From 93d9f5d77a3a1e472caaa64a670ac32024bfdb26 Mon Sep 17 00:00:00 2001 From: kljk345 Date: Tue, 9 Jul 2024 18:31:52 +0100 Subject: [PATCH] Scaled descriptor fix for precomputed descriptor inference --- .../doctrees/environment.pickle | Bin 1096462 -> 1096807 bytes .../notebooks/QSARtuna_Tutorial.doctree | Bin 10429336 -> 10429336 bytes docs/sphinx-builddir/doctrees/optunaz.doctree | Bin 704028 -> 705547 bytes .../html/_modules/optunaz/predict.html | 66 ++++++----- docs/sphinx-builddir/html/genindex.html | 2 + docs/sphinx-builddir/html/objects.inv | Bin 35645 -> 35664 bytes docs/sphinx-builddir/html/optunaz.html | 5 + docs/sphinx-builddir/html/searchindex.js | 2 +- ...drd2_50_precomputed_descriptor_scaled.json | 109 ++++++++++++++++++ optunaz/predict.py | 66 ++++++----- tests/test_precomputed_descriptor.py | 59 +++++++++- 11 files changed, 241 insertions(+), 68 deletions(-) create mode 100644 examples/optimization/regression_drd2_50_precomputed_descriptor_scaled.json diff --git a/docs/sphinx-builddir/doctrees/environment.pickle b/docs/sphinx-builddir/doctrees/environment.pickle index 6866fcda5d5a1391993e50eb0900ab6fb5830f12..faadf3262d91705ba3bf30e4655af4a475563596 100644 GIT binary patch delta 119117 zcmeFacYIYv*C^~h=j^>t`bmWZQs^y}BGMBe^n_5QrU0P?NJ14wAXq@81rKDYAOy=} zqXc<0K1vA|ln5axMNuG#4WtARL8W|a*6cP1-h1Eg`|kbSe{TNB*?U%*HEY(aSyT6_ zKfC{Wt9x1I;Bd8|aQ2-1oF~?<@YkN=#~0*JoHEHBFeEBW8JwEZGc9%P3a?p()27Ux zojY^Z+7^1d3m)?dI3x-Tfc!Bpq}weKb>L#aX?!xqHWmrYb9p_AFJqlSlNI zj?(|H@&6F_3uAiN+O%^QWcG*5N^dXs=`lTF&lmVmJh}%gIN$JD2UOQQzZliIg+duNVw=Z{T?jg0iqQES}0 z#twJi%IfZZZcI8HuJm>yo7L`VnFAr<0KN2de>8G{yL6N{!-607BiRqxY3{d2^>km( z^0F7_edUhL=?$F@Az*(_iX-WftVH*|oMQLx9B=p2`cBTW2N37v@h|TTFGrRFkqi%-!itKlkY=0q%D;`n!)UYT+(< zW3hX}TdUk9CCTphcdd2j{=2FBgK72Mxdl(V-#8NGPF)b-zWg6w_mWNZ+_x7rb;scI zFB==W+pT}Wox8QI+p*8>{&V6p?&Bq??uTdhApF~F(mk!rjVGi{1NQjdx#v zxx4%8`Rm+AUygP^dpXpd{hq(OXsSQrEpgvG{{qS}-CdUN?XI2erdr~6+o)prlx*w=mZ zr*7^)=QMKfpP1<0u{p-AeEOn0W0s$L|GHv#ljQ;Kj1MB+HD?0djuS6=73WoIHuJwy zF-%bxH`n=ZE9hT`d;afI()&9X{x49}%kJT58-Gq@^{KiuHw2*KSVR6_V^MXmx&qwM zZ-k)b)FaEXD)5<)`~SDBj45&L|2GQ#;Opo92iEr>r80l` z-&N|8O(XsX&Gdh+)Zx3j{QpwywYNIC<5sQ1rkwQOZqol76uke{0QdI!zV4!(!G^LY zJsIF0SRVa=CjTI%vu@}AD*eChCYV)QmA-#sqZiKk{ZDnjf8BI<&9`3es-Zv%da(pU&l&~+|ECe z-EUuQMYHiA7rNnY+}Zj5$&-D(7#ZX#}zKa<^OZZulA+7nLj|Dcox?zCHjXy}pG zQhDeh8g}IMU{5Sc&&yy>Y`Bp(mOZhdMqVC!V#AEQ$Ji4aV&px;p4jjrZw-55LyNqP z?1{x~dGE3(7Kr41$evj5nfEz+VlF-JYo!tXXI>@m3`=Boop%wR=B#kcE*L*+?Si$< z^A7Gz{%e*5F`cA9sBLNs-g)BhPbVqwU>6D(;9%pz<3nh?7Nd>G@^We}Zsd4#5U#Y&t9s|q6 z{iQ7Jaan+rqdorPk_xoP`9acj?eVW*mKl-F2$iO4kC(zEEE-R(D~;10e+ri}w8zwX zQo8o|dVT3p?a?>N$ZcV?G*L^v5o7S3(NLPLrT*DSny)=R)kJzydkknMEz%x0HD?;( z1!~EdUGc#Jqv1}6>`+bT<%?paV2Qm4mA@V*jnE$b6Qq&abWFon3meFjq$jn zt$|SQVJ0Xsd$GOrgaq@(N`=@u8p7)xq&`qRQ_t1aQF2M_J*d2OCuxxOxURD_TzkCJ zg)t?BN!^%w=&?Fknx;LbcW3-5^<)p}aqTfTm8l0)L&`7pk|t}Zllo|>LFJeFG6{(+ zufH@#d;E5Ql&?LGNS6w=$CCr4JbDZ%A2EoT+#}nh0&L@nFnI`;re=p$8aO&c+ASR| ze_^O}&CZg8%1cJDY%1&73Yae#3keNu+{WSRD5*^Py8PAA(s2n648{sU|1cHGhM)z` z&6Mg$>@l!>W0sVyJqF}RUA4!|aZ;`Jm^DG_tUYeYWzrK_t4T~j^!V0f=`rmwF;8-9 zk4L9UOSH$S)1^ck$K6t3AY{ytiZq0?Gnp!g*|^!#ZSApOuC!cx^qD8E)gH?pm!8%h zd(M~YX?zP87^3f8D7~Q}%qfz7)gGrmCB3XY)_q2b(a8EPk-pYaW1o}GYL8LROJ8b_ zHa8VtyA&p|_n`90WzszD@!Ae)jrO>1Cu_ z(Bu1`O3!PLgFa_Ppw!#@rDTmP{eU!AOFdr6JS`ziJSgqc9y?S?U2W0>PcoG3{rmgd*(dparr5xJi@l!B;0m(^dVH}~TB$ug ze2v*Vr5?V{WTwaAH`rrJ0y4!IV=DAZ(i~EGpJY%8emTnLUP8*gQ--CdpndN0e%VqE7wcfUOwa2Z#wvE~& zDp`N@bJv{F|_>emNx88F*T%oVyq3#lMs%^*)WQEteSJ40>w4DzPlva{3P}sR6Zt&;nQPf zYa6yKdQ5F=L(^rCfc zU#rWD3vAEUiDbpWSFP|YR>wCMsN>Ip^43dj*XB7JJ|sQF{va(@Y5M+PyPp)&dRFf2 ztSR{ub7$t}kI&62%$b=p9cD=O1`sFN14AAFomDf-Xaq7>4VDnw@qZaP72*1PD|mtzi9rxh1&%;|bZ_ z3XXiFhC`yH214m>xq+{Rbp=F&(uz?p9sKVaDU)Lln)7e&#a|Gqx-oqAT(XoGpPy-cjD9yw? zZd>vwt;9U`zOM8X6?hMdE98z=xkF+huu^UX$yN3`mdqCI!^{>QkRwXoQo^C=pxsvx zF(MWcHezWvtycn}qPHzf)c7N@u;sKI4i&c%obk22p`W#UognTL`7x_HyF%F~@)K6E zddI?y!C0?lHTGzccUCMK0cKtCBvW*ay`=~q7Yh{$2+sOe2`o8n?<1B!7cxJS=Y?5n zIX~94PO>^==>xSt+Z`h15{UU+G`(e39hCiI_t3$LSokZW z#a>qw?@MdtxvtpjgX>FKwdQ^#7Owt))$2b{QA-Bd>IkOsODqIDg*BJ`x4nVL_`J2| z7#J4b^6?f-<01qekTa}hzX8(^$b+o8-;ISe6>_U}H4a~~SPj8dDW|HsPpYm&6RtY| z{X*d|TSuty_4TtdZVtyPk*nH|(+sdQyrg;t=iB7R7 z&CwBR>N`Blb3E)gB#*b2uK;4ItvYbW!=5p^G{whcL1i1@ z@5AzREBafS@D-Vk9%6ZS#KXr&<8y7~yRkI3DutX9Rr)sN8Y6;8HA zinwb)`dZ9(Z5)>}@sOv3D}_s6%j2wN+ybM&ktbMl`Y?`HMMgu9s`xAp8dRaog>@ax z!PU&+FUnC3A03qoth|4K9OgT-kBOe)=Q!{`jC?W@9UVliT-5|G3&UD0oow?Ftp9H) zIW8AkMYYF6MhV*7nH|iLE_Bp$>c#Gi$bSt~hB(Z1ey+Hxn%DUztd9) zos*j~KvSbK50spdM;qCVJ7W=K`x!aIfG9Qc2&*6io5I0vnAKMoP)UVOCBmpk%4%>^ z-Zgizqa+Bf2erGbit#%uk1}}YpEbHPBL1Q&8SIr?vM&?`Dj`txgq7C$qdZ)zTSET^ zQhbz9SoEXZ%wW0oN4byja{EW46D5M*IYHq$OMSe1P9A0us6WYLjhCrE$=TMDKi(Af zHO7*Ecg7Ya7TUL&Q8~Vlc?t)u#iwj$*Fkv)G=m-I@mR?D@@7 z=b`826azB$yv3BapO=Ri5U&ez3*)831v$ZZDYziV2l7ssN_M+3#a&!Obxicr_>QVjyIP$xt`M561 z4;%Dp7v;Xj%PSYpdcV8f{wb5 zB2QakdT}amj6ql*j<2x!3)S36BR?m5!|7VgHtn*du+uKfy{wtF;MijiC|>ZxWx1&p z77Isiq3m&2qmlE9TDh4O)=8AHrNJcNsyxh! zn8FdOKSd_1uF9PZ#OkZ^WaFjVHKRi&{q*Bh#m}P#zq%$z8i-e}$vusij@RXG#!Jz4 zInHWQ!<&#v?YS{CXF5ypy&%sB)Inzzo!6?f(3R&do8(4Vi z|I=>Eeuh*zx8-yz*S(yi`nKG`z;WG?)2uk3a~$lV(2cx~J?5r6vSMIwxg+W4 zsYO=&&4hRhCqys5Y4Z{s$O(={E@2bvD+z7+UD?aZ>?Fs^T80YWb5{;Gay@-l?rue_ z;fQ9@6Hm)Neu9P||DNcTt}q&^k%rdRcf*WQe4*QRTNo_bYE$d3UH6bSwWWowWIVT; zz>eh@pGE{>LotvceyhbU*6mit7=p)0ieRufE6@7>Vo6D|mdC-9i{3;#jy@y%ue*%? zAbkgFGRmfS8QkJ+irLA{wJAcq`EeemiaVFtLV^UHFspHKv}`wKg%OY7iGnd)=!oG$ z_8(Y7MgO+>iZMf2QzO`HEYxl|Wd4G|8dCT{>3gjt?4y{TaHWqj$(rR_&b78ZiWB9l2>m&5Sn&Xat@Krd zHvY0k=c^=J*}cM(b>;g)aV3UfcPngurXw%)Q}js%GK<$ZP5pIPYKqj6Cc>k1+5Ud+9twreVv{`;sR)(#F-IsIg2boqVdd3S+rk9J@6p)% zDq&DlWphEq1ZRX{GV5H*2&)DTact9M^l^tb#2mFbO*IS(6rIm;PH1`vA}l**lLcwM z<7mbGP+oL&?W}qK$YF&+q7HuM$=I)iLfN<2e!6{YQ%ykvgB5ekm>H~?z59+}rJYgG zOTkKK<0Ub~LbD)5Y*=?R5u?y- zC!75V@w@Yb$7sikqpkiJvyBW>gbq81!wSPh_fl6&K8Kp2VOD?1sn1T4ZPw!mrMpnu zk#!VvI6bD0SbNPlqFH-cOCIFkTWb86IWi1bc+P4Q!|E#fN(5!!rWu>D4(DUzvT&T2 z>3hM~GArP9HZMm=UlSiE0pgd&V&`dfrO9Dy3x z{i`k5w41K=L}3SM!gi{!)Q3&KSvp;)uBW6}YxGgh89UlgSp6F|sTMOtmpY0gkjWCl z+x3+YD~GW#s;<%uYU?Y3)_5V?R9G{i*^Gyab(N+JKLCm&71hwd#z>3SY9lRL>lY=e zqX70b!;XJjloD(mH_U8?{q_d5 zHd4Z@V!pv)IF@Q`O@50fC&VMk^NkdLs|4?I3Epm`w6xmCwq|UeKODYqjMLt(#+K+U zrm@ANO>b<`<;RUJ4aU|)5vKTdH-n5l$S|WR&P>((Y4bKKWK9#LpHrbvLiZ#D)fvqm{u2r?CS}I+ws=dw8JGT;><~=T5b}L0+ge9+PgEeu;5{=d? zqHt#Jgel`^3xhtnIko7|S}EqVS#2vtp9Ur#K2Q{k&MO_4^o@egkF_-Py|JbiO5()Q z)!_n!$0>o44_fOtq=6N2=>4u*m$B1Y0~166x&7}D```XI5A!c zv9^{Lyu{1nEv31`=rLB0M@L`gRe#p_ z$+^>WCgtYGPtTc>Z({pD}E|{>E^)qW%7)N`pO@AthtMx@|SKu6`uRTh4 z4zw@5fEVa)TScGGsD#z+&_c%gs4j5%*#qDuKYO6AH=>!tb@Ns`rM)ISCC}r@_u47K zmWla1dE>)Ma~Rb;z{g6m(15kECNJj6-}>nyxY`@hCS~;uN62WeL~6A|$xC@*7PeOs zwc4TN=bN(#Ef#)lZ>XEnSHhj{N<5T?+JlUx69N=N{~k&l0|Y~1kUdf;y&EbXQKo85 zxDvK?z~O#CE}GEl6eXBwN;+USe(@i>F#}9YUxFDa=#6j)<$~loxB}1E3qz<%$Yyf~ z6ddEu6xBq7yC+Sv!cMIIv(=v;Aq8BI-{|5Juv$Li z8{u4l_j@S02F{wEC<{)c=<|DoQ_BUQW|H059(})v*IC|4P}LY)XJV?T_CJZ*Y!-yH zB2^K*&R@(c*MmK&N<*urZnM@92L-(pk1ZVcn!}hKIA=Mgmk~Qu!qr|VJWkq1LSZk( z4+`HB4Mc{0eX+HprZt4UZ;6sRA!#_40(0{RCSVKgNVJP_O!`FE zU_Ef9+;g=8lyGz9bRMbx z*2+k>jc{ayGQp_Nts}8Mrwv8J%NnWZYj1@3IxoZ*BaPvFC9D~R*muxbGJ%@GyirP! zRX6W&64&48NXoj~li;EU!d8xeU4uT{u7s_lktg;A`sjr+-^qJ`!X9>i7_(GV-Ur|u zqX;`c|D#oO!5Gos?}FW9jH!0wyO#^Vt!Ao{23zMS!Pc^ca~M@>?Np@;q~|CuD*~>>GEu1c z5JK5hF?U>lB@IkfvJLmMZyFX`*H;f&4nG+hl0-O@C>xi^vOt_w6MR0^%KCc`U*%40_HN@t*~ zMKhSo{+4YHO~;{6=~R27fBeLmPZ)Djm5?+O@iOKpjiGpsBLt?;z%HcjOeM%*RLl@C zG{sJ8n!W!0@x}mNXj~U2he)~jK(_*qLJ#C<0ke$7U@FI8$egA0v-ZcsTCy#`F;H7* zA0Slc2#BApJZUX5E=eSJLIrJino*7-2xndYJ zfzwTytIRf(QTQ0r-JNThy{KX-7}3^;iUk;bmKHgD?$;5nYBNEx@QtD7F^>SMkOLE6 zLj_`?n?d0+u`8PeFV9o@S_?iGuFO-WS+(|fOW5%VYR&aH2J?g9!CMJM^RbLA-_U{6=Zi7%vz+?n`N~W~QLj9SBymrQ zo^Lrv#8qR;rm4r=&DaG2D zXD`K>&4j1z4aDuyFSj(eN8`z&I#Bwoy&v3LDC!0m`#p^8S$ls-e8%n+th1D(p^nFy zN+{CxhMb3*z3Cm6j)TDZkhK&KiCigCRBP?Nt>yS8mJl?w5lJ$u(>8oQV_7 z-7S?ROOy=%*)yl)Of!Z@khuhk~IKu#Amvp=6m-7fP3iJ?9S`sSI10 z4)=l+t39Sb&u}c<=t1RRlAJwOfC6I?R74OTg>Vx@gh zN{_(<1rg&6puXZs&Lfd0V>8qwuUV})Vg5#sdTGPa(1*L2%A?>;u@Y!lf5950F3#0q zW7jA?2JG+}Wr&|34J5pP=q4*f_kx%g#Gtzy%aD|9?D!ygyK_OX;^JYITT#Sim{bnM zhWzmT8t7vH^@Vie*qL2w3HE9se=a(G$*8B*E&>Lw^ICv z7Q|9Fm|`zbmm>jTAWaoa`w;MRf$ zCUR6fcH#vG-nIvY>6h~gSX0TTw|HhKwsqiR>-fEe^m0rf=gmN8LvE8E^S<0!=@e#G>BHDIFPWFq3)g$j;I>UW7 zEOSz089T?!PL2n~Pb+v#C_8SOF=RB*pm3*MG3)B^dd!NtGdvL8!dgPyM#HFSKO9bX z1_H8BVBo(!CY^Cd4MR)ZATC1TW*VYq^R&h9+dbAJ-fE>E@e`&N-{nNun6UWll=1RcwFm5TA*L5_e;O5dwX zE%h)saDmgkz@w>%f!q65XV{LTFY6N2rp zBFE%cmC4qU{K{F7;hQ%BEZAi?4uz567r5XiM$~SPfc+9@L>-)tR^K$t#Md!%3^8zC zVIQveTlcV22G@z)?06a0{X>>Nc_#V@HIQ8_AWQ<=;K-Y3zBstbwU$!m$=D6)8;>bd zCr>uDjO?NUdI%=s!*Qr>7gXAfvn7=vF}KINr8jU?3fsaRJ9Aw1U z;`QB3l@R|HrZDv(iN1FZXE0f+=|AzrY2Evl_L_1LNxOvLxwO~9QU<&u!56Bl?dHKi zQbla65j@d73WVbe`EQFcMgr%Akw|O5A%g}R$9*uodj|!@^hd0EZ^zNG`Ctd}jeVdH zPo!`l4*$_8YV0@}{~iAGf7jT6LxT0>SefrC(~V9)XAAPf(X}u~nZ^;RO=2M%Ld_?l zPsrd1)oD1$!9_kQW<$}@Z`z8CJrI!117`Gxb7t6K<4~oytK;QyP)oZEVifjaADRppyJ84a&KWWSG#r)B?EqO1t-a0F_fc*{nVN8yUz z#~g7Q6rJ-0oGK_t$MfW39m64pLXt5QZ_`6T)CUN`r5&8Y`Q084t`Eeq@_%^Ne}9Ow zO}}I}Ht^#%Ax4PXO6$W*ABZ)(*C=Lvelthy2TGLD_7<=(2+JxgTU9XG9ko~O z^8LZfQO=aYNCVBYn5#e3i-{;gF>4rvimBfu;u}0EXZmz;ynD(hZDT{;!vFAcwzSsB zIgZGNB_)GxG53pmg$l%A4`^=JI5m%#Z`vEd-ka9;cKaioAYb$m9w)o-3?w6fF%&xVTY8H@q;Ec!vSO6a^B zmBP9-Wa$S5!^MdwT*%lhuIb?#2ID~%jF*zs!8_PIJCHE#){Jb218;h{i}6Fsu%YG{ z5mxU}(t?C8gUwLj`UPW5y(lrR-Xl&T;rhi1v@GO`jzRJ9VXjSR|E)L&TmeDPqGQ47 zcRki@aOr_%6my89b%5$qc897TnzBM$fq#QxD*VxC4H#`2c-{8PZf$Yi*u>|!r0?XDxJ%d$wT2a zHcmz@?Av&pBhaiw%uQSp!`y>lcc6#$;7SJ*QjdtZ6fic(5h9cY*E<**o@3JYPLmW* zv1^d- z6(h+o$3U}Ei`h+Z`l@6gyV3{UNKZ$Yi4ky+@jrsw3NSq|V1|)1b5FQf!5HI8y$kS) zpVUC>(2ybEF~k$NgCO}FZd$1RQPB@oSHdFZXwci}$NWekxDvtG;leS=*%7L%6y-ji z+c{Q1m7?F8fExy?kR2{bH-wmPdqlJ-YVQ^i6 z<%U%v%+TO9E20qWTBHZKXFL(f@X$SLc`!WBJa7qtA>rzh3r}=7Izi!i|?CeHnf;xMcS@W3?yhG+IZ*{vL@ zo?>5yeaDo!MrgC|I94i^fo^ds9^(kQKYqa3ea4tfm|ymE0&O+%gd$u0IG(;dA+CSp zH2Y)w)a5YKdtoJpF{}q|FscWECvgXc zUq_GLDN4(Lb+M?w=D`zk3ulYNuLc~2`s$cY4&zJ*3D_8<8>p0+E{;01y~C)z*DG~q9*HUaX(!fSbW;D{Uhy+u1r!i_4jNm zhqWp@a88rXSoWa>)F2(XYNQLke*o2u)9_d>#nD_4yE_M>59v#e_CBwd&JoCa;MH_} zOHw_Y#~_Y?&I9j=Om)P2n%GbdH(L;L=|G-YbcLsW#9~l$Fc8RfTZ=!I^CE|;V+m1H zHX-1q9^ALf?v-PXT+AlU?<#Ps(l(-fW$?lc>0&3+nB#vXvPXFmBph0V0c zh*=~*z^Tj;rF?*EpU0V?v!$F`LD><-_r9zaaxAR8EUTD{c`~}%G1lZ~crsN~^=Mlx zY;WqYESMJmhKkWMZ1(`ESHhYLN+w-<=UK>t zAH9iXXl`a%{5x{Ru3M{GM&c>Q8=Nm0Ywc)9KiHn&5!t-UB+Y~e`{Zq$+%#3ZwXl!S zT>fnl9DzOW_v_^xgGx^(idP$kK;pNGY^9~uvp2U^XTwD<-BQ9 z81I*iyw6+j=Li%&B9mqiy~H8z5Cq$Jq$==A(E-=s&Qhw5~8mmjCvO$bWL`M`%S)woa+zR zfOndUqx)n1{3Lnyvm8c!TJd!(;{5R*>q0*Y66g~y(( z1#-d+S*2JMdx5!*u##KiTw4f-lX>$yAa5zrRt9xA0(vL?j=f4)^%sglCYSw}(#(pD z2NYR$RL6MPWV0Y)w;vk;;3aDe17maHrd+&UjV0q;XFW)q>!^2sciEI<(2N+e#tSw) z_xRzZYskY~6Jg`hlE)n$brG9jY&cTc4V;AHA1}_nbi1t#^)@#Zz$^G3ATGeR?}|saGI+Aydcz@k5jwNm--!!vLpT=QShMLg#$1H;w@vk>>(17- z&~A;w>&01K!wDU`{-K7W^^^QVXi1xSE{b3CTmA0rIGS{vVQ^-nOYL@0X}C%x|5 zDZapi1zy1#1NR)Nw{?SEk=5RH3@2pDs(wF5B^;8mH013|WwoibK`-Iup!uJg<&OH| z6w@;8Hd+ROZYw-yLsoEFsw%=bRPN&??hskcQK(Tfl)CZ5Q`6H^x~C2vA{guo91r8` zdQiQ}(G)&jcHd$HZw;!dU#)|F%4w;^AWpc@DQ-5~%sK1UtYM|C@hHpd91W+HNdTO- zFA@i?Z*m0cacY*KKfvp9)%&(izQg>rejN|l^G;4j3a<6SeFiO-d8{RW05iN*{ThnO z5+5uRUvw$JMVCw7s;{-ac5!wQK58SY5$sLi*L32caQ!CTO8goP9^c#Mqjs`ley(BS z34YouhhGeM-Lu-i6fPSMQ6r&ZBhG>dHTG44<+k@24To>GzsH=fnZ?)*4)NU6Ifj8-rd%p+&k9h5;o>h4=u(CL@4O|$RW4NsoGx-0 znHCl2z($9!8OCi2#IhC#sSm@HO^yITxz{))_i{{&R{~Z2u2izV8yvxOmZZsa>tiqam!0+Q_<> zvtc53q_meaWjSs`T>h5BOKfdT5@EpixQm(&X0ETJhFSSF=fdLRr3(<|4HxUELXe1` zt-$(VS2BA+aeH=L;~ht+=&12J^SY|J`QmC_EFfQ_c*oI5u(`IJnNPSVM0Abg=5^>FLR8r?!)>H=-D^Dx8P}#ITnT930oZEM-6%;LW9ro zV8W&?4smy8FIXI*#u*iHH3Dn-s|YpP>I(-X@>8>ATOCotmhgdz+NTogtI;kGaR$TY zx@r^1uCGP~^~*>VWgW(4&8V-&2lmSlVIvHfY3irzqn-(S$Z!!mlVj8Vzw?o*d7(G8 zgPcVEnGf8YjsZ}l8Xh`%%B0lAfRF2jaKz5d%l4gG1%*MiBa`?UWnjnNNJ*m!1FO`L_NOf zM9E8ZKKzQ77$~|Y;RmbMd&xolh72_J#u4r^&Vnw=N{nacqstv~u&!@HSwZZeMFTPO z)tr(px)~C1T_XE*O*8|9LcI?i#;v0SeUa-19iO%28hj~*i5g#EJ6%JdQ zsVy}x_YEX9$2LUGJ);Fi12q+99PtelF(9of$AC&-t@8p`a}}?~Xl{he#QG#R3W1N} zKWlc*Y@;*&2I5*EH@sTV3kqHmxMh6eFzz?ROc|QaN#B4=xt!y<;5MWHC~T&Bh0e^K zUNAQo?-H9hWuDQjz^^6N1nNK^wGi!jt{S`;Dxl;uM?;~}TufwvX*ByPA6|a`nWK?u z716Cw7@WoPg6~_Z`o4T(c#R9wp_LI+K({ zVC?43yRV>bVq#T&{}U14Hd*3hXrO^;WDt-vr7sPD?BJi@hfY74)|t1c^1eGP~;+FBEUzQ7#A z1;|WL^`pgazHd z<6%gwb~ud*xf77sTAk@XbZ}quoC{L4Mhcx#cShkCJUnHR<3Lg<7D`UlxIcT-cKG*NYi_3S$&rTYN$fCQm-{5|5Fb2M&e2VB{%BXCu5N z=on26?bURv)nrjJ&Ruzd|420niqAQGA^fD}`&C3ej#HZjE99Sw&kwJOAYcgmeKo+x zB6Iz27E-)i|7VABmg@wpVnDp^q8HTs=#cS5PlmB2l$fvP%*_gPU2r79&_3~!%znBRjVi8gaQ-KzXx+69NVXn3!Sto)#U4`ZNCJl@nwm8n-GBKSaQ4^@xz z2g&;z$zG#4z2M$e9E}wA7R&nyM?eYnZ}*&lf)havbDcqMFZ1Nt7glKx#@_9ZaDL9)!TVaN1@p(kD-r`x$8)<7)FD1 z#v@JDj{}{6l`IAG!QuwuHlw0+u_<5U3~|;m05ZDC7=zt)Bzg}rd#Zwg>J-QtD2j25 zQ(?0l7&@YN_kjaF`j~$>9NT*8x_4!(cRHNGOlOeVyTpcH>Cl3FQi%kc2czR4r?PO8 z+8N>piS5(D5s-L@p|hmH$j&6`>X2P}6ng?TFd!-;6^aL|`mQC)%a5_r*E=c2#hIha z?HxKet9MFTn%P^k#hYLbXWRmZ3>Ted7=w)o?2#oVhZ`(240#iWF_DaZpD7zw4^z#{ z0Z5o=PKoLpY*0oIM@n@1sZimEUtaPZE_Q=WI0^ZLVn4ZKox!QS2d54hVjk8c&doVm z;aJYc2mHSEw^q-ZM==+yR?5W(s*d`bCs~O>JZFH7KNV^pRrOoa36{iQqk;$b?b%yw zn{7D}GY5FtU$BSlk*4d^mjj4dM^1xVFjHagNMkO5U|lRi#0AUNKIYUYEC4RzdO^)J zv>}8BL)9o_(wWG6aB@;6B8c5l}P)-paOLiAix;rQ2GE)g$L?V888?Q zjuGAHK#lDnM2M;@o8SE;a-1q-wvW{^*4o-}l57;_hWHUeQyIb0Q8$7OkLJl_qZxyH z8Eu%^ZzhM8<*0ba;6;C5i_b{NHmjfuL}ZH{!~_fBn0m66FggcyO&oXEmyOM#RG>Uf zLKZqvV=j!49r&d%f7P#d-}JtQXy8AN^Uyy?bpjT$6dwLgP`ir#$}G+ntuOt*Fz~q? zL+|xcA$z=Nq>pn1YAD&w%jZ7i}-mSXg^t|Gu1&dtb0xzVQd zosFc2XL$`)=c@ILmOOnTBAWS+nkcs9QB!L;itZZC5G`Xe=1%P&DUI_^#1=S>uDf1P*g`gL0wauhk1 z;L*#z!twNQI|;BLp|IN-;3rC1N_cvw-I)p#)NAmlbi+WH?Y<_;H9}|$|KdPYd^#*w zTvlgRF%^r7wxS=Lp(1SI_~checUKfwprtkJo+i{zg6i_NK)X&ysP10$YdMMU`^+

0Pu4r!QkljW$cE}UkJ)Dp#tlJFLgY7<+ zseXo?@IT}D=!hm623J#v>@n*xa5^f$!=G1j{J#rT{oE_DIb_JIU#CdP)hu~bFb*5~ ziXQ$Oj!z!`+4eV8@!48cdcm>rQR%6|L6fF|IixF zzJ~Ku1zqHZu&|Sdr#ZuU;~FT=S#u6;s{3=@h`*I==?E3!ZYeU|`H z*K5OWNehSF7>_Yv2k6*GHWn8MC5lPd)oKk5h-b-@s=kGr@EXG_3z0s%AAY2`W)a?( za3;oOon}j3piYLk1!8Z3mqxM5!tNv;Y8Q#HI1WSCi09Y($}JezK$un}VkL4cvyo&k z6eqsgFuA5!P3vJJ)8-J9u8Zp_T89T<)i<2dq9U|E60K&yeW;6-z4^&Hv9uP2gk_9=>`JK<2jiQsc5Y1FWSWXHf$*vzm>biOM$Yn zvT+=o7%b!r@FP*U=#eD{LPDm8r&-J~@QalCW$Q%v46IyctOrxdQjt}|pmdyYHmZz8 zG|!6|##KT@zET4|uj(H*r{v-`{Nt)|v(Th}d)`Oo6@W~SFzZqJ| zD%EM_v%L*;ZKTHFJ_^;J3y`&1HNVzQeBNurjz`8BU=_BlGI~?Oc;B-W$V3gAm76<3 zuSP=qkfY(|7aZlZ#5IHD)oPqonvdJCo8!6qg3`=S&=B>WHgI@@F2m($M37ZnrS$;(I$!r9TQNkWhYjK*dDki~z%Riw1M14Ger6s|dwuWcUkW@?#tD`w9Dyv2UPBB3M6eK)|1Q z4j3dwGFW5i*2AT5j3R{JVEbCNgSPrlDZlIO5Gr2AYCp41H60WoTy6uaKSW5y6F9+x z-~gyv=F(?t3F9jKYn?h!>xwDm50FY!{acxoauWuYsJ*p*wyFehU)7f%pp=Ov*o5ai z>#AcVzXLL;`qegvn72rUL14_i5<@#)i=_^*QYkEjPTzXr4M)g(;T+jGg-$eH90M;} z#gCzXg!;>P42P+Rro!qMjr~xBioxECMhQrSK5*|vBOoN4AQ<$Lu^>e$p*#Z&`ySRB z9Fg{K2jw5I+MI_UCihuJ9*x}~ zxiPE`yzg(l>TOj)W0rp>C|$4W*UeRdi+v;lmz43=&d243LF1<6&l1{5OD;1-to1VIAE!GaBHsx_NLsM=seiGNPHNa@n zQEy?r;!+3>?%!6Ml)R-1u5cx1P}En0!?d?lmqB|PY0XwZ9-7H0ZEi8`3FAw6k=DZ+b6*}Rvb=a{)x@CXeE(q_fw#M!m-0<>}T$iEv!S44} zb6%7X--WVw)!tgY9A=$GPCHN1>~(S-Beo};36Q(gttDVau(7F^7#t%8y7Ho+rp(x7NbqlY2H3wfD|yYb z$U!wW2}bWQ29%VN2YYs?`j_mhV9k42N*t>Sk;qS+C2lUj&55t!^&Lg8ptW6jPxLdt zYFNhR7>0U(E4skZXntzhYq)s5uv9htAhQ#!vWRo6CK%d%;3<5DfG-eD}Vp zUqD_3J3hc}aO4N-AgepHQLLhGvZ{hb<%ra(TurkgIorYddDsPPDmMngB$ZD)=rR<0 zw@q^}`@`EYOx;t?#&jQw*6+`pZ~|m}q(&GPMm0JeR()u!Z&OMkT=`J!e(K;Ye3!7r z;K^A0Ea%&DTfuEa;JLr6*e_+RW8vLLYQ6BnoS8XzQFQK1G3<$K2hvr%=MdvS{cAZ? zgqU`)ZJYWCe)d5%7cWSZSy26v5phz=Tow|>a|ed_`X{pR`mm4D63~qGNjc&ii~GuQ zF-IIFMltqIh}dOpP9=;4NZO_Lu)5yXP_#=_eYExxfD?9Hsh8^Aip@%f+Z2=nbhzMOY zyor@KwxbAUADT8<_wazSPeYr~aUM|iL1q&=#{0@es|guN|%Pq(pFNo{ojPv2+&0j<*{A;CiqtY z{7@d-q;EpKQ;m#?HQUQ>LOXas*^X@!y4C~AcFSV@>vsF538u*`wwKi;-tPfrn?p_L z)!v3!M9bEYOsH=k5z3Zfbm*eBd96IaY{^0gug&Y|0cDE`CN#wZ%GL=?=l~BWoAEcH zk1^;X-cm_wHlJ;RKky)CbD<{mXA?@kgH7+5(4l>e5)+h7I+)Pj{Y+>h7QnI4(F8}J z@6a3wcT2GS6E#bk3jv?1anfVZDnc0$1PpELYbADGjlxNkh2^UCoj!=AWNSigcOs3pLMoy z^f3im0g0cf;nEAx?=$ro=^z~bOg-W}i1H#!fVVzZqcHJ{&()szR9}F@e6ez{`~fZ+6RAUU(lMw#fGmzdhf1}JPL%SG6MNW7HH9bOc{*?g z!-Yz<8zQ#+O3lEZ`Cq96IXDc~e2Zr-e)&pG#q`*NYB~cSRAceyt%GWF{5f(^O~N1h zAuQoB=yOQzhd=H^>Ja?-^^iK2Gm3!CRn7>QP^G5vgm7qZ)ESQV(Gbh%!|DvgUvpR; zgFlxKt3#j zwVH!J?yspJKYfk5I|j+$sL$fh{%=sP#~|#eItqVg995sjpBqO>fS$+Hk@&Xpm|BEC z(Z|)k_%r3WIuw8Q99Oeh;t6#y{>(gqm2?cMPpC`q=h1J~W%zUUTXhhZ_;n`n>#*ZA zN?hUe^2Gz9ULhoQ@pot+#~}2ix)gt2IZ0xlIZ0y2eowp?eNWY}_j^*J_Ydkg#GL*E zm1WNl1iSkK!TO#e*p^cyjQ44(=OL#_>u;VWEjrF%TRH|4&XDw}96hJb#Gl?jsZZd~ zCqJo=<4@N_peyP)UV#IcJow?T3m7Wa{(@`k z_pYdkh>=)JYFSpRj>or4wN!lxSE>4*ysCCqj$F3ewY6pBjpBchLRiDlo{=cda(Hp zuK25eVhf~%y0G|BXI+?y35ZznC%Ps|N0%@RT|)9rwJWACx``H64X19R?y8~NEn@!U zEp-@24u_&lY{s>>u=Q6%yT8;SI+GMHWU~1$G|Xza@E4Ia`y0JoH5B}frK^U$f2%$4 z$NmpCz-k!$57tpNy!{X5`rAKRk@M!U>cHEd6lW})`G*ZY(ww1)_{?p!JN|reTTLU~ zgL5kDuL{jX(Kz=VbgjVRz=?Pj`p2AO5U#5Xw0Rq4boUy)bdP z>>PwYr)1|y{AsVy+cL#Dh8Oo3lL8%&9gCZszy_ z7HaOQvAERg41_ISq?^4?XMe=^@p3ZVkMkmd_jx(HNk>8Qc8+l# zvxD?C?DclGaDL5U>!H@$nIav5);`YB0Y`Y^<}{|B6^S5)JMm1Ak23%f4*NKVs|;a< zcXv4SIS!4ZleyF7*u#^8p`8#LeTd}`$1OCJX z&`)K6^9_6}bUANu)=h>$w?JnTSQF@+z*B+;!`VQz#eg8^P(+;&fS2pPh43x-!_)sC zw$3}CtLp#%k%N2RY!Ek!ngSvq;uaO$3viDdh=>Zx5X70HnOTlp=_|7wm6?^JX|~jC zk+~|fEK^%%<*KaA(%Z z$_c=q>s#W}iJq%tJ^YZ%yd(^{3V@es{t*KwgTDUv1luwe>^ePM*i6zW4*vXBb!<;^G|Rr zH|#?+HI|#%A^I@Z8pS`2o3R^*Xh}1xjDI|F);j*#632ysWR^wtTNiIdQm=R`&jGz@ z708$ICZV1Q#;=PB)^QHEueo)If0ib4F&!eSh4pb&6U%VwaD*!?Dao4aQ%)}=S?!wQ zM3zV87bFuk6AFu_l@?^pjxR2m)~KX(Tv1l`WM1p>mO?qrdBko=ty@~PIqZOzRu5n2 zB$&>8?o)^MwzQhD@MBABfCxhy)8#LH>eJ{}R#O%pXvLLPPG7a+o?A|Ft*s3HncLd@ zb+k3N^Ky!4!~L(Ea@$z_B#M}5O8Lk|_bE7V&9vw}ot?y`! z=D+^x$UTt@zY`B=<@9JLQ))kTGU3{HwuVazsYoG}zg>H`>qLBt)x>1xT4!rAhs;Xh zF}$2UNU^%|k6$VeyX7=A)#}bakEQY$UQXYq@+ekLO}bbq{4=qO)s26i?_%JkEsV!YiEI)MR=3Gw6-K?SF#x%Gw%_*+P-j+X&>28G?H@@m-^=I2=-A(4ox^oXG zr?2I&gdQg2_w?W~ubfWyu-Z$_uRwGwXnsE{nwIo*Drb04tFOpwA+M#ZG%LEMtOcAs zBU5#cKz)R^uu9c?S#>1LM$nCPpdHuuu|8Ii@ojQ1lbv0?OriYK%hX1<-d2X>Y6rsX zXiR7C;YPr@3UPK%O)|S7?ruz12U<}S`Hyd9+WwDkIA^0?AD%?YX-ppz>GnRR#%}a+ zi|QSOd#5pF&6Y^{=CeK)zp8UwF5Wy~qJ9r1@6psQoP(8pEPr456iYe%)YlYZhkmA^ zPw!_c@y&jwX?W61Sq@7xsZ*MjCYksSk$u;g4wOoI{#YV-O!n_eHyJKSx4Me$udw~K zF&!Vld8$}RloP+N84Wc(!(?W2hBcD^`ZvSMd6(TGsXf zruEz$V0`O4&>A5Lg*D-X!kSQG7fxvZ5X+*-K~`ns)Q*Xy*o-wF4>m0-YKS#~;X^}=7vBvruJssd^%E~TBFc_U$Y-Hj zG{%*pTfTe;&P1n>ei>?Ia~v7NtQ=`cJrJq~9UH;5qxS2DTUFW0cep8%iNmdQF&+rx zfwU^eHNG;OR}RBQF8o)u(QY$Xgk%;qkpb=4XseEv+_R%m z((A^UR+K)*8qVRijWMwVX7VbeoMvU3k>rO=o^-hpj5R~S^JA?XDaOr+dUF#R(2>WW z&6&Ic8Ixs7BPWX|Kh8sz8BqMjnX;KY&dQUVzk+al|IZjJhKjPSVA?s(s$-XAXHCf| z#%SCz+tlUqY}58mW?Q2ry#ok$z^OLQ3coD?q0PdsoR*KbdWzi#u=~LAi~GDEt?;qx znMM|!!|T0rTAX9X*mF51N1Z2_R=RA0argKHlX`=RrmfGNXiUDEXv(_9B-6Z>PZG~2 znJFeX*9<0ubFDPV-#LI!C=WW*EC`&0h=59Mh`MWNulZnLo=5O=KZOR;oDC3y$=PqKw|$ z0pBjn(B_Rb zO^Bu(jN@!S-2|97-2^x=-HglsPB#VEZiew`&J42-d3^?-+LV*eOj8@_Gfi)MY^H(V z%{0NA%yI{&{YY7AXyEj)R)6&T?C(NF%o*(_5*_G}a5(Aj31-8S3mD?T4Z z97j!odc{Fe^#f&I?lZ@@w``6{`{*1q_Xpo&W{>{zv+^F(6HeS?nq=5qQ`8xAt?p9B zSCGOLO2PW)p?SQDK04Pdk-nMh&L@Au;?F3`O67dGCRM9umGXUa<-A7FaA2(g zU7g44hm?4J51$Fx1Y(nDX_Ec!wLFwj3E#~$Vl#-%qWNAd&b<*oUSNfC9-G{2b)q00&O95rwqlGb4l#&CkM(jVAK8FloyrFoGlBbsryoxYr7n z{B?rXY28A1>`%qtsnIlGsB61oq2(tz=mxD@G?p<=JYO%gJQ7b&Xg%rbLNm-gc%PL@ zaTeZzXgo-RniegMls$-&K>dOH)4BWHW-0S#Dc zjR-Z4+y{UI7eHI&FM%Ha*0o*&aS43t>u;==11#s_zs^%~N{veXw0xOWO%hxQZ6&2X zVzs6n5Ag}n#N}39-pMop*Faputti=c0=g!#5_%mB*6~$duh0?n%lfK8qOXU(o;I&{ zbZ4b)B7Y3pW6^Y^l2_#Q#p6xTHbt+S>Pi7Cta>6n0qKcoN?66(*cDcoq_h=yD+(@w zcCX~2_4O52h=h0s(ldNc`I8m1Zlx6?^f}PyqRD5q4azTGU1?R7xOPI?Nefo;EM{DN z0pNvb+TGBx4PM0^%}6gpdYL=yT6U-ZDyyMHu?Kh$&0S?p7Q5F0UgtU(BX*J0akUjK z#&1D;i;7lTB?9&X?59hstr-Fi0vtqB8X(cV5AZ&ZQ0KWyIoU|+|F4CI#*9yA=XzUXu z&7T2&j;7Ot*lpLmjW~D_+C`K_u7E25SJ0R zGbhMtKG&gNkEX(HTvL}HwSpw(e}Vs%CQHY5ayC*nSan6a1??6O`=RW!tJS6@J*ql^ z?~GxCJ7c7~y9Vx!cBU|^z=EF{I=+rm?Yx1PN`+Nyyhp;Q7F2FlTh@yjNbpz6zz>=q z?R=gaNb@InLx3Od)XWA#42+@7N$lDF&Ab)Qsvk|+XyK_#6L$zqLSpElHvelEM->#*0X(kuj7$;WjTSdQu}8G~ydctv1wu6L+%to86(I38W@56civ~+lxyvz%en> z<~YH&bZaA@MIh%qA6(gDaZ+^mx7TgNB zRfV_wCC)F+J%}bRZK1a1SDRzZ82h9ZCxJQucZiVzb^lWpy`>X`PRLrCSf&D`x`p`^ zkC}C!vVy9`XH6-Z#GeB+iFAWaw-__56313kg7yUN8ADkuP!Q_h zkTD+zFb=+U5Re0qV;p_xnF>cI0Z(!qWg%SLnG8JH@se?<`-Mdlc>&Y{FK4OKcFQ9n zr$U?R?dOBrdA(@DO@lTKUbdyLw_5?SbeI8(11}vq$kO4=vld>bU;@pCJe%KR7Rwc7 z)(WgPa@Dy|=Q=&yRTCuQ`Ot9Sh%+VPjOVNt;>$va3u)PN?qGU9!2Mi6y(J?L;_nBY zBH$$XONRAqk6Yl&pf1C(lP>YC09b*%wWf_PSa>SlxW5{Fbqv)%%`Jh2K+4=@;eJ}9 z@(bm8hmlVO(l~QGGPZVm-D5kg3AB8t6)3T9fZYa4+-Z%X4c#j7n;A^-jldgYC=LUo z8+l_1vIW`}3G&M>cldb<^r?yjThQ3u?(nb;+BRn>+`QXuO3wm6OILPV`BE}F0CrRi z=e4~@uiX%LJ0rPq=~z_7fcz5Fmz+XPf6=NXzP<|ls%f12U$1DKdx7^lm3!qy%Nc9l z1b&lS1m^y+FY&3kDU5x<`!Fy~74QzgI~4b_HC-Hk58%CufbA)5pWEj@g!W+!&0EDq z$xg)6@>eWhiRchCzCg2^>&Hl6_pxn>@(83OJcO-wgT1-moimR^JI?hwSo~~H$p_r! z$!E|$i=hKqu2!_iswQ!sgm#j<5GF&DUi)|4rQ<1Rr?~#G0Oq{6r#IiRf+gH(Xs5m7 z?0C>!RiA}+mO}PgQ^oi@fbU}HvO3-&o4+7sO7cf&KYEu_`!oC@0;64kc7X?s?yduu zUUx^0U!nc#T^Pw@tpK;nT!wmCW@^q=sCTRR4cc!pW_isOU5_Haub3vTLA>US@bX7Z280_A8smO|kewsV=m-O)36m4l=eUFODJ)a`C_Qj+MUcda=B;sN4O3eGw`5rE&B`JR;_ z7A*nzF_W|0Jvn<})I7Ojpl$=P4K+{^D9K(hk0+HqA8AqHd1nF zq>Ue2miRCR(imiLiTIEOkkyp(Z*q~b@i3XA#{=WQbMzug{nYBLE;OMz_g3cD*_bR$ zgxy4MH!!rgPUb<)CU_jEhL9gm8@i)jC67QZJC*&g|# zI~kNfD&hFnaF6A3spW>54q-YPV<$Q`(+*wtsny8UW@Te}yBFHMwEGjQOu!<5Mb!RNYngxt03JY63k56%SW5HJ z%GuxAwCgi>@8BUw4Y;Q_g*Q8sTxcODkSNLXq6Y=vfc)p_7I0n1Ebccjp zFxb^pPCd+W^42L!2l*GFzSxxCUBk_S1wAQy1;Q(iYi_XW&gV`{%CEuVHMfOg$BV-^ z5U<{V_6Bbo^2U#>a9MM|N^e5H4U4xqV>nrHcRXZh*Lp_p&dq-YE3MKQ|@Ui zR9fOONXO82y3p9umhCB-R61e86ojOX-&l8tO)JjLn&QOsIgCGdN`(_|K+V6gs)X`w zccpGpU&7=|4DJ$N^@2j$N z$h54I$xew>f>?AB%xO z4CvN(?vxz_Ehv^3Xf0{w1uLv(R%v!-QE?_;M0G-k!XmUHbdi+*sEtOKo1thCIc3%-6P;VKgnIYCPM(Ha_>m0euuq}~9=4ZJc( zn|^d_`Yvd9#bRIA$=AO>x~sY2k>3Ldm6QNP(Et~f~K0I%Y4Dm`O4%Ts0blw^e znp=^0bKvH&XoFHZbk9$2e@KFsMEfpSz3LX^Ow1ftoSRdeXlBXxe$f9letwCL{O=X=0rLI#bcVQoH;t=+EwXLl;P0DvG)qUH-+Y%GaSkqU2w! zyS3p$p@UgH8|TAh|(a?e+?A!VCxB<=(i^MjwJ zFHC?mVclh`v$&9pzjGZ^zD+*Vo%^Ohm_mBePu0b2}EObf2K(|IXC zDMkEd70~4?-0eGuy34wmkY@7d3`cQJIhppf^f$}jO=}L+IS4pk(wYY_kEYz@yt&o^ z&i6r$GYep_AQoG*Ccb*!J9+m(ypJ~hZe>X(7XvKj2J|Giiv3ru2=B>t3B)C_w2v#6 zu5`cC!}l{+OpPm{uH*)_fD>Y&Di!`&u~)to>Q<+lyQ&{`zGhXIjI4vfI#g1oxUwE# zz2kUAh@d~MI%4n`3?6ev2iF~wsxuL7g25(Q_NSF1A)Wwufi%t6 z+_C5X&AasZxdoF8XOv9NMW_6V2_6009n|+A;GT*ED4zpT>~+3MY8-qW`st=fh#Vv9EEliozhu;egg1`S2-g&ew*2U?vQr^ z2K$Jquy4~z3oljFGR)9^J`fRz2u(0-;Xx2%!X*QUAmt(#i72v$>5-Qoz^8IGx=$#0~pJ0CB6W5d5Oyec0DzK`; zRv4nypjteSx6^UEl!?lMkwu3q+0Mep55SLBMeqcOK<=xajCCNyz-CnMYfd=jF5Y8E z;ID4Fb3!$!)%eTMC?HqW4bm8>F^)T9tJqDXK57Hkrd3t!G2(UvKtwYv{ga68?sC5X zZ9IsC8rcjh8}_fNU5l3W;1BK^tr4_F9I^#xm_r77pF1{z*hKPW9yKcD%ZFx0{m|DQ z>YG(M4GR!zY}rGpo@G0iYg-^x3retT=WMSPK&xhEDZ`VZuCd#Kw{3>=)+CAyv}@2x zyJAT{3hF2>x8JRy+pG9hI)Gm8=<;khoiLobB5kZuLq^Q1%P0N`Lcbc2h$ zW843fZ)f^9$aXf(C&6M8N+1P~i1EvqPw~6rShwjLk2~W|hSB6^*q7jm%Xym2m^PCv z7Qmo@5<=X9oeD6O_J!E@i^Vj6Y1BW|9?Ro={V+R|g0(DWL!8}=LY8v#a^vTR{JT}M zoeOGnVKJA^Rrg5|`ctc(Wqw0o9z6e+L2%Zq9Yv`8z1zIhnpxyCTycLikWJ%{2=FfP)<1o4JCA9R(`&FDtj90X_QdwYQ^4{Ezd$Y+f4R0%rdRh8DCw{{s{F)46kWY zu)%Q*g5%`8#F)>kXX|kJE6jg&CIc3lNTAEWmz^9lZs6TOeuMa1Gwd4id+5&iI@jv2 z0bk>mfl~^`jp$f?cliDr+TV1pzB{?x0J!0#yYY;#GYQ=Uz6ra2bR*IZ6>ofy1)n&X ziP-oqDr#UmyZx1+RgROIV^8bQrNLF58&-Uw@w+L^#LFJlqJCkO{GBnv1JOfQW4LE< zoRPG-T~%kBA^=hV?P_TEl!hG!5Jo~tQEb~dty={)6smpv@BWNPs=r@7XJY27&N zfG1H(v>iYj8rlA#Qwk@#=Rx&hQ9n-S?iy}iZ3v+uQb}FMyLgiK;ef;OQYS7|j;}eD zHMSis8d@|z(KOoC_}s@ip^SwV8%J-C@zT7{i{fDrABT$`CgMa&`@+|`Op*vKkwT*E zV)3FSKua#=)v}_f!4CRS{5dYR(;jzsrwxqSAXE+&#@KqNQhV_B6|N+Q#7`-l;gnZL zh#jdQnX7@bmwekIBL!lLQ-S+q+@(ra;I62;k>XwtfF5yj63nsG@|s|KL+cIWH19LD ze!%?%S4^`Rpc(x3uSh8rZZR*Idk)(+vpd1R+m z`sOFvVYHIf(BhmarB1HLz+%k*vEY*)_p~4j7FqlyVQek&lgAcP;FsCOxeJH!Fc^>4 z(y~GiEZYiy``b9bpR z3kI_&p}9RmD)}COd*b*ec8SorAEperERKAz*yTLv#fW<$-0M|9of5eKA5U~gjz!QH zRTNLX;F8jO$GZohJ@CI_(_6SreJS*%sQF&v+(Q5lnQqUgajk6K;O`R8LKg~2vYjjD z55w|dE^{9#*XDGrza8Q=nGg&pj{d#OBM29*F{mNQJPPem?(tb%27GNX+5`@q>bU(l zZ@B-QW8J4`nwI4wGprYD3hsJxI#D4_!BaC9s&76k;4x`|w zNzEMtIObh*oIqs?{>9hhJsf@tvrp9nF}Q6^{2Ugao6*!M5{;;OyjxFS!U%`O50^&M z3&ZR-(pt`TuIR#F!{%##!S5)yEwSp{%5?_XnK;=A;62>-#9Em5BH&wCeCu5^ms8w% z=?7>(co#8ieza?}TbMt=;3w}q7=!pRZr}U`2ERD-jY%H{L7Kly&@Z99$5Ujc?OZ&+ z3VPMM=dcz+@uS>y|A4_C-dTphZ8iB9O#YIV`|q#5&L#AJK>y*lp1IZeAHaX!S!81m z?aXp>a0mMR9r3tWKT}#jC6G$-US)c#hh5F9<5z`2)p)bzVER4l&UUR0$&U9L6A)HA zkw0Yrcsa}Dp!MitsqNgJ9Rw|ic2D3*ibss@4mR|lYucT_=r+^Fh7s~1nrn@dBhP8%n<#nb>=gLt_> zVqB=WS>rBfchQwT_5>MKq5$}jl)iShfTjRV>1bbjoPaohI0P9)EBd+ZqB&@D@4VdV z=Z+#t(2{7(B)51f?%8P#skL{WD(SJcmicokfy|*aZgY#5V=@Q|Rbm9uK_dk3#T5ZeFdB^PzTvS9dFhR_u6dG_L`@ z6k;hnG7&oa#WO+qwI0ZJ#jG(0bPny$5-PKXl+!#&^H5>41S|kpfaO3k6^*cC>2L?z zUu)t%sP}mnxjVKyCzFd|u-K`|qPy+Z!4)g%CD4|r8!~m=HnuH?#d2v@Zp5C7I$8;N zr5pJOF7${|6-{*w)HTi!baoh@h_LG19QnP&|-2&#;|`e!cdnslfV^dS1{YS<&tMR zcYFU1>36O{+ylb3d)rMle?t5-UUqPJt_by=P&^waMl^Y{-Pijh>J}_-ITHs@j}~Q4 zsd$Lv&IDHPOwcRsp-?>(FvUGbtOA27bbNt(j>x)mZPDdbxE;ZLpOD57u#bho0}r;!T+#xL*L+kN%&t%i9IH;rE`YT z0g-f|qG|Tvz*Y|H1lGy0%B>M%!ZZ%i#!yA)ZHB#2Yp-u?p8NvPocOSPgZ}D$Nn(r&x?V+n3ADY+%P=|+MonH%40O= zp}C>JLldwu)PW*r*exWc5x^r7a67IOlh?h3qacn-knI3<^tMY@nJ~#rFgGLMwvbTV z?WYT&9H=?`49o64!rrBNvSjK9u#zfcb>e8m!cDPi?G#E^yeY5SUe9pRZj?FiR%(3f>I2+<@ zG^18@l&O@?e9-v`*b{9D91#{jtyu54S_pNa$(^XQ>mJ*=t@D0p_tSuRb{{%2x8l_I zLGTBiF!kqg4vOZww=pk+woIBuy?J&-_1u!eX@v!Pg>(h<6;2;!1LwYt)xfKf)IiD0 zT7b2*bDr(o*7_{Kvs^T3+~7DH;WW0)j*u*FfVP3PK3-ZFT`INlVq$Z;z7ZxHO{rG| z55?8niaQavz-EhSbzU~%1(_2Hr;K;+9C!*wPjLp$OL2x%%1O)D`!dcpSZqu1x_4si zy%h_}9Z+}B`~`Lo$?2N_Z=#R&7w{6mODGH8KD*a;9z1;&^wk8pI>Y$3t228c?oE(8 z8O=`m+_jZ0=f1do5cegRi*R&yZDs!QsVS0oz~6CtM&UZ;?}5LUAlFFiFRnN({}955 z&cJ--LA$ZLNDkw-#quWfg8S^DQXxlRdBpVXB;qLQ(zX);daiIB>TwLJ{b|!8_f+UJ z(9cXeb;682!k-&;>hB~}{`m9#?#AjVfK%S)o7V+ub)SZMy262YDcZBZ{DtTHIpy_1 z{7Pw45Z{4*XWFxqa^M5*p3INXeoT=4Ta%Oi2hBHiO~?ySFH|H`m!dXSb|1k072>aG z!Y!o?$~RW#udJAWm!Vxwkag0E2i>b*zXAW|3>hZ1{c{3?-0Mx(pyFVLoUHGxIEi=v zsUUsA@o(7t?L=&1ct6zFS$N!lb_3<^+^~2P;AVoH8FGc*c4p{y zyNgm85`X#F>>`_RUN<`WLgcN%3NgQMyt~x$K=kl)?6?MDVr{nE9sB~I1>ByXRkaXr zBmanI+-DD<3(IY13%ELLt9vKnbx&k1h_#x_sq2b|+#XaHxNdW)O2##4Zw-HE-(m;ZbozPdTiUYH zZfkBNSh>>fTQj#HH$Qi_c~^_mx)WiYNU1CBRQhVA?K~^j5)=oHBMOhSHKNU{?868P32O{(A-x{7@^NMo#<5Z@Mhd>)r5u_d!K5SRvsqgT^_P~&$@e>@ok+2)-ZC8J- zT}AvE18ofZb6Nc1hw|1{jK|ZVPN!pQ?XL9ZT6Y>756b7)Ywdm#$wYvOrtz3enMjamJ^6eXJ(M1Yn7QiezLUy9h zr|TZE`v&2y-TYdKsG+7k)T0F(xliUlVh8wqiWlp3;UDvMiEkdUTYL2F;mauXmCCiL z?RvX&RRiy*x$F5n$NV2}2$8cJtx*d`jEE^P4eQ2(XYMxA0l}L$`cvI=aF33pLV%kZ|Az z&L2D3Xg8o0dn)@5_knHR#4nyt{bZXR@26(I5uN@`7s+0#+vxnLR?GxAF~HZ z@J9e1p?Z(o{UpT=061`p-0n3+jwPr%zqv5GuwX(iH$D^HMi_5I=uYIjk+1$3x&?F# zMQ*e+1Uv=s6wTgfcacP%1;D{gB%1!*XxA3&9T0cW@@>e#79LR2HrY`k?S{0Q$~M^@ zB%+r9aB#~fnliTV^{7p6R<3#{@5T4t%v)c{n{9syzZd3v5k7%-H1_omH2%H`iUY52 zanBK#7hT@Sv0QHKYl+D|nBYJux0}Q@@%59q-+{?HsKsOn^Bw>WUST*tp<@0a)DP+A zlXfDV-s0x{2ielf3*i;4HvdnDym; z_3%@6a?PCl!s$7D5pzN=zh}r8{RpEUk)6&G>H@$8$#vmYyQZ79U%`K+PFw9E{wCyQ zfXh6>*7EQh$2Z!c6ugxi|M{(Ub&2UW82l!kruox$HKEr)uTjR+c2@y^1N=>oKh5Ka ziTDP<4Z8TW+xu<;+@wz1>~4~@55Imt&nJ-{+UAY|l|d@g)or{0HIeuN_yY8*R#cc< zfV*am;DO*tr1;191lp}5rw9X}@nh4^*v+}bCT_P|P=35`n8a8eVs)Cj-EG;m0C3=z z9V7kl%yzyIZIY=A5eL)k8@y~sQk`e*>OLo_#k2P4AiQy(2f}SK5H{j@hOer>@Q58p z-#=>)tSX-%pycQ52R!Eg_~5`YI=9QNMn%Ufhf&dUw%@wvxx|c$4-T*kS@>LZ@$)=z z7>W-KEaUrMQuy1b*PiEsF%;hyVA}>e_%)`*JM1i>_^!aR_MqX^tZr~UlK|D-X%Dtd zD12FfuJ-58?DF@8BcP_>bH1Ve59b*j-xhHF>s2L;5_j2y#dCaCz){8yXXVvhcBF2v$Rmp}Xa<93bo8)9(}`zv!xO+0Dgt(OANVn93#ctB)IQ>GE8td% zd9P?R<$O6(BWHdJsp_)p;n! zSa*ZijWP~$M2BAC?K(qyg7&0QAKN49V6~Vzt~7Vb_}l^>?v36DdLM~$-A8t}VDs>f zk|jZ75cEMNL8`yUu2OeeF~4f7BEg~1 zao~17lCGBXl_A6sI*lLEb9@>BlM#uuIoTwU?iST3@KGp_5w!U|zSS*%FQ2s=uQDNJ z()_)4iGXnc+=-*iiQDx|4sb#o<>X#msI-GI=nX_F@KH&9JPGa$~OE1ybU0%{vE zGe2u)5&zFInhm4bXn`if0kyC8U9?b?6`0UmUX-?S6Mv-q}=qT)igu9m@I z8ImuOC{_ThK*8tG+Xr}S-o&#SbhT#JpIW}-Hkh@L)>6hhd`-sKJ_7Iv3O|S19&~%- z2G9*?-c!VEBfv&Va|*|wV&CN()JzOpAZ@9rYuwUhgr^`prD1A@PRPY`dq&#^ZCfJ6 zot6d?C2>6q{A?oK^7A;wwewwGz$^_7#HqarxdSG=yTMtmU0P6*ojKdQd6Op)BkzX1 zTYF4KwcF*FAit!|#6PSgpPh08zY6u$ii)f)YGzi!c;3x-QrHWly(q#QYF*Ato&6uW z1^*@_-e~#IULg6|2e8l057(%KI9ARVsExbtz~G$i-A0! z7IgJfx8N#+RHmZO_%1|a;tSwwOeWMS$kb=7-D2@T_t5dr?FoVItQ!CpK<7@l<8m-S za0?lZQjYU=%r`!F>mv+W7$V4(x~mRQ9ibl}Q<9#HCw+C-e%}(3%#f6Rl9V=WI>sqEjNTI9e zIEIbi*mcCbD`;1zID)^iBZ9TedqC<@5mP!fKWpQWL6dNAsJ&^&9~>R?29k+>p#7-h zHKzN|+6{$ffM%dsji)o;+PHJt#4!+jAd1!S0Q%~jTd6}J4S~01631|W;mD}5tt)gS z=twl5@gYUUylZ0O9RoV11x>YiKp%UW2f(r4+rHrwaA zE8pA2wf{fOd?HLI{!fIJYvmRc&Eh*4xo^5D=fRMln&B>$O=o^^S5*1H`L~7t(bbBe z6}2#{ExK~q9_kJqB@jxS@@HXK_5WSpPKU*GO22I9(+}tQI-|+`EYMj_Q#Rwn%3o}| zX7-eW4#GH7N0CyuP_X}Qy#4L)OcFYNAh znvbSMOMf;uE*XRP(o1_(CSb4^_Rx>QP4+e z-$i?#B>6bN<9rJErk6W5y>iK2>THI=W;7~imHH&WlZe=vou3AH`u`MJ&nvtOZ4%uM zgY91RP9I-!yT$X+o|j<BVGu?i{uY(ysq4Q95#Z;`Y(47{S@?545H35 z|8s!PY4YFpK$-bVa0cQTO1#d`NSH{!1^AZxBK9wKU$=V;{sH)h7IJ3C zxI;LPHJSVpWv3_o1pOxt7AwJ$>5YHfwfHa4e&Ofn>dMlh9)AO#uf*25Vb^Adp1EO9 z=7B4RUm9W@_yg8|P|6KEtEODdH25!I9LyON?;ONwEHy*pD;)U;cK@_6r&Txwtw^k9 zHNHA(UWjZW{11lzwUG77?S_0Awcv+0zpyO~}8B$5}(gL5gE1 z_Ibt8gjVu5f29F8he2~qJdw^;^5CkLDXS!iN!}i?+ML_P+RC>%&<=L(;J_>?fMkGV z?_@ckBr67;VbD2An(XGPo-S^Z-63>O!bvheBRz;Sz0dMQx~pv6I_U+oUQTtW+5eqH z`ogYn5{>@YjV{C2={XD!Z zwmo6|=%lB*NZFA1Rxyufnv~oGfC)*M!kq%*9EH+JKaaEK$b~^JBD+^YOaYkU)S@XX zH$=7SvYDIf_U}TN7A8^WZM>;w`rS%?S&BPgmO?G1Q30NGiFqc#OmFkcfu1UKDZt|w zYH~UU1~~A*(2LB#;9A(!BhW3)c`%ztV*@?Tj^6@+1@uOsCsk6q58yt&cKNvL7{}um z81MZS{gbpS$TQe^ve+cQ1fiB7-gcA{J@%@Pd%xTHNb1=K(Hsx=LiLbcuFmN^^>;z-FkMlQ0#C zO0&ax7%?HAg!Uw@3iphYsGbIRI*A%|c8o)KjpoL*9pZM1uj?5?d#ii=B*^oi&wIsR z6G6C|#+UNGlSyV5Om-zvP-EAHl{Gw;xbPyh7vaJXVp^4M*6{d>^a`X`DkRJ+n3qhP zuR(l`3L>0v)ox4i4XAIJ!N$pSN-a+niS})1Z)5z+6mS6GfaEKvwwteaLErU?BAEBd zoWwtX_5q?8N@r_xCpRvA1p1N0)4Prv&tcHR74d`yP3L`36W|!6V~A!*c-HiZ&I6uC z`V`Wqh-<7A^XCAcdzay*x^5YM3GGYriSUdQPre5D8ikWB;0(YS`Z~gsE8tszZ!vBa zNc=wl{E$RDVx*25QSXN;GZAY4kKTYI^W9&6%h3pI#r zHVHKbS7CsIStcB4!qXL7R2LuqfcOWkiu4SVbp8VP%jB^ir8Mva3;qZAAAU*2K{u5% zk=(O)H}KRDga2Ug9}h}f+2BeePaCS=&@G!g_`AJ%cdToq!-Vmx5@;nF(1bHo){rCn zrJ=_oUR8xul>^)@k=yv2cjI{{rYrTIQN@-3dmFjg@P~mvooeJ6CNTs7@Y5D8Ir1xa zd2DBVG6{!53#HT;(ZVD|IA}NpHuj8`L~8=nY$;jh9CfBcjXgEQxDK>Bbg{8JAk+h> zhs=x-iv|GvfrECQZnVEYPcD6C^YTEd>@H|`!I(c<6y>QZA)-K|3=JKZix1lvZ<_)) zZHY6%t`bxKXxEK6XmMOlX|yle6Ci#!2W-v(YH@%oF<4;6xM?Io<5gCSXRIXJ8lW|8 z>BerdZLBnzcAz+Llj%$68hLtzPR4Cvj!Vgqlac#0Drn}Z>Rq^

>vmhepYW_86Fqo!qe(m$LN0Ae=1OGVP^xwc=oES@(QTuJ0EN_` zg(pWWiUEpgRSVA;Nud;=)VplTE_DQpbOAiMhUnN;6Bqv=t_N$ha%g00z$mH!(tdLMmtF3 z=Q}-h#jhoxOIl+68osWLr#tm{s7mz!DV^oembWwmq|uJH_BhF}gtYR1Q{kO5()%{aC87%U!ZNre&U zr%vR76x7ab@|$3=2~jvx%2t4_^iVr@h0Sr8?j7)+?w%m2sehs2 zU`E8_DW1D&az{@{a3=0gGmhPY#Vuqb%Sbf;nP9xy#fW#dV)0IX9}HF!@S6VZ;jYuF zK&#S9Mn9u*%+CC5L9=L8Pj`m(1Ms7NdU_^_(}4hit+1)mRa*PLA)ZjtLZF54t4+-+ z2|a~1{@`72Zc2`05ip5pg;PAIGr16)xJg50PTh17H%WYwa{eR9mT}TR?BoO2!)#!PjXXe*7cNO}zsQI`Btq+VR*5&AYL+ zh1k~Hcebb|&8HKzPIM#96I=B#pOh^NqmXn@HA+eMG>rn_v$O>xOsRw?m?3alPH~C( zX0EIO9_G!wRq37 z804wLFlLaaHUEqqG3&;n^r>}?bGQn6B0TfZnP)~OOB>*Le zyFUeuu&Okh4uAtc)xOM=#V?zfk~J=8O3A}>ACAtO-WMVtCM~}IVZIfz{xDCSveke% z7`PUHeT-bKTBV|F4YG*rjB*n7pLm zWdVB>ye8lc1#b%2r(nN;g8(OxlXnGt-~yAAa_6ryJ|`9Zu&d`C5pZ0=Cjw3=_*}r3 z3Qh?)t>7C0=M;P^;0Fai8c>#ZLCMcza#6u00aq3LCg7TaKLuP@@Q;B16xG*VC?ps|9f0-_X56A+_dhJaWFvjxN%P*#ZxV6Kn^HJL9UQNcn1Neb>4&`QCB z0@^58CZL^y6#_aaSj_JgEQ^8XLdMnr_pf5m~ z=_1bxNmG*@0x}fr7BE1;O9BQdcvZj<1$zYyQ}CvM5eoJ-x}ywjaio%W#ALLB_XK1r z_)tKWf*sCBzz#9q%3V2Jw5CQuX3>R=f!AJoIO*8tu5|_fetZ`HP044x3 zO}c;OeI)W>1xExNSMZ5|6AC^T@TG!N0!}OV2IbF*o>TIznEasNM*$ZAj=|5L1zdE2 z@$<6#SKbwoe^>B_fWH*{E#QU$X8iwG$SpOwBh9!~iGL)~$^v{9SOWYM_zMV95G)`} zK{Ww26x8JZVf?S7q^_9MR}d+nk%GGfL@9_C5UZe>fCL3&rK%GZWD7_FC^Ka`K}ah# z$raE>!4v`Q6ch^RprBYlM+KzTFTKBKKbt10^_yqQk3V7TF#(oq2Iu3cW z$WOY!$XiYNMt@rL?XI5ptbiQ~b_#ew!HWW3QShpOy$W6z@RowN1sqUN_KuMEl)NvX zT){^I4l6h!;JAWM1e{RtxqvSfoDy(a!8ZcVnTj_B@U4&^)Z|A27Zm&~;G%*{0IrF}prL@q3YrLrQP5OCoPu}(i3(Z>Xr-XFfOZbx{@-3mM>XjrAXPyZ0o@h! z5YSse9|36!(gh4qFi^k{1w#!e%NwEOZZR1Ra0q>7jDRc`m_C#3{*^agjOf~N#*Q}B#{=M+3IU>5*BbYGUYTgXc;F@^k!`&ZtpBJWl3x`4M7 z{3#>neg*#uIH+J~W7DJFS5O>fKzTamAGncspOBB$469wN3IHBN{fG-qO z;crB9PyR|ljDT+xbSM*YPRURK-z%6b;JkwClD!KGZVC8B!JU%diwdd;xU9eua5WwC zk0}5@A-}6hpnz)%LInJ!pqhZ|3TgqsL3l@v4)P(?wE z0AB^o1lS4^1o$avAs|3OD*-`eO4nfLaQA3aF!?kAMgl zl;x!fsqd1!{sI~(7$l&Pf)N55D;OmpNeEe{+R&RFnAvIxBckK&pcK1$0%gOh9)9D+KgZut7j? z1#1l`%j>J;5iv6IkXdSSS->0xzY3VE;5Pvk-S?V+1#0oPfQ1Tf2w0@xCIg)RE>_~x z#0=OEDyS@AsRCaC%N2M8tWXdjV3mSk0c#Y530MnIW(MEtLP$*-3s|q9u7C{+>I-;W zK|=wX6hsTyq99hllM322k@MfJN)p9nn}U`Cwkv2a;5h{y1?*7JPrxn(T?M?Lpof5$ z7?jEE(_6?ZYLX#fkAi^$_9_@D;0*=C1-zwTjDUR#vIHDZP|`%se-A2|C?@YI$P@5^ zf_wqx3W@|AQZQY>VFj}U993|Sfa4ju{#YdBQ#H9)zzGEp2so)=semsPY!~pAf+q!> zR`9TZGYY6o$T=mC3iwXJ;{twAuvx%)1y2jOpx}7{zbM!x;G%*T1zgV1^~WnhuBypv z0)AKUhJb4d-WKqef&&7sD|lDH4Fw+v_)kIE=R$5NIV`}Zzq=qgCZLjnPX$y_@TCA> z1z!uW6l5E7)|CjlV}ei0C+;F5rF1%C*rp}>|UX)Oi+h(#S2l;!;= zB*GX>yIQM9n>UQKt~1b1awx=SwO0SE&{qL=qsSRf?fi8Do8h= zEU&kc0bc>=N(ED(^RU@-u%KPD@>%hMH^@FiXKR0_G^#DPXRG7X(!F=a&U6P>VeR7Akn10oEUjl)NP-ixun_ z@SuW&0+uRxU%+w&{4*2oKnBQz*&D- zLS9l6KLM{O2o$hKL5P683aSZsLqQDzZz-rPV4s4BXjy+8P!cI72Ng6D@ScJu0zOdC zOhCDU1ObN>v=DGuK`Q}A`|J9nt&rnt(n-Ll3Q`4}P|!`lNd-Lxe5s(1fUgv!2{^5w zzq9{wM#&&CIj3NRfbSHH67Yk9OabQ=j1zD{L5_f56igCuu|LK?^M<`ktZ`qw3KIac z4fVVGSKc2Y|D~W%V)#eFVgdgts2XcxykmfyM8oC=R8mkJE$zRGl2VDpSHVmHwt_hV z{1nU+5TIazfFK3;2?$ZJL_ipWGRggNA>nGWQa}v_YXsC%uuec71?vSwD0oajeFd8Y zG*Iw_)BYPN*(xTD6+9y#O2KmiVifEY5Ubz?0dWdm7LcG|kATDhX#b}AUl)?3CT|I7 zrC`5+HVO_3Xs6(P0UZ>S3+SleV*#BN9Cg}%s*+E{q^p7x0=g^sLO@RiUkT`~;2Qyb z6`T{0rr>)483VNapBFMfO@0pAVNT?f=B@~ z6f_brOFb6ilC7b9e@OY)itsPHU7zyh^sAz-0`Rst3&Xe(f`f(`;6RM1I4*-|B` zLY6D&CSZkvo&r`W=p$f_f;0hZ74#QC3I+*S?*Q(9LxpTmlMw+cVgY!H)j1seq%Qm{q9 zVFgbKII3Wqfa40D74WHo9Rf}mVAkKeg`8BAmjryN;8g)%DcCFEw1PJUoKdh(z&Qo) z2>4FHdknDt{z1uyVsc)=ApsW@91-w~g5v@%D)>ymWd$b%Tvc#N!0!NMX7)KP|@S}hm3N8rvPr``Qczt$9R;-nL@1~$puU3o zO=bPvKuJR}X{4aBfW``<1w<)`6%eB!UO=pZL;-OMS_()QsOyh5LK4-ay?`VI9R;*f zkRqUsg02GEDd-`fgM!`yIx6T_CZw~H3<0SM1`6n^V2FV33Wf{lsbHjl-U`MD=&K-0 zK-xfEe~cHBp(Yar3{a3KV32}*0YelN2^glJM8F6I(*=xFP&P}*XeIXu$W-7IQI>*x z#Ufk5A^|xH9uP25!BPRa3LX+LxlG9_A^8d(7Eq{w1WZ-%sDKg$j|(VOuvx$i1y2f? z<$|)jr-jUMN#1q=a}_)1+NKMtl$j+We+NOTgXxc2Lvov z@UDOr3O*39O2J}Zp{`geLdNui6zy<|h3V2+>*8(;vI3r+-g8u|O zso)0zTNV6dKv~{4CBKNtb_JINJg4BQfE^0{5U@+ZKLTD*aEF|QzNDa%fL8>d|Jg$J zsENOTy$XT^yrCdez*`E!1?*E$Q@{ZQbp#w#P!E9DAMYt?ASNFuxJy8}f+zup6f_lZ zSV5eCqY9b}IIbW`z^4Y7^+#(VC)A{!fRhT61$?QXvw*J@bP;e`L3aUX6!a2sPC;J= zSbuz{Bwb8?P%uEic?E+7Tu?Afz%L5!7I0C)XaScMj1_PdK-M4GLVj112?DMu$QAIH zf++&7D_AbzhJs=N|0yUHa7)3=SXqDg402Z_bHt>Qf_Va}C|DrCSHXP(Yz2!2_$gQ- zAV9%N0YMC$^~Y8rA!@QtK$wE{0>TwMCZL9bO#*5uctSuO1l1;i+LOF*oGF9gI5()GtdAqi^ozJNppyd*O;qc{z-^m!NhX;o-RYL@1xhKK2*^^(B8EWOMT8RCw4}66Nm~IC0wPqP z2#9c0MBplV6%kM|s28|gg<24h%k{bd0wSUU7b_QWxx)KA=SiNn>hI-`nap>dIdkUB zc5>1W4?%B+j|uuRobr(LWBHL_0K<8Le1@+G3K%XC3}N_=U>L(yg5eC`6IjP`|KmD| zjYEDW7{w5tBm1?Z8E#X=ScX7~7|)<5n8*-HFp0rqB$>=&CYZtyNl?Vlfxynto}ic^ zk-))VAt+-=BXD|HGD&7K(37Bs;VyzYh6e~{`@vJ*pJc9I%JT{4 zF$^Y{&oGRjrSA6*DeVK_!`l;H%yafW{poRA>66xXADm!6k-Y3BF~x zMR1uRfGTp8K}T>6f%+dIB+VRRAh^z8BDld2L2#2Hn&4-KID%gp5(s`{NbXGikJ~J% z6cRAb-yyk=Ac!HGK+n*LAcP^8AdI0afsvsHfeFCZ|L8@ca!4P7aE5*a5ex$fq8JJY zVi<-J#4!vfh-Vnlnff1zETbqSnPCh;3d4AUG=|9p84ObivKZ_H9T-XoI*sH0M;S?H z4k;(-!ca-jm7$uTJ3|dYPlg8xdNIr;=*{r3homoy5Bf1YLJq;VTc95_s{bz@f5O^A&KB6h7^LA8PW;1F=P>JXXr?9dfGu%nwW#~=tHpATn?=lP^*vl}4U_Zmpx%B=yz+$D4_ZUVJ9Ap?x(8w^3pow83 z!4Zc0363&MAvg};d;d%$Il&>t1Sc6v2|i|U5`4l?LGT%ai{KQ4o8SyXT`s+U&a%v* zkn;@l2re)zAh^h|h~N^#qXgeF)Dv80SWa-Y<^8jgSvg_JSeOWDb!gYXo447mcU_L_?LCf`xIn^Oz5l7S_K>uSg%WMi+!tfA5J;OqR zWek`%9ZFrnu#{jW17=Bwh*b;?1ZyP7{s$&Qhmf@#@&v&;226tv5rW|rf~OfU_c=st zV0eyTBLk*2hlouKF92ZwV+#wWEC+a=0kf0?Y-RWx!AlI7r5qw&W_XKW8v`aKhluSA zn1~!;2Lkm!{z0;fLooL^guKD<0l{vD2>N3}FT*j4c$)#!i$fXjGW?5RF9ReKm;e9K zewNQEm}}kO8xXLqsFP*91)rm>nDf=djTh#NNfmLY-Q@_7FKi;1@(!^89pJH%kVkDJO)hg3}wt`@SG#z>#+O+!6FX%nqV;lrgw%ymM~l)sAs^u z&JeMT;Rk{h44A?hB38ES_a~B79D+HVA!H51ErPWS0d%phW6%)@229}$WjxJbAlTps zPdO%RhLDYZDUTr7#1Kueg#i;b!zRx&BoJ&xkcm!SgijFhvLEE#z0JQ={wl5BA+LYA zfrUzVokQ*-*v)_mnxV)&4F4f`mm#>jjM&G}j^F@8EW!H>DIStWmO%uE8QcU%88FW> zROC2ACcy~?%%cnuCmC`GK4!p#$q@00y#8eabR+qULwXXNV!*V>u+15U{sd4KSVLCWl~pVhH(}VFtmk449J`B7S42BDl?f8HgbwV50xRtR)EYgQpzR4nv6E zFXayrgfL(}VTcH0SV&-Gzy!h&VPaTHpfX_AV2B83Xdv)Juwa^C2#I2Nf*^)r9YGw! zQv~r0m=YMuNMv}9AemtcL5dIH{qq7z8i!!oUnnGl;T3``22Ae@5gizI5_Dp~6uuDA znc*#hE)1BVcj=R!@~$j@qmb?ln3xv|>B;a9f?f=meitHoGkieMmjP4kLPS4?V*~>T zu>XaLbs;35L;gijz(=CM98FU2244CK^ zA{-0`f-(k7YYP!h2901Q1Lm^D@1K<{(G=ohz&y4PF^eIApoRgn)8WLc|t^5`yO$Fbgb1Y-K1Xc!{C18-4$LnWdUSwlQEneo2%^{Bwyvu-@RUu+8!{Y?|88Cq=L>ypv zlHffCL2!`a8DG^JSukTN6w<`7ncxTmW=MsIqYN(+9B06cs1R|2;Z=f@44C{BB0ipo z&p+7!uakVjA(-tHLOx^ILvV@#bDToN8HRlXXBjY~DMXxSc%R?`g9lTZLdZpy!vvQY zFr_I(e9Q0=!DR-_VhRyg8U9Uhjo~ywGXthFg-x!v+~Hr6+~5$*VhSNQ8NMO-nE`W^ zLd35O%>=(O{FmT1112SfO#<%owYvw>k4g#h3#1v9pl7&)dY~Z;m`fB231h$iHaO$ZslA*BTQ446U_A_^EP2!=3V zqD+Vw#(=po0fsZoA+R!F8cghe*jN@&$S4L(dkKY%W_XlfEJHoPc!uQ!6B#g@C6qCV zVKu>I39|oz87v`W3W`kFG8H}n*!>{CJ{J3z%1dZ<8H1n#${8*bR5JXfhb*z0A-|^t zPYug6v`rlYX0C)<%x2h3FqZ){R6@i&h8GFuGhkLqi10AHO0dWWaQ$QcNeEfYA+HlG zVZco zB6yksGebhe28MqVY-GT6kPxwn0I&bkBwIKH^Fcz$^9)}SY-PZFkPz__!#4ykGyI2O z8w2KfgiW?H{1*YP{~aut;SoZ1G5kXC1_S1Dgoxb?chGg^Wx(8x5b-ucFu}VFn6eQf z_DYb~ze2K~Loi1pgdAXKNAMm4=46D3gAB0*jSQHG5h9uxk_e74U?N8Be;;K@r;y_e zn0XN*PB3&NILUyC79rwehCG5#7%;OUM100@C&4KMkG$V8p(2Ew;gGut&N5)~M2I-g zFo@s+113m>h>HyO5L{xwyoeC-EyKtj)c?NBf+-Loz&M<}G z2E#Ohn+%xB5X$%&z(WtbQj%Xe1QQoR$Zrf41h*M5XCXucK=vpq!%YyxfH?~xLeDUV zAcSFF59)u1u`HkvBLn6kghEUVj}oX1n0F8&!WotmL@;2UL5PTASWOT!3H#sj3cz%N z5E92B>j~l+Fl``2Br-fpkj#Kt0U;uV0kZ-Eq%r)JAcJ9>ha`*THG&QdnC%Y=>BR6R zL1zZc?gtTF7~Uc1%J6rB?hKgD4>svJ37>zm0S=M$;t)*V2O+%~J|yVNfXVwHq94OQ z2?j7=wmyi+XZVz$fWd=#`XFQo3ufp87{-8U`2dD9d_`boz+8L~VPp7?U=+jm1fvz`S-4QpbQP>;Psn zbR(F{fQjlLVjja?1oIjC6UcUlv}|zyErfNj&0-9}L~XLOwZy+vzLZukV^~hGlHqZJ zH4IM>tYcVD@H7MFse^rPkk`M=4tEd9Mh>wOY+@Kmu!R9r(Lo{4GmInH%78iOAmSy4 z`w3oV@L&=;2-$`rlf1nOp8$6FK{m%O|5Ewuw0bwgTLf=2yhE^;VIRQ(22555yLb=4 zLpv=YImjWHoen}88OjNo7%)2>L>ytLCOFD~+36tSIKzVy>SnC4-qE0kM1z$zPl|o- z8xo5#o|GX7u_-AV&OqUF3ffuG-QT#*WGc)DoBiXLNp&Tq^>_?P{Q)sP*k_> zMR~c^Rb@}Yadd98N>pKZY8zWyIVntm$ewLfoW{u9)|T5T+rJ3aTip;=Q(IJ7>)%nY zHtRCho+!%f1f^!QVWp;SdQG*x*x}zQ$-i1`Xf$*QOKZKD9@)F)I4r!z_yGjwv|dbK zyLU<`9zsXfc^H(?dNDn+XG>|_c+F)9R5SgH^0=_>iEFRkFIy$qze-GQf+Fwa#Uo9I z^vJxHBGX&1=@Qn17yBM=8<^O7O_#8&){E(pJz7fa!fUo2hDvtuFSe?rYl^I7ihq@e zKLVBP+IlfFh^opefIc_|#t*OThnrGfLcxtW1$$L0?6erK(qyi^@!O4d>`2r^&<77QfN^!CaC&zJe z2q(*N@)}Og<772X7U5(LPTs`H(>QVCWE)Pr({TECoct3fE}WdgNj*;fij#M6vKJ={ za8iepO*r`!Co6H%gcB!Dw!&of^oEdqC@I0f)u@#cF%nUy`u@Jt!%diW2$PjrRtY9~OTL zQR4hHJ%6aBrh^464N0K#O@$-Ij&YQ^9W^yhSCy|au_EArzCG;X;ZUU$6%j2?3=58> z&ncqoCqXGe5G<~RDx)DTKTH`1GtUw=fkG_e#5^@xockik;II2VOdW;Apcr)6h{FD( zabylvML)(_QU(d?W#ejc;g9VUEp~n#6y3oW6*P82f$yUkKK?O0Q*3!NI8#}=AT<7Ev@g=2;mRKR87EOk2kg~f{e09~xVu)es|SJwQPq6~o6HJg+I zYP2;0N~G`lND#9I=@M~wt4zvJh`OdKkgE5-K%*}J5?~M4_4F;=i3@pR^Gsu~EP0Jt z8A4U;C%R6AHPgoEOmfYv$KdpRG(nf=yQ&B7bv->*gS&|zd#)Lw|)o|yCXtLf!T=& zB?o4=A`}bE3YV!-qVQ9FG<+WUn3@W+sz{|X%%C-+#lQ!3(PCj`U>w%jv|LT2dS!{` z#X*T;XH}rFqwmtS*{hv=>B@z+R~26B=e{>a`{LD>TW)Nz%kAGXEWe`6<#yK2sD$fF zJQtZJlgkZsS4Y49+eNdeD z>lo#^_Y95pJMOUdw)UxiQcPPH7%g5nrQ{_`9AX_0X_&RDy2|RgMWt?6Ws$pNrW3NR zH;U`0;6yeG%V{`Wjbh|!jxwQ0xvKE%wf2FL4*{-kPo^BM) zUn%)US*i3OTgRY!arEEyGyAuS2WIELRXV~<`A(SwvnAgtr7*kl zol*(2`!6fCFgt!($%k3^6(uem`{WI}Aq7JVsej&};^#IOcas=-MM;X3kw#owRP3s& zs)aXOlUR5~NepNb&s|Y6vSmPUp}lqn7Zy%Szbo$Y6~z)EqYbwFf`YL{GaYkfX-QX= z1RbsrADxA}xk*gBs-y_kRUwo1{e_n4%kb&C0_J~>by!YxV#h{A7_B-(QQPaziHhS_5Ddx1$}`!z+Odgmc@^{wqjYZERi(QqU= z-@{!ccabPgoC!>drHYxyR$_l{KPY*zGE^Od&x1C>qW5*B0|db=U97$xqKD5buPg1TvPoj}&-zGl zYeS$h5ZdC{b-1aT#Q&}GD?JR55%XP?-amNVu)`^oOm@bMvUAQ7%q|m zgTtVN*Z%9@Lx$KA2+aX2+eOp1%J{09Vta+7#Fk%J03`^+4JC=q=d|`O!srb3=?SULGy2b`4`kJ5s6T>@U2XtZJ4!*d7x5xS)l@8&u$k4IH_R>;U zMG3C#^P|72@nUlV7c&R6<%DZeAloLkax!ha3Bm zXtvM*TLNNOt=nEzQ|fZVt5vQ@4zTsX6|sZG>r+i}@VxtQswo*}SEiaWVHQzjN`YC= zB2%vXU)|eOO*Tf`N=fophZcPGkPEH%FCkMj>G-(qf=qqYdx_Y`S}0T)j` z85rez2qhJnqC;?tx`uY5`O|<1Z_YH+_^>$H04A#nM`VyiV7CGaX%x>mO^I+Idz_|J zn4NN((qMMmX=#D}iuvh!A%<2I&p$wT*U14{^ zMToT?`ItN>GafTp=uU|g2Q0zSrLu;KgF=g1y_eeVP=>YaN-q9>CsdSguZ3<$iLcG; z8lr{$`@m?gWtnNC2@Y}JdQ(iiJcLARFQ~0D-BIFp6&J~N!peTX-joD!sxYMul%*Q% zb;U*1?jpD;edqUg+sLT!VpkP3b&0*I*Z~by;+O-$Ubis4nE|C`?KP#tY{XtuhC%K; z&)O3@E$8={qJY=zH4TE^%HCb4fH+$8XTfl{NXRY#A_A5&Xb zWw%k0O+wjk%63rWVr}4SuAOdZivL{=B^s+8ZoD^(V93MQU~TFtgWA*(rA{nN3y$&b z+;7V26;L5Q{n3PdK=r1)jl0}5Wx>)!nt5)TvSI13H%%SsA#1Fv!|U63m&o$NMolkw z6xTW*#CNJJ{#l46x; zZ;IYLLw_&a$9Mxc+zvd$)%cyiCfn{VtI4sHK!2e_AA<${IZG`w>^1hTu8fmo z138vd6zEro(Wl{j;DVU-f)bmR`nzIfc&aR}Lm!JJ%>s{cc;Set^Oaap{go*i9#%EQ zmVR=-SVVO0pY0oV_@@PT=p&v9H+K|gRCAVyZ)aXDESf1)*pkc!kzzJS53=xP7CKA| z9D8a9xeq)>x1+YsU1b^Pu5(E9Ef2L<)HnG+qw*T|Iwj49mg|`ynC*dOb+GKtzQdW{zSo&MK_A!V zNa||gl&|@~7@@0%u?6po?abT5;i?~(ZcfRS7jQ>wXSmfP|E&JLhe4jTKSZ<>vpNSy zhRSX7tv0bS-JC?P=|Za$)+-NUKLB3FMfN&)Xvw$=>ugx#yECLbWc{H2$-4P4Bp(9* z3%$Ij$_@O<#Gf?(rv_6?xp0^Go&=GEqECidOOcIn{>?r zb0qw!imX}dT}f!Q6S=I(-Wt5BN}Xjz(;YSb9!s0O$w-5YY#pPJ$c_;9J!QWo6^^2= zN?hs^oa8Nf%6t~zas&37@oRkLUNd%5R_`_E!R)|ZGp_rZX2yMH9ER<;&y3G?$3D4k z`96qj67K@i!9|J9hM;KZP_N%_?g(o-?KdaU#c*w}IbJVoAnZ?>qr8voH?J+rmM1vQ zngq?KxgC`*cn8{H5T*#8$TNIxpJL5|_ij?Q+MeD59j$c`ZG>k!yzz>vU>p}u$E++B zdyi|fRErr4wLKANdloO7B%$>Rw!o@$S!$|pJm-&lIxOO|)x=0S?9#UA!(v3X8b{-X z?P}`E%HR~>ZRdNR;84)QY&F9-u#zZdDM3lz!`bTQQLxXMbJW??d+1^93rDfZ6c8l> z=Bj;RUB9{NT)M?4SRW9U>&67}`CN56u6amZ1hf4Qsbw(Bny1dEGM=~YfHGXs0db;n zo{a4Hu=)Um)IY2ah1s!(RUAu+n6FNQS?zqa8fF*gs|)1jwuu3@@&K_aK#3De7pTRs z?z;u*7ML}7)R$n^W1;#y%sySHZiU%`MXD2K-z-uegORCOkErcwaM7h#qG=qi3l6hK zi0XDhasc$qBWjviHXx6<3-e+%ftpUGfp=&;XQdt91vI85huU#$YU*OO50#oEniGPe z!~^xJ5%!CN?6lvrbJZR^s0rikks{|&8PYP&-bLi61$BY1jItI9xD+88h6Ee^qrQJK z)*dfhLxbauzHMS)I9@Co66`y|)}!v7anwC#ednNP|JdHbd1^XT5l7u&_Usb1JIp>> zqGooYR%kt*9!2Bna@yv{2a&Q=jaKCbEu-mT^TTRn79EBO2iAYrYz?i3(8I;(F~JcX zWeE^F<`1#IA2=8LmZ}}YWPCJ?sf+VV)Tn6M{P)A+BB5Tz;o9N#YEsM4H=eIW^=c1T z0fV;DVy`1u`NP0-7ZETsxYfCUVd4n!#R7T8d_%o3#(fW+^9*rfmM%do^vKmXR2&FH z-CO3sN#49rXB3+s492k&Ibe)Gz2NXMMjTkIOB4&|1*Q8>$m)jz$B-BXS9!9jc z>tM(VgT(&zYILal$b+>vgxW0-_L%()6xb++KBK1U@JD*l^%*rX;G|gejQS%zA$8Ue z>L-U*xa=kOjvX};e$Mx<*`U4{J)vmniL!ir=*EJf!yQE?)%6)?BEU!R>%=qQwpvcJ#dhy5it;gW_}O zkJQO${&R=a80r=cvlilp@TIE8IlaOOe_~KB3mj{m0v-(CdE5>dMwd3tS_u|b?5dvY z>o!QPw$=k1efx00n71!}xpf1^+e=DhI5rfHc06bOD|SFck47~Hj&VeznoOr-z#%oq zBU_}+fk^q?Ay5>Q%(W(IeH>Ew2;@@hx=UzVYoMq*+Ef^W>KY=&ns;@P-hvO*84=Lz zubzT?1-`P(oub6V}tPwrG1=Z4b^ZH+@G z^!Floitrr{J^NB8bWAC(ZGk6+<&2u#POb{WO{-nbD(KXl6r<0mv60e^@D;jvW|8c@ zz#8xTGwPmD*!i7bt2o;4`dY>B`;WtnPJbskE)ZH-(zA8Pp^tTduZtL5IkUuBj61=r zHyrPZqLNY?55-@n{VRO^f>JwJNs+U}e+aEg#uDlpOtKGUe<;`6>5>|&lfP?NqpY!T zp=5}FypZ-{YO;o77qc&`wqX1lnwka?@M>6;$mqepdg)<7_Dd-UZtIO93Ks*BQ@-! znWHqTZ~F|9KTx0HT@t1JMLs)X<@TduTW=pNzP}Y__HK{W{vAlQ39~9tn+_sns6J6l zN!H9z=)3XS_<&Em;R#ws5G?je*6^qLiezmx=)PoaCDw05hK4`VKb)Zz!t5w5{g$EK zBijH5b{37$M~Bg071cFliss$WBp(gehkI9NYR_N^opLn%ePlw8){mQD)&zZ~_wPAc z`=B9s&<*BsZl}Fse2v4M58vA1hLmcQDqpUCQf(FZNE+cPYt40QH;;+-_RQ0Y@!Q$c z`IZdp{TT$cs?ClKUj;Ae{|gtf^Nf65xKF+x7cP|im}60-73aD=Z`V@55fbqB?cDT#K=0> z93@UW?k*N9tI7RI;!yG0U@bA=nD}t8mKJc#`~6@ob|5rk*b*%jW;shV{B>^n5_!H? zF43@0+_Xft^pAuoOSJ)j_NDUFtXrz#ca-;*YPrVJj&VvEJ^XgMO~QN2Yhte4mHs(P&l{U(_cVCxI(#jX`vs%Wm)@VylC zm}bqvB5e-@*rwpt8hp`*u@V?0Ey-;)@@*>$u$AG~2O2bduf6b?yf;33Ox}&gWm*T? z$@>AegBUh?r4|EW_br2VftzKSb~m)r+qiU0oLQzNWXYxv9gAb@@HZ;HQ(^Wm`*(dz zSe9$)?PYMV|B}GJ&})dNB{90YA*Lf0HqKF5?Q-LIsEjcCm;HsIirY)Hlvo*W7)#CP zbinsUxka)ld^RK{Qm!?QbWvsGoA#J6tk*R(R99STb;FI;HczjsbynGniYw}BT26(@|0|8$nXiFT zMbgV5>2L~jR%$6Q8@WqN>BEz7$TLNe(pPO)}_OX4H1hNA>G z-_WKIPr%W7F>sH(R~Eggt)(aPKI?wC4lTm|qCP_G+a013AF%!dI14#F7+!7AM-g*& z%Ny*q-C74I`P1F?}2;qxJce3@B4mxw2X8a7XnY$CXW(J7mIdlIkYN) z+a(OX5y+M2cWc>niMV?oSPM|hz Q=U!Mc9M(i6bq&| z6_Y2DVofnI0-}kU*dRSIDrjPf_1!ab%FHF-x1Qhn-nG8>kC#8Vb7q&>vuDqqJ>|^# z?N+Z1H+q#$9M(q}mYUKhEwyN!$DI5b)922eGJ8(ZI`7F-CeOpiN!fGrW*4pVnmlFB zq}kK+@d1IpdHHka&CGrxep24dN2gCMS{DFAJuLyAMe9@z;;I=I<{?j?IeE&$qIFHd z?-9AF>+mpNsR>AN_9l^tn433w-i#^8%rkq&)V$f#=T6JT2OpjDyt&h7ygzh!v~}qb zYl8;;QoetsuUA^`#++07lXuMBH*<~}PjTBm&M7yZy1g+w=eY6Iy-#e;N%LtQI=a#!-`LDF&h|0MbE z>N(o(s+rKs)peYw>z}c`T$eM`TqDP(*&b?}+17P6bGU2anBK1L;|IH*nJ~mohQRXwh$>x+rKTr(#QaqS&5*wU_}D}T%&SMB&T*Qp7kTt(x@x`t<_ySh&p z{BL0Mw9-jag~d!klkivDy7x zyB`?{pHyJx;q0}pJNQsX9%3gC#Ef39Gm{3m_GNpz#yv6$dR8J}QFe-J_3NTuu1?dQb6r~=?mAVt(iOB}rR&kr;jV@&l3abCSm7FVV1Vn? ziy^L{X)RqzTOwUSPer+I?C<0H;^jbB?G7*3sDkCLVNW)7_4{?5D{Ga*75YMmEBT*~f$u18;qcgg#fx^BFh4p;I*Z`b?Fd%ET>Xy&s0 z(GS7PTo1k3(sg5t!&RH-aQ*dSwChWk!?kUy!*z2_pey5ykL&s~MXpw7H(;^3u9_`D zt}l;0=lc0lq3gF7I=URYJzRk~sjl}Qce%d(?nT$rPd)9L{CqQ4QFVLQloijrCM@@H zwfdpA>+mlHsK$zV)$jWR^4z4lHr6^^Ckt2ozp7$o(USj>I#!-*>N>Zzk!$~l|Fv3f z?CZ`I>bNc$Y=AG69@xKZeu8vRQ<=oO|No`TKHn9(R;^*(R##}?if~t(Lq7kl zXVbgz|9Off1Lgl!EbaFHdo7m49RF9b|GO3I+FF|+9d%XKwv&#$Z>ei3x!$@O4imkl zmagenlU@D)4u>l-QiSX3)ntt3YOaU7MqYcw_32;Xt~1y2U9Au|f2&dPuH^QOo zO)1)tpP1nzzn2 zH*eCMqQyl~IY-`4{%4K^g*B2N)J0kX-amaikUsjqfB#N*EtPgpwh$Em_a{FX%kn;` zl4h|~*>H|Yk_D^1jrYaCLRmb~kfW@^br{?ZIBc{@OQR7=hdlybD>l^`M=Wj4F9l&vLy zX(FX-$-YgcG%fjBGij8T^l5ICwlq|lqUGKQGx*MKDWTpd-<#pm6Iyb4g!H7Abhak- zqX;EY(ljj@+=ejgv=eKM7Mu$;yY*Txjgkd_LLshl2yq>@iccxFH(P+JkwixTuV+#mF8;6Kl>83F%JEW+{*)q zj5IfAkThOPem9u3EzKQ0M9SBaXVMK0qlOa2FPtFdVP{W-X~VHLRkO9)z_-JtebVu= z=SE1^tR&mNtavmjrq&BJj!t0$WCiNDSI0`F(#f)y$4RFo@b4_;6GxE)VO@3A%%3PV zlE|}v*|tn6Q%gFtCF~e9H}esxR!e40mbz-m9aE%SEg3tN6i#v9nkLQHl1Vwzb6WD` zW28e+gc-R~f`uh_JZIW(l$p;`MYRQxrqzPKG^hN2a zmVAG+q2IP!iNm4l+p$ghN=vTVZm8Pvih;1^Rp}W`$X0JiD>U4X-;{Q1$;EF=&uhun z?@E3aI5G^4?6JS&;M<*OWTnHUR%OY%q#%hT{mQ165?iOqtGh{i(PYv4!~@V|*at-M zG&!h@D4r%?_)vO8OL~7yJQmGe{t4+$B)Mmwv|P(9+AsNN4Bk6PR7Fwyd`e7_Cjax9 zv{p-Id?CH4CGQ-TQZ%x(Bhmsb_vF{akSN)da_Lho*{M?MX@QgkOCAo0Az(d@6&;vl zVS_b}eD()8Asv&Bl}-IdnrUG<&RVH?nS6@0F~KOyI!&}rk?;P2`uXQOqI&wA z5sVyzmsz~Z3eS+9PVw)bC7PniwdaWkp{U5kuPmyXI7|w9xkd+-#s6p&fV6&au%q3h ztm-FeEKi#Di!@n#Mtr}rZ-3QGfeF4S#X8yAv~2zF#I7iR6csxaO)mbExE?jqk|zcQ zu;emor8?5ms_f!rsi8!Yer1kYX`z;UzD`=NB_FybJ)ZOF|c?H zE_mu1{`w}-Fg{Zahl1Zf=#x&Defp2I%EGd#njgO_jbLbH)%QpTBNSx|9!RUTq`zcY ztntBQBj~x$rj+fsSkTlcbJVaOv(84A+RtWDC0JubW!(gb-%}B(%`wOR!t8 z!uaeDRFF9y7IbLjxvb99@{X3=;ceNfB~i(ktZr$EhN^cx6bM_O`jvHcT2RT93&KMn zF;(_0`_0dSCQVsA5n%a5OZE%2?9@<^YY5a7sQzUSHL{@3r}QlIDa^ds*n&Et^k`pb zKWGSfBr1CxD#l`0J=Khej!8ejwhAo^Zcem8p3ByUT3*(Y$t^6~v}9dN3-&yUu%Z=7 z{&@)*YLQ(KK%}KV+`oe47$}8HBeS#E^p&8bBf) zi5>@e)6fw!N!W-#-@vAhmfq5F_`ahhu>}cECluw#&IS##DU%5pL8b;{SlJK%P02Y8 zZ8}+!mXc_;FlUK_&Wxxag*nTFrxn7}D&c93@U&idDiofG960x)bu6TEkf&p9Xz@fM z`beL4hp;CSEEndyuRoR9I$Q2acA`hD*QqjlS4%;AJBiTovAnD>&+>Gm5Ku7RCZXh-tm+w%0BhBuKNpiy=C==?jtPO9-HDCNDasz zT>V993ME!sBGg>)^nwfBEI!aA))va;rCV%1kdtzhpuAJe{63BNtI<;M{S)uK-fSz2r@k6L|Bxe`g?3@q80qXZFyvtbfPRHTfUPn zeO)$qx4hD(k|_bUVOd;}93quHzFCf!$^ze%BPH1Tj(i7FKbHHCB+6M$ZEQ6)vDMVV zR?~J}O|`O`n%6T_C(ls3SWRtfH8ri()UsAn!&*)4YBieGj~~lEFAn)4ir&4K;l<2YNem0g~O15v|OiH7(5Fb_TbOfAUOE0 z@(@&6ZFWw|jh~{FQJ=}vd71jef^#UN3KjW{kA)UL$W6f68#S0*si>{mg@N90(Z?2lO3_$q2R`8ma}c$lRz zg!y>;@FiU%Rue-(HUD_|2x_|nNneZB7aGT`Pjhl!V$E8@=96evhNl!;Cn63~2BVc| zwBgjWLnDP&eA*B~*9>yi*}(^Xkch#+C9Up2LiI$m^_g2)pOy6gVt|`;~GI zkG~=w{7%Vjq2ys(XHmLBxN=OM%9r*6WLL?#JoRh5yd~4zgBesTwaW4;fE7qpW6}#>$+p56RVW2Q2LFm1aU6-t+)ma z*2$A*WY3uciPM!v1S>@>{DU~y`Z&^K>0N**&6n?Kw`%367w5Wsm)&QYp z`$73>c^I$jfeEnl1;k(4g?KMt8@lu-t!@VTNCIp;gze#c+7=?5kKh?@O3*xLp1TKq zJ3;fHc^1)w?ttX8a=bQX9)o#jYJE=-UV=+=t-3Umzm{t8nDJ z+|c0m^Le?G@eqDN?qxj8xF8QS9`;?32N(}N)$(xTVQRHJ&UiRdE%)VR>mJEsgnYXa z0U1BZ-UeoFjXc_TD6f(G8xKu?Fbs)SU}Pk8|A-ip2iEW4e2cyK2iYIiKW=HLn+!#p z2+RJETSNRemH=Z!J_aE_%7YBfc|XddjEC|cjZlfwpNoX!U!b0xcV%xV{m#z7ed87e}`_+h}D8EIKMr${P9lvr4KlrOCfgJr4?6+Pkxg#4GCKOE{`!Dmi;dG;8n3J65_u{t!>_c zTn;*v7_pG|O!M%Dj6dWEgVCZt#MWuv+UO2p5W3RhDKcu&nrofHMoL4dy69~hdHzK? z+F)IBQBL4x{HGNx3sVB1_M#lvlsRsy%Db&FABSxTHcC5N@L7uwXSP*!TrX;IRqPHu zkWj+vyl~Z+cTt8ZO!(4jY~B}Kmd>Kx^@)JpBb5-i^qi%SAVNVqO{Hy-9(m(z@gFR#lF^Nb#g zfTR#567rt67{Low-^>V%t1!U6hrAK!fKSeQ2O4Y++>kSjhoGBsit#Yjqhsko9`m1ngmH9iR?rU(p zd`BK^JS5+hyBH74?uuslJ~rlCSY8c|*O2k5rMby5O+b z*DQ)jbM&4uAEY#2F`E3FNK^g_PP%%&Zt*hFv+v6Tc{QD8=sP13y<1}(d<*Z({tX|^ zA3ptwDf*O>@;$@p^UhW+*zup4ohzc9CunV0B=qD1&IxXKASd$$Ut;{wZN>80wMKRz zJlJ6gG+TI6o-)9w$EG97@Ssiow6!WdRv@bgcNl|>cd$Y@E_MRm?DMnN=~vp$k^Uw1`lfVuq5s3A?9n((6S1VGj_`Me5oBNtk@qp3{n--k8MsF=YgHm&Ug=Hq5(PNp*(6l#Cs~!jfbtCioV=I ztDeu8Cm%t9^a!$fQ>PjI5srH+Q;aHh z_ff_g4_kdi{g*IqrMroB9JTZ`dJxR=RnmF2zs@iVuVNfA_=3fYR3aFh4#k_tdP|fa zRZ?kb1B)GsIj}zKP$uytA2O2a03{IepT>Qnia&XeG{mX&<lySUFtr$NiX(x;dVg!x0 zW&=Dd~{vg`v9=ntai+WiAF=j2W&FSGD2{Yi%8lZXxL8K#)) zK1pGUzDQ3EV;Ms%Oh9g1!W1Vj*9s=r{xGqtuVN(57UBTChGjdVkkb<_6$gYYu&c1N z&Y}p)TF=myCZJ?HS}4tou2t27iyi!0Dnb}lEHXDcMYXxRH5{v!gQ3|i+`bIG zZfPupW&gqT1+rMu^(KS*L+*YbJMSRNT0_rYkUpywF7f)@;Jf&IW0Zk*7)_es&V=&q)XGAJ3c-UbEL)VkQXCGnNr6eF<9f5PpUAHU_p%u#+1_o&! zFs`){!BZb&FzQs^ZmlF5+WMijqHq3CZJp#yVeAdmN#1RXuTac)4C8Jr7PBTw3FeDA z%V0x@`)gglHv>Z_A%qTjoY9iM;xMYt3f3$z&$`)?#t-Q zD8ke>N+3^oxiwooZ62dEY=m!-X|Ja7J+h8zWosQa(b_gjOTH?9F&GXvf&;k0vNInb z333kQN&aE5i812fcb8?q5~Bq0^?ktV`(=#M!q7==jM#JJDC&h`V#U_9LrE--q&Vrv zZXK%x8}u*5ie1##MBMa*wTaM0~xjsYzq6HwhIAu8bffj6UUMamW`{X9+1;c@#c+oI5Wsq?UZP~uZ@ag zTS(KrQR)&;tFehfeaaXZ+80lf-1W4!5Pa|WD0ugE^u3g7LwhBVuWKgkYOk0pY;U*6 z9k|2}ibrp5ke-6ltW$9IG%as(5nIgF-!~OT-f3cMg}@;nYeK|6 zqDZiY#~l2u98e&9g z74V=FDr;$HWh^hC3$nYQd)hYzt+IPBT!7apWAz9YE8H1}FpRyMQJ}9dr>%hTT@Z@X zK@W1iMWavHZ8btXD%NIJ%)vkv8z9gc3W-lR1pRG;nO&6*d_`Z5Vy6kJx+>wk#IM1F zu8O`mMVY_Jm{UK$HyvdNYiyO>#mwl2V$$)p@C(!&a`lJ%n~nIIGTO-);k3v}5gJXI zGk1C}eTiBdiYVG{=-OS;R}pE>e_(BQi&-cPOyUWva#UAN!Wx1Vb(4J#z}^u8>(>R z>N^I*rJ#p+OF1jnrk&B@FZU8mwxG8X%2(kBzKa!h#n7lU(&{Jnv!6*no5)lB7DdjE z#6n>oBS5BAyU3*YqmPnq2ymI)mAtme7^mGv&v^;I6`b@+f4L?dJBa>Du(6N`z!huH7(dH8gk!5tEsz&)?1QfZ4CJ_)|O@w zTl=H$YBoR_$+Pi;-GkA0g;k+F>ohIEH%)QySPlOb>*!BbUz7dS0VpK~+$J9{VNrw1 z7|a;qnjnV;bvwnD31L`{AvkVe9lT)33bFTuMMLZs>^%vGSykPRN`*&*V+U&D{@)DT zNwm92NFJ*1Ln1Nl^ZiRXiq@0Nc})G@h)jA!iRhy93LnJ_2>x5=w?B zLg()k4S8rm#T~4Q(6zf_ct;O^b+EP+06n5{^C=ebWq2Z8Y0MXv!V1$Jw;q2|ZTDd? z(_?3Kz#*-9hN$g+42ybfijbQjiaRhGE}q93;kFE=G2dI$qT%u_+!M$1lz1?vlQ2;3 z&p=}f8)_`|PgJ zD;@;iIb5vKV`7c;MS}|1H=Na^IdmIg%nYcOW{K4?Vn_;{8x75FVq5GRp|s%JVnH-i zoW@Zh*$>Y(XN*$9jkPOE_5|-6bevW&BgxI#EoNmGkQMRDk;Vj{@+e?1bi(MQMj4C1 z6tsBVeA>yLRBAY5*M{qK8(ibN#xENEn4IzCXsEd(hJTF5ZmE-4pz?@ zyu^T18Kq-HWo$JFGx!>AXW6(P;lv@r+D#Z`Ue$m-Q1Ka+=(ey5ZQ*P`tG|Hu21Bdu zjA+TzaZtkwwT8{(jQLvy^c;u!F~=I@6I|a9?_hk$fKxnL@r65GM4wQqiPInB7gVzk zY#T57g!iM_Didw&#KG1Ou_5;G_J-ijTx;APkFD|GnCyg%G;3GzIcqGxQ&ZYYicW&W zDcIwBOccdBz{H9>h*pBcgUr!q=tQh_-AYu;kQ7u)>0~7yJg0MmXeB|&%v6Mv(_b-u zx;k+#Hv#wl%hRoPLF-2u8jUrv*e+1;gg8D{Y6uxv{(v-VO2aAnd6TAzVd!y&({q~A ziWRf|Nu?ogAKx+r8lCy%kyjCjFn6*QKOXBe!^$YYqH4;~P^dr?W++Y`>x_G0JO_DZ}4OlIKg=AvCsXmJRh7woKG*)4#3St;{U3J0?DW1U!^29(q ziDc`Ce=1;a9+pCl6D=zgvU1!;u#RomB2d-=lp$=U)$Npa7dV!$~H7w!Ye55aU2P>jW z76}=7Vjr2x=x7j6u?m*kjI%%$(0rk;3kob>C|YT*Cd?hZjKs&q&YchaA6EwOb)N%U z9#@2y80NQu#-E}3YM!u;7QFG}jC<)5#sLIsyo*@&i|=BgNHY-JN0_Ayp}GJ^^^(Qb zege~{7_k2$WwxQH_(fRD{B1hFrK9-?-ys6jmpKBUs=yiy$*XO~!4@jhTE-R62vM0( z&$23bxeW~A*g73y+!DpB5nJ@69G-1sE_y->T*!iwCB|+f#V8`0i-)Qe)^1`H0&QUI z0aPH40zQzx)HwV=sa|9S>%B-n`i+tKQmhy1HiVFLZ>TM|@=<6BBSk$5v&dIiHl5tk zB2l7duyq+8wC3vbI>V~!h`qP27@dHLTJxMud{N~shD-aSiFWiUaW?#J8#lunA@2YWKH^-fLsLFoY5y7&fkU8;L()h0`8DF?KE&ZTLfmpieymhyV&~T*I$x z99oXbG$)|Q#~<#l!9_J*pZggjIs>H`xoh3L=AkxhQ}TuN*5+axf8K_icE^`5*IUE5 zAoI!!3^Ff%he0L*h-Zjs^M4J?7Gjtg_B2i;&OXfzAp3GD52*{V^4z8RdHIO z2x~W3z0Hv~W2KS-_g5;a(T8@fM1FK_H(`~yg!w&Vg~x9^U?W|$Aq93XG&fafiRT#F zgEdN2@v~OD=tHZa#WPBO-oAch=(Gm;&mzOc4pl#QR{{CYpfqNu#p-)Q&2zX$Ui+d= zT=)7N{8lO52~eDZ{K@#^F(-@?2>;OSw#GtpUSSw!tD~M8L*g1mF_dy;HHtxM1O-J_ z4^w^J*C@d>_M;^Cimb+Y$_gk%7@^V6{7~iG)}+~o(omWw){4`Kd;cm->jhQeXf@L^`uk9Qax>EPWZ>kMZA7 zsHlAB+=vCEUlCSS+b~MZ?g;5yt>Q2e$AEfQ!3z(zTLS>u+JhcW9ni1;h}1rUu!#&G zU2#)}n!n9$Z>t@{z*&N(g9qE()YY+kETZW9#nh5gnKbpW?Dd= zVllFL@EX7KSGozaFo@Jo0MW{gWi+U~V8(Q3vAD`Pfg$LFrhW>g0xC!ex~E|hIfu0s zY+(|k-3-Q_IW6;1^2+#p-gC}oh<`q>jL>cX_`zx%9HKPy42(y4!Y5(q%eY#RvBTOo zAf7)yN{NLKfn2H^Wui*!4UO@5Bm!Z=mpch^gW6%|>I6MPG;O=`IyIw?E zV!s3iiM!nf)isQms;uB8r5i7Bu^|#T-?v8k*OU1LMogUteU%;2{2*_$qVjAuGc3AX zTe8_WqF4coH=}5{Op5_Fc@MsBw-wLme&8nH%ZwUFeH?Gei~H$Y6#b1Ps<_u;xEC+! zd-=6n6no&vAp`oR4@(o;_)W%(^)T`VKVs^ye^kKkExI_!C0L9fcE%WQgW|0 zYCYZF``;~cZwi;UieCIbB0_{Ypgq`%MPmd#o!8rE4E^>tCC9XcZHP!L!Tl1010|w| zJ;I2w3%R5I>+WYcL#JI!xE?`RnLWm^Xs5;76+-JTyPRMcru!#okQ>5}&~@8UCY*rb zfWzOS&<^Sjx%u-S7`H1gE5hr&Khtc|RiNNyWMBG;YqjGX%R&GAI|21T*4{v_P%@N*k{)kl-qAMAGcoPE&vmu15CcND?DC`WI zxDd+JeM?^=;~zSa&b)p4YDCot%TL9(2(sQ(eEeqQEf5qL%&>Hyj8_py(xun|I~5)7bzLX*namStm)rNs_}rMtw2?!gdnQQ~QSX9xkvDSy{VXkE!)J<@0dwp?SjiFmSMa?xK`@65#)<;5x-B97 zb1`rju1QATK*56z`jONMNZX10Fx;XwYE*9%b_}D#E{X`dlmSq%OOg4yO@U{3DNFdA zX^bSXR8+!Dmc6%BnZaYvg6uLJHS0c?TZpwy*o{Tv{6bhBS-_ZJc2`I{WA!myZ1H;p zo5aX?n@L!G$F-Odnt>Cd#Te9Z$RMx!70Kh>t$ZCL*W)F8`Tuv^g{}D&2Z{sli^JhY zhDrxbWY*L-dq)1WY{R^u;(e4RQoqOl}$Q%S3O zp5|3nI2sThF(L@WzX+D{2F1YHRWM{+#N%Fte_}(h7XtAG7g%EKaZYC;^UPZoAnV2$37V!F(f3eU@ zW(5g?yUL51^*lro?wR??P_c9c6g=m^e|6V(f4SW;|a?49muy5gbRXwodiN zuOx6489?TgfnrrdvtG%r5>?w5!R4Q7@n2se?zFBarWx$c~Orc#lnp9}go-JUL8M zI+!LqZLP$m#$53GN*T;sRX)SVF5DCn{jgb`M-){gn!`{E>l8c&^_9}3VP^02kwe6o zYd*ul#Twz<@8c{RBOBqQ>LQk{A2soV#D+HW$`7j6rTX<%zBU|nzE-^a(^6B07-}F@ zeTs1DM1aD+`O}m+Dph|2m-2gt6^R?810k#&J7DQiF%&9-Lr2B61Yji9zhb@f8{0a0 z#m_RzhaTnF4Ehefa3GICqda^;y&!PqGVyOE5Gl%NrDnkl-385T;dzgtR``w7d| zrR@dD={9afcqwsNxZ9h_8{X%P1{*|w*_yKYQe$;O(XXbV*M5-y5ObB>V|e1}a#5dLKpt!5}(8;`YlL)93Y zO$gV1(F#8)7LLpEWLQK;jfNFxYwu~cJ=C253g5nk9%{+n^s z?J)(iGHu3d9aMq0MTv!7@p}x071rNGrX*HKxrkz#6J@-IYX}^8#BF;}VQ8kz&i1wd zp|9k9k9DHcqN_0k zb2!%7CS2Kg7E3`lM0;`&fg107(7HC}3J}g5)e%B;YZ~E1+~eV`xH+Rcc23+gXu-0V z*wv;`(A|dDDLrKqw_sXn1(JCZ6*&2VVuJ_S;zChthIQ~7ZZD1h3)gH9o=5!L92>W% za)o4>C5``E+=0NW{75Uhsi&@oO?)#Uk)icSBU_r+uq4_L6K1%H-A)s`S{(8oV%c~u z4o8t1aeJq;Mnb0hSW`UMRU`JdZVZ72SrmbsWHaW?`)ZI5`*usb)fj^wceg!=5u+QS z2;GJLH$)TbghuV=WQS^!{iuxL+w@`BeOZ}kx@|)g=T9h#=^^RGgv7bKv7Nx!hWsoZ z&6%VLqaFIet277LV(WSAM>UzqF|>~d+fv9Cem0>uUHKWMFr7b@q9zn$v4d%DJu{E- za+8?i&TQcp8qPL^9_Z%1Gk(SL(D4cxQ9P4>^ z7hx_q&tk2;|J8+WX0qsI3Vw4NgH`=0j)pI@Y-*BK<87izzR7^5kciP)xUZrDN-tqG zaC8_@-;M7kvgYyD`X9n@A|9!=1=OF%eauQj&rW*>zWt795LPQXv3;Dt*vS}{U~}=c z7^ad5JKpOVQe3C#_iI(aE`&g0of!5VW(+Z66t;+tXxV?`_F&;v#qCPcat6iKAyy1Q zG1vclUd3!=*pVIy0~>Aquhy2sP+8pQo5LZZ7| zA)LLyNa#>TGyz+>yA88Hh)ff}-5vkT5DNbm9q4Z?n~qS}1c6Y`^Il{aS=U9KUS`?U z|KqKy%^3F4eoQZuxw0 zTU?$FW0>4}C1Qf}G3&p)P7}^>an(w{zKF^f$+GDd1`djLsCvQ{B(7XUld+%3!U8|MyO|!IfL1FR~g~SEl^y>XGc2&P9_B%+{hj61#l;Ka0db0)gAnh z0Pf)q?kIp$+`yil3^25KfL8Is1LH;>sUXs+tL7S}Nbz4-%F^r+P@k8&T zEnQ$0Pv4A(>a|e#EemsfKA0 zt1l2s#QB$w3^No}c-d(=L#3{>fD~J@&ZdaPuGFp-*1_VmY&C0X9jHRj_592^Nk!$L zYiLSjXxcb_RO*l+DZNsM4HpF7$fUsNTX?nYd6tbsgRp$?63fQ+ZVJiI+9Dy=L-jDm z%j0$|QSThszK9SMKQr^uycv_lcOmd@b>e=hYeB5~ha_KR2w|S85CptIveCBl@Y<%G zp5j5$Qbt16$q^NRers}uCQGVYNyBfuJ^V0-pFf4VbcB8T5 z9jFJr%s9BtdhAZ~;ZKm4RM2U+&T zT1PgVnVFOKh-gZ`a+UAqCszIs2BSwMXyp^Pxy@WJQ4EYu`|{PTC2lW)$kPnMw%cUz zUCX^kkVcOuXm7~j`!^^U!D=LkeqCq$5FFj^7U$h!V(D$t9L@)*!aF{97(!K$8du*& z?=v8Js}6qC^JWU2S%RT~D$dsl;pFVO=H4T5O*Rt<1+ThI_f!HjUj-UW4lH63`rTTz z!F(74GYYE$TY%r3DRbvepE=cR6_A3E*oeLtI$NOGr9E`YS-df;Dc|v1&b{qs`^N zkqI~C+VHHSSoYDzYHL0l&kZ$JQ~8{DiinHHP6%zHHi9c}yIETjQ^PvDs^GmvxC)8p1wQFreXFc2;)6Raw56u9p8w2*B0a-KXZzBgrhek zG*#nx{Jx10b{O#sciMc!v1mXd_qH#B`D-z@HC2P4<|{mHjewRyM@Xl_QKcZPx&Oe7 z)P91^4r9{e2^C7++#c^ z7xH)8jEf+tVzc4dD786ct-<5?I);}MZ%~?>H*dC4G_+`rhE3;+1`;fO&nCX&HkApd zZw7M=1Ln+_K1uX}ISd)+JGAn?Fg{f5C%FuP9>rX}6XTBY&wKdrRm~?=ZReXmBagfG z0``ZZq|_iNQMWKvzgUOXcRu4fHB4=$bs74l(kF~Aa{#a-WPM;WZXcrX#gG)KHiSRJ zRDE_vvkO>urxt23&uzKE?S~lTmcPg5(Fl)MWKSMAJl)ugp$t|s26#_WBkc$_&0b9z z!08rZaqAd1y`L#BUR9vBg{tD=K@Z)*P~wdY3$KE66mRjsOW<0nPR-CM{JBJOp?@eN zMxZZLwKTdV#n{A@gocS1d4#L_jccdja!XV$ZQqYy^zerKa8BTOf01~2Y* z=%;uo&#mxhxT+u5r#ai9XDc^&q~zc}Ee@z3m?QEQ($Jja#4q&Ix*N^;mKg=z6s`o6H}q4C+?z)mQSfP~ zjzSZ_+cG_1SCrb)ch21Gxkjfy4e`+k#pP;`;*WIdgVCz~ZtiJVM&LSiGYD>@>fN1| zU&G4pu@4c3|>eOJy;Wb z^Rx{%Q^`B{DaVouTT|nPFZ!|R5Go9be=?GBX9W>D7+docAq;X8)p?rsX-+uN27Oc6 z1H6+|{h}BOi)1idPQ$wclZ@#Bg+)V3U*bxz2pHT})jK$a#fo&jAg!%xhiz5n3PB}I zY^%&TO+F~zQ*iMbs#skW#15@v^Wu!~DQzNyH6H!5f(U`P@c z6Y`DCLytx%T303wE`SW-E8c@;)2Rqr3x4e6ge}5k#ZCiZW=G14Jm5@hZf4ql1 zz4URk9HeXmdrq5^30gn~DO}%Pp*h1@k+^B6N2fG<6tw81>W6}8&KQP>%IE?mzu_Kq z)){l_lwyo$7(Shi2_ntTgp_1;98{e(ClNIN5r&RyJ;QnJPJu&RRJ`BroJ|oea2f$j zJ+}t%b7g5OVkAp_Q3e6;%A%jMqwqK?}0@I zkJQ>IC?zd@SjMn);{**YaW!LM3ijZ4TQ^8ZR`oYeDb_mDY}tI#8|$kAKb@GO;*2*% z?8eVAOgtoDD2-z316L)4rJ$Up8M-Zz+86gyRld0AH6|Spspb!xziH~ey^y%(Va%`U zr8ehjwlW$=Z_%c+cJ+G1F3w)lZ6mXJsE!Gthp#AhXt7C9Z@CsaPG_uL}F( zmp%ldzIlKocmxYBRqNQweeX zNb&Bq^de>I7Z6oKDMccEzwo-vU+f~EvI5L*h$tZ<$`=d;4|q@p(PmqQ48YP&QzU() zQSbD$jP&6HMi`5ww8lrZV#p_HYTv~ER6Q7{GKRLuqD3Y1ty#BhZrVD|XzvXaUDLP3 zF46(x?FQPDw6cK~&Ji#J&;EduP0pOA<28?f^5*~QS9i8b93u?Gzl+&g7 zKAKy6x~jiSTM5U8AU$1)o0x7afYJJ1quQVp_{mvM@WGP-yqwnsxPFaBC4^)kN9@b` zjx}X=hsl86oyoAn;WR&aNips-4C-0wcW%!ORsFQ!suC6tMW#A+@UXs_X(^*K`=n-! z=r2?i??rh8os7vOSNnpmXg9`xV)^^oIiRl9c*|_zfQ=vcNl22$p+Ez1>Q}n^OoHmZaYlQdvCGO+s&< zl;OkE%___y2-pazP~ah>M?UFmzB7su5`p5FkqV`wRQ+pf*jq+nHgzEdqp)WtddVJ~ zrBx6pZfSbJwmh{Pq4b0;-m-De9j$m2lNG(Oeol{O$3W5~bu6PvJmYJAzqJy2jz+ek z3Wg2n(@*T|7_AZ&B##lTsy)j_C)))wn&GPkGsmiKX4R3QpifVQ+_9>DT|17(W3gP_ zNp*wTvBo^A5()_n_jf&DLoQYoVYttE*4I3qN-Kp|sSu&49tn!mt=)RFO4p26-8^Jp zxSEUFK!83Wt%POcNs;rh$e0OYNH&-iqZ>cePEhrCKvB{ONM<$)!te`I6O9=Um2((l zz}1IfU7lzx7E!E`hN6T~9#0vQN}Amz)QKKun6aitX~!`n+;_t>Ji)Sg{;d+~GEqRi zfgHt`d_6=TjaRG?{zy6ilC!y*ozGGy!C`BPE|99TPXf4EX%`qs%Dzn$Z*&N(~t=Dh$mwkJNPK(J^|=6LHvm1bXC8c3Om7c zgz2Gq5)-t#jqJ-+Ps%|QYEPsZK7EIc9b$UD0s^FkPIye!uZE&p!|PQvWuicj8OtIR z_Bt_xNwBq{!_7AF1{Fd?eMe0MHsS?uhxskDN|-qVi_=xz89qsnJvmA12vl#Thj}Y| zkM#d1`5e41g_MK=QQzXWSkSqdY9J5C+foSJ&9JiaM66FpJIvdI}@;KAHHq2r)LI`s zdLBjk9{lDS`#m%VFGV5cC6lOW?OavAvzWrF8O)r`Bfn@FMcol-QsD21?~=P45L zV_JCFRyH}1oVP$VFP^8xHD}Cr zE>Z{Z%v!V~cLm~yA~UdAkP2^RSfb+hBnQgkN)(>qCMrPJ6U8v9TRF{Z2WSa+fSX5Y zYjo}_i?Km)P@!Vc0$M}WV7I{u&u$ZHy%&VS{xsP<1V#%;bd$AneKGOOwkE?6s4pQN z-PWM`h4_>&p4ukax`g_t8}XLR0u-F-^C@?I_GJ3R)jfR)p7QDi$Crsiek$Rve|D}C zx;=$FaWCBi@;VZgKc%)e6t$beGKdI2o5V*QRod9*qRsBqAC2UxZ?7~)v zt4bqa*$PpJhY6{EV{|24TA@yZ#L;e3hzan+)9OOrnP)N0ApidGpp8?(*FI$97Jy2~ zT8V|@Fs&cHpc;6Ta7l--@p41>c&u!G60s7}Rv|tH>Vd`2sQMf9IF}{4lb=z8v|T02 zC6B6?EC+|J#^qqg1liZv-=zq%+p+!K>Sv5y5t=^_{8k&w-!x}oJNAKT+}^;2XR`WS zwHn{mUB6l!lku20u>$WCs0-ACz=f~ah4E zdAl~Ks^+FB>bvdWQn(rh52nfyh8m*>Qxnv2gl?Lf;eRjrE^1Wy)kh&<_{} zp8wFlyGIE>Y)7takB6-3aznAePuj5?8}eUAi3wP|t&LLeXH2zyGlmAcrpu~+J2b^Q zWR~IYm%UIB>vOkK`~$NW3a?{R4qw(U$G;IG)^CrmwX%qc{Zr;o6$-213!{zTbg4Gz zIYTzy)}_T&xfQ3Q>bJ#Hq;IsQ%FA_cs#981q0;=JD%TtUDBbr)L&U?eT)d(^q{vu~ zr3mLBvB((lXiha078$dCn)4%LqQ?gcIHuqyv9Q*?1`eGdGkIphzBPfR}Frrx1zxr?j(u?t6P3|uIAT`pM z-;g7v^7P?50ad1JYlvbHjqzWJ~4jOz6gg&{j%P6#!;sIq4Y&jKaJZ% zx9$plZH@T$u5c6q-@(j%obJu7&gs`Yj1d%5a_W4 zKW)E%i`W(LbkG)KOOVpEgP5(V9@Wqsybo@xs()&a=5)r-_I`l_m8q49LoI&kjSs1=6 zj%P#k56jW~AzFU&cC{aGazopL_W*onFS9SUc<2iGA^3B-Y#cPEq$8ME!7m%DmnVu} z#(`U(6l!!;FB?0!Ctwyq$bAKOI(ocfED4=}3ool#P_@#nlV?H2D{3Y$)ui^|GZ*a; z2L-%`^;OlMSJR`g;Z-$*N1tBLY{S-Yk%p+Qo*#JFlyQcv+up&xYR21#%O`KBHfE)xD_TbPPKWDBP2toc1)RG>E zHHU;&qxK`v}d(lbaY!mZ~vEIccS8AINw~ z_7GyPW9{)1HBInPQ*+p`8|PukyG0v4LF|d@%ab7Jdrc=GZ8uiX94Yc&m75vyA=Ull z4sf+EI;gNA=%CVHkz>I5vC~`YV-#a5%y`c@+CXK$z^a6YC(O{{*n3!zzAu>sCEMg6 zeU0M;^n4$IWV5GC&5T=;1}mb%l!vd?J?HIsZ4j_ z`W|(X(ZF?k(2(Yrsrr}yPC#ZE=2X9e-m~BXH3CXMa_U!fQ+k>2$`}#gfYey zm=w|8fqbQ=3B0vQZcf0)kwpsiBCaxl(H6WZ8!y?@HqL==9~qN!nv)A#J`x9wh8^J0 zZS?MVL>IrEO3FYsPRM&(Homh&3u>g{>5dOC0VMKLWcxd~>7cDWQsiI_8AG)Y4zKYi z#=MlGg+Ssb#xfz5FCUhCV!S;=bLNm3E}k(txL36Y@V9?aE|FN6gyrCRq$U)>gBg2O z{R4&+En1VwbTEjf9}uM&u~5BN3@sBn80Y&m)(7_CJTY&d$hvI@av!GVFc8DRJJk*y zAlr|8((Y|tJjx?D# z>V0lt^2K12xW)}izOQRSe{+M9FYB66|E^+{$X91|DC$4j4NSiNs)LJi2D?GYH&RXL zR5vL37O4r%F`@Jz`V0ZOnn0JbcA{YNaZi)@Tn|HP3ME%`o6v{*h|o|x18hPoO(;F8 zNshXk(C<0uQW61>v+E|fh658QIhbxjt*J)Alr=fOZ9?0+LCMi%6T03FiYG{ya^MmZ zOjoVQnNE}VfE$#Yk2Ikd`x#*th$@fR5vJDMmM4P{jvU9Po+|mRbdmn%Z->UYMRgsCY1UPvTA2S(*_tdrckmp zVM3D!>d=TB3MK)j2@XKtp^3%Z5={6^&6M(B-)Cx^ln;M?rnYm=B}hLJ1DQus^CA9o zHFD`}Oh@I2uyx+dX@w1#IeE&$qPaxnB1X;Nx!AdPH4_KmR$R=1HfZ)z@lY`zcoXewh8W8iSczzea*n@Y~mF zcZI;#HH0LWy&?2Cs-|Fm!BO>L{Q2&vnt?yjXO%i0e>PXCBk<>Hl{yB01|3(I;ZMbJ^(p+xI6(z|?gS;TKA~n~ zX395I?&rQib)14L->6UH&)jd-bo}}JTXih{gq~EF@|JPZg)s z0r=DCG%a?qt9PuO?r1pHa@ow^c#$I!gsyf0hb(<}BqBcTVkzu-tQ0Cm)_uAHk=l=c&{)&QsXC=PB&wc?uhQffoDW z1=?&(+4P-=Q!uB7R%u@it&;x_>H;iq z%@68a{CV&Ln#(Cz_@kPJKZk!*N8?ZEPwJES^U_c1JpA$dS`Cs&B>|bg(e1gBQUmk@@ z_9OqTcE+ckf1?E+g^ho!)0J|a2m5$SPWh($_9+ONEZGM&Ar;MenXo7SRuvf+ zK)?aXPHLiB?AiD;-D2;LKkr%Wq(H@LCk0Ni+KDbcvD&lnrmux&SoEo zKV4;t@~lizuF3YknAuselWMM2>|^lf7xvUqwU1}DJxRnl2^(!#+nR}Xyb>wX-V_lZ zsP@VDGuci>*h`R-K+yzC2HRPw6=9^0beSI?l{#O&Y1? zx}b#VWB`oEeX{V$Q|3>Zk(Zx4WhPE>k3%~zduQn+hJYj=`*i$y$;Unxe{SGT zB>rUM)Ej@weeJXGr-#G78Gp{QpM_5QYxvaM&wiaTj2I4={p=CY)89UsR2L7vYb8 z3pCOyn9{;N7=PYtf#y^NOP!u48Yfkwn#KeKt!W&fKk32Rm-t%7+w|>G zEh^A6YHf&-?sbN%uwT4x3=#PeMpe}$)bJ#|Q>c+ne?AB`*1E!MUX3;?CX8I(`CbVx zH7(4TO{!Vj*h7B~*QQo|MpX%?Mt4Sy3pWPRpKrp+l{2bggpo&oK8P^#=})&vV=DbQ z8EGt{Kgm(XQu^~pl=f(Kv~h~QrPD}Ce;UP7S)5UOV~t}jI{kjC$qA~EYjuptC5lvH zU89kKjV29^+tm8HMpc3tE6r-^$GS#&`v2~gCcPP{o)PS7ZAaCWvn491M-7c2_4oM_ zZY9%-)UtX;cb5CqRQJCtQAN4cH^L}z{rXe`Me4Qs)IW>V_w|i#^rvzfY52Uj zjPla0iIG6Y>zmMMRith>H$}?+OrG&5oQ0Hs%oB5L1ncv+`Th0Y33Z6l9N7i zbSgb9p-7!+WyDdKGOdj^^k+b88rzE0n$|`y`tz{0F^K+jYh$$L_%aY*M$P=$6rFcl zqqcf*)x9)X+-gIuo?L9J3;wmXx*9ID)eR`39d(5wHMgDqcBvh8=pq%?p2of+^=f-v z<%R9F-!2`D&Ri7Bk26fa$vbCeGw_iIN-8c(75qf7$wP3PUBx+$tqqM6Pzna=fH|b-YXtpR)?wxfc zeLL$m@OEe9GQW$?UH2}!z~~!#$uC`WMrw4`8A$uv++ZBBsE?ig9 zjj5sw+R_Y8)3`%7;M4Ki+lt+E7LvN@WZ&(k;S>HApFne5k=mAEB+?&8cb)v8?nXR) z+tJ+^LVvt^=xXTOLs#OC9@>k)dl>z>1pI<2dB0$FrIk@jJ?L*3Dyx@KicVAO(hYzb z5UhMUIH_LRyQ@8E{-%MU7flyMYEdtp*R#E7!l4T7t;dIny>-2Q+uImMuxTId!QwvJ zt>61-M_TqZ`jWP?FHPA+>fgRbD!bJV3AdwPc($PKQrOq1p?38%T*&18embjV`Wx}w zI(opehl=ZEM5}K7sW%t&H$2GjaDSsGTl9lPKNay3wI9l11=X#D;m^qohBVkp#=EQG zt`-h7D(d`wK0vqB>M!Yz_UcPC*%Yb!FBzlh&%lAYg}*nD2J|9Tc970r-XNnD$2tkI zPNEk}##5=$I)zRf4mM0Rg`UVp=H7#Kh4dS&%Wv0U-8!BO*4?^yqK@idB2E8As#cQj z-Aj{bzAI8sl63zYkgWT9VY04kzad5vC%OZP?x5$sw5CKWr5N5i7yF0k;wm@PNaMnI zA7<~8RB)fmhP9f!$r)Juq1I2@71DJ>kPr0(E{N7}=YNmm=w%vxOP4@MeZDzuj_@Pstob2g^w z?t3>)_l~Bc^fWVZ6sDg|4mTn(sH!>SRARQ_Eu&UMw$X>{U=U0ODW6O- z`6t`pj{9Y{_9ie#&p1grx@`C5*wbSs!erJ`i`r99S(j`0>dZFFHJXrvFXw8PKFl@R zaSBslJq0CG5yqw}xLdN6N($21=`>as?&7g}6umT7XQ1jhyPGUR*hRHeOk)hbV-2q| z*<&+uMkLcIGd=h$g}$^FS~TnG{5U;P-yEl73LkH@BA+tH>(O@GcwKfskJlcCPS6X6 z5fiir?@Z8@^JIeVYn@(Zw_Y|{aV8ESp+j_f*J$9Lm7R)PTA8{tRGp{;WKPuev2UV| zrPM1%0$1ZPggaIXqa!)^vf-g_O*A~+=nYTF{HUWMwc!8ao;|7kv1cYqm_b-Vm%vM%p`CmU_q#|KF30cyLVYMMtKZt@gbl@_UaQ*>FJoMIdP z4a2|H!|`lbfo%Ha8TIJTf;`&46sa%sbn50*9kAxau~1`G+6*I{&FcZwQyXU316LD(CL!uxicul|Rf@m%Ors3D)f`gu5cRB&mgxBe zG4%Qm?Qu&;E$KxTRM8Zwg1R3=uVB?u8%S+J)U{q(ieTCvw0#K1A`X!Gsve3WUo~2) zL-c<(>k6~3A?n|b6z79ijZnr3zzHF|Dv6tA1TyXe+=r7=gv+St*)+GTcf3gVCABmC zVbR~JqhgD@vkX@*kAW~4sGiNT7p{o_iE6`aqk)<~+c2qpbeT;)M%QyOIY=rjQq`T= zMx7GJRnQzG-V3)nXqRy#L058R)qTFl5MGHxKza2IkhvyhgT==GndN#*M zb(1?N)G}gx=q-@1y=Jszix=s{uF=a?TU3cwV;UKOYKAgvs4Q=KG0-dz`pH(B7Bk^b zrdmAL=-x)3#Q z6Wt6?Ttsa}N3;=mBZ{Xh+r0(wR)~7|3#}bat~5OI7aJ8>+6rkaP4pKjif4-q`$2{} zqU{j3ho}wri^G*x1&gT{Xnhy-T_Ng-9XK#GCwF9evL1xB#co*arZ@ANlqc_{Mvw=! zF=~Wqdm!wg*Pt4sIIevF`{?;-6WFo?;{(74s6T#6{&ibI!)G+bqK+>$OwQ~f7#yNQ zKgM_tQ3z0|Ta^`J=Q6uwK7sa$Ini}d7lG>cUS{~HBP$Hk zcKR5^W2(w3s(bRq0g=v{Dg(b~*TIWmQAACy59fkjAz+zQmiGs0!_zQ49iqH~|Hn{8 zDLZrD!s=Tzn*StNoAY`e`guz3T`nE=$cJ}9I-T!f@jWsa$F3AUwQKJ(q{~)&qq@<) zmf>Q!2JISJc_#)x0{n;uUSC~YX++r>{u%t|5OuN_<%6158#ccMdQ~US;+5^iGild5Zah485Xze#>zj4Dy!hWi8I~O;O^G|4hsvWCo_pgor2Kd`* z=eh?iT4PkOU3~)e3Aq|buG(rCNA(QaGw#(C#*;2gnl3Dr3?-=~op+^y_Q@JrDkPqB zwZ?+dkV>l!Z&RjpsAAs?NQT<5lce?QjR3m|xq-W>HQSj7s>F3hfbF3tM9)w)ts!~% z;7z))?Y)8am1GjA65cdQ<*zebIj26b^q~tf=q=A#)}(RJSZ8D)fF~OV!Z>RQd< zgP{gfOF?s?gtS_mIgT?FMij$Fx`ujO4c};_J7p#cVpM2;f)#;tHe#X07CRcr`L73D zFH{vSqh3Ol;jW_Iq<))r*035c7JOF+$L0yrWDc|!`p+l59Kj5akJsW9&`fk zq;_vL8hQ@32A8g2UDZdMjgIU~0zd){tTU-FvbIsP?YhPA;|O{}qsRBWZ8QY+_8Xp@ zo=y+()E@SM*e6s?{fh>69q`{RhQR^*L+h`+x6)2Q8xI5+sFJtRLREuAfJFG#guxJi zA#kjrihA2FsZ`L^V(+}w_ir1XlA95bN5DaA{u>1_s@N%S=W#3pVg|fwsHRX(IpHy& z^zKK{qHTr;7fUW^Zm61Ho{A-DyHVC|$m1c54^=TYDBC2&a4ZvnC!$YU3!TXTla>1p zV+31F1(>SxcG$z&41gKPaeXy;r{Ur3>MUrpcvK**97pjQC_P(eC+z}tDb53!2jA<{ z!A!%8eP0N=kUI8BYO7Os8MPQM0bUYHucc>PQ+d2&xclmemP5k_EoYKd_gzLWdLtWc zw~njw?-;{W#m-*%<-0ar4b#=3Drl7*&7}fb-QeYE{+7vFnBb#0HnOq2+W>KclN)6t zhh);jB6G8`_tQyig2^Up4AY}5<)Wsl-Ng$}J>x)V9#KK>8{^oWj{)eJH}4x+ zoSDx6KBM7m31voypSsr`#=nI2rE^JWg9=HshSx>)H4NyP%m>M%%+rP!*Z2ugd{7+? zRX+QS!RqO0dyR7n;wd$4zmcjA4fewCT69!rz|VxL#S3gdB0jOZ>N#lVLRHm%c8zF1 zD)#pBv@?1ECKnLx1a|Ebz$K?*S<~A~isdTAt7_^2V?0}52e{5fdo13xiuMNR4K?{g z<7GDc1%Mv4e9*{Ya0h^%Sc7?#eDZZ3?(ajpPfhJCi4WeR#ahrId$9c#+OO7}r`s4p ztGq+@=HL$){9(1Rpu>i=&PNa)S#6wz7_P?0z>lpNS4ZewNE?UZX7UsU^g!iLr3c~_cNQJ? zP@&z1958T%@uH#FF|;A}+ye$4lsYP22Y%-xyF+_J^A6+rxHxds$A-ay{b1l1rjol` zuIGPh#5~uo0$>q9=^vmiJ!L#pMSfyluSv7#vAdJ^qx9p*LKslp<9VouOkMzGyOn?Y?xZv94uXoqd3?(DNGBMt^}VRXC9ZbuY(2Obkz zL&FD+3DZ>aSH>9i(ouUrZ3nSk7_Z>$nC&;P=+U7gEINj%-JP7GuBaAf73aDOOz2gY zm#Mc=x)s%TQ@yO6b~i}f!t|m{N1t$(E>L$nX5d%oI{qH8=wY>zllSPS?C%sAHS7ZI z4Yju#Tx5(>#f`HcXg}xd>S*&$P`^V9<&3`sD}3mTS3PUAP}<_);Nlr)Fl+{gsibFi z$=WeB;YgBUfDek~RaG2GlOm%mH?R~~q`<{jxq%G_7#_x}N;|)9be_wesnTFTufarl z73-Pf=%Kf|NYbIFQ{TJyoKsY4Zn{Bnx>>NwQdLeF-8oneK#tY0DPDT*?KehsyCla! z9j6|jGG=i2mjPZ@S?95oJ#8=HCV@^;-rpE=xB&71@IeJI4h2B(eENoN-rOE%@3yAH zV!DbrW6a~2Uj=v-N#&~IzBLDQPME5Kxf|{|kJzt6eEmOJE}uWily$G}?}NT?HAcb#YSef3D(C}f zAE?R~>GHjf;zNKB$zxpB(Pc~_T-4L)#eMxSOb)BV7mfCu>_-3}Dep^0YX+YJe5#VK z8m-j&OZL^X-$8#zYpt)ct{7$VFWbH0C=_~o=4E3LM{peAIBJtk%jAq0J8T#(C2J>7 zLOyBbh@vWQku9^HX0_kNTIs~q2;)>IE zF#9e{b)QW2Bxb7JRl}Pdx(I`d$Wa#t{{Z|WnQ>P;&U<;-P3#AVKZyHUqzA8FGpt$n zC+I&}{eb+p4B{s0CthifZo=fIv*VP2NpDg0H0)vXHcW1ZskkiLX>F4CgMFR!9t`eT zb%|VA?`qHqJcRg=y4xGn7qt)JBRpgl`wQw{)UtH>(|g&k+mqP8Q2s5Bv@-XL7its6 z2lb0MwfjdS&UVuUic4)8|LdwNKN|l2Lx+x~UlG4-6}<_WGIqo0pnm<)-l4jKx-0LW zj9y&cUI1Qfw(lpykE_=g)VDUSaZzi%ZB$m3ZrFR(GSKL1`VHeHHZBWLwl=Oe)=`DO z82;YF=uK0)Fe*T*z&_^vYy|oy56#ZBw93#bi&lvvs|s4RHdX>0nY#b8y`-xFtp>d} z(9_ns-L$K|7PMNm)%sj64nLLoi(we)R)VVkP2(lsk;SP;z&@fjTBa^OZEtObqM=1o z?q_j2)=*dnxQ=@8i_w#Ptq)MY*v?-KzD?IS*59(1iH%^;=)VTO=}vw$g-KIYbkC@( z%MMZabM!4BwQ#P4pgRU0`=yJv71UPrsGk*f6_M&m8_*NCjRDR%?Eu3L&Q6e_Yry!_ zk;6yi;@J;6y3Vlb>{Pa8vNMM!CXcnRgTzCRudQ~jrsN8JOgFXguD#;y4y}7_taR$A z%Xf_$?0+xdUi9Yjg?5lDcMY$=^yCSNsoB}MXQ)%|3$wmd6DOU`)b@M!E`9(E2B3%r za>RoG2Gz#suha8Z6Ym=pxIHI9OH%9a+iSF;0QjH|R39BEA|QG6@XYLyxg*jo4~D^H z7{b(5MZX!o_HZ*2d?dYikj_SESLXuERrekkuW;|o1i*)$wGcTXXsnK$a&_~ecO}r< zI&{En*kvp4-{=}4H2bZ>S{w^;Y;85>JQcu$w)7e=ild$F#001l5OgX#@e05z^l}LH z*1Fv=1$0VnTxhL>@Rilqja;lNHq)R@QwyJPh|20-Rg*42R5z``d?xgnwN=&99QL`T z`D}=@YpclVB%b`kC~Z47AHsZf>Ji0C+?T!E2)YrYgQngp^c&YeuC}F+mRi+DA+%P; zdT*sJiF{b(TbU4x=L%~jOjcThjW!wmmpwAAfwo5F{bj^)it7N@)y8!`t7H=%8L~Nl z3+h`|`_$!5Y6T9t71~y-@7bEKI{3(*bhpD`J96KSL+k?B^`8(9mGrmaOP#Xp-$u8< z)UiY9{8(yohSe(eAjqEoFNmQk|6@2f;(f5%M?DiA-FC&H3g}*lJr*2*$pLH7q)d?d z*eGLPUHTR(K6E2J^)D?Rnw_Da3hN>-gjiTxJvsG!?2qkL>nAYyB>#yqlPmaheE%Gc zDVbyV3g9cN|2p~im=;9c{)O3M}Qx#_A04SJl6i@XXrmWW!g^0pGRMNnRE+wx46?dN8|Q< z0o{e!T}tka|M9)N)9t4RWVSrZegWYF9@iF@GG$!*6Y>0siL5T24magSnrAq1&v0CK zr~{$0TJ@qSJLM+`^`tg7!o_MhSIRSJ_$VF+?eMj%S99vhD~S|JhGW*%aRhV0mIf}Z z3QL*285jVDqK9@`!NiGY^4MIgmK2?b>*Ja;CYuh{A6FmJ z7nNb!x5{D>G*;!AW*1Jl9zZ=hUYl!2=6qkNKh*wIkiU^zIw?}?tNXP~Yq)6wgC_Lu z&?o;jpu>(KrVA(199GT4Rbmm<2Q3EzlpPJd_r=YgSX#oWWjGHmwpB~Jf3<RT2$FwlCaI)w)0zf* zLhPxoc$(I(z7Ig3aNNq#Wl_fVY#@YzYO$BuhdrALFg2XpK9yQk{5-9eZ9W9*5cP_; zX^ji10I9|K?xgN}o2I%a#Ww;5Bf@cQM5nCdtD>5HPfs<`9c2^@MirND@3Ky-i42JN zpx!oFE%rBCtE)a{J>SR?w4}4 zYf+3R0#BqKgY5v-W03Rpg~<>nhw}oVpp1z}+Uh*afG~rqb1R2(Q%Pk^>sH$eXe-ca z>w$XFqc%+I>gN(jONtZI!L)&k^O9;F%;upsi(_zku8S^&#lmphaI2%pvFDCiEQh!} zoTgE1^2(aB$6O6zwVGF+dPP=Q)7`G*gWw0%wTjH;GTH|44Jha&F04%eo2)h(RgUsD zxvXj3c-#VQ3;i4ib2+6N#6k7~@3jUo!j+u|qn!|UQZZr~4e_~57C=s%6@?T#aVXuw3pyVpd3M-t&71|0j?sm399R5`_}tspr0YDbTXo%Szi5H z!L(lBt}FaY=wDhnFD!3*s{0j8>oCpN(7v`tC9So%Oi!jMxJ=J+(t%IF;Dj}xK4(x` zovdh&cBf!<3XWNOfinPSiu3Od&pf>BZOb{x=ZXv5T@_U_t@A?{pj|)#)%VY~PRVOm zE>{uJtBBRrq@BFR^!b5f-t{W(-Gky=L)_9 z@s5>qh|g8@TJ76=qKFF+YcduU|{7P|R-=xzcHI&o)1KJN;v>r$ z{F>93f6b}${utt8DImuYrG4YRNB=*;1<)@W7{<`pAk1)>v@ zo4i$^R&jQtu$CEUj~%_C_Ew(3<`~XbO@NvaxILtoGjvO;mKmkDhR!V`1ZE)-YIh=) zC%GT}znjO}FsV%m_hOS6^`Mq%-N=lD7OAc^rj|;fwdATNah@$>pwr8#LQLz%UtNH@ z5}>Kw)Ea;{DE6Zjhi?qrSS2^(_?xMWFnfK_3{o?zt|@J*>o9unp{}wxXmM6uYpvY? zdje_=tu;OR7MBvVM)SAR8Ju>|+c}3Vp1e9j>*%au?&mbSKlVQ)HPZObH?1GehnvmwuhZjODn=GxrR@jne(Gw3*+t^2o4pk+_8H%{3GGpvw9S3b3B}#*n9k+EM?`23YN8n77NEOtj80x;d6-Q7|AwQSW~W<4I|mkXteW<2 zX3G8N*CD*F#{znrL2I+3-E&(+lF&jGB$`cCTwSv<*WzNBFOI-QsR?jH)vdeT@|Qtd z7NPDxpdp9Sh*mASn?5S9o;`&r7$~)R6%chL-P)_chucRW~xeTWR@<46x66jW~N%$*L1N< z^L?1TucovlPZsnw4e#P<+!r_esNDoq!2Tr<-;QTGM3FEEl>2U?E;9Ca>tGA^YK-?rC6 z$6;_BwV0x`wBV)Z)cbo4( z@iBWDy&5z}`P4H9(F+1iU*~z_B8)CZ@I{WGmZo+2@(S=36u&hM{Q&TTbK^;DO+Br+ zR(^uPPtJa71E+n)O<3H-973xhw01J^;_2Zwq}wRe6qVSgx>O$1IWV>_x1??~AN+ONgezE`mz~Ue048lTXwX=7q|H9y3tD1E8 z2}&{j?4k1o^!^vqmH>a?>E&wi(PQ9Pv^Ov@3LN+PFiCpjW z(&cgV+FM<-?$F%n9n`oZL1Pg8OoR?0aIttn^HL>-(J(|!m)?fm(LT=O3&~fl?`rl? zwI8~8aDXzPWmL;fW(tF{0A-zGSku!>t{+x_SRsDja8Ti~Ol^PIhL}I7e1gf>Ds|8#uQeBx%b1_m=&S##&poTfc zIHSVmV)2t7@ek2a~>FNzp zkNNAoAZpOL)KBg;nW zNP@ip?EtMqBo9_vqnW}QkUB%_tYVVPp~dqDM;Q+(J`!ht=)e@B!~`QvtUKiHBsV0- zvj)>o{4kqvY4w8EOI_<>FZlWb^i@IqD4GA6HwHi)pf2|`$8hjL0E5(kUS=ADB!DDU z)XU6Z--ZGVbxwS6BhxxEISd*;Xu=<=l6#rSrS(LlKIm;`JU2~@hUI8_Q0|~S9*`V1-Jw?wDGIEZEFc!JWWw#~(OrTn*XO{^Lx86?U+$%76#j1*v{mqUl zp_x4qPJuQBOMsym>AfYHX%MENG_}C911C5W(#+yIYVSNK&4xJpKi-s5G=W$%)m#|N zEp9aJi)ZZlkmeUh+*o-JDjr!EL0x2xK34~t?b(~9z)K_f1{1Xy9mv2*O>R3-u7hL)?d-n*|CX6w*V&aj%XtS4mY!wP%4( zpnYNu#ab&qiuO6QGM5~q5srSA0blA{G*LH!D&-C!=mV*tnW@Y_bk{p9MdULWCN zZGMZO6*)(R`M@s1(@;;VxZ!3$j_O;0Z|%A1C)bLq__*wOXy-8m_jqpf{~r8%YnazL zd7Nx-xh_MyY|Vo-NR@eR3b+RK8e+80hW`lgqxxv1IhY58p8Rhx8lREccI@tjV_5k1kz3_pzRnMJu{SDf0k$fE}F5Q&hjQkDZZ)^M~A<)&@ zPAT`%W@q2@tc(n6h5Zbc&*+h%_Acnp(WW)Sl#C*&WE5}MC=&Z#2ykgNCf&YDZ2-_O zqv*&QHc~!(hH*ib>1Jm*7#6`%GRagB6Z(aI2E966uP;1d?8|_zugSXqQ$c zXqBRH?v~~*67_LP4i^M1NG%>?Uz4v6P(4cd;8ve^u35=$y`d23&~UcdpM!=2&>fAj zX0K8)*qCh3HV2o&g&pOQL;tIT|7GHTb@9Jb^gqvf^go&7HbaH9IP+x z{{PA~2YWTNq&AS+Sd|)dpB`L<1DUpG?V+|;LE}v8=u9F&VibNGKtB+$%-z(w33Sl_ zD?|3bE3CSz%d=@=IQ71(KICZ`6%P&xFiMD0Z*2eHsBoZ=8$nN4^`yqsi%OV|gwm60 zCz#gn&-y^?qY@^V*=*b&pnnvf#VJl0r!CoFAPfdl72wh|xo;hm83H^+?ViK_S`B+5 z=tOnrWz+hB#|VHCXbIMx%9>?ioz%;Pl*>&e{}pP}IAa!($NaGg00on%ipnCb!&1wuc0d7(e)6FIv!#03zR5iGPq_1!n%%GPQ;mo8x z^zDbqeyhJdXJRd+3t&*7s?4yb?DqiPi?Z$t&9F;pFYw+doCLMfdOXA4HB7%oUr$g|i#)w;egd4{)SAUnR8*0dJ!D&S3gRg=Q5}E9{Mn{;BJvEBGrAGc zyJqH?6%`Ic+L4}vdagK}K1#`zaRJf=_%VbtcM0H9aZI(??kezAH01$ocOBq*6kowb zihdc1X_-UpqYgJ9-{AZmnNgg-U%-DsYve4bK{GvNg1ZCp4z+PCm~<}I&b6=l-G_ER zif;*PjSgzk+jd{KH$A_?;8%=0R?Ni*Isbt4hjYA5UiFk;-#mi)$f?MKXL?GJKZf{N zjhScP!hZ_zRF5OtM?d8~-?Vn)CFq&KX(i~V>vYXHbH2W2TzNiSGp0uX*rSCjOkAV+ zP6cJdPgPl9w@n8$M>J--;;0Ru%xt?*Jz(GwZJh;tjTV#_7uaKzA2dImHeI968D&jW z0l)##`ozJNg=V1N(Bz>bY-h?rEEmmnNNNqP>x#e?)#9aQSRh;T!Pn9bOc1^^A{Q2BIngzQQw zwZyKT#?Tt8Q}DY}_B2OgyCCGKz-43Fm9-NmsND*N(V8VuJ)uOegL9W)rB*sCbw*{{-V@jM;zpXGkd*QL(^azg1 zeRK&_R*P5Cb(XB;p`++g%hZR?;mLok)ZXoMu47Mu>8;kUr1nv`+VodZ`#l0DMqI)>XT=(enx)RCV=d z>v<68sh~IPbQc0FREyuDS$xr269)oyEK9)gL9x)!ovm2tbx~{SM#bBomGX6GyXCN3 zu6)*-T{!s_0Qk^t__=^y0hw93Lo+jmjig4WQ&|n;)d<~O{j=8eZM@1*srzy(Dti& z8_Wg_4gwrhCpMUk85{vPf|?3}FP`e;;Zmiotb7dZV;Iv_j9RX49O5(3&(yBw@rf@%7v|F z5C5#pkr}xdN3daZg^_EFs`>^sOS`z~2n*S>vkn;GgPg6Udw}04elLs;?+w{IMwQq= z;S*PxrBzUrt0%kU2hGpY21U90v0nke0czVeGnSJm2Y?UV&=>Egiu2rV29!9VYHl|N z8F(;14To#h-0fz#de7HURh`>TlLx<|Kt=5^=eX+s*Nahk1!h_G;B+ZpweB677}{*2 z;c@CtYDstzv}>9+JFA-SG$(TK+v>3V|3%e&mpO;ImpZn~RHn8sLr?BkSDKBd(WKaXZ1a86APQz7*!DND5KWzH(S|(8$xKP9v(3Jv%4AZ zn+{I238W^fWsxNXW+i9S^E-1>vDnkGHit!X)oq{I-&)XV+!DBDjOtd66Kkyw?=`JF zwt?10bvsUx*4sxbLmi?$XnRDI$ef{$hU;BW1z7CuKnxLaB zkH@#s@4k{pX6OM$>ph|OR2BA{DO_890Q$tJxLEctf#c~9+@JGX@R8|(0>snFbtD5J z4vbOve>D3ksOq}|v}n^>BD6#}JBkw+0x%>-UAsocg&&&b*e(?~RV5uXN2;y|snecN z7d|v|{Dx+Z)ty#HHVQ_g)Ww751P+w}kbzb+nZX!gA@D*gvsA$Ds@5l_HwRe)ZHbEeitg5L z`NVD{%R!f;>{C_kPiZ@&<5>Z^!fL4rpPSu$(~>7nq~EP+bv4x0D((ceRh>xX&*+Ak zmexXAYt=B7wuf5(xjvYq)eTTLa6nsh^BqPH>$PIu1cOa6D(JFZMijg}`@aR+7L{<6 zJYD}84Rn3HJiTd=tYh8=ahuf)wNLxLpqo%y+X-zadPfF>0)PT;DB5<{mvq@j+r9^h z9*yy(naf}=z+RNv%bdgg0Q+Oq=$qVz-4%s)QBg-}y{e-)2!n(0b2@_~07r_G^V5$E zrE5sq{9~veqg|(}X2w5(=kb+nt%z@c-cS`znW-G{F95&9sN}PB z+w1-*vowdk1AGV3(Gz*D(i($rl$Xm}X3x-pD;?q~ z@KfCfhpA5A+O4nzz5Rz)CReY~tVH=17jt0pN&LyPMLW zoOI6YfrGO;ArB}Xv3jgQKGm*sc2n?%`x@`EtF$2Gf9HOtR=+GfB35liG%W&#$ zNWjgHCgf~ffz>v(VN+X$U!((F8bks_a(?p9PA z1@iThnrRKCwQ73Rp7z=Sv{UQ4~|jngN7u*DRyJMT(0O_Z z^d)ughB=}feo#6rH92=|Ha7EG9t?RfN;0)v_OL`)SSMPvoD4acLuVw)^AqjRDUegF z$VX;my__>Pow~7|_Hf9<(XCR{$)C(pWyj{ECT6{yIGol$R{Ci$Nka_dxJje~q{pgL zUr;+r_{H?Imx5UkvbaVc+%nC8?9}0uj~x6wR{NR*gB;cJftjw(-?XcI9OyW->h!Wh zM^ld&Ic%g<_{$Jqj#b@{a$^4K<}Y-UM@Kga+9Vw?5U-pbm&~u7)?yySJhYT_HRZNG z2B7(L@ad?uJdWj6fLC=a%D7`MnCF1bQC05P^V{nHudB6p=sv%WXaT?iE;{5^&AV$) zj*B5JMw^+$w#xvPA>$cp**(*b3sQlqSQWH~2H?V5v`w#apUzF_*jGVY6|0gC+48iO|h-b67>WUv`vb8#i9BMYRCV$uZDhXxjjlOr zH{XZ!zWV4-TN?E{U1inM2arB+uJFHqw=4WZXdj|nQ`M9|=$xGnaTxS4(s`A^M*tt8 zd(UF2yy*I_W(8 zkyhI8x#9d9*nFb~|84f*guVm#PJQ^dIha=OyZ<&{Dre23i8-nETzUmYS7KGdK57_? z9@D9^EC1M&=?~C;h?R|4Wf)ZQr{TmYf}ddYlN$J#ZbxcgZvxz;K3kV}ER|Kzc-okH zKA}76+Tb1x?oqT@4A@#(N94HX}`fjyYvEW#?xM? zgKIo>RCL?YUaI0Vd&A)Z&7}@TtzykX&3b096-^kJ>YZoiaIPwM0Qcop9o7uyi|@Y6 z*Euq|$jah-S=z4Or5LgMU;e;RF@Ha;ap#qA7#>_o6<}0>bW|l>44`+RmvEHj2&zJ> zS_c!dr6s-S2v$=|I?RCOFBZL^|8X=mU|NGrzk1H}mC_D(YDTY@bc|Qe=>P0^7>vWz z8!tL0azYUR5tb8$r5vI5ZXg;$wB-Q_t=YZ~a2+c(!i^LXVy!;3`p#N$!i}IcLc;CU zAQwj+4$%~}Dg9J|E*<2X4!LsB3cOXmtHYXU+v0m$D(|}L>U1io9d3@G|D6yzz^Vh~ zhva4ces58{gb+E!JR)YdCt4$a;Y>3sE;$anEN8P{SY*it1Y;M-r+{9s-qf=!5 z=?>HG6xU&A({k8~kzqDHtJsRO7Yut@?aTJ7rtMc>sD1yFVz4^taF|qo{T+_+{&c}P zH*>5#RSrUcLF%EqqrW=r<_P7YOae{%k2k?8(cR(7RX-F4L)92}hqX)|1~3fqOy?*@ z0*th(-1d|9`tA;Yb=$*XUAh?!tI_$Mjy4=`Hoj-8Zk~>K24exnk^xngx1+R*_Hvm1 zR#8lVh7Y=A*Flx=rbRi)*3kb7#8*^zZ)#OU-S8ZvL|nj?1%Oi{bM94*=9X#mse zsJJ)j(yh0*qdvPZ6L=GQQ21qSp%T-_0(u9H|AZ`quuzV~s^V<>$cT?~AuYmR+Xp0A^B ziPQYZ^E1AVo-X=*oXb>%pJTSE|Bn}Ys>QoY2dnFTj+fjt!`nRP(T~pXe)SB0M|W3E zo7dx8D3|;l{n<{z9i>{9ailU>1+Yr(F5?*JuEV?m@CH3Mq=BQgI$6o#qtXMYpK5JA zwDomV_m;NyU4X-bBYG3so9bbJ?b2p|&8li8M{l(w(BZ~Wybb!cQ}ltfI?IhrNlh6` zPwUjF?10G*6k3F89Haa-Xm$_sgwK=(uaC5ql&HWptFaS9KQY|GpwIIYNNw2I;=Akm`;+j z&mTei$T{xh30B;nLi+T7;!d969QPM6`hp9qX+^uRj)ETLSo4D%zTUWFseL&P<+xL% zkd;Rzhsi~868cHRm&D*3fNxN!z3HI|DI@XoB^}dQ2xp56H&At}Og&#~-$DBh1v-># z;v&FB8Vb*%15i0pviQNJw!Q-KiXN>*tYIA`(gr`k;0K!A!W^wBU~P``C(xhjs0tyD zuIg@(!_$uMHiX-Cu=#GSqC*`HsFi$mRQI6agSypAs%i*L4kUW{Nu#H>c?g?_ zb<~L(jxJ@iKv#(^?RRLuqd3}d)N86a3}5Haf5GA}6<^IUnv?to03VcO7xd&Vwxj<- z`Bzs{7Zq2-;c7j3S9|dS^~|&v)ZFTh!Ca^>0=%f+38(Cmu?Lre3#dz76?2kHwz=9- z!x6wCOlYP$Uc=Fsfja;_F}kK>AOkM|FLkmm#Tg&$Fx8!!H0tW~eIfa(62W$FDg#ia zE-r+3VdEpgc1mTTl~q@R?eU@lKm}Dk#L>?=Q*pST@mfvO?$;hUOctR$jxPg>mWJ33K3xiw+Y39znm= z-$!AthB`WO?xKOCIpbvRuI7i?jkgY@I%-{*Ba7LGA zDzKy|M_&~kX>y1O94z((fhK>emUaSMhw{#|kK^>-A#5#s?0geP1sS08p z{keQb1K@+ohaNqF+Dq!;pr=ySv1g!6SY)E7b=8vd(31@<+bSfTx(lj{G9x*0=;*OI#iQGN zn9fI1nAO>Y6bMTaM!k)P3R z9rOfsgt*t9wjsKmY=yyAlyMt%Rh4!q@1_oSdyLo)al3P9Qp>TY2cR9WNg()wM7CV6YEu)-t%-jCNsKIt1yEJ;EU$l$wVc+}z>E zkr%?C5WTsLDirz&=qH>zqCWUl%@)oban8uPc1zD2DKVUN!P zoL7fhI?_3hw*YQ&D@9#(R*8LRj$Yr&;mQV=VQ`s-lN(%_mO-V~4mXbS8Vs%}xAu-? z4!gFsJstiC>Br)#?Cji`e}?!oJ)5b$BPqWvZ4?%?v6p~%A>CE$+BmW}jRyb^Fbi-c z<+pbDsnP8nhAW>bpxLRdW0cBlN3MJCbuGoA{zRxh5lu2AYuNl7^lxj}q#XBD1^c~C z??jv_)5ZJ*22YTo30wrv0G?@2M=>c`k4VXSJV@GcxbYBI8X7)mi0iGYwxvZ)la9sf zAp^2O53oIMcMej^v%_xC=t(dg9Z8&yCxB-?ES|cmg`FHY)~tOj51~B$G=z3@8u$bF ztB*R_TY^A}+haarrRaA15;*1K`mi{c%4wNED+ckt; z!+I*Jth1fUinrTGJs8x3$5yj$0?=4f5(C~w6k^w-{$iL#fDIr=ru zys=nD7xrd$bHq}Zecc=l>Cc01j;8b{BEivu{-h^3hPol5v{p!G#Aj^gC9lc2;w2ftC~F=UD>`nKzB8{hoh6Pw&(?b4=TL& zD!d2npK1Q_@Qbw8v)ZUHjQXmGo{sJu%>V#8ve1)q{*8LSr=zv;4d;AQelJG_VikKi z>bro=^HmRfQ@k0e^W>;$nVsqX_!u#J*0Quo_%_-8HWT0Qp|#iX4Ild30(|=l zxn4;Bqo7M{pyg%ux3uLfuMn`3!5R(n5W^cx){Dso2Ac%D#bB#|w;AjZu#-W7fZYuC z2zZ~t2Lkrf|MJN5gCJ+&$RRckMuP_?f{i0k;|46L6owuL6G4ATRAtA%C&SKLQ>zcq-r- zgOXkB0(+7EMw2>6UaKLKAd7$D$l1_K40 zsQyA8n(tsCr`RM(z!?TZ1e{}#BH#jpVFE5O7$M*)gERrx8H^^7#{JRQ_B5eoW?xNdSWd0?IL1B%mULB?782SSFwvgM0xs8LSWxlE-9~ zklGB^2#92`RzM7c^#bZL*eIX@gG~Y&GuSMk8H24|F#hQ-5XWSjn6zfFLqIzQy99J( zP#~ZSgLegVW3Wd+4+eV$(*BnA3Co`g z_=3Sv0besXL4Wc%$|5GG#pD|XX9b*Na6!QL3@!_}!r%vhWAO7jgBv!`e%`ddrTqe# z#{WA)?t&~!dm!K;gWm=G!QhdAzZpCc@GpZGy4qfpp#M>%r392_U}&Jnf0K#3n0PSo z7U09cUqBfKWd)RDP*Ff720;RV-CjAfNe~6GIuIexWLm7k%7{(w{z(@ws0!A~4 z6_ClGu7GR?^#Ss9O^s#JP)sH;Xe{6r22BM_VbEN_GzM`3W-@3cU^as`0_N7>@xPsr z`E1fbz#;~n1T1CHML<4-cmXRJBnVi;pof5U40;jBlZ@`{+87V-^)vjWaBxFFzr2A2g~Veo^1>kMuP_?f{i0k;|4%M)^+$*%%_ zWALYdzZm=@;4y=z0-iA_8E=>Bi}XKg8ZH7{88~c^m*&RA(sKTI{fa(l_1=M1Y7bc`OlSlzk3}OY;VNhQ{0|t!+G-1$OKnn(~1hi(*&H~i` z+cW7TCY>3?3+Tq6hk%|8`T(3km+8x3fDLq)8EAh?8^m&wfMfVFHF#EHpj2CW1vXV6B#3I^>2 ztYy$azy=1L1iZ(fi-0W}Lclo&X#y?)(EfL{kV|ZmA>cZLECDwd zWDB^@AXmU02IB<$%3y+kKNw8ZK<|GaF_|PLj~Pr6@RY$+0VRUekjK;SU?v}kNiu^20&*A}6fm5@VF76j3I(Jy_*g&|gHHvF3+Dar z=R#g)lP?8KVsKQzs|=0_n9ksYfH@3K3V5BtX#sCDIMYqmA8#@_D<;broEM-NToAB| z!9@XYFt{vWJ%g(PHZ%A^z>Yj7KMHw=!3_cLGPo(=eFnD#e8Aw2fDakm6L6Tp0|6f~ z__Z6xKivgBW%9e2e8J#P0cROJ5^$WsKLSoNcp~5%22TZi$KZtoJK4O8OiBuQ$e@&f z9~ig@_=$lb;3flyfZGh*1>9rcDd2Yo-g!byUX%I?_=ipW1^mk(K)?$eq^y7!8I%{` z!l0r6cLtShke610Nsvv_d>K>|P=-Mb0c9Bk3#iN>L_jSDVFGF}2p15>ATLr#1e0h1 z(F|e*)L~FpKvM?w1vFyNP(TX?jRmw~(9{C7{^-o4xtMfd5GNp>K`Q~>8MF~FfI&L} zeHnBRFo;1X0ZAI^b_z3g8>ZC|E4e* zC??Yw3>Gk(L6U&E42B4p&mcv>A_l_*EM+i4Kt2GiKhlJ(WRuYX)-lKsu#rKQfVUWA z3)spaSHLa?;{@zxFhK*o{@BB0qL}PsFiF4x22%taVlY)eA%p1xK4CCZz~>BR3HXWt z)*o|(9AlHY0*V;S6L6Zr0s-GLSR~*)gCzpKXRu7bWd`{Gy#BbxWQCag%wUy(TMX6+ zxXWOzfCmiL3;2z}Mge~^*d*ZZTD<<)EaVBBY!y(F_te`27z}m@aAUAbfG2|j0X_`g z72wZc4*_fa5y)h(n3QMmfq+U34hRTha8N*X28RWNGAI-f&fsGKQ6aqk_*6(Nn|v;y z9)m9hG+}U5KywDi1hiyuLO>e^Ck3=;a5_QOADx(-5tFVA&I(9ia9%(k1{VbMXK+!# zKn9luBr>=vU`QU5AB3bb_z^%q#_W#B6ypMk%Cl?(z1gr!P(Trb#sW?=Xe!`a2F(SWXAmdgdj_opT(;VO8zI-&q@92t8FUcvGlNb7 zZZYU0;4XuB0S_1?2>6XbkM5ZNbpiazq?efd&7hBfCk*-tc*bCWfRdrQ8x0gtn!#WJ z27@F4d2URG2=Qc)BEW~iFaiDyMhFOGkS3r!gV6#iF~|@Q#2_nANOdOJ0)iRj3J7H| zPCz(=2?C-ROcW5yV3L4(45rv1FRdYysWwS#!eF|9<_u;EXvtuffHn-~2x!k>u7FMq z<_YM^Aa8+?1SX3F^klF^KpzIn1oUT+FJK^p6#^0&tP(JU!5Rxt|4U`ER!l}PSTA4{ zgN*_*7;F+ShQVe5xeT@n7|&pvfQcI9rR@+hnN4;Hn986)zzhcO3Yf)UkAT-0>=iJN z!3P2sGC05h{cj1AgJQCr!C?U_7!(Rv&ER7JYZ-hhU;~5C1#DvQrGPB}wEjLSWE-0t z6R?xP2>}HRP6~LB!D#_|8JrQYpTSuH2N|5#K(D`#Fu5QmA2YZp;4=o71$@cis(`N< z{2<^2gC7N)VsJyi83I^;-xP9=O>POez~GL6OAPJ_xXR#xfa?r?6>x*W?*e{d@FxJT zKkhJjBqsM6{3GC322TY1!QiQYM+{!*VUOsK8I%<8ltC#0CBk_9;Uc6|m>$6m0j>-j z0vrt71$Z#<6yVLkTYw(}UjYFO{0Ug=k8(@`#H1pFvI43wC@-KIgNg!bGN>#dgh7yi z+6<}*hz#TPcMTyiY!WP>E`tyO4H$$8Xv`p7Kr;rB0^%4%3uw(Cwuh`g+A*msCLI~n z7tn=4Ljm0wG#1c$%MAJmn8cu;04p;C1Wad(fdXD-Fjzp|941LZUS}{w zzyby-0v0nECSVzZ5dsv0Gy$s^j27?)gN!^O>zQN;c#}c4fXxhY1-#8*oPZq+CJ1jSL0f!mP6z~y)Spq&~Fh{`e4CV?r${=r^kmF1i z2sp`Lk$`U)ED>;)!7>5gF~}Eik--W9|1el(0a}0jz+{b>{KR0bfSU}~3%Jc-qkwx1 zHVJshV6%X~7;F{ruLgN(+l0Kp`_df(To~*UU@|BW;LhM(0bUID2=HaFS3nsCA22}w zE6e17m{eeJP(Wn{hXqt+P$-}VgO3H&V(_VeFb1CshybAV$CpB)+2p8zIt-2psL$Yp zfJO{X3TVpUw15^2&IoA5;H(CE{n3`mc`@n0;DUh83@!?YXK-0ScLrAl^kVRXfW8cV z6fl4Q)*m;73}Ta;0+JZq5-^m(9Rb4_+!HX8!2Ic!j|e0aF+}6)=s#3q9=x$xH?%1yJ`G=Cg^5fQ<|c0ZSP;1mrVt7qF6n zr+_sKyalXd;7h<-f4s%SUre?#2oSKHL0JL27?c;Vn?XeZdl*y}u#Z8IfCII8{ZUQG zw`@{FKp}%*0iQ4k5%4*KFacjN2p4dSL8O2p2GKob{c)N}teBin(4`YVEK4v{QG~E0OA2YGAR@4!NHbCdxhSY$*M|x!gkF4# zh$2Ow`215Xh=_s>dDj0q_w4>ie9zCvxtZ^rx%bZOl)E?iaMA@P1KJ4`0Xhmy0dx{5 z0dx^419TTC_dsqJsRZ;9s0Q>Gr~%{()B%PFOat5~FdcAf%^b=3d{q{5tt8{EU*yZ7Vs>Fl!!C{rV1V;BJ9cfEfa- zy+GrSSt5@ipk2L7<$JY|_F+wg1d;+*6 z@G0O2ffInA1x^933Y-D_Ch!^HPXZo)d;#&3uAKt}3Y-Uo2wVV!3tR+P0^b3m1TF(& z1b$$U@khMKPY6j8xB_S?a1}5{;8#Fvf!_g{0)GNJ2wXSXHz3K*lJSQ>q_czs0=fwV z19}RC0(uLC1NsRVfPn%Iz+eH3z&rjJDiVp1n*~|`h6%&~ZWV|Fj1))!j1x!#j2B1& zOw5w;M=Hc6A!&djfeb*gKpQ}rKqjCHax03#l0onTQ90*u0`wRlC6c_?f0z(0h3ETvDT;LYKI)P!M zG5&a3WH>^e6UYa=C@>PRL0~lCRe`a9*967^HVfPV@N5;i6S6~KB4D?`B)~p_$$+;6 ziU98jOaUAeC;=Q2DDyy$h?E096sQDzEKm*jw}$%6vKr6{iKzpe7MKS3OklbIpZ_mK zW+3Fez)Zk50k74U+j9jIouIc5Jd|%;OJAQ*YIP0$0h~#l_8AC>6&M8I zjOi3H1duE+6u`OBDdHwTx`5{vNIQ{X08WZd`wRzk637R15f};RE-)H!y}(#NAAxaR zpzpt&E1jCT10lHrcLF$NIz>zb+$b;!P#`cFkS9Y08U{}5j6l#VNOs7m?|($fbTy}Tuvd=5ptKn3;<^*r-+$=y9H(g zW(mvzaN=>=<3&DH~`?}*%WaQ z@Uy`C0M3$45g!146F5TP9e;3YYzjGs5I;GK9{~adJ_dvcd;;Jc*i^@-0K32mK$O5K zKunH|Kh8knCFC!T8x(WOM z=qd0MfOAq)Ggkop1g-)&2Q@|f3K%T#J7B0so!ph6%HP%V%E@Jtg) zV$s=Elj$d_B-ID{?~T)ZYh~%OxecJLKzqOpsWA(1zd#OPkw8}hk2Ly>NDqW?LTKtm zFMz$XhQ5GV644*Psi0|>fdI||O)v<+>7NOP0G4{M|DlkFCFCZ+BLcSoIJq-bG7PXr zU^swtH&aADV7%R!XshFuFQvh!ZlmOlnCQ^ZWb*8;NvoHCgr<^VjGMDBxdl4J^*2l!cFK7bP=Q^Z2R zZvu+}oEVuR8UTKB^)3Mf3M}(LLPQ=0Z~|niWF>&}9uuqrL-6|fOLTa0M2Ag5eEV7JRvz{fLwu3_4Th$04E@(kP`^GQQ#DSa}QI*89<)EX8_JP zOc7rIMhTn)aEf7yI1ljLE^-0F8HFk2BA`IvI{>EZ+65aVLJ!Rb>?@34x04LC;O0EYS73dA%thp4?7jRslKY(-PQp7;ONr6EE zJpSV3xD+x3A)gBj1#n(mins~zwZJU^&WKA9!vL2Ah66bJEk)!5erBNWpCcih?3O}C z1AY@23*h9o6fq9qC(qhD0G!d5BJKo)2uuWUMq7%Qq(OiGw2Mqeh$T=2h!U6rh!H3O z#0!)GI4dnRQx0e;Pzm6?v;6(D8q!)qY5<&EmLlo^9R#KUIFl?zOb2upm;vCNu@o^A z&{JSGgGWDmIB6_}%t1&$f%^cQA(kTM0R{`q2XJCoidYD^Szs}MlfY6$1K`#!^8IrO zgmb@A$TGkffrkN{?3E%`0>%rh0&r$midYSB2|Nbi?5z~BmcS#!f?|;;5W?wMDP$d> zLf|PtwZJogT7l;P(*#}s+#~Q3U}hKj{<#6-k&ssaoLH4QvJvorz-s``sY(%V03HRDtw1Dzvw2d4 zrv)TSBnH4~JSij&&{ZG-z*##fA_>q-AO*l#Iw>L*!09;&(!4v$idj*C9IGH6y+ys~_a0`IbSW?6=zyg8c z08VAeUff8o<*6bpXyyNfDlDkQYU!12_vM zh0FlFDlil9n!s$pW`Q{X&NxYR+y~epFwYBg{c}=D3Ym|PeF6&soIjEx76aZ9XaI1U zNQzhjI3%zP!08|<;$gst8a!nyA)E)2LRJC(EwCEE$sZ}=F~DhowE#}=ND)r}z7$vo z_(tF<0lxk@i6iav3_`vacn-k18Y$uhz%K$X0XQooMQi~4A@B--voKP`MnC`qUH`8^ zI0GYvya5Ok*aG0RixjaHU<45B900TxI0)c0id4t@fGmLz067Fa{yqZfDj~-JoGXzcJ_7U-_!z)>5h>ymzyN_y z0h|btB2EBq5IDu)(T^2QdPpH>5aJa048SQ4DdG#j2!V3|&S*#x=K;3~TmW$XLW;Nu zn9xne-`_zvfgy!l1{4bX0N^x*6!80LTt^wGB;sBHe*otiq=-PkT!CN!Cm5uNP{0C#aKPejGX6Fo4@rmvzQsx&Yo6=mt0}&;!6}_o$BR zZ|CQqJ^}v{>5UN1wnrg-0i11*pg(}K>k$kDoD~=Z;2e4sF$D0Hz)*naTalX}oGy>{ zxdrf}z%T%(#-oVgfd2^O12_vFMT`XeB`_MmN$@CQtOpV#G7iAW?kMCAfKA{|0B5+P zh=~BsY)3E&z?tm`CIeyxihSUqtadtNiciWor5){40%#{t2H*^K6j2V~v~>iPfKCF{ z08UFs5jBAB0-icZACYMcI$zt}^b_qf!v}h>HPg3NHcK|o0n8Pc2Y5hWAz+a}1K=S( z|J24Z2q&u}co=Ylz)AootD}fj0H?re0OzZth{pgU1l9sLRUJh8{ZD^*$5AdIzJGgW=w2{*zzHnr@qq^7HBEBcJrJN9U%>J0DLwwbM{oEVl#O=S60_b05j zuArhWySlP?C2i~K+oqm85T3pw)uroh1D$gqJSHq1s}$5JtaH=V4E5WAa9dao%zT$Z zIy7C)P*dNfkWMfUhqP|Gnz5ql_E0_@?Vy)9s1;Uq_xjzbyO#njI7mS~v3mGmc!t_> zkQ!^*)H;QwVs*fK6w={63dwA0ox-{|UCmHyIHU{g)%U2O_E^=uxg@>GfVO;}g0h>g zrmGq6)8~=~Tgo8=y{jLo&WFNNSL~9LKDep2TCuE9pO8LHwPVQ@c}RDc(I-r_w!;AFYe~WOT0MFi#fb_ zlNYmi(ZGu}yx7Kz8NArSi`RMa9xwLr;;4t0AMxU0UOd8!XLwP`ivnKU#f!Ijv5^I^I|nEmQ8L5DJq{*T24=gvfBt6>_e*Vt}L%|6%8#_ z5l6yr^E;wSkA!Ci^W&$XrSi)PZK<{#2~P>-$I>i%EG;;3B)sv&5!?OU{C25HK}I$e zOM{G2j$N+nuFG2!lJ`sqCFV?1%O4AjQrqH;2-+SUY;>aHhG1hzAV0~}(I0H7{$+>M ztHH)FkvTuuZf>g|a}7bmT(z}T^2}?n^h$QVtHxE~rX<+Z??b98#OUaENUaSq5`(!u z?&$7-mI1u&bcm5p+j2sU1lg9Na`y(L=xuj}8pCPZ@(0X#X|?mu(vQDF4QGt5$(}!K z)JS)6jk~tCw2IQRA5xRTjFz<1oG_yU6%*#0$+GXBE4GXf>G3UU-xXUcb>_{W4$@{G zfb>+jE!2B7(aNt&Ky-+AO`VOf#i-Pi0XFG*xN$4B(8*?ubm+bWjVvuHrYz5g)KZ%f zE3Fz=ZSi(#HDJ`(!MyQ^&4`v}+o(-n2eb{+o7M8Gw%Bw;j`X(a7&Ug}-_GU;!^om` zJ%*7Pt=l!m-8jg54ytOng`I|xA}yq<JITsPCB4nKJm(%(m-OG-;vPg6gZX z>+`nMZVZyHum9E7$9uy1s`X)k@hZn*w5G^?3(Yv*!C|CRu`b$(QAfu6r>KpC10%dU z^iuoA`SF4d?4+!2fi3vhW=9y_YsT*{xn_1n7&pp+wff!G&)aBs z<@zAFyRVL(>aNtlp1!pKYF}F5KyP4wUg@T)|FGG(`ur&4X6a!cb+kiZU$&D`#!YCT zi&|IWZ}Wb%oBp&7<%ofc%~rBkYvtz`(mIe&g8D1NFU8wRhH}jh%+TlH)@UP5V%w

{insFToY3bdutvb6bux+OIq6x}#RhROG$oHD1SN?Vl6~q_`9rb4O z+TAm%u&TzlS6FU&aaB!eT}g#hqwf0A)}p1iM(1#MX>rNqs+!t7cU?_sp|_=2_3e>> zSl{W3Q~Ul5i1V#Qs`YON^JUgC)@Vh=@K__kd-V=3aaZKmR8i1Y9N%m~11{|=-17={H5igj? z54l8rc4x)uYj=H|(T+OP=}|MS@!L3K%|Gd>x99}j*1OcdPZ-Hm{BpwR7|xGMXN7b2 zf|csXk46UZ$dg77jy-AINX5~U`g!Sh%E+U&TTdDNsCej6jHTlJvqlXS13uHczx$bSyIrM7kX{+7sd)&OZn1RW$2xM@z1jdQ1|y;Huyd8^Or_0 z6+O=xbEw#Q&e%_d=PP3s6*1@O@v=(|Id5D~#jNv27b-TMH>Ok3?rWo-iYLD|?x5n= zuZ=P)+!qWF6<=O3+EZbDqazo6V@#p7%ikCkR7|{R)KT%_MI-kH-JhF-@`{5NtgN54 zGP5B#cbco5pWQrmZV0?#@X&nk&nExe?8?<4u{R7>u3Gw&4hM z>9i3aB3o0`_Id{MyP z#rhpq1HLmdf^|@$S|1#oNLRUDYr|_vYR(LQTd;`!v;ujfYV}JN0k^gH*jCbSG3q~vNS)m8rg`muK+D;EDj27zs{{*%0JG|;=BTga;P8-Sc)10$L zocBPIRm98w$uw-xeN#s__{XZ@oBSix)U!sIoWCfw&p$Yt8awo}(J@-b8DlDI3ti>z zqP*Pv!F&jgD@F=MWL+`Z$WHClK`Xd}T}KD{qLyDVVx$L`FBmNo^+t2BtFo%HlxiDQ zA%jO|)#n={+1tf5^^Y(8(<7yap`!|2Q>Ijv7jdiofAJmtk#A7njqXY}J?NXnaedas zYxS*44$h#?p8my%q2kIfMl0#mhKs)5$EXN@dkkMBjgzh#i6OE2u^Q&=v|wfJtd$Kx zlj}=$4;ml-%XqdRPH#C_t~#nsldm~h@wTH^!s=>Vm9DfB?7U%8W2W(g^2N$@?%e@_GRs%f|MKyS!*7SV=~n)=F7C9Y~O z7CSwJc9t8aSC_j=>5}qpy3e_pHW^;duW=XYLn~ioPo;D6&?0-{6nzE_x9nKZKc+EbvHfv-UwtGtX9D#s+*My#P+e0%H$A~k+j$HSzQ>-Bp!>Pc`5yJhR_(6g>#u;mjZ=42 z|2_6txpY2rUf|=Xbxm^@R8$qY`8ZVN9(!U--IoYH=cR@8?98r~pS+h!tZMnQzwfyg zr~Fz6dmoLS-S%kjvvv$lm99Lg_pq||+B1vg82Q?uFM=+)d9~Tu{(h@8@41c( zzq`g&?dz;a)9$m>H?&Y^fAVk9_&T-N(=S$?_{H9%l|CUZXCWPMZN&h+h98Fg;f=F7ZpuU?Uy<}JhjPxWX;y;BTgmjm|B!tTAAvutf!|CJ)qQ+mLq9Z zWvHRnzG!ziN~fe2WmnSIaA}H01Id1As-fDEU~AHt@>@u+HEV(qs5}vlmFoA~?Y1C& zg{ZsM8;Q|WOS!u;v&kOqQv0hp&)Qq4rLWq9Rj)`#nz9bk?&BjJd1~2j;ejgWRl9?a zytV1ujgOrUORcjUiQL21<9%D`IL7Bpn9%I_eB0Cs!_ihvN_PaR33f-UO0YX3m9@>c z`j7o#hPsuGR9!k|2C0d5M<=y7$`P*ieC`PP`{{1Qr<>0~Kw9r`^%r$cWkxwBtM|^@ z!qwh#D@1LJbeM6esp+W|^|f`WlijJ_Zq(Pgi^A2Xk&bpbzK(ehN1vwbYo99)!WYK} z(Ac;?%JBkEt5mgiv}&&}n)c2tzBmg@+=Wx=xgwvutEQNrdi)m4arWiGdK*WQN3RcX zx+&hEadIi$Nc1SLpYDw;an{ln@3p66r#at}=YClT{j2Eu%~KYRpX~U_^8M6czgDmA zg1!e@2r88oY{{VFe|DFKm2Dg?Tj^c?)<12&yQ1;WHja04Tk0MrI@77oR^2_-?t;nm zexy5%z5?oZ`xhk+ej^8$I$E{Rv6M2Jzx4PHQ1vNwB*yES|HuA^RTXWPafeyzi1Ut= zyf!ps$Z2f)6ndrQpYHgv`1qVcTl5^h2Igu!gULACM))(F5J;5$#BXMX|bzNyi z=?p!jxNEh8AH~a7JK}qCC-dxnc~Ly-2-icHg30b$?{Fk9#xJiEZ!u(x9xc!)YnM8+ z+R;h|b<&A+86q@oULR$XhUsg^qmI~Kn#0Shikm;6nzgNC{?_K<#-)!sLits)dN)0w zcB%cl9Xw+AdbcBoiiAB5e%lO?qG*qU-!H57IC#{wTk!KejvP6;>vuac1wVmAR|R znWC_{D+}puRKSlv@Ak;r`eOPmOC9f6P|fp`bhjN+d)k@a>46mGu>$BT)uG0}+L>?h z9Kc)mn0HgrcZPX86{}{L_fTQoYd#RFugx-Nwc7KOEm3W~*DRndaWhRms5vvuSycQv z)0`(4+b-t;x&&k{Q9V7&>`PnE%rb{k(RQ{ugo^Un<|HZ(%{Hs4=kk{S^i5T$Zvn6^Rsq&Azwjg~oFy=*p-OCMl^DI4iT(r>Nw zcP*LNl_{xLXP7;_Q&K6ab3#D0G9EB()R$}XyPcIQH@LH&g(-i)%%E*NzbpOfq(&U1 zeywXAkmQ>%$r=*Y9Y9ep!Q1+&cbzt87RSYRfld#B5IjyJpM;dAr8x!tu3%(xOAXs6lU{}ndU zdpSn%#4i2+UniJ$9Qj{6{(Xv<+e}wy#{{SQ4kAV!%?;2WGtcMBr*V0LC56IFVgt^E}qisBCO2x26*RGSJxd3V6w`YACRg$eE2~#D@v~1rgNRq>idNOF&*VPF=gWO?;n+I5P#1cTva)xw3r_N zBO1&^I;aXNLb%5Ih6L3)A|Rph#RfCfCU|;x7>*>8d!&T?~1;(Y-W=4{(II7vU?ELa7 z{?2%)k>)E$_|ttpca460KDowBOXgoSH(0K^I#*#yK}}Uv9X;dfO5|72^(y~SGfDlr z#{8J}I=a@33*qqEhFCS?v9P$t(8taBQM6_0Ml*qmmp0OExl0}1X!5Z5>PE8z6&ah% z9x=KRdu>ToO`W?^KU}Fl$5r(vGurRCn!m|R3*->xM?d);Z#=xoe3ZWhmA+&0duQo8 zW_S5E($bmDuge-YeGM#h(+nHG5>LKk#>?h@&LO!oa6#d*C z<(xp9gXwETjhp6uWt`xwAPXz3s=lYLw62`r(>#!>b}k^cc^l%9vUkH`=NgWuCUm%O z;Pr&_1sXijFV^WM(FYr+*6s+TxkSB^xoWeSNq?uPSDN)+i{WjCMo#tA0f}mQ5F+&D z3x}lzN21r79)pJFy+0n!A9T}>a}aeoBP6!*@psK){vd-+n*83*I%)E&ed0+oo{H%w zP5$NI^C!)zR79OJ+ePd8jnOr(!l`tYd3u6B&Jm}~s5seFL$j(y7-+DmjVH~-!E$h6 zyhn9aX(bJJbbN%qxBgZi_t!?>_h_iAM?n%>ubzC@jBot$l({C9y0i2vlc$>xd_~Xh zUFs_;y66wEgZ`c!T2a*9`>xm8+d05Dd0a7-zqd-A>gZQyv|NFg>8A+YrzZOzZ=81C zY!gTgJbuySY3(By%{;#k8dJVCe{319YyQ-El3uiz4J$@%OSNni)6Z`83*x`vs8u6c z5nnzQ7}@x|-Rc=c8&5}CJdqR}Wp(%aK%I)W64YM1Wj4B_ti%5D?1*r-pev1jvok0t zUfmvJ*(ts_#&UY=^qUrv*?2m}TCZ>DcwOBK@myUaRre?B$t0_X)MYv?sw-J-O0tqw z-()K*M0c#At6Kg_ShvP!lC5uehh?c2&+@;WYK`y)bXFt6{adK~dqYwhZ*66b;l4lH z#^T@d{;Q3ZPeq%ydTnf5>n1vqC)--d)Pr4Zt^FK2FU#V&{a3TBex%=KSwjPE)(6ey-5QrRXb)}9B9jrS$ZLr1H_w%xLe6ZD#)&hsQ0CtSzH zF?D)~72k{h45uN?>2_BSEv?~^x&{;AYfW<~GYxq-Om)7&itepBoOz_HvZ#t4C|ay* z(yW3I_B@^$IHu;@V6_;pqeWfxEl#i6b&zZNfA5()jUIm2VraEljP6GsP2IS31D9^F zVuN)wP2N=p#n70B*OX_7l^Vo9)vINltqzUThgx3`pwlvWzLiGB1M}&6+og8Q*Prsa z`BooVOIx7N8ssA)v>{9lcjgI4X=_0^(#zML=(E!2~UI7w!PjSG#P&{AZqt@QNBav2Gq{QR-E6###2kIVf>8ku-W2KN&aSQ z0u`@pws=(X>1K<6(OJ1gUyp0I=&S4K7JWH~H0tZ6bEDN+p6#DF&(hU&cAFKg<~Hie zo@=!D8=GURHJ*yHtrmaJduyx3a}ejYTCIcE(_hQdQAKRCTFA+x5z`hr19Yf-zK#6R zBk67DoAl>D=~H)Ywi5iyK2+1US;?|bit6-gNNT#?BZQuSgJ{mfTY-&Mhr5gEHkrnx zPHnT|gSi^I!g5~=Y3cW&O5Sd@(f4kH+IJJpx@~L>2@5Hxs?_o2+pTPABvakB-D({s z&i$|&>2^A%E^W6u#OkIUx%Jc0S$#{W&O7MNJElhLuwtpD(j8V>pgx96jaG^!{k?-e zApPe@AF5qDtoZi2a}i$6rVHP9@H#v+x1y?sewojY%T+tA1o^lRZ?$5)kDt_kgk%QS K(Vsm|&i;Rk;?V{G diff --git a/docs/sphinx-builddir/doctrees/notebooks/QSARtuna_Tutorial.doctree b/docs/sphinx-builddir/doctrees/notebooks/QSARtuna_Tutorial.doctree index e54f82a442fa662b520726e6b5e9a764ce12df56..3d97099caa862cce7032a1acd53474e26073be42 100644 GIT binary patch delta 923 zcmaje$x;&m6h>hX6h%}_6vT-DqJmS0ZaN(m8AO2?abi$WW2fy_66YClK)4V^oDfMI zh%aH;mQ=a3T=Nia@D*Hm-k=xX?o{2)e>1=T%tF~_Gmg>Z{kfAxY`!nVnDfGMAu!&s#lf~}}QEw*7hc3>xVK|v68P@$n7IzliI z#%}DvUNm4I8qtJiv|vA4aR3L=hIVuyf=& zIENU{!$cewF2II^i@1b-B#^{qT)|ab!*$%iP29q5+`(Pk!+i|k0S569kMI~zFodTV z#s~zX7()ur@EqfKfeF0CE4;=Vyu~EmVG8dtjWja&fRFfu&zNzev)Mm=?Ox9@m6)r} P$(it+o;y(brM&1rM<#bL delta 922 zcmajd$5s<@7>02aY=|wRqF53O_A(jfKbfeASP>%F8)}?PW|YL<5fzY6W5JFlHoOUs z<1y#B^SI_B+~6&^@VSFo{C3ZIS8wU}zp4`YWQ>fJN~w}@GF~RgM42SjGFfV5icFPh zGF@hTjSQz_h96hTv;2ggbWG3k9M>|GWmuWG(ye&L4t}O11J$8f(aA+dqakC(wz5`N zkbESNy!NX#W+pt9^_1-x~Vr9*`Vv2_PsJRD>nbo{)SeCR9VAJ z%))HcVh-k_4)ZV{3$PGT#IOj9u>?y|k7Zbn6;UEJSS$Obq24~TQ9P&7a^SFSExP;5Nf~&ZO>$riNxP@-qMi1`bF7BZhedx!1 z3_$Pz4^hA)JjN3|#UP&HIbPr;Ug0&~Usk9v|=#pYS QS5yp!UN7jb{SvMD4|m6Ry8r+H diff --git a/docs/sphinx-builddir/doctrees/optunaz.doctree b/docs/sphinx-builddir/doctrees/optunaz.doctree index a6e56d1067b8354dc855313fe43e2805ab810397..98ffe45b85a418b6267ed78b5235466361bbe4a9 100644 GIT binary patch delta 7443 zcmZvhdq9=Nw!oVKgm1wH6$N<;K2jb&(3Av4P)??a;!*RhJS6Z_P*h59rJ`hNX4*!V zb?g@BWM0eD6*afzsWf|N$Ak^?euR3p)H29?Ti!J@`|;t)KgQW>X4abZn>B0Z8+P4~ zd}Tw_nj%)ji(HCai`y0vPpJgf{S<+;c4;4*wL!DF0s7RR<~UGU>J?MXhM3}YT= zai(AzofDknk`to$FT?mBX!!2i+I&8u4AU2|NH1eMCf%Wym@@OE5#5B|wy`{b`H=N6#gMjwoT!{*QXOdyeTwA-=>gdGKua_Q7;Twj5{BWYceTZq$Qzo*u+x27 zmjAk`)mS`#*Os`rZ=ZeQ5&E}%B}7}U-qjvuSju1wPQR}mL^Fq3xbK!Wkxwj_gq|vw zgvOL(`fV+lXDex@T`IW+xd3r1DYtX`yQoQSe=nEZw*LZO@T27t8?)dw2D|yUUvD#zc$VWgK)ge3q;nD~{}lbx}|IVE%{Fo&q~mXW4I zM(qNOAGg}4=^|=!nl4r`%`m)Y^6vYon6#KB;;c^4n>~$%ogjdd6&Wh=Rx`WX8_P;H4O>FNKj3MyWT!G&SXERK zNbM~afnRyTYW_DXZd>I#*fhe~zSD}whd@8C1j9t}co&HCJ3tb(D-Md9#CFh%r9*jF z579Y9A3?vi^F&-^f-FJjXCIew7~&0|^6zX+PC136akmeQfX)epUmHW`%%bFX-hh#_4E4L=&Xc0jm9dt(?w0fonB#t`;`rDURTH!aJR+rNObpuY@T1C0xq`# z^KWW0LZdM^7)&_8AExp(6)N;{NwF>TR#)J6{*cahRLF>Xy+TIZmI@Vd?K?Umj<2nd zyN}EW#4HC(L*a>lwaROmmR1WB3an0@Y4_m{ez+saqwgGn(EV(vH~kb722f88sU zzwJ9a{k^CBB`eb3bIRX)q}m=xw}lzy?*--W1*2i<@7PMazvDzr`a7;tt}LUy)*ZGA z4@-|~qi{_S3}cyMp4~BRu4^!#SBYNX@IP#+kj0zkkpkNa=2yx@`H;vt_vMvxtw@2~ z4l^qs$_~p(mEDVcp;mb@n}*S<%{Cg6Uc65dwQ3)Tn)KoWhZk)o4?iAlMXz4)6Z=Gg zPVL-<5`9!}*v~DMxb?Q{INUlACSXe+=!EMZr40M9_%Qp~;QQr=26e^42#9C*B?`aG z&Kcel)zAqA89CSRSR4dkpGbI$b;h!O^F?30MchCqMQCF5Kr&6#KI zG-rvLq&e#>7CzUZtB2?uqF*GoB9->+53dPOX@?cR1-Kwq3&OPnU_C34R?V$XhVuNg zjvo72k!?0bEYy@w`fVYzj!@8fvnvKhu{RZ+9g5EDHahJ(JL$0X*fxre8Zsj3EIccN zNzz$Q`t5Yq30o?T@<=1mu^bx=pELGv1D;%Gr;`d#Ub`uZ1NuBkRIptTHHqhf!sD*+ zL68~!vL!tlcp0C;0K4B@)!^^9Ze))A1x z*DC2MhjerTB=I+ubcaKFC4uZ5P|^>p%+|07eyqw|5;BZ`ScQ|Wa9>>G!-M&mDojdc zsX|!t4U6P7?~RF&&wo%OFQ}0>3fO6H9_ zwxzyqSZZ(Kx$XYxNp;&&-&9MDpO1!kKBQWmpf`ki6$*o@<%Pm@(`Zrdg7MY%Wlj+_ zxy&imau?W^`G#2LBO?C4d!E_y$KWU6D9^4|M_y*Nq2lkxBz|J8|ag3cM^}%B#bB6QGFqtWg}h*Wmph_&7|=g2|XRfzIET z=YS7}r&44Os!>F{lXe@?m>PUL73ScwX)vEB)~MXtzTLrsJ%%weD0`3z$s(}E$>K3m zX=f25)GHRjHR2TV3N{$T@R@W4T}u*`7}klJbakC_l~vN+VKnZY49^P}S-eXWPMSjZ zv|Y+YwiCNgg(m)i^2TeYQ~CRt{4_kvkJreY@M(?63G8F+J`JYuIwh>K3u~vrUwE4m z{w#(3;~E(XMujzo3&qL-Ti1$lkP{? z%9Xac|LsiWe%Mslxg!!q!>v5qkpJ0=oZ*(_&OD8as?+Q)L^r(23zSid5T{ zc?urOhF94_(HhIMYh|*`ti`)?A%(3|($x-WzY*@^*x!^CYsDsFd&RF%T#~_pIo8UZ zM0Wxy+d7#I7Bab;GHWG5qv={FLO!il?k1YHjG*DQjtJ^Djb>{{I7Q4{AsmU57C|I_ zkpZu;%fg^KoJ|SNE|+RmUK(lew^nYbN9ydDnW#z3tj@Th5^B|kDwq$eJuJ549Ty*T zOSaGs>c)6bo!nO*{-i*_lx^7Z4D95Qb!t1=o9M8QsKevgu$d>;$p{=yJ)VasGATgw z=}J1qAr+wc5+z+!C$rV6I+?8&ky(+gHrJ`7ProJK$Ll2D_9h)WltKs3 z-+*Xxz|J>9IHUM>sZ-hN`9*a6d{(EDzOS?WD0xI*k)|#-|D}@>ZWT$?7OoaG3Ab9o z4OVBnQbYH-teo!RaVLCEabNu`{+J6tu!~rp2QlnC^2Ky-K2L5o(g#n+6)*yWmVjAE zWOA!t0(soO9@~Hq=H2Vf)~|<&pXr{wANQ?yjEcv+r7)I1Rxek}1gWKwD8H(01w{5sZ) z&(1WSO_rCtjNlDA$%PW}rsmV&gmcn4^Mgc^K0*!}b(*bpv3|X%zlxpSq9$XfcY`_R`!3{$ zO#dmXXx+&rHrq7{e_RF6vINZEAa*~cHXhf2`T61={W2tAuQgCiiH}-i`J@J!+EN-Y zv=EY6u97a0QkH_NH^N-@k`fj+$joNOq)iaV3h{+aFo>0iwonu~jYRAfqLm{4>w_)D z%+(Y}v$fF~-_VXu7xXQHeqv%WvkhqwQPYmmNdu$tLXQfd*apcc)~H!BY9fhZ)GTU} zQFA*+r7yuI$FgUyhZ1&6Oy9=ndIRoXsTj2|Z=AFPLd~t|0SwT(6{2{DMuq56XG;%9 z%bJZahk)D1@VG|FYP^)FQy{JpU))4Hc&3ucQ-EYLOLb_Jv2@+(lUw6MwEq1HT{3Bk zlGe5Vq*d7Hj3_s%+i0~aTCGOSlGYCDqiCV1Nm|%wjHu^cg{2N!UAMrCY`>VgqQ&-E z%C;Z1v1qZoz zvwB>Ra$4@7rwA|C^pm`P^npLaVY7kYTSOEbs`*}NE&0@-5A(Y+AnZg0P}Uk(l|g)i-*yQNYTasd9%E($p) zMP&YnUDV|e^l%l5vG9bJjERG^82sNuP;GB7`N(N_p_%z6V(I}c3WpwsrS>jg9(HzF zAiMOpz!M!M*Wz!9T&XB*UcPOyPhpJsD^DLBcm!s2@E3m;3dYxtK)1jH^!Ei_{Jlc0 zhmTmEXi+E);#sW30%3LCW3h~gb=g@PaF5YAH zbD|J0mHJGv?BXdSsk^GkCUA8dQ|tiQviN-7N*Td;%T|?RQl&cR>sh?_v5v z`ZCwW+mC)-6yj+>pF^LSy7;=)1L-qF7vFZeSrpz*RY`-;M5t8cU2R_ecCF>NZ#@qfWA_Wv{ZSeXC- delta 7078 zcmZ{pdstRg*1+AH>sd%@7>R&_CJ79hWa1@95Y0mILgMIn1JsdDg_p#?()|cY<{1msbP!!5SpF-b4ze4}QfWp8MV~-Gjeci~tieKF{uA%5OCSl;Tz!WU~ zKVvWs`PS%-Z+vGwiXqpHxtM;LdXHZ>OkDDWh^e}9!+1%AUb)b%oB6Sz;wsn9>KYc` zH0D(G_|Y(g2*gW28X;}J`u}j>m+HrcR>>pI!ty^wHu1{{H8Hxoz z8#y9@JCj5#p8DR1_a8+4`8l|7p^=O)eQzw5gQ{JfQ{sYs9rLQO^1QJ~hE=;}jP1jk zIvho^whYr zgGR`P8rO<>anfCb*-wbLVCUc(Oj#z9G5KB?B>s*o3$;C8Q+M4yD&Q(7Bb-C z(J~Id4u_?(!(!V;%a4F&c~!$~^J==nFhj7%K$s@|Y86pYtBC$=5p@oB67AGPNwgx` z@t6a|5p z9t|_(oLc2TA`^E+Kp`$10GTqk7As?nF+n8GLb?*`&hSK@%_CPiFo!6z0lJ zb;?yY)M0c)V7#c)+vprzr?;_mB#e+x*Qwy2O=@2B?Te+u;8$T!lVICwla*+zGfC8U zbbyUYgmU?3T0ZB%ncn^*q>*!Arej@XJ7GCTEqa4L;hMtoiNa#U@Zd;uW}Ob!z~S(U zjH$z{_k7dvfxkgIKJXBnkY8vDvg3}P2)sA~CdnHbNQYPPbq!==5~K8Lyp82LtI}B7HI}NkN5O|ejAmuSySI7!lQ8;0 z7!us>Se&LZqu!>H!8JuCqh6g17L_)O%C?7LEmJvEEj5*@H^xGcpo3Xi#ut&?dT%cl zjDzuFz3Rk{LeVccmlRm8vaTMDWcXARd#SvvsT9@Ym=t(i?DzJ(-PQ9=3QQNLygesW zPhb%V&dOC98DGf|+}J}#h_QNT#pU555>p<5cu7L?9)T5N zmRCrI7P8nYL}XyWB#09$z0))7>FQ2)J3MuPP@%J-oL@U2-C8dZ8eBYn3~x%rVsor!Ln>PXLf8x;-G zrf3uqNOrQlB;KZ>RjJGWRvJyWh^@|bD04fhMJM3vTvO&=SLTwh&@Cbrx6gs~>^EYJ zPdtwJHQm>On)Kx}pb3XQYG>oCb08S^&xMh)Z<9KN0-CyP4#U`auv$LQ#OIIr1s2bT zcrh4#=fh0AGz%6}{lt8jD6{l{d1`>_^WK1)rOc&GnH^-E$)%eJ`L)sQD& z@L(s%2jzAT_S!8+@$c*)nIJbir%qo3Q{-Nc+MeLev^Hx$-tu5s0Uf#DuYtj`(!<+z zM>jj4t76dIxThFGe9U(}iX;hFBsX~YL%~(L+`#2qpl5WhzgfmlEbo#Eo9tVxPLq9} zRHz0d9yiS|1=kcnp`;%Q z=-}s}fR1&VG)4|;!D-hiQxf`LVtWDHjRhNF0lhaUk<;_&+S8)kcO<54f{9|b?pVIi z-|CPfTU0U})Y64JsYNA2n`dt<+DyrpG%1)-El!xd1~NpAvw%d{IFneM#yOxxCCC9z z1unNIDbz(RIzg6jP5EI-i%O7n9(6(_7Lx0b*U2lHRlpwC zg!X$4ICdwY?~5Qo?zaf-`>%wOTD^phu{cfWkDAaQoeC78DKuUaO6Qs)l-}wjv}-GD z>2i!I+n`MThKy+(EpuA2Vy*2M|Jh2{f&Y1#a@vMgmFL&CvQzly^LlcyY!)QTow}!3 z^@w~t^dc;fhjrurR>kR<=Cr?6b2?{nqTh;Beyd7sIV98y+*Mdy1WU1^m^_sh#Qr1Z zW6BmtcDT(oUW9dfUBz=Xl!dLzZ5BGD(JIJo{Mu|N{#;W~{M(#R=DFx0$c~mDT(Cj( z#}uRx<13R4Z^N=Z@Dh%Djh-wf?u6}P1otM%#5M(G2uZb|h^e|KP4&njZQ6r=qg!*@ z)J1d^|LTX!b3}y5!R#H7C^qY+9gm9#We%z1Lvu)*inDN%ZqZ3-yCcqqyhiVhv^*7O zp>6*y&i3;HEno>OP6O-HrhxTvDp0^qQj7MY54om*eRvzN3xA-GJsa3FyU9O zMTfG))v-5%n^elKSNzV4o7|kA{dLod zJrIKxiNf!W+0IBF&4?=PbODa-Qij;&RHM>a7 zEXvP~=CP#JI0SP7LoSlFk=vHKL`br$Bk+E7AA*6RH=cTrKH_>Fh5_{5HRKdba%F`j zRFxlw3Bv9SIKrJ(aYtZRfNmR0V{g3&AK4>5tAYVCw+MG3Yu9Y4(_Z(->b~B5pckOu*zsV;GivKwpv80$(`hmGLB-fY*+} z>(nbwLj)c;4$*o^lknRQj97g51Vr{!h)X^ph?QJek_u0FB`xK@JS@d~PQsiaxA?Cy z{Pz)a2NyfJh~`a-;X-W^Kd76#xzMusvF%b7MA^pah0$Lf;xkLEKvi$>N=-2W$T+zSEgeeAx4K!`#OOAFJkk%JL>3 p9A+q|C{B`QH5Z&%l)szn*z=JKOBc4=y2hP`WfW*t6{lgY_Source code for optunaz.predict

+
[docs]def set_inference_params(args, desc): + if hasattr(desc.parameters, "descriptor") and hasattr( + desc.parameters.descriptor, "inference_parameters" + ): # Scaled precomputed descriptors handled here + desc = desc.parameters.descriptor + if hasattr(desc, "inference_parameters"): + check_precomp_args(args) + desc.inference_parameters( + args.input_precomputed_file, + args.input_precomputed_input_column, + args.input_precomputed_response_column, + ) + logging.info("Precomputed descriptor inference params set") + return True + return False
+ +
[docs]def check_precomp_args(args): try: assert ( @@ -142,42 +159,29 @@

Source code for optunaz.predict

 
 
[docs]def validate_set_precomputed(args, model): descriptor_str = model.descriptor.name - if descriptor_str == "CompositeDescriptor": - precomp_idx = [ - idx - for idx, d in enumerate(model.descriptor.parameters.descriptors) - if d.name == "PrecomputedDescriptorFromFile" - ] - if len(precomp_idx) == 0: + if set_inference_params(args, model.descriptor): + return model + elif hasattr(model.descriptor.parameters, "descriptors"): + n_precomp = 0 + for d in model.descriptor.parameters.descriptors: + n_precomp += set_inference_params(args, d) + if n_precomp == 0: logging.warning( f"{descriptor_str} has no Precomputed descriptors... ignoring precomputed descriptor parameters" ) - return model - else: - if len(precomp_idx) > 1: - raise PrecomputedError( - "Inference for > precomputed descriptor not currently available" - ) - check_precomp_args(args) - precomp_desc = model.descriptor.parameters.descriptors[precomp_idx[0]] - precomp_desc.inference_parameters( - args.input_precomputed_file, - args.input_precomputed_input_column, - args.input_precomputed_response_column, + elif n_precomp > 1: + raise PrecomputedError( + "Inference for > precomputed descriptor not currently available" ) - elif descriptor_str != "PrecomputedDescriptorFromFile": - logging.warning( - f"Model was trained using {descriptor_str}... ignoring precomputed descriptor parameters" - ) return model - else: # must be precomputed - check_precomp_args(args) - precomp_desc = model.descriptor - precomp_desc.inference_parameters( - args.input_precomputed_file, - args.input_precomputed_input_column, - args.input_precomputed_response_column, - ) + else: + try: + check_precomp_args(args) + logging.warning( + f"Model was trained using {descriptor_str}... ignoring precomputed descriptor parameters" + ) + except PrecomputedError: + pass return model
diff --git a/docs/sphinx-builddir/html/genindex.html b/docs/sphinx-builddir/html/genindex.html index 3f7a19b..c0ff654 100644 --- a/docs/sphinx-builddir/html/genindex.html +++ b/docs/sphinx-builddir/html/genindex.html @@ -3129,6 +3129,8 @@

S

  • set_build_cache() (in module optunaz.config.build_from_opt)
  • set_cache() (optunaz.config.optconfig.OptimizationConfig method) +
  • +
  • set_inference_params() (in module optunaz.predict)
  • set_unfitted_scaler_data() (optunaz.descriptors.ScaledDescriptor method)
  • diff --git a/docs/sphinx-builddir/html/objects.inv b/docs/sphinx-builddir/html/objects.inv index 8568bddc69c6ef64c3a1fa39fe81ae26f5781776..ed6e78ee458527a66db4f75be0a0fdbe2b5d56a0 100644 GIT binary patch delta 34080 zcmV)mK%T$7mIBb00+7K40VEP22$9CPf3&_(atR!Ev|X6ESNC^|w1@{cLRr(`XGO)) zpBF!`pVz<2R6!5$dMgWjwBoM%2HO9_-$H@;b3 z?qUItH01U5)jFd`*F%p%bhQ#_JpJ$c)f0rF6ks*D`-ew0xLY-R53ew|doM_0f9dK^ zQS=c1YvTJ!aEsu`Wv~}F#$)p*G;D}NwC5oY(+(oX^{oU!tB5_Nihihn2<) zZb^7cFk+FeNF#!p6l> zw=c;4YP$YAc7kJ8IcnNQuOKRre{bU~$@Fnn0)iKzYw(Ut3#XCh#fmQ=pfO6!?2>I^ zpTJ<=&Sw-SglXo^7#8;SArC8^&DT)$g=5_ZL7Xf}RCiBq*1tJp{4gNpQkn3^(`wT_ zWJSK~pUp@-fXnFjP23Dz9G8PAR-?Ye7nwecU>ETKo^{x05VH6ZvsEe%f1FeA$=}Pe z151#rA?eR3u^c>gQ~;^Jk+@Y3UXnG_uK^EcH>65~9R+c0rsHKfD^j7y&m0vi!-wgA zRP6Y2JDogb@bB$eDWH-AN)jB?W5DKLKK0&pTAA#;yE(e~!@k51`%jgXlU3 zh1-Yu9l7UAVutn%`roX?zL>H5JDNecgTmx8hhBUmxFs`aF2>xsJdVP^zQi*qJ|Qc) z;oROlBOgUjgFP>alW$&J$3gyF{wECl+tu`}PgR4}2m#l(JkyKFqNp2~=p&qg#JqLj z`ff6}2d>r!p)il~fA3awy@h5L3ofZi|v4BdDvqgR*gnkrm+#x(phohu)E=mKb%1%XQZHP#gkpXlJ!nT^(t38*(l8EeU&SnYz&mFbF!&c zyUM9BX;hXhe@>Mo?jw{$mg^%2I)$r{hwiCMA$j#H9C^5@oTA_TKLnAmyl9dQk)C2w z>iTC*iK?DjQvup%f83Is`z?rKum=(}Na{tf?kS*=?C^?QTagFHl;d2exIYtvY^tS9 zJ6K<%q62j@Dz>8D1+{QOL8M(%(6t!#spwd&s#SF>e^&h}I+cR_k_Hamr4;3u8{Cou z$u^y0WdDNo6Dp=|dEv!^vKp=dWN<)Lo`Jzua&UIBt#;mq#E!HW2BchqYYTkZ^raG) z4eN{p?;S;I6vMUCE;dx7?IMG=;Abmzkz_MUF|vQbnkE$!^t}tZhAa7PLWRRj2Us)9 z;DB0Ie+CBHnD(0kSR`y%4Opo7+5iQOuZHD2!Syj9Z=!<* zS~_UsGFZUn(ghj@`85NELq6re;i*SCSSRYi2kK2d=*qek)UqfQQ+=lzQ>Cm=F)3Em zrABot>`@9&m;GfcG z>XsNVC+ZHt=~DfO5qaQvNM3&eoKstX|S52}&~(}TEhp<3#Y=L&^>g50Wh3Zf!t{c*85tfaj#qU312sM7IV z9*YRJ^4!&i^eP7;!V2)r>{0I3Rvo!)#Arr3`O93 zRlurn4~lS)i|rRU+~&Ld@{O#*)1Oz1tqP+0c4s^*0Y1FI;Q~#uDd)XG4S7Sz<=yI1 z%~9qyKYC#{bGtDzpZ*|VfbQPTGoT-X)<+D_Bu6z1wetg`TU$O%}CXe1N-Sbp? zo5UQ|-{vq+GuYm)=B7O5X3|zrsh+P9)Hux525J;$Xaea;Lz~Dn(zA9}f7yXI(=~&R z`k9(Sm&Y8y7S9`p*W|pb+4^8d`#epcOJk0P@N9h$5>wYfrFI_Y*YwZf z^`Ejc&sN!)XGU@6*<|jg=%1$^Xhi-X6{0*YN*`s*tVsIcS^-Tm$JDZ_lRg%fRgugF zLS`LON4~OZfjHomS(nVAe|oG+zz%O^RtR!bD~~qmgISrCK^?=&s&G0#LLITns!#er zRaQlC$EOZzgxN`;;3H05^v5D1Jk=wDbZ*s!)t`696X3JnUJd4Q_p&{z)U(}fS1R$1 zhacBR^M{8ibeQBh`C_yFbp@y{Ka^Fz6=5L#dB5F)QcDrd$F*@df0~bvDzG;T70{r~ z4&>8qEU?f!5e79V%GgG9!e(y6$`odB!-{3Up~I^W^h-HR%0WkM6`uy{*CO-g8w0AU zK1@@fxC_%&s_DU0T@!R*s$O;dm#S`}?hEo_9t*sJ&I{XVm33BX^-i?&Pf$1P@~kKc z$fa3P4&SC`0KDsue_QJ;Rj+8zAHVj=s~c{|ACJOWDj9yiAD80ks}^v#AD_y3s#n2Y zKTg$?SFwtneqyR;sdAP3`~)e?(gc8a`3Y&BtpO<7<0r;o`s!D+!%tZIJk3Du{ys() zGX>(ggYe7&c-G*nW^13Q@>!~1?Z!Sv62SZVxV6sWc}2VWe;Bo^+SDhmewIp5y`@ir zhT>?bU_&2WkAnStV~Sw6^HH@a*v&`P1G|}zt^#;3--J(t(uNrK49f8pCy3{;J#bZrvfljqh2^vQTOy=o#FDPnmDhJ#{O}O-1Frvh+?2OxoCh;D?cOH)cdusVVLFZKL!h!)gU-J5bHu? zZ1Ddg*H*5^H~o5DE7kR#+)fnf0a1h;zO>(9etQ zm&Ng@1bV&ware{V$2A}{%o{%xJoo@jefUDTf2}e+OL2e>&T?d6Lo@ve9CT!+zecDe zFw-CPfyZUw2YfVOB~kgO$`b(HDo4{F)`ufmO@Sw>ziii!5Z_g{25k;js;t zU8uc&S9}m!tp=FT#-<7)aCJ1vd^o!e3(}J_D8RnE3C?buxON^GWWSu!g#&BSL&*A4 ze}N+!O|Emdx>^3URA?X@0iX^C!33l~4ibq2?;S-dl)!Y=E-qldeYQeZ?&(yD0M$F& zV1QqG>p)-01rsJTXW$_9ok0Os@h-$Jbbn9R;+ExClZC6O3#T7YlDPgkR)wqEQ4q)G zyXCnK%*N(HW$$JjdTwII3Hh$w`BSMjf5(lGt=y)o>*ISd!ZtakgWlCD3ml|Wfp6Lu zbPb~*G_eNDixq48EqGI{B2KI*xlLrx1WGa?Y*r9iXSJ;%vV14FnlVC-Qa!O9MEDQ2 zIxe@<$y4jEEVvatNU16uK<%$)5|~%-1d+&%>Po-njdKPQ`A!(Pexg+64F^=)f5M(r zp~Wgbm#w6u;&Iecf{S81azj-ES^*y@$%~YYTp)=d1vf^CN!p2dvEmC#U6OyO7!JQ| z;Lylr$_VY1#EQSFzJ`AOLojKA z7@m3+;e@r}G(asNp`{54IQQHee~&=hG#W@?jl2i6d86?Px%>fOqDp}}gQ#|p4#KP4 z_4l8L+jWDi)3iRXDW1vibp~_ze!D7`-lpwiHNEqAzD_`?$}R85Pw0N0+SLnAXTLVcyxKJe>G2-AX5W{ zdBLq0eY1P|K^^+xABOyAJ&bg9>@gs#B0#Aa9TF-h8%6Ia0i315(SRAn0Qo=+YVvfT z@(WNVf0Vj{&Oyc*!6hSXy1=rMadn_sLytO;F}DXBaPX~bfEs&yFkyz?K5&qcw+|eA z;Dy--O+{2O>{559QVS>?e{^L?z=v@uHqa4Vgp7*eR+7gbqn1<-wY?`t!H=}Ps+0`0 zJzM1!jkCbp*y+%aqingBE`Rt#3rk=9yx%O=+tq{lx-ixt+u7SHo)*v*CYcB2&yUojSrCQJ7A1@07`%0ynhqZcx41i?EbCTT(Mvn1Go=0S3s!tK1%UEDzNVn@|8R0JH#~tn1Z+WS9cNG-@g`M3Zg- zd7%-s2fYEF-M)eCKCXAp%HT*F( zFm1kH3s|&ZQK8;xf8f!=P!TN*sAyq8MvI@H?qSx^>OfHOqX$#pAS?1+|7=(ZQmz1| z{W58SXuW-kK$a56z}5N+bm^~83DlAv1HM{sK`+7e>GARwOpZ}U%Cx|(@AYW_U1)14 z0g3w!M8E;S4#H0}w33T?3L-PMEf0~G*@`y;2>$8jXD`zUf51DKrJbZlQ=6wKxRRaq zu`H+?TmENo;)Ee@XGF+yvW*&;(al5Jzm;NX`RwW)T}*$#f5wRVG1CEUg_v&LK1@6C zZr9#@?yM+DWcl%F;PWsnK=uXMUrqcM{S^lm2nRX0(94gc8-2Bt1@VkKUYmq}@0@lt4f-9XSN#$p6gZ?M+VEv@QkY8o`xGw)vVSdjeC*>5D7*+(wW*G_l6B znPH6b8Yq~4WE{O&@lLpHqbQ8>SD59Ihu1l{;c)V8-@G)!kW@Lox-c|{CLr8k<8zN; zNZhySf3IdTh)FrTjiCGYZX#nuyS}c0Cs1D*lz0_o@{+Z(wEV!w@!C6Fi?NN%xh;8_ zdTK*Kbc!~nu(#VlvTi3Yu*PnJ9vTyFK7VyFq})FU$8uHxH#|rUQ*ciqPTNia448P6 zp@2y?o7M7h&t0)ZNTy-5(NaTOe8)J&~_1yEcY9o$~b(F2}XxWqN2E3Sua3V+uRJ4J6rS z|8D*MfBUD*#J3F~rv9)=(gZsT!QHk82px-rX++JhETPd9)!f+nL*NSL?$N&vx2q{vJiw zTeg4?gDBBWQz(gMvtLR#n81^mh&QA`M$#rCe=*MUke42Ng{^8mrRRg*2Crm|y;|-; zA2td(mY{K^Cl`TfXeK7p!#W6fqJMCI7i%_MFxerU`SQ}Ae?Nx9YK%C%7R3OGXgIWJ!#0|jfVmz+ma%b$1SHqeZ<}4F@MI$*9eBt zf23L$Be2f*XjDXl*bWpCO~OyznUz6|hQk_M|AZps+sJG-R7f4-{b>+ZvS+2Mof3IV zOCDtO8o?B*f8q5Kh=mf+6%zTS5vVnhbV72I-C(pw`p` zm1$K?B;eMS9({fD8wWkZlnSC?Q+}jhV7<_L5TGzm<3(%^*sZ&HYZD(JiG(%gR8sVgr30*oN?biYl z2Yb=Q17a_vY-CJ9qNM9|`6vd5mUia!%^Wy;e@pB* z^{q@_rsH>>-==RBokIRrM90UI5p(D(D*}+h?eoRY-j(v1ft9rq~TZMf5%5a4qYSo1yS{3Y5sXkQsr&A4Nh;@wypmZC7cxF{#L9EmdU_rDR z#cS(BY9Q+#bftX=6sTqVnhta^e?-IRLP4|(3Myo5r@%{B7X?$Yw$jJ35({xHd6{}? zLqSwV8&kLj+CY+S2k0EIonjD8cA0Y+Tw-ApvX8;{t?KWr1>5BZn>pXROXnZ;PQWYg z->%_jh7c8-)LAglyXD>Tw<(!l{40d&FV&~7c$#r>f+~;h?45cd84HPKf2z|LRs~T~ zG1KxqaY-{Scf2qGe1slmoxc8@eDZm}A*!#kpZf?og4*@N#R_v66bWMFKh5G55&;NO zm&iVacv@e)UL%2$?njr0s=ezYfDqk$;#^i~9E#k?=6ee_m(i`8ZHAGFLma0z{S7%$ zVDt6eLKa6nEaq6``MB#lf9Qi3ApcA}GHow5(}iGWgup?b`8{$I&VyI#g5(Lhg1|7-lNCUaa6O<%gw#I{3xiyKCKvgA+YlE#nq~k{Al(^2!>+No z77vH820m)cgHu#skyLmnmaWAC6UJ$h^_is}mEUQcGAKc>KBP-++58i%5c5$o?bGR&}ioLz9IStdJ@d{*DCovinD02GXN8FhZ$`ik& zP_n!e$0h)js)tGfeF|XsHOZ#OsFGsWJLav}Yi50)&N>f<7-qFhE_MCX`q z3r8t=`&b6=Rz!~Fe|dJ}*!9oc7`4rLVkBPD!58}~`4j`lPGSo)9;OwYV@|J&)Kt0| zr?qR6TW^^bijb~^Zy&<4#EP)0L1CO*Rf((^>4L3wMm|@gFQs%Rz$y|CaqHu%?n)}O z68mCizs+;@a-}3new!bK9Lkj*2A3nTB9K$YuuOtNqT5X4f0S7s`@~!c{V;k;ig3c& zdC1ue4}4S?a_?lphIM-mFp^zn_G^9g{Jo#Mtz z?v}V7ed!>*)7xaTyU4#?hosZ{EExK;ck+Voo8Y`Jn|M3T>p(JM=|^L|*qGaw=lfOf zXM32z52U(Ye_|9ZFp3<{CX~M0AD6rB@w@_sepnrr#(IC;88EOg72kx?kE_GcJS=y{>Hy3VH~qzW3x%CV8*(6H7MyQU zcGM=h2@(Sa@b&xr-m-pcm1`ER2qBI7(`vgia70;de-?+s`f&{qRpf|#`DMQ{_6q~| zp5w|m%*@7EJ>k}N*v;h??1aU`;<%Vuy?KwjbvpF?5s17lHZSs_RZ+*Mm<8Lq8Yn5*q!^?bis{bBeN74=6Ugrnh?-NPS+&DMO}Z65w8jg$NuHh<%A$>CwO zKYp1}J^p9+a-5GqF`~`f6juA)^2>ao(R^GjjxTsVWoFZ>Sw_^7%j4GkvVM42ZD+0& zLS*~$Y;G36tc*D;XT8M}-i<*r!;~+(e)NP{&BIyDd3OkTGWgT zett?9qb6tY<93Bzf4?&hGmdE$iTQ#>#epp480+Pn3~=^Y{5>a)pMS_-$LT4MmbjZo ztGU?hzbvNLy?a_8j_YOK{^wY#=~6J4e*_YT-R5?$N#fFawG&^ z4l8s2i}{47@N?=X6@M_j1O73&M&ohDJllAjFTb8O*32Dh=I-dm`r&CckJgzIi^J=3 z4xQ#aTAvor&vW?Lm_z3*J~n3Z@y}29^Tq7C@|kyQHK@!tkThsaAJRd#oib}OadP}} zT<$h6&)W&LV(;Qv*kLufVzN(uN_FJ<4DL`9sVv`AI83h4Tz@?8jJ>ft&Y<~qv6*UR zp{v*2-mi}{_&Z(5IIO3N({6 zIDVNU%4d4b$AA5F+rTL5apjZ0X3+oTmjl_gF`s7Bc=&OBoGH}ojTOmjUXH7WS(TfQ z>&z`qs;1}ivOO&4N`KB%-SZ@=sp|RCg;f2oX>^() z9!#pZIF#UFeOTO2HVze9rw;dr)$zFAK25C6TpGK>!F*k8)(;cD##pLSM|P+VohY@ znsO!iODXCVBDl8OLDkdax{dS#`NZRid@)73C9|v1mH28v9n9RC zLnFw;a2|c+Y50^1e<90Q57TNq8UTl6l}BX5^?$D>WOaPEbdMSW))(aXviq0gD$9S& z+F^pgPHHJ${ft%RYZB?{Wnb3vZ9P93HA@r}9b`75L*Lcz!=7-KpCGN!wm}WWM?j{v zYe;Lhhll(FF%(27xkbK7KH!96IG=W5_55?dMtbL!+>rJmvlhKEkzbjQ>!XR2=9L2X zF@G{hgU!qws^eK_uSv)uf$J{)((FY^%~PrWvq)dss_XFRO85bvW1lR0eG%URUJy%r>(oV>OB z^XucigzgjhwwM`O$wmD8ATY}yJS6DCAiu?dFYKohA^q#`hius5<#BcX)4W)*kY}%7i|?gzOQv625jH&& z*Pl1!e@n~r-YolTf66vUqJ=X4#XbSdFhZdfAv3Yg^lxJdU?$hltbO$e3^v05lFtU* zA{WpD3Hii`i9^R5ip=12icuniZhtwBi9F8@V>cFWe|mfgq6GOS`Ov!%4yo8Euu=Kh zzMkgXC^yo$n`Is3+(OT_t^8xCN)_l2Ep7DvL{TQJCA%}wdS#XUh)}rjylqfvb+f3e z#yGmZnatEl%O37%Ad275iXHlXp2mY%&onN3bffGmb?Tg!s+h!WnWkwRw|}uz`;BOr z#BHgfX}tDqeW-OBRxpXrh@OdDh8)*YJWymhrg2=RY9imcsvYM}At1Xs0Q z%XCcQxLnngzSCoreM=TpS^A081gS~B3vm4@3T`33a;RwoYX`kr^fS2-!#0Id+ZQ)Z zf^%eD4+(k1esYm>xZF-B4}Ycl)tES6>ZsnY^yo)z9OEDDACg zoLC8(k40Rx!5QixL2+W9BFiqOqH0|5<741CYPwkpoi^t<+lyc};v~FFGlfcqla`KY znrEgf&RT_XH45AMHpoVkd;tu;snrxr+2HDG)i%4jCY3csHol>g>wlw0Oek*0!f3i3 zc(-e|imJ{_HGLDdg1T0fxl&EfWNz%XHPN=vox8{(>FUSET+xJ0N#%^FtwiZeNI%%t z>4e9XP8u&->kUA~DSAs6F6&#S?cL(M=BLm)!8D+&aH3}3Qrr!iFpcDDeMM%RUoy|g zN0Dn!Rex&xa8uVb>3?WbC)~)8?^IU1tkF_3N%v~0RGGIac3$0UQ^kl$+*Z!LL58Rj zP4)OxDN>&W)s#(H{gqb5k+f2zHX}NsYZye92hq|BtO=^WR5fAcmpau}eW?a+EbHcq zz1xLkn4cW;Eqi>X1U}CC#3!@@4C}|IAi64fP*S4ni)#?=qkjPQ@j(|}-&^DzU(!re zYf{n?D0;$%MXI$m+XGk}scE`>9E%^o$x)vY^+u7G%a3&>3T$fVnAoIM6lFUL(T9yf z@Ythog7du^lB)m2NOL4RCq4y$Rb(Z^4I zkW!VNInf&ss(*6Qusvg)8V&ke-ajYvT3xvv`0x1tDza);3VzyrrY1nVZWga=OssYu zixsC;6pfQ4SQNbxB5it(>Mb-YPa;@!o6c!g^?{Ej)IW#IXL9uiZA(IqbYPN4($zHlLYmK#>s+eLw~DsZLjGYw~tY9U8eg*KsrJj z6uP4g;OjU}xmQ=kW8(q+ikp5%-z3eyqg8oh{Pkd49)f8jITm!&D_|AZc%f#JiY}Ca z)o+B-SNczu>mkQcw_s5u9ooI=$Ux>PV!q2c*ye2^UaE!*u)l^*yneou})IOe~|RDt{Ghkht*W*i1S zPQRFUwesso_y321>yN#LAqXAYL4+is30g`~+<&#_6zZr}2X`Vc;tWE4^IkdkqHsN*_HO)$N+(b6$j(|$L>8hiu1b+QT&DxsN2Kp@0= zMS;UI>^T%bEe8;BRI**gy5X!bDh{~1Aj=uqlQ9OGjovu2oZJsNpy1{^wI(SHl>U(& z@_)mJQyl))^VVwLFk6Y0XNA!ptPd!xN$Q~&B<9;^^AKig#?J$Y(URa6N#k6|OM2M} zU{W|_;^cV<2csZ}9M{kLj1*?F5TbAQnwD6Ra$vC>0gm*u6dmV(M%bz?*iO@hfH zJlS;LaI-^B#nFEMjtjh7!#W2gm*vgM&gJV*_~z@P%K<0PWGcYwRZ96KzO=`e2E1BG zT|V)ggJcJs+9+~`)-U-j4($;-qPZ zf*rN{@?M9)S0B0O%Uck|tkp`D_;FiY9H^5vCmvV>%P>~A{3gF-l$SbMu2$%xVc@LD zGx@h8UIguI0Iafhoj26>0(Aqf#!*&=aDBlLihF$tRZI-XBFf$BX1Yxp=VxRDP+>ad zZgq2$D>sO8#rRV=)5p`3tS2^qP%RxkY?U!224qorx4LAV@$jE*P&0ko@;)H9hN7(LmN?-4-i<-DFA?;VN{R z>sy}bMP|BGYod>ED#xXYH<4+iidR^%LTq&ooW7?j>7|qOP}g^pIojHq=vC9yI?(F8 zceOr<^QLp#GggRA1NB#hsm@W~t>}6SO%w+9CC(b#L>~Jo)4a+wr)@%03C{0B-lqkl z?7PnjGyxe1L*QnyU4C4Dv)Ms$aZ4Fj=b7o13-ubm2!Ivv)m5?+sx6u{znM^##8EjC zm7<_B#3}*U`I9dH(71!F{s;mq^BdUO52Il`OF!I@%De=z@WW^g(mv@-8a-a%D# z&M7)3^fC{lX#%S}qR7fz2e!t;Xc^BE4>zPTFTpSHFxn=xz9Wt;;Xu|6i|p*H-HMus z5Qr@brl}P}u?Z_x9@^!4j;DmH6#XP5#?@wb+i1-R$(~hZgsQ#YpE$k zXLlpR+eE#x=?g~M@NG^e@~tw}%G40sCE2NlUM$`7_nQMtr*9M!WGL^{1`8(V_DRT_ zp!;@k4FeyMlS*LC(YMPAT1uM3%;+RNLEIaUEHlGKF+qj^ZK=+Jtu6IP$eYl-(OBh_ zc}m(xxOt<0u_8J0q*N49p^IEU{ETl`4_T+F+~oTE&%^DyAu5%is&kk8JB7S~nD^a`uS)w!Z9Zl8-4EOVFd2mnAPB2I;(*;^C+$pmjYZz(VDyEj=Z8f+w7g zDIF^xG34!LiXotC#5^p!`dBB(u>MFbF3B7=qVTPMLXJtonMN<5B$`lH3aJG|V~LE0 z>0AmMM?`Gqjv|suIDG3mXVKLUBb6P#&B+8H2Ba`deZEyvoT@IfuG^-ek1XWU%d?Y@ z-$hsb4zB}?cK9Y22l<-D8ky?3Sx%IsezvYx3xulvltOWp7N(7V0xtZvsNtV{OS^3H zJjO3AGz~5e5RKVjY|MsWV~(1wqBcItwQQqVp+@y4{5+tKBU66QAl$K$<2hTi=T&mRb{Ghtq>HKv39!a8q zFtxz*w!uUFRu2Q*--WlHqx#JQfQI> zuZxlHYKYwgRX0WeX%frg+CzD*s|wkFr*H&2EwWlZ?&;EZc5v(Lzo3E?B?*?9{oRH9 z&HDZKPxiX%6#qN9@Gw+ESIf5JyRYbT47*nFd9hp`O!8+JugG)i*O^)YO)zT`TK_FJ z{roM6hC*pU8e=(On&eDY`{t2vZ=IsxYQ|R=hB*ybTvXh?zL}t~U6jcny9k?q9Sl)| zCPq5C)^~$lbKCvbz!M}xL*gjQL0PJnQ}rX&+A70N&18z#eJTs-k^9_q;Ock)kY9w~ z4(W<7fEen(Ta=A2=NL1D0y-qKverD`~*FjBjnQj7#IpXsMm<;I15jxshhP|69@lyqvB$*6}1MIh{u8!3kQ zjSUve(u{^ih)jcScoI}yCVl7RdPu~$3a?^FKF3mwq!lu@KG9YO?Rb8ND{(Z~YV9Dq zvBg?e;jWcTPjd1?eNSlk$7Y%Y(-fkESCS~4I1C8#Bm}wmh_a$oj`&ai>iQ1)=$%D2-9O*Gp*XnC9aw7tYyYefV66lm_p5_2zwd5xxhpozqxkO6jW-zn!sVj} zD&RvCkQCBLA+0K;wFauk zFF4;Nk>$s@onI-zVT9Rw46G_ZNa6xovj78MAE#@7-pxUOyCbQH6`{KryFW>A7rl!U z@}}k4>?*3^;c znc?^+q|Q7?N3FdLP)7#ej!BY)?R{214Xr#Gh)X?$;1j2r>o z2O2>0A~TnAI4(jTACs`on{AAXD zTp#e#IGc`VeEG<+59C-MEz{b`ZZPs9E8TZwW#uk*PGqub$M1K4c29RcLO4@=|sBMdUG)TM|UBy#k7A55Ke!IQxq=(y~HYT8N3i^G+rW&fV$e+ezU1RyuY3+g)`e0iK^mH$UdJf*rUhsdAB!`S`cqH&F9O>|ot>gI##v`Me7hoJ5_3yAx z5q~Evsg#urN2LU>s{Ws=8cxBr6kMx;r^8taj@j#429D(jI2qlv44lo+=x{_mPYGc>kpR16ETMBRcUQr>-w!TXti$e7=Q!5K;X(1;5AEAeZizgzSOq;^Z zpDfx>w+K&yqq}!EzFA%orST+9CLew518wG{c`>a~jLZYM^V0gFx^*KkR`hv?^K92f zX@A@aqto60_y7JsxEArC9^(9$v_9{4_5X7Bj#WGSp0BU4Q&sMb$5EB_#r6_J%RthQ zhCws}qLm<84x$wxEdF7Cw$o$nrVFqce1g-*B>iX^aY=F5V7-s=_S5IZe!c1kOK)qn z+x4!>)Hln(h{FiFi__)DyD}R8%N^3s`hWlV-%fz*7S}i#W9~vcJLFCDo<-G^f_R#Z z$EZ|Ls|2-5P{WOh2x_SylkGTxa_@q--w;kw-m%8WB~#s6Z_b}pq|f}wf^?kVf33*D z+4j3D(#oD8RJK60CI|^HHIQ@>ya3Tk5ElQ0uKhJ#Q%oO?rx`~|DVwoc*+82{0za3x zJ?wd)N#S%MGkubt7EY~73u{(3xTnFyWvcg(JS!w0_$KXX|D9|!v4 zuv^{^yzkXj4wG>=8h_aHR-Zv;a~JE5?B)_o5ceF&wX*d&Xg2k+v~*7yM>0v4J}sfN zZC{hD{mrVhd>Z$++9URSEjS6XnoJu(LRx){lK5ZJpAotS?`hd;>jgh?NbOC$+D3qU z0Xqq_6fbR*1W!xx(w_xhZ6gVr1M5!*^JhZYskC>0#@P*j&ws1q<&TOUb3B}N{H66Q zF@JuPmC(`>T(oflZR3RHEuRwoxj4IbWXH}J`!U#BL9JF$YZqj(rOb$J&%G<|aS|^R z;N@n0SKJa`+plFlVsXgm0@OaT$`MuMJE=iIFvL0wSxsmz7x6J^i{lH8^1Ta6Mw$zpgXdCIZwXRV3p-;i4}h>hvd6IUlWhFe;t^?pO2frXr#DSE1m|r zs<>7Z*V5u_)@33HINEtNcF=|m68~fFb>0ILX7$vXHo)Yi zSWF;^CE3n`XBr6#@A8q1lk<@df-h^;Wi7wV#>$OFqkrnLAxnN~2}cxd&SJ?l!w&B9 zIaK^NVq1a&(iDR$!uhq02VDF5m;dv>tJ&fI!f9&6+d7ZKYWH2W`{grDZ4-#haOyx> z2S{rJY5z+jKuo^6MLv1(TRuiEwvJ`XxqogxttAT@#SY?k6n*CFzgaq)vc)qSJBSnB z0Cmi1e1CzaL4e6K>+*4RvDGbGQ7(bCCb0I;8UfCipc}wi3e4i$`f6kT?Fs(D>xB+d zyR220Sy;W}d35$3Q1%`RC!g0;oV@Llz4xNEFR*d&eXJ2rki;K^zG95U{mM8rFv_dE zk3Ne+YPL99c9cln1glNSj z?a%3ACBF1e|JwSXN$1s%*8Tb$Ao(>dwCt}I`5;CY>rdG$Aa^Z^F%3Op&*@e2%pu7> zLeHvDPghs6cWl#5lUq6>e*$%vx3_UFJ#rk)w{@x9Kg6uNxV9)I`);u4Z#J=don{x4 zZZ^iijSW>qNWdnX_}E`f*H539nAHMWcD9|YZ6oM1!UDEtTUborx*}P_>QKxj1t_Nr z2goEH!Ms@UMV5C5kFU6Z1$f$JW|wRW*Ql%kZ8)ydBJ^+PGtLN!e+#m97fV~vMdTHb zvE%juZAXR3E5K|=F&;P;&cXUWhsJ6|F%~%1J%Ot}iKcOtmZwj-)OW0fv~842{hxr8 zfKu$0^3#!K_uG+bebmyd3Rt!Oe6#P%jf&mZP^<_SzSARm8W}_JGdL(b*=bPfoA^)*33G(%B@{fq;=C4c&H4v$(zhg*V^jZnF$tzX zZKFn}hR7=*V@LP>ldd}&e|jhZIm<&Bp_6T0GV3rDe$NzaaZxxc$+2 z3(A2Q*L>vw+{D%!4KmU)=Ef-9Fap=@NZ8zCFCz7Abze_=@w6UmMYcaYxyjJ71g;i>majiy;MavFCGB;}O+S@hAsOU6wo)=G3~K8XX-6oZV2D4+D_+Y1+NDywhr_l@rCVB_ zKIIZrC3e_SE-_|{d{BzLqLUNb-{sfOIIXIyRf4MAZRc}@f6g=bt)^EE?1Y{(eR5*x zOzz8+E5ugr$o>zus`g?-vnpWK{(G|$`(noAZJa5cS5vD5Rkhn36egERJ(g*N22}2+ z{4CB%J(cT(hg9vYV$Ejy{@B#43Rt=S!oa@7(>g9w367}RRVQR6w+O}N8TlxZpT~0= zNl~v9UAa3?f4+Hf9S8Z-_uaN`b9gv4cr2**sc`=xA>ml2trTnMFp$Gf`;?28iOdB+TZXCS)y*>Uf2Rr zG`YXw7QTe-XI==C(=fGb6)lvBIzepV3{KnB?k6iJ?%X3`jl~p7ruK366+^SUVtVKu zd9ymae}~fK8Ud>Uc49>_lWT%CBoAmb*o2G1mv!RRBMNAx`g}c<&C1~>X8Aeo!0p&5 zQALEnZ0f(GsE$h$`tOL%$hd$f^`FAo7?;uFb1?}u(|TInJdDo;!m}_5H4}Rpeg?*A zJNNuc1bcOOaIY4z*~R=~5eJ-N4*|YZ#Ap=zD@9y@YW)Pi`p0G*_iCR2tYXi> zt>!V>#=LsRgQwO>idN^?3=~_96UA2SNChtsFW~nydjA2xHpFfv-%CRxxQd;p z=7k|fLxo-!62(^Q$a#9OlHNO6&sFo1e-N9ILazu3LaX&6@asWrHuAk3#EYrcVX9sX zVzW~4wIE?|d0)alPZ4~M0{Hwy!E+P-=Or-DNt8Vw5q&PAmJA0Z2SpZ18;Zvb~3tU1L($EP8(@=WE6i=SM`sBghTM)%SuTcNE zEdbeGo~D(DFaoG&(&({u$ze$l6KNNL+AEbk?IK&cCjd8rhsX)?k!w%ws6wq0)G6HN zo8|qssUqZMXwNuO)3L(C?13%QU{ows1-e? zy{MGp02Y9!4V>$jgMtwDQLcfv%!)eY8gIhD2&UXOu*m|WRa~h8AEtVT!KVqV7IG&E z0>JA12b&z_UO>b9 zriH~`RE%}{FHk$l2&MnB4aHOe5Ic0s3ojPDH94-Bn3!eKQE5}bFqIOc3EGB2j^-l~ zPlB_Hdykz5Oxag?HaVP8!Eu$Arw*6+i-TxQB(fTumWm<$Z!HKW#Xtl<99mw1GwAH{QA8bugSi94 zb1l%*zLFTxuKWgTO^H)}W7;AS!31dpZ{gI1@UgAb!Wf-=Y^NTB^ZoQe=&@l=CXHOWe5ppJaHD zze!QeyQ&-&PdUEOznMU<(pnPHqsTgDJG3|VuF{ED(=;2XAg;Vsk)q}=!*kj(71zDm zc-n#eP+x{F5mNqYN|LmtYUQx^_eSEO!=dL{u3mM5RMgM_C-Nb z9AHulp@6*3jwE(=+>V*2T)027YI75 zShDyKGXHXN7!zhJp%_*&h+tph;(jci97+kAqi+zMqwnYGVf^s&&Pz^uzkupH%*^(E zdxKwC4Vbu8eK36-O)A4UmNqcVV6o0nc42JhWcm=O2M7@`RxpwsFpPt^)2OpafEZ`g zf5=H3UruxKzg4tzy4}O?Tps7|!LytpMHcD^M(vJ|*z;Q@7LM{-Y(%M}JscUO~H=ebpFxK~*?ucm~ zcYkI3uYpvz^_3%{$%i``Yu4z<159+wPQg?UkQ+`ku;jG0G<+Jh2~vrI6uu7H?z5#+ zfZiYY`fpE%xE&17KD(+lz1#Fikxxgyo!s?adhv|}#5&PhXmnts7ZchhaAFiStn?5Q z^IC1DO_6LKKe$F1plG(1#bAfjW%H;u{Ncno!c7?`L~*~Tzncgy8DPrV05qD$@MB%n z#-F+9k&}~X*i(xUI4W$dDxfxe6!$qIuAe&ir8q?vY27O`WFjcC4p0u&@eDh_l7eD? zkvZS|s~filP#r#XRWPG1Uu=#=>^Jc8&p=*UzR2tc^gCKKeb~;HhLa;af>5Z`Su7k! zcRFNvTLKROzm{~>Ry_@XtVLbeSIeMX;t#ou}+|w z0|YZWW!%-QuNS;gxiVnH)?@fCDV_V{{b!BC%l4-icetg&i~##~Q1 ziUjkA>jFmLS{mUOkxxqxj-N#`GT=F}?>`gk((vG*Y5VHiw*EV8S*HNgXuw$MN;jnA zg%ZxQM=`9-KsIH!E!VKC`KO~g#=LA2M~}!LeT`oni0svB`iU&hw}1pDP6}Bjj8ig7 zLz&axFo-lfz%LqE#V$|%@WpgN0*=|+8MS?$JBVExb`emQH}Y@UIt%KX?sc&xyrmDj zrdYVR(pq{KLLV;W`#0N%5|@lj&Ox!&wKDsGBPOU{BIRi?&NS$Q;L)(sT2W?=mP@2Kb?c@idEbQdlfmQh<;~BZIzMR8I z;s8C(-X)h{bI(r!Wu1+b1GZGSs7(-khXYpir>ImJ*{z__217LYiAwpF_@s~)Y%th; zG&g-6fX(I!0AiTRYNYWXHoh+HUFDF{d<4ax2p6#)pLy!u!Qi=o5XtYJLqLlsCd>EZnc4UqiV z-xY|#9CRX~M(AFwX92lm9(!rriY`g$etjx{?I!3=y@V8JbZ_g6pl4-TjUb-zp^A88 zz_VY7&*zq6AvWsgY9%V~fEl z4F-+_^SO;Z>mm?y)cso(^8r=`RptrY8z0W2oyA=~2Q6-c|4u_EPeW2?!OwEQf8=~C zaKE?(aAng?>7eh}rsN?#4jbn2qIh0GB1O7?ROj;HHo%Y$hJI=_?D{c*IT>k!_rwbJv0Q?=zO2t_e`76!F z$YOJeq`VrUa641rD-=JFwm?h@7H7{L3T|WuHRlHobXZO4*)G3La@!E1}^RjNy z5}wbb{(Q0Kaph|wc>UBG=@hihyvWfd5f%;Uh1 z^RNL2g+#ape*P;u&MgY+UXQB<4?)kF3tyK^y@mBN>;x=};* zlvW?t#-Qj*yrhr+IVJ!N6ZkXKMVmMeAV7D^W@R=l}dLn)uId5o72YaQtVoOoLuGS)jAf z_Jr#w6W0eiDyBn91`%aXqlQMKYB?UremZ070A=73DFO=U7)fw|;qjQOSRF$afyV@c zl1&}~+w`Kz&bp5#fg+{J#96x!GT~L>GXzO=fVMKyBsV2&s7PpLN(7gdPMh*VrV`d@ zqdGUx(x^ypAe$B;h~_qUkw4frMn0z>rmA1*M+(GG4ltfU<^(V+nmLpztO+U@f+ADF z&}n$?d(a7f5dV)e!WYs}KZ&E?>#s;$^=f{^=hYv}iUV#m-!LF$J4I6WOFj>I<3bTd zfKm4QiBYVI~;<>hB`MQk0hTJ4`s- zN1Gkkhl{YP9{FDi(m_g>Q%-EY_qn`6foc~LPh#QQ2k+ZS=stFb!s7w=y*M}Ov$^b7 zcSPMx5Pa!py)%dHPCtHEa5jkapp05$1CD~<`K>Q@*j!MKcpM7xUBR3b@LIVOHqRvT z`Ze|{JeRqQxoD9Tjh&pE@J8Nbsfl+n6mxi`UGf{4KzO6)DiAgJ$1Wet6b~Dmmbx$T zJDQiF7+%+uaA%GLwT%$GWX}``mWLHrGC>NLGgG1Xipifw8mT>w+y8C9DrBRtKtM~( zbET3gDv>V-%M3DJoc&3)%L~-p(g;iQMX8Ts&6KXkqxqU%8(&l4s9rA10`y$L(2 zejG4Y!k0kmwSoY99D~>q?Uk$ggOtj!1V`XA7Xf~b@N}uef3}kd0Vd)a&RljtTzap*VA{{Dhjkj9C`T(NuHkpx&lHCN3Vh~HMg}#s5ZMwkkt#|A+nSo? z)z-K=J7Yb}@Y0w@ZQ+Z_Dg1bcHvV%Nq0`QFXT?`GT$<1{_nEj7>AqUI!R+&&Y%UD; zhj@$P5`-*gfFG;ydV?TsP;E9lMQe<4JB#|iof!>}Me{fz4=RB~{1JXgisnZC<1D0@ z>v6;rLnvG^EX?EPIT6^V)W_<+|J>bde5|tb8Qg&=s6SRm;|TzY8g>?PP#aXx&?sQB zZ!d(VzSodJX`JXCmll?6rDnx6dZ(rAS z?umo7(lRIR!i`pYyQPnw+AmY8zmqp0P|W~yCg$3L&OC;8A)Hz0P`+@Hm408mZzflV zaK>p&>B%8H0R{S6yI_#uClO9I6&paY2$t}&V}Hfx^mbHXd5)c=juh9H8=?8XpyQ{N zDc5E|pf*EWP7v_Ks5RB6EdypZ|6uxV;ll5Vt3El7cl>4)`u9!?d%5W8d2B}s=wbu> zYLy7eUi2?*7Ju3TRqY(U?XvJEzq%huBG zfu>w1)F`W6N29PC^RO~T0Bzy~bNmV_5^}rw880OfcgWT=i|)W}+&Liiv5>=jmj2;2 z^;S(CCQ^27){UUkAXQ!+9~3XuTAdmopa`lhz!@h}oi)&%5=s(wGGs=P1SP#T8vMf8 zx@NmxMPMkKGq+uX*~L0^<@Q6!UoR;6>ik1u0R?2WW^fn$DojPvz|+9* zKBdZ&SL^cRX1paX>^wbUn8_P&`8Zkhm+#&LqMyZ&C|M&$)dJDBQ?6)CG z7B*ck$v)H?RAv$+%W~Tld@&PWhp`o{C}|C9{nsdd+K=WZ|&qB0|92{q=HwVi-=Vq93v^bjdh;3 zimRI8QR;^VCBX23*wkH{80O zA5KNf>E&tPX=&rDi5misV7oi7mOlSDv_k?D%w=&sUR$l+ISdOM?`Sq2gGcB05Y&0(nf3%cNs0N>STs;>AC^2 z;ZNgV^p-G?t5YY=^3%}h+?o)IOQq=J#cF;>$tNweA#O**Cc-ft-}-JN=pH&`ljKrCkZR=}o&k9V!NZHbEkY_Yasu_WG3B42U}XsUmY@ z>iazN3QF4p=V!{`pX(0w#DRzXfXW}-FSzIbN906>Uq`4~>U6m8)on)W>T4^eemorh zY;&Zw-*X_X@hJYqIdhgvMpuD*K#4l1g}Fhf$fN;SkU^aW30<2jr<{6^siYaAo<}B!hG1M!`vG*6A6Be zP~@@WLcWgW{m;25A0Wa6+V#xmNYVo_XUm+I&`Chgmm2=iKR%45y9k^2nhYvPQB zP-A6l^^PvF$wJIr=N0@jdtvE83hh~g)!V?0H}EED@OK+jz3lcSvmJ{^m%JQ{02qnq zIOFi6GrmqFE^q^rbH%Jk+`lE8PQr-ONs(g?fQZyGjwlRccp_fYJx) z`^gk(+y= z@LtoCGzk(AVJNb147Vk04LVnijf?Qnhv(r*X)G`^q^Pr`QW~0xDC6(vM@?B_t;_wi zF};ZT+=i!10mxcD+-tRF8MPSas|OKRDjSNK6?FA#o_rSYCEV-MyN`$3IrBC z9#MUPR*7T&?POZ_-O3D>Zx?5umW{hWHSAh=Bhi=Oaz|}mF-4!G3I!L3lZ(IMhkZSQ znU(bind|E7xxHcXN$#p1fpiVRdtJoOdU+x~c%Wth*({>lD?r|6KhB7H0Q5WT%!g5#1Ryl`w%ARuG3PX~LvE zbN`c!ban^;3;`87mE*~WEi@rt}9VMiI2E{-$R(fBAZ2g zWB-&)r~$teyqlE0K}s3Cdw{zE9}V0Of~x_48u%ecgH!`JpnHI$0e=zPZyABSRm0v` z?{@BD4L#GuK*gBuWGn`?w{!?1mcM18DRcM#72+;p6Qi!0yMG6{3 z69Q+6w2kS7#d5us{|B69`493jt`s2SI;ZOA3#;R~IU01EwnC!Cmi7c0q8a1-&As5D zeeR@AS@5)mEyGfvB9w` zECa=KGQ`UL4+N7YOsCJ^Umh;{f7|fd!@_9)P|KJo=s5W(RLeAEkv&otlb@K0NR9pl zMGb%3nt38f{=01iJUeYk~A55qAkb>&?EcJAq!1 z2S&CX-A>v-W9_#C9a;|<22^Ihea^D8En+H7RV=sm_H&)%}@>wBe8U!*G2)A^RTf9 zm-RGDv5Snad0)%Yl}>>p4e&WLGjFDXkiRjkzh`3*FI;PfW0FS7>#4*#hf6RpX2I7l}+pnA@C?j3s$!Yf+R&h?E|GJ8O6dpZkp{atAsCZF^zNt`93@izzr86h_N zblf4464Lg_xejb(5os?ZpjH3_TTbTJC;6p@bjdfESn(z)&n!sc;o@gtps&;L?YbZDmuuW5R-BW*a7)8P^c2oXu`g0v4RNWb)kZos zP--EwaSs*k0UUQmjW|6y{A#q8ra)>u>8#aKEvlDIQ*7#!At_A;mAS7QcyJ>Dv_M`% z*%&OvxV&;+)<42jdZ}nMqG5~-4E7&`urwQ~f<`QyUFt6hB^@sV_=SiL(kddBv4b?; za#ry!hnrLrp+|B-se3R7J|b}+=KI-)SvGO&i!lA8hbF1zMyvpq^^`^pX6h^OBW#ni zMD!bb7{+iMjh#}7vzMyq*-us5gp z3qn1qOUysrEI*S!nCgfH>(bZfXH>3ju#cDWq91o~R%p1raPpYqW>9~Q5p{VWlJO@| z+0Ut4!@$QijKKhqhmf_cPr}aA*N%NM*4Pa}c~0M8p-IEOhsDr~FcGzJO=K>G9eD5c zTrrNE^a=tV7AZ*K>Mi{}K(C5|Vq#-9R=!o~Gb!U=OmyI48wvezGh*3J1hhR-p}xFP zEOP&?rdx`BwrfAN;g56NhE>fwcgV7#W7$M=OeDWgvkwDuwWSKG(?D2u0B-0azEAD7 zH#_D@=G|A^8e8|^#ME^}2~u%tojH$9NrL*hZtY*J+iAz(KCz&7D8$%D?Gi;(EjEwO zgt{Vu5raL|b%AAiPuN!b1o}fHp6KcZ$CP>`>Sp1i+KN#`!sIusCXVCsC8nPFqDxOo zpg}B#=aR;u8Rdd-AiI+;O1)SsX@mGe5oqfr(?U z@(gwg`AesDKSUZRb0DhVSBOdl>8xs0V!HZyaZm#`<_Rr9A{@<$P zPeWLf`*s{ez(M*N7{dBLcb>xa4hCwj0U7HL4uNgDQ3ISiMKofyFtG^daTJ^>*af+E zVN1Z80?iyKgRQ9f^?GflE(apt=2DCc)W%T$e9< zLL+NnUy8$H1c|WkK!|L!Xg`qW&T7qw^bpWFS>N?CG=-!U&qR&QLea0ao zogSQ%3Y)Zib*!#J(e#fY2Lly+ocf*84@xKqj_qWn2Kibk;3wu!Pg{&^1Gv`NV*o1) zfjsJb@04ymVQup9SD8m1jYh6(VB<+SwwA<_@39YVy}HDrQxpzJIAiBVWPccDl-7|| z+8`imr)Ci~fL#Vex`7aGCj<%hdf_T%jttkd=>$c0KB zt*!Ev5@GLjRrpl@;HCU>80zpt(PEMH-4+&-_Bw>WuGob7CGKg=q)`e1p1sBKF>Nb# z+^8m%S3b{O1C)1c&y~MuSDj6yf|@G;EV=>`nA=pPXsN}Os%qRlkRNjk22Jfp{4jun z{RIyr`GiSur|8bKFo0Q34nHfwL6pvboZzzG^>C3BZU#p36;U1~ivl+;M!BGhXT^eb zys0-@SIfvmqn3ze)$B+^T@zO3{$A&cgm1OB5L3CH#ZNFGmaDTR z0o5Rq@+r1al~v0SW2^LYcHj1Afd?3Lj-)3ohW92+(CB?Z7o})+AY&#yS`j)#0tTwd zp5HkP$a)9Y;<6}rqnuZ60)24nq_bK|;Z!?LgW|>5NSVU{@s*VH6XM?^)1x*RM?t)8 zkKx`O7{@}?zfk1W`4X&pF{3X4G#5v*ls$prE(dArK4o59=de(fuEts1XrR#KqgEKt zI22q;j35=AS*q5AGa7+o-cbfLg%z<)#`yQab2@g>PA`a+Zh+_yL%vj~nrvRy&e<@kpeyOyU+^DYX7P{9K8Bnasrs{d<&>=M=;dFf|?CPP8~9 z@em=LfTq}t!~jN88Nv6j?taBC5mgT0EYewOTBqbhK~}RTlbejqp=DN|*Lh07`5e*V zwvy9HVWR6hW|n7Sc)`T7qAS#XbTL(6;XbCE#;^s*2@FH!ECq!@_#Bj#WzI|c4w68d zCM@&K_fT~1hM!6Xv+J9W(eNF7Ih5w%Tv5UQzR_|16L8&Z7?c?Oft1wcxOz=Y&YDLh z4N-rn2IW3B%(@d5E?q$6+SwswoZ45}fI~3dMKi|t5caNKdasdSlS-3DL~e?|l{Jg;HRut*^rH=?<%u(X7fO+Cd``K8wtXeBW$)|o zD6hPf-^?95`hpoWfw}<}ntfb&l(?S)e2v8CZl?r8^XgqpC)}bA-FK8r-qCoCI+kRI zEG%>i5qkPjME4C+c}!kt$ad5drSUPE1!B|{;c?NGg{fTMcAqHpBF_3v!+-_L0Hh6I zO1`})T5;mT@BgFtORv^f;WX6c%|c4)5ksB?zg*Qz& zs;gtD42P>T1xfH!77N zYQaB!`e4sQNMv#6S59Mk8U$$p8&b{A zWwKyWD`V^}T$*`O8S|Y^SSAD9I$f6N-i#aVr#Z_BjYYsQ(9v5Z+At%Bj#BAunKAU1 zehoh~C)m)viG@q*?2PlGUY4Xf+tQ=o|CmLCh}O85FZYgSLFWI|)e}qoWs41qw@Ru>wV!}NoBsi#9gdS$cXGD zH3ePh)ca)+4d52RTw`A!vy2{pdKp6eRwr31^1NT=RdoEx_( zL%6D22b0PPVJ9LP(aK3aSkL%hZ~oYswa!oe#Rm!?@{rj}9~Tu+B6=8ZhyXGW;XP{hLkGrd;kWU=p#5A7mI&2Px4o z&~`0zI?eg0AJsFWB2-YC65)PFg}8p4mI3;Txs%yT1`mEPNONzEfQj%(9nv#N^5wFN z_;dpjs7Qt!La_5TtlsT`9o7kZw0Dz!P0mSALtxQaEy=~tB=0y|Nw5YNQOV4;#r?QF z9OmK#AFCIl_yzRX;b!|sDA6i}8?}0DNY^>gO#tyY58uF0Xt|2$r1A!rMN>xv)UZ3E zH@Ks1lkuEF!uY8;7W`+fa;}zO1v+S$2FSI#=JOFb?hsV0I^kXd85!u9 zgDDs*JvZNg8IQsu5<`W(-%#Vs+uQ%cjPlJ$p+^f#H<|8Bg0Ab0AYndk^+#tFN8>Su z1(J*v?fLZ5v1grmklKDBg{{1~;FqKi-k&%C< zHD5!u1K!!n zu0&=(zj1cu(32EahIgUb%s!+(FEEb5Qx=&dslseH%h5tD#x}ztIm*yzA?*t|p)Eo6d*ysHQ-V*iZV%}Op}m^sM%61 z|3*G-w(xd&4w+ckNjDk9=tLvyMJ`d&%3|f%);_MFv#86dnR6%Cd)i`++$=a6OBv-Hn^esy)ddAWOvOIYiHybz0UR0cmw9m&a?3(A72j_ z7Q!hvCzmsj;T4ki%?PUJo`%1{>*m6>lMl=>T9=64?DpfBJT_AU4d*c3kxQel&^-~{ z*n21G?mG;p6(ILUXn6PZ9BI`~?J*EFPPW0D#z!_)vV8^Zrs5lSX_Aax)yX(>aeJCg z;Wd~`X6Zj;ZU0=RhXBIpz0x$ix7mq1wS{v1s7bs!h zQ~EmQyV@|d7NJ*i1klyK>uIGsQp^b~_-o4G`HNP9=wu`#3pQuXhBTb(9cry0iBvNj z{}hr$OQ`_0;JdnTP*oI9v*2W<8lh(_aA7$OPz-W&Y7Ktzk^ofK<^q9SIIs$eKhMhv zsY#Om-s7935@yqgIaW6Da%App01YCgp8h)bHv#vPoSAo0beD;VboaG$XPa=vEk?m| z>Kr{%{O_R=3)&_1ZE{V@eKrx*B&Jg-%TEr8-lP+YsBcH?F|}{921(%q6&sHn3%!mQ z=D_Dg2ub;n0RZg1;6gEM;xZ-i`Yt6JIrnta_M}vPYi`?PqxR{?zGlS&LY&-5bi|43GYSGE8ZcdWTN+q)^Gc(2~T{pMkHZz}1Odj+eSf zZ2Bs34EB(Nx5r-TuxI>^HY#GXZAR8n9kXXUVc**9MUT_2%gM0S-eRw* zuK9;o9^r6LB6Hk#eVdgBt@Kc^f`j*6jW>1ev&{DQgJvDc88grWne{BK;E6gbn*u7V zX4(Qj1aQuvC(5Wo6_B1$C*@Ir`ry`Y9Nu+2qvu%o%j6W<40~ljMU=2 z((?q^T4PXp`2o#QE_PS{QI0}?QyRfh^xYu#Ga$JU6kAI&1Kz^3Lgyyv4~LaB+AwLG zmv5_uocQv{sg6d_UD630k|RcUcZu+%!DhF%(4UHO;Kl^r+VFy<*%o2W^)tr2!WdLe zixuv-SM{|6xSdma!m z@r6}_od}bJz+I_AH>dVO)VyZGVDd?*B^4(1ftfL zrj;eFT&Gjd&iQ32NN^0Jp5*5$6Y&AAazH24h!#^c4NpK)=w)}x$W{*ChCjK|o2(WJ zbGgiztOI+3XKhe6928Bx?{^x_8ZpV+M=;&E^e57-W8`ncG4Fh&IKjwe#xZXPD#=vZ z))9o4(&-1>#Qq0A4PpC{(X2T(B9pVbAKv4xowFjRRi(vqg~pPEY!tAE(!?IqQ2@{c zUd>zQlbBr#MUHGEW6KOxU|dn=CNNp-;vwA7@7^tx@Q-DTnLoi|A{f+ZG|0fE3BV1o zCc>vc==7li58$L|^r5T|Sj{o&i6b*veB+G@iHy7BHH3X);@hNr(-{YE&aZFLS_#dv zDkKR!`zvsDOA5&2#h1N96J=UT0OT-yx9dfQ%eqQ17Y^~_c^zN0(O$us1Od2YC;_b- zy3J3f-TJh~(%Oe*5?2_nsOeQoIcHp#>D9r~>d-@~v=zW>KMQwyhw)rFN{Ae!tIwB~ zH4-WK=O4bC{&dXDI63py*j?1P*NggWRuR3ps~_sZ&MPF(EHFwYC~|4xfU2q1MwZo# z|Ds#&zCQT%QiJ+l!WdEe*gcX$hI(hT&7H!8p(AjfQ5{517MoEQ7N`GV)%~N--ln7) z*(bv;Ol&pg=9xO1)uwqY9_+ty_0J*^HI&{5n;+LTyzPkU{)u(Dvo{=r9y+aPol)BV zAFh4dZaoQ`b^^6ReKMd)XBLgWdBym|CQDp>^{ohNR8I}RSFs8oUuUuJs!&MC{Ksqe z+vhtMB$8}|;6I~1!O0nW+`f;$vIe3S&35YMpo!0p*gXr#)sqY>8`B@P0pKaMVPb0+ zEva-%mK8yyGANM>3*$}#xICP}U>okMEEdvdh1TBkhxFn8|1<&kGun=ISLQU*uy!5e ztOZxE8aL=?lC1^B1w3x_v}nnnGNWG??N{SRmg}<@bxE%7ay4AfHV_AkKcfOvQJ5Rc z{XV1CpHo#O{Jt!k>PRq^*=0nN=Y8DF{`73H$(c?IU1AwWwt?d4O(ZqBY*JJts6!&g zBi1=GIMfS+PpSdpt_%_rDDZujv2#K~eyH@@n?OuheSJ2jO|Nn%`M(90?+?l?KmV=| zk=E5-5dHqmAA(?Lzc2^dG`KMPe7u@|DsLdHk;;>S5j}pA;@=8<2?3|m8=C5UTc~n1 z^!&{Q+$`70h?k!A>hq>r0>aT4hk*Us7!WC5?_VC(1;{~H)7mGsxRAU$mTL54N#>*1 zEtOxsUNaps0prm19Sc?uw|E)8{C)6t*xsRPQTq(E#%|s;(@eTcK2i9vrUqELcC%U~ zEv5d~-xCFVlj{QtBM0pE8~Z`WvxQ0zY6vne{L`^9u^O`?WCJBIL~&|0r-!upnFe+UrS-@96gArYV3s{ zn7^g%ZpULjdILeMU*JgeEe_{f1+q7_BkCEAmnVvupP~&@KX+5L;&bP=#>ODU6%0v8 zqtLe&@Y_f-Yy&l+bjVSunW8Uw&~~A%2*!srji#Y{kPSlz7Aaai6K|AgXM7~Bdl~_c zea$8Fd%?tV_6xSH8CKSW0~o* zK$#m5=*LfVam(n&d5mNwJ}qqd4eS97oyVcTBi&sxaTm$B?On@=Y@ot{z!Aa!aQSqz7)^x6{1dqbcL4WUBm|m7lG&GYzw>dLO9Y zmsVFIgHM;(%3RRi>;oi3$yEt0CjOdpL0Psy5nJ92joTnjuOC3?=jBJ4^1qEoc;-EE}r2>CQ6t=z$YZLVR03oAE*H!Sn;vPJR zRz@5Np_WT8VZJuZ{(vkN`Fs__;94d0saS)Ab(5}V*`MX&}I-->iu8<<6NgkO!jPT`>Pkh3 zP8H}qOH?sNRa(QhYcmwMP=Zr36~x-`-rUDki7npFMy%V$M*8c@jpox@s+DEUbcUL2 zwc@Y&nj+?G(k&J2W}?SM>pwBl8D!t0f>>+z5O-Pzb|C(yWpJdKBqbS6g{^;+%yF(*`e^;0;(!5z7jLd*|YxFZyw@~X1XOJ!b zG=kzS%G8%)LrK0VoL}mqqqa2Fi!=$-WM<#99PJ_3#zt=N)Ih%E7yXR3ty}(++#=Fs z8>O8vZ&KOqK7d1HFz+utK3){9OqV~^g2yNdQz7K?864b?kf2t&^_YN#8HYC<7b^iS zA%r%n6FvLa^2X5`|22DQ9eXix?0AP-Ca`?Mw3l z_Ia8fwtVdxckGDPVtMp4YJy8@fTrl&DK(pxjcxLfXaM;HS$kV4(|P ztjn6V)J;-CX;tp~?H!t&9QXjJT2m-sJ$$IT^;afC7cs4c-A7WQQi%V)V|Ru)D8&1J z-oF-s0FGLxFe#bF`eokw+Lc+DrxMp*E0YQajmO%&ZjqQV#&h)Ike>5~?DWLJ?6Uyr7^?bYOSw`+$?sm-?H}3=LI`U0&oOk6M*J z-h&3J8Y8xqxDHOnUkUHtryih#`9i(%DRcc*2B2}tGk+rqNqgwc_LLU6xHe-{&9l{% z4tro?wZ<-hS_hN8mHb0{o$x+zVmqe2kAf>$xvM^>2liu9q?ML0u7C6gykOQYN4AlBr3 zIWF^A=_h#VHEZ}8N03!iVP^iQG&oikxq(T-0jaa~~{wWcJy>gZ8_@ai; zU?Tem3BhQ!2Z@ipH7YHEG5 zA4-EraZF)({7+&NIfDCjpRKA6RE}X2qJ?)oXHb?oV5O1F0t>csd&|56a<6_<92VMO z+>scAi+lV{!k&+K#mgpVKq(i)p`dO{?OB(1VIo!vM^3exeI131b`B&>8F;_41w^qV z!ELY(gZr5o7Qw&T+2%%N3q7MRW{1H9&-+N!tahpo zfYAX(g({S0O7@d4GAf5GXCEQpWU1GW!Wn2v*U-cF+D3#7(txOGyXe*|ngGclz1+zwbs9MHS=tK#Ws1!12juW5p`9eth#F3UOi@S%` zN;ViUP-0ZI14?-dzYNOs_%Jrt)#yF&KGYblpJ`mj|LEWGA9Lb}0$AqkjFv0Ny$0I3 z?jG;5+nO7ZeoLGcSGCRR0EEFuD2gfgj+_uD9Bw05YsdM2Pn?H02wSG$iX42Z z$rb-72PyUM$n9Yj4c(iq6ru9)g}87+Sd;?O07k;O6|%Pz$Tf$e!@%&Le;Jhaf9JMm ziP;>iH^$TT^FJB8G}UhuDd)>l%zT!%YnQ@^3^Bvpam=%Fl|(2{_w3)AN^v{9l5z7h z+t)Am53d8{U6)4QWDeSdNq}_D1O>Jy65~+eCocPnzB}|!#H30kWY4SKQq0K}+`=sY zSn#pClOHPY%Ae9MW)6vYq)<-+s@GZuGdj_nY!MehD5R&`cXhc_$uct!yQne$Nn7T_ zj&AJ~C?Eh&+Tbw}3w6$I&DFR_i-1rfX)VTpn8yuepj(R?E=&|-n1 z7y#ZrldeZY!XtYP_AT(q)OfnV&Kn5`Pc6;A;`LkF$3sIS9t4Lg zd%!zF>S(eF{C5*$=@p1j>RmB=4%dRQHGJR@98av}K-)&HVOSj(l~*IZ9a#q~eOGI{0LnJ(K^V#IV9PR9AMd-g%AJE zoSrbdFwfvaWg9w-TdOx@+qcofcUYhhb~JMucW!U?LZOIaRq$)QS%^=@YTilOV)ua> z7EMKHC+j&F)yr-J7pA>u+uQ&UjnGQ$%@E|$aWJ#|o@|QBtW2oQ5q=P_N1ZEn(+X>k zn4fl;y5$MnE%7s3Q{a;|ObAZB#U6_()(QOmyyn8q5B}3gRq^>|MsOag$jFsA)%OkQ z(X!OSQ)L4(Q2vwq;?lm$OD*BpeC(HLf*r`Um+R85icj!$QeVltoB1_>#bA1?-fh(F z@!9aUU7I=F;YebZxnzeu{Z(O^qV*_cu4Qaq4XA^r>1tk zfXR;hU<0>UPwU@~JvIt}CcwPVcSY$1B#>*3uAEN9OI_+rXrhMj?zC^Q_Ma*=y5fvCWofP~}lWiMzko5bJ#dw@;kh@T7{M&o=2{Iiqi=y|dv z^KY9Rs%yrp9dPj?O!oTal7Z%%TtZc}tw>e+w+1VlSb>c2Of@1wIIUaa&=LlxYr2>O5;^1R2317WPL*6oJSE~CM z)?zJRL;I5C8fpDQC|iTxd&2t;=?URM?J58kEOAqihr;t*oFd?q;-5i^AX9-gPWQI# zeF<{YDJgy@lVKqs!9O!#ETACClZ-=kI!1--le)zESzmiZv(k2Tfl7Pxy z@z;$Qb3J}m;DqnkA7v-y)t~EL+kXicgGWhsV#C$ecRSbk;z}IBeyZp$bf~&P0Pe2{ z%Wd>1@cu#;(SbUtJ3X2yD^K?x2|7vtZOfb&5jla$rv-F@^LfQp=y3i0h-ctBiu(oO zYb>mJ7hm_O`bI^7<{-<*3mGUbGk4U~LBn2(+(abK$=Cjj(Gf^6;8GhBgM(;=0X*x7 zvi%U2h~vg#LCZ!cS(uXxs)ry`QTUUHzBBUDeshVr3t8^PUQ}ucLP}dJx|iI<$K9w*@o}LOk@*)4o~Ak4A|l`LLtzg zyL$xts}J20*WghBT|~lvzly7WNkb4x2{CXWMzaIzgTe8ht+`Ue%;Dlp9aJVRVm`Z2i0nRrdMfUTDzws??62OZl|xz0Q9b zK)^|QGiVHu`e$b5pmouw5%N0XnYV0u_#e<#$qiE~Lm>Z!yJ2Fvj%AjapR=R+qdlFQ zCRzjBI3QnaRlc3Crp$*%NK@qgCo?RY34p2{p7p0OqK(yxoNVvzA=qpNzx?_$=Bzn3 zL1J|h`rQ8uYy*@0_30$*VeakS9bet1Y#BwKB8}pbLMc;JBT4gF8ldf^_7QumZFhW= za$Q{bhf-Xr;+}uD?Dv~wS&c1>Dzn-o%}niLCR+g-Gzw_d4#a=EM&m#dEQT*u6_*PGitTqoRS`6>Ob zWZysidfs`wVFm8xR#vsE@3x!XWA)Sd#+CUm_BqLnW%NYum6rXI?n@f_K~Q~*wm9ZU@4CmMWz z!lekSmIKd($P75%Od#~;6LCZW7d`)GK+sSb2;!WNI*p!fS0!0{i_@e2Es`|Xn*A%p zddj=iSkEk9N!FfGd*#70(Iw|p-sZpV`CM*Y^?WL?OV!LPJ(-sGz3PyS>3g{8+QIh9 zOGEOeJ!b1ZVD{3zie!YHb75GuzPSj0M6mKgF~shHVzk@${}Ez2c()z4j z&L@XDN!kP3*>Q1xO<`QUer;a8#}F>#?=^t(@~wS&>(haz3>|v4e&BpHx769kPnTqc zhf0b+skaM`v^xH;%!6HWq<)-<`!Ao;9z%np)5qj|BS$LUBhOt{XLkyx#iiPN?w`&> zs?o1!@5D+{dT!C#Eo|>3yUHkkvxTmlZ&lDQC5@Cb^EcR6iE`vkwTvp6G0Se{WJ$rK zig+&MRi@>O!snZn`ROaO{7!v8fFkuZ$mO;FD~!%91?maes_8p8+3g0j!mb&!R=Krf z-|nVxFG1<6lKndJWj;n<&z=#r!`;Kd*n4c?3Pc>#Z#C(Tcwc7)r$S`&FC|c3-S}pC zxr+rn(va8JSL=)(T@O75(bYT1D)+HVo(qKYsI6HdtxA z;Fg591S1ydiZo(a)Fx@9Ta3()_tTpoSei$frzp6Z_>M%1)C9_YX1B77n3?7EBy3z9 zb^C(sucqt2V<$Lfm7}J0^a`Q^fB81fl1v|GB_Mbax(4sav~U_}Uaa^60ve;l%r4m$ z_6ZE;?R-XYLYQXmjA3DKAM&u$*?bK}UpUr%5X8xnM0NM%X6>6Z#t#EhE|m#yJgqj} zLssOw{@IMg1GtQS-^A6x#c?@^Vm0bZe39Y92zC(<;8}-_3L%RxFKuLmQdJI_o3rO9mPogN`tY7n)F%{T~>SKu?+c-Y@XI1b? zWZ7TS&YDCB63(9;&Ajv z(ml;WnAW5X2am~skPxt1g;iuCtv1%S* zneLz#phRX+2k4Muc|q5G6og>IXXK*@so~}t%m0Ldf4iEV^{J|}8X@5NmS=hqnG|&c6Mcj;keK%w zxW1dr?SZTHK`6|lfBd@@U2mb8#e&QYYFNM}m|bkBw6cq=B$@p386y0@1U#wi0uS5* zPcj9yD@%Js`Kaobh511D)1pL__S>SQNDt~NZ=h^kVq`@)gD!)H>7jSzsU-#;S1CGx z<10mj(l~1%JhY4B06NT;xczsO1z9fL%0nz48`S}plZ~qIf67N=lHkfmNo8o|V=`G_ zt!OEWtCb2xVYO1AB&tG3({4>r7d@GDshI_3RIOwVlv_9S3@9T3MZFZ8b|tf)Y^tH> zJ{h%w&wR4!Rn`47YKQLb+0-iS-We$&cxfllEnMGD*&nwg=Y9*K80>`v4U&2hta%D(BrCik*H+}gG37WHD(=t3ARB5a z(+<|wsOUhAjEb$ObwN#>P!MU?6f`YHeJUCjt7=uve~MMVibka%zodbKHz`Fq<_6c~ zK(bD!7}>vI?SzV{TV8mvpsa?g02v(6BhSEKA98SZv8{Gqhs2Jw7zU(Vf~yOB+VrIo zmksNT1MeM0Y81oO(=IktrR^ev*5GF=bdh8=N-?s3!Kx+|6LjANUBi|9Hle~{rUR^+ zWpF?>e=7q6txWsP0W1$=o#5TR3)&#Y>^-l)Andews0P3xllFWO{**zhG2~ zzMJuxpaYsL4M7E;gC-`aCqub4%Ucz@PS%W54y5u1vM>7#Z=#@##AY5Q%s5# zHK|eE3R{$d*-$#Xg7&0nM$~Yfv+Ptuijn;b*G_1dU^Ai_I$R}4;h-LR3I_U+53ftf zf5(9l$bVpuw}S^VjoC##Ti2@vgbY?)2pCXhAyB|o#gKlq2Kf)Ls107ccleBbDu{5fEm0Ff|5q zKbJZc^^XOj!(r705cmgGNrdS^T)0pzb;xstLO(%nRXYVy5w!le*c?{UUKmkwG+tEc zcrK4c1olt{tgjEd<8HfNDy6R<)=$s7^@Ca^udD5LalbMSiqr_7S;__sm2WWWe~>+c zR6wERniqbJQfG?ttCKrBlu;i@pP}|d&zhcmQ^lgO#ap~;ci{BZ=0yQZeY0Bp_=}+k ze6I>v74AV1?s2jG0*Bk&%P(KaDm?vpwb-g4s&9A3vl8IL3mh)c5Swz|8&sD!gk0XO zF4Y`mZu6rTW>XF`e3NDYF>;e8fAMW{3is(T6o-6^_+*u!QajJ%uj!xT!PnGJ|HvPT zspH9>cB*ln2c4;&;~8g~XL!8TIV;mW;7sRCk2qI8%R|m}Pyd)7AGhY0?0}ESqjyX9 zJdeFiVvfh(<}gn+*xs(@raa|l(ppfdp05(rILuWCY7}Ou0_jOZo5(cMf3tR0*?~9H zRfCTDnW{pU#~jsRu9!S~Jf1ri&l`u=7T>vKV@g0t+F%EjN;6*$=pxTKhJZZ5&45W5an@E`Y2mwMbZb?3TTo!rj}Km^s%t4 ziewfLGV72!@|9H!!~w6&f4XE2)nioxc6ckZLXe|cd9+C%%*w0`>KIm5h12;F>WEcV zebNW2vMPc*K6Owd%t`_UA93oUKNb<;sU8uebE___{=74u0N?fYYA~0(m+eudp6zbC zQi*Ro{J1`vKRisK!zAy?7n}93D?oMmp{(+?2m|TQ`|TE#T8d~sf3A(g(R_SVfxTI% zfCjC0AfIkyfrVa)FsMOM#x|l8Hgg+RrZ9sWRxJAs9bSE)U&>)p4%%z0_%v9*7MY!I z45+HwFinBtCQMhUrUg@VP0)a;deyaGs=A4qFUZC`7I+1X7q-zVYpm4AJJHHNLEW&^ zv!Wy*r)EVte4Cm9fAFe5ZmqLCdPQsg__a^|xZzg(@hF_-A;Yit<5E2RqXk^;$ER|h z$E#qiAE)ZcAF+y+eqyR;dE_eB`3X{(r3wJA@)OcLTLn-!j4%oK>{4#G1B;8}yOnx%cB%4d1}Y8Un~k^o-U$E|f1f6psg)yJq^)uKLe^|L$# z)l2#$Xef?`3KsOy^(a`+H>L=7IUiMr=Fj zuUDCZWqfp9>Q?bl^-bnPb!+&j>J%*Dqv}z)f=|)Q#A#k4N`0T430K*RMXCx)ma-}X z>s-1O<%palf0QJMoE*MQ#XwbWO4lawJ$Y_jK%b0f)2k+;L4L`-tLBicAt_yEZi+P| z((RuPtuJ1VJH_<%&0m#k_(8dbe^;*IKa^|uPvsi^OSy*sR<7ZHcLd% zs{7T0v0EyEUhcNbo$)}7FxT6M)z3<_JpNS?togiH8arj+YlYxHt=3Opju0C}DENQJ z^>JY+#a8J0Qo~xc2Bi;SyLvM3jrGbf54er3l;}_!-b!?Z54)ygtzL)H2adHYHXDV| z3LitEe_*Xxf!YVKTbekpkjDOTi`?_&Er?>Eom@0PsF|M;Z0h~m*D%cT_8)@<%xn-G z9f*0MF*f*rk!vegeH{p&|oLxK#Mh<>LitUKyCadRcDP4-n^k zcc7ma+b@gbQ3>>V`{VAX!;fn~XqX*86g>C%vk5 zsPNbZ%P!Qm-xVK(R;vLfw6Upz2wWXaG9S)v!-BNr3<|LAZi2HLC$60b2H7vCbm73N zfAkQtzEt3dMwRQ_t!|coEfpHbMgXY6K`;SnkAp0ZN%^5hz^Uk0EAMq~4E_8oS=i-*-SCfSwQ5Q}>pd@kqbF2zi zx1%7A&3DUl9him9gUa5`IP~1aj1%%*f4lRiQf-bKAzQgkSJ%h)VuWpSOb5NIRTel% zsRG}$FX$RZL1LfEVzvd(I2LuC0*a5ZCu9Hn|< zJBaWfYIR(0r<14FUs-S~T98szIDpz;%_K0d-U%X+8`YJ5%^T+oCi0yyaQ#H7f65yU zsJ4YYsX~iYd@fr_L&g25r34qncI1YtI$yM@Lkez;5|h*u^J2vpl)5DU zP%#{SS;3)^%ajq?D~T00htv6O2z1qP&wHsdQS=9EDeqZOfLq=2cmydlcxifUw|_CqdY6<9AumkTr$F@ z3oI)cR|lFk^r!>rb9=A>JKwqnsJ^!c6Q=9!0|)7O`@q3FUYK>zR74fsE_HP(wSdA- zSB3<97?)xL9l=G&sOWAbdHgY+lFF{O_v9$}p0-z&l8&}#sl1|o7I+yu9U8KiE$7nZ z4}X7XVd<-%_nXCfyLvER7seW7IeS~h^WtZ7Wf(gH9GPspeqJrM=HmXa+q@iCs`VWH z@v<K8;z7(s`s_+x5d>U_TzuxP=eLcP<#qlKX& zS{P8#!hnnxKR?~W%%jzTpyEdlroKT|(c-_(biA`689U3fE|Dxgr8<;B^UD) zL}qMT9wM9BiX8z2|8(=S&2$3r4rXa5>Cx2YDGIJ+Wqm9Q>c*D;8Jsv_$nJ~?Sx&Z4 z12ejLNc*=^EG?g1y`zii5BSd*Q9plXI-so()2-WwX$Riz+Plu36(xx*KRyk79)<}Mdf67%#+){CygJO9H363Fci8MoMEb21IT>C*Wl3n^ixUifQUEp!4rQRLEdp} z9oUe<0vtxcoAu^;=|KZ#a>23t5_paop%DLx{A6&;3!DbBJ$V8xKs}xGkhB}8hY|=#ragy%9QmJF z?B3**O`oNJTqC$L$u_rXvL}Bqm7Kn~lFw}f$wL!sJewKDD6fHn=|{%in-%Yb>o$tQ zDBr>?k32lj!3~F#Z~Nw@5r(A7@zsT)IWz#_1{)uH3`63!P2ZZyASUJTHiGWoyNQeu z?dNq3Jb~wxL5V-2OkVP-EG<9qalG~p*P?IZa&Ajr<~g;YAR0v*Q`kD&Z6H~T?{Gr55lpW6~GM-@`Ne4rx2%YrvL^_yvk6(B&*G8`MBqPutZ3vVw21h z9Dkijr2#4l9!A}Ijuc>(m8~*e7|EJL0hFvj6vSJM9!HjVGQ&burvgu^Ruv$UmFv+> z6674drj!2%GHJ};aZxbRX}eQ;J)4S-_+3SV6?Pd7jLZi(X6isO=RJ|HExR^`JDu|R z5-!KJf{(t+Y%)qw|AmjJ}EWP>mMcU3f^l#)InbraG zVi%n}Z+Pq~9LU28*T@c%WR-kgESCrKEBfTGK$WOWHLRgPbW=4rVIS8pq`kXe3V39{ zl=EmqUbZo};jY$)A)f8D(fmD%uD5Ig9|lpPnWj(@)n>nxt}uZoF%WM^gY=|LM1NwO z=OHgW_6l3odP~m-y$xQ;9D6n0gFb8&a!f(vhn`#nhM}35ObhEE;DP?Z{aviubir^7 zBNt`RAVO&lCEOlzdC3;BzkJ5zP*a(-iGm^Z_y^%+&~nUqBk7Y;QA*N zA>T%3v!X)k5N}U|u#zn+o$Zv!TUzoUz1Ik)(DN6bFM*gS0i7X{pBjOh6G^AE9Er-) z2IyRn^EoTFY`4#&N}`kQr~#@?O;DLy)kFfWUFp%+H@`8#TQ0ldH`?{jWPg4Z|8EsV z*@NdE#bg7Zh3_0(2d({6Ae@r)B1wfE22g!*`!KU_=9znY0u_V%7NB(vY+Zm>^-Y~3 zvS>T|5~Ug1>eL7)rA+A332DC;kT}?jE*=njA!Q?D3M?6G-~x<-=K$q=D38D7-HzNl zODak_PnY*%aA;{`PIuJFd-|7|}(Gr_PqW^k9V9Ul15(da?ot5`GRS5+U`E!@?k! zpUFjj-!{YrkER&_6i9al(6DPPuF1n8tbvaj^WYQ@ut+LA6w5xv0u#n*lFu_sJu1KR zMvNkJ;5#azfqxL9C_UOGOd=uq^!$%&(LT7vzeiTcCmy{0hV0^48|H9XN)>B+TVoog zSK}4Pu1;b!C{X0|!H>8zA(SV6NugwUCyq@3C{+uU1o{-f@NXo4Rz($|7kN@uN++VQ625&1%aY|lVdZ^coLlt(STWMcR_ly>t_oX9 z=}v%EBp%|{$MvWxsnAO7i<$j4&)LRENtFCHKMFZeD?P|9M`A@FCxl^{1cgMmnZ_8i zJhF-TA%FD4=qV|}31`+}ZHulPJ3agR4aErdxn|)9A*4}%T5VSbjws8`;&50$ zu73fdiX4$IzwB4WeqrF&b6gpRnb{btCtTYOyScoAov?UV92YaIH}7$?PP?8z0+H9n z=0!fVDr)!?vtZjfi-M{fIwCwOKYp1}J^p9+a-5Gq(WA{=6;}J*^2>ao(R^GjjxTsTWoE;x zS$fox%j4GkvVM42ZD)Qcgvj>g+1xCCSs8Oaob?tDcsB;gkk>nN_4ABf*`x96jQz(S zqFSW$AiMqX4-vmhGH~-D!d%wd_3;lXO zMb}&G_{YT(r+`1Eb5S!g`1vWFjGCOmkJ}Y?{r%23%-E+@B<2ei6$dhvW2~2RGQinq z@%NlGet#l=9jB*2YT|Alt>$90|FW1~_wH$ZIIfp@{hwp1rc1$G{t-wVcAM83V$x>! z)8smz7yI>U9<4Lg`~BuHW0h}c$3b_wd*1K1tL+RSZ*M%#p)(yW%`+2NXfGz9<{_}& z?teMFJmd6l9{r8HXK;g>NM*TG;V`*E zbAR!?Gxo;rID_Wb#b&CRg|1$6d%r%;;O}%IyzZ}S_jrla2#>0>6 z<4mDuZ>&gO^Kx80%&OdcTyIwMGDrtzW;Q_D&P$~jt(lV!*J@-A%f)7n8jGHFA#_eJ@z2;*3U>?>pt2Y-fKj+J4%sH}?CYgBxRg*(KR87z2WqVl8m4BS4 zy5~t!Q`PgO3#s~F)95rqJeX8*aVWvV`mng4tRE`0P95$KtK)IKeVSOCxiof%gZaAH ztRE)a##pL%j4rz z3Bqx4_;ET-=Kafh^Dx=Fl~mdyMH;Zvi!%a9VQ6uq?Y2<&sbGHCy}0B_GK+!*YlH6vqVABL1rU5^j+;f z>>E7M=W_d-|2o^xQu=;ELl5{m@Q9w@ae%UU}!!L*9>e(b|Q+{;7^Xg$u zJei)pdQjj*MlwKWp9|~H^2hbVGz?zXhZkIjfu?%+RYD#=B%qzVRev-ecgFMLIEVV( z%aOcMB09Gu^&a4 z%we-$&Y~V}TabWqvTOI}*T;Ja-6!&0Ff+80i}?3JY8X1EVc8cm3W6lP(({Fq8tgFM zHF!tnEi@fBLgdqcpMN5NUSK(hi3uXLkdjgnYghDGqW@4S`-?bFL zOs=6>`|1%GY=r+MpAEQ0E}#bz@`(`>hmJQCnZfB4qeKSXa(^5Xd7c}_ZY*B^^!O4) z3Gz+yk#->*@?fLDM&&2>da84y+(_kamUWPG3q9Ai@(-CRRiHn#w9(rWMVYXc?9M># zl~wj5LgB*mwn3%U&7!Uvjk2%QsdHMY zViLDynx=8w#(z@nH=~%xT-ACl(=mzTa#d6MPLEOcEm=@y=_gVXq$c?;!1bpnxP|!2p{5P2 z9`tI_&*VZ3TNO%eU)(qe&XILJB;*zQ$wkiLayy+olz-}1W8#QX{mu1bWp!j!`xzys zZ>Gg(^15DEKaUflw6&UXVkKxk7I9GrXLtq)iWBn`S#~iLRpWvm9|O-()67!nv^vMx zS_HEZC*fV1DOA#(v~)~UJu_W#Rx6aNQCQcvLDrk(6JYRFt)^hg3RhRFw%XM-seDpo z;Tt-+K7VS&gyMEAjHcUxce`e@sOr2_(>Gx)sB2Z3E7kN&=EiPa6Riu~v5Op%uD)-~ z6-`)`RE~(+N|cU-^n-1kPPkv`r17Fpy#c5=MQ`cCWqr%Ey<40=`6;wcFbwD_oT!?& z6nBFrOeMKmUy&K-m&`NrQRLcFJwLT=xT$NJbbqv|6Ru~-S1PNW)@Ui2q|HJ-!~Eo!Z`tcJCGc_9CO)ARU|2ss1<_T>i;@yuUtEJ| zAAbd~uMfKL`raaYd`UG?tw~8kpy&x37OB?OtPfyuq^9ZiaV&lSCr5os)Eh-Mmmlj& z6xh_zF|kRjD9TnAq7NH|;IT*F1m}AzMv6R_qwAa9lfouc)AHAUn?}zMYSnDf*&-YD z)jgI%gZ{YK99Gj$6IJtoH{B5sDBQZ z&*bV!T)aOTu>EWu5W0u$!N!AoM_~Zy)0$i&6kqbSMpNik9NHVYCJE{djgtk{hJRM& z+FsKgw~tY9U8d_rKpH|D6uO}e;OjU}xmQ=kYvTd^imQG{-z3$)qg8oj{Pkd49)hVO zITm!)D_|8r@j}fc54unW_Ix9hZs|W+u7@1cbv{IP@y7NAT`l3==$UxBC;2T1JY@Oi z`DR5GT2~m`|V*89M6@Rh&=H*K*#X%A`@uY~@LHL=1$Y4asO7Nfsg~)f1 zZ+}W);ZQ8^m@`TubdmtbD;J>R^~bhh2tvnp5Ftruf|gPgcYkgPp`(uw zckyFy;Mwu=6F%VpmC(#1AP{2xL4m_EtT_}wEjti#RI*&fy5X!bDh{~1Aj=t9lQ9OG_1-wL zoZJsNpy1{^wJIqLl>U(&@_)mJQyl))vum}lo2|skv%=^v)&~^UB=yh>67%h|c?dH# zp7n-2?e4Ey?H&=(7Vmg~WWC{9P~B-G{K;~xH*&&j`n1WaxqoO7lvaM>Sm`0L z%kolJOF`wXx-p`MCc$J89&EaAxY{A7;%L8r#|7T4VV#4L%kpMr=koO@eDihD<$#lC zG8AC-Dy94qU)tkK170npE}wYJL9zo*Z4|je>zDi%hxQ1aaqNo&PUV$YTenf%=~d0C zva5tm%#{J1SH4m^`MCmvWG%P>~A z{3gF-l$SbMu2$%xVc@LDGx@h8UIgu|1FW)koj26>0(Aqf#!*&=aDBoMihF$uRZI-X zBFf$BX1Yuo=Vzn`P+>adZgq2$D>sO8#rRV=)5pV;t|vBs@K`#0*dE4^7?4Hf-RhEc z#@&CmK+W{YD=7s=mv^g6i<;UkQL7ADo$KDL#J-p@9=A^9wEI-yfhbgfsm@Uj3X{u3 zK6*%X!NMu@4E`0|lBs-?Yl8+<=bzKbH!rT^Ab-ks_V~Cpzhqir8(Rxlt>66H)%2`S zMIBj>bz7`|bdxDngsaeLu5Wp!7n$i)t%*LusT`Lo-bAL6Dqdm53bEBWaQc?2q?Jz6 zLS5fY=BR6HqE}5->p-jX-qrdb&YR9{&sZTg4b)#1raDJ`x1#GUG*KAXmpH3z6M5{X zO!F$!oYo0VB{;tidEXX{vhTht&;(>441pWPcKLCCjb;bM#Vuu=ooA+3PSk7sA^=vv zKdzFU(9@zx^P36vkT@QW#6wZ=FvK1Lu=6LK{-JRPnf(z2R^~UbxgSQuc&2{1A(eRv zV&aF<8pe4a9yE1s0h#q-HHCH3hYwGgb6}@@7>(kd@e#vS>NK$V9uC`hrh9~7)p-nh zvWL}wJb}3$VQ6LEo4kRlXq;0tOz3GIM$-glc|?(wxejcOhtV>gDIRV}WnO}x;9;~) zXnsc=Tf%{?3l`bgSF05@5g`y;6bw@pQ zwik-FNLJ%2Ek|3vQqwpw)#edFFuSPtYbyeO&GNPy4^Z#dmhGA4ZB4xj5wFTlD^iwc zYdnReI73!&zUjqbIVhuOx7Ac`YAQjwEnKyw6tMe~VJASZY`Qr>8@|oSM81NiTA8Y3 zyQDbP>_Tl?+Y2ui5dZ8#ZH_s`mJ{c&lyj#?Kd;Vy4~?U&3}JvO)#1ZdzlOwsETY_h zt!|co*(waD+^uewe=Rko=IM83SH#-;b(liddNCWUI9YrLSaQN1B&Z4s)Mk+geo0ADZ3`k*^+I*{| zI8|L{Ubjs{ADPIdmuDv*zl+ZL9bN|}?eI-54)RYLYh-%P&2pk7^|N)oS|C*Qrxc2- zv@mV_6L8|UMGgPto7!cQ=P@>a61Kz`qG@n(fT+v{V`Vl3D|6JW6}A3Ru4Ws}2WnKm zMyvUVD2#Ogb-te`Tb*Z-XE*la{3e_2|NL~%kmT1(iP4j97j+Iy4Wvgvn!gTkz*rAA zo$dHA7HN4iCC49qB*(`UW0LZw$&Um2I5Oq;48k27Io`81iw?gv<9OwN(kwds0!3t+ zvqy$;(o$dwgf7B1p}{a(%8Jm(KBK8ODL_l4N7EcqfR?nd_Z5wj&B*T{=N5XdO{!@3 zRO80o*15*@dvO=2c8GAJb3R4R_ZyP++Z}l+1?TyKvv>ZX+SiRQZ{)7dJ6eCDD+V=q= z$F-Q;ke5v1(m(qUT{bv3$8!6CvXH`pm6s%NS;QfTu^qV~si?HZRo(2gt@2g}q|rjk zJHyaDGVBVyZYAw%AcYp`|GF6Is)pE2P<3MjkS4J#u0533x~hk zX9u^=`U@&ZQIcSp+238r->lz%|73qwo#KBd7aoS5(ABc-`0gwE9K)^^d|oV<2b28S z#Vhih`gNvSKoiWWgw}tHO+SAPqM=Y~kj7X}m?k-s)xLS;+gqn7xSH|Rg<(zu78ez_ zuWuwMY!_uP$S%TvW(Px*pox)&uJzqu*W7mhHSh$<(2zLFa!{6f%BlL1$J#2xPR(SB z*L^Ar>5==~bl{%x03g2zza7#Kz5rr){@tQ%d^!7A8brIB)mRFNv6FLYo5Pr22g*y+ z*QI*n0cLezaZxt=(yYj2NS|oJRUV}c-{$246F(~btl?vSP=ebCshVD+GE&E>CE3V^ zR&o)_1@>65CmYCa@#u$n+L>O~C*50`i@4Mi&MAyM-A*Y+f|t+qQ>t?P!aheC>l!HK zglS4TwaaAG!-FCacF6S;nib|Eo#Fb%KGg|)3Q$O)R&z93b*IyBoCMk*MGJfpek$E+>iiCqWb1{p|n28R@D z;X4P6wZ>S39YJqtN#a2Du#X*ch2#K`wOFo7_7WX`tBVYRaF*%T?Zf;|PK-#*&{kxp zzQ9U;%9QMF4F-nC2hy#Np~;D~GZl?XtVIDeBgnSH*I|;;^r< z9BY`G)W?mrPI1Ufnk!Y$dTEZ-I0iXBvtZ^W3RBG!k4KQS#(&B@Vw;QBF z3e4Aku!-{7_j~%k7^YVKn oYo+WKm*ox{8oT^>gCi4yw9z2-kwTTRIu1&*83$4e z8Ec<9klom1Evs5LUOYY zu~Fus`nwMEJyUv@1b5$JDCCL2p6uHU3u|%EBnHQ5>6&l~}qPe)?}ssQ$t!r+sNoE$1#@n;_2znR@_F~qcW)?8 z?!w5j6W4Cn%wa43w5*ZX9}PGXHDC>Y18a3)tpe79lU4`TTEN;rYXn#;fye#oAk6Q( zn_TXS1@kDr`*ULl!(X_3^gsoCXabT#8Y!ezg|t>77VanVC5_zU$pw*`!AZ7_K)hdF zB@V||$uk+J<6grcN-W<-1k4N0cS&UVF|OxVN^lrqwjKkk3J{XGfYvO)z}Lrr>6&+Q z(BJMzDq=ugj+QZsKcitbz=C$e{GROjKb83WtY zYc;9nq=1$dNc)g+zBpDASyKCd$km!U5`A1hdyM!_ge(W~1&=)o_CtkTmCriB%Cf9{ zS~05f493+v)r_Jf!1)NW(q3>AgGg|s^Xz$h6z|cwzt%;$f7#hZCcFrlrxMRwHd=U2^9xBs4 z(JrlcB0X@Ve=8qqvj|sbSF*+t!Af_slBX)(-<7ln@JimbGTgmhwg)ilmADuhbwMNF zb4Y%S>%_yG(}`5RH!DVtfbIhgpm~v*OW7S4p^uMASG>HG^=wRWIqm1jrg9-~w1uk+ ztX@bENuO{-=huF0iWWbAnKjotyfn_H{TW|Aa_j>+)_cqJ>0~z;d6Aj!J2JC!7dt01 zSheH#yFa_9J0BsOsQiVWWQBNmcqE9+!)pVvETxfB8ZJeKz_^r#OKEwjI{hN@n8_^( zBG>YUhoeQ%Fpov?bU<3hlI3Qt6}K4F{K>i_W$ti9y@tMjSA4a9`z}USWM6Qlux!M~ zau~he1+ED+*~@AuTP$#NT-*g9hjBbo1>baD6KsI{xjhI+6g7 zPotY3^IE|UTolz>MQg_*;Grxj%4HFD2krvmMiL}tNgc54pqdusMHBnD{@~Gd zmw#jV4p%#b2hVr}^(m;I3RRLTzU5rI$;I=8ds7sJ5f+T^{)~JZd-aY4Nj%hSCCpY_ zKQQ1gqUK0wEUm6%XgP+KVQ5VZ&5G-@z<=R#PCDc#UjYxoy}Lmq{G{ZRmKN7xv;rpUgL4=yhtUcc zt%PCoQV^tr$=Jr1@&D6cKQJznA2k+#$NA5d14$Ia{tJBX^Dcc;het^c>DzEm;8{4* z;VxUp;}eWWdNnV=I5_IxVV@%YMp#lQA2J-361;l!|6D!c6kJQewHkQZou%NIy{={8 zSdM^`-c8HE+5Ak7-?~LveMKJ@8FO+wh=$R)s^wSND81w1BWX3M{a!Zb$VaGui%?$E z%4@E|z4dw1iT;DNE*^Gh(C};=kF@gcYb6-I!^GvR^;Gp``s0(WzP^QTOe8!goKwGNID5#fM_KMi+@7b{+iAy zrmx1+j3cF#jaaR$qfH|~fy-MT_B_y}a5|BhzDZ9Dr>fH7o1f(_rE>RnO1^?)cP1D@xP=$ zBXkYk)3Vjl3x48|+M9T_g#h^kb`oeQURo&$o|fXJKMTCtLJ~Fy*53~1?}V~bY484w zvm5@Fe^ik&g`W3aV? zTCJegF34g_nGxHbdsp1!Bwi-K%gy?(xFtTfU(0;N;*ik=sC{IWBdW+ZQiFnEh&2{6 zo6wvt;$zYl#}^vYPb?hbi^V%teE721Yvdm$e|*rN!B-%W~i%;}EOehYY36B?^@6dX*(`)bpzE zpmiH0{>R+&yay)C>a8`cgUL&=m_QOsvYZ8vG!hivKqr?A&)6|H! zb{>b-?z?LD%V(O}CJ-6n)Pb}Pkk$s${+C98n0$4MeDdPAe2rWz9m}S3|J;0AOC~gm z6~yl-`poBlvvf9Pi$^wg5GT9=>X_5`e*#T|0F!st0h2jIp?18HWZ&d6oCoXEAAsn(w!8ut?Ja7tK^+Sl6{1pRiU2Fu4H>`(?ye8IwF4qb(hz-aV|Y_9M!jVsa!wA zth>0jC?)%Du;_1AvHCO3E+*Y;D`Ys}V(C;8^zruKFaJ z##LILKIKy1u@=&{Q7-j=0#X7>u~*7ZN1EMlN2>KvOS39q)&BF%zArZ_c3(rWB3uCH zm0-}$selFL0E`pQefs(JCPBj@0M@9Bm7!>448=3!pzvU)L8))xLoFoC5vr9?@c4@J zTEI2xAHYd>Ni4^P{`F!KOo8e~jZ6)ZS3t&&?*5amI~srIPy%w6hcH4X%erLdVJQ5b zDcItoa8{CYV~`>%Gi-5D5G(B{h+{LI?xDQffv~lsK^6eSZr{w`pMl$3B8v*b*e9EG z(kYIloxMUJHpQ3Q>EtOes{j_112L|-4~?02$)>0NFxv@C(EiJ;}{PZ;=h zp$W=C8rO3ZX!dN#ik_Qn?;WIoC-t9R?6RHDkrjUh_Zu%H4K8 zN9cb%gWqa;)xb{ZInyU6hR)=^Ou0gA<&NzCV5@2`HZ-dOR_(txE3q$TOm^c;>Aad+ zC8(<1=AbaSOzN>rBQ&6LKjmj}PU@*#Cp@HTZxwSk)3?W_W>vt-{TBxIC7#xCnM!a( z)vh`rE4f7|HqXdMk^DHG(@2VXrRd7tdGdeFi|aVZpT6z3b*qD(!i)axYI@e^#ADUA zYGugEUFiCjXL^yD9u8!pk8oNycGW9ISMAQZ+O(qfJYicVA90(n9(J{>1Xu0LtMx(j zP3^>*S|zBe-S*vzuD8(45~}QJP3k|Iezoub9tC=@)3t@|ZO(ukfN}C~Zo2$N-`9W8 zMF6Z(H?1FvPU6eIhbazY0)8J;oPosmUZyJrXV$H&vVR9O#cCDg`GEpapO`O4Lo7(+k=ER-5 zC#zp* zcPAKc@%cf1v<0CL?jfidY8e!KIdM3P!N*xf6Ixgj&P3%2cqo}?%MY<&hgMueD(RtA zHw3C0I(1`>;82MPNU1-dHy$xr#JTN=7gMprfVUhmTF1BHh#Pb=pTTW5;Suk43J4GP?tJZVC8;pP0?Bm;B#EYrcVQ^cE*z987Si}LR*h7GuiWrSz-%`W{ zsMb&Lvwv*HanJS%z$*3}+-x4BZOpTGJa}rIq-b`I%|Nl)I8kiHj#RLDh|yC1twTb< z>iq}2ZHV1UzD+|SxQd;pX2TGpp+eh*M6uO6a-J5fr1ehLa@A}SVlzHcXp4{_v|29$ zZx3R#k#BPlFQ!_DsoEICW~Jb^AYpKMU&6jm5qysV`2Iw}dlUZmB{1(vl)WDjeJ`Tq zeUpGd6n~y=WysJy!M7^B;FJ4O$uOVSYLTJ8ppNMse2RYeXLfH&LAi$MU0Yo=$>$Bc zncdu>GpRO6_bW&Tao;-c^$&0S^w^r@uq23yw2MIXmCBxWk$)}S6M&n*L*xYc$hD_-RH0T0>J)DC z&GP=_zN_n22R(%svn3VNd$7=}1{TC~(%A*ofU&fqR|v!=m4P`F55f?s1I$X)iXPKi zR7!CG3&7I`&iTthK?wUO*T8FLMV)euH(_7|Q|=qsWP#Btu2g{!Q@z9B(*#xvxswC| zV1M=ggG~@vP2@@sI6)zN2ACVLzlQ0PfiOs6_zi_)t$12MQVY2kq?;6Btbh{gyl4rf$wT&3mdL&cyDHGjr{G$03HT=x=Go$K=MUSf=Bd{BzLqT5sY zMPF)=V5)r+2i`l1CUsD*5*!i0Rr0+|m-%RyLl*(CMqOYCMZ_#Nk%CBmrVU*bY)G~1`5YcI<`Bu(XrjJ(Xp*g(n(fq+qP{R z9UC3nHcsy6{l0O|zg=tWQG3;%vu0gWS5?O6!1*kLzOZRQxM%&Wriw^Bwo~RGERL_t z9|vHyNObQ@IpjNlSAy#x^r6`MITR2w0Vl>bS0 zg2vKQBNkI5v|#AJ7j0xR2UN{mk8ktNy+Wnea4YfRB1Ax)0ik9wHShc^3}VTUe3#}! zrLszX&<_PRu?wNiiKjVE0@~WY%El|oPbK+igi4Xkw#=mL4`(kI5Z+~0{t(J1c(ZZ4 z#~JaZ;9|Qj^8d9E@j-IUi+FWUNs@D7aLqY;2Nj&=-ZR$Hc;i(IVGNL35uu=-)=gtk^daf#J0GtZ*KYI(O}H1y zjlwmfI;J3+p9nNNj_$qKQPO5qBXC21x8>oMQGmpDI9_u7x=7CNTVSdutmMxA{Xd6rL8S@UawSp4h+i4X2)7qTs@J#3KN zA5I0zWK5_%if8~UHfaV4_BLq?j2V*zmk3Rt*q(sk;!`&t>$SLn#lY8*0nX3DPh7PhGARN!ZYhz}lQXexfw)V$M;lH<h%*b0Q~fSa7xM#%6IKycl}@$WzJ}=;K0>3eIoF5wW!?@`$t!&6|DD)${11MY zx9ur0DT2c)NDt(wnlSCnswJZQ=U%KYDneW7Bo2SRN9wcg3ETft94guGr!em2V^765bJ2 zc3HBOI!Qf=BFWX||6$Kru6JYi+8=25!-EGkvjqi06LNX!!dB5k;VreI*nMj28jQZ+ zwtG%cv}BNGNf$#xs83+OSoMv{{(p_*mX13dyNb|B99)WvfmTAK z&f$^$WoaLV$r-TK)vQXm-BecbC82fx`zZEHrhK^h;a8o_6<+{@q-pN+UJkd?j4wUq8jg6r$#r_5-ude1`#5Hrb_|9wW z^&Zh9w^D&A@L_m`t0FCxj?tIiaL8fy%@D4Gd_Bl#8O49iVXJW$#6ZIE8B2pFD*PNP zQeAL5>XuvBtfog>WS5$5g5Yrwvj+6#*0Oe?g?vx$+W!d7dd$^~*J>U0rf7iETn33T z0|?RwW#$n~8bXiINE&h;A45$hH2#epiCB63r7t}Q`R#itP*Wm?K1s(p)J*U6k%O_= z(Ih@;NUQMoOozwm;w0#rc3_a7iXW+@#Q2hC9h#wD%tnvD3;rUqW6Z+D6k&Z;9mFq0 z?AW@LE(WJ*hqkdq@m9i{sJD-3@zhO20ubJY(PQ*>u}yCFCh!n10~c=`#jM@b&ikB= zQ5iXhN4W0UG<=eGs&W}P##ey@5J&x< zU=;wBF(4lgUGbk=FxO(UQ=>Xp2Ih>L?UmkZw7K8YADvC{KGD4OGC4am;-3)p}gO}i>)=Kchk2vls_4Ql?W#*45F2zx7 zhq~+S2qO`f-9C%qfZIsu#7Ia=0_aJ0C>6Gkbo;Zz7h4wfqVj*c|SpHVVV%r(?bl-H>>@Oh5 zV`Egjg1CC}2VEApT(V>RbDyr2?HA=T&rsuRoTU6?I-F9qdd6{2&6xY@v^vbmYyRf~ zd!wL_&kL~)&q>78R$&3j1bvsWO;&6)>56hP)aZY^(6`MvuTaj0kBMnID@7ksLkCl`nWDvx09Q7)+;F`ibLs9zXxuqYN-`y~TvOe&CS}M<-EjR}WO@4qu{@iZ_ z`ZAD3?QD{RFk3C;48<)_I<5$8;KIx*7z*dNg2nyI;pnqh(J24=YWKzb<0@wq#(yo15JTU+Wli0>N$Mw;$6Br6)0; z3g1bb2#T5<`~(MSR49KaMsh^Esygf3JjQIg2%}Pa1m`lrWca!F~9&Ha#A6SM1ej|4w*}E&=V>Z%YF|$&K<<7DR*Ra)`&5}0kRnvuikuaIgRT7$6 z#t6z^%1DXmDlBmlZuI}L8{fimc;YF4%75<{#1QEz4FYZv-xCmDDF|*RIM$Wf=hGci zIOmY%C$4PUa^q8fvZyy3UEE#|+7~-+6v!n#+Ix~{6lN(qB@pCi3RCWWO?^HRidXkk z`xFO9@pxKbqw^%|$^AB(`C_A&?5%vFFftP{yAT~Upd|tAW|F`2RZctKMh)$m7*8rs zDu_w!Km<(rft^9!%OJT;b(w+q-t`*W;fW!2nL&Vk?Z64)E~yd=qqBS-kTNmz(x&+t+cv?Qy4^p7)=a$^F#X*qQs~E9d!EKBP(52Xkw=q6lIe_CLx9 zIZ3!7I`v3RE0X#}1yirD62G{S&d>s;T=}d|Np(;F@J|{VvK%JHGStySVLe5qN5ox%l1b#raaaLZqXst z=WZrhXtj^rJO`iY?2X1h5q_d(zykrbV4fXaF9lxRkcv89omzf-(Q9B;FWz4@HCkC+ zXFI=e%VSl$JHMi*J{7lxsK%OGJftv|MEBkzCo$O`Iq_Lvwi&9TZPk2p^ZrhX7@i7`Xu*JuOe(H+`?svStVUaulnQfZ8~S#hk;z zhw&Y^J(iM$SoV?oZm7-OYK9V_)AQ)|Y$SoIudgcl6L+Egsx^F4;w`LU``sc0fBLxd zO138lN?3d4#qO=~g;!T?0GE7>lP>)+o9)`L1V7C;IL@E3b(!u7q}3*boFb75duL|& z*^;!N_ssfG5(1>Y+?9C9(2Z_!EyLVQIQ<|lAbT|d-q;YYCB~9^^X8JT-iDm}l*o&1 zyF;*=)38#%01cujW1J!i;_p_|6Tjt!oFN+zP1?QJai(y)VY1ncA^y_czQo@vtH88N zFHJh(x2nb~s^Ed1#M`J)0{`SeHTV`Ig-TO;+v75c1NQs9$YP)*mxg>F85$QYmrL;V zq|>I>%Q4zm{+&6|2zYAy#9Ci|>i9Axppd}KRthwK1?I;T7r&e;_0jLctkQpQOMD^< zgpMJVT?LnN)q^qOc39y*_x1j5&Ls}6ki#0eve%eEeYuKBT!hux@o1{Js_^amL7{A} z?D|67OuKt}76>u;o{`LSls5R9^GH^zVI#D}Ho?Y>^11Bm`;Rb^Ybf~v){HQJ!!dp# z+Xq_t%Z&J8TWUW*_NJ%w!bu6GB({9ueDucqsj|sbz+!Y|aAges9|uUL)I)tIElWo} z6a?fn;+92!E+{?S*DkQbJOodZ+SAgj7}=;I#KxACf5Yr3Wfg!-jtOLA`&mKNN)7D9 zgQ}4OP0!z$tF2-ned^P#KZXISx>mtt6sU&#|9Tx%8{7XkV4rXezfedVl_Lkiwnyr5 z?|NU51-m`T+}oHythKZ91p$2k{TPo>$VeIa-Pd!EmRNN}13uvA^cOK28eO&nzwOC! zXBLxE?G0mb2>mNFup0H7vrALY8*woQplGNe%MQ)O@~@y-vqPeTAHy9aOBwsg%;^^K zm*MyL7&5eb?|Q+&O$`w&z15~aBPEhat(JeY49*{`*{g%Gs!c-! zzB>MJ9AV#kM{azy+g^w$4BxrCBM8T%`LD`KZksYiS-(=Q;|<|}t1e|GorbL^^9Zbn}EX>pp236is1bIez@)WF9gyWYW{eg!(F>l6ZW6p+BBMn z!;Y(VGkVi`Q_Mo!w0gSH-ExcWs4?MgPW-d=Nt1RxO3QImY_ZdJ17fo+rFpvzDEM=9 z2Yjzcc>QTRO@>Nva$FF5GQ^!mZYNGxMoYjT*HQrC;BLfatlgGgybrS&@PK#gbtc}$ zAV39WoQjnJC>X4mKHm9LP(T@LzR^poXt+KFJIoIZJkgCOL1u#8l;ImQtVn_qDGMe^ znRt99T8xWRkN=7vq(cV?T7#wfUXYBkVDQnvS(A_KIe)Y0(zHZE#^47zx?ZNk&h9zr z_jQGu?zm_{u}16g%&)=a{%Lre?U8# zxZr{oSR3o#LrKq5zNH+r3oiUUI)45R`$~t?QN>Ll@LSR#OB-CB{K6%rHRXqHQE3X{ zSER<6($J$N@^3$aRBsA7H~gH0y&J0Oe}~&Bbqc>b%KY0pIFn~fC1l{4KeH~qVvOETtDN!;QJ+$#F z9!T(&k^CY*WZtYCNql2a2~X{MaqrfwXfB7obup+2?*7KkKx;-dTCIpaia4Q-|J5&> zPTRkXgWDaF!Os69UETP(=pGY#gI;K>$wpoN;LB-d$9kj<{&%q7veVcA4Ki}^v^EiD zU#V*Puua4W55B~&SdMptEY4H)GW=eXOyrG*a{+5s1k8v!Gf5*lx(r34T$?G|^g zk{42CSDr5Tv~nT(ljXth(|hV8ImTiXQr9~n)@8&g&f_XlVicY8!_~jm zh?DHc15A|>XUf;ZGNWjH9>CSV+=#P)=b;2g+_HYTr)evDp_-DRzb&svZR`=_yQf4u zET+48z6nn-^W^t;F#j*hDLASiVAfOmqgKfub)PtkJbToMNzWQ$m%J zSQdf*OY#Q=tW{pw;&@9=ycGVjAv=ANjRAQ$TSTj1`S>eLJw1(CEEJ1+X`}2ZH%>sW zjp~Bu%93gwX-|4p5kSCNZD$Oj-_ZUR7Wxz{bGj+)e)P&q-5A3pfvPfI&J-}J)Nz0N zvNY(>xn{YJids~VO%}**(z(xGNYQH;Hk}+0l@JX{fYS{vihg3px#T3;B`?u%^vHNR z(eLqEfcVe&KnX}O^mKhSx>P*RgO{z4{anC_=UeR6+-M|uZPwk5%Dn6)2^zK*8ZU#GFbz41Z-Ak zvDw1HC~whkb3pV&O>={;)dFtwZjc~nSGn24-s8`_586J5DBU7!4sQDm;P6*#DC==o zNn2Eh++f8&fi5KdTC9CD0uSFF=m9LDWoIYuk{#&7 zQ3UyKR+C!9XsQuZZhWgn`gV@;PzmVB-XOC`{&HGN z*ml>}*zIiz$5YW7>w<5l;4u1Um_zKZMd0aQt$ygMU^WQl!mVZ~HnO9n9-pgYs2FC*SPf zvX-FppRv zz~$-zFZGZ6p<7j=K`1@j#l(-Vx_usqh`Tl^k?RPix<<4TNzhgdd@&kml<&H?O;#>4^5h9caTUC)OAX9O6#N#*gupl@s>cZlm z^+>3SD2%n7zs;W=X{DQ+VWj)d82e1 z857$e8ig?ESIzVo>1?ppo14l(Anp4I09AKVL&?w`%6Y+xQ0y4zdH~fofjBP*@fV-}ZgX2R-e#pz?4ct`(9mG$1fe1*2ho**$kJVV9C6WEW z%-?40xY6SseKIiw_7S{Ma2^xOaM8A;t zh~BXYLG3qb`&cZPSN8o*&~DYB@HqRJYH9-5%lSAuGLiK3Iq%Z{iS8ldVLZ3E{uhft z@^q3r>FfSe{W4=~Hkf2`nx*Nb_-pvBQh<*pW;29bd5!_jxh$* zIcO-X!t;tL@BeOPsqmdbAhAWBDN$WDpnyc~^SQ_bu)OOqXp#w1!r)Vr_H{i@qkz;n z*cFrp+8ZWUaS)_}StV{4kqIQ(G3yh|M~6$T^=+<1$DEvQ3=a<3py+tAwVZ@_wW6&5 z_`U%tu0$JdoP-`(4Uq5Xh>~@Cgt)B4Onc-yGi|{@=Q|r@vZ6+=20m%}s`NlXM}=`w zQ0hl%3|gb&l;!-310yq`v5xO?8$73F6m0hbos4)0k9i5(7Bms1ayRRk*+%A&TGACn-kIvmz&v=0(ft5Q&YUbwh< z_+@3Tur9kis3Tp55&W1i3!x8y|Kd|A>sIk}rd%j>oF-}KCP`2%3WiC^p(jTO@h+y6 zK#8d7<&8`fbJw3#Eu|Ra-&0J_49%mRtI=bnL^_1R^LlkT8v0Z+lpbWTR%A0G5Unr({_W4GFE47H0dvj~#uZ<96HWOYA0-`%M_S+B5WV=spiCjxiyolC8IO>V4CEnV zS(?Lda)1AZ7m(43>JVzBJdqNUfiWv2t6z_pPL-gG`bRk^#PLjVJJ_K4{qYW{^?Z9` zCwLvK*v{A131VF*t{4yhjXe}VY*Hb*mlK1Bh|kBOL?IcB2uD3s!c4_&tJ3zV<7T7U z*6nGWYg~@NN&Y-EZP>F4HZ=HT1E7?g+TeC#WT?et=h~~!Tr=$M{AF_((xj3Ek|Ji&0lBF9p}ZjcZZfMcJjS_ms(F3bl#BKquoNr5uMh z+`;EWrFsV~M4S^FTA&%hMC@Z97494ANw?1T@Ifu$%-of?8Pc_ZSPzP~0EL0F;-_|sN1q}S2#<#jm7vD16yUz^4ZJ0&eG!e( ze3|S})KcT)+^gc4YgYO1UlX>p6dn%9pjqeGCzuqCeH2!JZeNqidXne*ruqon^bVkhoe({m%t_}AFk@D&l1j}y`PrVVg zN_82+fNMmI8^4%H$S}oiKleTPT)Ck@@sor}O0mk4>T$Tt)Pm6gvi8XbtJeAcL0etu z|C#$-7?D05X^yp3#~tQqSM`}~{&Ex$=nH|PqoFm5HDLz#zsIv!GNGr>RS(?OM_I7Ghy;pj z{u|*%IW35HwWMRcqnSj72vxn2Ep!WI{>}TYrL8-mA*2_St+dCFtz|J@4lYI8tz zwKppVsZTpJNZ(CASqY*~%P~a%j1c>5I!KkgyR(2o$S8amuR|IjLq1M6FxH;M5(Y*l@B{&pS}fY z_Ta#dholZz*!Dd&|1o*hL4b#o(6lX^L5%K+OTVQaZuHxx{yV{e#K*~Ou)fx}lavz= z{NBZzl=YTSJeP;cV{cuOw!LD22Iad0vmP%_W$)Kcux&yuT=1tL?zaI;`st@lHrxSX zz&JK>yE7z(>@{{xC%7E$cw6BW%MgOUGz{B_Z-xuxq+mDG*B-9Mow33!`pE@dpP%D$ zHE+AuYvqbOn?X}HoKVDz82G+Xi5vUJ+Zmu_4bB9^2xO+o( zTF&y-l(#RQjAo*6pa>QIg5;uQrPKiYMv=?7%Mu8fo=v+D{Au8 zFb{(u+LiRGqWmB-_hJ|bL!itr$$Xgp1#ae9I+t~K>rs{S2V2ZIy9PWu|5{ZqcKF`V zmgb2;eCBz>Q6`neEZ@9@=8!N(jA1cqZ2neL+cx4}+!rD~AGLPn?@=a(c8MQ~i|O$% z6`5bv=wv#YEQClTd=bUFbMd(Vp8TSoS#=QdXOD^lp7I#1m8#_FW z^wUAC9Pwrh0`2AQLg^>U7!6=&%&|ef>hH>DVcU#B(JLz%?2e?J6sw^Ry#?eq^{RNR z$k`BEOn}1vRZ}E^3fBOSkWij3asF@~ck^z=vq{f(k=6$Cu45G`y27RN_`(`g{gaaB1Ol$lFsDHtgcm0*5>iR zB7Pd|oTrn>1_{LPa9z|B>{MMIQlg{B{`fkZi2&Wk;{3<~p8KqNo1YK0+z&O&e1`@j z$iFH~f({F>#iFerATx*GbcDoDe*669*}MNSbn2{s$6escJ!HkooF-dJZ`wj+lJ(WM znYCFCX83hpduCn3@I0zH}K7tJEOQt*aat-oMZR1vG3G?b4*O5 z-s4-4U<*$kqsRhl4)oC%kJV%C~mD9^_jT? zZC~Hs=>YNeX}(eO7Pnyod;>av zMJ{8xFdG+c(kG#ZhJ5Y}#d_wBoCr0`LgJ%nHdvDz@9hYzsXm*?pvifS)a!i5uTyhw z78p&CO6RjhXZq5s5yn3e*v6ynTca_w4FsIA)ycV&_w)t&+&K_~u0lKGQ~LGyu8^s{ zj=UC*kqHxyNn5FvP_**>WO;SKB6K6uM%wC?i}1hYk+=_&&$nk1<=)MO%gt_Tdj*!e z(a)C$MO)MHr+q;E1eGRTH=h*Vt>Jh3QKYw|s%`0{>4DifUW_q0ew$ixrcNpcD>lC%Z>o`0Y{;2B%Y%Bii3A~MzpI*EU_!pOR%fmJcbH@~v9owTpHTXLrxF8A*$FhO zx18}dkflC(QmA18lj(RemlIib-SIVIe&UE zpHrGP9rtyL&S?|uasHF*IS-lRKCRgNLPkm(*f(lrPD4t8uzx^!=(@oSu1TJ4Hzpnu zTFJ~T4^jaQT|1@TA>tBN_h2H8QKJBVR>lHhy)!Ab+-a~H5hf^dYE9r|$#5dL|a5}Zl4S#Q=~RF(RCCk^ND)5}rXE=?dpxI`I_ zJi~$&0e?n0hX+`eAddQ1fy8N z@?eaypcF+nY^Gf5+UrzESdDDb_QKny4_6R6z`li+rtbzhQ>xaq+M2Tx7fRE~hAxMe z&dwVIC(|%7EvF>}XI<_kaSc`ShIm4$9^op?KqfR>c>tLd169X1At`y!d(~TFTK*Dh zdyn_vg6--c+capwRp+DgLoCiNp!q+M0!!uZ(#{^UIxN>cH~9G(h%IlxV1+W4qc&1(iW4f!l#jijQ5w|Ygc$w z{9X)Z-GJ%SzWRfW51e|<%QG#!<~F;J5!=7QDM?1_Q?lTKh3}}n$8=sE?)vFi6H;1< z)ZphN$G@U7hra{dXSx9%gSatVYjXs#tZRn4A+`oEBMn^Oc=0w4RE^lXVa&v*J6o2r zi-S_Lh846!o)ys>8}J_wej*&$Tm|9ne`7Fv4S@LX_mZqs^A?NLl*g6HLU@+H2H7TF z#*G_w`5UZLyrz8O6<;z=VwtYJa1XjIUCFz9I2KpxL05g{_ABGb+YODe4$LSk5zPQ6 zx{Eo3z$yV>3+gW-jKd0(~BPsaZdpj6y-5 z9H8{NcTtDOaqnqpk#7nE8C_IphbgxXqBf$k$S3Ct7PaGT@IZSboI&Z?MIYV+vYj8W zv0=T$>0wS=by$V;kTOh*mOp5}iZ#ayKo31vX`J1d>|dO{F&Okj<1?IG3@Q@z11%E; z3fj=i4@YEH4LjPHlXzE`5=3f)B6$n$f%ke_YGSGkKb4_0$$lpJ`;Q6x1!RXGZ&kF9 zc0pveheaK0@^l7lQo{S`fpr4?ZFhaVx0wPf*-cga2yEF| zB$4scW~a2MxUnZxGTxN!%uM<0PfSik;;x7A?K5e$9@^hgvKQ5I6zYB(#U=fr0YqXf zYz9Nb30=Z9UX;Ed1vzYr3#xcLlhqE2XvdaxTr8gt(uFq{00 zT@8zR;AyrpEhsBByUz-QRn*L~~DCm2_aJhv7hTpChpM0b;P{^v(#ino6TJ{6m}xu_lf zMS0$$_jkKa2N7MjGahRoR%d}DywQXvM&D7zP`TeBCg6LCnCU5y*tmfU2US9LulJA2 zi|zwkq|@x5Y<5^THFi$iywNUvmP98T8dUD?OaG(=7R5xg;KGcXMJYGmvf5(vCQhvI4K^au34FMOBKSScS-sVM(Eni828kN>(^rg*Gr z$vXjW`5Q-7@hSAqP^TXpZfSU=XlL|7@C`_vmn_D;MweV!TtVLk-Lf-O`QY>_rYz`WwAmeeOK?Dv^vLkYe-BGC*Cd~k1h1##! zdN39IIHlz+ey@LHQ0Ex}3m&=RzAy6Fph;QkKx~jm2IsV6i{F_be^j`FJW0D0pQdzz z1qG{|d<9hvMbBCS$;u5tRs4a%DzX)kH9Ex~P~ii6se3Vu%HI^73hs@DkoC0kT)QJa zj~vMDTI3CMxS=$F7oD%PJbM`2np&Cq3Ze=qGg{a3de!#lL}un=H7Nu!O!#mUofD;4 zCsXrQgYt^Jb#%~WhNP0%4^57Y*MB3SHSe<)!a4CjWO*dk_ZLHx@LSxj`As+9|8@EM_l$N zxWk8IU}*&3!k3DmkC?kQ^K8&G?9a0sjb{q4(-5bcWWX(aEW(DFx=4ht%19Ck;WE4v z^V$$#cBxd%HA*bwmpgR3QmEO+=9G*h1_>q_^<%E#N$k61!Yiam9ND7p&;aGip`vK{ zGqgkk*-i>rUl^rkONW4XUW-vFQ<59|=T=CZD1Nyd6@I^v)GX~E>OVxQJX`lnouiB3 zKEV*P*O8r70l8C$5>V>`)MVKe?o{$&f@f-gSuE!tJo9ff&{xDgs!y3yABe|7#|E5C z?#pizBb5YH=Y)q@h(?~SJ$7K@XywPW!WWx8st7*VFG3%&K%+O~ld68wRR`1+LZRw7 z1|~SoAp<&uZw<`}P2$JGeIo{#K|`JHmly*!Q$QU|Uw_PXo+>AFEgtwyrV?gsG%N$h zgtU})X?%z^fyshu?9Ipau%Lc9NUQpn2ScGLIJ{=Cg+e9RTYEr*w3pMl$Ov2r)03!2 z=(-WuI}JTmA@xB`sKdVS08CP4#p-Iyt}PWv1*t}(>SiOD98?X0?-G;_^m;2r&L~KT zK|}rHSuIW_DhE6?zH$)zmnNFe`2vk2+!UX-=l16LjBhQZq%{b8gkWJ*%k`Nq!f#IL z=MUzNBj%g77NP7;|G2nVa`}>UPvMnu|C1OQ>9)=x~H1{Hhx$C{=aS*h^cMXQBivwKN*F0!0 zn56$gd0-^-woE>08F(RcM$y9rOg9e4?|NE0(<};{Q7?bsBY{@J>;1$U-Jx=C*Rcu^ zzWv{SNVtLBn+T8c-K{Cbzs1xaPf^6}VD_XADH)mg>LiD+N2e8;+0QJTecDRzzfUHw zzC!f_2hxb5bVb9;$g2P$6!U4sL?Uhqwk3hhKQ0tj{{y;m*QSgA`#rTz>jnI)birHE zQ$=l;Z(tn#B}wVCKhKSji#Ulj^?DZ2J^Oo}<3ybNC##!Lew!_0;@Ow2#D=j=FrqMQ zhY=ab*x%%(^Et6>tv|K)B1gF2CV2~pN*Y~n^hi*tP&N6qjtN6n{AVqE zy7VW}LSQLC?dOW!u*=kIW`m=RGW!=H?3UTSBzUt}i-nVvpj=yo_dr?AA7%L8U>sWs z7e112rHme%;IL48XyQ);ePniFJWGqM0p_Dw!$>NK8$nrck_(d5c5J1B)V%u>ycV0P zbz#s^MN6!w%VQvveX3}Nn=S+Y+<0jv9cn2?Kcox@On7H;O#e)iM@EMQ8@-_7;0p4O zE5&kn$d?-O^v{#RV7NMV8)H7Ku@705V$1*uR1!D9&qwY<=a&k!P3VJC8Bu^+qDFFn zpBrLvgBB^Hz~;RsG%Sz3xAeyZ}THWJ-g~ry>%P^BvhuX zU;o;cm}VWW_i3Q=Ypdqr6rhfHe?)@XGdul>g%T`Q%Uz;vBN|f9gVu{iS&1>zj9V~{ z5ji);8VEq7W3y)_AEy-M2ZmR-GVja9L#tRT>l#Y>ZNSW=V9qa+7QQARM z*SDDe@Y-!x6>l67G6K4})DR|ab{o5+`nPcu-s2qWe%n3xa)7+Yy{631{m$XUqpuGi zW4JOp8CLvdHrJW%NJh!yjp3vNZr&ZA{tz_=Zyo%G@h|(kRrImphHEBkR(|uNU-uy3 zM{SMA=oo}@u6I0x37=nM(=mc0u7&yAj^MSb8CprJS;zKU(bt7tRkC4*3pk?ns+Xjz zX~o5^_-pOzs8B)~y2p4@L?s_m&xZU^mkDH)J1qu_lrPxGcl4MNs~0u(eJ5wIr>3Yu zgE%LZUc>KMB(*Q!U+2rc+n}%7TlJ^`UD&q#A3r{&^v**#KNC$SlK(t;ou(z(-MlO^ zRcHM=+h#6jFK*gJK5@UGcKojQhzOHO?E#(iDZ@jzA)}QW64<0u1JtvMN3;2D%gwP_ z{5H5GBnGR@aVW$@%yQX0i-}w27bU)40&zza)f^Z``_DlFeIu!2hO`biMz;aDq=d18 zWH4fu1TzAy{tU=RF|v{MdK1lHhy10l%F(s6oUuYK`UbJ$fatehfHad?z|$0C`p>sB zlcNpEA(JS>_uuO8^-Cn`OBl1p4;f^)`G--GS`kXpV^+%1%eXuDYtjDYeYH3&uNd}k zD|9p+|GU&g~d;<<%MLtMAetgvokQ0dSK4v$f1_fK*kY6SGUWr>MI7xPGvaAzdySj4M@8L@8xOGot&NduHSgN zhmKRDzN<8yr)3Tt8v&`WtbZheJCxR1yCb&sMk?Jhj=8A{IxLRXHlF>qO0+_YvD^-S z%nk z8>*?1J%Z4Jt8bitFFz`8MwO&3{%VM$23Rk)qFbh|x-XgSkOf>XA##jVPYKz3!cs$T zP>HbYqAI*(J6ON4Bn8MPwxko68C_IEo`JfRSj@7OPX|=LhI3YXzf|6_apvS*KUGKs z={kI=g={XX7h0eI(1d@pYL2Gn-4-{0+GlkW$tQ zlKA<4`T3F!0LH%(1Lz@@7mJtqF#oBU5Cx3g4u=NqxA6>0dnTRzy0y9N_-5MUGk+O& z&ND`YXVtFsS&2Hp*tA=Ki5C1{plwhHTW&}HW@-e9wZ93w{cQfMNvXARKuD?r7v%I5 zzs|JnpC zPpSFM$?o#v>4d{%{Od{}3-n}k>C`-2skEtC5F5tE=w&0D_TBV^)15wngdJ&&$G3Wu z?oG0BOKSs_)CCF)@3fA^x>d5ty4Agmxv)SLwAaG`ho{41?+2kDTkl z;|(itFSoL)U46IR^d769&Nr^if3eR=Cgt^ekd5hkxZynh{cZ@H2e$Jb@IEl~rp@Vx z5g2w(y#Se}Q|U!0h@3$$5bmARszst6em3<`4vpu?4yFQdYV2TQ7(dbA6D~zqwH$aR zL}tM8W&(eqH=l?j61eF3Hv@u(%0Lk3eAH?5Y`ZGS+FP6+^>2}+xz_AoA=Xpgt;Tw0 z`AV|(jM^&?mWeJor}8%cb#FBdd0nbzUg^oSyzf#S6&*DH|;T7 z_W`q)?o}is?3@e3s`br9AcB<_iXnCn6rh){$>OF>V8Go+nWf$&6WcDSubmodulesoptunaz.predict.validate_uncertainty(args, model)[source]
    +
    +
    +optunaz.predict.set_inference_params(args, desc)[source]
    +
    +
    optunaz.predict.check_precomp_args(args)[source]
    diff --git a/docs/sphinx-builddir/html/searchindex.js b/docs/sphinx-builddir/html/searchindex.js index 9f2ae0e..3a903b4 100644 --- a/docs/sphinx-builddir/html/searchindex.js +++ b/docs/sphinx-builddir/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["README", "algorithms", "deduplicator", "descriptors", "index", "modules", "notebooks/QSARtuna_Tutorial", "notebooks/preprocess_data", "optunaz", "optunaz.config", "optunaz.utils", "optunaz.utils.enums", "optunaz.utils.preprocessing", "splitters", "transform"], "filenames": ["README.md", "algorithms.rst", "deduplicator.rst", "descriptors.rst", "index.rst", "modules.rst", "notebooks/QSARtuna_Tutorial.ipynb", "notebooks/preprocess_data.ipynb", "optunaz.rst", "optunaz.config.rst", "optunaz.utils.rst", "optunaz.utils.enums.rst", "optunaz.utils.preprocessing.rst", "splitters.rst", "transform.rst"], "titles": ["QSARtuna \ud80c\udd9b: QSAR using Optimization for Hyperparameter Tuning (formerly Optuna AZ and QPTUNA)", "Available algorithms", "Available deduplicators", "Available descriptors", "Welcome to QSARtuna Documentation!", "optunaz", "QSARtuna CLI Tutorial", "Preprocessing data for QSARtuna", "optunaz package", "optunaz.config package", "optunaz.utils package", "optunaz.utils.enums package", "optunaz.utils.preprocessing package", "Available splitters", "Available transform"], "terms": {"build": [0, 4, 7, 8, 9, 10, 11], "predict": [0, 1, 3, 5, 6, 7, 9, 10, 11], "compchem": 0, "develop": [0, 3, 8], "uncertainti": [0, 1, 4, 7, 8, 9, 12, 14], "quantif": 0, "explain": [0, 1, 4, 5, 9], "mind": 0, "thi": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13], "librari": [0, 6, 7], "search": [0, 1, 3, 8, 9], "best": [0, 1, 8, 9], "ml": [0, 4, 9], "algorithm": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13], "molecular": [0, 1, 3, 4, 6, 7, 8, 9], "given": [0, 1, 3, 6, 7, 8, 9, 10], "data": [0, 1, 3, 4, 8, 9, 11, 12, 13, 14], "itself": [0, 6], "done": [0, 6], "emploi": [0, 3, 6, 7, 8], "latest": [0, 9], "state": [0, 6, 12], "art": [0, 6], "estim": [0, 1, 3, 4, 8, 9, 11], "packag": [0, 1, 3, 5, 6, 7], "further": [0, 9], "document": [0, 6, 7], "github": [0, 6, 8, 12], "page": 0, "here": [0, 3, 6, 7, 8, 9, 12, 13], "public": [0, 1, 3, 4, 6, 8, 9], "avail": [0, 4, 6, 8], "structur": [0, 1, 3, 6, 7, 8, 9], "around": [0, 6, 7], "train": [0, 1, 3, 4, 7, 8, 9, 11, 12, 13], "mani": [0, 1, 6, 9], "differ": [0, 1, 3, 6, 8, 9, 12], "paramet": [0, 1, 3, 6, 7, 8, 9, 11, 12, 13, 14], "onli": [0, 1, 3, 7, 8, 9, 12, 13], "dataset": [0, 1, 7, 8, 9, 11, 12], "usual": [0, 1, 6, 7, 9], "cross": [0, 1, 6, 9, 12], "valid": [0, 1, 3, 7, 8, 9, 11, 12], "pick": 0, "evalu": [0, 4, 5, 6], "its": [0, 1, 6, 9, 11], "perform": [0, 3, 8, 11, 12, 14], "test": [0, 1, 4, 7, 8, 9, 11, 12, 13], "prod": [0, 6], "re": [0, 6, 8], "merg": [0, 7, 8, 12], "ha": [0, 1, 6, 7, 8, 9, 12], "drawback": [0, 6], "left": [0, 6, 7], "result": [0, 1, 3, 6, 7, 8, 9], "big": [0, 6], "benefit": [0, 6], "final": [0, 1, 6, 9], "all": [0, 1, 3, 6, 7, 8, 9, 11, 12], "let": [0, 6, 7], "s": [0, 6, 7], "look": [0, 1, 6, 7, 9], "trivial": 0, "exampl": [0, 3, 7, 8, 9], "weight": [0, 1, 3, 6, 8, 9, 11], "set": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13], "50": [0, 1, 3, 6, 8, 9], "molecul": [0, 1, 3, 6, 7, 8, 9, 12], "we": [0, 3, 6, 7, 8, 9, 12, 13], "start": [0, 4, 6, 7], "format": [0, 3, 6, 7, 8, 10], "It": [0, 1, 3, 6, 7, 8, 9], "contain": [0, 3, 6, 8], "four": 0, "main": [0, 3, 6, 7, 8], "section": [0, 6, 7], "locat": [0, 6], "column": [0, 3, 7, 8, 11, 12, 13, 14], "detail": [0, 3, 6, 7, 8, 9, 10], "about": [0, 6, 7, 8], "which": [0, 1, 3, 6, 7, 8, 9, 12], "below": [0, 3, 6, 7, 8], "task": [0, 3, 7, 8, 9, 11], "training_dataset_fil": [0, 6, 7, 8], "drd2": [0, 6], "subset": [0, 1, 6, 7, 9], "csv": [0, 3, 4, 6, 8], "input_column": [0, 3, 6, 7, 8, 11], "canon": [0, 6, 8, 12], "response_column": [0, 3, 6, 7, 8, 11], "molwt": [0, 6], "mode": [0, 6, 8, 9, 11], "regress": [0, 1, 7, 9, 11, 12], "cross_valid": [0, 6, 9, 11, 12], "5": [0, 1, 3, 6, 7, 8, 9, 12], "direct": [0, 1, 6, 9, 11], "maxim": [0, 1, 6, 9], "n_trial": [0, 6, 8, 9, 11], "100": [0, 1, 3, 6, 7, 8, 9, 10], "n_startup_tri": [0, 6, 8, 9], "30": [0, 1, 6, 9], "name": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ecfp": [0, 4, 6, 8, 9, 11], "radiu": [0, 3, 6, 8, 11], "3": [0, 1, 3, 4, 6, 7, 8, 9], "nbit": [0, 3, 6, 8, 9, 11], "2048": [0, 3, 6, 8], "maccs_kei": [0, 4, 6, 8, 11], "randomforestregressor": [0, 4, 6, 9, 11], "max_depth": [0, 1, 9, 11], "low": [0, 1, 3, 6, 7, 8, 9, 11], "2": [0, 1, 3, 6, 7, 8, 9, 12, 13], "high": [0, 1, 3, 6, 8, 9, 11], "32": [0, 1, 6, 9], "n_estim": [0, 1, 6, 9, 11], "10": [0, 1, 3, 6, 7, 8, 9, 12], "250": [0, 1, 6, 9], "max_featur": [0, 1, 9, 11], "auto": [0, 1, 6, 8, 9], "ridg": [0, 4, 6, 9, 11], "alpha": [0, 1, 6, 7, 8, 9, 11], "0": [0, 1, 3, 4, 6, 7, 8, 9, 12, 13], "lasso": [0, 4, 6, 9, 11], "xgbregressor": [0, 4, 6, 9, 11], "learning_r": [0, 1, 9, 11], "1": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13], "specifi": [0, 1, 6, 7, 8, 9, 11], "In": [0, 1, 3, 6, 7, 8, 9], "rel": [0, 6], "path": [0, 1, 3, 6, 7, 8, 9, 10], "folder": [0, 6, 7], "ar": [0, 1, 3, 6, 7, 8, 9, 11, 12, 13], "want": [0, 6, 7], "fold": [0, 1, 6, 7, 9, 12, 13], "valu": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "object": [0, 1, 5, 7, 9, 10, 11, 12], "function": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 14], "standard": [0, 1, 7, 9, 12, 14], "scikit": [0, 6, 8, 12, 13], "learn": [0, 1, 3, 7, 8, 9, 12, 13], "have": [0, 3, 6, 7, 8, 9, 12], "total": [0, 6, 7], "trial": [0, 1, 9, 10, 11], "first": [0, 1, 3, 6, 7, 8, 9, 12], "startup": [0, 6], "should": [0, 1, 3, 6, 7, 8, 9, 12], "random": [0, 1, 4, 9, 12], "explor": [0, 6], "get": [0, 6, 7, 8], "stuck": 0, "earli": [0, 1, 6, 8, 9], "one": [0, 3, 7, 8, 9, 12, 13], "local": [0, 6], "minimum": [0, 1, 3, 8, 9, 12, 13], "two": [0, 1, 6, 7, 9, 12, 13], "free": [0, 3, 8], "pair": [0, 6, 8], "ani": [0, 3, 6, 7, 8, 9, 12], "when": [0, 1, 6, 7, 8, 9, 12, 13], "our": [0, 6, 7], "time": [0, 1, 3, 7, 8, 9], "can": [0, 1, 3, 6, 7, 8, 9, 12, 13], "deploi": 0, "singular": [0, 6], "To": [0, 6, 7], "insid": [0, 8], "follow": [0, 3, 6, 7, 8, 9], "syntax": 0, "exec": 0, "sif": 0, "project": [0, 1, 9], "cc": [0, 6, 7], "mai": [0, 1, 3, 6, 7, 8, 9], "qsartuna_latest": 0, "opt": 0, "venv": 0, "bin": [0, 6, 7, 12, 13], "config": [0, 1, 5, 6, 8], "regression_drd2_50": 0, "buildconfig": [0, 5, 6, 8, 10], "outpath": 0, "target": [0, 1, 6, 7, 9, 12, 14], "pkl": [0, 1, 6, 9], "sinc": [0, 3, 6, 7, 8, 12], "long": [0, 7], "avoid": [0, 6, 7, 12], "login": 0, "node": 0, "queue": 0, "instead": [0, 1, 3, 6, 7, 8, 9, 12], "script": 0, "give": [0, 6], "sbatch": 0, "sh": 0, "ntask": 0, "cpu": 0, "per": [0, 1, 7, 9], "mem": 0, "4g": 0, "partit": 0, "core": [0, 7, 9], "illustr": [0, 6, 7], "how": [0, 1, 3, 6, 7, 8, 9], "chose": 0, "chang": [0, 6], "directori": [0, 6, 10], "cd": 0, "project_fold": 0, "optunaaz": 0, "version": [0, 7, 8, 9], "optunaaz_latest": 0, "complet": [0, 3, 6, 8], "creat": [0, 7, 10], "pickl": [0, 6], "your": [0, 6, 7], "home": 0, "under": [0, 6], "built": [0, 3, 7, 8, 9], "infer": [0, 3, 6, 7, 8], "input": [0, 1, 3, 4, 6, 8, 9, 12, 13, 14], "smile": [0, 3, 6, 7, 8, 10, 11, 12, 13], "output": [0, 1, 6, 7, 8, 9, 12, 14], "note": [0, 1, 3, 7, 8, 9, 11, 12, 13], "_": [0, 6], "point": [0, 1, 7, 9, 12, 13], "most": [0, 6, 7], "recent": [0, 6], "legaci": 0, "requir": [0, 3, 6, 7, 8], "same": [0, 1, 6, 7, 9], "modifi": [0, 8], "abov": [0, 6, 7], "suppli": [0, 1, 3, 6, 7, 8, 9], "qsartuna_": 0, "replac": [0, 6, 10], "e": [0, 1, 3, 7, 8, 9, 12, 14], "g": [0, 3, 7, 8, 12, 14], "qsartuna_2": 0, "1_model": 0, "would": [0, 3, 6, 7, 8], "gener": [0, 1, 3, 6, 7, 8, 9, 12, 13], "tri": 0, "dure": [0, 1, 3, 6, 7, 8, 9], "mlflow": [0, 5, 8, 11], "track": [0, 3, 5, 8, 9], "ui": 0, "modul": [0, 5, 6], "load": [0, 1, 6, 7, 9], "Then": 0, "open": [0, 1, 6, 9], "link": 0, "browser": 0, "If": [0, 1, 3, 6, 8, 9, 12, 13], "you": [0, 1, 6, 7, 9], "scp": 0, "forward": [0, 1, 9], "port": 0, "separ": [0, 3, 7, 8], "ssh": 0, "session": 0, "non": [0, 1, 3, 6, 7, 8, 9], "machin": [0, 1, 3, 6, 7, 8, 9], "n": [0, 1, 6, 7, 9, 10], "l": 0, "localhost": 0, "5000": 0, "user": [0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 14], "intranet": 0, "net": 0, "just": [0, 6], "execut": 0, "select": [0, 1, 3, 6, 7, 8, 9], "experi": [0, 7, 10], "after": [0, 1, 3, 6, 7, 8, 9, 10], "choos": [0, 4], "compar": [0, 6], "comparison": [0, 6, 7], "show": [0, 6, 7], "call": [0, 1, 3, 6, 8, 9, 12], "well": [0, 6, 7], "metric": [0, 1, 6, 8, 9, 11], "At": 0, "bottom": 0, "plot": [0, 6, 7, 9, 11], "For": [0, 1, 3, 6, 7, 8, 9, 12], "x": [0, 1, 3, 6, 7, 8, 9, 12, 13], "axi": [0, 6, 7], "number": [0, 1, 3, 6, 7, 8, 9, 10], "y": [0, 1, 7, 8, 9, 12, 13], "cvmean": 0, "r2": [0, 6, 7, 9], "more": [0, 1, 3, 7, 8, 9, 10], "click": 0, "individu": [0, 1, 6, 7, 9], "There": [0, 1, 6, 7, 9], "access": [0, 3, 8], "conda": 0, "environ": [0, 3, 6, 8], "instal": [0, 6], "purg": 0, "miniconda3": 0, "my_env_with_qsartuna": 0, "pip": [0, 6], "activ": [0, 1, 6, 7, 9, 11, 12, 14], "case": [0, 1, 6, 7, 8, 9], "check": [0, 6, 8, 11, 12], "m": [0, 6, 8], "http": [0, 3, 6, 7, 8, 9, 12], "com": [0, 6, 7, 8, 12], "molecularai": [0, 6], "releas": [0, 4, 6], "download": [0, 6], "tar": [0, 6], "gz": [0, 6], "three_step_opt_build_merg": [0, 5, 6], "import": [0, 6], "buildconfig_best": [0, 6, 8], "build_best": [0, 6, 8], "build_merg": [0, 6, 8], "modelmod": [0, 6, 8, 9], "optimizationdirect": [0, 6, 9], "optconfig": [0, 1, 5, 6, 8, 10, 11], "optimizationconfig": [0, 6, 8, 9], "svr": [0, 4, 6, 9, 11], "randomforest": 0, "pl": [0, 1, 9], "dataread": [0, 5, 6], "ecfp_count": [0, 4, 6, 8, 11], "prepar": [0, 4, 7], "new": [0, 1, 3, 6, 7, 8, 9], "studi": [0, 3, 6, 8, 9, 10, 11], "study_nam": [0, 6, 8], "my_studi": [0, 6], "make": [0, 1, 6, 7, 8, 9, 12, 13, 14], "write": [0, 6], "out": [0, 1, 6, 7, 9], "print": [0, 6, 7], "dump": [0, 6], "indent": [0, 6], "save": [0, 6], "add": [0, 6, 7, 8, 10], "code": [0, 3, 6, 7, 8], "optunaz": [0, 1, 3, 6, 7, 13, 14], "py": [0, 1, 6, 7, 9], "like": [0, 1, 3, 6, 7, 8, 9], "so": [0, 6, 7, 9], "dataclass": [0, 10], "class": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "yournewdescriptor": 0, "rdkitdescriptor": [0, 6, 8], "descript": [0, 8, 9], "goe": 0, "apischema": [0, 6, 8], "type_nam": 0, "yournewdescriptorparam": 0, "pass": [0, 1, 3, 6, 8, 9, 12], "exampleofaparamet": 0, "annot": [0, 6], "int": [0, 1, 3, 8, 9, 12, 13], "schema": [0, 5, 8, 11], "min": [0, 1, 6, 7, 9, 12], "titl": [0, 1, 3, 6, 7, 8, 9, 10, 12, 13, 14], "an": [0, 1, 3, 6, 7, 8, 9, 10, 12, 13], "field": 0, "default": [0, 1, 7, 8, 9, 12, 13], "liter": [0, 8, 9, 12, 13], "def": [0, 6, 7, 9], "calculate_from_smi": [0, 3, 6, 8], "self": [0, 6, 9], "smi": [0, 3, 8, 10], "str": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14], "insert": [0, 7], "calcul": [0, 3, 6, 8, 12, 13, 14], "fp": [0, 3, 6, 8], "code_to_calculate_fp": 0, "return": [0, 3, 6, 7, 8, 10, 11, 12, 13], "list": [0, 1, 3, 4, 6, 7, 8, 9, 12, 14], "anyunscaleddescriptor": 0, "union": [0, 1, 3, 8, 9], "avalon": [0, 4, 8, 9, 11], "pathfp": [0, 4, 6, 8, 11], "amorprotdescriptor": [0, 3, 8, 11], "precomputeddescriptorfromfil": [0, 4, 6, 8, 11], "unscaledmapc": [0, 3, 8, 11], "unscaledphyschemdescriptor": [0, 4, 6, 8, 11], "unscaledjazzydescriptor": [0, 4, 6, 8, 11], "unscaledzscalesdescriptor": [0, 4, 8, 11], "ensur": [0, 6, 7, 8, 9], "compositecompatibledescriptor": 0, "scaleddescriptor": [0, 4, 8, 11], "mapc": [0, 3, 8, 11], "physchemdescriptor": [0, 4, 8, 11], "jazzydescriptor": [0, 4, 8, 11], "zscalesdescriptor": [0, 3, 8, 11], "sourc": [1, 3, 8, 9, 10, 11, 12, 13, 14], "adaboost": [1, 9], "classifi": [1, 6, 8, 9, 11], "meta": [1, 6, 9], "begin": [1, 6, 7, 9, 12, 13], "fit": [1, 3, 6, 7, 8, 9, 12], "origin": [1, 3, 6, 7, 8, 9, 12], "addit": [1, 6, 9], "copi": [1, 7, 9, 10], "where": [1, 6, 7, 9], "incorrectli": [1, 9], "instanc": [1, 6, 7, 9], "adjust": [1, 9], "subsequ": [1, 6, 9], "focu": [1, 9], "difficult": [1, 6, 9], "adaboostclassifierparametersnestim": [1, 9], "adaboostclassifierparameterslearningr": [1, 9], "The": [1, 3, 7, 8, 9, 10, 12, 14], "maximum": [1, 3, 6, 7, 8, 9, 12, 13], "boost": [1, 3, 8, 9], "termin": [1, 9], "perfect": [1, 9], "procedur": [1, 3, 7, 8, 9], "stop": [1, 6, 9], "appli": [1, 3, 6, 7, 8, 9, 12, 13, 14], "each": [1, 3, 6, 7, 8, 9, 12], "classifierat": [1, 9], "iter": [1, 6, 9, 12, 13], "A": [1, 3, 7, 8, 9], "higher": [1, 6, 9], "rateincreas": [1, 9], "contribut": [1, 3, 6, 8, 9], "trade": [1, 9], "off": [1, 6, 7, 9, 12, 13], "between": [1, 6, 7, 9], "learning_rateand": [1, 9], "float": [1, 6, 7, 9, 10, 12, 13, 14], "linear": [1, 7, 9], "model": [1, 3, 4, 7, 8, 9, 10, 12, 13, 14], "l1": [1, 9], "prior": [1, 7, 9], "regular": [1, 6, 9], "spars": [1, 9], "coeffici": [1, 9], "tend": [1, 9], "prefer": [1, 9], "solut": [1, 6, 9], "fewer": [1, 9], "zero": [1, 3, 8, 9], "effect": [1, 6, 7, 9, 12], "reduc": [1, 6, 9], "featur": [1, 3, 6, 8, 9], "upon": [1, 6, 9], "depend": [1, 6, 7, 9], "lassoparametersalpha": [1, 9], "constant": [1, 9], "multipli": [1, 9], "term": [1, 6, 9], "control": [1, 6, 7, 9, 12], "strength": [1, 3, 8, 9], "must": [1, 6, 9], "neg": [1, 6, 7, 9], "i": [1, 3, 6, 7, 8, 9], "inf": [1, 6, 8, 9], "equival": [1, 9], "ordinari": [1, 9], "least": [1, 6, 9], "squar": [1, 6, 9], "solv": [1, 6, 9], "linearregress": [1, 9], "numer": [1, 7, 9], "reason": [1, 7, 9], "us": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "advis": [1, 6, 7, 9], "implement": [1, 3, 6, 8, 9, 12], "k": [1, 6, 7, 9, 12, 13], "nearest": [1, 6, 9], "neighbor": [1, 6, 9, 12, 13], "vote": [1, 9], "principl": [1, 9], "behind": [1, 9], "method": [1, 3, 7, 8, 9, 11, 12], "find": [1, 6, 8, 9], "predefin": [1, 4, 9, 12, 14], "sampl": [1, 6, 9, 12, 13], "closest": [1, 9], "distanc": [1, 6, 8, 9], "label": [1, 6, 7, 8, 9, 12, 13], "from": [1, 3, 4, 8, 9, 10, 12, 13, 14], "defin": [1, 3, 6, 7, 8, 9, 10, 12], "despit": [1, 6, 9], "simplic": [1, 9], "success": [1, 6, 9], "larg": [1, 7, 9], "classif": [1, 4, 7, 8, 9, 11, 12], "problem": [1, 6, 7, 8, 9], "n_neighbor": [1, 9, 11], "kneighborsclassifierparametersn_neighbor": [1, 9], "kneighbor": [1, 9], "queri": [1, 6, 7, 9], "comput": [1, 3, 7, 8, 9, 12], "minkowski": [1, 6, 9], "euclidean": [1, 9], "regressor": [1, 6, 8, 9, 11], "kneighborsregressorparametersn_neighbor": [1, 9], "logist": [1, 9], "rather": [1, 3, 6, 7, 8, 9], "than": [1, 3, 6, 7, 8, 9], "also": [1, 3, 6, 7, 8, 9, 12], "known": [1, 3, 6, 7, 8, 9], "literatur": [1, 9], "logit": [1, 9], "entropi": [1, 7, 9], "maxent": [1, 9], "log": [1, 4, 9, 10, 11, 12, 14], "probabl": [1, 4, 7, 9], "describ": [1, 3, 6, 8, 9, 12], "possibl": [1, 6, 7, 9, 12, 13], "outcom": [1, 9], "singl": [1, 6, 9], "solver": [1, 9, 11], "c": [1, 3, 6, 7, 8, 9, 11], "logisticregressionparametersparameterc": [1, 9], "try": [1, 6, 7, 9], "sag": [1, 9], "saga": [1, 9], "fast": [1, 6, 9], "converg": [1, 6, 9], "guarante": [1, 9], "approxim": [1, 6, 9], "scale": [1, 3, 7, 8, 9, 12, 14], "preprocess": [1, 4, 8, 9, 10, 13, 14], "scaler": [1, 3, 8, 9], "invers": [1, 9], "posit": [1, 3, 6, 8, 9], "support": [1, 6, 8, 9], "vector": [1, 3, 6, 8, 9, 12, 14], "smaller": [1, 6, 9], "stronger": [1, 9], "decomposit": [1, 9], "partial": [1, 6, 9], "form": [1, 3, 6, 7, 8, 9, 12], "compon": [1, 3, 6, 8, 9], "fundament": [1, 9], "relat": [1, 3, 6, 7, 8, 9], "matric": [1, 9], "thei": [1, 3, 6, 7, 8, 9], "latent": [1, 9], "variabl": [1, 6, 7, 9], "approach": [1, 3, 6, 7, 8, 9], "covari": [1, 4, 8, 9], "space": [1, 7, 9, 12, 13], "multidimension": [1, 9], "varianc": [1, 6, 7, 9], "other": [1, 6, 7, 9, 12], "word": [1, 6, 9], "both": [1, 6, 7, 9], "lower": [1, 6, 9], "dimension": [1, 9], "subspac": [1, 6, 8, 9], "transform": [1, 4, 8, 9, 10], "n_compon": [1, 9, 11], "ncompon": [1, 9], "keep": [1, 6, 7, 9, 12], "n_sampl": [1, 9], "n_featur": [1, 9], "n_target": [1, 9], "forest": [1, 4, 7, 9], "decis": [1, 6, 7, 9, 12, 14], "tree": [1, 6, 9], "variou": [1, 6, 8, 9], "sub": [1, 6, 9], "averag": [1, 3, 6, 7, 8, 9, 12], "improv": [1, 3, 6, 8, 9], "accuraci": [1, 6, 9], "over": [1, 6, 9], "randomforestclassifierparametersmaxdepth": [1, 9], "randomforestclassifierparametersnestim": [1, 6, 9], "depth": [1, 6, 9, 11], "considerwhen": [1, 9], "split": [1, 4, 8, 9, 12, 13, 14], "thenconsid": [1, 9], "sqrt": [1, 6, 7, 9], "log2": [1, 7, 9, 12, 14], "randomforestregressorparametersmaxdepth": [1, 9], "randomforestregressorparametersnestim": [1, 9], "l2": [1, 9], "loss": [1, 3, 6, 8, 9], "norm": [1, 7, 9], "tikhonov": [1, 9], "base": [1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "libsvm": [1, 9], "quadrat": [1, 9], "impract": [1, 9], "beyond": [1, 9], "ten": [1, 9], "thousand": [1, 9], "svcparametersparameterc": [1, 9], "1e": [1, 9], "gamma": [1, 9, 11], "0001": [1, 9], "proport": [1, 6, 9], "strictli": [1, 9], "penalti": [1, 9], "kernel": [1, 9], "epsilon": [1, 9], "complex": [1, 6, 9], "hard": [1, 3, 8, 9], "coupl": [1, 9], "10000": [1, 9], "svrparametersparameterc": [1, 9], "svrparametersgamma": [1, 9], "maxdepth": [1, 9], "nestim": [1, 9], "learningr": [1, 9], "xgboost": [1, 9, 11], "gradient": [1, 9], "stand": [1, 9], "extrem": [1, 6, 9], "paper": [1, 3, 6, 8, 9], "greedi": [1, 9], "friedman": [1, 9], "learner": [1, 9], "round": [1, 6, 7, 9], "prf": [1, 4, 7, 9], "probabilist": [1, 4, 9], "seen": [1, 6, 7, 9], "hybrid": [1, 6, 9], "similar": [1, 3, 6, 7, 8, 9, 12, 13], "take": [1, 3, 6, 7, 8, 9, 12], "real": [1, 6, 7, 9, 12, 13], "threshold": [1, 3, 4, 6, 8, 9, 12, 13, 14], "represent": [1, 3, 4, 8, 9], "ptr": [1, 4, 6, 9, 12], "howev": [1, 3, 6, 7, 8, 9], "belong": [1, 3, 6, 7, 8, 9], "inact": [1, 6, 7, 9, 12, 14], "use_py_gini": [1, 9, 11], "use_py_leaf": [1, 9, 11], "prfclassifierparametersmaxdepth": [1, 9], "prfclassifierparametersnestim": [1, 9], "min_py_sum_leaf": [1, 9, 11], "prfclassifierparametersminpysumleaf": [1, 9], "gini": [1, 9], "true": [1, 3, 6, 7, 8, 9, 12, 13], "leav": [1, 9], "leaf": [1, 9], "allow": [1, 3, 6, 7, 8, 9], "prune": [1, 6, 9], "propag": [1, 9], "small": [1, 7, 8, 9], "thu": [1, 6, 9], "pth": [1, 9], "scheme": [1, 9], "noisi": [1, 9], "chemprop": [1, 3, 4, 8, 9], "deep": [1, 6, 9], "properti": [1, 3, 6, 7, 8, 9, 10], "network": [1, 3, 6, 8, 9], "messag": [1, 6, 9], "neural": [1, 6, 8, 9], "d": [1, 3, 6, 8, 9], "mpnn": [1, 9], "encod": [1, 8, 9], "graph": [1, 3, 6, 8, 9], "feed": [1, 9], "ffnn": [1, 9], "multi": [1, 3, 8, 9], "layer": [1, 3, 6, 8, 9], "perceptron": [1, 9], "wa": [1, 3, 6, 8, 9], "present": [1, 6, 7, 9], "analyz": [1, 6, 9], "optuna": [1, 4, 6, 8, 9, 10, 11], "optims": [1, 9], "hyperopt": [1, 9], "ensemble_s": [1, 6, 9, 11], "epoch": [1, 6, 9, 11], "aggreg": [1, 6, 7, 9, 11, 12, 13], "aggregation_norm": [1, 6, 9, 11], "chempropparametersaggregation_norm": [1, 9], "200": [1, 6, 9], "q": [1, 3, 6, 8, 9, 11], "batch_siz": [1, 6, 9, 11], "chempropparametersbatch_s": [1, 9], "chempropparametersdepth": [1, 9], "6": [1, 6, 7, 9], "dropout": [1, 9, 11], "chempropparametersdropout": [1, 9], "4": [1, 3, 6, 7, 8, 9, 12, 13], "04": [1, 6, 9], "features_gener": [1, 6, 9, 11], "ffn_hidden_s": [1, 6, 9, 11], "chempropparametersffn_hidden_s": [1, 9], "300": [1, 6, 9], "2400": [1, 9], "ffn_num_lay": [1, 6, 9, 11], "chempropparametersffn_num_lay": [1, 9], "final_lr_ratio_exp": [1, 6, 9, 11], "chempropparametersfinal_lr_ratio_exp": [1, 9], "hidden_s": [1, 6, 9, 11], "chempropparametershidden_s": [1, 9], "init_lr_ratio_exp": [1, 6, 9, 11], "chempropparametersinit_lr_ratio_exp": [1, 9], "max_lr_exp": [1, 6, 9, 11], "chempropparametersmax_lr_exp": [1, 9], "warmup_epochs_ratio": [1, 6, 9, 11], "chempropparameterswarmup_epochs_ratio": [1, 9], "ensembl": [1, 9, 11], "initialis": [1, 6, 9], "provid": [1, 3, 6, 7, 8, 9, 12], "size": [1, 3, 6, 7, 8, 9], "run": [1, 3, 4, 7, 8, 9, 10], "increas": [1, 6, 7, 8, 9, 12, 13], "400": [1, 6, 9], "sum": [1, 6, 9], "atom": [1, 3, 6, 8, 9, 12, 13], "divid": [1, 6, 9], "up": [1, 3, 6, 8, 9, 10], "batch": [1, 9, 12], "step": [1, 7, 8, 9], "visibl": [1, 9], "randomli": [1, 6, 7, 9], "some": [1, 3, 6, 7, 8, 9], "element": [1, 9, 12, 13], "tensor": [1, 9], "p": [1, 3, 8, 9], "bernoulli": [1, 9], "distribut": [1, 6, 7, 9], "channel": [1, 9], "independ": [1, 7, 9], "everi": [1, 6, 9], "proven": [1, 9], "techniqu": [1, 7, 9], "prevent": [1, 6, 9], "co": [1, 7, 9], "adapt": [1, 3, 8, 9], "neuron": [1, 9], "hidden": [1, 6, 9], "ffn": [1, 6, 9], "exponenti": [1, 7, 9], "rate": [1, 9], "bond": [1, 3, 8, 9], "ratio": [1, 9], "linearli": [1, 9], "init_lr": [1, 9], "max_lr": [1, 9], "afterward": [1, 7, 9], "decreas": [1, 7, 9], "final_lr": [1, 9], "without": [1, 6, 8, 9, 12], "within": [1, 3, 8, 9, 12, 13], "hyperparamet": [1, 4, 6, 8, 9], "side": [1, 3, 8, 9], "inform": [1, 3, 8, 9, 10], "nb": [1, 3, 6, 7, 8, 9], "quick": [1, 4, 9], "simpl": [1, 7, 9], "sensibl": [1, 6, 7, 8, 9], "author": [1, 6, 8, 9], "do": [1, 6, 7, 9, 12], "num_it": [1, 6, 9, 11], "search_parameter_level": [1, 6, 9, 11], "dictat": [1, 9], "larger": [1, 3, 6, 7, 8, 9], "pretrin": [1, 9], "pretrain": [1, 6, 9], "carri": [1, 9], "previous": [1, 9], "qsartuna": [1, 9], "chempropparametersepoch": [1, 6, 9], "frzn": [1, 9, 11], "pretrained_model": [1, 6, 9, 11], "none": [1, 3, 6, 8, 9, 10, 12, 13, 14], "fine": [1, 9], "tune": [1, 3, 4, 6, 8, 9], "decid": [1, 9], "freez": [1, 9], "transfer": [1, 9], "frozen": [1, 9], "calibr": [1, 4, 8, 9], "isoton": [1, 6, 9], "vennab": [1, 9], "cv": [1, 6, 9], "With": [1, 3, 8, 9], "across": [1, 6, 7, 9, 12], "fals": [1, 3, 6, 7, 8, 9, 12], "obtain": [1, 6, 7, 9], "unbias": [1, 9], "offer": [1, 3, 6, 8, 9], "p0": [1, 6, 9], "vs": [1, 6, 7, 9], "p1": [1, 6, 9], "discord": [1, 6, 9], "type": [1, 3, 6, 7, 8, 9, 12], "calibratedclassifiercvensembl": [1, 9], "calibratedclassifiercvmethod": [1, 9], "n_fold": [1, 6, 9, 11], "whether": [1, 3, 7, 8, 9, 12, 14], "agnost": [1, 6, 9], "interv": [1, 6, 9], "encompass": [1, 9], "aleator": [1, 9], "epistem": [1, 9], "back": [1, 6, 9], "strong": [1, 9], "theoret": [1, 6, 9], "thank": [1, 9], "conform": [1, 9], "mapie_alpha": [1, 6, 9, 11], "05": [1, 6, 7, 9], "01": [1, 6, 9], "99": [1, 6, 9], "see": [3, 6, 7, 8, 9, 12, 13], "gedeck": [3, 8], "et": [3, 7, 8], "al": [3, 7, 8], "qsar": [3, 4, 6, 7, 8], "good": [3, 6, 7, 8], "practic": [3, 8], "fingerprint": [3, 8, 9], "wai": [3, 6, 7, 8], "daylight": [3, 8], "enumer": [3, 6, 8, 9], "custom": [3, 6, 8], "ref": [3, 8, 10], "16": [3, 6, 7, 8], "hash": [3, 6, 8, 9, 10], "style": [3, 6, 7, 8], "implicitli": [3, 8], "largest": [3, 6, 8], "refer": [3, 6, 8, 10, 11], "toward": [3, 6, 7, 8], "binari": [3, 6, 8, 9], "extend": [3, 6, 7, 8], "connect": [3, 6, 8], "roger": [3, 8], "circular": [3, 8], "morgan": [3, 8, 9], "invari": [3, 8], "getmorganfingerprintasbitvect": [3, 8], "rdkit": [3, 6, 7, 8, 9], "systemat": [3, 8], "record": [3, 6, 7, 8], "neighborhood": [3, 8, 9], "h": [3, 6, 7, 8], "multipl": [3, 6, 8, 12, 13], "runtim": [3, 8], "substructur": [3, 6, 8], "map": [3, 6, 7, 8], "integ": [3, 7, 8, 12, 13], "length": [3, 6, 8], "identifi": [3, 6, 7, 8], "diamet": [3, 8], "append": [3, 6, 7, 8, 9], "ecfp4": [3, 8], "correspond": [3, 6, 7, 8, 9], "returnrdkit": [3, 6, 8], "consid": [3, 6, 8, 12, 13], "while": [3, 6, 7, 8, 12], "bit": [3, 6, 8], "sometim": [3, 6, 7, 8], "bool": [3, 8, 9, 12, 13], "calculate_from_mol": [3, 8], "mol": [3, 6, 7, 8], "numpi": [3, 6, 7, 8, 12, 13], "arrai": [3, 6, 8, 12, 13], "count": [3, 6, 8, 9], "gethashedmorganfingerprint": [3, 8], "appear": [3, 8, 11], "usefeatur": [3, 6, 8, 11], "fcfp": [3, 8], "normal": [3, 6, 7, 8, 9], "ones": [3, 6, 8], "definit": [3, 8, 12], "gobbi": [3, 8], "popping": [3, 8], "biotechnolog": [3, 8], "bioengin": [3, 8], "61": [3, 6, 8], "47": [3, 6, 8], "54": [3, 6, 8], "1998": [3, 6, 8], "lead": [3, 7, 8], "score": [3, 4, 8, 9, 10, 12, 14], "maxpath": [3, 6, 8, 11], "fpsize": [3, 6, 8, 11], "macc": [3, 6, 8], "system": [3, 7, 8], "often": [3, 6, 8], "mdl": [3, 8], "kei": [3, 6, 7, 8, 10, 11], "compani": [3, 8], "keyset": [3, 8], "construct": [3, 8, 11], "optim": [3, 4, 7, 8, 9, 11], "durant": [3, 8], "reoptim": [3, 8], "drug": [3, 8], "discoveri": [3, 8], "166": [3, 6, 8], "2d": [3, 8, 9], "essenti": [3, 7, 8], "answer": [3, 8], "fragment": [3, 8], "question": [3, 8], "explicitli": [3, 6, 7, 8], "exist": [3, 8], "sens": [3, 8], "matter": [3, 8], "becaus": [3, 6, 7, 8], "address": [3, 8], "specif": [3, 6, 7, 8, 11], "repres": [3, 6, 7, 8], "9": [3, 6, 7, 8], "1049": [3, 8], "distinct": [3, 6, 7, 8, 9], "rdkit_nam": [3, 6, 8, 11], "unscal": [3, 8], "These": [3, 6, 7, 8, 12], "physchem": [3, 6, 8], "caution": [3, 7, 8], "208": [3, 6, 8], "includ": [3, 6, 7, 8], "clogp": [3, 6, 8], "mw": [3, 6, 8], "ring": [3, 7, 8], "rotat": [3, 8], "fraction": [3, 6, 7, 8, 12, 13], "sp3": [3, 8], "kier": [3, 8], "indic": [3, 6, 7, 8, 12, 13], "etc": [3, 6, 7, 8], "tpsa": [3, 6, 8], "slogp": [3, 8], "group": [3, 7, 8, 12, 13], "vsa": [3, 8], "moe": [3, 8], "charg": [3, 8], "www": [3, 8], "org": [3, 6, 8], "doc": [3, 6, 8], "gettingstartedinpython": [3, 8], "html": [3, 6, 7, 8, 9], "whose": [3, 8], "been": [3, 6, 7, 8], "level": [3, 6, 7, 8, 9], "One": [3, 7, 8], "advantag": [3, 8], "interpret": [3, 8], "mean": [3, 6, 7, 8, 9, 12], "physicochem": [3, 8], "intuit": [3, 8], "understood": [3, 8], "option": [3, 4, 7, 8, 9, 11, 12, 13, 14], "jazzy_nam": [3, 6, 8, 11], "jazzy_filt": [3, 6, 8], "jazzi": [3, 8], "hydrat": [3, 8], "energi": [3, 8], "hydrogen": [3, 8], "acceptor": [3, 6, 8], "donor": [3, 6, 8], "found": [3, 6, 8], "doi": [3, 6, 8], "1038": [3, 8], "s41598": [3, 8], "023": [3, 8], "30089": [3, 8], "mmff94": [3, 8], "minimis": [3, 8], "1000da": [3, 8], "compound": [3, 6, 7, 8, 12, 13], "dict": [3, 8, 9, 10, 11], "string": [3, 6, 7, 8, 11, 12, 13, 14], "ndarrai": [3, 8], "z": [3, 8, 12, 14], "peptid": [3, 6, 8, 12, 14], "unfittedsklearnscal": [3, 8], "mol_data": [3, 8], "moldata": [3, 8], "file_path": [3, 8], "smiles_column": [3, 8], "fittedsklearnscal": [3, 8], "alia": [3, 8, 9], "precomput": [3, 7, 8], "file": [3, 7, 8, 10, 11, 12, 13], "header": [3, 8], "line": [3, 4, 6, 7, 8, 10], "row": [3, 6, 7, 8], "comma": [3, 6, 7, 8], "respons": [3, 7, 8], "pre": [3, 7, 8], "inference_paramet": [3, 6, 8], "were": [3, 6, 7, 8], "propos": [3, 8], "sandberg": [3, 8], "proteogen": [3, 8], "amino": [3, 6, 8], "acid": [3, 6, 8], "nmr": [3, 8], "thin": [3, 8], "chromatographi": [3, 8], "tlc": [3, 8], "1021": [3, 6, 8], "jm9700575": [3, 8], "captur": [3, 6, 7, 8], "lipophil": [3, 8], "steric": [3, 8], "bulk": [3, 8], "polariz": [3, 8], "electron": [3, 8], "polar": [3, 8], "electroneg": [3, 8], "heat": [3, 8], "electrophil": [3, 8], "anoth": [3, 6, 8], "optimis": [3, 6, 7, 8, 9, 10], "either": [3, 7, 8, 9], "through": [3, 6, 8], "_and_": [3, 8], "auxiliari": [3, 6, 8, 12, 14], "continu": [3, 6, 8], "learnt": [3, 6, 8], "manner": [3, 6, 8], "intent": [3, 6, 8], "much": [3, 8], "remain": [3, 8, 12], "deriv": [3, 6, 7, 8], "cautiou": [3, 8], "upload": [3, 8], "_all_": [3, 8], "ruder": [3, 8], "io": [3, 6, 8, 9], "index": [3, 6, 7, 8], "auxiliarytask": [3, 8], "aux_weight_pc": [3, 6, 8, 9, 11], "20": [3, 6, 7, 8], "info": [3, 6, 8], "percentag": [3, 8], "wrap": [3, 6, 8], "certain": [3, 6, 7, 8], "rang": [3, 6, 7, 8, 12, 13], "scaleddescriptorparamet": [3, 8], "cach": [3, 6, 8, 9], "composit": [3, 6, 8], "concaten": [3, 8], "button": [3, 8], "pleas": [3, 6, 8, 10], "compat": [3, 6, 8], "intro": 4, "background": 4, "json": [4, 6, 9, 11], "command": [4, 6], "interfac": [4, 6, 8, 11, 12], "python": [4, 6, 8, 12], "jupyt": [4, 6], "notebook": [4, 6], "ad": [4, 6, 7, 12, 13], "descriptor": [4, 5, 7, 9, 11], "introduct": 4, "translat": [4, 6], "sdf": [4, 6, 8], "need": 4, "deal": [4, 12], "duplic": [4, 8, 9, 12], "dedupl": [4, 6, 8, 10], "experiment": [4, 6, 12, 14], "error": [4, 6], "cli": 4, "tutori": 4, "remov": [4, 7, 8, 9, 12, 13], "advanc": [4, 7, 8], "functoinail": 4, "adaboostclassifi": [4, 6, 9, 11], "kneighborsclassifi": [4, 6, 9, 11], "kneighborsregressor": [4, 6, 9, 11], "logisticregress": [4, 6, 9, 11], "plsregress": [4, 6, 9, 11], "randomforestclassifi": [4, 6, 9, 11], "svc": [4, 6, 9, 11], "prfclassifi": [4, 6, 9, 11], "chempropregressor": [4, 6, 9, 11], "chempropclassifi": [4, 6, 9, 11], "chemprophyperoptclassifi": [4, 6, 9, 11], "chemprophyperoptregressor": [4, 6, 9, 11], "chempropregressorpretrain": [4, 6, 9], "calibratedclassifiercvwithva": [4, 6, 9, 11], "mapi": [4, 9, 11], "zscale": [4, 6, 8, 12], "smilesfromfil": [4, 6, 8, 11], "smilesandsideinfofromfil": [4, 6, 8, 11], "compositedescriptor": [4, 6, 8, 11], "tempor": [4, 6, 12], "stratifi": [4, 6, 12], "scaffoldsplit": [4, 7, 12], "modeldatatransform": [4, 6, 7, 8, 12], "vectorfromcolumn": [4, 6, 8, 12], "keepfirst": [4, 7, 12], "keeplast": [4, 7, 12], "keeprandom": [4, 7, 12], "keepmin": [4, 7, 12], "keepmax": [4, 7, 12], "keepavg": [4, 7, 12], "keepmedian": [4, 6, 7, 12], "keepkeepallnodedupl": 4, "report": [4, 6, 7], "coverag": 4, "subpackag": 5, "submodul": 5, "build_from_opt": [5, 8], "content": 5, "util": [5, 6, 7, 8, 13, 14], "files_path": [5, 8], "load_json": [5, 8], "builder": 5, "metirc": 5, "model_writ": 5, "optbuild": 5, "schemagen": 5, "visual": [5, 9, 11], "intend": [6, 8], "necessari": 6, "gui": 6, "autom": [6, 7], "reinvent": 6, "varieti": 6, "them": [6, 7, 8, 9], "hyper": [6, 9], "influenc": [6, 7, 9], "automat": [6, 7], "idea": [6, 7], "read": [6, 7, 8], "otherwis": [6, 12], "might": [6, 7, 12], "skip": [6, 7], "toi": 6, "chosen": 6, "whole": [6, 7], "less": [6, 7], "minut": 6, "holdout": [6, 7], "readi": 6, "next": [6, 7], "few": [6, 7], "head": [6, 7], "molwt_gt_330": 6, "cc1cc": 6, "nc": [6, 7], "o": [6, 7], "c2cccc": 6, "coc3ccc": 6, "br": [6, 7], "cc3": [6, 7], "c2": [6, 7], "no1": 6, "387": 6, "233": 6, "nc1ccc": 6, "f": [6, 7, 12], "cc1f": 6, "nc1sccc1": 6, "c1nc2ccccc2s1": 6, "4360000000001": 6, "coc": 6, "c1ccccc1nc": 6, "c1cc": 6, "nn1cc1ccccc1": 6, "380": 6, "36000000000007": 6, "ccoc": 6, "sc1nc": 6, "c2ccccc2": 6, "ccc1c": 6, "312": 6, "39400000000006": 6, "ccc": [6, 7], "c1nn": [6, 7], "cc2ccccc2": 6, "c2ccccc12": 6, "349": 6, "4340000000001": 6, "brc1ccccc1occcoc1cccc2cccnc12": 6, "358": 6, "235": 6, "ccccn1c": 6, "coc2cccc": 6, "oc": 6, "nc2ccccc21": 6, "310": 6, "39700000000005": 6, "ccoc1cccc": 6, "c2sc3nc": 6, "c4ccc": 6, "cc4": 6, "ccc3c2n": 6, "c1": [6, 7], "407": 6, "4700000000001": 6, "coc1ccc": 6, "nc2ccc": 6, "cc2": 6, "c2ccc": 6, "cc1oc": 6, "454": 6, "54800000000023": 6, "sy": [6, 7], "sklearn": [6, 11], "kljk345": 6, "pypoetri": 6, "virtualenv": 6, "9zyw8gtc": 6, "py3": 6, "lib": 6, "python3": 6, "site": 6, "tqdm": 6, "21": [6, 7], "tqdmwarn": 6, "iprogress": 6, "updat": [6, 7], "ipywidget": 6, "readthedoc": [6, 9], "en": [6, 9], "stabl": [6, 8], "user_instal": 6, "autonotebook": 6, "notebook_tqdm": 6, "typic": [6, 7], "test_dataset_fil": [6, 8], "random_se": [6, 9], "42": [6, 7, 12, 13], "seed": [6, 7, 8, 12, 13], "reproduc": [6, 12, 14], "setup": [6, 9], "basic": [6, 8, 9], "importlib": 6, "reload": 6, "basicconfig": 6, "getlogg": 6, "disabl": [6, 11], "np": [6, 7], "seterr": 6, "ignor": 6, "warn": 6, "filterwarn": 6, "categori": 6, "futurewarn": 6, "runtimewarn": 6, "functool": 6, "partialmethod": 6, "__init__": [6, 9], "flood": 6, "decpreci": 6, "simplefilt": 6, "arg": [6, 8, 9], "kwarg": [6, 9], "stderr": 6, "render": [6, 7], "red": 6, "2024": 6, "07": 6, "09": 6, "44": 6, "28": [6, 7], "211": 6, "memori": [6, 7, 8], "379": 6, "study_name_0": 6, "836": 6, "finish": 6, "3594": 6, "2228073972638": 6, "39": [6, 7], "algorithm_nam": [6, 11], "randomforestregressor_algorithm_hash": 6, "f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "max_depth__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "n_estimators__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "max_features__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "lt": [6, 7], "randomforestmaxfeatur": [6, 9], "gt": [6, 7], "34": [6, 7], "985": 6, "5029": 6, "734616310275": 6, "svr_algorithm_hash": 6, "ea7ccc7ef4a9329af0d4e39eb6184933": 6, "gamma__ea7ccc7ef4a9329af0d4e39eb6184933": 6, "039054412752107935": 6, "c__ea7ccc7ef4a9329af0d4e39eb6184933": 6, "1242780840717016e": 6, "29": 6, "248": 6, "4242": 6, "092751193529": 6, "270": 6, "3393": 6, "577488426015": 6, "ridge_algorithm_hash": 6, "cfa1990d5153c8812982f034d788d7e": 6, "alpha__cfa1990d5153c8812982f034d788d7e": 6, "06877704223043679": 6, "422": 6, "427": 6, "45250420148204": 6, "lasso_algorithm_hash": 6, "5457f609662e44f04dcc9423066d2f58": 6, "alpha__5457f609662e44f04dcc9423066d2f58": 6, "7896547008552977": 6, "443": 6, "3387": 6, "245629616474": 6, "plsregression_algorithm_hash": 6, "9f2f76e479633c0bf18cf2912fed9eda": 6, "n_components__9f2f76e479633c0bf18cf2912fed9eda": 6, "476": 6, "734620250011": 6, "3661540064603184": 6, "1799882524170321": 6, "630": 6, "7": [6, 7, 9], "9650": 6, "026568221794": 6, "kneighborsregressor_algorithm_hash": 6, "1709d2c39117ae29f6c9debe7241287b": 6, "metric__1709d2c39117ae29f6c9debe7241287b": 6, "kneighborsmetr": [6, 9], "n_neighbors__1709d2c39117ae29f6c9debe7241287b": 6, "weights__1709d2c39117ae29f6c9debe7241287b": 6, "kneighborsweight": [6, 9], "uniform": [6, 9], "648": 6, "8": [6, 7, 9], "5437": 6, "151635569594": 6, "05083825348819038": 6, "764": 6, "2669": 6, "8534551928174": 6, "878": 6, "4341": 6, "586120152291": 6, "7921825998469865": 6, "003": 6, "11": [6, 7], "5514": 6, "404088878843": 6, "141": 6, "12": [6, 7], "5431": 6, "634989239215": 6, "159": 6, "13": [6, 7], "3530": 6, "5496618991288": 6, "176": 6, "14": [6, 7], "3497": 6, "6833185436312": 6, "194": 6, "15": [6, 7], "4382": 6, "16208862162": 6, "304": 6, "734620031822": 6, "002825619931800395": 6, "309885135051862e": 6, "320": 6, "17": [6, 7], "679": 6, "3109044887755": 6, "16827992999009767": 6, "388": 6, "18": [6, 7], "2550": 6, "114129318373": 6, "405": 6, "19": [6, 7], "4847": 6, "085792360169": 6, "735431606118867": 6, "423": 6, "268760278916": 6, "0014840820994557746": 6, "04671166881768783": 6, "533": 6, "4783": 6, "047015479679": 6, "550": 6, "22": [6, 7], "3905": 6, "0064899852296": 6, "616": 6, "23": [6, 7], "4030": 6, "4577379164707": 6, "659": 6, "24": [6, 7], "4681": 6, "602145939593": 6, "677": 6, "25": [6, 7], "4398": 6, "544034028325": 6, "6452011213193165": 6, "733": 6, "26": [6, 7], "4454": 6, "143979828407": 6, "738": 6, "27": [6, 7], "742": 6, "784": 6, "4397": 6, "330360587512": 6, "789": 6, "832": 6, "31": 6, "2602": 6, "7561184287083": 6, "851": 6, "5267": 6, "388279961089": 6, "2015560027548533": 6, "916": 6, "33": 6, "4863": 6, "581760751054": 6, "936": 6, "96473594016675": 6, "5528259214839937": 6, "980": 6, "35": 6, "5539": 6, "698232987626": 6, "6400992020612235": 6, "009": 6, "36": 6, "5180": 6, "5533034102455": 6, "8968910439566395": 6, "027": 6, "37": 6, "4989": 6, "929984864281": 6, "04458440839692226": 6, "492108041427977": 6, "033": 6, "38": [6, 7], "076": 6, "6528": 6, "215066535042": 6, "16700143339733753": 6, "143": 6, "40": [6, 7], "4168": 6, "7955967552625": 6, "306": 6, "41": 6, "6177": 6, "060727800014": 6, "426": 6, "3963": 6, "906954658341": 6, "446": 6, "43": 6, "6805334166565": 6, "013186009009851564": 6, "001008958590140135": 6, "504": 6, "9300": 6, "86840721566": 6, "524": 6, "45": [6, 7], "83": 6, "87968210939489": 6, "382674443425525e": 6, "531": 6, "46": 6, "538": 6, "544": 6, "48": 6, "683": 6, "49": 6, "3660": 6, "9359502555994": 6, "705": 6, "688": 6, "5244070398325": 6, "5267860995545326": 6, "729": 6, "51": 6, "690": 6, "6494438072099": 6, "8458809314722497": 6, "762": 6, "52": 6, "691": 6, "1197058420935": 6, "9167866889210807": 6, "788": 6, "53": 6, "3111710449325": 6, "945685900574672": 6, "810": 6, "9665592812149": 6, "8936837761725833": 6, "835": 6, "55": 6, "4682747008223": 6, "5183865279530455": 6, "858": 6, "56": 6, "687": 6, "5230947231512": 6, "3771771681361766": 6, "882": 6, "57": 6, "4503442069594": 6, "3663259819415374": 6, "906": 6, "58": 6, "686": 6, "9553733616618": 6, "2925652230875628": 6, "930": 6, "59": 6, "370": 6, "2038330506566": 6, "3962903248948568": 6, "955": 6, "60": 6, "377": 6, "25988028857313": 6, "45237513161879": 6, "979": 6, "8933285317637": 6, "4741161933311207": 6, "002": 6, "62": 6, "374": 6, "50897467366013": 6, "4290962207409417": 6, "026": 6, "63": [6, 7], "376": 6, "5588572940058": 6, "4464295711264585": 6, "051": 6, "64": 6, "237448916406": 6, "4687500034684213": 6, "077": 6, "65": 6, "375": 6, "7474776359051": 6, "4395650011783436": 6, "102": 6, "66": 6, "362": 6, "2834906299732": 6, "3326755354190032": 6, "126": 6, "67": 6, "357": 6, "3474880122588": 6, "2887212943233457": 6, "151": 6, "68": 6, "354": 6, "279045046449": 6, "2577677164664005": 6, "185": 6, "69": 6, "347": 6, "36894395697703": 6, "1672928587680225": 6, "222": 6, "70": 6, "345": 6, "17697390093394": 6, "1242367255308854": 6, "249": 6, "71": 6, "74610809299037": 6, "1728352983905301": 6, "274": 6, "72": 6, "23464281634324": 6, "1265380781508565": 6, "73": 6, "344": 6, "6848312222365": 6, "0829896313820404": 6, "327": 6, "74": [6, 7], "9111966504334": 6, "1070414661080543": 6, "365": 6, "75": 6, "70116419828565": 6, "0875643695329498": 6, "391": 6, "76": 6, "62647974688133": 6, "0716281620790837": 6, "416": 6, "77": 6, "6759429204596": 6, "0456289319914898": 6, "442": 6, "78": 6, "343": 6, "58131497761616": 6, "0010195360522613": 6, "469": 6, "79": 6, "342": 6, "7290581014813": 6, "9073210715005748": 6, "493": 6, "80": [6, 7], "67866114080107": 6, "9166305667100072": 6, "519": 6, "81": 6, "6440308445311": 6, "9248722692093634": 6, "547": 6, "82": 6, "02085648448934": 6, "8776928646870886": 6, "573": 6, "1662266300702": 6, "867592364677856": 6, "609": 6, "84": 6, "30158716569775": 6, "8599491178327108": 6, "635": 6, "85": [6, 8], "2803074848341": 6, "8396948389352923": 6, "662": 6, "86": 6, "28301101884045": 6, "8396651775801683": 6, "689": 6, "87": 6, "6781906268143": 6, "8356021935129933": 6, "714": 6, "88": 6, "0405418264898": 6, "7430046191126949": 6, "89": 6, "77203208258476": 6, "9015965341429055": 6, "782": 6, "90": 6, "363": 6, "1622720320929": 6, "6746575663752555": 6, "809": 6, "91": 6, "7403796626193": 6, "9057564666836629": 6, "849": 6, "92": 6, "63579667712696": 6, "9332275205203372": 6, "877": 6, "93": [6, 7], "6886425884964": 6, "9433063264508291": 6, "905": 6, "94": 6, "9341048659705": 6, "884739221967487": 6, "931": 6, "95": [6, 7], "63507445779743": 6, "9381000493689634": 6, "959": 6, "96": 6, "06021011302374": 6, "963138023068903": 6, "998": 6, "97": 6, "9990546212019": 6, "9601651093867907": 6, "98": 6, "3821": 6, "2267845437514": 6, "055": 6, "356": 6, "6786067133016": 6, "721603508336166": 6, "seaborn": [6, 7], "sn": [6, 7], "set_them": 6, "darkgrid": 6, "default_reg_scor": 6, "ax": [6, 7], "scatterplot": 6, "trials_datafram": 6, "xlabel": [6, 7], "ylabel": [6, 7], "ojbect": 6, "interest": [6, 7], "neg_mean_squared_error": [6, 9], "highlight": 6, "color": [6, 7], "cv_test": 6, "user_attrs_test_scor": 6, "lambda": [6, 12], "item": [6, 10], "idx": [6, 7], "v": 6, "hue": 6, "palett": 6, "set1": 6, "inspect": 6, "buildconfig_as_dict": 6, "serial": 6, "response_typ": [6, 7, 8], "deduplication_strategi": [6, 7, 8], "split_strategi": [6, 7, 8], "nosplit": [6, 12], "save_intermediate_fil": [6, 8], "log_transform": [6, 7, 8], "log_transform_bas": [6, 7, 8], "null": 6, "log_transform_neg": [6, 7, 8], "log_transform_unit_convers": [6, 7, 8], "probabilistic_threshold_represent": [6, 7, 8], "probabilistic_threshold_representation_threshold": [6, 7, 8], "probabilistic_threshold_representation_std": [6, 7, 8], "metadata": [6, 8, 9, 10, 11], "shuffl": [6, 9, 11, 12, 13], "best_trial": [6, 9, 11], "best_valu": [6, 9, 11], "tracking_rest_endpoint": [6, 9], "best_build": 6, "rb": 6, "predict_from_smil": [6, 8], "cc1": [6, 7], "43103985": 6, "177": 6, "99850936": 6, "now": [6, 7, 9], "panda": [6, 7], "pd": [6, 7], "df": [6, 12, 13], "read_csv": 6, "expect": [6, 7, 10], "matplotlib": [6, 7], "pyplot": [6, 7], "plt": [6, 7], "scatter": 6, "lim": 6, "max": [6, 7, 12], "diagon": 6, "r2_score": 6, "mean_squared_error": 6, "mean_absolute_error": 6, "y_true": [6, 8, 11], "y_pred": [6, 8, 11], "rmse": 6, "mae": 6, "absolut": 6, "8566354978126369": 6, "204909888075044": 6, "298453946973815": 6, "accept": [6, 7], "again": 6, "hopefulli": [6, 7], "littl": 6, "better": [6, 7, 8, 12], "send": 6, "strategi": [6, 8], "current": 6, "observ": [6, 7], "last": [6, 7, 12], "alreadi": [6, 7], "sort": [6, 7, 12, 13], "oldest": [6, 7, 12, 13], "newest": [6, 7, 12, 13], "end": [6, 7, 12, 13], "extern": 6, "tool": 6, "excel": 6, "unballanc": 6, "work": [6, 7], "come": [6, 7], "measur": [6, 7], "fact": 6, "disregard": 6, "stereochemistri": [6, 7, 8], "even": [6, 7], "sever": 6, "median": [6, 7, 12], "factor": [6, 7], "replic": [6, 7], "robust": [6, 7], "outlier": [6, 7], "acorss": 6, "trust": 6, "kept": 6, "splitter": [6, 7, 8, 10], "track_to_mlflow": [6, 9], "my_study_stratified_split": 6, "459": 6, "501": 6, "3057": 6, "0737441471415": 6, "723": 6, "3949": 6, "4997729531806": 6, "04335327191051897": 6, "2876523244079226e": 6, "743": 6, "2641": 6, "7637473751115": 6, "281": 6, "6547433605841": 6, "80890800406477": 6, "827": 6, "1814": 6, "6019641143478": 6, "830": 6, "1299": 6, "620534925781": 6, "7893604099368685": 6, "880": 6, "4973593091877": 6, "03671864361026323": 6, "00014643260043430825": 6, "898": 6, "2756": 6, "046839500092": 6, "915": 6, "282": 6, "4634701019795": 6, "3839369222964104": 6, "966": 6, "3455": 6, "5180070042607": 6, "983": 6, "2695": 6, "2514836330784": 6, "048": 6, "2572": 6, "460374011433": 6, "066": 6, "1689": 6, "5805291820304": 6, "1532631811134977": 6, "106": 6, "292": 6, "22585940088896": 6, "13291352086555208": 6, "170": 6, "3137": 6, "8321917955004": 6, "186": 6, "1605": 6, "5382531580788": 6, "28521421962693694": 6, "217": 6, "1773": 6, "5125457246183": 6, "10131141912172": 6, "234": 6, "2733": 6, "5772576431627": 6, "2661": 6, "2145086075775": 6, "254": 6, "319": 6, "385": 6, "1931": 6, "9555352447962": 6, "403": 6, "4997740833423": 6, "85865133788878": 6, "3473213833800429e": 6, "06": 6, "433": 6, "266": 6, "77789208348054": 6, "7666549949931907": 6, "496": 6, "2129": 6, "55317061882": 6, "515": 6, "4997529569555": 6, "00014127070069599025": 6, "240919869254693e": 6, "589": 6, "2906": 6, "3484169581293": 6, "658": 6, "3473": 6, "931670829174": 6, "3971": 6, "087168793673": 6, "14818118238408418": 6, "953513747430605": 6, "706": 6, "4997433637795": 6, "0001228765801311491": 6, "4591289226971906e": 6, "725": 6, "499719300989": 6, "00041409136806164345": 6, "821542662478444e": 6, "1333": 6, "1080184319123": 6, "6244376673476641": 6, "3948": 6, "999405683353": 6, "0012006474028372037": 6, "0035193990764782663": 6, "780": 6, "1248": 6, "8139648799436": 6, "0525472971081413": 6, "798": 6, "3916": 6, "913857912147": 6, "0005803372070091582": 6, "366143200836595": 6, "817": 6, "1680": 6, "3115194221573": 6, "6315712528909487": 6, "1245": 6, "7849372758426": 6, "325031130330673": 6, "855": 6, "2124": 6, "9660426577593": 6, "873": 6, "4997740139383": 6, "017776950266970536": 6, "910105415664246e": 6, "890": 6, "1351": 6, "9376331223525": 6, "9911488496798933": 6, "957": 6, "3286": 6, "345885718371": 6, "963": 6, "982": 6, "499768537649": 6, "009258297484819936": 6, "5176632615812382e": 6, "1703": 6, "710237258029": 6, "9478479848575685": 6, "032": 6, "229495999417457": 6, "0003981480629989713": 6, "052": 6, "428258980535": 6, "002172302935728222": 6, "005480078761284468": 6, "073": 6, "4997740653785": 6, "045484025655845216": 6, "497866775391571e": 6, "093": 6, "499732050299": 6, "023210503277436626": 6, "801011645114503e": 6, "112": 6, "1690": 6, "902862507046": 6, "22764084507571": 6, "linear_model": 6, "_coordinate_desc": 6, "678": 6, "convergencewarn": 6, "did": 6, "regularis": 6, "dualiti": 6, "gap": 6, "244e": 6, "02": 6, "toler": 6, "824e": 6, "cd_fast": 6, "enet_coordinate_desc": 6, "516e": 6, "820e": 6, "669e": 6, "770e": 6, "184": 6, "355": 6, "30043208462075": 6, "0162536050854966": 6, "148e": 6, "547e": 6, "258e": 6, "247": 6, "18584104924287": 6, "009281923522716007": 6, "469e": 6, "321": 6, "29910648955155": 6, "044675516154422834": 6, "054e": 6, "475e": 6, "207e": 6, "19318681541083": 6, "0039422500466863575": 6, "440": 6, "218": 6, "95937317940152": 6, "4811212161180066": 6, "475": 6, "30176287369363": 6, "5762244804442953": 6, "511": 6, "3805952122523": 6, "5610250131672468": 6, "546": 6, "29075615961696": 6, "5965069449860365": 6, "585": 6, "4699295292146": 6, "5529252738361741": 6, "611": 6, "30403743758362": 6, "591083812448875": 6, "649": 6, "29691912499243": 6, "579274146968425": 6, "674": 6, "29663665981653": 6, "5818879247726123": 6, "712": 6, "216": 6, "7163115473373": 6, "6285658707995572": 6, "749": 6, "215": 6, "66659620329202": 6, "6810691120560284": 6, "786": 6, "64678468403795": 6, "7487983002601213": 6, "823": 6, "219": 6, "08469115255278": 6, "8068222390735325": 6, "857": 6, "221": 6, "67049576857792": 6, "8493407132310065": 6, "894": 6, "6875210742613": 6, "7508314732901358": 6, "19882373585992": 6, "7685140566823006": 6, "968": 6, "51231241451993": 6, "8465024803262398": 6, "004": 6, "73145983614108": 6, "753488429838363": 6, "041": 6, "03558248626155": 6, "7638703869128992": 6, "078": 6, "11133921135888": 6, "7660487384582346": 6, "116": 6, "4601677546666": 6, "7969073835731864": 6, "155": 6, "11981969515475": 6, "7663003495535811": 6, "191": 6, "227": 6, "36711291551754": 6, "9623078145433335": 6, "226": 6, "21304370814948": 6, "7229769555215682": 6, "262": 6, "98815811142376": 6, "7105170980912668": 6, "224": 6, "41250562156347": 6, "34993288668380185": 6, "337": 6, "4134153897518": 6, "941382892540422": 6, "7394814717604": 6, "6602443806918321": 6, "413": 6, "7076312654289": 6, "6935139136439702": 6, "450": 6, "66506672306295": 6, "6787271614177919": 6, "489": 6, "5573047221147": 6, "4073714297040414": 6, "527": 6, "76836831150376": 6, "6569329476441761": 6, "566": 6, "88742274290686": 6, "705586415213896": 6, "606": 6, "93365211578404": 6, "6474556827629386": 6, "645": 6, "677987167027": 6, "687131792338989": 6, "682": 6, "8173049953933": 6, "6520782072904042": 6, "722": 6, "374660807297": 6, "4259162442286648": 6, "2726": 6, "0476769808097": 6, "787": 6, "6970943689421": 6, "6669588932884131": 6, "825": 6, "78916275639816": 6, "6547526034378687": 6, "852": 6, "255": 6, "9289281641908": 6, "4686418435830522": 6, "879": 6, "41516780662832": 6, "4720283573073992": 6, "919": 6, "08394889472513": 6, "1968941244750797": 6, "80459560588784": 6, "6532271661553414": 6, "997": 6, "223": 6, "9455981312185": 6, "8952103276371259": 6, "079": 6, "2119": 6, "4669766878847": 6, "120": 6, "241": 6, "1616615224319": 6, "2188693608302126": 6, "By": [6, 7], "roc_auc": [6, 9], "model_evalu": 6, "amongst": 6, "regression_scor": 6, "classification_scor": 6, "explained_vari": [6, 9], "max_error": [6, 9], "neg_mean_absolute_error": [6, 9], "neg_median_absolute_error": [6, 9], "average_precis": [6, 9], "balanced_accuraci": [6, 9], "f1": [6, 9], "f1_macro": [6, 9], "f1_micro": [6, 9], "f1_weight": [6, 9], "jaccard": [6, 9], "jaccard_macro": [6, 9], "jaccard_micro": [6, 9], "jaccard_weight": [6, 9], "neg_brier_scor": [6, 9], "precis": [6, 7, 9], "precision_macro": [6, 9], "precision_micro": [6, 9], "precision_weight": [6, 9], "recal": [6, 9], "recall_macro": [6, 9], "recall_micro": [6, 9], "recall_weight": [6, 9], "auc_pr_cal": [6, 8, 9], "bedroc": [6, 8, 9], "concordance_index": [6, 8, 9], "my_study_r2": 6, "059": 6, "060": 6, "01117186866515992": 6, "08689402230378156": 6, "340": 6, "12553701248394863": 6, "141096648805748": 6, "4893466963980463e": 6, "08": 6, "420": 6, "3039309544203818": 6, "437": 6, "20182749628697164": 6, "456": 6, "8187194367176578": 6, "477": 6, "4647239019719945": 6, "6574750183038587": 6, "506": 6, "8614818478547979": 6, "3974313630683448": 6, "572": 6, "12769795082909816": 6, "623": 6, "8639946428338224": 6, "2391884918766034": 6, "652": 6, "12553701248377633": 6, "00044396482429275296": 6, "3831436879125245e": 6, "12553700871203702": 6, "00028965395242758657": 6, "99928292425642e": 6, "699": 6, "2935582042429075": 6, "18476333152695587": 6, "731": 6, "8190707459213998": 6, "4060379177903557": 6, "796": 6, "12206148974315878": 6, "812": 6, "3105263811279067": 6, "344271094811757": 6, "3562469062424869": 6, "670604991178476": 6, "893": 6, "04595969590698312": 6, "923": 6, "8583939656024446": 6, "5158832554303112": 6, "940": 6, "3062574078515544": 6, "970": 6, "11657354998283716": 6, "0009327650919528738": 6, "062479210472502": 6, "974": 6, "992": 6, "8498478905829554": 6, "1366172066709432": 6, "072": 6, "12769795082909807": 6, "103": 6, "13519830637607919": 6, "92901911959232": 6, "999026012594694": 6, "121": 6, "8198078293055633": 6, "5888977841391714": 6, "140": 6, "8201573964824842": 6, "19435298754153707": 6, "045959695906983344": 6, "6285506249643193": 6, "35441495011256785": 6, "286": 6, "11934070343348317": 6, "305": 6, "4374125584543907": 6, "2457809516380005": 6, "335": 6, "3625576518621392": 6, "6459129458824919": 6, "36175556871883746": 6, "8179058888285398": 6, "359": [6, 7], "8202473217121523": 6, "0920052840435055": 6, "395": 6, "3672927879319306": 6, "8677032984759461": 6, "419": 6, "40076792599874356": 6, "2865764368847064": 6, "26560316846701765": 6, "554": 6, "4121525485708119": 6, "560": 6, "625": 6, "00461414372160085": 6, "646": 6, "27282533524183633": 6, "726": 6, "1022012740736498": 6, "746": 6, "30323404130582854": 6, "776": 6, "3044553805553568": 6, "6437201185807124": 6, "795": 6, "41502276709562": 6, "10978379088847677": 6, "815": 6, "36160209098547913": 6, "022707289534838138": 6, "2916101445983833": 6, "434e": 6, "977e": 6, "936e": 6, "782e": 6, "908": 6, "8609413020928532": 6, "04987590926279814": 6, "794e": 6, "830e": 6, "906e": 6, "578e": 6, "981": 6, "8610289662757457": 6, "019211413400468974": 6, "754e": 6, "507e": 6, "843e": 6, "8610070549049179": 6, "018492644772509947": 6, "840e": 6, "924e": 6, "513e": 6, "127": 6, "8569771623635769": 6, "008783442408928633": 6, "243e": 6, "014e": 6, "8624781673814641": 6, "05782221001517797": 6, "113e": 6, "935e": 6, "122e": 6, "273": 6, "8618589507037001": 6, "02487072255316275": 6, "346": 6, "864754359721037": 6, "2079910754941946": 6, "383": 6, "8622236413326235": 6, "333215560931422": 6, "425": 6, "861832165638517": 6, "3628098560209365": 6, "462": 6, "8620108533993581": 6, "34240779695521706": 6, "8638540565650902": 6, "26493714991266293": 6, "559": 6, "8629799500771645": 6, "30596394512914815": 6, "597": 6, "8621408609583922": 6, "33648829357762355": 6, "8638132124078156": 6, "2679814646317183": 6, "698": 6, "863983758876634": 6, "24062119162159595": 6, "748": 6, "8627356047945115": 6, "3141728910335158": 6, "8639203054085788": 6, "23391390640786494": 6, "8570103863991635": 6, "6124885145996103": 6, "8647961976727571": 6, "2059976546070975": 6, "953": 6, "8648312544921793": 6, "20266060662750784": 6, "016": 6, "8648431452862716": 6, "20027647978240445": 6, "8648491459660418": 6, "1968919999787333": 6, "8650873115156988": 6, "174598921162764": 6, "212": 6, "8650350577921149": 6, "16468002989641095": 6, "8649412283687147": 6, "1606717091615047": 6, "986e": 6, "361": 6, "8649537211609554": 6, "14694925097689848": 6, "436": 6, "8649734575435447": 6, "147612713300643": 6, "446e": 6, "512": 6, "8648761002838515": 6, "14440434705706803": 6, "398e": 6, "588": 6, "8639826593122782": 6, "1265357179513065": 6, "690e": 6, "663": 6, "864435565531768": 6, "1374245525868926": 6, "701": 6, "8590221951825531": 6, "49890830155012533": 6, "8649098880804443": 6, "1573428812070292": 6, "405e": 6, "864536410656637": 6, "13886104722511608": 6, "887": 6, "8597401050431873": 6, "47746341180045787": 6, "011": 6, "8537465461603838": 6, "050e": 6, "086": 6, "8642643827090003": 6, "13446778921611002": 6, "175e": 6, "162": 6, "8641621818665252": 6, "1286796719653316": 6, "237": 6, "864182755916388": 6, "13303218726548235": 6, "280": 6, "1255357440899417": 6, "021711452917433944": 6, "559714273835951e": 6, "8604596648091501": 6, "43644874418279245": 6, "463e": 6, "8635689909135862": 6, "10940922083495383": 6, "8648544336551733": 6, "1912756875742137": 6, "525": 6, "8648496595672595": 6, "19628449928540487": 6, "553": 6, "8452625121122099": 6, "4324661283995224": 6, "580": 6, "8378670635846416": 6, "839206620815206": 6, "082e": 6, "002e": 6, "656": 6, "8649365368153895": 6, "07270781179126021": 6, "744": 6, "8875676754699953": 6, "0006995169897945908": 6, "586e": 6, "618e": 6, "234e": 6, "8730555131061773": 6, "0018186269840273495": 6, "12553508835019533": 6, "04867556317570456": 6, "0011658455138452": 6, "177e": 6, "284e": 6, "016e": 6, "958": 6, "8586292788613132": 6, "005078762921098462": 6, "anyalgorithm": 6, "__args__": 6, "consider": [6, 7], "modif": [6, 12], "establish": 6, "rf": 6, "account": [6, 7, 8], "though": 6, "treat": [6, 7], "pdf": [6, 9], "denot": [6, 12, 13], "determinist": [6, 7], "quantiti": 6, "tradit": [6, 7], "discret": 6, "discretis": [6, 12, 14], "bioactiv": [6, 7], "integr": 6, "afford": [6, 7], "particularli": 6, "liklihood": 6, "membership": [6, 7], "iopscienc": 6, "iop": 6, "articl": [6, 7], "3847": 6, "1538": 6, "3881": 6, "aaf101": 6, "pxc50": [6, 7], "p24863": 6, "enabl": [6, 7], "alwai": [6, 7], "067": 6, "068": 6, "862": 6, "08101726438085996": 6, "prfclassifier_algorithm_hash": 6, "efe0ba9870529a6cde0dd3ad22447cbb": 6, "max_depth__efe0ba9870529a6cde0dd3ad22447cbb": 6, "n_estimators__efe0ba9870529a6cde0dd3ad22447cbb": 6, "max_features__efe0ba9870529a6cde0dd3ad22447cbb": 6, "prfclassifiermaxfeatur": [6, 9], "min_py_sum_leaf__efe0ba9870529a6cde0dd3ad22447cbb": 6, "use_py_gini__efe0ba9870529a6cde0dd3ad22447cbb": 6, "use_py_leafs__efe0ba9870529a6cde0dd3ad22447cbb": 6, "07097960243642848": 6, "730": 6, "09052799500705616": 6, "07040719823269156": 6, "263": 6, "06911267342763242": 6, "05136901123580041": 6, "865": 6, "06280695738717797": 6, "07816842443619718": 6, "06455534183210111": 6, "409": 6, "07792537939575431": 6, "06861406991549013": 6, "594": 6, "06427836969444865": 6, "035": 6, "0685253956054604": 6, "557": 6, "05052752675844046": 6, "best_built": 6, "demonstr": [6, 7], "purpos": [6, 7], "transduct": 6, "example_smil": 6, "get_set": [6, 7, 8], "b": [6, 7], "outsid": [6, 7, 8], "likelihood": 6, "problemat": 6, "except": [6, 8, 12], "valueerror": 6, "As": [6, 7], "raw": [6, 7, 8, 12], "03": 6, "945": 6, "989": 6, "w": [6, 8], "990": [6, 7], "fail": 6, "traceback": 6, "_optim": 6, "196": 6, "_run_trial": 6, "value_or_valu": 6, "func": 6, "pycharmproject": 6, "public_qptuna": 6, "128": 6, "__call__": 6, "_validate_algo": 6, "rais": [6, 8, 12], "994": 6, "summaris": 6, "handl": 6, "via": [6, 7, 12], "convent": [6, 7], "classic": 6, "relev": 6, "cutoff": [6, 7, 12], "ouput": 6, "reflect": [6, 7], "arguabl": 6, "mpo": 6, "pub": 6, "ac": 6, "full": [6, 9], "jcim": 6, "9b00237": 6, "slide": 6, "googl": 6, "14pbd9ltxzfpsjhyxykflxnk8q80lhvnjimg8a3wqcrm": 6, "edit": 6, "calcault": 6, "directli": [6, 7], "later": 6, "smilesbaseddescriptor": 6, "architectur": [6, 7], "quickli": 6, "046": 6, "root": [6, 9, 10], "enqueu": [6, 8], "manual": 6, "activation__668a7428ff5cdb271b01c0925e8fea45": 6, "relu": [6, 9], "aggregation__668a7428ff5cdb271b01c0925e8fea45": 6, "aggregation_norm__668a7428ff5cdb271b01c0925e8fea45": 6, "batch_size__668a7428ff5cdb271b01c0925e8fea45": 6, "depth__668a7428ff5cdb271b01c0925e8fea45": 6, "dropout__668a7428ff5cdb271b01c0925e8fea45": 6, "features_generator__668a7428ff5cdb271b01c0925e8fea45": 6, "ffn_hidden_size__668a7428ff5cdb271b01c0925e8fea45": 6, "ffn_num_layers__668a7428ff5cdb271b01c0925e8fea45": 6, "final_lr_ratio_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "hidden_size__668a7428ff5cdb271b01c0925e8fea45": 6, "init_lr_ratio_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "max_lr_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "warmup_epochs_ratio__668a7428ff5cdb271b01c0925e8fea45": 6, "chempropregressor_algorithm_hash": 6, "668a7428ff5cdb271b01c0925e8fea45": 6, "317": 6, "6833": 6, "034983241957": 6, "chempropactiv": [6, 9], "chempropaggreg": [6, 9], "ensemble_size__668a7428ff5cdb271b01c0925e8fea45": 6, "epochs__668a7428ff5cdb271b01c0925e8fea45": 6, "chempropfeatures_gener": [6, 9], "277": 6, "8093": 6, "803069372614": 6, "180": 6, "2100": 6, "safe": 6, "nan": [6, 8, 12, 13], "prompt": 6, "due": [6, 7, 8], "deactiv": 6, "own": 6, "still": 6, "commun": 6, "facilit": [6, 7, 9], "preset": 6, "enqu": 6, "bayesian": 6, "suggest": 6, "split_chemprop": [6, 9], "flag": [6, 7, 12, 13], "n_chemprop_tri": [6, 9], "desir": 6, "undirect": 6, "shown": [6, 7], "aspect": [6, 8], "princip": [6, 7], "expand": [6, 8], "differnt": 6, "rememb": 6, "unless": 6, "alter": [6, 9], "characterist": [6, 7], "too": [6, 9], "limit": [6, 7, 9], "vice": [6, 9], "versa": [6, 9], "extens": [6, 9], "trail": [6, 9], "applic": [6, 7, 9], "chanc": 6, "help": 6, "caruana": 6, "particular": 6, "achiev": [6, 7], "st": 6, "figur": [6, 7], "signal": 6, "aka": 6, "could": [6, 7], "share": [6, 12, 13], "until": [6, 9], "longer": 6, "mt": 6, "onc": [6, 7, 12], "knowledg": 6, "order": [6, 7, 9, 12], "earlier": [6, 7], "accompi": 6, "train_side_info": 6, "clog": 6, "surfac": 6, "area": [6, 7], "psa": 6, "293": 6, "265": 6, "22475": 6, "8088": 6, "883": 6, "271": 6, "32297": 6, "6237": 6, "287": 6, "33334": 6, "2804": 6, "314": 6, "26075": 6, "2533": 6, "498": 6, "278": 6, "18917": 6, "5102": 6, "694": 6, "246": 6, "12575": 6, "7244": 6, "14831": 6, "4338": 6, "895": 6, "302": 6, "26838": 6, "2041": 6, "057": 6, "22298": 6, "match": 6, "train_side_info_cl": 6, "clogp_gt2": 6, "clogs_gt": 6, "acceptors_gt5": 6, "donors_gt0": 6, "area_gt250": 6, "psa_lt0": 6, "aux": [6, 8, 10], "820": 6, "822": 6, "747": 6, "5817": 6, "944009132488": 6, "chemprophyperoptregressor_algorithm_hash": 6, "db9e60f9b8f0a43eff4b41917b6293d9": 6, "ensemble_size__db9e60f9b8f0a43eff4b41917b6293d9": 6, "epochs__db9e60f9b8f0a43eff4b41917b6293d9": 6, "features_generator__db9e60f9b8f0a43eff4b41917b6293d9": 6, "num_iters__db9e60f9b8f0a43eff4b41917b6293d9": 6, "search_parameter_level__db9e60f9b8f0a43eff4b41917b6293d9": 6, "chempropsearch_parameter_level": [6, 9], "aux_weight_pc__db9e60f9b8f0a43eff4b41917b6293d9": 6, "757": 6, "445": 6, "5796": 6, "34421890567": 6, "258": 6, "5795": 6, "086276167766": 6, "888": 6, "5820": 6, "227555999914": 6, "5852": 6, "159469428255": 6, "inlfuenc": 6, "henc": [6, 7], "percent": 6, "product": 6, "user_attrs_trial_ran": 6, "drop": [6, 7, 8], "erron": 6, "__": 6, "params_aux_weight_pc": 6, "conclud": [6, 7], "produc": 6, "overrid": [6, 9], "situat": [6, 7], "along": 6, "potenti": [6, 7], "compris": [6, 7], "incompat": 6, "whilst": [6, 7], "desciptor": 6, "grei": [6, 7], "tial": 6, "what": 6, "design": 6, "unpromis": 6, "why": [6, 7], "poor": 6, "sampler": 6, "incompta": 6, "repeatedli": 6, "hyerparamet": 6, "ident": 6, "005": 6, "071": 6, "9525489095524835": 6, "aux_weight_pc__cfa1990d5153c8812982f034d788d7e": 6, "4824": 6, "686269039228": 6, "7731425652872588": 6, "257": 6, "260": 6, "4409": 6, "946844928445": 6, "791002332112292": 6, "353": 6, "505": 6, "329624779366306": 6, "00015024763718638216": 6, "510": 6, "513": 6, "520": 6, "727": 6, "4396": 6, "722635068717": 6, "736": 6, "977": 6, "204": 6, "consult": 6, "incompitbl": 6, "algo": [6, 9], "occur": 6, "assign": [6, 7], "doe": [6, 7, 8, 9, 12], "params_algorithm_nam": 6, "move_legend": 6, "upper": [6, 7], "bbox_to_anchor": [6, 7], "overview": 6, "never": 6, "successfulli": 6, "absenc": 6, "8th": 6, "miss": [6, 8, 12, 13], "associ": [6, 7], "asid": 6, "mitig": 6, "overal": [6, 7], "serv": [6, 11], "argument": [6, 8], "tl": 6, "wider": 6, "491": 6, "492": 6, "activation__e0d3a442222d4b38f3aa1434851320db": 6, "aggregation__e0d3a442222d4b38f3aa1434851320db": 6, "aggregation_norm__e0d3a442222d4b38f3aa1434851320db": 6, "batch_size__e0d3a442222d4b38f3aa1434851320db": 6, "depth__e0d3a442222d4b38f3aa1434851320db": 6, "dropout__e0d3a442222d4b38f3aa1434851320db": 6, "features_generator__e0d3a442222d4b38f3aa1434851320db": 6, "ffn_hidden_size__e0d3a442222d4b38f3aa1434851320db": 6, "ffn_num_layers__e0d3a442222d4b38f3aa1434851320db": 6, "final_lr_ratio_exp__e0d3a442222d4b38f3aa1434851320db": 6, "hidden_size__e0d3a442222d4b38f3aa1434851320db": 6, "init_lr_ratio_exp__e0d3a442222d4b38f3aa1434851320db": 6, "max_lr_exp__e0d3a442222d4b38f3aa1434851320db": 6, "warmup_epochs_ratio__e0d3a442222d4b38f3aa1434851320db": 6, "e0d3a442222d4b38f3aa1434851320db": 6, "4937": 6, "540075659691": 6, "ensemble_size__e0d3a442222d4b38f3aa1434851320db": 6, "epochs__e0d3a442222d4b38f3aa1434851320db": 6, "retrain": 6, "680": 6, "724": 6, "175": 6, "5114": 6, "7131239123555": 6, "chempropregressorpretrained_algorithm_hash": 6, "dfc518a76317f23d95e5aa5a3eac77f0": 6, "frzn__dfc518a76317f23d95e5aa5a3eac77f0": 6, "chempropfrzn": [6, 9], "epochs__dfc518a76317f23d95e5aa5a3eac77f0": 6, "cover": 6, "global": 6, "job": [6, 7], "fair": 6, "tl_studi": 6, "loc": [6, 7], "params_epoch": 6, "fillna": 6, "astyp": [6, 7], "agg": 6, "join": [6, 7], "params_chempropregressor_algorithm_hash": 6, "isna": 6, "284": 6, "189": 6, "5891": 6, "7552821093905": 6, "105": 6, "139": 6, "5846": 6, "868596513772": 6, "1600": 6, "900": 6, "5890": 6, "94653501547": 6, "77dfc8230317e08504ed5e643243fbc2": 6, "frzn__77dfc8230317e08504ed5e643243fbc2": 6, "epochs__77dfc8230317e08504ed5e643243fbc2": 6, "070": 6, "881210303758": 6, "right": [6, 7], "ncol": 6, "world": [6, 7, 12, 13], "penultim": [6, 9], "chemprop_model": 6, "heatmap": 6, "predictor": [6, 8], "chemprop_fingerprint": 6, "fingerprint_typ": 6, "mpn": 6, "cbar_kw": 6, "semi": 6, "supervis": 6, "altern": 6, "last_ffn": 6, "howeev": 6, "respect": [6, 7], "kind": [6, 7, 12], "confid": 6, "calibratedclassifiercv": 6, "understand": 6, "predict_proba": [6, 8], "among": 6, "gave": 6, "close": [6, 7], "actual": [6, 7], "topic": 6, "sigmoid": [6, 9], "review": 6, "those": [6, 7, 8], "calibration_curv": 6, "collect": 6, "defaultdict": 6, "precision_scor": 6, "recall_scor": 6, "f1_score": 6, "brier_score_loss": 6, "log_loss": 6, "roc_auc_scor": 6, "n_job": [6, 9, 11], "calibrated_rf": 6, "calibrated_model": 6, "080": 6, "948": 6, "8353535353535354": 6, "calibratedclassifiercvwithva_algorithm_hash": 6, "e788dfbfc5075967acb5ddf9d971ea20": 6, "n_folds__e788dfbfc5075967acb5ddf9d971ea20": 6, "max_depth__e788dfbfc5075967acb5ddf9d971ea20": 6, "n_estimators__e788dfbfc5075967acb5ddf9d971ea20": 6, "max_features__e788dfbfc5075967acb5ddf9d971ea20": 6, "uncalibr": 6, "uncalibrated_rf": 6, "uncalibrated_model": 6, "457": 6, "766": 6, "8185858585858585": 6, "randomforestclassifier_algorithm_hash": 6, "167e1e88dd2a80133e317c78f009bdc9": 6, "max_depth__167e1e88dd2a80133e317c78f009bdc9": 6, "n_estimators__167e1e88dd2a80133e317c78f009bdc9": 6, "max_features__167e1e88dd2a80133e317c78f009bdc9": 6, "conserv": 6, "1000": [6, 7], "500": 6, "random_st": [6, 12, 13], "123": 6, "calibrated_predict": 6, "uncalibrated_predict": 6, "cal_df": 6, "datafram": [6, 7, 8, 11, 12], "boxplot": 6, "melt": 6, "set_ylabel": [6, 7], "behaviour": [6, 7], "curv": [6, 7], "reliabl": 6, "diagram": 6, "against": 6, "figsiz": [6, 7], "ax1": 6, "subplot2grid": 6, "rowspan": 6, "ax2": 6, "perfectli": [6, 7], "pred": 6, "fraction_of_posit": 6, "mean_predicted_valu": 6, "n_bin": 6, "brier": 6, "2f": 6, "hist": 6, "histtyp": 6, "lw": 6, "set_ylim": 6, "legend": [6, 7], "set_titl": 6, "set_xlabel": [6, 7], "center": [6, 7], "tight_layout": [6, 7], "compos": 6, "refin": 6, "notic": 6, "significantli": 6, "cell": 6, "accur": 6, "alloc": 6, "y_prob": 6, "ye": 6, "score_nam": 6, "__name__": 6, "capit": 6, "score_df": 6, "set_index": 6, "decim": 6, "roc": 6, "auc": [6, 8], "184705": 6, "547129": 6, "830565": 6, "744048": 6, "784929": 6, "716536": 6, "175297": 6, "529474": 6, "811209": 6, "818452": 6, "814815": 6, "714104": 6, "va": 6, "multipoint": 6, "0c00476": 6, "margin": [6, 7], "bounari": 6, "556": 6, "461": 6, "8213131313131313": 6, "79765fbec1586f3c917ff30de274fdb4": 6, "n_folds__79765fbec1586f3c917ff30de274fdb4": 6, "max_depth__79765fbec1586f3c917ff30de274fdb4": 6, "n_estimators__79765fbec1586f3c917ff30de274fdb4": 6, "max_features__79765fbec1586f3c917ff30de274fdb4": 6, "uncert": [6, 8], "chem": [6, 7, 8], "allchem": 6, "pandastool": [6, 7], "rdconfig": 6, "datastruct": 6, "train_df": 6, "addmoleculecolumntofram": 6, "includefingerprint": 6, "getmorganfingerprint": 6, "nn": 6, "bulktanimotosimilar": 6, "va_pr": 6, "va_uncert": 6, "dtm": 6, "trelli": 6, "fig": [6, 7], "subplot": [6, 7], "sharei": 6, "regplot": 6, "referenc": 6, "boundari": [6, 7, 12, 14], "neither": 6, "nor": 6, "dissimilar": 6, "cp_pred_ensembl": 6, "cp_uncert_ensembl": 6, "activation__fd833c2dde0b7147e6516ea5eebb2657": 6, "aggregation__fd833c2dde0b7147e6516ea5eebb2657": 6, "aggregation_norm__fd833c2dde0b7147e6516ea5eebb2657": 6, "batch_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "depth__fd833c2dde0b7147e6516ea5eebb2657": 6, "dropout__fd833c2dde0b7147e6516ea5eebb2657": 6, "features_generator__fd833c2dde0b7147e6516ea5eebb2657": 6, "ffn_hidden_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "ffn_num_layers__fd833c2dde0b7147e6516ea5eebb2657": 6, "final_lr_ratio_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "hidden_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "init_lr_ratio_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "max_lr_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "warmup_epochs_ratio__fd833c2dde0b7147e6516ea5eebb2657": 6, "chempropclassifier_algorithm_hash": 6, "fd833c2dde0b7147e6516ea5eebb2657": 6, "943": 6, "65625": 6, "ensemble_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "epochs__fd833c2dde0b7147e6516ea5eebb2657": 6, "midpoint": 6, "mont": 6, "carlo": 6, "virtual": [6, 8], "activation__c73885c5d5a4182168b8b002d321965a": 6, "aggregation__c73885c5d5a4182168b8b002d321965a": 6, "aggregation_norm__c73885c5d5a4182168b8b002d321965a": 6, "batch_size__c73885c5d5a4182168b8b002d321965a": 6, "depth__c73885c5d5a4182168b8b002d321965a": 6, "dropout__c73885c5d5a4182168b8b002d321965a": 6, "features_generator__c73885c5d5a4182168b8b002d321965a": 6, "ffn_hidden_size__c73885c5d5a4182168b8b002d321965a": 6, "ffn_num_layers__c73885c5d5a4182168b8b002d321965a": 6, "final_lr_ratio_exp__c73885c5d5a4182168b8b002d321965a": 6, "hidden_size__c73885c5d5a4182168b8b002d321965a": 6, "init_lr_ratio_exp__c73885c5d5a4182168b8b002d321965a": 6, "max_lr_exp__c73885c5d5a4182168b8b002d321965a": 6, "warmup_epochs_ratio__c73885c5d5a4182168b8b002d321965a": 6, "c73885c5d5a4182168b8b002d321965a": 6, "737": 6, "46875": 6, "ensemble_size__c73885c5d5a4182168b8b002d321965a": 6, "epochs__c73885c5d5a4182168b8b002d321965a": 6, "cp_pred_dropout": 6, "cp_uncert_dropout": 6, "previou": 6, "proabil": 6, "va_predict": 6, "correl": [6, 7], "drouput": 6, "uncertatinti": 6, "cp_uncert_delta": 6, "categor": [6, 12], "unit": [6, 7], "parsabl": 6, "date": 6, "cast": 6, "appropri": 6, "befor": [6, 7, 12], "choic": [6, 12], "526": 6, "578": 6, "864": 6, "4305": 6, "8949093393": 6, "mapie_algorithm_hash": 6, "976d211e4ac64e5568d369bcddd3aeb1": 6, "mapie_alpha__976d211e4ac64e5568d369bcddd3aeb1": 6, "max_depth__976d211e4ac64e5568d369bcddd3aeb1": 6, "n_estimators__976d211e4ac64e5568d369bcddd3aeb1": 6, "max_features__976d211e4ac64e5568d369bcddd3aeb1": 6, "analysi": [6, 7, 8], "perfom": 6, "post": 6, "mapie_pr": 6, "mapie_unc": 6, "bar": 6, "visualis": 6, "errorbar": 6, "yerr": 6, "ab": 6, "fmt": 6, "black": [6, 7], "ecolor": 6, "grai": 6, "elinewidth": 6, "capsiz": 6, "move": [6, 10], "analys": [6, 7], "width": [6, 7], "alpha_impact": 6, "ma": 6, "unc_df": 6, "unc": 6, "reset_index": [6, 7], "concat": 6, "lineplot": 6, "err_styl": 6, "se": 6, "incorpor": 6, "tradition": 6, "unsupport": 6, "kernelexplain": [6, 8], "shaplei": 6, "explan": 6, "slundberg": 6, "game": 6, "credit": 6, "theori": 6, "publish": 6, "comopsit": 6, "778": 6, "831": 6, "joblib": [6, 8], "577": 6, "joblibcollisionwarn": 6, "collis": 6, "_cached_cal": 6, "shelv": 6, "_ridg": 6, "243": 6, "userwarn": [6, 7], "matrix": 6, "dual": 6, "439": 6, "3385354804881733": 6, "7165411263860415": 6, "dga": 6, "dgp": 6, "dgtot": 6, "sa": 6, "sdc": 6, "sdx": 6, "numhacceptor": 6, "numhdonor": 6, "maxabsestateindex": 6, "maxestateindex": 6, "minabsestateindex": 6, "minestateindex": 6, "qed": 6, "sp": 6, "heavyatommolwt": 6, "exactmolwt": 6, "numvalenceelectron": 6, "numradicalelectron": 6, "maxpartialcharg": 6, "minpartialcharg": 6, "maxabspartialcharg": 6, "minabspartialcharg": 6, "fpdensitymorgan1": 6, "fpdensitymorgan2": 6, "fpdensitymorgan3": 6, "bcut2d_mwhi": 6, "bcut2d_mwlow": 6, "bcut2d_chghi": 6, "bcut2d_chglo": 6, "bcut2d_logphi": 6, "bcut2d_logplow": 6, "bcut2d_mrhi": 6, "bcut2d_mrlow": 6, "avgipc": 6, "balabanj": 6, "bertzct": 6, "chi0": 6, "chi0n": 6, "chi0v": 6, "chi1": 6, "chi1n": 6, "chi1v": 6, "chi2n": 6, "chi2v": 6, "chi3n": 6, "chi3v": 6, "chi4n": 6, "chi4v": 6, "hallkieralpha": 6, "ipc": 6, "kappa1": 6, "kappa2": 6, "kappa3": 6, "labuteasa": 6, "peoe_vsa1": 6, "peoe_vsa10": 6, "peoe_vsa11": 6, "peoe_vsa12": 6, "peoe_vsa13": 6, "peoe_vsa14": 6, "peoe_vsa2": 6, "peoe_vsa3": 6, "peoe_vsa4": 6, "peoe_vsa5": 6, "peoe_vsa6": 6, "peoe_vsa7": 6, "peoe_vsa8": 6, "peoe_vsa9": 6, "smr_vsa1": 6, "smr_vsa10": 6, "smr_vsa2": 6, "smr_vsa3": 6, "smr_vsa4": 6, "smr_vsa5": 6, "smr_vsa6": 6, "smr_vsa7": 6, "smr_vsa8": 6, "smr_vsa9": 6, "slogp_vsa1": 6, "slogp_vsa10": 6, "slogp_vsa11": 6, "slogp_vsa12": 6, "slogp_vsa2": 6, "slogp_vsa3": 6, "slogp_vsa4": 6, "slogp_vsa5": 6, "slogp_vsa6": 6, "slogp_vsa7": 6, "slogp_vsa8": 6, "slogp_vsa9": 6, "estate_vsa1": 6, "estate_vsa10": 6, "estate_vsa11": 6, "estate_vsa2": 6, "estate_vsa3": 6, "estate_vsa4": 6, "estate_vsa5": 6, "estate_vsa6": 6, "estate_vsa7": 6, "estate_vsa8": 6, "estate_vsa9": 6, "vsa_estate1": 6, "vsa_estate10": 6, "vsa_estate2": 6, "vsa_estate3": 6, "vsa_estate4": 6, "vsa_estate5": 6, "vsa_estate6": 6, "vsa_estate7": 6, "vsa_estate8": 6, "vsa_estate9": 6, "fractioncsp3": 6, "heavyatomcount": 6, "nhohcount": 6, "nocount": 6, "numaliphaticcarbocycl": 6, "numaliphaticheterocycl": 6, "numaliphaticr": 6, "numaromaticcarbocycl": 6, "numaromaticheterocycl": 6, "numaromaticr": 6, "numheteroatom": 6, "numrotatablebond": 6, "numsaturatedcarbocycl": 6, "numsaturatedheterocycl": 6, "numsaturatedr": 6, "ringcount": 6, "mollogp": 6, "molmr": 6, "fr_al_coo": 6, "fr_al_oh": 6, "fr_al_oh_notert": 6, "fr_arn": 6, "fr_ar_coo": 6, "fr_ar_n": 6, "fr_ar_nh": 6, "fr_ar_oh": 6, "fr_coo": 6, "fr_coo2": 6, "fr_c_o": 6, "fr_c_o_nocoo": 6, "fr_c_": 6, "fr_hoccn": 6, "fr_imin": 6, "fr_nh0": 6, "fr_nh1": 6, "fr_nh2": 6, "fr_n_o": 6, "fr_ndealkylation1": 6, "fr_ndealkylation2": 6, "fr_nhpyrrol": 6, "fr_sh": 6, "fr_aldehyd": 6, "fr_alkyl_carbam": 6, "fr_alkyl_halid": 6, "fr_allylic_oxid": 6, "fr_amid": 6, "fr_amidin": 6, "fr_anilin": 6, "fr_aryl_methyl": 6, "fr_azid": 6, "fr_azo": 6, "fr_barbitur": 6, "fr_benzen": 6, "fr_benzodiazepin": 6, "fr_bicycl": 6, "fr_diazo": 6, "fr_dihydropyridin": 6, "fr_epoxid": 6, "fr_ester": 6, "fr_ether": 6, "fr_furan": 6, "fr_guanido": 6, "fr_halogen": 6, "fr_hdrzine": 6, "fr_hdrzone": 6, "fr_imidazol": 6, "fr_imid": 6, "fr_isocyan": 6, "fr_isothiocyan": 6, "fr_keton": 6, "fr_ketone_topliss": 6, "fr_lactam": 6, "fr_lacton": 6, "fr_methoxi": 6, "fr_morpholin": 6, "fr_nitril": 6, "fr_nitro": 6, "fr_nitro_arom": 6, "fr_nitro_arom_nonortho": 6, "fr_nitroso": 6, "fr_oxazol": 6, "fr_oxim": 6, "fr_para_hydroxyl": 6, "fr_phenol": 6, "fr_phenol_noorthohbond": 6, "fr_phos_acid": 6, "fr_phos_est": 6, "fr_piperdin": 6, "fr_piperzin": 6, "fr_priamid": 6, "fr_prisulfonamd": 6, "fr_pyridin": 6, "fr_quatn": 6, "fr_sulfid": 6, "fr_sulfonamd": 6, "fr_sulfon": 6, "fr_term_acetylen": 6, "fr_tetrazol": 6, "fr_thiazol": 6, "fr_thiocyan": 6, "fr_thiophen": 6, "fr_unbrch_alkan": 6, "fr_urea": 6, "shap_valu": 6, "2227": 6, "042016e": 6, "2229": 6, "025192e": 6, "2228": 6, "802156e": 6, "2267": 6, "387309e": 6, "00": 6, "2230": 6, "106656e": 6, "1784": 6, "610784e": 6, "1785": 6, "583": 6, "584": 6, "ns": 6, "995": 6, "996": 6, "845": 6, "846": 6, "1375": 6, "1376": 6, "s1": 6, "n1c": 6, "1570": 6, "contrinubt": 6, "datset": 6, "unscaledphyschemjazzi": 6, "rank": [6, 8], "usag": 6, "829": 6, "t": [6, 7, 8, 9], "kekul": 6, "unkekul": 6, "rational": 6, "rationale_scor": 6, "386": 6, "097": 6, "ch3": 6, "ch": 6, "389": [6, 7], "485": 6, "c1c": 6, "c1n": 6, "ch2": 6, "nh2": 6, "565": 6, "nn1cc1c": 6, "384": 6, "720": 6, "c1cccc": 6, "110": 6, "871": 6, "854": 6, "contian": 6, "second": 6, "dummi": 6, "third": 6, "smallest": 6, "made": [6, 7], "fourth": 6, "irregularli": 6, "xc50": [6, 7], "log10": [6, 7, 12, 14], "6th": 6, "convers": [6, 7, 12, 14], "logbas": [6, 7, 12, 14], "logneg": [6, 7, 12, 14], "negat": [6, 7, 12, 14], "transformed_studi": 6, "transform_exampl": 6, "022": 6, "5959493772536109": 6, "441": 6, "6571993250300608": 6, "486": 6, "1511102853256885": 6, "541": 6, "2487063317112765": 6, "558": 6, "6714912461080983": 6, "692": 6, "2725944467796781": 6, "821": 6, "194926264155893": 6, "839": 6, "7520919188596032": 6, "987": 6, "7803723847416691": 6, "6397753979196248": 6, "019": 6, "151110299986041": 6, "036": 6, "151110111437006": 6, "054": 6, "5410418750776741": 6, "069": 6, "7183231137124538": 6, "2721824844856162": 6, "1900929470222508": 6, "169": 6, "5585323973564646": 6, "3169218304262786": 6, "259": 6, "7974925066137679": 6, "218395226466336": 6, "296": 6, "1474226942497083": 6, "318": 6, "0239005731675412": 6, "7803723847416694": 6, "404": 6, "178901060853144": 6, "27137790098830755": 6, "2710284516876423": 6, "604": 6, "622": 6, "6273152492418945": 6, "711": 6, "1907041717628215": 6, "3209075619139279": 6, "755": 6, "775": 6, "2709423025014604": 6, "794": 6, "3133943310851415": 6, "799": 6, "818": 6, "257769959239938": 6, "886": 6, "40359637945134735": 6, "962": 6, "4127882135896648": 6, "045": 6, "9246005133276612": 6, "8908739215746116": 6, "136": 6, "107536316777608": 6, "156": 6, "054360360588395": 6, "195": 6, "5428179904345867": 6, "214": 6, "5696273642213351": 6, "239": 6, "27099769667470536": 6, "1580741708125475": 6, "2709564785634315": 6, "10900413894771653": 6, "288": 6, "2709799905898163": 6, "13705914456987853": 6, "27097230608092054": 6, "12790870116376127": 6, "2709499903064464": 6, "10123180962907431": 6, "360": 6, "2710895886052581": 6, "26565663774320425": 6, "2708711012023424": 6, "005637048678674678": 6, "406": 6, "27092322402109364": 6, "06902647427781451": 6, "430": 6, "2712140349882": 6, "4076704953178294": 6, "453": 6, "27090080367174": 6, "04187106800188596": 6, "27086925247190047": 6, "003371853599610078": 6, "2708933298483799": 6, "032781796328385376": 6, "27087205624489635": 6, "006806773659187283": 6, "548": 6, "2708869511176179": 6, "025009489814943348": 6, "575": 6, "2711465077924297": 6, "3311125627707556": 6, "601": 6, "2708756855936628": 6, "011249102380159387": 6, "626": 6, "27087301924224993": 6, "007985924302396141": 6, "651": 6, "2708685399954944": 6, "00249856291483601": 6, "676": 6, "27121879554836553": 6, "4130244908975993": 6, "2708693196600531": 6, "0034541978803366022": 6, "27110195265802334": 6, "27994943662091765": 6, "751": 6, "2708682582859318": 6, "0021532199144365088": 6, "777": 6, "27087024523986086": 6, "0045884092728113585": 6, "802": 6, "27087351807632193": 6, "008596600952859433": 6, "828": 6, "2710818633795896": 6, "2567049271070902": 6, "853": 6, "27103241786565463": 6, "1990111983307052": 6, "2710350879598171": 6, "20214459724424078": 6, "903": 6, "2708688328221868": 6, "00285750520671645": 6, "926": 6, "27100832234449684": 6, "17064008990759916": 6, "951": 6, "27268613236193845": 6, "8725420109733135": 6, "001": 6, "27119617446689237": 6, "387533542012365": 6, "042": 6, "2708691110831552": 6, "0031985656730512953": 6, "083": 6, "27086852174155146": 6, "002476186542950981": 6, "135": 6, "27135383618835024": 6, "5626643670396761": 6, "209": 6, "2709819654433871": 6, "1394077979875128": 6, "2718548944510965": 6, "0858347526799794": 6, "334": 6, "1508084699212935": 6, "03329943145150872": 6, "00025672309762227527": 6, "382": 6, "27249853374634975": 6, "702026434077893": 6, "27095660957755363": 6, "10916094511173127": 6, "27102160995407715": 6, "18630665884100353": 6, "27095708822582026": 6, "10973377642487026": 6, "27088222008661084": 6, "019235980282946118": 6, "610": 6, "2708703086029017": 6, "004666043957133775": 6, "639": 6, "27095279044622245": 6, "1045877457096882": 6, "668": 6, "2709408288690431": 6, "09023455456986404": 6, "9289218260898663": 6, "8200088368788958": 6, "732": 6, "27086675101898655": 6, "00030502148265565063": 6, "2710491243757999": 6, "21858260742423916": 6, "1491615840508995": 6, "024725853754515203": 6, "2709462479577586": 6, "0967427718847167": 6, "default_studi": 6, "315": 6, "410": 6, "3501": 6, "942111261296": 6, "5451": 6, "207265576796": 6, "1049201007814": 6, "552": 6, "9964": 6, "541364058234": 6, "569": 6, "3543": 6, "953608539901": 6, "6837": 6, "057544630979": 6, "607": 6, "2507": 6, "1794330606067": 6, "634": 6, "21534": 6, "719219668405": 6, "2899": 6, "736555614694": 6, "294e": 6, "760e": 6, "21674": 6, "445000284228": 6, "1049203123567": 6, "765": 6, "1049192609138": 6, "781": 6, "3630": 6, "72768093756": 6, "3431": 6, "942816967268": 6, "816": 6, "6908": 6, "462045154488": 6, "5964": 6, "65935954044": 6, "21070": 6, "107195348774": 6, "917": 6, "4977": 6, "068508997133": 6, "972": 6, "8873": 6, "669262669626": 6, "21387": 6, "63697424318": 6, "017": 6, "9958": 6, "573006910125": 6, "5182695600183": 6, "039": 6, "20684": 6, "56412138056": 6, "131": 6, "150": 6, "3435882510586": 6, "168": 6, "7068": 6, "705383113378": 6, "7150": 6, "482090052133": 6, "203": 6, "93637462922368": 6, "330": [6, 7], "2570": 6, "5111262532305": 6, "378": 6, "21987": 6, "659957192194": 6, "397": [6, 7], "9889": 6, "493204596083": 6, "401": 6, "417": 6, "7172": 6, "208490771303": 6, "435": 6, "9804": 6, "512701665093": 6, "9165": 6, "74081120673": 6, "523": 6, "543": 6, "0280270800017": 6, "161": 6, "1602933782954": 6, "888460860864": 6, "8414": 6, "932694243476": 6, "2270": 6, "5407991891466": 6, "753": 6, "10383": 6, "79559309305": 6, "772": 6, "20815": 6, "025469865475": 6, "791": 6, "206": 6, "7560385808573": 6, "5264": 6, "4700789389035": 6, "3668": 6, "255064135424": 6, "856": 6, "12174877890536": 6, "793408178086295": 6, "99902820845678": 6, "157": 6, "371632749506": 6, "88307313087517": 6, "140915461519354": 6, "910": 6, "153": 6, "66773675231477": 6, "177324126813716": 6, "77906017834145": 6, "935": 6, "52056745848623": 6, "4565714180547": 6, "6710444346508": 6, "960": 6, "30976119334312": 6, "62916671166313": 6, "023639423189294": 6, "984": 6, "181": 6, "053696900694": 6, "914617418880486": 6, "31140591484044": 6, "010": 6, "201": 6, "33573874994386": 6, "569769302718845": 6, "5781354926491789": 6, "190": 6, "1384885119049": 6, "87666716965626": 6, "2537791489618": 6, "076949848299": 6, "9559574710535281": 6, "0032830967319653665": 6, "085": 6, "764974036324": 6, "03910427457823": 6, "406811480459925": 6, "109": 6, "164": 6, "4477304958181": 6, "701690847791482": 6, "819274780536123": 6, "87939164358104": 6, "32187661108304": 6, "660320437878754": 6, "01705178481896": 6, "61397716361812": 6, "603665957830847": 6, "188": 6, "73257312230092": 6, "759645965959294": 6, "503212714246787": 6, "154": 6, "46848394144124": 6, "8546740801317": 6, "35327336610912": 6, "242": 6, "20421802817864": 6, "57596974747163": 6, "84756262407801": 6, "268": 6, "51233215278089": 6, "3564642040401464": 6, "5034542273159819": 6, "207": 6, "68667089892196": 6, "034895878929095": 6, "03653571911285094": 6, "52277054278186": 6, "01961499216484045": 6, "670937191883546": 6, "28722475694815": 6, "012434370509176538": 6, "34222704431493": 6, "87402050281146": 6, "008452015347522093": 6, "914863578437455": 6, "399": 6, "38847505937936": 6, "01573542234868893": 6, "99307522974174": 6, "96336195786391": 6, "009845516063879428": 6, "59422914099683": 6, "452": 6, "19345618324213": 6, "009382525091504246": 6, "35573659237662": 6, "480": 6, "30772721342525": 6, "010579672066291478": 6, "35550323165882": 6, "507": 6, "23970902543148": 6, "013369359066405863": 6, "4744102498801": 6, "34331248758777": 6, "011398351701814368": 6, "54146340620301": 6, "561": 6, "104535853341": 6, "011708779850509646": 6, "682286191624579e": 6, "0653774146952": 6, "009806826677473646": 6, "90274406278985": 6, "614": 6, "64646042813787": 6, "0038598153381434685": 6, "20918134828555": 6, "641": 6, "68420472011734": 6, "0032474576673554513": 6, "35551178979624": 6, "669": 6, "85985201823172": 6, "003187930738019005": 6, "29431603544847": 6, "695": 6, "21583898009355": 6, "003122319313153475": 6, "83526418992966": 6, "34787242859676": 6, "002781955938462633": 6, "76228981520067": 6, "750": 6, "70914272129673": 6, "0023173546614751305": 6, "3000082904498813": 6, "779": 6, "10492031097328": 6, "002606064524407": 6, "7861330234653922e": 6, "811": 6, "1049154281806": 6, "0029210589377408366": 6, "200933937391094e": 6, "841": 6, "10492028002287": 6, "06431564840324226": 6, "2981641934644904e": 6, "56066541774658": 6, "0010848843623839548": 6, "151493073951163": 6, "901": 6, "76337597039308": 6, "004134805589645341": 6, "88115336652716": 6, "108": 6, "58009587759925": 6, "004763418454688096": 6, "02920758025023": 6, "113": 6, "35230417583477": 6, "0009098023238189749": 6, "57100980886017": 6, "30807467406214": 6, "03739791555156691": 6, "12818940557025": 6, "018": 6, "44100655116532": 6, "006380481141720477": 6, "4882351186755": 6, "35181001564942": 6, "0036244007454981787": 6, "608797806921866": 6, "124": 6, "3719027482892": 6, "0014198536004321608": 6, "05588994284273": 6, "28568052794907": 6, "005434972462746285": 6, "215759789700954": 6, "20325": 6, "66479442037": 6, "9696417046589247": 6, "132": 6, "21507621375022": 6, "0004528978867024753": 6, "80386923876023": 6, "85570350846885": 6, "0016948043699497222": 6, "455627755557016": 6, "contrast": [6, 7], "relplot": 6, "col": [6, 7], "facet_kw": 6, "axisgrid": [6, 7], "facetgrid": 6, "0x7fbafb479450": 6, "noramlis": 6, "unlog": 6, "yield": [6, 7, 12, 13], "mse": 6, "1126": 6, "56968721": 6, "20237903": 6, "revers": [6, 7, 12, 14], "onto": 6, "action": 6, "importantli": 6, "easili": [6, 7], "94824194": 6, "92008694": 6, "instruct": 6, "untransform": 6, "wish": 6, "cut": [6, 7], "10um": 6, "ptr_config_log_transform": 6, "ptr_transformed_studi": 6, "ptr_and_transform_exampl": 6, "874": 6, "002341918451736245": 6, "944": 6, "0024908979029632677": 6, "986": 6, "007901407671048116": 6, "029": 6, "00496231674623194": 6, "0026848278110363512": 6, "064": 6, "0010872728889471893": 6, "082": 6, "008706109201510277": 6, "099": 6, "152": 6, "0029994624596888677": 6, "00825680029907454": 6, "007901407993550248": 6, "007901405163828307": 6, "0021653695362066753": 6, "002869169486971014": 6, "252": 6, "0010855652626111146": 6, "316": 6, "005505338042993083": 6, "333": 6, "002236800860454562": 6, "412": 6, "006105985607235417": 6, "429": 6, "004846526544994462": 6, "464": 6, "006964668794465202": 6, "468": 6, "551": 6, "568": 6, "008384326901042542": 6, "586": 6, "001082194093844804": 6, "0010807084256204563": 6, "673": 6, "005505338042993082": 6, "806": 6, "005247934991526694": 6, "834": 6, "0010803393728928605": 6, "005218354425190125": 6, "004999207507691546": 6, "0015694919308122948": 6, "025": 6, "0019757694194001384": 6, "031": 6, "096": 6, "00368328296527152": 6, "003412828259848677": 6, "004412110711416997": 6, "225": 6, "245": 6, "0021743798524909573": 6, "0022761245849848527": 6, "0010805768178458735": 6, "001080400188305814": 6, "351": 6, "0010805009783570441": 6, "0010804680472500541": 6, "0010803723579987025": 6, "001080969596032512": 6, "447": 6, "0010800333715082816": 6, "471": 6, "0010802574700236845": 6, "0010814994986419817": 6, "517": 6, "001080161136846237": 6, "0010800254136811547": 6, "564": 6, "0010801290036870739": 6, "590": 6, "001080037482216557": 6, "0010801015705851358": 6, "0010812122378841013": 6, "665": 6, "0010800531021304936": 6, "00108004162698813": 6, "0010800223466649803": 6, "739": 6, "0010815197263834202": 6, "0010800257029027847": 6, "790": 6, "0010810223438672223": 6, "0010800211339555509": 6, "840": 6, "0010800296871141684": 6, "0010800437739166451": 6, "0010809366267195716": 6, "001080725386603206": 6, "0010807368035830652": 6, "965": 6, "0010800236072155854": 6, "991": 6, "0010806223050773966": 6, "0010876516369772728": 6, "00108142358144501": 6, "0010800248050489667": 6, "001080022268085466": 6, "253": 6, "0010820922958715991": 6, "0010805094397523254": 6, "0010841993753324146": 6, "007899735988203994": 6, "0010868762004637347": 6, "001080400750193767": 6, "0010806791616300314": 6, "0010804028029753213": 6, "474": 6, "0010800812188506515": 6, "0010800299598580359": 6, "0010803843696362083": 6, "001080333048974234": 6, "001080014645182176": 6, "0010807968027851892": 6, "007907028395366658": 6, "685": 6, "0010803563024666294": 6, "inlin": [6, 7], "3506154": 6, "timepoint": 6, "aux_column": [6, 8], "accord": [6, 7, 8], "aux_col_config": 6, "aux_descriptors_dataset": 6, "train_with_conc": 6, "aux1": 6, "aux_col_studi": 6, "covariate_exampl": 6, "aux1_model": 6, "540": 6, "5186": 6, "767663956718": 6, "4679": 6, "740824270968": 6, "4890": 6, "6705099499995": 6, "3803": 6, "9324375833753": 6, "3135": 6, "6497388676926": 6, "2518812859375": 6, "771": 6, "4309": 6, "124112370974": 6, "800": 6, "30159424580074": 6, "863": 6, "4357": 6, "02827013125": 6, "1437929337522": 6, "45281013": 6, "shape": [6, 7, 8], "thrown": [6, 8], "prediciton": 6, "regardless": 6, "utilis": [6, 7], "seper": 6, "vector_covariate_config": 6, "precomputed_descriptor": 6, "train_with_fp": 6, "aux_transform": [6, 8], "vector_covariate_studi": 6, "vector_aux_exampl": 6, "vector_covariate_model": 6, "198": 6, "308": 6, "2200": 6, "6817959410578": 6, "011994365911634164": 6, "95660880078": 6, "029071783512897825": 6, "5798": 6, "564494725643": 6, "022631709120790048": 6, "2198637677605415": 6, "2899178898048": 6, "8916194399474267": 6, "473": 6, "647": 6, "3336440433073": 6, "5914093983615214": 6, "653": 6, "3036472748931": 6, "6201811079699818": 6, "3807": 6, "8035919667395": 6, "914e": 6, "901e": 6, "892e": 6, "603": 6, "5019": 6, "459500770764": 6, "1376436589359351": 6, "4017711284796": 6, "704": 6, "797115414836": 6, "74340620175102": 6, "train_smil": [6, 8], "train_i": [6, 8], "train_aux": [6, 8], "test_smil": [6, 8], "test_i": [6, 8], "test_aux": [6, 8], "legth": 6, "39754917": 6, "465": 6, "06352766": 6, "52031134": 6, "341": 6, "89875316": 6, "371": 6, "5516046": 6, "85042171": 6, "33406203": 6, "91439129": 6, "80585907": 6, "48565041": 6, "protein": [6, 12, 14], "alongsid": 6, "chemic": [6, 7, 12, 13], "sequenc": [6, 12, 14], "former": 6, "wherea": 6, "latter": [6, 7], "interact": 6, "basi": [6, 7], "toxinpred3": 6, "mdlititwasvmvaftfslslvvwgrsgl": 6, "ccsc": 6, "cc1c": [6, 7], "nh": [6, 7], "cc1ccccc1": 6, "ncc": 6, "cccnc": 6, "arrggvlnfgqfglqalecgfvtnr": 6, "cs": 6, "gwcgdpgatcgklrlyccsgacdcytktckdkssa": 6, "n1": 6, "ccc1": 6, "ccccn": 6, "cc1ccc": 6, "ngnllggllrpvlgvvkgltgglgkk": 6, "demponstr": 6, "zscale_covariate_config": 6, "zscale_covariate_studi": 6, "zscale_aux_exampl": 6, "zscale_covariate_model": 6, "213": 6, "8735224395254063": 6, "kneighborsclassifier_algorithm_hash": 6, "e51ca55089f389fc37a736adb2aa0e42": 6, "metric__e51ca55089f389fc37a736adb2aa0e42": 6, "n_neighbors__e51ca55089f389fc37a736adb2aa0e42": 6, "weights__e51ca55089f389fc37a736adb2aa0e42": 6, "unlik": 6, "31176471": 6, "08058824": 6, "27176471": 6, "56470588": 6, "62529412": 6, "99521739": 6, "59826087": 6, "34695652": 6, "03086957": 6, "13391304": 6, "08083333": 6, "6125": 6, "82916667": 6, "05083333": 6, "56083333": 6, "93357143": 6, "02785714": 6, "04214286": 6, "30461538": 6, "55307692": 6, "31307692": 6, "11076923": 6, "00846154": 6, "1232": 6, "3364": 6, "2328": 6, "1368": 6, "2304": 6, "7060": 6, "7062": 6, "x_": 6, "vmin": 6, "vmax": 6, "cmap": 6, "spectral": 6, "248bit": 6, "129": 6, "128bit": 6, "minimz": 6, "consist": 6, "generaliz": 6, "minimize_std_dev": 6, "minimise_std_dev": [6, 9], "std": [6, 7, 12, 14], "dev": [6, 7], "example_multi": 6, "parameter_analysi": 6, "set_metric_nam": 6, "089": 6, "133": 6, "4008740644240856": 6, "9876203329634794": 6, "3561484909673425": 6, "9875061220991905": 6, "368": 6, "7856521165563053": 6, "21863029956806662": 6, "9125905675311808": 6, "7861693342190089": 6, "438": 6, "5238765412750027": 6, "2789424384877304": 6, "458": 6, "5348363849100434": 6, "5741725628917808": 6, "0072511048320134": 6, "2786318125997387": 6, "9625764609276656": 6, "27575381401822424": 6, "1114006274062536": 6, "7647766019001522": 6, "7801680863916906": 6, "2725738454485389": 6, "785652116470164": 6, "21863029955530786": 6, "608": 6, "785651973436432": 6, "21863032832257323": 6, "6101359993004856": 6, "3011280543457062": 6, "5361950698070447": 6, "23560786523195643": 6, "657": 6, "5356113574175657": 6, "5769721187181905": 6, "5434303669217287": 6, "5147474123466617": 6, "760": 6, "5194661889628072": 6, "40146744515282495": 6, "814": 6, "659749443628722": 6, "6659085938841998": 6, "1068495306229729": 6, "24457822094737378": 6, "8604898820838102": 6, "7086875504668667": 6, "867": 6, "5919869916997383": 6, "2367498627927979": 6, "892": 6, "2497762395862362": 6, "10124660026536195": 6, "015": 6, "study_name_1": 6, "633": 6, "0621601907738047": 6, "2749020946925899": 6, "xxx": 6, "values_neg_mean_squared_error": 6, "values_standard": 6, "twinx": 6, "r": [6, 8], "floor": 6, "ceil": 6, "align": 6, "set_ytick": 6, "linspac": 6, "set_xtick": 6, "text": [6, 7, 8, 12], "pareto": 6, "front": 6, "plot_pareto_front": 6, "plot_param_import": 6, "dictionari": [6, 10], "ordereddict": 6, "descend": 6, "algortihm": 6, "impact": [6, 8], "durat": 6, "total_second": 6, "target_nam": 6, "relationship": 6, "plot_parallel_coordin": [6, 8, 9, 11], "param": [6, 7, 9, 10], "taken": [6, 7], "precomputed_config": 6, "precomputed_studi": 6, "precomputed_exampl": 6, "precomputed_model": 6, "627": 6, "629": 6, "_store_backend": 6, "cachewarn": 6, "unabl": 6, "disk": 6, "race": 6, "condit": 6, "creation": 6, "errno": 6, "No": [6, 9, 12], "var": [6, 7], "1v": [6, 7], "9y_z128d7gvcp8mf8q0pz3ch0000gq": [6, 7], "tmppcdzx734": 6, "94936653e8092dcb9fe9d77caf973e52": 6, "thread": 6, "140223569750976": 6, "pid": 6, "25899": 6, "3014": 6, "274803630188": 6, "471088599086": 6, "03592375122963953": 6, "3029": 6, "113810544919": 6, "8153295905650357": 6, "4358": 6, "575772003127": 6, "unseen": 6, "caus": 6, "new_molecul": 6, "101": 6, "tempfil": 6, "temp": [6, 7], "store": [6, 7, 11], "temporari": [6, 10], "extract": 6, "1st": 6, "example_fp": 6, "namedtemporaryfil": 6, "temp_fil": 6, "len": [6, 7], "to_csv": 6, "65709987": 6, "64327077": 6, "common": 7, "proper": 7, "optuna_az": 7, "process": [7, 8], "functionail": 7, "configur": [7, 8, 9, 10, 11], "draw": 7, "ipythonconsol": 7, "ipython": 7, "displai": 7, "os": 7, "listdir": 7, "isfil": 7, "walk": 7, "handi": 7, "med": 7, "titles": 7, "fontsiz": 7, "labels": 7, "xtick": 7, "ytick": 7, "rcparam": 7, "v0_8": 7, "whitegrid": 7, "set_styl": 7, "white": 7, "boolean": 7, "nomin": 7, "convert": [7, 12], "conduct": 7, "primarydf": 7, "loadsdf": 7, "inchi": 7, "skeletonspher": 7, "nm": 7, "id": 7, "romol": 7, "ic50": 7, "\u00b5m": 7, "c1ccc2c": 7, "co2": 7, "004320939": 7, "1s": 7, "c8h7no2": 7, "c10": 7, "qrcgftxrxymjo": 7, "uhfffaoysa": 7, "86075": 7, "kinas": 7, "p38": 7, "rdchem": 7, "0x7f9ca0112340": 7, "c1ccc": 7, "ccc2ccccc2occ3ccc": 7, "882397308": 7, "c22h20o3": 7, "c23": 7, "ytdaoqyeyfcini": 7, "89637": 7, "kd": 7, "retinoid": 7, "receptor": 7, "0x7f9c808beff0": 7, "408": 7, "130299026": 7, "0x7f9c808bf060": 7, "48148606": 7, "c9h7no": 7, "c11": 7, "lisfmebwquvkpj": 7, "n93": 7, "n82": 7, "n65": 7, "n36": 7, "n33": 7, "ki": 7, "nki": 7, "carbon": 7, "anhydras": 7, "xii": 7, "ncarbon": 7, "0x7f9c808bf0d0": 7, "nc1ccccn1": 7, "c7h8n2o": 7, "h2": 7, "5h": 7, "qrokotbwfzitjz": 7, "86233": 7, "nicotin": 7, "phosphoribosyltransferas": 7, "0x7f9c808bf140": 7, "renam": 7, "conveni": [7, 8, 9, 12], "rest": 7, "moltosmil": 7, "isomericsmil": 7, "c1coc2ccccc2n1": 7, "004321": 7, "coc2ccccc2ccc2ccccc2": 7, "882397": 7, "130299": 7, "c1ccc2ccccc2": 7, "481486": 7, "stick": 7, "engin": 7, "assum": [7, 12, 13], "stage": 7, "slightli": 7, "pose": 7, "wise": 7, "uniqu": 7, "outlin": 7, "occurr": 7, "preserv": 7, "vari": 7, "recommend": 7, "abil": 7, "being": 7, "df_po": 7, "dedup": [7, 12], "df_rnd": 7, "df_max": 7, "df_avg": 7, "df_med": 7, "deduplidc": 7, "indici": 7, "coc1cc2ncnc": 7, "nc3ccc": 7, "scc4ccccc4": 7, "cl": 7, "c3": 7, "c2cc1oc": 7, "282579": 7, "912929": 7, "cc1cccc": 7, "nc2ncnc3ccc": 7, "c4ccccc4": 7, "cc23": 7, "n2cc": 7, "cc2c": 7, "nc2cccc": 7, "n2": 7, "065502": 7, "390": 7, "958607": 7, "392": 7, "oc2cccc": 7, "394": 7, "cn1nc": 7, "c2cnc": 7, "c3ccc": 7, "nc1c1": 7, "396": 7, "oc1nc": 7, "oc2cc": 7, "c3ccccc3": 7, "c3cccc": 7, "cn": 7, "936291": 7, "minim": [7, 9], "densiti": 7, "dpi": 7, "kdeplot": 7, "fill": 7, "orang": 7, "ndigit": 7, "blue": 7, "keepaverag": 7, "deeppink": 7, "hold": [7, 8], "assess": 7, "aim": 7, "simpli": 7, "sai": 7, "veri": 7, "intern": [7, 10], "resembl": 7, "easiest": 7, "especi": 7, "reli": 7, "stochast": 7, "initi": [7, 8, 9], "train_ran": 7, "test_ran": 7, "time_column": 7, "old": 7, "datapoint": [7, 10, 12, 13], "accru": 7, "entri": [7, 12, 13], "timestamp": 7, "top": 7, "df_med_tempor": 7, "fake": 7, "nccccccoc1ccc2c": 7, "n1cc": 7, "684240": 7, "1037": 7, "481464": 7, "1036": 7, "c1cn": 7, "n2c": 7, "nc3cccc": 7, "n3": 7, "cc3cc3": 7, "732625": 7, "1035": 7, "568332": 7, "1034": 7, "790259": 7, "1033": 7, "train_tempor": 7, "test_tempor": 7, "highli": 7, "skew": 7, "fd": [7, 12, 13], "histogram": [7, 12, 13], "determin": [7, 12, 13], "balanc": 7, "fd_merg": [7, 12, 13], "train_str": 7, "test_str": 7, "realist": 7, "deplopi": 7, "emul": [7, 12, 13], "hop": 7, "opportun": 7, "seri": 7, "push": 7, "domain": 7, "realibl": 7, "challeng": 7, "scaf_split": 7, "train_sca": 7, "test_sca": 7, "ground": 7, "df_val": 7, "roughli": [7, 9], "evid": 7, "pronounc": 7, "dodgerblu": 7, "middl": 7, "saffold": 7, "discuss": 7, "propreti": 7, "endpoint": 7, "routin": 7, "linearis": 7, "variat": 7, "gaussian": 7, "realiti": 7, "nearli": 7, "exhibit": 7, "superior": 7, "wide": 7, "xc50_data": 7, "keepallnodedupl": [7, 12], "pxc50_data": 7, "zip": 7, "jointplot": 7, "suptitl": 7, "plot_margin": 7, "rugplot": 7, "crimson": 7, "height": 7, "clip_on": 7, "jointgrid": 7, "0x7f9ca05ade10": 7, "heteroscedast": 7, "homoscedast": 7, "transorm": 7, "0x7f9c458f85e0": 7, "logartihm": 7, "natur": 7, "power": [7, 12, 14], "um": 7, "dataset_transform": 7, "THe": 7, "0x7f9ca05aeb30": 7, "had": 7, "reverse_transform": [7, 12], "0x7f9c926f8970": 7, "mervin": 7, "framework": [7, 8], "somewher": 7, "unavoid": 7, "ideal": 7, "deviat": [7, 12, 14], "\u03c3": 7, "heterogen": 7, "versu": 7, "assimil": 7, "hypothesi": 7, "degre": 7, "p_": 7, "activityt": 7, "cumul": 7, "cdf": 7, "eq": 7, "equal": [7, 9], "delta": 7, "vec": 7, "frac": 7, "erf": 7, "overrightarrow": 7, "sigma": 7, "concret": 7, "arbitrari": 7, "unknown": 7, "therefor": 7, "schemat": 7, "lookup": 7, "tabl": 7, "sd": 7, "scenario": [7, 12, 13], "philosoph": 7, "delimit": [7, 12, 14], "operand": 7, "censor": 7, "far": 7, "granular": 7, "therebi": 7, "combin": [7, 8], "becom": 7, "jcheminf": 7, "biomedcentr": 7, "1186": 7, "s13321": 7, "021": 7, "00539": 7, "sec12": 7, "pxc50_threshold": 7, "pxc50_std": 7, "exmapl": 7, "ptr_data": 7, "gather": 7, "certainti": 7, "lower_reproduc": 7, "upper_reproduc": 7, "dataload": 7, "somewhat": 7, "invert": 7, "bell": 7, "kde": 7, "behav": 7, "patch": 7, "mpatch": 7, "line2d": 7, "ax_joint": 7, "axhlin": 7, "linestyl": 7, "ax_marg_i": 7, "ax_marg_x": 7, "axvlin": 7, "region": 7, "uncert_color": 7, "purpl": 7, "uncert_region": 7, "rectangl": 7, "add_patch": 7, "box": 7, "nthreshold": 7, "nptr": 7, "nregion": 7, "fancybox": 7, "borderaxespad": 7, "leg": 7, "get_legend": 7, "legend_handl": 7, "set_alpha": 7, "set_color": 7, "tight": 7, "layout": 7, "subplots_adjust": 7, "set_size_inch": 7, "ipykernel_33301": 7, "3093832163": 7, "cannot": 7, "enough": 7, "accommod": 7, "decor": 7, "dash": 7, "shade": 7, "histrogram": 7, "clip": 7, "aforement": 7, "ptrtransform": [7, 12, 14], "ptr_transform": 7, "histplot": 7, "stat": 7, "scipi": 7, "resp_col": [7, 8], "pearsonr": 7, "std_df": 7, "groupbi": 7, "mdn_df": 7, "std_vs_median": 7, "suffix": 7, "_std": 7, "_median": 7, "dropna": 7, "activity_std": 7, "activity_median": 7, "088539": 7, "674782": 7, "265123": 7, "138620": 7, "157605": 7, "stdev": 7, "stat_func": 7, "plot_joint": 7, "zorder": 7, "0x7f9be19abaf0": 7, "signific": 7, "assumpt": 7, "fulfil": 7, "ptr_train_ran": 7, "ptr_test_ran": 7, "ptr_train_str": 7, "ptr_test_str": 7, "ptr_train_tempor": 7, "ptr_test_tempor": 7, "ptr_train_sca": 7, "ptr_test_sca": 7, "warn_singular": 7, "xlim": 7, "peak": 7, "extem": 7, "dsitribut": 7, "awai": 7, "bias": 7, "enum": [8, 9, 10, 12], "building_configuration_enum": [8, 10], "configuration_enum": [8, 10], "interface_enum": [8, 10], "model_runner_enum": [8, 10], "objective_enum": [8, 10], "optimization_configuration_enum": [8, 10], "prediction_configuration_enum": [8, 10], "return_values_enum": [8, 10], "visualization_enum": [8, 10], "merge_train_and_test_data": 8, "isvalid": 8, "read_data": 8, "filenam": [8, 10], "smiles_col": [8, 10, 12, 13], "aux_col": 8, "invalid": 8, "pars": [8, 9, 11], "tupl": [8, 12, 13], "ambigu": 8, "smiles_": 8, "y_": [8, 10, 12], "aux_": 8, "factori": [8, 9], "intermediate_training_dataset_fil": 8, "intermediate_test_dataset_fil": 8, "get_merged_set": 8, "check_set": 8, "scalingfittingerror": 8, "descriptor_str": 8, "insuffici": [8, 12], "unfittedsklearnscla": [8, 12], "novalidsmil": 8, "mol_from_smi": 8, "numpy_from_rdkit": 8, "dtype": [8, 12], "moldescriptor": 8, "nameparameterdataclass": [8, 9, 12], "abc": [8, 9, 12], "abstract": [8, 9, 12], "parallel_compute_descriptor": 8, "n_core": 8, "parallel": 8, "amorprot": [8, 12], "ecfp6": 8, "seq": 8, "pathlib": 8, "get_fitted_scaler_for_fp": 8, "saved_param": 8, "get_fitted_scal": 8, "minhash": 8, "chiral": 8, "orsi": 8, "map4": 8, "unifi": 8, "percept": 8, "benchmark": 8, "retain": 8, "cip": 8, "highest": 8, "disproportion": 8, "affect": [8, 12], "maxradiu": [8, 11], "npermut": [8, 11], "permut": 8, "set_unfitted_scaler_data": 8, "fp_info": 8, "canonicalsmil": 8, "scaffold": [8, 12, 13], "genericscaffold": 8, "validdescriptor": 8, "descriptor_from_config": 8, "return_failed_idx": 8, "score_al": 8, "get_scor": 8, "score_all_smil": 8, "get_train_test_scor": 8, "get_merged_train_scor": 8, "get_ecfp_fpinfo": 8, "get_ecfpcount_fpinfo": 8, "explain_ecfp": 8, "len_feat": 8, "get_fp_info": 8, "exp_df": 8, "fp_idx": 8, "strt_idx": 8, "runshap": 8, "x_pred": 8, "shap": 8, "shapexplain": 8, "popul": 8, "explainpr": 8, "shallow": 8, "validate_cls_input": 8, "pi_zero": 8, "pr": 8, "melloddi": 8, "sparsechem": 8, "imbal": 8, "bedroc_scor": [8, 9], "truchon": 8, "j": 8, "bayli": 8, "screen": 8, "bad": 8, "recognit": 8, "488": 8, "508": 8, "2007": 8, "concord": 8, "statist": 8, "qualiti": 8, "harald": 8, "On": 8, "surviv": 8, "bound": 8, "2008": 8, "1209": 8, "1216": 8, "api": 8, "posterior": 8, "mark": 8, "abstractmethod": [8, 9], "predict_uncert": 8, "quantifi": 8, "qsartunamodel": 8, "nonetyp": [8, 9], "sent": 8, "get_metadata": 8, "train_scor": [8, 11], "test_scor": [8, 10, 11], "get_transform": 8, "perform_ptr": 8, "wrap_model": 8, "save_model": 8, "novaliddescriptor": 8, "null_scor": 8, "argserror": 8, "issu": [8, 12], "uncertaintyerror": 8, "correctli": 8, "auxcovariatemiss": 8, "precomputederror": 8, "validate_arg": 8, "validate_uncertainti": 8, "check_precomp_arg": 8, "validate_set_precomput": 8, "validate_aux": 8, "doctitl": 8, "docstr": 8, "type_base_schema": 8, "tp": 8, "wyfo": 8, "json_schema": 8, "patch_schema_gener": 8, "patch_schema_optunaz": 8, "split_optim": 8, "base_chemprop_param": 8, "alg": [8, 9], "pop": 8, "fix": [8, 9], "run_studi": 8, "storag": [8, 11], "trial_number_offset": [8, 10], "log_scor": 8, "main_scor": 8, "outfnam": 8, "plot_by_configur": 8, "conf": 8, "plot_slic": [8, 9, 11], "folder_path": 8, "file_format": [8, 9, 11], "png": [8, 9], "plot_contour": [8, 9, 11], "static": 8, "plot_histori": [8, 9, 11], "set_build_cach": 9, "preexist": 9, "remove_algo_hash": 9, "buildconfig_from_tri": 9, "encode_nam": 9, "cenam": 9, "suggest_alg_param": 9, "suggest_aux_param": 9, "desc": 9, "check_invalid_descriptor_param": 9, "adaboostclassifierparamet": 9, "lassoparamet": 9, "kneighborsclassifierparamet": 9, "kneighborsregressorparamet": 9, "logisticregressionparamet": 9, "plsparamet": 9, "randomforestparamet": 9, "ridgeparamet": 9, "svcparamet": 9, "svrparamet": 9, "xgbregressorparamet": 9, "prfclassifierparamet": 9, "bootstrap": 9, "new_syn_data_frac": 9, "chempropregressorparamet": 9, "chempropclassifierparamet": 9, "chempropregressorpretrainedparamet": 9, "chemprophyperoptclassifierparamet": 9, "chemprophyperoptregressorparamet": 9, "calibratedclassifiercvparamet": 9, "mapieparamet": 9, "regressionscor": 9, "classificationscor": 9, "closer": 9, "greater": 9, "manhattan": 9, "trainarg": 9, "tanh": 9, "leakyrelu": 9, "prelu": 9, "selu": 9, "elu": 9, "turn": [9, 12, 13], "morgan_count": 9, "rdkit_2d": 9, "rdkit_2d_norm": 9, "mpnn_first_ffn": 9, "mpnn_last_ffn": 9, "linked_hidden_s": 9, "constrain": 9, "l3": 9, "init_lr_exp": 9, "final_lr_exp": 9, "warmup_epoch": 9, "l4": 9, "l5": 9, "l6": 9, "l7": 9, "l8": 9, "isanyof": 9, "obj": [9, 10], "detect_mode_from_alg": 9, "copy_path_for_scaled_descriptor": 9, "cv_split_strategi": 9, "use_cach": 9, "optuna_storag": 9, "set_cach": 9, "set_algo_hash": 9, "declar": 9, "pydant": 9, "don": 9, "classmethod": 9, "1024": 9, "shorter": 9, "output_fold": [9, 11], "use_xvfb": [9, 11], "imagefileformat": 9, "jpeg": 9, "jpg": 9, "svg": 9, "move_up_directori": 10, "attach_root_path": 10, "attach": 10, "loadjson": 10, "add_ellipsi": 10, "max_length": 10, "shorten_nam": 10, "mlflowcallback": 10, "tracking_uri": 10, "callback": 10, "uri": 10, "server": 10, "set_tracking_uri": 10, "prepare_tag": 10, "tag": 10, "tmp_buildconfig": 10, "create_depend": 10, "remove_schema_properti": 10, "add_boolean_guards_for_schema_properti": 10, "replacekei": 10, "input_": 10, "replacevalu": 10, "addsibl": 10, "delsibl": 10, "sibl": 10, "getref": 10, "context": 10, "recurs": 10, "nest": 10, "copytitl": 10, "oneof": 10, "replaceenum": 10, "singleton": 10, "const": 10, "addtitl": 10, "get_authorization_head": 10, "trackingdata": 10, "trial_numb": [10, 11], "trial_valu": 10, "trial_stat": 10, "all_cv_test_scor": 10, "removeprefix": 10, "prefix": 10, "round_scor": 10, "internaltrackingcallback": 10, "progress": 10, "buildtrackingdata": 10, "response_column_nam": 10, "test_point": 10, "track_build": 10, "mkdict": 10, "load_df_from_fil": 10, "remove_failed_idx": 10, "failed_idx": 10, "md5_hash": 10, "md5": 10, "buildingconfigurationenum": 11, "configurationenum": 11, "general_hyperparamet": 11, "hyper_paramet": 11, "general_regressor": 11, "general_classifi": 11, "metadata_besttri": 11, "metadata_bestvalu": 11, "general_dis": 11, "general_paramet": 11, "task_optim": 11, "task_build": 11, "data_inputcolumn": 11, "data_responsecolumn": 11, "data_train": 11, "data_test": 11, "descriptors_avalon": 11, "descriptors_avalon_nbit": 11, "descriptors_ecfp": 11, "descriptors_ecfp_radiu": 11, "descriptors_ecfp_nbit": 11, "descriptors_ecfpcount": 11, "descriptors_ecfpcounts_radiu": 11, "descriptors_ecfpcounts_usefeatur": 11, "descriptors_pathfp": 11, "descriptors_pathfp_maxpath": 11, "descriptors_pathfp_fps": 11, "descriptors_maccskei": 11, "descriptors_unsc_physchem": 11, "descriptors_physchem": 11, "descriptors_physchem_rdkitnam": 11, "descriptors_amorprot": 11, "descriptors_unsc_mapc": 11, "descriptors_mapc": 11, "descriptors_mapc_maxradiu": 11, "descriptors_mapc_npermut": 11, "descriptors_unsc_jazzi": 11, "descriptors_jazzi": 11, "descriptors_jazzy_jazzynam": 11, "descriptors_precomput": 11, "descriptors_precomputed_fil": 11, "descriptors_precomputed_input_columnn": 11, "descriptors_precomputed_response_column": 11, "descriptors_unsc_zscal": 11, "descriptors_zscal": 11, "descriptors_smil": 11, "descriptors_smiles_and_si": 11, "descriptors_smiles_and_si_fil": 11, "descriptors_smiles_and_si_input_column": 11, "descriptors_smiles_and_si_aux_weight_pc": 11, "descriptors_sc": 11, "descriptors_scaled_descriptor": 11, "descriptors_scaled_descriptor_paramet": 11, "descriptors_composit": 11, "settings_mod": 11, "settings_mode_regress": 11, "settings_mode_classif": 11, "settings_cross_valid": 11, "settings_direct": 11, "settings_n_tri": 11, "settings_n_job": 11, "settings_shuffl": 11, "algorithms_low": 11, "algorithms_high": 11, "algorithms_q": 11, "algorithms_interface_sklearn": 11, "algorithms_interface_xgboost": 11, "algorithms_rfregressor": 11, "algorithms_rfclassifi": 11, "algorithms_rf_max_featur": 11, "algorithms_rf_max_depth": 11, "algorithms_rf_n_estim": 11, "algorithms_svr": 11, "algorithms_svr_c": 11, "algorithms_svr_gamma": 11, "algorithms_svc": 11, "algorithms_svc_c": 11, "algorithms_svc_gamma": 11, "algorithms_lasso": 11, "algorithms_lasso_alpha": 11, "algorithms_kneighborsclassifi": 11, "algorithms_kneighborsregressor": 11, "algorithms_kneighbors_n_neighbor": 11, "algorithms_kneighbors_metr": 11, "algorithms_kneighbors_weight": 11, "algorithms_ridg": 11, "algorithms_ridge_alpha": 11, "algorithms_plsregress": 11, "algorithms_plsregression_n_compon": 11, "algorithms_logisticregress": 11, "algorithms_logisticregression_solv": 11, "algorithms_logisticregression_c": 11, "algorithms_adaboostclassifi": 11, "algorithms_adaboostclassifier_n_estim": 11, "algorithms_adaboostclassifier_learning_r": 11, "algorithms_xgbregressor": 11, "algorithms_xgbregressor_max_depth": 11, "algorithms_xgbregressor_n_estim": 11, "algorithms_xgbregressor_learning_r": 11, "algorithms_prf": 11, "algorithms_prf_max_featur": 11, "algorithms_prf_max_depth": 11, "algorithms_prf_n_estim": 11, "algorithms_prf_minpysumleaf": 11, "algorithms_prf_use_py_gini": 11, "algorithms_prf_use_py_leaf": 11, "algorithms_chemprop": 11, "basechemprop": 11, "algorithms_chemprop_regressor": 11, "algorithms_chemprop_hyperopt_regressor": 11, "algorithms_chemprop_classifi": 11, "algorithms_chemprop_hyperopt_classifi": 11, "algorithms_chemprop_activ": 11, "algorithms_chemprop_aggreg": 11, "algorithms_chemprop_aggregation_norm": 11, "algorithms_chemprop_batch_s": 11, "algorithms_chemprop_depth": 11, "algorithms_chemprop_dropout": 11, "algorithms_chemprop_epoch": 11, "algorithms_chemprop_ensemble_s": 11, "algorithms_chemprop_features_gener": 11, "algorithms_chemprop_ffn_hidden_s": 11, "algorithms_chemprop_ffn_num_lay": 11, "algorithms_chemprop_frzn": 11, "algorithms_chemprop_final_lr_ratio_exp": 11, "algorithms_chemprop_hidden_s": 11, "algorithms_chemprop_num_it": 11, "algorithms_chemprop_init_lr_ratio_exp": 11, "algorithms_chemprop_max_lr_exp": 11, "algorithms_chemprop_pretrained_model": 11, "algorithms_chemprop_search_parameter_level": 11, "algorithms_chemprop_startup_random_it": 11, "startup_random_it": 11, "algorithms_chemprop_warmup_epochs_ratio": 11, "algorithms_calibratedclassifiercv": 11, "algorithms_calibratedclassifiercv_ensembl": 11, "algorithms_calibratedclassifiercv_estim": 11, "algorithms_calibratedclassifiercv_method": 11, "algorithms_calibratedclassifiercv_n_fold": 11, "algorithms_calibratedclassifiercv_param": 11, "calibrated_param": 11, "algorithms_mapi": 11, "algorithms_mapie_alpha": 11, "interfaceenum": 11, "sklearn_set": 11, "xgboost_set": 11, "chemprop_set": 11, "prf_set": 11, "calibrated_set": 11, "modelrunnerdataframeenum": 11, "modelrunn": 11, "objectiveenum": 11, "attribute_trial_train_scor": 11, "extra_column_besthit": 11, "besthit": 11, "optimizationconfigurationenum": 11, "predictionconfigurationenum": 11, "data_dataset": 11, "sklearnreturnvalueenum": 11, "cross_validate_fit_tim": 11, "fit_tim": 11, "cross_validate_score_tim": 11, "score_tim": 11, "cross_validate_test_scor": 11, "cross_validate_train_scor": 11, "xgboostreturnvalueenum": 11, "visualizationenum": 11, "visualization_regressor": 11, "visualization_classifi": 11, "visualization_use_xvfb": 11, "visualization_output_fold": 11, "visualization_file_format": 11, "visualization_plot": 11, "visualization_plots_histori": 11, "visualization_plots_contour": 11, "visualization_plots_parallel_coordin": 11, "visualization_plots_slic": 11, "optuna_system_attrs_numb": 11, "_number": 11, "optuna_system_attrs_intermediate_valu": 11, "intermediate_valu": 11, "optuna_system_attrs_trial_id": 11, "trial_id": 11, "studyuserattr": 11, "trialuserattr": 11, "trialparam": 11, "algorithm_hash": 11, "mlflowlogparam": 11, "sklearnsplitt": 12, "get_n_split": 12, "cvsplitter": 12, "although": 12, "underli": 12, "get_sklearn_splitt": 12, "n_split": 12, "repeat": [12, 13], "edg": [12, 13], "stratifiedshufflesplit": [12, 13], "revert": [12, 13], "empti": 12, "kfold": 12, "consecut": 12, "fd_bin": 12, "11879": 12, "10297": 12, "adjac": 12, "downstream": 12, "nativ": 12, "histogramstratifiedshufflesplit": 12, "test_fract": 12, "groupingsplitt": 12, "column_nam": [12, 13], "butina_clust": [12, 13], "cluster": [12, 13], "butina": [12, 13], "make_scaffold_gener": [12, 13], "murcko": [12, 13], "hetero": [12, 13], "difficulti": [12, 13], "novel": [12, 13], "datatransformerror": 12, "datatransform": 12, "logarithm": [12, 14], "base_dict": 12, "ufunc": 12, "base_neg": 12, "reverse_dict": 12, "exp": 12, "transform_df": 12, "transform_on": 12, "reverse_transform_df": 12, "reverse_transform_on": 12, "auxtransform": 12, "transfor": 12, "auxiliary_data": 12, "usabl": [12, 14]}, "objects": {"": [[8, 0, 0, "-", "optunaz"]], "optunaz": [[8, 0, 0, "-", "builder"], [9, 0, 0, "-", "config"], [8, 0, 0, "-", "datareader"], [8, 0, 0, "-", "descriptors"], [8, 0, 0, "-", "evaluate"], [8, 0, 0, "-", "explainability"], [8, 0, 0, "-", "metircs"], [8, 0, 0, "-", "model_writer"], [8, 0, 0, "-", "objective"], [8, 0, 0, "-", "optbuild"], [8, 0, 0, "-", "predict"], [8, 0, 0, "-", "schemagen"], [8, 0, 0, "-", "three_step_opt_build_merge"], [10, 0, 0, "-", "utils"], [8, 0, 0, "-", "visualizer"]], "optunaz.builder": [[8, 1, 1, "", "build"]], "optunaz.config": [[9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "ModelMode"], [9, 2, 1, "", "NameParameterDataclass"], [9, 2, 1, "", "OptimizationDirection"], [9, 2, 1, "", "Task"], [9, 2, 1, "", "Visualization"], [9, 0, 0, "-", "build_from_opt"], [9, 0, 0, "-", "buildconfig"], [9, 0, 0, "-", "optconfig"]], "optunaz.config.ModelMode": [[9, 3, 1, "", "CLASSIFICATION"], [9, 3, 1, "", "REGRESSION"]], "optunaz.config.NameParameterDataclass": [[9, 4, 1, "", "new"]], "optunaz.config.OptimizationDirection": [[9, 3, 1, "", "MAXIMIZATION"], [9, 3, 1, "", "MINIMIZATION"]], "optunaz.config.Task": [[9, 3, 1, "", "BUILDING"], [9, 3, 1, "", "OPTIMIZATION"], [9, 3, 1, "", "PREDICTION"]], "optunaz.config.Visualization": [[9, 2, 1, "", "ImageFileFormat"], [9, 2, 1, "", "Plots"], [9, 3, 1, "", "file_format"], [9, 3, 1, "", "output_folder"], [9, 3, 1, "", "plots"], [9, 3, 1, "", "use_xvfb"]], "optunaz.config.Visualization.ImageFileFormat": [[9, 3, 1, "", "JPEG"], [9, 3, 1, "", "JPG"], [9, 3, 1, "", "PDF"], [9, 3, 1, "", "PNG"], [9, 3, 1, "", "SVG"]], "optunaz.config.Visualization.Plots": [[9, 3, 1, "", "plot_contour"], [9, 3, 1, "", "plot_history"], [9, 3, 1, "", "plot_parallel_coordinate"], [9, 3, 1, "", "plot_slice"]], "optunaz.config.build_from_opt": [[9, 1, 1, "", "buildconfig_from_trial"], [9, 1, 1, "", "check_invalid_descriptor_param"], [9, 1, 1, "", "encode_name"], [9, 1, 1, "", "remove_algo_hash"], [9, 1, 1, "", "set_build_cache"], [9, 1, 1, "", "suggest_alg_params"], [9, 1, 1, "", "suggest_aux_params"]], "optunaz.config.buildconfig": [[9, 2, 1, "", "AdaBoostClassifier"], [9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "BuildConfig"], [9, 2, 1, "", "CalibratedClassifierCVWithVA"], [9, 2, 1, "", "ChemPropClassifier"], [9, 2, 1, "", "ChemPropHyperoptClassifier"], [9, 2, 1, "", "ChemPropHyperoptRegressor"], [9, 2, 1, "", "ChemPropRegressor"], [9, 2, 1, "", "ChemPropRegressorPretrained"], [9, 2, 1, "", "KNeighborsClassifier"], [9, 2, 1, "", "KNeighborsRegressor"], [9, 2, 1, "", "Lasso"], [9, 2, 1, "", "LogisticRegression"], [9, 2, 1, "", "Mapie"], [9, 2, 1, "", "PLSRegression"], [9, 2, 1, "", "PRFClassifier"], [9, 2, 1, "", "RandomForestClassifier"], [9, 2, 1, "", "RandomForestRegressor"], [9, 2, 1, "", "Ridge"], [9, 2, 1, "", "SVC"], [9, 2, 1, "", "SVR"], [9, 2, 1, "", "XGBRegressor"]], "optunaz.config.buildconfig.AdaBoostClassifier": [[9, 2, 1, "", "AdaBoostClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.AdaBoostClassifier.AdaBoostClassifierParameters": [[9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.Algorithm": [[9, 4, 1, "", "estimator"]], "optunaz.config.buildconfig.BuildConfig": [[9, 2, 1, "", "Metadata"], [9, 2, 1, "", "Settings"], [9, 3, 1, "", "algorithm"], [9, 3, 1, "", "data"], [9, 3, 1, "", "descriptor"], [9, 3, 1, "", "metadata"], [9, 3, 1, "", "settings"], [9, 3, 1, "", "task"]], "optunaz.config.buildconfig.BuildConfig.Metadata": [[9, 3, 1, "", "best_trial"], [9, 3, 1, "", "best_value"], [9, 3, 1, "", "cross_validation"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "name"], [9, 3, 1, "", "shuffle"], [9, 3, 1, "", "visualization"]], "optunaz.config.buildconfig.BuildConfig.Settings": [[9, 3, 1, "", "direction"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "scoring"], [9, 3, 1, "", "tracking_rest_endpoint"]], "optunaz.config.buildconfig.CalibratedClassifierCVWithVA": [[9, 2, 1, "", "CalibratedClassifierCVParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.CalibratedClassifierCVWithVA.CalibratedClassifierCVParameters": [[9, 3, 1, "", "ensemble"], [9, 3, 1, "", "estimator"], [9, 3, 1, "", "method"], [9, 3, 1, "", "n_folds"]], "optunaz.config.buildconfig.ChemPropClassifier": [[9, 2, 1, "", "ChemPropClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropClassifier.ChemPropClassifierParameters": [[9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.buildconfig.ChemPropHyperoptClassifier": [[9, 2, 1, "", "ChemPropHyperoptClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropHyperoptClassifier.ChemPropHyperoptClassifierParameters": [[9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.buildconfig.ChemPropHyperoptRegressor": [[9, 2, 1, "", "ChemPropHyperoptRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropHyperoptRegressor.ChemPropHyperoptRegressorParameters": [[9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.buildconfig.ChemPropRegressor": [[9, 2, 1, "", "ChemPropRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropRegressor.ChemPropRegressorParameters": [[9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.buildconfig.ChemPropRegressorPretrained": [[9, 2, 1, "", "ChemPropRegressorPretrainedParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropRegressorPretrained.ChemPropRegressorPretrainedParameters": [[9, 3, 1, "", "epochs"], [9, 3, 1, "", "frzn"], [9, 3, 1, "", "pretrained_model"]], "optunaz.config.buildconfig.KNeighborsClassifier": [[9, 2, 1, "", "KNeighborsClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.KNeighborsClassifier.KNeighborsClassifierParameters": [[9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.buildconfig.KNeighborsRegressor": [[9, 2, 1, "", "KNeighborsRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.KNeighborsRegressor.KNeighborsRegressorParameters": [[9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.buildconfig.Lasso": [[9, 2, 1, "", "LassoParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Lasso.LassoParameters": [[9, 3, 1, "", "alpha"]], "optunaz.config.buildconfig.LogisticRegression": [[9, 2, 1, "", "LogisticRegressionParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.LogisticRegression.LogisticRegressionParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "solver"]], "optunaz.config.buildconfig.Mapie": [[9, 2, 1, "", "MapieParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Mapie.MapieParameters": [[9, 3, 1, "", "estimator"], [9, 3, 1, "", "mapie_alpha"]], "optunaz.config.buildconfig.PLSRegression": [[9, 2, 1, "", "PLSParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.PLSRegression.PLSParameters": [[9, 3, 1, "", "n_components"]], "optunaz.config.buildconfig.PRFClassifier": [[9, 2, 1, "", "PRFClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.PRFClassifier.PRFClassifierParameters": [[9, 3, 1, "", "bootstrap"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "min_py_sum_leaf"], [9, 3, 1, "", "n_estimators"], [9, 3, 1, "", "new_syn_data_frac"], [9, 3, 1, "", "use_py_gini"], [9, 3, 1, "", "use_py_leafs"]], "optunaz.config.buildconfig.RandomForestClassifier": [[9, 2, 1, "", "RandomForestParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.RandomForestClassifier.RandomForestParameters": [[9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.RandomForestRegressor": [[9, 2, 1, "", "RandomForestParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.RandomForestRegressor.RandomForestParameters": [[9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.Ridge": [[9, 2, 1, "", "RidgeParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Ridge.RidgeParameters": [[9, 3, 1, "", "alpha"]], "optunaz.config.buildconfig.SVC": [[9, 2, 1, "", "SVCParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.SVC.SVCParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "gamma"]], "optunaz.config.buildconfig.SVR": [[9, 2, 1, "", "SVRParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.SVR.SVRParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "gamma"]], "optunaz.config.buildconfig.XGBRegressor": [[9, 2, 1, "", "XGBRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.XGBRegressor.XGBRegressorParameters": [[9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig": [[9, 2, 1, "", "AdaBoostClassifier"], [9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "CalibratedClassifierCVEnsemble"], [9, 2, 1, "", "CalibratedClassifierCVMethod"], [9, 2, 1, "", "CalibratedClassifierCVWithVA"], [9, 2, 1, "", "ChemPropActivation"], [9, 2, 1, "", "ChemPropAggregation"], [9, 2, 1, "", "ChemPropClassifier"], [9, 2, 1, "", "ChemPropFeatures_Generator"], [9, 2, 1, "", "ChemPropFrzn"], [9, 2, 1, "", "ChemPropHyperoptClassifier"], [9, 2, 1, "", "ChemPropHyperoptRegressor"], [9, 2, 1, "", "ChemPropRegressor"], [9, 2, 1, "", "ChemPropRegressorPretrained"], [9, 2, 1, "", "ChemPropSearch_Parameter_Level"], [9, 2, 1, "", "ClassificationScore"], [9, 2, 1, "", "KNeighborsClassifier"], [9, 2, 1, "", "KNeighborsMetric"], [9, 2, 1, "", "KNeighborsRegressor"], [9, 2, 1, "", "KNeighborsWeights"], [9, 2, 1, "", "Lasso"], [9, 2, 1, "", "LogisticRegression"], [9, 2, 1, "", "Mapie"], [9, 2, 1, "", "OptimizationConfig"], [9, 2, 1, "", "PLSRegression"], [9, 2, 1, "", "PRFClassifier"], [9, 2, 1, "", "PRFClassifierMaxFeatures"], [9, 2, 1, "", "RandomForestClassifier"], [9, 2, 1, "", "RandomForestMaxFeatures"], [9, 2, 1, "", "RandomForestRegressor"], [9, 2, 1, "", "RegressionScore"], [9, 2, 1, "", "Ridge"], [9, 2, 1, "", "SVC"], [9, 2, 1, "", "SVR"], [9, 2, 1, "", "XGBRegressor"], [9, 1, 1, "", "copy_path_for_scaled_descriptor"], [9, 1, 1, "", "detect_mode_from_algs"], [9, 1, 1, "", "isanyof"]], "optunaz.config.optconfig.AdaBoostClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters": [[9, 2, 1, "", "AdaBoostClassifierParametersLearningRate"], [9, 2, 1, "", "AdaBoostClassifierParametersNEstimators"], [9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters.AdaBoostClassifierParametersLearningRate": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters.AdaBoostClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.CalibratedClassifierCVEnsemble": [[9, 3, 1, "", "FALSE"], [9, 3, 1, "", "TRUE"]], "optunaz.config.optconfig.CalibratedClassifierCVMethod": [[9, 3, 1, "", "ISOTONIC"], [9, 3, 1, "", "SIGMOID"], [9, 3, 1, "", "VENNABERS"]], "optunaz.config.optconfig.CalibratedClassifierCVWithVA": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.CalibratedClassifierCVWithVA.Parameters": [[9, 3, 1, "", "ensemble"], [9, 3, 1, "", "estimator"], [9, 3, 1, "", "method"], [9, 3, 1, "", "n_folds"]], "optunaz.config.optconfig.ChemPropActivation": [[9, 3, 1, "", "ELU"], [9, 3, 1, "", "LEAKYRELU"], [9, 3, 1, "", "PRELU"], [9, 3, 1, "", "RELU"], [9, 3, 1, "", "SELU"], [9, 3, 1, "", "TANH"]], "optunaz.config.optconfig.ChemPropAggregation": [[9, 3, 1, "", "MEAN"], [9, 3, 1, "", "NORM"], [9, 3, 1, "", "SUM"]], "optunaz.config.optconfig.ChemPropClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters": [[9, 2, 1, "", "ChemPropParametersAggregation_Norm"], [9, 2, 1, "", "ChemPropParametersBatch_Size"], [9, 2, 1, "", "ChemPropParametersDepth"], [9, 2, 1, "", "ChemPropParametersDropout"], [9, 2, 1, "", "ChemPropParametersFFN_Hidden_Size"], [9, 2, 1, "", "ChemPropParametersFFN_Num_Layers"], [9, 2, 1, "", "ChemPropParametersFinal_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersHidden_Size"], [9, 2, 1, "", "ChemPropParametersInit_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersMax_Lr_Exp"], [9, 2, 1, "", "ChemPropParametersWarmup_Epochs_Ratio"], [9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersAggregation_Norm": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersBatch_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersDropout": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFFN_Hidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFFN_Num_Layers": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFinal_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersHidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersInit_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersMax_Lr_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersWarmup_Epochs_Ratio": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropFeatures_Generator": [[9, 3, 1, "", "MORGAN"], [9, 3, 1, "", "MORGAN_COUNT"], [9, 3, 1, "", "NONE"], [9, 3, 1, "", "RDKIT_2D"], [9, 3, 1, "", "RDKIT_2D_NORMALIZED"]], "optunaz.config.optconfig.ChemPropFrzn": [[9, 3, 1, "", "MPNN"], [9, 3, 1, "", "MPNN_FIRST_FFN"], [9, 3, 1, "", "MPNN_LAST_FFN"], [9, 3, 1, "", "NONE"]], "optunaz.config.optconfig.ChemPropHyperoptClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropHyperoptClassifier.Parameters": [[9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.optconfig.ChemPropHyperoptRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropHyperoptRegressor.Parameters": [[9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.optconfig.ChemPropRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters": [[9, 2, 1, "", "ChemPropParametersAggregation_Norm"], [9, 2, 1, "", "ChemPropParametersBatch_Size"], [9, 2, 1, "", "ChemPropParametersDepth"], [9, 2, 1, "", "ChemPropParametersDropout"], [9, 2, 1, "", "ChemPropParametersFFN_Hidden_Size"], [9, 2, 1, "", "ChemPropParametersFFN_Num_Layers"], [9, 2, 1, "", "ChemPropParametersFinal_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersHidden_Size"], [9, 2, 1, "", "ChemPropParametersInit_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersMax_Lr_Exp"], [9, 2, 1, "", "ChemPropParametersWarmup_Epochs_Ratio"], [9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersAggregation_Norm": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersBatch_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersDropout": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFFN_Hidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFFN_Num_Layers": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFinal_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersHidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersInit_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersMax_Lr_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersWarmup_Epochs_Ratio": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressorPretrained": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropRegressorPretrained.Parameters": [[9, 2, 1, "", "ChemPropParametersEpochs"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "frzn"], [9, 3, 1, "", "pretrained_model"]], "optunaz.config.optconfig.ChemPropRegressorPretrained.Parameters.ChemPropParametersEpochs": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropSearch_Parameter_Level": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "L1"], [9, 3, 1, "", "L2"], [9, 3, 1, "", "L3"], [9, 3, 1, "", "L4"], [9, 3, 1, "", "L5"], [9, 3, 1, "", "L6"], [9, 3, 1, "", "L7"], [9, 3, 1, "", "L8"]], "optunaz.config.optconfig.ClassificationScore": [[9, 3, 1, "", "ACCURACY"], [9, 3, 1, "", "AUC_PR_CAL"], [9, 3, 1, "", "AVERAGE_PRECISION"], [9, 3, 1, "", "BALANCED_ACCURACY"], [9, 3, 1, "", "BEDROC"], [9, 3, 1, "", "CONCORDANCE_INDEX"], [9, 3, 1, "", "F1"], [9, 3, 1, "", "F1_MACRO"], [9, 3, 1, "", "F1_MICRO"], [9, 3, 1, "", "F1_WEIGHTED"], [9, 3, 1, "", "JACCARD"], [9, 3, 1, "", "JACCARD_MACRO"], [9, 3, 1, "", "JACCARD_MICRO"], [9, 3, 1, "", "JACCARD_WEIGHTED"], [9, 3, 1, "", "NEG_BRIER_SCORE"], [9, 3, 1, "", "PRECISION"], [9, 3, 1, "", "PRECISION_MACRO"], [9, 3, 1, "", "PRECISION_MICRO"], [9, 3, 1, "", "PRECISION_WEIGHTED"], [9, 3, 1, "", "RECALL"], [9, 3, 1, "", "RECALL_MACRO"], [9, 3, 1, "", "RECALL_MICRO"], [9, 3, 1, "", "RECALL_WEIGHTED"], [9, 3, 1, "", "ROC_AUC"]], "optunaz.config.optconfig.KNeighborsClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.KNeighborsClassifier.Parameters": [[9, 2, 1, "", "KNeighborsClassifierParametersN_Neighbors"], [9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.optconfig.KNeighborsClassifier.Parameters.KNeighborsClassifierParametersN_Neighbors": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.KNeighborsMetric": [[9, 3, 1, "", "EUCLIDEAN"], [9, 3, 1, "", "MANHATTAN"], [9, 3, 1, "", "MINKOWSKI"]], "optunaz.config.optconfig.KNeighborsRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.KNeighborsRegressor.Parameters": [[9, 2, 1, "", "KNeighborsRegressorParametersN_Neighbors"], [9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.optconfig.KNeighborsRegressor.Parameters.KNeighborsRegressorParametersN_Neighbors": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.KNeighborsWeights": [[9, 3, 1, "", "DISTANCE"], [9, 3, 1, "", "UNIFORM"]], "optunaz.config.optconfig.Lasso": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Lasso.Parameters": [[9, 2, 1, "", "LassoParametersAlpha"], [9, 3, 1, "", "alpha"]], "optunaz.config.optconfig.Lasso.Parameters.LassoParametersAlpha": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.LogisticRegression": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.LogisticRegression.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "LogisticRegressionParametersParameterC"], [9, 3, 1, "", "solver"]], "optunaz.config.optconfig.LogisticRegression.Parameters.LogisticRegressionParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.Mapie": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Mapie.Parameters": [[9, 3, 1, "", "estimator"], [9, 3, 1, "", "mapie_alpha"]], "optunaz.config.optconfig.OptimizationConfig": [[9, 2, 1, "", "Settings"], [9, 3, 1, "", "algorithms"], [9, 3, 1, "", "data"], [9, 3, 1, "", "description"], [9, 3, 1, "", "descriptors"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "name"], [9, 4, 1, "", "set_algo_hashes"], [9, 4, 1, "", "set_cache"], [9, 3, 1, "", "settings"], [9, 3, 1, "", "task"], [9, 3, 1, "", "visualization"]], "optunaz.config.optconfig.OptimizationConfig.Settings": [[9, 3, 1, "", "cross_validation"], [9, 3, 1, "", "cv_split_strategy"], [9, 3, 1, "", "direction"], [9, 3, 1, "", "minimise_std_dev"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "n_chemprop_trials"], [9, 3, 1, "", "n_jobs"], [9, 3, 1, "", "n_startup_trials"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "optuna_storage"], [9, 3, 1, "", "random_seed"], [9, 3, 1, "", "scoring"], [9, 3, 1, "", "shuffle"], [9, 3, 1, "", "split_chemprop"], [9, 3, 1, "", "track_to_mlflow"], [9, 3, 1, "", "tracking_rest_endpoint"], [9, 3, 1, "", "use_cache"]], "optunaz.config.optconfig.PLSRegression": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.PLSRegression.Parameters": [[9, 2, 1, "", "NComponents"], [9, 3, 1, "", "n_components"]], "optunaz.config.optconfig.PLSRegression.Parameters.NComponents": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.PRFClassifier.Parameters": [[9, 2, 1, "", "PRFClassifierParametersMaxDepth"], [9, 2, 1, "", "PRFClassifierParametersMinPySumLeaf"], [9, 2, 1, "", "PRFClassifierParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "min_py_sum_leaf"], [9, 3, 1, "", "n_estimators"], [9, 3, 1, "", "use_py_gini"], [9, 3, 1, "", "use_py_leafs"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersMinPySumLeaf": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifierMaxFeatures": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "LOG2"], [9, 3, 1, "", "SQRT"]], "optunaz.config.optconfig.RandomForestClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters": [[9, 2, 1, "", "RandomForestClassifierParametersMaxDepth"], [9, 2, 1, "", "RandomForestClassifierParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters.RandomForestClassifierParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters.RandomForestClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestMaxFeatures": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "LOG2"], [9, 3, 1, "", "SQRT"]], "optunaz.config.optconfig.RandomForestRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters": [[9, 2, 1, "", "RandomForestRegressorParametersMaxDepth"], [9, 2, 1, "", "RandomForestRegressorParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters.RandomForestRegressorParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters.RandomForestRegressorParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RegressionScore": [[9, 3, 1, "", "EXPLAINED_VARIANCE"], [9, 3, 1, "", "MAX_ERROR"], [9, 3, 1, "", "NEG_MEAN_ABSOLUTE_ERROR"], [9, 3, 1, "", "NEG_MEAN_SQUARED_ERROR"], [9, 3, 1, "", "NEG_MEDIAN_ABSOLUTE_ERROR"], [9, 3, 1, "", "R2"]], "optunaz.config.optconfig.Ridge": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Ridge.Parameters": [[9, 2, 1, "", "Alpha"], [9, 3, 1, "", "alpha"]], "optunaz.config.optconfig.Ridge.Parameters.Alpha": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVC": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.SVC.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "Gamma"], [9, 2, 1, "", "SVCParametersParameterC"], [9, 3, 1, "", "gamma"]], "optunaz.config.optconfig.SVC.Parameters.Gamma": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVC.Parameters.SVCParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVR": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.SVR.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "SVRParametersGamma"], [9, 2, 1, "", "SVRParametersParameterC"], [9, 3, 1, "", "gamma"]], "optunaz.config.optconfig.SVR.Parameters.SVRParametersGamma": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVR.Parameters.SVRParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.XGBRegressor.Parameters": [[9, 2, 1, "", "LearningRate"], [9, 2, 1, "", "MaxDepth"], [9, 2, 1, "", "NEstimators"], [9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.XGBRegressor.Parameters.LearningRate": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor.Parameters.MaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor.Parameters.NEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.datareader": [[8, 2, 1, "", "Dataset"], [8, 1, 1, "", "deduplicate"], [8, 1, 1, "", "isvalid"], [8, 1, 1, "", "merge"], [8, 1, 1, "", "read_data"], [8, 1, 1, "", "split"], [8, 1, 1, "", "transform"]], "optunaz.datareader.Dataset": [[8, 3, 1, "", "aux_column"], [8, 3, 1, "", "aux_transform"], [8, 4, 1, "", "check_sets"], [8, 3, 1, "", "deduplication_strategy"], [8, 4, 1, "", "get_merged_sets"], [8, 4, 1, "", "get_sets"], [8, 3, 1, "", "input_column"], [8, 3, 1, "", "intermediate_test_dataset_file"], [8, 3, 1, "", "intermediate_training_dataset_file"], [8, 3, 1, "", "log_transform"], [8, 3, 1, "", "log_transform_base"], [8, 3, 1, "", "log_transform_negative"], [8, 3, 1, "", "log_transform_unit_conversion"], [8, 3, 1, "", "probabilistic_threshold_representation"], [8, 3, 1, "", "probabilistic_threshold_representation_std"], [8, 3, 1, "", "probabilistic_threshold_representation_threshold"], [8, 3, 1, "", "response_column"], [8, 3, 1, "", "response_type"], [8, 3, 1, "", "save_intermediate_files"], [8, 3, 1, "", "split_strategy"], [8, 3, 1, "", "test_dataset_file"], [8, 3, 1, "", "training_dataset_file"]], "optunaz.descriptors": [[8, 2, 1, "", "AmorProtDescriptors"], [8, 2, 1, "", "Avalon"], [8, 2, 1, "", "CanonicalSmiles"], [8, 2, 1, "", "CompositeDescriptor"], [8, 2, 1, "", "ECFP"], [8, 2, 1, "", "ECFP_counts"], [8, 2, 1, "", "FittedSklearnScaler"], [8, 2, 1, "", "GenericScaffold"], [8, 2, 1, "", "JazzyDescriptors"], [8, 2, 1, "", "MACCS_keys"], [8, 2, 1, "", "MAPC"], [8, 2, 1, "", "MolDescriptor"], [8, 5, 1, "", "NoValidSmiles"], [8, 2, 1, "", "PathFP"], [8, 2, 1, "", "PhyschemDescriptors"], [8, 2, 1, "", "PrecomputedDescriptorFromFile"], [8, 2, 1, "", "RdkitDescriptor"], [8, 2, 1, "", "Scaffold"], [8, 2, 1, "", "ScaledDescriptor"], [8, 5, 1, "", "ScalingFittingError"], [8, 2, 1, "", "SmilesAndSideInfoFromFile"], [8, 2, 1, "", "SmilesFromFile"], [8, 2, 1, "", "UnfittedSklearnScaler"], [8, 2, 1, "", "UnscaledJazzyDescriptors"], [8, 2, 1, "", "UnscaledMAPC"], [8, 2, 1, "", "UnscaledPhyschemDescriptors"], [8, 2, 1, "", "UnscaledZScalesDescriptors"], [8, 2, 1, "", "ValidDescriptor"], [8, 2, 1, "", "ZScalesDescriptors"], [8, 1, 1, "", "descriptor_from_config"], [8, 1, 1, "", "mol_from_smi"], [8, 1, 1, "", "numpy_from_rdkit"]], "optunaz.descriptors.AmorProtDescriptors": [[8, 2, 1, "", "AmorProt"], [8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.AmorProtDescriptors.AmorProt": [[8, 4, 1, "", "T"], [8, 4, 1, "", "fingerprint"]], "optunaz.descriptors.Avalon": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.Avalon.Parameters": [[8, 3, 1, "", "nBits"]], "optunaz.descriptors.CanonicalSmiles": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.CompositeDescriptor": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "fp_info"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.CompositeDescriptor.Parameters": [[8, 3, 1, "", "descriptors"]], "optunaz.descriptors.ECFP": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ECFP.Parameters": [[8, 3, 1, "", "nBits"], [8, 3, 1, "", "radius"], [8, 3, 1, "", "returnRdkit"]], "optunaz.descriptors.ECFP_counts": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ECFP_counts.Parameters": [[8, 3, 1, "", "nBits"], [8, 3, 1, "", "radius"], [8, 3, 1, "", "useFeatures"]], "optunaz.descriptors.FittedSklearnScaler": [[8, 4, 1, "", "get_fitted_scaler"], [8, 3, 1, "", "name"], [8, 3, 1, "", "saved_params"]], "optunaz.descriptors.GenericScaffold": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.JazzyDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.JazzyDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "jazzy_filters"], [8, 3, 1, "", "jazzy_names"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.MACCS_keys": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.MAPC": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.MAPC.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "maxRadius"], [8, 3, 1, "", "nPermutations"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.MolDescriptor": [[8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "parallel_compute_descriptor"]], "optunaz.descriptors.PathFP": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PathFP.Parameters": [[8, 3, 1, "", "fpSize"], [8, 3, 1, "", "maxPath"]], "optunaz.descriptors.PhyschemDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PhyschemDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "rdkit_names"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.PrecomputedDescriptorFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "inference_parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PrecomputedDescriptorFromFile.Parameters": [[8, 3, 1, "", "file"], [8, 3, 1, "", "input_column"], [8, 3, 1, "", "response_column"]], "optunaz.descriptors.RdkitDescriptor": [[8, 4, 1, "", "calculate_from_mol"], [8, 4, 1, "", "calculate_from_smi"]], "optunaz.descriptors.Scaffold": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ScaledDescriptor": [[8, 2, 1, "", "ScaledDescriptorParameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"], [8, 4, 1, "", "set_unfitted_scaler_data"]], "optunaz.descriptors.ScaledDescriptor.ScaledDescriptorParameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.SmilesAndSideInfoFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.SmilesAndSideInfoFromFile.Parameters": [[8, 2, 1, "", "Aux_Weight_Pc"], [8, 3, 1, "", "aux_weight_pc"], [8, 3, 1, "", "file"], [8, 3, 1, "", "input_column"]], "optunaz.descriptors.SmilesAndSideInfoFromFile.Parameters.Aux_Weight_Pc": [[8, 3, 1, "", "high"], [8, 3, 1, "", "low"], [8, 3, 1, "", "q"]], "optunaz.descriptors.SmilesFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnfittedSklearnScaler": [[8, 2, 1, "", "MolData"], [8, 4, 1, "", "get_fitted_scaler_for_fp"], [8, 3, 1, "", "mol_data"], [8, 3, 1, "", "name"]], "optunaz.descriptors.UnfittedSklearnScaler.MolData": [[8, 3, 1, "", "file_path"], [8, 3, 1, "", "smiles_column"]], "optunaz.descriptors.UnscaledJazzyDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledJazzyDescriptors.Parameters": [[8, 3, 1, "", "jazzy_filters"], [8, 3, 1, "", "jazzy_names"]], "optunaz.descriptors.UnscaledMAPC": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledMAPC.Parameters": [[8, 3, 1, "", "maxRadius"], [8, 3, 1, "", "nPermutations"]], "optunaz.descriptors.UnscaledPhyschemDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledPhyschemDescriptors.Parameters": [[8, 3, 1, "", "rdkit_names"]], "optunaz.descriptors.UnscaledZScalesDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ValidDescriptor": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ZScalesDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ZScalesDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "scaler"]], "optunaz.evaluate": [[8, 1, 1, "", "get_merged_train_score"], [8, 1, 1, "", "get_scores"], [8, 1, 1, "", "get_train_test_scores"], [8, 1, 1, "", "score_all"], [8, 1, 1, "", "score_all_smiles"]], "optunaz.explainability": [[8, 1, 1, "", "ExplainPreds"], [8, 1, 1, "", "ShapExplainer"], [8, 1, 1, "", "explain_ECFP"], [8, 1, 1, "", "get_ecfp_fpinfo"], [8, 1, 1, "", "get_ecfpcount_fpinfo"], [8, 1, 1, "", "get_fp_info"], [8, 1, 1, "", "runShap"]], "optunaz.metircs": [[8, 1, 1, "", "auc_pr_cal"], [8, 1, 1, "", "bedroc_score"], [8, 1, 1, "", "concordance_index"], [8, 1, 1, "", "validate_cls_input"]], "optunaz.model_writer": [[8, 2, 1, "", "Predictor"], [8, 2, 1, "", "QSARtunaModel"], [8, 1, 1, "", "get_metadata"], [8, 1, 1, "", "get_transform"], [8, 1, 1, "", "perform_ptr"], [8, 1, 1, "", "save_model"], [8, 1, 1, "", "wrap_model"]], "optunaz.model_writer.Predictor": [[8, 4, 1, "", "explain"], [8, 4, 1, "", "predict"], [8, 4, 1, "", "predict_proba"], [8, 4, 1, "", "predict_uncert"]], "optunaz.model_writer.QSARtunaModel": [[8, 3, 1, "", "aux_transform"], [8, 3, 1, "", "descriptor"], [8, 3, 1, "", "metadata"], [8, 3, 1, "", "mode"], [8, 4, 1, "", "predict_from_smiles"], [8, 3, 1, "", "predictor"], [8, 3, 1, "", "transform"]], "optunaz.objective": [[8, 5, 1, "", "NoValidDescriptors"], [8, 2, 1, "", "Objective"], [8, 1, 1, "", "null_scores"]], "optunaz.objective.Objective": [[8, 3, 1, "", "cache"], [8, 3, 1, "", "optconfig"], [8, 3, 1, "", "train_aux"], [8, 3, 1, "", "train_smiles"], [8, 3, 1, "", "train_y"]], "optunaz.optbuild": [[8, 1, 1, "", "main"]], "optunaz.predict": [[8, 5, 1, "", "ArgsError"], [8, 5, 1, "", "AuxCovariateMissing"], [8, 5, 1, "", "PrecomputedError"], [8, 5, 1, "", "UncertaintyError"], [8, 1, 1, "", "check_precomp_args"], [8, 1, 1, "", "main"], [8, 1, 1, "", "validate_args"], [8, 1, 1, "", "validate_aux"], [8, 1, 1, "", "validate_set_precomputed"], [8, 1, 1, "", "validate_uncertainty"]], "optunaz.schemagen": [[8, 1, 1, "", "doctitle"], [8, 1, 1, "", "main"], [8, 1, 1, "", "patch_schema_generic"], [8, 1, 1, "", "patch_schema_optunaz"], [8, 1, 1, "", "type_base_schema"]], "optunaz.three_step_opt_build_merge": [[8, 1, 1, "", "base_chemprop_params"], [8, 1, 1, "", "build_best"], [8, 1, 1, "", "build_merged"], [8, 1, 1, "", "buildconfig_best"], [8, 1, 1, "", "log_scores"], [8, 1, 1, "", "optimize"], [8, 1, 1, "", "run_study"], [8, 1, 1, "", "split_optimize"]], "optunaz.utils": [[11, 0, 0, "-", "enums"], [10, 0, 0, "-", "files_paths"], [10, 1, 1, "", "load_df_from_file"], [10, 0, 0, "-", "load_json"], [10, 1, 1, "", "md5_hash"], [10, 1, 1, "", "mkdict"], [10, 0, 0, "-", "mlflow"], [12, 0, 0, "-", "preprocessing"], [10, 1, 1, "", "remove_failed_idx"], [10, 0, 0, "-", "schema"], [10, 0, 0, "-", "tracking"]], "optunaz.utils.enums": [[11, 2, 1, "", "MlflowLogParams"], [11, 2, 1, "", "StudyUserAttrs"], [11, 2, 1, "", "TrialParams"], [11, 2, 1, "", "TrialUserAttrs"], [11, 0, 0, "-", "building_configuration_enum"], [11, 0, 0, "-", "configuration_enum"], [11, 0, 0, "-", "interface_enum"], [11, 0, 0, "-", "model_runner_enum"], [11, 0, 0, "-", "objective_enum"], [11, 0, 0, "-", "optimization_configuration_enum"], [11, 0, 0, "-", "prediction_configuration_enum"], [11, 0, 0, "-", "return_values_enum"], [11, 0, 0, "-", "visualization_enum"]], "optunaz.utils.enums.MlflowLogParams": [[11, 3, 1, "", "TRIAL_NUMBER"]], "optunaz.utils.enums.StudyUserAttrs": [[11, 3, 1, "", "OPTCONFIG"]], "optunaz.utils.enums.TrialParams": [[11, 3, 1, "", "ALGORITHM_HASH"], [11, 3, 1, "", "ALGORITHM_NAME"], [11, 3, 1, "", "DESCRIPTOR"]], "optunaz.utils.enums.TrialUserAttrs": [[11, 3, 1, "", "TEST_SCORES"], [11, 3, 1, "", "TRAIN_SCORES"]], "optunaz.utils.enums.building_configuration_enum": [[11, 2, 1, "", "BuildingConfigurationEnum"]], "optunaz.utils.enums.building_configuration_enum.BuildingConfigurationEnum": [[11, 3, 1, "", "GENERAL_CLASSIFIER"], [11, 3, 1, "", "GENERAL_HYPERPARAMETERS"], [11, 3, 1, "", "GENERAL_REGRESSOR"], [11, 3, 1, "", "METADATA"], [11, 3, 1, "", "METADATA_BESTTRIAL"], [11, 3, 1, "", "METADATA_BESTVALUE"]], "optunaz.utils.enums.configuration_enum": [[11, 2, 1, "", "ConfigurationEnum"]], "optunaz.utils.enums.configuration_enum.ConfigurationEnum": [[11, 3, 1, "", "ALGORITHMS"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER_LEARNING_RATE"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_ENSEMBLE"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_ESTIMATOR"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_METHOD"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_N_FOLDS"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_PARAMS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_ACTIVATION"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_AGGREGATION"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_AGGREGATION_NORM"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_BATCH_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_CLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_DEPTH"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_DROPOUT"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_ENSEMBLE_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_EPOCHS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FEATURES_GENERATOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FFN_HIDDEN_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FFN_NUM_LAYERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FINAL_LR_RATIO_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FRZN"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HIDDEN_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HYPEROPT_CLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HYPEROPT_REGRESSOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_INIT_LR_RATIO_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_MAX_LR_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_NUM_ITERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_PRETRAINED_MODEL"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_REGRESSOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_SEARCH_PARAMETER_LEVEL"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_STARTUP_RANDOM_ITERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_WARMUP_EPOCHS_RATIO"], [11, 3, 1, "", "ALGORITHMS_HIGH"], [11, 3, 1, "", "ALGORITHMS_INTERFACE_SKLEARN"], [11, 3, 1, "", "ALGORITHMS_INTERFACE_XGBOOST"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORSCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORSREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_METRIC"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_N_NEIGHBORS"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_WEIGHTS"], [11, 3, 1, "", "ALGORITHMS_LASSO"], [11, 3, 1, "", "ALGORITHMS_LASSO_ALPHA"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION_C"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION_SOLVER"], [11, 3, 1, "", "ALGORITHMS_LOW"], [11, 3, 1, "", "ALGORITHMS_MAPIE"], [11, 3, 1, "", "ALGORITHMS_MAPIE_ALPHA"], [11, 3, 1, "", "ALGORITHMS_PLSREGRESSION"], [11, 3, 1, "", "ALGORITHMS_PLSREGRESSION_N_COMPONENTS"], [11, 3, 1, "", "ALGORITHMS_PRF"], [11, 3, 1, "", "ALGORITHMS_PRF_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_PRF_MAX_FEATURES"], [11, 3, 1, "", "ALGORITHMS_PRF_MINPYSUMLEAF"], [11, 3, 1, "", "ALGORITHMS_PRF_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_PRF_USE_PY_GINI"], [11, 3, 1, "", "ALGORITHMS_PRF_USE_PY_LEAFS"], [11, 3, 1, "", "ALGORITHMS_Q"], [11, 3, 1, "", "ALGORITHMS_RFCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_RFREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_RF_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_RF_MAX_FEATURES"], [11, 3, 1, "", "ALGORITHMS_RF_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_RIDGE"], [11, 3, 1, "", "ALGORITHMS_RIDGE_ALPHA"], [11, 3, 1, "", "ALGORITHMS_SVC"], [11, 3, 1, "", "ALGORITHMS_SVC_C"], [11, 3, 1, "", "ALGORITHMS_SVC_GAMMA"], [11, 3, 1, "", "ALGORITHMS_SVR"], [11, 3, 1, "", "ALGORITHMS_SVR_C"], [11, 3, 1, "", "ALGORITHMS_SVR_GAMMA"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_LEARNING_RATE"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_N_ESTIMATORS"], [11, 3, 1, "", "DATA"], [11, 3, 1, "", "DATA_INPUTCOLUMN"], [11, 3, 1, "", "DATA_RESPONSECOLUMN"], [11, 3, 1, "", "DATA_TEST"], [11, 3, 1, "", "DATA_TRAINING"], [11, 3, 1, "", "DESCRIPTORS"], [11, 3, 1, "", "DESCRIPTORS_AMORPROT"], [11, 3, 1, "", "DESCRIPTORS_AVALON"], [11, 3, 1, "", "DESCRIPTORS_AVALON_NBITS"], [11, 3, 1, "", "DESCRIPTORS_COMPOSITE"], [11, 3, 1, "", "DESCRIPTORS_ECFP"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS_RADIUS"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS_USEFEATURES"], [11, 3, 1, "", "DESCRIPTORS_ECFP_NBITS"], [11, 3, 1, "", "DESCRIPTORS_ECFP_RADIUS"], [11, 3, 1, "", "DESCRIPTORS_JAZZY"], [11, 3, 1, "", "DESCRIPTORS_JAZZY_JAZZYNAMES"], [11, 3, 1, "", "DESCRIPTORS_MACCSKEYS"], [11, 3, 1, "", "DESCRIPTORS_MAPC"], [11, 3, 1, "", "DESCRIPTORS_MAPC_MAXRADIUS"], [11, 3, 1, "", "DESCRIPTORS_MAPC_NPERMUTATIONS"], [11, 3, 1, "", "DESCRIPTORS_PATHFP"], [11, 3, 1, "", "DESCRIPTORS_PATHFP_FPSIZE"], [11, 3, 1, "", "DESCRIPTORS_PATHFP_MAXPATH"], [11, 3, 1, "", "DESCRIPTORS_PHYSCHEM"], [11, 3, 1, "", "DESCRIPTORS_PHYSCHEM_RDKITNAMES"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_FILE"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_INPUT_COLUMNN"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_RESPONSE_COLUMN"], [11, 3, 1, "", "DESCRIPTORS_SCALED"], [11, 3, 1, "", "DESCRIPTORS_SCALED_DESCRIPTOR"], [11, 3, 1, "", "DESCRIPTORS_SCALED_DESCRIPTOR_PARAMETERS"], [11, 3, 1, "", "DESCRIPTORS_SMILES"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_AUX_WEIGHT_PC"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_FILE"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_INPUT_COLUMN"], [11, 3, 1, "", "DESCRIPTORS_UNSC_JAZZY"], [11, 3, 1, "", "DESCRIPTORS_UNSC_MAPC"], [11, 3, 1, "", "DESCRIPTORS_UNSC_PHYSCHEM"], [11, 3, 1, "", "DESCRIPTORS_UNSC_ZSCALES"], [11, 3, 1, "", "DESCRIPTORS_ZSCALES"], [11, 3, 1, "", "GENERAL_DISABLED"], [11, 3, 1, "", "GENERAL_PARAMETERS"], [11, 3, 1, "", "SETTINGS"], [11, 3, 1, "", "SETTINGS_CROSS_VALIDATION"], [11, 3, 1, "", "SETTINGS_DIRECTION"], [11, 3, 1, "", "SETTINGS_MODE"], [11, 3, 1, "", "SETTINGS_MODE_CLASSIFICATION"], [11, 3, 1, "", "SETTINGS_MODE_REGRESSION"], [11, 3, 1, "", "SETTINGS_N_JOBS"], [11, 3, 1, "", "SETTINGS_N_TRIALS"], [11, 3, 1, "", "SETTINGS_SHUFFLE"], [11, 3, 1, "", "TASK"], [11, 3, 1, "", "TASK_BUILDING"], [11, 3, 1, "", "TASK_OPTIMIZATION"]], "optunaz.utils.enums.interface_enum": [[11, 2, 1, "", "InterfaceEnum"]], "optunaz.utils.enums.interface_enum.InterfaceEnum": [[11, 3, 1, "", "CALIBRATED_SET"], [11, 3, 1, "", "CHEMPROP_SET"], [11, 3, 1, "", "PRF_SET"], [11, 3, 1, "", "SKLEARN_SET"], [11, 3, 1, "", "XGBOOST_SET"]], "optunaz.utils.enums.model_runner_enum": [[11, 2, 1, "", "ModelRunnerDataframeEnum"]], "optunaz.utils.enums.model_runner_enum.ModelRunnerDataframeEnum": [[11, 3, 1, "", "SET"], [11, 3, 1, "", "SMILES"], [11, 3, 1, "", "TEST"], [11, 3, 1, "", "TRAIN"], [11, 3, 1, "", "Y_PRED"], [11, 3, 1, "", "Y_TRUE"]], "optunaz.utils.enums.objective_enum": [[11, 2, 1, "", "ObjectiveEnum"]], "optunaz.utils.enums.objective_enum.ObjectiveEnum": [[11, 3, 1, "", "ATTRIBUTE_TRIAL_TRAIN_SCORE"], [11, 3, 1, "", "EXTRA_COLUMN_BESTHIT"]], "optunaz.utils.enums.optimization_configuration_enum": [[11, 2, 1, "", "OptimizationConfigurationEnum"]], "optunaz.utils.enums.prediction_configuration_enum": [[11, 2, 1, "", "PredictionConfigurationEnum"]], "optunaz.utils.enums.prediction_configuration_enum.PredictionConfigurationEnum": [[11, 3, 1, "", "DATA_DATASET"]], "optunaz.utils.enums.return_values_enum": [[11, 2, 1, "", "SklearnReturnValueEnum"], [11, 2, 1, "", "XGBoostReturnValueEnum"]], "optunaz.utils.enums.return_values_enum.SklearnReturnValueEnum": [[11, 3, 1, "", "CROSS_VALIDATE_FIT_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_SCORE_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_TEST_SCORE"], [11, 3, 1, "", "CROSS_VALIDATE_TRAIN_SCORE"]], "optunaz.utils.enums.return_values_enum.XGBoostReturnValueEnum": [[11, 3, 1, "", "CROSS_VALIDATE_FIT_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_SCORE_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_TEST_SCORE"], [11, 3, 1, "", "CROSS_VALIDATE_TRAIN_SCORE"]], "optunaz.utils.enums.visualization_enum": [[11, 2, 1, "", "VisualizationEnum"]], "optunaz.utils.enums.visualization_enum.VisualizationEnum": [[11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_INTERMEDIATE_VALUES"], [11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_NUMBER"], [11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_TRIAL_ID"], [11, 3, 1, "", "VISUALIZATION"], [11, 3, 1, "", "VISUALIZATION_CLASSIFIER"], [11, 3, 1, "", "VISUALIZATION_FILE_FORMAT"], [11, 3, 1, "", "VISUALIZATION_OUTPUT_FOLDER"], [11, 3, 1, "", "VISUALIZATION_PLOTS"], [11, 3, 1, "", "VISUALIZATION_PLOTS_CONTOUR"], [11, 3, 1, "", "VISUALIZATION_PLOTS_HISTORY"], [11, 3, 1, "", "VISUALIZATION_PLOTS_PARALLEL_COORDINATE"], [11, 3, 1, "", "VISUALIZATION_PLOTS_SLICE"], [11, 3, 1, "", "VISUALIZATION_REGRESSOR"], [11, 3, 1, "", "VISUALIZATION_USE_XVFB"]], "optunaz.utils.files_paths": [[10, 1, 1, "", "attach_root_path"], [10, 1, 1, "", "move_up_directory"]], "optunaz.utils.load_json": [[10, 1, 1, "", "loadJSON"]], "optunaz.utils.mlflow": [[10, 2, 1, "", "MLflowCallback"], [10, 1, 1, "", "add_ellipsis"], [10, 1, 1, "", "shorten_names"]], "optunaz.utils.mlflow.MLflowCallback": [[10, 3, 1, "", "optconfig"], [10, 4, 1, "", "prepare_tags"], [10, 4, 1, "", "tmp_buildconfig"], [10, 3, 1, "", "tracking_uri"], [10, 3, 1, "", "trial_number_offset"]], "optunaz.utils.preprocessing": [[12, 0, 0, "-", "deduplicator"], [12, 0, 0, "-", "splitter"], [12, 0, 0, "-", "transform"]], "optunaz.utils.preprocessing.deduplicator": [[12, 2, 1, "", "Deduplicator"], [12, 2, 1, "", "KeepAllNoDeduplication"], [12, 2, 1, "", "KeepAvg"], [12, 2, 1, "", "KeepFirst"], [12, 2, 1, "", "KeepLast"], [12, 2, 1, "", "KeepMax"], [12, 2, 1, "", "KeepMedian"], [12, 2, 1, "", "KeepMin"], [12, 2, 1, "", "KeepRandom"]], "optunaz.utils.preprocessing.deduplicator.Deduplicator": [[12, 4, 1, "", "dedup"]], "optunaz.utils.preprocessing.deduplicator.KeepAllNoDeduplication": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepAvg": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepFirst": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepLast": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMax": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMedian": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMin": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepRandom": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter": [[12, 2, 1, "", "GroupingSplitter"], [12, 2, 1, "", "HistogramStratifiedShuffleSplit"], [12, 2, 1, "", "KFold"], [12, 2, 1, "", "NoSplitting"], [13, 2, 1, "", "Predefined"], [13, 2, 1, "", "Random"], [13, 2, 1, "", "ScaffoldSplit"], [12, 2, 1, "", "SklearnSplitter"], [12, 2, 1, "", "Splitter"], [13, 2, 1, "", "Stratified"], [13, 2, 1, "", "Temporal"], [12, 1, 1, "", "butina_cluster"], [12, 1, 1, "", "fd_bin"], [12, 1, 1, "", "stratify"]], "optunaz.utils.preprocessing.splitter.GroupingSplitter": [[12, 4, 1, "", "groups"]], "optunaz.utils.preprocessing.splitter.HistogramStratifiedShuffleSplit": [[12, 3, 1, "", "bins"], [12, 4, 1, "", "get_n_splits"], [12, 3, 1, "", "n_splits"], [12, 3, 1, "", "random_state"], [12, 4, 1, "", "split"], [12, 3, 1, "", "test_fraction"]], "optunaz.utils.preprocessing.splitter.KFold": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "random_state"], [12, 3, 1, "", "shuffle"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.NoSplitting": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Predefined": [[12, 3, 1, "", "column_name"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 4, 1, "", "groups"], [12, 3, 1, "", "name"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Random": [[12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter.ScaffoldSplit": [[12, 3, 1, "", "bins"], [12, 3, 1, "", "butina_cluster"], [12, 4, 1, "", "get_n_splits"], [12, 4, 1, "", "get_sklearn_splitter"], [13, 4, 1, "", "groups"], [12, 3, 1, "", "make_scaffold_generic"], [12, 3, 1, "", "name"], [12, 3, 1, "", "random_state"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.SklearnSplitter": [[12, 4, 1, "", "get_n_splits"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Splitter": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Stratified": [[12, 3, 1, "", "bins"], [12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter.Temporal": [[12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.transform": [[12, 2, 1, "", "AmorProt"], [12, 2, 1, "", "AuxTransformer"], [12, 2, 1, "", "DataTransform"], [12, 5, 1, "", "DataTransformError"], [12, 2, 1, "", "LogBase"], [12, 2, 1, "", "LogNegative"], [14, 2, 1, "", "ModelDataTransform"], [14, 2, 1, "", "PTRTransform"], [14, 2, 1, "", "VectorFromColumn"], [14, 2, 1, "", "ZScales"]], "optunaz.utils.preprocessing.transform.AmorProt": [[12, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.AuxTransformer": [[12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.DataTransform": [[12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.LogBase": [[12, 3, 1, "", "LOG"], [12, 3, 1, "", "LOG10"], [12, 3, 1, "", "LOG2"]], "optunaz.utils.preprocessing.transform.LogNegative": [[12, 3, 1, "", "FALSE"], [12, 3, 1, "", "TRUE"]], "optunaz.utils.preprocessing.transform.ModelDataTransform": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "base_dict"], [12, 3, 1, "", "base_negation"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 3, 1, "", "reverse_dict"], [12, 4, 1, "", "reverse_transform"], [12, 4, 1, "", "reverse_transform_df"], [12, 4, 1, "", "reverse_transform_one"], [12, 4, 1, "", "transform"], [12, 4, 1, "", "transform_df"], [12, 4, 1, "", "transform_one"]], "optunaz.utils.preprocessing.transform.ModelDataTransform.Parameters": [[12, 3, 1, "", "base"], [12, 3, 1, "", "conversion"], [12, 3, 1, "", "negation"]], "optunaz.utils.preprocessing.transform.PTRTransform": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "reverse_transform"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.PTRTransform.Parameters": [[12, 3, 1, "", "std"], [12, 3, 1, "", "threshold"]], "optunaz.utils.preprocessing.transform.VectorFromColumn": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.VectorFromColumn.Parameters": [[12, 3, 1, "", "delimiter"]], "optunaz.utils.preprocessing.transform.ZScales": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.schema": [[10, 1, 1, "", "add_boolean_guards_for_schema_properties"], [10, 1, 1, "", "addsibling"], [10, 1, 1, "", "addtitles"], [10, 1, 1, "", "copytitle"], [10, 1, 1, "", "create_dependency"], [10, 1, 1, "", "delsibling"], [10, 1, 1, "", "getref"], [10, 1, 1, "", "remove_schema_properties"], [10, 1, 1, "", "replaceenum"], [10, 1, 1, "", "replacekey"], [10, 1, 1, "", "replacevalue"]], "optunaz.utils.tracking": [[10, 2, 1, "", "BuildTrackingData"], [10, 2, 1, "", "Datapoint"], [10, 2, 1, "", "InternalTrackingCallback"], [10, 2, 1, "", "TrackingData"], [10, 1, 1, "", "get_authorization_header"], [10, 1, 1, "", "removeprefix"], [10, 1, 1, "", "round_scores"], [10, 1, 1, "", "track_build"]], "optunaz.utils.tracking.BuildTrackingData": [[10, 3, 1, "", "response_column_name"], [10, 3, 1, "", "test_points"], [10, 3, 1, "", "test_scores"]], "optunaz.utils.tracking.Datapoint": [[10, 3, 1, "", "expected"], [10, 3, 1, "", "predicted"], [10, 3, 1, "", "smiles"]], "optunaz.utils.tracking.InternalTrackingCallback": [[10, 3, 1, "", "optconfig"], [10, 3, 1, "", "trial_number_offset"]], "optunaz.utils.tracking.TrackingData": [[10, 3, 1, "", "all_cv_test_scores"], [10, 3, 1, "", "buildconfig"], [10, 3, 1, "", "scoring"], [10, 3, 1, "", "trial_number"], [10, 3, 1, "", "trial_state"], [10, 3, 1, "", "trial_value"]], "optunaz.visualizer": [[8, 2, 1, "", "Visualizer"]], "optunaz.visualizer.Visualizer": [[8, 4, 1, "", "plot_by_configuration"], [8, 4, 1, "", "plot_contour"], [8, 4, 1, "", "plot_history"], [8, 4, 1, "", "plot_parallel_coordinate"], [8, 4, 1, "", "plot_slice"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:attribute", "4": "py:method", "5": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "method", "Python method"], "5": ["py", "exception", "Python exception"]}, "titleterms": {"qsartuna": [0, 4, 6, 7], "\ud80c\udd9b": 0, "qsar": 0, "us": 0, "optim": [0, 6], "hyperparamet": 0, "tune": 0, "formerli": 0, "optuna": 0, "az": 0, "qptuna": 0, "background": [0, 6], "The": [0, 6], "three": [0, 6], "step": [0, 6], "process": [0, 6], "json": 0, "base": [0, 7], "command": 0, "line": 0, "interfac": 0, "configur": [0, 6], "file": [0, 6], "run": [0, 6], "via": 0, "singulart": 0, "submit": 0, "slurm": 0, "model": [0, 6], "option": [0, 6], "inspect": 0, "from": [0, 6, 7], "python": 0, "jupyt": 0, "notebook": 0, "ad": 0, "descriptor": [0, 3, 6, 8], "avail": [1, 2, 3, 13, 14], "algorithm": [1, 6], "adaboostclassifi": 1, "lasso": 1, "kneighborsclassifi": 1, "kneighborsregressor": 1, "logisticregress": 1, "plsregress": 1, "randomforestclassifi": 1, "randomforestregressor": 1, "ridg": 1, "svc": 1, "svr": 1, "xgbregressor": 1, "prfclassifi": 1, "chempropregressor": 1, "chempropclassifi": 1, "chemprophyperoptclassifi": 1, "chemprophyperoptregressor": 1, "chempropregressorpretrain": 1, "calibratedclassifiercvwithva": 1, "mapi": [1, 6], "dedupl": [2, 7, 12], "keepfirst": 2, "keeplast": 2, "keeprandom": 2, "keepmin": 2, "keepmax": 2, "keepavg": 2, "keepmedian": 2, "keepkeepallnodedupl": 2, "avalon": 3, "ecfp": 3, "ecfp_count": 3, "pathfp": 3, "maccs_kei": 3, "unscaledphyschemdescriptor": 3, "unscaledjazzydescriptor": 3, "unscaledzscalesdescriptor": 3, "physchemdescriptor": 3, "jazzydescriptor": 3, "precomputeddescriptorfromfil": 3, "zscale": [3, 14], "smilesfromfil": 3, "smilesandsideinfofromfil": 3, "scaleddescriptor": 3, "compositedescriptor": 3, "welcom": 4, "document": 4, "develop": 4, "optunaz": [5, 8, 9, 10, 11, 12], "cli": 6, "tutori": 6, "thi": 6, "prepar": 6, "regress": 6, "exampl": 6, "creat": 6, "visual": [6, 8], "progress": 6, "pick": 6, "best": [6, 7], "trial": 6, "build": 6, "merg": 6, "preprocess": [6, 7, 12], "split": [6, 7], "data": [6, 7], "train": 6, "test": 6, "set": 6, "remov": 6, "duplic": [6, 7], "dataset": 6, "choos": 6, "score": 6, "function": 6, "advanc": 6, "functoinail": 6, "probabilist": [6, 7], "random": [6, 7, 13], "forest": 6, "prf": 6, "interlud": [6, 7], "cautionari": 6, "advic": 6, "y": 6, "respons": 6, "column": 6, "valid": 6, "chemprop": 6, "simpl": 6, "separ": 6, "shallow": 6, "method": 6, "default": 6, "behavior": 6, "turn": 6, "hyperopt": 6, "within": [6, 7], "functionail": 6, "veri": 6, "larg": 6, "comput": 6, "cost": 6, "A": 6, "note": 6, "mpnn": 6, "search": 6, "space": 6, "side": 6, "inform": 6, "multi": 6, "task": 6, "learn": 6, "mtl": 6, "combin": 6, "onli": 6, "recommend": 6, "long": 6, "time": 6, "pre": 6, "adapt": 6, "transfer": 6, "fingerprint": 6, "encod": 6, "latent": 6, "represent": [6, 7], "probabl": 6, "calibr": 6, "classif": 6, "uncertainti": 6, "estim": 6, "vennab": 6, "ensembl": 6, "dropout": 6, "explain": [6, 8], "shap": 6, "interpret": 6, "log": [6, 7], "transform": [6, 7, 12, 14], "covari": 6, "one": 6, "e": 6, "g": 6, "dose": 6, "point": 6, "co": 6, "variat": 6, "proteochemometr": 6, "pcm": 6, "more": 6, "vectorfromsmil": 6, "z": 6, "scale": 6, "object": [6, 8], "priorit": 6, "perform": [6, 7], "standard": 6, "deviat": 6, "further": 6, "precomput": 6, "introduct": 7, "translat": 7, "sdf": 7, "csv": 7, "need": 7, "deal": 7, "compar": 7, "differ": 7, "strategi": 7, "tempor": [7, 13], "stratifi": [7, 13], "scaffold": 7, "input": 7, "user": 7, "import": 7, "logarithm": 7, "dataread": [7, 8], "threshold": 7, "ptr": [7, 14], "experiment": 7, "error": 7, "definit": 7, "implement": 7, "conclus": 7, "calcul": 7, "evalu": [7, 8], "reproduc": 7, "practic": 7, "packag": [8, 9, 10, 11, 12], "subpackag": [8, 10], "submodul": [8, 9, 10, 11, 12], "builder": 8, "modul": [8, 9, 10, 11, 12], "metirc": 8, "model_writ": 8, "optbuild": 8, "predict": 8, "schemagen": 8, "three_step_opt_build_merg": 8, "content": [8, 9, 10, 11, 12], "config": 9, "build_from_opt": 9, "buildconfig": 9, "optconfig": 9, "util": [10, 11, 12], "files_path": 10, "load_json": 10, "mlflow": 10, "schema": 10, "track": 10, "enum": 11, "building_configuration_enum": 11, "configuration_enum": 11, "interface_enum": 11, "model_runner_enum": 11, "objective_enum": 11, "optimization_configuration_enum": 11, "prediction_configuration_enum": 11, "return_values_enum": 11, "visualization_enum": 11, "splitter": [12, 13], "predefin": 13, "scaffoldsplit": 13, "modeldatatransform": 14, "vectorfromcolumn": 14}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["README", "algorithms", "deduplicator", "descriptors", "index", "modules", "notebooks/QSARtuna_Tutorial", "notebooks/preprocess_data", "optunaz", "optunaz.config", "optunaz.utils", "optunaz.utils.enums", "optunaz.utils.preprocessing", "splitters", "transform"], "filenames": ["README.md", "algorithms.rst", "deduplicator.rst", "descriptors.rst", "index.rst", "modules.rst", "notebooks/QSARtuna_Tutorial.ipynb", "notebooks/preprocess_data.ipynb", "optunaz.rst", "optunaz.config.rst", "optunaz.utils.rst", "optunaz.utils.enums.rst", "optunaz.utils.preprocessing.rst", "splitters.rst", "transform.rst"], "titles": ["QSARtuna \ud80c\udd9b: QSAR using Optimization for Hyperparameter Tuning (formerly Optuna AZ and QPTUNA)", "Available algorithms", "Available deduplicators", "Available descriptors", "Welcome to QSARtuna Documentation!", "optunaz", "QSARtuna CLI Tutorial", "Preprocessing data for QSARtuna", "optunaz package", "optunaz.config package", "optunaz.utils package", "optunaz.utils.enums package", "optunaz.utils.preprocessing package", "Available splitters", "Available transform"], "terms": {"build": [0, 4, 7, 8, 9, 10, 11], "predict": [0, 1, 3, 5, 6, 7, 9, 10, 11], "compchem": 0, "develop": [0, 3, 8], "uncertainti": [0, 1, 4, 7, 8, 9, 12, 14], "quantif": 0, "explain": [0, 1, 4, 5, 9], "mind": 0, "thi": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 13], "librari": [0, 6, 7], "search": [0, 1, 3, 8, 9], "best": [0, 1, 8, 9], "ml": [0, 4, 9], "algorithm": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13], "molecular": [0, 1, 3, 4, 6, 7, 8, 9], "given": [0, 1, 3, 6, 7, 8, 9, 10], "data": [0, 1, 3, 4, 8, 9, 11, 12, 13, 14], "itself": [0, 6], "done": [0, 6], "emploi": [0, 3, 6, 7, 8], "latest": [0, 9], "state": [0, 6, 12], "art": [0, 6], "estim": [0, 1, 3, 4, 8, 9, 11], "packag": [0, 1, 3, 5, 6, 7], "further": [0, 9], "document": [0, 6, 7], "github": [0, 6, 8, 12], "page": 0, "here": [0, 3, 6, 7, 8, 9, 12, 13], "public": [0, 1, 3, 4, 6, 8, 9], "avail": [0, 4, 6, 8], "structur": [0, 1, 3, 6, 7, 8, 9], "around": [0, 6, 7], "train": [0, 1, 3, 4, 7, 8, 9, 11, 12, 13], "mani": [0, 1, 6, 9], "differ": [0, 1, 3, 6, 8, 9, 12], "paramet": [0, 1, 3, 6, 7, 8, 9, 11, 12, 13, 14], "onli": [0, 1, 3, 7, 8, 9, 12, 13], "dataset": [0, 1, 7, 8, 9, 11, 12], "usual": [0, 1, 6, 7, 9], "cross": [0, 1, 6, 9, 12], "valid": [0, 1, 3, 7, 8, 9, 11, 12], "pick": 0, "evalu": [0, 4, 5, 6], "its": [0, 1, 6, 9, 11], "perform": [0, 3, 8, 11, 12, 14], "test": [0, 1, 4, 7, 8, 9, 11, 12, 13], "prod": [0, 6], "re": [0, 6, 8], "merg": [0, 7, 8, 12], "ha": [0, 1, 6, 7, 8, 9, 12], "drawback": [0, 6], "left": [0, 6, 7], "result": [0, 1, 3, 6, 7, 8, 9], "big": [0, 6], "benefit": [0, 6], "final": [0, 1, 6, 9], "all": [0, 1, 3, 6, 7, 8, 9, 11, 12], "let": [0, 6, 7], "s": [0, 6, 7], "look": [0, 1, 6, 7, 9], "trivial": 0, "exampl": [0, 3, 7, 8, 9], "weight": [0, 1, 3, 6, 8, 9, 11], "set": [0, 3, 4, 7, 8, 9, 10, 11, 12, 13], "50": [0, 1, 3, 6, 8, 9], "molecul": [0, 1, 3, 6, 7, 8, 9, 12], "we": [0, 3, 6, 7, 8, 9, 12, 13], "start": [0, 4, 6, 7], "format": [0, 3, 6, 7, 8, 10], "It": [0, 1, 3, 6, 7, 8, 9], "contain": [0, 3, 6, 8], "four": 0, "main": [0, 3, 6, 7, 8], "section": [0, 6, 7], "locat": [0, 6], "column": [0, 3, 7, 8, 11, 12, 13, 14], "detail": [0, 3, 6, 7, 8, 9, 10], "about": [0, 6, 7, 8], "which": [0, 1, 3, 6, 7, 8, 9, 12], "below": [0, 3, 6, 7, 8], "task": [0, 3, 7, 8, 9, 11], "training_dataset_fil": [0, 6, 7, 8], "drd2": [0, 6], "subset": [0, 1, 6, 7, 9], "csv": [0, 3, 4, 6, 8], "input_column": [0, 3, 6, 7, 8, 11], "canon": [0, 6, 8, 12], "response_column": [0, 3, 6, 7, 8, 11], "molwt": [0, 6], "mode": [0, 6, 8, 9, 11], "regress": [0, 1, 7, 9, 11, 12], "cross_valid": [0, 6, 9, 11, 12], "5": [0, 1, 3, 6, 7, 8, 9, 12], "direct": [0, 1, 6, 9, 11], "maxim": [0, 1, 6, 9], "n_trial": [0, 6, 8, 9, 11], "100": [0, 1, 3, 6, 7, 8, 9, 10], "n_startup_tri": [0, 6, 8, 9], "30": [0, 1, 6, 9], "name": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ecfp": [0, 4, 6, 8, 9, 11], "radiu": [0, 3, 6, 8, 11], "3": [0, 1, 3, 4, 6, 7, 8, 9], "nbit": [0, 3, 6, 8, 9, 11], "2048": [0, 3, 6, 8], "maccs_kei": [0, 4, 6, 8, 11], "randomforestregressor": [0, 4, 6, 9, 11], "max_depth": [0, 1, 9, 11], "low": [0, 1, 3, 6, 7, 8, 9, 11], "2": [0, 1, 3, 6, 7, 8, 9, 12, 13], "high": [0, 1, 3, 6, 8, 9, 11], "32": [0, 1, 6, 9], "n_estim": [0, 1, 6, 9, 11], "10": [0, 1, 3, 6, 7, 8, 9, 12], "250": [0, 1, 6, 9], "max_featur": [0, 1, 9, 11], "auto": [0, 1, 6, 8, 9], "ridg": [0, 4, 6, 9, 11], "alpha": [0, 1, 6, 7, 8, 9, 11], "0": [0, 1, 3, 4, 6, 7, 8, 9, 12, 13], "lasso": [0, 4, 6, 9, 11], "xgbregressor": [0, 4, 6, 9, 11], "learning_r": [0, 1, 9, 11], "1": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13], "specifi": [0, 1, 6, 7, 8, 9, 11], "In": [0, 1, 3, 6, 7, 8, 9], "rel": [0, 6], "path": [0, 1, 3, 6, 7, 8, 9, 10], "folder": [0, 6, 7], "ar": [0, 1, 3, 6, 7, 8, 9, 11, 12, 13], "want": [0, 6, 7], "fold": [0, 1, 6, 7, 9, 12, 13], "valu": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "object": [0, 1, 5, 7, 9, 10, 11, 12], "function": [0, 1, 3, 4, 7, 8, 9, 10, 11, 12, 14], "standard": [0, 1, 7, 9, 12, 14], "scikit": [0, 6, 8, 12, 13], "learn": [0, 1, 3, 7, 8, 9, 12, 13], "have": [0, 3, 6, 7, 8, 9, 12], "total": [0, 6, 7], "trial": [0, 1, 9, 10, 11], "first": [0, 1, 3, 6, 7, 8, 9, 12], "startup": [0, 6], "should": [0, 1, 3, 6, 7, 8, 9, 12], "random": [0, 1, 4, 9, 12], "explor": [0, 6], "get": [0, 6, 7, 8], "stuck": 0, "earli": [0, 1, 6, 8, 9], "one": [0, 3, 7, 8, 9, 12, 13], "local": [0, 6], "minimum": [0, 1, 3, 8, 9, 12, 13], "two": [0, 1, 6, 7, 9, 12, 13], "free": [0, 3, 8], "pair": [0, 6, 8], "ani": [0, 3, 6, 7, 8, 9, 12], "when": [0, 1, 6, 7, 8, 9, 12, 13], "our": [0, 6, 7], "time": [0, 1, 3, 7, 8, 9], "can": [0, 1, 3, 6, 7, 8, 9, 12, 13], "deploi": 0, "singular": [0, 6], "To": [0, 6, 7], "insid": [0, 8], "follow": [0, 3, 6, 7, 8, 9], "syntax": 0, "exec": 0, "sif": 0, "project": [0, 1, 9], "cc": [0, 6, 7], "mai": [0, 1, 3, 6, 7, 8, 9], "qsartuna_latest": 0, "opt": 0, "venv": 0, "bin": [0, 6, 7, 12, 13], "config": [0, 1, 5, 6, 8], "regression_drd2_50": 0, "buildconfig": [0, 5, 6, 8, 10], "outpath": 0, "target": [0, 1, 6, 7, 9, 12, 14], "pkl": [0, 1, 6, 9], "sinc": [0, 3, 6, 7, 8, 12], "long": [0, 7], "avoid": [0, 6, 7, 12], "login": 0, "node": 0, "queue": 0, "instead": [0, 1, 3, 6, 7, 8, 9, 12], "script": 0, "give": [0, 6], "sbatch": 0, "sh": 0, "ntask": 0, "cpu": 0, "per": [0, 1, 7, 9], "mem": 0, "4g": 0, "partit": 0, "core": [0, 7, 9], "illustr": [0, 6, 7], "how": [0, 1, 3, 6, 7, 8, 9], "chose": 0, "chang": [0, 6], "directori": [0, 6, 10], "cd": 0, "project_fold": 0, "optunaaz": 0, "version": [0, 7, 8, 9], "optunaaz_latest": 0, "complet": [0, 3, 6, 8], "creat": [0, 7, 10], "pickl": [0, 6], "your": [0, 6, 7], "home": 0, "under": [0, 6], "built": [0, 3, 7, 8, 9], "infer": [0, 3, 6, 7, 8], "input": [0, 1, 3, 4, 6, 8, 9, 12, 13, 14], "smile": [0, 3, 6, 7, 8, 10, 11, 12, 13], "output": [0, 1, 6, 7, 8, 9, 12, 14], "note": [0, 1, 3, 7, 8, 9, 11, 12, 13], "_": [0, 6], "point": [0, 1, 7, 9, 12, 13], "most": [0, 6, 7], "recent": [0, 6], "legaci": 0, "requir": [0, 3, 6, 7, 8], "same": [0, 1, 6, 7, 9], "modifi": [0, 8], "abov": [0, 6, 7], "suppli": [0, 1, 3, 6, 7, 8, 9], "qsartuna_": 0, "replac": [0, 6, 10], "e": [0, 1, 3, 7, 8, 9, 12, 14], "g": [0, 3, 7, 8, 12, 14], "qsartuna_2": 0, "1_model": 0, "would": [0, 3, 6, 7, 8], "gener": [0, 1, 3, 6, 7, 8, 9, 12, 13], "tri": 0, "dure": [0, 1, 3, 6, 7, 8, 9], "mlflow": [0, 5, 8, 11], "track": [0, 3, 5, 8, 9], "ui": 0, "modul": [0, 5, 6], "load": [0, 1, 6, 7, 9], "Then": 0, "open": [0, 1, 6, 9], "link": 0, "browser": 0, "If": [0, 1, 3, 6, 8, 9, 12, 13], "you": [0, 1, 6, 7, 9], "scp": 0, "forward": [0, 1, 9], "port": 0, "separ": [0, 3, 7, 8], "ssh": 0, "session": 0, "non": [0, 1, 3, 6, 7, 8, 9], "machin": [0, 1, 3, 6, 7, 8, 9], "n": [0, 1, 6, 7, 9, 10], "l": 0, "localhost": 0, "5000": 0, "user": [0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 14], "intranet": 0, "net": 0, "just": [0, 6], "execut": 0, "select": [0, 1, 3, 6, 7, 8, 9], "experi": [0, 7, 10], "after": [0, 1, 3, 6, 7, 8, 9, 10], "choos": [0, 4], "compar": [0, 6], "comparison": [0, 6, 7], "show": [0, 6, 7], "call": [0, 1, 3, 6, 8, 9, 12], "well": [0, 6, 7], "metric": [0, 1, 6, 8, 9, 11], "At": 0, "bottom": 0, "plot": [0, 6, 7, 9, 11], "For": [0, 1, 3, 6, 7, 8, 9, 12], "x": [0, 1, 3, 6, 7, 8, 9, 12, 13], "axi": [0, 6, 7], "number": [0, 1, 3, 6, 7, 8, 9, 10], "y": [0, 1, 7, 8, 9, 12, 13], "cvmean": 0, "r2": [0, 6, 7, 9], "more": [0, 1, 3, 7, 8, 9, 10], "click": 0, "individu": [0, 1, 6, 7, 9], "There": [0, 1, 6, 7, 9], "access": [0, 3, 8], "conda": 0, "environ": [0, 3, 6, 8], "instal": [0, 6], "purg": 0, "miniconda3": 0, "my_env_with_qsartuna": 0, "pip": [0, 6], "activ": [0, 1, 6, 7, 9, 11, 12, 14], "case": [0, 1, 6, 7, 8, 9], "check": [0, 6, 8, 11, 12], "m": [0, 6, 8], "http": [0, 3, 6, 7, 8, 9, 12], "com": [0, 6, 7, 8, 12], "molecularai": [0, 6], "releas": [0, 4, 6], "download": [0, 6], "tar": [0, 6], "gz": [0, 6], "three_step_opt_build_merg": [0, 5, 6], "import": [0, 6], "buildconfig_best": [0, 6, 8], "build_best": [0, 6, 8], "build_merg": [0, 6, 8], "modelmod": [0, 6, 8, 9], "optimizationdirect": [0, 6, 9], "optconfig": [0, 1, 5, 6, 8, 10, 11], "optimizationconfig": [0, 6, 8, 9], "svr": [0, 4, 6, 9, 11], "randomforest": 0, "pl": [0, 1, 9], "dataread": [0, 5, 6], "ecfp_count": [0, 4, 6, 8, 11], "prepar": [0, 4, 7], "new": [0, 1, 3, 6, 7, 8, 9], "studi": [0, 3, 6, 8, 9, 10, 11], "study_nam": [0, 6, 8], "my_studi": [0, 6], "make": [0, 1, 6, 7, 8, 9, 12, 13, 14], "write": [0, 6], "out": [0, 1, 6, 7, 9], "print": [0, 6, 7], "dump": [0, 6], "indent": [0, 6], "save": [0, 6], "add": [0, 6, 7, 8, 10], "code": [0, 3, 6, 7, 8], "optunaz": [0, 1, 3, 6, 7, 13, 14], "py": [0, 1, 6, 7, 9], "like": [0, 1, 3, 6, 7, 8, 9], "so": [0, 6, 7, 9], "dataclass": [0, 10], "class": [0, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14], "yournewdescriptor": 0, "rdkitdescriptor": [0, 6, 8], "descript": [0, 8, 9], "goe": 0, "apischema": [0, 6, 8], "type_nam": 0, "yournewdescriptorparam": 0, "pass": [0, 1, 3, 6, 8, 9, 12], "exampleofaparamet": 0, "annot": [0, 6], "int": [0, 1, 3, 8, 9, 12, 13], "schema": [0, 5, 8, 11], "min": [0, 1, 6, 7, 9, 12], "titl": [0, 1, 3, 6, 7, 8, 9, 10, 12, 13, 14], "an": [0, 1, 3, 6, 7, 8, 9, 10, 12, 13], "field": 0, "default": [0, 1, 7, 8, 9, 12, 13], "liter": [0, 8, 9, 12, 13], "def": [0, 6, 7, 9], "calculate_from_smi": [0, 3, 6, 8], "self": [0, 6, 9], "smi": [0, 3, 8, 10], "str": [0, 1, 3, 6, 8, 9, 10, 11, 12, 13, 14], "insert": [0, 7], "calcul": [0, 3, 6, 8, 12, 13, 14], "fp": [0, 3, 6, 8], "code_to_calculate_fp": 0, "return": [0, 3, 6, 7, 8, 10, 11, 12, 13], "list": [0, 1, 3, 4, 6, 7, 8, 9, 12, 14], "anyunscaleddescriptor": 0, "union": [0, 1, 3, 8, 9], "avalon": [0, 4, 8, 9, 11], "pathfp": [0, 4, 6, 8, 11], "amorprotdescriptor": [0, 3, 8, 11], "precomputeddescriptorfromfil": [0, 4, 6, 8, 11], "unscaledmapc": [0, 3, 8, 11], "unscaledphyschemdescriptor": [0, 4, 6, 8, 11], "unscaledjazzydescriptor": [0, 4, 6, 8, 11], "unscaledzscalesdescriptor": [0, 4, 8, 11], "ensur": [0, 6, 7, 8, 9], "compositecompatibledescriptor": 0, "scaleddescriptor": [0, 4, 8, 11], "mapc": [0, 3, 8, 11], "physchemdescriptor": [0, 4, 8, 11], "jazzydescriptor": [0, 4, 8, 11], "zscalesdescriptor": [0, 3, 8, 11], "sourc": [1, 3, 8, 9, 10, 11, 12, 13, 14], "adaboost": [1, 9], "classifi": [1, 6, 8, 9, 11], "meta": [1, 6, 9], "begin": [1, 6, 7, 9, 12, 13], "fit": [1, 3, 6, 7, 8, 9, 12], "origin": [1, 3, 6, 7, 8, 9, 12], "addit": [1, 6, 9], "copi": [1, 7, 9, 10], "where": [1, 6, 7, 9], "incorrectli": [1, 9], "instanc": [1, 6, 7, 9], "adjust": [1, 9], "subsequ": [1, 6, 9], "focu": [1, 9], "difficult": [1, 6, 9], "adaboostclassifierparametersnestim": [1, 9], "adaboostclassifierparameterslearningr": [1, 9], "The": [1, 3, 7, 8, 9, 10, 12, 14], "maximum": [1, 3, 6, 7, 8, 9, 12, 13], "boost": [1, 3, 8, 9], "termin": [1, 9], "perfect": [1, 9], "procedur": [1, 3, 7, 8, 9], "stop": [1, 6, 9], "appli": [1, 3, 6, 7, 8, 9, 12, 13, 14], "each": [1, 3, 6, 7, 8, 9, 12], "classifierat": [1, 9], "iter": [1, 6, 9, 12, 13], "A": [1, 3, 7, 8, 9], "higher": [1, 6, 9], "rateincreas": [1, 9], "contribut": [1, 3, 6, 8, 9], "trade": [1, 9], "off": [1, 6, 7, 9, 12, 13], "between": [1, 6, 7, 9], "learning_rateand": [1, 9], "float": [1, 6, 7, 9, 10, 12, 13, 14], "linear": [1, 7, 9], "model": [1, 3, 4, 7, 8, 9, 10, 12, 13, 14], "l1": [1, 9], "prior": [1, 7, 9], "regular": [1, 6, 9], "spars": [1, 9], "coeffici": [1, 9], "tend": [1, 9], "prefer": [1, 9], "solut": [1, 6, 9], "fewer": [1, 9], "zero": [1, 3, 8, 9], "effect": [1, 6, 7, 9, 12], "reduc": [1, 6, 9], "featur": [1, 3, 6, 8, 9], "upon": [1, 6, 9], "depend": [1, 6, 7, 9], "lassoparametersalpha": [1, 9], "constant": [1, 9], "multipli": [1, 9], "term": [1, 6, 9], "control": [1, 6, 7, 9, 12], "strength": [1, 3, 8, 9], "must": [1, 6, 9], "neg": [1, 6, 7, 9], "i": [1, 3, 6, 7, 8, 9], "inf": [1, 6, 8, 9], "equival": [1, 9], "ordinari": [1, 9], "least": [1, 6, 9], "squar": [1, 6, 9], "solv": [1, 6, 9], "linearregress": [1, 9], "numer": [1, 7, 9], "reason": [1, 7, 9], "us": [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14], "advis": [1, 6, 7, 9], "implement": [1, 3, 6, 8, 9, 12], "k": [1, 6, 7, 9, 12, 13], "nearest": [1, 6, 9], "neighbor": [1, 6, 9, 12, 13], "vote": [1, 9], "principl": [1, 9], "behind": [1, 9], "method": [1, 3, 7, 8, 9, 11, 12], "find": [1, 6, 8, 9], "predefin": [1, 4, 9, 12, 14], "sampl": [1, 6, 9, 12, 13], "closest": [1, 9], "distanc": [1, 6, 8, 9], "label": [1, 6, 7, 8, 9, 12, 13], "from": [1, 3, 4, 8, 9, 10, 12, 13, 14], "defin": [1, 3, 6, 7, 8, 9, 10, 12], "despit": [1, 6, 9], "simplic": [1, 9], "success": [1, 6, 9], "larg": [1, 7, 9], "classif": [1, 4, 7, 8, 9, 11, 12], "problem": [1, 6, 7, 8, 9], "n_neighbor": [1, 9, 11], "kneighborsclassifierparametersn_neighbor": [1, 9], "kneighbor": [1, 9], "queri": [1, 6, 7, 9], "comput": [1, 3, 7, 8, 9, 12], "minkowski": [1, 6, 9], "euclidean": [1, 9], "regressor": [1, 6, 8, 9, 11], "kneighborsregressorparametersn_neighbor": [1, 9], "logist": [1, 9], "rather": [1, 3, 6, 7, 8, 9], "than": [1, 3, 6, 7, 8, 9], "also": [1, 3, 6, 7, 8, 9, 12], "known": [1, 3, 6, 7, 8, 9], "literatur": [1, 9], "logit": [1, 9], "entropi": [1, 7, 9], "maxent": [1, 9], "log": [1, 4, 9, 10, 11, 12, 14], "probabl": [1, 4, 7, 9], "describ": [1, 3, 6, 8, 9, 12], "possibl": [1, 6, 7, 9, 12, 13], "outcom": [1, 9], "singl": [1, 6, 9], "solver": [1, 9, 11], "c": [1, 3, 6, 7, 8, 9, 11], "logisticregressionparametersparameterc": [1, 9], "try": [1, 6, 7, 9], "sag": [1, 9], "saga": [1, 9], "fast": [1, 6, 9], "converg": [1, 6, 9], "guarante": [1, 9], "approxim": [1, 6, 9], "scale": [1, 3, 7, 8, 9, 12, 14], "preprocess": [1, 4, 8, 9, 10, 13, 14], "scaler": [1, 3, 8, 9], "invers": [1, 9], "posit": [1, 3, 6, 8, 9], "support": [1, 6, 8, 9], "vector": [1, 3, 6, 8, 9, 12, 14], "smaller": [1, 6, 9], "stronger": [1, 9], "decomposit": [1, 9], "partial": [1, 6, 9], "form": [1, 3, 6, 7, 8, 9, 12], "compon": [1, 3, 6, 8, 9], "fundament": [1, 9], "relat": [1, 3, 6, 7, 8, 9], "matric": [1, 9], "thei": [1, 3, 6, 7, 8, 9], "latent": [1, 9], "variabl": [1, 6, 7, 9], "approach": [1, 3, 6, 7, 8, 9], "covari": [1, 4, 8, 9], "space": [1, 7, 9, 12, 13], "multidimension": [1, 9], "varianc": [1, 6, 7, 9], "other": [1, 6, 7, 9, 12], "word": [1, 6, 9], "both": [1, 6, 7, 9], "lower": [1, 6, 9], "dimension": [1, 9], "subspac": [1, 6, 8, 9], "transform": [1, 4, 8, 9, 10], "n_compon": [1, 9, 11], "ncompon": [1, 9], "keep": [1, 6, 7, 9, 12], "n_sampl": [1, 9], "n_featur": [1, 9], "n_target": [1, 9], "forest": [1, 4, 7, 9], "decis": [1, 6, 7, 9, 12, 14], "tree": [1, 6, 9], "variou": [1, 6, 8, 9], "sub": [1, 6, 9], "averag": [1, 3, 6, 7, 8, 9, 12], "improv": [1, 3, 6, 8, 9], "accuraci": [1, 6, 9], "over": [1, 6, 9], "randomforestclassifierparametersmaxdepth": [1, 9], "randomforestclassifierparametersnestim": [1, 6, 9], "depth": [1, 6, 9, 11], "considerwhen": [1, 9], "split": [1, 4, 8, 9, 12, 13, 14], "thenconsid": [1, 9], "sqrt": [1, 6, 7, 9], "log2": [1, 7, 9, 12, 14], "randomforestregressorparametersmaxdepth": [1, 9], "randomforestregressorparametersnestim": [1, 9], "l2": [1, 9], "loss": [1, 3, 6, 8, 9], "norm": [1, 7, 9], "tikhonov": [1, 9], "base": [1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14], "libsvm": [1, 9], "quadrat": [1, 9], "impract": [1, 9], "beyond": [1, 9], "ten": [1, 9], "thousand": [1, 9], "svcparametersparameterc": [1, 9], "1e": [1, 9], "gamma": [1, 9, 11], "0001": [1, 9], "proport": [1, 6, 9], "strictli": [1, 9], "penalti": [1, 9], "kernel": [1, 9], "epsilon": [1, 9], "complex": [1, 6, 9], "hard": [1, 3, 8, 9], "coupl": [1, 9], "10000": [1, 9], "svrparametersparameterc": [1, 9], "svrparametersgamma": [1, 9], "maxdepth": [1, 9], "nestim": [1, 9], "learningr": [1, 9], "xgboost": [1, 9, 11], "gradient": [1, 9], "stand": [1, 9], "extrem": [1, 6, 9], "paper": [1, 3, 6, 8, 9], "greedi": [1, 9], "friedman": [1, 9], "learner": [1, 9], "round": [1, 6, 7, 9], "prf": [1, 4, 7, 9], "probabilist": [1, 4, 9], "seen": [1, 6, 7, 9], "hybrid": [1, 6, 9], "similar": [1, 3, 6, 7, 8, 9, 12, 13], "take": [1, 3, 6, 7, 8, 9, 12], "real": [1, 6, 7, 9, 12, 13], "threshold": [1, 3, 4, 6, 8, 9, 12, 13, 14], "represent": [1, 3, 4, 8, 9], "ptr": [1, 4, 6, 9, 12], "howev": [1, 3, 6, 7, 8, 9], "belong": [1, 3, 6, 7, 8, 9], "inact": [1, 6, 7, 9, 12, 14], "use_py_gini": [1, 9, 11], "use_py_leaf": [1, 9, 11], "prfclassifierparametersmaxdepth": [1, 9], "prfclassifierparametersnestim": [1, 9], "min_py_sum_leaf": [1, 9, 11], "prfclassifierparametersminpysumleaf": [1, 9], "gini": [1, 9], "true": [1, 3, 6, 7, 8, 9, 12, 13], "leav": [1, 9], "leaf": [1, 9], "allow": [1, 3, 6, 7, 8, 9], "prune": [1, 6, 9], "propag": [1, 9], "small": [1, 7, 8, 9], "thu": [1, 6, 9], "pth": [1, 9], "scheme": [1, 9], "noisi": [1, 9], "chemprop": [1, 3, 4, 8, 9], "deep": [1, 6, 9], "properti": [1, 3, 6, 7, 8, 9, 10], "network": [1, 3, 6, 8, 9], "messag": [1, 6, 9], "neural": [1, 6, 8, 9], "d": [1, 3, 6, 8, 9], "mpnn": [1, 9], "encod": [1, 8, 9], "graph": [1, 3, 6, 8, 9], "feed": [1, 9], "ffnn": [1, 9], "multi": [1, 3, 8, 9], "layer": [1, 3, 6, 8, 9], "perceptron": [1, 9], "wa": [1, 3, 6, 8, 9], "present": [1, 6, 7, 9], "analyz": [1, 6, 9], "optuna": [1, 4, 6, 8, 9, 10, 11], "optims": [1, 9], "hyperopt": [1, 9], "ensemble_s": [1, 6, 9, 11], "epoch": [1, 6, 9, 11], "aggreg": [1, 6, 7, 9, 11, 12, 13], "aggregation_norm": [1, 6, 9, 11], "chempropparametersaggregation_norm": [1, 9], "200": [1, 6, 9], "q": [1, 3, 6, 8, 9, 11], "batch_siz": [1, 6, 9, 11], "chempropparametersbatch_s": [1, 9], "chempropparametersdepth": [1, 9], "6": [1, 6, 7, 9], "dropout": [1, 9, 11], "chempropparametersdropout": [1, 9], "4": [1, 3, 6, 7, 8, 9, 12, 13], "04": [1, 6, 9], "features_gener": [1, 6, 9, 11], "ffn_hidden_s": [1, 6, 9, 11], "chempropparametersffn_hidden_s": [1, 9], "300": [1, 6, 9], "2400": [1, 9], "ffn_num_lay": [1, 6, 9, 11], "chempropparametersffn_num_lay": [1, 9], "final_lr_ratio_exp": [1, 6, 9, 11], "chempropparametersfinal_lr_ratio_exp": [1, 9], "hidden_s": [1, 6, 9, 11], "chempropparametershidden_s": [1, 9], "init_lr_ratio_exp": [1, 6, 9, 11], "chempropparametersinit_lr_ratio_exp": [1, 9], "max_lr_exp": [1, 6, 9, 11], "chempropparametersmax_lr_exp": [1, 9], "warmup_epochs_ratio": [1, 6, 9, 11], "chempropparameterswarmup_epochs_ratio": [1, 9], "ensembl": [1, 9, 11], "initialis": [1, 6, 9], "provid": [1, 3, 6, 7, 8, 9, 12], "size": [1, 3, 6, 7, 8, 9], "run": [1, 3, 4, 7, 8, 9, 10], "increas": [1, 6, 7, 8, 9, 12, 13], "400": [1, 6, 9], "sum": [1, 6, 9], "atom": [1, 3, 6, 8, 9, 12, 13], "divid": [1, 6, 9], "up": [1, 3, 6, 8, 9, 10], "batch": [1, 9, 12], "step": [1, 7, 8, 9], "visibl": [1, 9], "randomli": [1, 6, 7, 9], "some": [1, 3, 6, 7, 8, 9], "element": [1, 9, 12, 13], "tensor": [1, 9], "p": [1, 3, 8, 9], "bernoulli": [1, 9], "distribut": [1, 6, 7, 9], "channel": [1, 9], "independ": [1, 7, 9], "everi": [1, 6, 9], "proven": [1, 9], "techniqu": [1, 7, 9], "prevent": [1, 6, 9], "co": [1, 7, 9], "adapt": [1, 3, 8, 9], "neuron": [1, 9], "hidden": [1, 6, 9], "ffn": [1, 6, 9], "exponenti": [1, 7, 9], "rate": [1, 9], "bond": [1, 3, 8, 9], "ratio": [1, 9], "linearli": [1, 9], "init_lr": [1, 9], "max_lr": [1, 9], "afterward": [1, 7, 9], "decreas": [1, 7, 9], "final_lr": [1, 9], "without": [1, 6, 8, 9, 12], "within": [1, 3, 8, 9, 12, 13], "hyperparamet": [1, 4, 6, 8, 9], "side": [1, 3, 8, 9], "inform": [1, 3, 8, 9, 10], "nb": [1, 3, 6, 7, 8, 9], "quick": [1, 4, 9], "simpl": [1, 7, 9], "sensibl": [1, 6, 7, 8, 9], "author": [1, 6, 8, 9], "do": [1, 6, 7, 9, 12], "num_it": [1, 6, 9, 11], "search_parameter_level": [1, 6, 9, 11], "dictat": [1, 9], "larger": [1, 3, 6, 7, 8, 9], "pretrin": [1, 9], "pretrain": [1, 6, 9], "carri": [1, 9], "previous": [1, 9], "qsartuna": [1, 9], "chempropparametersepoch": [1, 6, 9], "frzn": [1, 9, 11], "pretrained_model": [1, 6, 9, 11], "none": [1, 3, 6, 8, 9, 10, 12, 13, 14], "fine": [1, 9], "tune": [1, 3, 4, 6, 8, 9], "decid": [1, 9], "freez": [1, 9], "transfer": [1, 9], "frozen": [1, 9], "calibr": [1, 4, 8, 9], "isoton": [1, 6, 9], "vennab": [1, 9], "cv": [1, 6, 9], "With": [1, 3, 8, 9], "across": [1, 6, 7, 9, 12], "fals": [1, 3, 6, 7, 8, 9, 12], "obtain": [1, 6, 7, 9], "unbias": [1, 9], "offer": [1, 3, 6, 8, 9], "p0": [1, 6, 9], "vs": [1, 6, 7, 9], "p1": [1, 6, 9], "discord": [1, 6, 9], "type": [1, 3, 6, 7, 8, 9, 12], "calibratedclassifiercvensembl": [1, 9], "calibratedclassifiercvmethod": [1, 9], "n_fold": [1, 6, 9, 11], "whether": [1, 3, 7, 8, 9, 12, 14], "agnost": [1, 6, 9], "interv": [1, 6, 9], "encompass": [1, 9], "aleator": [1, 9], "epistem": [1, 9], "back": [1, 6, 9], "strong": [1, 9], "theoret": [1, 6, 9], "thank": [1, 9], "conform": [1, 9], "mapie_alpha": [1, 6, 9, 11], "05": [1, 6, 7, 9], "01": [1, 6, 9], "99": [1, 6, 9], "see": [3, 6, 7, 8, 9, 12, 13], "gedeck": [3, 8], "et": [3, 7, 8], "al": [3, 7, 8], "qsar": [3, 4, 6, 7, 8], "good": [3, 6, 7, 8], "practic": [3, 8], "fingerprint": [3, 8, 9], "wai": [3, 6, 7, 8], "daylight": [3, 8], "enumer": [3, 6, 8, 9], "custom": [3, 6, 8], "ref": [3, 8, 10], "16": [3, 6, 7, 8], "hash": [3, 6, 8, 9, 10], "style": [3, 6, 7, 8], "implicitli": [3, 8], "largest": [3, 6, 8], "refer": [3, 6, 8, 10, 11], "toward": [3, 6, 7, 8], "binari": [3, 6, 8, 9], "extend": [3, 6, 7, 8], "connect": [3, 6, 8], "roger": [3, 8], "circular": [3, 8], "morgan": [3, 8, 9], "invari": [3, 8], "getmorganfingerprintasbitvect": [3, 8], "rdkit": [3, 6, 7, 8, 9], "systemat": [3, 8], "record": [3, 6, 7, 8], "neighborhood": [3, 8, 9], "h": [3, 6, 7, 8], "multipl": [3, 6, 8, 12, 13], "runtim": [3, 8], "substructur": [3, 6, 8], "map": [3, 6, 7, 8], "integ": [3, 7, 8, 12, 13], "length": [3, 6, 8], "identifi": [3, 6, 7, 8], "diamet": [3, 8], "append": [3, 6, 7, 8, 9], "ecfp4": [3, 8], "correspond": [3, 6, 7, 8, 9], "returnrdkit": [3, 6, 8], "consid": [3, 6, 8, 12, 13], "while": [3, 6, 7, 8, 12], "bit": [3, 6, 8], "sometim": [3, 6, 7, 8], "bool": [3, 8, 9, 12, 13], "calculate_from_mol": [3, 8], "mol": [3, 6, 7, 8], "numpi": [3, 6, 7, 8, 12, 13], "arrai": [3, 6, 8, 12, 13], "count": [3, 6, 8, 9], "gethashedmorganfingerprint": [3, 8], "appear": [3, 8, 11], "usefeatur": [3, 6, 8, 11], "fcfp": [3, 8], "normal": [3, 6, 7, 8, 9], "ones": [3, 6, 8], "definit": [3, 8, 12], "gobbi": [3, 8], "popping": [3, 8], "biotechnolog": [3, 8], "bioengin": [3, 8], "61": [3, 6, 8], "47": [3, 6, 8], "54": [3, 6, 8], "1998": [3, 6, 8], "lead": [3, 7, 8], "score": [3, 4, 8, 9, 10, 12, 14], "maxpath": [3, 6, 8, 11], "fpsize": [3, 6, 8, 11], "macc": [3, 6, 8], "system": [3, 7, 8], "often": [3, 6, 8], "mdl": [3, 8], "kei": [3, 6, 7, 8, 10, 11], "compani": [3, 8], "keyset": [3, 8], "construct": [3, 8, 11], "optim": [3, 4, 7, 8, 9, 11], "durant": [3, 8], "reoptim": [3, 8], "drug": [3, 8], "discoveri": [3, 8], "166": [3, 6, 8], "2d": [3, 8, 9], "essenti": [3, 7, 8], "answer": [3, 8], "fragment": [3, 8], "question": [3, 8], "explicitli": [3, 6, 7, 8], "exist": [3, 8], "sens": [3, 8], "matter": [3, 8], "becaus": [3, 6, 7, 8], "address": [3, 8], "specif": [3, 6, 7, 8, 11], "repres": [3, 6, 7, 8], "9": [3, 6, 7, 8], "1049": [3, 8], "distinct": [3, 6, 7, 8, 9], "rdkit_nam": [3, 6, 8, 11], "unscal": [3, 8], "These": [3, 6, 7, 8, 12], "physchem": [3, 6, 8], "caution": [3, 7, 8], "208": [3, 6, 8], "includ": [3, 6, 7, 8], "clogp": [3, 6, 8], "mw": [3, 6, 8], "ring": [3, 7, 8], "rotat": [3, 8], "fraction": [3, 6, 7, 8, 12, 13], "sp3": [3, 8], "kier": [3, 8], "indic": [3, 6, 7, 8, 12, 13], "etc": [3, 6, 7, 8], "tpsa": [3, 6, 8], "slogp": [3, 8], "group": [3, 7, 8, 12, 13], "vsa": [3, 8], "moe": [3, 8], "charg": [3, 8], "www": [3, 8], "org": [3, 6, 8], "doc": [3, 6, 8], "gettingstartedinpython": [3, 8], "html": [3, 6, 7, 8, 9], "whose": [3, 8], "been": [3, 6, 7, 8], "level": [3, 6, 7, 8, 9], "One": [3, 7, 8], "advantag": [3, 8], "interpret": [3, 8], "mean": [3, 6, 7, 8, 9, 12], "physicochem": [3, 8], "intuit": [3, 8], "understood": [3, 8], "option": [3, 4, 7, 8, 9, 11, 12, 13, 14], "jazzy_nam": [3, 6, 8, 11], "jazzy_filt": [3, 6, 8], "jazzi": [3, 8], "hydrat": [3, 8], "energi": [3, 8], "hydrogen": [3, 8], "acceptor": [3, 6, 8], "donor": [3, 6, 8], "found": [3, 6, 8], "doi": [3, 6, 8], "1038": [3, 8], "s41598": [3, 8], "023": [3, 8], "30089": [3, 8], "mmff94": [3, 8], "minimis": [3, 8], "1000da": [3, 8], "compound": [3, 6, 7, 8, 12, 13], "dict": [3, 8, 9, 10, 11], "string": [3, 6, 7, 8, 11, 12, 13, 14], "ndarrai": [3, 8], "z": [3, 8, 12, 14], "peptid": [3, 6, 8, 12, 14], "unfittedsklearnscal": [3, 8], "mol_data": [3, 8], "moldata": [3, 8], "file_path": [3, 8], "smiles_column": [3, 8], "fittedsklearnscal": [3, 8], "alia": [3, 8, 9], "precomput": [3, 7, 8], "file": [3, 7, 8, 10, 11, 12, 13], "header": [3, 8], "line": [3, 4, 6, 7, 8, 10], "row": [3, 6, 7, 8], "comma": [3, 6, 7, 8], "respons": [3, 7, 8], "pre": [3, 7, 8], "inference_paramet": [3, 6, 8], "were": [3, 6, 7, 8], "propos": [3, 8], "sandberg": [3, 8], "proteogen": [3, 8], "amino": [3, 6, 8], "acid": [3, 6, 8], "nmr": [3, 8], "thin": [3, 8], "chromatographi": [3, 8], "tlc": [3, 8], "1021": [3, 6, 8], "jm9700575": [3, 8], "captur": [3, 6, 7, 8], "lipophil": [3, 8], "steric": [3, 8], "bulk": [3, 8], "polariz": [3, 8], "electron": [3, 8], "polar": [3, 8], "electroneg": [3, 8], "heat": [3, 8], "electrophil": [3, 8], "anoth": [3, 6, 8], "optimis": [3, 6, 7, 8, 9, 10], "either": [3, 7, 8, 9], "through": [3, 6, 8], "_and_": [3, 8], "auxiliari": [3, 6, 8, 12, 14], "continu": [3, 6, 8], "learnt": [3, 6, 8], "manner": [3, 6, 8], "intent": [3, 6, 8], "much": [3, 8], "remain": [3, 8, 12], "deriv": [3, 6, 7, 8], "cautiou": [3, 8], "upload": [3, 8], "_all_": [3, 8], "ruder": [3, 8], "io": [3, 6, 8, 9], "index": [3, 6, 7, 8], "auxiliarytask": [3, 8], "aux_weight_pc": [3, 6, 8, 9, 11], "20": [3, 6, 7, 8], "info": [3, 6, 8], "percentag": [3, 8], "wrap": [3, 6, 8], "certain": [3, 6, 7, 8], "rang": [3, 6, 7, 8, 12, 13], "scaleddescriptorparamet": [3, 8], "cach": [3, 6, 8, 9], "composit": [3, 6, 8], "concaten": [3, 8], "button": [3, 8], "pleas": [3, 6, 8, 10], "compat": [3, 6, 8], "intro": 4, "background": 4, "json": [4, 6, 9, 11], "command": [4, 6], "interfac": [4, 6, 8, 11, 12], "python": [4, 6, 8, 12], "jupyt": [4, 6], "notebook": [4, 6], "ad": [4, 6, 7, 12, 13], "descriptor": [4, 5, 7, 9, 11], "introduct": 4, "translat": [4, 6], "sdf": [4, 6, 8], "need": 4, "deal": [4, 12], "duplic": [4, 8, 9, 12], "dedupl": [4, 6, 8, 10], "experiment": [4, 6, 12, 14], "error": [4, 6], "cli": 4, "tutori": 4, "remov": [4, 7, 8, 9, 12, 13], "advanc": [4, 7, 8], "functoinail": 4, "adaboostclassifi": [4, 6, 9, 11], "kneighborsclassifi": [4, 6, 9, 11], "kneighborsregressor": [4, 6, 9, 11], "logisticregress": [4, 6, 9, 11], "plsregress": [4, 6, 9, 11], "randomforestclassifi": [4, 6, 9, 11], "svc": [4, 6, 9, 11], "prfclassifi": [4, 6, 9, 11], "chempropregressor": [4, 6, 9, 11], "chempropclassifi": [4, 6, 9, 11], "chemprophyperoptclassifi": [4, 6, 9, 11], "chemprophyperoptregressor": [4, 6, 9, 11], "chempropregressorpretrain": [4, 6, 9], "calibratedclassifiercvwithva": [4, 6, 9, 11], "mapi": [4, 9, 11], "zscale": [4, 6, 8, 12], "smilesfromfil": [4, 6, 8, 11], "smilesandsideinfofromfil": [4, 6, 8, 11], "compositedescriptor": [4, 6, 8, 11], "tempor": [4, 6, 12], "stratifi": [4, 6, 12], "scaffoldsplit": [4, 7, 12], "modeldatatransform": [4, 6, 7, 8, 12], "vectorfromcolumn": [4, 6, 8, 12], "keepfirst": [4, 7, 12], "keeplast": [4, 7, 12], "keeprandom": [4, 7, 12], "keepmin": [4, 7, 12], "keepmax": [4, 7, 12], "keepavg": [4, 7, 12], "keepmedian": [4, 6, 7, 12], "keepkeepallnodedupl": 4, "report": [4, 6, 7], "coverag": 4, "subpackag": 5, "submodul": 5, "build_from_opt": [5, 8], "content": 5, "util": [5, 6, 7, 8, 13, 14], "files_path": [5, 8], "load_json": [5, 8], "builder": 5, "metirc": 5, "model_writ": 5, "optbuild": 5, "schemagen": 5, "visual": [5, 9, 11], "intend": [6, 8], "necessari": 6, "gui": 6, "autom": [6, 7], "reinvent": 6, "varieti": 6, "them": [6, 7, 8, 9], "hyper": [6, 9], "influenc": [6, 7, 9], "automat": [6, 7], "idea": [6, 7], "read": [6, 7, 8], "otherwis": [6, 12], "might": [6, 7, 12], "skip": [6, 7], "toi": 6, "chosen": 6, "whole": [6, 7], "less": [6, 7], "minut": 6, "holdout": [6, 7], "readi": 6, "next": [6, 7], "few": [6, 7], "head": [6, 7], "molwt_gt_330": 6, "cc1cc": 6, "nc": [6, 7], "o": [6, 7], "c2cccc": 6, "coc3ccc": 6, "br": [6, 7], "cc3": [6, 7], "c2": [6, 7], "no1": 6, "387": 6, "233": 6, "nc1ccc": 6, "f": [6, 7, 12], "cc1f": 6, "nc1sccc1": 6, "c1nc2ccccc2s1": 6, "4360000000001": 6, "coc": 6, "c1ccccc1nc": 6, "c1cc": 6, "nn1cc1ccccc1": 6, "380": 6, "36000000000007": 6, "ccoc": 6, "sc1nc": 6, "c2ccccc2": 6, "ccc1c": 6, "312": 6, "39400000000006": 6, "ccc": [6, 7], "c1nn": [6, 7], "cc2ccccc2": 6, "c2ccccc12": 6, "349": 6, "4340000000001": 6, "brc1ccccc1occcoc1cccc2cccnc12": 6, "358": 6, "235": 6, "ccccn1c": 6, "coc2cccc": 6, "oc": 6, "nc2ccccc21": 6, "310": 6, "39700000000005": 6, "ccoc1cccc": 6, "c2sc3nc": 6, "c4ccc": 6, "cc4": 6, "ccc3c2n": 6, "c1": [6, 7], "407": 6, "4700000000001": 6, "coc1ccc": 6, "nc2ccc": 6, "cc2": 6, "c2ccc": 6, "cc1oc": 6, "454": 6, "54800000000023": 6, "sy": [6, 7], "sklearn": [6, 11], "kljk345": 6, "pypoetri": 6, "virtualenv": 6, "9zyw8gtc": 6, "py3": 6, "lib": 6, "python3": 6, "site": 6, "tqdm": 6, "21": [6, 7], "tqdmwarn": 6, "iprogress": 6, "updat": [6, 7], "ipywidget": 6, "readthedoc": [6, 9], "en": [6, 9], "stabl": [6, 8], "user_instal": 6, "autonotebook": 6, "notebook_tqdm": 6, "typic": [6, 7], "test_dataset_fil": [6, 8], "random_se": [6, 9], "42": [6, 7, 12, 13], "seed": [6, 7, 8, 12, 13], "reproduc": [6, 12, 14], "setup": [6, 9], "basic": [6, 8, 9], "importlib": 6, "reload": 6, "basicconfig": 6, "getlogg": 6, "disabl": [6, 11], "np": [6, 7], "seterr": 6, "ignor": 6, "warn": 6, "filterwarn": 6, "categori": 6, "futurewarn": 6, "runtimewarn": 6, "functool": 6, "partialmethod": 6, "__init__": [6, 9], "flood": 6, "decpreci": 6, "simplefilt": 6, "arg": [6, 8, 9], "kwarg": [6, 9], "stderr": 6, "render": [6, 7], "red": 6, "2024": 6, "07": 6, "09": 6, "44": 6, "28": [6, 7], "211": 6, "memori": [6, 7, 8], "379": 6, "study_name_0": 6, "836": 6, "finish": 6, "3594": 6, "2228073972638": 6, "39": [6, 7], "algorithm_nam": [6, 11], "randomforestregressor_algorithm_hash": 6, "f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "max_depth__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "n_estimators__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "max_features__f1ac01e1bba332215ccbd0c29c9ac3c3": 6, "lt": [6, 7], "randomforestmaxfeatur": [6, 9], "gt": [6, 7], "34": [6, 7], "985": 6, "5029": 6, "734616310275": 6, "svr_algorithm_hash": 6, "ea7ccc7ef4a9329af0d4e39eb6184933": 6, "gamma__ea7ccc7ef4a9329af0d4e39eb6184933": 6, "039054412752107935": 6, "c__ea7ccc7ef4a9329af0d4e39eb6184933": 6, "1242780840717016e": 6, "29": 6, "248": 6, "4242": 6, "092751193529": 6, "270": 6, "3393": 6, "577488426015": 6, "ridge_algorithm_hash": 6, "cfa1990d5153c8812982f034d788d7e": 6, "alpha__cfa1990d5153c8812982f034d788d7e": 6, "06877704223043679": 6, "422": 6, "427": 6, "45250420148204": 6, "lasso_algorithm_hash": 6, "5457f609662e44f04dcc9423066d2f58": 6, "alpha__5457f609662e44f04dcc9423066d2f58": 6, "7896547008552977": 6, "443": 6, "3387": 6, "245629616474": 6, "plsregression_algorithm_hash": 6, "9f2f76e479633c0bf18cf2912fed9eda": 6, "n_components__9f2f76e479633c0bf18cf2912fed9eda": 6, "476": 6, "734620250011": 6, "3661540064603184": 6, "1799882524170321": 6, "630": 6, "7": [6, 7, 9], "9650": 6, "026568221794": 6, "kneighborsregressor_algorithm_hash": 6, "1709d2c39117ae29f6c9debe7241287b": 6, "metric__1709d2c39117ae29f6c9debe7241287b": 6, "kneighborsmetr": [6, 9], "n_neighbors__1709d2c39117ae29f6c9debe7241287b": 6, "weights__1709d2c39117ae29f6c9debe7241287b": 6, "kneighborsweight": [6, 9], "uniform": [6, 9], "648": 6, "8": [6, 7, 9], "5437": 6, "151635569594": 6, "05083825348819038": 6, "764": 6, "2669": 6, "8534551928174": 6, "878": 6, "4341": 6, "586120152291": 6, "7921825998469865": 6, "003": 6, "11": [6, 7], "5514": 6, "404088878843": 6, "141": 6, "12": [6, 7], "5431": 6, "634989239215": 6, "159": 6, "13": [6, 7], "3530": 6, "5496618991288": 6, "176": 6, "14": [6, 7], "3497": 6, "6833185436312": 6, "194": 6, "15": [6, 7], "4382": 6, "16208862162": 6, "304": 6, "734620031822": 6, "002825619931800395": 6, "309885135051862e": 6, "320": 6, "17": [6, 7], "679": 6, "3109044887755": 6, "16827992999009767": 6, "388": 6, "18": [6, 7], "2550": 6, "114129318373": 6, "405": 6, "19": [6, 7], "4847": 6, "085792360169": 6, "735431606118867": 6, "423": 6, "268760278916": 6, "0014840820994557746": 6, "04671166881768783": 6, "533": 6, "4783": 6, "047015479679": 6, "550": 6, "22": [6, 7], "3905": 6, "0064899852296": 6, "616": 6, "23": [6, 7], "4030": 6, "4577379164707": 6, "659": 6, "24": [6, 7], "4681": 6, "602145939593": 6, "677": 6, "25": [6, 7], "4398": 6, "544034028325": 6, "6452011213193165": 6, "733": 6, "26": [6, 7], "4454": 6, "143979828407": 6, "738": 6, "27": [6, 7], "742": 6, "784": 6, "4397": 6, "330360587512": 6, "789": 6, "832": 6, "31": 6, "2602": 6, "7561184287083": 6, "851": 6, "5267": 6, "388279961089": 6, "2015560027548533": 6, "916": 6, "33": 6, "4863": 6, "581760751054": 6, "936": 6, "96473594016675": 6, "5528259214839937": 6, "980": 6, "35": 6, "5539": 6, "698232987626": 6, "6400992020612235": 6, "009": 6, "36": 6, "5180": 6, "5533034102455": 6, "8968910439566395": 6, "027": 6, "37": 6, "4989": 6, "929984864281": 6, "04458440839692226": 6, "492108041427977": 6, "033": 6, "38": [6, 7], "076": 6, "6528": 6, "215066535042": 6, "16700143339733753": 6, "143": 6, "40": [6, 7], "4168": 6, "7955967552625": 6, "306": 6, "41": 6, "6177": 6, "060727800014": 6, "426": 6, "3963": 6, "906954658341": 6, "446": 6, "43": 6, "6805334166565": 6, "013186009009851564": 6, "001008958590140135": 6, "504": 6, "9300": 6, "86840721566": 6, "524": 6, "45": [6, 7], "83": 6, "87968210939489": 6, "382674443425525e": 6, "531": 6, "46": 6, "538": 6, "544": 6, "48": 6, "683": 6, "49": 6, "3660": 6, "9359502555994": 6, "705": 6, "688": 6, "5244070398325": 6, "5267860995545326": 6, "729": 6, "51": 6, "690": 6, "6494438072099": 6, "8458809314722497": 6, "762": 6, "52": 6, "691": 6, "1197058420935": 6, "9167866889210807": 6, "788": 6, "53": 6, "3111710449325": 6, "945685900574672": 6, "810": 6, "9665592812149": 6, "8936837761725833": 6, "835": 6, "55": 6, "4682747008223": 6, "5183865279530455": 6, "858": 6, "56": 6, "687": 6, "5230947231512": 6, "3771771681361766": 6, "882": 6, "57": 6, "4503442069594": 6, "3663259819415374": 6, "906": 6, "58": 6, "686": 6, "9553733616618": 6, "2925652230875628": 6, "930": 6, "59": 6, "370": 6, "2038330506566": 6, "3962903248948568": 6, "955": 6, "60": 6, "377": 6, "25988028857313": 6, "45237513161879": 6, "979": 6, "8933285317637": 6, "4741161933311207": 6, "002": 6, "62": 6, "374": 6, "50897467366013": 6, "4290962207409417": 6, "026": 6, "63": [6, 7], "376": 6, "5588572940058": 6, "4464295711264585": 6, "051": 6, "64": 6, "237448916406": 6, "4687500034684213": 6, "077": 6, "65": 6, "375": 6, "7474776359051": 6, "4395650011783436": 6, "102": 6, "66": 6, "362": 6, "2834906299732": 6, "3326755354190032": 6, "126": 6, "67": 6, "357": 6, "3474880122588": 6, "2887212943233457": 6, "151": 6, "68": 6, "354": 6, "279045046449": 6, "2577677164664005": 6, "185": 6, "69": 6, "347": 6, "36894395697703": 6, "1672928587680225": 6, "222": 6, "70": 6, "345": 6, "17697390093394": 6, "1242367255308854": 6, "249": 6, "71": 6, "74610809299037": 6, "1728352983905301": 6, "274": 6, "72": 6, "23464281634324": 6, "1265380781508565": 6, "73": 6, "344": 6, "6848312222365": 6, "0829896313820404": 6, "327": 6, "74": [6, 7], "9111966504334": 6, "1070414661080543": 6, "365": 6, "75": 6, "70116419828565": 6, "0875643695329498": 6, "391": 6, "76": 6, "62647974688133": 6, "0716281620790837": 6, "416": 6, "77": 6, "6759429204596": 6, "0456289319914898": 6, "442": 6, "78": 6, "343": 6, "58131497761616": 6, "0010195360522613": 6, "469": 6, "79": 6, "342": 6, "7290581014813": 6, "9073210715005748": 6, "493": 6, "80": [6, 7], "67866114080107": 6, "9166305667100072": 6, "519": 6, "81": 6, "6440308445311": 6, "9248722692093634": 6, "547": 6, "82": 6, "02085648448934": 6, "8776928646870886": 6, "573": 6, "1662266300702": 6, "867592364677856": 6, "609": 6, "84": 6, "30158716569775": 6, "8599491178327108": 6, "635": 6, "85": [6, 8], "2803074848341": 6, "8396948389352923": 6, "662": 6, "86": 6, "28301101884045": 6, "8396651775801683": 6, "689": 6, "87": 6, "6781906268143": 6, "8356021935129933": 6, "714": 6, "88": 6, "0405418264898": 6, "7430046191126949": 6, "89": 6, "77203208258476": 6, "9015965341429055": 6, "782": 6, "90": 6, "363": 6, "1622720320929": 6, "6746575663752555": 6, "809": 6, "91": 6, "7403796626193": 6, "9057564666836629": 6, "849": 6, "92": 6, "63579667712696": 6, "9332275205203372": 6, "877": 6, "93": [6, 7], "6886425884964": 6, "9433063264508291": 6, "905": 6, "94": 6, "9341048659705": 6, "884739221967487": 6, "931": 6, "95": [6, 7], "63507445779743": 6, "9381000493689634": 6, "959": 6, "96": 6, "06021011302374": 6, "963138023068903": 6, "998": 6, "97": 6, "9990546212019": 6, "9601651093867907": 6, "98": 6, "3821": 6, "2267845437514": 6, "055": 6, "356": 6, "6786067133016": 6, "721603508336166": 6, "seaborn": [6, 7], "sn": [6, 7], "set_them": 6, "darkgrid": 6, "default_reg_scor": 6, "ax": [6, 7], "scatterplot": 6, "trials_datafram": 6, "xlabel": [6, 7], "ylabel": [6, 7], "ojbect": 6, "interest": [6, 7], "neg_mean_squared_error": [6, 9], "highlight": 6, "color": [6, 7], "cv_test": 6, "user_attrs_test_scor": 6, "lambda": [6, 12], "item": [6, 10], "idx": [6, 7], "v": 6, "hue": 6, "palett": 6, "set1": 6, "inspect": 6, "buildconfig_as_dict": 6, "serial": 6, "response_typ": [6, 7, 8], "deduplication_strategi": [6, 7, 8], "split_strategi": [6, 7, 8], "nosplit": [6, 12], "save_intermediate_fil": [6, 8], "log_transform": [6, 7, 8], "log_transform_bas": [6, 7, 8], "null": 6, "log_transform_neg": [6, 7, 8], "log_transform_unit_convers": [6, 7, 8], "probabilistic_threshold_represent": [6, 7, 8], "probabilistic_threshold_representation_threshold": [6, 7, 8], "probabilistic_threshold_representation_std": [6, 7, 8], "metadata": [6, 8, 9, 10, 11], "shuffl": [6, 9, 11, 12, 13], "best_trial": [6, 9, 11], "best_valu": [6, 9, 11], "tracking_rest_endpoint": [6, 9], "best_build": 6, "rb": 6, "predict_from_smil": [6, 8], "cc1": [6, 7], "43103985": 6, "177": 6, "99850936": 6, "now": [6, 7, 9], "panda": [6, 7], "pd": [6, 7], "df": [6, 12, 13], "read_csv": 6, "expect": [6, 7, 10], "matplotlib": [6, 7], "pyplot": [6, 7], "plt": [6, 7], "scatter": 6, "lim": 6, "max": [6, 7, 12], "diagon": 6, "r2_score": 6, "mean_squared_error": 6, "mean_absolute_error": 6, "y_true": [6, 8, 11], "y_pred": [6, 8, 11], "rmse": 6, "mae": 6, "absolut": 6, "8566354978126369": 6, "204909888075044": 6, "298453946973815": 6, "accept": [6, 7], "again": 6, "hopefulli": [6, 7], "littl": 6, "better": [6, 7, 8, 12], "send": 6, "strategi": [6, 8], "current": 6, "observ": [6, 7], "last": [6, 7, 12], "alreadi": [6, 7], "sort": [6, 7, 12, 13], "oldest": [6, 7, 12, 13], "newest": [6, 7, 12, 13], "end": [6, 7, 12, 13], "extern": 6, "tool": 6, "excel": 6, "unballanc": 6, "work": [6, 7], "come": [6, 7], "measur": [6, 7], "fact": 6, "disregard": 6, "stereochemistri": [6, 7, 8], "even": [6, 7], "sever": 6, "median": [6, 7, 12], "factor": [6, 7], "replic": [6, 7], "robust": [6, 7], "outlier": [6, 7], "acorss": 6, "trust": 6, "kept": 6, "splitter": [6, 7, 8, 10], "track_to_mlflow": [6, 9], "my_study_stratified_split": 6, "459": 6, "501": 6, "3057": 6, "0737441471415": 6, "723": 6, "3949": 6, "4997729531806": 6, "04335327191051897": 6, "2876523244079226e": 6, "743": 6, "2641": 6, "7637473751115": 6, "281": 6, "6547433605841": 6, "80890800406477": 6, "827": 6, "1814": 6, "6019641143478": 6, "830": 6, "1299": 6, "620534925781": 6, "7893604099368685": 6, "880": 6, "4973593091877": 6, "03671864361026323": 6, "00014643260043430825": 6, "898": 6, "2756": 6, "046839500092": 6, "915": 6, "282": 6, "4634701019795": 6, "3839369222964104": 6, "966": 6, "3455": 6, "5180070042607": 6, "983": 6, "2695": 6, "2514836330784": 6, "048": 6, "2572": 6, "460374011433": 6, "066": 6, "1689": 6, "5805291820304": 6, "1532631811134977": 6, "106": 6, "292": 6, "22585940088896": 6, "13291352086555208": 6, "170": 6, "3137": 6, "8321917955004": 6, "186": 6, "1605": 6, "5382531580788": 6, "28521421962693694": 6, "217": 6, "1773": 6, "5125457246183": 6, "10131141912172": 6, "234": 6, "2733": 6, "5772576431627": 6, "2661": 6, "2145086075775": 6, "254": 6, "319": 6, "385": 6, "1931": 6, "9555352447962": 6, "403": 6, "4997740833423": 6, "85865133788878": 6, "3473213833800429e": 6, "06": 6, "433": 6, "266": 6, "77789208348054": 6, "7666549949931907": 6, "496": 6, "2129": 6, "55317061882": 6, "515": 6, "4997529569555": 6, "00014127070069599025": 6, "240919869254693e": 6, "589": 6, "2906": 6, "3484169581293": 6, "658": 6, "3473": 6, "931670829174": 6, "3971": 6, "087168793673": 6, "14818118238408418": 6, "953513747430605": 6, "706": 6, "4997433637795": 6, "0001228765801311491": 6, "4591289226971906e": 6, "725": 6, "499719300989": 6, "00041409136806164345": 6, "821542662478444e": 6, "1333": 6, "1080184319123": 6, "6244376673476641": 6, "3948": 6, "999405683353": 6, "0012006474028372037": 6, "0035193990764782663": 6, "780": 6, "1248": 6, "8139648799436": 6, "0525472971081413": 6, "798": 6, "3916": 6, "913857912147": 6, "0005803372070091582": 6, "366143200836595": 6, "817": 6, "1680": 6, "3115194221573": 6, "6315712528909487": 6, "1245": 6, "7849372758426": 6, "325031130330673": 6, "855": 6, "2124": 6, "9660426577593": 6, "873": 6, "4997740139383": 6, "017776950266970536": 6, "910105415664246e": 6, "890": 6, "1351": 6, "9376331223525": 6, "9911488496798933": 6, "957": 6, "3286": 6, "345885718371": 6, "963": 6, "982": 6, "499768537649": 6, "009258297484819936": 6, "5176632615812382e": 6, "1703": 6, "710237258029": 6, "9478479848575685": 6, "032": 6, "229495999417457": 6, "0003981480629989713": 6, "052": 6, "428258980535": 6, "002172302935728222": 6, "005480078761284468": 6, "073": 6, "4997740653785": 6, "045484025655845216": 6, "497866775391571e": 6, "093": 6, "499732050299": 6, "023210503277436626": 6, "801011645114503e": 6, "112": 6, "1690": 6, "902862507046": 6, "22764084507571": 6, "linear_model": 6, "_coordinate_desc": 6, "678": 6, "convergencewarn": 6, "did": 6, "regularis": 6, "dualiti": 6, "gap": 6, "244e": 6, "02": 6, "toler": 6, "824e": 6, "cd_fast": 6, "enet_coordinate_desc": 6, "516e": 6, "820e": 6, "669e": 6, "770e": 6, "184": 6, "355": 6, "30043208462075": 6, "0162536050854966": 6, "148e": 6, "547e": 6, "258e": 6, "247": 6, "18584104924287": 6, "009281923522716007": 6, "469e": 6, "321": 6, "29910648955155": 6, "044675516154422834": 6, "054e": 6, "475e": 6, "207e": 6, "19318681541083": 6, "0039422500466863575": 6, "440": 6, "218": 6, "95937317940152": 6, "4811212161180066": 6, "475": 6, "30176287369363": 6, "5762244804442953": 6, "511": 6, "3805952122523": 6, "5610250131672468": 6, "546": 6, "29075615961696": 6, "5965069449860365": 6, "585": 6, "4699295292146": 6, "5529252738361741": 6, "611": 6, "30403743758362": 6, "591083812448875": 6, "649": 6, "29691912499243": 6, "579274146968425": 6, "674": 6, "29663665981653": 6, "5818879247726123": 6, "712": 6, "216": 6, "7163115473373": 6, "6285658707995572": 6, "749": 6, "215": 6, "66659620329202": 6, "6810691120560284": 6, "786": 6, "64678468403795": 6, "7487983002601213": 6, "823": 6, "219": 6, "08469115255278": 6, "8068222390735325": 6, "857": 6, "221": 6, "67049576857792": 6, "8493407132310065": 6, "894": 6, "6875210742613": 6, "7508314732901358": 6, "19882373585992": 6, "7685140566823006": 6, "968": 6, "51231241451993": 6, "8465024803262398": 6, "004": 6, "73145983614108": 6, "753488429838363": 6, "041": 6, "03558248626155": 6, "7638703869128992": 6, "078": 6, "11133921135888": 6, "7660487384582346": 6, "116": 6, "4601677546666": 6, "7969073835731864": 6, "155": 6, "11981969515475": 6, "7663003495535811": 6, "191": 6, "227": 6, "36711291551754": 6, "9623078145433335": 6, "226": 6, "21304370814948": 6, "7229769555215682": 6, "262": 6, "98815811142376": 6, "7105170980912668": 6, "224": 6, "41250562156347": 6, "34993288668380185": 6, "337": 6, "4134153897518": 6, "941382892540422": 6, "7394814717604": 6, "6602443806918321": 6, "413": 6, "7076312654289": 6, "6935139136439702": 6, "450": 6, "66506672306295": 6, "6787271614177919": 6, "489": 6, "5573047221147": 6, "4073714297040414": 6, "527": 6, "76836831150376": 6, "6569329476441761": 6, "566": 6, "88742274290686": 6, "705586415213896": 6, "606": 6, "93365211578404": 6, "6474556827629386": 6, "645": 6, "677987167027": 6, "687131792338989": 6, "682": 6, "8173049953933": 6, "6520782072904042": 6, "722": 6, "374660807297": 6, "4259162442286648": 6, "2726": 6, "0476769808097": 6, "787": 6, "6970943689421": 6, "6669588932884131": 6, "825": 6, "78916275639816": 6, "6547526034378687": 6, "852": 6, "255": 6, "9289281641908": 6, "4686418435830522": 6, "879": 6, "41516780662832": 6, "4720283573073992": 6, "919": 6, "08394889472513": 6, "1968941244750797": 6, "80459560588784": 6, "6532271661553414": 6, "997": 6, "223": 6, "9455981312185": 6, "8952103276371259": 6, "079": 6, "2119": 6, "4669766878847": 6, "120": 6, "241": 6, "1616615224319": 6, "2188693608302126": 6, "By": [6, 7], "roc_auc": [6, 9], "model_evalu": 6, "amongst": 6, "regression_scor": 6, "classification_scor": 6, "explained_vari": [6, 9], "max_error": [6, 9], "neg_mean_absolute_error": [6, 9], "neg_median_absolute_error": [6, 9], "average_precis": [6, 9], "balanced_accuraci": [6, 9], "f1": [6, 9], "f1_macro": [6, 9], "f1_micro": [6, 9], "f1_weight": [6, 9], "jaccard": [6, 9], "jaccard_macro": [6, 9], "jaccard_micro": [6, 9], "jaccard_weight": [6, 9], "neg_brier_scor": [6, 9], "precis": [6, 7, 9], "precision_macro": [6, 9], "precision_micro": [6, 9], "precision_weight": [6, 9], "recal": [6, 9], "recall_macro": [6, 9], "recall_micro": [6, 9], "recall_weight": [6, 9], "auc_pr_cal": [6, 8, 9], "bedroc": [6, 8, 9], "concordance_index": [6, 8, 9], "my_study_r2": 6, "059": 6, "060": 6, "01117186866515992": 6, "08689402230378156": 6, "340": 6, "12553701248394863": 6, "141096648805748": 6, "4893466963980463e": 6, "08": 6, "420": 6, "3039309544203818": 6, "437": 6, "20182749628697164": 6, "456": 6, "8187194367176578": 6, "477": 6, "4647239019719945": 6, "6574750183038587": 6, "506": 6, "8614818478547979": 6, "3974313630683448": 6, "572": 6, "12769795082909816": 6, "623": 6, "8639946428338224": 6, "2391884918766034": 6, "652": 6, "12553701248377633": 6, "00044396482429275296": 6, "3831436879125245e": 6, "12553700871203702": 6, "00028965395242758657": 6, "99928292425642e": 6, "699": 6, "2935582042429075": 6, "18476333152695587": 6, "731": 6, "8190707459213998": 6, "4060379177903557": 6, "796": 6, "12206148974315878": 6, "812": 6, "3105263811279067": 6, "344271094811757": 6, "3562469062424869": 6, "670604991178476": 6, "893": 6, "04595969590698312": 6, "923": 6, "8583939656024446": 6, "5158832554303112": 6, "940": 6, "3062574078515544": 6, "970": 6, "11657354998283716": 6, "0009327650919528738": 6, "062479210472502": 6, "974": 6, "992": 6, "8498478905829554": 6, "1366172066709432": 6, "072": 6, "12769795082909807": 6, "103": 6, "13519830637607919": 6, "92901911959232": 6, "999026012594694": 6, "121": 6, "8198078293055633": 6, "5888977841391714": 6, "140": 6, "8201573964824842": 6, "19435298754153707": 6, "045959695906983344": 6, "6285506249643193": 6, "35441495011256785": 6, "286": 6, "11934070343348317": 6, "305": 6, "4374125584543907": 6, "2457809516380005": 6, "335": 6, "3625576518621392": 6, "6459129458824919": 6, "36175556871883746": 6, "8179058888285398": 6, "359": [6, 7], "8202473217121523": 6, "0920052840435055": 6, "395": 6, "3672927879319306": 6, "8677032984759461": 6, "419": 6, "40076792599874356": 6, "2865764368847064": 6, "26560316846701765": 6, "554": 6, "4121525485708119": 6, "560": 6, "625": 6, "00461414372160085": 6, "646": 6, "27282533524183633": 6, "726": 6, "1022012740736498": 6, "746": 6, "30323404130582854": 6, "776": 6, "3044553805553568": 6, "6437201185807124": 6, "795": 6, "41502276709562": 6, "10978379088847677": 6, "815": 6, "36160209098547913": 6, "022707289534838138": 6, "2916101445983833": 6, "434e": 6, "977e": 6, "936e": 6, "782e": 6, "908": 6, "8609413020928532": 6, "04987590926279814": 6, "794e": 6, "830e": 6, "906e": 6, "578e": 6, "981": 6, "8610289662757457": 6, "019211413400468974": 6, "754e": 6, "507e": 6, "843e": 6, "8610070549049179": 6, "018492644772509947": 6, "840e": 6, "924e": 6, "513e": 6, "127": 6, "8569771623635769": 6, "008783442408928633": 6, "243e": 6, "014e": 6, "8624781673814641": 6, "05782221001517797": 6, "113e": 6, "935e": 6, "122e": 6, "273": 6, "8618589507037001": 6, "02487072255316275": 6, "346": 6, "864754359721037": 6, "2079910754941946": 6, "383": 6, "8622236413326235": 6, "333215560931422": 6, "425": 6, "861832165638517": 6, "3628098560209365": 6, "462": 6, "8620108533993581": 6, "34240779695521706": 6, "8638540565650902": 6, "26493714991266293": 6, "559": 6, "8629799500771645": 6, "30596394512914815": 6, "597": 6, "8621408609583922": 6, "33648829357762355": 6, "8638132124078156": 6, "2679814646317183": 6, "698": 6, "863983758876634": 6, "24062119162159595": 6, "748": 6, "8627356047945115": 6, "3141728910335158": 6, "8639203054085788": 6, "23391390640786494": 6, "8570103863991635": 6, "6124885145996103": 6, "8647961976727571": 6, "2059976546070975": 6, "953": 6, "8648312544921793": 6, "20266060662750784": 6, "016": 6, "8648431452862716": 6, "20027647978240445": 6, "8648491459660418": 6, "1968919999787333": 6, "8650873115156988": 6, "174598921162764": 6, "212": 6, "8650350577921149": 6, "16468002989641095": 6, "8649412283687147": 6, "1606717091615047": 6, "986e": 6, "361": 6, "8649537211609554": 6, "14694925097689848": 6, "436": 6, "8649734575435447": 6, "147612713300643": 6, "446e": 6, "512": 6, "8648761002838515": 6, "14440434705706803": 6, "398e": 6, "588": 6, "8639826593122782": 6, "1265357179513065": 6, "690e": 6, "663": 6, "864435565531768": 6, "1374245525868926": 6, "701": 6, "8590221951825531": 6, "49890830155012533": 6, "8649098880804443": 6, "1573428812070292": 6, "405e": 6, "864536410656637": 6, "13886104722511608": 6, "887": 6, "8597401050431873": 6, "47746341180045787": 6, "011": 6, "8537465461603838": 6, "050e": 6, "086": 6, "8642643827090003": 6, "13446778921611002": 6, "175e": 6, "162": 6, "8641621818665252": 6, "1286796719653316": 6, "237": 6, "864182755916388": 6, "13303218726548235": 6, "280": 6, "1255357440899417": 6, "021711452917433944": 6, "559714273835951e": 6, "8604596648091501": 6, "43644874418279245": 6, "463e": 6, "8635689909135862": 6, "10940922083495383": 6, "8648544336551733": 6, "1912756875742137": 6, "525": 6, "8648496595672595": 6, "19628449928540487": 6, "553": 6, "8452625121122099": 6, "4324661283995224": 6, "580": 6, "8378670635846416": 6, "839206620815206": 6, "082e": 6, "002e": 6, "656": 6, "8649365368153895": 6, "07270781179126021": 6, "744": 6, "8875676754699953": 6, "0006995169897945908": 6, "586e": 6, "618e": 6, "234e": 6, "8730555131061773": 6, "0018186269840273495": 6, "12553508835019533": 6, "04867556317570456": 6, "0011658455138452": 6, "177e": 6, "284e": 6, "016e": 6, "958": 6, "8586292788613132": 6, "005078762921098462": 6, "anyalgorithm": 6, "__args__": 6, "consider": [6, 7], "modif": [6, 12], "establish": 6, "rf": 6, "account": [6, 7, 8], "though": 6, "treat": [6, 7], "pdf": [6, 9], "denot": [6, 12, 13], "determinist": [6, 7], "quantiti": 6, "tradit": [6, 7], "discret": 6, "discretis": [6, 12, 14], "bioactiv": [6, 7], "integr": 6, "afford": [6, 7], "particularli": 6, "liklihood": 6, "membership": [6, 7], "iopscienc": 6, "iop": 6, "articl": [6, 7], "3847": 6, "1538": 6, "3881": 6, "aaf101": 6, "pxc50": [6, 7], "p24863": 6, "enabl": [6, 7], "alwai": [6, 7], "067": 6, "068": 6, "862": 6, "08101726438085996": 6, "prfclassifier_algorithm_hash": 6, "efe0ba9870529a6cde0dd3ad22447cbb": 6, "max_depth__efe0ba9870529a6cde0dd3ad22447cbb": 6, "n_estimators__efe0ba9870529a6cde0dd3ad22447cbb": 6, "max_features__efe0ba9870529a6cde0dd3ad22447cbb": 6, "prfclassifiermaxfeatur": [6, 9], "min_py_sum_leaf__efe0ba9870529a6cde0dd3ad22447cbb": 6, "use_py_gini__efe0ba9870529a6cde0dd3ad22447cbb": 6, "use_py_leafs__efe0ba9870529a6cde0dd3ad22447cbb": 6, "07097960243642848": 6, "730": 6, "09052799500705616": 6, "07040719823269156": 6, "263": 6, "06911267342763242": 6, "05136901123580041": 6, "865": 6, "06280695738717797": 6, "07816842443619718": 6, "06455534183210111": 6, "409": 6, "07792537939575431": 6, "06861406991549013": 6, "594": 6, "06427836969444865": 6, "035": 6, "0685253956054604": 6, "557": 6, "05052752675844046": 6, "best_built": 6, "demonstr": [6, 7], "purpos": [6, 7], "transduct": 6, "example_smil": 6, "get_set": [6, 7, 8], "b": [6, 7], "outsid": [6, 7, 8], "likelihood": 6, "problemat": 6, "except": [6, 8, 12], "valueerror": 6, "As": [6, 7], "raw": [6, 7, 8, 12], "03": 6, "945": 6, "989": 6, "w": [6, 8], "990": [6, 7], "fail": 6, "traceback": 6, "_optim": 6, "196": 6, "_run_trial": 6, "value_or_valu": 6, "func": 6, "pycharmproject": 6, "public_qptuna": 6, "128": 6, "__call__": 6, "_validate_algo": 6, "rais": [6, 8, 12], "994": 6, "summaris": 6, "handl": 6, "via": [6, 7, 12], "convent": [6, 7], "classic": 6, "relev": 6, "cutoff": [6, 7, 12], "ouput": 6, "reflect": [6, 7], "arguabl": 6, "mpo": 6, "pub": 6, "ac": 6, "full": [6, 9], "jcim": 6, "9b00237": 6, "slide": 6, "googl": 6, "14pbd9ltxzfpsjhyxykflxnk8q80lhvnjimg8a3wqcrm": 6, "edit": 6, "calcault": 6, "directli": [6, 7], "later": 6, "smilesbaseddescriptor": 6, "architectur": [6, 7], "quickli": 6, "046": 6, "root": [6, 9, 10], "enqueu": [6, 8], "manual": 6, "activation__668a7428ff5cdb271b01c0925e8fea45": 6, "relu": [6, 9], "aggregation__668a7428ff5cdb271b01c0925e8fea45": 6, "aggregation_norm__668a7428ff5cdb271b01c0925e8fea45": 6, "batch_size__668a7428ff5cdb271b01c0925e8fea45": 6, "depth__668a7428ff5cdb271b01c0925e8fea45": 6, "dropout__668a7428ff5cdb271b01c0925e8fea45": 6, "features_generator__668a7428ff5cdb271b01c0925e8fea45": 6, "ffn_hidden_size__668a7428ff5cdb271b01c0925e8fea45": 6, "ffn_num_layers__668a7428ff5cdb271b01c0925e8fea45": 6, "final_lr_ratio_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "hidden_size__668a7428ff5cdb271b01c0925e8fea45": 6, "init_lr_ratio_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "max_lr_exp__668a7428ff5cdb271b01c0925e8fea45": 6, "warmup_epochs_ratio__668a7428ff5cdb271b01c0925e8fea45": 6, "chempropregressor_algorithm_hash": 6, "668a7428ff5cdb271b01c0925e8fea45": 6, "317": 6, "6833": 6, "034983241957": 6, "chempropactiv": [6, 9], "chempropaggreg": [6, 9], "ensemble_size__668a7428ff5cdb271b01c0925e8fea45": 6, "epochs__668a7428ff5cdb271b01c0925e8fea45": 6, "chempropfeatures_gener": [6, 9], "277": 6, "8093": 6, "803069372614": 6, "180": 6, "2100": 6, "safe": 6, "nan": [6, 8, 12, 13], "prompt": 6, "due": [6, 7, 8], "deactiv": 6, "own": 6, "still": 6, "commun": 6, "facilit": [6, 7, 9], "preset": 6, "enqu": 6, "bayesian": 6, "suggest": 6, "split_chemprop": [6, 9], "flag": [6, 7, 12, 13], "n_chemprop_tri": [6, 9], "desir": 6, "undirect": 6, "shown": [6, 7], "aspect": [6, 8], "princip": [6, 7], "expand": [6, 8], "differnt": 6, "rememb": 6, "unless": 6, "alter": [6, 9], "characterist": [6, 7], "too": [6, 9], "limit": [6, 7, 9], "vice": [6, 9], "versa": [6, 9], "extens": [6, 9], "trail": [6, 9], "applic": [6, 7, 9], "chanc": 6, "help": 6, "caruana": 6, "particular": 6, "achiev": [6, 7], "st": 6, "figur": [6, 7], "signal": 6, "aka": 6, "could": [6, 7], "share": [6, 12, 13], "until": [6, 9], "longer": 6, "mt": 6, "onc": [6, 7, 12], "knowledg": 6, "order": [6, 7, 9, 12], "earlier": [6, 7], "accompi": 6, "train_side_info": 6, "clog": 6, "surfac": 6, "area": [6, 7], "psa": 6, "293": 6, "265": 6, "22475": 6, "8088": 6, "883": 6, "271": 6, "32297": 6, "6237": 6, "287": 6, "33334": 6, "2804": 6, "314": 6, "26075": 6, "2533": 6, "498": 6, "278": 6, "18917": 6, "5102": 6, "694": 6, "246": 6, "12575": 6, "7244": 6, "14831": 6, "4338": 6, "895": 6, "302": 6, "26838": 6, "2041": 6, "057": 6, "22298": 6, "match": 6, "train_side_info_cl": 6, "clogp_gt2": 6, "clogs_gt": 6, "acceptors_gt5": 6, "donors_gt0": 6, "area_gt250": 6, "psa_lt0": 6, "aux": [6, 8, 10], "820": 6, "822": 6, "747": 6, "5817": 6, "944009132488": 6, "chemprophyperoptregressor_algorithm_hash": 6, "db9e60f9b8f0a43eff4b41917b6293d9": 6, "ensemble_size__db9e60f9b8f0a43eff4b41917b6293d9": 6, "epochs__db9e60f9b8f0a43eff4b41917b6293d9": 6, "features_generator__db9e60f9b8f0a43eff4b41917b6293d9": 6, "num_iters__db9e60f9b8f0a43eff4b41917b6293d9": 6, "search_parameter_level__db9e60f9b8f0a43eff4b41917b6293d9": 6, "chempropsearch_parameter_level": [6, 9], "aux_weight_pc__db9e60f9b8f0a43eff4b41917b6293d9": 6, "757": 6, "445": 6, "5796": 6, "34421890567": 6, "258": 6, "5795": 6, "086276167766": 6, "888": 6, "5820": 6, "227555999914": 6, "5852": 6, "159469428255": 6, "inlfuenc": 6, "henc": [6, 7], "percent": 6, "product": 6, "user_attrs_trial_ran": 6, "drop": [6, 7, 8], "erron": 6, "__": 6, "params_aux_weight_pc": 6, "conclud": [6, 7], "produc": 6, "overrid": [6, 9], "situat": [6, 7], "along": 6, "potenti": [6, 7], "compris": [6, 7], "incompat": 6, "whilst": [6, 7], "desciptor": 6, "grei": [6, 7], "tial": 6, "what": 6, "design": 6, "unpromis": 6, "why": [6, 7], "poor": 6, "sampler": 6, "incompta": 6, "repeatedli": 6, "hyerparamet": 6, "ident": 6, "005": 6, "071": 6, "9525489095524835": 6, "aux_weight_pc__cfa1990d5153c8812982f034d788d7e": 6, "4824": 6, "686269039228": 6, "7731425652872588": 6, "257": 6, "260": 6, "4409": 6, "946844928445": 6, "791002332112292": 6, "353": 6, "505": 6, "329624779366306": 6, "00015024763718638216": 6, "510": 6, "513": 6, "520": 6, "727": 6, "4396": 6, "722635068717": 6, "736": 6, "977": 6, "204": 6, "consult": 6, "incompitbl": 6, "algo": [6, 9], "occur": 6, "assign": [6, 7], "doe": [6, 7, 8, 9, 12], "params_algorithm_nam": 6, "move_legend": 6, "upper": [6, 7], "bbox_to_anchor": [6, 7], "overview": 6, "never": 6, "successfulli": 6, "absenc": 6, "8th": 6, "miss": [6, 8, 12, 13], "associ": [6, 7], "asid": 6, "mitig": 6, "overal": [6, 7], "serv": [6, 11], "argument": [6, 8], "tl": 6, "wider": 6, "491": 6, "492": 6, "activation__e0d3a442222d4b38f3aa1434851320db": 6, "aggregation__e0d3a442222d4b38f3aa1434851320db": 6, "aggregation_norm__e0d3a442222d4b38f3aa1434851320db": 6, "batch_size__e0d3a442222d4b38f3aa1434851320db": 6, "depth__e0d3a442222d4b38f3aa1434851320db": 6, "dropout__e0d3a442222d4b38f3aa1434851320db": 6, "features_generator__e0d3a442222d4b38f3aa1434851320db": 6, "ffn_hidden_size__e0d3a442222d4b38f3aa1434851320db": 6, "ffn_num_layers__e0d3a442222d4b38f3aa1434851320db": 6, "final_lr_ratio_exp__e0d3a442222d4b38f3aa1434851320db": 6, "hidden_size__e0d3a442222d4b38f3aa1434851320db": 6, "init_lr_ratio_exp__e0d3a442222d4b38f3aa1434851320db": 6, "max_lr_exp__e0d3a442222d4b38f3aa1434851320db": 6, "warmup_epochs_ratio__e0d3a442222d4b38f3aa1434851320db": 6, "e0d3a442222d4b38f3aa1434851320db": 6, "4937": 6, "540075659691": 6, "ensemble_size__e0d3a442222d4b38f3aa1434851320db": 6, "epochs__e0d3a442222d4b38f3aa1434851320db": 6, "retrain": 6, "680": 6, "724": 6, "175": 6, "5114": 6, "7131239123555": 6, "chempropregressorpretrained_algorithm_hash": 6, "dfc518a76317f23d95e5aa5a3eac77f0": 6, "frzn__dfc518a76317f23d95e5aa5a3eac77f0": 6, "chempropfrzn": [6, 9], "epochs__dfc518a76317f23d95e5aa5a3eac77f0": 6, "cover": 6, "global": 6, "job": [6, 7], "fair": 6, "tl_studi": 6, "loc": [6, 7], "params_epoch": 6, "fillna": 6, "astyp": [6, 7], "agg": 6, "join": [6, 7], "params_chempropregressor_algorithm_hash": 6, "isna": 6, "284": 6, "189": 6, "5891": 6, "7552821093905": 6, "105": 6, "139": 6, "5846": 6, "868596513772": 6, "1600": 6, "900": 6, "5890": 6, "94653501547": 6, "77dfc8230317e08504ed5e643243fbc2": 6, "frzn__77dfc8230317e08504ed5e643243fbc2": 6, "epochs__77dfc8230317e08504ed5e643243fbc2": 6, "070": 6, "881210303758": 6, "right": [6, 7], "ncol": 6, "world": [6, 7, 12, 13], "penultim": [6, 9], "chemprop_model": 6, "heatmap": 6, "predictor": [6, 8], "chemprop_fingerprint": 6, "fingerprint_typ": 6, "mpn": 6, "cbar_kw": 6, "semi": 6, "supervis": 6, "altern": 6, "last_ffn": 6, "howeev": 6, "respect": [6, 7], "kind": [6, 7, 12], "confid": 6, "calibratedclassifiercv": 6, "understand": 6, "predict_proba": [6, 8], "among": 6, "gave": 6, "close": [6, 7], "actual": [6, 7], "topic": 6, "sigmoid": [6, 9], "review": 6, "those": [6, 7, 8], "calibration_curv": 6, "collect": 6, "defaultdict": 6, "precision_scor": 6, "recall_scor": 6, "f1_score": 6, "brier_score_loss": 6, "log_loss": 6, "roc_auc_scor": 6, "n_job": [6, 9, 11], "calibrated_rf": 6, "calibrated_model": 6, "080": 6, "948": 6, "8353535353535354": 6, "calibratedclassifiercvwithva_algorithm_hash": 6, "e788dfbfc5075967acb5ddf9d971ea20": 6, "n_folds__e788dfbfc5075967acb5ddf9d971ea20": 6, "max_depth__e788dfbfc5075967acb5ddf9d971ea20": 6, "n_estimators__e788dfbfc5075967acb5ddf9d971ea20": 6, "max_features__e788dfbfc5075967acb5ddf9d971ea20": 6, "uncalibr": 6, "uncalibrated_rf": 6, "uncalibrated_model": 6, "457": 6, "766": 6, "8185858585858585": 6, "randomforestclassifier_algorithm_hash": 6, "167e1e88dd2a80133e317c78f009bdc9": 6, "max_depth__167e1e88dd2a80133e317c78f009bdc9": 6, "n_estimators__167e1e88dd2a80133e317c78f009bdc9": 6, "max_features__167e1e88dd2a80133e317c78f009bdc9": 6, "conserv": 6, "1000": [6, 7], "500": 6, "random_st": [6, 12, 13], "123": 6, "calibrated_predict": 6, "uncalibrated_predict": 6, "cal_df": 6, "datafram": [6, 7, 8, 11, 12], "boxplot": 6, "melt": 6, "set_ylabel": [6, 7], "behaviour": [6, 7], "curv": [6, 7], "reliabl": 6, "diagram": 6, "against": 6, "figsiz": [6, 7], "ax1": 6, "subplot2grid": 6, "rowspan": 6, "ax2": 6, "perfectli": [6, 7], "pred": 6, "fraction_of_posit": 6, "mean_predicted_valu": 6, "n_bin": 6, "brier": 6, "2f": 6, "hist": 6, "histtyp": 6, "lw": 6, "set_ylim": 6, "legend": [6, 7], "set_titl": 6, "set_xlabel": [6, 7], "center": [6, 7], "tight_layout": [6, 7], "compos": 6, "refin": 6, "notic": 6, "significantli": 6, "cell": 6, "accur": 6, "alloc": 6, "y_prob": 6, "ye": 6, "score_nam": 6, "__name__": 6, "capit": 6, "score_df": 6, "set_index": 6, "decim": 6, "roc": 6, "auc": [6, 8], "184705": 6, "547129": 6, "830565": 6, "744048": 6, "784929": 6, "716536": 6, "175297": 6, "529474": 6, "811209": 6, "818452": 6, "814815": 6, "714104": 6, "va": 6, "multipoint": 6, "0c00476": 6, "margin": [6, 7], "bounari": 6, "556": 6, "461": 6, "8213131313131313": 6, "79765fbec1586f3c917ff30de274fdb4": 6, "n_folds__79765fbec1586f3c917ff30de274fdb4": 6, "max_depth__79765fbec1586f3c917ff30de274fdb4": 6, "n_estimators__79765fbec1586f3c917ff30de274fdb4": 6, "max_features__79765fbec1586f3c917ff30de274fdb4": 6, "uncert": [6, 8], "chem": [6, 7, 8], "allchem": 6, "pandastool": [6, 7], "rdconfig": 6, "datastruct": 6, "train_df": 6, "addmoleculecolumntofram": 6, "includefingerprint": 6, "getmorganfingerprint": 6, "nn": 6, "bulktanimotosimilar": 6, "va_pr": 6, "va_uncert": 6, "dtm": 6, "trelli": 6, "fig": [6, 7], "subplot": [6, 7], "sharei": 6, "regplot": 6, "referenc": 6, "boundari": [6, 7, 12, 14], "neither": 6, "nor": 6, "dissimilar": 6, "cp_pred_ensembl": 6, "cp_uncert_ensembl": 6, "activation__fd833c2dde0b7147e6516ea5eebb2657": 6, "aggregation__fd833c2dde0b7147e6516ea5eebb2657": 6, "aggregation_norm__fd833c2dde0b7147e6516ea5eebb2657": 6, "batch_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "depth__fd833c2dde0b7147e6516ea5eebb2657": 6, "dropout__fd833c2dde0b7147e6516ea5eebb2657": 6, "features_generator__fd833c2dde0b7147e6516ea5eebb2657": 6, "ffn_hidden_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "ffn_num_layers__fd833c2dde0b7147e6516ea5eebb2657": 6, "final_lr_ratio_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "hidden_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "init_lr_ratio_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "max_lr_exp__fd833c2dde0b7147e6516ea5eebb2657": 6, "warmup_epochs_ratio__fd833c2dde0b7147e6516ea5eebb2657": 6, "chempropclassifier_algorithm_hash": 6, "fd833c2dde0b7147e6516ea5eebb2657": 6, "943": 6, "65625": 6, "ensemble_size__fd833c2dde0b7147e6516ea5eebb2657": 6, "epochs__fd833c2dde0b7147e6516ea5eebb2657": 6, "midpoint": 6, "mont": 6, "carlo": 6, "virtual": [6, 8], "activation__c73885c5d5a4182168b8b002d321965a": 6, "aggregation__c73885c5d5a4182168b8b002d321965a": 6, "aggregation_norm__c73885c5d5a4182168b8b002d321965a": 6, "batch_size__c73885c5d5a4182168b8b002d321965a": 6, "depth__c73885c5d5a4182168b8b002d321965a": 6, "dropout__c73885c5d5a4182168b8b002d321965a": 6, "features_generator__c73885c5d5a4182168b8b002d321965a": 6, "ffn_hidden_size__c73885c5d5a4182168b8b002d321965a": 6, "ffn_num_layers__c73885c5d5a4182168b8b002d321965a": 6, "final_lr_ratio_exp__c73885c5d5a4182168b8b002d321965a": 6, "hidden_size__c73885c5d5a4182168b8b002d321965a": 6, "init_lr_ratio_exp__c73885c5d5a4182168b8b002d321965a": 6, "max_lr_exp__c73885c5d5a4182168b8b002d321965a": 6, "warmup_epochs_ratio__c73885c5d5a4182168b8b002d321965a": 6, "c73885c5d5a4182168b8b002d321965a": 6, "737": 6, "46875": 6, "ensemble_size__c73885c5d5a4182168b8b002d321965a": 6, "epochs__c73885c5d5a4182168b8b002d321965a": 6, "cp_pred_dropout": 6, "cp_uncert_dropout": 6, "previou": 6, "proabil": 6, "va_predict": 6, "correl": [6, 7], "drouput": 6, "uncertatinti": 6, "cp_uncert_delta": 6, "categor": [6, 12], "unit": [6, 7], "parsabl": 6, "date": 6, "cast": 6, "appropri": 6, "befor": [6, 7, 12], "choic": [6, 12], "526": 6, "578": 6, "864": 6, "4305": 6, "8949093393": 6, "mapie_algorithm_hash": 6, "976d211e4ac64e5568d369bcddd3aeb1": 6, "mapie_alpha__976d211e4ac64e5568d369bcddd3aeb1": 6, "max_depth__976d211e4ac64e5568d369bcddd3aeb1": 6, "n_estimators__976d211e4ac64e5568d369bcddd3aeb1": 6, "max_features__976d211e4ac64e5568d369bcddd3aeb1": 6, "analysi": [6, 7, 8], "perfom": 6, "post": 6, "mapie_pr": 6, "mapie_unc": 6, "bar": 6, "visualis": 6, "errorbar": 6, "yerr": 6, "ab": 6, "fmt": 6, "black": [6, 7], "ecolor": 6, "grai": 6, "elinewidth": 6, "capsiz": 6, "move": [6, 10], "analys": [6, 7], "width": [6, 7], "alpha_impact": 6, "ma": 6, "unc_df": 6, "unc": 6, "reset_index": [6, 7], "concat": 6, "lineplot": 6, "err_styl": 6, "se": 6, "incorpor": 6, "tradition": 6, "unsupport": 6, "kernelexplain": [6, 8], "shaplei": 6, "explan": 6, "slundberg": 6, "game": 6, "credit": 6, "theori": 6, "publish": 6, "comopsit": 6, "778": 6, "831": 6, "joblib": [6, 8], "577": 6, "joblibcollisionwarn": 6, "collis": 6, "_cached_cal": 6, "shelv": 6, "_ridg": 6, "243": 6, "userwarn": [6, 7], "matrix": 6, "dual": 6, "439": 6, "3385354804881733": 6, "7165411263860415": 6, "dga": 6, "dgp": 6, "dgtot": 6, "sa": 6, "sdc": 6, "sdx": 6, "numhacceptor": 6, "numhdonor": 6, "maxabsestateindex": 6, "maxestateindex": 6, "minabsestateindex": 6, "minestateindex": 6, "qed": 6, "sp": 6, "heavyatommolwt": 6, "exactmolwt": 6, "numvalenceelectron": 6, "numradicalelectron": 6, "maxpartialcharg": 6, "minpartialcharg": 6, "maxabspartialcharg": 6, "minabspartialcharg": 6, "fpdensitymorgan1": 6, "fpdensitymorgan2": 6, "fpdensitymorgan3": 6, "bcut2d_mwhi": 6, "bcut2d_mwlow": 6, "bcut2d_chghi": 6, "bcut2d_chglo": 6, "bcut2d_logphi": 6, "bcut2d_logplow": 6, "bcut2d_mrhi": 6, "bcut2d_mrlow": 6, "avgipc": 6, "balabanj": 6, "bertzct": 6, "chi0": 6, "chi0n": 6, "chi0v": 6, "chi1": 6, "chi1n": 6, "chi1v": 6, "chi2n": 6, "chi2v": 6, "chi3n": 6, "chi3v": 6, "chi4n": 6, "chi4v": 6, "hallkieralpha": 6, "ipc": 6, "kappa1": 6, "kappa2": 6, "kappa3": 6, "labuteasa": 6, "peoe_vsa1": 6, "peoe_vsa10": 6, "peoe_vsa11": 6, "peoe_vsa12": 6, "peoe_vsa13": 6, "peoe_vsa14": 6, "peoe_vsa2": 6, "peoe_vsa3": 6, "peoe_vsa4": 6, "peoe_vsa5": 6, "peoe_vsa6": 6, "peoe_vsa7": 6, "peoe_vsa8": 6, "peoe_vsa9": 6, "smr_vsa1": 6, "smr_vsa10": 6, "smr_vsa2": 6, "smr_vsa3": 6, "smr_vsa4": 6, "smr_vsa5": 6, "smr_vsa6": 6, "smr_vsa7": 6, "smr_vsa8": 6, "smr_vsa9": 6, "slogp_vsa1": 6, "slogp_vsa10": 6, "slogp_vsa11": 6, "slogp_vsa12": 6, "slogp_vsa2": 6, "slogp_vsa3": 6, "slogp_vsa4": 6, "slogp_vsa5": 6, "slogp_vsa6": 6, "slogp_vsa7": 6, "slogp_vsa8": 6, "slogp_vsa9": 6, "estate_vsa1": 6, "estate_vsa10": 6, "estate_vsa11": 6, "estate_vsa2": 6, "estate_vsa3": 6, "estate_vsa4": 6, "estate_vsa5": 6, "estate_vsa6": 6, "estate_vsa7": 6, "estate_vsa8": 6, "estate_vsa9": 6, "vsa_estate1": 6, "vsa_estate10": 6, "vsa_estate2": 6, "vsa_estate3": 6, "vsa_estate4": 6, "vsa_estate5": 6, "vsa_estate6": 6, "vsa_estate7": 6, "vsa_estate8": 6, "vsa_estate9": 6, "fractioncsp3": 6, "heavyatomcount": 6, "nhohcount": 6, "nocount": 6, "numaliphaticcarbocycl": 6, "numaliphaticheterocycl": 6, "numaliphaticr": 6, "numaromaticcarbocycl": 6, "numaromaticheterocycl": 6, "numaromaticr": 6, "numheteroatom": 6, "numrotatablebond": 6, "numsaturatedcarbocycl": 6, "numsaturatedheterocycl": 6, "numsaturatedr": 6, "ringcount": 6, "mollogp": 6, "molmr": 6, "fr_al_coo": 6, "fr_al_oh": 6, "fr_al_oh_notert": 6, "fr_arn": 6, "fr_ar_coo": 6, "fr_ar_n": 6, "fr_ar_nh": 6, "fr_ar_oh": 6, "fr_coo": 6, "fr_coo2": 6, "fr_c_o": 6, "fr_c_o_nocoo": 6, "fr_c_": 6, "fr_hoccn": 6, "fr_imin": 6, "fr_nh0": 6, "fr_nh1": 6, "fr_nh2": 6, "fr_n_o": 6, "fr_ndealkylation1": 6, "fr_ndealkylation2": 6, "fr_nhpyrrol": 6, "fr_sh": 6, "fr_aldehyd": 6, "fr_alkyl_carbam": 6, "fr_alkyl_halid": 6, "fr_allylic_oxid": 6, "fr_amid": 6, "fr_amidin": 6, "fr_anilin": 6, "fr_aryl_methyl": 6, "fr_azid": 6, "fr_azo": 6, "fr_barbitur": 6, "fr_benzen": 6, "fr_benzodiazepin": 6, "fr_bicycl": 6, "fr_diazo": 6, "fr_dihydropyridin": 6, "fr_epoxid": 6, "fr_ester": 6, "fr_ether": 6, "fr_furan": 6, "fr_guanido": 6, "fr_halogen": 6, "fr_hdrzine": 6, "fr_hdrzone": 6, "fr_imidazol": 6, "fr_imid": 6, "fr_isocyan": 6, "fr_isothiocyan": 6, "fr_keton": 6, "fr_ketone_topliss": 6, "fr_lactam": 6, "fr_lacton": 6, "fr_methoxi": 6, "fr_morpholin": 6, "fr_nitril": 6, "fr_nitro": 6, "fr_nitro_arom": 6, "fr_nitro_arom_nonortho": 6, "fr_nitroso": 6, "fr_oxazol": 6, "fr_oxim": 6, "fr_para_hydroxyl": 6, "fr_phenol": 6, "fr_phenol_noorthohbond": 6, "fr_phos_acid": 6, "fr_phos_est": 6, "fr_piperdin": 6, "fr_piperzin": 6, "fr_priamid": 6, "fr_prisulfonamd": 6, "fr_pyridin": 6, "fr_quatn": 6, "fr_sulfid": 6, "fr_sulfonamd": 6, "fr_sulfon": 6, "fr_term_acetylen": 6, "fr_tetrazol": 6, "fr_thiazol": 6, "fr_thiocyan": 6, "fr_thiophen": 6, "fr_unbrch_alkan": 6, "fr_urea": 6, "shap_valu": 6, "2227": 6, "042016e": 6, "2229": 6, "025192e": 6, "2228": 6, "802156e": 6, "2267": 6, "387309e": 6, "00": 6, "2230": 6, "106656e": 6, "1784": 6, "610784e": 6, "1785": 6, "583": 6, "584": 6, "ns": 6, "995": 6, "996": 6, "845": 6, "846": 6, "1375": 6, "1376": 6, "s1": 6, "n1c": 6, "1570": 6, "contrinubt": 6, "datset": 6, "unscaledphyschemjazzi": 6, "rank": [6, 8], "usag": 6, "829": 6, "t": [6, 7, 8, 9], "kekul": 6, "unkekul": 6, "rational": 6, "rationale_scor": 6, "386": 6, "097": 6, "ch3": 6, "ch": 6, "389": [6, 7], "485": 6, "c1c": 6, "c1n": 6, "ch2": 6, "nh2": 6, "565": 6, "nn1cc1c": 6, "384": 6, "720": 6, "c1cccc": 6, "110": 6, "871": 6, "854": 6, "contian": 6, "second": 6, "dummi": 6, "third": 6, "smallest": 6, "made": [6, 7], "fourth": 6, "irregularli": 6, "xc50": [6, 7], "log10": [6, 7, 12, 14], "6th": 6, "convers": [6, 7, 12, 14], "logbas": [6, 7, 12, 14], "logneg": [6, 7, 12, 14], "negat": [6, 7, 12, 14], "transformed_studi": 6, "transform_exampl": 6, "022": 6, "5959493772536109": 6, "441": 6, "6571993250300608": 6, "486": 6, "1511102853256885": 6, "541": 6, "2487063317112765": 6, "558": 6, "6714912461080983": 6, "692": 6, "2725944467796781": 6, "821": 6, "194926264155893": 6, "839": 6, "7520919188596032": 6, "987": 6, "7803723847416691": 6, "6397753979196248": 6, "019": 6, "151110299986041": 6, "036": 6, "151110111437006": 6, "054": 6, "5410418750776741": 6, "069": 6, "7183231137124538": 6, "2721824844856162": 6, "1900929470222508": 6, "169": 6, "5585323973564646": 6, "3169218304262786": 6, "259": 6, "7974925066137679": 6, "218395226466336": 6, "296": 6, "1474226942497083": 6, "318": 6, "0239005731675412": 6, "7803723847416694": 6, "404": 6, "178901060853144": 6, "27137790098830755": 6, "2710284516876423": 6, "604": 6, "622": 6, "6273152492418945": 6, "711": 6, "1907041717628215": 6, "3209075619139279": 6, "755": 6, "775": 6, "2709423025014604": 6, "794": 6, "3133943310851415": 6, "799": 6, "818": 6, "257769959239938": 6, "886": 6, "40359637945134735": 6, "962": 6, "4127882135896648": 6, "045": 6, "9246005133276612": 6, "8908739215746116": 6, "136": 6, "107536316777608": 6, "156": 6, "054360360588395": 6, "195": 6, "5428179904345867": 6, "214": 6, "5696273642213351": 6, "239": 6, "27099769667470536": 6, "1580741708125475": 6, "2709564785634315": 6, "10900413894771653": 6, "288": 6, "2709799905898163": 6, "13705914456987853": 6, "27097230608092054": 6, "12790870116376127": 6, "2709499903064464": 6, "10123180962907431": 6, "360": 6, "2710895886052581": 6, "26565663774320425": 6, "2708711012023424": 6, "005637048678674678": 6, "406": 6, "27092322402109364": 6, "06902647427781451": 6, "430": 6, "2712140349882": 6, "4076704953178294": 6, "453": 6, "27090080367174": 6, "04187106800188596": 6, "27086925247190047": 6, "003371853599610078": 6, "2708933298483799": 6, "032781796328385376": 6, "27087205624489635": 6, "006806773659187283": 6, "548": 6, "2708869511176179": 6, "025009489814943348": 6, "575": 6, "2711465077924297": 6, "3311125627707556": 6, "601": 6, "2708756855936628": 6, "011249102380159387": 6, "626": 6, "27087301924224993": 6, "007985924302396141": 6, "651": 6, "2708685399954944": 6, "00249856291483601": 6, "676": 6, "27121879554836553": 6, "4130244908975993": 6, "2708693196600531": 6, "0034541978803366022": 6, "27110195265802334": 6, "27994943662091765": 6, "751": 6, "2708682582859318": 6, "0021532199144365088": 6, "777": 6, "27087024523986086": 6, "0045884092728113585": 6, "802": 6, "27087351807632193": 6, "008596600952859433": 6, "828": 6, "2710818633795896": 6, "2567049271070902": 6, "853": 6, "27103241786565463": 6, "1990111983307052": 6, "2710350879598171": 6, "20214459724424078": 6, "903": 6, "2708688328221868": 6, "00285750520671645": 6, "926": 6, "27100832234449684": 6, "17064008990759916": 6, "951": 6, "27268613236193845": 6, "8725420109733135": 6, "001": 6, "27119617446689237": 6, "387533542012365": 6, "042": 6, "2708691110831552": 6, "0031985656730512953": 6, "083": 6, "27086852174155146": 6, "002476186542950981": 6, "135": 6, "27135383618835024": 6, "5626643670396761": 6, "209": 6, "2709819654433871": 6, "1394077979875128": 6, "2718548944510965": 6, "0858347526799794": 6, "334": 6, "1508084699212935": 6, "03329943145150872": 6, "00025672309762227527": 6, "382": 6, "27249853374634975": 6, "702026434077893": 6, "27095660957755363": 6, "10916094511173127": 6, "27102160995407715": 6, "18630665884100353": 6, "27095708822582026": 6, "10973377642487026": 6, "27088222008661084": 6, "019235980282946118": 6, "610": 6, "2708703086029017": 6, "004666043957133775": 6, "639": 6, "27095279044622245": 6, "1045877457096882": 6, "668": 6, "2709408288690431": 6, "09023455456986404": 6, "9289218260898663": 6, "8200088368788958": 6, "732": 6, "27086675101898655": 6, "00030502148265565063": 6, "2710491243757999": 6, "21858260742423916": 6, "1491615840508995": 6, "024725853754515203": 6, "2709462479577586": 6, "0967427718847167": 6, "default_studi": 6, "315": 6, "410": 6, "3501": 6, "942111261296": 6, "5451": 6, "207265576796": 6, "1049201007814": 6, "552": 6, "9964": 6, "541364058234": 6, "569": 6, "3543": 6, "953608539901": 6, "6837": 6, "057544630979": 6, "607": 6, "2507": 6, "1794330606067": 6, "634": 6, "21534": 6, "719219668405": 6, "2899": 6, "736555614694": 6, "294e": 6, "760e": 6, "21674": 6, "445000284228": 6, "1049203123567": 6, "765": 6, "1049192609138": 6, "781": 6, "3630": 6, "72768093756": 6, "3431": 6, "942816967268": 6, "816": 6, "6908": 6, "462045154488": 6, "5964": 6, "65935954044": 6, "21070": 6, "107195348774": 6, "917": 6, "4977": 6, "068508997133": 6, "972": 6, "8873": 6, "669262669626": 6, "21387": 6, "63697424318": 6, "017": 6, "9958": 6, "573006910125": 6, "5182695600183": 6, "039": 6, "20684": 6, "56412138056": 6, "131": 6, "150": 6, "3435882510586": 6, "168": 6, "7068": 6, "705383113378": 6, "7150": 6, "482090052133": 6, "203": 6, "93637462922368": 6, "330": [6, 7], "2570": 6, "5111262532305": 6, "378": 6, "21987": 6, "659957192194": 6, "397": [6, 7], "9889": 6, "493204596083": 6, "401": 6, "417": 6, "7172": 6, "208490771303": 6, "435": 6, "9804": 6, "512701665093": 6, "9165": 6, "74081120673": 6, "523": 6, "543": 6, "0280270800017": 6, "161": 6, "1602933782954": 6, "888460860864": 6, "8414": 6, "932694243476": 6, "2270": 6, "5407991891466": 6, "753": 6, "10383": 6, "79559309305": 6, "772": 6, "20815": 6, "025469865475": 6, "791": 6, "206": 6, "7560385808573": 6, "5264": 6, "4700789389035": 6, "3668": 6, "255064135424": 6, "856": 6, "12174877890536": 6, "793408178086295": 6, "99902820845678": 6, "157": 6, "371632749506": 6, "88307313087517": 6, "140915461519354": 6, "910": 6, "153": 6, "66773675231477": 6, "177324126813716": 6, "77906017834145": 6, "935": 6, "52056745848623": 6, "4565714180547": 6, "6710444346508": 6, "960": 6, "30976119334312": 6, "62916671166313": 6, "023639423189294": 6, "984": 6, "181": 6, "053696900694": 6, "914617418880486": 6, "31140591484044": 6, "010": 6, "201": 6, "33573874994386": 6, "569769302718845": 6, "5781354926491789": 6, "190": 6, "1384885119049": 6, "87666716965626": 6, "2537791489618": 6, "076949848299": 6, "9559574710535281": 6, "0032830967319653665": 6, "085": 6, "764974036324": 6, "03910427457823": 6, "406811480459925": 6, "109": 6, "164": 6, "4477304958181": 6, "701690847791482": 6, "819274780536123": 6, "87939164358104": 6, "32187661108304": 6, "660320437878754": 6, "01705178481896": 6, "61397716361812": 6, "603665957830847": 6, "188": 6, "73257312230092": 6, "759645965959294": 6, "503212714246787": 6, "154": 6, "46848394144124": 6, "8546740801317": 6, "35327336610912": 6, "242": 6, "20421802817864": 6, "57596974747163": 6, "84756262407801": 6, "268": 6, "51233215278089": 6, "3564642040401464": 6, "5034542273159819": 6, "207": 6, "68667089892196": 6, "034895878929095": 6, "03653571911285094": 6, "52277054278186": 6, "01961499216484045": 6, "670937191883546": 6, "28722475694815": 6, "012434370509176538": 6, "34222704431493": 6, "87402050281146": 6, "008452015347522093": 6, "914863578437455": 6, "399": 6, "38847505937936": 6, "01573542234868893": 6, "99307522974174": 6, "96336195786391": 6, "009845516063879428": 6, "59422914099683": 6, "452": 6, "19345618324213": 6, "009382525091504246": 6, "35573659237662": 6, "480": 6, "30772721342525": 6, "010579672066291478": 6, "35550323165882": 6, "507": 6, "23970902543148": 6, "013369359066405863": 6, "4744102498801": 6, "34331248758777": 6, "011398351701814368": 6, "54146340620301": 6, "561": 6, "104535853341": 6, "011708779850509646": 6, "682286191624579e": 6, "0653774146952": 6, "009806826677473646": 6, "90274406278985": 6, "614": 6, "64646042813787": 6, "0038598153381434685": 6, "20918134828555": 6, "641": 6, "68420472011734": 6, "0032474576673554513": 6, "35551178979624": 6, "669": 6, "85985201823172": 6, "003187930738019005": 6, "29431603544847": 6, "695": 6, "21583898009355": 6, "003122319313153475": 6, "83526418992966": 6, "34787242859676": 6, "002781955938462633": 6, "76228981520067": 6, "750": 6, "70914272129673": 6, "0023173546614751305": 6, "3000082904498813": 6, "779": 6, "10492031097328": 6, "002606064524407": 6, "7861330234653922e": 6, "811": 6, "1049154281806": 6, "0029210589377408366": 6, "200933937391094e": 6, "841": 6, "10492028002287": 6, "06431564840324226": 6, "2981641934644904e": 6, "56066541774658": 6, "0010848843623839548": 6, "151493073951163": 6, "901": 6, "76337597039308": 6, "004134805589645341": 6, "88115336652716": 6, "108": 6, "58009587759925": 6, "004763418454688096": 6, "02920758025023": 6, "113": 6, "35230417583477": 6, "0009098023238189749": 6, "57100980886017": 6, "30807467406214": 6, "03739791555156691": 6, "12818940557025": 6, "018": 6, "44100655116532": 6, "006380481141720477": 6, "4882351186755": 6, "35181001564942": 6, "0036244007454981787": 6, "608797806921866": 6, "124": 6, "3719027482892": 6, "0014198536004321608": 6, "05588994284273": 6, "28568052794907": 6, "005434972462746285": 6, "215759789700954": 6, "20325": 6, "66479442037": 6, "9696417046589247": 6, "132": 6, "21507621375022": 6, "0004528978867024753": 6, "80386923876023": 6, "85570350846885": 6, "0016948043699497222": 6, "455627755557016": 6, "contrast": [6, 7], "relplot": 6, "col": [6, 7], "facet_kw": 6, "axisgrid": [6, 7], "facetgrid": 6, "0x7fbafb479450": 6, "noramlis": 6, "unlog": 6, "yield": [6, 7, 12, 13], "mse": 6, "1126": 6, "56968721": 6, "20237903": 6, "revers": [6, 7, 12, 14], "onto": 6, "action": 6, "importantli": 6, "easili": [6, 7], "94824194": 6, "92008694": 6, "instruct": 6, "untransform": 6, "wish": 6, "cut": [6, 7], "10um": 6, "ptr_config_log_transform": 6, "ptr_transformed_studi": 6, "ptr_and_transform_exampl": 6, "874": 6, "002341918451736245": 6, "944": 6, "0024908979029632677": 6, "986": 6, "007901407671048116": 6, "029": 6, "00496231674623194": 6, "0026848278110363512": 6, "064": 6, "0010872728889471893": 6, "082": 6, "008706109201510277": 6, "099": 6, "152": 6, "0029994624596888677": 6, "00825680029907454": 6, "007901407993550248": 6, "007901405163828307": 6, "0021653695362066753": 6, "002869169486971014": 6, "252": 6, "0010855652626111146": 6, "316": 6, "005505338042993083": 6, "333": 6, "002236800860454562": 6, "412": 6, "006105985607235417": 6, "429": 6, "004846526544994462": 6, "464": 6, "006964668794465202": 6, "468": 6, "551": 6, "568": 6, "008384326901042542": 6, "586": 6, "001082194093844804": 6, "0010807084256204563": 6, "673": 6, "005505338042993082": 6, "806": 6, "005247934991526694": 6, "834": 6, "0010803393728928605": 6, "005218354425190125": 6, "004999207507691546": 6, "0015694919308122948": 6, "025": 6, "0019757694194001384": 6, "031": 6, "096": 6, "00368328296527152": 6, "003412828259848677": 6, "004412110711416997": 6, "225": 6, "245": 6, "0021743798524909573": 6, "0022761245849848527": 6, "0010805768178458735": 6, "001080400188305814": 6, "351": 6, "0010805009783570441": 6, "0010804680472500541": 6, "0010803723579987025": 6, "001080969596032512": 6, "447": 6, "0010800333715082816": 6, "471": 6, "0010802574700236845": 6, "0010814994986419817": 6, "517": 6, "001080161136846237": 6, "0010800254136811547": 6, "564": 6, "0010801290036870739": 6, "590": 6, "001080037482216557": 6, "0010801015705851358": 6, "0010812122378841013": 6, "665": 6, "0010800531021304936": 6, "00108004162698813": 6, "0010800223466649803": 6, "739": 6, "0010815197263834202": 6, "0010800257029027847": 6, "790": 6, "0010810223438672223": 6, "0010800211339555509": 6, "840": 6, "0010800296871141684": 6, "0010800437739166451": 6, "0010809366267195716": 6, "001080725386603206": 6, "0010807368035830652": 6, "965": 6, "0010800236072155854": 6, "991": 6, "0010806223050773966": 6, "0010876516369772728": 6, "00108142358144501": 6, "0010800248050489667": 6, "001080022268085466": 6, "253": 6, "0010820922958715991": 6, "0010805094397523254": 6, "0010841993753324146": 6, "007899735988203994": 6, "0010868762004637347": 6, "001080400750193767": 6, "0010806791616300314": 6, "0010804028029753213": 6, "474": 6, "0010800812188506515": 6, "0010800299598580359": 6, "0010803843696362083": 6, "001080333048974234": 6, "001080014645182176": 6, "0010807968027851892": 6, "007907028395366658": 6, "685": 6, "0010803563024666294": 6, "inlin": [6, 7], "3506154": 6, "timepoint": 6, "aux_column": [6, 8], "accord": [6, 7, 8], "aux_col_config": 6, "aux_descriptors_dataset": 6, "train_with_conc": 6, "aux1": 6, "aux_col_studi": 6, "covariate_exampl": 6, "aux1_model": 6, "540": 6, "5186": 6, "767663956718": 6, "4679": 6, "740824270968": 6, "4890": 6, "6705099499995": 6, "3803": 6, "9324375833753": 6, "3135": 6, "6497388676926": 6, "2518812859375": 6, "771": 6, "4309": 6, "124112370974": 6, "800": 6, "30159424580074": 6, "863": 6, "4357": 6, "02827013125": 6, "1437929337522": 6, "45281013": 6, "shape": [6, 7, 8], "thrown": [6, 8], "prediciton": 6, "regardless": 6, "utilis": [6, 7], "seper": 6, "vector_covariate_config": 6, "precomputed_descriptor": 6, "train_with_fp": 6, "aux_transform": [6, 8], "vector_covariate_studi": 6, "vector_aux_exampl": 6, "vector_covariate_model": 6, "198": 6, "308": 6, "2200": 6, "6817959410578": 6, "011994365911634164": 6, "95660880078": 6, "029071783512897825": 6, "5798": 6, "564494725643": 6, "022631709120790048": 6, "2198637677605415": 6, "2899178898048": 6, "8916194399474267": 6, "473": 6, "647": 6, "3336440433073": 6, "5914093983615214": 6, "653": 6, "3036472748931": 6, "6201811079699818": 6, "3807": 6, "8035919667395": 6, "914e": 6, "901e": 6, "892e": 6, "603": 6, "5019": 6, "459500770764": 6, "1376436589359351": 6, "4017711284796": 6, "704": 6, "797115414836": 6, "74340620175102": 6, "train_smil": [6, 8], "train_i": [6, 8], "train_aux": [6, 8], "test_smil": [6, 8], "test_i": [6, 8], "test_aux": [6, 8], "legth": 6, "39754917": 6, "465": 6, "06352766": 6, "52031134": 6, "341": 6, "89875316": 6, "371": 6, "5516046": 6, "85042171": 6, "33406203": 6, "91439129": 6, "80585907": 6, "48565041": 6, "protein": [6, 12, 14], "alongsid": 6, "chemic": [6, 7, 12, 13], "sequenc": [6, 12, 14], "former": 6, "wherea": 6, "latter": [6, 7], "interact": 6, "basi": [6, 7], "toxinpred3": 6, "mdlititwasvmvaftfslslvvwgrsgl": 6, "ccsc": 6, "cc1c": [6, 7], "nh": [6, 7], "cc1ccccc1": 6, "ncc": 6, "cccnc": 6, "arrggvlnfgqfglqalecgfvtnr": 6, "cs": 6, "gwcgdpgatcgklrlyccsgacdcytktckdkssa": 6, "n1": 6, "ccc1": 6, "ccccn": 6, "cc1ccc": 6, "ngnllggllrpvlgvvkgltgglgkk": 6, "demponstr": 6, "zscale_covariate_config": 6, "zscale_covariate_studi": 6, "zscale_aux_exampl": 6, "zscale_covariate_model": 6, "213": 6, "8735224395254063": 6, "kneighborsclassifier_algorithm_hash": 6, "e51ca55089f389fc37a736adb2aa0e42": 6, "metric__e51ca55089f389fc37a736adb2aa0e42": 6, "n_neighbors__e51ca55089f389fc37a736adb2aa0e42": 6, "weights__e51ca55089f389fc37a736adb2aa0e42": 6, "unlik": 6, "31176471": 6, "08058824": 6, "27176471": 6, "56470588": 6, "62529412": 6, "99521739": 6, "59826087": 6, "34695652": 6, "03086957": 6, "13391304": 6, "08083333": 6, "6125": 6, "82916667": 6, "05083333": 6, "56083333": 6, "93357143": 6, "02785714": 6, "04214286": 6, "30461538": 6, "55307692": 6, "31307692": 6, "11076923": 6, "00846154": 6, "1232": 6, "3364": 6, "2328": 6, "1368": 6, "2304": 6, "7060": 6, "7062": 6, "x_": 6, "vmin": 6, "vmax": 6, "cmap": 6, "spectral": 6, "248bit": 6, "129": 6, "128bit": 6, "minimz": 6, "consist": 6, "generaliz": 6, "minimize_std_dev": 6, "minimise_std_dev": [6, 9], "std": [6, 7, 12, 14], "dev": [6, 7], "example_multi": 6, "parameter_analysi": 6, "set_metric_nam": 6, "089": 6, "133": 6, "4008740644240856": 6, "9876203329634794": 6, "3561484909673425": 6, "9875061220991905": 6, "368": 6, "7856521165563053": 6, "21863029956806662": 6, "9125905675311808": 6, "7861693342190089": 6, "438": 6, "5238765412750027": 6, "2789424384877304": 6, "458": 6, "5348363849100434": 6, "5741725628917808": 6, "0072511048320134": 6, "2786318125997387": 6, "9625764609276656": 6, "27575381401822424": 6, "1114006274062536": 6, "7647766019001522": 6, "7801680863916906": 6, "2725738454485389": 6, "785652116470164": 6, "21863029955530786": 6, "608": 6, "785651973436432": 6, "21863032832257323": 6, "6101359993004856": 6, "3011280543457062": 6, "5361950698070447": 6, "23560786523195643": 6, "657": 6, "5356113574175657": 6, "5769721187181905": 6, "5434303669217287": 6, "5147474123466617": 6, "760": 6, "5194661889628072": 6, "40146744515282495": 6, "814": 6, "659749443628722": 6, "6659085938841998": 6, "1068495306229729": 6, "24457822094737378": 6, "8604898820838102": 6, "7086875504668667": 6, "867": 6, "5919869916997383": 6, "2367498627927979": 6, "892": 6, "2497762395862362": 6, "10124660026536195": 6, "015": 6, "study_name_1": 6, "633": 6, "0621601907738047": 6, "2749020946925899": 6, "xxx": 6, "values_neg_mean_squared_error": 6, "values_standard": 6, "twinx": 6, "r": [6, 8], "floor": 6, "ceil": 6, "align": 6, "set_ytick": 6, "linspac": 6, "set_xtick": 6, "text": [6, 7, 8, 12], "pareto": 6, "front": 6, "plot_pareto_front": 6, "plot_param_import": 6, "dictionari": [6, 10], "ordereddict": 6, "descend": 6, "algortihm": 6, "impact": [6, 8], "durat": 6, "total_second": 6, "target_nam": 6, "relationship": 6, "plot_parallel_coordin": [6, 8, 9, 11], "param": [6, 7, 9, 10], "taken": [6, 7], "precomputed_config": 6, "precomputed_studi": 6, "precomputed_exampl": 6, "precomputed_model": 6, "627": 6, "629": 6, "_store_backend": 6, "cachewarn": 6, "unabl": 6, "disk": 6, "race": 6, "condit": 6, "creation": 6, "errno": 6, "No": [6, 9, 12], "var": [6, 7], "1v": [6, 7], "9y_z128d7gvcp8mf8q0pz3ch0000gq": [6, 7], "tmppcdzx734": 6, "94936653e8092dcb9fe9d77caf973e52": 6, "thread": 6, "140223569750976": 6, "pid": 6, "25899": 6, "3014": 6, "274803630188": 6, "471088599086": 6, "03592375122963953": 6, "3029": 6, "113810544919": 6, "8153295905650357": 6, "4358": 6, "575772003127": 6, "unseen": 6, "caus": 6, "new_molecul": 6, "101": 6, "tempfil": 6, "temp": [6, 7], "store": [6, 7, 11], "temporari": [6, 10], "extract": 6, "1st": 6, "example_fp": 6, "namedtemporaryfil": 6, "temp_fil": 6, "len": [6, 7], "to_csv": 6, "65709987": 6, "64327077": 6, "common": 7, "proper": 7, "optuna_az": 7, "process": [7, 8], "functionail": 7, "configur": [7, 8, 9, 10, 11], "draw": 7, "ipythonconsol": 7, "ipython": 7, "displai": 7, "os": 7, "listdir": 7, "isfil": 7, "walk": 7, "handi": 7, "med": 7, "titles": 7, "fontsiz": 7, "labels": 7, "xtick": 7, "ytick": 7, "rcparam": 7, "v0_8": 7, "whitegrid": 7, "set_styl": 7, "white": 7, "boolean": 7, "nomin": 7, "convert": [7, 12], "conduct": 7, "primarydf": 7, "loadsdf": 7, "inchi": 7, "skeletonspher": 7, "nm": 7, "id": 7, "romol": 7, "ic50": 7, "\u00b5m": 7, "c1ccc2c": 7, "co2": 7, "004320939": 7, "1s": 7, "c8h7no2": 7, "c10": 7, "qrcgftxrxymjo": 7, "uhfffaoysa": 7, "86075": 7, "kinas": 7, "p38": 7, "rdchem": 7, "0x7f9ca0112340": 7, "c1ccc": 7, "ccc2ccccc2occ3ccc": 7, "882397308": 7, "c22h20o3": 7, "c23": 7, "ytdaoqyeyfcini": 7, "89637": 7, "kd": 7, "retinoid": 7, "receptor": 7, "0x7f9c808beff0": 7, "408": 7, "130299026": 7, "0x7f9c808bf060": 7, "48148606": 7, "c9h7no": 7, "c11": 7, "lisfmebwquvkpj": 7, "n93": 7, "n82": 7, "n65": 7, "n36": 7, "n33": 7, "ki": 7, "nki": 7, "carbon": 7, "anhydras": 7, "xii": 7, "ncarbon": 7, "0x7f9c808bf0d0": 7, "nc1ccccn1": 7, "c7h8n2o": 7, "h2": 7, "5h": 7, "qrokotbwfzitjz": 7, "86233": 7, "nicotin": 7, "phosphoribosyltransferas": 7, "0x7f9c808bf140": 7, "renam": 7, "conveni": [7, 8, 9, 12], "rest": 7, "moltosmil": 7, "isomericsmil": 7, "c1coc2ccccc2n1": 7, "004321": 7, "coc2ccccc2ccc2ccccc2": 7, "882397": 7, "130299": 7, "c1ccc2ccccc2": 7, "481486": 7, "stick": 7, "engin": 7, "assum": [7, 12, 13], "stage": 7, "slightli": 7, "pose": 7, "wise": 7, "uniqu": 7, "outlin": 7, "occurr": 7, "preserv": 7, "vari": 7, "recommend": 7, "abil": 7, "being": 7, "df_po": 7, "dedup": [7, 12], "df_rnd": 7, "df_max": 7, "df_avg": 7, "df_med": 7, "deduplidc": 7, "indici": 7, "coc1cc2ncnc": 7, "nc3ccc": 7, "scc4ccccc4": 7, "cl": 7, "c3": 7, "c2cc1oc": 7, "282579": 7, "912929": 7, "cc1cccc": 7, "nc2ncnc3ccc": 7, "c4ccccc4": 7, "cc23": 7, "n2cc": 7, "cc2c": 7, "nc2cccc": 7, "n2": 7, "065502": 7, "390": 7, "958607": 7, "392": 7, "oc2cccc": 7, "394": 7, "cn1nc": 7, "c2cnc": 7, "c3ccc": 7, "nc1c1": 7, "396": 7, "oc1nc": 7, "oc2cc": 7, "c3ccccc3": 7, "c3cccc": 7, "cn": 7, "936291": 7, "minim": [7, 9], "densiti": 7, "dpi": 7, "kdeplot": 7, "fill": 7, "orang": 7, "ndigit": 7, "blue": 7, "keepaverag": 7, "deeppink": 7, "hold": [7, 8], "assess": 7, "aim": 7, "simpli": 7, "sai": 7, "veri": 7, "intern": [7, 10], "resembl": 7, "easiest": 7, "especi": 7, "reli": 7, "stochast": 7, "initi": [7, 8, 9], "train_ran": 7, "test_ran": 7, "time_column": 7, "old": 7, "datapoint": [7, 10, 12, 13], "accru": 7, "entri": [7, 12, 13], "timestamp": 7, "top": 7, "df_med_tempor": 7, "fake": 7, "nccccccoc1ccc2c": 7, "n1cc": 7, "684240": 7, "1037": 7, "481464": 7, "1036": 7, "c1cn": 7, "n2c": 7, "nc3cccc": 7, "n3": 7, "cc3cc3": 7, "732625": 7, "1035": 7, "568332": 7, "1034": 7, "790259": 7, "1033": 7, "train_tempor": 7, "test_tempor": 7, "highli": 7, "skew": 7, "fd": [7, 12, 13], "histogram": [7, 12, 13], "determin": [7, 12, 13], "balanc": 7, "fd_merg": [7, 12, 13], "train_str": 7, "test_str": 7, "realist": 7, "deplopi": 7, "emul": [7, 12, 13], "hop": 7, "opportun": 7, "seri": 7, "push": 7, "domain": 7, "realibl": 7, "challeng": 7, "scaf_split": 7, "train_sca": 7, "test_sca": 7, "ground": 7, "df_val": 7, "roughli": [7, 9], "evid": 7, "pronounc": 7, "dodgerblu": 7, "middl": 7, "saffold": 7, "discuss": 7, "propreti": 7, "endpoint": 7, "routin": 7, "linearis": 7, "variat": 7, "gaussian": 7, "realiti": 7, "nearli": 7, "exhibit": 7, "superior": 7, "wide": 7, "xc50_data": 7, "keepallnodedupl": [7, 12], "pxc50_data": 7, "zip": 7, "jointplot": 7, "suptitl": 7, "plot_margin": 7, "rugplot": 7, "crimson": 7, "height": 7, "clip_on": 7, "jointgrid": 7, "0x7f9ca05ade10": 7, "heteroscedast": 7, "homoscedast": 7, "transorm": 7, "0x7f9c458f85e0": 7, "logartihm": 7, "natur": 7, "power": [7, 12, 14], "um": 7, "dataset_transform": 7, "THe": 7, "0x7f9ca05aeb30": 7, "had": 7, "reverse_transform": [7, 12], "0x7f9c926f8970": 7, "mervin": 7, "framework": [7, 8], "somewher": 7, "unavoid": 7, "ideal": 7, "deviat": [7, 12, 14], "\u03c3": 7, "heterogen": 7, "versu": 7, "assimil": 7, "hypothesi": 7, "degre": 7, "p_": 7, "activityt": 7, "cumul": 7, "cdf": 7, "eq": 7, "equal": [7, 9], "delta": 7, "vec": 7, "frac": 7, "erf": 7, "overrightarrow": 7, "sigma": 7, "concret": 7, "arbitrari": 7, "unknown": 7, "therefor": 7, "schemat": 7, "lookup": 7, "tabl": 7, "sd": 7, "scenario": [7, 12, 13], "philosoph": 7, "delimit": [7, 12, 14], "operand": 7, "censor": 7, "far": 7, "granular": 7, "therebi": 7, "combin": [7, 8], "becom": 7, "jcheminf": 7, "biomedcentr": 7, "1186": 7, "s13321": 7, "021": 7, "00539": 7, "sec12": 7, "pxc50_threshold": 7, "pxc50_std": 7, "exmapl": 7, "ptr_data": 7, "gather": 7, "certainti": 7, "lower_reproduc": 7, "upper_reproduc": 7, "dataload": 7, "somewhat": 7, "invert": 7, "bell": 7, "kde": 7, "behav": 7, "patch": 7, "mpatch": 7, "line2d": 7, "ax_joint": 7, "axhlin": 7, "linestyl": 7, "ax_marg_i": 7, "ax_marg_x": 7, "axvlin": 7, "region": 7, "uncert_color": 7, "purpl": 7, "uncert_region": 7, "rectangl": 7, "add_patch": 7, "box": 7, "nthreshold": 7, "nptr": 7, "nregion": 7, "fancybox": 7, "borderaxespad": 7, "leg": 7, "get_legend": 7, "legend_handl": 7, "set_alpha": 7, "set_color": 7, "tight": 7, "layout": 7, "subplots_adjust": 7, "set_size_inch": 7, "ipykernel_33301": 7, "3093832163": 7, "cannot": 7, "enough": 7, "accommod": 7, "decor": 7, "dash": 7, "shade": 7, "histrogram": 7, "clip": 7, "aforement": 7, "ptrtransform": [7, 12, 14], "ptr_transform": 7, "histplot": 7, "stat": 7, "scipi": 7, "resp_col": [7, 8], "pearsonr": 7, "std_df": 7, "groupbi": 7, "mdn_df": 7, "std_vs_median": 7, "suffix": 7, "_std": 7, "_median": 7, "dropna": 7, "activity_std": 7, "activity_median": 7, "088539": 7, "674782": 7, "265123": 7, "138620": 7, "157605": 7, "stdev": 7, "stat_func": 7, "plot_joint": 7, "zorder": 7, "0x7f9be19abaf0": 7, "signific": 7, "assumpt": 7, "fulfil": 7, "ptr_train_ran": 7, "ptr_test_ran": 7, "ptr_train_str": 7, "ptr_test_str": 7, "ptr_train_tempor": 7, "ptr_test_tempor": 7, "ptr_train_sca": 7, "ptr_test_sca": 7, "warn_singular": 7, "xlim": 7, "peak": 7, "extem": 7, "dsitribut": 7, "awai": 7, "bias": 7, "enum": [8, 9, 10, 12], "building_configuration_enum": [8, 10], "configuration_enum": [8, 10], "interface_enum": [8, 10], "model_runner_enum": [8, 10], "objective_enum": [8, 10], "optimization_configuration_enum": [8, 10], "prediction_configuration_enum": [8, 10], "return_values_enum": [8, 10], "visualization_enum": [8, 10], "merge_train_and_test_data": 8, "isvalid": 8, "read_data": 8, "filenam": [8, 10], "smiles_col": [8, 10, 12, 13], "aux_col": 8, "invalid": 8, "pars": [8, 9, 11], "tupl": [8, 12, 13], "ambigu": 8, "smiles_": 8, "y_": [8, 10, 12], "aux_": 8, "factori": [8, 9], "intermediate_training_dataset_fil": 8, "intermediate_test_dataset_fil": 8, "get_merged_set": 8, "check_set": 8, "scalingfittingerror": 8, "descriptor_str": 8, "insuffici": [8, 12], "unfittedsklearnscla": [8, 12], "novalidsmil": 8, "mol_from_smi": 8, "numpy_from_rdkit": 8, "dtype": [8, 12], "moldescriptor": 8, "nameparameterdataclass": [8, 9, 12], "abc": [8, 9, 12], "abstract": [8, 9, 12], "parallel_compute_descriptor": 8, "n_core": 8, "parallel": 8, "amorprot": [8, 12], "ecfp6": 8, "seq": 8, "pathlib": 8, "get_fitted_scaler_for_fp": 8, "saved_param": 8, "get_fitted_scal": 8, "minhash": 8, "chiral": 8, "orsi": 8, "map4": 8, "unifi": 8, "percept": 8, "benchmark": 8, "retain": 8, "cip": 8, "highest": 8, "disproportion": 8, "affect": [8, 12], "maxradiu": [8, 11], "npermut": [8, 11], "permut": 8, "set_unfitted_scaler_data": 8, "fp_info": 8, "canonicalsmil": 8, "scaffold": [8, 12, 13], "genericscaffold": 8, "validdescriptor": 8, "descriptor_from_config": 8, "return_failed_idx": 8, "score_al": 8, "get_scor": 8, "score_all_smil": 8, "get_train_test_scor": 8, "get_merged_train_scor": 8, "get_ecfp_fpinfo": 8, "get_ecfpcount_fpinfo": 8, "explain_ecfp": 8, "len_feat": 8, "get_fp_info": 8, "exp_df": 8, "fp_idx": 8, "strt_idx": 8, "runshap": 8, "x_pred": 8, "shap": 8, "shapexplain": 8, "popul": 8, "explainpr": 8, "shallow": 8, "validate_cls_input": 8, "pi_zero": 8, "pr": 8, "melloddi": 8, "sparsechem": 8, "imbal": 8, "bedroc_scor": [8, 9], "truchon": 8, "j": 8, "bayli": 8, "screen": 8, "bad": 8, "recognit": 8, "488": 8, "508": 8, "2007": 8, "concord": 8, "statist": 8, "qualiti": 8, "harald": 8, "On": 8, "surviv": 8, "bound": 8, "2008": 8, "1209": 8, "1216": 8, "api": 8, "posterior": 8, "mark": 8, "abstractmethod": [8, 9], "predict_uncert": 8, "quantifi": 8, "qsartunamodel": 8, "nonetyp": [8, 9], "sent": 8, "get_metadata": 8, "train_scor": [8, 11], "test_scor": [8, 10, 11], "get_transform": 8, "perform_ptr": 8, "wrap_model": 8, "save_model": 8, "novaliddescriptor": 8, "null_scor": 8, "argserror": 8, "issu": [8, 12], "uncertaintyerror": 8, "correctli": 8, "auxcovariatemiss": 8, "precomputederror": 8, "validate_arg": 8, "validate_uncertainti": 8, "set_inference_param": 8, "desc": [8, 9], "check_precomp_arg": 8, "validate_set_precomput": 8, "validate_aux": 8, "doctitl": 8, "docstr": 8, "type_base_schema": 8, "tp": 8, "wyfo": 8, "json_schema": 8, "patch_schema_gener": 8, "patch_schema_optunaz": 8, "split_optim": 8, "base_chemprop_param": 8, "alg": [8, 9], "pop": 8, "fix": [8, 9], "run_studi": 8, "storag": [8, 11], "trial_number_offset": [8, 10], "log_scor": 8, "main_scor": 8, "outfnam": 8, "plot_by_configur": 8, "conf": 8, "plot_slic": [8, 9, 11], "folder_path": 8, "file_format": [8, 9, 11], "png": [8, 9], "plot_contour": [8, 9, 11], "static": 8, "plot_histori": [8, 9, 11], "set_build_cach": 9, "preexist": 9, "remove_algo_hash": 9, "buildconfig_from_tri": 9, "encode_nam": 9, "cenam": 9, "suggest_alg_param": 9, "suggest_aux_param": 9, "check_invalid_descriptor_param": 9, "adaboostclassifierparamet": 9, "lassoparamet": 9, "kneighborsclassifierparamet": 9, "kneighborsregressorparamet": 9, "logisticregressionparamet": 9, "plsparamet": 9, "randomforestparamet": 9, "ridgeparamet": 9, "svcparamet": 9, "svrparamet": 9, "xgbregressorparamet": 9, "prfclassifierparamet": 9, "bootstrap": 9, "new_syn_data_frac": 9, "chempropregressorparamet": 9, "chempropclassifierparamet": 9, "chempropregressorpretrainedparamet": 9, "chemprophyperoptclassifierparamet": 9, "chemprophyperoptregressorparamet": 9, "calibratedclassifiercvparamet": 9, "mapieparamet": 9, "regressionscor": 9, "classificationscor": 9, "closer": 9, "greater": 9, "manhattan": 9, "trainarg": 9, "tanh": 9, "leakyrelu": 9, "prelu": 9, "selu": 9, "elu": 9, "turn": [9, 12, 13], "morgan_count": 9, "rdkit_2d": 9, "rdkit_2d_norm": 9, "mpnn_first_ffn": 9, "mpnn_last_ffn": 9, "linked_hidden_s": 9, "constrain": 9, "l3": 9, "init_lr_exp": 9, "final_lr_exp": 9, "warmup_epoch": 9, "l4": 9, "l5": 9, "l6": 9, "l7": 9, "l8": 9, "isanyof": 9, "obj": [9, 10], "detect_mode_from_alg": 9, "copy_path_for_scaled_descriptor": 9, "cv_split_strategi": 9, "use_cach": 9, "optuna_storag": 9, "set_cach": 9, "set_algo_hash": 9, "declar": 9, "pydant": 9, "don": 9, "classmethod": 9, "1024": 9, "shorter": 9, "output_fold": [9, 11], "use_xvfb": [9, 11], "imagefileformat": 9, "jpeg": 9, "jpg": 9, "svg": 9, "move_up_directori": 10, "attach_root_path": 10, "attach": 10, "loadjson": 10, "add_ellipsi": 10, "max_length": 10, "shorten_nam": 10, "mlflowcallback": 10, "tracking_uri": 10, "callback": 10, "uri": 10, "server": 10, "set_tracking_uri": 10, "prepare_tag": 10, "tag": 10, "tmp_buildconfig": 10, "create_depend": 10, "remove_schema_properti": 10, "add_boolean_guards_for_schema_properti": 10, "replacekei": 10, "input_": 10, "replacevalu": 10, "addsibl": 10, "delsibl": 10, "sibl": 10, "getref": 10, "context": 10, "recurs": 10, "nest": 10, "copytitl": 10, "oneof": 10, "replaceenum": 10, "singleton": 10, "const": 10, "addtitl": 10, "get_authorization_head": 10, "trackingdata": 10, "trial_numb": [10, 11], "trial_valu": 10, "trial_stat": 10, "all_cv_test_scor": 10, "removeprefix": 10, "prefix": 10, "round_scor": 10, "internaltrackingcallback": 10, "progress": 10, "buildtrackingdata": 10, "response_column_nam": 10, "test_point": 10, "track_build": 10, "mkdict": 10, "load_df_from_fil": 10, "remove_failed_idx": 10, "failed_idx": 10, "md5_hash": 10, "md5": 10, "buildingconfigurationenum": 11, "configurationenum": 11, "general_hyperparamet": 11, "hyper_paramet": 11, "general_regressor": 11, "general_classifi": 11, "metadata_besttri": 11, "metadata_bestvalu": 11, "general_dis": 11, "general_paramet": 11, "task_optim": 11, "task_build": 11, "data_inputcolumn": 11, "data_responsecolumn": 11, "data_train": 11, "data_test": 11, "descriptors_avalon": 11, "descriptors_avalon_nbit": 11, "descriptors_ecfp": 11, "descriptors_ecfp_radiu": 11, "descriptors_ecfp_nbit": 11, "descriptors_ecfpcount": 11, "descriptors_ecfpcounts_radiu": 11, "descriptors_ecfpcounts_usefeatur": 11, "descriptors_pathfp": 11, "descriptors_pathfp_maxpath": 11, "descriptors_pathfp_fps": 11, "descriptors_maccskei": 11, "descriptors_unsc_physchem": 11, "descriptors_physchem": 11, "descriptors_physchem_rdkitnam": 11, "descriptors_amorprot": 11, "descriptors_unsc_mapc": 11, "descriptors_mapc": 11, "descriptors_mapc_maxradiu": 11, "descriptors_mapc_npermut": 11, "descriptors_unsc_jazzi": 11, "descriptors_jazzi": 11, "descriptors_jazzy_jazzynam": 11, "descriptors_precomput": 11, "descriptors_precomputed_fil": 11, "descriptors_precomputed_input_columnn": 11, "descriptors_precomputed_response_column": 11, "descriptors_unsc_zscal": 11, "descriptors_zscal": 11, "descriptors_smil": 11, "descriptors_smiles_and_si": 11, "descriptors_smiles_and_si_fil": 11, "descriptors_smiles_and_si_input_column": 11, "descriptors_smiles_and_si_aux_weight_pc": 11, "descriptors_sc": 11, "descriptors_scaled_descriptor": 11, "descriptors_scaled_descriptor_paramet": 11, "descriptors_composit": 11, "settings_mod": 11, "settings_mode_regress": 11, "settings_mode_classif": 11, "settings_cross_valid": 11, "settings_direct": 11, "settings_n_tri": 11, "settings_n_job": 11, "settings_shuffl": 11, "algorithms_low": 11, "algorithms_high": 11, "algorithms_q": 11, "algorithms_interface_sklearn": 11, "algorithms_interface_xgboost": 11, "algorithms_rfregressor": 11, "algorithms_rfclassifi": 11, "algorithms_rf_max_featur": 11, "algorithms_rf_max_depth": 11, "algorithms_rf_n_estim": 11, "algorithms_svr": 11, "algorithms_svr_c": 11, "algorithms_svr_gamma": 11, "algorithms_svc": 11, "algorithms_svc_c": 11, "algorithms_svc_gamma": 11, "algorithms_lasso": 11, "algorithms_lasso_alpha": 11, "algorithms_kneighborsclassifi": 11, "algorithms_kneighborsregressor": 11, "algorithms_kneighbors_n_neighbor": 11, "algorithms_kneighbors_metr": 11, "algorithms_kneighbors_weight": 11, "algorithms_ridg": 11, "algorithms_ridge_alpha": 11, "algorithms_plsregress": 11, "algorithms_plsregression_n_compon": 11, "algorithms_logisticregress": 11, "algorithms_logisticregression_solv": 11, "algorithms_logisticregression_c": 11, "algorithms_adaboostclassifi": 11, "algorithms_adaboostclassifier_n_estim": 11, "algorithms_adaboostclassifier_learning_r": 11, "algorithms_xgbregressor": 11, "algorithms_xgbregressor_max_depth": 11, "algorithms_xgbregressor_n_estim": 11, "algorithms_xgbregressor_learning_r": 11, "algorithms_prf": 11, "algorithms_prf_max_featur": 11, "algorithms_prf_max_depth": 11, "algorithms_prf_n_estim": 11, "algorithms_prf_minpysumleaf": 11, "algorithms_prf_use_py_gini": 11, "algorithms_prf_use_py_leaf": 11, "algorithms_chemprop": 11, "basechemprop": 11, "algorithms_chemprop_regressor": 11, "algorithms_chemprop_hyperopt_regressor": 11, "algorithms_chemprop_classifi": 11, "algorithms_chemprop_hyperopt_classifi": 11, "algorithms_chemprop_activ": 11, "algorithms_chemprop_aggreg": 11, "algorithms_chemprop_aggregation_norm": 11, "algorithms_chemprop_batch_s": 11, "algorithms_chemprop_depth": 11, "algorithms_chemprop_dropout": 11, "algorithms_chemprop_epoch": 11, "algorithms_chemprop_ensemble_s": 11, "algorithms_chemprop_features_gener": 11, "algorithms_chemprop_ffn_hidden_s": 11, "algorithms_chemprop_ffn_num_lay": 11, "algorithms_chemprop_frzn": 11, "algorithms_chemprop_final_lr_ratio_exp": 11, "algorithms_chemprop_hidden_s": 11, "algorithms_chemprop_num_it": 11, "algorithms_chemprop_init_lr_ratio_exp": 11, "algorithms_chemprop_max_lr_exp": 11, "algorithms_chemprop_pretrained_model": 11, "algorithms_chemprop_search_parameter_level": 11, "algorithms_chemprop_startup_random_it": 11, "startup_random_it": 11, "algorithms_chemprop_warmup_epochs_ratio": 11, "algorithms_calibratedclassifiercv": 11, "algorithms_calibratedclassifiercv_ensembl": 11, "algorithms_calibratedclassifiercv_estim": 11, "algorithms_calibratedclassifiercv_method": 11, "algorithms_calibratedclassifiercv_n_fold": 11, "algorithms_calibratedclassifiercv_param": 11, "calibrated_param": 11, "algorithms_mapi": 11, "algorithms_mapie_alpha": 11, "interfaceenum": 11, "sklearn_set": 11, "xgboost_set": 11, "chemprop_set": 11, "prf_set": 11, "calibrated_set": 11, "modelrunnerdataframeenum": 11, "modelrunn": 11, "objectiveenum": 11, "attribute_trial_train_scor": 11, "extra_column_besthit": 11, "besthit": 11, "optimizationconfigurationenum": 11, "predictionconfigurationenum": 11, "data_dataset": 11, "sklearnreturnvalueenum": 11, "cross_validate_fit_tim": 11, "fit_tim": 11, "cross_validate_score_tim": 11, "score_tim": 11, "cross_validate_test_scor": 11, "cross_validate_train_scor": 11, "xgboostreturnvalueenum": 11, "visualizationenum": 11, "visualization_regressor": 11, "visualization_classifi": 11, "visualization_use_xvfb": 11, "visualization_output_fold": 11, "visualization_file_format": 11, "visualization_plot": 11, "visualization_plots_histori": 11, "visualization_plots_contour": 11, "visualization_plots_parallel_coordin": 11, "visualization_plots_slic": 11, "optuna_system_attrs_numb": 11, "_number": 11, "optuna_system_attrs_intermediate_valu": 11, "intermediate_valu": 11, "optuna_system_attrs_trial_id": 11, "trial_id": 11, "studyuserattr": 11, "trialuserattr": 11, "trialparam": 11, "algorithm_hash": 11, "mlflowlogparam": 11, "sklearnsplitt": 12, "get_n_split": 12, "cvsplitter": 12, "although": 12, "underli": 12, "get_sklearn_splitt": 12, "n_split": 12, "repeat": [12, 13], "edg": [12, 13], "stratifiedshufflesplit": [12, 13], "revert": [12, 13], "empti": 12, "kfold": 12, "consecut": 12, "fd_bin": 12, "11879": 12, "10297": 12, "adjac": 12, "downstream": 12, "nativ": 12, "histogramstratifiedshufflesplit": 12, "test_fract": 12, "groupingsplitt": 12, "column_nam": [12, 13], "butina_clust": [12, 13], "cluster": [12, 13], "butina": [12, 13], "make_scaffold_gener": [12, 13], "murcko": [12, 13], "hetero": [12, 13], "difficulti": [12, 13], "novel": [12, 13], "datatransformerror": 12, "datatransform": 12, "logarithm": [12, 14], "base_dict": 12, "ufunc": 12, "base_neg": 12, "reverse_dict": 12, "exp": 12, "transform_df": 12, "transform_on": 12, "reverse_transform_df": 12, "reverse_transform_on": 12, "auxtransform": 12, "transfor": 12, "auxiliary_data": 12, "usabl": [12, 14]}, "objects": {"": [[8, 0, 0, "-", "optunaz"]], "optunaz": [[8, 0, 0, "-", "builder"], [9, 0, 0, "-", "config"], [8, 0, 0, "-", "datareader"], [8, 0, 0, "-", "descriptors"], [8, 0, 0, "-", "evaluate"], [8, 0, 0, "-", "explainability"], [8, 0, 0, "-", "metircs"], [8, 0, 0, "-", "model_writer"], [8, 0, 0, "-", "objective"], [8, 0, 0, "-", "optbuild"], [8, 0, 0, "-", "predict"], [8, 0, 0, "-", "schemagen"], [8, 0, 0, "-", "three_step_opt_build_merge"], [10, 0, 0, "-", "utils"], [8, 0, 0, "-", "visualizer"]], "optunaz.builder": [[8, 1, 1, "", "build"]], "optunaz.config": [[9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "ModelMode"], [9, 2, 1, "", "NameParameterDataclass"], [9, 2, 1, "", "OptimizationDirection"], [9, 2, 1, "", "Task"], [9, 2, 1, "", "Visualization"], [9, 0, 0, "-", "build_from_opt"], [9, 0, 0, "-", "buildconfig"], [9, 0, 0, "-", "optconfig"]], "optunaz.config.ModelMode": [[9, 3, 1, "", "CLASSIFICATION"], [9, 3, 1, "", "REGRESSION"]], "optunaz.config.NameParameterDataclass": [[9, 4, 1, "", "new"]], "optunaz.config.OptimizationDirection": [[9, 3, 1, "", "MAXIMIZATION"], [9, 3, 1, "", "MINIMIZATION"]], "optunaz.config.Task": [[9, 3, 1, "", "BUILDING"], [9, 3, 1, "", "OPTIMIZATION"], [9, 3, 1, "", "PREDICTION"]], "optunaz.config.Visualization": [[9, 2, 1, "", "ImageFileFormat"], [9, 2, 1, "", "Plots"], [9, 3, 1, "", "file_format"], [9, 3, 1, "", "output_folder"], [9, 3, 1, "", "plots"], [9, 3, 1, "", "use_xvfb"]], "optunaz.config.Visualization.ImageFileFormat": [[9, 3, 1, "", "JPEG"], [9, 3, 1, "", "JPG"], [9, 3, 1, "", "PDF"], [9, 3, 1, "", "PNG"], [9, 3, 1, "", "SVG"]], "optunaz.config.Visualization.Plots": [[9, 3, 1, "", "plot_contour"], [9, 3, 1, "", "plot_history"], [9, 3, 1, "", "plot_parallel_coordinate"], [9, 3, 1, "", "plot_slice"]], "optunaz.config.build_from_opt": [[9, 1, 1, "", "buildconfig_from_trial"], [9, 1, 1, "", "check_invalid_descriptor_param"], [9, 1, 1, "", "encode_name"], [9, 1, 1, "", "remove_algo_hash"], [9, 1, 1, "", "set_build_cache"], [9, 1, 1, "", "suggest_alg_params"], [9, 1, 1, "", "suggest_aux_params"]], "optunaz.config.buildconfig": [[9, 2, 1, "", "AdaBoostClassifier"], [9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "BuildConfig"], [9, 2, 1, "", "CalibratedClassifierCVWithVA"], [9, 2, 1, "", "ChemPropClassifier"], [9, 2, 1, "", "ChemPropHyperoptClassifier"], [9, 2, 1, "", "ChemPropHyperoptRegressor"], [9, 2, 1, "", "ChemPropRegressor"], [9, 2, 1, "", "ChemPropRegressorPretrained"], [9, 2, 1, "", "KNeighborsClassifier"], [9, 2, 1, "", "KNeighborsRegressor"], [9, 2, 1, "", "Lasso"], [9, 2, 1, "", "LogisticRegression"], [9, 2, 1, "", "Mapie"], [9, 2, 1, "", "PLSRegression"], [9, 2, 1, "", "PRFClassifier"], [9, 2, 1, "", "RandomForestClassifier"], [9, 2, 1, "", "RandomForestRegressor"], [9, 2, 1, "", "Ridge"], [9, 2, 1, "", "SVC"], [9, 2, 1, "", "SVR"], [9, 2, 1, "", "XGBRegressor"]], "optunaz.config.buildconfig.AdaBoostClassifier": [[9, 2, 1, "", "AdaBoostClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.AdaBoostClassifier.AdaBoostClassifierParameters": [[9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.Algorithm": [[9, 4, 1, "", "estimator"]], "optunaz.config.buildconfig.BuildConfig": [[9, 2, 1, "", "Metadata"], [9, 2, 1, "", "Settings"], [9, 3, 1, "", "algorithm"], [9, 3, 1, "", "data"], [9, 3, 1, "", "descriptor"], [9, 3, 1, "", "metadata"], [9, 3, 1, "", "settings"], [9, 3, 1, "", "task"]], "optunaz.config.buildconfig.BuildConfig.Metadata": [[9, 3, 1, "", "best_trial"], [9, 3, 1, "", "best_value"], [9, 3, 1, "", "cross_validation"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "name"], [9, 3, 1, "", "shuffle"], [9, 3, 1, "", "visualization"]], "optunaz.config.buildconfig.BuildConfig.Settings": [[9, 3, 1, "", "direction"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "scoring"], [9, 3, 1, "", "tracking_rest_endpoint"]], "optunaz.config.buildconfig.CalibratedClassifierCVWithVA": [[9, 2, 1, "", "CalibratedClassifierCVParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.CalibratedClassifierCVWithVA.CalibratedClassifierCVParameters": [[9, 3, 1, "", "ensemble"], [9, 3, 1, "", "estimator"], [9, 3, 1, "", "method"], [9, 3, 1, "", "n_folds"]], "optunaz.config.buildconfig.ChemPropClassifier": [[9, 2, 1, "", "ChemPropClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropClassifier.ChemPropClassifierParameters": [[9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.buildconfig.ChemPropHyperoptClassifier": [[9, 2, 1, "", "ChemPropHyperoptClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropHyperoptClassifier.ChemPropHyperoptClassifierParameters": [[9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.buildconfig.ChemPropHyperoptRegressor": [[9, 2, 1, "", "ChemPropHyperoptRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropHyperoptRegressor.ChemPropHyperoptRegressorParameters": [[9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.buildconfig.ChemPropRegressor": [[9, 2, 1, "", "ChemPropRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropRegressor.ChemPropRegressorParameters": [[9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "aux_weight_pc"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.buildconfig.ChemPropRegressorPretrained": [[9, 2, 1, "", "ChemPropRegressorPretrainedParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.ChemPropRegressorPretrained.ChemPropRegressorPretrainedParameters": [[9, 3, 1, "", "epochs"], [9, 3, 1, "", "frzn"], [9, 3, 1, "", "pretrained_model"]], "optunaz.config.buildconfig.KNeighborsClassifier": [[9, 2, 1, "", "KNeighborsClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.KNeighborsClassifier.KNeighborsClassifierParameters": [[9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.buildconfig.KNeighborsRegressor": [[9, 2, 1, "", "KNeighborsRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.KNeighborsRegressor.KNeighborsRegressorParameters": [[9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.buildconfig.Lasso": [[9, 2, 1, "", "LassoParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Lasso.LassoParameters": [[9, 3, 1, "", "alpha"]], "optunaz.config.buildconfig.LogisticRegression": [[9, 2, 1, "", "LogisticRegressionParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.LogisticRegression.LogisticRegressionParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "solver"]], "optunaz.config.buildconfig.Mapie": [[9, 2, 1, "", "MapieParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Mapie.MapieParameters": [[9, 3, 1, "", "estimator"], [9, 3, 1, "", "mapie_alpha"]], "optunaz.config.buildconfig.PLSRegression": [[9, 2, 1, "", "PLSParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.PLSRegression.PLSParameters": [[9, 3, 1, "", "n_components"]], "optunaz.config.buildconfig.PRFClassifier": [[9, 2, 1, "", "PRFClassifierParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.PRFClassifier.PRFClassifierParameters": [[9, 3, 1, "", "bootstrap"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "min_py_sum_leaf"], [9, 3, 1, "", "n_estimators"], [9, 3, 1, "", "new_syn_data_frac"], [9, 3, 1, "", "use_py_gini"], [9, 3, 1, "", "use_py_leafs"]], "optunaz.config.buildconfig.RandomForestClassifier": [[9, 2, 1, "", "RandomForestParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.RandomForestClassifier.RandomForestParameters": [[9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.RandomForestRegressor": [[9, 2, 1, "", "RandomForestParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.RandomForestRegressor.RandomForestParameters": [[9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.buildconfig.Ridge": [[9, 2, 1, "", "RidgeParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.Ridge.RidgeParameters": [[9, 3, 1, "", "alpha"]], "optunaz.config.buildconfig.SVC": [[9, 2, 1, "", "SVCParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.SVC.SVCParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "gamma"]], "optunaz.config.buildconfig.SVR": [[9, 2, 1, "", "SVRParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.SVR.SVRParameters": [[9, 3, 1, "", "C"], [9, 3, 1, "", "gamma"]], "optunaz.config.buildconfig.XGBRegressor": [[9, 2, 1, "", "XGBRegressorParameters"], [9, 4, 1, "", "estimator"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.buildconfig.XGBRegressor.XGBRegressorParameters": [[9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig": [[9, 2, 1, "", "AdaBoostClassifier"], [9, 2, 1, "", "Algorithm"], [9, 2, 1, "", "CalibratedClassifierCVEnsemble"], [9, 2, 1, "", "CalibratedClassifierCVMethod"], [9, 2, 1, "", "CalibratedClassifierCVWithVA"], [9, 2, 1, "", "ChemPropActivation"], [9, 2, 1, "", "ChemPropAggregation"], [9, 2, 1, "", "ChemPropClassifier"], [9, 2, 1, "", "ChemPropFeatures_Generator"], [9, 2, 1, "", "ChemPropFrzn"], [9, 2, 1, "", "ChemPropHyperoptClassifier"], [9, 2, 1, "", "ChemPropHyperoptRegressor"], [9, 2, 1, "", "ChemPropRegressor"], [9, 2, 1, "", "ChemPropRegressorPretrained"], [9, 2, 1, "", "ChemPropSearch_Parameter_Level"], [9, 2, 1, "", "ClassificationScore"], [9, 2, 1, "", "KNeighborsClassifier"], [9, 2, 1, "", "KNeighborsMetric"], [9, 2, 1, "", "KNeighborsRegressor"], [9, 2, 1, "", "KNeighborsWeights"], [9, 2, 1, "", "Lasso"], [9, 2, 1, "", "LogisticRegression"], [9, 2, 1, "", "Mapie"], [9, 2, 1, "", "OptimizationConfig"], [9, 2, 1, "", "PLSRegression"], [9, 2, 1, "", "PRFClassifier"], [9, 2, 1, "", "PRFClassifierMaxFeatures"], [9, 2, 1, "", "RandomForestClassifier"], [9, 2, 1, "", "RandomForestMaxFeatures"], [9, 2, 1, "", "RandomForestRegressor"], [9, 2, 1, "", "RegressionScore"], [9, 2, 1, "", "Ridge"], [9, 2, 1, "", "SVC"], [9, 2, 1, "", "SVR"], [9, 2, 1, "", "XGBRegressor"], [9, 1, 1, "", "copy_path_for_scaled_descriptor"], [9, 1, 1, "", "detect_mode_from_algs"], [9, 1, 1, "", "isanyof"]], "optunaz.config.optconfig.AdaBoostClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters": [[9, 2, 1, "", "AdaBoostClassifierParametersLearningRate"], [9, 2, 1, "", "AdaBoostClassifierParametersNEstimators"], [9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters.AdaBoostClassifierParametersLearningRate": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.AdaBoostClassifier.Parameters.AdaBoostClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.CalibratedClassifierCVEnsemble": [[9, 3, 1, "", "FALSE"], [9, 3, 1, "", "TRUE"]], "optunaz.config.optconfig.CalibratedClassifierCVMethod": [[9, 3, 1, "", "ISOTONIC"], [9, 3, 1, "", "SIGMOID"], [9, 3, 1, "", "VENNABERS"]], "optunaz.config.optconfig.CalibratedClassifierCVWithVA": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.CalibratedClassifierCVWithVA.Parameters": [[9, 3, 1, "", "ensemble"], [9, 3, 1, "", "estimator"], [9, 3, 1, "", "method"], [9, 3, 1, "", "n_folds"]], "optunaz.config.optconfig.ChemPropActivation": [[9, 3, 1, "", "ELU"], [9, 3, 1, "", "LEAKYRELU"], [9, 3, 1, "", "PRELU"], [9, 3, 1, "", "RELU"], [9, 3, 1, "", "SELU"], [9, 3, 1, "", "TANH"]], "optunaz.config.optconfig.ChemPropAggregation": [[9, 3, 1, "", "MEAN"], [9, 3, 1, "", "NORM"], [9, 3, 1, "", "SUM"]], "optunaz.config.optconfig.ChemPropClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters": [[9, 2, 1, "", "ChemPropParametersAggregation_Norm"], [9, 2, 1, "", "ChemPropParametersBatch_Size"], [9, 2, 1, "", "ChemPropParametersDepth"], [9, 2, 1, "", "ChemPropParametersDropout"], [9, 2, 1, "", "ChemPropParametersFFN_Hidden_Size"], [9, 2, 1, "", "ChemPropParametersFFN_Num_Layers"], [9, 2, 1, "", "ChemPropParametersFinal_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersHidden_Size"], [9, 2, 1, "", "ChemPropParametersInit_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersMax_Lr_Exp"], [9, 2, 1, "", "ChemPropParametersWarmup_Epochs_Ratio"], [9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersAggregation_Norm": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersBatch_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersDropout": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFFN_Hidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFFN_Num_Layers": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersFinal_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersHidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersInit_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersMax_Lr_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropClassifier.Parameters.ChemPropParametersWarmup_Epochs_Ratio": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropFeatures_Generator": [[9, 3, 1, "", "MORGAN"], [9, 3, 1, "", "MORGAN_COUNT"], [9, 3, 1, "", "NONE"], [9, 3, 1, "", "RDKIT_2D"], [9, 3, 1, "", "RDKIT_2D_NORMALIZED"]], "optunaz.config.optconfig.ChemPropFrzn": [[9, 3, 1, "", "MPNN"], [9, 3, 1, "", "MPNN_FIRST_FFN"], [9, 3, 1, "", "MPNN_LAST_FFN"], [9, 3, 1, "", "NONE"]], "optunaz.config.optconfig.ChemPropHyperoptClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropHyperoptClassifier.Parameters": [[9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.optconfig.ChemPropHyperoptRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropHyperoptRegressor.Parameters": [[9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "num_iters"], [9, 3, 1, "", "search_parameter_level"]], "optunaz.config.optconfig.ChemPropRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters": [[9, 2, 1, "", "ChemPropParametersAggregation_Norm"], [9, 2, 1, "", "ChemPropParametersBatch_Size"], [9, 2, 1, "", "ChemPropParametersDepth"], [9, 2, 1, "", "ChemPropParametersDropout"], [9, 2, 1, "", "ChemPropParametersFFN_Hidden_Size"], [9, 2, 1, "", "ChemPropParametersFFN_Num_Layers"], [9, 2, 1, "", "ChemPropParametersFinal_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersHidden_Size"], [9, 2, 1, "", "ChemPropParametersInit_Lr_Ratio_Exp"], [9, 2, 1, "", "ChemPropParametersMax_Lr_Exp"], [9, 2, 1, "", "ChemPropParametersWarmup_Epochs_Ratio"], [9, 3, 1, "", "activation"], [9, 3, 1, "", "aggregation"], [9, 3, 1, "", "aggregation_norm"], [9, 3, 1, "", "batch_size"], [9, 3, 1, "", "depth"], [9, 3, 1, "", "dropout"], [9, 3, 1, "", "ensemble_size"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "features_generator"], [9, 3, 1, "", "ffn_hidden_size"], [9, 3, 1, "", "ffn_num_layers"], [9, 3, 1, "", "final_lr_ratio_exp"], [9, 3, 1, "", "hidden_size"], [9, 3, 1, "", "init_lr_ratio_exp"], [9, 3, 1, "", "max_lr_exp"], [9, 3, 1, "", "warmup_epochs_ratio"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersAggregation_Norm": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersBatch_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersDropout": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFFN_Hidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFFN_Num_Layers": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersFinal_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersHidden_Size": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersInit_Lr_Ratio_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersMax_Lr_Exp": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.ChemPropRegressor.Parameters.ChemPropParametersWarmup_Epochs_Ratio": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropRegressorPretrained": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.ChemPropRegressorPretrained.Parameters": [[9, 2, 1, "", "ChemPropParametersEpochs"], [9, 3, 1, "", "epochs"], [9, 3, 1, "", "frzn"], [9, 3, 1, "", "pretrained_model"]], "optunaz.config.optconfig.ChemPropRegressorPretrained.Parameters.ChemPropParametersEpochs": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"], [9, 3, 1, "", "q"]], "optunaz.config.optconfig.ChemPropSearch_Parameter_Level": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "L1"], [9, 3, 1, "", "L2"], [9, 3, 1, "", "L3"], [9, 3, 1, "", "L4"], [9, 3, 1, "", "L5"], [9, 3, 1, "", "L6"], [9, 3, 1, "", "L7"], [9, 3, 1, "", "L8"]], "optunaz.config.optconfig.ClassificationScore": [[9, 3, 1, "", "ACCURACY"], [9, 3, 1, "", "AUC_PR_CAL"], [9, 3, 1, "", "AVERAGE_PRECISION"], [9, 3, 1, "", "BALANCED_ACCURACY"], [9, 3, 1, "", "BEDROC"], [9, 3, 1, "", "CONCORDANCE_INDEX"], [9, 3, 1, "", "F1"], [9, 3, 1, "", "F1_MACRO"], [9, 3, 1, "", "F1_MICRO"], [9, 3, 1, "", "F1_WEIGHTED"], [9, 3, 1, "", "JACCARD"], [9, 3, 1, "", "JACCARD_MACRO"], [9, 3, 1, "", "JACCARD_MICRO"], [9, 3, 1, "", "JACCARD_WEIGHTED"], [9, 3, 1, "", "NEG_BRIER_SCORE"], [9, 3, 1, "", "PRECISION"], [9, 3, 1, "", "PRECISION_MACRO"], [9, 3, 1, "", "PRECISION_MICRO"], [9, 3, 1, "", "PRECISION_WEIGHTED"], [9, 3, 1, "", "RECALL"], [9, 3, 1, "", "RECALL_MACRO"], [9, 3, 1, "", "RECALL_MICRO"], [9, 3, 1, "", "RECALL_WEIGHTED"], [9, 3, 1, "", "ROC_AUC"]], "optunaz.config.optconfig.KNeighborsClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.KNeighborsClassifier.Parameters": [[9, 2, 1, "", "KNeighborsClassifierParametersN_Neighbors"], [9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.optconfig.KNeighborsClassifier.Parameters.KNeighborsClassifierParametersN_Neighbors": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.KNeighborsMetric": [[9, 3, 1, "", "EUCLIDEAN"], [9, 3, 1, "", "MANHATTAN"], [9, 3, 1, "", "MINKOWSKI"]], "optunaz.config.optconfig.KNeighborsRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.KNeighborsRegressor.Parameters": [[9, 2, 1, "", "KNeighborsRegressorParametersN_Neighbors"], [9, 3, 1, "", "metric"], [9, 3, 1, "", "n_neighbors"], [9, 3, 1, "", "weights"]], "optunaz.config.optconfig.KNeighborsRegressor.Parameters.KNeighborsRegressorParametersN_Neighbors": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.KNeighborsWeights": [[9, 3, 1, "", "DISTANCE"], [9, 3, 1, "", "UNIFORM"]], "optunaz.config.optconfig.Lasso": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Lasso.Parameters": [[9, 2, 1, "", "LassoParametersAlpha"], [9, 3, 1, "", "alpha"]], "optunaz.config.optconfig.Lasso.Parameters.LassoParametersAlpha": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.LogisticRegression": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.LogisticRegression.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "LogisticRegressionParametersParameterC"], [9, 3, 1, "", "solver"]], "optunaz.config.optconfig.LogisticRegression.Parameters.LogisticRegressionParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.Mapie": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Mapie.Parameters": [[9, 3, 1, "", "estimator"], [9, 3, 1, "", "mapie_alpha"]], "optunaz.config.optconfig.OptimizationConfig": [[9, 2, 1, "", "Settings"], [9, 3, 1, "", "algorithms"], [9, 3, 1, "", "data"], [9, 3, 1, "", "description"], [9, 3, 1, "", "descriptors"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "name"], [9, 4, 1, "", "set_algo_hashes"], [9, 4, 1, "", "set_cache"], [9, 3, 1, "", "settings"], [9, 3, 1, "", "task"], [9, 3, 1, "", "visualization"]], "optunaz.config.optconfig.OptimizationConfig.Settings": [[9, 3, 1, "", "cross_validation"], [9, 3, 1, "", "cv_split_strategy"], [9, 3, 1, "", "direction"], [9, 3, 1, "", "minimise_std_dev"], [9, 3, 1, "", "mode"], [9, 3, 1, "", "n_chemprop_trials"], [9, 3, 1, "", "n_jobs"], [9, 3, 1, "", "n_startup_trials"], [9, 3, 1, "", "n_trials"], [9, 3, 1, "", "optuna_storage"], [9, 3, 1, "", "random_seed"], [9, 3, 1, "", "scoring"], [9, 3, 1, "", "shuffle"], [9, 3, 1, "", "split_chemprop"], [9, 3, 1, "", "track_to_mlflow"], [9, 3, 1, "", "tracking_rest_endpoint"], [9, 3, 1, "", "use_cache"]], "optunaz.config.optconfig.PLSRegression": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.PLSRegression.Parameters": [[9, 2, 1, "", "NComponents"], [9, 3, 1, "", "n_components"]], "optunaz.config.optconfig.PLSRegression.Parameters.NComponents": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.PRFClassifier.Parameters": [[9, 2, 1, "", "PRFClassifierParametersMaxDepth"], [9, 2, 1, "", "PRFClassifierParametersMinPySumLeaf"], [9, 2, 1, "", "PRFClassifierParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "min_py_sum_leaf"], [9, 3, 1, "", "n_estimators"], [9, 3, 1, "", "use_py_gini"], [9, 3, 1, "", "use_py_leafs"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersMinPySumLeaf": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifier.Parameters.PRFClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.PRFClassifierMaxFeatures": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "LOG2"], [9, 3, 1, "", "SQRT"]], "optunaz.config.optconfig.RandomForestClassifier": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters": [[9, 2, 1, "", "RandomForestClassifierParametersMaxDepth"], [9, 2, 1, "", "RandomForestClassifierParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters.RandomForestClassifierParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestClassifier.Parameters.RandomForestClassifierParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestMaxFeatures": [[9, 3, 1, "", "AUTO"], [9, 3, 1, "", "LOG2"], [9, 3, 1, "", "SQRT"]], "optunaz.config.optconfig.RandomForestRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters": [[9, 2, 1, "", "RandomForestRegressorParametersMaxDepth"], [9, 2, 1, "", "RandomForestRegressorParametersNEstimators"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "max_features"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters.RandomForestRegressorParametersMaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RandomForestRegressor.Parameters.RandomForestRegressorParametersNEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.RegressionScore": [[9, 3, 1, "", "EXPLAINED_VARIANCE"], [9, 3, 1, "", "MAX_ERROR"], [9, 3, 1, "", "NEG_MEAN_ABSOLUTE_ERROR"], [9, 3, 1, "", "NEG_MEAN_SQUARED_ERROR"], [9, 3, 1, "", "NEG_MEDIAN_ABSOLUTE_ERROR"], [9, 3, 1, "", "R2"]], "optunaz.config.optconfig.Ridge": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.Ridge.Parameters": [[9, 2, 1, "", "Alpha"], [9, 3, 1, "", "alpha"]], "optunaz.config.optconfig.Ridge.Parameters.Alpha": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVC": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.SVC.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "Gamma"], [9, 2, 1, "", "SVCParametersParameterC"], [9, 3, 1, "", "gamma"]], "optunaz.config.optconfig.SVC.Parameters.Gamma": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVC.Parameters.SVCParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVR": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.SVR.Parameters": [[9, 3, 1, "", "C"], [9, 2, 1, "", "SVRParametersGamma"], [9, 2, 1, "", "SVRParametersParameterC"], [9, 3, 1, "", "gamma"]], "optunaz.config.optconfig.SVR.Parameters.SVRParametersGamma": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.SVR.Parameters.SVRParametersParameterC": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor": [[9, 2, 1, "", "Parameters"], [9, 3, 1, "", "name"], [9, 3, 1, "", "parameters"]], "optunaz.config.optconfig.XGBRegressor.Parameters": [[9, 2, 1, "", "LearningRate"], [9, 2, 1, "", "MaxDepth"], [9, 2, 1, "", "NEstimators"], [9, 3, 1, "", "learning_rate"], [9, 3, 1, "", "max_depth"], [9, 3, 1, "", "n_estimators"]], "optunaz.config.optconfig.XGBRegressor.Parameters.LearningRate": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor.Parameters.MaxDepth": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.config.optconfig.XGBRegressor.Parameters.NEstimators": [[9, 3, 1, "", "high"], [9, 3, 1, "", "low"]], "optunaz.datareader": [[8, 2, 1, "", "Dataset"], [8, 1, 1, "", "deduplicate"], [8, 1, 1, "", "isvalid"], [8, 1, 1, "", "merge"], [8, 1, 1, "", "read_data"], [8, 1, 1, "", "split"], [8, 1, 1, "", "transform"]], "optunaz.datareader.Dataset": [[8, 3, 1, "", "aux_column"], [8, 3, 1, "", "aux_transform"], [8, 4, 1, "", "check_sets"], [8, 3, 1, "", "deduplication_strategy"], [8, 4, 1, "", "get_merged_sets"], [8, 4, 1, "", "get_sets"], [8, 3, 1, "", "input_column"], [8, 3, 1, "", "intermediate_test_dataset_file"], [8, 3, 1, "", "intermediate_training_dataset_file"], [8, 3, 1, "", "log_transform"], [8, 3, 1, "", "log_transform_base"], [8, 3, 1, "", "log_transform_negative"], [8, 3, 1, "", "log_transform_unit_conversion"], [8, 3, 1, "", "probabilistic_threshold_representation"], [8, 3, 1, "", "probabilistic_threshold_representation_std"], [8, 3, 1, "", "probabilistic_threshold_representation_threshold"], [8, 3, 1, "", "response_column"], [8, 3, 1, "", "response_type"], [8, 3, 1, "", "save_intermediate_files"], [8, 3, 1, "", "split_strategy"], [8, 3, 1, "", "test_dataset_file"], [8, 3, 1, "", "training_dataset_file"]], "optunaz.descriptors": [[8, 2, 1, "", "AmorProtDescriptors"], [8, 2, 1, "", "Avalon"], [8, 2, 1, "", "CanonicalSmiles"], [8, 2, 1, "", "CompositeDescriptor"], [8, 2, 1, "", "ECFP"], [8, 2, 1, "", "ECFP_counts"], [8, 2, 1, "", "FittedSklearnScaler"], [8, 2, 1, "", "GenericScaffold"], [8, 2, 1, "", "JazzyDescriptors"], [8, 2, 1, "", "MACCS_keys"], [8, 2, 1, "", "MAPC"], [8, 2, 1, "", "MolDescriptor"], [8, 5, 1, "", "NoValidSmiles"], [8, 2, 1, "", "PathFP"], [8, 2, 1, "", "PhyschemDescriptors"], [8, 2, 1, "", "PrecomputedDescriptorFromFile"], [8, 2, 1, "", "RdkitDescriptor"], [8, 2, 1, "", "Scaffold"], [8, 2, 1, "", "ScaledDescriptor"], [8, 5, 1, "", "ScalingFittingError"], [8, 2, 1, "", "SmilesAndSideInfoFromFile"], [8, 2, 1, "", "SmilesFromFile"], [8, 2, 1, "", "UnfittedSklearnScaler"], [8, 2, 1, "", "UnscaledJazzyDescriptors"], [8, 2, 1, "", "UnscaledMAPC"], [8, 2, 1, "", "UnscaledPhyschemDescriptors"], [8, 2, 1, "", "UnscaledZScalesDescriptors"], [8, 2, 1, "", "ValidDescriptor"], [8, 2, 1, "", "ZScalesDescriptors"], [8, 1, 1, "", "descriptor_from_config"], [8, 1, 1, "", "mol_from_smi"], [8, 1, 1, "", "numpy_from_rdkit"]], "optunaz.descriptors.AmorProtDescriptors": [[8, 2, 1, "", "AmorProt"], [8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.AmorProtDescriptors.AmorProt": [[8, 4, 1, "", "T"], [8, 4, 1, "", "fingerprint"]], "optunaz.descriptors.Avalon": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.Avalon.Parameters": [[8, 3, 1, "", "nBits"]], "optunaz.descriptors.CanonicalSmiles": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.CompositeDescriptor": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "fp_info"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.CompositeDescriptor.Parameters": [[8, 3, 1, "", "descriptors"]], "optunaz.descriptors.ECFP": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ECFP.Parameters": [[8, 3, 1, "", "nBits"], [8, 3, 1, "", "radius"], [8, 3, 1, "", "returnRdkit"]], "optunaz.descriptors.ECFP_counts": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ECFP_counts.Parameters": [[8, 3, 1, "", "nBits"], [8, 3, 1, "", "radius"], [8, 3, 1, "", "useFeatures"]], "optunaz.descriptors.FittedSklearnScaler": [[8, 4, 1, "", "get_fitted_scaler"], [8, 3, 1, "", "name"], [8, 3, 1, "", "saved_params"]], "optunaz.descriptors.GenericScaffold": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.JazzyDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.JazzyDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "jazzy_filters"], [8, 3, 1, "", "jazzy_names"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.MACCS_keys": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.MAPC": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.MAPC.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "maxRadius"], [8, 3, 1, "", "nPermutations"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.MolDescriptor": [[8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "parallel_compute_descriptor"]], "optunaz.descriptors.PathFP": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PathFP.Parameters": [[8, 3, 1, "", "fpSize"], [8, 3, 1, "", "maxPath"]], "optunaz.descriptors.PhyschemDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PhyschemDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "rdkit_names"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.PrecomputedDescriptorFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 4, 1, "", "inference_parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.PrecomputedDescriptorFromFile.Parameters": [[8, 3, 1, "", "file"], [8, 3, 1, "", "input_column"], [8, 3, 1, "", "response_column"]], "optunaz.descriptors.RdkitDescriptor": [[8, 4, 1, "", "calculate_from_mol"], [8, 4, 1, "", "calculate_from_smi"]], "optunaz.descriptors.Scaffold": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ScaledDescriptor": [[8, 2, 1, "", "ScaledDescriptorParameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"], [8, 4, 1, "", "set_unfitted_scaler_data"]], "optunaz.descriptors.ScaledDescriptor.ScaledDescriptorParameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "scaler"]], "optunaz.descriptors.SmilesAndSideInfoFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.SmilesAndSideInfoFromFile.Parameters": [[8, 2, 1, "", "Aux_Weight_Pc"], [8, 3, 1, "", "aux_weight_pc"], [8, 3, 1, "", "file"], [8, 3, 1, "", "input_column"]], "optunaz.descriptors.SmilesAndSideInfoFromFile.Parameters.Aux_Weight_Pc": [[8, 3, 1, "", "high"], [8, 3, 1, "", "low"], [8, 3, 1, "", "q"]], "optunaz.descriptors.SmilesFromFile": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnfittedSklearnScaler": [[8, 2, 1, "", "MolData"], [8, 4, 1, "", "get_fitted_scaler_for_fp"], [8, 3, 1, "", "mol_data"], [8, 3, 1, "", "name"]], "optunaz.descriptors.UnfittedSklearnScaler.MolData": [[8, 3, 1, "", "file_path"], [8, 3, 1, "", "smiles_column"]], "optunaz.descriptors.UnscaledJazzyDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledJazzyDescriptors.Parameters": [[8, 3, 1, "", "jazzy_filters"], [8, 3, 1, "", "jazzy_names"]], "optunaz.descriptors.UnscaledMAPC": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledMAPC.Parameters": [[8, 3, 1, "", "maxRadius"], [8, 3, 1, "", "nPermutations"]], "optunaz.descriptors.UnscaledPhyschemDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_mol"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.UnscaledPhyschemDescriptors.Parameters": [[8, 3, 1, "", "rdkit_names"]], "optunaz.descriptors.UnscaledZScalesDescriptors": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ValidDescriptor": [[8, 2, 1, "", "Parameters"], [8, 4, 1, "", "calculate_from_smi"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ZScalesDescriptors": [[8, 2, 1, "", "Parameters"], [8, 3, 1, "", "name"], [8, 3, 1, "", "parameters"]], "optunaz.descriptors.ZScalesDescriptors.Parameters": [[8, 3, 1, "", "descriptor"], [8, 3, 1, "", "scaler"]], "optunaz.evaluate": [[8, 1, 1, "", "get_merged_train_score"], [8, 1, 1, "", "get_scores"], [8, 1, 1, "", "get_train_test_scores"], [8, 1, 1, "", "score_all"], [8, 1, 1, "", "score_all_smiles"]], "optunaz.explainability": [[8, 1, 1, "", "ExplainPreds"], [8, 1, 1, "", "ShapExplainer"], [8, 1, 1, "", "explain_ECFP"], [8, 1, 1, "", "get_ecfp_fpinfo"], [8, 1, 1, "", "get_ecfpcount_fpinfo"], [8, 1, 1, "", "get_fp_info"], [8, 1, 1, "", "runShap"]], "optunaz.metircs": [[8, 1, 1, "", "auc_pr_cal"], [8, 1, 1, "", "bedroc_score"], [8, 1, 1, "", "concordance_index"], [8, 1, 1, "", "validate_cls_input"]], "optunaz.model_writer": [[8, 2, 1, "", "Predictor"], [8, 2, 1, "", "QSARtunaModel"], [8, 1, 1, "", "get_metadata"], [8, 1, 1, "", "get_transform"], [8, 1, 1, "", "perform_ptr"], [8, 1, 1, "", "save_model"], [8, 1, 1, "", "wrap_model"]], "optunaz.model_writer.Predictor": [[8, 4, 1, "", "explain"], [8, 4, 1, "", "predict"], [8, 4, 1, "", "predict_proba"], [8, 4, 1, "", "predict_uncert"]], "optunaz.model_writer.QSARtunaModel": [[8, 3, 1, "", "aux_transform"], [8, 3, 1, "", "descriptor"], [8, 3, 1, "", "metadata"], [8, 3, 1, "", "mode"], [8, 4, 1, "", "predict_from_smiles"], [8, 3, 1, "", "predictor"], [8, 3, 1, "", "transform"]], "optunaz.objective": [[8, 5, 1, "", "NoValidDescriptors"], [8, 2, 1, "", "Objective"], [8, 1, 1, "", "null_scores"]], "optunaz.objective.Objective": [[8, 3, 1, "", "cache"], [8, 3, 1, "", "optconfig"], [8, 3, 1, "", "train_aux"], [8, 3, 1, "", "train_smiles"], [8, 3, 1, "", "train_y"]], "optunaz.optbuild": [[8, 1, 1, "", "main"]], "optunaz.predict": [[8, 5, 1, "", "ArgsError"], [8, 5, 1, "", "AuxCovariateMissing"], [8, 5, 1, "", "PrecomputedError"], [8, 5, 1, "", "UncertaintyError"], [8, 1, 1, "", "check_precomp_args"], [8, 1, 1, "", "main"], [8, 1, 1, "", "set_inference_params"], [8, 1, 1, "", "validate_args"], [8, 1, 1, "", "validate_aux"], [8, 1, 1, "", "validate_set_precomputed"], [8, 1, 1, "", "validate_uncertainty"]], "optunaz.schemagen": [[8, 1, 1, "", "doctitle"], [8, 1, 1, "", "main"], [8, 1, 1, "", "patch_schema_generic"], [8, 1, 1, "", "patch_schema_optunaz"], [8, 1, 1, "", "type_base_schema"]], "optunaz.three_step_opt_build_merge": [[8, 1, 1, "", "base_chemprop_params"], [8, 1, 1, "", "build_best"], [8, 1, 1, "", "build_merged"], [8, 1, 1, "", "buildconfig_best"], [8, 1, 1, "", "log_scores"], [8, 1, 1, "", "optimize"], [8, 1, 1, "", "run_study"], [8, 1, 1, "", "split_optimize"]], "optunaz.utils": [[11, 0, 0, "-", "enums"], [10, 0, 0, "-", "files_paths"], [10, 1, 1, "", "load_df_from_file"], [10, 0, 0, "-", "load_json"], [10, 1, 1, "", "md5_hash"], [10, 1, 1, "", "mkdict"], [10, 0, 0, "-", "mlflow"], [12, 0, 0, "-", "preprocessing"], [10, 1, 1, "", "remove_failed_idx"], [10, 0, 0, "-", "schema"], [10, 0, 0, "-", "tracking"]], "optunaz.utils.enums": [[11, 2, 1, "", "MlflowLogParams"], [11, 2, 1, "", "StudyUserAttrs"], [11, 2, 1, "", "TrialParams"], [11, 2, 1, "", "TrialUserAttrs"], [11, 0, 0, "-", "building_configuration_enum"], [11, 0, 0, "-", "configuration_enum"], [11, 0, 0, "-", "interface_enum"], [11, 0, 0, "-", "model_runner_enum"], [11, 0, 0, "-", "objective_enum"], [11, 0, 0, "-", "optimization_configuration_enum"], [11, 0, 0, "-", "prediction_configuration_enum"], [11, 0, 0, "-", "return_values_enum"], [11, 0, 0, "-", "visualization_enum"]], "optunaz.utils.enums.MlflowLogParams": [[11, 3, 1, "", "TRIAL_NUMBER"]], "optunaz.utils.enums.StudyUserAttrs": [[11, 3, 1, "", "OPTCONFIG"]], "optunaz.utils.enums.TrialParams": [[11, 3, 1, "", "ALGORITHM_HASH"], [11, 3, 1, "", "ALGORITHM_NAME"], [11, 3, 1, "", "DESCRIPTOR"]], "optunaz.utils.enums.TrialUserAttrs": [[11, 3, 1, "", "TEST_SCORES"], [11, 3, 1, "", "TRAIN_SCORES"]], "optunaz.utils.enums.building_configuration_enum": [[11, 2, 1, "", "BuildingConfigurationEnum"]], "optunaz.utils.enums.building_configuration_enum.BuildingConfigurationEnum": [[11, 3, 1, "", "GENERAL_CLASSIFIER"], [11, 3, 1, "", "GENERAL_HYPERPARAMETERS"], [11, 3, 1, "", "GENERAL_REGRESSOR"], [11, 3, 1, "", "METADATA"], [11, 3, 1, "", "METADATA_BESTTRIAL"], [11, 3, 1, "", "METADATA_BESTVALUE"]], "optunaz.utils.enums.configuration_enum": [[11, 2, 1, "", "ConfigurationEnum"]], "optunaz.utils.enums.configuration_enum.ConfigurationEnum": [[11, 3, 1, "", "ALGORITHMS"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER_LEARNING_RATE"], [11, 3, 1, "", "ALGORITHMS_ADABOOSTCLASSIFIER_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_ENSEMBLE"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_ESTIMATOR"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_METHOD"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_N_FOLDS"], [11, 3, 1, "", "ALGORITHMS_CALIBRATEDCLASSIFIERCV_PARAMS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_ACTIVATION"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_AGGREGATION"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_AGGREGATION_NORM"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_BATCH_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_CLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_DEPTH"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_DROPOUT"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_ENSEMBLE_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_EPOCHS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FEATURES_GENERATOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FFN_HIDDEN_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FFN_NUM_LAYERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FINAL_LR_RATIO_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_FRZN"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HIDDEN_SIZE"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HYPEROPT_CLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_HYPEROPT_REGRESSOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_INIT_LR_RATIO_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_MAX_LR_EXP"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_NUM_ITERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_PRETRAINED_MODEL"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_REGRESSOR"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_SEARCH_PARAMETER_LEVEL"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_STARTUP_RANDOM_ITERS"], [11, 3, 1, "", "ALGORITHMS_CHEMPROP_WARMUP_EPOCHS_RATIO"], [11, 3, 1, "", "ALGORITHMS_HIGH"], [11, 3, 1, "", "ALGORITHMS_INTERFACE_SKLEARN"], [11, 3, 1, "", "ALGORITHMS_INTERFACE_XGBOOST"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORSCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORSREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_METRIC"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_N_NEIGHBORS"], [11, 3, 1, "", "ALGORITHMS_KNEIGHBORS_WEIGHTS"], [11, 3, 1, "", "ALGORITHMS_LASSO"], [11, 3, 1, "", "ALGORITHMS_LASSO_ALPHA"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION_C"], [11, 3, 1, "", "ALGORITHMS_LOGISTICREGRESSION_SOLVER"], [11, 3, 1, "", "ALGORITHMS_LOW"], [11, 3, 1, "", "ALGORITHMS_MAPIE"], [11, 3, 1, "", "ALGORITHMS_MAPIE_ALPHA"], [11, 3, 1, "", "ALGORITHMS_PLSREGRESSION"], [11, 3, 1, "", "ALGORITHMS_PLSREGRESSION_N_COMPONENTS"], [11, 3, 1, "", "ALGORITHMS_PRF"], [11, 3, 1, "", "ALGORITHMS_PRF_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_PRF_MAX_FEATURES"], [11, 3, 1, "", "ALGORITHMS_PRF_MINPYSUMLEAF"], [11, 3, 1, "", "ALGORITHMS_PRF_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_PRF_USE_PY_GINI"], [11, 3, 1, "", "ALGORITHMS_PRF_USE_PY_LEAFS"], [11, 3, 1, "", "ALGORITHMS_Q"], [11, 3, 1, "", "ALGORITHMS_RFCLASSIFIER"], [11, 3, 1, "", "ALGORITHMS_RFREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_RF_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_RF_MAX_FEATURES"], [11, 3, 1, "", "ALGORITHMS_RF_N_ESTIMATORS"], [11, 3, 1, "", "ALGORITHMS_RIDGE"], [11, 3, 1, "", "ALGORITHMS_RIDGE_ALPHA"], [11, 3, 1, "", "ALGORITHMS_SVC"], [11, 3, 1, "", "ALGORITHMS_SVC_C"], [11, 3, 1, "", "ALGORITHMS_SVC_GAMMA"], [11, 3, 1, "", "ALGORITHMS_SVR"], [11, 3, 1, "", "ALGORITHMS_SVR_C"], [11, 3, 1, "", "ALGORITHMS_SVR_GAMMA"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_LEARNING_RATE"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_MAX_DEPTH"], [11, 3, 1, "", "ALGORITHMS_XGBREGRESSOR_N_ESTIMATORS"], [11, 3, 1, "", "DATA"], [11, 3, 1, "", "DATA_INPUTCOLUMN"], [11, 3, 1, "", "DATA_RESPONSECOLUMN"], [11, 3, 1, "", "DATA_TEST"], [11, 3, 1, "", "DATA_TRAINING"], [11, 3, 1, "", "DESCRIPTORS"], [11, 3, 1, "", "DESCRIPTORS_AMORPROT"], [11, 3, 1, "", "DESCRIPTORS_AVALON"], [11, 3, 1, "", "DESCRIPTORS_AVALON_NBITS"], [11, 3, 1, "", "DESCRIPTORS_COMPOSITE"], [11, 3, 1, "", "DESCRIPTORS_ECFP"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS_RADIUS"], [11, 3, 1, "", "DESCRIPTORS_ECFPCOUNTS_USEFEATURES"], [11, 3, 1, "", "DESCRIPTORS_ECFP_NBITS"], [11, 3, 1, "", "DESCRIPTORS_ECFP_RADIUS"], [11, 3, 1, "", "DESCRIPTORS_JAZZY"], [11, 3, 1, "", "DESCRIPTORS_JAZZY_JAZZYNAMES"], [11, 3, 1, "", "DESCRIPTORS_MACCSKEYS"], [11, 3, 1, "", "DESCRIPTORS_MAPC"], [11, 3, 1, "", "DESCRIPTORS_MAPC_MAXRADIUS"], [11, 3, 1, "", "DESCRIPTORS_MAPC_NPERMUTATIONS"], [11, 3, 1, "", "DESCRIPTORS_PATHFP"], [11, 3, 1, "", "DESCRIPTORS_PATHFP_FPSIZE"], [11, 3, 1, "", "DESCRIPTORS_PATHFP_MAXPATH"], [11, 3, 1, "", "DESCRIPTORS_PHYSCHEM"], [11, 3, 1, "", "DESCRIPTORS_PHYSCHEM_RDKITNAMES"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_FILE"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_INPUT_COLUMNN"], [11, 3, 1, "", "DESCRIPTORS_PRECOMPUTED_RESPONSE_COLUMN"], [11, 3, 1, "", "DESCRIPTORS_SCALED"], [11, 3, 1, "", "DESCRIPTORS_SCALED_DESCRIPTOR"], [11, 3, 1, "", "DESCRIPTORS_SCALED_DESCRIPTOR_PARAMETERS"], [11, 3, 1, "", "DESCRIPTORS_SMILES"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_AUX_WEIGHT_PC"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_FILE"], [11, 3, 1, "", "DESCRIPTORS_SMILES_AND_SI_INPUT_COLUMN"], [11, 3, 1, "", "DESCRIPTORS_UNSC_JAZZY"], [11, 3, 1, "", "DESCRIPTORS_UNSC_MAPC"], [11, 3, 1, "", "DESCRIPTORS_UNSC_PHYSCHEM"], [11, 3, 1, "", "DESCRIPTORS_UNSC_ZSCALES"], [11, 3, 1, "", "DESCRIPTORS_ZSCALES"], [11, 3, 1, "", "GENERAL_DISABLED"], [11, 3, 1, "", "GENERAL_PARAMETERS"], [11, 3, 1, "", "SETTINGS"], [11, 3, 1, "", "SETTINGS_CROSS_VALIDATION"], [11, 3, 1, "", "SETTINGS_DIRECTION"], [11, 3, 1, "", "SETTINGS_MODE"], [11, 3, 1, "", "SETTINGS_MODE_CLASSIFICATION"], [11, 3, 1, "", "SETTINGS_MODE_REGRESSION"], [11, 3, 1, "", "SETTINGS_N_JOBS"], [11, 3, 1, "", "SETTINGS_N_TRIALS"], [11, 3, 1, "", "SETTINGS_SHUFFLE"], [11, 3, 1, "", "TASK"], [11, 3, 1, "", "TASK_BUILDING"], [11, 3, 1, "", "TASK_OPTIMIZATION"]], "optunaz.utils.enums.interface_enum": [[11, 2, 1, "", "InterfaceEnum"]], "optunaz.utils.enums.interface_enum.InterfaceEnum": [[11, 3, 1, "", "CALIBRATED_SET"], [11, 3, 1, "", "CHEMPROP_SET"], [11, 3, 1, "", "PRF_SET"], [11, 3, 1, "", "SKLEARN_SET"], [11, 3, 1, "", "XGBOOST_SET"]], "optunaz.utils.enums.model_runner_enum": [[11, 2, 1, "", "ModelRunnerDataframeEnum"]], "optunaz.utils.enums.model_runner_enum.ModelRunnerDataframeEnum": [[11, 3, 1, "", "SET"], [11, 3, 1, "", "SMILES"], [11, 3, 1, "", "TEST"], [11, 3, 1, "", "TRAIN"], [11, 3, 1, "", "Y_PRED"], [11, 3, 1, "", "Y_TRUE"]], "optunaz.utils.enums.objective_enum": [[11, 2, 1, "", "ObjectiveEnum"]], "optunaz.utils.enums.objective_enum.ObjectiveEnum": [[11, 3, 1, "", "ATTRIBUTE_TRIAL_TRAIN_SCORE"], [11, 3, 1, "", "EXTRA_COLUMN_BESTHIT"]], "optunaz.utils.enums.optimization_configuration_enum": [[11, 2, 1, "", "OptimizationConfigurationEnum"]], "optunaz.utils.enums.prediction_configuration_enum": [[11, 2, 1, "", "PredictionConfigurationEnum"]], "optunaz.utils.enums.prediction_configuration_enum.PredictionConfigurationEnum": [[11, 3, 1, "", "DATA_DATASET"]], "optunaz.utils.enums.return_values_enum": [[11, 2, 1, "", "SklearnReturnValueEnum"], [11, 2, 1, "", "XGBoostReturnValueEnum"]], "optunaz.utils.enums.return_values_enum.SklearnReturnValueEnum": [[11, 3, 1, "", "CROSS_VALIDATE_FIT_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_SCORE_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_TEST_SCORE"], [11, 3, 1, "", "CROSS_VALIDATE_TRAIN_SCORE"]], "optunaz.utils.enums.return_values_enum.XGBoostReturnValueEnum": [[11, 3, 1, "", "CROSS_VALIDATE_FIT_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_SCORE_TIME"], [11, 3, 1, "", "CROSS_VALIDATE_TEST_SCORE"], [11, 3, 1, "", "CROSS_VALIDATE_TRAIN_SCORE"]], "optunaz.utils.enums.visualization_enum": [[11, 2, 1, "", "VisualizationEnum"]], "optunaz.utils.enums.visualization_enum.VisualizationEnum": [[11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_INTERMEDIATE_VALUES"], [11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_NUMBER"], [11, 3, 1, "", "OPTUNA_SYSTEM_ATTRS_TRIAL_ID"], [11, 3, 1, "", "VISUALIZATION"], [11, 3, 1, "", "VISUALIZATION_CLASSIFIER"], [11, 3, 1, "", "VISUALIZATION_FILE_FORMAT"], [11, 3, 1, "", "VISUALIZATION_OUTPUT_FOLDER"], [11, 3, 1, "", "VISUALIZATION_PLOTS"], [11, 3, 1, "", "VISUALIZATION_PLOTS_CONTOUR"], [11, 3, 1, "", "VISUALIZATION_PLOTS_HISTORY"], [11, 3, 1, "", "VISUALIZATION_PLOTS_PARALLEL_COORDINATE"], [11, 3, 1, "", "VISUALIZATION_PLOTS_SLICE"], [11, 3, 1, "", "VISUALIZATION_REGRESSOR"], [11, 3, 1, "", "VISUALIZATION_USE_XVFB"]], "optunaz.utils.files_paths": [[10, 1, 1, "", "attach_root_path"], [10, 1, 1, "", "move_up_directory"]], "optunaz.utils.load_json": [[10, 1, 1, "", "loadJSON"]], "optunaz.utils.mlflow": [[10, 2, 1, "", "MLflowCallback"], [10, 1, 1, "", "add_ellipsis"], [10, 1, 1, "", "shorten_names"]], "optunaz.utils.mlflow.MLflowCallback": [[10, 3, 1, "", "optconfig"], [10, 4, 1, "", "prepare_tags"], [10, 4, 1, "", "tmp_buildconfig"], [10, 3, 1, "", "tracking_uri"], [10, 3, 1, "", "trial_number_offset"]], "optunaz.utils.preprocessing": [[12, 0, 0, "-", "deduplicator"], [12, 0, 0, "-", "splitter"], [12, 0, 0, "-", "transform"]], "optunaz.utils.preprocessing.deduplicator": [[12, 2, 1, "", "Deduplicator"], [12, 2, 1, "", "KeepAllNoDeduplication"], [12, 2, 1, "", "KeepAvg"], [12, 2, 1, "", "KeepFirst"], [12, 2, 1, "", "KeepLast"], [12, 2, 1, "", "KeepMax"], [12, 2, 1, "", "KeepMedian"], [12, 2, 1, "", "KeepMin"], [12, 2, 1, "", "KeepRandom"]], "optunaz.utils.preprocessing.deduplicator.Deduplicator": [[12, 4, 1, "", "dedup"]], "optunaz.utils.preprocessing.deduplicator.KeepAllNoDeduplication": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepAvg": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepFirst": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepLast": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMax": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMedian": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepMin": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"]], "optunaz.utils.preprocessing.deduplicator.KeepRandom": [[12, 4, 1, "", "dedup"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter": [[12, 2, 1, "", "GroupingSplitter"], [12, 2, 1, "", "HistogramStratifiedShuffleSplit"], [12, 2, 1, "", "KFold"], [12, 2, 1, "", "NoSplitting"], [13, 2, 1, "", "Predefined"], [13, 2, 1, "", "Random"], [13, 2, 1, "", "ScaffoldSplit"], [12, 2, 1, "", "SklearnSplitter"], [12, 2, 1, "", "Splitter"], [13, 2, 1, "", "Stratified"], [13, 2, 1, "", "Temporal"], [12, 1, 1, "", "butina_cluster"], [12, 1, 1, "", "fd_bin"], [12, 1, 1, "", "stratify"]], "optunaz.utils.preprocessing.splitter.GroupingSplitter": [[12, 4, 1, "", "groups"]], "optunaz.utils.preprocessing.splitter.HistogramStratifiedShuffleSplit": [[12, 3, 1, "", "bins"], [12, 4, 1, "", "get_n_splits"], [12, 3, 1, "", "n_splits"], [12, 3, 1, "", "random_state"], [12, 4, 1, "", "split"], [12, 3, 1, "", "test_fraction"]], "optunaz.utils.preprocessing.splitter.KFold": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "random_state"], [12, 3, 1, "", "shuffle"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.NoSplitting": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Predefined": [[12, 3, 1, "", "column_name"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 4, 1, "", "groups"], [12, 3, 1, "", "name"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Random": [[12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter.ScaffoldSplit": [[12, 3, 1, "", "bins"], [12, 3, 1, "", "butina_cluster"], [12, 4, 1, "", "get_n_splits"], [12, 4, 1, "", "get_sklearn_splitter"], [13, 4, 1, "", "groups"], [12, 3, 1, "", "make_scaffold_generic"], [12, 3, 1, "", "name"], [12, 3, 1, "", "random_state"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.SklearnSplitter": [[12, 4, 1, "", "get_n_splits"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Splitter": [[12, 4, 1, "", "get_sklearn_splitter"], [12, 4, 1, "", "split"]], "optunaz.utils.preprocessing.splitter.Stratified": [[12, 3, 1, "", "bins"], [12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [12, 3, 1, "", "seed"]], "optunaz.utils.preprocessing.splitter.Temporal": [[12, 3, 1, "", "fraction"], [12, 4, 1, "", "get_sklearn_splitter"], [12, 3, 1, "", "name"], [13, 4, 1, "", "split"]], "optunaz.utils.preprocessing.transform": [[12, 2, 1, "", "AmorProt"], [12, 2, 1, "", "AuxTransformer"], [12, 2, 1, "", "DataTransform"], [12, 5, 1, "", "DataTransformError"], [12, 2, 1, "", "LogBase"], [12, 2, 1, "", "LogNegative"], [14, 2, 1, "", "ModelDataTransform"], [14, 2, 1, "", "PTRTransform"], [14, 2, 1, "", "VectorFromColumn"], [14, 2, 1, "", "ZScales"]], "optunaz.utils.preprocessing.transform.AmorProt": [[12, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.AuxTransformer": [[12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.DataTransform": [[12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.LogBase": [[12, 3, 1, "", "LOG"], [12, 3, 1, "", "LOG10"], [12, 3, 1, "", "LOG2"]], "optunaz.utils.preprocessing.transform.LogNegative": [[12, 3, 1, "", "FALSE"], [12, 3, 1, "", "TRUE"]], "optunaz.utils.preprocessing.transform.ModelDataTransform": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "base_dict"], [12, 3, 1, "", "base_negation"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 3, 1, "", "reverse_dict"], [12, 4, 1, "", "reverse_transform"], [12, 4, 1, "", "reverse_transform_df"], [12, 4, 1, "", "reverse_transform_one"], [12, 4, 1, "", "transform"], [12, 4, 1, "", "transform_df"], [12, 4, 1, "", "transform_one"]], "optunaz.utils.preprocessing.transform.ModelDataTransform.Parameters": [[12, 3, 1, "", "base"], [12, 3, 1, "", "conversion"], [12, 3, 1, "", "negation"]], "optunaz.utils.preprocessing.transform.PTRTransform": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "reverse_transform"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.PTRTransform.Parameters": [[12, 3, 1, "", "std"], [12, 3, 1, "", "threshold"]], "optunaz.utils.preprocessing.transform.VectorFromColumn": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.preprocessing.transform.VectorFromColumn.Parameters": [[12, 3, 1, "", "delimiter"]], "optunaz.utils.preprocessing.transform.ZScales": [[14, 2, 1, "", "Parameters"], [12, 3, 1, "", "name"], [12, 3, 1, "", "parameters"], [12, 4, 1, "", "transform"]], "optunaz.utils.schema": [[10, 1, 1, "", "add_boolean_guards_for_schema_properties"], [10, 1, 1, "", "addsibling"], [10, 1, 1, "", "addtitles"], [10, 1, 1, "", "copytitle"], [10, 1, 1, "", "create_dependency"], [10, 1, 1, "", "delsibling"], [10, 1, 1, "", "getref"], [10, 1, 1, "", "remove_schema_properties"], [10, 1, 1, "", "replaceenum"], [10, 1, 1, "", "replacekey"], [10, 1, 1, "", "replacevalue"]], "optunaz.utils.tracking": [[10, 2, 1, "", "BuildTrackingData"], [10, 2, 1, "", "Datapoint"], [10, 2, 1, "", "InternalTrackingCallback"], [10, 2, 1, "", "TrackingData"], [10, 1, 1, "", "get_authorization_header"], [10, 1, 1, "", "removeprefix"], [10, 1, 1, "", "round_scores"], [10, 1, 1, "", "track_build"]], "optunaz.utils.tracking.BuildTrackingData": [[10, 3, 1, "", "response_column_name"], [10, 3, 1, "", "test_points"], [10, 3, 1, "", "test_scores"]], "optunaz.utils.tracking.Datapoint": [[10, 3, 1, "", "expected"], [10, 3, 1, "", "predicted"], [10, 3, 1, "", "smiles"]], "optunaz.utils.tracking.InternalTrackingCallback": [[10, 3, 1, "", "optconfig"], [10, 3, 1, "", "trial_number_offset"]], "optunaz.utils.tracking.TrackingData": [[10, 3, 1, "", "all_cv_test_scores"], [10, 3, 1, "", "buildconfig"], [10, 3, 1, "", "scoring"], [10, 3, 1, "", "trial_number"], [10, 3, 1, "", "trial_state"], [10, 3, 1, "", "trial_value"]], "optunaz.visualizer": [[8, 2, 1, "", "Visualizer"]], "optunaz.visualizer.Visualizer": [[8, 4, 1, "", "plot_by_configuration"], [8, 4, 1, "", "plot_contour"], [8, 4, 1, "", "plot_history"], [8, 4, 1, "", "plot_parallel_coordinate"], [8, 4, 1, "", "plot_slice"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:attribute", "4": "py:method", "5": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "method", "Python method"], "5": ["py", "exception", "Python exception"]}, "titleterms": {"qsartuna": [0, 4, 6, 7], "\ud80c\udd9b": 0, "qsar": 0, "us": 0, "optim": [0, 6], "hyperparamet": 0, "tune": 0, "formerli": 0, "optuna": 0, "az": 0, "qptuna": 0, "background": [0, 6], "The": [0, 6], "three": [0, 6], "step": [0, 6], "process": [0, 6], "json": 0, "base": [0, 7], "command": 0, "line": 0, "interfac": 0, "configur": [0, 6], "file": [0, 6], "run": [0, 6], "via": 0, "singulart": 0, "submit": 0, "slurm": 0, "model": [0, 6], "option": [0, 6], "inspect": 0, "from": [0, 6, 7], "python": 0, "jupyt": 0, "notebook": 0, "ad": 0, "descriptor": [0, 3, 6, 8], "avail": [1, 2, 3, 13, 14], "algorithm": [1, 6], "adaboostclassifi": 1, "lasso": 1, "kneighborsclassifi": 1, "kneighborsregressor": 1, "logisticregress": 1, "plsregress": 1, "randomforestclassifi": 1, "randomforestregressor": 1, "ridg": 1, "svc": 1, "svr": 1, "xgbregressor": 1, "prfclassifi": 1, "chempropregressor": 1, "chempropclassifi": 1, "chemprophyperoptclassifi": 1, "chemprophyperoptregressor": 1, "chempropregressorpretrain": 1, "calibratedclassifiercvwithva": 1, "mapi": [1, 6], "dedupl": [2, 7, 12], "keepfirst": 2, "keeplast": 2, "keeprandom": 2, "keepmin": 2, "keepmax": 2, "keepavg": 2, "keepmedian": 2, "keepkeepallnodedupl": 2, "avalon": 3, "ecfp": 3, "ecfp_count": 3, "pathfp": 3, "maccs_kei": 3, "unscaledphyschemdescriptor": 3, "unscaledjazzydescriptor": 3, "unscaledzscalesdescriptor": 3, "physchemdescriptor": 3, "jazzydescriptor": 3, "precomputeddescriptorfromfil": 3, "zscale": [3, 14], "smilesfromfil": 3, "smilesandsideinfofromfil": 3, "scaleddescriptor": 3, "compositedescriptor": 3, "welcom": 4, "document": 4, "develop": 4, "optunaz": [5, 8, 9, 10, 11, 12], "cli": 6, "tutori": 6, "thi": 6, "prepar": 6, "regress": 6, "exampl": 6, "creat": 6, "visual": [6, 8], "progress": 6, "pick": 6, "best": [6, 7], "trial": 6, "build": 6, "merg": 6, "preprocess": [6, 7, 12], "split": [6, 7], "data": [6, 7], "train": 6, "test": 6, "set": 6, "remov": 6, "duplic": [6, 7], "dataset": 6, "choos": 6, "score": 6, "function": 6, "advanc": 6, "functoinail": 6, "probabilist": [6, 7], "random": [6, 7, 13], "forest": 6, "prf": 6, "interlud": [6, 7], "cautionari": 6, "advic": 6, "y": 6, "respons": 6, "column": 6, "valid": 6, "chemprop": 6, "simpl": 6, "separ": 6, "shallow": 6, "method": 6, "default": 6, "behavior": 6, "turn": 6, "hyperopt": 6, "within": [6, 7], "functionail": 6, "veri": 6, "larg": 6, "comput": 6, "cost": 6, "A": 6, "note": 6, "mpnn": 6, "search": 6, "space": 6, "side": 6, "inform": 6, "multi": 6, "task": 6, "learn": 6, "mtl": 6, "combin": 6, "onli": 6, "recommend": 6, "long": 6, "time": 6, "pre": 6, "adapt": 6, "transfer": 6, "fingerprint": 6, "encod": 6, "latent": 6, "represent": [6, 7], "probabl": 6, "calibr": 6, "classif": 6, "uncertainti": 6, "estim": 6, "vennab": 6, "ensembl": 6, "dropout": 6, "explain": [6, 8], "shap": 6, "interpret": 6, "log": [6, 7], "transform": [6, 7, 12, 14], "covari": 6, "one": 6, "e": 6, "g": 6, "dose": 6, "point": 6, "co": 6, "variat": 6, "proteochemometr": 6, "pcm": 6, "more": 6, "vectorfromsmil": 6, "z": 6, "scale": 6, "object": [6, 8], "priorit": 6, "perform": [6, 7], "standard": 6, "deviat": 6, "further": 6, "precomput": 6, "introduct": 7, "translat": 7, "sdf": 7, "csv": 7, "need": 7, "deal": 7, "compar": 7, "differ": 7, "strategi": 7, "tempor": [7, 13], "stratifi": [7, 13], "scaffold": 7, "input": 7, "user": 7, "import": 7, "logarithm": 7, "dataread": [7, 8], "threshold": 7, "ptr": [7, 14], "experiment": 7, "error": 7, "definit": 7, "implement": 7, "conclus": 7, "calcul": 7, "evalu": [7, 8], "reproduc": 7, "practic": 7, "packag": [8, 9, 10, 11, 12], "subpackag": [8, 10], "submodul": [8, 9, 10, 11, 12], "builder": 8, "modul": [8, 9, 10, 11, 12], "metirc": 8, "model_writ": 8, "optbuild": 8, "predict": 8, "schemagen": 8, "three_step_opt_build_merg": 8, "content": [8, 9, 10, 11, 12], "config": 9, "build_from_opt": 9, "buildconfig": 9, "optconfig": 9, "util": [10, 11, 12], "files_path": 10, "load_json": 10, "mlflow": 10, "schema": 10, "track": 10, "enum": 11, "building_configuration_enum": 11, "configuration_enum": 11, "interface_enum": 11, "model_runner_enum": 11, "objective_enum": 11, "optimization_configuration_enum": 11, "prediction_configuration_enum": 11, "return_values_enum": 11, "visualization_enum": 11, "splitter": [12, 13], "predefin": 13, "scaffoldsplit": 13, "modeldatatransform": 14, "vectorfromcolumn": 14}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/examples/optimization/regression_drd2_50_precomputed_descriptor_scaled.json b/examples/optimization/regression_drd2_50_precomputed_descriptor_scaled.json new file mode 100644 index 0000000..e431584 --- /dev/null +++ b/examples/optimization/regression_drd2_50_precomputed_descriptor_scaled.json @@ -0,0 +1,109 @@ +{ + "task": "optimization", + "data": { + "input_column": "canonical", + "response_column": "molwt", + "training_dataset_file": "tests/data/precomputed_descriptor/train_with_fp.csv" + }, + "descriptors": [ + { + "name": "ScaledDescriptor", + "parameters": { + "scaler": { + "name": "UnfittedSklearnScaler" + }, + "descriptor": { + "name": "PrecomputedDescriptorFromFile", + "parameters": { + "file": "tests/data/precomputed_descriptor/train_with_fp.csv", + "input_column": "canonical", + "response_column": "fp" + } + } + } + } + ], + "settings": { + "mode": "regression", + "cross_validation": 3, + "direction": "maximize", + "n_trials": 15, + "n_startup_trials": 10 + }, + "visualization": null, + "algorithms": [ + { + "name": "SVR", + "parameters": { + "C": { + "low": 1E-10, + "high": 100.0 + }, + "gamma": { + "low": 0.0001, + "high": 100.0 + } + } + }, + { + "name": "RandomForestRegressor", + "parameters": { + "max_depth": { + "low": 2, + "high": 32 + }, + "n_estimators": { + "low": 10, + "high": 250 + }, + "max_features": [ + "auto" + ] + } + }, + { + "name": "Ridge", + "parameters": { + "alpha": { + "low": 0, + "high": 2 + } + } + }, + { + "name": "Lasso", + "parameters": { + "alpha": { + "low": 0, + "high": 2 + } + } + }, + { + "name": "PLSRegression", + "parameters": { + "n_components": { + "low": 2, + "high": 3 + } + } + }, + { + "name": "XGBRegressor", + "parameters": { + "max_depth": { + "low": 2, + "high": 32 + }, + "n_estimators": { + "low": 3, + "high": 100 + }, + "learning_rate": { + "low": 0.1, + "high": 0.1 + } + } + } + ] +} diff --git a/optunaz/predict.py b/optunaz/predict.py index 03357e2..8d05a49 100644 --- a/optunaz/predict.py +++ b/optunaz/predict.py @@ -45,6 +45,23 @@ def validate_uncertainty(args, model): raise UncertaintyError("Uncertainty not availble for this model") +def set_inference_params(args, desc): + if hasattr(desc.parameters, "descriptor") and hasattr( + desc.parameters.descriptor, "inference_parameters" + ): # Scaled precomputed descriptors handled here + desc = desc.parameters.descriptor + if hasattr(desc, "inference_parameters"): + check_precomp_args(args) + desc.inference_parameters( + args.input_precomputed_file, + args.input_precomputed_input_column, + args.input_precomputed_response_column, + ) + logging.info("Precomputed descriptor inference params set") + return True + return False + + def check_precomp_args(args): try: assert ( @@ -62,42 +79,29 @@ def check_precomp_args(args): def validate_set_precomputed(args, model): descriptor_str = model.descriptor.name - if descriptor_str == "CompositeDescriptor": - precomp_idx = [ - idx - for idx, d in enumerate(model.descriptor.parameters.descriptors) - if d.name == "PrecomputedDescriptorFromFile" - ] - if len(precomp_idx) == 0: + if set_inference_params(args, model.descriptor): + return model + elif hasattr(model.descriptor.parameters, "descriptors"): + n_precomp = 0 + for d in model.descriptor.parameters.descriptors: + n_precomp += set_inference_params(args, d) + if n_precomp == 0: logging.warning( f"{descriptor_str} has no Precomputed descriptors... ignoring precomputed descriptor parameters" ) - return model - else: - if len(precomp_idx) > 1: - raise PrecomputedError( - "Inference for > precomputed descriptor not currently available" - ) - check_precomp_args(args) - precomp_desc = model.descriptor.parameters.descriptors[precomp_idx[0]] - precomp_desc.inference_parameters( - args.input_precomputed_file, - args.input_precomputed_input_column, - args.input_precomputed_response_column, + elif n_precomp > 1: + raise PrecomputedError( + "Inference for > precomputed descriptor not currently available" ) - elif descriptor_str != "PrecomputedDescriptorFromFile": - logging.warning( - f"Model was trained using {descriptor_str}... ignoring precomputed descriptor parameters" - ) return model - else: # must be precomputed - check_precomp_args(args) - precomp_desc = model.descriptor - precomp_desc.inference_parameters( - args.input_precomputed_file, - args.input_precomputed_input_column, - args.input_precomputed_response_column, - ) + else: + try: + check_precomp_args(args) + logging.warning( + f"Model was trained using {descriptor_str}... ignoring precomputed descriptor parameters" + ) + except PrecomputedError: + pass return model diff --git a/tests/test_precomputed_descriptor.py b/tests/test_precomputed_descriptor.py index bd7c113..d1ba466 100644 --- a/tests/test_precomputed_descriptor.py +++ b/tests/test_precomputed_descriptor.py @@ -1,8 +1,11 @@ import csv import json import os +import sys import tempfile - +from unittest.mock import patch +import numpy as np +import pandas as pd import numpy.testing as npt from apischema import deserialize @@ -10,11 +13,9 @@ from optunaz.config.optconfig import OptimizationConfig from optunaz.descriptors import PrecomputedDescriptorFromFile, ECFP from optunaz.utils.preprocessing.transform import VectorFromColumn - -import numpy as np -import pandas as pd - +from optunaz import optbuild from optunaz.utils.files_paths import attach_root_path +from optunaz import predict def test_1(): @@ -147,3 +148,51 @@ def test_5(shared_datadir): ) os.unlink(f.name) + + +def test_scaled_precomputed(shared_datadir): + testargs = [ + "prog", + "--config", + str( + attach_root_path( + "examples/optimization/regression_drd2_50_precomputed_descriptor_scaled.json" + ) + ), + "--best-buildconfig-outpath", + str(shared_datadir / "buildconfig.json"), + "--best-model-outpath", + str(shared_datadir / "best.pkl"), + ] + with patch.object(sys, "argv", testargs): + optbuild.main() + + predict_args = [ + "prog", + "--model-file", + str(shared_datadir / "best.pkl"), + "--input-smiles-csv-file", + str(shared_datadir / "precomputed_descriptor/train_with_fp.csv"), + "--input-smiles-csv-column", + "canonical", + "--input-precomputed-file", + str(shared_datadir / "precomputed_descriptor/train_with_fp.csv"), + "--input-precomputed-input-column", + "canonical", + "--input-precomputed-response-column", + "fp", + "--output-prediction-csv-file", + str(shared_datadir / "outprediction"), + ] + with patch.object(sys, "argv", predict_args): + predict.main() + + predictions = pd.read_csv( + str(shared_datadir / "outprediction"), usecols=["Prediction"] + ) + npt.assert_allclose( + predictions.loc[[0, 1, 2]].values.flatten(), + [385.872, 388.57, 379.173], + rtol=1e-05, + atol=1e-05, + )