CineMatch is an advanced movie recommendation system developed as part of a project at Euromed University of Fez. It utilizes machine learning algorithms and data science techniques to provide personalized movie suggestions, enhancing user experience in digital entertainment.
- Algorithms Used: The system employs k-Nearest Neighbors (KNN) for collaborative filtering and neural networks (Multi-Layer Perceptron, MLP) for sophisticated recommendations.
- Filtering Techniques: Includes collaborative filtering (user-based and item-based), hybrid filtering, and content-based filtering focusing on movie genres.
- Data Source: Utilizes datasets like 'rating.csv' and 'movie.csv' from MovieLens for building and evaluating recommendation algorithms.
- Developed using Python and Flask for web application implementation.
- Includes an interface for both KNN and MLP-based recommendations.
- Utilizes TMDb API for fetching movie details and images.
Home interface :
Knn interface :
MLP interface :
![image](https://private-user-images.githubusercontent.com/87017143/292928674-be46f68f-6443-473b-887e-2122146372a3.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkxOTE0MjQsIm5iZiI6MTczOTE5MTEyNCwicGF0aCI6Ii84NzAxNzE0My8yOTI5Mjg2NzQtYmU0NmY2OGYtNjQ0My00NzNiLTg4N2UtMjEyMjE0NjM3MmEzLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTAlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEwVDEyMzg0NFomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTQ3YjlmMWIyZjZlZTgwZmUzOTlmYTBhZTJhYTk0OGY1MmU1ZTdjZjk3YTMyODM0YTdkZGI0OTI0YzJkOGM5M2QmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.egFRenqLgtF0e4hjbD4zgSfpLrDEUs6FQR2zaGlTwVA)