4rjQ+LNMWpWCCEKpMOsreDzQtbXyRZljOF5VRLLtGKei3+gJlxaL1rOlRKiEEcLI3+WCvkwB0r69AHDvvcybSpLlu7cx3VCI3jtiahlVwckYKqoyDYLcNA/lzM6ndI7XxKPNS5SzA4ZcKCtNFO7SDbo87WYQx/cw0ea6YkuZVcTjyxmX0iHz+rzKP6Pzr17KDdkvmrwRlH0ZZLhtcIlBuO9FApWliPvuYDvJOw+JSXbjnHX9xnets/hPzekmzOJvPWeYilCXbVGcs+GrGsyE2lYB2wM2zfJMcQTkTRV3UXaFIjcyi45dK4wU005hHgfadGuQDshV7pC/o4rmK0r8uWUZBeG91TsXh8xOaboXoClM3Pu/WsdTk56TfN2flj8HTaT144mUColvRtOUcxiPvhN//SR/qi2aNGixWOOU6dOXfb1G9/4Rt70pjc9oudSB4JcQKRZn3rbp+JT7/Ng938k92nx+KElIC1atGjRokWLFl/ocE7GsI8mgoz67Nmzl/kmHu70A+Do0aOATCeOHTvW3L6xsdFMK44ePUpRFOzs7Fw2BdnY2OBLv/RLm/tcvHjx057/0qVLlz3PBz7wgcu+v7OzQ1mWnzYZafH4oCUgLQAo+wekMlqhQ5+F10r8CtCkNLnTR1B3nhWPRkiWarwg1oIOca+ltKLXUbN1F4bPi9AdEl7c+yDf0k3kLt7jd3bFy6HD1Ypwf19Wi8cR+kFCLLAKE42qYzBzR/KhOxaSrNCQ3pQOrq/izl8UX0iahhb10FLuHKwuM7t2FeWgWEmk+G5c4DopulZhTadh0nDgNWpJlvMix5pMIRfPikoS9KG1EG/sm8fgPESyfqzDryyJPGtLErwog8E/DUlkVdUYynEeipL8UJfs/v1mqtBMTMLzbj3vENHcM1/WHHnP+ZCC5Vm5dY/J1dK5UE8/6jI75cPnoQKbKvZvEA+HLiUxy3b0Yq355WEBaM18LaJKxaBOXcLuPFU3IlIKjMJH0omi5iVH3nMRnGP7BUdxaUS6OZPPxM4Ieh02vsTgIsPy7adYuW1KdGmETRTjk57ueUW+KrKqqgOdS56qp9D12xGDSpUM0lYLKp2gSoWZK5l6eECLaT2ahbQsL6Z15jIFsqnm5NsvUB4bSsliUXDnD70Vfugh/qC1aNGixRcgBoPB523cvuaaazh69Cjvfve7efaznw1AURT8r//1v/jpn/5pAJ773OcSxzHvfve7+ZZv+RYAzp8/z6233sqb3/xmAF74wheyt7fHn/3Zn/G85z0PgA984APs7e01JOWFL3wh/+yf/TPOnz/fkJ3f//3fJ01Tnvvc535e62jx6KAlIC0A+OO3/198+Te/pbl44rVCO080KqUxPEicfFGg7r5fCv5CR4UvFvGpEiHrGvmPeCCixmStjIFOKC6spUhRhC9mTWs4IN+3VjojQpLWQd9JI7kKPhLV66LWV/FpBBe26JzZQ21sU40nROurQqJCQpfqZLiTh1EXd4TsFKUcL4jUqd+luPoQ5SBqzoeLFdPTS3TPTdDzAjWd4Y3InFQcwaAvsjHA749EFobFz+ey7k4mRKSq8Nu7EmlcG+2rSo6jJhiA2thexO4Gwzqw6AGJY/nprSrxhKQpnb+SpvXRl5wk28xR1hPtTIXQdBJ05ZtyvurQgPHVYmrvXNTMVg3De3NUZVBe7tc45BWhvyP8uwKbaZwB0JTrfVyiSS9OwDnK9R7x9gyXRew8RVEOvJjRHexfo+k9AOmOxiXLzFeNpGrFisFtu/hIUw0ylj+xT7mSMT2WMT5pOPKnmk/+nZ7E/pYwPqVY/+Cc7RccocqEKMVjMZlPT3p0oSgGkoLlYgl6QgdJ1Nhgtgw28+AV80OOZFdTdXxbcNeiRYsvXFxBD8hDxXg85s4772y+vueee/iLv/gLVldXOX36NK9//ev5qZ/6KW644QZuuOEGfuqnfoput8u3fdu3ATAcDvmu7/oufuAHfoC1tTVWV1d5wxvewDOe8Qxe/OIXA3DzzTfzspe9jO/+7u/m3/27fwdIDO8rXvEKbrzxRgBe8pKX8NSnPpVXvepV/MzP/Azb29u84Q1v4Lu/+7vbBKwnCFoC0uIy1HGlSIUDZm+2aAcP/gxfFPiyko3z6jJ+Z096Qeqm8mBCV0rjOeDzqLs36gQsaFq+8eExxjQlffVUg04GSHu43R+hs1SSqkLylS9K6WLopnDfA3B4HbW9j7eW6PhRCEb5plndedR953HzXAhRFOGmU1QUofo93PqQ8amUaOaJphZtPTYTcjE92SPer0i395t+D5SCzZ3FpCaO5PaiAAtqOMCPJ5KQNZ0t1h5F+OkMN5tj0kQekxeXlwwWJe70EfTFHXlcWDOVXRA4pfDDvnSyVBYURLszVGkpjiyRXBwxP9bHxYq1D1wC57ErXSGZhZfukD1HvDNnba9g87lLofIabKwaLwhK4fHkK1pSokAK+6qYZK9idMMQgPu/2uOTCDM2izKRWhXgYXIcyp5i/9qIzkWoMkO+DKMTq6zcVTFbNWw9S6Jjda64/le3uftbV1HOY+aK07835+yLM+75/6xx7f9zH7zoNLajSEeO5DYYndLkK5Duwkf/ZdtN0aJFixaPFT70oQ9dljD1/d8vF3W+4zu+g7e97W384A/+ILPZjO/5nu9pigh///d/v+kAAfjZn/1ZoijiW77lW5oiwre97W1NBwjAf/kv/4XXve51TVrWK1/5Sn7hF36h+b4xht/93d/le77ne/iyL/uyy4oIWzwx0PaAPIHweOaIA3z5N71FDLtKydXzqaVz9zbu/vNNR4UvisVV+DDlUIEgAAvTeZBbYaUYqSkk9H7RaeGCSb1OxarN4FUlXRm9rjSW11MRY3DzHDMcoIZL+K0dfFlJG3ro7vBVJS3ovW5oQJ833RAHSxJVmsrxRZFMJowWYpIm0r8RGS6+6DArt89RlcN2ImyqUR504cg+eh9uNAalLu/9yHO8c2H9BrW6DOF+Pi9kWpOlYYJh8PvjxblCChD9NSfQ5zYW5KzungjTIsqQDlavZ6m/6MawFnta0kHMhR25vd9les2ymMKns+Y87z3rMKZw6NLjEk00seTLEfmyxqvAHTyYUqYfvfMl+1clmNJTdRTR1BNPPKb05ENNMnLYRHHx+aHs0ClUBdFMYVNJl7KJSJRXbvMUS4q1v5qT3C+t4na5R34ooxgYNp+pcbFHWXkub+Cu72+nEy1atHhi4onQA/I13b91RXpA3jP99cdtX9LiixftBKRFA29Cy3nobvCxxq71UQ+oZnNfTw3qTbM+ehh/aUsmEkUppMJ7SZpA/BsKs7jqX/se6g4QvBAApVDdriRu1WV59e11V4e1mF5Xvre9K5v/o4fweyORVc3m6LVV/N7+ojARwmRCNQldQCMb82Ulm/+5Q/d7uKPr6N0RxckVjvzRBu7ec+jTJ4j3R7jj6+h9mWDUUbp4L3KwkKqh0hSsXRQPTqZCcvK8Sb3y1krKVl3aaPQiFcw69OaekATnFv0gofCxmYDU8cVZKq3hW3tyW5piLu7B7MD698d076hw/Q5qtvCZoCCaOZKNKT6LMJf2mX7pMbobFfnQoCtp+B7cPcOMcygt6aWI2Yl+E9PrYkmMSvccNpZzoHOFjwEPK7fB4L6cybGEzWdJ23c0gT/7Ty2ZaNGiRYtHFU8ACVaLFg8VLQFpcRm8UajKN94H24mIrIMsRXc76GNHwFrcxqaQjo1NkWEFQtAQC6NDC7iUAdYN5WiFn85kamItbhYkSc6jRmM5hqoSP4h3KJU0kbXeWhSg4ggXjPH2xBpRvVnf3cPv7QuJCpIreWzwriSJTCnmOerIITnOjU15bJbiD6+hJ3OYzUnueAC3t48+dVzWGEWoex6Q6Qg0UjSldRP9K0Z8hzJ6cR7qtnjnIY5kXUUpvpOayAWpla8lbCDyrSi6vHVeqYa01DI1laWozV35vtZUR5eJzm2KjKuOTk6TprGdTia+mqKkf8+EapigR1N8kVAeXwYfSMluyexISrxbEV0aMXr6Osl+hVeK6WEhNnVggXKOP/md/+vKfzhbtGjRokWLFl8UaAlIiwY+mI2VqzeXkJzfx1qLTlPc7h5+a6dJtfLzEC+0s7fYbIfkpTo5SyUJpBqVJkHqFJKwxpOFH8R5KQEE3Mkj6Ac25HkLJ8SjqiRtK01DW3iCXl+VpvG/uhdC0pSKIqpbriO+OIL9kRxnmsjUIPR+1A3kfnP7AFkyqCzDA35zW4iAdWIc39xujkGOSQzwqtfF74/kNhUKFqtFVwrWCSkJ0wbxmgTykyZyHooiyKwW0jBfVag65atuX08SmWjU5/bImqRCVRUESZVfWULtjdHlwsRvTxzCnN+CvEBfKiGJhXzMckk0s5Z4V1rbJ09ZwcaKaO75n7/XRjq1aNGixRccnF/47h4ttBOQFlcILQFp0UC5QD5UiBL3UK32MPenkKbotVXod2FvBMMl/IVLcOww/r5zKK3l6n5VLa7O14byKY3MqLnKH2RFemVZiInzECt8bGA4kI0/siGvi/xUHKOW+vjdPZlw7O03xnbV7eDHE+JPnJWNflnKZr+qZMM/zS97XZkuiEdFdTu4QyvozV3cdNpMNFSv20Tn1ulcfjaXSUwk0wyVJJLQ5Z3EBIf7KWPEM2OFTKh+T6Rh1kpa18VLqMPrIRLYwTyXAsPaq5KlMsEAIR/h2L23qEs7CyN/kIGprT3odkS+lYjHw1za5Z1n/+UV/cy0aNGiRYsWLVo8XLQEpEUDFZqfZRTg6d61i7/3rHx5/iJ60MdtywREFaVc4T93XqYc1sLKEP/ABdxsTnTsiEwlIHgbwpX5xgNiF83pgRR47zEXtiHPxbxtLe7cA6A0OkuDad2JfGp3XyYPqby2O7yKDpG1fjoTj0Uwn/uixNedGDWCfMo7R/mU60juuoi7tBkkT6FfZDwJm36HiqOmf0QZA1kqZMF5aWPP0sX6ap/J0TVGN64w+N93y7TDGHSWyhRpdVn+X09Dhkswz4VUFCWkLCRtgYy889y/umLvfYsWLVq0+AKH9ywiBx/N52zR4tFHS0BaNPjf/7838OXf/BYpIfRI14VS6BPH8Bc2ZKIQxzLVqCcZXpKj3P4If/95sJZodQU/Govh2jnZ6JfVYmNuLbqTCXGpqstStPzqAEoLGvE2KPGSNPG7IRnKWysSqdmc6lnXE9+zgZ9OZWKRhoheayUSF5q+j/ox9XGoNCW5fxe3cQmedj36wjZ+NJbnqJOtggSsMZBrLURnNockliLGWibW64L3uKOrbDxvyNqtUybPv4beh86AL2A4QE2mMJvzrp3/5zF9f1u0aNGiRYsWLZ4IaAlIi8vgtcIZ0JWnPL2OubQFu3tCFkDaxuu4XMQH4vdHi/jdJGkM3z7PhXyE6UedoKWzVJ5PSzStGkiMrB9P8NEaPovQn7iXajwBL6WGOpEGcD+eCGmpOzXiCD2rZKIRRajTJ/HbOwdaxl2TzCUH4Zt0KN3JYHmIu+8s+tA67rZ7QrlgSLRqGty1SMfqiQQ0UxWttEwsIsO7tn/5ir43LVq0aNGixWeCdx7/KHtA2qaGFlcK+vE+gBYtWrRo0aJFixYtWjx50E5AWlwGrwEUWE981wV8koi0yBiJcJ3NFtGx1ob+j0LkVU6K8lQS48YTecKQHqWSBK2VFBKGRCiMQQFufYjeHuNuugpzaR8AO5tfNv1QvY54LYyRiUpRynOtr2DuOw+ry/iLm3DxksTddjKZTABuNpOpTfBz1LG29ppjmAs7qCTB7eyKyd45/GjMOy/928f+5Ldo0aJFixaPFN7x6HtAHuXna9EioCUgLT4dXjwgfn+0KAL0DkbjRn7VyKyKApyXEr/ZTIiIdU0MrR4OxDsRuj+U0kI+6u4OoOonqN4qqnQQR7gz9zdEw6wMxXtyeJ38xID01rNgRRrlrjqKnkiMrL9wSY51OBBD+3QmMcFGo4xp/RYtWrRo0eKLGq0Eq8UXEloC0uJB0fvIOXwSN0RCOQ2JkRK92ojtvRASIz0ZOpT0ub3Qj+H8oh29TpeKlUTgliVEEfnTrwJAzytU5dh99jr9O+4GQGklRm+l8Oc3SLd2cJMpKknaCUWLFi1atGjRosUXKFoC0uJyeIhyLwTh2CHU7hi3s7uQPoG0kHuH7kh5YB09q7JUOj28Qw8HMoEInRuqLiCczaXzIknIn35KivG8593v/dHFMfzXx2HdLVq0aNGixRcyWglWiy8gtATkCYR61Lm/v//4HcN0RnzfiGJ3C12GuNpEQVWg1lfw2zv4VOHmFlXMMNecwm9sShdHMcNTotaW+M1P/PTDet3Hc80tWrRo0aLF54P6b9jjKVmqKKXH69F+zhYtrgCUbwV+TxicO3eOU6dOPd6H0aJFixYtWrR4BDh79iwnT558TF9zPp9zzTXXcOHChSvy/EePHuWee+4hy7LPfecWLR4iWgLyBIJzjgceeIClpSVU6KJ4omN/f59Tp05x9uxZBoPB4304jxnadT951v1kXDO0627X/cWPR3PN3ntGoxHHjx9H68e+4WA+n1PUBcGPMpIkaclHi0cdrQTrCQSt9WN+5eTRwmAweNL80TqIdt1PHjwZ1wztup9seDKu+9Fa83A4fBSO5pEhy7KWJLT4gkJbRNiiRYsWLVq0aNGiRYvHDC0BadGiRYsWLVq0aNGixWOGloC0+LyQpilvfOMbSdP08T6UxxTtup88634yrhnadbfr/uLHk3HNLVo8UdCa0Fu0aNGiRYsWLVq0aPGYoZ2AtGjRokWLFi1atGjR4jFDS0BatGjRokWLFi1atGjxmKElIC1atGjRokWLFi1atHjM0BKQFi1atGjRokWLFi1aPGZoCUiLz4qrr74apdRl//3wD//wp93vbW97G8985jPJsoyjR4/y2te+9rM+b57n/KN/9I9YX1+n1+vxyle+knPnzl2pZTxsPJR1f+r3lVL823/7bz/r895111184zd+I4cOHWIwGPAt3/ItXLx48Uou5WHhSq37woULvOpVr+Lo0aP0ej2e85zn8Fu/9VtXcikPC1di3ffee++DPkYpxW/+5m9e6SV9Tlyp9xrg/e9/P1/zNV9Dr9djeXmZF73oRcxmsyu1lIeFK7XuF73oRZ/2mL/1t/7WlVzKw8KVfL9BmsBf/vKXo5Tid37nd67ACh4ZrtS6X/Oa13DdddfR6XQ4dOgQ3/AN38Btt912JZfSosUXFdom9BafEz/+4z/Od3/3dzdf9/v9y77/1re+lX/xL/4FP/MzP8Pzn/985vM5d99992d9zte//vW84x3v4Nd//ddZW1vjB37gB3jFK17Bhz/8YYwxV2QdDxefa90A//E//kde9rKXNV9/tibcyWTCS17yEm655Rbe8573APBP/sk/4eu//uv50z/9U7R+YlwPeLTXDfCqV72Kvb093v72t7O+vs5//a//lW/91m/lQx/6EM9+9rMfvYP/PPBor/vUqVOcP3/+stt+6Zd+iTe/+c28/OUvfxSO+PPHlXiv3//+9/Oyl72MH/mRH+Hnf/7nSZKEj370o0+YzzdcmXUDfPd3fzc//uM/3nzd6XQ+zyN9dHGl1g3wcz/3cyilPv+DvAK4Eut+7nOfy9/5O3+H06dPs729zZve9CZe8pKXcM899zxh/oa1aPFERktAWnxOLC0tcfTo0Qf93s7ODj/6oz/KO97xDr72a7+2uf1pT3vaZ3y+vb09/v2///f8yq/8Ci9+8YsB+NVf/VVOnTrFH/zBH/DSl7700V3AI8RnW3eN5eXlz3mfGu9973u59957+chHPsJgMADkj97q6irvec97mnPxeOPRXjfIpvTf/Jt/w/Oe9zwAfvRHf5Sf/dmf5c///M+fMATk0V63MebT7vvbv/3bfOu3fuuDboAeD1yJ9/r7vu/7eN3rXnfZVeYbbrjhER/jlcCVWDdAt9t92I95LHGl1v3Rj36Ut771rXzwgx/k2LFjn88hXhFciXW/+tWvbv599dVX85M/+ZPccsst3HvvvVx33XWP+FhbtHjSwLdo8Vlw1VVX+aNHj/rV1VV/yy23+J/8yZ/0eZ433/+N3/gNn6ap/0//6T/5m266yZ84ccL/zb/5N/2ZM2c+43P+4R/+oQf89vb2Zbc/85nP9P/0n/7TK7aWh4PPtW7vvQf8iRMn/Nramv+SL/kS/2/+zb/x1trP+Jxvf/vbvTHGz+fz5rbpdOq11v6Nb3zjlVrKw8KVWLf33r/0pS/1f/2v/3W/tbXlrbX+137t13yv1/N33nnnlVzOQ8aVWvdBfOhDH/KAf+973/toH/4jwpVY88WLFz3g/9W/+lf+hS98oT98+LD/yq/8Sv8nf/InV3o5DxlX6r3+qq/6Kr++vu7X1tb8U5/6VP8DP/ADfn9//0ou5WHhSq17Mpn4m2++2f/O7/xO8xy//du/faWW8bDxWPxsj8dj//rXv95fc801n/bcLVq0eHC0BKTFZ8Vb3/pW/0d/9Ef+ox/9qP/lX/5lv76+7r/ru76r+f4//+f/3Mdx7G+88Ub/rne9y7///e/3X/u1X+tvvPHGz/iL+L/8l//ikyT5tNu/7uu+zr/61a++Ymt5OPhc6/be+5/4iZ/w73vf+/xHPvIR/5a3vMV3u13/Ez/xE5/xOTc2NvxgMPD/+B//Yz+ZTPx4PPbf+73f64Ev6nV77/3u7q5/6Utf6gEfRZEfDAb+93//96/kUh4WrtS6D+If/sN/6G+++eZH+9AfMa7Emt///vd7wK+urvr/8B/+g//zP/9z//rXv94nSeLvuOOOK72kh4Qr9V7/0i/9kn/3u9/tP/axj/lf+7Vf81dffbV/8YtffCWX8rBwpdb96le/+rLneaIRkCv5s/2Lv/iLvtfrecDfdNNNT5gLKi1afCGgJSBPQrzxjW/0wGf974Mf/OCDPva3fuu3POA3Nze9997/s3/2zzzgf+/3fq+5z8bGhtda+3e9610P+hyfiYC8+MUv9q95zWsehRU+OB7NdT8Y3vKWt/jBYPBZj+H3fu/3/LXXXuuVUt4Y4//u3/27/jnPeY7/h//wH35ea/tseCKs+7Wvfa1/3vOe5//gD/7A/8Vf/IV/05ve5IfDof/Lv/zLz2ttnw1PhHXXmE6nfjgc+re85S2PaC0PFY/3mt/73vd6wP/Ij/zIZbc/4xnP8D/8wz/8yBb1EPB4r/vBUE+8PvzhDz+sxz0cPN7r/u///b/766+/3o9Go+a2x4KAPN7rrrG7u+vvuOMO/7/+1//yX//1X++f85zn+Nls9ojX1aLFkwmtB+RJiNe+9rWfM53l6quvftDbX/CCFwBw5513sra21uh9n/rUpzb3OXToEOvr65w5c+ZBn+Po0aMURcHOzg4rKyvN7RsbG3zpl37pw1nKw8Kjue7PdJ/9/X0uXrzIkSNHHvQ+L3nJS7jrrrvY3NwkiqJGd3zNNdc89IU8TDze677rrrv4hV/4BW699dbGG3TLLbfwJ3/yJ/ziL/7iQ07Zebh4vNd9EL/1W7/FdDrl27/92z/3gX8eeLzX/GC/DwBuvvnmz/j74NHA473uB8NznvMc4jjmk5/8JM95znMe0mMeLh7vdb/nPe/hrrvuYnl5+bLbv/mbv5mv+Iqv4I/+6I8+5xoeCR7vddcYDocMh0NuuOEGXvCCF7CyssJv//Zv87f/9t9+aAtp0eJJjJaAPAmxvr7O+vr6I3rsRz7yEWCx0fiyL/syAG6//XZOnjwJwPb2Npubm1x11VUP+hzPfe5zieOYd7/73XzLt3wLAOfPn+fWW2/lzW9+8yM6roeCR3Pdn+k+WZZ92h/jz3QsIH/ANzY2eOUrX/mIjuuh4PFe93Q6Bfi0FCRjDM65R3RcDwWP97oP4t//+3/PK1/5Sg4dOvSIjueh4vFe89VXX83x48e5/fbbL7v9jjvuuKLJX4/3uh8MH//4xynL8oqash/vdf/wD/8w/+Af/IPLbnvGM57Bz/7sz/L1X//1j+i4Hgoe73V/JnjvyfP8ER1XixZPOjzeI5gWT1y8733v829961v9Rz7yEX/33Xf73/iN3/DHjx/3r3zlKy+73zd8wzf4pz3taf69732v/9jHPuZf8YpX+Kc+9am+KArvvffnzp3zN954o//ABz7QPOb//D//T3/y5En/B3/wB/7P//zP/dd8zdf4W265xVdV9Ziu8cHwUNb99re/3f/SL/2S/9jHPubvvPNO/8u//Mt+MBj4173udc19Hmzd/+E//Af//ve/3995553+V37lV/zq6qr//u///sd0fZ8JV2rdRVH466+/3n/FV3yF/8AHPuDvvPNO/5a3vMUrpfzv/u7vPubr/FRcyffbe+8/+clPeqWUf+c73/mYrelz4Uqu+Wd/9mf9YDDwv/mbv+k/+clP+h/90R/1WZY9IfTxV2rdd955p/+xH/sx/8EPftDfc889/nd/93f9TTfd5J/97Gd/0f9O+1TwBPKAXKl133XXXf6nfuqn/Ic+9CF/3333+fe9733+G77hG/zq6qq/ePHiY77OFi2+ENESkBafER/+8If985//fD8cDn2WZf7GG2/0b3zjG/1kMrnsfnt7e/7v//2/75eXl/3q6qr/xm/8xstSsO655x4P+P/5P/9nc9tsNvOvfe1r/erqqu90Ov4Vr3jFZ03OeizxUNb9zne+0z/rWc/y/X7fd7td//SnP93/3M/9nC/LsrnPg637h37oh/yRI0d8HMf+hhtu8P/iX/wL75x7LJf3GXEl133HHXf4b/qmb/KHDx/23W7XP/OZz/T/+T//58dyeZ8RV3Ld3nv/Iz/yI/7kyZMPK1XnSuNKr/mf//N/7k+ePOm73a5/4Qtf+IRJwbpS6z5z5oz/yq/8Sr+6uuqTJPHXXXedf93rXue3trYe6yU+KK70+30QTyQCcqXWff/99/uXv/zl/vDhwz6OY3/y5En/bd/2bf622257rJfYosUXLJT33j9e05cWLVq0aNGiRYsWLVo8ufDEqaZt0aJFixYtWrRo0aLFFz1aAtKiRYsWLVq0aNGiRYvHDC0BadGiRYsWLVq0aNGixWOGloC0aNGiRYsWLVq0aNHiMUNLQFq0aNGiRYsWLVq0aPGYoSUgLVq0aNGiRYsWLVq0eMzQEpAWLVq0aNGiRYsWLVo8ZmgJSIsWLT4NL3rRi3j961//RfW63/md38nf+Bt/4/N6jquvvhqlFEopdnd3P+P93va2t7G8vPx5vVaLz4zv/M7vbN6H3/md33m8D6dFixYtWjxMtASkRYsWTxj8t//23/iJn/iJ5uurr76an/u5n3v8DuhB8OM//uOcP3+e4XD4eB/KFz3+6I/+6EHJ3r/8l/+S8+fPPz4H1aJFixYtPm9Ej/cBtGjRokWN1dXVx/sQPieWlpY4evTo430YAJRlSRzHj/dhPOYYDoctAWzRokWLL2C0E5AWLVp8Tuzs7PDt3/7trKys0O12efnLX84nP/nJ5vu15Oj3fu/3uPnmm+n3+7zsZS+77Cp1VVW87nWvY3l5mbW1NX7oh36I7/iO77hMFnVQgvWiF72I++67j+/7vu9r5DYAb3rTm3jWs5512fH93M/9HFdffXXztbWW7//+729e6wd/8Afx3l/2GO89b37zm7n22mvpdDrccsst/NZv/dYjOj9ve9vbOH36NN1ul2/8xm9ka2vr0+7zjne8g+c+97lkWca1117Lj/3Yj1FVVfP92267jS//8i8nyzKe+tSn8gd/8AeXSYzuvfdelFL8v//v/8uLXvQisizjV3/1VwH4j//xP3LzzTeTZRk33XQT//pf/+vLXvv++///7d17TNXlHwfwN0QcD4eLBHQ6wQknGqBpgY4CVGKDSBZBFxVTgUU4NDmos8hpZiKIKJi5ZsCM1OEmW7BVJkLzwkAkYToxGIySy37DO4PMgRzO5/eH6xtHrv5+/c5Pt/frL57LeZ7v85wzdj7nPJ/z/ReWLFkCZ2dnuLi4IDo6Gm1tbUr76dOnERAQAI1Gg8mTJyM4OBjt7e0TWvt468rNzcWsWbOg0Wig1+uxevVq3LlzR2lvb29HVFQUnJ2dodFoMHPmTPz0009oa2tDaGgoAMDZ2RlWVlZISEiY0DUREdGjjQEIEY0rISEBdXV1+P7771FTUwMRQWRkJAYGBpQ+d+/exe7du3H48GFUVlaio6MDGzZsUNp37tyJoqIiFBYWorq6Gr29vWOe3y8pKYGHh4dy5Olhjtzk5OTgm2++wYEDB1BVVYXbt2+jtLTUrM/mzZtRWFiI/fv349dff8W6deuwfPlynDlzZuIbA6C2thbvv/8+Vq9ejYsXLyI0NBTbt28363PixAksX74cBoMBjY2NyMvLw7fffouMjAwAgMlkQkxMDOzs7FBbW4v8/Hxs2rRpxPnS0tJgMBjQ1NSEiIgIFBQUYNOmTcjIyEBTUxMyMzPx6aef4uDBgwDuPy+hoaGwt7dHZWUlqqqqlADx3r17MBqNiImJQUhICC5duoSamhqsXLlSCfjGMt66AMDa2hpffvklLl++jIMHD+LkyZP4+OOPlfYPP/wQ/f39qKysRENDA3bu3Al7e3vo9Xp89913AIDm5mZ0dXVh7969D/XcEBHRI0qIiB4QEhIiqampIiLS0tIiAKS6ulppv3nzpqjVaikuLhYRkcLCQgEgra2tSp+vvvpKtFqtUtZqtbJr1y6lbDQa5bnnnpPo6OgR5xUR8fT0lD179phd22effSYvvviiWd2ePXvE09NTKet0OsnKylLKAwMD4uHhocx1584dmTRpkpw9e9ZsnMTERFm6dOmo+zLS9SxdulRef/11s7olS5aIk5OTUp4/f75kZmaa9Tl8+LDodDoRETl+/LjY2NhIV1eX0l5RUSEApLS0VERErly5IgDkiy++MBtHr9fLkSNHzOrS09MlMDBQREQOHDgg3t7eYjKZlPb+/n5Rq9Vy4sQJuXXrlgCQ06dPj7ru0Yy3rpEUFxeLi4uLUp41a5Zs3bp1xL6nTp0SANLd3T1i+9D9ISKixwdzQIhoTE1NTbCxscHLL7+s1Lm4uMDb2xtNTU1KnZ2dHby8vJSyTqfD9evXAQA9PT24du0aAgIClPYnnngCc+bMgclk+kevt6enB11dXQgMDFTqbGxsMHfuXOUYVmNjI/r6+hAeHm722Hv37sHPz++h5mtqasJbb71lVhcYGIiysjKlXF9fj/Pnz5t9MzA4OIi+vj7cvXsXzc3N0Ov1ZrklQ/dqqLlz5yp/37hxA52dnUhMTERSUpJSbzQalRyJ+vp6tLa2wsHBwWycvr4+/Pbbb3jttdeQkJCAiIgIhIeHIywsDIsXL4ZOpxt37eOty87ODqdOnUJmZiYaGxvR29sLo9GIvr4+/Pnnn9BoNDAYDFi1ahXKy8sRFhaGd955B7Nnzx53biIienwxACGiMckDuRND64ce03kwGdrKymrYYx881jPa2GOxtrYe9rihR8Em4q+g59ixY3B3dzdrU6lUDzXWRNZgMpnw+eef4+233x7WNmnSpGF7ORaNRmM2LgAUFBSYBYjA/QDvrz5z5sxBUVHRsLHc3NwA3M8hMRgMKCsrw9GjR7F582ZUVFTglVde+a/W1d7ejsjISCQnJyM9PR1PPfUUqqqqkJiYqDxnH3zwASIiInDs2DGUl5djx44dyMnJQUpKyoT2g4iIHj8MQIhoTDNmzIDRaERtbS2CgoIAALdu3UJLSwt8fX0nNIaTkxO0Wi1++eUXzJ8/H8D9T8ovXLgwLKF8KFtbWwwODprVubm54erVq2Zv2i9evGg2l06nw7lz57BgwQIA978RqK+vh7+/v7ImlUqFjo4OhISETGgNo5kxYwbOnTtnVvdg2d/fH83NzZg2bdqIY/j4+KCjowPXrl2DVqsFAJw/f37cubVaLdzd3fH7779j2bJlI/bx9/fH0aNH8fTTT8PR0XHUsfz8/ODn54eNGzciMDAQR44cGTcAGW9ddXV1MBqNyMnJgbX1/ZTD4uLiYf30ej2Sk5ORnJyMjRs3oqCgACkpKbC1tQWAYa8BIiJ6vDEAIaIxTZ8+HdHR0UhKSkJeXh4cHBzwySefwN3dHdHR0RMeJyUlBTt27MC0adPg4+ODffv2obu7e8xP/qdMmYLKykrExsZCpVLB1dUVr776Km7cuIHs7Gy8++67KCsrw/Hjx83eXKempiIrKwvTp0+Hr68vcnNzze4l4eDggA0bNmDdunUwmUyYN28eent7cfbsWdjb2yM+Pn7C6zIYDAgKCkJ2djZiYmJQXl5udvwKALZs2YI33ngDer0eixYtgrW1NS5duoSGhgZs374d4eHh8PLyQnx8PLKzs/HHH38oSejjfTOydetWGAwGODo6YuHChejv70ddXR26u7uxfv16LFu2DLt27UJ0dDS2bdsGDw8PdHR0oKSkBB999BEGBgaQn5+PN998E88++yyam5vR0tKCuLi4cdc+3rq8vLxgNBqxb98+REVFobq6Gl9//bXZGGvXrsXChQvx/PPPo7u7GydPnlQCW09PT1hZWeHHH39EZGQk1Go17O3tJ/zcEBHRI+r/ln1CRI+sB5PBb9++LStWrBAnJydRq9USEREhLS0tSnthYaFZ0rWISGlpqQz9FzMwMCBr1qwRR0dHcXZ2lrS0NFm0aJHExsaOOm9NTY3Mnj1bVCqV2Vj79+8XvV4vGo1G4uLiJCMjwywJfWBgQFJTU8XR0VEmT54s69evl7i4OLOEd5PJJHv37hVvb2958sknxc3NTSIiIuTMmTOj7stISegi9xO9PTw8RK1WS1RUlOzevXvYfpSVlUlQUJCo1WpxdHSUgIAAyc/PV9qbmpokODhYbG1txcfHR3744QcBIGVlZSLydxL6hQsXhs1fVFQkL730ktja2oqzs7MsWLBASkpKlPauri6Ji4sTV1dXUalUMnXqVElKSpKenh65evWqxMTEiE6nE1tbW/H09JQtW7bI4ODgqPvwMOvKzc0VnU6nvG4OHTpklli+Zs0a8fLyEpVKJW5ubrJixQq5efOm8vht27bJM888I1ZWVhIfH282N5iETkT0WLIS+Q8OYRMR/ZdMJhN8fX2xePFis7ufP8qmTJmCtWvXKvcq+V+qrq7GvHnz0NraapbcT3+zsrJCaWmp2b1kiIjo0cf7gBCRRbS3t6OgoAAtLS1oaGjAqlWrcOXKFbz33nv/70t7KGlpabC3t0dPT88/Om5paSkqKirQ1taGn3/+GStXrkRwcDCDjxEkJyfzKBYR0WOM34AQkUV0dnYiNjYWly9fhojghRdeQFZWlpIo/jhob29Xfr1p6tSpSmL1P+HQoUNIT09HZ2cnXF1dERYWhpycHLi4uPxjczysmTNnjnpH9Ly8vFET3//Xrl+/jt7eXgD3f+556C+DERHRo48BCBERjWhowPUgrVY77N4iREREE8EAhIiIiIiILIY5IEREREREZDEMQIiIiIiIyGIYgBARERERkcUwACEiIiIiIothAEJERERERBbDAISIiIiIiCyGAQgREREREVkMAxAiIiIiIrIYBiBERERERGQxDECIiIiIiMhiGIAQEREREZHFMAAhIiIiIiKLYQBCREREREQWwwCEiIiIiIgshgEIERERERFZDAMQIiIiIiKyGAYgRERERERkMQxAiIiIiIjIYhiAEBERERGRxTAAISIiIiIii2EAQkREREREFvNv2DvyFSG/BAIAAAAASUVORK5CYII=", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "image.rio.write_crs(\"epsg:32622\", inplace=True) #inplace allows us to do this without adding the variable equals to the left side\n", + "image = image.rio.reproject(4326)\n", + "\n", + "ISlats = [is2_gt2r['lat'].min(), is2_gt2r['lat'].max()]\n", + "# ISlons = (is2_gt2r['lon'].max(), is2_gt2r['lon'].min())\n", + "ISlons = [-55.624,-55.646]\n", + "\n", + "ATMlats = [atm_l2['Latitude(deg)'].min(), atm_l2['Latitude(deg)'].max()]\n", + "# ATMlons = [atm_l2['Longitude(deg)'].max(), atm_l2['Longitude(deg)'].min()]\n", + "ATMlons = [-55.624,-55.646]\n", + "\n", + "fig, ax = plt.subplots(figsize=(8,6))\n", + "image.sel(band='blue').plot()\n", + "plt.plot(ISlons,ISlats,color = 'green')\n", + "plt.plot(ATMlons,ATMlats,color = 'orange')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "## 4. Summary\n", + "\n", + "Congratulations! You've completed the tutorial. In this tutorial you have gained the skills to: \n", + "* Search for both optimized and non-optimized cloud data\n", + "* Open data into `pandas` and `xarray` dataframes/arrays, and \n", + "* Manipulate, visualize, and explore the data\n", + "\n", + "We have concluded by mapping the three data sets together. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "user_expressions": [] + }, + "source": [ + "#### Credits\n", + "* notebook by: Jessica Scheick, Tasha Snow, Zach Fair, Ian Joughin\n", + "* source material: [is2-nsidc-cloud.py](https://gist.github.com/bradlipovsky/80ab6a7aff3d3524b9616a9fc176065e#file-is2-nsidc-cloud-py-L28) by Brad Lipovsky" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/external/appeears_csv_cloud_access.ipynb b/external/appeears_csv_cloud_access.ipynb index b5d0c11e..e9a68a1e 100644 --- a/external/appeears_csv_cloud_access.ipynb +++ b/external/appeears_csv_cloud_access.ipynb @@ -1,37 +1,49 @@ { "cells": [ { - "attachments": {}, + "cell_type": "markdown", + "id": "56275baa", + "metadata": {}, + "source": [ + "# How to work with AppEEARS CSV outputs in the cloud.\n", + "\n", + "imported on: **2024-11-06**\n", + "\n", + "

This notebook was originally developed by LP DAAC to show how to work with AppEEARS CSV outputs directly in the cloud.

\n", + "\n", + "> The original source for this document is [https://github.com/nasa/AppEEARS-Data-Resources](https://github.com/nasa/AppEEARS-Data-Resources)" + ] + }, + { "cell_type": "markdown", "id": "4f3ad1a2-0848-49ea-8db6-1bf96e440148", "metadata": {}, "source": [ - "# How to work with AppEEARS Point Sample CSV outputs\n", + "# Working with AρρEEARS Point Sample CSV outputs in AWS\n", + "\n", + "This tutorial demonstrates how to access AρρEEARS point sample Comma-Separated Values (CSV) outputs direcly from the cloud. NASA's Application for Extracting and Exploring Analysis Ready Samples ([AρρEEARS](https://appeears.earthdatacloud.nasa.gov/)) has been migrated to NASA's Earthdata Cloud space located in **AWS us-west 2**. This enables users working in cloud instance deployed in **AWS us-west 2** to access outputs direcly in the cloud using S3 link returned by AρρEEARS. In this tutorial, we will walk through the process of submitting a point sample and accessing a CSV outputs from AρρEEARS. \n", "\n", - "This tutorial demonstrates how to access AppEEARS point sample Comma-Separated Values (CSV) outputs direcly from the cloud. NASA's Application for Extracting and Exploring Analysis Ready Samples ([AρρEEARS](https://appeears.earthdatacloud.nasa.gov/)) has been migrated to NASA's Earthdata Cloud space located in **AWS us-west 2**. This enables the user working in the cloud instance deployed in **AWS us-west 2** to access outputs direcly in the cloud using S3 link returned in the location header of the response. In this tutorial, we will walk through the process of submitting a point sample and accessing a CSV outputs from AppEEARS. \n", - " \n", + "## Requirements \n", "\n", - "**Requirements** \n", - "- Earthdata Login Authentication is required to access AppEEARS API and AppEEARS outpurs direcrly from an Amazon AWS bucket. See **Requirements** section in [**README.md**](../README.md).\n", + "- Earthdata Login Authentication is required to access the AρρEEARS API and AρρEEARS outputs. If you do not have an account, create an account [here](https://urs.earthdata.nasa.gov/users/new). \n", "\n", - "**Learning Objectives** \n", - "- Learn how to access AppEEARS point sample CSV outputs direcly from the cloud.\n", + "## Learning Objectives \n", "\n", + "- Learn how to access AρρEEARS point sample CSV outputs in AWS. \n", "\n", - "**Tutorial Outline** \n", - " 1. Setting up \n", - " 2. Submit a point request \n", - " 3. Extract the S3 links to data in S3 \n", - " 4. Create a `boto3` Refreshable Session \n", - " 5. Direct S3 access of CSV output \n", - " 6. Quality Filtering \n", - " 7. Explore the LST time series \n", - " \n", + "## Tutorial Outline \n", + "\n", + "1. Setting up \n", + "2. Submit a point request \n", + "3. Extract the S3 links to data in S3 \n", + "4. Create a `boto3` Refreshable Session \n", + "5. Direct S3 access of CSV output \n", + "6. Quality Filtering \n", + "7. Explore the LST time series \n", " " ] }, { - "attachments": {}, "cell_type": "markdown", "id": "eac8116b-dbba-4110-9127-ab0268d6f72d", "metadata": {}, @@ -48,7 +60,564 @@ "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + " var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n", + " var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n", + " var reloading = false;\n", + " var Bokeh = root.Bokeh;\n", + " var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + "\n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks;\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + " if (js_modules == null) js_modules = [];\n", + " if (js_exports == null) js_exports = {};\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + "\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " if (!reloading) {\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " }\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + " window._bokeh_on_load = on_load\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " var skip = [];\n", + " if (window.requirejs) {\n", + " window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n", + " require([\"jspanel\"], function(jsPanel) {\n", + "\twindow.jsPanel = jsPanel\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-modal\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-tooltip\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-hint\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-layout\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-contextmenu\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"jspanel-dock\"], function() {\n", + "\ton_load()\n", + " })\n", + " require([\"gridstack\"], function(GridStack) {\n", + "\twindow.GridStack = GridStack\n", + "\ton_load()\n", + " })\n", + " require([\"notyf\"], function() {\n", + "\ton_load()\n", + " })\n", + " root._bokeh_is_loading = css_urls.length + 9;\n", + " } else {\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n", + " }\n", + "\n", + " var existing_stylesheets = []\n", + " var links = document.getElementsByTagName('link')\n", + " for (var i = 0; i < links.length; i++) {\n", + " var link = links[i]\n", + " if (link.href != null) {\n", + "\texisting_stylesheets.push(link.href)\n", + " }\n", + " }\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " if (existing_stylesheets.indexOf(url) !== -1) {\n", + "\ton_load()\n", + "\tcontinue;\n", + " }\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n", + " var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n", + " for (var i = 0; i < urls.length; i++) {\n", + " skip.push(urls[i])\n", + " }\n", + " } var existing_scripts = []\n", + " var scripts = document.getElementsByTagName('script')\n", + " for (var i = 0; i < scripts.length; i++) {\n", + " var script = scripts[i]\n", + " if (script.src != null) {\n", + "\texisting_scripts.push(script.src)\n", + " }\n", + " }\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (var i = 0; i < js_modules.length; i++) {\n", + " var url = js_modules[i];\n", + " if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " for (const name in js_exports) {\n", + " var url = js_exports[name];\n", + " if (skip.indexOf(url) >= 0 || root[name] != null) {\n", + "\tif (!window.requirejs) {\n", + "\t on_load();\n", + "\t}\n", + "\tcontinue;\n", + " }\n", + " var element = document.createElement('script');\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.type = \"module\";\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " element.textContent = `\n", + " import ${name} from \"${url}\"\n", + " window.${name} = ${name}\n", + " window._bokeh_on_load()\n", + " `\n", + " document.head.appendChild(element);\n", + " }\n", + " if (!js_urls.length && !js_modules.length) {\n", + " on_load()\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\"];\n", + " var js_modules = [];\n", + " var js_exports = {};\n", + " var css_urls = [];\n", + " var inline_js = [ function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + "function(Bokeh) {} // ensure no trailing comma for IE\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " if ((root.Bokeh !== undefined) || (force === true)) {\n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " // Cache old bokeh versions\n", + " if (Bokeh != undefined && !reloading) {\n", + "\tvar NewBokeh = root.Bokeh;\n", + "\tif (Bokeh.versions === undefined) {\n", + "\t Bokeh.versions = new Map();\n", + "\t}\n", + "\tif (NewBokeh.version !== Bokeh.version) {\n", + "\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n", + "\t}\n", + "\troot.Bokeh = Bokeh;\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " }\n", + " root._bokeh_is_initializing = false\n", + " }\n", + "\n", + " function load_or_wait() {\n", + " // Implement a backoff loop that tries to ensure we do not load multiple\n", + " // versions of Bokeh and its dependencies at the same time.\n", + " // In recent versions we use the root._bokeh_is_initializing flag\n", + " // to determine whether there is an ongoing attempt to initialize\n", + " // bokeh, however for backward compatibility we also try to ensure\n", + " // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n", + " // before older versions are fully initialized.\n", + " if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n", + " root._bokeh_is_initializing = false;\n", + " root._bokeh_onload_callbacks = undefined;\n", + " console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n", + " load_or_wait();\n", + " } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n", + " setTimeout(load_or_wait, 100);\n", + " } else {\n", + " Bokeh = root.Bokeh;\n", + " bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n", + " root._bokeh_is_initializing = true\n", + " root._bokeh_onload_callbacks = []\n", + " if (!reloading && (!bokeh_loaded || is_dev)) {\n", + "\troot.Bokeh = undefined;\n", + " }\n", + " load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n", + "\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + "\trun_inline_js();\n", + " });\n", + " }\n", + " }\n", + " // Give older versions of the autoload script a head-start to ensure\n", + " // they initialize before we start loading newer version.\n", + " setTimeout(load_or_wait, 100)\n", + "}(window));" + ], + "application/vnd.holoviews_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.2.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var is_dev = py_version.indexOf(\"+\") !== -1 || py_version.indexOf(\"-\") !== -1;\n var reloading = false;\n var Bokeh = root.Bokeh;\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'jspanel': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/jspanel', 'jspanel-modal': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal', 'jspanel-tooltip': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip', 'jspanel-hint': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint', 'jspanel-layout': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout', 'jspanel-contextmenu': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu', 'jspanel-dock': 'https://cdn.jsdelivr.net/npm/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock', 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@7.2.3/dist/gridstack-all', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'jspanel': {'exports': 'jsPanel'}, 'gridstack': {'exports': 'GridStack'}}});\n require([\"jspanel\"], function(jsPanel) {\n\twindow.jsPanel = jsPanel\n\ton_load()\n })\n require([\"jspanel-modal\"], function() {\n\ton_load()\n })\n require([\"jspanel-tooltip\"], function() {\n\ton_load()\n })\n require([\"jspanel-hint\"], function() {\n\ton_load()\n })\n require([\"jspanel-layout\"], function() {\n\ton_load()\n })\n require([\"jspanel-contextmenu\"], function() {\n\ton_load()\n })\n require([\"jspanel-dock\"], function() {\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 9;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window['jsPanel'] !== undefined) && (!(window['jsPanel'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/jspanel.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/modal/jspanel.modal.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/tooltip/jspanel.tooltip.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/hint/jspanel.hint.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/layout/jspanel.layout.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/contextmenu/jspanel.contextmenu.js', 'https://cdn.holoviz.org/panel/1.2.3/dist/bundled/floatpanel/jspanel4@4.12.0/dist/extensions/dock/jspanel.dock.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/gridstack/gridstack@7.2.3/dist/gridstack-all.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.2.3/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.2.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.2.2.min.js\", \"https://cdn.holoviz.org/panel/1.2.3/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n Bokeh = root.Bokeh;\n bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n if (!reloading && (!bokeh_loaded || is_dev)) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "if ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n", + " window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n", + "}\n", + "\n", + "\n", + " function JupyterCommManager() {\n", + " }\n", + "\n", + " JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n", + " if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " comm_manager.register_target(comm_id, function(comm) {\n", + " comm.on_msg(msg_handler);\n", + " });\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n", + " comm.onMsg = msg_handler;\n", + " });\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " console.log(message)\n", + " var content = {data: message.data, comm_id};\n", + " var buffers = []\n", + " for (var buffer of message.buffers || []) {\n", + " buffers.push(new DataView(buffer))\n", + " }\n", + " var metadata = message.metadata || {};\n", + " var msg = {content, buffers, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " })\n", + " }\n", + " }\n", + "\n", + " JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n", + " if (comm_id in window.PyViz.comms) {\n", + " return window.PyViz.comms[comm_id];\n", + " } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n", + " var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n", + " var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n", + " if (msg_handler) {\n", + " comm.on_msg(msg_handler);\n", + " }\n", + " } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n", + " var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n", + " comm.open();\n", + " if (msg_handler) {\n", + " comm.onMsg = msg_handler;\n", + " }\n", + " } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n", + " var comm_promise = google.colab.kernel.comms.open(comm_id)\n", + " comm_promise.then((comm) => {\n", + " window.PyViz.comms[comm_id] = comm;\n", + " if (msg_handler) {\n", + " var messages = comm.messages[Symbol.asyncIterator]();\n", + " function processIteratorResult(result) {\n", + " var message = result.value;\n", + " var content = {data: message.data};\n", + " var metadata = message.metadata || {comm_id};\n", + " var msg = {content, metadata}\n", + " msg_handler(msg);\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " return messages.next().then(processIteratorResult);\n", + " }\n", + " }) \n", + " var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n", + " return comm_promise.then((comm) => {\n", + " comm.send(data, metadata, buffers, disposeOnDone);\n", + " });\n", + " };\n", + " var comm = {\n", + " send: sendClosure\n", + " };\n", + " }\n", + " window.PyViz.comms[comm_id] = comm;\n", + " return comm;\n", + " }\n", + " window.PyViz.comm_manager = new JupyterCommManager();\n", + " \n", + "\n", + "\n", + "var JS_MIME_TYPE = 'application/javascript';\n", + "var HTML_MIME_TYPE = 'text/html';\n", + "var EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\n", + "var CLASS_NAME = 'output';\n", + "\n", + "/**\n", + " * Render data to the DOM node\n", + " */\n", + "function render(props, node) {\n", + " var div = document.createElement(\"div\");\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(div);\n", + " node.appendChild(script);\n", + "}\n", + "\n", + "/**\n", + " * Handle when a new output is added\n", + " */\n", + "function handle_add_output(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + " if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + " var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + " if (id !== undefined) {\n", + " var nchildren = toinsert.length;\n", + " var html_node = toinsert[nchildren-1].children[0];\n", + " html_node.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var scripts = [];\n", + " var nodelist = html_node.querySelectorAll(\"script\");\n", + " for (var i in nodelist) {\n", + " if (nodelist.hasOwnProperty(i)) {\n", + " scripts.push(nodelist[i])\n", + " }\n", + " }\n", + "\n", + " scripts.forEach( function (oldScript) {\n", + " var newScript = document.createElement(\"script\");\n", + " var attrs = [];\n", + " var nodemap = oldScript.attributes;\n", + " for (var j in nodemap) {\n", + " if (nodemap.hasOwnProperty(j)) {\n", + " attrs.push(nodemap[j])\n", + " }\n", + " }\n", + " attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n", + " newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n", + " oldScript.parentNode.replaceChild(newScript, oldScript);\n", + " });\n", + " if (JS_MIME_TYPE in output.data) {\n", + " toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n", + " }\n", + " output_area._hv_plot_id = id;\n", + " if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n", + " window.PyViz.plot_index[id] = Bokeh.index[id];\n", + " } else {\n", + " window.PyViz.plot_index[id] = null;\n", + " }\n", + " } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + "function handle_clear_output(event, handle) {\n", + " var id = handle.cell.output_area._hv_plot_id;\n", + " var server_id = handle.cell.output_area._bokeh_server_id;\n", + " if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n", + " var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n", + " if (server_id !== null) {\n", + " comm.send({event_type: 'server_delete', 'id': server_id});\n", + " return;\n", + " } else if (comm !== null) {\n", + " comm.send({event_type: 'delete', 'id': id});\n", + " }\n", + " delete PyViz.plot_index[id];\n", + " if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n", + " var doc = window.Bokeh.index[id].model.document\n", + " doc.clear();\n", + " const i = window.Bokeh.documents.indexOf(doc);\n", + " if (i > -1) {\n", + " window.Bokeh.documents.splice(i, 1);\n", + " }\n", + " }\n", + "}\n", + "\n", + "/**\n", + " * Handle kernel restart event\n", + " */\n", + "function handle_kernel_cleanup(event, handle) {\n", + " delete PyViz.comms[\"hv-extension-comm\"];\n", + " window.PyViz.plot_index = {}\n", + "}\n", + "\n", + "/**\n", + " * Handle update_display_data messages\n", + " */\n", + "function handle_update_output(event, handle) {\n", + " handle_clear_output(event, {cell: {output_area: handle.output_area}})\n", + " handle_add_output(event, handle)\n", + "}\n", + "\n", + "function register_renderer(events, OutputArea) {\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[0]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " events.on('output_added.OutputArea', handle_add_output);\n", + " events.on('output_updated.OutputArea', handle_update_output);\n", + " events.on('clear_output.CodeCell', handle_clear_output);\n", + " events.on('delete.Cell', handle_clear_output);\n", + " events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n", + "\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " safe: true,\n", + " index: 0\n", + " });\n", + "}\n", + "\n", + "if (window.Jupyter !== undefined) {\n", + " try {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " } catch(err) {\n", + " }\n", + "}\n" + ], + "application/vnd.holoviews_load.v0+json": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import requests\n", "import numpy\n", @@ -60,21 +629,21 @@ "from datetime import datetime, timezone\n", "from botocore.client import Config\n", "import pandas\n", + "import hvplot.pandas\n", "import time\n", "import warnings\n", "import sys\n", - "sys.path.append('../Python/modules/')\n", + "sys.path.append('../modules/')\n", "import aws_session\n", "warnings.filterwarnings('ignore')" ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2cc6196e-5438-486b-87a3-4b291c7db99b", "metadata": {}, "source": [ - "To successfully run this tutorial, it is required to create a **.netrc** file in your home directory. The function `_validate_netrc` defined in `aws_session` checks if a properly formatted netrc file exists in your home directory. If the netrc file does not exist, it will prompt you for your Earthdata Login username and password and will create a netrc file. Please see the **Prerequisites** section in [**README.md**](../README.md). " + "To successfully run this tutorial, it is required to create a **.netrc** file in your home directory. The function `_validate_netrc` defined in `aws_session` module checks if a properly formatted netrc file exists in your home directory. If the netrc file does not exist, it will prompt you for your Earthdata Login username and password and will create a netrc file. " ] }, { @@ -99,17 +668,15 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "112209ec-24e9-494e-8db1-3e87b0bbf88d", "metadata": {}, "source": [ - "## 2. Submit a point request in AppEEARS \n", - "In this step, we are going to submit a point request. You can also submit this same request to the [AppEEARS Graphic User Interface (GUI)](https://appeears.earthdatacloud.nasa.gov/task/point) by uploading the JSON file provided in the repository (AppEEARS-Data-Resources/Data/point-request.json). If you have completed the request, save your `task_id` to a variable, skip this step, and move to the next step of tutorial. " + "## 2. Submit a point request in AρρEEARS \n", + "In this step, we are going to submit a point request. You can also submit the same request to the [AρρEEARS Graphic User Interface (GUI)](https://appeears.earthdatacloud.nasa.gov/task/point) by uploading the JSON file provided in the repository (AppEEARS-Data-Resources/Data/point-request.json). If you have completed the request, save your `task_id` to a variable, skip this step, and move to the next step of tutorial. " ] }, { - "attachments": {}, "cell_type": "markdown", "id": "204f47c6-1e57-47ef-99fc-7ee785bda91a", "metadata": { @@ -132,12 +699,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "473a7d23-5a70-463b-aea5-9d7d7d87f22c", "metadata": {}, "source": [ - "A **Bearer Token** is needed to submit requests to the AppEEARS API. To generated a token, a `POST` request containing Earthdata Login credentials stored in **.netrc file** is submitted to the [`login`](https://appeears.earthdatacloud.nasa.gov/api/#authentication) service from the AppEEARS API. " + "A **Bearer Token** is needed to submit requests to the AρρEEARS API. To generated a token, a `POST` request containing Earthdata Login credentials stored in **.netrc** file is passed to the [`login`](https://appeears.earthdatacloud.nasa.gov/api/#authentication) service. " ] }, { @@ -164,8 +730,8 @@ "data": { "text/plain": [ "{'token_type': 'Bearer',\n", - " 'token': 'BL2uWT50_qVKOTtcDr2yigaNm-83GN0A1W8lYmiihzSVl2BIoHXnESxNmAMjNWDIGyIwsZusAtcoaxYSpmpl4A',\n", - " 'expiration': '2023-03-15T15:13:36Z'}" + " 'token': '3B4bfEhJGpIEEKwM8G8S7exFXRScIFLN8EmQ4xBF2NMtoWTppdJb8WV2ifMQqqNxvbeQsSN-N_TZTIwWybwYUA',\n", + " 'expiration': '2024-04-12T13:26:56Z'}" ] }, "execution_count": 5, @@ -179,12 +745,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "36c9dcd2-fbe3-42cb-b5bb-4d856346ef6e", "metadata": {}, "source": [ - "We'll save the **token** to as an **Authorization** object we can pass in the header of any request made to the AppEEARS API." + "We'll save the **token** to an **Authorization** object we can pass in the header of any request made to the AppEEARS API." ] }, { @@ -201,7 +766,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "8b540fd7-4180-4fc5-9c5a-7b59fbf61c6f", "metadata": {}, @@ -249,21 +813,18 @@ " {\n", " 'latitude': lat[0],\n", " 'longitude': lon[0],\n", - " 'id': \"EROS\"\n", - " \n", - " }]\n", - " \n", + " 'id': \"EROS\" \n", + " }] \n", " }\n", "}" ] }, { - "attachments": {}, "cell_type": "markdown", "id": "3a840c43-7382-4843-beb5-004f5dcb623d", "metadata": {}, "source": [ - "Next, submit the AppEEARS request using `post` function from `requests` library." + "Now that we have our request object, or payload, create, we will now submit to AρρEEARS using the `post` function from `requests` library." ] }, { @@ -275,7 +836,7 @@ { "data": { "text/plain": [ - "{'task_id': '9b2f9a77-da1a-41ac-ba47-baeb577ad99f', 'status': 'pending'}" + "{'task_id': 'd32a4be3-ac6e-4247-afa0-a28bf57f46bd', 'status': 'pending'}" ] }, "execution_count": 9, @@ -289,12 +850,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "2b9cc951-4356-4724-bcc3-ef00b80d4613", "metadata": {}, "source": [ - "Save the `task_id` and wait until your request is processed and complete. " + "The `task_id` will be needed to get status information about the request and to later find the AρρEEARS outputs for the request. We will save the `task_id` to a variable and wait until our request is processed and complete. " ] }, { @@ -306,7 +866,7 @@ { "data": { "text/plain": [ - "'9b2f9a77-da1a-41ac-ba47-baeb577ad99f'" + "'d32a4be3-ac6e-4247-afa0-a28bf57f46bd'" ] }, "execution_count": 10, @@ -335,41 +895,6 @@ "processing\n", "processing\n", "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", - "processing\n", "done\n" ] } @@ -383,7 +908,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "70aa7a18-5182-4787-b753-5fd295700778", "metadata": {}, @@ -392,12 +916,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "b7b44fd5-3cce-4288-96d2-5175146d834e", "metadata": {}, "source": [ - "Now that we have our outputs ready, we can get the bundle information for the files included in the outputs. If you submitted your request using AppEEARS GUI, assign your sample's `task_id` to the variable `task_id` below. " + "Once our outputs are ready, we can get the information about our output files, also refered to as a bundle. If you submitted your request using AρρEEARS GUI, assign your sample's `task_id` to the variable `task_id` below. " ] }, { @@ -409,17 +932,17 @@ }, "outputs": [], "source": [ - "#task_id = ''" + "#task_id = ''" ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0d41ac89-cfc6-4411-bb1d-84c743bcd316", "metadata": {}, "source": [ - "`requests.get` is used toget the bundle information. Below, bundle information is printed. The bundle information includes `s3_url` in addition to the other information such as `file_name`, `file_id`, and `file_type`. \n", - "Each output file can be downloaded using the `file_id` and AppEEARS API endpoint. AppEEARS outputs are also stored in an AWS bucket that can be accessed using `S3_url`. " + "`requests.get` is used to get information about our bundle. The bundle information includes `s3_url` in addition to the other information such as `file_name`, `file_id`, and `file_type`. \n", + "\n", + "Each output file can be downloaded using the `file_id` (see section 4 in [AppEEARS_API_Point.ipynb](https://github.com/nasa/AppEEARS-Data-Resources/blob/main/Python/tutorials/AppEEARS_API_Point.ipynb). Since AρρEEARS outputs are stored in an S3 bucket, outputs can also be accessed using `S3_url` if you are working from an cloud instance in **AWS us-west-2**. " ] }, { @@ -434,38 +957,38 @@ "data": { "text/plain": [ "{'files': [{'sha256': '2d217eb9d967d849212bf6702a91e3fd615a7188cba72bf58e0b4d9849417865',\n", - " 'file_id': '959e4c02-6ff1-4370-ba0d-67f5613eb3fa',\n", + " 'file_id': '71ee2606-8e24-4bc7-93a4-9e3431087ca5',\n", " 'file_name': 'EROS-MOD11A1-061-results.csv',\n", " 'file_size': 1168238,\n", " 'file_type': 'csv',\n", - " 's3_url': 's3://appeears-output/9b2f9a77-da1a-41ac-ba47-baeb577ad99f/EROS-MOD11A1-061-results.csv'},\n", + " 's3_url': 's3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-MOD11A1-061-results.csv'},\n", " {'sha256': '70dc8abc16c8368f6926f735f5f9057c27338a41f77165e648c600185acdff39',\n", - " 'file_id': 'd198e3ac-93ce-4587-92df-f296c3d6b75b',\n", + " 'file_id': '2c75ccff-430c-475a-9e37-50429bbe6cfc',\n", " 'file_name': 'EROS-granule-list.txt',\n", " 'file_size': 479520,\n", " 'file_type': 'txt',\n", - " 's3_url': 's3://appeears-output/9b2f9a77-da1a-41ac-ba47-baeb577ad99f/EROS-granule-list.txt'},\n", - " {'sha256': 'dd9359b792376d6939fac09b8be74ad5db8ca74e009aa386325f4d5ff0b1a004',\n", - " 'file_id': '7c0280db-6764-4672-a58f-e8cc29229c32',\n", + " 's3_url': 's3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-granule-list.txt'},\n", + " {'sha256': '7db425fb7a6f26c4a652226e587488a69e234b5d0ab98a6d79d24943abc77ea2',\n", + " 'file_id': '205e0462-cbde-4a52-b152-25b4a8971d57',\n", " 'file_name': 'EROS-request.json',\n", - " 'file_size': 786,\n", + " 'file_size': 764,\n", " 'file_type': 'json',\n", - " 's3_url': 's3://appeears-output/9b2f9a77-da1a-41ac-ba47-baeb577ad99f/EROS-request.json'},\n", - " {'sha256': '3795b274a5aaceade145441ca09fe9a73925c64ef32d235923e66112007e142e',\n", - " 'file_id': 'd1f49518-357a-45b7-b6ee-4b83411f1389',\n", + " 's3_url': 's3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-request.json'},\n", + " {'sha256': 'e5c1bad1bcbbd9ef4a1d0abc32eca05dbd9db8d7824c90eaf7af23fb0de384dd',\n", + " 'file_id': '34022635-d182-4a66-8203-9086733d3f87',\n", " 'file_name': 'EROS-MOD11A1-061-metadata.xml',\n", - " 'file_size': 16775,\n", + " 'file_size': 16808,\n", " 'file_type': 'xml',\n", - " 's3_url': 's3://appeears-output/9b2f9a77-da1a-41ac-ba47-baeb577ad99f/EROS-MOD11A1-061-metadata.xml'},\n", - " {'sha256': '551b41b89b0a1130a00a6e35f4d6812f284253fe37f994cefeec18b92ce8967d',\n", - " 'file_id': 'b926d235-70d0-4b63-aa5a-5abe32a032d4',\n", + " 's3_url': 's3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-MOD11A1-061-metadata.xml'},\n", + " {'sha256': '0324b583ba05319cecd1556d2d4e331d52240a3223409f8367dcb1d6f38b6cff',\n", + " 'file_id': 'ca9a89de-053b-4b86-b6e1-ff2fb19321e9',\n", " 'file_name': 'README.md',\n", - " 'file_size': 18943,\n", + " 'file_size': 25001,\n", " 'file_type': 'txt',\n", - " 's3_url': 's3://appeears-output/9b2f9a77-da1a-41ac-ba47-baeb577ad99f/README.md'}],\n", - " 'created': '2023-03-13T16:05:31.183063',\n", - " 'task_id': '9b2f9a77-da1a-41ac-ba47-baeb577ad99f',\n", - " 'updated': '2023-03-13T16:41:31.639875',\n", + " 's3_url': 's3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/README.md'}],\n", + " 'created': '2024-04-10T14:03:48.318256',\n", + " 'task_id': '008473a3-76f6-44e6-8c44-aae95f8d9df2',\n", + " 'updated': '2024-04-10T14:07:57.803788',\n", " 'bundle_type': 'point'}" ] }, @@ -480,12 +1003,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "d6d180d6-c4bc-4eff-bcd6-b2e834382e2c", "metadata": {}, "source": [ - "Below, the S3 Links to CSV output is filted. " + "We can filter our bundle to only include the S3 URI for our CSV output. " ] }, { @@ -495,21 +1017,32 @@ "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'s3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-MOD11A1-061-results.csv'" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "file = [f for f in bundle['files'] if f['file_type'] == 'csv']\n", - "csv_urls = file[0]['s3_url']" + "csv_urls = file[0]['s3_url']\n", + "csv_urls" ] }, { - "attachments": {}, "cell_type": "markdown", "id": "93a0fd2b-3968-401f-ad3b-9969e17f4b05", "metadata": {}, "source": [ "## 4. Create a boto3 Refreshable Session\n", "\n", - "AppEEARS outputs are freely accessible from a cloud instance in `us-west-2` region. In order to access our output files, a **Boto3 session** is needed. The Boto session will stores the required configurations for an easy integration between Python and AWS services. Below, `get_boto3_refreshable_session` stored in `aws_session` will access your Earthdata login credentidals store in .netrc file and generate S3 credential by making a call to AppEEARS S3 credential endpoint, and create a boto3 session. This session will be auto-renewed as needed to prevent timeouts errors related to S3 credentials." + "AρρEEARS outputs are freely accessible from a cloud instance in **AWS us-west-2**. In order to access our output files, a **Boto3 session** is needed. The Boto session will stores the required configurations that are passed between Python and AWS. Below, `get_boto3_refreshable_session` stored in `aws_session` will access your Earthdata Login credentidals store in .netrc file and generate temporary S3 credentials by making a call to AρρEEARS S3 credential endpoint and storing them in the boto3 session. This session will be auto-renewed as needed to prevent timeouts errors related to S3 credentials time limits." ] }, { @@ -536,7 +1069,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "4660308a-7c4d-494d-aacc-1869b5297a56", "metadata": {}, @@ -555,7 +1087,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "747fd853-10a2-4569-afe7-b5e26506a57c", "metadata": {}, @@ -564,7 +1095,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ab7014aa-243f-4186-9c43-a318ede7ba3b", "metadata": {}, @@ -575,6 +1105,27 @@ { "cell_type": "code", "execution_count": 17, + "id": "5239f01e-ab25-4a74-99e7-81af0c137ea6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'s3://appeears-output/008473a3-76f6-44e6-8c44-aae95f8d9df2/EROS-MOD11A1-061-results.csv'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "csv_urls" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "id": "4ce12ea8-d73f-4f77-a7a5-0da6922c9dc0", "metadata": { "tags": [] @@ -583,11 +1134,10 @@ "source": [ "bucket_name = csv_urls.split('/')[2]\n", "key_name = csv_urls.split(bucket_name)[1].strip(\"/\")\n", - "obj = boto3_client.get_object(Bucket = bucket_name, Key = key_name) \n" + "obj = boto3_client.get_object(Bucket = bucket_name, Key = key_name) " ] }, { - "attachments": {}, "cell_type": "markdown", "id": "0963b8cf-2a85-4d5d-95c8-1c9440084c96", "metadata": {}, @@ -597,7 +1147,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "e1253752-bc10-4c66-b6e0-0a2985749351", "metadata": { "tags": [] @@ -1077,7 +1627,7 @@ "[2960 rows x 29 columns]" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1088,7 +1638,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "ed1131aa-ec77-4e77-a425-eab65679ae8b", "metadata": { @@ -1099,7 +1648,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "a3168041-aef9-4dab-9074-46e4bd652304", "metadata": {}, @@ -1109,7 +1657,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "b3a36721-8022-48db-9544-87569e0f8c0f", "metadata": { "tags": [] @@ -1124,7 +1672,7 @@ " dtype=object)" ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1137,7 +1685,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "id": "183ee350-b067-455e-aa4a-e69c884a2118", "metadata": { "tags": [] @@ -1150,7 +1698,6 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "id": "663bc8b4-e77a-466d-8f4b-4d818bae4ac7", "metadata": { @@ -1161,73 +1708,132 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "id": "c227f506-b6bd-4b4c-8936-b13224d99e63", + "id": "375f8bb3-6e02-4acb-8e09-5942e295a4c3", "metadata": {}, "source": [ - "The `matplotlib` can be used to create visualizations for a Pandas DataFrames. `pyplot` is used below to visualize non-Nan day and night LST observations flagged with the good quality." + "The `hvplot` library can be used to create interactive visualization for `Pandas` `DataFrames`. First we will convert our dates in the **Date** column to `datetime` objects, then we will finish by plotting our good quality data values." ] }, { "cell_type": "code", - "execution_count": 21, - "id": "35e5c25b-0088-4a83-93c6-de3dc1ceed9a", - "metadata": { - "tags": [] - }, + "execution_count": 22, + "id": "b4b19af5-9dbb-4d5d-b053-e4d87b945980", + "metadata": {}, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n" + "goodQual['dtDate'] = pandas.to_datetime(goodQual['Date'])" ] }, { "cell_type": "code", - "execution_count": 22, - "id": "a422a2c0-4ae0-4343-a4e0-3f361c30f8db", - "metadata": { - "tags": [] - }, + "execution_count": 23, + "id": "1e5fb516-59d9-449d-b419-151cb8db4af6", + "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO : Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", - "INFO : Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", - "INFO : Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", - "INFO : Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", - "INFO : Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" - ] + "data": {}, + "metadata": {}, + "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABN4AAALVCAYAAAAf5izfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wkVbn+n+o4eWbzLssuu7DLssASl5wVEARFEfEaADFeuXpVRAyooFfBa77KVX9wJRgIApIks+RFYIkbyJtznNy5q35/1FT1qVOnqqtnOk3P8/189rMzHapruk6d8JznfV/NMAwDhBBCCCGEEEIIIYSQshKq9QkQQgghhBBCCCGEENKIUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCCGEEEIIIaQCUHgjhBBCCKlTNE2Dpmm44ooran0qNieeeCI0TcOJJ55Ysc+44oor7L+dEEIIIWQ0Q+GNEEIIGSM88cQTtpgh/otEIhg/fjxmz56N448/Hl//+tdxxx13IJPJ1PqUyQi54YYbHNf629/+dtH3WMLarFmzKn+Co4xZs2aN+LvZtWsXfvnLX+Lkk0/G1KlTEY/H0dnZiblz5+LYY4/F1772Ndx1113YuXOn/Z5Pf/rTynu3lH/1JN4SQgghYwkKb4QQQsgYJ5/Po7u7G2vWrMHTTz+N3/zmNzjnnHOw++6748c//jFyuVytT5GUiauvvhrbtm2r9WlUjWq480rhvvvuw7x583DJJZdg0aJF2Lp1KzKZDPr6+vDuu+9i8eLF+J//+R98+MMfxhlnnFHr0yWEEEJIGYjU+gQIIYQQUn2+9KUv4aKLLrJ/HxgYQHd3N5YuXYpFixbh0Ucfxfbt2/H9738f9957L/75z39i0qRJNTxjUg4GBwfx05/+FL/61a+GfYwnnniifCc0hli8eDE+/OEPI5vNIhwO4+Mf/zg+8IEPYPbs2QiHw9i6dStefvllPPjgg3j22Wcd7/3JT36CSy65RHncu+++G9/73vcAAD/+8Y9x1llnKV83efLk8v5BhBBCCAkEhTdCCCFkDDJ58mTsv//+rsdPP/10fOtb38KKFStw3nnn4ZVXXsELL7yAs88+G4sWLUIsFqvB2ZJyMHHiROzYsQN/+MMf8M1vfhPTpk2r9SmNKS6++GJbdHvwwQdx8sknu15z+umn47LLLsPatWuxaNEi+/Hp06dj+vTpyuO++OKLjtep7mtCCCGE1A6GmhJCCCHExX777YfFixfj4IMPBgA888wz+P3vf1/jsyIj4dJLLwUApFIpXHnllTU+m7HFpk2b8MILLwAAPvzhDytFN5E99tgDn/nMZ6pxaoQQQgipMBTeCCGEEKKkubkZf/nLX+zKkr/4xS+QzWZdr+vu7sb111+PT33qU9h3333R1taGWCyGqVOn4n3vex+uueYaz0INF198sV3gYePGjUXP6dBDD4WmaZg3b17Jf4+u63jsscdwySWX4JhjjsHEiRMRjUbR1dWFgw46CJdccgnWrVvneww5Z9jGjRtx8cUXY86cOWhubsaECRPwvve9Dw888ECgc/rb3/6GE088EePGjUNbWxv2339/XH755ejp6Sn57yvGYYcdhg984AMAgGuuuQbr168f1nGC5E0zDAM33ngjjj/+ePtvW7BgAX70ox+hr68PQGkVW1OpFH7+85/jkEMOQXt7O9rb23H44Yfj6quvVuYgtIoRPPnkkwCAJ5980lVsoJrFI8R2NWfOnKp9LiGEEEJqD4U3QgghhHiy33774ZRTTgFgikxLlixxvebggw/GZz7zGfztb3/DG2+8gcHBQWSzWWzduhUPP/wwvvjFL+LII4/Eli1bXO/93Oc+B8As8PCXv/zF91yWLl2Kl19+GQBw4YUXlvy3/OhHP8J73/te/PKXv8Szzz6LnTt3IpfLobe3F6+99hp++ctfYv78+bjzzjsDHe+ZZ57BgQceiF//+tdYuXIlUqkUdu3ahYcffhjvf//78Ytf/MLzvblcDueccw4+9alP4cknn0RPTw8GBwexYsUK/OhHP8LChQuxevXqkv/GYvzoRz+CpmnIZDL48Y9/XPbjA0Amk8EHP/hBfPrTn8bTTz9t/23Lly/H5ZdfjoULF2Lt2rWBj7d161YceeSRuPTSS/HKK69gYGAAAwMDWLJkCb7yla/g7LPPhq7rFflbyoUYov3GG2/U8EwIIYQQUm0ovBFCCCHEFzEs7umnn3Y9n8/nccQRR+C//uu/8M9//hNLlizB4sWL8de//hWnnXYaAOCVV17Bv/3bv7neu+++++Koo44CAFx//fW+52E9Hw6HccEFF5T8d+RyOUybNg0XXXQR/vKXv2Dx4sV46aWXcNddd+HSSy9FW1sbEokEPvGJTxQVRzZv3owPf/jDCIfD+OlPf4pnnnkGL7zwAn71q1+hq6sLAPCd73wHK1asUL7/61//Ou644w4AwLx58/CnP/0JS5YswaOPPoovfvGLWL16NT72sY+V/DcW46CDDsKHP/xhAOb3WQlx7ytf+Qr++c9/AjCv73XXXYclS5Zg0aJF+PKXv4xVq1Yp24IXZ599Nt544w3853/+Jx555BG89NJLuOmmmzB//nwAwL333otrr73W8Z6f/OQnWLZsGRYuXAgAWLhwIZYtW+b49/DDD5fpLy7O/Pnz0dTUBAC455578Le//a1qn00IIYSQGmMQQgghZEzw+OOPGwAMAMbll18e+H2PPvqo/b7PfOYzrufffvtt3/dfd9119vsfffRR3+cXL16sPEYmkzEmTZpkADDOPPPMwOcusnr1aiOTyXg+v379emP69OkGAONTn/qU8jUnnHCCfa577LGHsWHDBtdrnn76aUPTNAOA8Z//+Z+u51977TUjFAoZAIxDDjnE6O/vd73mxhtvtD+n1Oslcv3119vHePzxxw3DMIxly5bZn3/hhRd6/o177LGH8pjW8yeccILruZdeesn+2w8//HBjcHDQ9Zrbbrut6N92+eWX289Ho1H73EV27txpTJkyxQBgHHDAASWf63DYY489fL8bP7785S87/u758+cbl1xyiXH77bcb69evH/Y5idf4+uuvH/ZxCCGEEFIZ6HgjhBBCiC8TJkywf+7u7nY9P3fuXN/3X3jhhXaRhrvuusv1/LnnnouOjg4A3q63e++9F9u3bweAYSednzVrFqLRqOfzu+++O775zW8CMF1JhmH4Hu93v/udstLkscceiyOOOAKA2iH4xz/+0Q6NvOaaa9DW1uZ6zfnnn4/TTz/d9/OHy/7774+PfvSjAIA///nPeOedd8p27Guuucb+3q699lq0tLS4XnPOOefYrrsgfOUrX1Hmkxs/frwdcrx06VL09vYO76SrxM9+9jPHNX3jjTfwi1/8Aueccw5mzJhhF1R44oknaneShBBCCCk7FN4IIYQQ4osoDPX39/u+1jAMbNmyBW+//TaWL19u/9ttt90AAK+99prrPa2trXbo4a233opEIuF6jSXITZo0CWeeeeaw/xaRvr4+rF69GitWrLDP0xKKrOe86OrqwhlnnOH5/KGHHgoAWLVqleu5Rx99FACwYMEC+3UqKlnV8oorrkA4HEY+n8cPf/jDsh130aJFAMyQ1gMOOMDzdeeff37gY37yk5/0fE78/ioRNltOmpubcd999+Gmm26yw6tF1q1bh+uvvx4nnXQSTjvtNFtoJoQQQsjohsIbIYQQQnwRxTbLmSZz33334cwzz0RnZyemTZuGefPmYcGCBfa/++67DwCwY8cO5futIgv9/f127jOLLVu24MEHHwQAnHfeeb6utWKsXbsWX/nKVzBr1ix0dnZizz33xP7772+f5xe+8AX7tV7nCpguv1DIexo1fvx4++8RSaVSePfddwGYVUb9OPzww4v+PcNln332wSc+8QkAwM0331yWhP/i3+YnKAKwc68FYZ999vF8zvqegeKicD2gaRo+/vGP49lnn8WWLVtw++234zvf+Q5OOeUUNDc326976KGHcNJJJ2FgYKCGZ0sIIYSQckDhjRBCCCG+iAKUKHQApsPtc5/7HM4880zcd999RcWPZDKpfPywww7DgQceCMAdbvrnP/8ZuVwOwMhcYA888AD23XdfXH311YGqanqdKwBlCKWIJcrJ1TZ7enrsUMzJkyf7HmPKlClFz3EkXH755YhEItB1HVdcccWIj9fT02P/XOxvmzRpUuDj+n3XoviZz+cDH7MemDJlCj7ykY/gyiuvxMMPP4xt27bhF7/4hV2EYcWKFfjNb35T25MkhBBCyIih8EYIIYQQX1555RX753nz5jmeu+666/CnP/0JgBleeMMNN+CNN95AX18fcrkcDMOAYRg477zzAMA3b5rlenviiSccYYM33HADAOCII47AfvvtN6y/YefOnfjEJz6BRCKBtrY2XHHFFfjXv/6Fbdu2IZ1O2+dphUoWO9fhIh5T07SyH78U9tprLzvk87bbbsPSpUur9tm1/tvrkba2NnzjG99wiG233XZb7U6IEEIIIWWBwhshhBBCfHnkkUfsn4899ljHc9deey0AU8R59tlnccEFF2CfffZBe3s7wuGw/TpVUQaZT33qU2hqaoJhGLjxxhsBAM8995wdBjkSt9ttt91mO7L+8Y9/4PLLL8eRRx6JSZMmIRaLlXSeI2HcuHH2z1u3bvV9bbHny8H3v/99RKNRGIaByy+/fETH6urqsn/etm2b72uLPT+WufDCCxGJRADADt0lhBBCyOiFwhshhBBCPFm+fLntApsxY4YrN9eKFSsAAGeddZYjR5WIYRh4+eWXi35WV1cXPvKRjwAwXW6GYeC6664DYIYbWgUYhoN1nuPHj8cpp5zi+boXX3xx2J8RhKamJrsK7JIlS3xfW+z5cjBr1ix89rOfBWBWnA1ynbxoamrCXnvtBaD491jp79liNDrrYrGYXUnYL48gIYQQQkYHHM0JIYQQoiSZTOL888+3wyMvueQS24ljYeVeU1UitbjnnnuwadOmQJ/5+c9/HoBZBOG+++7DrbfeCgA455xzPAs7BME6z3Q67cq7ZpFIJPDnP/952J8RlJNPPhkAsGzZMkcYr4wlOlaayy67DPF4HADwgx/8YETHeu973wvArF7rF7paje8ZgJ0vLZ1OV+XzvCglbHn9+vW2I3D27NmVOiVCCCGEVAkKb4QQQghx8frrr+PYY4+1haETTjgBX/rSl1yvs9xb9957rzJMc+XKlbjooosCf+4JJ5xgH/Pzn/88+vr6AIwszFQ8z8HBQdx+++2u5/P5PD73uc8FFghHwhe/+EXbifWFL3wBg4ODrtf87W9/w/3331/xcwGA3Xff3a7met9999nuwOHwhS98wf7bPv/5zysF2TvuuAN33nnnsD+jFKZNmwYAWLVqVUVy9gXl9ddfx6mnnoqnnnrK93WpVApf+MIX7HM966yzqnF6hBBCCKkgkeIvIYQQQkijsW3bNixfvtz+fXBwEN3d3Vi6dCkWLVqERx55xF78H3nkkbj99tsRjUZdxzn//PPxzW9+Exs3bsTRRx+NSy+9FPvttx9SqRQee+wx/OY3v0E6ncYhhxwSOIzxs5/9LL797W9jy5YtAMz8cccff/yI/t5zzz0X3/3ud5FOp/HpT38ar776Kk4++WR0dHRgxYoV+N3vfoeXXnoJxxxzDBYvXjyizyrGgQceiP/4j//A1VdfjRdffBELFy7Et771LSxYsAC9vb247bbbcM0112DhwoVVC8n87ne/i//7v/9DMpl0VLEtlUMPPRSf//zncc011+CFF17AYYcdhm9+85tYsGAB+vr6cOedd+L3v/89Dj/8cLzwwgsAKhsOevTRR+P666/Htm3bcPHFF+NTn/oUOjs7AQDRaBR77LHHsI47MDBgF/3wY+rUqTjttNNgGAYeeeQRPPLII5gzZw7OOussHHHEEdh9993R0tKCHTt24IUXXsC1115rFxaZOXMmLrnkkmGdHyGEEELqCIMQQgghY4LHH3/cABD436RJk4yf/OQnRjab9TxmJpMxTj31VM9jNDc3G3//+9+NCy64wABg7LHHHkXPc8uWLUYkErGP8ZOf/KQsf/91111nhEIhz3P92Mc+Zjz66KP2748//rjrGCeccIIBwDjhhBN8P+vyyy+3j6Mik8kYZ599tue5zJ4921i1apX9++WXXz6sv/n666/3/XtEvvGNbzjOwetaFfsO0um0ceaZZ/r+be+++679+09/+lPXMYp9fxZim1b9ff39/caee+6pPI8gbVFmjz32KOkesr6jVatWGePGjQv8voULFxorV64MdE7iNb7++utL/psIIYQQUlkYakoIIYSMcUKhEDo7OzFz5kwcd9xx+NrXvoY77rgDGzZswHe/+11XXjeRaDSK++67D7/97W+xcOFCtLS0oLm5GXPmzMG///u/4+WXX8ZHP/rRks5nypQpdgGEcDiMCy64YER/n8WFF16Ip59+Gh/60IcwadIkRKNRTJs2DaeddhpuvfVW3HLLLY5KrJUkGo3ijjvuwF/+8hccd9xx6OzsREtLC+bPn4/vfve7eOmll6qe3+tb3/oWWltbR3ycWCyGe+65B9dffz2OPfZY5d9mFQ8AYDvQKkFbWxueffZZfPWrX8X8+fPR0tJSsc/yY/bs2di6dSseffRRfPe738XJJ5+MmTNnorm5GZFIBF1dXViwYAEuuOAC3HPPPXj++eex55571uRcCSGEEFJeNMOoYcILQgghhBAJwzAwa9YsrFu3DqeffnrVcp2R6vHMM8/guOOOAwA8+uijdlEGQgghhJBGg443QgghhNQVjz76KNatWwfAzPdGGo+bb74ZgOn8O/TQQ2t8NoQQQgghlYPCGyGEEELqip///OcAzIqUH/zgB2t8NqRUduzYgZ6eHs/nH3roIfy///f/AAAf/OAH0dXVVZ0TI4QQQgipAaxqSgghhJCa0t/fj61bt6Kvrw833ngjHnnkEQDAN77xDWUlVVLfLF++HGeddRY++tGP4uSTT8Zee+2FUCiEtWvX4p577sFf//pX5PN5NDc348orr6z16RJCCCGEVBTmeCOEEEJITbnhhhtw4YUXOh476KCD8PzzzyMWi9XorMhweeKJJ3DSSSf5vqajowO33XYbTj311CqdFSGEEEJIbaDjjRBCCCF1QSgUwowZM/CBD3wAV1xxBUW3UcrChQtxww034IEHHsDSpUuxfft29PT0oKOjA3PmzMFpp52GL3/5y5g0aVKtT5UQQgghpOLQ8UYIIYQQQgghhBBCSAVgcQVCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQioAhTdCCCGEEEIIIYQQQipApNYnMBrQdR2bNm1Ce3s7NE2r9ekQQgghhBBCCCGEkBphGAb6+/ux2267IRTy97RReAvApk2bMGPGjFqfBiGEEEIIIYQQQgipE9avX4/dd9/d9zUU3gLQ3t4OwPxCOzo6anw2hBBCCCGEEEIIIaRW9PX1YcaMGbZe5AeFtwBY4aUdHR0U3gghhBBCCCGEEEJIoHRkLK5ACCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIYQQQkgFoPBGCCGEEEIIIaQqZHIGXlqZwc7+fK1PhRBCqkKk1idACCGEEEIIIWRscO+SJB58JYUJ7SFc+clOhEJarU+JEEIqCh1vhBBCCCGEEEKqwtrtOQDAzn4dg2mjxmdDCCGVh8IbIYQQQgghhJCqkBMiTPN67c6DEEKqBYU3QgghhBBCCCFVIZcvuNyyeTreCCGND4U3QgghhBBCCCFVISs63lhfgRAyBqDwRgghhBBCCCGkKoiOtxwdb4SQMQCFN0IIIYQQQgghVSEn5HXL0vFGCBkDUHgjhBBCCCGEEFIVRJdbXqfjjRDS+FB4I4QQQgghhBBSFcSqpnS8EULGAhTeCCGEEEIIIYRUhSwdb4SQMQaFN0IIIYQQQgghVUF0vOXoeCOEjAEovBFCCCFk1GMYBm59ZhC/f6AffQm9+BsIIYRUjFzewOPLUljybtrxuG4YyDuKK9DxRghpfCK1PgFCCCGEkJHy+vocHl1qLvB0YxBffn97jc+IEELGLkvezeCmpxMAgAntYew5xVx25iWHm/w7IYQ0InS8EUIIIWTUs3FXzv75tTXZGp4JIYSQW55J2D8//GrK/ll2uLG4AiFkLEDhjRBCCCGjno4WTmkIIaReaI5p9s+JdCG2VM7pxuIKhJCxAGephBBCCBn1RMNa8RcRQgipCq1xUXgriGs5yfHG4gqEkLEAhTdCCCGEjHpk14Rh0EVBCCG1QhP2QgZSgvAm1b5hcQVCyFiAwhshhBBCRj2ya0Jc6BFCCKku/clCH7xrQLcFNlloy7MINSFkDEDhjRBCCCGjHnnxtmuAqzlCCKkFhmFgIKULvwM7es3f5U0SOt4IIWMBCm+EEEIIGfXIoabdkvC2vS/vWAgSQgipDOkckMk5H9vaaypuco63PHO8EULGAJFanwAhhBBSKQzDgKYx6f5YQHa8icLbWxuz+MXd/YhHgZ+e14W2Ju47EkJIpehPujc5tvRYwpvzcVmII4SQRoTCGyGEkIZjIKXjl3f3wzCAb5zVjvZmCi2Njux4E0NN//eBAQBAOgs88loKHz6iparnRshoZjCl47ZnE1i3Iw9dB049qAlH7xOv9WmROkbM72axtcfsk+XQ0iwdb4SQMQBXIoQQQhqOvz6ZwIadeWzclcdTr6drfTqkCvjleEtmhIp6XOQRUhLPvpXB4jczWL/D7FPv+Fei1qdE6hyV422rh+Mtrxt4a2MWr63JsBo1IaRhoeONEEJIw/HSyoz9865+5vUaC8iLuZ5B9XUPc8uRkJLoTTjvpUSa4gjxR+V48wo1XbU1j8Vv9gMAvvz+Nhw4K1bx8yOEkGrD6SchhJCGQpd2zMe3c6gbC/iFmoqEmPKPkJKQc3DldNCZRHxROd76kwbSWcPVnjZ3F5S4m56im5IQ0phwNUIIIaSh2LTTuZ2eyXGBOBbIKYoryCIsAISovBFSEqqqk3JoNyEiouNtXGthudkzqPvmdKMjmRDSqLB7I4QQ0lC8vTnn+J3C29hAdrzldWBAEe5E3Y2Q0pCT4QMU3og/ouNt5qSw/XPPoI6c7j0mswg5IaRRofBGCCGkoXh7kyS8ZWt0IqSqqISAbkWeNzoqCCkN1b0lC92EiAykCu1jxsSC8NY9oPsWuGH/TAhpVFhcgRBCSMNgGAbe3exU2uh4GxuowuGyimtPxxshpaESSlgdmPjRN+R4C2nA9PGF5aZqM0QkRMsbIaRB4b4CIYSQhmEgZaA34RRbKLyNDVQOHDnvGwCwNRBSGqrQQIaaEj+sMP/2Zs1R4Kh7gDneCCFjE3ZvhBBCGoZE2r1AzOQULyQNh9qVoxAM6NQhpCSU9xZDTYkHhmHYjre2phC6hOIK3YO6sl+2CHFlSghpUNi9EUIIaRiSGZXwxgXiWECdh0r1GNsDIaWgumfoeCNepLMFsbajRUNni2YXTSie442hpoSQxoTCGyGEkIaBwtvYRRlqqnTqVOFkCGkgVKGBeR/XEhnb9AkVTduaQgiHTPENGKpq6tN2GGpKCGlU2L0RQghpGNTCWw1OhFQdlaDG3FSjl2TGQPcAL1Y9oBLZKGATL8SUD61NpuA2rs1ccvYlDKSyPqGmNLwRQhoUCm+EEEIaBjrexi7KcDg6dUYlibSOb/+lB9/6Sw/ekaoUk+qjEtkoYBMvxHG4OTYkvA3leTMA7Oz3bjzM8UYIaVTYvRFCCGkYUirhzWd3nTQOKiEgpxuusCYKBvXPY8vSSKQNGAZw9f0DtT6dMY8qNNAvXJA0Lu9szuK1NRnohvf19xPeAGB7LzthQsjYo6GEt6uuugqapuFrX/ua/ZhhGLjiiiuw2267obm5GSeeeCJWrFhRu5MkhBBSMeh4G7uo3W3u/FQMkat/ssI9q6pUTKqLKlciBeyxx5buPH52Zz+uvn8Ay9d6O1GVwlubs7KpF2xXhJBGpWGEtyVLluCaa67BAQcc4Hj8Zz/7GX71q1/h6quvxpIlSzB16lSccsop6O/vr9GZEkIIqRReOd4Mn9150hgoiyvoThHH63WkvohGmOipnlALb7yPxhrrd+SEn71LkybTbuGtqy3YklO1gUIIIY1AQwhvAwMD+OQnP4lrr70W48aNsx83DAO/+c1vcNlll+Hss8/G/vvvjxtvvBGJRAI33XST5/HS6TT6+voc/wghhNQ/qp123eAu+lhAWVwhb7gcj2wL9U8kXOszICKqIiUqMY40NmKhIlWbsBCLJ6hCTf3IMoSZENKgNITw9h//8R8444wzcPLJJzseX716NbZs2YJTTz3Vfiwej+OEE07As88+63m8q666Cp2dnfa/GTNmVOzcCSGElA9xp72zpeCaSTPPW8OjEtTyuruqLXNT1T8RljasK7zuLTK2EDcx5BB+EXEcbipReGO7IoQ0KqNeeLvlllvw8ssv46qrrnI9t2XLFgDAlClTHI9PmTLFfk7Fd77zHfT29tr/1q9fX96TJoQQUhHEnfbOlsIQJ4svpPFQhprmDUWoabXOiAwXOt7qC2VxBYaajjlE4c1vAyMpjMMtQ8Jbe0uwJSc3RgghjUqk1icwEtavX4+vfvWrePjhh9HU1OT5Ok1z7pwahuF6TCQejyMej5ftPAkhhFQHcae9wyG8cTLf6KhC33I6kGFVU0JGhDLHG0NNxxxpMdQ0oOOtOW6ut+IRIBIqXtyG/TMhpFEZ1Y63l156Cdu2bcOhhx6KSCSCSCSCJ598Er/97W8RiURsp5vsbtu2bZvLBUcIIWT0kxjK8RaPFHLLABTexgIqx1s+byCbK/46Ul9w8V0/6LoB1S3D+2jsEdjxJuRabYqa47CmaWhtKh5CztyBhJBGZVQLb+9973uxbNkyvPrqq/a/hQsX4pOf/CReffVV7Lnnnpg6dSoeeeQR+z2ZTAZPPvkkjj766BqeOSGEkEqQGprwN8c1xARPN4W3xkcl1uR097Xnwq7+oahTP3g5lIo5l0jjkckGy/GWUhQ5AoDWpuLLziAhzOmsgX/8K4FFS1NFX0sIIfXCqA41bW9vx/777+94rLW1FRMmTLAf/9rXvoYrr7wSc+fOxdy5c3HllVeipaUFn/jEJ2pxyoSQEfKvt9J4eVUGHzysGTMmjuoujFSAZMZcDTZFNcQiouOtVmdEqoUyAXzeLbxR1Kl/6HirH7ycTQw1HXsEdbyJzvOQUCilLYDjLci9f++SJB561RTddp8Qxrzp0eJvIoSQGtPwq9ZLL70UyWQSF110Ebq7u3HEEUfg4YcfRnt7e61PjRBSIumsgesWDQIA3t6Uw/98dlyNz4jUE7phIJU1fzYdbww1HUvkhxaC4VBh8ZbTVaGmVT4xUjKyKzGvGwiz0mlN8HKIUsAee2SC5ngb2gCz8rtZtMSDhJoWb1eW6AYAy9ZmKbwRQkYFDSe8PfHEE47fNU3DFVdcgSuuuKIm50MIGRm6YWDR0jQiYeDg2TH78USak37ixBHeEtUQiwrCW5btpdGxQt/iUc3uH3J5d3EFhprWP7Kok84agRbtpPyIIaWRcOH+4X009gjqeLNTPsSc92xbgFDTUjdGog23kiWENCrsrgghdc1TK9L4++IEACBCxwPxQUzo7M7xVoMTIlXDMAx7wRaLAIm0+XNeN5BlqOmoQ158p7JAC4vN14R83pkof2Do9yC5uEhj4RDePAQyXS84z5sk4S1IcYW8bm64hjTztTv78/jLEwlMHx/GR49pcb1edLYTIrNsbQb3v5zCifvHccRcDiKktlB4I4TUNf94Lmn//MRyJtIl3jgTOocYajqGEDWAeFQDYD6Q192iK0NN6x/5GqUzvH9rhehsi0c1DKQK9xYZW2SyhZ+zHo63VFYchyXhLaBrNa8DobD587WPDGLllhxWrM/iwNlR7L2bM6w0GqbwRrz57X0DAIB3N+covJGaM6qrmhJCGp+kR3UsQmTEttIUA4W3MYQsDoiPu4srVOusyHCRXYkphorXDNHZJt5bLK4w9kg7Qk3Vr0lKG2AiQYoryMdeuaWwc7Klx/2h4XCgQ5IxiGFw3CD1BYU3QsioIcqQAuKDPOEXQ03TDDVtaEShJi70EzlFqGmQ5N2ktrhDTXnNaoVT1C78zJDtsUeQHG9+m6WtAXK8+R1blW6EAjDxIpV1/k4hjtQaCm+EkLpFlwbJwTStKsQbccLfEmNV07GEKNTIrhyGmo4+5IV3msJbzRAdb02im5T30ZgjE8DxlvIT3koINVURUbjbvEJeCekZcDYkuV2tWJfF7c8m0D3AzoxUB+Z4I4TUHau35vDQqynsM93ZRQ0kOcEi3jhDTSm8jSXECXU0DGgaYBhDjre8HGrKtlDv0PFWP3iHcfOajDXETQwvwcvP8RY81FR9bLNfZ+oAAjy1IoVn3kzjQ4e3YN8ZUeVrugedjSOXL4i3ibSO3/yzHwCwcVceXz2zvaLnSwhA4Y0QUofc+kwCK7fm8NLKjONxK6kzISrknfaYMBfLcOHe0IhiWjikIRICsnl1jjc6deofl/DG4go1wyuMm4LH2EMcR70cb4kSQk0LZXCcePXROYWDmY63sUMirUM3TOfk359NIJ0F7nsp6Sm89UjCWzZvoAlmm9zWW3hu+TopJpWQCkHhjRBSd6zcqk7IleTii/ggT/idjrdanBGpFuIiMBIGImEN2byBvG4w1HQUIrsSGWpaO7wcb7yPxhZ53XAIYl6uNN9QU8nx1hTTlPO6vMexc3nD9XovAZA0Fjv78/jBzb3QDeDbZ3cgPaSV+W3Iu4W3ws8cU0gtoPBGCCGkIZBDXOIjCDX98+ODWLU1h8+e3IoZEwtDpWEYeHtTDqEQMHeaepeVVB9RBAiHzH+AuSiTiysYBqDrBkKKRN2kPmCoaf0gChtNilDTvoSOxW+msd+MKGZO4rKiUclKGxhBqpo2ScJbNOz8PR4Fks7ABvPYHqJuNg8k0iyWMxZZsS5rb6K9+G6h0chzO90wcO3Dg9jcnUdnq7O9iW2FYwqpBSyuQAipO7SA62FWKCIi7lDT4Qlvq7bm8PQbaWzclcdv7+t3PLdySw6/uLsfP7uzH2u30UZXL7hCTcPW4+4Fo/U4qV/k65NmJFDNEBerzqqm5v9/enQA/3guiZ/f1Qed+RMbFlXIvmoOlkx7O95kvJ63RD05jDSbM5DMuPN2kcanX8jxvEsohiCnEXlzQw4vrsxg4648Xl/vHPzFtjLI1DWkBlB4I4TUHTFF5SoVXDwTEVdxBaEdZUpYuIvhCT2DzsnZLc8k7J///mwCpD4QJ9ThsCm+mY8byCgcEczzVt/IoaZ0J9QO8V5xFFcYukavbzAXt6ksQ/obmbRi80rVjyazwYU30UEpYt3/cm5HleONOd7GBgOpQmMTq5DKgvAunwql4iaCeDxCqgWFN0JIXWEYBjIBdzApvBEReac9JDifVIsGL6I+wm9IGDUZ4lI/OB1vhcplOV3tdmRl0/rG7Xjj9aoVTsebf443iiCNi6ofVbnNSnG8weNp67jufG6GI5er1zmQxkPM5SZWK81K19+vEI/YP9HxRmoBhTdCSF2R180cTEGg8EFELHFNAxAbSjVkFVgoJdTUT5OJhJhcvB5x5njT7OuUzxsMNR2F5EtYTJHK4pXjLZ93OxEpgjQuKte4ag4mtonmuFtZiwgrT69+2M/xlpQcb9xEGRs4hDfB1ZbXne2wN+HneFMfj5BqQeGNEFJXyAJJ2KeXYrgYEbHCnGIRQBtKFGgJcKUIb3LOEJGI4IbjIrN+EBdwkZAZbgp4O94o2tc3OYaa1g2isBGNaHYO1pxuoGdAzrfF69SoqPpR2W0EFHe8xSTxVkXWw/GWVVQ1VZ0DaTz6k06xTURsm37CW5ahpqTGUHgjhNQVYo6Yg2ZH8asLuzCpQ91VcZJPRKzqlVGhmmnB8Rb8OGnptWIC6bDD8cb2Vy+4iiuErMe9Qk2rdWZkODDUtH4QNxgi4cJmWF53hnwBFEEamaAbGJYwFg6p0zY4XJMeY2h+6LiuUNMcq5qOVfwcauL8rncwmONNDDWNUA0hVYJNjYyY/qSOvy9O4Pm307U+FdIAiJO7WERDSzxkiycyXDwTEavtxJTCWwmON+m14qQuHCBMhlQfWRyIhMWKtu7XezktSH0g31t0vNUO0X0YEUTtXN5ZiMZ8jNepUVH1o8ocb0NiWXNMs53nIu3NhceiHnM7K5pB5XhzC29+Z00aBT+HmtPxFizHmyjkhaiGkCrBpkZGzKKlKTzyWgrXLRp0TcIIKZWsJLwBQDyqfi0nXEREDDW1iEes6paAHtChJrtrBoUJX9hRXGF450nKjzPHm3+Iuvl6CgT1jHx96HirHoMpHXf8K4Hn3zE3U92Ot6H8ibrhmvOxuELjoroHVUKrFRLY1qQW1S44qRWAmYv1nKNalK+x2pwyx5ui4AJpbLI5A2mfyvRBQ02dOd68CzQQUikixV9CiD87+szOSzfMhJddrdRzyfARd1WjUoJ8GTkPEBnbKENNBdE2kweaAnRPsuNtMG1gfLv5s+ikYvurH9yhpv7V9Jgfsr5xOd5YXKFqPPJaCg++kgIATB8XdggbppvU/DmvO5OcA9yMaGSC5HjL5gykhgSStmb1YDtjYgQ//kQnNM0Zdipi9efuCqaGq2+gaNL4FCuEYK0bcnnD97VWX2YYztcZhrkxGyoybyBkpFB4IyMmLQzG6RLCuQhR4Qg1DVuON4/JGSdcZAhdN2wxRRVqCphFE7wm+oMpHbc9m8CUrrCretugENoizssYalo/5GTHmyK3kAgdb/WN2/FmLpZUoWukvNz3Usr++fl3Mo57KxLShhxvBnJ5Q5HjjfdVoxIkx5uYAL+j2ftendJldtCJtHoQ9XS85QxX2Dn78sanWCEEa9NVdLuNaw0hkdYdOXstkTaddc/fsnkgTt8IqTAU3siIEQdjhoOQkSJO3GN0vJGAZAQRVgw1FR1qfovC6x8bxGtrTMVt792cQ6OYhFdscnkuMuuGUh1vFE3rG/n6GDBdDV5pB0j5aGvSbDfI5u48OgTnUlgqruDO8Va10yRVJkiOt35hrGwLYC+Phv0db8FCTYt+DBnlFHe8WcJb4XUHzo7i3KNb8MrqDK59ZBBAQShWCXm5vOG5yU9IuaC2S0aM6A7JUHgjI0RsT1bIYMxji4ATLmIh5gYUJ/Ni28l6VDY1DMMW3QBg7TbnCweFXXlxh5/hivWD6H4NhwrhcF6w76hvVMIoN/aqw7RxhZtnc3fesWERCWuOUFPmeBs7KB1vurfjrd3H8WYRjWg4dK8oNA1YMLOgqlv9syrUVC6uwDbX+Awk/SdbligsVjTtbAkhGtEcG/eW400l5HE+R6oBHW9kxDhDTWt4IqQhyDgcb0PCW5E8IITI1XAtRBEu4zFB37jLqcJkJFFGdLyJgg1dU/WDeC0iYRZXGO2o3KSprIGOGpzLWKM5Vugzt/XqmDmx8FwkVCiukBHyeVl4bW6Q0Y861NT5e3+y8Jp2jxxvMl88tQ3JjIFVW3NYts5sUDk63ohAMcebtSkjhpp2tpjtT9yEK+Z4I6TS0PFGRoy4C80daTJSnFVNzf/jXqGmnHA1FIMpfdiTH1VRDvlnr0Wh6HYDzES7jvNKi8Ib+7h6xBVqqghh0pifb9Sgch+wwEJ1kPu4bX2FgTYS1hyhpnJfyfQPjYsq1FR2m5XqeAMATdPQEg85+mzLwSyLbMmM4ToPjsmNT3/gUNNC++tqNdtTNOx2vA0qjsciHaQaDMvxtmjRIjz22GN49tlnsWHDBuzYsQMtLS2YNGkSFixYgBNOOAFnnnkmpk6dWu7zJXWIuAum2hEjpBScAooVaurleKvGGZFq8NzbaVy3aBCzJoXxzQ91OCqTBkHse+IejjevCfrSNRnfYzscb1Kby+uG7QAhtUMU4SNh05kj09ak2Y4M9h31i2G4KxcCLN5ULeQF6LrtovAGpahtv5eOt4ZFlUpG3vwcGIbjzULss61xVhbe+hUhh9yAbXyKh5oOCW+DhfZScLy554AqBx1z9pJqEFh4GxgYwG9/+1tce+21WLduHYyhba6mpiaMHz8eyWQSy5cvx9KlS/G3v/0NkUgEH/zgB/H1r38dxxxzTMX+AFJ7RKGEjjcyUlQhg14JtZnbo3H415tpGAawelsedzyXwL8d2xrofeu257BhZx5drYVZuyjaiT+rNgb6EjpWb/WfuQ+m1DneALPPa4lTeKs1TscbEFaIA63xgvBGl0T94mWa4vyiOvjdG2ZV0+G9l4xuglQ17RuG483CIZAMdQKy8KYs8KCz4nGjU7y4gvl/jxhqOjQnjDpCTa3jUcAltSHQdsQf//hHzJkzB9/73vfQ1dWFH//4x3jsscfQ19eHRCKBDRs2YOfOnchms3jzzTdx44034mMf+xgefvhhHH/88Tj77LOxevXqSv8tpEY4Qk25I01GSEYRaurleFu7PYdf3N2H+15MVuPUSAXZ1leYCC1amsb23uKzoGTGwM/v6sP1jw3igZcLbcARaipMulShBBt25lGs13KEmkrzNTnHEakN4nUxq5q6XyNW2aPjrX7xujZp3mtVwS/kystNGuS9ZHSjmt+7HG+CQDIix9vQcYOGl7M/b2xUQpmIHGqqaUB7k7luUFW2V4eacv1KKk+gXvErX/kKTjvtNCxbtgyvvPIKvvOd7+DEE09EW1ub43WapmHvvffGeeedh7/85S/YunUrrr32Wixbtgx/+ctfKvIHkNqSyztDQjgxJiNFDFWJFQk1ffS1NN7amMNdLySxeRdn/KOZqV3OMpT3LCkupu7oy9vC18othYbjVVwhq1g4DBaZ0JmvURdXAOjCqSWGYUDX3aGjno63JrejgtQf3sIbr1k18HOted1bQd5LRjdBcryJjre2ptIcaGEpJNAwDJfjzQu6lRobsWiHCmtu1zckvHU0awiFrBxvhdflWNWU1JhAoaZvvvkm9tprr5IP3tzcjM985jO44IILsGHDhpLfT+of2XrOiTHx47FlKTy2LIUPHd6ChXNiyteIlSct0STuUdVUZO32HKaNDxd9HalPdEkI2bCzMJPe2pPHy6syOGxODBM7CtdY7G9Ep4UovMXE4gqKyflAunifNZj2DzUl1SeZMXDVHb1IZ4FLP9zuLq7gkePNgg6J+sWr4izvterg5VoLh8wNdv9Q08qcE6k9qlBTuR+1cry1xrWSc5+KfXZeN4W+oPsj2byBJjDUtFEp7ngzN+IsgU50W6pzvLGqKakNgRxvwxHdRMLhMPbYY48RHYPUJ/IOmDUw7+jL46d39OFPjw7Y+QAJufnpBLb26Ph/Dw+4nktmDGzuzjsS+BZCTYsfe9cAV9KjGXnOkxLawf89OoB/PJfEjY8Per5GRNzhVIUZiKhCDmQSjqqmzucoBtSG19dnsblbx64BHS+vytpV8AArAbz7Pa1CqOnfFyfwo7/3YvVWZoOvN7zEG6/7nZQXrwWodU9FfAQVhms1LqriCl5VTUvN7wa4HW+l3O8UfBsXwzBsh5pXGr9MzkA6WxCCRXe7OBfIDgl04sauBdsQqQalBeATIiEvOq3fn30zjZVbc3ju7QzWbGNvRuArwKazBr5/Uw9+cHMvnn2rUGGyUFyh+CSOwtvoRpdzpw2FmBiGgQ07zD5kkxRO7BXa7nS8jTzUNJMrbCrIbhyKAbVB/N5TGcMdaqoQB0THWy4PrN+Rx6KlqYqeJykd8R5rjhWuGUXu6uDleLMENzrexibKwgbC9c7mDDv1Q6n53QC34y0ZwI1eOA/2DY1KOldoZ+Na1e0qkzMcLjYxn6tYYCunG9jaqytDV9l3kWpQcs+YTqeRTDKROTGRreeZoUFXTEYeNEcDaWzkQU2cKG3YmUNvwhJaCq+JFsnxJrK1h6PmaMZLeEvnCrk35L7EayHuyPEmhpoqFg7FqmVZWM44eVFKMaA2iCJqJmc4craFQ5qH483dj4g5iUh9IIqoYsVg3mvVoajjzSejAx1vjUuxqqb9I6hoCjjbVS5ffO0givLMz9W4iALshHYv4c0ZvSBusomCbjYPvLOpMBHsanWHoRJSSQILb4ODgzjvvPPQ3t6Ojo4OnHvuuejr66vkuZFRgMvxNjQwiwtcTsQI4J609Qk7Tl7hflaIaTyA8LaFwtuoJi85InO62XeIjrRs3tmfeAtvhZ/F4gqZIqGmXmEMQCHPW5453uoCUQDN5JyOt0hIHQ7XFndPeRIluCpIdRCvZasovDEquCp4OT+ssH2/3F10jTQuauGt8HO/Q/go3fEmtqucXjzU1OlgZj/eqIiVbce1+TneCq8TN9nCIdjZ/3J5A+9uKYRKzN89av/MisykGgTuGb/1rW/hvvvuw9133417770XixYtwje+8Y1KnhsZBcjWc2sRKg7QeXZmBO5Fk1V9CHA6JEXsqqZR5dMOegZLywlC6gvZ8QaYEy7ZkSbufnrmePNwvOUUC3excMJEj91UoCDQyTvrKVZyrgniGJPNQSquAIQlV05IA5rjbsGAwlv9IV5LOt6qS143PBPaWyGm8r0lwo3WxsQwDHu+LzrNsh6Ot46WkTne8gEcb6KrjoJv45IU+v32Js2Rw9cinTUwkFaHmmpawQGfzRUcb5EwMGdaYYLISuekGgQW3m677Tacf/75OP3003HaaafhvPPOw1133VXBUyOjAa8cb+JgnPXozF5ZlcHfnhzEzn6OmGMBOb+WQ3hTON40rTDRDxJqCjDcdDSj6iZSGcPVNsTJeDkcb5aw1xzTlKGIFoNpA7phuKq4UQyoDaLDIZ0zHAuvcFhzOd6aYupqjF6iv4qd/Xn87wP9uGcJ021UEr9Q05zkgiXlRbyP5KJGVl8q31sUQBofcZNdvCcdjjchimE4jreQJjiTdMPhdFIh5pGj4Nu4iO2gKaY5hF+LbN65jmiVNtmszdid/Xls7zPHj1mTI2iKsu8i1SVwz9jc3Izu7m779+7ubjQ3N1fkpMjoQbaeq0JNVY63VMbA/z06gCdWpHH3C1zEjAXktmLldAOcriOLWMTcqTJ/Dia8Mdx09CILWoC50ykvsoMJb1453rxDTdua3BM6UahJpA11X0bhrSaIC0FlqKm0K94U1ZQhcskhQTUINz4+iFdXZ3HvkiRWsRpqxRAXQC1CePBgysDlt/TiGzf04PX1tJpWAlHQntDuvIksp5ssYHdQAGl4xLHWK8RzpDneNE2z21gu7/zMFoVbWS6WQxoTcc7XHNPQpBDe5FDTNmkT1crzJkYozJ0WcVS9Z7gyqQaR4i8xueiii3DZZZdh9913h6ZpuPnmm3HZZZdV8tzIKCCtKK5gGIbDWaKy7+7oz9sLJ7lSIWlM3Dne/ENNnZUpg33G1m62pdGKSvxIZQwMSG3DKbypj+UINRUmVnIOD90w7FDDlrjm2P0EgK7WEHb2m+00kdaVCZzpeKsN4gI/kzMcRVnCIbe7rTmmLrhgwGxnqoWdzBsbCmLb2u057Dkl8BSKlIBc1VSDeZ1WbsnBeubFlRnsOyNADgJSEmIfOaE9hM3CmGotXuX7qKNFw8Zd5s+qcH4y+hHHudYAjrfhVDUFzDaWy5t9QEoS++S0AKKrjqJJ4yK2Ay/HW0bapG2VHJemwOZsI7MmRxxhq40o3ibSOpIZw7WJQmpH4FnjpZdeira2Nvz1r39FPp/HlVdeiYsvvriS50ZGARlp4WtgKAG6ILKoOrPugUIH2TPIsJGxgJwPsL9IqKkovGmahlhEXc5eZEsP29JoxSvHmyvUNECOt5gwxxDbkex4S6YNeyrW1hRy7aSOcwhvhnJyT+GtuqSzBuJRzeGqzuTMMCWLcBiOnWzAcrypj5lIG2iJF/9MkQyve8VwuBfDZo7PdNa5bBJTFZDyIQrazTEN8UghP6tXcYW2phDCIfO6eaUWIaMbcZNdFDXEjXVxA9UvbYMfkbAGZM3UAWKIYXtzCNt6C/e8Jn0Gq5o2LnKoqbhJZvU7xRxvUYXa0dakOcaaRhNvB1M6vvPXXqQyBi75UDv23o0bVfVASdu1F110ES666KJKnQsZhciON8BcpIgCiaoz6xbEtr6kgWVrM/jzE4M4aHYMnzy+tSLnSmqLb6ipQniTE6jGo5qyqpbIqq056LqBkE/VNVKfqEJNU1kDA8MJNY2KjrfC47LjTa6CJe+kihW0TOHN/VkU3qrH82+nccNjgzhgVtSZuy9nIBpyTsZlkc3M8abuF/wKLPztyUE89XoaHz26xfE4K6BVDrlQRjyiue4z0TFNyofYx0XCpsiSHtootYsreLhJ87ozzQhpHByOtya1izwhpAyRc2wFJSKEmsqON5F41OlmbzTRhBRwhJpGNYwfmpeFQ8D4thC29+nI5JzrCHeoqbs9tsY1JIRjN5rjbeWWnP3dvbEhS+GtThieF5iQIVS7/pmc0xmiWlCLjjfDAO74VxI9gwaeWJ52PEcaB/9QU1WON833dxU7+3UsW8fcP6MRr1DT4RRXECfkovNJdrzJO6Sy462rVcgv5eF4Y4636vHc2xnkdODlVVn0CI6nTNawnReaBoQ0ze14ixVC5WS8CizouoEnVqShG8CtixOO54ptAlSDm54exLf+3IMVDdbniXOGcEhzuQ0BoC9R+++/EREdb9Gw5ljAZiTnm0VLXLP7XAogjYmY1qFlKPwbcF5vcQNDzM1YCtbmSE4KNZVDV5uk1AGNJpqQArLj7f2HNuPwuTGcd0KrPUfTDaB3aE6gKSqYq9JMtMRDDkFO5dY1DAOrt+Yc+QtHC6Iozo3C+oHCGxkRasebMyRQdcP3DDrft1HI87atlz1EIyKHiRaralqK8NYplK5ftDQ1zDMktcTb8eZsG+KuupfoJYYVOIor5L2P1Rp3O966Wgu/J9OGR4435SmQCiCKXQNCPqFMrtB+7DxUsuPNJ9Q06SG8yW1PRFWoo5oMpnQ8viyNXQM6fvPPfugNFOLnFN6gFN76kzqMgEUxSHBEASMadrqbrBxK8r3VEi+IICyu0JiIm1zxqOZwpllYGxghDWgaprnGOm5el0JNJQeT6bIcmeMtnTXw6GspFmqpc+TiCpM7w/j8KW04Zn7csS7YNWTaaI1rCGlSqGnYPYaI/RagFm+fej2NK+/oww9v7UU2Z+DxZSnc+sygY+5YjHTWwJJ309jZX921rdgXc0OkfqDwRkaEnOMNMDsZ8YbPq0JNfVxtFN4aE7fjTZ0bxELOyRD3mcgdslcMkzrM7uyNDbmSC3YErWpIKofqEiQzpVc1jYbhmHSFNM1eKMrirzPUNKQsrmDBHG+1RxxXRJesWdXUfM4Oh5N2uOWFmoiX461XyiMmhi0XyzdZaeR2t3Rt4ywexTlDOATXfQmY33+aYY1lR+zjImHNkcDe6i9lAdvpeKv8OZLqI26ym8Kb2+EoFirSNO+NUj8sB1IuLxVXkKqkNkWdoslwHD33Lkni1sUJ/PrefuaarmPk4goiYuE1q/2p8gvK64lIyHxvMfH2rY3mINObMPDq6gxuejqBR5em8eSKdODzv2dJEtc8PIif3dnvSKNQacTNwTz75bqBwhsZEUrHW85wiCwql0i3zyC3vZcDYCMiO0QSaVOg1XVD6TiRHW5xH8dbU0TDexY02b+/sioT+LyWvJvG16/rwc1PDwZ+Dyk/QR1vxaqaRhXtxHpMnljJOUFkx1tzTLN37gfTunJRyVDT6iF+/07HWyH/nhWqJOd0MXO8qY/rtXvtEt6EtlXrUFN5XH3ktcZx+jqLK6hDTQFg/Y4cHn0txc26MiLmaItGnLmSrP4yLIeaxkQHFPvDRsTL8ebM8VYQ3oZLWHC8pYVpXFuTO9R0pDneHnq10Ge+ubFxNi4aDXHOJ2/CqCJh5LYCuOcDzUPicDHHmxg+vX5n4QWlbO6v3mp2qrsGdEfl30rjDDVlv1wvUHgjI0K1+EhnnUnIlcUV/BxvfZxENyIqh8jOfh2JjAHVkCAPqAfNjgEA9t7NXRMmFtWw19TC4/KC2Y9rHh5EIm3gsWXpkuzjpLyoQuVSGbcbySG8KfqfmKJkUFSxSACcrqlWRY63WESzc9Uk0oajgpt9DjUW3nYN6HhieWpM7NiLY4koPGXFUNOw83+LpqjmEgwsvIor9Ep5xGI+YcvVRl4kvL0ph/U7GsMC5g41Vb/uf+8fwK2LE/j9AwPVObExgNjHRUKawz1iPeMqriA43oabSyiTM4tscQyuTxzCWwSunH66UdhAHYnwZrnT8zrsxPexiDvcXE4dMNKqpipXLakP5BxvIjHFdZMLKwDu+YBV/KOYeJvIFBqWuG7dVUIucnF+4VfIqdw4HG/sVuuGkqqaEiKjWnQmM4ZUotn5fCprOBbPMttKcLy9tiaDtdvzOPmA+LCTuZLqoCrE8f2bej1zgcjW8JMPbMLBe0YxrjWE/7im2zHRikWcoQjD3VXa1a+zHdUIa87TEtfsyUkirbsmKlbfYRiGsv9R7YCaTiXDtVHgCDWNh1xiSjxqlq7fNWAuAuqxqunv7uvHhp15LH4zjcvO6azpuVQar0W9gYLz0HK8yRVMfR1vHuNRnyTgx4baEQDfMawaqBYJa7blMGPi6J/WOauaejveLFF+4648snlDmceHlIZc1XRKV6E9TR9vrl5l90hLPOTIzaUbhivHUjH+/Pggnn8ng32mR/CNszqGd/KkYojuclWOt2S6sIE6IuEtLDosdfvz5Cr37uIKI+uPPQpekzrAGmsjYXeuNtVGqzrU1F0QxjqmhWp+J0bjiJubpRQBdApvOgBFpYcKwOIK9QlXmGREqHK8yYny5Zj2niId1vbefKCkyX0JHVffP4B7lyRxx7+SxU+WVAXdMPDu5qxr59orNCvl4fBXCSgT2sMIhTTX7lUsoqFdsJf3p4a3vbOTFXVrhj701bcKk/ad/e7rYU1icrp6F08pvCkSQQPuUFO1462Qu0gltmRyardetdgwFP6wZlvjz6z8FlfWBNkS11yON99Q02A53sRFYa2FN9VEeqSuj3ohSHEFGVkkJcNDdElEIxoO2SuKA2dFMaE9hM+c3ArAfW+1uML+Sv/c598x4wrf3Jhj0Yw6pFiON7EPbR3B5qXYR1vCelNUcwknzWVocyIUJuoXa1NNTgUCeISaKtqfq88aeo0jx5tiHieO892S8BY0N7S4Fqqq403Mtd5AxZdGO2UV3gzDwDvvvIMNGzaU87CkjlGFeg1Iooc8oPnldwNMISaIY2nt9kJYzVOvB090SSrLfS+m8N939uOqO/ocA1OmxIlNzMe9ICdJj0U0xKOFwXVgmI63HX1cvNUCwzBgzQtaighv1kTIy2kmOyXNx8xjuh1vzlBTeWIXjzrPx2txX2sRZqzgt7iSw+BcOd6i7kpnFl6T4T4p1FQUWL0qoVYLlQjZKAmUhyO8yZXSV23N4YGXk+hPsk8vhazkeAtpGr78/nZc9alOzBxyU6qKK4y0wqSI12YcqR2eVU2Hbi+xDx1ZqGnhvVY/ILvbAHdxhVLbnCya1Nq5TryxQk1V4cAq4U3leHO7dK1csIXHVOKr2K5Fl1tOD7bOyOUNRxEgL3d9JRDzdbLoTf0wLOHt7rvvxmc+8xl0d3fbj61ZswYLFizAPvvsgz322AOf/OQnoeuc8DQ6KheT3BnJSnsQi26QZMnDLJpEKsxbm8xZ85Ye3ZkAvcSJTcyniqk88Y9FzESplutNFn+9kHfWVUIPqTxiFxENa3b4gFxYASguvKkEW+uxvO4UT6wd9ZBm7qbKwpvoeAO8hbdimwmVopZOu1ogF2hRYU3EVVVNvRgMWFxBzFNZa7FVNZFulF3tnBRqGiT/knit0lkDV93Rh388l8Tt/0pU5BwbFUdVU2GxKlaplMO4m+MjrzApEnT89qNnUMcfHuzHnc8nAjnodvTlcdNTg1i6JnhhprGEM8ebhmhIGFMNw5GLtRzFFUSaoporxLApJou9pX2OvHFS65ydRI1hFFITqR1v7veocrzJocpWG3XkCZTaQDZnOPoyOU91kDxv8jyhVo43Fr2pH4YlvP3xj3/EkiVLMG7cOPuxr33ta3j99ddx0kkn4YADDsAtt9yC66+/vmwnSuoT1eK3X1osywNiEOFtewDnkdyBDZZhskZGjpgIVRRmS60C6Jevx+14M/+38rwNpIxAk+20NJDu7Oe2UC0Q9YJQEYeLNWH2qiaq2gGNOJLiF362Qk1bm0zhVlUxyyG8CUKyOLmrlWArt99GJ0gopWpCDbiTMot4uddkoVUc72ouvClEtoYJNZVcV6rFlYwovG3tKRzg2TcppJSCuFhTuYcB970VDXtXmHzx3Qyuvr8fq7Z6d1ay+2i4jnWRu55P4OVVWdz/Ugqvry/eUf7hoQE8vjyN390/QPeTgowj1NSdG8sZaloex5tFU4Acb6UKZ31JWWQp6e2kSuTyTuejjNrxpgg19cjxJlY2ldeqxcb4IMKbXBysVsUV6HirH4YlvK1YsQKHH364/Xtvby/uv/9+fOxjH8Ojjz6KF154AfPnz8ef/vSnsp0oqU9UlSrl3UqX8Ca4Q6Z2FZqgaPkN4niTO7DN3exZ6gGvqpOi4PH9j3bgex/twORO7y5INaBauBxvQ4JJe1NhFzbIwlhecO+g460miObocMjfnZTTzQlF2iMcSbVYFF1w1gRd1w17sW6Vn4+EnRP8WMSZr0YUYqZ0FV5YM+FNWiAGzTkyGtF1I1BlLmtCLYeV+rmm5MmxhVzVVPy+M7na7iKrHW/VP49K4CyuEKziYK8wr+hjeOmwEduV1+aXHPYnP2aN9bph4M9PDOK1NVnc/qy381CeR3o5UEthsSC4Ll/vFF/7kzoWLU1hiyDQrtte+LnWono94i6u4BRaxeqPI3G8qcSVppgix1tUU4alBkUOQVelzSG1R7wXA+d4C+B4E8VhuUKvRTGRLIiJxFUcrKqOt8LPqo06UhuGJbxt374d06ZNs39/5plnkMvl8PGPfxwAEI1Gccopp+Ddd98tz1mSusXaBROFEHm3Ur7hxc5q9pTCKnnOtMLPQSqbypMjUXgr1V1Fyod4XcTiG+I1mTY+jD0mRewqaSr8RARVjjcAaGsWCiwE2DWX29AuCm81QVxohxTOM5lkRl3RFPCqalr42drZ3tGv24tMcQPAmvjHIuZuqDjZE3N+TRHes7NGuQHlfq6RdzWDhq95Jfb2E3MTabdDNpNzV9+WHWW1XKCrHB6NEmrqzPHmXdVURBRJgzgRiBqxXakENkDtShKFkdxQv9SXKNxDfhujchqKcjjexHOXj3f9Y4O45ZkEfvvPfqUznmFZbrxyvAFux9tIKsN3taodb/Kcz+14K+1z5PlhkDQGpPqIkQ1Bc7x1tigcb4pKzPZzUr5Ci2L52IKMM3KRuWrmeMs5Qk2r9rGkCMPqHTs6OrBz50779yeeeAKhUAjHHXec/Vg0GsXg4ODIz5DULbl8wYHQ3lzo1GTHm5zw2SrJHNJgJ+sFgH1nFJJ6BXGQyDsJm7rzWLMthx/e2ouv/l83XnyXISa1IOXheLMmbppWcDdOn+AtvPlZ/yOuHG/m/+3CTleQpNrywnkgZTjOn1QHOdRUtestTsgTpQpvCsebuBCcNq7QDse3hYY+z/y/1RFqKjjeOgvv2VGjEGX5O2jkBWPQv63Zw22hmrTHh4acvO523QSpkllL4a2xHW+Fn4MWVxAdb14bKKmMgTc2ZLnI9iGI4w2Kh0URJD1U6VncZB1IuYVsCzltgCq3Z6l0CJtwPWLbGNCxbK25I7i9T0c66871yrBDN9ZYEw6ZG58RaUxNpEThbfiON5VoEo+5HUtNrqqmpbUZeX6oit4htaeY462jxfnY0fvEHJuiFnIkhNhGLVHO7XjzH1CH43grdsxy4iyuwDGvXhiW8LbPPvvg3nvvxa5du9Db24tbbrkFhxxyiCPn29q1azFlypSynSipP8RFX7swyRmUJk3yzrwV3tXRouGQPaNoiZt5lA6fG7M71iD52uQO7dHX0vjJ7X3YsDOPnA48+yYrnVabXN6ZjFQOzQIKTiIA2H2Cd/IeP9einIBX5XgLMnlPZtztLGiet8eXpXDT04NVHUgbFTnUVCWSTOwoXPRk2vDM8eZX1RQo7Gxv8RDezj2mBYfsGcUnjmsF4F3VdFJnyC7wUqtQ07HkeAuav8xr0ady70wS2pQ8nshhpipqWdlUWdW0YRxvzlDTYI63QgPxuh9/dW8ffnVPP25+hgUXvMgFcLypxuao4Cj56T/68K2/9Ljyuu3oU3dQLsdbmfP1iiGlS95xzgv7k7orbQET7buxNlGte1EUwlJZZ3GFkeR4sza8RFTFFZoVrrtSkOeHwxXjN+7M4df39uHhV5PDej/xR9wIV23IzpkWwakHNuHIvWP4zkc6cOF72hyFYCxkx6RDePPK8VZkfA/meKtdjreM6HjjMqVuGJbw9p//+Z/YtGkTpk+fjhkzZmDTpk3493//d/v5fD6PZ555BgceeGDZTlTFH/7wBxxwwAHo6OhAR0cHjjrqKDzwwAP284Zh4IorrsBuu+2G5uZmnHjiiVixYkVFz2ksIe4QiU4j+QYXd6913bCTmna0hDC+PYyfX9CFX1zQhQntYbszDNI5FXMbVKPS4LK1GfztycFAOenGArIYIk6orcms6EjaTQo1FUNPOxUTMAvZNm4dU3ReDifUFAiW523TrjxuejqBx5elcfPTXMSNFLGPCGnuCVY4BMyaLAhvJTveCj9b/dYmUXgT2t3eu0XxpdPasd9M0w4lTtDEYgbxiIZxQ220djnenL838oIx6MLIa9GnmoxP6ij0MbKAHsTxVs2wEZlGdrzlHEJ80FBTp6vJwnJHZ/MGVm81v7SnX08zgb4H4saZvFi1GCeMzVaYfkTa8OgZNPDwqynHY15Fs+R5g7x5OxxE8a5n0LDv7+felvK9pQxXTkCmKnFj3S9WdIGY4/S11VnHnN3LdRwElfDWLIWVAkDcVdW0tGsmX/Ph5nj77X0DeH19Drc9m3Q4K0l5SBYR3kKaho8e04LPntyGPad4b+TL7UclvMnzp6JrzOEUV6hmqCkdb3XJsIS3j3zkI/jf//1f7Lfffth7771x1VVX4TOf+Yz9/KJFi5BIJHDaaaeV7URV7L777vjpT3+KF198ES+++CLe85734KyzzrLFtZ/97Gf41a9+hauvvhpLlizB1KlTccopp6C/v7+i5zVWEAcq0WkkI97w/SkDlqvfspTHIoXEqVZnOKjIuSNTTJzrDbBwGgm5vIHf3jeAJ1ak8bv72KYA9w6RKFRksm7hTS6u8MX3taGzRcOMiWEcNz/u+TmuSdjQwqytSXS8Fb/+qrDSIHne1mwr/GHyRJ6UjpjPT5XjbebEsCMEpfQcb/6hplO7vEOevfLVRMIaJrSbzw2kvB14lWRMOd4C/m3iou/wuTEAwKF7RZWvta4f4J4gBxk/ahpqqnC3yWkdRiuigBgJFUKC/ehLGtCHvhNRCA8NXWJZzHljg0d1ljGOOF/zCjWd2BHGR49uxoGzovjy+9s9Xys7Qjwdb1KYX/8Ihbd01nAdc9OuPDbszGHDTuc59Cd1l8hear6wRkM197Y2eayx+Yi9Y/Zzi99MOwpiVMLxJhfUksW4kh1vZapqKrbxIOlNSGmkioSaBkXerG91CG9DRdmkNlRMJOsZ1O0xxwt5TVTVqqbM8VaXBCjSruZLX/oSvvSlLymfO/XUU9Hd3T3skwrKBz7wAcfvP/nJT/CHP/wBzz33HPbdd1/85je/wWWXXYazzz4bAHDjjTdiypQpuOmmm/DFL36x4ufX6IhupuaYWQ1QNWERd6/FPCxdilwOlvBm5dzxm3AnFGGCgCnmbOvVMZA0kNcNhBWJgMuBuPDf0sMBFwCSkvjgDDV17pgCppvhkD2jeHlVFgfOimLauDB+dn4XNE3tULGQB1HL0VQtx1uQKnskOA7Hm6Kq6V5TI2gRHktmDKSEdXNzTLOvpZwLRn4slzcXFlu6zQ+d0B7yddT4hS5OaA/hnc3m7zv785g+fthD6rBgjjc34oT6wve04qT945g1uXBdPrCwCfe+mMKhe0XR2uQUc63PuXVxAk8sL56qoP5yvDXG9XeGmmqISfOAI/eO2Rse49tC2DWgwzBM8a2j2ZnTK5Mz73e5UuarqzM4aHYMxInT8eb9ulMPasapBxV+V/W7Mjs8HG9yP2alGtnem8cTy9M4cHYUe+8WQH0dQiWAbO7OY90O900zkDQcqQ4A012byxsw4JPnrkF5/p00bnoqgWPnx/HRo1sAmPeP7XgbGisndYQxb3oEb23MYVuvbhdE06B2JgWlo1mDpgGi9hePaa75YFNUQ0gzBbm8DmQ9+r68buDvixPI5YF/O7bF3oSrhMuxFptvjU6ySHGFoLhzvKmLKxiGYbe1YiKZbgA9CQPj2/wLN/n9XklE4a1R3PCNwPBLz9QZ+Xwet9xyCwYHB3HUUUdh9erV2LJlC0499VT7NfF4HCeccAKeffZZ32Ol02n09fU5/hE3ouMtHvEOBxEXTKKLoFNRvUhcNMkOBBlV/P2F72m1wxcNOKsQlhtZZCy28zEWkB1k4mSmkOPNed0/8942fOOsdnzx1DYAQCjknmTJyDnerB2r9hIdb0rhzWNXXkQOSwgSlka8EW+dsKK4wl5Tow4xLpHWHYu1TiHBbkzRD4mOt0zOQK9QbU/M76bCa/c+EtYwUQhVrEVlU7kdNvKuZlAXinNCrWHOtKgjJOmDh7fgp+d14ountqFVSJFgOSCWr8sGEt2A4DnecnkD23rzRV3cpaCualq2w9cU0XkQDrtzvJ16UBPOOaoZXzi11Q4JB8z5RU/CcH0Pubzb8bZ0bZZjtgJnjrfgC90grw0qvFn5t65+YAAPv5bCr+7p961yLqPadHtzYw7PvOG+r/tTukuo6xnU8Z2/9uAb1/dga08Dd6oK/u+RQSTSZpiwJYDn9MIYLYofx+zjjkpojpuC2HAJhTTHeC5/poW1gWs54bzcvq+tyeKxZWk89Xoadz1fyMPmcrwNY9NKfk85RZW8bhaCGesuunI53mQBvSmqfk40igQZ37sH/PsHecMnmTGgGwb6kzrufiGBZWsrFzEjzpkaOQ3JaGNY2/NPPfVU4Ncef/zxw/mIwCxbtgxHHXUUUqkU2tracOedd2Lfffe1xTW5wMOUKVOwdu1a32NeddVV+OEPf1ixc24UMoLjJBY1nSGqhPbiYrBnUFwsqxxvzpw7VoVBFdYg19Wq4dSDmtHepOGIvWOOhL69CR3jfI4xEuScQ7sGdEcC+LGILGRZE+pc3rAnblFJeItHNewzPfhuNuB2vFm0lcHxtjWAe1He2dy4K48ORXsmwRAdByHNPdGeMy2CDTsL97UcatrVGrJdpzHFAlB0Y2TzhjPMdJz/dYtGzJAWWdSKhIAJ7YUD1yLPW0aKllOFHzYKQSeOLQEm59Z1E13XVk5QL3FARZB8LYZh4Gd39WH11jzOOaoZ7zu4OfDx/WjkHG+uqqbSmNHVGrK/x027Cl9E76CuzAWYyRmuRXF/0sCqrTnMmRZ1vEYV6jaWEBdrQVxspbx2u8emlryBYG2aWdc2r5uhgEFCjsX3i7zwTmGBu8ekMNZuN4/dnzRc99IDr6TsueqfFg3gux/pDPbBoxx5XpPNAeGYUxgVN04P2TOGm54adLjPRxJmatHZEkLPYOGiqIQ3a3M2EtaQyRme48Mb6wsn9/BrKXz0GNPF53K8DSPyXM7xVY7chBYPvJzC3S8kMbEjhJ98ohOhCkXu1DvFcrwFRXbvipv7EaHLz+ULfVmQ8X3XgI69fJ6X1xiGYYqJtzyTsPukX13Y5ShQWC7EsTCfd7r5SO0YlvB24oknBr54+QonHZk3bx5effVV9PT04I477sAFF1yAJ5980n5ePs8gDe873/kOLr74Yvv3vr4+zJgxo7wn3gCIk6VYRDPdA73u14mTaIfjzSfUFCi+e2R1im1NIZxyYJPyuJVMdio7MLb3UXiTHW9WG8k42srIP8crBKY1rkGD6XYMslOoFN5689B1w3eiI+/Qb9yZx/zd3asCXTeKhs0Sp1s0HNJcYQFdrSHs7BfCAtOG5HgrPKeqahpzVDV1LtaLOd4As13JVS7FHG9AbYQ3d6hp1U+hagT927xCg1WImzLWIkrsN3YbH0ZIgysvlIWqKrJMIl1I6n/7v5JlFN5UjrfGEF7lUNNI2BTkrYfFayze+70JHcms+/pnFY43AHh7kym8pbIGvn9TD/oSBv7zjHaHi26sESTHm4ogjred/Tp0w3A5olSON7nYSSZnBCqyAfhvukVCwNlHtuDX9/YPvVZHNu88bo8gqFj37lhg3XZnorNMzkBTTHNcH/EaxKMaDpodc+S5LaX/9aKrNWQLo0BBcJk5KYx12/N2QQ+gIJJ4jQ+ykJ4fmpPJJoHMMBxBsvBWTsfb3S+Y7rwdfTq29em+eWgbmUo53kTCriId/qGmsUghgqdYgQVV5FYyYzg2AjbszGP+7hUQ3oR7woC5FvdLH0Cqw7CWwD/4wQ+UC8ne3l68/PLLeOqpp3DGGWdg4cKFIz7BYsRiMcyZMwcAsHDhQixZsgT/8z//g29961sAgC1btmDatGn267dt2+ZywcnE43HE496J3ccKfQkdz76Vxr67RzFzkrupZKTBuDUeAuAe/bxDTYcvvJk5ONzvAUwHnOrzSuHeJUms3Z7Dx49rcbha5HMQMUMUx+6EHXALWdYuopjoWJX8vlTkRLsWoZApAA+kDKX7Uka0ks+eHMbqbXnk8maet4kdIc+QCXmhILqxLB5flsLNzyRwzD5xXHBSa9FzGcuIc95QSH3vO8ICU4ZD+N9zagTPD01kVEKaOOnK5g1sERxvuwUQ3lqUwpszOf+Ofh1rtuVw3aJB7DM9gk8cX/lrLjtFGjmcILDjrYSFn7goszZpxEX7505uxdK1WWzYmXS9FwgWiiK70PqTell2txvZ8ZaTHG+aZqaySGYMNMc0R95W8Rr2JgyEQ2rHmxzyAxT6madfT9sOp+sfG8AvPj2uXH/KqCNojjeZIK/N5s30H12tsvDmfF0uD1c+tlJycInieVer5oi0OHZ+HDMmFk52IGm4EuvHoxpyAUWU5esy2LQrjxP2awosDNYrYtEooPCdi9dHdh0eNqcywpuI5Xj7j9Pa8PKqLA7es3ASpuBreOYAlV1L67bnMbEjBDlyOWjVbBG5eIiqjykHYyzNoAOH420E95fXmgGQIyKEz/boA6aNKzhm5TYgo5rLyo/5ndtIkNs0hbf6YFjC2xVXXOH7/O23345Pf/rTNQnXNAwD6XQas2fPxtSpU/HII4/g4IMPBgBkMhk8+eST+O///u+qn9do5IbHB7FsbRZ3IIk//vs4V5GCjJTjra1J3SnmBIurWFxBzuMABM/xlvDZBXHsgEuOt9Vbc8jkDMybHsXjy1J4fHkKZx3egkP3KiRZXrklh3uWmAstw0jgK2e0K89BXghur0GOp3rDK9Q0I7kjR4rf7nqbJbwFcLyJoRV7To1g9TZzMH3w5RReeDeN/WfG8MVTW10bDbKzT3bE7OjL46anEwCAZ95I45PHt5SUL2esIYaahjXg0L1iuPO5JAzAzv0n9i+DacPhijly7xhiEQ0tcQ0zJrqHtYjwUDbnrGgayPHWFALgbE+REBzhxT0DOh5blsLm7jw2d+dxyoFNmNRZ2VlOho43B7FIaXmpOpo120llCW9iCFJ7c8gRhiITpLhCTuqG3t2cw8F7jjypf0PneHM43sz/J7SHsGFnHpOkSth+471FNmcoHW/W9ROFeFlgH2tYAoaG0haEQd1xO/rytrCy+I00tvTklYvTdzdLIlAJoYBiVdTPvLcNrXEN72zOQTeAE/eLm2IuhpzxKR3pnBQZE/Bz1m3P4X/+OQDAHFfOWFgeN2utkN19liDp5XgDgH1nOJW4chSjcAlvQ3P88e1hnHygc0wVE+OrkMWTtzZl0RR1979yFdwguIW3yvQdjdKvDwdxjj6SUFOv9gE45wx5YVz1CjXdbXxBeCvmeAsivJWjsIeMYRiuqKxcPrhrmFSOipRgO+ecc3DjjTfiO9/5Dh566KFKfAQA4Lvf/S5OP/10zJgxA/39/bjlllvwxBNP4MEHH4Smafja176GK6+8EnPnzsXcuXNx5ZVXoqWlBZ/4xCcqdk6NxLK1hZlOMmO4hLW0w8XkndvBgLmwCWvFQ00dwptPcnyx45J32EQnXY8wid60K48r7zALZVx0WpstjPzxoQFce9F4WxxcuaXwdy9d6z3bc4Wa9o7h0XEIr+IK2TILb+KCQD5ae7OZ7yudMz/f7/OsdqQBmDUpAsBMvvz0UBLml1ZmsK23GVMkm7+8Q79plzM89fZ/JRzPZ3IGhTcfxIW2FgImd4bxrbM7kEjr2H8o7KslVggjHkjpEPcBmmIajp3v7VKOSY43S3hrb9YclS29UG0SRMIaImHNrqg6kNYRHyw8v2tAr7zwJi0WGlt4Kz45LdVtEQpp6Go1q2J22443UXjTfO/bIMKbHP75TpmEt8aualr42drw+9QJrVj8RhrH7eu8zx2VrFOGS4wGzPtEtSi2FnWi2Kq618cSVruKhEtLkeDnpGhv1mwn6fY+HXOmAdt687jh8UHP96zc4uzcZHevHwPSPbz7hIgrasNyxvcnDcQizmPLC2NVeCwA/PXJwvk/+1Z61AtvaxShpoC7kJpIJKzZIaAAsG7HMBQsCS/Hmwor36/X+CC70N7ckMPsyYoIngDtyzAMbNyZx6TOMOJRzR1qWsYcbyKNXK28GOK9OJJQU7+sV2LfJY6rXqkkpo0L23NRP8ebbhhK15zcvwSZR7y9KYtFS1M4al7crsb99qYsbn0mgYVzYjj9EGffoxIa/cRHUj0qIrwBwPz58/HHP/6xUocHAGzduhXnnXceNm/ejM7OThxwwAF48MEHccoppwAALr30UiSTSVx00UXo7u7GEUccgYcffhjt7WoHE/EmkzWAJudjjoSrUf8FbC5viiXWbnJbk3pB4yyu4ON4E4U3qTN2hJ4IO+DPvV2oaPX7Bwcc71m3I4f/vX8A0yeEMWNCsMWyPFB7JQ4eSySlRU8hx1vhsXLkeBPDBEJSs3MsxJK6Z6gwUBjwmmKaXQ1XZktP3iW8uZIQ54GtvTqmjQtj5ZYsXlrpVObSWaCF0eueOKqaDi1w9prqbCihkOloG0yb7hWrSEcsgqJV1MS8b72DOvqGFoFB3G6AepPAEn9bm0zhbTBlIB5Vh9VXCndV08adoAepatoaLz1mo6tVw64BM8Q0mzdsgaCtSbPzi3kRJKeP7FZ4d7P3Zk4irWPllhz23i1adGdaneOt6OmMCuTiCoDZH8h9AuB0QWSy6pDSbN7D8TZ0/cR7dawXybGclKVuFMlFk0TmTovg5VVmu7dyYRbbqJTvk9JCTQuv9Qrrbm8uOOP9zh1Qh8fu6s/bDnnAmXZgNNKf1F2FZay8Z36ONwA445Bm/OEhc0594v5NrudLRf6u/eaMVkGtTM7crJfXIbKo8e7mLN7d4i+8mRul7nnFPUuS+OeLKcycFMZlH+lwiS7lzPEmErSidyNi9ROtcW1Ebq29p0fsDYBPHNfieE4s1pYVJqNe17O1SUPnUAi7n+MtlTGU7lm53aSKFDZduSWHn99l5qR8e1MOB86KQtM0+7F1O5J4zwJnqLsqdLqR54ejiYoJb6+88gpC8oq4zPzpT3/yfV7TNFxxxRVFQ2NJcdKKTSxXjjePUFPAvOFjkYIQplrIAsFzvIk7Ec2Sy6G9SYOmmeKMOKH2cz795YlB7BrQsWtAd+W58EJ2HJRSDa9RcTne7Bxv5XW8qRZmFm3CxKs/aWCCj85unW9zTMOUrsIulsjWHvesRxbeAHMHf9q4MN7Y4G4/ck444kQU3vyGjdYmU3gbSBmIhi2BpPg4I4a/rN1RWpgpoO6vrIVpa1zDDpiOGtE5UY2QNbldNfIEPcikUR4LgmBu1JhfnCnKmp2LJeB7VVAGhud4W7cjj3RWHfLx+wcH8NbGHA6eHcVFp/tvEKp2rxtHeHOHmnohfo/pnOFyIwPeOd6sjaI+4V4dSR6hRsCa15RS0RSAb0j2nlMKwps1Jyt276Sk61iK8CZWNfWKxGhvDmFzt+mML+am29mfd7mwHl2advw+2u+9tdvd85YgoaYAcPCeUZx9ZDO29+o4ft+R7zB2SeOtn/NySmcYb200T3RLTx57TXW+V3a6pnPAoqUp+/d41NwYzeZMR9u67Xn84u4+dLSE8P1zOx39wT9fNN+3bnser67JuqualinHm67L47r5+2BKx2PL0thjUhgHzBq5a7reSWcN24k+0uIS0bCGKz7Wia29edcGTlTheMvlDc/w4+aohnFtZuXdvoSZX1DeqFixLovFbxb6CGtNCpgF3ERU6wmLnf15XH1/v/37QMrAYNodgTaYds4pVHPBRo6IGE0MS3hbt26d8vFcLoeNGzfihhtuwGOPPYazzjprRCdH6geVcCDnePMT3vK6KaRZiwWvcI5WKY+TF85QU+dAGwpp6Gg2k6GLVU39xI81ws6luFvqV75e3lEYTJuVuOTzGUu4crwpq5qOfGHjcLxJh+tUJEz3IikIb/GohgkdIZeAuqXHfQxVW7J2sVROp1LCZMYiuo+QKtLeFMK2Xh3JjAFr6twRIDRMdDSIldsCC2+KQjCWE8oU/vIwDGe+D698U+VEXozmGiTUUEUwx1vpfYtY2XRbr24LN5ZTJuzTRHoG1VUaReQFeV4HVm3Nuaog7+jL2wvIV1YXT2jV2FVNzf+twgp+REKFiqeprKFcxIihpiHN/JfTzY2XvC7NE8Z4X50rk+PNCsEHgD2E0L6+ofExEaAisIhKUPXCmsO1xL1Dxb1yEqvY2a9jr6mF33XdwL/ecgpvQUT4ekas9G0RpLgCYN6jcqjbSFCNt15MFcbwLT3O6wSoE+Rb7aO9WcPUrjDe2ZyDAVOYeO6dNFJZINWrY9naDA6bYwqJhlSN4bFlqYo53uQ+zBJMHn41hftfNmc+//XxTsff3oiIm95Txo18XdXRElI6mt1VTf3v56aYhvFtIazemocBoHtQx6SOwrVIpHX8/sF+h3A3vi1ku323dkvCm89nPb487SoU1zOgu9Y9phml8LfR8Va/DEt4mzVrlu9kyDAMzJ49G7/+9a+HfWKkvlBNZoPmeAPMG15MeOs1sMqOt/6kjpa4s4rZhh05R3J0OdQUMF0MvYk8+pKGnXvLr8plU9S9w2o+7v03qZJb7+jTMXMShTeLQnGFwmPlCDUVBYaQNAKNE8IU/IS3XL6QfNTKHTGtK+wS3oI63nb1u3NEWdDx5o8oGPiJGKIwb73Dyz0rIu5oim0xuOPNeU6aVsg9pTonoEqhpmOquELxe2g4FfXGCWORmJ/IEt78koVnckDvoIFxbT7Cm+KarNvuFt5eWyOHp/snQhavteXUHe2uGwvrOwuS3F+seJrOGsq+Viyu0BI3HfH9SQPJjIFdA7rjexvrfbU1JkZLHKflkOzTDm7CXS8ksdcUZ4hw71CF0SAVgUVKc7wVhBUvSqksbC2YLVZtzbnmk6NdeFO5ewrCm3OTvdKUIopO7SpcR1nQAAqCe3uzhkTacNzr83aLOuZymZyBncL8b/32PA6bY/4sVsYFYG+SqD5rpMhCjDX2WaIbYAp/1aicXku2CHPvkTre/JBzvOmGgW1CKHw84lzvNsc0x4Zd94BTeNuwM++6nya2C8KbFGbv53h7Y717Ydo9qCMjNXW5P1U63hpkfjDaGdYS+Pzzz1cKb6FQCOPGjcPChQvxoQ99CE1NI4/1J/WBajIq53jzC/nK6YUJF+ATaiqIaMvXZfGN63uw2/gwfnBuB0IhDS+tzOCPDznzs6nCi8zjmy6U/pSBzhbNEX7g+tx4CKmsKjeM51uUE5XtfTpmTvJ+T6PjVVyh3I43P4dUV0DHmzhRtpO2Kk5ti2Iy5+d461OEGI71xVwxSgk1lekIsIDyyuETVHiTQ1/EsCqvRUJ1hDfn7428oxnE8abahClGlzCBthKEA2bFU6C4+LOtN++YhMuoXGiqCtivrXEmeuke0H0dDeK1jg0tDEaT8GYYBtbvyGPquLBrTLC+M7mSuhfxKJDMwFN4y+QKbpS2Jg26URDe5FxjY72vth1vAb97C1mgPvWgJpywXxzNcQ0hTbOrjfcmg4WaygQV3rJ5wz52u8+c1E+Uk/nHc0k880YaHzqiGYfNiSuLbokLX103zyFI4Z56QTV2WHNcR3GFKoRia5qG9x/ShEVLUzjn6Bbf14r5dy2hxupbpnSF7bYwvi2EGRM1vL6+MHGfNz2C1wVhI5NziqxrhY2Ybb3FB6BE2rCLtI0E+d6wNlkmd4ZsQej1DSVYQEcpYrRJJYU3se/K5Az87r4BLF9X+H7Ht5th6RbNMQ3j2wrnIzsfVe7R8UIOSFnI93K89Sd1rNvhPlbPoO6IzALcbUZlDGnk+eFoYljC2w033FDm0yD1jjp8Q9oF80ntkMsXr2gKmO4lMUTBALBxVx5rtuex55QI7l2SdL1H5XKQww07W0K+jjevBNqpjPdAqurEdvYXOsllazPoGdRx1Lz4mKlo6Xa8mf+XXXjzCTUdNwzhzUrQffDsqKOaLwD0Jd0hxNbizFpMAAXHW5/C8TacUvVjCb+cfSIqcT9QqKni/m6KupM4eyE7dMX72WtxJe+QVwJ5MdrQOd4CLLwr4XhTjQ0ThZD0bb15zJvunZNAFf0pL+KSGQNvb3J2EruKCG/WtY6Eh0JlcsaoCjX954sp3LMkiT0mhXHZOR2OMVYMNQ2C6Uw3K8ip7oF0tiDGtMZDdgLtVMZw5dspJaSx0TAMw9GuSkGe41hVny06WkIYSOXRl9BhGAYSHovNcEgtIAcVRAeEBWmbj7gWJDeoyLZeHfe8kMRhc+KOOcK41hC6B830B1Y44n/f2YfVW/P47MmtOGLv0VFVSeWWzqocb1XKgfjhI1tw1uHNrogGmYntIURC5ua+JdTc+2IK9y5JYlJHyE5L0hLXcNDsmFN42y2KdzcXfs/mDewQRJF12/P2/D+I8JbXzQ2QJmE4sN4/kNJx89MJTOoI4azDm33FOS8Rpb25ILxt7dGxqz+P8T7Fw0Y7W2vgeFu0NIU3JTfj+LawQ3izQk0tugd09CZ0/PHBAbQ3a2hTbAaP8wmf9nK8vbmx0M9M7QrZ7bt70EBO6iRdbUax5mjkiIjRxOjZjiE1pViOt1ix4gq64QjB88rxBqgXT1ayUdXCQhlqKhzfEl8GFIKIhZcopxveoolqgm+5nZavy+C39w3gz08k8NzbRUrWNBBejrdsmUNNncm3nddfFEm6fYS3lMLxduTecRw2J4ZD94ri8LmF5LVbe9Q7VG1Nmr1zbu1ijcTxZhgG/vzEIH5xV59DxG10RAej3zxb1ccECTVVib3TxoUD70y3NmkOEUCcqNXW8aYOSWlEsgFEpeHk1xQdsuJ9bhdXUGya7CYIYnLYiIxKRNjWqyOXN7Bpl7mwW7Eu63qdX7U0oHCto+FC2xxNjrd7hjbR1m7Pu0K0ShXeLDFAVQQKcG7AtDRpdn+vG8CGHbLwZrjyOY0V8nohf2qxSp8yxa6VNefL5MxFoirUtKtVw5dOa8P83SOu4wXdvOpPifdweRxvFluGxI4NO802M2tyGJOHQh2tueL2Ph2rhnI//d+jgyV/Rq1QO96GIhZqILwB7jQiXq+Z1Gn2x9t789B1A0uH3MOis7glHsKBQkGC9mYNU8eFHHODnkHdkadtIFWoWimGHn7wsGZVcAQAICG0v4deSeLr1/Xg8WUp3Pj4IF54J4P7Xko5quGq8MrxJs+vg+QCHc1Y0SYhDZjUWTm5QnT3yqIbAEwf7xT9mmOaY96wa0DHY0tTeHdLDq+szmLxG878j7EIcPje3sUwvNy/YqG2o/cpCPg9g7orEsftklQ53jxPgVQRCm8kECorrCPUNGJ2Rl7jZC7vnDg1+YQEqXLFWQPReEVIjyrUdKIQb3/fi0nk8oZjci9P6vwrqKqfU4U+9CbMBdX//LMQDrt83RgS3rLuBVQubzhCFUqd0KvwC01sa9JsYaTXx3XkCDUdakPRiIYvnNqGf39fO2ZOdIcwAKY4Zrki4tHCzldPQkdKcFaIBE3YvWZbHk+/nsZbm3KuwbuRyQsLXb8cbyqRS5UsV0aVp6uUxMQhTXMs1MSJmteGQyJtKBPclhO5D1LlE2sUgkwah1PV1Gsn2gphVlVrnCZMxLcXcUKoNot29ev45d39uPyWXtz+r6QybEgOX5Gx8rVEwoXxbLRef1lALj3U1P06cYNH3IBpjReEN8BdzVE3Cm0tmzewawxtgIg5gEqtatrWpNni2jH7uBeZ4gZJX0I9TsajGg6cFcPFH+zA1Z8fh69/oFDZNxNw8+rllYX51gSfEHBZlAuaduCFdwvHP2CPmKMtJTOG6x4cLZshqvxP1pw95cjxVqUTKgErz1tOB3b0665QPsDc0B/fFsLR+8SgATjlwCZomubIZahKK2KF+omOtyP3juGq8zpxyJ5RHDQ7isPmFNq7uM64/V9JDKYN3PR0Aq8KItlmxeeIeDne5Pn1y6sad21hGIbteJvYEapo1JDK3XvYnBhOO7gJJy2I44T9na7Vpqjb8fa24Jy0hvzOFg2//HQXrvpUF6aPj2BSh7o/8tqYf2NoXhAJAQuFNtYzoLuKvslrWNX6tJGLb40mAnWhe+65JzRNw6OPPorZs2djzz33DHRwTdOwcuXKEZ0gqQ9U4RfWY7FIYbHc2qS5Ys8BqzRz4XG/TlTleEsNjS+q8ASV4+2QvWL454tJbO/TsXpbHnc+n7RdbXtMCuObH+rAP55L4LFlxcWNVMYAFDlMVTH0vQkdTyxvrDLzQfEqv53OGmUPNd1zSsSeyOwrJSnXNHM3akef7ut4cwhvioWbs1pWYaKUyRWS6DfFNLTGNazdbuYTFCtmWgnPgeCONzFMdaBMiXpHA0alQ00VI92MiaWtIDpbzPLxgFPs9csj1JvQHZsA5cQwDJfDJ4grbLQSRMQsVSwATLFdDBm3aG+xcry529fkzpAdEie7YWVU/b8B4N0t5sV78d2M0gEe1PEWCWlD7XH0hJrKY6e4sZfXDVv4KtXxJtLWFLLFS9HxJgvlqhw66ZyBUAj40a292NKj4/OntOLwuaMjZHAkiPdYqTnewiEN3/hgB97ZnHUsEi3EDZLehO4pvNmfH3YKpEFyvCUzBh4fmn+FQ8BR87xdJu1SO/jQEc245uGBovO1VwSxY7+ZUWzvK7SfZNpARmrba7fnHcUl6hWVQJi1c/QWHqum4y0oZhiiOR9cu91d+AIorCsufE8bPn6cYRdOE+ejKkFs7fYcDpods/v5cMjM1xUOafjSaaYwfPuzCfv1lgCi+/TFxYpHeOV4k+eRq7bkkMkZZZlT1xvdg4X5zZQKhpkCwPQJzuO3NWn4t2Nb7D4rLQnPoZCGzpZCWPy23rwrVygA7DY+7Oj3ZkwMK/O7qowtT7+estNZ7DU1ggnthTnHrgFdma5CRFlcYezsIdU1gaY1uq5DF2KBdN3M0VDsn/geMrrxCzUVO32vyqZ53TnZ9lsgqYQ3q1MZVAyozQrhrSlqOpesifvDr6bsEIq2phDiUS1wdSYvx1tOITL1Jgw8+IozD51fnrFGwitPQTon53gb+WedfEATDpodxb4zIvjIUe4y9pYNPJE2PCfsKsebiDjYi7kmxHtB3vlas63QKCYKu1tBhTcx/CboDn8jIM75Sy2uECTUNBzScOAsU6Btjmk4bE5M6crwQwwtEHcX/ULsKxlumssXwsLExxqVIH/bcHfFuxSuN78cb7GIZt/f2/vyvqGJogNGdaxdAzrWD4WuiWNZUcebmONtlIWayqKiNXa8ujqDL1/bbbtGSsvx5kR0qIqf1xoPOfp71aVLZw1s6cnbroJXPUK6NuzI4Tf39mPR0pTy+dHAYErH/S8l8fw7acc4VWpVU8B0gh6/X5My5FsUl/sSujLKQJ6TiXOFIKGmT65I2cc9cu+Yb/6rcW0hWObqWMTM7xpEwFgrFGCZ2hVy3LOJjNvlvHLL6AgHVC3UrbmTKAzUo/A2RdgkXbFO/X2LG/RifyFGYGxSOd6G8rxZAuvEjpBrM0Zcs1h9l1+FU6+xbNHSFH59Tx/ekfJ92o43WZDTgdVbGzOBcLXyuwHAnKkR/MfpbTjr8GZ84vgWfPecDodgZppLzJ+taK1QqBBuurlbVzpG5RDV3SeoO1V5jfnc22n8+YmCmHv43jGENM2e627clXeN9SyuMHoINLSuWbPG93fS+AQW3ppCANw9UC5vOIQqv3DDVsWkzfp81WTNKw/ErMkRHD43hn+95bRjW7tNsYATCC/hTdWxbe/NuyYwY0V48wzJzRrOHG9lmLhFIxr+4/R2z+flAguTO50D4Ovrs45CHSrxdmK7OTE3DNg7T4AUdhHVHJP7NULujkkdIXt3KxNw7p10lLYP9p5GQNwd9g01VQikQaqaAsBFp7WhL2mgo0Xz/QwvRIFPbOt+u9d+oc6lkMsbWL4ui+kTwnbZelX4ciNPrIKESQzH8QaYIruVt8miwyfHWySkYXJnGFt7dGRyZiGNcW1em06F8542Loz1CoeVtRDbezezyl4275+fEiiMP+b5Ga7PqmdcwtvQEP3c2xnHojRoqKlqM8cUTs2DyY63XN7/uKms4XD5e41t97+cwor1Wby5MYuj5sWGlWOw1tz7YhKLlrqd/+UO7XI63rxDTUXEuWWQdA1PrTD/Dg3AaQe7N+REWptCOPfoFqxYn8VHj26BpmkuYXzauBDOPrIFb23M4tGh78ha8LY1aWiJh6RQU93VZlduGR0DuarvyAzdi8oK8HWEFWoKACvWewhvHqaAuCPU1N3nrtuRQ89gIZpDnksCzs03yxzgJ7yp3Ns9gzpueSaheLU5PuTyhlLceWdzzre4z2jFKbxVtl/VNLPwxkGzvZ/vajUd1OIm3QF7RG2HrYrdJOFtxkT1BEU2LYhrk5MPjOO4+abbelxryHNDTs6ZqTKGqNoPqT6jb5ZAqoIubQOr3EyWGBYX+nxV2CdgDhxOx1tpoabJjAHdMFzCWzHXyhTFIGktlIPu3HnneCv8bO2uq3YNexOjJwRoJHiVxE7nDGc+wCpUeO0UqlXuGtCRSBdGnO19efzuvn5bFAuHgJmT3O0kEtbs9iy2u+COt8IxvdyAMuJ3GCS0plEIWtVUriAaizj7Hz+sHcrhiG6Ad0EYr6qmQPkcbw+9ksL/PjCAq+7oU1aas2hkx5uqSlckBHz4CHOB3RLXsPduw1uAyCFp4VBhganK8RYJm+GmFn4V78S2XSyP1IyJYYwb6k+KhZpaTrpouCBQjRbHm5yDyeof5TEkaIheMcebOC63xjXfHLOAmUZDvL+85gCWOJrX3SJ7f1LHi+9mPMfFekElBAOlVzUtRmegUFP599JCTa17ZvqEcKAcnicf2ISvntluL5Blx1tTzFyQq4SNCe3m3yMKUamMW1RZuSU3Kop1+FU1tVK8xCPlF2TLgdivelUT9xLeRBOAKGpYFc97Bs0iOBaTFUn+xWNbc83BlHdnrFonrN/hLdDm8oZjDikKUe9sGh2OylLZJYwRlUrXUQofO7ZlKMKmxX5Mzv0ms9t45/i1+wT13yGONbm8Ya9Ndp8QxrlDmwIA0OWxuQfQ8TaaKGvigb6+Pjz//PNobm7GMcccE7hiHKk/5Am8LByI+YXEyYqXmymnG47BptRQ01TGQCpj2Dmz9t09ggtOarUXKV6oKuFYpZ6DJon1mjiLHdvE9hD6k+oJrGGYyYS9HBGNgl8RClG48poAlRPR8fbLu/sRCQFfOaMd+86I4rGlKXvnZ6+pEZx7TAumj1c3hpa4hsG0szCHy/EmtEExf4M4QQsqoom7VpVOzF9P+BXLEJHdZZ0toaqNM6oS8cDQYiSk3k3sKZPwdtcL5g5of9LAuh1mziCVi1I12WoUVJPGaETDKQc1YXJnGNMnhIcdBrVgZhQT2kO2IJTXYbersGKhGQ45N3W29eZdi/PehI6QVprwNn18BOPactjWawoTyYyhdJgYRsH9EA4D2tDP9S68GYbpHPEKNRVdTV//QDvmTQ82SKuuu1fuxdYmDclMMeHNCCS8ieNaf0rHNJjXN5c38Iu7+7FpVx4HzY76urNrjSoRPeC/OTocgglv3o63YqkXsoIjaLhzDHleaoW+quaZlvNYDFtOZnRomvO1vQkDO/p0u/JmvaIaO6x5iyUmDad4TTVoiYccEQbq16jPXRVeHA4BsydH7KqhbwvilmozX4zSsfoEVZ45C9VYtnGX9+ZNLu9ch+w+IYJUNoueQQMrt+SQyxt1KYiOBNHxXWydVw0O2TOGQ/Z0btBNHx/B3GkRvCMUVuhs0dCbMK+V7HizxHqZTM50nIZDGroHdDv9wZSusGN+2+WTVkXuT5XFFRp4Y3Y0MazW/Kc//Qnvfe970d3dbT/22muvYd68eTjttNNwwgkn4IQTTkAymfQ5Cqln5Am87K7ICWXnxcmSV/6uXN4pJPiFmqpCCpJZw5HfrbUphPHt4aKL7kmKnZIgoaai68Yzx5vQiU1Q5BJpEtZhYyHcVPyexGiLdNZAv7D755cTq1zIOZtyOnDfS0kkMwaeGaoWGg0D/3F6G/ac4r24syZrybRhu0CdjjfvwVR2vD22LIXHlqVcblKRsRtqWvjZL7osGtEcfUzQMNNy4NVuNU3zfK63Ave99f2oQ03L/nF1g0rYjIZNgWDhnFjgqoQqQiENx++r3r1WbRJFwppjU+exZWmHW2Ldjhy+eWMPvv2XHuwUqmKqcsmJTJ8Qdmwa7BpQX1Bn9UnNHq90A3XrrjEMA7+8ux9f/VM3Hn7NmRPNWlRafWskDOw7IzqiqqZtzer3tkrhgRbiwlwW3kTHtIj4+IBQVOqxZSnbJfPq6mzdXpO8bng6K8vveCt8v9t6dWVuPb8cb3IhGRlRmFA5IIMgz0stUUZV+diqUChXNVUteFdtq//BXFUR2ZqDWBuC9RxKPXOSv0jvde6qXIbj2kKOeZ0orExUVKZsVeV48xHeVCKnl/MUMIsmiRu+zbGCuzudM9/7xPIUvn5dN+57sTHW3WK/5FV5vB44dn5h3jB/9whOO7gZmgYcvU/MNc5omuZwYotY/dcO0eknrS26JAFyztSI3U8HK65Qn+PQWGNYrfmvf/0rBgYGMG7cOPuxiy++GNu3b8eFF16I97///Vi8eDH+8Ic/lO1ESXXJSzeoNQlNZw0891Yaa4WJhLhj5FWwwAw1Lfzu53hTTZpSGadryquIg4zKFm4tklXnetS8GP7r45340mlt9mOeOd6ECdYExWA8Z1pBeSuWr6cRECe+YqXJTLawKGmNa4EXUyNBtcBdsy2HZ95IIzW0eXnUvLidQN0Lq50ZMCcC97+UxIvvFnIGxqMa2prduWEAOEqHv7o6i5ufTuDmpxN4ZZV3aICjuMIYcryJodjF2odY2TRIRdNy4dfniOck7gV4hb2MhIxvqGnjthmVA9RvA6dUxAn0YUJVRlXoczhk9u9WHrgNO/P42Z2FMOBrHx6AYZgL1/tfTvkey8IKXxUdtF6iiCiwRkLOe6ZeXW/b+3S8tSmHvO7O1SoLb6UKJ0rHm0ff3tqkDjUV5wrDdbwBZuGAf77oFBb7FJXe64GeQd12G1vFZyyKhTqXSku8IBBvUSSxB9yboaFQYWwtNh6K16hYKLEXchoMq121NWuukPOJnWrhTSWqbPJxM9ULqk2bTM5ALl+IbvFKJVMP7KFIFyLide6qdcCE9pDDZeWVQsQ+tiPUdEh4K7G4gpxj1PH6nFTgIgbMnVZQDN/ZnMXtzyYwkDJw1wtJx2bPaMVaMzXHiqcGqCWHz43hwFlRdLZo+OBhzTj5wCb87nPjcOF72pSv9yoGZgmrogNZXlfK65pD9iqIe/KYqpoLMsdbfTAs4e3tt9/GQQcdZP++fft2PPHEE/jc5z6H//u//8O9996Lww47DH/729/KdZ6kyrhDTc3/7385iT8tGsR/39lvPyfm5fBaCOV154TEzxZ9/L5xVz6lVMYZ7hc0lKC1KeR6rbVIVlnMm2Iapo4LO97jFWqakUJNZcT8NNt683hnc7ahF8bijpyYSDmdM9CfNBuUlwuh3KiEt3hUw3NvFRKhnnxAU9HjNAu7pHe/kMSdzyex+M2C8NYUMxP1j1dY4VU7owB8K+ClHI63xm0rMo5Q0yJNRHSXBaloWi7EpMpyyKt4TuPbQvYCc8X6LH77z34891ba0zXjxYadOTz3VtolsFltZKyFEqh2cIdbTEFFR0sIX/9AO04+MO6olKwsrhDW0BTVcPEH2+37fGe/jreGQpK29RautZy/UBT49t29MEbsNj6McEhzLPi8EinnpLFUFPTqVXhTFUaySGWdwlupIcPFcryJtMY1peNNvL/TWcPhsEpn3cnns3nD4Uq2NpceeS3lEuq8hKZas9ORRymEo4WcuSoX/0jQhKp8XqKE6jpa87RilcHFedpwCwDI7ifLcRfSNJfbxA41jQlFd9KGMhdlvV5/kexQ+w5pZnEKwNzsKFb9vV7Yo6jjzSPHm6J/n9AecswhxbFHNddzVjU176kB3xxvUl+SM3zbSFbK8dYU1TBrcuHv3dKjO/qrx5d5J/wfDRhGwYlbD2GmfkTCGr78/nb8/IIu22zhN37N312dh9bqv0TRVF5Xys6/Q/aM2n1db0LHf9/Zh5/c3ov+pK7shxp5/TmaGFaOt507d2LSpEn2708//TQA4Oyzz7YfO/bYY3HdddeN8PRIrfAKNb3/Jbdo4Mjx5hNq6qhq6jOna20K4apPdSGbN/DVP/UAGAo1FRaupYQrTuoIOUrAt9vFFdyvtXa/moWO09vxZv4fCbsFgHAImDW58Efe8S/T/j17Shjf+GBHXZZkHyniIqRDqCiXSBu2cOuVd6fcqIS3/qSBwZR5TtPHhzFtfPGFhehykqvjAoUBdr8ZUWzrLUx2YhEztCESdoshKsHXQmxrYzbUtEgTEUWvjioLb+8/tAnL1mbxyeNbPc+pvVnDrMlRvLTSbPTL1mWxbF0WnS0arvi3Toc7TkVvQsctTyfw4kqzvR0pVWmzJmiq9jEWc7yVk31nRLHvDOfAoCyuMPTY9AkRnHxAk12Nrn9IfBE1GjH/Xzhk7orHo8A+06PY2pPH6xvMCzl9qD8K4ngTF4KRMJDXRcebgcLSuX4IIrxZ//v1kSpU42lTVHP1v5GwuUhWC2/iZpFb6EllDMe8Q64iZy2039jgdjRv6XHnAKwHRGF3QnsYx+wTw8adefQM6g6BuFx0tGjYNeD9vGr+GI9oSKTVIZwi5XC8ySKM6MAb1xpyVDe3BHfRSZUYxY43K9S04DA0/4nfaz073lQFskQ8c7wpbsupXWGl4NPerCn7mua4Bg1mZIRd1dQ3x5uZN27d9jyOnR/H1p48/Oqv5fJwVFluijo3aOTCDE+9nsaZhzUPO+S61gymCznB6znMVCRoruEzFzbh9fVZpLIGZk4M23kErbFP7GPkzQ+5TU5oL5hE8jrw7lBI9M1PJ5QbT6pwclJ9htWiJ0yYgM2bN9u/P/bYYwiHwzj66KPtxwzDQDbbmNVWxgLy7q7fbqNo1fbaacwJjrdwyAwh8CMa0WzhAhhyvAkDWSm5JuQ8b1YVQlWON2tQdSbM9crxZj4eDWuukLfxbSFMaHNPBFZvzePGxwfrNufLSBAnxqIQIe6qV8vx5rVws5q1V3UhmWLOSmtic9Q85yLFEoTUO/jex3MKb43XRrwQ1yp+4XiAM5FxNUNNAeDDR7TgB+d2uqotipVN25pC+PwpbTj/xBbHpLE3Yfi6HS1ufnrQFt0AYOla5zialMLyRMaC4028f6pRITkU0lwuzLDQfYh9muXsFRFFgHDInDz/27GtOGh2zFGFde7QbrksvCUzBl5elXFUyRuNjrdBH8dnaqhquVUwpKlEjUq1idYU1VzjgFWMRR1qKjnepPsrIc0DZNdWf9J0pahyNW3pqc8bUxybx7eF0BIP4Xsf7cTPL+hyJQYvB8UcyipRwxJGim1EOXJgDTvHm/TZQvsRN/NCWuE+leeKqvPc1qvXvdvEmp9HwoX7phaFsYZLsQ0trygb1Riy2/iwcvNWFdkCmI5Iqx2oiit89yMdOO/EQjXMvqSOn9/Vj1sXJ/CP5xNY7xNmCpjrJ1lYbm8u9Ptyn5PMGPjXm6PX9ebI71bnjrdSaYmHcPnHOnDlpzoxXViHJG3Hmyi8yS7bEA6cFUUsYuanBtRr7iXvZpQRAlk/dZdUjWG16AMOOAB33303VqxYgZUrV+Lmm2/G0Ucfjba2QkzzmjVrMG3atLKdKKkuxaqaiogC1nH7xu2O4Kh5hbAFM8db6bvZ1rFS2eHleAPclU3bfHK8WRO/pgCON2uCFYu4nTfj20Ou0ASLJe9m8MI7bveUTF43cMszg7jpqcFRUeHSW3gT3YbVG0TPXNiEkKYWcnafWB7hzWovsyaHHTndrOulaut+Lp3UGBXedGFCECqycygKHdUMNfWjTWgnbU1mHsPj9m3CVed14mtntttt8LFlac/QdcC8519f71y5yU4hO9+mon3IGyaNhLVwbWsK2e6koPfxSJFzOEYEJU7s01SV7ORQU5HZUyL4wimt+NgxLXaYnxxq+ufHB/GHBwfw+wcLViFRYI2GMSqEt2KOt2wOdtXyUh3hqtfHo5rLWW/l5JOdO5GQ83tPKYQ32eEmh44PpAys3ppT5kzb0l2fF2WXxyKvUpWiixUXUXVftghUJNS0LDnepLFZnCOK7WNCe8jOqyjneMsJ/bKVMkU3gK299Sm+Wlj9RjRc+B6yeee8u55DTQFnJE3QJqyaj033EN7G+4Rft0rCm9g/TBsXdoTCrtxSGOMfX5bGhh3+qnI25y4eEtI0+xxVff5bm0av8cVZWKG+29xw0DTz+onrTMvRaAlvKnelpplhrb/93DgcNNucL3iZXbYr+hs63uqDYa1aLr30UnR3d+OAAw7A3nvvjZ6eHnzta1+zn0+n03jiiSdw6KGHlus8SZWRO/Jc3js+PC7sErbEQ/jRxztx2TkdOHLvggsoly9Yh0uplmV1TMPN8QY4d7KBwkCrnKwP/S1iZ+a1UBZ3COXqihPbzcppqp14AHh7U/E4wuXrsli0NI3Hl6fx6uriQl2tEXMKiLuPO2rgeAOAsw5vwf9+YRy+cIo7yWm5HW+apmH/PQoX21qAq66/X5i1HGraiM5IFbqPOCFjTWDDIWBGlYSXYoghaOLP4ZCG/WZGcfhcc5KUSBt46nVv19va7XlPod8ilTWg6wYSCpFHtcvZKOSE8ePrH2jHhe9pxUeOavF/U5mQC35EPBxvKuFNFHBUhUMOmxvHyQc22c+1xDV7HOoe0PHmRnNG/u7mnF0R2e14k0NN6w8/4U12mJVDeGuKuR1v1gaZ/PqOlpC0CDJcm43yfSn/Pf0p3VH98NC9YrZzb+socLx5VecuJ8UqD6s2GC3xK6f7t+1UOUJNfaqqiu5lMX9rLFLIS5rMGI7cv6LYsnlXfYqvFjk7IkWznX+jKdQUMO85C7lYiBdyBEI8am6cR8PuCpRejjegMFdMDLl3rbEgHDKPKYYxy5uLG4qEIufkHG9D18FPyBbzjI42xGJ0jeZ4ExH7qadeT+G+F5N2+L8ql6CFON57CW9vbnSvMRs5ImI0MawcbyeddBLuueceXH/99QCAc889Fx/60Ifs5xcvXoyZM2c6cr6R0UVOMcHxCjeVQza7Ws3EpG9tLOy45PTCpEqVzNQLq1NJZgxHqE2pOd6U563KJzL0t4RC5uInnXOHmFhYnVg0bL6vOabZkxQrNr+9OYR01j0AFksUDJgVxyx6E/W5mBIRJ83ihEXcVS9WRbTcRMIaJne5P3P3CcG6vqDCGwCcdnAzFr+RRiYHvP9QMzm7yvFmwHR47RrQMaE9ZLsLDMNQlgT3C01tFERNv9hO9ZF7xxANmwvFcicAHy5tUqipzOkHN+O5tzIwYCZff8+CJmXoiyo/lExfwsD3b+5VTqzrPZypGHc+n8DqrTl88vhWTOlyXtusENo/sSOsrC5XKeTNInHiK17vgaTuEmzEobSYqAyYIv64thC29OjY3qfbm2C6YYo9bU2aozpZZJQ43vyq/CUzzoVl2RxvilBToBCea31Xna1Od0E6684pVkx4G0gaWLm5cP/OnRbBlK4w1m7PY0efjmzOKHtOwpFiudFjEXfBmEowvciGl0qYFse/bA4Ix1wvAVCmUFPp9MQ2IQoAYvoSTTPnfoNpw1VcYeaksJ0qYFOdF1gQN8adoaaFDqWeQ00B4KNHt2DdjjwiYTMtxKure4u+R56j7TY+bAtj41pD6E8WrptcZVLEcrwZhjM1Tmtcg6ZpjjEkmXF20tt6zN/jUWcuN4tcHq7iCtb5ebGtNw/DMCrmXq0kjRxqKiKuH15fn3NEO3gVZ5MpxYWqWteT6jPsJd0ZZ5yBM844Q/nce97zHrzyyivDPilSe1SWVC+xSBWyCThzKoiONzmPhh/WjkBeNxecFqXleFO/1muyLn52Omd4O94sIXHo7+9oEYU38zPFRJmzJ4exepv5JfiF7haOX/h5NHSY4k5vm0f4VXsVJvcyco6/tibNVTXXi9Yi7Ux0tI1vC+HiD3Zgw86c7fZU5XhLZ4Hf3T+A5euy2HdGBJ99bxs6WkLI5d2L5kzOKDnR+GhEDDUtJk5EwhqO2Lv8ib9Hwp5TI3ZyZTn/GwBMGx/GgbOjeHV1Fj2DBl5ZncFhc9x/g7hZcdDQ62VeW5PxFOJH847mhh05u3jP7x8cwA//rdPxfG4YjulyYYaWii6zwnNinzaQMtCX8Fa+gghvgNmXbOnRXf1Bf8JAW5PC8RYu/F6v4SSyUNXWpNljQyrjdLyVmhRc9fp4xC2kiDkhxe+2syXkcO6bwpv/+cu/9yV0O49dV6uGCe0hTBtnCm8GzIXw9IAbPtXAMAyHu6IaC/Tpirxx7zu4CQ+9kkJLXHOkJ7EQN3bTOcPTzVaW4goux1vh99lTInahlH2mO69jc3xIeJOKKzgdb3V6Yw6RFzY2rLxnuTykSJP6FkE6WkL44b912pECsyaHsWZbHmcd3uz5Hnl+NX184ZqNawthnZA/bYKPCCR+N4Npwy62YuV/FQ0Hct9hObx2G1dYI4hkdQPpjLt/7Gpzt/POFg29CQPpLNCXNALPdesJh+OtDMUVEm+8gW233ooJZ56J9oULR3y8cuHXTwXdVBarKhdjNM8PG4n6mQWQukJl6R/w2LFWFSkAnIuTfN5ZjCAo4oR6p7ALUkqOt662EKZ0hbC1R8dJ+xcWu+GQ5qg4BziFt+aYOYDJu1OAKRRY77MmKZ0t5mcABeFt2rgQNg/ldzlwVgyrt5nVTYMIb+KO+2joMB2hph4hpdUMNbWIRzV0tWroGTS/zxkTw4EXGV42bvHYIntNjTiEF9W9kUjreGOokuHr63P4r9t68a0PdygFtkzWAJoCneqoRjRqFcvxVo9MGxfG987tQDprYI5CeAOA9yxosoW0x5alXcJbNmfYVanGt4Uwd1pEKbz5uV9Hs+NN7N/lKoB53bCdY6WMH+XCL8dbNKLZToWBlF5EeAt27l67/H1JHdMQVuR4Gw2hpoXv5b8+0YnxbSFc9rce9AwarpxqI3W8xSKma90r1FSmsyUkOd7cORRlx5vs4MvphbnEnKlRaJrmcG1u6dExfUKwv6caDKQK4mK1nMPtzSF0NGvoSxa+u8P2iuH4feNojWtKYUe8hn553sQN0mLjthcxH8fb+LYQvnduB/oSBubJwpsQmSEKtruND9vOys117nizKy+HnZvjvYIIMtzvtdpY87tLP9SBrb15peBrIRsBxNfKoZy+jjdhA6Z3ULfbgeUkFccQr0IhkzpNoV7uwmXHWzzm7Xjbe7colrxrpqbZ1puvmzy4pVBux9u7X/kKcj096PvXv3DAQw+N+Hjlwm+DyS+sWaSU8O/RPD9sJAIJb0899dSwP+D4448f9ntJ7VCFq4gDsIin403oN7L5ggXfL8eVjLgjsLMvbx+3lPC7kKbh4g92YPXWHPaf6cz7EItqyAkTaHGSVyjsAOiG4RAExFxKkaFzscQ2DbAn3B85qgW/f2AAE9pDeO8BTbh7SRKGESzUVNw5rXaH+dqaDJ5akcapBzVh3vRguTKcxRXUg0Y1iyuITOkMo2fQbIB+4S6yNb9YSHOxBaLq3uhPOq9lz6CBF1dmcPBs925/sUpujYJRQo63emXmRP9OaZ/pEew2PoxNu/J4d3MOa7fnHI6I5euydr8yf/cIxiuqIquYt1sEiYxZTTHnrfnUPX7OTofQVIPtQrlNhqVL09ZkphToTxq+wqj8Pi+8FhtW3yGODeGQhnBIcLzVaRsQXR5dLSHEIlZyadOdIYZYeeVG9SLuytNktiVXVVOPVAcdLuGt9FBTEWvzRcxptqXOhBevwgqVZvqEMPo2FAa25rjmysMrIo6hqoIyFpVxvDmfnz4+gunj3e9rFiIzRIG5KaphalcYG3flsaUnj7xuBBLfqx0iqBtGobiCJFj3OiJNRofwZhGNaEXTisjXQ6zmKwtbfgK1+N2IaSCsOWSQDaNJHSE0xTRX35LNOUPxmz2Et3AI2HNKpCC89eiYOwprHFrCWzwycrE3292NXE8PACC3cyfyAwMIt7nzPtcCv35qfMA+WQ41ndgRckRaiYwGA8dYINAU9sQTTxz2IJCv17gH4otq8t7jIbx5iWBiqGk6WwjUKSXPidjppofmaq1NWsntcXxbCOPb3MJGPOIc5JqECb/js7NAs/B2UQizBtTTDm5GX8LA/N0j9k7ZgbNi+PkFXWiJa4iEzYVGMuMdvioiii7V7jBvfjqBnf06+pM6vntOZ/E3wJnjzStfTC0cbwAwuSuMt4YKWszwmIit+8lP0P3YY9jjBz9A1wknACg+0fQqUW+hWkCqHDH9SXWbGCuVTR2Ot1EqvBVD0zS8Z0Ecf30yAQB44e0MZk4MY9XWHDbuyuPvixP2a/edEcU4RRiJzFfPbMN+M6L473/0AzD7bXmTYLTgt7ngCK0M6BorJ/J9LgtxbU0advabLiivcVL1Pi+8Eiv3J81j+1U1rVfx1XKIhbRCv2iJXSmpmEGpoaamu60wZlrHlUXaDo+wq6aoeY0tB3w6565q6g419f6iZ002F+iigGpdu3pBdJgGXeSVg+kTwrbjGyi+sI4JY6h1fTd35zGxPeSYS5bD8SaLI0HTPIifJ6ZEiUbMfI0bd+WR181zLLaZ98hrKfzzxSQ+sLAZJx9YHbu7uEyLhJ1zdLE/G23C23AQN2a7hPu3rUnz7ZfEKJztfXnX40FSJEzqCKMp6hbecnl3VVPAvUHT1WpG91hsq/NKuioMw7CFt3FlCIEffPVVx+/pzZvRMnfuiI5ZLrz6qXDIGaZeyjGO2SeOu19IKl87GlIWjQUCXdkf/OAHozJBIxk+qnAVr518L9ePONCIk+rhVDUVKefgLwsjMSnHm0UyraNZiEMQRTFLeNxtfBhf+0C76zPE8JZ4FEhmAuZ4q6HjzRKHSinqkBHG+Ja4M7zTwssJV2n2nxHF06+nEYsA++zuVsPSGzdix513AgBWfeMbOOTFFwGMfLdNdW/0KyofDqZ0ZRGPsSK8OXK8NfBYs6/Q9roHddz2bBKPvJaSXhPBoXvFPB3GIu1N5sRUdFLlRmlBDtndKbo+stLCsNqInxkOucOhzaIxeRiGv7OpHKGmwOiuatoSL2ycWWOsYTiFqVJDTa33WP2l5ZJyOd48wq5sh9yQAz6I482rWIQGYMaQ+1VM8u9VpKnapLMG4lHNIaiUI49SUMwcWmn796LCmxhqmjPw6Gsp3Lo4gd0nhPH9czvse1FV9bFU3BUuhyG8Ce04GnYeM5MDWoscy9qAuXVxomrCm8NBK51zr7BROFpCTUdCh7A5LN4XxVyhXo43a84bDsHOA+vFpM6Qss3l9MLGhKYVro8cCtvVEsIkwT26dRRWNk1mDNtkUY4w0wFJeMts3Fg3wpu8vj37yGaMbwthYkfYt2KtiHxP7jM9gqfbQnb+zki4sFFHx1t9EGh6fsUVV1T4NEi9UZrjzUu1F4Urt0MsCKoJVLGE96Ug5+ASO0KxQ0tKQllWWvgERQytKYazuELgjxgxhlEohJEtQfCzFiohzfxOZk+O4BUhR1UsMrwFVTk4eM8ovn12B9qbNaWbJLV2rfJ94ZCGpqgZbjwcVKGmhuIrHUx7Od6G97mjDbG/aVTHGwC0CaFuAykd63c4L/D+M6O46LQ2hEMaOltD0DR1e7FoUeSPyeVHZ0GOrCR0pASXsdgP1aIypOiyU7nWRIfvRp8k6sEdb2p10XLT5CQhcjRUNRWFNwtxjBXnF8MV3qxQXGscdxdXKHxRjqqmQ49bbhN1cQXnF5v0EN6mjissnsX5SxCXe6V59s00/vzEIA6eHcOkzsJ3EXSRVw7kfFvF5k9iX5bOGnh1jRlGt2FnHrv6dbu6sSWManCHHgdFPpfAjjehTQ8knfMgcb5bbD6l+3X2FcTpoHWGmvaMwhxvpfLx41pw/0tJnLGw2WEyEZ2gxapMiusS0WlmORytyqZZH/FjUkcYx86P4bZnnY4l0fHWFC1sXLiEtzYNE9tDCGlmFezto9DxtkYoLjGxDLknB6RCj5nNm0d8zHIhr2/33i2CvaaWlmdBzvE2uTOMudMieP4ds58U72063uqDBl7ikJFQivDmNUkWJ73ibm8pwptqoC+n402eWKlyvAHuSbZjIVjC2CCG1hhFJlnO4grV6zDFiUEpjqtClVfz99lTnLPfdo/8OtVA0zTsNTXimUsms3Gj53vlhM+H7hVFa1zDJ45vKfq5QReQiaGKaK7z8vn+39qYxX0vJu3qWaMZcT7QyMJbU7SQ+7I/aTiSjH/5/W34yvvbbGEpHCpefbdNUTFttO5qym1dDMmWhaZqE3Y43tzXRAyh9xfegvUHxUJN5Y0fp/BWf5NrXTfsMVQMyRI3ukR39bCEN2Hstpzs8vguHvfL729DJAzMnBTGgj2ijvfJoa9AcMebGCIkCjJBXO6V5vrHBpHXgRdXZrBmW0FZrKbwtptPonsj595pEq9ZJmc4nMBi/2kLE7HSU5FYuNtLsPeJc0U7pcrQnylu7voVhwC8xdxKI27sRqTiCnb4dqS0TebRxHsWNOEXnx6Hk/Z3OgyndIZw+NwYOls0vGeBv/uwRdh8cTreCo/7bRpFwkBnq/k5710Qx0kL4naOSDHHm9gmI2HN4dDragkhEtZsd9623nzRdUa9sXRtxv55/oyRWffziQQSb73leCy9adOIjllO5LXjzIDhpSJyjrf2Zg17S8VfrDnnaJ0bNhojatVbtmzBP/7xD7z55psYHBzEn/70JwDA9u3bsXr1aixYsADNzd5lnEn9opq8l5rjLSwM0uJubynJsZWOtyI5MkpBnKxrcP4tDuFNmnSL88NSHBjWQsMwzAmNNYgahoE3NuQQiwBzppkPig4Qv12yciN+biYXPNGvNUGzJq+zJjsvtFfet3ogtW6d53MtcQ27Bgq/f+SoFkxsD5Z7IugCciBVmvDWl9Dxi7vNvF79SR3/dlyxAJb6xuF4q99mMmI0TUNbsxmC3ZvQbRfQnlPCOHCWOwfluLYQegbVN39IK+SkFMWoUlyq9YTsMOpP6naRmmwFcrwZ+TxyfX2IjhtX9LWisKkS/sQQer+k+5GA+kZTTENzTHP1CZajy+14E0NNg31GNUlmDFuQEDcyHMKb6HgbhqtRXJBa8wa/sXn/mTH86sJxiEcLocNWf61ypActriAKb/FIIbxM1b/XktVbReGtep1uPKph3m4RvLUphwNnFS7atptvxsarr8aUT34Su110kf24HKopzkNFcd76fkfiypLnpkEdb6rKglbbEyulZorM4wYUaSiqQU4q1qL6u+UF/lhA0zR8/pS2QHNg0RAg9g2iE86v/5/UEUJI0xAKw57PXXl7LwBTGBUdbyJdbSH0JfP2z4DpetrepyOVNccMr9yW9YZhGFi6xux8wyFgvxklVtmRGFy+3JnAEP6b7NVG0zTsOSWMVVvzOHSv6LAqtsvtQdM07L2b83sLh4eqblN4qwuGvc31+9//HrNnz8aXv/xlXH311bjhhhvs57Zt24ajjjoKf/3rX8txjqQGKKuaKpLCAz453oTWJe72lhRqWsUcb7EoHIOrI0xE2qnMCBOV2DBDZ8Xkza+vz+HX9/bjZ3f2Y912c0Isim3VdLyJC2DDCL6QswQ7a9K2xyTnCrWWjrdipNessX+WKx7J7a29OXjC11jAecNgSi8p1NSqWgUAi5al1S8aRThyvDWy8oaCSCNWt/W6N/xyL4lFZkQxaumarCuEdTTgdryJjt/C4+WoamoYBt76zGew7NRTseuBB4q+XnSUqcJF2wNuKpRSsVflerNzvAn3SzQkO96Cf0a1EN1hYn8aF8ZDcX5RalVT8z2a6+diV6U5pjny9fkJfkGLK8wUxj1N0+wxvx5CTUWs9AmxMlQOLJUvvq8N//6+NnzmvYUNo+233QYjncb2v//d8VrxmvQldEfaB1F4s77fkaSzKEdxBflYco46P2rlXpeLtajmtLLzfywRZL7X6rEuEY0Cfo7BSR3uHR1H8ZChdi+bEcQ5QleLJbwVHtvSM3rUlq09OrYPVeScMzUy4jY3uHSp67F6CjUFgK+c0Y4vntqG808c3uZ5W7OGSUNh0O9ZEAdgOjWtkP7D58bsvqjaucKJmmG16nvvvRdf/vKXsWDBAtxzzz340pe+5Hh+v/32wwEHHIC77rqrHOdIaoBKGfdKtO+d463wc9IRahr8PFQTmqld5Ys1Es9dFvnE31MZx1OO/GuREhaC4qRQFPOsBOsGgD8/MQjAOUmr5mJKdswEDTe1hELr+rbEQ46FT6mV6iwMw8Cuhx5C92OPVcw2L+Z4C3d0OJ4TF4rRcGn5Y4IuAgZLDDV9Y0Nh9VHKYr5ecYSaNrbupnR+egpvPsmFxYm+6MK66ekErry9Dzv7g0+4X1qZwf8+0O9wwVQbl/CWFENNh5dT04v02rVIrFgBGAbWfP/7RV8vfr+RsIZdDzyANz7+cex68EEAwYvGlCIqq669t+Ot8Hu+DifXTgeIV6iprnw8KCrhTexTg/STfv21eKy8btgLYVkcnznROUBYc5h6c7xZdLaMvHJgqbQ3h3DoXjHHwjrXa7p78oODjnFenKNtk5LFW6Gmul5IyN7sNg4HRo7eCCryqyIzrPeK4omcx1KmZo433dm/yrmPAbWrbzgYuo78wEDxF44yvHJPi2kI/NrTJEUOOZVDTu4bxXHCcryJlVnf2Tx6NuHEMNMDZo3M7QYAuV27XI+lN22qq/DbtqYQFs6JDVtkDGkaLjmrHV84pRVnH2mmv9E0DV89sx2fO7kV553Qao99dLzVB8O60j//+c8xc+ZMPP744zjzzDMxefJk12sWLFiA119/fcQnSGqDKtTUq6/yGkw0TVMOHJFSQjMVg71sox0J4kRbFhC93GmAnONteA4+UXgTd8U27My7PqOa4WPyAjhogv+M5HgDnAlpezwck8XoWbQIay67DKsvvdRcLJcZPZVy7IIZGafKKi4US3G7AcFDpnJ5taNUJbzphoG3NhaEt9mTy2ABqjG68Kc3gpDoh0qk8XJM+TveCs/JfVBOB97aGOzGNQwDf3xoAK+uzuKqO/oCvacSyP2MmL9J3OgoZePGkxITCYqCWSQErPn+95F85x2s+d73ADgXV/7HCf6ZKuEtmTGQzRtFqpoG/4xqkfBwvJUzx1uTQngTx9ggrq6gwpv48+Qu53WS5yz16nizqGZ+Ny8MXUe+b6jvMQwY6YKLW3SNb5OSxVtjZjkqmgJOkSwWcVcv9sLf8VZ4rNhcaiBZI+FNFPJD6j62HKGmhmHgnX//d7x20knY+c9/jvh49YQZsu58TIPTyeaXJmGSIv+wapNJbt9Hz4ujOaZh5sQw5kw1G9u+Qojm8rXDrAxWA1asK5zrgj1GoKAPkR8ctH+OTpkCANAHB5EfEvkbhfHtYRw2N+4Yv8a1hXDE3nE0xTS7HbG4Qn0wrBH31VdfxRlnnIHWVm9r5PTp07F169ZhnxipLaVM3v0mJ2HFAF7Kwkne3Wlv1jBtXPkmis6EzN6ON2uibRgGXl2dwWtCtc7h/j3iRFxMkJrXTXHFUdW0qjne5N+Ld9Z53bDbjDh5nTe9MAHwShhejLU//KH984477hjWMfxIrV/vUJV1SXgTd6KCLrAtii0gxQn7jn6V8OZ+z/od+WFXWa1X8sL3H2pwy5uqDbW3qO+NqeMKnYss2ng53iw2dwfrNMS+pZbTMllk7heLK0iOjJEiJ3FXJXUXEfv4eGbQ9Xx7YMdboJcBAOYPJUiORYC9phZW7/0JfdRVNR0UwjLFTSYvMWy4VU0tmqIatv7tb5jzx//E5G1vmI8FEGT8nHa5fGEsFIXEzpYQjpoXg6YBnzjOXXCn2cobl6t94QtV+6sH4S0/MOAYg/OJhP2z0/Hm7NOsUFNxLjWiHG9C31JKZWjVZ1qC20hCTavlzJGFfNXfXg7HW3rtWgy8/DJgGFh7xRV15TwaKZqmufJPj28POb5LP8ebnJoFUI/rch81e0oEv7ywC9/7aIc9Nk7qCNvrpJVbcxgcJQW4uofyN8ajwNSukfdLovDWPHeu/XO9hZtWGqsd0fFWHwzLKqHrOqJRf9fR9u3bEY/Hh3VSpPaUa4IYDWsut1hJDjFpsJ87LVLWsAhxN9UlvClyvL2+Pof/fcBpky9lghb3cNGlpXXf1h7dGWpaTeFNDjUN4LYTxTpxh/fDRzRj2doMMjngzIXDK7SiJwul1a1dq3Ii5ncD3I430aERdIFtUWwBOb4tZFdB3NHnvsiqifrydU7VbTTvYt3+rwReWpnBjr7CxLDBdTd1qKmH423BzChOPbAJmZyZnP7JFQUnSLHcMUGFNzl/ZdBiKuXGP9S08Hg5HG+y0JbetAlNM2d6vl50lHX2OZMzG4YRSJDXUJqovHBODF1tIXS2hPDwqyms3GKec3/S6XiLuhxv9dcfOB1vQnGFSglvqV5s/PWv0QngjM3fw/WfugOnHexflRAonpMzmTEQjWgYTIl/j4ZPHt+KTx5vKM/bMY/IGGUtDlUq7UOFXUSKVU6uBrbbbQg9kQDGjwfg3ByVz70vaWBbbx6rhBD54aa0AJzCSCltUOUGs4srlCS8yX0xUI2uWBbylcJbGRxvchGr1MqVaJ4zZ8THrRda4pojd+sUSTxSjdOnHtSEyZ0hu6iaiGqtpGrfqtftPzOGzd0pGAawYn0Wh8+t//W4vXkfHn5lYhFdEt76nnkGAJDeuBEt8+eP+PijBctpWY9zg7HIsIS3efPm4ZmhBqwil8vhySefxIIFC4Z9YqS2lGvXXLXDWkoVUHknsZxhpoCUF0a6G+QJMwDc/UICMqU4MJqE0xcXvLI4uWprziFmZavYYcqTQ9kBV+w94iSgoyWE/z6/C7n8yJIeW8iFD8qBmN8NMB1vovjgEN5KdbwV6WHHtxeEN3lRAbivxbbePB5flnI8Nlp3sfqTOh56JeV6fEyGmnrkeAuFNHz0GNNFI/c9TuHN/d5Nu4I1DLnvSWaMshawCYpfqKl4jpVwvKXXr/cV3sTvt713k/NY2SxapWoA49tCGEzpjg2VUtu1pmmYO7QYE/udvqTuKLwzGhxvXqGmqiIKGrwrpfvhEN76thV+zvTj7CObcdz84gvPYrn6EmkD4ZCOV1YVNmesv8drfGuWNvBai+t/VaUeHG85KfQrL2y2+W1srtycww9u7nW0+ZE43mJSqGlQmmPu79CaB4liXrG5lCy85Y0RVMArAdnxpnJmlSPUNC0Jb92LFg1beNOzWey86y5EJ05E10knjfjcyoE8bsr5qFWbRh88rNm7QJ3K8RawfS/YI2rnjl6+bnQIb9ZctlxzQNvxpmlo3msv+/HMpk0e72hMrHaUHaVrhUZjWM37k5/8JF5++WX8+Mc/dj2Xz+dxySWXYNWqVTj//PNHfIKkNpRr8q5aJJXiWJAn5nvvVt58Vn6hps2KfGzKv6eEU/Iq2OAS3rbkHM6zWoaaBimu4Mh5J02UwyFt2KKbnIRXdqOVA1l4g647LIbiZKrUUNNiIvOEdv8uOCO0i/6kjl/d0+8qcjJad7EGPRJJN7zjTRVqGqBdyTvdbYJzSNUv7ejTA927ct/jVUSn0rirmuowDAM3PT2I6x8TcrVUwvG2fr3v68Xvt7XH6XjTEwmXk+3ofWKue7/EtHIOOoRQ5N/eN4CnXi84HyMhzZHSoR6Ft8EAxRUs4tFgVQRlxFC4eMY5bpx+SHMgt+GkTvdFEt81kNLx33f24QFhw8CrmqGFKATVusCCah7RWQfCW76/3/G76HL3cyEacLf3EeV4E+6jUiIZVGGYUUWoabrEUFO9SvdyIMdbOUJNJeGt59FHh32s7X//O9b/939j1Te/ieS774701MqCXGBBFt5KXT8EdbypmDMtYq+fVqwbHblJrLlsOTbXgML6Idzaivj06fbj6Y0bvd7SkFjfp2GYhWhIbRnWiPuVr3wFJ5xwAi6//HLMmzcPdwzlXTr33HMxd+5c/Pa3v8Upp5yCz372s2U9WVI9yrWYV+3YlBJqKuePE6v1lAOxepNfqKk1YVY5QVSl170QPyNdxPEmLkSrWQZaDi0NsnjPeISajpTkqlWO33Uh6XK5UC26xTxvYrWpKYoEuH4UExyLCm/C9/rU62nsHMoDt9v4wnmMVseb3OYtahDlWFVU4cpejjcReUHpcLwp3m4A2NJTvHHI+QL7hlkEZaTIuST7kwY27szj8WXOe35ix8jHAJfwtmGD7+vF77e12zlpF/NRWRw1L+7atS+loqlMh0/7iISdSbvrUYj3LK6gWMwPd5Pm4D2jGNcawpSuEGZEhlckZLKibXUIoZhvbcxhc7fz/vCrPAyonfO1QiXK1qPjTRfuqVIdbCN1vFnzF797TsYUi52PFYorFJ4oWtU0WZtNNUcOzZCmnMO1lfB9eCHPtVKrVyO5cuWwjrXx17+2f971wAMjOq9yIa8PphRxvEXD/jmyVeunoKHq0bCG3SeYF7JPSk9Qr1j9U7kcb1Y/EmptRXzGDPvxlLSuaHTE+Qtdb7VnWM07Go3ioYcewre//W3s2LEDy5cvh2EYuP3227Fr1y5861vfwj333FOTPDGkPIgTNHlHNxIGLnxPK+ZNj+CbH2r3PY5qEhQpUZh538FNCIeAs49sDlxlKihBiytYIoFq4lSS402RN048vsXGnXmH6FLb4gpB3lM4/1J2ioshD5CVEN6yW7a4HhOddXtOieDsI5tx8oFxHDWvNLt+Z0sIpx5o5vDYd3d3Q1EVnBDvGVH0XC3ksfnCqa12bp56dLgEQXTBWIRDw3O7jCZUOd6COCnlnW5ncQX1+zcHCDd1O95q06BkgT+ZMbBkZeE+nDMtgvNOaMG86SNX9o2sU20s5ngLC99vS7fb8QYAHz26GSENOH7fOCZ3hl3XZCSLCT9HpFnVtPB7rg77g4RQXMGrqqnFcIW3Ce1h/PS8Tvzo453QencO6xgqx9vE9sLq97m3nePPqQc14aBZ/tX3VBt4tUK1+O7yKOxSTVw53gTHW0s85MqV5cdIHG+RsIZ/O7YF83eP4IwSctJqmuaa6xaKKxQeK1rVVHK8VWtslx1v7qgFYP+ZI0/zIud4A4Dep58e8XFDzcPLH1xu5LWSXCBAHhOKRUSoxvUgm3QWYv8aZAO91lj900g2qUSsUNNwaysiXV12jujE22/DqJadtA4Q21E9bsyNNYY9g43FYvjJT36CH//4x3jrrbewa9cudHR0YP78+QirSlmSUYU44E/uDGH1tsLI3BTVcPQ+cRy9T3ERwrReOxd/pTjEAOCco1rwocOby2Y/dpyLmExXGgSt3Dl5/f+z991xklT19qeqc0/eNLM5B5ZdQJBdyUvOKArq4/dARBAFniBGhIegGB6iog8jKiAqBlTEh6JkECSLsCx5c96dnTwdq+r3R/et/t5bt2JX9cyycz4fPvR0qK7tunXDueecb22nekBij/OX8WZDvAkTMvFbGrlbJZKL3hRv1Goa3rnkhd1QI2TiTS8WUdq5U/o8g6IoOHH/4BO7Mw/J4sxDsrj/33ms2li70DG1QsyJmDo+hje3VN5Hf9d1OyrPZZIKJnewhb0RaCDdvEvDk68XsHx+ElPHh2vf9grZIvTtbjMFrMRbJql4UgFbFW+1tmNnv9zsocCCSLz1j5jV1PrcY8RSef4xTRjfEs7cwrfVlNymmV0C8VYlCY7bL4Mjl6bNaymqFeoh3pxUVbtbxluTS3GFesLxmZ203B2MeGtKVQgU2jftPSOBt6qbHlt7az/uf5/ZihkT3fvOzChSvMlI2dGoeBNVpIunJbCt19vYn/HYfvR8HmraGrh32OI0DlvsP4gvk1S4ds5IlUQdxRUatUZ2q2p64LykdK7iB3o+j9K2bZXv6OhAuacHAND/5JPoOvfcuo4dy1qrCY8ERDVau9Bvi+O0mztENq77yRmmUT3DBQOPv5pHTAWOXJIalRucbOySKf38wtA0c2yONTUBALILF6Jv2zboQ0Mobt6M1LRp9X/RbgD6e+6uDpm3E+oecRVFwaJFi3DwwQdjyZIlY6Tb2wR0MT9RsNf5kfLLZNFBiJkoSDegYtlj449oY1UUxVwEsIn4QM46c/WXWefNaiqikSoGS1VTL4o30pn7JVadILOabrrpJqw85RT0Pf543ccvbd8ufT6KLDkxqyaVsJafB4A5k2o3CFMb9g3rZvGFGRNjUJWayiXIQPqd/xvAX5/P4/v3Drq/OSIMFayNup4crN0FTYLV1OtE2qJ4c6lqCgBbAxFvo0PxBsCsEDd9Qiw00g2wEm/FzZstz1GwiWuyOITEUC/3mjZE8+eo/VdUjQTvFye2xnDSAWksmBLHAXN5hdXuUNWUqVtVhV8MZpOKpQBNMoQiPKWAxJuiKBbV27zJcQtZnop7j72g9+1IKt503YAhfH0qUZ9CLCw4Kd4AYPF072orL/+eHb/7HV444gis+8pXPB/XDeK8WGY1dSLedN2w5J42TPFGvieuAkmhaR+1tP6KIHmyudF68MFIVjO3hl54QWrX9wMl6aw6bRREta7o0LEo3lzmylLFm0sBGLvzefatIn77+DDueGwYD7wYvnMkDJRDtJrSNqVWibfMwoXmc8OvvcZ/98CAJVP67QKeeBt984M9Db6a91e+8hV84QtfQKlkH9RYLBbxhS98AV//+tfrPrkxjBzogN8pTET9WEGkxFtEJFoQTGiN4ZOntuDDRzVh2Xzr4M0mcfmSAcMwLDuSgD9rJV9cwQfx1siMN9FqKvnunkEdX/5dH2788wDKmiEo3kK0mgqKt3JfH7bdeiuKW7firUsvrfv4xeoOrAg9CuJN+F3SCUVaRW/6xJg58WC/67rttYsys6qyYIvtss+Ftq4b2DVYucG3942cPGZYajUdPX1DVEgl+Awdr9YRi+KNs5rKP+OlsmletJpKNhcaAadF6X6zwq1mLZJsRrls2xcAtQVQa781lFkkCRjEPch6FxOnL8/iM+9pxX8cxqs7dgfFG8uuakornNJCVRXMmsQzb/Uo3hhkKmavmCjkvKUTChZN5dvf7M64575qtBRXiDLfbWjlSrxx8cXYedddgT5fdiiuAAALhd/f6af3SrxB09D9xz9Cz1sraweBhXjzaTUdLhoWp0OjgtBFxVs2rZp9iqpU2nu9KJAiVqkZM9D6rncBqPS9g889V9exnTZNGolhm4JRDOI47bZ2kI3rLVnv/SNdq72ysbZu/83jw6OOgKEbA+KmVaDjkQ0xU/G2YIH5XI4Qb4VNm7DyxBPx4vHHvy0LL9CxSibi6B2qFLIaQ2PgedS9//77cfXVV2P8+PFIJOwnwclkEhMmTMCVV16JBx98MJSTHEPjQYo6YpKgePOzQyqr+BWVei0o9pqWwMGLUtLzYouAfNFAoSRXF/khEr1mvIlobMabu9X0F48MYf0ODS9vKOHxVwvce8IqrlAeGLAsoMq9veEcvIqiJN8NiEbxJlqZ00lFWqxj2viYOSFjv+vaHbUGMGti5X5kkzLNZ9voGeJHXre2FxVkxNto5d1KO3di289/HjgIWgQlXIMq3ugx4gr/W7KiHTsH3FmY0Wg1FatZ7zc7XEWDbKEm2k21wUFsve02DDz3nGk1bZcQb3ZqjYRF8RbwZAW0ZVVzk6irvbJA5om30TeBHqpmV8k2GuYIi3rx2gcBp3hTFF+Likmt/DmmE4pFcTWny/sgl7EZ8xsN2YJLljEaBK+dey4GnnoK66+7DrrDxrwdNBerqUhqOW3+ui3aDcNAccsW82+7OYBfeFG8ORVXEAsrAI2zmpaEjLd0opJ1t3RGAl/8QFso30ErmqZnzkTrQQeZf/f/85++jiXez0HJU6NcRt9jjyG/dm2gz4vo6qitlZbOtHZk4lrBzf0jvl9V5AXe7EDvE5F4f+r18Oe49YCeXyiKN6Jei8kUb6+/bj7uf/JJ6Pk8jEIB/U88Uf+XjzIkHKymf3p6GJ+5rRc/e2AIY2gMPDfvn//85+jo6MAll1zi+t6LL74Y48aNwy233FLXyY1h5FDmrKZ8M/GaoQFYy2sD4WaARQ1GlJU0oNfGguWnWITMaqrrhmulGb2BZaCtVU2t73lxXW1yvaVH4wowhKV4k9lAxSyYendp6KQ7OXmy+bgRirdUgq+iBlQmHF3tMfM59tuv30EUb1WFCCMDyrq/32FnP9+OZfbpRmB3It42fvOb2PTd72L1pz4VyvEo2RZE8RZTawTFtttvB847Hvus/L35OssEK2vuatnRYjVli9Jp42O46sw2TKta+WZOjGH6hHAjLGTEW2nHDu7vLTffjM3/+7944+MfR3zdqwCA1v7Nls95V7yF17jPXtGEC45twqfe3QpFEa2moX1NKCiWDTPDVEYyiyRW0OIKFFzGm2H4UsSI851kAlg8nT/HeT6It9FSXEHsB7raVZzwjvBD6YPksJZdrKYAsN/sGpExexJ/cx25pJI33JpRzH7DDlpfH3f8sBQudsUVvGa8iYUVgMbdyxqneKv8f8WSND5xSgtXQb0eUKtpavp0tLzznWYn2f/kk76OJRJtQTdKd951F9765Cfx6jnnhGIzXDY/iaUzE5g1KYZzVjSZz5d7e5FfuzaA4k3cbFN8FZijm719wobrX57PjSqVE90YCCOxSpMo3pKTJyPWUikImCPEG+0PxDXG2wG0HZXKBu55Nocf/30QvUM6nn2zcu8899boImLfzvA8e3jiiSdwzDHHIJVyD9RPpVI45phj8MTbkDneU0AHfHFh6EfxJqvgN5qspm6gk6md/XJ2zI/VlO7ms91vsbCCHUoaIOExQ4e1qqnz4JyMK7ziLaTry8J3KcSdcX1oCLHm5sDfQSuapmbMMHfCG5HxxhRMqUTt9+tqj5Fw45qFlxZWmFhVZNBKi7oBeP3ZrcSbgQmtfv819UNKvI3SjDemdCts3AijXIbitzSzgIryp9KftEj6SBmo4i2bqln2dvzmN8DwEJau+hNeXPI+APzmSL5koNmhcRQEgcpIVDXVjdrmQzJeuQ+uPKMVq7eVMW18LPQgaBkRQyfqAKm2p+tIffvzUE+7Da0DVnWM+DmGuNCWw4y/TScULJtfm4vRY/tVwEYNGs8gmw9YFW/1XWujXLYoo41CAXBwalCImbbphIKmdKWy5rZqcQXxnJ0wWoor0DndO2YncNGJzhXpg0IvleC3qVsy3iQq0rMOa8La7ZXx/93Ls1i1sfaZ9x+SxUELU5jYprpu/FG1G1DJdwwDGUGJZCreyI/hVCFeFmPSOKtp7XFUjpSCQLzFslk07b03hl58EYX161EeGEC8xVubFOeGQTdKh15+ufL54WHk165F05IlgY7DEI8p+MTJ/L9BGxzEy+97H7S+PjRf+GUAy83X3NZCYn60n4qmAL/e6BcUldv7dAwXDGkc0EiAszuHsElFx2W1ukZQFAWZBQsw+NxzKG3fjlJPDxIdHRzxpgm297cDqPPsza1l3PV05d87sU015+ElrdLfqKN19/ttBM938ebNmzFnzhzPB549eza2CAPcGHYfOMl+6894C3pWjQf9t+7ot1G8+RgLVaUWJp2vzhW8Wv0aZSESd2XdKnHFYwqn2AtL0Sgj3sTdqKKgUvELmuuUmjHDfByF4k20mrK2RS0mLLCbWk1pYYWZE2skBG13fqzIOwf4N8t22huB3SnjjU7iwsgEogSE18l0Mg6zEAydSGmscpdWa7N+VDai/W0gZ2B7n9ZQkoAuSFnbj8cULJiSQDaC3QZDYocTCbQYWQQqPTux30u/Q9OwNbTfXvEWjdVU+l2j2GpK+xeZ1bRVqJZY76Kr1NMDsYqAn3t2omA1Zf306cuzaG9ScOL+aUuBFCeMFsUbbRdhkiuWvMQAY6elqqnknupoVvE/57Tja//ZblHAxmMKZnfGpe1LREEg2sS/g8Ka8Vb5W1UVc6wuOMylBiRW00bFcJVo24ion2KKMiWVMquQJjo7a6/7IDzEuWHQaveU4NUDHsMNA88+a24Yd/zov7nX3ObK4n3qp6IpwG/WyeZbo0kdHbbVVJbxBgg5b1XVG7W2i+rbtwOayRxzLcmL7hnUufmfl0J6Y6gfnpu3qqqORRVElEolqKNVvjAGV9BJWkxVuEmFmwKKQjZBDTN8f/j117Hr3nsjIUoAfjK1gwTRM/Kss1217HQOv/oqNv/oR7YTOjaRZ4QbJd6c8tEalfNmVbw5v79QMoSMt+gUb9D5mYJoD/MLZjVVkkkkJ00yn49E8SYprgCAC1SeVLU5MXVcscxXpqQ2mqCVDGWKt5HAsKyq6ejk3bhJXCjEG2c19faPVhQFS2dUGsY+s0jmWVXipBqV/08dF/OlshGJf90ArvxlH7746z5pYZUoEFVxFjvIFG+6QLyJhNr81Q8hm9tl/ZxdxluEVlMRo9lqSjcWZIo3QBhnbZTlXlGWVDT1Mz/oEAoOsMXvAXOT+MaHOvDed2VlH7PFaFG80flDmCSwRV3oM+PNMAwL6WJHZquKgnhMQSJWIUBbMwo+elyT9L12iEzxZlNcAahV6nXqT2UbYHrDrKa1x1Ep3tg1VdO1CqnUreDH6mlRvI1i4k2cLyRKte/0W1zBv+LN+fijqcBC0I0BvVTCGxddhFUf+AAXHSOzmgJAcsoU8zFrR/Qaia4aL9j8/e/jjYsuQp4UEBlNoK6KzWQ9MZAzOLLNTWQxhnDgWZsyZcoUrFy50vOBV65cianVctFj2P0g7j5kU4q5Wzsk2Tmxg6y4QliKt/LAAF7/yEeg53KYeuml6Dz77HAOTJAmUm26IPjPFU1oSlUqsomZC6/+538CqATGLrr1Vusxkwr6c0bNakoWvm1Z1VZZ16hFsPg9Ymcs2h9yRYO7pmFZiUsy4k18Tx3Em2EY5kCd7OriStJ7nYTlN2zAms9+FsmpUzHn+uuhOGw2iKSqrHofqzJH7bp0oJxAKu7xJcI9nS4AK/E2Uoo3WT8SpSooKAzD4BVvIUzQu9prF48GMrvh4hObsa1XR1dH7YdiJFISGuZNjuPDRzXhkZdr5+imsrFTYewa1LFxpxZKRTs3REHcO8GL1VRcCDYPbocWtxZ5kKlzACvR1jjFW3TfEwS0f7GzNe0/J4HHX62QYxNa6/uhZBVN/dyzYVttqN1rRDPeuM3U8I5b2sWT0X43QY1CwbLRZUdmU7z3XVmcvjzj24beMOKNjOFsflR04CRlVtNGqVd5q2k038HIjVimlisYmHgTyN6gG++0zw+qmnODeK7TNj2PNbMOBRCEePPX1l2Jt1E0VgRVvO347W8x8PTTAID1X/sa5n3nO5XjUaspId7UbG3jhL1Hr0PxNrRyJbb+7GcAgHXXXouF1cejCXSjl27k7xocHYXW9jR4bt6HHXYYHnzwQaz1UP1l7dq1ePDBB3H44YfXc25jGEFowiSNTphlShU7yK2m4UxsB597ztxF21TtbMNG2kbx1tGkYunMJAp//zPe/MQnMPxqJXyb7pwM2xDVaaJ4MwyDW/i2Ndnfko1TvPGdr0jEiRPE4YLBW8VCqEoH2CjeBNRDvGmDg+aAm+zqgkryK73u2nfffTdyb7yBvocfxtBLLzm+NylMglLVtnXqO2s7wKx6I52Qbd5Vu/DUBkUnJ34mUKKiZKQUb7JF6GjMl9BzOc66pudy2PmnP6H7L38BUFG4br31Vr6SogsOWpjCKe9M4/8dnsXMid6JLVVVMHkcn3nGSKSEouFzp7diUps/xZvT640qvFHkrKbRf5+UeBMW+6IKJ1nOIZOv7IbHOzrM5+1IAnHRFC3xFkz92ggMcRlv8h/hzIOzmDIuhomtKo7dt77Af9l96HdR/Zn3tGDfWQlcclLw/FAGVVHMDbyRtZrWHoepaioLxJtftbgszNxO8SYiSPajSLSFZjUVNplpP8bGc6fNU1k/3CgSvcQVV4hI8VadGytU8UYIkXqIt6CkmdYAxZs4j5254Snzsd+qpmEr3kZTHmhQRW7uzTfNx0P//rf52M5qSh+zsZvLePNJvA2/8krt+1980ddnG4UWMu7SuVa3EDvjZIUfQ3jwPMW9+OKLccstt+CMM87AvffeiwkTJkjf193djTPPPBPlchkf//jHQzvRMTQW/O6DgtMOzOCmv1QGxpMO8D4xziYVVGLia4hqRy0KUFUSLa7QklGh5/NY/+UvA6jkOLzjiScsEwIZ2GCo6RXChO4ytGcdiLeGVTUV/hbWqL1CdaRcUUdRq/1OkRRXUFWp70KmbvAKKktPdHZCDaB4o7Ymt2svZryxtnXcfhlkUyqmT4ihLctbTQGeeOMVb/4X25XMODHTq/HbnoZh7DZVTUUlVO9DD2HLj35U+UPXseH66yvhzG+9hVnV/sANqYSCdy/zZ1mTwSAVGymZRPutnMsuptMuZ6NI2dGgeNPJws8olx0X/6kZM8z+SSTsGMSssiitpvFRrHgbIMSbnWKjKa3i2g+2QTcMX1X7ZJBaTX3awxdMSWDBlJB2kFDZwMuXDEueYiPB2QnDtJqKeVs+raYyhYndPRUGCoLiTevrgzY0xC3IgyDroHijma12kI3hjeLQOVI2gg0CwzDCVbyFVFyB9vFhREjIYCHeNj4NGDqgqK5zZVlVUz9wV7yNHqKlHNBqSvsbhRTQsbOacmQvU7xRq6lP4m13yIRrthl3xcJaYxlvjYHnLnb//ffHZZddhueffx6LFy/G1VdfjYceeghvvPEG3njjDTz88MP47//+byxevBjPPfccPvnJT2L//feP8tzHECH43VFgn5kJfPioJpyzIoulM71PSFVV4XYC47Fgu5TSc2xA9RmqeKPVR5vTCtdZs11eL8QbXRTniwbX+bU12f82I6V4EyeLYtXDXNGIJKOJTliSJISXorR9e+Djl0hhBdFq6nXxQAddu+qGDPEYQH8Z1g7SSQXH7JvGwqm1+4qSD5u6axd+fItc8eZ157J7wLoql1lcokahLCcIRmMsqLgg2PXXv5qP111zjblrSp9vGAgZbZBGkPajeHNo6v0NImVLjSbeJDcMvX/dFoHpmTPNx6ND8VZ7PNqIN7fiChT1km6AXPEWVQasV2SSlX/36LGahneP1Ws1lWUqeVW8+YVhGBarKWC1nwaBXXEFoKZ+K5Yr5yCD7L5tVMZb1Io3o1SqZZHaZLzp9SjeghJvIUdIyCASb9lcD8bvWgPAi+KN/7vVr+LN5fiNWlN4gRZQ8eaFeLOzmrLr77e4gmEY6H/ySeTXrvVFGI8UZJFPMoxZTRsDX6aOb37zm0in0/jGN76Br3zlK/jKV77CvW4YBmKxGK644gpcd911oZ7oGBoLuvumKhWy7OBFKYdP2KMppZjqlrBspoB18NUGB7mBPAykk9bzVVAh3jRJNpYn4o0uiksGr3hztJo2Sn3C/y0ScRbFm2A1DbuqqZpOI9bWBkgmx2Ep3pKdnYEy3ujumBjOLkJRFCTjNQI35cBfU/KBZaG1ZRVuB5NOkL3uXO6UBJePhOJNpnYDgIhcLnVBvK7xtjZEM0X3D065peswdB2Kqlqsput2lJGMVWyqIlj/o6DSN1FyoFHE26iwmpLrXHbZ1ElOnWqqcO2rmgp/O5AdudWrsf6665BdtAjTPv1px6xICr1YRHHrVqid08znRpvV1EtxhTDhxWrafffdKO3ahUn/8R9cxEBUyFSHlkKpkpE6EpZ6zsoVwHVQ3LED6665BsmuLsy46ipzA7VexZtsAzUq4k0bGJCO04VNm5CZN6+uY1sz3shjMp6XNHkfJyNBRiLjLawMZgq6Sa1GoXgLwWraqIw3oEK+dcN5kym/fj0Gb/ox5pf3wRvzjgFgr1yyg6vVdBSNFVxxBR/9Y12KN4nV1CgWoefzHEEsovuuu7D+K1+Bkkqhddmy2vc3YCzxA6NcxhsXX4zSjh0Yf/CX0J2d4vj+seIKjYGvKa6iKPjqV7+Kj3zkI7jlllvwxBNPYGt18drV1YVDDjkE5557LubOnRvJyY6hcWC7DzG1foVac1rBjv7a8cKCOKAVtmxBdv788L4A8gD8prQCVVVQlkww/VhNgcqil/rqWzOqxZprHrtRijdLcQX+ddGqKCrewq5qGu/osF0c1ZPxRrNl4h0dUMhqJArFG1DJeWPXW9a2GGSvUZspEEzxtlOieBuJjDe7nMjRmPEmLgjsSBm1TqtSEIgEkqFpUFSVaz8vrivhzn/moAD48llt6Gzn2xEj3ia2qbjifa3Y1K3hhj9V/o0Dw40i+xuseJPc31S5RsmA5NSpKG7axL03OXEi1EwG+tCQD6up/fns+M1vMPTiixh68UVkFy3C+NNOc/83GAZeO+885F59FV2fuAzASZVzH82KN5+KDb8wymVptipdmA88+yzWfelLACqbOpM++MFIzwmwbrZlPSoQwgS/sPX/+Q1f+xoGnqrkU7UsW4Zxxx8PwJrx5lfxJst4i8pqSvPdlFTKJFvCKLDgrHgjxFvZkPZxI2s1JWrICHa/KLFB53KhFVcIQJoZ5TKnlAtK3g2//jo23nADtMFBJCdPxuSPfhTZhQvN12VFwuLlChHpJETYesstyD94L1bEHsSamYegnMj4V7ztRsUV6Ln42RigcyA6h7fLeOOKK0iIN6Ayr086EG/rq6Ijo1BA32OPmc/HW1q8n3gDMPD88xh87jkAwKKpj+Dxvf7D8f3FMcVbQxBoFjR37lxcd911ePDBB7Fq1SqsWrUKDz74IL785S+PkW5vE7DJexhEWROxl4Sp2hInbGFVp6IQJ1NAbddetniz7P5KbAW0UmrFamqQ1xSpyg4YPVZTa8abwX0mjB1TQ9PM6+tGvNlZN9xAF9qxpqa6FW+eiDcy4XaaFM2cZP0RJwrV/ujiyavirVtSMXckrKa2irfRaDUVrqtd0Q89nw/cFoPCotyqMrC0D3l9czUDDsBfnrcqSVj/k0ooaE5XsgYZGldcYeQz3jirKSHeZEqYxMSJ5mQ+DKvprnvuMR9v/sEPYHjwmJV37UKuWtRn63dvNAuAjD7irXJeMZUf+6JAz/33c0pmBtqf7/zjH83HW26+OdoTqoLOI0bKbsrl9gYgV/oefdR8TAPFRWLBr+1PlqlkFApSO3i9oG2jed99a8+HMHcU521Jcv9ThVvBJkdJdt82rrhC7XEUGW+hK95CsJqK5G5Q4m3bLbdg8PnnkXv9dfQ98gg233QT97psvpAoVcZhJ3U321SOa0UkS5VzDb2qaYNcNF4Q2GpKiTeqeCPtiVO8SaymIvFW3LIFgy+8IO2DChs32p5LbJQRb3Ru0mS4Zxja9U1jCBejcJkzhtEAtgMWRhYI3d0N88YWB98wcjpEyJRHrLKQbPFmmRBIyDk6CR8u8MRbMmGvhGpYcQXRaqo5E2/FMh/gHsbCudzXZy4k4x0dthJuo1yWZsR4gShFV4NkvJHv9pJRQn8bO4IVABZNta5QJwjEG108eSVlhwjhxdphrmg0fAJmR7yNQsGbxZpkG76raZFZpOwgTgxZnyTbMAC44qwAKhNvttPMJumZpGIuvvobVlyh9ng0WE29EG9sAWlLvAmN2ck+k5w61Xxc2rGDIznsIPZRE7sr1d3Y2N07pGNb78iH+LCqps1pJbR8VxkMw8C22283/x534om118iiml7bsKMp7CDmuo4EyiGSK7TfsVQ1rae4AlWs1NmX5teuxStnnYU1V1xhEtmUYGsmGdRFkvcaFOlqITEGJ8WbDCOZ8cbGfwXRbH5xxJtNxpuXjUuGMKymYr8dlHgTiRjalgxNk84XEkzx5jBXpmSiqlfHdZ9K2UQMcOpyR9MmTTkiq6mSSkGJ1yYVqsRqKpKwr3/kI3j9/POx6TvfsXxf74MP2p7LaLOaUvVxCu798pjVtDHw1MU+88wzdX1JLpfDK2SHbAyjH2Eq3miuS5iCkIYQb5IFLNt1khJvHiYEraRyad+wzhVXcFK89QzqeP6tYuSV0dytptbRur9qSVOUcNoM/R3j48Y55vAUA9pNxfBVrriCh0mYns/zCzoPE0ea6+a0G9mSUTFjAi+ZEa2mQSoZ0kUfJfIarXqzJd5G4VaQ5bo6dGKNKPhCYbGaVv+260NEUlxU2wKVaAG2ubAnKN7YRNwoFMzn6W55sqvLYiNOTJhg7pxruZxU6ehH8SZmVW7/1a98/RsAYM76xyvno1fGiitu78VVv+rDm1v8ESFhg1lN3Qor1P09zz+P3GuvAQCye+2F1kMOMV+j4zCnhGiQQmE0KN7qLa5AF68gba/eCpOUAEmMG2c+1uok3jbddBNyr7+Onvvuw66//AUAUNiwwXyd2gHDqGipKvzcjZIq9LHd4la2sao1SEHNSNlYiMXPKDirqR3x5lHxZpTLlnE2CGkmjutGwDYgkra0PdMNZIpEmSneHIg3Qigx4s1v8RlFURwjTUZVcYWAVlPa39DNc7ZhKm6uqImEOdfXh4a4irsiZONwz/33255L0CIfUcHgiDd31ctYcYXGwNNMaPny5TjttNPwGPEye8HOnTvxjW98A7Nnz8bvfve7QCfohK997Ws48MAD0dLSgkmTJuE973kPXqtOvBgMw8A111yDKVOmIJPJYMWKFXj55ZdDP5e3G8Ik3qLKMxkpxdvszsoEVNzZNXTdqniTTAhoAYW+YV7xlkooZhCziF8+Oowf/G0Qv/lHNPknAKAbhmUwdrOaAjUyLhnSxI0j3trbuQFVRNCcNzEDghu0Pezai1lffq2mThMiAFg0jVe9WaymRPHmNSSXkrb0eI0usGBfXKH+tlOv3bP7nnuw6swzsfOuuwA4X9dpl1/OKSdGC/Fmp3gTC5/wfU/t+ZZs5fMDOQN6AxZ/UVRFdgL93eLt7eZjdq05VVRLC5JdXebfSjyOWFtbzTKladIJt0hu2I2lerFoUe3m163z9W8AgNnrasTbW1vLppLxtc0j5x8plAxz4ybqwgpDJNttwhlncJs1tsRbgxRvmVTt4o+Y1ZQq3oLEQdAMVEq82SjeSjt3YuN3voO+f/zD8bB00RsnxFu9irf+J54wH7Nsuvz69eZzmQULpOdQD2i/m7CxmoobmQxSq2mDiBGmeAuz+BlFmFZTWY5yEMJDbF+BVHPFoqX9cxUy6Tx2/Pja4xLLeHM+NoOqB28ITkW8GuWi8QKNVtYNqHijO7fsOsQk2bvmptnwcKXteLzRhl9/HcOrVnk7l1EA2k8nlTHF22iBJ1rlt7/9LV599VWsWLECs2fPxmc+8xnceeedWL16NYbYRFXTsGPHDjzxxBO48cYbccopp2Dq1Kn4whe+gHe/+9342Mc+FvrJP/LII7j44ovx5JNP4r777kO5XMZxxx1nnhMAXH/99fjWt76Fm266Cc888wy6urpw7LHHYqDBC6TdDWFaTd0IhqDQROJNku1SL2TKkcVVQkQkZ/RCwRr6KpkQtBHFW++QbiHenCyIAPCPV6KrqViSTArLGszFt24YprpNfA9QKR4QBuiEJeGQ8QYApe3bA32HaDX1q3gTF8veFG+138eOHGHYaxrPkjgVV/C6c8kr3miWV6MVb3bFFeo7bs/99+Ol44/Hpu99L9DnC5s3Y90Xv4j8mjXY/IMfAHC+ruNPPx3ZvfYy/250aXlZcQXAebJNQdW2tG2yEGfdsCdJw8RIWk3jra3mY5N4E8iZZGen+Xdi4kQoiiK1rFBYFW/y+122cVDu7XUlkMXxp6NnHdr6NkHT+WI32gjm+PCFFaIl3jiV4uTJnO1Ht7OahlwQxSiXpWN+lsZLjFjGW3iKN1MZmstZSCtGgmz5yU+w/fbb8dZllzlWH6cECFW82Vm4vSI1Y4b5mBHZhSrxFmtuRmLSJNOHR/8Ngy+8gE033RRoPsk2meMq/xsnCaFlt7gdyeIKjKQPRMh6gJ3VVInHzfvU69gpK1bgV2UJWMf1IMSbbO6p2xBvKRInwKymTvNlSuLEtBKO3ieYjVFU1TURIUSjiF0vCFpcgV431vcYhmFeX1kfz8ZufWjIM8Gv5XJYe+WVzucyihVvCcN9A644unjDty08LXPOOOMMrFq1Cj/84Q8xbtw4fPOb38QHPvABzJ8/H62trUgmk0gmk+jq6sJhhx2Gyy+/HI899hjOO+88vPTSS/jRj36ESZMmhX7y9957L84991zsvffe2HfffXHLLbdg/fr1eK5axcMwDNx444248sor8d73vhdLlizBbbfdhuHhYfzKg5VjT0aYircorEOGrvPZIAivuIJhGFj9+c9j5bvfjdKbvIKyJaNgWtUCKO5u6Pm8p2pLbU2C1bTME29uhAw7xygg2kzN56t99mDOcJwMhrVjKlpNFYcKQ0HJDnOCFItBSaV4xZuHAVRsf2IWmAwHLUgirgL7zkpwlmMZ5k/m2ZP2JnsFjdedS6a2SMR45SVdIDcCUWW8rfn851HetQvbbrlFagV3w6bvftd8XO7uriyk7dqXokBNpQIHRIcBu4w3VVGkQfbixCovkP4MNMS5EZVNR9JqGmtrMx/bKt4E4g0AYkS5ISMJ4jH7+5VCqtjVNNf+RLa73rX9ZWg6/3uOZOU6amFvSoUwmXAAvWbxlhY+s9OGePNSxMLz9w8O4uX3vhcvnXAC8mvXcq/RbKZcA4hsGbiFbYBLISPeRLUPUBs7d955p/lcf1VxJoMWkeItOXmy+Ti/bh30QsEk01IzZlTI8+q8ghFDhqZh9ec+h2233hpo8+aQRSmoCnDoXjxJQgkWfxlvjbKa1gqgRAE7xRtQU715HTtl83wvG6WWcwoh401GzlLyna4HaHtkxRWc5suUNDn7sBTOOChr+14niMKHJqI8HlWKt4D9E72O7Hc3CgWTVZRVm6eKNzdLO9vg2vzd7yK/Zg2Ailo2u3ix5b1OireRIOV0n8RbYUzx1hB43luOx+O44IILcMEFF2DlypV44IEH8MQTT2Djxo3o7u5GJpPBxIkTsXTpUhxxxBE4+uij0RTybqIb+qoKlHHVwXvNmjXYunUrjjvuOPM9qVQKRxxxBJ544glceOGF0uMUCgUUSCfcbxem/TaGFuIOWBQLKW1gwJI8W+7thZbLcQuiIOh//HH0Vn38a6+8Eji6Vvls0dSEmbMgLuxlxJtsQtCaqYTwGgD6hnRO4ZaKO2cyMORLsLWk1gM7G0SxbCCVUNDvYkkMS61S8mE1DWoTMXfEslkoisIr3jwMkmJorhfF24HzU9hnVtK12hRQIUIOWpjEP18rYv85CUu+B2c19ap4qxIt6aSCFjIBa7Tibcg24y28vkLP531ZyQZfeMG87xnKfX2211VNp6GoKpcTNeJWU9IQ0knFkgcp/k0nWuk4Jd5qM9/+nI7JiEgKUUXDiTcyQY4T4k23Id4SlHirWoZUWh1NMnkXA+ztdvHt1EDl/n7H9isjluPlAjSNr1I4kqqGIUK8NVLxpjY3c/cCW1SLeT5Bc51k6H/ySZMU6Ln/fkw+/3zztaxQUGkkUK/VlCPeqgeTVWyULT5zb75pe1x671DiTaYi9QN6HvrQEHJvvGHmbaVmzgQAqKkU9FzObB96Po9ydzcAoLhpk+/vPGbfNA5bnLKM79RSaGs1ldynjRKrMsV8ZFZTm4w3oEK8lbu7vRNvkutilMswNA2KD6mURfEWoC8o2rgt9OFhqMkkd38kp0wxH8eZ4s1hvkwVzTPHWTdyvEJsi81pBdurZo1RpXgLaDWl15HN2+0qmjKwsdsoFl3nbFp/P9Tx49FdzYlU02nM/upXseWnP7XYTu3WDbvuvRfrvvQltB1xBOZ87Wse/lVyFLdtQ2LSJM9xPrQPTOhjVtPRgkDL5CVLlmDJkiW49NJLwz6fwDAMA5dffjkOPfRQLFmyBACwtbob0UkmzezvdQ4ZKl/72tdw7bXXRneyuwHCtJombWxPhc2bMbxqFdoOPdQyGLtBlvMAVHLeMnPmeDpGbvVq9D3yCMadeCKX4ZN7663aOQrtZO/ptX+MRfE2PMxVuQTku2jxmILmjIKBnIHeIQMd5CdOxp2rXTL0DunIJMNfDNvtxrLn6aIhFbdWqQ0rn4lTvLlYTesm3qoDs2/FWwCrKeBe4p3iQ0c24dh905gyznqt45zizdvxmK05nVC4hfCv/zGMVzeV8LHjm0O5591gl3MU5o67lsv5It56H3nE8ly5p8eeeKsS/JzirdERBg7EWyapoHdIINpE4s1G8daaaSwpWxpJq6lE8VYWAvjp+CBTvMlIAnENaGs1JYs3tampRv719QFksWb5N0gIDlUvW6ympRFUNQwQJW1LncUVdt51F7bdeiu6PvIRjD/1VMvrouKNjgusPxfjAcLK9hK/X1SC0Zzb0VBcwc/ClkGRZLyVHBRv8XHjzN9h2KG4Gr0GiY6O2vN1Kt7Ez/c88ID5OF21oVoUb+SeCqKYBuTjO1W8+bKaNriqaaOtpkBt/qUPD8PQdejDw9j5xz8iu/feaCH5qQy0iqiSSJjXTC8WfW26i+0jiGquRAsrxGImk6UNDyPe3s5bTUlfbirePFY1DdoWAWt7rCiPq8T5KKpqGkTxxtoLA1tvcTEyWatSkJJxjGi3Q7m/H2omY47L2b33RnrWLG5OYH6/jeJt7VVXAQB677sPpc9+luvnvGLLzTdjy49+hPZjj/VM3tF1TMyL4m2suEJDMApryAXDJZdcghdffBF33HGH5TWRHTYMw5ExvuKKK9DX12f+t4FUQtpTEKbVdPak2kpq/zkV4sool/H6+edjzec/jy0332z3UVvYEW8FEp7rhjc++lFs/t73sPbqq7nnnRbPe1HiTRgMSzt2WLaQ7HZAWM5bf05HvtpXJ+MVxY8Xq6mssmgYsCPeitV/Fl00jGuxNo5kVFbTCIg3NpCy3S9O8eYhJNWieIvAZhhTFUyfEJcu2mMBiiuw65dOKpzVFABeWFPCa5saE8Rut/gMk/PzmxEks/aVe3vdiTeieBMLbkQNu+IKgDxbU5xY2VtNecVb1BjVVtPmZi7HL1OthkgtLLK2JqpH7MZSWpU5M3eu+Vgk9i3/BinxpkHT+X58JFUNg4S0rbe4wvrrrkNh40ass9kUFXP56GYNU7aJ6sLIiDdBCZYZZYo3PxlKDF6tpqxd0sXt8Msv25IHjABRUin+ngqZeOu97z7zcWr6dPM7gRrpoodEdojwlvEme65BVlNzvj8yijcAgGFAHx7Gxu98B5u+8x288dGPSsfTAlG8pckmu1/iLIyMN1rRND1rVu1Y1fHATvFmZrx5LK5QT2i/mPfKWU1HMP9TBG3rXtV94rjLfid6bVXJ5ivtZ5zyJ4HKZk2JkHNM8Z6SbIoZxaJ7NqvHDXoRbOOg98EHPX9GzAl0g50adwzh4m1BvP3Xf/0X7r77bjz00EOYNm2a+XxXlZHeKvjwt2/fblHBUaRSKbS2tnL/7UkwDCNU4m1CawznH9OEo5amcNbhlQ6vuG2budO/7bbbfB+TEm/Uaz/43HPQBgcdrQ1AtRpR9RiDzz/PvUYJFSUex6nvrEwU9p2VwLjm2g8iDoayvAe7wZyRHpoOdA+wQPTKYOPFaiqrLBoGSjaLNDZZ5Ii3ZuusQayaGBR+iisEWTwZ5bL5OTbxUxK1GYqXSZiY8WYUCqFO1t3AKd48LK5LWu2+TicUTB0Xs2TR9ETUrkTYkQFhKt78Ltxk17zc02M7UWILCM5qOsIZbxCspiKcFG/0/a1ZqnhrMPEWQoEWt8mvneJNtJqq6TTURAKZuXMx5xvfwPTPfhbjTjqp8pqb4k20mtplvJGJf2bePPOx3eaS7N/AoOqlquKt9txI5vhQS3lTHcSbl36VXjMlHucVzNV7W8zTC5V4I/e+GACfGWWKt0AZbxLFm2yT0rR7USVKLofc6tXS45rjcCbjek/5gXht6fwszaymouItKuKNzIvs5ljSjLcGNBWDVLJ3qrJZD7xkvAGVe6j7j380/8698YblWIx4U1Ipjszym6FlyXgLYjWlxBshAdnco0Qz3iTEm6PiLQT1JSC3mjLI2txIgc5hvfZPduQpnbM5VTUF3Im3cn8/p4pjxBvN7DNhGJbJrTivDJxJzeazmua5PdD+LDZmNR012K2JN8MwcMkll+APf/gDHnzwQcyePZt7ffbs2ejq6sJ9ZKerWCzikUcewcEHH9zo091twEt+w9kBW74ghf84rMlUetVbdpkuStqPOsosh9j3+ON49UMfwisf/CC2S9SPDCUHeTElVGJtbThtWRb/c3YbLjqR3zkRZcV+iLc2srAtmIq3ynOeFG8RESR2HW9JQryNlyjeQrOaVq+BkkxWFr8C8UZ334NMmGigqql4IzlvnhRvEkWKV7tpGKD3ppedcVrRNJ1UoCgKPnRkEy48rtauG0GyAIBWJUbE1hJ2xpuv98uIt95e24mSTPE24hlv5G9ZP5IXmjVf1bT2mFO8Nbi4Qj2LP6Ncxusf/Shefve7zUqGdu9jiLe3m4/Fqqb02rYfeSQmvv/9UKsEPZ28eyuu4G415Yg3N8WblHizKt68VjyOAuWQlIwyS6MIMzqgupCnyhq2KLco3gKoXGy/30HxNvoy3uqramoucCW/H5sXif3v0IsvSo/LFpRqOs3fU/Uq3hz6f6Z4Y/MKo1y2VKQNk3ij86KijZ1LNoY3ghih3xE0R8wNjlZTh+JE4nsNXTdzFFNTp/KqVp/Em0jsBqpqyoi3WAwpIvowIwvoBvL48eb8Ml5iGW/y39swjPCIN7GqKbH8jy7FW+1xUOLNJP1DJN60vj7uPfEJEwBAajUFrARwccsWx3P2Cll0ghtoG1LKJbhFw41ZTRuD3Zp4u/jii/GLX/wCv/rVr9DS0oKtW7di69atyDHpuqLgsssuw1e/+lX88Y9/xMqVK3Huuecim83irLPOGuGzH70IWl3GDyz5Cj7DLCjxlpo+3VS9FdavN3PZtv385/afFzpbqpCgije28BrXErOE21sUb0IHCzhYTZusPyxTunnNeIsCdlVNmYKCVmSj6j+GDsm/KwhY+4hJbKAAv1gOQrzZ7YgxlUQQxRvQWMUTzWORLa6H8jrufiaHlesrbZAj3uwqWDaoyIKdojbMeX9Yije7iRLLk4mPpOLNyWrqV/FmYzVtjOKt9rgegqbngQcw+PzzKG7ejLc+9Snb93FWU3r9BMUbfU2EW3EF2rYnb30R2T/+GKWdO1HYuBFrrroK3X/+M4CaCkvNZjlVhGhlt/wbbDPegKJGibeRm0zT8aSeRb3b4giwXjMaT2A4KN5yb76JTd/7nqUSqV/QXEAnq2mu2JjNjVUbSvj67/vxj1cq/3aa5yQW/vAEMv9h7V02v2F2K5GMHlq5UnpYNn6rguLNb1SA5bg2/X98/Hg5OVso8Iq3OjeHKWifVrS5H+VVTUM7BVtw7SIqxZsXqyms46fYvko7dpjPicSb13nglp/8BC8efzx2/uEP/HcJ439+/Xps+t//dcwnZIq35KRJ3DyS/XuZFVtJpbj2nSizjDebA2uaWQgEqNdqaq94G00Zb+UgVlOReCuVYOi6e3EFajV1y3gTiDdT8WZDvIltlmYSAiEo3lCbq/Y99hheOvFEbPz2t+WfoeRtqWRm97Y3KZZNb2BM8dYoNCDGODr84Ac/AACsWLGCe/6WW27BueeeCwD47Gc/i1wuh4suugg9PT1Yvnw5/v73v6PFYUK9p0PjLAnR7ICJi9nyrl1IVHcSPH2eqAHibW1oXbYMw8LEzsmqYNn5zuVqJaZpSLODzVhc9AaxmlKwIhReFG9iaHpYoAvgVKKmiJFZTTskxNuCKeF0KeYuePWaiIq3WHu7eQ0DKd5siDdfijcZ8UaOW9y2Dd13343WQw5Bk6T0eL2gC3vZBOoPT+bw6KpK+7vh3HYuz4uSMo0mWYDagkJVAZCvVMIsruBz4SbLiHEsrsCspiNYXMGpqmlGYtl0qnKaGkEylvUvMbU+goaOCwUHIoX9bko8zi+YhoYqypdq23EqzkF3zWVthGW8qVoJJ97/RaSKQ1izaSUSEyag5+9/R89996H1oIPMfiwxcSJiZLxxU7zJgpxVXYNuAEXy0kjaiaitrh4lo0iYiZBdM6nVVJLxtuaqq5B/803suuceLK1WrgsCuqAq9/XB0HUoVSW+qipIJyqK00Yp3r7950pf9Na2Mg7dK1X3vI6rElodn2XKC6NYrPSlgt079/rr1vcaRm2sz2T4eyrkjDcGOqfjiJtCIbqMNzItslvcygjyRmS8Ba0m6Qd+rKbc54Qxmea7JadN44oLeVEBGbqOLT/8ofwche9ae/XVGF65Ej333Ye9//QnSy64ns+b402is1M6HrA+PN7eDkVREMtkoPX1IVHOI67Csplv928JtbgCZzUdPUSLFoLVFKhWKqUZby6KN7fiClp/PyfMYOtUNZ1GfPx4y+fFcdlCvLG20d+PnXfeieySJWhdtszxHCzVuKtt9a1PfhIAsP2Xv8Tkj33MUlxE3Eg44R0Z/OX5HE7cP4O7nspZYg8K4e01jMEBu7XizTAM6X+MdAMqqrdrrrkGW7ZsQT6fxyOPPGJWPR2DHCOheKNZCV5AFW/x9na0SDoup+qm4gScs4m4KA0Y6sl4Y5ZbCl+Kt5CLKxiGgXuezeGOx2oDVqX6UQWs6qCb1XTBFJsStj7BFlGM3BB3SbnqZ3USb6qN4s2SnyVAtjCmO3BrrrgCW370I7x+/vmumVNBEHcprsBINwB4c0uZu3YZF5JFNww8uiqPf75WiOTc7aomh9ndhKF4K2zdahtIxxYQajZrqkFGnHirQ/FGJ+iJWK3ISyOKKzBrZL0ZQ7RQghNY363E4/zCb2iI3y13UrxRdY5M8Vb9t6SKg0gVK/3C4PPPY/Df/65+mYaBZ581+7rExIlc3lyw4gqV608J1bIG9A/reOr1AobyjWXhqOJNLDbh6ziiQl24J7mNFKZ4i8VMe6RdxptRLCJfzYMtbd9el/WUu/c1zbIxk62OpyOR8VbWDE4VHUTZJCPeZJsVerks3fSQqRYpQaem09w95ZZx6HiuVesoADTttx+6LrjAfK3lne80H3OKt3w+woy3Wtsv2Rx2xBRvdbYLL9A8Wk0psQZYx+QieT01dSqvavVAvDmNz3qhNtcpbNlibuQXN2+2KFgBfs2SnDRJqoCmak6gtpGcKOXQKlkD2P1b6mmLYmZ0M7GajmThHRFBNgZkxJteLHJqWanirY6Mt3hV8QYA4087zfJ+y7pQbNPVc978/e9j8/e/jzcvusg1SsEoFrnOwG7DQwQlAfViEcfsm8Y3z23HUUvTUoHHmOKtMditibcxRINGEG/ixIzm3HiBSLw17bOPpfKl046phXiju9Xk2E4DnhfFm1tVUwo/xRXCznh7Y0sZdz2d45R0dGdMpngTVXsTW1WpCs4vDF2vTVhsrKZqc7O5sg1kNbUZmNn3lLu78e+jjsLqK66wPYab4o1l2pgKgJBB7023CdRwweBJFjLoNqUV00XEFG9Pv1HE7Q8P42cPDOGNLeEXjKBW07iLci8owsh4Kwq7lRRsMq2oqrl4GHGrKVW8SSZWms4rHOyIN6Cm0mhERhhTRtWbEWn5PWxIY1PxlkhwxLs2POydeKMKB1nGW3XxEC/z7apEFmx9jzxiPhaJN1mGpOzfwJ2TUXmO9tNlzcAP/zaIn9w/hFsfalwGZeW7a4/jdYihLcSbsLixsxaxOYFJvLmoG/Jr1gQ+R3FRbymwUL0fG0G86bqVYK9X8UYXcZqL4k1GRJd7eixtVlRCJadMMYmZvocfDlwlWswUm3zBBZhy8cVoP+YYdH7oQ+ZrimA1DauSpAgu481PVdMGrIPLIdnBnWB4VLwV1q/nP+egeEtNmyZVtTpBRqDVDqCb7ZP2ywCkNnRKvCU6O6XjAWtD7DxZ245rBfzHoTwByZ2K0PbqId6Swl54Eyn0MrqsprXHXglgWeErUfEmU63T5+jYMumssxBrbkbzO95hPmepakqcWVMvvhj7PPAAxp18Mvf9FCKZzMaqnXfeaT5nl3/JIPaneqFgWd/K+ivZRgJTbmZTY8TbSKHuVfKqVavwhz/8AbfffnsY5zOGUYBGWE3DVrypySTaDj+ce4/hsPC2I970fJ7rzJ0mX5bXJOyHvdXU+ruyAdGLMqB3SA9VibRyvfXfSQdoplygGW9ixx2azZRcNyadFq2majptqUjmB9xCjUyYKMGnDw2h9777LFJxBqeMN/HahBnizUAnyW6VC3NFnct4o6SMqihm7gdTvP328RqR8OBL4VX+Y6DEW4zLqguvTftVvLFJvprNmgt2u2vP3sfACJrRrngDeLKN2t5Ewp/1/Y2wo7Cus96NHnGhJtpAtFyuooapfqESj/OB7j4UbzRnUragY4uHmGavxOh9+GHzcXLixMr3VSfGrlVNJWNTTK/8u+i9XtZhkucvrGmsl6TEFc0IPpewZLIK7Z7ed/SameH5Noo3EbIqil4hku6WnLfqeFks22ephoXBvNVSXrfijSzi2JgrJd5KJXnfaxgW4lMTsr9i2SzGnXJK5di5HFfh0g+442YyUFQVXR/+MOZ8/etcNhNVXxmRKt5qj4uSw+qGIa1gKhKoUYAq8CJTvDlkvKkOxJvFakrG4+TUqdx8zYvizZF4Q62f6Hv0Ue55GSFPxQJJwWqqDw9XHFjVc2LnaW4kGwaWTra/tmEq3uiGWjLOqy93++IKkg0vXSTeXBRvtK/qOO447PPgg5hLMtPK/f219WIsxm2OAZWoI27d4NFqyp2zyxpGfN0oFCzHlUVPcAU6hDYlV7xV+qIxRIvA09xnnnkG++23H5YuXYozzzyTs3c++uijyGazuPvuu8M4xzE0GFqAnQe/EINz/Sje9EIBhQ0bAFR2LpidZMYXvoCZX/yi+b4gijdxYuiUG+FlR9SP1fRdCyuLBNlOhIiSFm5WDM35YqDVj8ziCjbkDRCizVSYNAOSjDdCvDkRrOYx83lsuflmM9Cctj+Z1VT8rAijXJbutpnh7AIpFwXx5kfxNpAzkOOC9PnX2fUfyFUI3SGycKOW47DABndVUbgFeT3qKpHs9Jvxxq6RmkqZpIrTPU4XEKbibWAgEmuuHSwTctIQ7Ig3akPc0V/p7OMqzOBdBta+GpERRttDXcdxCDYefu01vHT88Xj59NNNokbMeNMGB3kSxyHjLUEsJ7KcGKbkFBVvFLR9pefMgRKLmTlvrsUVpFVNK88NFWoXbWSLK9Qe15XxJmazCdeZI0vJNWPjhl4N/HdTvIVKvAn2IVrZNBdxzptoD8+XjLqdDNwirhrFILWaFou2fa8sY4+BjfWTPvhB87ntv/lNINKBziFiaXtlUeMy3pwVb/TaUJKuEbcubSuyeWAYMK9zLGZWhWag/W9eJN6EuRdnNZ082VIcww2iClV2nuWBAQw89xz3vCwvlNv8HzeOJ3OGh7n7xVS8ucQTMIjzjrCspqmEwm10Oo3tfcM6fvbAIP72r/qyFr0iSNagzGFgFIvQyfNuGW8UjKRXm5rMHeFyX585vifGjTNzO7nPkTbNkfeGYat4o/BLvOnFosWNIZurOil47daZdlb4MYSHQL3syy+/jKOOOgpr1qzBJz/5SZx44onc64cddhgmTJiA3/3ud6Gc5BgaiyAhl76/Q5iYFX0Qbzv/+Edz56r5wAPN5+MtLRh/6qlIz54NwLkz80q8+bGaSt9jQ9yJkv53zE5g0dRK592aVXHcvmmMa1bx0eOsgwZDmDlvwwXrsajiTbSaJmLWf0PYhRUAYuerU/G29Wc/w5Yf/Qjrrr0Ww6++6lpcwe58GOxyABkZJ6ueFzb8WDR7h3TbqqYA0FJVvJU0oFAGt/ve5IEI9gtT8RYTqrPW06QF9jGo1ZQSb06gQbZMZWOUy5HYiu0gZl3RPklWXAEAugd0rNpQQkkzsKOv8vmJbSpUdeSIN7sqt34hXnNKvPU+/DD04WEUt2wxSS0lHq/8V+1ftKEhzt4Wd7Gasj5IlhPD+kcnxZuJWAxthx1W+VyVeKsn422QFMQQFTaNJOJCq2oqjstOVlNyzUyraVXJ7qaKyVXz3vzC0DTLRoyoWKQLnajtpv3DguKtGKxqIIWoqNBzOXurqR3xJo6LkrE+PWsWWqv3QmnbNmz56U/9n6vkuDKIVTFFxVtYmygJLuPNmXijG1GNyHjrJbElsqJfYcAsoCEhQSlRbsnDImNpaedOs8JosqurMgf0azV1ydLSCwX0P/64ZS4hs5rS/jne3s4XVxge5toSm1fGPFbtDbO4AiV90wmFI7WcxoJHXi7gn68Vcec/c9jeF03eBL0XAineZOqxQsFV8SZ7DiCKREWpjcM9PSZhS/PdKDjlJekny93dlvmg7JzdnBLiGsQoFi2KN6nVlGa8Ca/bFfETc4DHED4C9bJfrKqKnnvuOdxwww04kJAfQKXRHnTQQXjmmWfqP8MxNBwNsZoGVLzp+Ty23nKL+ffk88+3vIcSMnYTJ7viCqJywWmiLpP2Wt7jMBmY3VljHM48mN+BOfOQLP7nnHbsO8tKBDH0hVjZdEiyA08z3koC8cY67RPfUfmtF06JY0JrOPJIzpZgU9VUCUC8MfQ9+qjtwCxTvEkHSkK80cwH9l7ROh2J4i3mPIGiqrbeIR150lxFNZRTZdMockDYJEtV+D6mHlLAkh/kt7hCtR0pqRTipHiHHeiCzqkyW5RwynizU7x9464BfPvPA7jtwSFTkTSpzXrvsuvSCKKGDTl1W00dFG+yfoKppdn104eHucWZU7EGRVHMe1+mpGL/lrgH4q11+XLTwsK+UxsYcN74kRFvWuX99J4VJ9KNqqoJ8ArWMBVvjsSbRPFmFAquAdZAcOJNNkaIi3y60In6GvQLm3KFklHXhqqhadKNDdn8SLSapqZPNx/LqskzUFJm8nnnVUteA1t/8hP0Pf64r/P1TLw5FFcAEFr6PP29Ze5RjfSxlChpBPHWR9pKWzbaqqZuxJsISlrs+N3vzP6w44QTAMC/1dTFvq8XClLVq5R4E+NuBMUbJc+kijeHeWtUxRXSSYXb6HRUvBFCVuxPwsCfnh7GJTf34O5nctVzIetOjxsDnjLeXKymFNxmapV4K23bZvYDdK5PoRDFG73uotoNkM8P3cYmi+ItnzddXwxuxJtRVX0zZMhGEG0ThbGct8gRaJr7yCOP4H3vex/mzZtn+54ZM2Zgy5YtgU9sDCOHhhRXCJjx1n3PPSY51n7UUcguXGh5jzm4aZp0wDI0zZL1YKt4c8p486J4cyBc3n9wFvvOSuBjxzdjomThC/CqJhG9IRZYGM5LiDfSMRdE4q362unvyuCaD7bi0lPtlSF+wRU+YFVNBUIslsl4IlhlULNZvqqpTcYbg2ygpJOu5JQptffaKN6iUEHRtiGbQFEFk0XxZiHean/vGhBsShGoM2hV0wSX8Rb8mPUSb2yyqwYh3ojKJmggeBA4ZbzZ7WgyPPVGbYIoJd6qTzVE8VZdeIqqO7+wZAKRia9sYWYSb9U+QBsa4siBxMSJjt/HdsC1/n6LSoGpimRWU7GfaT/66NrnaGVTh7bkVFyBQlRXyTZZogJTvMXU4NfW0DRrBIRIvLllvJXLrtXrgApZ5mZHlUGmWLDLeAMaoHiTWE05xZvPayGbB2m5HHe/sf5QLxa5+R1HvO3YgaGXXzbHTzvirWnpUky56KLqlxvY8LWv+RrjxeIKdhAVb2EqjShiLmM1p3jjrKbR36t0A1cWgRIG2PWISUhQJ+KNtS89n8fO3/+++oEYJr7//QCsVmERm777Xaw85RT0VjPb3BRvRqHA3cusny5u2WIhP0TijVO85XJSxZtbQR7zPESraR2FPmjGWzqhcG3Rab5F+4so5gD/92weugH8uUq8cRmU9WS8UcVbLGZxywAOijfSPsUsN4CPl+A+Z0MAi+QYICcL3bIHxfWyLlO8Sfoqrj8zDG4jYRwphNdJ5n9jBRaiR6BedmBgAJMmTXJ8Tz6fhzaaahWPwTPKnOItmu+QKd68TKzyb71lPmaDrwhuF9Omupa4lWgSJi4TfAq7wZBO/J2UTvMmJ3DJSS04YK69qk1VaxUnRfSFajW1/vbUGlMsVXKY8oLiTVEUTB0Xrys4W4QuU7yJgbxE8Qb4I7bUdJob/IIo3uhAmZo2zfJeUcEZidWU/OayAPwiUbpUFG8OVlOieFu3gx/A8xFIz9ntF1OFIhFhKt58ZLwZmlarQJZOI+HBasplvJF7vpEFFpyIt7asCq935aQ2a0fPJr+6YV8dNCywy16vwFpcONMcFCfijeXAaEND3L3rRrzRHXBx7HAqrtBxzDHc3+1HHFH7nMfKprKxSdWtcy7x/pXFCkQFlhdTT1ZsubfXojzyq3gD+GqyikOJ1SA5b1IVg7CYyjZQ8dZnsZoKGW8+r4esrenUTheLmYtWo1Ti+t7UzJnm460//Sle+9CHsOrMMytEl6SQEkPnhz6E7OLFACoV4/0oiWXZcTKIGWFhZmtx36MoZl8sK5jAZ7w12GpK5pGRWU2ZmlymeHOw87P5866//c0kujqOPRbJ6vqTkipi/17atQvbfv5zFLduxerLL4eh664Ehy4Qb01LlpiPRdWbRom3tjZvijeXtYn5WqjFFWqP0wnFc1EuSoRFXeNDN4JlUEqtpsWiOb+PNTWZVTwpZLlvUFVuQ4wp3ijsiDeqeKN9yOC//mU9Z9lGvtAu9VIJQytXmtddajUV1HRuVU3ZcRkO3SuF5fOTOGn/NBZMrY2HxcbWX9ojEaiXnT59OlauXOn4nueeew5z584NdFJjGFnwHWBjrKZGqeQqAwf4Dig+bpz0PeIupgjZzjfrDC1W0wDEG12sORVn8Aq7NW+YOxOyhcD4Fn4XpFAC2Lvc1DT1wG/GG+CP2DKE8Ge6UJNmvEkGdyoNpzv6LNRVzCyMgnhz2rnUdIOzm+VLvELSSfG2Zht/sCjUGRpHvNWeD1Xx5uM314XdaZniTVwg2FpNG1nZVCQkyN+tWRVnHJzBvrMSOGqpddeXorPd3moKRK96o0RsPRAJeM5qKiPeqhNmk3zXNG6XOulGvDkUWFAVQIFV8aakUuj88IdNQqL96KO5TEFqb3XKeXMqrsC9T7h9G2s1ZZmgdeS7ScZrcUFhVxCDjhtF4sBITp5s+31B7KZeFG98xlu0N5TFalqu02oquXd0onhTk0nzXjKKRW4MT5PxkaHc04Ohl15yJMgURUGakHZuaiXx3MzjOijeFFHxJvQfXuJEvIJlssv2ligBwineGmE1JfOCtgiIN0PXzX5ZG7irQAABAABJREFUpnhTk0kzl1kEux7DL79sPjfhve/lPiu+l2F41Sru74GnnvJUXIESI01Ll5qPReKNrVfUbBZqKlVp/1VG2zbjzaaapogwCeCOJtXcWFs4Nc47JZwUb6Shhl3ZXNzIG8ob3Hd4zaB0s5raKtvS6doNyZ7LZDiSTqZ4s8t449ph9bobhoGBp54CULn+KlHVV06uNucSx4p111yD1849F2uuuqpyTGEuqw0OcuMZIO+rnJSTzWkV5x/bjNPflUXKpfjLGMJFoF72lFNOwd///nc8+OCD0td/+9vf4sknn8R73vOees5tDCOEkbCaAvyOdN/jj2PXX/9qCQ8Xy8TL4FY5SEq8VSfOMqupndrDbjCkxJuX3Ak/aOZy18I7Lq2Ct3h6HKcemMHkDp54y5H3REm8UVLMJN7icVDpn0qspoBLXoak2qWd1dSz4s2GeLNVvEVc1VTcuZQFpG7rJflfDoq3NdsFxVvIxJthGOYOqioq3uqY4In3o1NVY8tnqWVKYjVVs1m0LF/OP0dtCaNQ8QYAx+2XwSUntWDGBOfCJzLFG9++gp+jG2h7qLu4gnCflXt6zHtSSrxVlU8JouBnAd5KPO6Y8QbwE3FxXFGUSgW5uFY7p2mf/jT2+dvfkJk9G/O/9z3MvOYazKhOrs1jeiXeHIorOGEkrKahE2/ivW6neCP9uVfiTWYPcoMXFUMmWWvckWe8iVbTYs1qqir+qwdLK+aRTDQlmTR/a71U4sbw5JQpUomdoWmuWWy0H3ZTK3HnFiDjzYhQ8QaQYjUSssNO8RY24SEDc06kEtZ5QRjwYvtt3n9/6fOsYj3dlE+RaA9uk13o31k/zrDjD3/wpngj93J2773Nx3bEG9s0URTFJHo8Zbw1SPGmqgquOrMNX3hfK47bL825aJzmW7QiddgEsHi8gZzBbbp6VrzJKoQS4k2qbEPlWon9gkgKx2WKN7uMN0lxhcLGjShu3QoAaN5vPySqQhFtcLByPUlHQNuloevo+dvfAAC9999f+TcJbSW/bp1FDutW1RSwX49SO/LN9w3i1/8YkipzxxAOAk1zv/CFL2Dy5Mk48cQT8dGPfhTPPvssAOD73/8+zj77bJx11lmYNWsWLr/88lBPdgyNgTYCVlOgphIaWrUKb116Kdb+93+j95FH+M/RMvF2xJsLIeOkeLPkuwi+eO4lO8UbWcTp+TwKknyIoKAZHKUQQ8/ZQmBcs4pPntqK0w7McBL1QolXPjVK8RYjVYboJMuP4k20a+m5nK3VVJrx5ka8TZ1qea+lelsUGW/Uaio0UbGSIQBs7/OmeOsWM95CtpqKitpl82q/+YHz7G3Xbqgn441bHEiIt4lnnGGxHcqqmgLRFlfofeQRrP7MZzBUVZxbJuQ2fVXKYUGViAEdzdaOnm9f0U3CaHuoO+NNMrFklgyZHZ0Rb3Qxx9pCYuJEqU2FgrOaSsaVREzhiivE29tNYijZ1YXxp5xiqZzq1WoqV7y5S0ZHorhCwpn3dYSUePOZ8QbwObI0l9PyfT6UVeb3eyDeqOJtuMFVTQul2sI2iO1XajUlVU1NxQ+sirdYU5PUoqUNDroq06irwem6GLqOgWefNa/xaMt4A2o2el2ykUvn3JzVtAG3KlPCR20zBfwTb2zeRDcg6GYIR3gI/fuQoHjre/RRLqrG7vtYrqba1MQp8bi8UF03z4n212bOoY3ijZI9jhlvYjusU3mZSSqY3Rk3xzOmenPMeOMUb3V9vQWiqmogpwdad8rWkfrwcE1haUO8yV6zEHE+Mt44q2n12jG1GwC0LFtWi7MYHLRsCpd27TIFAsXNmy3HF9c3snbsVlwBsO/PkmR87hs28MCLBby4bsxzGhUC9bQTJ07Eww8/jHe+8534yU9+gnvuuQeGYeCSSy7BL3/5Sxx44IF48MEH0eayWzyG0YlGWE1lg06+avHYevPN5nObbryRe4+XncxAirfBQRiGYZHvAvZ2A1vijSzGBp9/Hi+feipeft/7QiHfWknVqVIdtjwKwzDMxRhdHNAJYKFs8MRbqjHEG72W1BbiR/Emq6TGha+SyZtXxRtdBMTHj+cyogCr1dSIIuPNIbDZSS4eV60KFKp4ExG21ZQuJmIKcMTeKRz/jjSO2TeFo/axXyS5Hle4H/VcDrnVq5FzmWwDPDGqplKc9Q8AJp11lqWyLmc1Jbuj5Z4eDL/+Ojb97/9i6623YvDf//bzz7CFYRhY96Uvofehh/DaRz4Co1x2VbwxUBJdxMS2mFQB4xYIHha49lCv1VRynzFSRNZfM+JNRsS45bsB/ETcrrJpjFhNnUgA8zMRK94aSbyxatherUPSY0jGa5Eg4arYUasp+b2Z+gCokJ52EC3DXiC1mvb1cYp9ulkVeXGFYevmCS1o4xfS4grDw7zVlCneBOJNzWSkShFtcNCVlOEUbw7E247f/hZvfOxjePXss6ENDXlyRojfqRcKoRMe3HdVf3e34grJBlpNCyXDrHYeWWEFD7Zfr8Sbkkxyx5Ap3voefxz9Tz9tsZp6qVBLiyvEmpu5TRH679AGBkzFERcTwOyEdSrevI7rQcH6YydFJW17YWcNihvD/TndVNXHVLhueDG45S87EW9iZVOxn7Ao3mIxzt3CfVZiNR14+mnzuZZly2rjkqZZNtSMQsFsD2LUgaFpVuJNUmVXWkhQnBPbKN7oWo9BzHoeQ3gIvA85d+5cPP7443jhhRfw5JNPYteuXWhtbcXy5ctx4IEHhnmOY2gw6PhUTyiyE2SDzsAzz6DrvPP43S2h4pH5OYEwoQiqeMuvXSuddBvFIiCZvOk2g2G8rQ1KMslN4krbtmH41VfRvN9+0s94RSshSEohefGL5ZqVrIkrMV2pgKTpVaspp3iLSAoJe+JNTaXAmqYfxZt4vTWieIs1N3ODvDTjzUXNkBg3DrGmJuhDQ5X/8nmryk7Yjd3yk5+g++67Me3yy9G+YoXtuTuBWQYMw5vVlEFUuwG84k0EPVauaMAwDGRTwa+/aGVXVQVnHCQv7+4H4sSjsH49XqkWYFn0i18gu2iR7We5jLd0GulZs6AkEjBKJUw880wkJkyQFvhgoCRNaedOrPnCF1Agk6M53/gG2o88MtC/i6Hc21trV5qGXffea7Hii38zOCneZDZToHFWU649hFxcAaj1JzLVqal4I6pVBjtbid17ypJxJR4D4lpt8iuStzLUZzV1X1wONbC4Ams3iTrmEUUhRBpwULypKh8dECDjLVBVUzpGxGKVSZSuo9zfj0SVPOKqmkZIfuq6gYG8OB7U7rMgczq7jDeZ1RSaZolykBJvAwOuBFmCKN6cMoA33nBD5T27dqHvscccizZQiHMIC/EWgdVUxnXQbptuikVdXIEW6Iq6oilgT4LaZWmyPlsj6jJuviZUNe199FGsFpxWsdZWaP393HPZvfZCfv166MPDGHfKKdj15z+bx2D3cqylxXaOSdtijBBvrO/RczlOgec74y3CdgjU2qKT4q0UYcabVfFWy6D0s/nm5kbxpXgT5ndicYUpF13kubiCoWkYqDoBY62tyC5cyH2fbA1a3rULajJp2SjWczlLW5FZpsOymjJs6RkrjhkVAhFv5513HvbZZx9cdtll2G+//bBfnWTCGEYeum5g3Q4N0ybEBMlvtMUVmNKguHkzBl94AXo+bynTTcEmamo6bbsrwu0qyYg3QY0EVCaBVBpMYbfrafd8vK2tQhKJVZYE+2EQRGE1pQqIrKBkS8YV5IoGiiWDs8dko8x4cyDezMcS4q20c6d0gm+pVDs8bCouY+Kul1fFW/WYajYLNZ1GvL0dpe3bUdq1q5K/IIAu+o1yGVt++EMAwOpPfxr7VwfoIIirFeWjOIHyS7xlUwpURb4oYGRb37CBq+/oQ0kz8N9ntmHKuGCraZodUa+1kIPD5LT/iScciTdLxlt7O+bddBNyb76JCaefXnleJN5I26HEW2HDBo50A4Chl16qm3grEcUOAGy77Ta0vutd/L/Dhnhzyu6hpeQp+OIK0RIFDHVbTSXkmkm8yTLeqtlTyRCIN7niTUGMZLyJRWJkoJtNMtKfIXDGW74xijdNr1WqC5rxZhgGpxwwn7epaipupHBKhGo7UFIpjtAx35tOV+YfQaymRPGWmjoVhfXrAVTUc4x4a1RV08G8YSmokS/WrKZBVKV2GW8yqynAW6Rj2axUPaoNDLiSMl4VbxSlnTsDZbxFWdUUIMSbVPFmZzWN9l7t5QorRDTX91joIjVtGlcMB6jm7hmGuQEh2v9UwWq68847Lccdf9pp2PG733FjfHrOHMz73/+FNjiI4VdeMYk3bXCwZlNsbrYn3kj7lineYBgoE7Kv7qqmISovgRr57qSopHPKRlpNvaqjDU2TEkm0gIYqCDco2g49lCvaISrgmg84wBRQTP3EJ9B5zjm2x1IExVt+zRqT7G0+4AAosRhPvEnWgi+/5z2ItbRYYk60XM66jpX0C5a+S9etxbfsHBESxdvmXY3boNvTEGiL41e/+hW2kbyMMez+uOMfw/jq7/vxvb8MNqa4QpX4oKHlRqmEwX/9y5Pizc8upggz64VIh7XBQY54S82aZT6266zsno+1tkqVU2EQb5zVNKQ54TBRQIjEG7OoFUr8Ln2jM94AfnATibe3PvUpvHTCCdj8gx9YjudkNbWEr0rIXCc5O1vAmdWvNA091UBU7jvJpE+0WdczuTcDm6uTlvU7y/jbv3KWnDYKGQmjKgpXuINC0yuTsIdeyiNXXcDdfF/wHLOo+hen3zHvEpguZrwBQMsBB2DSBz5QmzQ7WE0THR1mlawhMpkzjx9CkZWiQLzl16xB76OPcs/ZW03t79fpE+yIt9rjKC1PYbYHO2WO3Wum1XTSJEsAvBeraby93ewz5BlvQLxMLEceiDcuB8ipaIzkWsdGkdWULtyCZrzl16yxtHvAais37WFCXp6M6Ex0dEjJmNSMGZVj53KO+UsyUOItPWeO+ZhGDnCKtwitpn3D1pu1UKoVVwiymSqL29AGB82FHad4A09MqOm0t4w3GfFGM948Flcobt4cuKpppFZTxd7eN1JWU1rRtL0RijeHazHhjDOsny0UuOsiVpqk/ak2NCSNdWhauhTZhQu55+IdHYi3tyM1bRrXBujmSaylpTI+VMcFO8Ubl/FG5qv0PWbGG3ndqfhTlAQwUOsDyg6b99FmvPF/9w8bnNXUC+xyk71aTbvOPx8zr77aXAO0HHAA93py4kQsuftu7H3XXY6kGyAQwKUShl56yfy7eZ99KudC1rKyuQJQGUfYpg2DTPEmg9hHS+dCdlZTSRTJ9j7NsX2MITgC9bTz5s3DFkkW1hh2Xzy8stKJvbyhxCmpoiDeDE2r7Spls2hdtsx8rf/pp7ndUrGjYB2QuDtB4Uq8VSfyyUmTzIm6PjSEgeefB1CZ7FF1jF1n5ah4k0wwiiEQb82Z8BVvtMpdk2AhZLuvotVUppoKCzQw1S7PQyTeWHva+tOfWiYpogWs3N/PtT/uNYm1SyTe9FLJ3M1iCwOaUcIqEnGfIe1QPJ64y+sHbHewrFUI1BvuGsCd/8zhF49YyUIGu2vX5hCuXMkIqv29sTu4DH0kiDdxMiNCl9hCRFgUb6Q9KvG4ScJKS9yHUFxDlj8p2vC8Wk3ndsZx6jvTOPEdaRwwV/7v5Ym3xhRXCLuqKeCieKuqdJRYzJL75YV4U+Jxsw+wU7zRqqZ+iTfPOUDVRf1oynij41M8oJKx/4knzMc06JyOvYZh1BRvon1I8nvHOzqk4zPN7/GreqNW08zcueZjqq5PxBSTVInyGoiFFQC+/w7LakqJBVHxxhFvmYyUZLAo3urIeKPIr13rvbiCoHhzKq5gGAY23XQT1lx1Fadm8oraJpn1NfpcgireIrea1tqK0/hfD7xYTQFg0gc/iPHveQ/ajzmG+yxdD4jEGx2r+598Ujr2ZhcvRhOpTgrw7Yr2EZQQYUQJayPcHM7GlWNHvI1kVVMZTKupZ8VbuP2VGJMzkNN9W025XF7yu3ol3hRFwfjTTsOSu+/GwltvRee551rek5gwAalp01zPRSyuwIpfAbVNedUD8SaDPjzsiXiz5Ll5KLbAIMt403S+INsYwkOgnvYjH/kI7rnnHmySZG+MYfcHHYyjsJpyu5HZLFoOPNBcOPQ99BD/XmHnmf3teTIldFh0IE90dnI75GzQblm2zLKDIYPd87HWVqllMQzFG81gC6u4gpvVFJAUV2iQ4s0ur0ck3ihExZG4IC5LJlfma5JddXEyR9/DFt10t0xWlYiGvovH8xL+bwc6mf/HKwXzGuUdNurtbIfH7ZtGS0bBjAkxHLtvGoun17bec0XDMQfOD6KysjsSb26Kt4I7OcKRwOk0FJUfPp2IGssGQqmELT/9KXb+6U+O50UhU/6IsPsNxGve3qzitGVZvPegrK21g7OaRhj3Qe1UsiIPfiAjOJl6yUnxBlhz3rxYTYFagYVyd7dZmYwhHuOLK3iymnpdnJHxh/WTo4l4C0Px1v/Pf5qP2w4/3HzMEW+FgtnuRcWbV+JNTae5auRsYWQYhqeiSJR4SxPirSg4Q9i4GSnxlpMr3lhl4iAkqGyuQ8k1hRRXAGpWUyWVghKLofWgg6yfFxRvMhdDLJMxF9WysRmobjaQfiO/erV3qylpH0Y+76g0Gvr3v7Ht1lvRc++92PiNb9ge0/a7nDLeyJPUlq1FbTVtdMabk/owHsfMq67CnK9/3bSU6oWCrboMEO5vMki1LF8OJZFAxwknINnVheySJdznEjbEG50bxgXizbBTvFGrKVUrSxRvXN/uVNU0YsWbWVzBYfOebpz45d103cCdTwzjV48NSbOoZRlvZb9WUzLWc8WtCEHvJNBgiLe1oWnJEs8FHWSgxJtOFW+xmCnicLOa2kHP5z2NQZaCHJL5jt2aVWY1BcZy3qJCoJ729NNPx/Lly3HwwQfje9/7Hp5++mmsW7cO69evt/w3ht0PuwZrg3EUijdq44hlMoi3tyNTlYKL6h+qDqJV/BwVbw4Zb2JlM5F4AYDWZcv4MuV2xJtdcYUIrabppGKWpWcDmq4buOkvA7jyl73YtMv/AE0Vb1nBbsiUMmWNzwaKknizy3hLz5sHoEaY2k3imEpCz+fR98QTFtKFEnFiOxIzBQGrQo0O7GwCl5gwwbQqycBZTYXcJrcS905gk5Ri2cCDL8lVVeNb+JvYjnh718IUvvXhDvz3+9vw/kOymNBSk0bki4bFHjCYD7YbRidxYfL6TpPT8q5dlt+d+ywl3mzalVhVV4QTUSMqsbb+9KfY8oMfYP2Xv4zh11+3/RyFF+LNLucuKRAf7R7yfKjzcnexmkqLK1THAKfiCoA1582L4g2oXXejXLYUVYmrCuKaT6upx6IxdFxinxlNxRXogitIVVMtl8NgVYWe7OpCZv588zX6by8Tm6c4nkuJt3HjLASo2tTEV6jdtQuGruP188/Hv48+Gn2PP+58rqxvicWQnjmzdhyBeGPkRu+w7pjDWQ/EiqZARfFmWrkCKN6kVlOqaksmodKMN6ZArI6vLQceiK4LLsD4006rvWdgwJMllG1u2Sneyv39XOZRaedOTlHiJ+PNKVuL2hh3/fWvlQwlH4iZVU2t152S1DHVWR0XJjir6Qgr3ihMsqtQ4KNnhPmZVJ0ei2HO//wP9nvsMcy+7jooioImgXijFmbaBkSrKX3d1mpKFW+EXJFaTV3ypxmiLq4QFxRvr20q4TO39eDHfx80N4/qyXhbtbGEv72Qx0MvFfDMm9YxWVbVlH2HZ8UbLaBCNlxKHhVvYYKz2ff0IL9mDQAgM3++2X68WE1l0IaHvRFvHmzytmIRmzFh064x4i0KBOpp58yZg7/+9a/YsGEDPvGJT+Cggw7CnDlzMHv2bO6/OSTrYgy7D7oHajdbkEmaGzgrYXVi1lrNeXN6r+ayO2oe00HxxhFvnZ1S4q1l2TJLlRoZHBVvkgl/GMRbIlarEMcUb8+8WcS/15awvU/HLx72l00DuCneao9pdkwmFR3xZrcLPuWiizDjC1/A/O99D0osZk+8VVUSqz//ebz1iU9g+JVXuNfpdYsLComuD38Y8XHjEGttNe0I2tAQp2QpkQVAnCzWqN0UANoOO6z2b6I2BWGnMwzF22DesM11O3of/nfyajWi5Gq+ZKAg7FJu2BlsUKbqqTD7F9nikCLvsBHkW/EmI94ciBpRibX1Jz8xHw88+aTt5yjqUbyJRQu8LLLiDSuuUHus1ku8OVhNXRVv1UI/DF6JN9oHiOra8a0q4mX3tsWdUyplKnj0XA5GuYzBf/3L8m8zr7WimMeNGaNH8UYV2UGqmg6//LLZV7cedJAlwJqB2q3FogliGDsgV7zFBOKt3N2N3OuvY+jf/4ZRKGDXPfc4nquZMdfcjGRnZ+3chEJOMydV2pthAOt2hLuYZtjRLyHeiobvhS2Fm9VUSaWkJAjrJxVFwZQLL8TMq682SU/OaqootmpQNg6X+/qk/ZtMCTe8alXtHJxUVolE7V5zqWoqfg+1k3kB607lxRVqj+Mx5/eGCb6q6cgWV6Bg/ZkuEG8Wq6miWNpdywEHVIqs0E0VoW+nZJkSwGrqRfFWFohpQMh4c1C8WfK6wraakuIKmm7ghj8NoHfIwDNvFs15ZLmOqqY9g7X3y+al4qZDpaqpP0UuHQ+5eTyZYMrWd1GArheHXnjB3Agws58RnHjTh4cd8wDN93mwmtrFJnW2xcyM54MW1u6nLWPEWyQIZAA455xz6pJljmF0QbTHrN9Ru9laM+HvgsmshC3LlmHbbbdZ3ksHJ46wcyLenBRvZAc62dVlGdBSM2ci2dXF7d7aLejtiDc1mbQl3gzD8H3vnHZgBnc/k0N7k4KZE+NIxBUUyoapKFhHrtebW/0P0LS4QpOluELtbzpJi7KqqVl9LpHgJk/xlhZMeO97zb/tJnHDq1ahtGsX+v/xD9fvEndQExMmYMmf/wwoCt78xCcw+OyzgKZBz+fNSRXdeadZIc3veAe677rL/LvrIx9B32OPVf5NZJIQptXUi5JkYquKjiYVPdXdbapodQLNgmOVbSk2dmvYa5okldUF1D4TC3EccZucFtavR9PixdLXuIw3O+JNsDqL8Go1tdgRJRUWZfBEvHn0hHoJ0m5ccYXwrMcyqykbN6QZbzaKNyWVstgW7ZAQiDea8XX68gxe+2mtXXoi3hQFaiZTyXbJ57H+K19B95//jNaDD8a8737XfB8bf2g/6UXxVixXFlVBVGh+QK1KQaqaUoVqcupUbkymY+/wq6+ajzNCiHrLO99ZWWWS+yIhI96am/kg/+5uFEhkgJ3N0XydEG+xtjYoqRSMQsGieJs9KYbHqpzQ2u1lLJjiv/90w1ZiD2rLKugbNjiyNQqrqSpYTc3nZQUTWlpQKhQq17faF6qZjO28yBxjq9UtxUINTtdGSaUskQDc64pSqWZbrRwo/hvomCIq53sfeMAMTvcCs6qpi9U0piqVDQgt2n537fYy3qrOF1Px6FwMXq2mFJR4c8p4AyptTyN9e/tRR1neY/ap1bklp3ijBTaoG0eieGPzd1vFm1txhUTC7I8c8zsjV7zVrvVTr/Pfla/GldD8N7/tkFpJhyUKazGfmsbYeN2MpXM2u7G6UYo32m/QeRpVWnJWUxvireO449Dz979zzzXCapqIK7jqzFZs3qVh4dQEnn6jCE0fs5pGhUDE26233hryaYxhJCF2qoPEUjiuOXziTbSaAkDzfvuZk1XuvWTyHahEvIPiLdHZaQnTZ8o7MSxTBqfBUDYJ1XM56ENDvndhTtw/jekTYpg+IYZ4TDEVS2zwGiCZLqKlzAs4q6lNcQWALz0facYbqXjrBKdJXK+QFWiHOMmGMI/L1CNkoNSHhqTEG10EMKWkUSph/KmnIk0q43JWU7G4woYN0AsFT4tyEV7UC6mEgo8c04Qb/lRZHB44Tx6mL4JaUvNFmeIt2GRwJIorAM45b0YUijdFMReWtA+RVa1yg57Pm+0u0dlpWdAzeCXevARp02tTjnD+Refg9fBuhmGY91mstdUsgKJVF0x+FG+JCRM8b5DQhRddbAHAhNYYdqZKYCOel4w3ADXiLZfDwHPPAYBpu2Rg7Z0n3rzdk8MFg6uQHQWoYiIeYFwSKw1zYzK514dfe818TIsiAZWFessBB2Dg6adrz40bZ7nHZYo3mtXpVFHTKJdr1sqWFiiKgmRnJwrr11sUb7Mn1X6INduiuam29laO25JRMK5FRd+wxi2iAxVXkBFvQng8vT4MYvEioPIblXbuhDYwYJJiTmM5zeMq9/T4It68ED1qKlWZmxUKFguQG/E29bLLPPcTjP/TdFg2YMUxsbIBYXD5l2Fi16CO794zYFr+li9IRSamCKJ4Y/2kUSxy7UymYFVSKYCtE1RVSrwBwPwf/ADrvvxltC5fzvX1duO9SLwBlXmCkk7bnlPMpbgCe49osxYROfFG+oC7nxHWSFqlfdZjNaXE25BEYS1aTSm8zgntMt4o1EZZTSV9H8ATb/RcNJviLDOvvRYdxx2HoRdfxLaf/xxA8OIKfqymADC+JYbx1XiZrvYYNu3SsLVXg64bFsfEGOpDNKb+MexWEIMuKdojIN5kijc1lULzfvtZ3kuDkz0Tbw6Kt5KgeBNJsJZqhVW7ST7373DoxOwG8yCVTeMxBfvNTpqdYoJUsgR4orQ57f96Decp8SYo3gjx1jfEpOB85a2wwWTVTnZiwHkSR0O5nWA3YAM88UYJYLoIo4q35MSJmPvtb2PKRRdh2mc+I626CliJN2ga8uvWeTpfEXEPlzsZBxZOTeCiE5rxwUOzOGSRt8W/aDUtCs09qNU0TGshhdvkNHKrqZDxlpo6tWZjIsenpeYBZ8sJA1Xq0gwpEV4n6F6sprERsJrWYz02ymWT6KTKCGbXhGQRyxFvpHqZV5spwBNvYsYbUFtEKSnvi1tTZZHLmf2Fns9zxKqpeIvHfRNvNK8zKvBWU//jhVhp2G4zLMcUb7EYMtUcUIq2I47g/o53dEBRVT6zsanJYhmmFlYncqfvH/8wFXVss4UVatCHhrixY/K4mLk5tmZ7+FbT4YJuFsea3BGT5nkGUZXK1KKGoBL2qngzK8kPD5u/jdN8jlMiSnLeRLKb+y4PmWKcosmG8DB03ZI/XNy6Ffm33oI2NOQ4tpjnQu59sTstc4o3oo6LSPH2yMo8BnKV75w/OY4PHuoeQh8UgTLeqP2TzJllircysfe3vPOdFrs5Q9OSJVj8m99g2uWX234XhWg1BWr/Ftbm1KYmjnThFG9C8RHzPdXfwGvhHNnf9YL2AaIVtFg2LESb7nP85xVvEuLNId+ybqspwUgo3uhzNPfZTnDB+rdJ//mfUBMJtK9YwRUD0apqXDdYqprK8m5tRCQimO1c0ytz/zGEizHibQy2uw+tGSXQhNkNnOKNDFSM9LK8vzpA2YXui6ADpeZUXEHMeIvFKtYUCFVqgijebAbzUHLeqqQXs5rSKmZNaf/Xiw6MotU0STZy2LuizHcDahMSt0ma4kC8ibludpBN5Bg44o2QZXSiJ+6+t77rXeg67zzEstnKYrjKJNCBU1byPmiBhZiH+5ORp++Yk8TR+6Q9k6bUaipTvG3p0SyWAS+IqqqpXWEBBlFpRsERbzbtyq/iLdHZyVlmGIZISDfgTfFG+62UE/HmVfHmQe1Ed8UbZjWtR/FGJ+KEDNOHh6UWVIDv5+Pt7eg44QQoiQQmnH665++lfYiMBGDX3o+ilbUvLZfj7E+0rZiKN45483b9G1FggRZXCDKPEFWostxVvVBAbvVqAEB69mzpvdu+YgX3N9ssoe+NNTVVlFVVcqS0axdvNe3ttQ3T7777bvPxuJNOAgAkSYVUqnqLqQpmTKxcq+4BXVoIoR5s660dr6s9xkVF1M7B/3GdlBKAveJNSryRORfLxnPaRIsLijcRjoo3D0SPqa6SFVeo3mOl7dulitncW29h1RlnYNV734ue++93/B66ySQ2JV7xViugFVW/S0PTzz2qKdKN1Hoy3gD+/nGarwEVq55f2J2TI/FWJdXEYlycS4OMxZzirTqvLPf3o9zbizcuugirP/95bj3RSMWbiFLZsCjc/Sveao/lijf7eWOg4go2G+gjUVyBId7RwW202Z3L3G9+E0v+7/8w9dJLa+8l7UgPSLz5sZqKSJJxw0mdOIZgCFxcwct/c0nWyRhGL2TlngGgIwK1GyAvrgA4FFhgO/4Si6oM9DVWAtwwDOjFoqkcUTMZxFpbuUlg09571wbbgMUV2CTObpFVEqwnQSAWV9hJwpTtrqUTKPEmWkhlZaZFci5MGIbhmXhzmsRRZWN8/HiMP/VUNFdJVQqniZxK2sbqT38ab1xyCUo9PdxEny4KpMeQEC8WxRuAAlFX+IEnxZtNFVM3ULWELONN03n7sVdoI6R4c7KaiuoaGRKTJiGzYAEAoO3QQ62vC4q3ZGcnZ5lhGBQUb7oXxRsh3tIO1XOdfoMPHdmEmAosn5+0WMplaFzGW+1xPZYGLvOFKt7yedvNE0XwQM6+7jrs+8gjGH/yyZ6/l7OaShRvJvFm065kYGOYUShw4wzdtGLPq8Rqqhg6FA/kWyMKLHCKtyBWU4EMp78fU4Dk3nzTXOCKNlMGWuwAqG2W0DGabZSw8UC0mkLTpPagUne3WfE0MWmSOYdJkO+05rzVfoy1IaveaCZPl43iLSyrKYWSTErbtywuQpbH5DTWUwWTlHgjKjjRWuaFeHNUvFX/3XTsoOe/7bbbzM3UNZ//vOP3cP2pcPuJBYfYhlRUVlPWTpJxYEJrtPqLejLeAH7OLKs6T1VFIsnuBXSDlMKOeDNIXyCej8xaDfBzimRVWW0UCnjrU5/CwNNPo/f++7Hr3ntr3xN1cQWHcbZYtmaw1ZfxJiHeHDZsvWaPesp4G4HiCgzi2sLuXNRMBsmuLo6k41xbDlZTzlVTp9WUgkYMOZGkYwiGQD2uruuVzBThv97eXqxduxZr165FoVCAHnVJnjGEArsba3xLA4g30sFkFixAWlIJly02uAHcIf+LU7zlcjA0Das/9Sm8cPDBKFQtfYnOTiiKwtmLaBVKOlD6Id7M6kU2iyw/1WzswHYndaOS70YHNhpS6hVM/ZBKWAe9pJR4i26iZhQKXOCyE2STONlzUz/xCcz84he5a83g1Wpa2rEDA08+iZ133lmrXBiLuQawm5N6F+KN2pGGVq5EzwMPeJpseZmkyFQPXpAmTVhW1RQASgHmgw3PeKuye1p/v9SqBNQIesCeNFcUBQtvuw1733UXJr7vfZbX4x0d3AQ+0dlp9gOM+NEGBy3qRi8VqzjF27Rptoylk+Lt0L1S+M5HOnD+sd4mo3RyXo7SakoOXU97oOSamsmYpKeey9nmdIrEG+CPIAN4kk9KvFXbltd8N8B+gcqp3yTFFQBvqrdGEG9cxlsQe6OoeCP/Rjb25hzy3Sjm3XQT4h0dGHfKKSYRxylYq4siZjcViysAcjXjrr/+1WRNxp18MpTq/c9VNpUUWGAI227K8t0AoKtdDc9q6qZ4ExSJ5nc5WE3d3sfAKd4k/XeJXJf2I4/kz8tjxhtQzeoT+mI2plDirfmAA8zHuddfdz0+A/3dReseVf3GWXEFRLPhUdIMs/JtV3sMasSF8oJYTWlfad4/iiJtO9M+9SlkFy/G9M9/XkrMeYFszJdlvOn5fEWlySINnBRv9HkypmRmzzYfU/V77o03zMd2BHBYcNqwLUoUb/VYTYfy1kYsxpZQBMl4UzMZKXnqtb3VC0/EW1OTqaimkJ0jfa7c32/rOec2GIX5rzQewGM7omsGsQLtGOpHoGnu2rVrsWbNGst/u3btwurVq/Ge97wHs2bNwssvvxz2+Y4hAthJSaNSvNlZTRVVxfwf/ABzvvUtzupjVqXzKFmn1hs9n8f2O+5A36OPcu9JdnUBADLz5mHGlVei6yMfwaSzzuKOwSDdOTAM6UKfEXaRWk3J+LJZKPecD0C8sUWYjFCTkTbZAHZWr9Ak+X92ENuA2tSE1PTplvcxJZJscu9oNZXsUA2vWmUSb4lx4xwrpgFE8eZiNWWWm8LmzXj9/POx5nOfqyzqXCBOUmTFUGSqRS8QraayfiLIbpjOVTUNdGry49pMKmjALV2oc5/1kPEGVNRFMgIXqPRfVPWW7Ow0+wM2SRx+/XVL1pioeCt1d2Prz36GoZUra89Ri/zkybbkkBtZ64eEbZjijao9gtjgDANDq1ahTDY11GTSvN/1XM6z4i0IaB+iScgZI4jV1GZ84xRvkuIKAKAa7mSOzP4TNsJUvIkZYmxMphVNnYi31ne9C0v//nfMuuYa8znRagrU1HBGsWixJ8tI+8Fq4QugZjMFahlvgFXlPmVcbQD3WmHaK7YKijfZ/R5I8eaSDVSv4s0pNoJmvG392c/Q/+STXGVoqoILRLzZZLECtXssT4i3Foly3st3Ub5T7E/FzSj23ii0C9t7NXMI6uqoI1TTI7Q6FW8sNzPW0mIS2xRthxyCRT//OSaecUbgc5QSbzaKN7uKpoA3xVuaEG8UdByxqJcabjWtU/FGTl+qeAvDairM2cRrqGaz0vYSBRRVtcwlxEIgSjwurWAvtePTrECbzWLApc1I5sNeswJpkb4xxVv4CJ1ZmTVrFn7zm9+gp6cHV155ZdiHH0MEsLuxoqhoCsiLKzAkxo9H++GHc7ucTCGk2VhUZWCDZe7117H5Bz+wvE6zuSacfjqmfPzjXMftqnjTNGlYNxuIo7Wa1mZwm4Vyz4Wyv90pwzDMgVEsrADwGW8MUVpNOTux20RW+I0THR3cgsd8vkqGSBcBHhVvDAPPP29mvDllbTEoEuJNqnirWhe2//KX5iRr/de/7np8cZLS1WG9Z4NUugWADK1qWjKkO19BBmUxzyYs2E1OWw85xHxsl/3HqaU8Lg5kEIk3k3itHj9fzaPivlsg3jb97/9i8/e/j7cuu8z8HFfQY/x4e/WUx4w3L2hYcQXSjwZRX+y88068ds45eO3DH64dJ5XictL8KN78ItbSYioQRcUbrbTqp13Z7dTrMuKNbDQB8FRgoSFW0wgz3tgCYpgojjLz5zseTyxsISPe4kJmJ4XU5kjsp2my6cNlvAmKN2r9D6IYdgJTvCViwPhmlds8YQjS59I5kFSh4ae4gmRDy2msF8Py37zkEgy98IL5N7suSjJpyQn2ZDV1IMRlVtPm/feXvtep7QC8SFkkMsoC8RYzFW/h36dbSQ7g5AYQb0adxRUY3PLd6kFy8mTubyWZNM+BnoteKDgSb14Ub3bEmyxGwPy7wVZTS8abz2ZI54UlzTpPdJo3BrGailEEgD0JGhXE/k/WXmVFm6T9KekP7Vwa4neEaTWlm/WFcMWWY0AExBsAJBIJHHvssfjtb38bxeHHEDLsAtIbkfFm1znSAcys6kYIO9eKl+x1XZcGa4u5L5bPuxRXoANhsqvLnFXN/OIXK5+P1Gpaeywq3gB/VWgMozbpkymj5FbTBgXxugyciqpy8vL4uHHcgofBzPQR2oyayTjaymSlyKlarXmffRzPDyA2Fo9WU2op9JJPIU5SxIl0PBY8N4su2nJFQzpZ8kO8GYaBXNFoeMZbGyXeiEKGQlTXBAWdWMmKK+TXrLF8RrQ3Da9aBaBibWPvp/lS8ZaWwIo3PxiJjLcgire+J56wPKcQ4k3P5bjry70vBOJNUVXEqwS+aEc0SqWadT5AcQURssWZlXhzJ1+DRBL4BV28JQKs7y2KBknuqqmGaWvzHaTNWU2Z4k3IaaSQEW+s31YEKyxT1APWzbao8nPKmoHtfZWbqbM9BlVV5Iq3APcYVUrIVBti1VkGqcrcb8bbhAloP/po7rmhah8J1O65eEcHYpkMN27a3ffcdzuQfqbVtFqYR0kkkJk711NVaxG0b3OymlaKK9TiRMIGzQFsBPHGuRg89oGyMVhUEIWJ5v3247+LtNHQFW/VysciaEVsuyIfYcFJ8VYsG5ZoCb8EsBhLIm70OAX2B1W8iW1G1k9FCbH/kxFvSRnxJmnrXHVch+IxVDjgpaqpm3LZPM9ENGPUGCqILKxpeHgYuxyY2jGMHth1guOaoxmUvVQnpZNoqdXUZ/6XkkhgwU9/WhkoYzF0nHCC4+e5CmqSQY9ORNOzZ2PvP/4Ri++8E02LF1c+L+5+VMmf3JtvWnYwdvz+91hz5ZWeA/Y5xZuEePOzqKLjqSLpDWRkXDYdXcabn2sMgFP4xNvbuVBroLIoZRM2cVLktoPqtpBr8kK8VduhUS6b7Yi1ZyWZNIlDppyg6gg3chiwTlKmCBPpoDZTgC+ukC/aKd68HcswDFz/xwFc/rMePP9WbfBvRMZbZv58sy3ZEW+iuiYo2o86CgCQnjMHmTlzav2ApsEol6XEG6diMgwUt2wx/869+Wbl46z6XzUE3q4ARKjEG61qGp6QzoJ6iTcxvB7gFW9+M96CgPUxouItKKHrpngzNM30oVkz3tzbQCNyW+iGnlcVA4WoaODGZJaZWP093DbiZKDXg/X1bQcfbPt+J+JN3CSJtbWZ96ioeKMkZJBiSHboHtDNe6mzvfIlaYliPYj7it4/YiVvoLLRKLWaSsZQv8UVAGD217+OmVdfbf7NroWh6zXirUqCZIjl2C5agMLJ5mqUyzAMw5ybJadOhRKLSZUrbvMFqua1FFewVby5nHwAcAU42qMtrADwGZdu0RwMMjI0SsVb8zvewf1N72c/xJttRXRa1bS5WerMKFfHeKABVlNHxZss483f8UWyRqyi7dTvec0DpS4SRdiYASoxQo2E2P/J8gbFfkNNp6X3BG1HjlZTSrwJbaQeqymneBsj3kJHJL3uo48+ijvuuAMLFy6M4vBjCBkNt5p6sIy6Kd78Em+padPQvO++WPyHP2DfBx5ARlLEgUI2yaegnZoSjyM1dSq3kyUu3lm1JT2Xw9abbzafL/f2YsP116Pnb3/D9l/+0vGcGCjxtqWnPuKNvlM23sl2zKNUvHkhZe0gU7zFx483LUbi8ZxspoAH4o1kh9lBtCkAtfYca2oyB062gKNZXm476IB1QStmtgQtrABUlHKp6no+V2fG245+HW9uLaOsA0+/SYm36K2mSixmViMtbt4sDUnnAqB9hutTjD/pJCy55x4s+uUvocTj/PUvFk3iLd7ebi5KqYpJ6+vj+jlGvDFi1gx8tiFxnIor+EW8UVZTcuwg6kyZfV9NJmv3u2FwlkAKmUonCNgkWx8a4ia3QQldV+KNjj8BiLdG7GKHnvEm2QwzK2AHsBXJrKbN73ynrWXVD/GmKEqtbxcUzlTxVgqR0B4kIeYdTZXvkCve6rOaSok3m+IKsgrMMuJNls1KoSgKstVNTaC2GNUGBsxdARZP0n7EEeb7PI3RLsSb1t9v3sdMySjbFHMjR3jFG/8ar3irKcGjyHhjdmRFASa1R694M+9RP1Z7mdXUZb5WD5pExZtH4k2W42XZYBGcGYDcbkpV7ZbiCmFbTR0z3kKoairwO0N5e6upuM70ujFgiSIQ5m2NJt7E75cpNEXC1W6cV1S1tmnvQJbFbKymhc2bpc4az1VNSVdeHCuuEDoCbfceVd3VF1Eul7Fp0yasXbsWhmHgqquuquvkxtAYyHYfYirQlo2GYLErrsB9v0Tx5oeUEV9nEzuvg7csT4aCDoSyCae4AJ58wQXY9Ze/QM/lsOMPf8DED3wA6VmzKuq36nu92lDpImYgZ712r24s4+8v5HHwohQWTXVeWNKYOlm8kiwfrCnC4gqcDdkv8SbJeKPkldgmXBVvDlbP1KxZnipoccRLLgc1neaIN6gqyj09lck92b0HKrv5bhBtQ13tMSioEapB890Y0kkFhbIhbWeA9wU8Hbxpm2tIVVMA2b32MiuIDb/2GlqXL+deNxf5sVjdKii6KKOTsVJ3t1lcJT1nDgobNlSIGtKviZUU84LijS1aG6J4I9emHKXVtI72IGbuMFCrKcDbeLj3haR44wos9PVBrfY7Xot2iHArrsCNPwGspo1QvJXrzXgTKg1TQlwvFmHoem1RH0DxJiPeFEXBpLPOwrprr7W8vyQQb4aum+OVVMVVnduIxXRiamWsNYxwCVC64cZiAuRVTf0fm7OaSog3JZmUymJlVepl46qYzSYDzf1l14KSoez1CWecgb7HH0dhwwZM/tjHXI/rdF/qpRKKhNhnG3syxVJdxBtXYEYxN6QMVDIww6o8qhuGWYBjYqsa6L70/Z3V+9jPfE5a7CBgxVIvSHR0IDFxojk+01B+xYfiDaisacp00yCRsORLpmfPxsBTT3HP0c0hcc0RvuLN/jWZ4s3vxpvYr9lZTZPxyjpz12DttbCKK6QbTbx5sJpaFG8O94SazXIbwjJwtvpqm+m++26s+9KXpO/3ajVNcXEInj4yBh8INOt8+OGHpc8rioKOjg4ce+yx+OQnP4njjz++nnMbQ4Mgu7Ham9TA2VBu8FKdlBJvmsRq6hacaVG8eQjC5z5PiytIBj1R8SZCF3KbEhMmoPPss7Hlxz8GNA3d99yDqRdfzHWEXvJIAPdFzG8er/xe/3ytiJsvcs45oCSI7HInG6x485PxJiLR0WGxmnLEm3A8t8wQmU2GoXnpUk/nRCdtL51wAhKdnSYJoDY1mRM8bXDQYklyG3QB6ySlOaMgk1LMiY7s+vlBOqmgb9jAYF4+8fIaDl604QLCzHiD5D6deumlAPiKh8OvvGJLvNVTWEEG2o9Q21N69myTaKdkM7WZAhXFm57Pm/0E2ziwzXgLtbhC7XGUGW90Eep3yLGrEq2mUlxgu2gBZYiCeCv39pr9TlDizW6Rykh7cePHt9W0IYq3EK2mxJYPVMZfvVAwB7AgQdqty5dj15//jMSkSUjPnWs+33H88SbxFmtpMUlvUfGmDw/Xvl9CJrHxRsvlYBiGufhWFAWJWGXeFabijYZgM8JNXtU0AAnqZjVNpSzzpFhbmzRnSSQpExMm2AbOU8Tb2kzGkineKAmSYIWtEgnMv+km7jd3gmOfXy5zVnY2vwhCvNH5tCYU5qL9azxmJenUkIRpPYO6Od9vRL4bQKymdSreZO0uTGTmzzfHk/y6dbVz8Um8qdksQPoK2b9FlvPmpHiDpsHQdc6WaGgaVn/ucyhs2IA53/iGVF1qh5hDH1DUQqhq6kq8VeencQWtWRUAiYzxajV1qHoNuBfbCRterKaiI8ep7/GymRRraoKSSMAolcw1ae8jj9i+37PijSuuMKZ4CxuBZp16FPrnMYwYZLuuURVWAMig4qAuoSSJLrOaulW8FF5Pu1gZRNDzcrWaShRvmlCpEADajjyyQryhNomn5IrX3Yggth07cIo3yevSjLfUKMp4I4i1tloGNjpZs2S8+bSaZvfay6yK2bTvvp7OSWyHdBIfa2qqTRYMwwzVZ5AVBbGcozCBUhUF6USNeKsn4w2QKyYSsdqC0bPizeZ9MqvpwDPPoOf++zHxgx9ExsOCjEEnC58FP/kJYs3N5oKaI94kOW/st64n300GejxaUTU9ezaGXn4ZQKWv2PDNb2LgySctCpHSjh0obNxo/u1qNQ1V8UYWin7LmvmAaLPyA5GsZlCTST6gOGLijaoxONVq2Blv1f6RKiJUQfEWsyHeUvFK1WvAagWKAqEWV0inoSgKt8jgIisCKN7GnXACsosWITFxIrdoUpNJzP/BD7Dt9tsx4fTTseaqq2AUCpasHZrJJK3UydqfpsEoFDjiIRlXUCwboWa85YnijRFu8qqm/o/tZjWVKXAzc+dKiS+ReGtZtswTQabE44i3taHc22vOn2heLlXEAdYqtnZwrGpaLnNWdja/kBVxclvU0qFaJDKsxRX49zqF4ftBz2Dtiye0Rp/vZhiGOcf1s6kl6yuTU6aEdl4yZPfeG/3VQj1cfyASb2QssVO8UUgt2BIlaNmhuAJQaYv0Phv817/QVxXB7Pzd7zDtU5+yfMYOouItlagR98WSpKqpb+KN/3vIgXhrywpW0xAUb0oy6SmqJUyI11lqNZVkvNnBU0XmbNZCvGlkXBLhOeONzPvHMt7CR/Q97xhGPWSTv862CMmV6s0vhmFScIo3GfHmV/HmYzcIEDLeAlhNm0geScexx1rOiQ0aegDFW5AdazvohHmTTVSlGW8RWk21OhZTajaLWFMTp1Rzspq6Kt6SSXOy17TvvlwOiBjGa3sMh0m92tTELUKGVq7kXvekeJNcCjpJr5eklS3cmklxDa/Em90CUzx/wzCw5qqrsPP3v8emb3/b+4mCvyfVpiZk5s0z23R61izTS10U7JxA7T4Mm3ijCwhK+KXnzOEW5jvuuAP5NWvQ+8ADlmMM/utf5mOWS2hnNQ2zCgJtR42qaupXZS3LdwOsVtOGKt7oAirsjDemeAuQ8ZZKKOaCq9GKtyCWNpn9m7V7o1SqSx3NkJ41S5rl2XLggZj33e+i/cgjkagSOqKlmeW7Ac6KN8BauZj9HmFaTWk180wyZMWbS1VTNZm09EkycgGw/lZebKbid5e6u2EQ5Rsgt8B6gdPiVy+XUSSqWrZwlhVXcFe8keNaiLfaY5rxBoRb2ZQqLGUV68OGUS6bY1K9VtNUxMTbpA98wJwTTv3EJ2rnIhBvGlW8STZvxb5b9m9pWrzYQgzpQ0NmG3JbcwC1SrsAr9DzArEPoORXSTNQEhqdWIXXDVbFmy68Xvl/Mg60CpFGTmo8CjHjjY4HqenTPRPvYcGieKvTaiq7X0QXTqxKvAGk0jcZl0R4V7zVHo9VNQ0fgWadc+bMwWWXXYZPkM5JxA9/+ENcf/31WL16deCTG0NjQHcnlsxIwDCA49/hfwfZK5iyy3bxCGHSKqtq6qZ4s8l48wp6btKMNxfFW9uKFZj4/vejuGMHpn/uc5VzonlfVVKFDh6yXS4ZZOoBmuvlB4Ey3hpkNfWb8caIjGRnJ/LVfodOxsXFmZcqWXNuuAF9jz6K8aeeCiUeh1EsIrvXXkh7tC47LbZjTU3c7uiwSLx5IGJlMnC6yK2XMGmWkKzNGQU91dgir8oZu5wIcXdTz+VQ7u4GAPMaeoWYe0WhxONQ02nouZyU0KSV18IEnYxxxNvs2Z6J5cHnnzcfx5nireFW0wiLK9SR8WareBMz3iQ5cECIxJtE8VbcupWrVB1Kxlu1f7QQb2QMsst4i8cUJBNAuSCvUBw26CI/yM8sU6Gy62WUSnxWbADFm1fEOzpQ3LoV5d5ezu6luxBvMVG1TxRZbEMkTKtpXpLx1tGkIh7jFSyBMt6o1VSiJFFSKcsuvl0BK7Hv8kW8VX9Do1CAnsuhVB0rgOBWRCfS1rCxmsqKK7ipSVSH/tRS1ZRMxiqkRzhzrnKd9m+/8DNnp5C9Nzl1aijnZId4ezsW/+Y3KO3cySnk6bkYxGoaa22Vjh8ikS9bH6jpNPb69a9R2LgRW378Y1Nppw0OItbWJnfZiMQb2UD0S7yJfUBbVsX2vkojlGe8eT92WTMs73dSvLUKijen/DkKXcgAzRMi0q/QIgxYFG+yMUEgah0z3iSvxdvaUCSZoWomw42JAG9ZFuG9uALJeGuAOn5PQ6BZ59q1a9FrM5Fl6OvrwzqfncEYRgZFMhifdmAGsztD9DJKwG5+p4pylkkragScXQlmCnHglu1QOn7eh+JNlQy+iqJg+mc/yx+TLCDYooKSK16shQCQkOxUdjSr2DXon2Whw6GceJNZTaObsFG1iJsiDQDGnXwydt1zT+W8qpOlxKRJJmlDFwni4sxLoY3sggXIVitiAsCMK65w/QyF02Qz1tTEDc5DL73Eve5F8UYnNOy6UKWSOIHyi5a09T5rIWRc0aMF0U7xJiqc6KShtHOn55wewJl4AyqTFD2Xs+QvAtFZTSmRR7P9EhMmeFbpSBVvDbaaRlpcgS46/Wa82Sje1FSKu98jV7wR4k3r68Pgiy/i9Qsu4BSIoVhNZRlvluIK8jaQiAOGUbGhN4R4q7O4gkyFqiaT0FAhOcJQvHmBaWHUdWj9/ea19qV4E6In2O8RptU0R64pzXg7Yu8UHnixNrfwurClMOdAiiLPtUomLRE0doo3oJK/lHvjDSQmTpTaNu1A1XblXbvMTRrAWxVwGZw+Z5TLXFENx+IKblZT0p+K+xiUEIupikDSOR7WF+ixgti/vcIwDBTWr+fv3Toy3tRMxlMxq3qRmDDB0h7sMt7szseL4o19Pt7ezs1zy/39ttnCFuKNbOoUN2+GXix6rsguRnxQ1VmxbI2W8NMGZZsJtKopJeaScQVtmfqtpkoqxRVQ8pN3FxY4IYmqSteoiqJUskqr8wK34goi4m1tnGNDzWbNtSoj/stOVtMAxRXGMt7CR2QMS19fH1IhL2LGEA1oxcGkPRcWGgwPVlOp4o1lRXjY3RbVdG5EneXzlHiTdFbc7qbHxZs4gAP84OG1U0xKFjHjbIg3t4pYbsUV4jEFMbU28GaSijSXKyxQ60hCYmkRMe2Tn0RyyhQ077uvORFKdnWZr9NJvcVqGmF5evM73RRvxGoqTqy8KN7kxBshTOrM5mrOyBRv/q2m9hlv/N+0spdRLkPr6/M84fZCvAHWRbChaeZnQ894k0yEE+PHQ1EUR5VOfPx4c1FJqx3HRkzxFtphLaA2Fr9W06Kd1TSZHDmraW8vVn/mMxbbbxhWU1vFm4R4E5VOcVWBkqj81o2oVFZ3xhsb76nijdhq6skD9QOumuauXZ6JN27zUOhzkkTx5mdzwQmFopV4A4AT989wxFsQEt3cLE0mpeOmmkpZqnDTghUiZn7pS+i5916MO+UUX+dB5wTlnh5O8SazwHo6psOmrFEqmeS+kkqZ//Z4R0dFAU/GHNeqpo4Zb7XHYnGFMPveEkfwhXdcERuuvx47f/c7ZJcsMZ+rJ+MtOWVKw62DDPS8tcFBM0PLlnjzoHijiJM5oNbfD8NGuSkSu0VCvMEwUNiwARmHe477TqE/bkqp5jy/VDYs5JlYDMQJsrkeLa7A252tVlOvSkw2P1ZSKSiKgvS8eWYV+CaPxc/CBF3POlpIm5tNktDpXyo7RnLqVC4rmLOalsswNM1SRZvCq+KNRhSMWU3Dh+dZ56OPPsr9vXbtWstzAKBpGjZu3Ijbb78dC4hSZAyjF1xH2Aj5OZnE2UFR1Uo55eFhc9LK/u9ld5tWIAtiH3PNeKPh1i4Dq3nMZNKsymVaTQnZ5lXxJlsr2hXDcKuIRXde7eY1ybiCXHVSH6XaDYBrxSgR8fZ2TLnwQu65Ce99L/qfeAKZhQuRWbjQfF6c+DViB9Wp7anZrCVomsKL4m2Y7CQyCzBd5NZrZWrJuCjeQraaijL54o4doRNv4u8qhriHCRnZwqwoTv1YZu5cDFeJR4p4AxVvtLpYlFZT0WblB06KN85q2sDiCsXt2zkljnlOfhQfdoq36hjoVNV0UrOBjQDmT47jlY219yXiQMyoXNNCyQiN8LFDvVVNDbKwYrCzmjaKeKPzClfFm6QyOwNVrZc0eaSDX9CMtxTJ5mzLqnjH7AT+tabSWY9v8c+4sE1BJR6v/Fur8xgGJZmEKvQ9CaHYAUV2/nxkA1QdFElQzmoalHhzUbwxO3uys7NWmVZVkZo+Hfk1a7j3OsFXxhu1mvogPdzAk+HR3ft9Dz0EgI/P8HOPiuNm1PluTqD9Nt3osYsqETfU3DZcRMWbHTnipHgDKplvnok3oQvIJBVznl+xmgZXvBUlCima8cYpoesoriC6FGZeeSVWf+YzyC5ZgrbDD/d+wmGB3LNOVbbjLS3mfERzIMlkG7PZBQvQe//95t9qJsNtRjnlu7H3eAEdj8aKK4QPz8P9ihUruHLot912G2677Tbpe9mE7qtf/Wo4ZzmGSFEUOsKoYZBJnBNiVeJNLK7gZQHDVaLyaTMFeEWJbELllvEmg6IoUJLJSj6JxGrqtbiCbMJkS7y59JluVU2BSiecq/KDURZWAGpVypRk0lZy74amxYux5J57LItKJRar5HxViZcRV7w1NzvaXY1CwXVxfPI70/juPZXB9rQDKwN1mIq3FmnGGx/E6wV27xPVk2WBeCvt2AF4XKC5EW9sImMUCjA0DUqswlBylgWPVg2vkB2PLdKdJmfJyZNR7ulBTiCMXBVvYVpNaXGFELOoRNRDvHnNeBOD8RmiULzRibF4Tl5hm/EmK64gWE3fc0ACBy9oxqS2GK6+o9Z+6LihGxXlU5R2s5JPxZthGIBh1DLUZBlv1XavF4uciszpXqoXlNCh6lPNraopaX9WxRsh3spGKEH3suIKDOcd04zf/GMYMRVYPN2/rcFUBCeTUFS1otog/341meQnExFBVLwxgjve3h74Xo63t3P2Lwqtv99UkIjKuGmf/jR2/PrX6HvsMQD+rKbWjLfGWE05BWxE975hGNL+th6radT5bk7giLetW83HUSne7JwvdGzXBgctm0l+ct7EAgYV4q0yzy+WrRElIlHsBJlCijozKJEjy3jz6qgRx4empUux5K9/HTFlJJc556R4o9fbwRYqHiPZ1WWJ34k1NfGbUQ7HY+/xAjoejWW8hQ/PI9XVV18NRVFgGAa+9KUv4YgjjsCKFSss74vFYhg3bhyOPPJI7LXXXmGe6xgiQpHrCKP/PsOD4g2oKUL04WEYuu7Latp68MEYePppAJUcML+gkzi70t7mez0Sb0BlENcKBWnGWz3FFcYFJN68KN7ofDrKwgpATVEQ7+ioawC1+6yazZrtyEvGW71wzXhzULwBFZJIcTjG3jMSOO/oJsRUYOnMSjukJKw4qfGLZonijRZcqNdqKjrARcVbmSx03SCSEZbvogvhfN5UnonVscKE7HiqB8WbXigg0dmJ3BtvcM+7VTUNN+Ot9jjKjDeq6HCyxVs+Vypx1nQK0Wpq97uERrx56Ev8KK/tbMhs88kp4y2tath3VhK9Q/xFq1jY6ITaiFT1wsj2SpVG5+/RBgfx2nnnQS8UsOAnP0Fi3LhaJAXp/1Riq2mU1TQ5ebL5uLhlC3fODG4ZbyLxFqYqmSFvYzVlf3/oyGAbWYC1IFastbW2yKtWnY3F4+i64AL0PvCAJd82LFA7aam729yoC1rRFKio1xITJnBFFBioqkjMomtdvhyty5dj1fvfj/zq1e6KN3JJxHmZpbiCgzquHpQFgi8K0OqcFL4Ub8KcZ0QVb6TfpkrmmA3xZlG8uaxz6Aaw5qR4I88XJJXZCz6IN4viLaVURRdVxZsDMWyHnf0a7n8xz1W9Z6BWU3G9KVZe9koISzdmRoh0A3hVs9Pcjo4VTgo18Rjp2bOl2Yec4s2OeGNOK49rTBoxNGY1DR+eZ53XXHON+fiRRx7Bhz/8YZxzzjlRnNMYGowSGSOjLjFu6Hpt99SFsGILY21oiNtN8LK7PeF978Pwa69BicXQee65vs/T1Wrqoq6xg5pOQ+vrk1Y19aJwAuSqxPYmVVrZ1K0ilkHtIjbfSxcG2VR0wSCGrteCax1sKvWATv68FG+o+/scSDM1m5Uu2Cj0fN75GIqCgxbyg/F7lmXw7JtFlDQD/3l4fUqQFknGG7WfNsJq6hVcwRObSmIMei5n9i96hMSbVPHGiDeHhUjrsmUYevlly/OM4LE9z1Az3kbAaupDhVHaudNWZSMWV7BDWMQbs+A5TqRDVLzpQtQB/Xew+0C8txIxhVvUFEoGmsJ1VnNgqgkvC6mtP/uZWRBnw9e+hllf+Yr5mizjDZrG/dZRFldIkkU/zVWqq7hC3P/mhRtYHISihL+BqgsuBbphRPvaKRdeaIl+CBN0XlDYuNGcPwWtaMqQmDhRSrzJKpqKEKsK2sEpt40nxIS+NzKraWiH5UCLUVDUm/E2UlBisYpTRSAt7KymYl/kJjCIB7CaFgWbKeBP8SZa/5nVFLDJePNA/v70gSG8uUU+0RvK16IN6JwxmbDOLz0XV4ioEn1QeFVgtx1+OAaeeQYA0HroobbvE+cvqVmz+DlEtV3StartvZfN2hLidmDW4zGrafgINDw/VPXvj+HtATbxU5VoA1cBfxZNcwDTdS5bxcsAHstkMPvLXw52kqgMtsx+4Jbx5ot4q3acptVUGMyNUsl1oJZNmDJJBelkLYuNwW3AdCuuUDkGCfBPRkfMagMDJnHglA9TD5KdnShu2oTEpEmes/nqgWtxBYlSJtbWZtoIvNqPKVqzKq7/UDvKmiHdffQD2edTiVpwu9dB2baqqUD2ihWZSn4Ubx4z3oBKSD27+lESb04Zb7LJWduKFVCTSXSccIL03/52LK5Aj+1HhCFbKDMogtXU9n0hEW9AxXoUGvHmoHgzDMOxuAK7D0Q1WzzGqwsKERVYMAwD23p1c17hRVVHlUXDr7zCbUjR8ZDOGagtPUqraYrY3KjSpJ7iCpziLaSFDas+l04ooSs/qNUU4BWeYaps3UAVb1QNXI/iDfBWEdWu+ipVnDhtnHJVTS2KIvaeygYop44L1WpaX+6ip+8IgXizWE1HkHgDqhvmIvFmp3gT+iJXxRu1Hvb1ebKaivlugE+rqSTjjfVJFaup/4w3O9INqCg8CyUgneRjR2SZ4l72+AzDiKwSfVDoHhVvE888E8Ovvw59cBBd551n+z5xDpCeNYsbC2OZTKWvIM/ZOQBiTU0V4s2j4g2ozPNzxTGraRRogLFwDKMdTI2SiEcv1eUWDG4DEum8hmhIa4STbAolHq9UiXEj3nxaTQFIM97Y324DtWwhk0kqSCesxJvbZimX8WZz6enuV4jrVAvohC0qxdvUSy/F9jvuwPgA9uMgcLSaNjdLraaZefMw+NxzAIIRb0DVaiTZTfSLZknGWypR2R0ta4bnjDc7VYdoeRAVb6WAijeZdIqzfhGbGrfIb0RxheoiXZxYxcePx9wbbjD/liksRspqGqXiTRfUHl5B891YIR7z7xEg3loPOQQ7fvMbxNraMPHMM1Hq7kb3H//InZNX2KksoOsVZbQH4k28BRIxBSkuuyWaa/qLR4bx6KraPeWFeKNjnl4s8nk55Hej76MZR1FaTWNtbWb7Kvoh3hyKK3AZOiHdsizjLRXBfpJpNa3OdWIjRLzRDTlKvIWheHN9jx3xRvsQTbOdJHG5baLVtDrHYv1fZFbTBmS82RJvu2lxBaBKvAlzE9uMN5+KN664wsCALTlip3hjfZPW14dyb6+3omTCtc8kFXNTxgBvWwfCGf+HCjrSyZhrtBG1pdqB/kZhF8QKCo3MKZ3U9ko8jllf/KLr8SzE2+zZ/L+72s5o/+N273m1mgJsjBpTvEWBwHKIDRs24MILL8TcuXORyWQQi8Us/8WjXKWPITSwxXPUNlOAt8i4Kt7IZHbtlVfWno9wks19f3XAlCneRKuP52NWJxRGsVix3QoVFr1UNpVZTTNJBQnJ7eaqeKPn5iHjLRFRLgjQGOKtae+9Mfu669B60EGRHF+EY1XTpiYuWBeo3BOp6dPNv71UNo0S8ZhiqWSbjCvmhKleq6mY8WYprhBE8RaLSTcQYoLV1PxOsoAPWzkjm3TbZbyJbT4pEG9qOm32NbbkvGHACGmlxtmdoiyuQPoXP7lDNG8rS6oXA5XfxxPxFqLqddqnP429fv1rLL3nHkz52MeQnjGD/y6fO/N2568ND1sz3mg0gp3VNK4IirdoJtSUdKt8r/tn6G9Diw8BgtWULjJIXxHlZpyiKGbOW3HLFlNV6mo1pZmSQvU6vqppONeBLZbFwgr1giosWTsTx61GQW1qqvWppFOqm3jzoHizJd4k954MMhXbrkEd/3ytgMF85QnW/zmRdPWgIYo3m0I2vqymwq6BWyRH1JCdu1fizW0jPS4o3rxYTanireXAA2vPb9zo+F3mdwrjbCalcBsk4gZ+0CkF/RZWYMHNaiqSfjJE6VIICjoHSc+bV/fxZMQbtwlVfZ2zmtoo3sy1rE+rKRDdBt2ejEDE2+rVq7H//vvjpz/9KZqbm1EoFDBjxgwsWLAAsVgMhmFgn332wWGHHRb2+Y4hArAbqxHEG8fYuyx62lessK7MwS+gowS1EIgIqnijCwy9ULDsQHjZkZBaTVOKVFXkVoreS3EFiqh2SQF+0IiKeGs0nCYFajIJJR7nJnXJyZO53TInIrawcSN67r8/sCrOK0TVWypeywPxmk/ktappGIo3OxUTtxAmxBtVsYRtafFjNaUV+wCr4o2qTJx20cNSoNB7PUqrKZ3US7p7W9Drll20iHtNLK5ghzAVb4qiIDNvnnk/p6ZN4173u0CwW6jqMuJNonhTFYUj3+IxfqFTaNCE2ssCn/42erHIVxomvwMda2lf4SXPrx4wxY1RLqP3wQex9dZbzcWvmk7Lre1U8Ub6G4BXepRCuF11w0ChOiURCyvUCy47kxRXGAkoiiKdGzTCair2zwyqR+JNpiD+33sG8LMHhtA3bHDviZHJWJhqY1okJ6pYmTCspgCQnjMHAJBdsqTuc6oXfog3cVx3VbyRe6k8MODNalod+5RUCpkFC2qftyE9Ld8pKt4SCtcniaqzoON/a7bWjtkxi0JVUwD46HHVOZEKHLzIfZzkxodRQrxN/+xnkZwyBdnFi9H5//5f3cezzA87OniraXV84eIX7IpNsbVsscjlejuBbdKV9WgdD3siAs06r732WvT19eGBBx7AEUccAVVV8eEPfxhXX301Nm/ejI9//ON45ZVXcN9994V9vmOIAMxKGFXYKoUfq2nH0Ucj8/vfo+/hh9Fz330YXrUKAND0jndEeo4MjsRbHVVNzWMIO/sAPHnwZYq3dEIxJ94UbjtVXqymFFHsknbfcw+23nILZ815uxJvUy65BJtvugmpmTNNFQVVT6amTeMWmnaKN71YxOvnn4/Szp3oOv98TPnYxyI4+wpaMiq299UaUjLhn3gLWtW0tHMnDF2H4oGRMVUZXog38rvS3Caa5xQGpMUV7KymwkRezBTiAs0dJpth5bxRTrRhxRV8dC9U8ZYRKqgrqtrQ4goyJOsl3uwUb0NDnqymQMXKzX7fitW0dpywLI5u8DKv4O4TXec36KjijebZkEVm1Cr4JOkX1lxxBfeanRqHy3gTFG90HA1D8VYs1dTr6bAVb+RamFbTEVK8ARUCTMx3tCPFPB/Tg9XUVnVF7j29VIJdc1e5YjUV4ntjN99XMzJMjcxqWmtrUVU0DkPxBgBzvvEN9D36KDqOOy6Es6oPvhRvQl/kts5h6mw9l7NUNVUSCfNv1q8bum5uOqWmTuXyFm2rWornLlO8xa0kGUPQ4b+9SUXfcKWND+ftibcD5ibxyVNVtGYVtDd5mOuNQsVbato07P2nP4UW1ySbx7kp3uxIb/M9huFoh6dICnOFjHMzHoMPBJp13n///TjppJNwxBFHmM8xFnXKlCn47W9/i6VLl+LKK6/Ej370o3DOdAyRgXWEMtlv2PBjNQWA9PTpSJ99NjrPPhv5tWuhFwoWW1FUYDuZsh2owFVN6c5+Pm9RNHmxFooLmZha6SRl5IbbnJ4j3mzeM65Zxa5B3XwcNtZJ8g7qnUiPFoi7cZ3nnIOWAw+sBKWy2TUZYFNTp/JtxEbNNvzqq6YNc+tPfhIx8SYq3mqDckmrqC3EIgki7FQd4q67aDWFpqHc1+ep2IZbtWSuuALJXKK2jWTIxJvMZmISb6LVVGjzaioFtRqKC/CB5o1QvClKraR8tMUVap2Q6sNqyghTNZ1GetYsy+tKKlXZTXDY4Y2SeBNJXL8LTzviUM/lPBNvsZgCVMcFS3GFBinePGW8Cf2kXcabneIt6txXp4wpOxKKq2pqUbyFW9U0T65lKmzFm2TORjfJGg2Zus2LYs0JXog3uzam0nvPobIpvQ10A+gZsnaqUqvpHpjxBgDpmTORPvvsME6pboj9k5pO26o+xXvDzWoKVFRvjHjThRwvlmXJ+vVSd7dJhienTuX6H8v8ye77hGufJpupADAcUsZbR7OKdTsqjW6oUGnIdMOHxRCoioLF070LGOzGh5FGmBnp1PGQqSr66XqC9Ue0/3GzmgLVzQEP8x5xrhB2hMGejECr6J07d2IRsXbE43EMk4VMKpXCsccei//7v/+r/wzHECk03TAHdlmFmbDhx2oqIj1rVsNIN4Ao3iQL2XqrmgKVwcNSXMGT1ZS/TqyKmWyCZrgq3sii12bQ+NjxzcimFMyYGMPyBeFue9gRS28XxRtVPSjJJBRVRdPee9suXBKdndwC3VbxJoR1R4kWobJpMsHvjnqxStktLsUuR7Zj69VuGthqyoi3WMy2cl1QyMgW02oqKt4kbZ6+h1rXHCebEVQ2LTfIaurV/mQYBopbtwKo2INl6gNFUVzVB1ESbxbLUT2KN2o9Gxri7X8uijeGRIxfXL28oYQf/m0AqzZEW7bMS8abKLe2y/ChcwZzkakokS++nCzotoo32t84VjWt79wAPhcp7AWSLnEpjORit3XZMstz9VpNky7Em9rUZKu69prxJhZM6BmUEW/V/3MkXZhWU5LxFlFeb1hW09EEsehSdvFi2/bgV/EG1DbVSj09GH75ZfN5Lnakeh/SwgqpKVM4AjCo4i0eq99qKhu7qXpNZjVNBYw3Go0Zb2EjO38+Oj/8YbQedBDmXH89gEqWJWtfLEPWj9UUcN4coAh7c2gMNQSadU6YMAFDRDo/YcIErF27lj9wPI5ej37zMYwcSpLdhyjhx2o60qC+eBH1VjUF5BlvXqymlopE1fD7SW28JRAAtBAy3mZ3xnHDue2Iq+FXvWWLZxFvF+It3taGqZdeir5HH8W0yy93f39rKxeOb0e82e1sRQEx4y2uWgdlN5WFna0tRlYYhq7bE28kx8QOQYg3wzBMxVtq8mRLqHO9kBZXYIo3gXyVqfqoysJr3xlmlcF4rJId2TCrqUfirdzdbaqFk5MnI04qw1GomQxf7TSZhEatcyFfbyf4XXjS98c7OsxJtZ7L8WSITcYbwCyNlWuXiPO72E+/UfkdnnurhJsvCk9hnE0p3MLNywJfbLN2GT7cAqJ6HdVMxpMVvR44KWHtiDclHoeSSsEoFKAJVtNkyMUVqOIt9Iw3ullabWcjmas07uSTsemmm7jzsrv/vSLm8nmncH/Fo+KNt5oazsSbYEsNCw1RvIVkNR1NEM89u/fetu8NonjLLl5cqdKradh22221z9Lxv9pH0gIKFqupR8Wb7No7WU01vTJXcpr/Z1MKBnL85yjxNuSQ8eYXdhmgbzdMvfhi7u9YNos5N9yAoX//GxPf/34AAYg3j5VNG1EBfU9FoNnK/Pnz8dZbb5l/L1u2DH/729+wevVqAMCOHTtw5513Yu7cueGc5RgiQxidoB8EJaxGAjTj7aWTT8bWW281X/NrmWUQbYRBrKaKonADJ5ton3d0M5fhA4SX8ZaIKaGTbgAfkE7xdiHeAKDz7LOx4OabkRVyqBgyRD2cWbDAk9XUT9GBetEsWE0VhVfOlDzshtktLrkcscFBqS0wLMUb3T0eeO45rHz3u/HWZZeZVs6wCysANlZTVtVUWLyKVlPAXqXnNJkPk3hjC8FIiyt4UN2KoPluySlTbG1gomW90YTB/B//GNm998a0yy/3rfCm155a6XxlvJFxIq4qSDVgyBVvYXERJ/2M0GbtMnxkY20jqpw7WU1VB1KGqR51wWpKFW9hW01DJ95GmeIt3taGjqOP5p6rl3gV5zZim3Ky1npVk3CKNxurKcv+a0TGW8OrmjbgPo0KIvHW5FDwwYw4YH976PenXHQRsosXW55Pz55tPmZ9JFcMSrSaelS8yTa43NZ/bntvMqVtByXezIw3+p3Ox7TDaMx4axRaly/H5I9+1FT5yxS3Ynv1qsqlSJJmG1UF9D0VgUarE088EQ899JCpaLvsssswMDCAffbZBwceeCAWLFiArVu34r/+67/CPNcxRIBGE296HVbTRoMubkvbtmHzTTeZ1kzR6uMVYnB+EKspwBMW2aribW5XHDd8uAMr9ibEjZ+MtxGw8BckxJuSSu3WkzS/mHXNNcjuvTcmnXUWmpYs4Svf2hCx5Wq+G4PXSkVB0JKxDhNi8Kob7Mg5rtIb2a2lv0Gpu9v9C0DuSQ+Kt/7HHkNx0yb0P/64+VzYhRUAOdFjVqMSFotSqynNiSLKLScCKaziCgAh3iSHHC7o+PHfB3H7w0PQ61DEBVG8cQUxJk+GoigYf/rpAIDJH/947bWZM7nPqckkFt56K9qOPBJzbrgh8Dl7Rcv++2PRbbdh0lln+f4sR7wRC7SeyzlXNSWLf6qcScQbNMYLbWFrr3t7dFK8qTZVTRlES28UcCJenNRQjBAWFW9+rfpuoFbTVAOspmmyqS4jDKLGhPe9L9Lji4piR8Wbx0UtX6wG6HVUvNWeC1NsHJbibWjlSvQ/+aR03vF2tJpaiDcHxZuiKNxGkBdiKDF+PBb8+MeYcPrpSE2bhvajjsKsL38ZrQcdZL6H9es0kzY1dWogq6lYTR5wJ8GCEMAdzVarKe2rwlC87WnEmwjpmNjWhumf/zwyCxdi7o03cmtUr2tM3tVS/3mOoYZAfPPHP/5xrFixArGqTWPFihX49a9/jWuuuQYrV67EzJkzcd111+GCCy4I9WTHED5kQZdRYne0mlLoQ0OINTeHUlwhaFVToFaJFuB3uNMJhQtOdVOq0EldRJEfjqDKFYZ4e3sk6rrRisy8eVhE7QVC5VsZiiLxVihEJrkXiysA/vMfbK2mpNHRYODU1KnIVxXUYkVAO7haTV1+n7ALKwDOijcRMuKt/eijMfivfwEAOo46yvG4DOEq3ipWxbJk9ff0G0U882alvzpgbtJXODJFEOJNVLwBwMwrr8TUSy7hbGdi0QUlmUTTkiWY+41vBDrXRsJR8SZU1bZTvFFlVTym2FrC3WxEfiC2lKEAijdKVNF5gmyTq1GbNPGODimp4ETK2CneuP4zDKtpMULFm8Rqmp4+HdM+9SkMPP88pn7iE6F+nxc07bsvWg86CP3//CemhLTBP+nss7H99tuRnDwZseZm5Kqh9oCL4s3m3hPBF0wwbIorVN9LMx1DZN7CULzl167Fa+eeCwCYe+ONaDv0UPM1PZ+3tHWG3XkzVRxvafC9DLFs1py3eHXEqOk0Zlx5Jfdc9z33mI+lircpU7gNPK9W02QcmD0phjXbNZy0f7r6nHN70HTA6V8ia6a81bTS3ncO1BYv41qCKVVHa3GFkYBsvhtrbsbEM87AxDPOAAD0PvSQ+VoQq+k/XimgZ1DHuxYmPbsSxmCPQFRLa2srli9fzj135pln4swzzwzlpMbQOJRG0moaYbB1GJCdX7mvr0K8hZTxJnaCdtZCEXSjUZR4x0jH6BbMS18dif6UBsUyeCVa3q4QC3DIICreygMDSEZFvKVlije/xJs/xVuyq8sk3kS1iB1ciTcXZUwkijdhwq6m07bnJ6vkO/GMM5B7803o+Twm/ed/1o4ToeKt3NuLbbffjuyiRYipBwKQE/i9ZOHYP+x/O3xrr4aeQT1QVVNx8cEgZj2JxNvuNEmPEwtRcvJk8/GWH/yAe59zVdPa+xIx+zBr3bAWOgkKcQF29D7uv7lIWFCCi7OayjITG7Sgn/Hf/41N3/42xp18Mrb88Ifm807jFetzjGIRRrlsXie6yRkGT06tpqEXV6AWd9KHTvqP/8Ck//iPUL/LKxRFwdwbb0S5p6fuiqYMUy68EE17742mJUuw+nOf414T8zi5c/FsNSXzMt25qqlYiCEs0CI5QRVvW376U/Px2i9+Efs+8EDt+Ha53rHYqJ/vO6G4fbv5WEmlXDcpaJ9Uz5gj69eZ4i0+bpxJ7CvJJIxiEdrAALb94hcYevllTLv0UiS7uuTHVRR8+j2t2NStYeakSkNwqz5dGaft3yNrp21ZxSwszhRvLIc6m1LQlAoh4203GtOjgGwzKi5U3KXjptfiCmIe7NNvFNGaVbBkxugWzOwOCNQTHnXUUTj00EPxpS99KezzGUODQXdbG1HVlLOajnbFm+T8yn19SE2dGllVUzuFkxPEibaffBBqFRgRq6lE8aYNDjb+REYRRHJWBjH3TBsYAFwqswVFNm1tGH6sprRysgjaVqnijZIpXog3wzBMP6Sd9dttgR5FxpuiKGbAOuC8gJO9psTjmHnVVdbnI1S8bbjhBvTcey8AoPmCO7Ad46WqC7rYz/sM3x3I6bj2N32c9QkIaDV1uG4WxdsojzegGHfKKeh77DEkp05F6/LlFsKNwbG4ArWaxhQkbdRQZc37b+8GutezYu8UTtrfnRgTFwNlYi/niDfZ7n4DrKYA0H744Wg//HAAQM/f/ob8mjUAnHNZqVJKGxoyiWE61wpF8RZhxhvtf902LxoJJRYLjXQDKuNuxzHHVI4ttDPPxRU8VjXVDOeqpqrw3rBAFW+B73cHt4ct8RaionYkQAv0NHmwVtP7vp4xR2xbeqFgzv3ofCXW0oJydzdyb7yBTTfeWDnnXA7zqo9lSMYVzO6sHT/pcpru7hlrQ03GFWSTCoYKBoYLBsqagV3Vdj+xVQ3cJvbkjDcRUqup0F/RtbZ3q6n1uQdeLIwRbyEgUNf71FNPoRyinaUePProozj11FMxZcoUKIqCu+66i3vdMAxcc801mDJlCjKZDFasWIGXSbnmPR1FMt9163jDwO5uNdWq9oNQFG91ZLxRWIg3rhS982fpWKk67GZFBZnV1Imc2BPgpngzDAMlQfHm1WIQBK0k421SW+VxwofizS7DSFEES42geDOf90K8ebB+x1yItygUbwA/6REnRPO+/3007bcfZn7xi74moY6bFnUq3hjpBgAdO9+sHFIy6ab2Nr8B8Zt2aRbSDfBud2eKNzWTcaxImJoxgz/+bjRJT8+Ygb3uuANzb7gB8fHjbd/nubhCDJbiOwzlEFf3bMyZOTGG/3dEE1qz7tNMkbAoUcWbS8bbSFjYZl5zjblT5aT6siuOQrsoL8Vp3MBZTcNWvBHSwcly+XaC2M68Wk11iZqk99FH8eLxx6P40++YzxVLhqUCJECKK0RmNa38P6Z6L2QjgiqqxarQdvluocr2RgCd55xTeRCLYfoVV7i+PzTFG83mKpUq8+XqpJ3OV0SFEwD0/+Mfvr7LTXjhSrxJXo/HFDRVN26HCgZ2DujmmmNia/CQQbsM0D0RUuKNqOUBQfHmlXiTbOCMaw5pd24PR6Bfca+99sLatWtDPpVgGBoawr777oubbrpJ+vr111+Pb33rW7jpppvwzDPPoKurC8ceeywGPIZQvt1Bqw26SY3DwO5kNZUpZ8p1Em9icL6lqmkAxZuY2+NH8UbndI3ekNTzeVPZkJ43zwwQlyl89iS4Kd70oSELIRelSjCVUPDR45qwbH4SF51YIY5SPog3LzZTQCDeiLXOi/XYC/HmNkFzInDqAe0fxAVc67JlWPiTn2D8qaf6O2aDiivoqcoCQnZIXvHm77h2RI8XFYah6yhu3Qqg0k6cCMtYNsuRnbuT4o0iNXkyJp11lrSNqk7EG1dcwT7jrRzSutgwDHNh5Scz1GI13bXLfEwXrjLCeSRUWE17741Fv/gFFv3yl7bVqgGhOArpxzjFW9jFFcJWvBHibXfO6fIDi+LNSansYjVdffnlKHd3o/inXyNRqvyWuyRqN8CmuEIEVtN6Cis4EW8lO+JtN0fLAQdg4c9/jr1+9Stk5sxxfb8akeKNFlYQFW/1wr2qqfM8z44fZsXfcgUD20ihHbaJGwRjxRVqkKrABSKW28z3uMaUxVJkA1qDx8AjEPPxX//1X7j44ouxatUqLB6BikYUJ554Ik488UTpa4Zh4MYbb8SVV16J9773vQCA2267DZ2dnfjVr36FCy+8sJGnOipRGMGqpruj4o1J6cMoriBT8gSxmopFMbgsEbeMtxEk3qjNNDNvHmZccQVK3d1ICyqVPQ1uxJuodgO8V7MKigPnpXDgvFrb9WM1LdmRLEJ7K5N/Q2LChEpAlaaFpnhTUimYgSMCWpYti8wKQxcqTpYlPxD/jUo8bv4GYRZXSKBy7gYq1SppBluebJwWfVpN7dRuXq5Bua/P3LW1y7ChSE6ZgtzrrwOwhtzvTph2+eWY+slP4sWjjuLudyerKV0Xx9WKAiGmWtULYSne6FH8KGqcMt4oySzd3R8hMii7cKHreygpSNseV9U0bKtpyNOqPVLxFpLVVNwESRYGUUpksbPfmXjjCzF4OWNvYPd5vI5KWhzxJlpNyX2b7OoyN0jeDvBiMWWIRZTxRrNNqeJNJFqCwK24np9CbRSMrDEArN9RazsT2/yzv0a5jC0//jG2/uxn5nN7esabF8UbZzX1uMaU8QGFENTZYwhIvM2ePRsrVqzAu971Llx44YU48MAD0dnZKZ00H17NxBgJrFmzBlu3bsVxxx1nPpdKpXDEEUfgiSeesCXeCoUCCqRx9kdo4xppUBuYWznpMEB3BEd9xlvMOjAwVY4egtVUI1WzGIJYTcXS4PQ2dBssR7K4QlHIaYo1Ne0xE3sniKpIETLirdzgPopbOLoq3uTPxwTmjSre4m1tiDU3Q+vr4xRvhc2bofX3I7NwITfecAseO+JNUaCSamMA0HzAAWg79FB0HHus47+hHnBESEjtWxxrlVSKI94GnnsO2267DeNPOw2thxyCDV/7GtRMBtM/8xnHjQJDkFfEtVp/pOn8gpAu9gvVx7pheCJcpMSbxw1wmm+Y8JBrmJw82STeaJ+zO0JRFGT32gsDTz9de86BeKMqdnbPJuMKckX+npVdjyCgzcfPeCIqhUo2ijep1XQU5Y6JUO0Ub5zVtP7v4YorjCne6obYzoIWVyhs2MD9nSoOYQhA94D8hpMWVwg1463y/3oUb5z8WbSakoy31IwZbyvizQ/ouCSrVu4VToq31LRpte+QKd4k6xcneKlq6gTdpqE2pWqNee32WmcXRPHW98QTHOkGjCneZOtocaMgiNU0JVnWFnxusI5BjkBUy4oVK6AoCgzDwDe/+U3HXWotRNuLX2ytdvqdQunnzs5OrFu3zvZzX/va13DttddGem6jBXTRnBiraspBSnD09UHL5TC8ciWAyoLXz447HSRkZEkQxZs4ifIzaQu6UAoDdpUJ93RQclbWHsTCCkD0ijcRfqqa2r0ubrpT4i3W0oJYUxO0vj5oQ0PIr1uHTd/9LvoefRQwDIw/7TRMv+IK0+bjVYGqptMc8da0zz7oPPtsx/OvF9xmQ0iKNxH032WUy9j8wx9ieOVKDL/6KjqOOw67/vIXABWL3PjTTrM9TlnYDEhoNeK3rAN0LkbtbYWygVsfHMS/1pRw3tFN2HeW86ZKWdIxeU068Eu80eILsj59d0N20SKeeEskuE0i2t7iXFXTyg+cSgA5Ye4tux5BwCnefKyrLEohGyvRaMl48wpKtFPlWOiKN3I9xzLe6ocvxRsl3oR2PFwl/BlSxUokhJ0137Sa0sr0oWa8VRVvdcTKOFlNdRJ54ZRL+XbHxA98AIVNm9C0eLEnVbYdVKFt0bGPHldmNZWScQ5wJ96CWU1p5dJ1O2r3R5CMt5xwPwFjxJtsTEwKnEcQq6ks463gM1JkDHIEYj6uvvrq3apCjXiuhkuFnSuuuAKXX365+Xd/fz+mT58e2fmNJIpjVlNb0N0lhnJfH3r+9jczU2vcccf5s5pSxZuEeAuieBNtA1xxBdeqpvLPNQJ5Qn7TTK89HW7FFaRW0wZXgqWKjYKb1dRrxhuxYlH1ozY0hDVXXMFNurrvvhvFbdsw76abKptAHgn9WCYDerrx9nbnkw8B9NyissXRNmNomklql3ftws477zRfG3j+eUfiTWxbiTJVvBkAKcBCVTabdmmmjeSmvwzi5ovGOZ6vXPHmrQPiiDcPVQ3Ts2fXvuNtQBxkBcuTkkhAISwXXfzvOyuJJ18rorNdRVd75T2VDLBoFG9cdIGfzznYo+mYKctdbVRV0yCgpCBVjsXVyu9jwH9hEhkalvE2in/rMOEn483Japp74w3u72TROTaBkReRWU3DyHijm1wC8aaR+Yos8H9PQWrKFMy94Ya6jyO2LTo+000nmdXUrwUzaqspAPQNV96UiAFtTf77Kdk4sccXV5DMd8X1VKDiCjKr6ZjiLRQEIt6uueaakE8jGnRVdwS2bt2KyaQhbt++3aKCo0ilUkjtISx6sdFWU9JxjnarqWwnRevrw47f/c78e8KZZ/o7JhkkRHUJYN2N6Hv8cRjlMtoOP9yWLG7OiMQbqYjllvFGFmCN5N0MTUPvAw9U/ojFPOXl7ClQVBVKMgmjWJQTb6NM8RbYaioQLVRZoabT5iLPKBaRe+utyvNNTTDKZRiFAgaeegpDL72E5n324fsVJ8WbQHw1gnijbERUmw0c8VYqcZYfzurqsnAuC8RbTK/1R+LEm07C7DKLbL9HovLxUlgBgO3iww7jTjoJW3/2MxS3bcOs3WTu4oTsokXc307E2wFzk7j+Q+1oTismsSkrohSa1TRgZqgT8eaW8bY7Kt4URUEiXukbw7SaJuPWfrVecIq3PYR4E8cQzxlvgtU099pr3N/JonWDjMaODhcqD6Kzmoac8SYq3mjl3oiKFe1REIg3Nj7HWlq4MV+meNPzeRiGgcLGjUhNmSKNzqGQhelzx/OxiU/BqppSTGyLBaqqK1szjWW8WcdEmv8HCJv5Xq2mkvYQxibRGAJWNd1dMHv2bHR1deG+++4znysWi3jkkUdw8MEHj+CZjR5Qm0M98nOvoGz7aLeaTr3sMkBVOZVE/z//aU6msosX+wpcBfhBQqZ4oxaboZUr8dall2L1pz6Fweee4973yVNbkIwDsyfFsHQG3/HSSZvhY7AMS8WaX78ea6+9Fj3332/7noFnnjEJpLZDDmkMAbIbgQ2UnhVvDc5482M1tS2uIIw+bNKupFJQ4nFeZVCd7Gf32guTP/KR2rG3bQPgw2o6EsQbQVRVNSmhX+rutp0luym+RFI3XibEm3AdaU4YWzB6hYzo8Uy8bd9uPvZCvKnpNBbfeSeW/PnPaD/ySK+nOGqRFCbVThlvANDepHJju+x+Da24QkAFtawapHkcQlbvbsSbXcYbUCNAQ1G8VYm3sNVuwJjiDQhuNRWtcSmJ4q2jqdbxDRcq/Ta3eRqq1bTy/7Cqmoo5YnS+QpXGUVUMf7tDrJjL5n6i0lumLtSHh7Hlxz/GqtNPx1uf+pTrd7lFDblaTcmUoy2r4JKTKvdMNmUd2Ce2BqMeNLKhCFTszEkPc4C3Myx5lNms5X5TAhRXyEgiC/JjirdQUBfz8a9//Qt33HEHXn31VQwPD+P+6kJ73bp1eOqpp3DMMcdg3Dhny0m9GBwcxJtvvmn+vWbNGrzwwgsYN24cZsyYgcsuuwxf/epXMX/+fMyfPx9f/epXkc1mcdZZZ0V6XrsL6BhaV+CqRxi7kdW0Zf/9seTuu6E2NeHl97zHUgxhwumn+z6mW8Yb3Y2gNoXcm2+i5Z3vNP9ePD2Bb324A8m4JGidFldwy3iLwGq65eab0fPXv6L3vvvQduihUin4rnvuMR+PO/nkcL74bQQ1nYY2MCCvaipTvI2g1dStqqldxUsxA4ot8JgdU2bvibe3c2QLq6K22xBvEW02UELfKcfMTbEifjZOrKZlMrEuaUZdFijZJN7rDrjfjDegcj/Vk7UzmqAoCloPOgj9//wnklOmVIg3RTGlM25VbfNF628flp2N5lH52cixO2clHueUGjKV/Ggmg+j9RpVjQNXaVQgn442Rd1EQb3ui4k3spx2LK9go3krd3Zb+VGY1bWtSsKs6fLMNDDo2uimNvELXDXO+V9cmu0fFW9thh6HtyCMxvHIl5lx/ffDv24NB25bW12cSmyLxJlO8GaUStt58MwCg/x//cI1YSris/5zGCN2oeWfmdsbxufe2mN9FM94YJgYorADwirdZ112H5ne8Y9QLOKKGGL+QnDLFcp3VAFbTdFLB6cszeH51EeuqMSJ+q9ePQY7ALfazn/0svvnNb8KobnFyFeYMA2eddRa++c1v4tJLL63/LB3w7LPP4kiyi82y2T70oQ/h1ltvxWc/+1nkcjlcdNFF6OnpwfLly/H3v/8dLT6DJ9+uoKHK9cjPvULfjaymQC3ANN7WZiHesnvv7ft4rlVNCdFCJzGyztJuks3ZFFx2qXjFm+NbPaO4ZUvlu/N5lHp6kBLyBrThYfQ+9FDlXFtb0XbYYeF88dsIjKAViysYmmYGNicmTqxU/9M0lEdzcQUbG5vFalpt72whLStEEG9v56qEleol3uqoOBYEsoyqUI5L+lKqCBPhZjcRF4qxstxqKiNv/KAkU7x53Pgxz1FVkYh4Y2+0Yua116Ln3nvRctBB5txLicdhlEruxJtk8hwG+QMIxRVCsJqKNqLUjBmmDZ9hNCseqFJKjAOoKN6MUKymrA+OIqfXJN5UdY+xdfnKeCN9Oq12L+a7AbXiChRtWRVApUNkKuJYBBlvpZA22T1ZTRUFSiqFud/4hivhMwZ70HZIK8TGReLNQ56eUSo5ih3iMQUx1b69ORJvtEibyvMBWQnxNq8r2DzIJN5iMXQcf/xYu4JV8ZaSFKoLYjUFgJMOyOCkAzL4zG096B0yxhRvISEQ7XzLLbfghhtuwCmnnIIXX3wRV1xxBff6rFmzsGzZMtx9992hnKQTVqxYAcMwLP/deuutACodwDXXXIMtW7Ygn8/jkUcewZIlSyI/r90F5ZFUvO1GOxUyZUx6xgzfx3GrwEN/Hyrb99NZ0pByN5dCFMQbrRops0AOvvCC+W/rOOaY3YKAbTQUG6tpfs0a8/dtWrrUrFzV6Iy3hB+rqceqpmyBpzop3trauHuRZZntNoq3iIg3CpkiksGtH7ESb2JxhQrqnYDJFW/ePsv+fYnx412JxLcrEuPGYdJZZyFD7Fys3bsRbzKFaljF54NWybY7Z1EtHW9rw6Lbb8fkCy/EuJNPxtTLLkNGyLwbTaD9S0mwSTGSrF7S0zAM85q6qVaCgFlkY9nsHrPQtdi3HOzMdjbv/Nq1lveKireYCrRkasswtqFB+0K3nF6v0ELaZHfqX9h8RU2naxsCe0ibiQIc8Vbd0Aa8WU1FONn5Gdqb7CkBJ6upU8SAqHjLJBXsMzPYPIiJFeJtbWPtqgpxvitGUQBCcQWPVlPumHEWi+D7o2OQIBDz8f3vfx977bUXfv/73yMejyMpWTgvWrTItJ6OYfQirMHYK3YnqymF6JlPdnUFqqajxGIVZYLN5IVTvBHSxcugyTDSVU1pJoyMECps2GA+DqIa3BPA2pZeKHA7xkMrV5rvaVq6FLk33kC5t3cEiivUHrsq3jxUNTU0zWzvzM5kZzWNE5VTedeuyufp/eRU1VS4ZxudDyWzhIQCMgl1It7o72SUyzA0jdsMsBJvtT6I7ngXolC8edgGNMrlisoT3m2mewq8Em8ylEPKkeIUbz62dW2JN8lGVWbuXGTmzvV5ZiMDqqhltngGVkWwWEZdqiBNr43jkVhNBSXyngBxMet0bVSbjDfZmCwSb8m4guP2S+OxVZV537lHVRSSVA0eluItrE12cQyhMNvKKM5d3J3AWU1JnIgXq6kIL2uII/ZO4Q9P5qSvOQ0RTpE12TQ/EOw/J+GaJ2eHMiHexlBBlIo3hnR1XBmrahoOAineVq1ahWOPPRZxhwVOZ2cntjtYXsYwOlC2z0mNBLub1ZRB7OhTM2cGPpYTYccp3ojV1J/irfbYbdJGu9FIFG/Vyaeh6xh49lkUt21DceNG8/XUtGnhfOnbDOZAaRhcmxh68UXzcdPSpeaESxschBFWGIwH8FZT5/faVzWtPaYkM5u0yxZ6otXUzHgjk0pHxZtwzEbsms698UZAUZCYNAnjTjghku+gVS0dibfq71Tq7sZLJ5+MlSefzFlYSt3d3PtjpdpGAB0r6la8Sauaul+LUk+PuZsgLj72dJjEm4t87bDFVjIrrKqmnILaz+d8EG+7E9Rs1txgLNso3gA+P9Ev6MaGrGJtvWAbaXsy8eb4XiEAn0FGvIlW00QM6GqP4fPvbcXFJzZj/zmVYyXI1wfg0aUIq5AanY+IZI6peBsj3kKBXTu0EG8eFG+6B+LtyCX2axOnYcWJeBMVb+9aGKxP14tFc000VqyjBpF4S0qIt7oVb1XiTdPDK8S0JyMQ8RaPx1F0IQI2b96MZodKQGMYHaATvngDatzutlZTYWBL10G8OeWkhKF4ixEyQXexKdDXwyIhaPU2VkBi+69+hTc+9jG8es45yJFiKGPEmxyUnKVtYuillwBU7p3sokW1nU5dt4R3R4l4TDEnWEGtppRooSSzk9U01taGWCZj3kMyq6lTjtpILAjaDj0US+65B3v/4Q+BVLKeQO5dcYFPwfrfTd/5Dsrd3Sj39mLjt79dec0wLIo31cZqmqtT8SYjerwopIIUVthTYBJvLmPF6cszOGxxCpM7ajttYSne+OIK3j9nR7zt7gssRVHMjQKL4o2QH3Z9pBfQjY1kyFMqwzDMcWVPKawA+IsEsLOaynJXRcUbU/7M7Ypjv9lJMyYkRUjZQghVbwF+E7aeuT4XgSISb0zxFtU4t4fBK/Hm5ff2soZIJxUctLBG0lBlpJPlmfb7qsC8iX3SginBOilaWGFM8VaDRfEmsZpSkUs9ijdgTPUWBgJ1v0uXLsVDDz0E3UZhwSqcHnDAAXWd3BiiB2c1jWC3VASnTNmNFG/iAiAqxZst8eZjl4KzmvrJePP8DfbQi0Xpru+mG28EAJS7uzHwzDOV70smxxbPNuCk4dVrXx4YQH7NGgBAZsECqOk0ZzFodIEFNilzy4cq2uyQccpMSrwxq6lNcQUASAiLWa8Zb25qoKiQnDRpVCxGmOI4v369+RxTvGmDg5Z+Ri3JraZOijcvNiaZwsfL8DNGvNnDq9W0JaPinBVNOGn/WnsMTfFGHnutUgvYLwrbDj64zjMaebBFYrm31yxGBvCqpnqyc+jGR9jFFfR83pwk7EmKNz+wq2oqV7yJVlP5MZMJqigPZ6HLK96CH8duQ9jQdS7jbQz1w44AFok3L5vmXqtZnnVYE+ZPjmNcs4pDFtXmoc5VTWuPRcWboij4f4dnMX1CDJec1OxrXKDQxog3KWRVTS3voRv5AYg32k+NEW/1IxDxdt555+G1117Dxz/+cYvyrb+/H+eeey62bt2KCy64IJSTHEN04KymXjJ2DAPDr77KqZr8gA7Uu7PVtB7Fm5N9xra4gp+MNx+l6OmAGYbgTVRdOWWPpaZN4yxyY6iBGyir7WCY5rvtsw8APtuj0TlvTLHmFLoLAEWbpstZTUm7ibkUVwBg5ryV+/pgaJp34i2AzH60onn//c3HmYULPX2G9S+0n2H9kcyiqpZsiis4zN3SHnKmZHYFT1ZTSryNWU05sEWa14w3utEWln0k7OIK7UcdVecZjTxMa7ym8TlNoSneIiTeyDxvT1K86T7GCcVDxhtrA0nRampzvTjFW0gLXTrXD2pJNgyD+23ov5c+P2Y1DQdKLCYNy5eNfXQ+IIPXcSGdVPDZ01vxP+e0Y9r4GkPrmXiTTOlXLEnj6ve3Yd9Zwdd8VMm/uyuhw4SlArOkn67XakqzQwtjBRbqRiDN53nnnYcHHngAN998M+644w60V1UIy5YtwyuvvIKhoSGce+65OOOMM8I81zFEAL+Ktx133IGN3/oWUjNmYPHvfue7qhzHtu9GFenE6ofpWbMCH8tR8WZDvHndrQIEQsOH4i2M4goiIcuqmsY7OixWG5kkegwVKKSNsAn80Msvm881VSszxynxJqkgGyVYe3FrY3ZV+zhLtETxpv5/9s47XJKqWvtvVXU6fXKaM4nJwJAzCIiAKEEkqshFSSpXRPR6vRjwU0ABEcFwBTFcRUS85qsISAZFlCAgcSTNMAxMOmdmTpiTOlTV90d3Va+9a1d1dTqhe/2eh4fuquo+NV1VO7z7XWv5FFeg/4dlITsyElp4EyZUs6j9UbHkK1/Bm9/6FpI774xEyGTzzsKHpShyI4eZAoCeLfxeQnGFgMlgmATvZYeaknNkx5tIqcUVqOulNo63Ej6nOOf44sUV9bMzBTknpdNmCwVqKhA+MzUMNVU5kRuBkoS3Io43LRJBtKcH2cFBxDKS481nzB2rkhuSUo18znY6LQwa6b9XlS6CqZzW/fbD1vXr3fd6U5NyUXLJV76CwXvvRWbbNvT/7Gee/eU4nYR0IAEDPbrgUqsafRxqqiZMWHyloaZxDjWtKmXbTX7+85/jBz/4AZYuXYr169fDtm088cQTWLRoEb73ve/hxhtvrOZ5MjWiVMfbm9/8JgAgtW4dxv/1r5L/ntNRa7HYrCoHLTf00Tlzyv6uQMdbvoolUL7jjf6sxdxIdpUdb7Lwls2v8KtW7Ti/mz9UnH35vPMw8JvfCLnxkitXApAcb6PianqtcdqLYgU8fIsr0PwhxPHm5niTCyFEo+7kT57MhhXe6ORxtt9/sblzsezqqzH3Qx8KnS/TaX8Fx5uT/F0SxgFAT5NQ05DFFUIJb4p2KUz/kyEFmyppg+uRUoU3+ntXktyfUo7jzbZtZahp20EHVeekphm6aEefMep2qiSBPjveqo9Nxl7FVCrf4gr5/thoa3P76YiZgUHyZkZ9mm1d11xhvHqOt8rTytAxKSA53ojwJlcPZ8qnZf/9hfd+Tu/Y3LnoO/NMJHfaSbm/lDzRDkbIQm21yBUNAKkNG5DO9/lCqKlkhGhkjOZmtB54IABg4ac/rTxGi0TcdqwUE4cDC2/VpaL1sfPOOw/nnXceJiYmMDg4iLa2Ni6oMMugE6AwEx+KWUYyd1d4KyF57UxAdt9UEiKpcrxp8bhrAbbTaWjxeAWON1pcIfjYajvePKGmjgtLkVsrvsMOlf/BOqXtoIMw8Mtf5qqaplJYf/31iObDK7VYzBWNpj/U1C4q7vqFUQm5CFWhplJfEmlvdwd1svBGRccgEarvrLOw5f/+D9bkJJZeeWXgec8mwjqPHQGfOjrkQhXC9/qGmvpf8zDtiNLxFmLALjjeONRUoHTHm3+o6W3/mMDz69I447BmLJ4Tfpgo9Cdhu0ifvIudNaoAPNX4Cm/k96/E8SZUNa2y8CYsiChcNvWKEDZZpLJusVBTo6VF6MtimTFMRHKLHUFCaSyiIWvaVcvxJoaalvcdHuGNOt4UlcmZymkNKbw5+P32tRXe1J+phLHnn8dLH/4w9GgUO/3P/7DjLYAV11+PzMAAYn19vsfosRisiQnPMxyGWoS+NzJVeUSampowf/58Ft1mIc6YN6KXvlJBV7hCfyYvIAVVHpyJ0AYtueuuFX2XqqopHZg5vxEN8yil0xQEjSnO8Sa7rpzBpyp0IzbLHUe1pP2tb8XKW25x7zVrbAypN94AACSWLnUn2UIuuIDnsRx7eTH00I43tbjvW9XUJ9TUIBNYKry98tGP4s1rrnHfBwlv0c5O7HHHHdjjrrtc12A9UInjzfksXVF292XUoaZBjrcihZQB+OV4K/452r7QMGuG3AOWBbtYww+pYh2ZlA+NWfjjPyawZrOJb95WmphvkWDTsN0JFSuM9na07LMP5p53HlryeSxnO8IiARG3qdspU5HjrfC62qGmqgWRRkAQ3orkIqZtr1O8xrasguOttVVYIIuTPG9BudacyW4x4e3VjRn88fFxjIwHP/PiInuVHG9+oabseKsasTlzBNelXmSe7RcSXp7wVrhPghZYaxFqOvLII4BpwpqcxItnniksWnCONxFN1wNFN6CQUqQ8x1vhdbWqLDcyFXXTY2NjuPXWW/H0009jeHgY7e3t2HvvvXHSSSehuYFWx2YzTohJOTkfylHOaajpbCLa3Y1FX/witv/jH5j/sY9V9F2qFdRIWxuyW7cCyCe/bG0Vwh1KyTlSSnEFG9W1iMsuyCDhbbaH+tWa5M47o/PoozG+apWwvWnHHd3XdHXT9BHe3rj2Wgz86leY/7GPYe6HPlS183OEkmL3GJ1UJuMatk/YwucBdX4YObSJOkeiZDIrU8xNa7S0YHZnd/NSqvBGhVhnIKZ0vKULzy0NR5wIcLxZIZQ3VWhjGIeUM5nVE4nQ/+ZGQcg1lc0W7WMjZIaUIZOq0YnCxRlPlTbItoUJWLj+hApvyZUrseN3v1vS35zpCI438ozR/F6VuJpqGWoqON4aKNR0zhlnYPDuuwEACy+6KPBYXRFqao6NuSsQRmur6HhLEeEtoAmL5b82KMfb6/1ZXHvrdpgWsHXUwrlv9xdlauF4s9jxNiUkFi/G5Jo1AIA0yfemwk8gL2fxVQ+ZL7raC/iqL+r/3/91X7PjrXT0eBwmcvfB+uuvx8TLL2OHiy9GfN68op8VQ01reJINQtkj11/84he48MILMSSVSNc0DR0dHfjud7+L008/vSonydQOx3kQKWOZwiqjsulsDTUFgJ6TT0bPySdX/D0q4Y2uiDoilV/Z9qLfT5PWF5kEVzvHm3xPZPOhpp5KOrqOWIgGv9FxiihQmlascF/TAa6fED7wy18CADbccAN6TzvNE8JZLoUcb8H3mOOOiujOCr9XeKMTPEdw0wwDelOTK8rRwVYkSHhrQEFGGWqqaR77mcrx5rQ3NJTD/d1pjjdynYPCDWrqeMu3L9W6h+sJWXhDMeHNx/E2HiCqFoPqqaFzvNH8jLNwXFAMOSzeQXC8VVRcoYY53hTtciPQvNtuWP6tb8EcG0Pn0UcHHut57iCmfZAdb7TAQtD1chxvcls7NGbh+j/lCy6lbNeJ/PcX0zg3oAhwLXK8wTRhWxY0XefiCjWk97TT8MbXvgYA6Dr++MBjaxZqGlCAh84zalVcgcLCW+k4zt1Mfz8233QTAGDdV76CHb/3vaKf5Rxv1aWsGcptt92GD37wg0gkErjgggtw2GGHoa+vD5s3b8ZDDz2En/zkJ/jgBz+I1tZWHF+kkWCmF6fTjpSxApYtsYqibdvuqks9DrDDorLhG21t7mvnNxKKK5SwWkU7vmLjeUF4C/0X/PFUNfVxvMXmzZt14cbTQXLlSmiRiDA5pcIbXd1UhZrK+Z623X03et/znqqcmxOGEBRqOjRmYcO23Iitt90QxBvdL9SU/Jv0ZLIgvPmEmspEi1ju65Ho3LkeoS02f75nddzKZHILZbQynSO80TC4vj6k1q7N5XizbUDTxFDTQMdb8fNV5XgLE/7kOt5YePPgV13RDzr5psKP7HKbzNhIhCiYAciOt1AfCV0YZbbiF2pKRZfZEGraSI43AGg/7LBQx6meOyq8RaQcb/FUYYwU6HiLFPrXrGm7z+tjL6fw+oBaBcmYtm/4KnUZl5uHS7W457hrTQ41rRk9p5yCyddeQ3Z4uOj4zTfUtIwKLmKOt4DFNtruV0l5CzpfDjUtHZUDfvs//hHqs5zjrbqU1U1fccUVaG1txeOPP46dpAoqp512Gi688EIcdNBBuPzyy1l4m+E4q2Dl5HwwQwpvtm1jzWc/i7Gnn3YdUcXyZtQzqhxvNF+RnUrBtqwKiisUXhcNNa1ycQVZeLPTaViplCAcarEY5rAbNhR6IoGmnXYSwk19HW8K4U2+HltvvbVqwpsThhAktDy1Ju0GM++3PIqn1hQEAeE+9ZngGc3Nbgi24HiTqlpFe3vRfdJJMFpa0LzHHqX9Q+qAWG8v+s4+213JBIDEsmUe4c1Opz33iSULb4aBaFcXUmvX5t6aaZiReFVzvKkG8cXaH9s03f6DHW9eShbefBJnj02K12bbdgvzu0IW76ALOSEn93UvvIUprlBBqGlqioorGJw+Ro1huIseKuHNE2pKcrzFApxnMbIumc4WhLfNw/6Dus1DJhZ2q58h6ngLyi0XhCpliJ3JALGYkBqFHW/VRTMM7PCZz4Q61tfxVkaoqZDjLWSoabUcb7aPxU5vbuZF+zIoViQmCMHxxjneKqasdY/nnnsOp59+ukd0c1i5ciVOP/10PPvssxWdHFN7KnK8hayiOP7CCxh+8EFh0FmPA+ywJBYv9mwTHG+plKeTLCnUNGReBnl/VUJNFZVusyMjrqsmudtu2PuhhzDn3/6t8j/WIDSTJONGezsi3d3u+2LFFeSce+OrVmH85Zercl4GKa5g+6gtT64u3Mf7LY8J7YyhAdvuvBNrLr4YYy+8UNhOhTcyYREcb/kKrw7thx2G+eefj74PfrCq5exnE/MvuABthxzivm/dd1/PMXY266l+6wj8TnGFSEeHMHiPZPPCHBl5Bwlv5Tvegj8jiAAsvHmgCzpWiY43em3HUuLEfttoQIyRhDABC/mZuhfe2trcztW3uEL4n9jDVIWaspiiRtM0T0VhQXhraxOLK2So4y24qqkDdTUODBdulqP2iGOvJQURYuOg/41E29xyxvuAv+MNADveZgi+Od7KCDUVomcCFvFNwfFW8p9R4ut4C4p5ZXypJK+6UFyBHW8VU9Yop62tDR2S40Cmo6MD7WwHnfFMheNNdt0As6+4QjXpOv54bPm//xNcTNTlY6fT3iS2JYWakhC+IrPgaud4U11rx7EE5FZd6nFyVUuad98dA/nXTTvuKAhLxRxvqjyMww89hKTPokkpGEIuwZyQJvydcQuvbMgNnvo6dCzoMhAl7UwkM4G1X/qS53vpoJ26LGhVU3kS2LL//mX9G+oJTdex7Otfx8Bvf4vY3LnKKld2JuMV3iTHW6S9XVgdjZgppIDQoabhcrx5txXrg2hFU3bfeBGSvIfoL+jkm16PMSnUdOv24hVS3b9L8/2GnIDRCWE9pqDQDAOR9nZkh4aExUdRWKmkuELhdbVDTdnxFg4tGoWdyaiFt5YWMcdbiuZ48//OuM/9MTCSex6TcQ2nH9aMp1an8cza3DO0cVuQ8FZ5jjdbJbw5BXs4x9uMQIvHc+qXFO5SaY63oOiZWjjeQIS3ln33xehTT+X+VhlF/ZgKHW+0LeLiChVTljZ9wgkn4Pbbb4fpozxns1nccccdOPHEEys6Oab2ZEt0vFHBTJ7AlUIjh5rq0SiWfvWr7vtoT4/we1iplKdCZSk28dIcb7QwSug/4TJ433147vjjsfFHP8p9n0LoyWzZUjg3Xgktmdb993fdLK377SfsK1ZcQXa8AerqleVg+ISqOfxTCDONQdM0oZ2JTI56PwRRhNbJZI+GmsquNvl3aVT0RAJ9H/wgOt/xDkR7ez37rXTak5vTTqVgTU6690+ko0MU3rK5toeGhzqON1WTEUp4U4WaFhmN0LaFHW9eaN8cZqHGz/Em53jbVorwRl7rIbOG1rvjDSjkeRMcbz6/f6nU1PFGnrlGy/FWCo5g7Igb2aBQ07COtyid7Oaucda0sW009zz2tOUazHkkDHzjoP+zWmvHG93n57piao+maUrhszzhjYSaBuV4E4orVD/HW/cJJ7ivW3isVxaVOd4K1zQo2oEJR1nC2zXXXINEIoHjjjsOjz32mLDv0UcfxXHHHYempiZcffXVVTlJpjbYtu26diMh7wS6Iu1M4MZffhmrTjsNr3/lK8rPqMIP63WAHZb4woXY8Qc/QNuhh2LhZz8rTHTpJNjdVkqOt5D2cEDO8VZ6h/na5z+PzObN2Pj97+fC2BTXmgpvjex0LJdoTw92/O53scPnP4++M88U9tEBlizWAupnjzqHKkEvshpKE0DvuTh33elk3wlhlDGkHG/u8ZLLuvuUUwAAbYceiigJv2VyxObORd/ZZyO5227uNjub9TiVrVRKqGgaaW+HRgTySDYfipq/nJZtuyXlW5u8bUaxSsqAj+OtSPMjON5YePNAF29COd7I85sNyvE2Gl54o+1A6O6kEYS3fNtlTUy4fTsNNU1XUFwhVUPhTQgfZOHNF0+oKW2rpKqmcZrjLbCqaeG1c423jVrumK23zcj/X3cXwQJDTYlwEinTlqQS3ix2vM04VMJnKXMI93uKLK66312LHG+0oNjOO2Pev/87mnbeGfPPP786f6DBUJldwjrMqfBWiTubyVHWKGffffdFOp3GP//5T9x///2IRqPo7u7G1q1bkck3wvPmzcO+Uo4ZTdOwevXqys+aqQqWXVihNkJaz2lj6Djetv7+95hcswaTa9ag75xzkFi0SPgMh5qqad1vP9eps+2uu9ztk2vXIr5ggXBs2Tneiglv5LWm5a7V1ttuQ3LnndGyzz6Bn5UHYdmhIeW1FhxvFdidG5mWvfdGy957e7br0WguubNpqh1viuuh2lYO3tVQsQ2hk4AF+VV5IcdbxisUQtOEXFWtBxyAbXfcgUh3N5qWLxcOXXTxxeg99VQkli2r4F9R3yz4xCcAAC+ceipS69bBTqeVoabUiWN0dAjO1IjpON5y71OkKWpL6hiZECd74UJNvQeVFGrKwpsH2qeG6S8MIdTU3/FWUqgpeR12AkZDTfU6F96AXD8ZmztXcLxlqhRqGlQlsxzowo3BwpsvrvCmqmra2ioUz4qlSahpgPNMleOtn+R3m5N3vEUMDXPaDWwcNLF5yIRp2cq2tGaON0d4o8UVOLJhWlGJ5JVWNZ3qUFNaXEEzDMz793/HvH//9+p8eQOiKuoXdh4uFFdgx1vFlNVNW5aFaDSKRZLAMm/ePOG9nHDbLwE3Mz0IHXEIx5tt28JKuuOcoLZ6lZtG5brhqjQi1JUy9sIL3tA5y8qVbQ8xMRFyvBV55uSqpv2/+AU2fv/70BMJ7H7nncKAUWZizRrhfWbLFuW1ZuGtthhNTTBHR9U53hTXw6qS4y1oNdS2bVd462zWkYjl7knqeDMy3kG8nkwKYaTd7343mnbeGbG+Ps9gXtN1JHfZpdJ/RkNAQ6GUwht1vHV0CA2DYeaciZn86Jrmd+to1vHmVkl4C3E+WcUgvlioKQtvwcjpCooer2kw9NyzKzjePMUVaut4EyaE9Sq85UNNgVxl09jcuUJ+r0pcBLUMNTW5uEIonPGs63gjrmKjtVX47aKk3wsbaupMdp38bgDQ015oMOd16tg4aCJrAVtGLPR1eJU1Mcdb8X+TikDhjYsrzBiqFWqqExVNlR7Cgbb7tSiuUK9O6KlE5XgLOx+jCzosvFVOWXfz2rVrq3wazHRAY/ZDJVs1TWFCZm7fDlty2qhCXFThh/WYRLkS4gsXwmhrgzkygvEXXlCHDWYyMMIIbxVUNZ3Mi2nW5CTSGzcGC29SdczMli1qx9vAgPtaterCVIbuCG8hc7xVz/FGvlOam2+fsF3nzLzOwoFRmuMt7b3HVSESyR13rOxEGXfQZWUy3mrUpimI45H2dmES5eR4c/IM0YFXS0KDBlFsK+ayNS1b6Ypj4a0ySnW8AbkFN9OSiitIoaaDoxYsyxYmYX4ICzkhJ2CNMMEySH5KJ0UHFV0qqWqanoKqpnpTE7Rqzajrkfx9aykcb0ZLi3Bf61bhfg8ONfWGd20ZLjSuTqgpAMzrNADkCywMmj7CGzndKoaacnGFmYdSeMvPzdL9/Rj45S/R+pa3oO3AAwO/J7zjjeZ4K+1c/RAcb3XaL0wlKpEt7Dxc1zTEI0Aqm/uPqQzuSRsY2hEbIe4EVTlqc3QUNlldV9mZOdS0OJqmIbnrrgCA7LZtSCnEbTuEiwEIXwIckKqaQhw8qRxUFI/wtnVr8eIKLLxVHWeQFdbxVrUcbwHOShpmmpsU5BAcbwrhjQfstcEdYJkmTEVxjUx/v/vaW1whN9lywp3oRD8R1RCTxm7F1kNV+d2A0nK86Vxh0UOpjjegkGIiKNTUsoGhsXCuN6FYj88xdjaLzT/7GQZ+85uci74RhDdyvzr3MRVdKgs1LXy2GqGmW//4R2y68cZcPsj8uXJ+t2A8jjcpx5tmGK4STYW3oOtF21UnvL9/hISaEsdbb3uhjx30cahSV2vZjjdFu6IqrsD9+PSiCgt3BNK1X/oSNt98M1694IKiFUJD53gTHG/VL66gGWXesIyLyvRQSpFDx4HLjrfKqc9RDhOKUjti1Sq6uX270HirEnhyqGk4mnfbDdsffRQAsP3JJz37VcKnCtpZFovutiXHGx1YFRPexiXhLbt1qyuyatGoe78IwhsLrlXHCetQXa/pcrxR4W0uFd7IZ/S0ItSUB+w1gQoamW3bPPvTmze7ryMdHUKb7eR4y+TFGdlhk4hqwmCsWJvjV8GxaI43rmoaSDmON8eBmiWFM2ThDciFm3a1Fh8kiI439fUcevBBrP/v/waQC8Gkq+71Oi6g96sjylD3b2WON7jfV2lFwfFXXnGLZKXefNMV5OMLF1b0vfWOXFzBcRVr8bi7iKFFo7BTKRhW4dmMBaw2xFSOt3yoqaHnUjg40HvJTyARQ02r6HhzxEZ2vM0YVL+/M38YJXMLJ9+kH7RPDkpbI0fOVINGWJCZSpRzrxLSfyWiGrZP2Cy8VYGy7+bR0VH8+Mc/xjPPPIP169e7RRUomqbh/vvvr+gEmdphko642KQHUIeRZkdGONS0StA8b9ufeMKzP0ylOkAcfAeVAAfEvIuaJg6sgoQ327Iw8corwrb0xo3uhC/W14fUm28CkKqasuOt6jiDLDuT8eQBVDkQq+V4MwIG+/6Ot8Ixusrxxs6KmkBFmaxCeMts2uS+jrS3I7N1q/veyFefdUJNaTL3WNSZIBbaEatIm+M3MeRQ08qgfWpox5ueu3Ymyd+nunpbRy2sCPF9QrEen2O23Hqr+3rdVVdh0Re+UPhMnU6wlMKbQlgpB+ezQfnCwjL29NPu661//KP7unX//Sv+7nqGOopt03RDTel11yIR2KmU5HgLH2pq2zYG8sUVult1QdiOhMjFVfPiCs540TDqVkCfLYTN8VY1x1utiyvUab8wlaiizGQzh22a2PL738NobkbXcccJ+5yFABbeKqesu/nJJ5/Esccei23btgUWTNCqJX0zNaFkx5sqjHRkRBjkKxt3DjUNRXM+1BRQ/2Z2JgPbsvDmN76BzNatWHTxxYiQ3DEO5VY11TVNENtUeeYc0hs2eM5x8o033NdRIryBdKAcalp96CDLmpwUJ3m0Kl17O8zhYdipVOhCHUEYAQJvuaGmXDmvNlBRhopqDmkSampIoabRfHGFdP6Syo43WvEKKB5qmvF1vAV/joW3YOg1C53jLf9oOo4rOb+bQyodbrAdpriC0D4NDwt9Tr1OsIo63ioqrpD7f6wKP53fgigLb8HQ+9bOZgvCG8mRq0ejsAAYZshQU0l42z5hu/mVaH43QK5QrP6+bKk5nRWohBpLqmrKhRWmH1WuXDudhi1NCFSmCErYtDX0a8OkLQoDO96qi2ruJZs5hv7yF7zxta8ByLmcm/fYw92XyI/zMiZC53xl1JT1iHziE5/A4OAgvva1r2HdunXIZDKwLMvzn2lW4J9nag51vIVJtqrM8RYi1JQdb+GI9vQE2r6tdBrb7roLA7/6FYbuuw+bf/pT5XH0UpZaXEG4lgGd8vhLL3m2pdatc19Hu7rE0aBzbiy8VR0qvMliKRVHY3PmFI4jIoY5MYH13/0uBn7zm5L+blDi3U2DuQ3JuIbWJrIyTx1vKc7xNlXoZOCqdLxJoaZ08uQKb3lxICUJb+1JcRhRrM3xG8AXDTVl4S0Q2qeGdUc7E3BnLEDDTJNxOvEPdw5hiivQfIIAMPLII+7reh0XUAHGqSqtaZorvlWjuEI1CivIFY+B3DWhEzDGi+AyT6XcsRMtTuXc2zoNNQ1yvEk53mjutu5W8eGi43e/KAexuILvnw0k0PGW36cSfZipRRU5YGWzQvVyIHiMDxRygALB0TNicYUqCTLseKsqqlBTeYFu8rXX3NcTr74q7BNyTnKBhYooq/n95z//idNPPx2f+cxnsHDhQhic+HBWQh1vYS6hb6ipwvGWHRrC2ksuwcYf/pBzvJVAIqCCo51OY4iEbtOQndSbb2L7E0/Atu3SHG+SQ0EorhBgQ6cimwOdUOktLcrJMQtv1ccgIokcHkxF72hvb2E7EeS23X47Nv/kJ3jj6qsx9Oc/h/67uk8YwmTaxmA+Gfu8TkNwPtOVdo1DTacM6jBWhRpnnYILhgGjpUUQ3mKWWNU0TcZqsQhwwgEJ7LKQOD6KCG9+jrdioaYWFd64uIIH2raqFsBUOEK4MxYYI8JbB8khFTYUUljI8TkmTcKaAWDwvvsKn6nTCZbK8QYUQg2rEWpaFeFN0TY077knu5iKQAXj7OCg+9pQCG8GDTUNGHfLjrdBUuCEPpuAuKDl63irVY43KdSUF8+mH6OtzbPNTqeFtC9A8Xy/5YSa1iLHW6gJKhNImFBTOlfPSkW4aGQDh5tWRlnCW3d3N3rJJI6ZnWRLdLwpiyv45Hh781vfwrY//Qkbf/hDjD37rOdzHGqqJl7E8UZXpJ3V1OzwMP51+ul45fzzMXjXXdA1zZ30BCVEBQDal2oI73grNrEzmpuVwhvneKs+Qqip7HjzE97IBGvgd79zX2+44YbQf9fwWWXvHyaFFTrELqYpRkNNvYN4rl5VG8I6iSLt7dA0TRBxYlZuYSXjE2q6fG4Unz6xDYt7c9euqOOt3KqmpHALC/heynK85R9P08r1FWOTdHJPqm76iKUyNPWIKhTFymSQGRgQNzaAs4H2hVkqvDmOtzIdBJZtu89lNUJNVY43DjMtjiC8kQkrXSBw7m2dhJoGiaUxaaI7FCC8UYGk0hxv4y+/jDWf/awgiDsEFVdg4W3m0HXMMWjacUchb7SdySArpZmwxscx8uijGLzvPk8YKiD2yUGL+GJV07JPW4CrmlYXv1BT2mdTIVYW3vzG+0zplPWInHrqqXjggQdgFbPTMDMauoIRxnquEt7k4gqOILPtjjsCv6teQ0oqJTZvnu8+O50W8jNp+VXoiVdeca/B2PPPAyh0fsXmS56qpuRaBuV4U+X7oxjJpNKVwhPm6hMkvDkdqZ5ICKugtINNLF7svp5cs6botXX/rs9q6CjJEyWHIe67LIYFXQaW90XQrnsTwKsmfkzlhHUYOzkjNUF4yzvesuqqpu7fyF/q4o439fawoaYcZqqmPMcbGUybouOtU3C8hTsHeSFHJrN5c+AN0gjCG3VuOs9PWGFThgp2tQo1bT3ggIq/t96h9y39DamDu+B4K4yjg/JhBTneOlvEay0/xyqce0zT/Nta27bx4hlnYOiBB/D65Zd7xBg/x5udzbrzA3ZHTj+xuXOxyy9+gZ1+9CN3m53Nehxvo08/jVcvvBCvff7zGPn73z3fo+uFRfwgsUVIMVDt4gq6Dq1aal4DozS72LbQYFiBwlvhdZD7kSlOWXfzV7/6VcTjcXzgAx/A+vXrq31OzBRBV8DCLCiocrxlh4aEBzdsUuewxzUa0QDHmzk6WihYALirVyrh0+n8ioaaUuHNzAqiS1CoKb1+0b4+z37dx/HGwlv1oQNd+Zo5jje9uVkQQmkHK1dAHCWV7YLw64gnSCL2prg4Cuto1nHp+9vw+fe0AYocbyy81YbQjreODgCQcryFFN6I1BJUdMlvAB+2qikLb2oqcbwBuXBTv1DTsMn/7SLOh/TGjYGfr9cFOT2ZdH+QaoaaUsHO+a6wCycqqBsvtmABet7zHjTvtVfZ39coCI43kkdLJbzpFnF4BsTlxYkGnc4Cw0GhptJzrMLpo4MW2Uefesp9bY2NeRbybEW1ZDubFcYdLLzNHITcg4pQ09F//tN9Pf7ii8rv0Ikr2g+zBjnenHasXhdjphq/uRed19PUNDRkHpDG+5y+vyLKuqNbWlrwgx/8AEcddRR+/etfo6OjA+2K6oqapmH16tUVnyRTG4QqR2FCTRWDeTlRsiVZV/3gCbaaeIDjbeKVV4QWLzs4mEvkqwj11XUAZvGwL3qttLQ4qAoKNaWD+9jcuUJydiAfaqpwvHGoafUJdLzlr6GRTPrmGTJHRoTPDD3wQKjwIiEMgdxHQoL2mLddcSYb8rkC4Z06TGmEFTQMR3ijVU0tp7hCrr2g7idalU8T7gf/0FG/HERBwptt265Lk4U3NTR5cjmOt6xpC89uxTneFNe/qPBWp5MsTdNgNDfD3L5dFN5IcQXbtgOFGBVpkmsnptt4+aMfxcSrr2L5N7+JljIEMzou2/U3v1Em5Ga80OI1tD+lhQZ06niz7aLJsGioac7xpn42ATEJftbHPelsD8rvtuW3vxXeWxMT4oKdj+NNEN441HTGoGkatEjEdSTKFc3TZNzul+/N0HOiW9iqptUONa3XPmGq8UvvZKfTQP6ZDcrxFqaACxOOsh6R+++/H4ceeiiGhoYQiUSQTCZh27bnPw5FndmYIXM+OKhWUuV8LXYmA1OqnKP829Jkn8kRFGo6vmqVZ1tmYEAsiJCfcDmhBFaRBlJwvEkOJJUw4n6OrJLEFI635M47qx1vPJCvOnSFmYYHU7FCl0J/hVwO0vM69Je/hPq7Ys6HwvaJdOFNk0J4cz+jEHYXfPzjof42UxqqQZdKBHdCTQXhLZsT3mw756agIkxcEWrqHOuH38QwaDBiTUy4HZbOhRWU0Gscvqpp4XXWhJTjrfRQU6E/UexPEeEtvmiRZ389T7KcRPsqx5ttlxe+Q69L+5bVGH3ySZjDw9h2551lnaMjvGnxOPfVJUDv2ywZ26ocbwCg28UtIxG9ELmQy/HmCGdAs+Qkj4QIA3NC/P3G+pktWzD4wAPCNmE8ITnbHKxMRjiOhbeZhdMv2JmMx/FGIx9UhVWAwjhvykNNHeGN87tVBb/2nM7lguYF9DJwqGlllDXK+dznPgfbtvHLX/4S733ve6Fz/PWshDreiuXXAdSr6B7hLZ1GKkT4MU36yRSIdHVBi0aVobhjCuEt3d8vCGROKIBzOYs1kMJuKdl9YKip5HijJJYtQ9PKlWrhjcMQqo6f481Op12xQi52ITjepA42098fyn3hl+MtKNSUQpMxr/jOd2Bns2jee+/Av8mUh0rQiHZ2eipMqkJNI2ah3c9kbd9QU3qlg4U39fagNFd0QMiONzVUeFOlhVAR5HijOd7C5iCjczM3RGliAnosBs0whPutacUKT3Xsuhbe8vctbXtjZDKTztolV5tMk+sSzxQWMqwi1Qr9cM4tQqpxMsWhopqQ4430zfTe1s0MLD34Xtc0DbEIMJnJ3RvD47lr3dmse/rmMI43Rzjxi24ZevBBTwwZdcBMvPqq8O9y+m87kxHGHSy8zSyce1NVXIHiL7zl/h+0hm/VQnjL34v13CdMJaFCTUPmePMLZ2fCUZZitmrVKnzwgx/EaaedxqLbLCZslSMHZVVTKWTUzmSEPGSUtkMOQfuRR6L7xBPRdeyxJZ1ro6DpukfIclA5CTP9/WKoqZPg1snxVkJxBVl4UzmS5L8DeIW37hNPzFVGVFU15VX0quMnvNHrpyeTglPI6WBtyxJW6HMb7VCOGTHHW+FGmiCT96aYf//gCm/JJFr22QetBxxQcqgVEw5VcYVIV5d3m+N4I8KbYRZC0NNZIE26gRj5WjnU1A+/qnuBOWTIpICFNzV0RZvmYkq9+abvIoo8mN5OCqN0tJQeaiqkLoCG8ZdewnPHHosXTj0V5vi4EGratOOOns/X8yTLuW/tTMbNqxklwrVf0ZEghFDTDHG+K3JxhcEZzxksvJWEFiLUVBDerHAW0ng+3HR0siCKtzd7+9QwjrdsEcdbWkobA4jjibHnnnNft+yzj/vazmaF4wxeXJ1ROH2/KscbxSoivAWGmtbS8VbHfcJUEhhqmocK7dbYmGC24aqm1aMs1ay3txdNvKox6zFLdLyFKYhgBQhv0TlzsPyaa7D4kku4MQ0gKNxUJtPfL9j8nQG3o4eXUlwBcmL+kFVN5eIKXccdBwBc1XSKoIN7odAGdQlJOd6cQZY1Pq68ScJM3GibQb9inDjekgGON0cYZBdk7VENuiKdnd5tecebFom4sQVGhgpvAY43cqnLcrwFDOYsFt6KonK8bb3jDrxw8slY9f73K11wUeKU6R82sWZTrl1vT2pCOFsmZKip7Hhbd+WVsMbGkF6/Hpt/9jNXeDNaWpQpCup5XCCE+ucFLvr8hC1gQaFiXTRLxgEBbnU/7GzWnXix8FYaQnGFEKGmRkjhzbk/tk+onagOcsi4ikKON/V+VfoXX+Ft333d13YmI7hjaPV0ZvpxHW/ZrCfHG8XP8eYUS/BzUgJiShu9Ssobh5pWF7+5l+1TXAEQXW9c1bR6lCW8feADH8Cdd96JiYCJOTNzyWRtjIxbGBgpPD3lOt48x6TTSPuEmhpkEML44+d4U5GWHG+Fqqb5HG9FCl2IOd5KEN7IvZBYvNjNF9V6wAGIdncDUE+QWXirPqEcb1KxC2eQJdvJ3e8JMXELVdU0IMeb8ze4Xag9KkFD6XjLC29A4Vk1suGEN1rNLKjdYcdbbVA53l6/9FIAQHr9eow//7znM3ROc9dTk65w9rZd4zD0gpga2vFGXmuAkHYi9frrbhGe2Lx5ylx9dS28kft28N57seknP0E8W1gcCStuUuh1idJQ0zIcb/yMlY8QakqFN+p4oznezHCh4LR9dZALKwBSyLhP++qEh/ktsnuc7xDHEI7wpkWjaN59d3e7nckIRdaivb3K72emB+e+M4eHA0PQ/YS3lqaC69JvcYwdbzMfX8dbfi5nW5bn/vAX3tjxVgll3dGXXXYZ/vWvf+GYY47BV7/6Vey9995o4Y561vBfNw0Jk2MguMS4Q1jHW1bKG+TASbHDUUx4a9ppJ0y8/DIAILN5MyI9Pe4+2y2ukHtfrH2k++1SiisQx5vR3o6lX/0qtj/xBOaefXZhuyrUlIW3qkMdY4IISwbNhk9xBdVgGwg3cfPL8TaeKi682aZZyEfI7umao0qsG1UIbwapTq7H47DGx6FnpVBTOtn3qWpaluMtv902Tc8qtyAKcD+iRCiuoOirVWJ6lMySXs273WIR4Mg9ErkcUwaQyoYvriBXtzNaWtwUCZOvv+72G7G5c9X9Q8jqu7MR+u998xvfAADMfccIsOhMAGK+trDQUNNohrT9ZTjehGeMHW8lQftg6ioyKnW8KR6HjmZvnyqEmiraV9u23e3lON6yQ0NIvfEGACC5yy6Ck8/OZoUw1eicOeo/wEwL1PEWhJ/w1tum440tJkwL2LbdQm+79waqRVVT94Zlx1tV8M3xlp8zquZ7ovCmLqbGlE5ZwpsTZmrbNg4//HDf4zRNQ7bIw85MPYmo5hHejBBJfVXFFWSCiiuwsyUcxUJNE8uXY+KVVwDbRrq/XxA0nWvkTIKLNZA0Jw8ksSWs8KZFIug4/HB0SG0BO96mBl/HG1m90qVQ0+1PPol1V13luzodzvGmzvngtC2GnpvEK7+fkzFPKSpBIyjUFCgIObpVmMnliivkXkcN0eUWOsebj8DQmgBe/cQnMPbCC1j+zW+ihRTaoLlE2Y2jhjoDrFTKE1aU2bbN8xnVnOaQlXG0NuVmT9GIhlTWDl1cQXBQa+K1mnztNfd1dM4cpYBaz+4GlZjV/NqzQL64azmhpmmapzddoeONPmMsvJUEvc9pwTHat+lSjrcwzqB4SMebrmvQNKfytPc+suyCG9WvuIJSeMsv3tEw0+Y99hD6EzuTEf7NMRbeZhRhqxP7C28GgNxCzsCIj/DGjrcZT7FQU1VO7+zgoPuaQ02rR1l39GGHHcZJsGcxiRgAyXEcyvFGxRafypvm2JhgO6foLLyFQs6Z5tnf3Y1IVxeyW7ci098vOORkx1uRSFNxgiwXV5iY8K1uSe8FVeJ2wDtB1qJRaFyMper4CW+C4625Oec2NAzANGGNjWHL737n+522z8Rt6M9/hjU5ic5jjhE6YnofOY63ppjm20/QvITcLtQepfAWUFwBKAx4tWyhnaehpnIYlF6G4+3d+yfw5+dTmNOuY5fxF/HqI48AAF7+6Eex72OPucfRvKHF2sdGRdM0aPE47FQKdiaTW5wh0EG0g6qK5kE7FiZquWtshxaFaIixDrEPoEmco729asdbHU+yVP/e+MY1uYdF00K7CinUfWqkSUXrMhxvWRbeysbvPvcLNTXMjNB/+hE21BTIjeEzptpRHKaQmjLUNN9Pjz77rLuteY89hDGflc2KoaYsvM0owrqIrYkJ2Nmspw3ubS/cbwMjJgDv99F2v1rSAFc1rS5+94Ezj1eFIXOoaW0o647+85//XOXTYKaShCL8K0wZezqgiHR0CKtcDqnXX/eddXGIUDhUIWCUSHs7Yn19OeFt61bB2eQWV8j3fsUayKDiCjBN2JmMMjcATdTt1zF6hDeuaFoT6ODeJNfQlIoraJomhH7JRHt63KpX1sQEBh94AHoshrZDD4WmaRh77jmsuegiALlO3Fj01sLfUuR4CyqsIIiC7HirOapBV1R2vOm6MOF2PqOZVHiDr/AmhJoGnAstRb98bgTH79cEQwe2P0octlK8FHVLJZYuDfj2xkaPRmGmUrDSaYy/9JKwT5VYW7Xg1tNWmJk7jtWwohDtT3Rd8xVwoj09DZ3jzd02vh3JiW0YT3aHdhVSMj7CmzMOMCcmQrev7CotH7/73K+4gm6boYQ3p6opRVVcAciN4TOmOg8X3eY31leNC5yFvMlXX3W3JXfbTWifqeNNi8dZtJ1hlNKmmmNjwuIb4DjecgwMq61O9JYLU6gvDFxcobr4/Y7pzZsx8Nvfeq47wKGmtYLtJw1IQtGZhxkEULGFhiRRVGKcAztbwpFYuhTxRbn4k/bDDvPsN9raCiGCloU0cYM4qxflVDW1U95Vcr9wUyFfhE+DLk+suHplbTBCON6cZy9oQkVXqocfegivffazWP2pT2HDDTcAADbffLO7/81vflOqapq7kWzbdoW3wMIKHGo6pYQJNY20twuOVMfV4HW85V7L+YfoeDuo3aGhpoauIWLknJGm1NbQMPjJtWtzfyORUFbDZHI4OTTtdNrNA+qgdrx537clCxcymhdXwzveyLnAf9IX7elpuBxvuk/b270tJyqXV1yBfH+KhJpOTqL/F7/AM0ccgXVXXRXqu6jwFmHxpCT8+lUjoLhCmOqPqlQN7T7CmzOGL+Z4U431bdNUhho6Ywi6iBft6hKeazuTcXO8xebM4WioGUYpC96qe6C3TXa8eRFyvFXh8tum6U5O6nkxZiaw7oor8MbXvobXLr7Ys8/kqqY1oSLhLZ1O409/+hO++c1v4vLLL3e3T05Oor+/H1axWT8zLagmxKGqmhKxRZUfSCa2YIHwnnO8hUMzDOz04x9jxXe/i/mf+IRnf6S9HVFSUCG1caP7uuB4y78vMl8Sdqe8Ipuv8JYX+LRIxHegJQ9GOb9bbdDicddu5FfV1HGbBrlOqfBGQ0s2/+Qn2HzLLYJwbo2NCUl0HRdTKlMQcwMdbxxqOqWowsHlUFNDWvF0J4qk3c8EhJrSdsAOiDU1fcKe5BxD2bxDy0ql3Lyh8SVLOFw9AOc6WyrhTZHjTXa/dLfqQt6+WH5/1iqI60GIjjfRJU+J9vTkFmKka1nPkyw/caZrMCe8ha0cS6HFFfSU6HjbetttgGliyx/+EPg8OnBxhfLxdbz5hZpa2VCL3fLzOa9TV4af5o7N/V81KaYuY9VYn4qudBzg9NNuf20Y0GIx4d+SJdUyuaLpzEO1mOFX5Iy2AbZtY2zVKrSmtrnziYGR4o63auiuNhkk1HOfMNPxd7xxqGkllD2C/eMf/4hFixbhhBNOwEUXXYTLLrvM3ffss89i3rx5+OUvf1mNc2SqjMq+7pdwlSKEmipsqZ6/M3++8J5DTcMT7exE20EHKd1AkY4OcaBHbf/pNGzbFqqaBg26hV0Kx5vsQnE/59jAAxwKstDKoaa1QdM0100YVFwBCHa80aTItMMFgI0//KFw/cyJCTHHW348Np4qDMyCHG9Cjjd2QtYcpeOtrU1wq8ouZjfHm21ByxdYmMzYrnsiMMdbwLlkaNgTHcyRyR8ATK5bV/h//gZr4jDTQJxn1Ny+HZOvvy7sUxVXkCfh3a3ikJBWrU2rzQ4CcnEFv0p60Z6eXOi7NCao50mWv/C2FgDKCjWdJGKdNllYaLHT6YKQbZqC+9kPLq5QPn4V3Gl4lyYUVwiX401OC3PWEf5jaGdirCpeY0ouYxma3406ip1+2lnEM5qacrkkSX+SJgu/nN9t5qFadPNzjVPhbfDuu/HSWWfhpfefhrnR3PUfGDaV8wkht2c1hDepeBtTHdoOOaSk4/1zvFXphBqUsoS3v/3tb3jve9+LeDyO//7v/8YZZ5wh7D/wwAOxYsUK/C4geTczfagmxGHC6O0QoaYUuTonO1tKR9VpGm1t/gKKbQOmKbgWghYn6D570ptQP4zjzQ/NMIRrzo632uEItJOvv45t99wDa3LSU1wBgLIgikM0QHizxsfFeALTVK6A0WrJgaGm9Ny4Xag5HuFN16HF48Iz6RHeiNCqW7mB8Ohk4frKYVAdL/4dhz56A1pG+wNDTf0cb3Jy71ReOOL8buFxrpmdTnvifZWhptIsqadVHAhQcVUVbpo1bbzen3UnXnJ1O2UldF13HfOqAjz1il+f3T1Yfqjptu2Fa2xIxZEy5HrLorYKzvFWPiqhUs6tR8dKhpkNlQtrlwW55yEWAf7zhFasmOf/fDhtabYcxxtpe6OkWJfTTzvjQGc8JwhveTcywBVNZyKqNpUWZKNsve02vPrJT2L7k09i7Re/CCDXLuy25m4AwGRGHAM42DTUtArKGzveasPSr34Vy665BgvzuZqLIQhvNDohxCIc409Zd/QVV1yBjo4OPPHEE+jt7cVWRdLe/fbbD48//njFJ8hUH2VxhRCNJc3xZoQR3tjxVjEql1ikvT1wRdpKpYQIHssG/HRVunplq0JNfVbK3YpDRSZKelOT+x0svNUO1xlpmlj7hS+g55RThEILzoB5giRJlhFCTBQVjmxpIq9aAROEt7ChppzjreboUjviFNvQ43H3+ZRdzLpUhc+MxDEmCG9EeB0dxYqbvwAA6Bt4EfZHf+p7LtTZQ0Op5FBT1/HGwlto5OtMyW7b5qlSXdzxVjhWFQr5vbtG8ezrGRy5RxxnHNYs9Ceapg41jXZ3u04gOQ9oPU+y/PrszqF10CyzLMdbfz7ZedQAtEmxzaaVqVW5m2RYeCsfPZFwK4a726QFJdqe6lYWh+9WfDy026IoLv+3djQnNLQ2BfsknDG8qbiPqAtONdb3c7y5oabOGC7fV/tVsmfH28xDNYfwE9623X47AGCEVBQHgPZs4f4YGLE896K84FIpYXJIM6VjtLSg48gjse2uu0IdT4W3CIeaVo2yHG+PPvooTjrpJPQGxPPvsMMO2LRpU9knxtQOZXEFdrzNSFQTqaLCWzodOtG5UFxBrmqKXJJm5edCON4A8fxZeKsdcrjmlt//XszZk59IJZYtU3++ubmo80wWRnRlqGnhhkrGxO5l6KGHsP6730VmcJCFtylGFsgdwSPQ8UYdGlbueR+dLDQmVHhLk76+b+DFQJctDVOgVTXl+8t1vOULKwAsvBUjKJzfzmQ8Aow8Ce9uE59Z6mpUObJeXJ+7L158M/d/sbiCpnTY0vykDR1qmh90Rcw02rZvLDnHm2XbbrLznjbd150OhBPespzjrWyciuEUuV+jbfB+izS8Y69wKRbmdhpFRTegMIZXOt5M73EUwfHW2+sm6jInJmDbthty6o4RfCYMnONt5qFLbaoWiXjyu3owTaEtbskW2oaBYa/dyRQcb+WdJ4VDTWtLWGd5dmjIXUzjUNPqUdYjkkql0F4kx9fw8DB0ToI8I1EWV6AVClMpvHH11Vh/3XWCy0XI8RZCePM4KHiCXTJyA6nF49ATicCqY3Y6LXR+QasTdI9SeKsgx5u8nzvQ2iGHEmmRCCw6kcpPcBf+539CTybRtNNOSO66q3B8sVxrHuGNNCPFQk0zW7Zgzac/jc0/+Qk23nCDWPiBBfmaIz97zm9OkyzL7bUmOTQA/1BTOZdXUC73rI/jLeuX481xvBkG4gsX+n8xo1yooddYLrAgO956ZMebEex4c4YHThcjF1ewFMJbhApvcqhpHVdElNvX1v32c193DL9Zcqjp0Fgh32JvmyG0qTLseKs98m/myXFL2tP9l2jCs1UNnEUM0xJzbuW2FXG8DQ8X9nd0FHLGjo/nxv15J58zhpfzvDlwqOnMQ75ORmtrqDEXLbaUSBfaBlWBBbvKjjfqHNXY8VZ1gpzxQKGvsjMZ13zBwlv1KEsZW7ZsGZ544onAYx555BGsXLmyrJNiaovK8UYH4Ftvvx0Dv/kNNv/0pxj5+9/d7aU63uSBZj0PqmuFZhhiAvR8Z1jM8WYIFQb9v5+64WxVcQW/UFPH8VakUxTKzvsk2mYqR3YmGu3tbnEFLRp1nU0te++NPe+5Byt//nMkli93jzdHRooKb3IOLn2iENrkaCnjRHijVU1Hn37afb3l978XzpcF+dojO6Ec93Gg440Kb6ZKeCNtjJT0Q574UbIhq5qm33wTVjrtOt8SixaxeF8EleMtsXix+1rO8+atairleCNzNpXw5jz3sgAH+IeaxgIcb/WMPP5p3msv93UsPYp0iaGm1HnS264HFlAoJcebnPuRCYc8JvM43mo8FhLC9qWJcdbHZeweT9reSHu72z9YExO+FchVbTE73mYecp9gtLaGij6KtLW5r2OThftj46DX8SYWV6hCjjd2vNWUYoaJSHe3+9pJWcBVTatHWcLbe97zHvz1r3/FzTffrNx/7bXX4vnnn8f73//+ik6OqQ2qHG9UzZ546aXC65dfdl/TxtBJjhyE3tSERV/4Aoy2Nsy/4IIyz5ahqxOu8BawIm1LOd6CVifo/NhSCG/VdLyx8FY7uk88UXhvjo66LgdPCEwiAU3TEKXhBrZddLIlCyPadpK828nxllI73uiKOiDmDmThrfZ4Vr2dUFMitsp5O+ln3FDTCXWoaUmONzJoMwJCTe1sFtufeMIV+TnMtDiq3EvxRYvc1xkpH6/seGtLimODGJnMbx6y8NjLKUxmnEIKtnudnedfdj6oQk0jDSq8ycQXLHBfxzLjKLV7pM6T3qQV2L+Gcrz59BdMOEoJNQ0qclT236dtqaSNUJdxsVBTo63NLQxhjo+L7nTyb/KM/TRNCCNnZgaevr+tLVS7S+9nY2K721es7fe2M7XM8cbCW/UpNm+jcwOV400Vzs6EJ7Tw9va3v90V2j7zmc9gl112wbnnnoujjz4a999/PwDgs5/9LA477DB87nOfw957740LL7ywNmfNVISyuAIZYE/mHQYAMPnGG+5rq8RQUz2RQM+pp2LP++/H3A99qMyzZWi4rxHC8WZnMmKOt4BJsBBqqhDZKs3xRht4ZYU7piosuPBCLLvmGkTziZHtVMpNjOo3yPKEFpboeMNIQUyz8jeZn+MtLeX7NH1W0ZnaIAsySsdbQHEFJ9R0LEUdb4VjZcdbcKhp4XU0INQUAIYffNB9zcJbcTSFeJ4gwpvseJMrK8puBVpc4aYHx/Cj+8bwu7/nKx2SwbfjeLBlx5tCYIgRV4zeYCLPkq9+FYlly7DoS18SJrax9FjJOd4Ex1tM3U87BAlvVjqN9ddfj8zAAADO71YuHuEtINS0Jo438ixnpUGfmFczuLhCpK2t4HiTqqMLjjepT4l2d7NIMgOR+/5ISMcbHa+bg4PYoSenvPUPWxhPicqLVcscbxxqWnWKhZpGighv7HirjNCPyJ///GeszSc5bmlpwV//+lecfvrpePDBB/Hwww/Dtm1ce+21+Pvf/47TTjsN9913H+JsV5+RNKlCTcmdQJNZp/J5dgAp1LRIjj9AzAfBlA+tThbG8Zarakpy9gU0kpZQ1TTl3a8IX7FtO7TjTa/xKi+TQ4tE0HHkkWhascLd5lYi87lX2g45xH3dc+qpRR1vnvtjJLzjLb1+vfBR6qQ02PFWczyr3qocb0GONzP37NIJXCzq73gLLK6gSPRtW5YyHG6IhbeSUDreaKiplOMtlQkeQMcU8+g1eccDvcaFUFMachQix1uDOd66jj4au/761+g56SRReMuMl1zVlDreuiLevpsSFGq68X/+B5tvusm9iM177FHSeTA5ZMFS7tdqPRai+kTW43grvJZdroAovBltbYUcT6mUINoGhZpGfSplMtOLMsdbiHaXuiAzW7diSU+hv1/bL6eWKLwO63hLbdyIzT//uWdRFmDHW60pGmpKhTdlqGltzqtRKPuO7uzsxM9//nN85zvfwT/+8Q9s27YNbW1tOOCAA9BHylEzM4+45HjTNLhCjTk6iiwJR0kRx5s7WDAM6PE4tHhcKdY4FMsZxZSOk3ch6PdPbdiAvn88i9bE/tjeOhdB43kh1HRS4XhThZrSxKclON441LT2qARZP5G2acUKLPriFzHx0kuYe955Jf8te2TIfe0Kb7S4AnG8pd58U/gsh5pOLX5VTZM77YSRhx9GpKsLMWniJIaaep9dGmoqxzYFOd4yVqFKluOwssbH3Yl/dM4cZPr7AYjl7BNLlvh/KQPAJ8cbDTWVhLc57YUVt10XKnI2RbyzqLF8nj/R8Zb7v+h405Q53qIBxRUaCdnxNlZi99ifd7xpANr1CfQHHBvkeKOpRfrOPRfzPvKR0k6EAVCa400lSFdKJCAHE3XAyXkdAcCkxRWI4w0Qw9OpmCiL/IkddijjrJlaowo1DeN4EyIcTBNLYiMAcp9b25/FrjuQ+1lacAnD65deitGnnsLwX/+Knb7/fWGfXcIcgymdYsIbfc6Vjjdvmj+mBCq+o7u7u3HsscdW41yYKUKuaurndgNyK+Tm6CiMlhZ3sOB0uEYyiWyQ8MYT6qpD8zAZLS3K3//1Sy7BYgDtbQvxi/feGDgJpvvcqqaa5u4wFaGmVEBTOSwoQkJhdrzVHKXwFrC62XPyye5rpxhDWOzhocJnFVVNk6SdSUmONyqocDtRe/wcb3M/9CEkli5FcpddPI5H+pkoFCGDAcUVgtoc51AhZwgZ5DfvthuGh4ZE0UbTWHgLgRxCoieTQsJz2fHW02bgzCOSWNtv4qQDvc9hTCG8OXn+6OTedB1vheM0qNML0PNpNMcbRRbeMlkb6ayt/M0BYHTSwv3PTmJZXwR7LI65jrfOFh26Ij8rJcjx5rbFuo75H/sYtGrEijUgRXO81by4QuG17HgTXMaq4gr5+0NvboYWiQgTb7oQHxRqSnNJMjOHYlVN9eZm2NmsZxHfksaDC7QhUOFNOFYINQ2nvE2uWZP7v1O1nMChprVFtUBHoaYZDjWtPtzDNiByVVO//G4OjlvFmQg5DXmxQTNXxqo+NMS3WC6WjpHcdQtVXMG23QaW/g1VqCldrS3J8cbCW80pxfEmU/LzOlwINXX6YZr7w8klmd2+XVhRBwoh7Fo0ysLbFCCH+7s53hIJdB13nFLUos9uwk5j2dq/Ys7Ai+42IcebJ9TUf2DmhNQJVfhojqGuLiSWLRM+E5s3jx3UIfBUsGtpEQohyTneAOBtuyZw1hHNaE96h4MxxZwnlc1dQzHUVJHjDZZ3aVzXESXn08iON52Mn2KZcby0IYv/+NEgnnhVnQv1rn9O4vYnJvG9u0YxMGxiPB/W39uuF100Cdrv3BOR9nYW3SpAvpflUNNaL0KKyc9Lc7w5Cx9uRAV1vBGxXg8orhBnx9uMRF6MkXO8RVpbAyOXHNomtyCRv+TVCDV15hGqPNIcalpbihomyFyAQ02rT0l39B/+8Ac3z1sYNE3Dj3/841LPqSbccMMNuOaaa7Bx40bstttu+Pa3v43DDjtsuk9rWohFBFOT0GHLjjcAmFy3DsmVKz15vfQA4U2Lx3kQVwOo2BZpbUXx7jI4x5uzxzDT7g0R6ex0V8FVoaaldIp9Z52F4b/8BQCw4FOfCnG2TCVUIrxpkQi0SCT0arw5PAjkv9qZXzuOt3i00FHL+d2Agssi0tXFOSCnASNEqAl9tndZdRsWrH0MAHDz+3+OsebesquaOoO2iI/jzWhrQ3LHHTHxYkHkY7dbOFTCmx6Pw2hthbl9OybXrYNt26GfOVWoKVAIN3Vw0hkIjjfTKy50HX+8cF8FjSHqHbpwGUvnhLGsBfzqb2PYf4XXkbB5KNfIZkzgxfWF33ZOm+Fbfdwh0PHmCG8hKtUz/kSkhdDA4gq1CDWlCxkBjreINCy3bdtdGHPGl1RgE0JNA3K8sfA2M1FWNSXX0WhtBRR51mSyAwNY3BvBSxuyGByzMDxuuYs1QrsfcjjnGDmUwpsqESxTNYrm5i7qeKvJaTUMJQlvTz/9NJ5++unQx88U4e1Xv/oVPvWpT+GGG27AoYceih/84Ac47rjjsGrVKixqQHu0pmloimnuiim1qKdUjre8O8WtZBnC8cbuhNpAf/Ow1ceCXMHOvkiWFHDo7ATy9m9lp1iC461lr72w7BvfgDU+jo4jjwx1vkz5lBpqKqPF46KwGpDH0RoeAhbkXpt5pcWZkCdjhV5azu9GoWXLmakjTI4XulLuiG4AsPMr9+CpvT8gCG9ySKHTrgyOWnhpfQb7LIshnndaZ4s53lpbEe3uBm67zd0mO+AYNbK7wekjmvfcEyN/+xuyW7di4qWXkFy5MtT3+YY9TlhC1WJHaBUcb9lCP9F60EFY+rWvecSJRg411WMxaLEY7HQasUzBWT40pu6waeGaDdsKE9POFh3m5iKON58cb9bkZMHpHqJSPeOPXMTIE2paa+FNcLyJ++h7WcewJibcPt+JdqDnnt2yxX0tON5YeJsVyNfJaGnJLcg0NcGamEB0zhxMvPJK0e9J9/dj8T454Q0A1m81C8Ibvb9C+C1s2y48A6YJO5v1DcVmx1v1KSXU1HYdb4X9HGpaGSXd0eeccw7OPvvsWp1LzfjmN7+JD3/4w/hIPmnst7/9bdx999343ve+h6uuuspzfCqVQopMNkdoksk6IREtCG/UQqpyvDkFFpzJlR7C8caVCmsDnTCHcjLZttApKnYDAKLZgsBGB+DbH38cb37zm5j37//u/j2hUyyycgIAHYcfXvw8mapQieMNyHW4NLdHpKMDmc2blceaJE+baeUEle0TuRuqvdm/sAIl0t0d+tyY6hFG8PB7tm0tN3MTQk2liaRt5wbX1946gv5hC3utTuPCd+VEl0xeM6ALPtSRY7S1eSZx7HgLh8fxlhe62t/6Voz87W8AgOGHHw4tvEV9RoijKdsVUoHc82/bNizbRjQ9hoUb/gl7eHfhvGTRDWhs4Q3I52ndts11vAFAd6t65jpBKtD2Dxc69ZYmrWTH29bbb8fQ/fej+6ST3G0RXgSpCI+oXKbjbettt2HzzTej75xz0H388aH/vkEWMrJSRS36PiLFApqS21g+90yIHG96IuGGqTIzC0+f0NYGLRLBDp/7HAbvvRfzPvpRt28IIrNlC1qbyFyRtEdicYXilje56I6VSsGgAhsXV6gpxUJNadoZ1/FmcKhptSjpjl6yZAkOn2WT6HQ6jSeffBKf//znhe1HH300/v73vys/c9VVV+HLX/7yVJzetJEgic+dCZBtmu4kOTZvHtIbNwIoCG9uqGm+IQ90vLHwVhOooBnG8aZb2cCqpk6HGSHCm55M5gSYfIPb/7//i0hXF+aecw6A0hxvzNRSDeGNEunsDBDeSI43CxgZt9zQ5Y5m4nhThJo6sONtegjjePN7ti09L7wR4UWeSFo2MJkpCATPrM3gpfUZLJ4TcRd82poK90iW5AA0WlvRtOOOwvclli4ter6Mv+Ot7a1vBa6+GkBOeAtbudLf8WajQ+r+bTt33Y966OtYuu4RDL+2onBePgP9RnfGG83NeeGt4HiL+kRWUcebU9EUAJrjGkxFLlYKdbxZqRTWXXUV7FQKY6tWuds51LQyihVXoM+A5ZPOwbYsvJ6fe7x+6aUlCW+RgFAwWmwhIt1f9N5xBDfB8UZyvAliIlnRjc2bF/o8malFbnsdgbT73e9G97vfDQChUoxk+vsRJeJLOkuFt8JxYUJNPeOFVEqYT3JxhdoSZJho2mknDjWtMXWfhGvLli0wTRN9fX3C9r6+PmzyiWu/+OKLMTw87P73Rl54qicS5LlzFsDSGze6KxFNO+/sVh9zQ02d4gr5CVlQnqBGH1BXk85jjnFfJ5Yvd1+HFd4Cc7y5jreCw1NvakJy112F4+iqZ6mON2bqULlQ5RCYwM9LBRaiAZMxmqjdtGwMkhApKryl2fE24wiV483X8Za7tkKON4Xjzal+6fB/j45jCxEMetsL9wh15ETa2xFpa0Ns7lx3Gwtv4ZCvWST/7MfnzXP7jvEXXkBGUWRBRUyRiB3IVdiUndSmnbvuS9c9AgDIvvZq4bx8Qluouzq2YEGoc6onHLEmlhlzO2PqJKHQitFbRojjLaEriyBRrMlJt9/ODg664UO0YiWHmlZG0VDTEMUVnEqP5RDoeCNjQENyvFH3kfOc+uV4o9vT/f3uaxbeZi6eHG+K8eCyb3yj6JwtMzAg9PkZIrzRFANhUnt7UlNIKW041LS2aIbhiTnvOeUUtB54IJZccYUovCmLK3CoaSXUvfDmICcTDkowHI/H0dbWJvxXb1DHm7MaRkPCEosWuQPh7NBQbuDm5HhzOmd2vE0JCy+6CHPPOw8rbrhBsPOHcTLpthWY480V3kzieEsksOwb38C8f//3wnEk9JodbzOXSnO8eRxvAZMxO5VCLJsLcTItYGisMBkUhDcfxxzAjrfpIkxSez/hzXW8BeR4s21gVErAv2aziQeeL7Qjc9oLAz8h3Cm/oOAsOLQeeCCHMYVEFs7p4kz7W9+ae2HboUKLAP9Q07FJ27OgY1n++UT97iU9kcDSr30NXccdh+Xf/naoc6onnPZaty3XdT6ZVv+IdDvN2dUc14oKb0DB9ZYlKQIoQYssTHGqUVxhVMqhbQflCZH/foAjxQxwvAkihxPNQs6dniv9NzkRMQAQk4wNzMxBVVxBpv3QQ7Hn/fdjh899zvd7stu2Cekl0sQgR2/TMFVNVaGmwn4ONa05shNy/oUXYscbbkDTsmVKx1tQ+8KURt0Lbz09PTAMw+Nu6+/v97jgGolEPkzIyKax7InfYvC++1xnGwDEFy0SBu00FEjn4gpTSrSzE/M/+lG0HXigsD10qGmIHG8xkzjeEglEWlvRefTR7jbaMbLjbeZS9VDTIi6I5tQQAK/w1tmsDiOU4bxC00MYx5tfeGCYHG+WbWN00tvwPPpSoR3pbSP3iJTjDcgNBHf5zW+w4jvfKXquTA7PJIv0Ea0HHOC+nli9OtT3+YaaTlqeFAaW7V/NNiinTOc73oEll1+OpgZ0NVIB3CmwkMrkFoYpmaztSZjv0JwoHmoKFJ4xP+GNQ00rQ+5n5TzHgvCWH0ONPPoo1l56KcZffhkAMPrMM8JnwgiqDlRQo6GlQLDjjS6aOCKH38K58G/iUNNZgSf9gM94UI/HA+dt5sSEUOWahpqaQo634udkyQ55WXhjx1vNkccKVFRXO94Kx7LwVhmhhbcHH3xwVhZWiMVi2G+//XDvvfcK2++9914ccsgh03RW048Tq7/zq/dg34e/j9c+/3lsu+ced3984UJhckYHa25V04AJPQtvtSes8OY3GQIKDgWa3NnN80EbXzI4405x5lKx8CY5ZopNxtrGcm42P8ebnc26biYjXzGNEuVQ02khVI63EhxvqlBTp9AGJUMmhH6ON8c5omkampYu5TamBDyON/LsU6eDqlq1iqiv8OYt2mNZtr/jrUgVtUaFXp+VnbkJjg0gJaVbmvBxwQFAc4hQUwCwijjeWHirDC0SEcZMYRxvay+5BNvuuAMvn3ceAGBMcryZpNBRMaiglpUexEDHG3W0OdEsPv2DsJ2EqsUXLw59nszUIvfjWkAsqCb1HxQ7lUJUKzRMQo63fF+gad7oMr/vonCo6dRD+2QtEhEWxzRFcQVd1+Bc2XJCTa188SWmhOIKs62oAuXTn/40zjzzTOy///44+OCD8cMf/hDr1q3D+eefP92nNuXYto3V//Ef2OW1zeg2ujF/07PuPtrpxxctEhxt1LXiCm9UIc+Xpnbfs/BWc0KFmlpmYCPptIMt4wPuNie3H22YbdIxsuNt5qJyoZYSaqopiisE0Z4X3izbFoS31m1vYHjdRiR33tm9yRKLF2Ps2WeFz7PjberQYjE3xKOSHG/ID79oEnhPqCmgdLxRaI63rCO8GUaoMFhGTZDjjYpydljhzSev9eik7elXnMqmYc6LyUHb5qRZEFkm07YblQD4C2+GnsvXG8bxVizUlHO8VY7R0lKYqAYUV7CzWViTk27hAmtsDGPPPy+EbwKlCW9ClWiP4019HCClDnHG9j6ONzquX/a1r2HN5z+PxNKlXLl+BlNK2ysv3MjEMoV+I0MWB5xmP4zbDVA45IOENy6uUBNoeySPuVShpkCuv8lapTveNg2auPbWETTFNFz8njYk43UfbBlIQ0jJ73//+7F161Z85StfwcaNG7H77rvjT3/6ExY34CqNpmkYf/FFNG3bhq7m7Rhv6kL79g3iMfE4oj09wsOocrzR/UZbmyi8cY63miPnFFGhWSZu+8cEtoxYOGL3uDfXYf7/LaMF4c1Jai6UlKaON87xNmPRDAN6Mik4ICpxvBnt7bllTDKhNlpb3WT4rdtzIfymBQzmhbdYaju2fPwsDExOYs4HPuB+LrZgAcaee074Ls7xNnXs9D//g43f/z463vGOogNswH/ArtkmYhFxZVuuiGZZYo63qCG63ZpiGprjJEdcXhQwWlpCrZgzaoIcb0J7LjkO/Ij4FFcYm/TmDi031LSRodenySyMn+QCC37CWzKuQdM0YezlB4ea1h6jtRWZLVsATfM8i3JxBfk6bLjhBs/30Wq0xYgEON5osQV9fBSp8VHEFy4EIIWaOmN7xfhdb2oS3FIdRx6JPe66C5G2NhZHZjCljNGLGSYimQkAuXsjTe4pq0ThzVNcgUNNpxw6vpOFdr9FunKFt5/+eQzD4zaGx2088lIaR+3Z2MachpEdL7jgAqxduxapVApPPvkk3va2t033KU0bzspm0+QQxpPeiW98hx2g6brgijDJIMEZRDfvsYfbKLbuv7/wHSy81Z4woaaGncVr/Sb+96/jWL3JWy7ccSi0jJEKVSrhzS/HG3eKMw5BaNO0UGGFDvLAy0gmPWFitMJk6/a8442Emu64/hG3s+7/+c/dY6OdneI9axjKRL9MbWjebTesuO469Jx0Uqjj/cQS3TKxfK743MvJkuXiCrssFL9rTrsuCGyuS4Sd0hUR6HhT5G0pl5zjTdxmcqhpydC2OpEpuJtS6XDCW0si9wy5zijD8H2GioaaKlIBMKXRsu++AIDmvfbyhvQRccrKZDy5T7c//rjn+6xSQk0Dcrw5z2okM4HNZ70HL5x8Mob+/GcA4UNNVduinZ0sus1wbNn+GECxBblIprCgm86UL7x5HG9cXGHKoWMF+dn2Gys4lZNLCTUdT1l4dWNhzkhfNyoNI7wxBZzwroiZRtPEoGd/fIcdAIgPoyrUNDZnDnb93e+w8pZbChXT8vAEqvaECzUtNHKbhrzLFI5DoXk0L7zpOqI9Pfk/YLi1wenE2mLH24xGcLkkk4E5PWTkgZfe1OR5lhNLlrivm7c7Od5sDI3m7q9Es/rZj3R0CEJAtKurpHNjphY/x9uhO+r4+HGi6O/J8QZgdKLQ3uy6g/hdvW3iZM0Z3IVx4jH+yAIXfd60MhxvfihzvAU43jjUVA0NNY1nC5PasI635nzIjuN4M5JJ37FXkOPNaG/nvrwKLLzoIuz4/e8rC8JomuY+B7ZCeFNRruNNnhg7jrel6x6BNZL7u2suusg9F/ccFWlkHPzCT5mZDY0qiJOxm4pi8zYjVXDWUge7U+FaD6m8eVJTBDjewMJuTaDtvScsPiDUFCjN8fb4K+K1fn2AhTee9TQgNKSgbftGz/5EXngz/EJNyeA+vmABkitXeiuksPBWc8I43jQyO1LlXLJc4S0Xahrt7XUbZI2ES1g+Od44hGjmISRULyHMFFAIb4qJXKSjw3XNtozkQk1HJ203IXhTUu1uiXR0IEIcbpzfbWbjNxHfoVNDPKohs2UL/vWBD+Dl88/35CKyLBvbizjehOMd4Y37jYrwVLDzy/FWofA2kbaRkcqaWhZ8HW/cT6jRSftMCxyFFt4cx5tTwKalxfcZCsrxxvndqoMejaJ1//19c2hS4c30Ed4c1xxQfo43b1XT/Pfp3jbdVoSaGu3tHjd6Kc55ZuYQ6ejA4ksvReexx2L5t74VeKyq7aDjNCNNHG/ZChxvHGo67dhkbihfdy0azaWYgY/wFt5EiYf/JV7bgRELw+ONXRaVhbcGJEqEN932PgBxlfCmcLxRWHibevR43BVB/UQ46ngbVVQZtG3AyKbRNDEEAIj19Qn7ne+3OcfbrIE+tyULb3KoaVOTN1dNPI7Y/PkAgKbRLdDNjLAC1mqI7if3u6TBPFc0ndn4uZScQfG6q67CxEsvYfSJJzB0//3CMRYKjrd4FJjbqaMpVhiV95KKprZlue0LO94qw+N4I8+/MJiuUHgDgJEJcexgWQGONw41VULb6kDhLeUfampns+74LNLVJTgbaR7eQOGN87tNCa7wls0qr0PTzjuj573vdd+X4ngzyGwuK4eB50VywxLdJrZtCxEMjnCvaRoSy5YJx3L6mNlL9wknYOkVV7imCj9UVU1p22CkCiKMUngLqSh4crzJxX5oqCk73mpCUJE8TdPcuYAovJUWarpt1MLrA16VrtHDTSsS3jZt2oQbbrgBn/zkJ/GRj3zE3T4wMIDHH38cEyESvjJTT7FBljLUVJHjjSKvtHMnPTU4CXLjixYp9wvCm4/jrZlUNJWFN7fx9cvxxk6GGYdegeNNHnjpCuFNJ8KbBhstYwPC/hZdPamPdHQIwhs73mY2fmKJ8/yrchIBgA1NyPHWktChaxoWdhcG0L1thaGH4Lhg4a0iPP0waZ/9HMyl0NVSuG4j41JVU9uGxVVNS4K2zxHiJgmb4605rufGZvnfPdrVJSyexObMcV87Io7Jwtu04SxUyqGmelMTmvfeG8uuvlq4J0pzvJFQU8mN6ghx0YxY/TYzMKAMNQWApuXLhWPDVMJmZjeqhS/aNmiThfsxTbQTxzxVtuMtqKopL+7XhiLzONXcr9RQ04l04cC2psLN8eom9eJ8o1C28HbDDTdg6dKluPDCC3H99dfjJz/5ibuvv78fBx98MG655ZaqnCRTXYoKb3kRxzfUlB1vM4ZFX/wiek45BYsuvljZQelWYbWBJjt3sG2gdbRQWCGaL6zgfj4/keOqprMHIdRUKhNeDPm51ZNJrxgXjyM2b5773qls6pCEv/BGQ025ounMxi880El8LK9aO1i6AdMCxlKO8JYbcO22KPd9TTENO/SQRONk0M2Ot8oo5ixznmVnMF2KowYAetup8KZwvPmshLPwpoa2z5FJf8fbZECoaWbr1sJ3dHcLz1CUCm/bt8O2bWVusSgLb1OC7pPjbcX112PnH/0I8YULhXvCqpLjzcnxFkuLwtvka6/5Cm/seGs8VP2v0DZMTrj3WSZr4+nX0vjN38fdwlphC5JzcYXpp1iubtUiXUF4C+d4owLdjvMLbQs73srgtttuw4UXXog99tgDf/zjH/Gxj31M2L/bbrthzz33xB/+8IdqnCNTZYKEN7252U2ur/tUNVUKb+x4mxZa9twTi/7f/8vl2VNMunSbCG8+oabUseQJNc03vjY73mYNVcvxlnfIqBxv8bzjDQDaRjcL+32FNynUlB1vMxu/Aa/7/Psk+rB0A2OTlht22NqUG2YcvXcC572zGZ87pRXJeGHoIQhvvGBTEbLjzbM///vaqRQ2/OAHeOaII/DmN78Z+vtpUQxPqKkNeCouhDyvRkUohJMiwltYx1tCQ3bbNve97Hijwps1Pg5rfNwz6QXY8TZV0FBTOqamFWUFx1spxRVCON5oAQ8AmFy7VlhAoc+p7HjjHG/1j9LxRsZp1vg4ovkuYHjcwv/cO4p7np50Q02NGhRX4FDT2iDk6laM9TQyVnAohJqG+xt0iNjWpGFeZ+5arhswlRFYjUJZwts111yDRYsW4cEHH8S73/1uzCGdu8Mee+yBVatWVXyCTPVROU2aVq5E8557YofPfMatNGgUqWpK8SR1ZuFtylFNbmio6XZFQ2fDRstYwfEW83O8pVKwbRupN99kx9sMp1o53vREApque3O8xWJuqCkAtI6Kjre4pXZCRTo6hNXTaG9vSefGTC3Fcrz5YWkGRojI7zjeooaGA3eMY0G32GbQ1W52vFVGMcebThxvm/7nfwAA/f/7v4Gfef+huXHA0j4DS+cQ4U0ONbUAy0eM5QUaNYLwNkEdb+Jx4z7CW0tCFx1vXV2i462z0028ZI6OipELPs44pnY4z4ElOd5ocQvaf5cUahqY4y33f1l4S61d6+94k0NNeUxf92iRiGdMT0V5c3wcsUiuPx8as4VwU6CEUFPZ8cahplNOsd842PEW7m9QZ5yhA3vkox4sG3hqjXqe0AiUdUc//fTTOPPMM9EcEMa0YMECbN682Xc/M32oVje7jj0WfR/8oLCNDgotkq9PFYLEoabTjyo/kpjjzcfxNkocb7Lw5nynbeONq67Clv/7P/Fvcqc44xAmcxWEmjor3B7HWyIhCm9SqGnUnPR43oyWFmiRCDqPPhpbfv976Mkk2t/2tpLOjZlayhXeAGA7cUM5wpsfLLxVD03XscPnPodtf/oT5n/84579uhRqGoZ37JXAnkui6GrR8c/XCoNlecXasm12vJWInkzm4rNsG9pEwd0UNtQ0GZccb93dnjbcaG6GuX27R3jrOu44mKOjsCYm0HXMMVX6FzFBuDneSEEMaJpQHKvcHG+GUNVUdrzl3sczXsdb0047Fc6PtPly+DE73hoDLR4X+ng6X7TGxxFt1gD4pBTw6erN0VGMrVqFlr32gh6Pe/ofDjWdeooZKFx3fDYLO5uFFom4wptl5wqzaEVii2lEqqFr2H9FDPc8kxPynng1jbft2pg6QVl3tGVZiBZZwRwYGECcB9EzEpXwpion79fRqlbVOdR0+lEWvSA53sZTNrKmLYQkWFKoadQn1BQABu+91/P93CnOPCoKNSWTNmeFW5NLjcdiiNMcb1KoqZHxTuqd9iXa04Ndfv3roh02M/34Cm9Faslrti24oVqago31NJRBvteY0ul93/vQ+773Kfe5qQN88vP5MSdfhTZCLA2y2yGX400tvLHjTY2m69CTSVhjY8BEQRTxhpqqf9eWhIYMEd4iXV3CM2RQ4W1sTBDeor29WPzFL1bpX8KEQaM53vLXwmhrE8LphBQvpYSakmdTdqRk8012TCG8JZYs8ZyfimpUQmZmPnoikWuP8tAIqZzjLeCzPsO6Vz/xCYw99xy63v1uLLnssuI53tjxVnOKpQyicwErlYIRiQihxKYFRIpEAdN2yNCBxb0Gett0DIxYeHF9FiPjFtqSFdX4nJWU9S/eeeed8fDDD/vuz2az+Mtf/oI99tij7BNjaofR2iouj8FHeIvF1Eq4KqSRHW/TjyIXAhXegJz4RsnleMuFmmrxuOc+oNfa3L7d8/3cKc48krvt5r5uJq/DQB1Hvo63eBx6IuE+47GMWL1aT3srJhokhw2LbrODojne/D4HS3C8tbLjbcZQ6e9LB9qZrDfU1C/vHwtv/jiLI/aYv+PNv6qphiwJNVU53pwq17LjTTXmY2qL26ZaFrKDgwDE/G5AXozNO9VLq2paeJ2VHkMn5EvuqzMDA8iQe0Ie29NF+vTGjaHPhZm9yHM32fHmhJoqP6tQ3tKbNmHsuecAAIP33ANzfNxb1ZQdb1NOUeGNjBWccFNawCVMuKkcaqppOdcbkJt7Ptmg4aZlCW8f+MAH8NRTT+GKK67w7DNNExdddBHWrFmDs846q+ITZKqPpuueQZffIEwVqqZKiu5xvLHwNuWoJsS6LW6T87zZlu2Gmsb6+jyiSLGJGk+oZh5NS5di55tuwo7f+x5aDzqopM/KOd4AtfAGFK69bhVWL2MRwE55hTee5M0+NE1TPt92NgvbVgsBQM7xtl3I8RY8zOCqplOH3+8bdD0pdMU7I03uLdv2dbxxqKk/Tk4ve7wgsqTCCm8J3eN4kxdP3O9PpZDZsqVwLLfJUw5tT63xnPtMFt6AghhbWlXTwrOZlaoOOkJcNOMV8iZffVV5fgDQffLJ7uvWAw4IfS7M7EXuI+Qcb9Eg4U2xa/Tpp93XdjqNkUceESpqAsHFFVSGAqYKkL46KNQUKAijQhtjFh8ziI633GcPWFEYCzzxamMKb2VJyZ/4xCdw22234dJLL8XPfvYzN6T0tNNOwxNPPIG1a9fi6KOPxoc//OGqnixTPSKdncJKqd8gzEgmYUrl552qpxTO8Tb9KIU3yfHmqWxqW4hlc6ugqntAlTdO2M+rUTOS5t13L+tzmsrxJj3LrvCWv/b0HkvGNU+iXIAnebMVLRr1hIXYpulOGpWfsS2MjJMcb03seJsp+P6+pgmEaMvpindacrxZFnxzvPECjT+uyDIxgQhMZGH4VjVtSWhurtaIkVvocHK8adEojNZWIc2H0dwsJOtPb9jgvuY2eepRpQMxVMJbczMyKN/xJhtPnQlwNO1tt6lwKz+n8847D5lNm2BbFnqICMfUL8UdbwGfVayxjT3zjPB++KGHPH/DGTPato3JtWsFRxzPMWpDx1FHYej++wEAzYroxKo43kg75NwbC7sNzO3QMThmoatFh2XZSqdkPVPWHR2NRnH33Xfjy1/+Mr7//e9jMG+Z/u1vf4u2tjZ87nOfw5e//GUOKZrBRLu6QKfHJTneuru9x8nCG+d4m3LkCTKgEN6kAguaGa6yjR88oaovaCVjwyfUVJMcbwZxvDXFfIQ3xeSCmfn4Od5UYefuZ2xLqKpX1PFGc7yx8FZT/HLo2aYZaoITNPC2bMD2GY1zP+EPzcPZYo9jSGt1Q03ve2YSj7ycQirfxHa36hidzPXpLQkNmlbI8Rbp6oKmaeg86igM/PrXiHR0oHW//bDt9tvd70+9+ab7moW3qUf1jKmugyOWWhMTuWczhOsnEuh4y72PSqGmgJhCRHam6rEYllx+edG/zdQP8njPaGnJuc5MU6hqqvysyvEmC28PP4z2Qw8VtlmTk7CzWaz57Gcx/NBDwr4w9z5TOjt85jOw0mnE5s5Fx1FHefZTcdR2HW+F/eWEmgK5SIoLjmtFd6seeC/VM2VLybFYDFdeeSWuuOIKvPTSS9i2bRva2tqwyy67wOAHZcYjdPaG4Vv90FAUWIgqhDctEslJ2pYFLRbjxnIaUAtvogtOrkRXtKR0kRAhXo2qL6J9fWg98ECMPv00uo47DoBXDHHuCTfUlIi3yZjOjrc6QvV829kssoHCmzjpay6S481mx9uU4Rtqms0CIX57I2Bl2rQA2/YR3jjU1BfqSGuxJzCktSKVyRVC+tXfRIdSS0JHR7OFoTEb3a0GbNN0c4U5SdCbVqzAHnfeCS0SgabrgrCXXr/efc1t8tSjEqCDQk2BnOst0tZW9LvpkNtTXCH/PqJwvAkhZyyQNzx0vKfF47k2JJmEuX178Rxv0i5zdBQTJJQZAMzhYWx/4glhm5VKYd2VV3pEN4DnGLUi2tODFd/6lu9+ukhXcLzR4gohQk2lqqYO8zobWx+o+I7WNA0rV66sxrkwUwjN0xbp6PB1JxqSIGe0tfmKMVo0CjuV4jDTaSKU8CaFmmpWsPBWNNSUB2p1haZpWPHd78KamPB1vDnPtyOuG+QeaoprsCa8q+o8yZudqEKjUMzxBjuXOTffp0SKZJIVcrxx31FTAoW3EARVMbMs23cZXHkfMQDgFj8AgBZrHNBzVU2zip+yKabhzMOb8bcXUzh67wSyIyOucEJDwugYjX5/iiTIZxfy1BNWeKML4aGFN9LO0vxLlmXDtgHYFiIp/xQBfufHNBZCjsj8a50Ib9GAPkCX5pFjzz1XaJ+6u930Rpn+fuG41OuvI/X668rvZOFtetBVwhvJGR7O8VZ4bTRe8VJfyvopVq1ahe985zsYGBhQ7u/v78d3vvMd/Otf/6ro5JjaQSfCQQMwXXK8qdxu7rH5wR6HmU4PcsJSQBVqKraWGq0epKqKyjneGg5N0wSnqyyGaLLjjQpvMc1ToQoADBbeZiUqp5JtmjBHRop8koYYlJDjjYW3mlKp8BboeLMBWFzVtFSouylp5XJ6pbLq5NVNMQ17LonhY8e2YvncqJin12dsJiye5vt7PZnkZ20aUD0Hyhxv1PEWssCCrmnu5JaKtk4RlGh2MrcoEvQd7ExteIQCW/n+whkPmuPjiEXVfUBiYghLHv0lxlatcrfRMNNORThjGDh6anoQcrylUhh++GHsdfmJeOeDVwIoJ9S0McNKVZQlvH3ta1/D1VdfjW6fjr67uxvXXHMNvv71r1d0ckztiEqONz/kUFNVYQWHZN75mGQH5PQgZ9QFoNnBOd7oREnpeCsyEGMnQ/1TvKopCTX1Ka7QtGxZDc+QqRV+oabFJoM6CTksttLJxRWmDj8Hs63oO1QEXUvLgm9VUw419YcKY8lswZE0nvKKJHGpu6WJ8aOKavPy9ztQdxwzdYQONSXXzCqhwILzfNLH2Zn8qvK7eb+ARY5Gx8/xBuSLK2hq8fagJ3+CHR/4IV466yyYExOwbRtDDzzg7m875JCyzocX96cH2fG2+lOfgpEax4rX/oK2kQ3hQk3Z8aakrDv6r3/9K4466ijoqhImAAzDwFFHHYWHFPHazMyADryChDcapgD4r6oCwJKvfhXbH3us7AaWqT7eHG9VLq7AnWLdI0/WXcdb/tobVtYNLaTFFWILFmDOv/0bYn19SCxZMqXnzFQH3+IKxRxvRHjzGSa4UKGWiyvUlpqGmtrwrWrKCzT+UHdTU7YgsozJi2QAto2Kv2+WCG8RP+FNGsMBLLxNF3qJxRWAcI43a3ISr118MY5ZO4m7D/8Cslaruy+bF+Fi6cK9FenoQHZoSPgOLRbjgniM0Ec4/TG9H+PWJFSenV1fvtN9PfrPfyLS3o7JNWsAAM177YXE0qVlnQ/PMaYHVaipu882S65qypp+gbLu6E2bNmGHHXYIPGbBggXYSPJJMDMLOcebH6U43qKdneg69tiKz42pHkbe0aZpOW1k+4TYWuq0ZWThjVEgD8ScwTmdTOu2CUuLIBkrdNKRtjbMOf30qT1Zpqr4CW9BxRUAscBCsQgDLq4wdfiFF1Yj1NSybLXjTdN41B0AFcbi2YIraSzl/S33XS46BzMk1NQvDYiyMj0Lb9OC0vGmEt5KDDXd+OMfY/ivf8VCAPs8+0u8euR57j4n7DSWKbgpI11dXuGNxXEGYlJ91/FG0gfFshMA1MX4HMaefVa4v7pPOEHpvA1FsZU7piYECW+WZoR0vJFQUxb1Xcq6o5ubm9EvJUeU6e/vR4JzSMxYmnfbDU077QS9qQmdAWJZKTnemOml79xzPdscx1tzPNfoUcebbduAXSTUlIW3hkcVegCIA3XdzOUXbNKzhTxC3P7PelROJbtIcQUA0PKON11DURcFh5pOHb7CWxVCTU0fx5sWjbKTJgDBTZIpuJJkd/p7D27CfstE4S2U400x4Y1yzs1pQSm8KcbUcnGFYoz87W/u63mbXxAmvKbpDTVV3SvsSmUAKcdb/jU1YMRMbyoRABhvKoj52//xDwzefbf7HZ3vfKdyAaAYWiTCfcc0IeR4kx1vVjaU441qcxxqWqCsWfN+++2HP/zhD7jmmmvQoejABwcH8fvf/x777rtvpefH1AgtEsHKW26BnU4HTpDlQVuQ442ZXuaeey70eByZzZux5fe/B1DI8dbapGF00haKK9gQQ1GVoaZFcvPwKmn9IwzEyP1A7xfnPmoCJ8qvJ3xDTcMKbyEGW1xcYeqovLiC/z7Lgrq4gk/4KZODupti6YIriYaavnWXOI7Zx1u0iooyfpUvlTnefEQ6prbIY6zonDmIKtyHpYaa0vY4FWt2w0sB4ngjoaaqBXTOw8gAPjneyP2Yc05675/RZA+SE4MAgDFSVKHj7W9372ctGoWtKALnCzulpw3B8SYVTAsdaso53pSU9VN8/OMfx9atW3HkkUd68rj95S9/wZFHHonBwUFceOGFVTlJpjZoul50oiM73oJyvDHTi5FMYt5HPoKuE05wtzmCSFsy96inMsBYXnyzbUl446qmjALaRlAHJL32hiO82Wnl55jZiVJ4M80QwltONDBCLFbTQR3neKstvr9vNUJNfRxvYd10jQqd1EaJODKWohXh1J8N8+xwjreZg9yeJnfdVXkcvWZhiiuIwlurMOF1HG801FRViIMXURlAPd6joaZ+RTo0W63E9L7vfe7rYuGmsiuO5xfThyC8TYjXXLOs0kNNuaqpS1nC24knnoiLLroIzzzzDI488kgkk0ksW7YMyWQSb3/72/Hss8/ioosuwsknn1zl02WmGo/jjYW3GQ/trOKaiYtOasX8zoKotn5bbiKUE94qCDXVdS713QBoYUJN88Jbwmb3Uj1RtuMNjuOt+GCLc7xNHb6Ot6pUNbVhqxxvdvEBeiNDRZZIqiCyjBN3ut/vLjw7Po4lpfDGoabTgjzGavYR3uj1Gf7rX2Gl08rjHKgrLhVvRtYsPHOO461YqCkLbwygdrzReWDER3jTbW/b33HkkWjeY4/CMUWEt8TixcJ7Ft6mDzrupykNgPChplxcQU3Z5r+vf/3ruP3223HssceipaUFb775JlpaWnDcccfhjjvuwNVXX13N82SmCQ41nX1QMezQHSPYeUEUC7oL297cGl54Cwo15U6xMfDN8UZDTfPVceMWC2/1RKXFFcKEF9D8ISy81ZZahpqaFsSkLkwoqDBmEOFtMlP4LSM+AnaY/IjK4gocajoteBxvu+2mPK5pxx2RWLYMADDxyivY+IMfhP4bphFzxTYArggnON5UeeU41JSBeqGVOt4MEg5P0RWLLvM/8QnhvVysT0aufMpzjOmDjt8zW7aI+2wTYdbqONRUTUV39bve9S68613vqta5MDMQOdTU8MkjwswchM4qL4gs6CKOt7zwZtmAbhcJNQ0QT3iFtDEQxDaa441cf8Nm4a0e0VUD31ChprkRV0nCm6ZxnqEaU2lVU03TYOhQrnb7hZoywdDFTX2CCm/kGD/HG3FC+bnT9UQil2yRXBtVXjGm9sgFDPxCTTXDwJLLL8dLZ58NO5vF5ptvRs973oP4/PlF/4ZhZmHbOQeqrmvusxpNi1VNPX+TRQ4GIRxvaXVxBVl4m3f++UgsWiQeU0x4W7JEeM/35PRB7wOP8GaZJYea6lwkw4U1SCYQeYWCK8zMfGhn5UyoFnQXtq0vwfEWNBHmTrExMJqb3dCX+MKF7naxqmnuPotmC4MyjYW3WU/FxRVC9BeOa0ePx7l/qTF+4kxY4Q0AIj6jRtOyWXgrAz0ed58zbaIQMpgmjje/MB0rRKippmmeyAXO8TZNSO1bpLXV99DkzjsX8mPZNiZXr1YeJ4eJ61ZOsXVcb06hhRipmKu6/rzowQBSjrf8ayqY6ZNqx5tTyM1oa8Nut92GeR/5iOeYYjne4jvsIDR2nMpm+gh0vIUNNXW6MNuC+eifsf2JJ6p4hrOXimfOpmliy5YtSElVLxwWSYo3M7tg18rsQyW8NcU0dLfq2LrdwpvbsrBsG5Ztc6gpUxQtEsHSr38dI488gt73vlfY7uAM9o0MCRvktmPWoxLerFQK1rh68O1+Lh9qGqaqqZOnigsr1J5KQ00BwDA0IOtd7c453riQQjkYzc3IDg1Bmyg8V6ls8cTUQnGFgL7aaGkRxHLO8TY9TK5bV9LxMeJwM32KLGSHh4X3hpkX3kwbsYiGbN51QnO8Ga2t0OLxUDkCmcYisXSp65BtWr4cgGjA0NPjSuXAmUvoiQTi8+Ypv7tYjrdoT0+urcrf0zzHmD6EysojI8I+zaeqaca0MZGy3WJ+zjFL3ngMoz+5FK8A2OWXv0TTihW1Ou1ZQdl39ZNPPokvfOELeOihh5D2SfypaRqyJQzomJlHpLsbenMzrLExdB577HSfDhMCukpEV0MXdhvYut1CKgNs3W4hGdOKVzUNCjXlTrFhaN13X7Tuu6+wTReqmubDl8lA3iB5QZjZiWoyX8ztBgAoJdTUcbyxUFtzShHebNNU9gm+FTYtsPBWJkZLC7JDQ8A4SZKfKV7V1Ak11Yq4RemEV08m+VmbJlr23BMDv/gFAKD3/e8vejzN/0cLKFBUic+BwqS34HgriLpGMgk9HodJhVsezzEA4vPnY8fvfhfpzZvRlZ/ziY63CcBbr8UtrhB0HxXL8Rbp6kKkvZ2FtxmAnkhATyaVi6y6oqppJmvji/87jOFxC//x7lbssjDqHtO75WX3uPFVq1h4K+dDTz/9NA477DBEIhEcffTRuO2227DXXnth7ty5eOqppzAwMIAjjjgCi6UKJczsQ49GsdMPfoDRp55CF+fzmxWoHG8AsKDbwDNrc6uh67eaWDEvIlQi4lBTphTEqqa5+0pIlM+Tu1lPuc+4hrzjLUTkKA01ZWpLGOHNtm28dvHFGHnkESy94gq0H3aYcGyg8MYVTMtCdwSWibHcb6hpoYS3sM+OkKOJw0ynjY4jj0TPqafCymSwQEo8ryKM8JaRhDfH8ZbJOyYdx1uM5HgzWlpywhv5HIeaMg6tBxwgvKeCmZYaVwpvWn7RJSg8tFioabSrCwYNv+bUE9NKtLsbKaXw5g01XTuQxbbR3MZn1qZzwlu+gUlMFhxzma1ba3a+s4WyRtWXX345AOCxxx7DLrvsAl3Xccopp+CSSy7BxMQE/uu//gu//e1vceONN1b1ZJnpIblyJZIrV073aTAh8RPeFkoFFpbPjYiON1WoacCAvpTwJKb+UFU1tSYK4Syc4232IycDD4tmOY630nK8MbXFt7gCcUanXn8dQ/fdBwAY+O1vFcKbBsArsJk253grF3dCapqImClkIwmkSfdaLNS0WJggC28zAy0SwaIvfCH08dSp6BtqKgtv+UUw5/5xHu2o43gzDGjxuKe95WJZjB9Cv5FWp5VyF/EDhLdioaZ6czMi7e3ue7qQy0w9ke5upN54w7NdV4SapkkxoIzT9uSPiaeI8Ca1V41IWcUVHn74YZx44onYZZdd3G12fqWzqakJ119/PebPn48vlNDBMAxTHfwdb6TAwjbTU1xB1WEGrYLaPnkdmcZAqGqaF3DZ8VZfFJuMGWSQLHwO+eIKRUYYtm1zjrcpxK89p/3ExKuvuq/TGzd6jg0ONWXhrRyosymWzgks1PEW8ZnL0lDTsN/PwtvsIZTjTXKQOIupadnxlhfejOZmaJrmWRgrd5GFqX9o+6JlfIS3MI43OdRUOlbTNMHxZvmIzczUEO3pUW7XFFVNM2bhvdPmOMckiPCWlQo1NCJlCW/Dw8NYtmyZ+z4ajWKUdAq6ruOII47A/fffX/kZMgxTEoLwRpwM7cnCqvlk2oZlF+zh8ufcbZrmO6i3fHI7Mo2BGGqaF95osmYW3mY9xYS3SFub+nN2uFBTIbk3C281R9N1pfjmK7xt2uQuqjpEDPVFNS2xP2HCQx1pjkAiF1ewJiex9fbbMf5yIV9OOaGmUS6sMGsIleNtcFD8TD7U1Ll/TCnHmyN+eBxvHGrK+CDcK6mUsl8PI7zpkvCmyvlGt5lFijgxtSXa3a3crltZt2qyQ4b0V05eSUebS6QKeYE51LTMUNM5c+ZgkDT2c+fOxSuvvCIcMzk5iXF+aBhmyvFzvOmktzRtO+94Cw41BXJhLKbC3Wax462hEauaeh1vXFxh9lMsx5vhK7zlRmWRIsqbxcLblKPH4zDlRROyQDNBxnLW+DjMkREh/MfX8WbDLarBlIbK8ZalZnQd2HzLLdj4/e9Di0Swx733ItLa6j4/xUQTnTreurqqeOZMLaH3heUnvEkTWcd97jgmnQmykw7CuVc41JQJC71XrHQasQgwmRGP0cIUV5BCTakxwP1bRHizeXF/WvEV3mzLE2qaIZfSEeGcYzjHm0hZjrddd90VL730kvv+0EMPxT333INHH30UAPCvf/0Lv/71r7GS84IxzNRDq5pS4Y3MgS0rF+ZFQ039Vqp8B/WKTpNpHDShqimHmtYjRR1vfqGmdrhQUxbeph7V7+zneAO84aZ+wlvWtF2nI1MaNPdRNO1dsI7owMbvfx9A7lqNPPJI7prl+2DO8VafGCFyvGUkx5tuijnesvkQMLnqpNw/c6gp44cgvKVSiEakBTXbgp7v80sR3lTFFmRXHDN9RHwdb95Q07TC8aYMNeUcb+UJb8cffzweeughbMwPyD73uc/Btm0ceuih6O3txR577IGhoSHO8cYw04CmaQXxjYhjdBJs2bn/ilU1BVhAYdTIoabv3CvBxRXqjKIT+mKhpqUIb3y/TAmq1AGO8GaOjiK9fr2wL71pk/A+ZmVcVxYlaxYEV/dvRSJYcd11lZ5y3UOdTfGM97eViytkBgaEVA/Fnp0ICS+N9vaWeZbMVKPH424/64SammNjeO2LX8S6q66Cnc36F1fIiK4TueokO96YsGiRiDunsFMpxCThTSftfimhph3veAfiixbl+onvfhdA8cqnzNQRFGoa5Hgr5HgDdDONaLawIG9u397w0VJlhZqef/75OO2009CZXznba6+9cP/99+PKK6/EmjVrsN9+++ETn/gEjj/++KqeLMMw4dAiEdimKTgZDI/jLXyoKcPI0PtlzwXA4Qc2Yf1t7HirJ8rP8Zavalokxxt1SLJQOzUEOd4mVq/27KPCW7q/H4dddzrelknjdyd8B4OdS9x9WcsWFnIWfOpT6D7hBF9XJFNAFWoq7DcA6i/PbNkihGEVCzXtfOc7se2uu6DHYug4/PCKz5eZOoyWFmQHB13HW/8vfoHBu+4CADTtuKMndMtwHW/5UFPH8eaM9fLCiNzeco43Jgg9Hoc1Pg4rlUJMmipoRYq0ubtkx1tTE3b99a9hjo+7YwlV3jdmevAtrmAriisQx5sjwpmmmN/N3b9tG+Lz5lXvRGcZoYS3m2++GXvvvTf23HNPALliCn19fcIxhxxyCO64447qnyHDMCWjRSKwUylBeNPIJNi0bdgIJ7xxtUFGBRVl9lmkIx7VONS0ziia4823qqnjeAtW3ri4wtSjei6dXDsTUq5eQBTe1n/rW4hN5MJG9n7+t3jwsIvcfabkeNMiERbdQqIqriDs1wG0tsLcnpvEZAYGSgrTjrS3Y+cf/ag6J8tMKUZzc054yzvetv3pT+6+bXfe6Smu4IzpUk6oqQXAtmHYwY43DjVlgqDCW/58yYwAAIWcSURBVF+HgY2DFnrbdAyMWGLkTJDjTRLetFgs10+QBTwONZ05+AlvuVBTcRutapohFZVpfjeH7NatDS28hQo1Peecc/CHP/zBfb9s2TJ85zvfqdU5MQxTIc6EWRTeNDc/j2WVEGpKVkJZhGMc6EDdyuRW2bm4Qn1RruPNSbKvygeW3rQJA7/7HTJbt4pCLbctU0Kg403K7waIOd6GHnrIfZ0cF0PcspYNzQoXcsSIFHW86ZoQIprZskUU3titVLc4hTHM0VHYtg2jtdXdl1q3zpOA3nW8OaGmpi0K4o7wJjveWHhjAnD6DWtyEqe/NYl375/A+cfk7k0tRK5owOtmU91zHGo6c4h0dIiOjTy6ZXpSfGcKU02hqinN7+Ye2+AFFkI53hKJBNKkcV+7di2GhoZqdU4Mw1SI0/nJVYOcNtSynVDT0nK8RTo6kNm8ucpny8xGhOq5CuGNQ1dmP8UmY3453pycLyrD25rPfhbjq1Zh+OGH0fve9xY+w8LblBCU421yzRrPPkd4M0dHBYdiNiJ+j2kVnI4Aiif4Y1yo8KYqrmDogE0mpJn+fjHUlJ+dusW9N0wT1uSkIGzIbjegkOMt5bpOChUnAVJcgXO8MSXgtDF2KoXuVgMnHVgQ0QwaOVNCqKmqz2898EBEuruR3boVCz71qQrPmqkELRJBpLPTk0dSV4SaponjjeZ4UwlvciXmRiPUyGjJkiW4++67MTAw4G7TFCoowzAzA5XjDSjkXFLmeAtR1ZQmaWYaGzpQd+4zp7iCFo9D44n3rKdY+JF/jrfcwEtOCm9NTmJ81SoAwPhzzwmuHRYPpgal4y2/QOOEMmqxmOuwSucXWrY/8YTwmeZxcfCcMW1xgs/Pf2jCFFegfXl682Z2izYIVKywxsaQ6e8PPF735HhTL7B6Qk15oYwJwHW8KRLjC0V1AtJTyH28SuzV43Gs/NnPsOK738Wcf/u3Ms+WqRaqAguaKtRU4XgzLRtxRahpozveQo2MzjvvPDz55JOYO3cuDMOApmm47LLLYBhG4H+RIvlhGIapDX7Cm5NzybRs2LYdzvFGBmQdRxzhvu4766xqnS4zCxEcb47wlp8Mcn63+qCYC0JvalI7Gx3HmzTCSJGwxezQEMyRwqCMxYOpISjU1JlU6fE4YvkcLNmtW2GlUhj529+EzyQl4c00IYSasuMtPILwlhr17I/ohXB+IOc6obn32F1cv9B7IzsygjQxQAjH5fMpOu6jdP52yZrSOI9DTZkycO4XO5PxRNKEmUcAXsOOn9gbmzMHbQcdxOkKZgCqPG/KqqZZb443P8dbRnLQNRqhlLH//M//RF9fH+68805s2LABDz74IBYvXowlS5bU+PQYhikHX8ebk+OtlFBTMlGL77ADdvzBDzDxyivoPvHEKp81M5uQQ02z27cjk58U0MkCM3spdh21WAx6IgFTyjNUcLyJx6fXrxfep958033NYu3UEFp46+uD471Kb96MkUceET6THN+WE1i13EXOWoUQY4BzvJVCpLs7X7rURPv2DZ79hlEI53eYXLvWfc2idf1C2+DUunXwJFcCEJs7F5GuLowPD5PiCsTxRpyoblVTDjVlSoCK+1Y6LeTwDZvjzfOdfM/NeCIKx5tum8jIVU2FUNPc//2qmma3bKnuSc4yQlvSzjjjDJxxxhkAAF3Xce655+KSSy6p2YkxDFM+YXK8WSi9qqnR3IzW/fZD6377VfeEmVmHHGo6eNddbt6h9kMPna7TYqpI0847o/Od78Tk2rWI9vR4xBc9Hofe1CQ414BC6Imc440KbQCQev114buY2qMFVDV1crhpxPEGAJOrVwsOKwAwbBNNk8OYaOoEkHPWCCFH7HgLjR6NIr5wIVKvv4724TehWSZsvTCBlUNNARbeGgUaajr52mvKY5r32APpfAiqblvQLLMQamrZSmGEc7wxpUDvFzuVAvLCm6YhdFVTGXbqznxUoabKqqZCqKnjeLO5uIKCskZGP/nJT3DyySdX+VQYhqkWRR1v+RxvmmIlVIZ2uDpXqmTyCMJbJoMtt97qvu/m/qEu0DQNS6+6Crv84hdILFvm2a/H48pJvwanqqmovKUkx9vkG28Uvosdb1NCYocdPNuUjre5c939Y/m8fDK0smnWFHP9cI630kgsXQoAiJhptIyKebwMPdjxxhPY+oU63iYUxU8AoHnPPYX+2LAySGXUjje/UFPO8cYEQft5muctakAZyhwGdkXPfMIKb7S4QsYEbNvOVTWlOd7yYwIW3srg3HPPxde+9rVqnwvDMFXCN8ebRnO8hQs1bd5jj9xnEwk07bhjLU6XmYXQ+2Xs+ecx8eKLAIDkrrsiudNO03VaTI1QDZKdUFPP9nyoqay9pGXH27p1hc+wa2dK6D75ZMz/+Mcx7/zz3W12NpsbKBPhLUJyu0y88oryu2iBBdNix1slOMIbAHQNvS7siyiEtxQ73hoCKrxNrl6tPKZ5zz0F4Uw3M0jnh36eHG9OcQXO8caUgJ/wFjG0UEXaVMjzE2bmkdx1V882TVHVlOZ4s+1cfjfTAuLE8RafPx8APFVSG42yRkbt7e1YtGhRtc+FYZhq4XR+pgnbLjSINMebJVc19RHeOo85Bjv+8IfY5Ve/QiSfwJdh6EB9nDhiuk86aTpOh6kxqvZBj8WUlY4dAcaQQ00lx5tNcsOxeDA1GMkk5p57LjqPOcbdZmezuUlQvjiCFo8LK91UeMt0FZxwez//G5z4p4uwcP2T7HirECq8dQ6vE/YZhuYR3riqaWOg+4SaOrmXIt3daNppJ6F9NqxswfFmiZENHGrKlANNUSA73oTImRKKKsptGjPzaNl7byz7xjcw9yMfcbcpQ02l1JNZSww11Zub3cU8a2IClpQXuJEoq+zogQceiGeeeaba58IwTJUQJsmm6XaGbo43C96qpj4rVZqmoXXffWt2rszsRPcZqLfss88UnwkzFaiENy0eR99ZZyE7NITU+vWwxnLp+B0BJrFxNTbd+AS6TzwRke5uj/BGUYU0MLVDaO+zWTe/G5CblNPrkdm8ufB6hx0R3ZbL97ZgY24c2D6yAb9e8r+i8MZhRCXRREK5O4ck4U2qairDoab1C3W8UaFi2dVXY3zVKrQeeCD0aFS4BwwzU8jxJjne3LGgJLxxqCkThCfHW56c4628UFN2vM0OOg4/HPGFC7HpRz8CkK9qKglt1PEG5NqdXFXTXHGFSHu74LK1UqmGbXPKWpL88pe/jAceeAA//elPq30+DMNUAaHiJOncPFVN7eKON4ZR4Xe/GMnkFJ8JMyUoBtR6LIa2t7wFu/zv/6LnjA+42zU718DM/5/PY8MNN2DN5z+P7NatwoBd+J7mZsTZRT+lyH2EJQlvqmpmAJBZ6E030DK+BaYpVjXlUNPSiC9e7L72Cm/e4goUdrzVL36VpZt23BFzzjgDTStWABAda7pFhTd1Di4ONWVKQQg1JW7bI3aPi9Wsi8wjFn7mM7nva2pC++GHV/ksmVpBr6tum8h6qpqKx2eygGlaiPsIb35jwUagrJn2PffcgyOOOAIf+tCHcN111+HAAw9EX18fNE2MK9E0DV/60peqcqIMw4THT3ijOd6skDneGEaF3/3CSfLrE6XjjaxY0pVuzbZgmBlEBnNJ4seefhrj+RyAKpIrV3Jo4hRTTHgzmpqgNze7LkYHa9EK5fdlLQDseCsbo6kJsfnzkd6wAR1D6/LVj3L9tWGb8FgMCCy81S8q4c1oaRGqnQKiA90wM0jRHG8caspUiF+Ot3fsmYD1Aun7i7T7ve95D2J9fYgvWoRIa2v1T5SpCcL4zjLdHJIOacnxlsraiKXHXFHWaG/3FW8bjbJm2pdddpn7+qmnnsJTTz2lPI6FN4aZHmgjKQhvsuOtTIs4w/gN1LnybX0iC29aLCYstumkgqkGG4YprmgO/OY3vt+tSuDL1BahjzBNYTLl5POJdncjJQtvOyyHpemCyyFr5NoCwfEmLcQyxUksWYL0hg2IZ8bRPL4VY825nDg0F6sKDjWtX2SBDQCic+Z4tolVTaUcb6riCrLwxvcQEwC9P+TiCm/dKYJXneOKzCO0SAQdRxxRgzNkaongeLNMj9Amh5qmMrYbZgooQk1ZeCuNBx98sNrnwTBMFfF3vOX+b1mAjXDFFRhGhfJ+0XUewNcp8oBazs8hONZsCxFTTJ478re/FT6bTMIaH3ffN++2WxXPlAmD3EcIOd7y1zba3S1UngUAraMbphGFni0cPxnPFd3hHG+VkVi6FCN//zsAoGNoHcaae6AB0Mxg4Y0db/WLyvGmFN6kHG+mlXO7ZU0bcZXjTXKm++VsZRgAwWGC1I3L7X5dIoeaeoQ3yZCdytiIkMVXvalJGDOy8FYih3NcNsPMaMLkeLMsDjVlykfleNObmjwpB5j6wON4kx0TRHjTbQtG1r9qVcs++whCHDveph5PqKmiSqac501PJhFJJhDNihMvJ5RNszjHWyXEFy50X7eMbwGQm8cWS0IuP4tM/aAnkzn3KKlOTyvgOoiOlFwRhnTWRtYEmqhjknO8MWXgF2oKiO0TL7jUKeS66paJdKbQHlmW7alymsrY0MmCkRaNeoorNCqzemR05ZVX4pBDDkEymURHR4fymHXr1uGEE05Ac3Mzenp68MlPfhLpBi5jyzQGvo43Eg5mWlLuDxbemBJQ3S+c361+ka+3pyKV4HizPY43h7ZDDkHrgQcK22Lz5lXlHJnwCH2EHGqan2TJlWYjnZ3u4o3wXfkFHMHxxsJbyYgJ8nO/qaEXF94atTpcI6DpuiC6wTDQe9ppnuPoPeBMeNNZb1VTzaeqKTvVmSC0IOHN5HlEvaMJwlsW6Sxg59sl2e0GAJMZGwYR/PVIhENN85T1hDz00EOhj33b295Wzp8IRTqdxvve9z4cfPDB+PGPf+zZb5omjj/+ePT29uLhhx/G1q1bcfbZZ8O2bVx33XU1Oy+GmW7k/D0ORHeDaUm5Y3iliikBTddz9wy5vwzO71a3lOJ4yxVX8K5oJlaswNKvfhVb//hH8bPskpx6yPVSFVcAvMJbtLsbhq7hobdciLc9en3heMfxBg41rQT6jGm2I7xpsDKZwM9xqGnj0H388UjssINnu5jjjTjerMK9BBSeSy0SEfpvDjVlgqBtjBxqKjjeWHirS+S+yUZOcItFvIUVACCVKThvgVz7FCTeNhJlPSFHHHFE6IGyGVCJqVK+/OUvAwBuuukm5f577rkHq1atwhtvvIH58+cDAL7xjW/gnHPOwZVXXom2traanRvDTCfFQk0BUXizdYMnv0zJaJGIuNrJjre6pRTHm2bbiEihph3vfCcWfvrTMFpa0PbWtwLf+hZg25h/4YU1O2fGH03Tcs9vNpv7j0QCOCvTka4u4TORzk4YBvDCLidg85yVeNe9l6B5YpvbjwihptyflA4N16aOtyLCG4ea1jfJXXfF+KpVAIC5H/mI8hjaPhtm7n5JZXKhpjp5Ll3Hm6ZBj8fdXJscasoEERhqanKRtnpHk0JNgVz7EotonsIKADCZLhJqyo630rjkkkuUk/Th4WE89dRTeOihh3D88cdj//33r/gEK+GRRx7B7rvv7opuAHDMMccglUrhySefxJFHHqn8XCqVQoo0LCMjIzU/V4apJv7FFQrPbca0CxMl7iyZMtCjUZikrWTHW/3iEd7kyT5pWzTbhEFCTed+6EOYf8EF7vvEokVYevXVSL/5Jnrf//7anDBTFCq8qXK8RXt6hOMjXV2I6BqgadjSsxPGmzrzwluuH9G5uEJFCJObvEspomuC8KbF4x7HCTve6pv5H/sYNv7oR+g56STEyXyGQhdCHMfbRDo3IdYVjjcABeFN1/l5ZQIJys/Fwlv9oxLeHKebKtQ0JYWaatFooGuykShLeLvssssC9//2t7/FOeec4zrSpotNmzahr69P2NbZ2YlYLIZNmzb5fu6qq66a9nNnmErwDTWljjcT0O28481gezhTOh4xhoW3usUTaipXNSVtjmaLFa1UjpzOt7+9ymfIlEz+mnlyvJGqppRoV5fgmrb0vHvG9uZ44+IKpSM8Q47jzRAdb9HubqQ3bBA+xzne6pu2gw9G28EHBx4j5AfMO03GU3nhzVInv3cmwux2Y4oR5HjjqqYNgGJRKJ1vVlSOt1TGFhZf2fFWoCYjo/e+97048sgjcfHFF5f82csuuywXAhHw3xNPPBH6+1TOPNu2A8PqLr74YgwPD7v/vfHGGyX/OxhmOvF3vBWOMS27MCBj4Y0pA3nAzsUV6hd5JTvQ8QYx1JQdOTMTt5/IZoUVaL+qpnJxBVvPV0i0LcC2lLmkmPCIlSnVxRXk8F8YBudVYpQ53sYmcxNizVILI9He3tz/JWcrw8jQxTNbEk3Y8Vb/aJpWqIicnzc6lU2VjresLQj+Olc1dalZb73LLrvg+9//fsmfu/DCC3H66acHHrNkyZJQ3zV37lw89thjwrbBwUFkMhmPE44Sj8cR54kCM5sJkeMtaxUG99C5s2RKxyO8seOtbinqePMUV2DhbabjXFNPcYX8ADkq53jr6oJBVm8sjeQksy1otPoiO95KRnSNFoorCI436Zrws8UAasfbWMoJAVcLIwv+4z/Q//Ofo/vkk6fmJJlZC3XVekJNubhCQ+DkdHZSFKXyTjdVcQW5qik73grU7An55z//Cb2MgVdPTw96qrT6cvDBB+PKK6/Exo0bMW/ePAC5ggvxeBz77bdfVf4Gw8xEwuR4y5o2EnnhzebOkikDDjVtHIoWVxByvNmIWN7QRWZm4QpvUqipG4IWiSDS0YHs0BCAnOgTIWs0ti6GRtJQU42Ft9JR5NGJ6BCqmsouRA4zZQA5x1tu0aMQakqEN9KOt+y9N1r23ntqTpCZ1QTmeMuqQ5mZ+kKLRGCnUiTU1HG8qUNN5aqmgeHKDURZs+1169Ypt2ezWaxfvx433XQTHnjgAZx00kkVnVyY89i2bRvWrVsH0zTx9NNPAwBWrFiBlpYWHH300dh1111x5pln4pprrsG2bdtw0UUX4bzzzuOKpkxdI0yS/XK8kaqmHGrKlAMLbw2ENKCW87aJjjfTrawHsCtnpuLneKPXNtLd7QpvETnHmybmfeEcb5UhOt5yv6Vc1VR2vHFFUwaQQk2lHG9CCDgvsjJlQNsZKy1WLBdCTfn+qls0T6hpbnsm6z02lSm0Q0DuvmDHW46ynpAlS5YE5kizbRtLly7Ft771rbJPLAyXXHIJfvrTn7rv99lnHwDAgw8+iCOOOAKGYeCOO+7ABRdcgEMPPRRNTU0444wzcO2119b0vBhmuhGKK/jmeCMhCBxqypQB53hrHIo63gThzUYk6w1dZGYWTj9h++R4A4BYXx8mV68GkEvsb6RIqKlOHVpZMaSNhbeSUVU1lUNN9aYm6MlkrholWNRmcihzvKkcb+xIYsogsCIlF1doCArCW+56u6GmCsfbZMZGkxRqGpQnsJEoS3g766yzlMKbruvo7OzE/vvvj5NPPhmJGg+2b7rpJtx0002BxyxatAi33357Tc+DYWYafqGmQo430y4MyNjxxpSBLMYY7HirW0oR3mDbiNCKVhwONyMpFmoKAHP+7d8wuWYNOo46CpH2dkS2FPoTWxNDIwXHG0/ASkZZXMHw5lAyWltd4Y2fLQYoVtWUhRGmMoQwQS6u0JA4/ZMmhZpmlY43Gy1yqCk73gCUKbwVE7sYhplefHO8EctbloaaRrizZEqHiys0Dp7iCkGhpuDiCrOBMKGmbQcfjN3J4qVQXEEv3BOaVFyBHW9lIIVrA95QUy0ahdHaiszmzbmPsPDGQM7x5jjegosrMExYtHz1ZLmvAFh4axRkx1s6P31UOd5SGRs6TTfCOd5ceGTEMHWIILzRHG9CqKldKDPPoaZMGegsvDUM8oA6qLiCblswTLWDipk5+FY1Dbhe9DYQQ005x1ulCKGmlpPjTQw11SIRGMnklJ8bM7MR3ZK5+8XN8eZTXIFhSsFZkAkU3vj+ql8c4S0v5Kcy+eIKiqqmKa5q6kvVnpBbb70VDzzwAADgrW99K973vvdV66sZhikRf8db4Rgza8NwVkK5s2TKwBN+yLm86paijjeqyNgWItm077HMzMC9ppYFa2LC3R4ovAnFFYhDyzLFJO4svJWMOscbYE2yc4AJJqi4Aud4Y6qBnkjAGhvz5HjjqqaNgTNeKDjeHOHNe+xk2nZD3gGuakoJPTL64x//iLe97W146KGHPPvOOussnHrqqbjuuutw3XXX4fTTT8dJJ50E2/aqoAzD1B7fHG/E8ZbN0LwfLLwxpcNVTRsHz7WWxRnieNNsm0NNZwF0kuTkDAOKCW+F62zrUlVTq+B44wlY6dBnzHEpRWTHm5ykuoEnMEwBTRFq6gpvtpgjkGHKwXG5exxvNMkXt/t1i7eqqX9xhVS20A4B+X4rEnHbn0Z2vIUW3m699Vb885//xEEHHSRs/8Mf/oBbbrkFLS0tuOSSS3D11Vdj+fLluP3223HzzTdX/YQZhimOb1VTMmkyubNkKoRzvDUOxUJNNbmqKQ015TxUMxI6CTeJ8BbkUKTpQC2huEIWOoeaVgZ5xpywXUOXHCXRqPA8NfIEhimgC8UVchNeM/846iyIM1XAL9QUHGraEHiLK+S2q4orACSHOArtkxMV08iOt9BPyOOPP45DDjkEcWlAduONN0LTNPzsZz/DiSeeCAA4++yzsXz5cvz85z/H2WefXd0zZhimKL6hpsTxZlF/MDvemDLgqqaNgyfUNCDHm2abMGhiXQ5BnpHQa2qNjeW2xePKqvUOYnEFMccbwMUVKkHM8Uaqmko53oRcOemCs5RpXIRQU+I0AcQcb7zIypSL44TmqqaNiRxqmsr6O94ACGNAp33S4nFgdBR2Ay8YhR4Zbdq0CcuXL/ds/+tf/4re3l5XdAOAOXPm4N3vfjeeffbZ6pwlwzAlESbHm0UG8yy8MeXAjrfGoWioqex4y6qrZDIzCDJJMvPCWzF3Is3xZmvUoWUKuaTY8VY6qhxvqlBTzpXDyNC+OGKJFhShqik7kpgycdsd0xTmFSy8NQZuqKltAbZNcrz5CG+WuGAEEMcbC2/FGR4eRnt7u7BtzZo1GB4exlvf+lbP8UuWLMHg4GDlZ8gwTMmEyfFmZbmzZCrDI7yxs6luKeZ4E0JNYSFCc7xxqOmMRAg1dYS3IiJphC7e6LSSoljVlB1vpUP7YcelZOjiIhnneGNU0DY2Yvs73nisx5SLn9OWq5o2CNLCkFvV1FQfLhdXAIhrsoH7rdAjo87OTqxdu1bY9o9//AMAsN9++3mOz2azaGlpqezsGIYpD5rjjXSKQo432lpyZ8mUATveGodSHW9OcQUtEuHJ3gxFuKb5fqKYO1HXNTi9iBBqaluC8MYhbWXgU9VUcK1Ho4jvsIP7vmnlyqk7P2bGQp9lr+ONq04ylaP5OG25uEJjIBf/cXK8pX0db6TdyS8MUMdboxbgDC287b///rj99tuxefNmd9svf/lLaJqGI4880nP8iy++iAULFlTnLBmGKYkwOd5sDjVlKoSrmjYOJTneSKgph5nOXFTuhDAVaJ1wU1pcQWPHW8Uoc7wpQk17Tj0VyV13RaS7G0suu2yqT5OZgYihpqLjjYaAsyOJKRfdz2mbZWG3ERD7p6wruGX9HG+kHZKLK8C2xTloAxG6Bb7gggtw55134i1veQtOOeUUvPrqq7j99tux22674S1veYtwbCqVwkMPPYRTTjml6ifMMExxfENNaZiQyQl3mcrwCG8calq/FKlq6i2ukHO8hRFymOlBNUkK8wwbBpC1AJuIa7otCW/cp5SMEGpqBxRXiEax809/ClgW/84MgPy9YxiAaSJiS443Lq7AVAEhtyTJ0cWhpo2BnIPUCTWljreIURDiaFVTOccbkLuHGjENSeglyeOPPx6XXnop3njjDXz729/G7bffjoULF+Lmm2/2HPvrX/8a27dvxzHHHFPVk2UYJhz+xRVIRbqMN/Elw5SCLoWassulfpErXcpONlE0sN0cbyy8zVzKd7zl7gXqeNOtrBhqGlAZlVHj63jLenPlaJrGohsj4PTH7Ztexql//AQWrn8SAERBnMd6TJlQkUQINeXiCg0BbTt0y/QUV9AANMUK/b6hyPHmF67cSJQ0S7r00kuxevVq/OpXv8K9996Lf/3rX9hnn308x61cuRK///3vhUqnDMNMHbTzm3jpJaTefBOAGGoqFlfgwRhTOjyIb1yCHG+wbRhOqGkDrmjOFlTPb5jr5Yaa6qJQpFPhjUX4khFy6OR/S0OHJ9SUYVTQe6Nvy0t4172XAJBCTVkYYcpEo24lFt4aDnlhyMnx5qQLj0ZyVbgLx/hXNQUat7JpybOmxYsXY/HixYHHHHDAAWWfEMMwlUMH8NsffxyrTjsNu/72t9D1Lnc7Fd44/IApB54ENi6yM8pb1TSjPI6ZOShDTUNcr9zg2oatiaGRjlhka7rHIcmEQFFcIcLCGxMS+d4w8hNfIeSLx3pMmfjleONQ0wZBWBjyhppGDA1RcvmN/BgQuuG2O755AhsIXpJkmDpE7vzsdBrbH38cBp0LZUliS+4smTLgSWDj4imaoNGVzmxh0sd5/2YsZYea5ufuli6Gnrghbex2KwshXJuEmlpSVVOGUeHXHzsiLsDCG1M+tHiWOTZW2MH5ohsCOdQ0awGmZbs53WKRnPjm4FY1JWocO95YeGOYukQ1uMr090s53niViqkMHsQ3LnKoKb0XnIqmAIeazmSUoaZhiiuoQk1tFt4qRdN1V8B2c7wpiiswjAo/UVbjqqZMFYh2d7uvM1u2uK9trmraEMhVTQEgnYXrfIsaGiLk8juhplq0MAZk4Y2FN4apS4zWVs+29KZNQo432+TOkqkMGmLANBYeZxRxvEWzk/7HMTOHikJNxeIKGjveqkP+t3NcSpzjjQmLvMhhaeK9BLDwxpRPtLfXfc3CW+MhVzUFcqLbeDonvCXjGqKGorgCdcr5VMZtJHh0xDB1SKyvD33nnIOmnXd2t6U3bYLxwj9w0BM3Ijm+FSCdJYeaMuVAB1xMgyEPsInYEskQ4Y0dbzOW8qua5v5vk2uu2xYLb1XAKXSkWbnfMqJrLLwxoZCf59HmnFBCiytwKCBTLtGeHvd1ZmDAfc053hoDofhPvn8aHrNg53Q3NCdkx1s2/7lCn6X7FOhoJPgJYZg6ZcGFF2L+xz+OZw4/HNb4OCZefRXRxz+FfQE0TQzizeVvdY/VubNkyoCFt8ZFTp5PiytQx1uY0EVmeii7qqmb400MPdHzg3FN58l9uWgRA3ZacrxRRwn31UxItPyMmKuaMtVAEN62bIGVySCzZYsY+cCLLnWLKtR0cKxQybw5rmMi734DCsVd6GIRO97Y8cYwdY2maYj19QEAstu2udt3eeVusbPkwRhTBiy8NRbNe+4JAIjOmePdSYS4CIeazgrKd7zlrjWtasrFFaqDW/2NFFdwHW+GIQjcDENJb9ggvHeeR42LKzBVINLZ6c4VMv39ePHMM/HCCSdg/PnncwcYBlezrmOE4gr5NmXbKBHe/BxvUbXjrVGrmvLSGcPUObG5czH52mveHbyKzlQIC2+NxbKvfx2D992H9sMO8+yjEzohxxuHms5YVJPwMFVoVcUVNC6uUBWca+L8loYOWHnhjSuaMkGYo6PCe2dyzI43phpouo5odzcy/f2YeOUV736eR9Q3hrjQBgCDRHhrSWgYm6Q53px+i4SosuMtnPD2la98pawv1zQNX/rSl8r6LMMw1SE6d65yO1e6YiqFhbfGItrTgzmnn67eKTjeSFVTdrzNWMp1vBWKK5AVcOp401h4KxtXeMv1zxFS1ZTzuzGl4IzxaHEFjm5gKiHa04NMf79yH4u69Y3geMu72QTHW1xHxLA8x/g53jjHWwCXXXaZZxu1k9q27dlu2zYLbwwzA3BCTSmD7Qt5MMZUTNexx6L/llsAAAs++clpPhtmWqHFFTjUdFZQaXEFIccbO96qgnNNdMuEbmagvbGahTcmFNG+PmQ2b3bf6/nn0R3rcSggUyE0z5sMC2/1jVBcId+mDJEcb8m4hki+qqlmmW77wzneREIJbw8++KBn2ze+8Q3cc889OPPMM3HYYYehr68PmzdvxkMPPYRbbrkFxxxzDD796U9X/YQZhimNmMLxlo42u6sRABdXYMojuXIlll59NTIDA+g59dTpPh1mGqETuigLb7MCZXGFkqqaklBT6njjCVjZuDnebBMn3vU5pH/6fGEf99NMAEsuvxzrLr8cqTfeAOB1vPH9w1QKC2+Ni1hcIdfXyzneooazn8wvSboRdryFFN4OP/xw4f2PfvQj/PnPf8aTTz6J3XbbTdh31lln4T/+4z9wyCGH4MQTT/R8lmGYqUUlvOm2KTSMPCBjyqXzqKOm+xSYmQAZlEUyLLzNBsoONTWcUFPR8eZO8NnxVjbObxfNjGPe5ufFfex4YwJo3Xdf7Pb73+O5005HZs2rhcq4eQGOhRGmUgKFN55H1DXKqqZCqKmGaH5sYFDhjeR4E4S3BnW8lTU6+u///m+cfvrpHtHNYY899sDpp5+Ob3/725WcG8MwVUApvFlZaFahweQOk2GYSqCON4NW0ePiCjMWVbuvSk0gM68zNwCPxqRky07aERbeyic/uYlk055d3E8zYXAiGDQp1JSFN6ZSor29/jv5/qprVFVNzcI0Es0JHYt7847tfGEFQCwKxI63MoW3V199Fd3d3YHHdHd3Y/Xq1WWdFMMw1SM6Z45nm25lYdjE8WbwgJ5hmArwEVvCVMlkpgfVRDy+ZEnRzx29dwJnHpHEew9tdbfpJKcLC2/l41Y1he3dx443JgR6JD/5tcSqpizcMpXCjrfGhY4XaHE+h+a4hr2WxtAU0yTHW6Hf4qqmZQpvvb29uPPOO4WiChTLsnDnnXeiJ+ABZRhmatBjMUQkoVy3pFDTKK9UMQxTPn7hhRxqOnORJ0qxuXNhNDUV/Vw8quFtuyYwt7dwbTVSXIFDTcsnaPKqs/DGhEDPJ2HUYAO25SZCZ8cbUymc462BUYSaUpJxDbGIhgN3jAmON7+qpjYLb+E544wz8Oyzz+KEE07AM888I+x7+umnccIJJ+D555/HBz7wgaqcJMMwlRFfsEB4nws1JeFgvFLFMEwl+IgtHGo6c5Hb/TBuNwFDDDV1JvjQeQJWLkGTV3a8MWEQQ8Isoaopw1RCUKgpC2/1DW1XDNsS9iWihdyvh66Mw7D8hTctEoHR0hKqkFM9UtZs+7LLLsOTTz6JP/3pT7jzzjuRTCYxZ84c9Pf3Y3x8HLZt4x3veAcuvfTSap8vwzBl0Hf22Xjzm99Eev16AI7jrSC86RxqyjBMBbDjbfYhC2+JpUtL+zwNPSGON8dxw5RBkPDGC2RMGEhbrJGxHt8/TKVEOjtz95dleXey8FbX0P6+JSZe/+ZEoc1ZMsdAW5QYO4jwZjQ1YZ9HH63hWc58yhodJRIJ3HPPPbjxxhtx+OGHIx6PY926dYjH4zjiiCNw44034u6770aCc7swzIyg4/DDsfutt8KYl3O+eauacofJMEwFkOIKFBbeZjDSRClRouNN8zjeculHaNEFpjTY8cZUivBc2kR4Y2GEqRDNMHLim2ofC7t1Db2+bTExx1tzvDD+0zQN5x5eGPdxigSRsp8STdNwzjnn4Jxzzqni6TAMU0uchlO3soXwA3CHyTBMhfiFmrLwNmOp2PFGPh9BobgC53grHxbemEqhz6VmWW5aER7nMdUgsXgxRrdu9WxnYbe+oe1HS0zM8d+cEBdeO+Im+p3Pcb8lwKMjhmkkDKfaVVYMNY3ygIxhmPLR2PE266hUeKOOuYOXG26oKVc1LZ8gcYQnMEwoyPOn22ZBeGNhhKkCCz75SXS8/e2IzZ0rbOf7q76h17c5KoaaJuNin29n1DnemAocbwCQzWbx0ksvYWhoCKbpLS0LAG9729sq+RMMw1SRguPNkkJNWXhjGKYCfAbdLLzNXOSJUtQnhCjU57NkoM3CW/kE/HY699NMCITci1ZBeOMcXEw1aN59dyz7+tex/vrrsfmmm9ztPI+oc6jwFpFyvMXFhVcW3vwp6ymxbRuXXHIJrrvuOmzfvj3wWD9BjmGYqUcINaWON87xxjBMBfg53jjUdOZiTU5W9Hk60bLT6cJ2nuCXDYeaMpXizfGW9WxnmErRm5qE93x/1Te0v2+OSDnepFBTiwpvLMgKlPVrXH755bjyyivR0dGBs846CwsXLkSEf1iGmfE4K+YabLHcM1c1ZRimEvyqmrJYMGOJL1jgvm498MCSP08nWla24KDmUNPyYeGNqRgqvJkksoGFEaaKGJLwxo7K+oa2H8kSHG88BhQpa7Z94403YvHixXjiiSfQ3d1d7XNiGKZG0IYzkk25rznHG8MwleAXXshiwcwlNncuFv2//4exVasw/6MfLfnztD8RHG8svJUNC29MpQjjPJM8l2yQYKqInkwK71nYrW/o9Y3rsuONc7yFpaxWePPmzTj//PNZdGOYWYZGBLZIthBmxMIbwzAVwcLbrKTnlFPQc8opZX1WCDUlA212vFVAUHEFntgyIaD3iRDZwMIbU0X0REJ4z/dXfSNcX8sSynMmZccbccDzGFCkrNHR0qVLMTIyUu1zYRimxtCG06AroRxqyjBMBfg63ngwXr/QUFPO8VYVgn47a3x8Cs+Ema3Qtlgc5/FzyVQPzvHWWAgLbTS1BAA5wy873vwpS3i78MILcfvtt6O/v7/a58MwTA2hVdE41JRhmKqhKq5gGBx2WMf4hZqy4618giav2SLFzBgGgOCapMIb5+BiqonBoaYNhdDfmyZ2nFdoZ+Z0cKhpWMqabb/73e/Gn//8ZxxyyCG45JJLsM8++6C9vV157KJFiyo6QYZhqocW8cnxxlVNGYapBIXYwm63+kYYiNOBNgtvZRM0eTU50oQJgZjLlx1vTG2QHW9BYfLM7EcYz2Wz+PA7mvHLh8exdE4EC7oimHjtNWQ2bULrQQcJDnguriBS1lOyZMkSaJoG27Zx7rnn+h6naRqykh2RYZjpgzreojTHW4wbRoZhykfTNNiaBs223W084Kpv6EDcYsdbdQhyvLHwxoSAQ02ZqYBDTRsMutCWzaK71cDHj2sFAGSHhvDiBz8IO5XC4ssu4xxvAZQlvJ111lnQVGElDMPMaGgDSB1vsUR8Ok6HYZh6QtMAIryx463OIRN8drxVh6DJa3Llyik8E2a2IhRXMLm4AlMbWHhrLORQU8qWW2+FncrNKV+/7DLMI1XSud0RKevXuOmmm6p8GgzDTAVaRF3VNJ7ghpFhmMqwNR0aLPc9r3TWN5qm5VbBTVPM8cYTsLLxm7wmVqzAggsvnOKzYWYlZJx3yn4GRv+Se83CCFNNWHhrLITiCpLwJvT/4BxvQfBsm2EaCNoxOqGmNjQursAwTOVITngecNU/WiQC2zRhseOtKqgmr8u/9S20H3bYNJwNMxuhz19nLItR5w07T5gqYsjCG99fdY0mhZpSLEl4s1h484VHRwzTQAiOt3zuD9OIcug4wzAVY0tDCh6I1z/OYJxDTauEQnjjiQtTCnSCbKVSyu0MUylaXExRw/dXfRPoeJOEOPpej8Vqe2KzjLJHxdu3b8f111+P++67Dxs2bECKNO4OmqZh9erVFZ0gwzDVQzURtgyeHDMMUzm2zsJbo+EKb1xcoSqonhl+jpiS8Ks2zMIIU0U8C/bcTtU1ZYea8n0hUNavMTAwgEMOOQSrV69GW1sbRkZG0N7ejnQ6jYmJCQDA/PnzEeVVOoaZUagaQNvg55RhmCqgScIbjwHqHtVknh1v5aP8PXniwpSAr+ON7yOmhrCwW+cEhJpS4U2LxcT3PA4UKGt0dNlll2H16tW4+eabMTg4CAD4z//8T4yNjeGxxx7DgQceiCVLluCFF16o6skyDFMZqo7RZscbwzBVwOYcbw2HcjLPE7CyUQpv/BwxJSDkYqITYH4umRrC91d9Q6/vyF//irWXXYbs9u0AAHOyUKxPi0a5uEIAZQlvf/rTn3DUUUfhgx/8oMdqesABB+DOO+/E2rVrcdlll1XjHBmGqRLKUNMIx98zDFMFZMcbOyzqH3a8VRfFb8cTF6YUBMcbVxtmpggW3uobeTy37fbbseV3vwMAmHkBDgD0aBQWccRx/yVS1uho48aN2Geffdz3hmG4IaYA0NnZieOOOw6/+c1vKj9DhmGqhtqdwJNjhmEqx5aEN50HXHUPO96qC4eaMhVDxFubQ00ZhqkCqr5p8J57AADmyEjhOMnxxuNAkbKEt/b2dmTIj9rZ2Yk333xTOKatrQ2bN2+u7OwYhqkqyhxvEW4UGYapHA41bTyUQhFXyS4bZXEFfo6YEqD3kMWhpswUYRFdgKk/VO2HI7iZo6PuNjub5eIKAZQlvC1btgxr16513++zzz649957sW3bNgDAxMQEbrvtNixatKgqJ8kwTHVQDry4UWQYphpwqGnDoexTeIJfNqrfkx0DTCkIOd7Y8cZMEXJlS6bOUPRN6U2bkB0aEkJNrclJUXiLcTojSlnC29FHH437778f4+PjAICPfvSj6O/vx1577YX3ve992H333bF69Wqcc8451TxXgbVr1+LDH/4wli5diqamJixfvhyXXnop0tKDv27dOpxwwglobm5GT08PPvnJT3qOYZhGQTnw4hxvDMNUAY/jjSd69Q/neKsqHGrKVAx5/qgLiR1vTNXxKeTB1B+apiGxbJln+/i//hUsvPHCkUBZvfn555+PXXfdFePj40gmkzj11FNxzTXX4IorrsDvfvc7NDU14dOf/jQuuuiiap+vy4svvgjLsvCDH/wAK1aswPPPP4/zzjsPY2NjuPbaawEApmni+OOPR29vLx5++GFs3boVZ599NmzbxnXXXVezc2OYmYo6jIUH9QzDVI6c440HXPWPcjLPwlv5sPDGVIiv442FN6bK6LEYrHyOd4uFt7pnxfXXY/tjj8GanMQbV18NABh77jlYpKopbBvm2Jj7lvsvkbJ+jXnz5uH973+/sO2//uu/8KlPfQpbtmzBnDlzap7j49hjj8Wxxx7rvl+2bBleeuklfO9733OFt3vuuQerVq3CG2+8gfnz5wMAvvGNb+Ccc87BlVdeiba2tpqeI8PMNJTCG+d4YximCsRi4sSOhbf6R9mn8AS/bJSON36OmBIQcrwR4Y1DwJlqo8ViQF54Y8db/RObMwfdJ5yAiTVr3G3b//EPz3FOzjctEuGcrxJVXZY0DAN9fX3QNA3XXXcdTj311Gp+fVGGh4fR1dXlvn/kkUew++67u6IbABxzzDFIpVJ48sknfb8nlUphZGRE+I9h6gLVoJ7j7xmGqQJNcc7x1mgoRTYeaJcNF1dgKoZWNeVQU6aGCCIvF1doGBKLF0NvagIAjP7zn579Tugp911eahYP8NRTT+HWW2+t1dd7WL16Na677jqcf/757rZNmzahr69POK6zsxOxWAybNm3y/a6rrroK7e3t7n877LBDzc6bYaYSDjVlGKZWyLm9eNBV/7DjrcoownRZwGZKgT5/FhdXYGqIHo+7r9nx1jhohoGmnXby3e863tjY4WHGJeK47LLLoGla4H9PPPGE8JkNGzbg2GOPxfve9z585CMfEfapLI62bQdaHy+++GIMDw+7/73xxhvV+ccxzDSjGnhxxTSGYaqC1K/qPNGre5ShkZzjrWw8v6dh8O/JlIQgvBExhIU3ptrMv+AC9/Wcf/u3aTwTZqpJ7ryz/07bBgAYLS1TdDazhxnXCl944YU4/fTTA49ZsmSJ+3rDhg048sgjcfDBB+OHP/yhcNzcuXPx2GOPCdsGBweRyWQ8TjhKPB5HnKj4DFMvsPDGMEyt8IgGPNGrf7i4QlWRnyEWS5hS0XwqTbITlak2nUcfDTubhRaLoWX//af7dJgpRFXhVIaFNy8zrkfv6elBT09PqGPXr1+PI488Evvttx9+8pOfQJcGewcffDCuvPJKbNy4EfPmzQOQK7gQj8ex3377Vf3cGWamoxp46WwFZhimGsiONxb16x6l440n+GUjC20svDEl4xNqysUVmGqj6Tq63/3u6T4NZhpILF1a9BgW3rzM2h59w4YNOOKII7Bo0SJce+21GBgYcPfNnTsXAHD00Udj1113xZlnnolrrrkG27Ztw0UXXYTzzjuPK5oyDYlqEG/EeHLMMEwV4BxvDQcXV6gu8u/J4jVTKux4Yxim1oQS3pqbp+BMZhezVni755578Oqrr+LVV1/FwoULhX22E1tsGLjjjjtwwQUX4NBDD0VTUxPOOOMMXHvttdNxygwz7ShDTVl4YximCnBxhcaDiytUGTnUlJ8hpkQ4xxvDMLUm0tkJo70d5vCw7zHsePMSuhV+17veVdIXP/fccyWfTCmcc845OOecc4oet2jRItx+++01PReGmS2oBl4RFt4YhqkGsvDGE726RymycY63svHkeGPhjSkRdrwxDFNrNE1DYulSjD39tO8xLLx5CT0qvuuuu0r+8qDKoQzDTD3KUNM453hjGKZyPI43Ft7qH3a8VRUursBUDL2H8hFAAN9LDMNUl2LCm86hph5Ct8KvvfZaLc+DYZgpQOl4i/OKOsMwVUBabGO3Tv2jLK7Ajrey4eIKTKX4PX8siDMMU00SS5YE7mfHm5fQPfrixYtreR4Mw0wBqkF8lIU3hmGqADveGg8ONa0ynCeRqRDfdpeFN4ZhqkjTsmWB+1l488KjI4ZpIJSOtwSHmjIMUwXY8dZwsOOtunCON6ZS/JxtvBDCMEw1KVbZlIU3Lzw6YpgGgkNNGYapFfKET2fRoO5hx1t14RxvTMVwqCnDMFNAtK8vcL/BOd488OiIYRoJxcDL4MkxwzDVgB1vDYdKGOIJfvnIvyeL10yp+Dre+LlkGKaKaJqGBf/xHzDa29Fz6qme/ex488LCG8M0EMpJEg/sGYapBpzjrfFQXWN2vJUPh5oyFeLX7nJ7zDBMtek780zsed99mPPBD3r2sfDmhUdHDNNAsPDGMEyt4OIKjQfneKsunlBTdikxpeL3/PG9xDBMDdA0DXo87tnOwpsXHh0xTAPBwhvDMDWDKzI2HJzjrbpwcQWmUvzEWg5bZhimVuiJhGcbC29eeHTEMA2E0p3AgzGGYaoAO94aD2Wfws6asmHhjakU3xxvfC8xDFMjPMKbpkFPJqfnZGYwLLwxTAOhmgjzKijDMFWBiys0Hux4qy4svDGV4ud4U4SCMQzDVAMtFhPGgHoyyWknFPAvwjANBIeaMgxTMzjUtOHgHG/VxeN4Y9coUyLseGMYZqqR87xxmKkaHh0xTAPBwhvDMLWCQ00bD+U1ZuGtbDjUlKkU3xxv7HhjGKaG0HBTo7l5Gs9k5sKjI4ZpIDRdh83hYAzD1AJJcOEw9vpHuZjDwlvZyKKJzuI1UyLseGMYZjrQ2PFWFB4dMUyDYeviQF6PxabpTBiGqSc0WdRn0aDu4eIK1UV+ZlgsYUpG9fwZBj+XDMPUFMHxxsKbEhbeGKbBsDmHDMMwtYBzvDUcysk8O97Kh/tnpkJUzyQvsDIMU2s41LQ4PDpimAZDdrzx5JhhmGrAjrcGhB1vVYVzvDGVogr11lh4YximxrDjrTgsvDFMg2HpPLBnGKYGsGjQcChFNkmAZcKj6brw+/EzxJQMO94YhpkGaAEXnYU3JSy8MUyDwTneGIapBR7HG4sGdY+yuAI73iqDOJbYNcqUiqZp3kUQHucxDFNjONS0OCy8MUyD4UnezAN7hmGqgZzjjduWukd5jTnHW0XQ35SfIaYc5HBTXgRhGKbWcKhpcXh0xDANRnOzOADjARnDMFVBnuxxyGHdw4ncqw/9Tbl/ZspBfi75mWQYptbQUFMW3tSw8MYwDYYeIQMyLjHPMEyVUCX1Zuocqf+I9vUhsXz5NJ1MfUD7ZJ2FN6YcONSUYZgphh1vxeFRMsM0GBzGwjBMTWDhreGQF27mnn02i0UVIvym3EczZcCON4ZhphpaUCHS0TF9JzKD4VEywzQYVGzjCRLDMNWCQ0uZ7pNOmu5TmP2w442pEFl4Y8cbwzC1pvv44xFftAhthxyC5j32mO7TmZHwUhrDNBiC440H9QzDVAt2vDUcTTvtlBOKTBM7fP7zQo4Xpjy4j2YqxeN44/uIYZgak1iyBLv+7ne8CBsAC28M02AIiZt5FZRhmCrBg63GI9bbi5W33ILstm1oO+ig6T6dukDooznUlCkH2fHGgjjDMFMAjwOD4R6dYRoMzvHGMExN4EItDUlyxx2n+xTqClqkhPtophzY8cYwDDPz4LgQhmkwOIyFYZhawCudDFMFqOON+2imDOQK0+x4YxiGmX5YeGOYBoOLKzAMUxM4xxvDVIzGwhtTKex4YxiGmXHwKJlhGgwe1DMMUxPY8cYwFcPpIJhK4aqmDMMwMw8W3himweBQU4ZhaoJlTfcZMMyshxfHmEph4Y1hGGbmwcIbwzQYLLwxDFMLbNMsvOGwU4YpDyKacIggUxZyqCkLbwzDMNMOj4wZpsEQcrzxYIxhmCphE8eb7LhgGCYcguONQ02ZMmDHG8MwzMyDhTeGaTQ4fwzDMLUgmy28Zscbw5QFC29MpcjCGy+yMgzDTD88MmaYBoNDTRmGqQXseGOYyuE+mqkUj+ON7yOGYZhph4U3hmkweFDPMEwtYOGNYSpH6KPZqcSUg+x4i8en6UQYhmEYBxbeGKbBEHK8sfDGMEy14FBThqmYzmOOAQwD7W97GyKtrdN9OswsRJPaX15kZRiGmX44eQTDNBhC/hgejDEMUyVoVVN2vDFMeXQffzw6jjgCejI53afCzFLk3IDseGMYhpl+WHhjmAaDQ00ZhqkFHGrKMNXBaG6e7lNgZjOc441hGGbGwbEgDNNgsPDGMExNII43DjVlGIaZHjyhppwrkGEYZtrhkTHDNBgsvDEMUwuEUNMIG+oZhmGmA9lxrLPwxjAMM+2w8MYwDQYdkHFxBYZhqgXneGMYhpl+5PaXHW8MwzDTDwtvDNNgsOONYZiaQHK8cagpwzDMNMGON4ZhmBkHj4wZpsFg4Y1hmFogON5YeGMYhpkW2PHGMAwz8+CRMcM0GCy8MQxTCzjHG8MwzPTDOd4YhmFmHiy8MUyDQSfEnOONYZiqQUJNOccbwzDMNMGON4ZhmBkHL0kzTIPRetBB0BMJ2LaN1rf8//buOzyqMn0f+DOhE0I19CoCAgFCJ5QERBEiUqSIi2LoAaS4IIK/VWABYV1BFERllwVRFHUBCwiyiqgUIYAKUoVQhYAQSKhpc//+yPccZ5JJMu2dmTe5P9e110oyufPkOe9558w7Z85p5+9yiCi/sFj+/E8u6hMR+QXPeCMiCjw8442ogClWtao02bxZmmzeLMWqVvV3OUSUT9SYOvXP/54+3Y+VEBEVXNmu8cY3QoiI/I5nvBEVQIVKlfJ3CUSUz5S47z5p+NFHmf9dt66fqyEiKpiy3tyGHzUlIvI/LrwRERGRV3DBjYjIz7Lc3MZicxkAIiLyD37UlIiIiIiIKB/gzW2IiAIPF96IiIiIiIjygawfNSUiIv/jzExERERERJQf8Iw3IqKAo/XCW69evaRmzZpSvHhxqVKlijz11FNy4cIFu8ecPXtWHn30UQkODpZ77rlHJkyYIKmpqX6qmIiIiIiISA1+1JSIKPBovfDWpUsX+fjjj+XYsWOydu1aOXnypPTv39/8fkZGhjzyyCNy69Yt2b59u6xZs0bWrl0rkydP9mPVRERERERE3seFNyKiwKP1XU2fffZZ879r1aol06ZNkz59+khaWpoUKVJEtmzZIocPH5Zz585J1apVRURkwYIFEhMTI3PnzpXSpUv7q3QiIiIiIiKv4sIbEVHg0fqMN1uJiYmyevVqad++vRQpUkRERHbt2iVhYWHmopuIyMMPPywpKSmyb9++HLNSUlIkOTnZ7n9EREREREQBzWLxdwVERJSF9gtvzz//vAQHB0uFChXk7Nmz8tlnn5nfS0hIkEqVKtk9vly5clK0aFFJSEjIMXPevHlSpkwZ8381atRQVj8REREREZE3ICPD3yUQEVEWAbfwNnPmTLFYLLn+b+/evebjn3vuOfnpp59ky5YtUqhQIRkyZIgAML9vcfCuDwCHXzdMnz5dkpKSzP+dO3fOu38kERERERGRl3HhjYgo8ATcNd6eeeYZGTRoUK6PqV27tvnf99xzj9xzzz1Sv359adiwodSoUUN+/PFHiYiIkMqVK8vu3bvtfvbatWuSlpaW7Uw4W8WKFZNixYp59HcQERERERH5lNXq7wqIiCiLgFt4MxbS3GGc6ZaSkiIiIhERETJ37ly5ePGiVKlSRUREtmzZIsWKFZOWLVt6p2AiIiIiIqIAwDPeiIgCT8AtvDlrz549smfPHunYsaOUK1dO4uPj5aWXXpK6detKRESEiIh069ZNGjVqJE899ZT885//lMTERJkyZYqMHDmSdzQlIiIiIqJ8hQtvRESBJ+Cu8easEiVKyLp166Rr167SoEEDGTZsmISFhcl3331nfky0UKFCsnHjRilevLh06NBBBg4cKH369JFXX33Vz9UTERERERF5F9LT/V0CERFloe0Zb02aNJGtW7fm+biaNWvKhg0bfFARERERERGRH/Eab0REAUfbM96IiIiIiIjoT3YfNbVY/FcIERGZuPBGRERERESUD9guvFkKFfJjJUREZODCGxERERERUT5Q8v77zf8u07mz/wohIiKTttd4IyIiIiIioj9V6NlTbu7fL+nXrkmNqVP9XQ4REQkX3oiIiIiIiPIFS6FCUnvWLH+XQURENvhRUyIiIiIiIiIiIgW48EZERERERERERKQAF96IiIiIiIiIiIgU4MIbERERERERERGRAlx4IyIiIiIiIiIiUoALb0RERERERERERApw4Y2IiIiIiIiIiEgBLrwREREREREREREpwIU3IiIiIiIiIiIiBbjwRkREREREREREpAAX3oiIiIiIiIiIiBTgwhsREREREREREZECXHgjIiIiIiIiIiJSgAtvRERERERERERECnDhjYiIiIiIiIiISAEuvBERERERERERESnAhTciIiIiIiIiIiIFuPBGRERERERERESkABfeiIiIiIiIiIiIFODCGxERERERERERkQJceCMiIiIiIiIiIlKgsL8L0AEAERFJTk72cyVERERERERERORPxvqQsV6UGy68OeHGjRsiIlKjRg0/V0JERERERERERIHgxo0bUqZMmVwfY4Ezy3MFnNVqlQsXLkhISIhYLBZ/l+Ox5ORkqVGjhpw7d05Kly7NfB/m61y76nyda1edr3PtqvN1rl11vs61q87XuXbV+TrXrjpf59pV5+tcu+p8nWtXna9z7arzda5ddb7OtavO17l2HQGQGzduSNWqVSUoKPeruPGMNycEBQVJ9erV/V2G15UuXVrpDsN8/2Trnq9z7arzda5ddb7OtavO17l21fk61646X+faVefrXLvqfJ1rV52vc+2q83WuXXW+zrWrzte5dtX5Oteum7zOdDPw5gpEREREREREREQKcOGNiIiIiIiIiIhIAS68FUDFihWTGTNmSLFixZjv43yda1edr3PtqvN1rl11vs61q87XuXbV+TrXrjpf59pV5+tcu+p8nWtXna9z7arzda5ddb7OtavO17l21fk6157f8eYKRERERERERERECvCMNyIiIiIiIiIiIgW48EZERERERERERKQAF96IiIiIiIiIiIgU4MIbERERERERERGRAlx4IyIiIiIiIiIiUoALb0RERERERERERApw4S0funnzptL8uLg4WbRokSQnJyv9PTpib3LG3vjHL7/8IidPnlSWr3q+oZxdvnxZMjIylGTv379fbty4oSRbRP18oHrcq6R6n1LdG5XjUvf5RufeqKyd8i+dx43u8w2ROzju1bEAgL+LIO+4ePGiTJkyRZKTk6VixYoybtw4adGihdfyL1y4ICNGjJDNmzdL7dq1JT4+XgCIxWLxOPvixYsye/ZsqVChgtStW1diYmI8L9hGQkKCLFu2TO655x6pXbu2REdHezVfdW/mzZsnJUqUkGrVqsmECRO8UPGfLl26JHv37pXo6Giv1JuVzr3xRf7cuXOlatWqUr16dRkyZIjXsi9duiQjR46UXbt2yaxZs2To0KFSokQJr+Wrnm9UjkuVfTfyVY0bAJKWlibPPPOMxMXFyeLFi6Vjx45ey79w4YLExMTI7t27ZcOGDdKpUyevZRv5quYDEfXjXvW4VL1PqeqN6nGpujcq5wSde6O6dhG1x2eqj/10Pj7TecyLqK1f5+MbEfW90fn1msp81b3xxbGrynFPPOMt33j//fclLCxMUlNTpUePHrJ161b5xz/+IQkJCV7JnzJlitSoUUNKlSoly5Ytk5SUFDl27JhXnjDWr18v999/v5w+fVqOHj0qw4YNk9jYWDl27JgXKheZPXu23HfffbJnzx5ZuXKl9O3bVz744AMRyTw48JTK3sycOVPq1asnZ86ckcuXL8ukSZNk9uzZIuKd2pcsWSJVq1aVRx99VA4dOuRxXlY690Z1/n/+8x9p3LixnDlzRuLj4yU2NlbGjRsnJ06c8Dj73Llz0rNnT7FYLLJz50556qmnvLr4oHq+UTkuVfZdRP24sVgscvnyZfn888/ljz/+kK1bt0pSUpJX8qdOnSq1atWSkiVLypEjR7y+6KZyPhBRP+5VjkvV+5Tq3qgcl6p7o3pO0Lk3KmsXUXt8pvrYT+fjM53HvIja+nU+vhFR2xvdX6+pzFfdG9X7rOpxT/8HpL309HQ89NBDmDNnjvm1jz76CJUqVcL169c9yk5OTkbx4sXRpEkTbN++HQDw9ddfo2bNmti2bZtH2YbevXtj4sSJ5r83btyIVq1aYcSIEbBarW7npqenY/78+WjXrh02btwIIPPvmTZtGmrWrOlp2Up7k5aWhvnz5yMqKgqbNm0yv/7iiy/i3nvv9SgbAKxWKzZu3IiuXbvi1VdfRYsWLdC/f39kZGR4nA3o3RvV+QBw8+ZNREVFYcmSJebXNm3ahJCQEIwZM8ajcQ8Ab7/9Nh5++GHz3wcPHsSZM2eQlpbmUS6gdr5RPS5V9t0X48YQHx+P4cOHY9q0aahXrx42b97sUV5qaiqeeeYZWCwWrFmzxvz6pUuXPC0VgG+eRwB14171uFS5TxlUzgkGb49LQH1vVM/FBh17Y1BVu6rjM9XHfrofn+k85gG19et8fAOo37a6vl5TnQ+o6w2gfrv66rmEAJ7xlg8cPHhQ4uPjpWrVqubXbt++Lf369TPfYXKH1WqVkJAQ2bZtmxw4cEA6dOggIiJt27aVy5cvy5UrV8zHuevixYty8uRJqVGjhvm16OhoGTRokOzfv19WrlzpdnahQoUkNTVVHnjgAenevbuIiISEhEhUVJQULlzYo2vcqO5N4cKFJSIiQmbMmCHdunUzv56WliaxsbFy584dt2sXyXw3slKlSvLUU0/J6NGj5bXXXpO1a9fKV1995VGuiP69UZ0vIvL999/LoUOHpEuXLmK1WsVqtcrDDz8sZcuWlXXr1smqVavcysX/vWN34MABqVq1qiQmJkqXLl1k4MCBEhERIYMHD5bvv//eo9pVzTciaseliNq++2LcGM6fPy8HDhyQefPmSXBwsHz44Ydu9x6AFClSRDp16iSRkZFy5coVOXr0qPTt21f69esnUVFRsmzZMklNTXUr3xfPIwZV4171uDxw4ICyfcr2d6iaEwzeHJcGlfONiLo5ISsde2NQUbvK4zOV2SJ6H5+J6D3mRdTWr/PxjYjaYxxdX6/5Il9lb0TU77O+ei4h4RlvuklJScHt27cBwHyXJCUlBW3atEGHDh3wzjvvYMCAAbBYLIiIiECZMmUwceJEp89cuHnzJo4fP46kpKRs37NarbBarUhKSkLHjh0xfvx4t2s3VufT09NRo0YNvPLKKwBgvvt+/vx5DBw4EH369MG1a9dczjd6c+fOHbv6AWD16tVo1KiRS7UDvuuNo3e/kpKS0Lt3b1gsFrRo0QL16tXDJ598glu3bnklHwAGDhyI5s2bIzk52aXajfp27dqF8+fPZ/ue7r3xNN/RuDlz5gwKFSqErVu3ml/bs2cPIiMj0aNHDwwYMMCp7eCo7xkZGXjiiScwfvx4jBw5EiNHjsThw4fx8ccfo3v37ujYsSMuXrzoVO2q55vk5GR89913+O2333J8jLvj0lFvvNV3IPf5wPj9noyb3PapDz74AE8//TQAYM2aNahTpw7eeustjBw5EhcuXHCr9rS0NIwbNw6VK1dGhQoVMHHiRLz++usYNWoUihUrhgULFphjwZ18g6fzAWA/Lm1zvTXufT0uvblPqe5N1m1r+067p+PSH8c33pwTVO6zvu6NN7cr4Lg3tuPUk+MzldmAf44RsnJ3vlE95h3NNwZvjBtHvfdW/f58PWXw5Lhb5bZ1lK3T6zWV+f54Latqn1Ux7il3XHjTyPz581G/fn2707WNnXvXrl14/fXXER0djRYtWiAuLg5JSUlYsWIFIiIiMGPGjDzz//73v6NOnToIDw9HnTp18OWXX+b42MjISIwZMwYAnDrFNbfa//rXv6Ju3bpIT0+3y1uyZAmaNWuGPXv2uJVvy/Zg6ZlnnsHgwYMBZH7Eyhm+7o2t1NRULF++HNHR0di+fTsOHDiAsWPHolGjRuYp057kG705efIkSpQogTfeeCPPTFsvv/wySpcujbCwMJQuXRqLFi3C77//DgDmNjXo1htP87OOG9ufGTlyJMqUKYOpU6di0qRJCAoKwoIFCzBr1iw0atTI7GFOHPX9zJkzAIDXXnsNFosFNWvWxE8//WT+zMaNGxEREYFFixa51RtvzzehoaFo2bIlSpQogQULFtgd5HkyLrP25rXXXjNflA0bNsyjvhu15zYfeDpuHG1b2xeVb7/9Nnr37m3+u169eihSpAiaN2+Oixcv5rpvOard2E937tyJp59+Gp9//rndz0yYMAHNmjXDwYMHPe6NLVfnA8DxuDTqX7x4scfj3pfjctGiRTh9+jQA4IcffvB4n/JFb3Lbtp6MS18f33hzLgbU7rP+PvbzpPa8epORkeHR8ZnKbMD3xwhZe+/JfKN6zOfUG6NmT8dNbr0fNWqUR/X7e5/y9Lhb5bZ1VLvRm2effTbgX6+pzPfna1lPx3xe9Xtj3FPeuPCmgatXryI2NhZNmzZF6dKl8dhjj+GPP/4AkP3FSteuXe0+Aw4A3bp1Q2xsbI6TyunTp9GrVy80btwYGzduxDfffIOnn34aVapUQUJCgt1jjQllypQpTr1LkFvthiNHjqB06dJYsGABgD8nxeTkZAQFBeHHH3/0KN9g/P2tW7fGwoUL7b6X0wGAv3tjcPTOably5fDBBx94Jd/wt7/9DZUqVcK5c+fM33vz5s0cH//ll1+iYcOGWL9+PeLj4zF37lw0btwYw4YNs3uczr1xJz+3cWP7rtHUqVPxyCOPICoqynwiPHPmDEqUKIGzZ8/mmJ9T34cOHQogs98NGzZESEgIfvnlF/PnUlNT0bRpU7z++utu9cYb883Jkyfx0EMPoUmTJti8eTN+//13zJo1C6GhoQ7PFAFcG5eOetOoUSMMHz7cfMyUKVPc6rsr84E74yan+rPuU9OmTcPSpUvxv//9D9WqVUP16tVRvnx5vPrqqzlesyu32m3Pdjpw4ADu3r0L4M+5OCEhARaLBbt37/ZKb1ydD4Dcx6VR5927d9G4cWO3xr0/xqXtPmtwZ59S3Rtn57MXXnjB5XHpz+Mbb8zFgLp9NlB64852daU3gHvHZyqz/XmMkHW+NDg736ge8872xt1x42y+O/UH0uspgyvPIyq3rTO1B/LrNZX5gfJaVsU+641xT87jwpsG4uPjMXXqVGzcuBE//PADLBYLPvzww2ynvJ8+fRq1atVCXFyc+bVbt26hXbt2ePnll3PMX7NmDSIjI3HkyBG7r5cuXTrbmQ+GpUuXonHjxjh+/LjHtWdkZGDOnDkoVaoU9u7da349Li4OtWrVyvXFnrO9MZw9exahoaHmWQabNm3CE088gVOnTjl8vL97Y8g6McbFxaFmzZp2F/b1JN9w8+ZN1KpVCxMmTMCqVavQsWNHfPzxxzk+fsKECWjevLnd1xYvXowGDRpg2bJlAOzPetOxN+7kuzJush60z5kzB2FhYUhMTMxxW+XW97fffhsA8P7778NisWD+/Pnm33Djxg00a9YM7733Xo61q55vvv/+e8yYMQMnTpwwv/b777+jbt26OS5wuDIuc+vN0qVLAWSOSXf67sx2NXrtzrjJq/633noLQOaLeIvFgpCQEMyaNcv8uSZNmuDbb791u/asjL/hww8/RMWKFe0WbLyR7+x8AOQ9Lo3/X7NmjVvj3p/j0pgrT5w44dY+pbo3zm7bF1980eVxGUjHN+7MCcbfqGKfDZTeuLNdnemNMe6NRRhXj89UZgfSMYLB2flG9Zh3dr5xd9zklW+7aOdq/YGyT9ly5XlE5bbNLfuzzz4DkNn7QH29pjLf369lPRnzrvTG3XFPzuPCmwbS09PNj5ABmdcEaNq0qcPJoXnz5oiKisJ7772H/fv3o2fPnmjcuLHDF0zGwUJiYiI++eQTu+8lJCSgQYMG2LJli8Of2bhxI0JCQnJ8QeJq7VarFV26dEF4eDimTp2KHTt24IEHHkDXrl1zvU6GK70BMhcjunbtinPnzqFHjx4oXLgwJk+enO1xgdSbrPnHjh1Dz5490a9fP9y4ccNr+YYZM2bAYrGgaNGimD59eo6Py8jIwJgxYzBo0CDzDBkAuHDhAkaPHo1mzZqZ9RmLb7r2xtl8d8aN8XNpaWk4dOgQIiMjMXv27Bxrz6vvTZs2Na/18Je//AUNGzbEgAED8MUXX+CRRx5By5Ytc+2/qvnGkJqaar6za/y7b9++6NixI2bPno3jx49nO4AHnBuXroxJwPm+e7JdAefHpTP13759G19//TVefvlluwWry5cvo2HDhvjuu++8WvuRI0fQrVs3jBw50mHNvpgrAdfG5VNPPeXyuPfnuLTdZ5s1a+byPqWqN65u288//xzz5893aly6U7vq4xvj55ydiwE1+2yg9cad7epsb2znQ2ePz1RnA4F3jGDIbb7x1Zh3tjeff/45/vGPf7g8btzpvbP1B8o+lVVezyMqt62r2YH2es0X+YH2WlbVPgu4d1xPzuPCm0aMyfHq1asoUqQI5s2bZx5wGAsbx44dQ8uWLdGgQQPce++9GDhwIBITE/PMNBgvKA4fPowKFSrkeCbC8ePHUbhwYWzfvt3j2o3feeXKFbzwwgsIDw9H/fr18dhjjzl9Mcrc8m2/P2TIEFgsFhQpUgSPPPIIrly5kmemwR+9Mdy6dQvz5s3DiBEjUKpUKTzxxBO5XrDV1Xwg8123cePGwWKxYPjw4bn23sicN28eatSo4fCAq1WrVua7zsbjdeyNq/mujpv09HR88cUX5kXs//KXv+T4MQNn+26c2XX9+nWsWrUKkZGRaNOmDR5//PFc5wNHv8ub801WR44cQcmSJdG6dWu89NJLCA8PR0REBJYvX24+xtlx6Wxv/vWvfwHIfAfR2b7b5hvy2q63b992a9zkVn/z5s2xcuXKbPUY2yMlJcUrtd+6dQuzZs1CTEwMSpYsicGDB+d64V5fzZW2v8vRuDTeFU5KSnJ73AP+GZfGmVFHjhxxe59S0RtXtm3Wa3rmNS6drd1XxzeuzMW2+Sr2WUe/x1+9cWe7ujofW61Wp4/PVGbn9Lv8eYwAuD7fOJvt6ph39Lty6o0n84Ez+Z7U7+99yuDOcbez+e4cW+aVbTwu0F6v+Srf369lAXX7rLeO6yl3XHgLcFknQ+PgeebMmQgNDbW7SLLxvWvXruHEiRN5ntnkKN/2oqitWrVy+Bggc2IxTs+Ni4sz7xZj+1hXard9gk5KSsrxjkee5g8dOhRNmjSx+15OvNEbZ7Nzq934ve+88w6efPJJu1OYvZFvPPbkyZOYNm2a3YvgS5cuOfwbjX7euXMHpUuXxpw5c+y+n5ycjDZt2mDevHl2v8Pb48bZ3qjOz+l32WbkNm7i4uIwa9Ysu9O7HXG174aUlBSnnji9Nd/Y3j0qt/ybN2/ihx9+sLuzUo8ePTB69Gjz4Pz06dN24zKnceNOb/bu3Ztr33MbN85s12XLljk9btzdts5wp/bFixejf//+eY5Jd/OB7HNlTvONu88lWce9s3OOO+MyJ65sV6OOpKQkt5/D3e2Ns/nObltb3pjrnT2+8XSfdXYuBny7z7rbG2f3KXe2a26Z7vRmxIgRTh2fqczO+ncAgXGMcOrUKafmG2+NeW/MxcZjHeV48/hvz549Oe6zquebnH6XbX3e2K7u5js7n7mSbfvYrK/XvPkc7uj1mjdfb+b2elD1a9mcflde+c6MeU/y3Rn35BouvPnZ1atXs10E2WD7mW5jZ7bdqatVq4ZRo0YhMTERW7Zswbvvvpst/8KFC+jfvz8++uijbD/vKN/YQQcPHoy//vWv5vcPHDiQ7Y52J0+eRK9evWCxWLL9bldrX7VqVbbaT58+jVmzZmHlypXmRSkdfd7dld7Ynvp/9uxZfP755zhw4EC2v9/T3nhru3711Vdm7baTp6vb1dVxEx8fj0cffRQxMTH49ddfc6wfAF599VWEhIRkewIIDw/H2LFjs2V7a9zk1BtvjZuc8r05brKeuu3suAFc7zuQOW527tzp8MnUW+OmadOmePHFF3PNN/7btq/G39upUye7O6EZnB03gHu9cXXcOLNds46bTz75BPv27TMvUOto3LhTv6vzjTO12+aofB4BnJ9v3H0ucXbsuDMunZ0PAP/vs456o8sxgqP5RsU+a0vlfBwoz+Hu7rPO9h5wvjfG8ZmKfSrrsZ8zc7Enx2eu7LO59f7AgQN2P+/N/dXRmA+Uudidca/iNYMtbx77Zd2uRr4r49KVbXvu3DmsXr0aO3fuNM++8mbt3hw3jl6vqRg3Rr43x42jMe/quHHndb7K43ryLi68+dELL7yA0NBQzJ07N8fHWK1WTJ06Fe+//745ERg7zbp161CoUCE0adIEFosFb775Zrafnz17NiwWC9q1a2d+vtz2ADJrvtVqxfXr13H//ffjq6++woULFzBgwABYLBZs2LDB/JkxY8YgKCgIvXr1QtmyZbF27do8s12p/fnnn0fJkiXRo0cP3H///ahevToOHTpk5rqan/UOLZMnT0bJkiXRtWtXlC5dGmPGjMHJkyft/gZ3ehOo29WZfKOv7777LsqVK4eBAwciLi7OvJtR1neApk6dal6Qu2XLlujatat5S/N9+/ahWbNm2a4Lodu4yZofKOPGlb4bJk6ciAoVKqB169YoWbIk3nzzTVy/ft1hvqu9sVqtGD16NAoXLoz+/fvneCcpR/m2du/ejcjISLu+uDpu3OmNO+PG2e0KZF5YvXjx4mjXrh2KFSuG4cOH5zhuXK3fnfnGldoBdc8jgGvzjTvj0t05x5ajcQm4Nh8E2j5rKEjHCK6Me9XzcaA8h7vTG1d672pvVO9TrszF7oxLd/ZZV3pfEOdiZ/J1PvYD3BuXzm7bCRMmICQkBFFRUQgODsbQoUOznYkVSOPG9vWainFjmx+I48aVfF8cI5B3ceHND65du4Zhw4ahTZs2aNmyJR599FHz3TrbiWrlypUoX748wsPDs73DcP78eUydOhUWiwWDBg2yuyi0rR49emDQoEGIjIzESy+9BODPnT2n/Li4OFSuXBmxsbEoUaIEunXrZl6Ucf369ShRogTatGljvjMQERGBESNG2NXvSe1r165Fy5YtsXXrVgDATz/9hIiICMyfP98rvVm+fDkiIiLwww8/IC0tDR999BE6deqEqKioPPNz602gb1dn8jMyMtC9e3e722tnvSDoihUrzPz9+/cDyLwORN++fVG0aFF069YNJUuWxKBBg8yf5bjx7rhxtu9A5q3GH330UURERGDHjh04deoUpkyZgrCwMLsXJu725rfffkO5cuXQuHFjsy5Hcso/fPgwDhw4gBdffBEVKlRAbGysR+PGld4Ano2b3Lar4ccff0TDhg2xYcMG3Llzx7y+Vvv27e3yy5Ur51L9ns43ztRu8PbziMHV+caVcenpnJPbuARcnw8CaZ+1VdCOEfIal6rnY0/67kxvPNmnnNlnXe29K71RuU8Brs/FrvTe033W2fm4IM7FeeXreuxn8GRc5pZ/6tQpdO7cGR06dMCuXbtw9+5dLFu2DGFhYfj666+9UjvHjZpxk1e+L48RyLu48OYjtgdsd+/exaxZs7B+/Xps27YNLVq0wPTp081Ti4HMiWv27Nl46623sl2gNCUlBZMmTUL58uXx7bffZssH/jy9dNiwYVi/fj2mT5+Ohg0b4vDhwwAyr4ExZ84cLF26NFv+4sWLYbFY0KZNG2zZssUue9myZea7DUDmBcSffPJJPPbYY+Zke/PmTY9qHzJkCDp27Gj3taioKLuPb82cOdPlfOP/o6Oj8eSTT9r93Pjx42GxWMybAeSUn7U3tgJ9uzqT/80336BevXpIS0vDjh070KtXLzz88MMYN24cdu3aZfbGNt/ISEpKwpYtW7BkyRJs376d48aGinGTU9+z9mbDhg14/PHHs117pnLlyubHVW7cuOF270+fPo3GjRtj9OjRAIAdO3bgr3/9K+bOnYtNmzaZp/PPmDHDYf6///1vNG/eHK1bt8Y333zjlXHjbG8Az8ZNbtvVMG3aNNSvX9/uazt37kSpUqWwYMECANnHTW71GzydbxzVrvJ5xFG+O/ONIa9x6emck9O49GQ+cGa7Apl3e1W5zwIF9xghr3Hp7flYh+dwZ3vjbu/z6o0v9inAvbnY4Kj3tjzdZ3Pbp4CCPRdnzc8vx34GT8ZlbuPmt99+w6JFi3D06FHza5cvX0azZs3MBbQ7d+5g1qxZbh8jcNyoGTeq55u88kkdLrz5wO3bt7PdUcX2VNDJkyejQ4cO5mnyBkcfeTEYp/LmlG9o0qQJDh06hLi4OHTp0gUTJkxASkoKfv3112w7ovFzycnJWLFihcNs25qMn580aRKaNm1ql+Fu7WlpaZg7dy5q1qyJHTt2mNcNKFeuHLp164Znnnkm11sy55V/7do1REdHY/r06XY1Pvfcc2jQoAHuueeebNcQsf27bHtjfM22j4G4XZ3NBzLfeatQoQLWr1+PVq1aYdq0aZg5cyYiIyNRrlw5XLx4McdsWxw3sPu7VI8bW1lrP3fuHHbs2GGXk5qaipYtW2L16tVO5efWm4yMDKxduxYWiwUPP/wwatWqhX79+qFZs2aoWrUqnn76aYeZRh9SUlKwe/fuHLMN7o4bW94aN462a071LFy4EE2bNrXLMQ7oypUr5/AOw454a9zkVLvK5xFH+YDn801e49LgythxZly6Ox/kxPidxs/8/vvvSvfZgniM4Mq499Z8rMtzuLO98cbzbE7ZqvYpb87Ftr331j7rzD5VUOdiR/k6H/vl9Le6My6dGTd37tyxu5tmQkICHnzwQTRq1AjDhg3DZ5995rAfHDf+Gzc55as+RiDf4cKbYtOmTUOLFi3w4IMP4vXXXzdvMW61Ws0d4syZM+jQoQNGjhxpXhsp68q8q/kZGRk4f/683XUgFi5ciHvuuQcWiwWvv/66w1t62/7erNnJyclmtu3/b9y4EaVLl87xY0rO1m4c7B46dAiPP/44evbsiaCgIPTo0QNff/01FixYgLp162Lw4MF2v9/ZfOMJaPLkyWjVqhVmzZqFK1eu4LnnnkNoaCg++OADVKlSBUuXLs3Wi6z/XrBgQbY7aRkCcbs6m79r1y507doVrVu3xogRI8y/JTk5GWFhYRg6dCiA7LeJzy2b48Z/4ybrtR5sf0epUqUcXlzZlXxj3CQmJmLIkCHo0KEDfvnlF/MAZNmyZWjQoIHZm9x6r9u4ybpNctq2y5cvR8uWLfH555/bff3UqVOoXr06Xn75ZYf5zmTb/pwr4ybr11U+j+SW7435xlG+N8eOt+eDrLJu26yPV7XPFsRjBGfHpTeOz3R7Ds+rN958nvX1PmXwxlzsKN/TfTa3fYpzcc7ZOh37Ad4fl86MG8Px48dRvHhx9OjRAytXrsRjjz2G+vXrm9ewdHeu5LjR/xiBfIsLb4qkpKSgf//+aNSoEdasWYMhQ4agUaNGeOSRR+weZ+wwixYtQsuWLfN8Z8SV/KSkJHTq1Am3b9/GunXrUL58eZQpUwbNmjXL9jvcqd3w2WefoU6dOk7dDju3/B49etjVtXr1akRHR5sTsPG7SpYsmePF23PLf/jhhwFknn47ceJE3HfffShfvjzCwsLMMxs6dOhgd62CrPbs2YPOnTvDYrGgRYsW2LlzJ4Ccn7QCabvmlm/0/tatW+jbt6/dqdDGE+by5ctRrVo1uzsNuVq7LY4b344b24wPP/wQTZo0cZjlypwQHR1tPubIkSOIi4uze9F69epV9OzZE6NGjcrxwEv3cZPTtjU+mpaUlISwsDCMHTsWly5dMn/u7t27iImJwdChQ3PsTSCMm0Cdb5yt35YrY0flfAA4v20N3tpneYyg9vgsv+5T3ui9v/Ypb8zFueV7Y5/Nr+NG5Vysw7EfoHZcutL3n3/+2fzv9PR0TJ48Ge3bt8ft27dd7g3Hjf7HCOQfXHhT5PDhw6hXr57dZ/q3b9+OEiVK4JVXXsl20Hb37l1ER0dj4MCBOHDgAN5///0cz3BwJh/I/Ox9lSpVEBYWhrJly+LVV1/FO++8g/DwcPPOJY52UFdrv3r1KooWLWre6Savdwfyyjcm7enTp6Nv3752P7to0SLUr18/13c7csufN2+e+bVz587ZXWzy7t27CA0NzfWuLrNnz0b//v2xYsUKdOvWzbzIJ2A/sRn/HUjb1dnefPnll6hQoQIeeughu5+dNm0aOnfujFu3bjmcxDluAnfcZL32xJQpUzBq1CjzsVu3bs32bqsr+Y4Yv+u+++5DbGysx7UH6rjJbdsaB9ZLlixB/fr1zQNTQ4cOHTB8+HC3sgv6fONM/Z6MHZXzAeD8tjWo2Gd5jOD947P8vk950nt/7lOezsV55Xu6z+b3caNqLg70Yz9A7bh0tu+O9O7dG9HR0UhNTXVru3Lc6H2MQP7BhTdF9u3bB4vFgqtXrwL4cyeZN28eypUrh+PHj5uPNSaOTz/9FPfeey8qVKiAokWL4tVXX3Urv2zZsoiPj0daWhoaNWqEUaNG4dSpUwCACxcuYODAgYiMjMzxehau1A5kXmcoMjISkydP9mpvnn32WfMW8enp6Th8+DAiIyMxbtw4j/KPHTtm93jj+6tWrULbtm2z3Wbb9jFnzpwx33WYN28e2rZti48//hhA9ieAQNuueeWXKVPGvM31zJkzUaFCBbz44os4fvw4jh49iqioKPz97393K5vjxn/jJmvv09PT0bx5c3z00UeIj4/HAw88gKJFi5oXZPU039amTZvQunVru2tReJodKOPGmW1rew2Pv/zlLwgPD8c777yDa9euYd++fWjRogXWrFnjVnZBn2/yyvd07KiYD2wf58q29fY+y2MEdcdnBWWfcqf3/tyn3J2Lnc33dJ8tKOPG4M25OBCP/Wwfp2pcutKbrHbt2oXIyEh88MEHuXSG48aT/EA/RiD/4MKbIj/99BMaN26MxYsXA/hzR0pNTUWdOnXMScNYcT9x4gSGDBkCi8WCMWPG4ObNm27n165dG5MmTQIAXLp0KdvK+KFDh3J9gna2duMJIz09HfXq1UNsbKzdnb/czTdq3717N3r37m3eIr5UqVIYNmwY7ty541G+be+vXLmCdevWYdSoUQgODsbf//53WK1Wp07LPXnyJPr06YM+ffogMTERQPbJMJC2qzO9MfITEhKwbNkylC1bFmFhYQgJCcHQoUM5bqDfuLGtHQB++eUXhISEoEePHihcuDAef/xxu1PsPcnPyMjAwYMHsXXrVowePRplypTBtGnTcv34ju7jxpajbWtcd+fkyZN46aWXUKhQIbRs2RIlSpTA8OHDnfobcsouyPONM/mejB1fzQdA3tvW2/ssjxHUHZ/l933Kk977e5/y1lycU74n+2x+Hzcq52Jdjv0A749LV47NDh06hG3btiE2NhYhISGYNGmS13rPcaPfMQL5BxfeFElMTESfPn3w+OOPm6vaxsSxYMECVK1aNdudTqpXr253Oqon+VWqVMnzYpneqN04MF21alW21X1PajdyL1y4gPXr12PJkiXmbdO9Wf/ly5cxZcoUPPjgg3bXP8iL0cvly5ejbdu2OX5WP5C2qzv5v//+O3788Uf89ttvHmdz3Hg2bnK7ToYrtRt3IH3ggQfw008/eT3/3XffRZcuXdClSxezN97KzmnceJLvzLjJLd/g7Lb99ddfsWHDBhw5csTr2QVpvnEm35M5xxfzAeDctv3vf/+bbZ/Nazt4sm09zc6r796oPbd91pv1A/b7lcq+e6P2vPYplb33Zt8d7VPOzj3uzsXezHe0z+aGc7FntQf6sR/g3rj05j714Ycf4pFHHkG3bt3MC/AH+nyT27jR6XlE9Xzm6nxD/sOFNzf8+uuveO655xw+YdieNrx8+XI0a9YMixYtsnvMv//9bzRu3BinT5/OdscWb+errN0Rb+Ubp9H7It94V8DZbNt/JyUlYejQoXjggQfM05b37dtnPs52ux47dgyjR4/G999/71HtOfXem/lZnxB0qT2ncaMi3xg3zmbb/tvVcRMVFYUpU6YAsL87lCu1x8fHAwAuXryIrVu3Ksu/efMmTpw44dXs3MaNN/JzGzfO5Nv+O7dt6852dTY7a/7Zs2exd+9e/P7779n+Lm/03pv5jg5AVdbvrWxH84Er+bb/drRt4+LiAGReI8Z2n718+bLdWVe2293T3qjM9mZ+TvvspUuX7O7o50n9WY/PvJmtunZH+5S38h31XkW27T7lbL7tv52di72Z72ifzbpw4CgLcH/ceDPf0bhRWb+3snOaD1Tk245LZ/Nt/+3suLx+/bpdhrv7lHFsdvv2bbu/w1v5OY0bb+arys5p3KjItx03zubb/tuVYwQKXEFCTktNTZWhQ4dKkyZN5O7du1K7dm3zewBERKRw4cJy9+5dWbNmjQwbNkzCw8Plo48+km+//dZ87Pnz5yU0NFRq1aolQUGZmyAoKEhJvsraVfbG9udV5xcrVsyp7LS0NHn33XfNf1utVildurQMGDBArFarzJo1S7p27SqtWrWSa9eumdvVarXKs88+K+Hh4XLr1i25ceOGmW+1Wj3uvYp8i8WiLFtl7VnHjcr84OBgp7LdHTepqany9NNPS+PGjWXv3r2ybds2EREpVKiQW7XXqVNHREQqV64sXbp0UZYfHBwsNWrU8Gq2o/nGm/mO5htn8l3dtq5sV3fHTVpamowePVpatGghw4YNk2bNmsmOHTuyjUt3e68i35hvVOWryrYdNyEhIU7nO7tt27RpI1evXpXq1atLly5dJC0tTUaNGiUdOnSQRx99VIYOHWqOK4MnvVGVrSI/6z6bnp4uw4cPlzZt2siDDz4ogwcPlqtXr3pUv/GzVqvV69mqa7fdp7ydb9t7ldkhISFO57szF7tSvzv7bMeOHWXs2LEyevRoERG7TG/Nxd7OzzoXq6rf29lZ5wOV+cZc70y+O+MyLS1Nxo0bJ9HR0RIdHS2zZ88Wq9UqQUFBkp6e7nLtxrFZiRIlpHbt2l7PdzRuvJ2vKtvRuFGVb4wbZ/LdPUYgDfhz1U8ny5cvR0hICNq3b5/tYzy2K/2vv/46ypcvj969ewPI/Nz14MGDUbRoUYwZMwajRo1CSEgI3nrrLbufVZmvc+2B1pt+/fqZn683nDlzBnXr1oXFYsGgQYOQkJBg9/0NGzagQ4cO2LZtG3Libm9U5+tceyD1xtVxM3v2bAQHByMyMhJHjx7FK6+8grZt22a7tbm7tavM17l2d/Jd2bYqs4HMj6326tULXbp0wf79+3H06FF069YNUVFRXumNzvmBVrur2zYxMREPPvggunTpgu3bt2PZsmVo3rw52rdvj6NHj3pUv8ps1bUDmWcEDB48GO3atcO2bduwcOFChIWFoWPHjnYfN3MnX2W26toLWm9c3adU5v/444+IjIxEaGgoihQpgu3btwPIfmaUu73ROV/n2t3Jd2XcbNmyBffddx+ioqKwfv16DBs2DA0aNMD/+3//zyu165yvc+3u5LvzepMCHxfenNS+fXs0bNgQ165dA5B5WvCXX36JY8eOmRdgXLx4MWrXro3Vq1fbnTZqtVrx8ssvY+TIkYiOjnZ4hz+V+TrXHmi9yXo69TfffINSpUohPDwce/fuzVY7APTp08e8O862bdvwt7/9DStWrDBvU/2vf/0LNWvWdKs3qvN1rj2QeuPKuPn111/RoUMHuztZffHFFyhcuLB59yQAWLp0KerUqeNy7Srzda7d3Xxnt63KbMPu3btRr149u48c/Otf/0KvXr3MrCVLlrg9F+ucH2i1u7ptN2/ejLCwMLuFqsOHDyMoKAgTJkzAtWvXsGLFCrfmM5XZvsg/e/Ys6tWrh/fee8/82sWLF1GtWjWMHz8eiYmJbuerzNY9P9Bqd3WfUpm/aNEiDB8+HF9++SUee+wxtG3bNtvvd/d5Svd8nWt3J9/ZcZOUlIQRI0Zg3Lhx5o0DUlJSMGPGDDz88MO4deuWR7XrnK9z7e7mu/N6kwIfF97yYHy2eufOnbj33nsxa9Ys9OrVC/feey8aN26MSpUqYcCAAeZjs97tKuuO48t8nWsP9N4Yrly5kuvtuJOTk9GxY0esW7cOc+bMQeXKldG7d2/UqFEDtWvXxpYtWwDAnHSdqd1X+TrXrjrf3WyDo3Fj/F5H1wrZvXs3ateujbVr15pfc3XMq8zXuXZv5RuybluV2Vlt374dFovFPOj7448/EB4ejtjYWLz99tsAMq8l4u4+pXN+oNZuyGvbvvvuuyhbtqzd13bs2IHy5cujXr162LhxI6xWq8vPs6qzfZH/008/oUSJEuYFvY076S1ZsgT16tXDF198AavV6ta2VZmte36g1m7Ia59SkW/8befOncOhQ4cAZC48h4aG4t///jeAP+9i6c5xsc75OtfujXxDTuMyMTERK1euzHYDneeffx6RkZHm49ypXfd8nWv3NN+Q13xGeuDCmwMbN24E8OeOYfz/sGHDULx4ccTExODnn3/GgQMH8MUXX6B48eKYOXNmQOTrXLvqfG9nZ51ss+Yb2rVrh+joaDz11FPYuXMn0tLSYLVa0a1bN/Tu3dvpOy+pzNe5dtX53s7OadxkvdizrZMnT6JSpUrm2VK5PTan+lXk61y7inzbbasy2zY/69cfeOAB1K9fH927d0dQUBC6d++OCRMm4J577kH//v2dvpuZzvm61e7Mtt26dSvq1q2L+fPnm18bOnQonnvuOdStWxejRo0CkPf4V5nti/x33nkHy5Ytw3fffWd+7ebNm6hTpw5mzJgBAOYZBQDQqlUrxMTEmGew+ytb93zdas+6T6nMN7JtLzth+/0rV65g/PjxqFGjhvkGjCvPUzrn61y7inxXxo2RN2bMGMTExGT7vqe1B3K+zrWryHfld1Ng48KbjQ0bNqBatWp271pbrVZzB/njjz/wt7/9LdudyhYsWIAKFSrYPWn7Ol/n2vNrb4yJ8j//+Q8sFgvq16+Py5cvmz/3ww8/oEqVKti5c6ff8nWuPb/2Jivja+Hh4ZgwYUKOj/Nlvs61q873R+0ZGRnmwf7Nmzfx22+/oX379nj11VfNn/v5559x77334uOPP863+TrXnlO+8TyVmJiIf/7zn7BYLGjfvj1KlSqFsLAwpKWlYfHixahWrZrfsn2R/8EHH6BixYqIiIhAeHg4QkNDMWfOHACZH+N5/vnnUa9ePVy6dAkAzAWT9957D2XKlMl1AUhltu75Otfuz95kPcPZ+Ci6cRdrZxZ/dM7XuXbV+c5mG8cDbdu2Nc+oc+YYQed8nWv3RT7pjwtv/+eHH35A9+7d8cwzz6BHjx5o1aqV3feNHcLRKecffvghypUrh4MHD/olX+faVef7u3Yg81o2nTt3RqNGjXDx4kXz67dv30ZwcDA++eQTv+TrXLvq/ECo3dbt27cxaNAg9OvXz6kzCFTm61y76vxAqX3//v1o0KABLl++bM5xaWlpKFu2rN2CUH7K17l2V/K/++47LF682Pw4OwDMnz8fHTt2xPXr132e7Yv81atXo1mzZuZHdn///XcsXrwYwcHBSEpKAgD873//Q+vWrTF27FgAfz63f/vtt6hYsaJ5tqEvs3XP17l2f/YmOTk52+Nv3bqFf/7znyhTpox5Hdhvv/3WrCM/5etce6D1Jj4+HqGhoXbXxzx58iQAx5ev0Dlf59p9kU/5Q4FfeDOeZI8fP46FCxciPj4ee/fuRcmSJc1V6LzevRgzZgwee+wxn+frXLvq/ECo3Zg409PT8emnn6JYsWKYMWMGzp8/DwD46KOPEBERYb7T6qt8nWsvCL3JaVzGxsaiffv2uT5GZb7OtavOD7Tajx49iqCgIOzbt8/82vr169GiRQvs378/X+XrXLs7+VmlpKSgT58+GD9+vE+zfZm/cuVKjBo1Crdv3za/t337dtSvXx+7du0CkHmm0muvvYbg4GCsW7fOvNbSnDlz0Llz5xw/3qsiW/d8nWsPhN7s3r07W01A5n7SuXNntGnTBi1btkT58uVx6tSpfJOvc+2B2pu33noLLVq0AJD5pk6bNm0QGhpqXqc6P+TrXLsv8il/KbALb/v27cv2DqvxgjotLQ2TJ09GaGioebHVrE6dOoUTJ05g+PDhqFmzJj799FMAf+6AKvN1rr2g9cb2Rccbb7yBqlWrokGDBujbty+Cg4Mxd+5cuyyV+TrXXtB6Y8v4XZ988gmKFi2KCxcuZHuMynyda1edH2i1G/PU1atX8cQTT6BkyZKIjY3FkCFDEBISgpdeesnuhaTO+TrX7k5+VkePHsXx48cxZMgQ1KlTx1xIUJ3tq3zjTuMAcP369WxnAPz888+oXLkyEhMTza8lJydj6tSpCAkJQVRUFAYMGIASJUrgzTffBPDnMYKqbNW1szf69cbWwYMH0bRpU1gsFowdO9Zc5POk9kDI17l21fnuZhtjevz48ejfvz+effZZBAUFYfjw4Xbzqs75Otfui3zKnwrcwtt///tfVK9eHXXr1kXNmjXx0ksvmR8Ts1r/vH5TfHw8atSogcmTJ5vfMxw9ehTjxo1DxYoV0blzZxw7dswn+TrXXlB7k/Xd/h9//BFLly7F9OnTfZavc+0FtTeO3sVftWoVYmNjkZSUZH5fZb7OtRfU3tiOy9u3b+O5555DTEwMhgwZ4vV9yl/5OtfuSX7WsbNgwQLUrVsXkZGROH78uPJsf+S/+OKLSEhIML9v2+OFCxeiQ4cOAGD3IhrIXMyeMWMGYmNjceTIEeXZuufrXLsuvfnhhx9Qq1YttGvXDidOnPB67f7I17l2HXqTkZGBWrVqwWKxoHPnzuadVHXP17l2X+RT/lagFt7i4uJw//33Y9GiRfjll1+wdOlShIaGYsyYMbh69SqAP9+1tVqtWLp0KQoXLoz4+HgAmbcaT0lJQXp6Or766it8//33PsvXufaC3puUlBSHn+/3Rb7OtbM3KXbXHsy62KcyX+faC3pv7t69azcus35sQed8nWv3Rr7tnHPhwgW7j7OqzA6U/IyMDLOnffv2xbhx4+AMldm65+tcu+p8b2ZfuHAh25mdOufrXLsuvbl+/TrmzZuHr776Sknt/sjXuXZf5FP+VyAW3ox3W9966y1Ur17d7oKXS5YsQbt27TB79uxsP3f16lW0b98evXv3xr59+/DQQw/hvffey/burcp8nWtnbzLzu3Xr5vN8nWtnb9ibQMzXuXbd83WuXUW+7WKtyuxAzM/IyIDVakXdunWxYcMGAMCxY8cwaNAgnD171mfZuufrXDt7w94EYr7OtbM3/s2ngiNICgCLxSIiIqdOnZL69etL4cKFze/FxMRIy5YtZdOmTXLo0CEREcnIyBARkfLly8vIkSPl888/l9atW0uxYsXkscceM/N8ka9z7exNZn7RokWlX79+Ps3XuXb2hr0JxHyda9c9X+faVeQHBQX5JDsQ84OCgiQuLk5KliwpLVq0kEmTJknTpk3l6tWrUrFiRZ9l656vc+3sDXsTiPnezA4NDVVau6/zda7dF/lUgPh75U+FLVu2YPz48Vi0aJHdnUQ+++wzFC9ePNvterds2YIOHTpg4cKF5mNTUlLw5ptvIigoCFFRUfj11199kq9z7ewNexOI+TrXzt6wNwUxX+fa2Rv1+TNmzIDFYkFISAgaNWqEvXv3Ks/WPV/n2tkb9iYQ83Wunb3xbz4VXPlq4e3ChQvo2bMnKlasiMGDB6NJkyYoU6aMudPcuXMH999/P0aNGgXA/to6nTp1wtixY81/JyQkYOLEiXj33Xd9kq9z7ewNexOI+TrXzt6wNwUxX+fa2Rvf5c+ZMwehoaFYu3at8mzd83Wunb1hbwIxX+fa2Rv/5hPlm4W3W7du4emnn8bjjz9uXswXAFq3bo2YmBgAmSvTq1atQlBQEHbs2GH384MHD0aXLl38kq9z7ewNexOI+TrXzt6wNwUxX+fa2Rv1+Z07dzb/ffnyZZ9k656vc+3sDXsTiPk6187e+DefCMhH13grWbKkFCtWTGJiYqROnTqSnp4uIiI9e/aUI0eOiIhIoUKFZODAgdK7d28ZMWKEfPfddwJAEhIS5LfffpPBgwf7JV/n2tkb9iYQ83Wunb1hbwpivs61szfq85988kkzz/YaOSqzdc/XuXb2hr0JxHyda2dv/JtPJCL56xpvqamp5n8bdyB58sknMXLkSLuv3blzB507d0bFihXRrVs3VK1aFe3atcvzTiMq83Wunb1hbwIxX+fa2Rv2piDm61w7e8PeBGK+zrWzN+xNIObrXDt74998ony18OZIp06dsGLFCgCZO4xxIcSEhARs2bIFc+fOxerVqwMyX+faVefrXLvqfJ1rV52vc+2q83WuXXW+zrXrnq9z7arzda5ddb7OtavO17l21fk61646X+faVefrXLvqfJ1r90U+FSz5euHt5MmTqFSpkt2dRFJSUrTI17l21fk61646X+faVefrXLvqfJ1rV52vc+265+tcu+p8nWtXna9z7arzda5ddb7OtavO17l21fk61646X+fafZFPBU++ucabLQAiIrJ9+3YpVaqUtGzZUkREZs2aJRMnTpTLly8HbL7OtavO17l21fk61646X+faVefrXLvqfJ1r1z1f59pV5+tcu+p8nWtXna9z7arzda5ddb7OtavO17l21fk61+6LfCq4Cvu7ABUsFouIiOzZs0f69esn//vf/2TUqFFy+/Ztee+996RixYoBm69z7arzda5ddb7OtavO17l21fk61646X+fadc/XuXbV+TrXrjpf59pV5+tcu+p8nWtXna9z7arzda5ddb7OtfsinwowJefRBYA7d+7gvvvug8ViQbFixTB//nxt8nWuXXW+zrWrzte5dtX5OteuOl/n2lXn61y77vk61646X+faVefrXLvqfJ1rV52vc+2q83WuXXW+zrWrzte5dl/kU8GUbxfeAODBBx/EmDFjcOfOHe3yda5ddb7OtavO17l21fk61646X+faVefrXLvu+TrXrjpf59pV5+tcu+p8nWtXna9z7arzda5ddb7OtavO17l2X+RTwWMB/u+DzPlQRkaGFCpUSMt8nWtXna9z7arzda5ddb7OtavO17l21fk61657vs61q87XuXbV+TrXrjpf59pV5+tcu+p8nWtXna9z7arzda7dF/lU8OTrhTciIiIiIiIiIiJ/yZd3NSUiIiIiIiIiIvI3LrwREREREREREREpwIU3IiIiIiIiIiIiBbjwRkREREREREREpAAX3oiIiIiIiIiIiBTgwhsREREREREREZECXHgjIiIiIiIiIiJSgAtvRERERAVMTEyMWCwWsVgsUqRIEalUqZI89NBD8p///EesVqvTOStXrpSyZcuqK5SIiIhIc1x4IyIiIiqAunfvLhcvXpTTp0/Lpk2bpEuXLjJx4kTp2bOnpKen+7s8IiIionyBC29EREREBVCxYsWkcuXKUq1aNWnRooW88MIL8tlnn8mmTZtk5cqVIiKycOFCadKkiQQHB0uNGjVk7NixcvPmTRER2bZtmwwdOlSSkpLMs+dmzpwpIiKpqakydepUqVatmgQHB0vbtm1l27Zt/vlDiYiIiPyIC29EREREJCIiDzzwgDRr1kzWrVsnIiJBQUHyxhtvyK+//irvvvuubN26VaZOnSoiIu3bt5dFixZJ6dKl5eLFi3Lx4kWZMmWKiIgMHTpUduzYIWvWrJEDBw7IgAEDpHv37vLbb7/57W8jIiIi8gcLAPi7CCIiIiLynZiYGLl+/bp8+umn2b43aNAgOXDggBw+fDjb9z755BMZM2aMXLlyRUQyr/E2adIkuX79uvmYkydPSr169eT8+fNStWpV8+sPPvigtGnTRl5++WWv/z1EREREgaqwvwsgIiIiosABQCwWi4iIfPvtt/Lyyy/L4cOHJTk5WdLT0+Xu3bty69YtCQ4Odvjz+/fvFwBSv359u6+npKRIhQoVlNdPREREFEi48EZEREREpiNHjkidOnXkzJkzEh0dLbGxsTJ79mwpX768bN++XYYPHy5paWk5/rzVapVChQrJvn37pFChQnbfK1WqlOryiYiIiAIKF96IiIiISEREtm7dKgcPHpRnn31W9u7dK+np6bJgwQIJCsq8LPDHH39s9/iiRYtKRkaG3deaN28uGRkZcvnyZenUqZPPaiciIiIKRFx4IyIiIiqAUlJSJCEhQTIyMuTSpUuyefNmmTdvnvTs2VOGDBkiBw8elPT0dFm8eLE8+uijsmPHDnn77bftMmrXri03b96Ub775Rpo1ayYlS5aU+vXry+DBg2XIkCGyYMECad68uVy5ckW2bt0qTZo0kejoaD/9xURERES+x7uaEhERERVAmzdvlipVqkjt2rWle/fu8u2338obb7whn332mRQqVEjCw8Nl4cKF8o9//EPCwsJk9erVMm/ePLuM9u3bS2xsrDz++OMSGhoqr7zyioiIrFixQoYMGSKTJ0+WBg0aSK9evWT37t1So0YNf/ypRERERH7Du5oSEREREREREREpwDPeiIiIiIiIiIiIFODCGxERERERERERkQJceCMiIiIiIiIiIlKAC29EREREREREREQKcOGNiIiIiIiIiIhIAS68ERERERERERERKcCFNyIiIiIiIiIiIgW48EZERERERERERKQAF96IiIiIiIiIiIgU4MIbERERERERERGRAlx4IyIiIiIiIiIiUuD/A9b4fjHHeLhSAAAAAElFTkSuQmCC", + "application/vnd.holoviews_exec.v0+json": "", + "text/html": [ + "
\n", + "
\n", + "
\n", + "" + ], "text/plain": [ - "
" + ":NdOverlay [Variable]\n", + " :Curve [dtDate] (value)" ] }, - "metadata": {}, - "output_type": "display_data" + "execution_count": 23, + "metadata": { + "application/vnd.holoviews_exec.v0+json": { + "id": "p1002" + } + }, + "output_type": "execute_result" } ], "source": [ - "fig, ax1 = plt.subplots(figsize=(15, 8))\n", - "\n", - "ax1.plot(goodQual['Date'], goodQual['MOD11A1_061_LST_Day_1km'] - 273.15, color=\"#6495ED\", lw=2)\n", - "ax1.plot(goodQual['Date'], goodQual['MOD11A1_061_LST_Night_1km'] - 273.15, color=\"#CD3333\", lw=2)\n", - "\n", - "ax1.set_xlabel(\"Date\")\n", - "ax1.set_ylabel(\"Land Surface Temperature (Celsius °)\", fontsize=14)\n", - "\n", - "ax1.set_xticks (goodQual['Date'][::14]) # print pone label for every 14 obs \n", - "\n", - "fig.suptitle(\"Day and Night LST\", fontsize=20)\n", - "fig.autofmt_xdate()" + "goodQual.hvplot.line(x='dtDate', \n", + " y=['MOD11A1_061_LST_Day_1km', 'MOD11A1_061_LST_Night_1km'],\n", + " title='MODIS Day & Night Land Surface Temperature (LST)',\n", + " ylabel='LST (°C)', \n", + " xlabel='Date',\n", + " xticks=12,\n", + " legend='bottom_right',\n", + " width=1200, \n", + " height=600)" ] }, { - "attachments": {}, "cell_type": "markdown", "id": "531d3d22-db86-478a-b2d4-db2b84954c42", "metadata": {}, @@ -1238,13 +1844,12 @@ "Voice: +1-866-573-3222 \n", "Organization: Land Processes Distributed Active Archive Center (LP DAAC)¹ \n", "Website: \n", - "Date last modified: 05-06-2023 \n", + "Date last modified: 04-19-2024 \n", "\n", - "¹Work performed under USGS contract G15PD00467 for NASA contract NNG14HH33I. " + "¹Work performed under USGS contract 140G0121D0001 for NASA contract 80GSFC24TA009. " ] }, { - "attachments": {}, "cell_type": "markdown", "id": "891ae0be", "metadata": {}, @@ -1267,7 +1872,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.8.13" } }, "nbformat": 4, diff --git a/external/cof-zarr-reformat.ipynb b/external/cof-zarr-reformat.ipynb index f6fb9cc0..600158cb 100644 --- a/external/cof-zarr-reformat.ipynb +++ b/external/cof-zarr-reformat.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "c3df54cc", - "metadata": {}, - "source": [ - "# COF Zarr Access via Reformat\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook is from NASA's PO.DAAC, Access ECCO data via Harmony and the Zarr reformatter service example

\n", - "\n", - "> The original source for this document is [https://github.com/podaac/ECCO](https://github.com/podaac/ECCO)" - ] - }, { "cell_type": "markdown", "id": "united-stand", diff --git a/external/data_access_direct_S3.ipynb b/external/data_access_direct_S3.ipynb index dd53a86f..5ee4da38 100644 --- a/external/data_access_direct_S3.ipynb +++ b/external/data_access_direct_S3.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "f4a310e0", - "metadata": {}, - "source": [ - "# Direct S3 Data Access with rioxarray\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/05_Data_Access_Direct_S3.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/05_Data_Access_Direct_S3.html)" - ] - }, { "cell_type": "markdown", "id": "ceramic-strengthening", diff --git a/external/data_discovery_cmr-stac_api.ipynb b/external/data_discovery_cmr-stac_api.ipynb index 3c0860a7..5750de81 100644 --- a/external/data_discovery_cmr-stac_api.ipynb +++ b/external/data_discovery_cmr-stac_api.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "f03068d2", - "metadata": {}, - "source": [ - "# Data Discovery with CMR-STAC API\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/02_Data_Discovery_CMR-STAC_API.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/02_Data_Discovery_CMR-STAC_API.html)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/external/data_discovery_cmr.ipynb b/external/data_discovery_cmr.ipynb index e2ffa437..035e9679 100644 --- a/external/data_discovery_cmr.ipynb +++ b/external/data_discovery_cmr.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "1df0932e", - "metadata": {}, - "source": [ - "# Data discovery with CMR\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/01_Data_Discovery_CMR.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/01_Data_Discovery_CMR.html)" - ] - }, { "cell_type": "markdown", "id": "negative-performer", diff --git a/external/harmony_subsetting.ipynb b/external/harmony_subsetting.ipynb index 101077ca..18f5c172 100644 --- a/external/harmony_subsetting.ipynb +++ b/external/harmony_subsetting.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "e28107cf", - "metadata": {}, - "source": [ - "# Data Subsetting and Transformation Services in the Cloud\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/07_Harmony_Subsetting.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/07_Harmony_Subsetting.html)" - ] - }, { "cell_type": "markdown", "id": "30d1a698-a68c-4da3-9131-9e37cb3eb719", diff --git a/external/nasa_earthdata_authentication.ipynb b/external/nasa_earthdata_authentication.ipynb index 43dd969f..8991ab85 100644 --- a/external/nasa_earthdata_authentication.ipynb +++ b/external/nasa_earthdata_authentication.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "1e698cbc", - "metadata": {}, - "source": [ - "# Authentication for NASA Earthdata\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/04_NASA_Earthdata_Authentication.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/04_NASA_Earthdata_Authentication.html)" - ] - }, { "cell_type": "markdown", "id": "bright-oregon", diff --git a/external/on-prem_cloud.ipynb b/external/on-prem_cloud.ipynb index d8a8d31c..b6b1500f 100644 --- a/external/on-prem_cloud.ipynb +++ b/external/on-prem_cloud.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "05081917", - "metadata": {}, - "source": [ - "# Pairing Cloud and non-Cloud Data\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/08_On-Prem_Cloud.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/08_On-Prem_Cloud.html)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/external/sentinel-6_opendap_access_gridding.ipynb b/external/sentinel-6_opendap_access_gridding.ipynb index a99b16b5..68e3ae63 100644 --- a/external/sentinel-6_opendap_access_gridding.ipynb +++ b/external/sentinel-6_opendap_access_gridding.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "46151036", - "metadata": {}, - "source": [ - "# Sentinel-6 MF L2 Altimetry Data Access (OPeNDAP) & Gridding\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/06_S6_OPeNDAP_Access_Gridding.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/06_S6_OPeNDAP_Access_Gridding.html)" - ] - }, { "cell_type": "markdown", "id": "applicable-marina", diff --git a/external/xarray.ipynb b/external/xarray.ipynb index 9cc8f423..7f407021 100644 --- a/external/xarray.ipynb +++ b/external/xarray.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "882ca122", - "metadata": {}, - "source": [ - "# Introduction to `xarray`\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook was originally developed for the 2021 Cloud Hackathon, and has been updated with most current approaches.

\n", - "\n", - "> The original source for this document is [https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/03_Xarray.html](https://nasa-openscapes.github.io/2021-Cloud-Hackathon/tutorials/03_Xarray.html)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/external/zarr-eosdis-store.ipynb b/external/zarr-eosdis-store.ipynb index 4a894e5a..4c5b0179 100644 --- a/external/zarr-eosdis-store.ipynb +++ b/external/zarr-eosdis-store.ipynb @@ -1,19 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "368f4f55", - "metadata": {}, - "source": [ - "# Zarr Example\n", - "\n", - "imported on: **2023-05-30**\n", - "\n", - "

This notebook is from NASA's Zarr EOSDIS store notebook

\n", - "\n", - "> The original source for this document is [https://github.com/nasa/zarr-eosdis-store](https://github.com/nasa/zarr-eosdis-store)" - ] - }, { "cell_type": "markdown", "id": "8becc21c-090c-41be-86e9-24d55fd0a913",