diff --git a/examples/Controlling-Glucose-Metabolis-in-Yeast.ipynb b/examples/Controlling-Glucose-Metabolis-in-Yeast.ipynb index 424c1b6..80bb140 100644 --- a/examples/Controlling-Glucose-Metabolis-in-Yeast.ipynb +++ b/examples/Controlling-Glucose-Metabolis-in-Yeast.ipynb @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "3e9ebcb5-ff5e-4d4c-80da-d964a62ded32", "metadata": {}, "outputs": [], @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "id": "ec4e009e-7b76-4d97-b637-83b13f6b0c87", "metadata": {}, "outputs": [], @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "id": "2ced36f3-d3c9-4fb2-9153-0cfa2d32253a", "metadata": { "executionInfo": { @@ -120,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 11, "id": "e70316d2-d603-4be5-9f7c-66ad5c5e2f9f", "metadata": {}, "outputs": [], @@ -153,21 +153,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "c5bdfefa-bfcd-43b4-9305-a2742fc53618", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAT7CAYAAACzA+jaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUVf8H8M+VZRhgWEY2hREGQRQENAhyQSVBtCQtyiVNNJdQVNwQMQXFlFJ7XHEpzSU1DNFMVIpAHveFyFxQFAGxBFPZQjZhzu8PftzHiQEGxEbw+34984q599xzzh0f+M459ywcY4yBEEIIIS+9dqquACGEEEKUQ0GbEEIIaSUoaBNCCCGtBAVtQgghpJWgoE0IIYS0EhS0CSGEkFaCgjYhhBDSSlDQJoQQQloJCtqEEEJIK0FBmxACjuOwZMkS/v3OnTvBcRyys7NVVqeWkJ2dDY7jsHPnTlVXhZAWQUGbkDZu06ZN4DgO7u7uLyT/06dPY8iQITA3N4eWlhY6deoEX19f7Nu374WUR8irTF3VFSCEvFh79+6FlZUVLl68iIyMDNjY2LRY3jExMRg5ciR69OiBoKAgGBoaIisrCydPnsTXX3+NDz/8sMXKag5LS0uUlZVBQ0NDpfUgpKVQ0CakDcvKysLZs2dx8OBBfPLJJ9i7dy/Cw8NbLP8lS5bA3t4e58+fh6ampty5v/76q8XKaS6O46ClpaXqahDSYqh7nJA2bO/evTA0NMTbb7+N999/H3v37m3R/O/cuYPXX3+9TsAGABMTE/7n2mfLq1evxpo1a2BpaQmhUIj+/fvj2rVrda69efMm3n//fYjFYmhpacHV1RU//vhjnXSFhYWYPXs2rKysIBAIYGFhgXHjxuHRo0dy5f7zmbYy+T99+hRLly6Fra0ttLS00L59e/Tt2xcJCQnN+agIaRHU0iakDdu7dy/ee+89aGpqYvTo0di8eTMuXbqE119/vUXyt7S0RGJiIv744w9YWFg0mn737t34+++/ERgYiPLycqxbtw5vvvkmrl69ClNTUwDA9evX0adPH5ibm2PBggXQ0dHB999/j+HDhyM2NhbvvvsuAKCkpAQeHh64ceMGPv74Y7z22mt49OgRfvzxR/zxxx8wMjJSWAdl81+yZAkiIyMxadIkuLm5obi4GCkpKUhNTYW3t3eLfH6ENBkjhLRJKSkpDABLSEhgjDEmk8mYhYUFCwoKqpMWAAsPD+ff79ixgwFgWVlZDZaxfft2BoBpamoyT09PtnjxYnbq1ClWXV0tly4rK4sBYEKhkP3xxx/88QsXLjAAbPbs2fyxgQMHMkdHR1ZeXs4fk8lkrHfv3szW1pY/FhYWxgCwgwcP1qmXTCaTK3fHjh1Nzt/Z2Zm9/fbbDd4/If826h4npI3au3cvTE1N4enpCaDm+e7IkSMRHR2N6urqFinj448/Rnx8PAYMGIDTp09j2bJl8PDwgK2tLc6ePVsn/fDhw2Fubs6/d3Nzg7u7O44dOwYAyM/PR1JSEkaMGIG///4bjx49wqNHj/D48WP4+Pjg9u3b+PPPPwEAsbGxcHZ25lvGz+I4TmF9m5K/gYEBrl+/jtu3bz/350RIS6GgTUgbVF1djejoaHh6eiIrKwsZGRnIyMiAu7s7Hjx4gMTExBYry8fHBz/99BMKCwtx8uRJBAYG4u7duxg6dGidwWi2trZ1ru/SpQs/HzwjIwOMMSxevBjGxsZyr9oBdLV53rlzB927d29SXZuSf0REBAoLC9GlSxc4OjoiODgYV65caVJ5hLQ0eqZNSBuUlJSE3NxcREdHIzo6us75vXv3YtCgQS1apra2Njw8PODh4QEjIyMsXboUx48fh7+/v9J5yGQyAMC8efPg4+OjMM3zTFlrSv79+vXDnTt3cPjwYfz888/Ytm0b1qxZgy1btmDSpEnNrgMhz4OCNiFt0N69e2FiYoKoqKg65w4ePIhDhw5hy5YtEAqFL6R8V1dXAEBubq7ccUVdzbdu3YKVlRUAwNraGgCgoaEBLy+vBsvo3LmzwpHnDWlK/gAgFosxYcIETJgwASUlJejXrx+WLFlCQZuoDHWPE9LGlJWV4eDBgxg6dCjef//9Oq/p06fj77//VjiFqqnq62avfUZtZ2cnd/yHH37gnxkDwMWLF3HhwgUMGTIEQM00sQEDBmDr1q11Aj4APHz4kP/Zz88Pv//+Ow4dOlQnHWNMYb2akv/jx4/lzunq6sLGxgYVFRUK8ybk30AtbULamB9//BF///033nnnHYXn33jjDRgbG2Pv3r0YOXLkc5U1bNgwSKVS+Pr6onPnznjy5Al++eUXHDlyBK+//jp8fX3l0tvY2KBv376YOnUqKioqsHbtWrRv3x7z58/n00RFRaFv375wdHTE5MmTYW1tjQcPHuDcuXP4448/8PvvvwMAgoODceDAAXzwwQf4+OOP4eLigvz8fPz444/YsmULnJ2dFdZZ2fzt7e0xYMAAuLi4QCwWIyUlBQcOHMD06dOf6zMj5LmoePQ6IaSF+fr6Mi0tLfbkyZN604wfP55paGiwR48eMcaaP+Xru+++Y6NGjWKdO3dmQqGQaWlpMXt7e/bpp5+y4uJiPl3t1KtVq1axL7/8kkkkEiYQCJiHhwf7/fff6+R7584dNm7cOGZmZsY0NDSYubk5Gzp0KDtw4IBcusePH7Pp06czc3NzpqmpySwsLJi/vz9/X4qmfCmb/2effcbc3NyYgYEBEwqFrGvXrmz58uWssrKywc+EkBeJY6yefiRCCGkh2dnZkEqlWLVqFebNm6fq6hDSatEzbUIIIaSVoKBNCCGEtBIUtAkhhJBWgp5pE0IIIa0EtbQJIYSQVoKCNiGEENJK0OIqKiSTyXD//n2IRKJ6dyUihBDS9jHG8Pfff6Njx45o166B9rRKZ4kzxjZu3MgsLS2ZQCBgbm5u7MKFCw2m//7775mdnR0TCASse/fu7OjRo3LnZTIZW7x4MTMzM2NaWlps4MCB7NatW3JpHj9+zD788EMmEomYvr4++/jjj9nff//Nny8rK2P+/v6se/fuTE1NjQ0bNkxhXU6cOMF69uzJNDU1WefOness4NCYe/fuMQD0ohe96EUvejEA7N69ew3GDZW2tPfv3485c+Zgy5YtcHd3x9q1a+Hj44P09HSYmJjUSX/27FmMHj0akZGRGDp0KPbt24fhw4cjNTWV36Jv5cqVWL9+PXbt2gWpVIrFixfDx8cHaWlp0NLSAgCMGTMGubm5SEhIwNOnTzFhwgRMmTIF+/btA1CzraFQKMTMmTMRGxursO5ZWVl4++23ERAQgL179yIxMRGTJk1Chw4d6t096J9EIhEA4N69e9DT02vy50cIIaRtKC4uhkQi4eNCvZrUNGxhbm5uLDAwkH9fXV3NOnbsyCIjIxWmHzFiBHv77bfljrm7u7NPPvmEMVbTyjYzM2OrVq3izxcWFjKBQMC+++47xhhjaWlpDAC7dOkSn+b48eOM4zj2559/1inT399fYUt7/vz5zMHBQe7YyJEjmY+PTyN3/T9FRUUMACsqKlL6GkIIIW2PsvFAZQPRKisr8euvv8ptj9euXTt4eXnh3LlzCq85d+5cne30fHx8+PRZWVnIy8uTS6Ovrw93d3c+zblz52BgYMBvHQgAXl5eaNeuHS5cuKB0/RuriyIVFRUoLi6WexFCCCHKUlnQfvToEaqrq2Fqaip33NTUFHl5eQqvycvLazB97X8bS/PPrnd1dXWIxeJ6y21KXYqLi1FWVqbwmsjISOjr6/MviUSidHmEEEIITfn6F4WGhqKoqIh/3bt3T9VVIoQQ0oqobCCakZER1NTU8ODBA7njDx48gJmZmcJrzMzMGkxf+98HDx6gQ4cOcml69OjBp/nrr7/k8qiqqkJ+fn695TalLnp6ehAKhQqvEQgEEAgESpdBCFAzMPLp06eqrgYh5DloaGhATU3tufNRWdDW1NSEi4sLEhMTMXz4cAA185YTExPr3WS+V69eSExMxKxZs/hjCQkJ6NWrFwBAKpXCzMwMiYmJfJAuLi7GhQsXMHXqVD6PwsJC/Prrr3BxcQEAJCUlQSaTwd3dXen69+rVC8eOHZM79mxdCHlejDHk5eWhsLBQ1VUhhLQAAwMDmJmZPde6HCqd8jVnzhz4+/vD1dUVbm5uWLt2LZ48eYIJEyYAAMaNGwdzc3NERkYCAIKCgtC/f398+eWXePvttxEdHY2UlBR89dVXAACO4zBr1ix89tlnsLW15ad8dezYkf9i0K1bNwwePBiTJ0/Gli1b8PTpU0yfPh2jRo1Cx44d+bqlpaWhsrIS+fn5+Pvvv3H58mUA4L8MBAQEYOPGjZg/fz4+/vhjJCUl4fvvv8fRo0f/nQ+PtHm1AdvExATa2tq0AA8hrRRjDKWlpXwv77M9wc3JTKU2bNjAOnXqxDQ1NZmbmxs7f/48f65///7M399fLv3333/PunTpwjQ1NZmDg0O9i6uYmpoygUDABg4cyNLT0+XSPH78mI0ePZrp6uoyPT09NmHCBLnFVRhjzNLSUuHE92edOHGC9ejRg2lqajJra+smL65CU75IfaqqqlhaWhp79OiRqqtCCGkhjx49YmlpaayqqqrOOWXjAe3ypULFxcXQ19dHUVERLa5C5JSXlyMrKwtWVlb1jpEghLQuZWVlyM7OhlQq5Rf7qqVsPKDR44S8xKhLnJC2oyV+nyloE0IIIa0EBW1CCCGklaCgTQh5IfLy8jBjxgxYW1tDIBBAIpHA19cXiYmJAAArKytwHAeO46CtrQ1HR0ds27ZNLo/k5GQ+DcdxMDU1hZ+fHzIzM1VxS4SoHAVtQkiLy87OhouLC5KSkrBq1SpcvXoV8fHx8PT0RGBgIJ8uIiICubm5uHbtGsaOHYvJkyfj+PHjdfJLT0/H/fv3ERMTg+vXr8PX1xfV1dX/5i0R8lJQ6TxtUiN9717oNnOEsMKBDfUNdlBwvEnXK1s+aRJNPT1IBg2CmqamqqvSYqZNmwaO43Dx4kXo6Ojwxx0cHPDxxx/z70UiEb8SYUhICFauXImEhAQMGTJELj8TExMYGBigQ4cOCAsLw5gxY5CRkQE7O7t/54YIeUlQ0H4J/L5uHbRbYHk70nq5V1ai83vvNZiGMYbSp6X/Uo3kaWsov7hLfn4+4uPjsXz5crmAXcvAwKDOMZlMhkOHDqGgoACajXx5qZ0CV1lZqVR9CGlLKGi/BCyHDIFOc9YkVzDFvt5p94qOK7pe2WsbOk6U9vjqVTy5fx8VBQWNpi19WgrdSN1/oVZ1lYSWQEezbgBWJCMjA4wxdO3atdG0ISEhWLRoESoqKlBVVQWxWIxJkybVmz43NxerV6+Gubk5tbLJK4mC9kvAfelSWlzlFXX+00+R+cMPqq5Gi2rKek3BwcEYP348cnNzERwcjGnTpsHGxqZOOgsLC34pSGdnZ8TGxjbaIiekLaKgTUgroa2hjZLQEpWVrSxbW1twHIebN282mtbIyAg2NjawsbFBTEwMHB0d4erqCnt7e7l0p06dgp6eHkxMTCASiZpcf0LaCgrahLyEyp+Wo7K6EiUVJShjZQAABgYO/z/96dn/gkPN/5p47gUNIhSLxfDx8UFUVBRmzpxZ57l2YWGhwufaEokEI0eORGhoKA4fPix3TiqVKryGkFcNBW1CXhJVsipEX4tG1KUoPCx6iI29NuJp0dMX+lv6bBB/rnz+8QUgcEkgJrwzAU6vOWFq8FTY2tuiuqoa50+ex4FdB3Dw1EFUVlfiz+I/cTnvMn/doA8H4QPPD7A3fi8cejggIz8DAHD1wVWIyqmFTVo39pThYdFDjNk+Bn+U/iF3TlYuUyoPCtqEvARS7qfgnY2RuFNwBwBgqWOJdlw7CNQEUNdQlwuKjDEwsDr/beycIrVpnts/sjCTmOHb+G/xzfpv8J+l/8Gjvx7BUGyIrk5dERIZgipZFQCgmlXzPwOApa0l3Pu7Y9OqTVj37TpUy2rmYlfJquTSEdIqMUDGZMgvy8fD0ofy58qVy4J2+VIh2uWLxM+djvz4E/jO6QHiuj5Ge2F7zO01FyPsRqDycaXC3YCaQ1EwB6DwGCHkxagor0DO3RxwhhzaacivbVbydwnesHmj0XhALW1CVOheUQ50UDPQa5X3AgS4BkBXU7dma87HWS1WDt8FTmvhEKIyXDUHDTUNSNsr2JpTq1ipPChoE6JCtV3XDsYOmNd7noprQwh52dHa44QQQkgrQUGbEEIIaSUoaBNCCCGtBAVtQgghpJWgoE0IIYS0EhS0CSGEkFaCgjYhKkTLmRBCmoKCNiEvAVrzpOVlZ2eD4zhcvnxZ1VUhpMVQ0CaEvBB5eXmYMWMGrK2tIRAIIJFI4Ovri8TERACAlZVVzUptHAdtbW04Ojpi27ZtcnkkJyfzaTiOg6mpKfz8/JCZmdlo+RKJBLm5uejevbtcXoWFhU26Dwr+5GVCQZsQVWqjTezs7Gy4uLggKSkJq1atwtWrVxEfHw9PT08EBgby6SIiIpCbm4tr165h7NixmDx5Mo4fP14nv/T0dNy/fx8xMTG4fv06fH19UV1d3WAd1NTUYGZmBnX1l3fhx8rKSlVXgbQyFLQJIS1u2rRp4DgOFy9ehJ+fH7p06QIHBwfMmTMH58+f59OJRCKYmZnB2toaISEhEIvFSEhIqJOfiYkJOnTogH79+iEsLAxpaWnIyMhAQUEBxowZA2NjYwiFQtja2mLHjh0A5FvI2dnZ8PT0BAAYGhqC4ziMHz8eACCTyRAZGQmpVAqhUAhnZ2ccOHCg2fd+/fp1DB06FHp6ehCJRPDw8MCdOzW7t40fPx7Dhw/H8uXL0bFjR9jZ2QGo6XVYtmwZRo8eDR0dHZibmyMqKqrZdSBt18v7FZQQIocxoLRUNWVrawOckr0C+fn5iI+Px/Lly6Gjo1PnvIGBQZ1jMpkMhw4dQkFBATQ1NRvMXygUAqhppS5evBhpaWk4fvw4jIyMkJGRgbKysjrXSCQSxMbGws/PD+np6dDT0+PziYyMxJ49e7BlyxbY2tri5MmTGDt2LIyNjdG/f3/lbvr//fnnn+jXrx8GDBiApKQk6Onp4cyZM6iq+t+2oomJidDT06vz5WTVqlVYuHAhli5dip9++glBQUHo0qULvL29m1QH0rZR0CaklSgtBXR1VVN2SQmgIP4qlJGRAcYYunbt2mjakJAQLFq0CBUVFaiqqoJYLMakSZPqTZ+bm4vVq1fD3NwcdnZ2yMnJQc+ePeHq6gqgpsWqiJqaGsRiMYCaVnvtF4eKigqsWLECv/zyC3r16gUAsLa2xunTp7F169YmB+2oqCjo6+sjOjoaGhoaAIAuXbrIpdHR0cG2bdvqfDnp06cPFixYwF9z5swZrFmzhoI2kUPd44SQFtWUfbmDg4Nx+fJlJCUlwd3dHWvWrIGNjU2ddBYWFtDR0UHHjh3x5MkTxMbGQlNTE1OnTkV0dDR69OiB+fPn4+zZs02qa0ZGBkpLS+Ht7Q1dXV3+tXv3br5LuykuX74MDw8PPmAr4ujoqLA3ofZLw7Pvb9y40eQ6kLaNWtqEqFITJmpra9e0eFVBW1v5tLa2tuA4Djdv3mw0rZGREWxsbGBjY4OYmBg4OjrC1dUV9vb2culOnToFPT09mJiYQCQS8ceHDBmCu3fv4tixY0hISMDAgQMRGBiI1atXK1XXkv//QI8ePQpzc3O5cwKBQKk8nlXb5d4QRY8MCFEWBW1CWgmOU76LWpXEYjF8fHwQFRWFmTNn1glShYWFCp9rSyQSjBw5EqGhoTh8+LDcOalUqvAaADA2Noa/vz/8/f3h4eGB4OBghUG7tnX77Khze3t7CAQC5OTkNLkrXBEnJyfs2rULT58+bbC1rcizA/Rq33fr1u2560TaFuoeJ+Sl0LbmfkVFRaG6uhpubm6IjY3F7du3cePGDaxfv75ON/CzgoKCcOTIEaSkpChVTlhYGA4fPoyMjAxcv34dcXFx9QY6S0tLcByHuLg4PHz4ECUlJRCJRJg3bx5mz56NXbt24c6dO0hNTcWGDRuwa9euJt/39OnTUVxcjFGjRiElJQW3b9/Gt99+i/T09EavPXPmDFauXIlbt24hKioKMTExCAoKanIdSNtGQZsQ0uKsra2RmpoKT09PzJ07F927d4e3tzcSExOxefPmeq+zt7fHoEGDEBYWplQ5mpqaCA0NhZOTE/r16wc1NTVER0crTGtubo6lS5diwYIFMDU1xfTp0wEAy5Ytw+LFixEZGYlu3bph8ODBOHr0KKRSaZPvu3379khKSkJJSQn69+8PFxcXfP3110q1uufOnYuUlBT07NkTn332Gf7zn//Ax8enyXUgbRvHmjJqhLSo4uJi6Ovro6ioCHp6eqquDlGBrZN8ITqXiTuDLbH4y2P88fLycmRlZUEqlUJLS0uFNST/BisrK8yaNQuzZs1SdVXIC9TQ77Wy8YBa2oQQQkgrQUGbEEKUFBAQIDc17NlXQECAqqtHXgE0epwQQpQUERGBefPmKTz3PI+4srOzm30tebVQ0CZEpWqGlLStseNtl4mJCUxMTFRdDfIKo+5xQgghpJWgoE0IIYS0EhS0CSGEkFaCgjYhKsSU3e+SEEJAQZsQQghpNShoE0LapOzsbHAch8uXL6u6KoS0GArahJAXIi8vDzNmzIC1tTUEAgEkEgl8fX2RmJgIoGbpTo7jwHEctLW14ejoiG3btsnlkZyczKfhOA6mpqbw8/NDZmZmo+VLJBLk5uaie/fucnkVFhY26T7+GfzpywBRJQrahKhSG136Pzs7Gy4uLkhKSsKqVatw9epVxMfHw9PTE4GBgXy6iIgI5Obm4tq1axg7diwmT56M48eP18kvPT0d9+/fR0xMDK5fvw5fX1+5LTYVUVNTg5mZGdTVW89yFJWVlaquAnnJUdAmhLS4adOmgeM4XLx4EX5+fujSpQscHBwwZ84cuX2jRSIRzMzMYG1tjZCQEIjFYiQkJNTJz8TEBB06dEC/fv0QFhaGtLQ0ZGRkoKCgAGPGjIGxsTGEQiFsbW2xY8cOAPIt4uzsbHh6egIADA0NwXEcxo8fDwCQyWSIjIyEVCqFUCiEs7MzDhw40GKfxfXr1zF06FDo6elBJBLBw8MDd+7cAQCMHz8ew4cPx/Lly9GxY0fY2dkBqOmFWLZsGUaPHg0dHR2Ym5sjKiqqxepEWq/W8xWUkDaMU2ZNNMaA6tIXXxlF1LQBJUe65+fnIz4+HsuXL4eOjk6d8wYGBnWOyWQyHDp0CAUFBdDU1Gwwf6FQCKCmVbp48WKkpaXh+PHjMDIyQkZGBsrKyupcI5FIEBsbCz8/P6Snp0NPT4/PJzIyEnv27MGWLVtga2uLkydPYuzYsTA2Nkb//v2Vuuf6/Pnnn+jXrx8GDBiApKQk6Onp4cyZM6iqquLTJCYmQk9Pr86XlVWrVmHhwoVYunQpfvrpJwQFBaFLly7w9vZ+rjqR1o2CNiGtRXUp8L2uasoeUQKo1w3AimRkZIAxhq5duzaaNiQkBIsWLUJFRQWqqqogFosxadKketPn5uZi9erVMDc3h52dHXJyctCzZ0+4uroCqGmhKqKmpgaxWAygptVe+8WhoqICK1aswC+//IJevXoBqNkL/PTp09i6detzB+2oqCjo6+sjOjqa31O7S5cucml0dHSwbdu2Ol9W+vTpgwULFvDXnDlzBmvWrKGg/Yqj7nFCSItiTXhOHxwcjMuXLyMpKQnu7u5Ys2YNbGxs6qSzsLCAjo4OOnbsiCdPniA2NhaampqYOnUqoqOj0aNHD8yfPx9nz55tUl0zMjJQWloKb29vuR27du/ezXdhP4/Lly/Dw8ODD9iKODo6KuxdqP0S8ez7GzduPHedSOtGLW1CWgs17ZoWr6rKVpKtrS04jsPNmzcbTWtkZAQbGxvY2NggJiYGjo6OcHV1hb29vVy6U6dOQU9PDyYmJhCJRPzxIUOG4O7duzh27BgSEhIwcOBABAYGYvXq1UrVtaSk5vM8evQozM3N5c4JBAKl8mhIbRd8QxQ9QiCkPtTSJqS14LiaLmpVvJqwcptYLIaPjw+ioqLw5MmTOufrm3IlkUgwcuRIhIaG1jknlUrRuXNnuYBdy9jYGP7+/tizZw/Wrl2Lr776SmH+ta3ZZ0ed29vbQyAQICcnh//yUPuSSCTK3G6DnJyccOrUKTx9+rTJ1z47YK/2fbdu3Z67TqR1o6BNCGlxUVFRqK6uhpubG2JjY3H79m3cuHED69evr9Pt+6ygoCAcOXIEKSkpSpUTFhaGw4cPIyMjA9evX0dcXFy9gc3S0hIcxyEuLg4PHz5ESUkJRCIR5s2bh9mzZ2PXrl24c+cOUlNTsWHDBuzatatZ9/6s6dOno7i4GKNGjUJKSgpu376Nb7/9Funp6Y1ee+bMGaxcuRK3bt1CVFQUYmJiEBQU9Nx1Iq0bBW1CSIuztrZGamoqPD09MXfuXHTv3h3e3t5ITEzE5s2b673O3t4egwYNQlhYmFLlaGpqIjQ0FE5OTujXrx/U1NQQHR2tMK25uTmWLl2KBQsWwNTUFNOnTwcALFu2DIsXL0ZkZCS6deuGwYMH4+jRo5BKpU2/8X9o3749kpKSUFJSgv79+8PFxQVff/11g8+4a82dOxcpKSno2bMnPvvsM/znP/+Bj4/Pc9eJtG4ca8qoEdKiiouLoa+vj6KiIujp6am6OkQFtkwaCr1zWcgabIVPvzzKHy8vL0dWVhakUim0tLRUWEOiClZWVpg1axZmzZql6qqQFtTQ77Wy8YBa2oQQQkgrQUGbEEKaKSAgQG6q2LOvgIAAVVePtEE05YsQFWK0nXarFhERgXnz5ik89zyPvLKzs5t9LWnbKGgTQkgzmZiYwMTERNXVIK8Q6h4nhBBCWgmVB+2oqChYWVlBS0sL7u7uuHjxYoPpY2Ji0LVrV2hpacHR0RHHjh2TO88YQ1hYGDp06AChUAgvLy/cvn1bLk1+fj7GjBkDPT09GBgYYOLEifzKSLWuXLkCDw8PaGlpQSKRYOXKlXXqsnbtWtjZ2UEoFEIikWD27NkoLy9v5idBCCGENEylQXv//v2YM2cOwsPDkZqaCmdnZ/j4+OCvv/5SmP7s2bMYPXo0Jk6ciN9++w3Dhw/H8OHDce3aNT7NypUrsX79emzZsgUXLlyAjo4OfHx85ILpmDFjcP36dSQkJCAuLg4nT57ElClT+PPFxcUYNGgQLC0t8euvv2LVqlVYsmSJ3EpL+/btw4IFCxAeHo4bN25g+/bt2L9/PxYuXPgCPilCCCEEAFMhNzc3FhgYyL+vrq5mHTt2ZJGRkQrTjxgxgr399ttyx9zd3dknn3zCGGNMJpMxMzMztmrVKv58YWEhEwgE7LvvvmOMMZaWlsYAsEuXLvFpjh8/zjiOY3/++SdjjLFNmzYxQ0NDVlFRwacJCQlhdnZ2/PvAwED25ptvytVlzpw5rE+fPkrff1FREQPAioqKlL6GtC2bJr3N9trbs8/mvCV3vKysjKWlpbGysjIV1YwQ0tIa+r1WNh6orKVdWVmJX3/9FV5eXvyxdu3awcvLC+fOnVN4zblz5+TSA4CPjw+fPisrC3l5eXJp9PX14e7uzqc5d+4cDAwM+K38AMDLywvt2rXDhQsX+DT9+vWT23nHx8cH6enpKCgoAAD07t0bv/76K9+dn5mZiWPHjuGtt95q9mdCXl1K7adNCHnlqWz0+KNHj1BdXQ1TU1O546ampvXuDpSXl6cwfV5eHn++9lhDaf452lNdXR1isVguzT+XMKzNMy8vD4aGhvjwww/x6NEj9O3bF4wxVFVVISAgoMHu8YqKClRUVPDvi4uL601LCHk+2dnZkEql+O2339CjRw9VV4eQFqHygWitVXJyMlasWIFNmzYhNTUVBw8exNGjR7Fs2bJ6r4mMjIS+vj7/aoldhAh5WeXl5WHGjBmwtraGQCCARCKBr68vEhMTAdQs1clxHDiOg7a2NhwdHbFt2za5PJKTk/k0HMfB1NQUfn5+yMzMbLR8iUSC3NxcdO/eXS6v+nYZe9mdO3cOampqePvtt1VdFaJCKgvaRkZGUFNTw4MHD+SOP3jwAGZmZgqvMTMzazB97X8bS/PPgW5VVVXIz8+XS6Moj2fLWLx4MT766CNMmjQJjo6OePfdd7FixQpERkZCJpMprH9oaCiKior417179xSmI6S1y87OhouLC5KSkrBq1SpcvXoV8fHx8PT0RGBgIJ8uIiICubm5uHbtGsaOHYvJkyfj+PHjdfJLT0/H/fv3ERMTg+vXr8PX11dui01F1NTUYGZmBnX1trEcxfbt2zFjxgycPHkS9+/fV3V1iIqoLGhramrCxcWF/9YNADKZDImJifVu3derVy+59ACQkJDAp5dKpTAzM5NLU1xcjAsXLvBpevXqhcLCQvz66698mqSkJMhkMri7u/NpTp48KbcHbkJCAuzs7GBoaAgAKC0tRbt28h+fmpoagJppZ4oIBALo6enJvQhpi6ZNmwaO43Dx4kX4+fmhS5cucHBwwJw5c+T2iRaJRDAzM4O1tTVCQkIgFouRkJBQJz8TExN06NAB/fr1Q1hYGNLS0pCRkYGCggKMGTMGxsbGEAqFsLW1xY4dOwDUfHHgOA6XL19GdnY2PD09AQCGhobgOA7jx48HUPN3JzIyElKpFEKhEM7Ozjhw4IDS93r9+nUMHToUenp6EIlE8PDwwJ07d3Dy5EloaGjwj91qzZo1Cx4eHgCAx48fY/To0TA3N+d7G7777rs6ZZSUlGD//v2YOnUq3n77bezcuVPp+pE25sWMkVNOdHQ0EwgEbOfOnSwtLY1NmTKFGRgYsLy8PMYYYx999BFbsGABn/7MmTNMXV2drV69mt24cYOFh4czDQ0NdvXqVT7N559/zgwMDNjhw4fZlStX2LBhw5hUKpUbrTd48GDWs2dPduHCBXb69Glma2vLRo8ezZ8vLCxkpqam7KOPPmLXrl1j0dHRTFtbm23dupVPEx4ezkQiEfvuu+9YZmYm+/nnn1nnzp3ZiBEjlL5/Gj1OakePL58jPytC0ShTmUzGKkoqVPKSyWRK39Pjx48Zx3FsxYoVDaaztLRka9asYYzVzBw5cOAA4ziOhYSE8GlOnDjBALCCggL+2MGDBxkAduXKFRYYGMh69OjBLl26xLKyslhCQgL78ccfGWOMZWVlMQDst99+Y1VVVSw2NpYBYOnp6Sw3N5cVFhYyxhj77LPPWNeuXVl8fDy7c+cO27FjBxMIBCw5ObnRe/3jjz+YWCxm7733Hrt06RJLT09n33zzDbt58yZjjLEuXbqwlStX8ukrKyuZkZER++abb/jrV61axX777Td2584dtn79eqampsYuXLggV8727duZq6srY4yxI0eOsM6dOzfp34S8HFpi9LhK+41GjhyJhw8fIiwsDHl5eejRowfi4+P5QV85OTlyrdnevXtj3759WLRoERYuXAhbW1v88MMP/DMrAJg/fz6ePHmCKVOmoLCwEH379kV8fLzcNmh79+7F9OnTMXDgQLRr1w5+fn5Yv349f15fXx8///wzAgMD4eLiAiMjI4SFhcnN5V60aBE4jsOiRYvw559/wtjYGL6+vli+fPmL/MhIm9X4DrlPS58iUjfyX6hLXaElodDU0Ww8IYCMjAwwxtC1a9dG04aEhGDRokWoqKhAVVUVxGIxJk2aVG/63NxcrF69Gubm5rCzs0NOTg569uzJzwaxsrJSeJ2amhrEYjGAmla7gYEBgJrBoStWrMAvv/zC98ZZW1vj9OnT2Lp1K/r3799g/aOioqCvr4/o6Gh+j+wuXbrw5ydOnIgdO3YgODgYAHDkyBGUl5djxIgRAGr2+H527fIZM2bgp59+wvfffw83Nzf++Pbt2zF27FgAwODBg1FUVIT//ve/GDBgQIP1I22Pyh/2TJ8+nd+M/p+Sk5PrHPvggw/wwQcf1Jsfx3GIiIhAREREvWnEYjH27dvXYL2cnJxw6tSpes+rq6sjPDwc4eHhDeZDyKuG1fN4SJHg4GCMHz8eubm5CA4OxrRp02BjY1MnnYWFBRhjKC0thbOzM2JjY6GpqYmpU6fCz88PqampGDRoEIYPH47evXsrXX5GRgZKS0vh7e0td7yyshI9e/Zs9PrLly/Dw8ODD9j/NH78eCxatAjnz5/HG2+8gZ07d2LEiBHQ0dEBAFRXV2PFihX4/vvv8eeff6KyshIVFRXQ1tbm80hPT8fFixdx6NAhADV/e0aOHInt27dT0H4FqTxoE0KUm6etoa2B0JLQf6E2istWlq2tLTiOq3fq5rOMjIxgY2MDGxsbxMTEwNHREa6urrC3t5dLd+rUKejp6cHExAQikYg/PmTIENy9exfHjh1DQkICBg4ciMDAQKxevVqputYuX3z06FGYm5vLnRMIBI1eLxQKGzxvYmICX19f7NixA1KpFMePH5drjKxatQrr1q3D2rVr4ejoCB0dHcyaNQuVlZV8mu3bt6OqqgodO3bkjzHGIBAIsHHjRujr6ytzq6SNoKBNSCvBcZzSXdSqJBaL4ePjg6ioKMycOZNvVdYqLCzku6efJZFIMHLkSISGhuLw4cNy56RSqcJrAMDY2Bj+/v7w9/eHh4cHgoODFQbt2sWSnh11bm9vD4FAgJycnEa7whVxcnLCrl278PTp03pb25MmTcLo0aNhYWGBzp07o0+fPvy5M2fOYNiwYXzXt0wmw61bt/gvLVVVVdi9eze+/PJLDBo0SC7f4cOH47vvvqN9u18xNE+bENLioqKiUF1dDTc3N8TGxuL27du4ceMG1q9fX+/sEAAICgrCkSNHkJKSolQ5YWFhOHz4MDIyMnD9+nXExcWhW7duCtNaWlqC4zjExcXh4cOHKCkpgUgkwrx58zB79mzs2rULd+7cQWpqKjZs2IBdu3Y1Wv706dNRXFyMUaNGISUlBbdv38a3336L9PR0Po2Pjw/09PTw2WefYcKECXLX29raIiEhAWfPnsWNGzfwySefyE03jYuLQ0FBASZOnIju3bvLvfz8/LB9+3alPifSdlDQJoS0OGtra6SmpsLT0xNz585F9+7d4e3tjcTERGzevLne6+zt7TFo0CCEhYUpVY6mpiZCQ0Ph5OSEfv36QU1NDdHR0QrTmpubY+nSpViwYAFMTU35sTTLli3D4sWLERkZiW7dumHw4ME4evRonVURFWnfvj2SkpJQUlKC/v37w8XFBV9//bVcq7tdu3YYP348qqurMW7cOLnrFy1ahNdeew0+Pj4YMGAAzMzMMHz4cP789u3b4eXlpbAL3M/PDykpKbhy5YoyHxVpIzjWlFEjpEUVFxdDX18fRUVFNGf7FbV58lDon83C3cFShH4Zxx8vLy9HVlYWpFKp3MwH0jpNnDgRDx8+xI8//qjqqhAVauj3Wtl4QM+0CSHkBSkqKsLVq1exb98+CtikRVD3OCGE1CMgIAC6uroKX8oMABs2bBgGDRqEgICAOtPKCGkOamkTokL0bOrlFhERIbf4ybOUeaSlaK0JQp4HBW1CCKmHiYlJna18CVEl6h4nhBBCWgkK2oQQQkgrQUGbEEIIaSUoaBNCCCGtBAVtQgghpJWgoE0IaZOys7PBcRwuX76s6qoQ0mIoaBOiUm13pnZeXh5mzJgBa2trCAQCSCQS+Pr6IjExEQBgZWUFjuPAcRy0tbXh6OiIbdu2yeWRnJzMp+E4DqampvDz80NmZmaj5UskEuTm5qJ79+5yeRUWFrb4vRLyb6GgTchLQJn9tFuT7OxsuLi4ICkpCatWrcLVq1cRHx8PT09PBAYG8ukiIiKQm5uLa9euYezYsZg8eTKOHz9eJ7/09HTcv38fMTExuH79Onx9feW22FRETU0NZmZmUFen5ShI20FBmxDS4qZNmwaO43Dx4kX4+fmhS5cucHBwwJw5c3D+/Hk+nUgkgpmZGaytrRESEgKxWIyEhIQ6+ZmYmKBDhw7o168fwsLCkJaWhoyMDBQUFGDMmDEwNjaGUCiEra0tduzYAUC+ezw7Oxuenp4AAENDQ3Ach/HjxwOo2cM6MjISUqkUQqEQzs7OOHDggNL3+uOPP8LW1hZaWlrw9PTErl276rToT58+DQ8PDwiFQkgkEsycORNPnjzhz1tZWWHFihX4+OOPIRKJ0KlTJ3z11Vdy5Vy9ehVvvvkmhEIh2rdvjylTpqCkpIQ/P378eAwfPhwrVqyAqakpDAwMEBERgaqqKgQHB0MsFsPCwoL/fGrdu3cPI0aMgIGBAcRiMYYNG4bs7Gyl75/8uyhoE9JKMMZQVVqqkldTNgPMz89HfHw8AgMDoaOjU+e8gYFBnWMymQyxsbEoKCiApqZmg/kLhUIAQGVlJRYvXoy0tDQcP34cN27cwObNm2FkZFTnGolEgtjYWAA1rfbc3FysW7cOABAZGYndu3djy5YtuH79OmbPno2xY8fiv//9b6P3mpWVhffffx/Dhw/H77//jk8++QSffvqpXJo7d+5g8ODB8PPzw5UrV7B//36cPn2a3xq01pdffglXV1f89ttvmDZtGqZOncrvy/3kyRP4+PjA0NAQly5dQkxMDH755Zc6eSQlJeH+/fs4efIk/vOf/yA8PBxDhw6FoaEhLly4gICAAHzyySf4448/AABPnz6Fj48PRCIRTp06hTNnzkBXVxeDBw9GZWVlo/dP/n3Ub0RIK1FdVobvX39dJWWPuHQJ6traSqXNyMgAYwxdu3ZtNG1ISAgWLVqEiooKVFVVQSwWY9KkSfWmz83NxerVq2Fubg47Ozvk5OSgZ8+ecHV1BVDTYlVETU0NYrEYQE2rvfaLQ0VFBVasWIFffvkFvXr1AlCzF/jp06exdetW9O/fv8H6b926FXZ2dli1ahUAwM7ODteuXcPy5cv5NJGRkRgzZgxmzZoFALC1tcX69evRv39/bN68md+i8a233sK0adP4z2XNmjU4ceIE7OzssG/fPpSXl2P37t38F6GNGzfC19cXX3zxBUxNTQEAYrEY69evR7t27WBnZ4eVK1eitLQUCxcuBACEhobi888/x+nTpzFq1Cjs378fMpkM27ZtA8fVPKLZsWMHDAwMkJycjEGDBjV4/+TfR0GbENKimtIqDw4Oxvjx45Gbm4vg4GBMmzYNNjY2ddJZWFiAMYbS0lI4OzsjNjYWmpqamDp1Kvz8/JCamopBgwZh+PDh6N27t9LlZ2RkoLS0tM4OXJWVlejZs2ej16enp+P1f3yRcnNzk3v/+++/48qVK9i7dy9/jDEGmUyGrKwsdOvWDQDg5OTEn+c4DmZmZvjrr78AADdu3ICzs7Ncz0WfPn0gk8mQnp7OB20HBwe0a/e/DlRTU1N+IB5Q8+Wlffv2fL6///47MjIyIBKJ5OpcXl6OO3fuNHr/5N9HQZuQVkJNKMSIS5dUVraybG1twXEcbt682WhaIyMj2NjYwMbGBjExMXB0dISrqyvs7e3l0p06dQp6enowMTGRCzBDhgzB3bt3cezYMSQkJGDgwIEIDAzE6tWrlapr7TPho0ePwtzcXO6cQCBQKg9lyvjkk08wc+bMOuc6derE/6yhoSF3juM4yGSyJpWlKI+G8i0pKYGLi4vcF4paxsbGTSqb/DsoaBPSSnAcp3QXtSqJxWL4+PggKioKM2fOrPNcu7CwUOFzbYlEgpEjRyI0NBSHDx+WOyeVShVeA9QEF39/f/j7+8PDwwPBwcEKg3bts/JnR53b29tDIBAgJyen0a5wRezs7HDs2DG5Y5f+8cXqtddeQ1pamsIeBGV169YNO3fuxJMnT/jP88yZM3w3eHO99tpr2L9/P0xMTJTaapSoHg1EI0SF2uos7aioKFRXV8PNzQ2xsbG4ffs2bty4gfXr1/PPjhUJCgrCkSNHkJKSolQ5YWFhOHz4MDIyMnD9+nXExcXx3c3/ZGlpCY7jEBcXh4cPH6KkpAQikQjz5s3D7NmzsWvXLty5cwepqanYsGEDdu3a1Wj5n3zyCW7evImQkBDcunUL33//PXbu3AkA/DPikJAQnD17FtOnT8fly5dx+/ZtHD58uM4gsoaMGTMGWlpa8Pf3x7Vr13DixAnMmDEDH330Ed813hxjxoyBkZERhg0bhlOnTiErKwvJycmYOXMmP1iNvFwoaBNCWpy1tTVSU1Ph6emJuXPnonv37vD29kZiYiI2b95c73X29vYYNGgQwsLClCpHU1MToaGhcHJyQr9+/aCmpobo6GiFac3NzbF06VIsWLAApqamfNBctmwZFi9ejMjISHTr1g2DBw/G0aNHIZVKGy1fKpXiwIEDOHjwIJycnLB582Z+9Hht97qTkxP++9//4tatW/Dw8EDPnj0RFhaGjh07KnWPAKCtrY2ffvoJ+fn5eP311/H+++9j4MCB2Lhxo9J51JfvyZMn0alTJ7z33nvo1q0bJk6ciPLycmp5v6Q41pRRI6RFFRcXQ19fH0VFRfQL8oqKmvw2DM9mI2ewNRZ8eYQ/Xl5ejqysLEilUn50MWkdli9fji1btuDevXuqrgp5yTT0e61sPKBn2oQQ8hw2bdqE119/He3bt8eZM2ewatWqJnV9E9IU1D1OCCH1CAgIgK6ursJXQEAAAOD27dsYNmwY7O3tsWzZMsydOxdLlixRbcVJm0UtbUIIqUdERATmzZun8FxtF+aaNWuwZs2af7Na5BVGQZsQQuphYmICExMTVVeDEB51jxPyEmhbe3wRQl4UCtqEEEJIK0FBmxBCCGklKGgTQgghrQQFbUIIIaSVoKBNCGmTsrOzwXEcLl++rOqqENJiKGgTQl6IvLw8zJgxA9bW1hAIBJBIJPD19UViYiIAwMrKChzHgeM4aGtrw9HREdu2bZPLIzk5mU/DcRxMTU3h5+eHzMzMRsuXSCTIzc3l95OuzauwsLDF77UhO3furHeHsobk5eUhKCgINjY20NLSgqmpKfr06YPNmzejtLS0SXktX74cvXv3hra2drPqQl4eNE+bEFVqo3O9srOz0adPHxgYGGDVqlVwdHTE06dP8dNPPyEwMJDfazsiIgKTJ09GaWkpYmJiMHnyZJibm2PIkCFy+aWnp0MkEuH27duYMmUKfH19ceXKFaipqdVbBzU1NZiZmb3Q+3xRMjMz+c9vxYoVcHR0hEAgwNWrV/HVV1/B3Nwc77zzjtL5VVZW4oMPPkCvXr2wffv2F1hz8sIxojJFRUUMACsqKlJ1VYiKbJz8Fttrb88+nzNU7nhZWRlLS0tjZWVlKqrZ8xkyZAgzNzdnJSUldc4VFBQwxhiztLRka9askTsnFovZ7Nmz+fcnTpxgAPhrGGNs7969DAC7efMmy8/PZx9++CEzMjJiWlpazMbGhn3zzTeMMcaysrIYAPbbb7/xPz/78vf3Z4wxVl1dzVasWMGsrKyYlpYWc3JyYjExMUrdZ2394uLimKOjIxMIBMzd3Z1dvXpV7vyzr/DwcMYYY1FRUczGxoYJBAJmYmLC/Pz8+Hx9fHyYhYWFws+PMcZkMhn/MwC2adMmNnjwYKalpcWkUmm99d+xYwfT19dX6t5Iy2vo91rZeEAtbUJUqCl77DHGmtwt2lK0tbX5/aEbk5+fj/j4eCxfvhw6Ojp1zivqnpXJZDh06BAKCgqgqanZYP5CoRBATetx8eLFSEtLw/Hjx2FkZISMjAyUlZXVuUYikSA2NhZ+fn5IT0+Hnp4en09kZCT27NmDLVu2wNbWFidPnsTYsWNhbGyM/v37K3XPwcHBWLduHczMzLBw4UL4+vri1q1b6N27N9auXYuwsDCkp6cDAHR1dZGSkoKZM2fi22+/Re/evZGfn49Tp04BAB4/foyff/4ZK1asUPj5Aajzb7F48WJ8/vnnWLduHb799luMGjUKV69erXdvcdJ6UdAmpJUoLS2Frq6uSsouKSmpN4D8U0ZGBhhj6Nq1a6NpQ0JCsGjRIlRUVKCqqgpisRiTJk2qN31ubi5Wr14Nc3Nz2NnZIScnBz179oSrqyuAmufkiqipqUEsFgOoWZq09otDRUUFVqxYgV9++QW9evUCULMX+OnTp7F161alg3Z4eDi8vb0BALt27YKFhQUOHTqEESNGQF9fHxzHyXXV5+TkQEdHB0OHDoVIJIKlpSV69uwJ4H+fn52dnVwZRkZGKC8vBwAEBgbiiy++4M998MEH/Oe2bNkyJCQkYMOGDdi0aZNS9SetBw1EI+QlwLWhh9usCd0HwcHBuHz5MpKSkuDu7o41a9bAxsamTjoLCwvo6OigY8eOePLkCWJjY6GpqYmpU6ciOjoaPXr0wPz583H27Nkm1TUjIwOlpaXw9vaW28Fr9+7duHPnjtL51AZ8ABCLxbCzs8ONGzfqTe/t7Q1LS0tYW1vjo48+wt69exvtRbl48SIuX74MBwcHVFRU1Ft+7fuGyietF7W0CWkltLW1UVJSorKylWVrawuO4/jBZg0xMjKCjY0NbGxsEBMTA0dHR7i6usLe3l4u3alTp6CnpwcTExOIRCL++JAhQ3D37l0cO3YMCQkJGDhwIAIDA7F69Wql6lr7eR49ehTm5uZy5wQCgVJ5NIdIJEJqaiqSk5Px888/IywsDEuWLMGlS5dgY2MDjuP47vRa1tbWAP73eIC8mqilTUgrwXEcdHR0VPJS9nk2UNPS9PHxQVRUFJ48eVLnfH1TriQSCUaOHInQ0NA656RSKTp37iwXsGsZGxvD398fe/bswdq1a/HVV18pzL/2WXl1dTV/zN7eHgKBADk5OfyXh9qXRCJR5nYBAOfPn+d/LigowK1bt/jnyZqamnJl1lJXV4eXlxdWrlyJK1euIDs7G0lJSWjfvj28vb2xceNGhZ9fY+XXvqfn2W0TtbQJIS0uKioKffr0gZubGyIiIuDk5ISqqiokJCRg8+bN9XbdBgUFoXv37khJSeGfUzckLCwMLi4ufJdxXFxcvcHK0tISHMchLi4Ob731FoRCIUQiEebNm4fZs2dDJpOhb9++KCoqwpkzZ6Cnpwd/f3+l7jciIgLt27eHqakpPv30UxgZGWH48OEAap6zl5SUIDExEc7OztDW1kZSUhIyMzPRr18/GBoa4tixY5DJZPxz7E2bNqFPnz5wdXXFkiVL4OTkhHbt2uHSpUu4efMmXFxc5MqPiYmBq6sr+vbti7179+LixYtyU7tycnKQn5+PnJwcVFdX8wvO2NjYqGycBGmmFzGsnSiHpnyRDZNqpnx9McdX7nhrn/LFGGP3799ngYGBzNLSkmlqajJzc3P2zjvvsBMnTjDGFE/5YqxmutOQIUMYY4qnfD1r2bJlrFu3bkwoFDKxWMyGDRvGMjMzGWPyU75qRUREMDMzM8ZxHD/lSyaTsbVr1zI7OzumoaHBjI2NmY+PD/vvf//b6D3W1u/IkSPMwcGBaWpqMjc3N/b777/LpQsICGDt27fnp3ydOnWK9e/fnxkaGjKhUMicnJzY/v3763x+06dPZ1KplGloaDBdXV3m5ubGVq1axZ48ecKnA8CioqKYt7c3EwgEzMrKqk5e/v7+daaeAeD/Lci/oyWmfHGMNWXSCWlJxcXF0NfXR1FREfT09FRdHaICGye/DfHZbPwxuDPmf/kjf7y8vBxZWVmQSqXQ0tJSYQ1JQ5KTk+Hp6YmCggKVrTTGcRwOHTrEt+zJy6uh32tl4wE90yZEpeg7MyFEeRS0CSGkHgEBAXJTwZ59BQQEqLp65BVEA9EIIaQeERERmDdvnsJztVPQVP2EUdXlk38XBW1CCKmHiYkJTExMVF0NQnjUPU4IIYS0EhS0CSGEkFaCgjYhqtSElcYIIYSCNiGEENJKUNAmRIVo5C8hpCkoaBNC2qTs7GxwHMevs01IW0BBm5CXQFvaT7tWXl4eZsyYAWtrawgEAkgkEvj6+iIxMRFAzUYaHMeB4zhoa2vD0dER27Ztk8sjOTmZT8NxHExNTeHn54fMzMxGy5dIJMjNzUX37t3l8qpvl7EXZefOnc1a4jQvLw9BQUGwsbGBlpYWTE1N0adPH2zevLnRvbeflZ2djYkTJ0IqlUIoFKJz584IDw9HZWVlk+tEVI/maRNCWlx2djb69OkDAwMDrFq1Co6Ojnj69Cl++uknBAYG8nttR0REYPLkySgtLUVMTAwmT54Mc3NzDBkyRC6/9PR0iEQi3L59G1OmTIGvry+uXLkCNTW1euugpqYGMzOzF3qfL0pmZib/+a1YsQKOjo4QCAS4evUqvvrqK5ibm+Odd95RKq+bN29CJpNh69atsLGxwbVr1zB58mQ8efJE6X3HyUvkBWxkQpREu3yR9ZOGsL329mzlnHfkjrf2Xb6GDBnCzM3NWUlJSZ1ztTt2KdrlSywWs9mzZ/PvFe3ytXfvXgaA3bx5k+Xn57MPP/yQGRkZMS0tLWZjY8O++eYbxpj8Ll+1Pz/7qt3lq7q6mq1YsYJZWVkxLS0t5uTkxGJiYpS6z9r6xcXFMUdHRyYQCJi7uzu7evWq3PlnX+Hh4YwxxqKiopiNjQ0TCATMxMSE+fn58fn6+PgwCwsLhZ8fYzU7k9UCwDZt2sQGDx7MtLS0mFQqbbT+K1euZFKpVKl7JC2nJXb5opY2Ia0EYwylT5XvFm1J2hra4JScnpafn4/4+HgsX74cOjo6dc4r6iqWyWQ4dOgQCgoKoKmp2WD+QqEQAFBZWYnFixcjLS0Nx48fh5GRETIyMlBWVlbnGolEgtjYWPj5+SE9PR16enp8PpGRkdizZw+2bNkCW1tbnDx5EmPHjoWxsTH69++v1D0HBwdj3bp1MDMzw8KFC+Hr64tbt26hd+/eWLt2LcLCwpCeng4A0NXVRUpKCmbOnIlvv/0WvXv3Rn5+Pk6dOgUAePz4MX7++WesWLFC4ecHoM6/xeLFi/H5559j3bp1+PbbbzFq1ChcvXq13r3Fi4qKIBaLlbo38nKhoE1IK1H6tBS6kboqKbsktAQ6mooDyD9lZGSAMYauXbs2mjYkJASLFi1CRUUFqqqqIBaLMWnSpHrT5+bmYvXq1TA3N4ednR1ycnLQs2dPuLq6Aqh5Tq6ImpoaH6RMTEz4Lw4VFRVYsWIFfvnlF/Tq1QsAYG1tjdOnT2Pr1q1KB+3w8HB4e3sDAHbt2gULCwscOnQII0aMgL6+PjiOk+uqz8nJgY6ODoYOHQqRSARLS0v07NkTwP8+Pzs7O7kyjIyMUF5eDgAIDAzEF198wZ/74IMP+M9t2bJlSEhIwIYNG7Bp06Y6dc3IyMCGDRuoa7yVUvlAtKioKFhZWUFLSwvu7u64ePFig+ljYmLQtWtXaGlpwdHREceOHZM7zxhDWFgYOnToAKFQCC8vL9y+fVsuTX5+PsaMGQM9PT0YGBhg4sSJKCkpkUtz5coVeHh4QEtLCxKJBCtXrqxTl8LCQgQGBqJDhw4QCATo0qVLnfoQopQ2NPWLNeFegoODcfnyZSQlJcHd3R1r1qyBjY1NnXQWFhbQ0dFBx44d8eTJE8TGxkJTUxNTp05FdHQ0evTogfnz5+Ps2bNNqmtGRgZKS0vh7e0tt4PX7t27cefOHaXzqQ34ACAWi2FnZ4cbN27Um97b2xuWlpawtrbGRx99hL179zY6uOzixYu4fPkyHBwcUFFRUW/5te8Vlf/nn39i8ODB+OCDDzB58mRlbo28ZFTa0t6/fz/mzJmDLVu2wN3dHWvXroWPjw/S09MVLtJ/9uxZjB49GpGRkRg6dCj27duH4cOHIzU1lR8hunLlSqxfvx67du2CVCrF4sWL4ePjg7S0NH7T8TFjxiA3NxcJCQl4+vQpJkyYgClTpmDfvn0AajYjHzRoELy8vLBlyxZcvXoVH3/8MQwMDDBlyhQANV1z3t7eMDExwYEDB2Bubo67d+82a5QoIcrQ1tBGSWhJ4wlfUNnKsrW1Bcdx/GCzhhgZGcHGxgY2NjaIiYmBo6MjXF1dYW9vL5fu1KlT/K5aIpGIPz5kyBDcvXsXx44dQ0JCAgYOHIjAwEClW5G1X9aPHj0Kc3NzuXMCgUCpPJpDJBIhNTUVycnJ+PnnnxEWFoYlS5bg0qVLsLGxAcdxfHd6LWtrawD/ezzQVPfv34enpyd69+6Nr7766rnvgajI8zxUr6ioYPfu3WN3796VeynLzc2NBQYG8u+rq6tZx44dWWRkpML0I0aMYG+//bbcMXd3d/bJJ58wxmoGZ5iZmbFVq1bx5wsLC5lAIGDfffcdY4yxtLQ0BoBdunSJT3P8+HHGcRz7888/GWOMbdq0iRkaGrKKigo+TUhICLOzs+Pfb968mVlbW7PKykql7/efaCAa4QeizfaVO97aB6INHjy4WQPRpkyZwt5553+D8hQNRGvIli1bmEgkYozJD0RjjLEzZ84wAOzRo0d8+uLiYiYQCNju3buVv7ln1NZv//79/LH8/Hymra3NH9u7dy/T1dVtMJ+SkhKmrq7OYmNjGWOMDRo0qN7Pr3///iwoKIh/D4BNnTpVLs0bb7whd+yPP/5gtra2bNSoUayqqqrJ90laRksMRGtW9/jt27fh4eEBoVAIS0tLSKVSSKVSWFlZQSqVKpVHZWUlfv31V3h5efHH2rVrBy8vL5w7d07hNefOnZNLDwA+Pj58+qysLOTl5cml0dfXh7u7O5/m3LlzMDAw4J+BAYCXlxfatWuHCxcu8Gn69esnNyCmtgegoKAAAPDjjz+iV69eCAwMhKmpKbp3744VK1agurq63nuuqKhAcXGx3IsQoO3N046KikJ1dTXc3NwQGxuL27dv48aNG1i/fn2drtxnBQUF4ciRI0hJSVGqnLCwMBw+fBgZGRm4fv064uLi6h18ZWlpCY7jEBcXh4cPH6KkpAQikQjz5s3D7NmzsWvXLty5cwepqanYsGEDdu3apfT9RkREIDExEdeuXcP48eNhZGSE4cOHA6h5zl5SUoLExEQ8evQIpaWliIuLw/r163H58mXcvXsXu3fvhkwm459jb9q0CVVVVXB1dcX+/ftx48YNpKenY8+ePbh582adqW4xMTH45ptvcOvWLYSHh+PixYuYPn06gJou8QEDBqBTp05YvXo1Hj58iLy8POTl5Sl9f+Tl0azu8fHjx0NdXR1xcXHo0KGD0qNKn/Xo0SNUV1fD1NRU7ripqWm93Wp5eXkK09f+n6/2v42l+WfXu7q6OsRisVyaf375qM0zLy8PhoaGyMzMRFJSEsaMGYNjx44hIyMD06ZNw9OnTxEeHq6w/pGRkVi6dKniD4SQNsTa2hqpqalYvnw55s6di9zcXBgbG8PFxQWbN2+u9zp7e3sMGjQIYWFhSo0P0dTURGhoKLKzsyEUCuHh4YHo6GiFac3NzbF06VIsWLAAEyZMwLhx47Bz504sW7YMxsbGiIyMRGZmJgwMDPDaa69h4cKFSt/v559/jqCgINy+fRs9evTAkSNH+C/9vXv3RkBAAEaOHInHjx8jPDwcXl5eOHjwIJYsWYLy8nLY2triu+++g4ODAwCgc+fO+O2337BixQqEhobijz/+gEAggL29PebNm4dp06bJlb906VJER0dj2rRp6NChA7777jv+EUNCQgIyMjKQkZEBCwsLuetYGxpL8cpoThNfW1ub3bhxozmX8v78808GgJ09e1bueHBwMHNzc1N4jYaGBtu3b5/csaioKGZiYsIY+1/31/379+XSfPDBB2zEiBGMMcaWL1/OunTpUidvY2NjtmnTJsYYY97e3mzKlCly569fv84AsLS0NMYYY7a2tkwikch1NX355ZfMzMys3nsuLy9nRUVF/OvevXvUPf6Kq+0eXzW7bc3TflU0tfv+RQDADh06pLLyifJUNk/b3t4ejx49eq4vC0ZGRlBTU8ODBw/kjj948KDeVYzMzMwaTF/73wcPHqBDhw5yaXr06MGn+euvv+TyqKqqQn5+vlw+isp5towOHTpAQ0NDrpuqW7duyMvLQ2VlpcK5pgKB4IUObiGEENK2NeuZ9hdffIH58+cjOTkZjx8/btZzWk1NTbi4uPDrEAM1CywkJibW+8yrV69ecumBmq6f2vRSqRRmZmZyaYqLi3HhwgU+Ta9evVBYWIhff/2VT5OUlASZTAZ3d3c+zcmTJ/H06VO5cuzs7GBoaAgA6NOnDzIyMiCTyfg0t27dQocOHRpdHIIQ0joEBATITQV79hUQEKDq6pFXUXOa+BzHMY7jWLt27eRetceUFR0dzQQCAdu5cydLS0tjU6ZMYQYGBiwvL48xxthHH33EFixYwKc/c+YMU1dXZ6tXr2Y3btxg4eHhTENDg18ykDHGPv/8c2ZgYMAOHz7Mrly5woYNG8akUqlcd8TgwYNZz5492YULF9jp06eZra0tGz16NH++sLCQmZqaso8++ohdu3aNRUdHM21tbbZ161Y+TU5ODhOJRGz69OksPT2dxcXFMRMTE/bZZ58pff80epysn0zd4y+zBw8esNu3byt8PXjwQNXVI62MyrrHT5w40SJfGEaOHImHDx8iLCwMeXl56NGjB+Lj4/lBXzk5OWjX7n+dAb1798a+ffuwaNEiLFy4ELa2tvjhhx/4OdoAMH/+fDx58gRTpkxBYWEh+vbti/j4eH6ONgDs3bsX06dPx8CBA9GuXTv4+flh/fr1/Hl9fX38/PPPCAwMhIuLC4yMjBAWFsbP0QZqlkX86aefMHv2bDg5OcHc3BxBQUEICQlpkc+GvBpoHNDLzcTEROGaEYSoCscY/dlQleLiYujr66OoqAh6enqqrg5RgfWT34LR2bu472ODef85zB8vLy9HVlYWpFKp3BdOQkjr1dDvtbLxoNkrohUWFmL79u38UnkODg74+OOPoa+v39wsCXl1ta1p2oSQF6RZA9FSUlLQuXNnrFmzBvn5+cjPz8d//vMfdO7cGampqS1dR0IIIYSgmS3t2bNn45133sHXX38NdfWaLKqqqjBp0iTMmjULJ0+ebNFKEkIIIaSZQTslJUUuYAM1q4rNnz9fbnlQQgghhLScZnWP6+npIScnp87xe/fuye3AQwghqpKdnQ2O43D58mVVV4WQFtOsoD1y5EhMnDgR+/fvx71793Dv3j1ER0dj0qRJGD16dEvXkZC2rw3O4cjLy8OMGTNgbW0NgUAAiUQCX19ffvEjKysrcBwHjuOgra0NR0dHbNu2TS6P5ORkPg3HcTA1NYWfnx8yMzMbLV8ikSA3N5efElqbV2FhYYvfa0N27tzZ5C17x48fz2848qzm3kNycjJee+01CAQC2NjYYOfOnU26nrw8mtU9vnr1anAch3HjxqGqqgoAoKGhgalTp+Lzzz9v0QoS0ra1wWiNmlZunz59YGBggFWrVsHR0RFPnz7FTz/9hMDAQH5ToIiICEyePBmlpaWIiYnB5MmTYW5ujiFDhsjll56eDpFIhNu3b2PKlCnw9fXFlStX6ux29Sw1NbV6l0R+lWRlZeHtt99GQEAA9u7di8TEREyaNAkdOnSAj4+PqqtHmqhZLW1NTU2sW7cOBQUFuHz5Mi5fvoz8/HysWbOG1tYmhGDatGngOA4XL16En58funTpAgcHB8yZMwfnz5/n04lEIpiZmcHa2hohISEQi8VISEiok5+JiQk6dOiAfv36ISwsDGlpacjIyEBBQQHGjBkDY2NjCIVC2NraYseOHQDku8ezs7Ph6ekJADA0NATHcRg/fjyAmuWTIyMjIZVKIRQK4ezsjAMHDih1n7Ut36NHj8LJyQlaWlp44403cO3aNf78hAkTUFRUxPcWLFmyBEDN9pu2trbQ0tKCqakp3n///SZ/zrWt+B9++IHPy8fHB/fu3ePTbNmyBVKpFF9++SW6deuG6dOn4/3338eaNWuaXB5RvWbP0wbAd2kRQp6PMvtpMwaUlv4LlVFAWxtQdgfe/Px8xMfHY/ny5dDR0alzXlFXsUwmw6FDh1BQUNDo2v1CoRAAUFlZicWLFyMtLQ3Hjx+HkZERMjIyUFZWVucaiUSC2NhY+Pn5IT09HXp6enw+kZGR2LNnD7Zs2QJbW1ucPHkSY8eOhbGxMfr376/UPQcHB2PdunUwMzPDwoUL4evri1u3bqF3795Yu3YtwsLCkJ6eDgDQ1dVFSkoKZs6ciW+//Ra9e/dGfn4+Tp06pVRZ/1RaWorly5dj9+7d0NTUxLRp0zBq1CicOXMGAHDu3Dl4eXnJXePj44NZs2Y1qzyiWkoH7ffeew87d+6Enp4e3nvvvQbTHjx48LkrRgiRV1oK6OqqpuySEkBB/FUoIyMDjDF07dq10bQhISFYtGgRKioqUFVVBbFYjEmTJtWbPjc3F6tXr4a5uTns7OyQk5ODnj178rNWrKysFF6npqYGsVgMoKbVXvvFoaKiAitWrMAvv/zCbypkbW2N06dPY+vWrUoH7fDwcHh7ewMAdu3aBQsLCxw6dAgjRoyAvr4+OI6T66rPycmBjo4Ohg4dCpFIBEtLS/Ts2VMuz7i4OOj+4x+8urq6TtlPnz7Fxo0b+Q2Pdu3ahW7duuHixYtwc3NDXl4evzR0LVNTUxQXF6OsrIz/8kJaB6WDdu3/8YCa0eOcsl+7CSGvlKasjBwcHIzx48cjNzcXwcHBmDZtGmxsbOqks7CwAGMMpaWlcHZ2RmxsLDQ1NTF16lT4+fkhNTUVgwYNwvDhw9G7d2+ly8/IyEBpaSkfcGtVVlbWCaINeXZnQrFYDDs7O361SEW8vb1haWkJa2trDB48GIMHD8a7774LbW1tPo2npyc2b94sd92FCxcwduxYuWPq6up4/fXX+fddu3aFgYEBbty4ATc3N6XvgbQOSgft2udEAGjkISEqoK1d0+JVVdnKsrW1Bcdx/GCzhhgZGcHGxgY2NjaIiYmBo6MjXF1dYW9vL5fu1KlT0NPTg4mJidy00iFDhuDu3bs4duwYEhISMHDgQAQGBmL16tVK1bXk/z/Qo0ePwtzcXO7cixyfIxKJkJqaiuTkZPz8888ICwvDkiVLcOnSJb4XQEdHp84XmD/++KPJZZmZmeHBgwdyxx48eCD3iIC0Hs0aiPbmm28qnHJQXFyMN99883nrRAhRgONquqhV8WpKx5pYLIaPjw+ioqLw5MmTOufrm64kkUgwcuRIhIaG1jknlUrRuXNnhetAGBsbw9/fH3v27MHatWvx1VdfKcy/9ln5s13M9vb2EAgEyMnJ4b881L4kEokytwsAcoPrCgoKcOvWLXTr1o0vV1G3trq6Ory8vLBy5UpcuXIF2dnZSEpKUrrMWlVVVUhJSeHfp6eno7CwkC+/V69e/DS7WgkJCXK9A6T1aNZAtOTkZFRWVtY5Xl5e3uzBFISQtiMqKgp9+vSBm5sbIiIi4OTkhKqqKiQkJGDz5s31dh0HBQWhe/fuSElJUWp1xbCwMLi4uMDBwQEVFRWIi4vjg9U/WVpaguM4xMXF4a233oJQKIRIJMK8efMwe/ZsyGQy9O3bF0VFRThz5gz09PTg7++v1P1GRESgffv2MDU1xaeffgojIyN+nrWVlRVKSkqQmJgIZ2dnaGtrIykpCZmZmejXrx8MDQ1x7NgxyGQy2NnZKVXeszQ0NDBjxgysX78e6urqmD59Ot544w2+azwgIAAbN27E/Pnz8fHHHyMpKQnff/89jh492uSyiOo1KWhfuXKF/zktLQ15eXn8++rqasTHx9fpYiKE1I+10aEh1tbWSE1NxfLlyzF37lzk5ubC2NgYLi4udZ7TPsve3h6DBg1CWFgYjh071mg5mpqaCA0NRXZ2NoRCITw8PBAdHa0wrbm5OZYuXYoFCxZgwoQJGDduHHbu3Illy5bB2NgYkZGRyMzMhIGBAV577TUsXLhQ6fv9/PPPERQUhNu3b6NHjx44cuQI37Lv3bs3AgICMHLkSDx+/Bjh4eHw8vLCwYMHsWTJEpSXl8PW1hbfffcdHBwclC6zlra2NkJCQvDhhx/izz//hIeHB7Zv386fl0qlOHr0KGbPno1169bBwsIC27ZtoznarVST9tNu164dPwBN0WVCoRAbNmzAxx9/3HI1bMNoP22ybsoQGJ/JQa6PLeb+5wf+OO2n3TokJyfD09MTBQUFTV71rCXs3LkTs2bN+tdXeSPN86/vp52VlQXGGKytrXHx4kUYGxvz5zQ1NWFiYtLgCkWEkHq00RY3IaRlNSloW1paAqhZCIEQQtq6gIAA7NmzR+G5sWPHYtSoUf9yjcir7rlWREtLS0NOTk6dQWnvvPPOc1WKEEJeBhEREZg3b57Cc7VT0JoyL72ljR8/nl+OlbwamhW0MzMz8e677+Lq1avgOI7/P23t825F0xsIIaS1MTExgYmJiaqrQQivWfO0g4KCIJVK8ddff0FbWxvXr1/HyZMn4erqiuTk5BauIiGEEEKAZra0z507h6SkJBgZGaFdu3Zo164d+vbti8jISMycORO//fZbS9eTkDaNa5s7dBJCWlizWtrV1dX8ykRGRka4f/8+gJqBarU72RBCCCGkZTWrpd29e3f8/vvvkEqlcHd3x8qVK6GpqYmvvvoK1tbWLV1HQgghhKCZQXvRokX8msIREREYOnQoPDw80L59e+zfv79FK0gIIYSQGs0K2s8uf2djY4ObN28iPz8fhoaGtGUnIYQQ8oI0+Zn206dPoa6ujmvXrskdF4vFFLAJIS+N7OxscByHy5cvq7oqhLSYJgdtDQ0NdOrUieZiE0IalJeXhxkzZsDa2hoCgQASiQS+vr78NpFWVlbgOA4cx0FbWxuOjo7Ytm2bXB7Jycl8Go7jYGpqCj8/P2RmZjZavkQiQW5uLrp37y6X17+9TvfOnTubvC75+PHj+V3CntWce8jNzcWHH36ILl26oF27dpg1a1aT6kJeLs0aPf7pp59i4cKFyM/Pb+n6EELagOzsbLi4uCApKQmrVq3C1atXER8fD09PTwQGBvLpIiIikJubi2vXrmHs2LGYPHkyjh8/Xie/9PR03L9/HzExMbh+/Tp8fX0bbTioqanBzMwM6urPtfBjq1dRUQFjY2MsWrQIzs7Oqq4OeU7NCtobN27EyZMn0bFjR9jZ2eG1116TexFCXgDGgKonqnk1canOadOmgeM4XLx4EX5+fujSpQscHBwwZ84cnD9/nk8nEolgZmYGa2trhISEQCwWIyEhoU5+JiYm6NChA/r164ewsDCkpaUhIyMDBQUFGDNmDIyNjSEUCmFra4sdO3YAkO8ez87OhqenJwDwY29ql/+UyWSIjIyEVCqFUCiEs7MzDhw4oNR91rZ8jx49CicnJ2hpaeGNN97gHx8mJydjwoQJKCoq4nsLlixZAgDYtGkTbG1toaWlBVNTU7z//vtN+oyB/7Xif/jhBz4vHx8f3Lt3j09jZWWFdevWYdy4cdDX129yGeTl0qyvoMOGDaPn14T826pLge91VVP2iBJAXUeppPn5+YiPj8fy5cuho1P3GkVdxTKZDIcOHUJBQQG/D3V9hEIhAKCyshKLFy9GWloajh8/DiMjI2RkZKCsrKzONRKJBLGxsfDz80N6ejr09PT4fCIjI7Fnzx5s2bIFtra2OHnyJMaOHQtjY2P0799fqXsODg7GunXrYGZmhoULF8LX1xe3bt1C7969sXbtWoSFhfFrWOjq6iIlJQUzZ87Et99+i969eyM/Px+nTp1Sqqx/Ki0txfLly7F7925oampi2rRpGDVqFM6cOdOs/MjLrVlBu/abIiHk+bTFhdAyMjLAGEPXrl0bTRsSEoJFixahoqICVVVVEIvFmDRpUr3pc3NzsXr1apibm8POzg45OTno2bMnXF1dAdS0KhVRU1ODWCwGUNNqr/3iUFFRgRUrVuCXX35Br169AADW1tY4ffo0tm7dqnTQDg8Ph7e3NwBg165dsLCwwKFDhzBixAjo6+uD4ziYmZnx6XNycqCjo4OhQ4dCJBLB0tISPXv2lMszLi4OurryX9IUPRJ4+vQpNm7cCHd3d778bt264eLFi3Bzc1Oq/qT1aFbQtra2xqVLl9C+fXu544WFhXjttdeUGiRCCGkiNe2aFq+qylZSU3a9Cg4Oxvjx45Gbm4vg4GBMmzYNNjY2ddJZWFiAMYbS0lI4OzsjNjYWmpqamDp1Kvz8/JCamopBgwZh+PDh6N27t9LlZ2RkoLS0lA+4tSorK+sE0YbUBnygZiaNnZ0dbty4UW96b29vWFpawtraGoMHD8bgwYPx7rvvQlv7f5+zp6cnNm/eLHfdhQsXMHbsWLlj6urqeP311/n3Xbt2hYGBAW7cuEFBuw1qVtDOzs5W+I2voqICf/zxx3NXipBXjVKPmzhO6S5qVbK1tQXHcbh582ajaY2MjGBjYwMbGxvExMTA0dERrq6usLe3l0t36tQpfivM2iWUAWDIkCG4e/cujh07hoSEBAwcOBCBgYFYvXq1UnUtKan5EnT06FGYm5vLnRMIBErl0RwikQipqalITk7Gzz//jLCwMCxZsgSXLl3iewF0dHTqfIGhv6+kSUH7xx9/5H/+6aef5AY1VFdXIzExEVKptOVqR0gbxxX//w9taCKGWCyGj48PoqKiMHPmzDrPtQsLCxU+15ZIJBg5ciRCQ0Nx+PBhuXNSqbTeaVPGxsbw9/eHv78/PDw8EBwcrDBo1z4rf7bBYW9vD4FAgJycHKW7whU5f/48OnXqBAAoKCjArVu30K1bN75cRY0cdXV1eHl5wcvLC+Hh4TAwMEBSUhLee++9JpVdVVWFlJQUvlWdnp6OwsJCvnzStjQpaNfOG+Q4Dv7+/nLnNDQ0YGVlhS+//LLFKkdIW6d2Uw0AoH60bU1LioqKQp8+feDm5oaIiAg4OTmhqqoKCQkJ2Lx5c71dx0FBQejevTtSUlL459QNCQsLg4uLCxwcHFBRUYG4uLh6g5WlpSU4jkNcXBzeeustCIVCiEQizJs3D7Nnz4ZMJkPfvn1RVFSEM2fOQE9Pr87fufpERESgffv2MDU1xaeffgojIyP+76WVlRVKSkqQmJgIZ2dnaGtrIykpCZmZmejXrx8MDQ1x7NgxyGQy2NnZKVXeszQ0NDBjxgysX78e6urqmD59Ot544w25rvHaBWZKSkrw8OFDXL58GZqamnV6NEgrwJrBysqKPXz4sDmXkmcUFRUxAKyoqEjVVSEqstFmKNtrb8/WG78vd7ysrIylpaWxsrIyFdXs+d2/f58FBgYyS0tLpqmpyczNzdk777zDTpw4wRhjzNLSkq1Zs6bOdT4+PmzIkCGMMcZOnDjBALCCggKFZSxbtox169aNCYVCJhaL2bBhw1hmZiZjjLGsrCwGgP322298+oiICGZmZsY4jmP+/v6MMcZkMhlbu3Yts7OzYxoaGszY2Jj5+Piw//73v43eY239jhw5whwcHJimpiZzc3Njv//+u1y6gIAA1r59ewaAhYeHs1OnTrH+/fszQ0NDJhQKmZOTE9u/fz+f3t/fnw0bNqze8mo/jx07djB9fX0WGxvLrK2tmUAgYF5eXuzu3bty16FmzKPcy9LSstH7Iy2rod9rZeMBx1gTJ2CSFlNcXAx9fX0UFRVBT09P1dUhKrCxx1CIn2bh8UN7zPgrhj9eXl6OrKwsSKVSaGlpqbCGpCHJycnw9PREQUFBk1c9awk7d+7ErFmz/vVV3kjzNPR7rWw8aHafXGJiIhITE/HXX39BJpPJnfvmm2+amy0hrxYBgKc1P1Y+qYSmTsNzlAkhr7ZmrYi2dOlSDBo0CImJiXj06BEKCgrkXoQQ5TD1/3V0leSqaDoXqVdAQAB0dXUVvgICAlRdPfIKalZLe8uWLdi5cyc++uijlq4PIa+sv3P/hthGrOpqkGdERERg3rx5Cs/VTkFT5RPG8ePH88uxkldDs4J2ZWVlkxYwIIQ0riy/7vKbRLVMTExgYmKi6moQwmtW9/ikSZOwb9++lq4LIa+08oJyVVeBEPKSa1ZLu7y8HF999RV++eUXODk5QUNDQ+78f/7znxapHCGvEmppE0Ia06ygfeXKFfTo0QMA+C3oatHuX4Q0DwVtQkhjmhW0T5w40dL1IOSVR0GbENKYZj3TrpWRkYGffvqJ37+W1mkhpPkoaBNCGtOsoP348WMMHDgQXbp0wVtvvYXc3FwAwMSJEzF37twWrSAhrwoaiNaysrOzwXEcv+42IW1Bs4L27NmzoaGhgZycHLn9X0eOHIn4+PgWqxwhr5K21tLOy8vDjBkzYG1tDYFAAIlEAl9fXyQmJgKo2UiD4zhwHAdtbW04Ojpi27ZtcnkkJyfzaTiOg6mpKfz8/JCZmdlo+RKJBLm5uejevbtcXv/2kp87d+5s8hKn48eP5zccURZjDGFhYejQoQOEQiG8vLxw+/btJuVBXn7NCto///wzvvjiC1hYWMgdt7W1xd27d1ukYoS8atpS0M7OzoaLiwuSkpKwatUqXL16FfHx8fD09ERgYCCfLiIiArm5ubh27RrGjh2LyZMn4/jx43XyS09Px/379xETE4Pr16/D19dX4XaXz1JTU4OZmRnU1dvWDmr1WblyJdavX48tW7bgwoUL0NHRgY+PD8rLqQenLWlW0H7y5IlcC7tWfn7+C904npA255lhII0FbcYYKp9UquTV1PEq06ZNA8dxuHjxIvz8/NClSxc4ODhgzpw5OH/+PJ9OJBLBzMwM1tbWCAkJgVgsRkJCQp38TExM0KFDB/Tr1w9hYWFIS0tDRkYGCgoKMGbMGBgbG0MoFMLW1hY7duwAIN89np2dDU9PTwCAoaEhOI7jVxKTyWSIjIyEVCqFUCiEs7MzDhw4oNR91rbejx49CicnJ2hpaeGNN97gZ9UkJydjwoQJKCoq4nsLlixZAgDYtGkTbG1toaWlBVNTU7z//vv1ljNgwABMnz4d06dPh76+PoyMjLB48WL+34UxhrVr12LRokUYNmwYnJycsHv3bty/fx8//PCDUvdCWodmfQX18PDA7t27sWzZMgA107xkMhlWrlzJ/2IQQpqmvKgcTMbAtVM8bfJp6VNE6kb+y7WqEVoSqvRmJvn5+YiPj8fy5cuho6NT57yirmKZTIZDhw6hoKAAmpoNlyMUCgHUrMy4ePFipKWl4fjx4zAyMkJGRgY/MPZZEokEsbGx8PPzQ3p6OvT09Ph8IiMjsWfPHmzZsgW2trY4efIkxo4dC2NjY/Tv31+pew4ODsa6detgZmaGhQsXwtfXF7du3ULv3r2xdu1ahIWFIT09HQCgq6uLlJQUzJw5E99++y169+6N/Px8nDp1qsEydu3ahYkTJ+LixYtISUnBlClT0KlTJ0yePBlZWVnIy8uDl5cXn15fXx/u7u44d+4cRo0apdR9kJdfs4L2ypUrMXDgQKSkpKCyshLz58/H9evXkZ+fjzNnzrR0HQl5NTCgorgCWgateyvOjIwMMMbQtWvXRtOGhIRg0aJFqKioQFVVFcRiMSZNmlRv+tzcXKxevRrm5uaws7NDTk4OevbsCVdXVwA1z8kVUVNTg1hcs667iYkJ/8WhoqICK1aswC+//IJevXoBAKytrXH69Gls3bpV6aAdHh4Ob29vADXB1cLCAocOHcKIESOgr68PjuNgZmbGp8/JyYGOjg6GDh0KkUgES0tL9OzZs8EyJBIJ1qxZA47jYGdnh6tXr2LNmjWYPHky8vLyAACmpqZy15iamvLnSNvQrKDdvXt33Lp1Cxs3boRIJEJJSQnee+89BAYGokOHDi1dR0JeGWUFZfUGbQ1tDYSWhP7LNfpf2cpqSld6cHAwxo8fj9zcXAQHB2PatGmwsbGpk87CwgKMMZSWlsLZ2RmxsbHQ1NTE1KlT4efnh9TUVAwaNAjDhw9v0r4IGRkZKC0t5QNurcrKykaD6LNqAz4AiMVi2NnZ4caNG/Wm9/b2hqWlJaytrTF48GAMHjwY7777rsLHjrXeeOMNucWrevXqhS+//LLRZ/ukbWn2CA19fX18+umnLVmXV9atuFsQqgtRXVld76uqogrVldVgMgaw///D+P9/G2t/5v9YNnaevDQqSirl3pcXlANSxWk5jmsV+23b2tqC4zjcvHmz0bRGRkawsbGBjY0NYmJi4OjoCFdXV9jb28ulO3XqFL+rlkgk4o8PGTIEd+/exbFjx5CQkICBAwciMDAQq1evVqquJSU126EePXoU5ubmcude5PgckUiE1NRUJCcn4+eff0ZYWBiWLFmCS5cuNXmkOQC+Ff/gwQO5htODBw/41StJ29CsoL1jxw7o6urigw8+kDseExOD0tJS+Pv7t0jlXhWxY2KhhdbdJUqaR2BbBTzTiC0raP0jyMViMXx8fBAVFYWZM2fWea5dWFioMDBJJBKMHDkSoaGhOHz4sNw5qVRabzAzNjaGv78//P394eHhgeDgYIVBu/ZZ+bMtU3t7ewgEAuTk5CjdFa7I+fPn0alTJwBAQUEBbt26hW7duvHlKmoNq6urw8vLC15eXggPD4eBgQGSkpLw3nvvKSzjwoULdcq0tbWFmpoapFIpzMzMkJiYyAfp4uJiXLhwAVOnTm32fZGXT7OCdmRkJLZu3VrnuImJCaZMmUJBu4ks3Cygq60LNU01tNNoB3WBOtQ01Wrea7ar+Vmj5lw79ZoB/xzHAdwza71z/zumzHnycji/96Tc+/LCtjE9JyoqCn369IGbmxsiIiLg5OSEqqoqJCQkYPPmzfV2HQcFBaF79+5ISUnhn1M3JCwsDC4uLnBwcEBFRQXi4uL4YPlPlpaW4DgOcXFxeOuttyAUCiESiTBv3jzMnj0bMpkMffv2RVFREc6cOQM9PT2l/5ZFRESgffv2MDU1xaeffgojIyN+nrWVlRVKSkqQmJgIZ2dnaGtrIykpCZmZmejXrx8MDQ1x7NgxyGQy2NnZ1VtGTk4O5syZg08++QSpqanYsGEDvvzySwA1v9uzZs3CZ599BltbW0ilUixevBgdO3Zs8nxv8nJrVtDOycmBVFq3D8/S0hI5OTnPXalXzUcJH0FPT0/V1SAqcHF/O+CZRlhbWRXN2toaqampWL58OebOnYvc3FwYGxvDxcUFmzdvrvc6e3t7DBo0CGFhYTh27Fij5WhqaiI0NBTZ2dkQCoXw8PBAdHS0wrTm5uZYunQpFixYgAkTJmDcuHHYuXMnli1bBmNjY0RGRiIzMxMGBgZ47bXXsHDhQqXv9/PPP0dQUBBu376NHj164MiRI3zLvnfv3ggICMDIkSPx+PFjhIeHw8vLCwcPHsSSJUtQXl4OW1tbfPfdd3BwcKi3jHHjxqGsrAxubm5QU1NDUFAQpkyZwp+fP38+njx5gilTpqCwsBB9+/ZFfHw8tLSoF68t4VgzHnR26tQJGzduxDvvvCN3/PDhwwgMDMQff/zRYhVsy4qLi6Gvr4+ioiIK2q+o1Y7e6Ci7j8cP7ZH/sDu8VnqhT3AflJeXIysrC1KplP7ovsSSk5Ph6emJgoKCZj2LVtaAAQPQo0cPrF279oWVQV68hn6vlY0HzVpcZfTo0Zg5cyZOnDiB6upqVFdXIykpCUFBQTQfkJDn0FZa2oSQF6NZQXvZsmVwd3fHwIEDIRQKIRQKMWjQILz55ptYsWJFS9eRkFdGW3mm3VYEBARAV1dX4SsgIEDV1SOvoGY909bU1MT+/fuxbNky/P777xAKhXB0dISlpWVL14+QVwJrV/OUilraL5eIiAjMmzdP4bnaKWj/xlTK5OTkF14GaR2eaz/tLl264IMPPsDQoUOfK2BHRUXBysoKWlpacHd3x8WLFxtMHxMTg65du0JLSwuOjo51Bqwos9tNfn4+xowZAz09PRgYGGDixIn8nM1aV65cgYeHB7S0tCCRSLBy5cp66xQdHQ2O42ikJmkWpl7zh78tTPlqS0xMTPh55P98mZiYqLp65BXUrKBdXV2N7du348MPP4SXlxfefPNNuVdT7N+/H3PmzEF4eDhSU1Ph7OwMHx8f/PXXXwrTnz17FqNHj8bEiRPx22+/Yfjw4Rg+fDi/QD+g3G43Y8aMwfXr15GQkIC4uDicPHlSbiRmcXExBg0aBEtLS/z6669YtWoVlixZgq+++qpOnbKzszFv3jx4eHg06d4JqcU0qKVNCGlcs0aPT58+HTt37sTbb7+NDh06yC2tBwBr1qxROi93d3e8/vrr2LhxI4CajQMkEglmzJiBBQsW1Ek/cuRIPHnyBHFxcfyxN954Az169MCWLVvAGEPHjh0xd+5cvlurqKgIpqam2LlzJ0aNGoUbN27A3t4ely5d4ueCxsfH46233sIff/yBjh07YvPmzfj000+Rl5fHT91YsGABfvjhB7mVnqqrq9GvXz98/PHHOHXqFAoLC5XeVYdGj5Pa0eMPKm1RnNETYlsxZtyaQaPHCWmDWmL0eLOeaUdHR+P777/HW2+91ZzLeZWVlfj1118RGvq/9ZTbtWsHLy8vnDt3TuE1586dw5w5c+SO+fj48IFSmd1uzp07BwMDA7nFG7y8vNCuXTtcuHAB7777Ls6dO4d+/frJ7Tjk4+ODL774AgUFBTA0NARQ88zLxMQEEydObHSXnoqKClRUVPDvi4uLG/mESJv3/993a7vHaSAaIaQhzeoe19TUVLiof1M9evQI1dXVTdqZJi8vr8H0yux2k5eXV+d5lLq6OsRisVwaRXk8W8bp06exfft2fP3110rdb2RkJPT19fmXRCJR6jrShtWuD6/+v+5xWiOeEFKfZgXtuXPnYt26da/0H5e///4bH330Eb7++msYGRkpdU1oaCiKior41717915wLUlrIfv/oC2rkuHpk6cqrg0h5GXVrO7x06dP48SJEzh+/DgcHBygoSG/bd/BgweVysfIyAhqamp48OCB3PEHDx7I7T37LDMzswbTK7PbjZmZWZ2BblVVVcjPz5fLR1E5tefu3LmD7Oxs+Pr68udlMhmAmlZ7eno6OnfuLHe9QCB4oTsHkVZMjaGdejvIqmQoKyiDwJj+f/K8srOzIZVK8dtvv9FOV6TNaFZL28DAAO+++y769+8PIyMjuS5ffX19pfPR1NSEi4sLEhMT+WMymQyJiYly+9M+q1evXnLpASAhIYFP/+xuN7Vqd7upTdOrVy8UFhbi119/5dMkJSVBJpPB3d2dT3Py5Ek8ffpUrhw7OzsYGhqia9euuHr1Ki5fvsy/3nnnHXh6euLy5cvU9U2aTMuwZmBKW3munZeXhxkzZsDa2hoCgQASiQS+vr7876aVlRU4jgPHcdDW1oajoyO2bdsml0dycjKfhuM4mJqaws/PD5mZmY2WL5FIkJubi+7du8vlVVhY2OL32pCdO3c2eYnT8ePHN3n66MGDBzFo0CC0b98eHMfh8uXLTbqetA7N3pqzpcyZMwf+/v5wdXWFm5sb1q5diydPnmDChAkAahbJNzc3R2RkJICaXYD69++PL7/8Em+//Taio6ORkpLCT8VSZrebbt26YfDgwZg8eTK2bNmCp0+fYvr06Rg1ahQ6duwIAPjwww+xdOlSTJw4ESEhIbh27RrWrVvHj4zX0tLi/xjUqv3F/OdxQpQhNBSi9GEpygvKoQ/lv/y+jLKzs9GnTx8YGBhg1apVcHR0xNOnT/HTTz8hMDCQn4ERERGByZMno7S0FDExMZg8eTLMzc0xZMgQufzS09MhEolw+/ZtTJkyBb6+vrhy5QrU1NTqrYOamlq9PXZt0ZMnT9C3b1+MGDECkydPVnV1yIvCnsNff/3FTp06xU6dOsX++uuvZuezYcMG1qlTJ6apqcnc3NzY+fPn+XP9+/dn/v7+cum///571qVLF6apqckcHBzY0aNH5c7LZDK2ePFiZmpqygQCARs4cCBLT0+XS/P48WM2evRopqury/T09NiECRPY33//LZfm999/Z3379mUCgYCZm5uzzz//vMH78Pf3Z8OGDVP6vouKihgAVlRUpPQ1pG1Z1d2L7bW3Zytd3mZfu3/NlmAJu/HDDVZWVsbS0tJYWVkZn1Ymk7GnT56o5CWTyZp0X0OGDGHm5uaspKSkzrmCggLGGGOWlpZszZo1cufEYjGbPXs2//7EiRMMAH8NY4zt3buXAWA3b95k+fn57MMPP2RGRkZMS0uL2djYsG+++YYxxlhWVhYDwH777Tf+52dftX9Xqqur2YoVK5iVlRXT0tJiTk5OLCYmRqn7rK1fXFwcc3R0ZAKBgLm7u7OrV6/KnX/2FR4ezhhjLCoqitnY2DCBQMBMTEyYn58fn+8//5b079+fBQYGssDAQKanp8fat2/PFi1apPDf5dn7Ji8XRb/XtZSNB81qaT958gQzZszA7t27+ee4ampqGDduHDZs2ABtbe0m5Td9+nRMnz5d4TlFy/d98MEH+OCDD+rNj+M4REREICIiot40YrEY+/bta7BeTk5OjU7jetbOnTuVTkvIP2kZ/H/3eD0LrFSXleH711//N6vEG3HpEtSV/L3Oz89HfHw8li9fDh0dnTrnFXUVy2QyHDp0CAUFBXLTLBURCoUAaqaMLl68GGlpaTh+/DiMjIyQkZGBsrK6q8pJJBLExsbCz88P6enp0NPT4/OJjIzEnj17sGXLFtja2uLkyZMYO3YsjI2N0b9/f6XuOTg4GOvWrYOZmRkWLlwIX19f3Lp1C71798batWsRFhaG9PR0AICuri5SUlIwc+ZMfPvtt+jduzfy8/Mb/Vuza9cuTJw4ERcvXkRKSgqmTJmCTp06Uav6FdOsoD1nzhz897//xZEjR9CnTx8ANYPTZs6ciblz5za4Xy4hRDGhYU0Qae3PtDMyMsAYQ9euXRtNGxISgkWLFqGiogJVVVUQi8WYNGlSvelzc3OxevVqmJubw87ODjk5OejZsye/5oKVlZXC69TU1CAWiwHULE1a+8WhoqICK1aswC+//MKPebG2tsbp06exdetWpYN2eHg4vL29AdQEVwsLCxw6dAgjRoyAvr4+OI6T66rPycmBjo4Ohg4dCpFIBEtLS/Ts2bPBMiQSCdasWQOO42BnZ4erV69izZo1FLRfMc0K2rGxsThw4AAGDBjAH3vrrbcgFAoxYsQICtqENEPtQLT61h9XEwox4tKlf7NKcmUrizVhKmhwcDDGjx+P3NxcBAcHY9q0aQrXgLCwsABjDKWlpXB2dkZsbCw0NTUxdepU+Pn5ITU1FYMGDcLw4cPRu3dvpcvPyMhAaWkpH3BrVVZWNhpEn/XswFmxWAw7OzvcuHGj3vTe3t6wtLSEtbU1Bg8ejMGDB+Pdd99tsJfyjTfekFt9slevXvjyyy9RXV3d4LN90rY0K2iXlpbWWXgEqPkGW1pa+tyVIuRVxI8er6d7nOM4pbuoVcnW1hYcx8kt91sfIyMjfgOOmJgYODo6wtXVFfb29nLpTp06xe+qJRKJ+ONDhgzB3bt3cezYMSQkJGDgwIEIDAzE6tWrlapr7SZBR48ehbm5udy5Fzk9UyQSITU1FcnJyfj5558RFhaGJUuW4NKlS00eaU5eLc2a8tWrVy+Eh4fLbcBRVlaGpUuX1jtVixDSsMaeabcWYrEYPj4+iIqKwpMnT+qcr2/KlUQiwciRI+WWNa4llUrRuXNnuYBdy9jYGP7+/tizZw/Wrl2rcFMfAPyz8urqav6Yvb09BAIBcnJy6uzi1ZRpm+fPn+d/LigowK1bt9CtWze+3GfLrKWurg4vLy+sXLkSV65cQXZ2NpKSkuot48KFC3XKtLW1pVb2K6ZZLe21a9di8ODBsLCwgLOzMwDg999/h0AgwM8//9yiFSTkVdFWnmkDNdvt9unTB25uboiIiICTkxOqqqqQkJCAzZs319t1HBQUhO7duyMlJUVub4D6hIWFwcXFBQ4ODqioqEBcXBwfLP/J0tISHMchLi6Of5wnEokwb948zJ49GzKZDH379kVRURHOnDkDPT09+Pv7K3W/ERERaN++PUxNTfHpp5/CyMiIn2JqZWWFkpISJCYmwtnZGdra2khKSkJmZib69esHQ0NDHDt2DDKZDHZ2dvWWkZOTgzlz5uCTTz5BamoqNmzYgC+//JI/n5+fj5ycHNy/fx8A+IFvZmZmr9TUt7auWUHb0dERt2/fxt69e/kusNGjR2PMmDH8iExCSNM09ky7NbG2tkZqaiqWL1+OuXPnIjc3F8bGxnBxcWlwzIu9vT0GDRqEsLAwHDt2rNFyNDU1ERoaiuzsbAiFQnh4eCA6OlphWnNzcyxduhQLFizAhAkTMG7cOOzcuRPLli2DsbExIiMjkZmZCQMDA7z22mtYuHCh0vf7+eefIygoCLdv30aPHj1w5MgRvmXfu3dvBAQEYOTIkXj8+DHCw8Ph5eWFgwcPYsmSJSgvL4etrS2+++47ODg41FvGuHHjUFZWBjc3N6ipqSEoKEhuO+Eff/yRX98CAEaNGgWgZpDckiVLlL4X8nJr1tackZGRMDU1xccffyx3/JtvvsHDhw8REhLSYhVsy2hrTlK7NeefQineX7kBuwfuhrG9MT7+9WPamrMVSE5OhqenJwoKCl7os+gBAwagR48eWLt27Qsrg7x4LbE1Z7OeaW/dulXhdA4HBwds2bKlOVkS8sqrfabdFlrahJAXo1lBOy8vT24zjlrGxsbIzc197koR8sp4ZgpPW1t7vC0ICAiArq6uwldAQICqq0deQc16pi2RSHDmzBlIpVK542fOnOHX7iaENE3tQLSqsipUVVapuDYEqBlgNm/ePIXnaqegNeMJY5MpWhmSvJqaFbQnT56MWbNm4enTp3jzzTcBAImJiZg/fz7mzp3bohUk5FUh0BMAHAAGVBRVqLo6BDVrT5iYmKi6GoTwmhW0g4OD8fjxY0ybNg2VlZUAana9CgkJUTjHkhDSOK4dBy19LZQXlqOiuKKZD68IIW1Zs4I2x3H44osvsHjxYty4cQNCoRC2trYvdAUhQl4FWobPBG0DVdeGEPKyaVbQrqWrq4vXVbTrECFtkdBQiMKsQgrahBCFqAOOkJdI7QjyimJ6pk0IqYuCNiEvkdq52jQQjRCiCAVtQl4i/FztYpqr/byys7PBcRwuX76s6qrUMWDAAMyaNUvV1SCtEAVtQl4iOsY6AIDy/NYftPPy8jBjxgxYW1tDIBBAIpHA19cXiYmJAGo20uA4DhzHQVtbG46Ojti2bZtcHsnJyXwajuNgamoKPz8/ZGZmNlq+RCJBbm4uunfvLpdXfbuMtWbl5eUYP348HB0doa6uzm9WQtoeCtqEvER0TP4/aLfy7Tmzs7Ph4uKCpKQkrFq1ClevXkV8fDw8PT0RGBjIp4uIiEBubi6uXbuGsWPHYvLkyTh+/Hid/NLT03H//n3ExMTg+vXr8PX1Vbjd5bPU1NRgZmYGdfXnGm/bKlRXV0MoFGLmzJnw8vJSdXXIC0RBm5CXiLaxNgCg9HGpimvyfKZNmwaO43Dx4kX4+fmhS5cucHBwwJw5c+T2nhaJRDAzM4O1tTVCQkIgFouRkJBQJz8TExN06NAB/fr1Q1hYGNLS0pCRkYGCggKMGTMGxsbG/NTTHTt2AJDvHs/OzoanpycAwNDQEBzHYfz48QAAmUyGyMhISKVSCIVCODs748CBA0rdZ23r/aeffkLPnj0hFArx5ptv4q+//sLx48fRrVs36Onp4cMPP0Rpaf3/phUVFQgJCYFEIoFAIICNjQ22b98uV8bRo0fh5OQELS0tvPHGG7h27Rp/vY6ODjZv3ozJkyfTNpxtXNv/CkpIK1Lb0i7Lr7tpCGOswT/8L5K2tja4Z9ZJb0h+fj7i4+OxfPly6Ojo1DmvaDcsmUyGQ4cOoaCggN/Ssj612/9WVlZi8eLFSEtLw/Hjx2FkZISMjAyUldX97CQSCWJjY+Hn54f09HTo6enx+URGRmLPnj3YsmULbG1tcfLkSYwdOxbGxsbo37+/Uve8ZMkSbNy4Edra2hgxYgRGjBgBgUCAffv2oaSkBO+++y42bNhQ7w6I48aNw7lz57B+/Xo4OzsjKysLjx49kksTHByMdevWwczMDAsXLoSvry9u3boFDQ0NpepI2gYK2oS8RGqfaSsK2qWlpdDV1f23qwQAKCkpURiAFcnIyABjTOFOgP8UEhKCRYsWoaKiAlVVVRCLxZg0aVK96XNzc7F69WqYm5vDzs4OOTk56NmzJ1xdXQHUPCdXRE1NDWKxGEBNq732i0NFRQVWrFiBX375Bb169QJQsxf46dOnsXXrVqWD9meffYY+ffoAACZOnIjQ0FDcuXMH1tbWAID3338fJ06cUBi0b926he+//x4JCQl813btdc8KDw+Ht7c3AGDXrl2wsLDAoUOHMGLECKXqSNoG6h4n5CXCt7QLyoAXvw/FC9GUDTSCg4Nx+fJlJCUlwd3dHWvWrIGNjU2ddBYWFtDR0UHHjh3x5MkTxMbGQlNTE1OnTkV0dDR69OiB+fPn4+zZs02qa0ZGBkpLS+Ht7S23g9fu3btx584dpfNxcnLifzY1NYW2trZc4DU1NcVff/2l8NrLly9DTU2t0S8ItV8qAEAsFsPOzg43btxQuo6kbaCWNiEvEW2jmmfarJpBJpPJn9PWRklJiSqqBW1tbaXT2traguM43Lx5s9G0RkZGsLGxgY2NDWJiYuDo6AhXV1fY29vLpTt16hS/q5ZIJOKPDxkyBHfv3sWxY8eQkJCAgQMHIjAwEKtXr1aqrrWf59GjR2Fubi53rinLMj/bRc1xXJ0ua47j6vx71qrtpidEGRS0CXmJqGmq8QusMJl8i5XjOKW7qFVJLBbDx8cHUVFRmDlzZp06FxYWKnyuLZFIMHLkSISGhuLw4cNy56RSqcJrAMDY2Bj+/v7w9/eHh4cHgoODFQbt2mflz446t7e3h0AgQE5OjtJd4S3N0dERMpkM//3vfxsc+X3+/Hl06tQJAFBQUIBbt26hW7du/1Y1yUuCgjYhLxkdEx2UV5SDVbfS/nEAUVFR6NOnD9zc3BAREQEnJydUVVUhISEBmzdvrrdbNygoCN27d0dKSgr/nLohYWFhcHFxgYODAyoqKhAXF1dvILO0tATHcYiLi8Nbb70FoVAIkUiEefPmYfbs2ZDJZOjbty+Kiopw5swZ6Onpwd/f/7k+B2VYWVnB398fH3/8MT8Q7e7du/jrr7/knldHRESgffv2MDU1xaeffgojIyO5+dhpaWmorKxEfn4+/v77b35RmR49erzweyD/HgrahLxkdEx0UH6vvE5LuzWxtrZGamoqli9fjrlz5yI3NxfGxsZwcXHB5s2b673O3t4egwYNQlhYGI4dO9ZoOZqamggNDUV2djaEQiE8PDwQHR2tMK25uTmWLl2KBQsWYMKECRg3bhx27tyJZcuWwdjYGJGRkcjMzISBgQFee+01LFy4sNn331SbN2/GwoULMW3aNDx+/BidOnWqU/7nn3+OoKAg3L59Gz169MCRI0fkRtq/9dZbuHv3Lv++Z8+eAJo2xoC8/DhG/6IqU1xcDH19fRQVFUFPT0/V1SEqsNppEDpW/4k/hVIEp8QBAPa/tx/3Uu/B63svdHXqCi0tLRXXkqhScnIyPD09UVBQUO8jAtI6lJeXIysrC1KptM7vtbLxgEaPE/ISeHYGdO0I8tbcPU4IeTEoaBPykqldFa01d4+3FQEBAXJTwZ59BQQEqLp65BVEz7QJecnUtrRl1YqnCJF/T0REBObNm6fw3L/1SGvAgAH0XJrwKGgT8pKh7vGXh4mJCUxMTFRdDUJ41D1OyEtG1LFm8RBqaRNC/omCNiEvGT3zmm5XVs2oW5QQIoeCNiEvGd0ONZuCMMaoi5wQIoeCNiEvGQ2hBr+UaXVVdSOpCSGvEgrahLyE+BHkT+m5NiHkfyhoE/IS4oN2FQXt5srOzgbHcfwa3C+TAQMGYNasWaquBmmFKGgT8hJg/9g8uy20tPPy8jBjxgxYW1tDIBBAIpHA19cXiYmJAGo2yuA4DhzHQVtbG46Ojti2bZtcHsnJyXwajuNgamoKPz8/ZGZmNlq+RCJBbm4uunfvLpdXYWFhi9+rqiUnJ2PYsGHo0KEDdHR00KNHD+zdu1fV1SIvAAVtQl5CtUG7+mnrfKadnZ0NFxcXJCUlYdWqVbh69Sri/4+9+46PougfOP7ZXE/vBbiQhIQSSkA6KOVHFeERBUGKUhREgiIqzUJ9FER9QJSijxB4FI0iYAFBA4givUgNhhpASGhpJLncXe7298eRlSMJSTSQBOf9ep3mdmdnZ+64+97Mzs5s2EDHjh2JjY1V0s2YMYOUlBSOHDnC4MGDGTFiBOvXry+UX1JSEhcvXmTlypUcPXqUXr16OS2xWRSVSkVwcDBq9b0/HcX27dtp1KgRq1at4tChQ8qCKGvXrq3oognlTARtQaiE3IKqdvf46NGjkSSJ3bt306dPH2rXrk39+vV58cUX2blzp5LOw8OD4OBgIiIimDhxIr6+viQkJBTKLzAwkJCQENq1a8eUKVNITEzk5MmTpKenM2jQIAICAjAYDERFRREXFwc4d48nJyfTsWNHAHx8fJAkiaFDhwJgt9uZNWsW4eHhGAwGYmJi+Oqrr0pVz4LW+w8//ECTJk0wGAz83//9H5cvX2b9+vXUq1cPT09PBg4cSG5ubrH5mM1mJk6ciNFoRKfTERkZyZIlS5zOsW7dOho1aoRer6dVq1YcOXJEOf6VV15h5syZtGnThlq1ajF27Fi6d+/O6tWrS1UPoeq493+CCkIlVtApLjktGeJoaWeS6RS0ZVkm11r8F/+d5KpxRZKkkhMCaWlpbNiwgTfeeAM3N7dC+4taqcput7NmzRrS09OdlpssisFgAMBisfD666+TmJjI+vXr8ff35+TJk5hMpkLHGI1GVq1aRZ8+fUhKSsLT01PJZ9asWXz66acsXryYqKgofvnlFwYPHkxAQADt27cvVZ2nTZvGBx98gKurK/369aNfv37odDo+++wzsrOzeeSRR3j//feZOHFikcc/+eST7NixQ1lP+8yZM1y9etUpzfjx43nvvfcIDg7mlVdeoVevXhw/fhyNRlNknpmZmcWuLS5UXSJoC0Il5BboRua1TKfu8VxrLu6z3CukPNmTs3HTFg7ARTl58iSyLFO3bt0S006cOJHXXnsNs9lMfn4+vr6+PP3008WmT0lJ4Z133qF69erUqVOHc+fO0aRJE5o1awY4rpMXRaVS4evrCzha7QU/HMxmM2+++SYbN26kdevWgGMt8F9//ZUPP/yw1EH73//+N23btgXgqaeeYvLkyZw6dYqIiAgA+vbty08//VRk0D5+/DhffvklCQkJdO7cWSnDraZOnUqXLl0AWL58OTVq1GDNmjX069evUNovv/ySPXv28OGHH5aq/ELVIbrHBaESKpjKVM6Xq9xqX2WZxW38+PEcOHCAzZs307JlS+bOnUtkZGShdDVq1MDNzY1q1aqRk5PDqlWr0Gq1PPvss8THx9O4cWMmTJjA9u3by1TWkydPkpubS5cuXZxW8Prf//7HqVOnSp1Po0aNlL+DgoJwdXV1CrxBQUFcvny5yGMPHDiASqUq8QdCwY8KAF9fX+rUqcOxY8cKpfvpp58YNmwY//3vf6lfv36p6yBUDaKlLQiVgnOgM/galO5om8WGWq/GVeNK9uTsiigcrhrXUqeNiopCkiR+//33EtP6+/sTGRlJZGQkK1eupGHDhjRr1ozo6GindFu3bsXT05PAwEA8PDyU7Q8++CBnz57l+++/JyEhgU6dOhEbG8s777xTqrJmZztez3Xr1lG9enWnfTqdrlR5AE5d1JIkFeqyliQJu73o8QkF3fTl4eeff6ZXr17MnTuXJ598stzyFSoPEbQFoRKSJAkXtaMjrCBoS5JU6i7qiuTr60u3bt1YsGABzz//fKHr2hkZGUVe1zYajfTv35/JkyfzzTffOO0LDw8v8hiAgIAAhgwZwpAhQ3jggQcYP358kUG74Fr5zaPOo6Oj0el0nDt3rtRd4eWtYcOG2O12fv75Z6V7vCg7d+4kNDQUgPT0dI4fP+50zXrLli307NmTt956i5EjR97xcgsVQwRtQagEiupQLgja+eZ8dJS+1VcZLFiwgLZt29KiRQtmzJhBo0aNyM/PJyEhgUWLFhXZrQswduxYGjRowN69e5Xr1LczZcoUmjZtSv369TGbzaxdu7bYwVc1a9ZEkiTWrl1Ljx49MBgMeHh48PLLLzNu3Djsdjv3338/mZmZbNu2DU9PT4YMGfK3XofSCAsLY8iQIQwfPlwZiHb27FkuX77sdL16xowZ+Pn5ERQUxKuvvoq/vz+9e/cGHF3iPXv2ZOzYsfTp04fU1FTA8UOl4Fq+cG8Q17QFoZK6uaVd1URERLB//346duzISy+9RIMGDejSpQubNm1i0aJFxR4XHR1N165dmTJlSqnOo9VqmTx5Mo0aNaJdu3aoVCri4+OLTFu9enWmT5/OpEmTCAoKYsyYMQDMnDmT119/nVmzZlGvXj26d+/OunXrCA8PL3vF/6JFixbRt29fRo8eTd26dRkxYgQ5OTlOaWbPns3YsWNp2rQpqampfPfdd0rvwfLly8nNzWXWrFmEhIQoj0cfffSu1UG4OyRZrP1XYbKysvDy8iIzMxNPT8+KLo5QAd5p1JVqtgtcMIQxfu86ZXteXh6/H/gdX7UvHr4e+ET4VGAphYq0ZcsWOnbsSHp6erGXCISqIS8vjzNnzhAeHo5er3faV9p4IFraglAJFHUHtIum6ra0BUG4M0TQFoRKykX15zVtoWKMGjXK6Vawmx+jRo2q6OIJ/0BiIJogVFKSWoJ8x6Ihsl1GcindjGRC+ZkxYwYvv/xykfvu1iWtDh06lOned+HeJoK2IFRSLioXR7+57GhtawxFT1cp3DmBgYEEBgZWdDEEQSG6xwWhEiiuHaXWOX5X28ziurYgCCJoC0KlptKpAMjPE9e1BUEQQVsQKlRJVyoLWtoiaAuCACJoC0LFKiFqF9z2JYK2IAgggrYgVCjplv/fSnSPC4JwMxG0BaFC3f42roLucXu+HXt+0atEVWUdOnTghRdeqOhiCEKVIYK2IFRiLiqXKtdFPnToUCRJKnLykdjYWCRJYujQoXe/YIJwDxBBWxAqObW+6g1GMxqNxMfHYzKZlG15eXl89tlnyvKSgiCUnQjaglCRSjHJmcbVMamKNdd6hwtTfu677z6MRiOrV69Wtq1evZrQ0FCaNGlS7HFms5mJEydiNBrR6XRERkayZMmSu1FkQagSKkXQXrBgAWFhYej1elq2bMnu3btvm37lypXUrVsXvV5Pw4YN+f777532y7LMlClTCAkJwWAw0LlzZ06cOOGUJi0tjUGDBuHp6Ym3tzdPPfUU2dnZTmkOHTrEAw88gF6vx2g0MmfOHKf9//3vf3nggQfw8fHBx8eHzp07l1h2QSirgpnQLLlWcnKokMdfmUVz+PDhxMXFKc+XLl3KsGHDbnvMk08+yeeff878+fM5duwYH374Ie7u7mU/uSDcoyo8aH/xxRe8+OKLTJ06lf379xMTE0O3bt24fPlykem3b9/OgAEDeOqpp/jtt9/o3bs3vXv35siRI0qaOXPmMH/+fBYvXsyuXbtwc3OjW7du5OXlKWkGDRrE0aNHSUhIYO3atfzyyy+MHDlS2Z+VlUXXrl2pWbMm+/bt4+2332batGl89NFHSpotW7YwYMAAfvrpJ3bs2IHRaKRr165cuHDhDrxSwr1ILvFObVC7OrrHs9LycXenQh65uWWv2+DBg/n11185e/YsZ8+eZdu2bQwePLjY9MePH+fLL79k6dKlPPLII0RERNCpUyf69+9f9pMLwr1KrmAtWrSQY2Njlec2m02uVq2aPGvWrCLT9+vXT37ooYectrVs2VJ+5plnZFmWZbvdLgcHB8tvv/22sj8jI0PW6XTy559/LsuyLCcmJsqAvGfPHiXN+vXrZUmS5AsXLsiyLMsLFy6UfXx8ZLPZrKSZOHGiXKdOnWLrkp+fL3t4eMjLly8vVd0zMzNlQM7MzCxVeuHe83aDrvKK6Gj57aY9nLabTCY5MTFRNplMst1mly/svSCf+OWi7Gjz3v1Hdnbp6zRkyBD54YcflmVZlh999FF52rRp8tSpU+U+ffrIsizLDz/8sDxkyBBZlmW5ffv28tixY2VZluUvvvhCVqlUssVi+bsvqyBUSjd/rm9V2nhQoS1ti8XCvn376Ny5s7LNxcWFzp07s2PHjiKP2bFjh1N6gG7duinpz5w5Q2pqqlMaLy8vWrZsqaTZsWMH3t7eNGvWTEnTuXNnXFxc2LVrl5KmXbt2aLVap/MkJSWRnp5eZNlyc3OxWq34+voWud9sNpOVleX0EISSSC4Sar0ag17m6h95ZGdz1x+urn+t7MOHD2fZsmUsX76c4cOH3zatwWD4aycRhH+QCl3l6+rVq9hsNoKCgpy2BwUF8fvvvxd5TGpqapHpU1NTlf0F226X5taVe9RqNb6+vk5pwsPDC+VRsM/Hx6dQ2SZOnEi1atUK/agoMGvWLKZPn17kPkG4HY1BQ74pH61kxc1NX9HFKbXu3btjsViQJIlu3brdNm3Dhg2x2+38/PPPxX6GBOGfrsKvad8rZs+eTXx8PGvWrEGvL/pLdfLkyWRmZiqP8+fP3+VSClVVVRxBDqBSqTh27BiJiYmoVKrbpg0LC2PIkCEMHz6cr7/+mjNnzrBlyxa+/PLLu1RaQaj8KjRo+/v7o1KpuHTpktP2S5cuERwcXOQxwcHBt01f8P+S0tw60C0/P5+0tDSnNEXlcfM5CrzzzjvMnj2bH3/8kUaNGhVbX51Oh6enp9ND+IcrxS1fABr3GyPIcyzIf2UodwUqy7/1RYsW0bdvX0aPHk3dunUZMWIEOTk5d7iEglB1VGjQ1mq1NG3alE2bNinb7HY7mzZtonXr1kUe07p1a6f0AAkJCUr68PBwgoODndJkZWWxa9cuJU3r1q3JyMhg3759SprNmzdjt9tp2bKlkuaXX37BarU6nadOnTpOXeNz5sxh5syZbNiwwekauSCUJ62rFiSwW+3YLJV7be1ly5bx9ddfF7v/66+/ZtmyZYDjDox58+Yp+/R6Pf/5z3+4ePEiZrOZEydOlHibmCD8o9yhQXKlFh8fL+t0OnnZsmVyYmKiPHLkSNnb21tOTU2VZVmWn3jiCXnSpElK+m3btslqtVp+55135GPHjslTp06VNRqNfPjwYSXN7NmzZW9vb/mbb76RDx06JD/88MNyeHi404i97t27y02aNJF37dol//rrr3JUVJQ8YMAAZX9GRoYcFBQkP/HEE/KRI0fk+Ph42dXVVf7www+dzqPVauWvvvpKTklJUR7Xr18vVd3F6HHh7YYljx4vcDnxsnxhzwU552rO3S6mIAjloDxGj1d40JZlWX7//ffl0NBQWavVyi1atJB37typ7Gvfvr1ye0iBL7/8Uq5du7as1Wrl+vXry+vWrXPab7fb5ddff10OCgqSdTqd3KlTJzkpKckpzbVr1+QBAwbI7u7usqenpzxs2LBCwfbgwYPy/fffL+t0Orl69ery7NmznfbXrFlTxrG4otNj6tSppaq3CNpCWYJ2xtkM+cKeC3LG2Yy7XUxBEMpBeQRtSZar2AWye0hWVhZeXl5kZmaK69v/UO807EY1+x9cNITx8t51yva8vDzOnDlDeHi4MrDRlGYi/XQ6GlcNAdEBFVVkQRD+oqI+1wVKGw/E6HFBqCIKBqNZc6335DKdgiCUTARtQagi1Fq1suKX+bq5gksjCEJFEEFbECpQWa9N6Tx1AFiuW8q/MIIgVHoiaAtCpVC68K31cEyra84SLW1B+CcSQVsQqhCdh6OlnZ+XT745v4JLIwjC3SaCtiBUIS5qF7TuN1rbmaK1LQj/NCJoC0KFKvsdl3rvG7eApZvKuzB3XYcOHXjhhRf+dj7JyclIksSBAwf+dl7lrbzqKAgggrYgVDAJu90FywUjP778I/l5JXd5630cQdty3YLNWvmmNB06dCiSJDFq1KhC+2JjY5EkiaFDh5brOY1GIykpKTRo0ABwTI8qSRIZGRnlep7KIC8vj6FDh9KwYUPUajW9e/eu6CIJd5EI2oJQwTLSamNNrcaOd3fw09SfSkyv1qmVVb/yMvLudPH+EqPRSHx8PCbTn70BeXl5fPbZZ4SGhpb7+VQqFcHBwajVFbra8F1hs9kwGAw8//zzYgnTfyARtAWhgmVnGZW/9y3eV6rlNwta26a0ytlFft9992E0Glm9erWybfXq1YSGhtKkSZNijzObzUycOBGj0YhOpyMyMpIlS5YAkJ6ezqBBgwgICMBgMBAVFUVcXBzg3D2enJxMx44dAfDx8XFq2dvtdmbNmkV4eDgGg4GYmBi++uqrUtWpoPX+ww8/0KRJEwwGA//3f//H5cuXWb9+PfXq1cPT05OBAweSm5v7l+pYcI5169bRqFEj9Ho9rVq14siRI8rxbm5uLFq0iBEjRhS7GqJw77r3f5YKQiUm21ww5zlWjdO4aTBnmUn6LonIhyOLSCyDzREMXL1kss/nYs3MJT9bo0y6cseoXEEq5TqiNwwfPpy4uDgGDRoEwNKlSxk2bBhbtmwp9pgnn3ySHTt2MH/+fGJiYjhz5gxXr14F4PXXXycxMZH169fj7+/PyZMnnVryBYxGI6tWraJPnz4kJSXh6emJwWAAYNasWXz66acsXryYqKgofvnlFwYPHkxAQADt27cvVb2mTZvGBx98gKurK/369aNfv37odDo+++wzsrOzeeSRR3j//feZOHFimetYYPz48bz33nsEBwfzyiuv0KtXL44fP45GoylVGYV7lwjaglCB7BZHMEFtpfnoNmx/ezsnvz9ZdNC25cKX7gCogJCC7SfvQkH7ZYParUyHDB48mMmTJ3P27FkAtm3bRnx8fLFB+/jx43z55ZckJCQo3b4RERHK/nPnztGkSRNlCdywsLAi81GpVPj6+gIQGBiIt7c34Gjhvvnmm2zcuFFZpjciIoJff/2VDz/8sNRB+9///jdt27YF4KmnnmLy5MmcOnVKKWvfvn356aefigzaJdWxwNSpU+nSpQsAy5cvp0aNGqxZs4Z+/fqVqozCvUsEbUGoQHKeKwAuehNRPaLY/vZ2Tqw/QTd7twoumbNrudeQNKW7xcxsM2OxWVC5q+jSvQuL/rsIWZbp0r0LLm4uWGwWzDYzaaY08u355OXnkWZK49fdv6JSqWjYoiFpprRC+Q4ePpihA4eyZ+8eOnbuSI9ePWjRqgUAGXkZAGTmZZJmSiPLnAVAuikdu84xT/vvib+Tm5urBMMCFouFhjFFn/NmBXkao4xKWjcfN1xdXfEO8Va2efp6krIzRXleljoWnKNek3p/7jdAZFQk+w/tp3Mv52vYBa91SWUXKgeL2UKONYcNJzZgdXG+DJabXfwllZuJoC0IFUjOd9xz7aIzY2xrROepI/dKLpePXgb3WxKrXB0t3htyzDlkJmUi5UtkeGVgcr1z17ft1y+BdLlUaa+br5NrzeV0+mk6PdqJt197G4AJb0zgdPppcq25uJhdOJ1+GlO+icy8TE6nnyYjPwOAM+lnUGsKfzVFtIjgm13fsG3TNnZt3UXvHr3pO6QvL0x5gYuZFwH4I+sP3NLdSLmeAkByRjIesgcAx1OOA/Du8ncJDA50yluj1XA6/fRt61WQ54WcC2SpHcH1au5VXNQuTsdmmDMwWU3KtrLUseAc5zLPYXH/c6pas81Mel56oTLe/FoLVUA+XM25ygvbXuBszlnnfaUcUyqCtiBUCjIqjYqwjmEkfZPE+e3n8evq55xEkkDtRr4tn3NZ50gzpeHm7oZXlhduJi027yy0ai0qSYWL5IJ04xp0weq78o17wm9ejVe+6T7x4rbfuq8kGhcNahc1HloPunbryqyJs5AkiS5du6BSqVC7qNG4aPDQeqCSVGhVWjy0HsQ0isFut3Ns7zHatG9TZN4eIR6EDg5lwOABxC+P5+1pb/P6v1/HTePounfTuOGh9cDT1bG0oUFlwEPrCNoNGzREq9OSeSmTDu07lLo+BQwax6UMd627kqderUdCUp4DaFWO96BgW1nqWHCOkwdPEhUeBUBmRibnz5ynXt16Tue5+bV21976C0+ojOySHZ1aR/Pqzalprum0L9+Uz3a2l5iHCNqCUJFuiYURXSKKD9pAXn4eJ66dwGxzdFXr/HRIORLqfDUR6ghc/VzvRqlvy0vvhZwnU8e/DgAnkk4AKGsEu2vd8dJ7Uce/Dq4aV3wMPtTxr0Md/zoMGTKEqeOmKoO0zp49y+XLl+nXrx9TpkyhadOm1K9fH7PZzN4te6kfXZ86/nXQZTumdw3zCaOOfx3cY9yRJImkHUn06NEDg8GAu787418ez5wpcwhyC+L+++8nMzOTbdu24enpyZAhQ25brxQvRys4yi9KuU4e4hGCi+Si1BXA39UfnVqnbCtLHQvO8fG8j2kY3pCgoCDeePUNAvwDGP3kaLRaR89MYmIiFosFW64Nm8lG3h+OZlrjxo3/7tsn3EF5eXlIGRKfPPJJ0etpj/YqMQ8RtAWhEqnVpRYAqb+lItudI7rVZlUCtlalpZZPLdy0blw3X+f6xetcv3Adg48ByaVso7zvtIJgXRqLFi3ilVdeYfTo0Vy7do3Q0FBeeeUVALRaLZMnTyY5ORmDwcADDzxAfHx8kflUr16d6dOnM2nSJIYNG8aTTz7JsmXLmDlzJgEBAcyaNYvTp0/j7e3Nfffdp5zjbrhdHQvMnj2bsWPHcuLECRo3bsx3332nBGyAHj16KAP8AOU2urL0iAhVkySLd7nCZGVl4eXlRWZmZpm+2IR7x5tBT2G9HIra7zKvXl2ALMvMqzkPm4uNrqu7Uju6Nnq9HlmWOX7tONct19GpdNT1r4tG5bj9x26zc/nIZexWOx7VPfAI8SjhrEJltWXLFjp27Eh6errSmhfuHXl5eZw5c4bw8PCiW9qliAdichVBqAwkx29nSZKI6OK4BejmKU2v5l7luuU6LpILkb6RSsAGcFG54Fnd8SHPvpiNNa/kyVkEQaiaRNAWhEqmoIu8IGjb7DYuXL8AQHWP6spgpZsZ/AzoPHXIskzGmQzRTfoXjBo1Cnd39yIfRc2jLggVQVzTFoRKJvz/wgGwWWzYrDbSrI77mfVqPYFugUUeI0kSXmFeXDl6BWuOlazzWXiFljyoRfjTjBkzePnll4vcd7cuX3Xo0EH84BJuSwTtSuCLI1/g6v7nqN9bb7eB4geYlDZtUenuVNq/W9aypK3q9Ur2zaD65VDs0p/b3QLdCKgXAIA528zlG/dHh7iHKLdxFUWtVeMd5k36qXRyLueg1qtxCyzbLGb/ZIGBgQQGFv2jSBAqCxG0K4GR340EfcnphHtPh6AOVP8drrjnOG2v0aYGADlZOeR75KNVafE1+JaYn8HHQH61fK5fvE7muUyQwC1ABG5BuFeIoF0JdAzviNrg/FYU1aKSKLqVVdq0xbXSSptWnP/vnb+otNd+SAUgF4vTdmNrI9fyr2HLsYGH497f27Wyb+Ye4o49307O5Rwyz2Zit9pxD3Ev9fGCIFReImhXAl8//rW45esf6uHXugOQknedZ555hvfffx+tVktIsxDSdqXhYndBna/G39W/1HlKkoSn0RMkyLmUw/WL17HkWPCu6Y1Kq7pTVREE4S4Qo8cFoQLZb7r2/dFHH9GzZ09yc3PR6DVw464uz3xPtCptMTkUTZIkvIxeeNX0AgnMmWYuH71M9qXsQpO2CIJQdYigLQgVytFlrXFxwc3NjYSEBPr27YvFYsGqdtxvbbAUvsWrtNwCHIPaNK4aZJtM1vksLh+5THZqNjarrVxqIAjC3SOCtiBUoIKrzHq1mh9++AGDwcD69et54eUXyHO5sexP7t+bnlLjqsG/nj9eoV64aFywWWxk/ZHFpUOXuHbiGjmXc8jPy6+QW406dOjACy+88LfzSU5ORpIkDhw48LfzKm/lVUdBABG0BaFiyQX/k2nbti1r1qxBo9Gw+cfN2Cw27JId2S5jybHcPp8SSJKEW6AbQQ2D8KrphcZNA7Kj2zzzXCaXj1zm0kFHEM/6I4vcq7mYr5uxWWxl7k4fOnQokiQVOSFJbGwskiQxdOjQv1WfWxmNRlJSUmjQoAHgmA5UkiQyMjLK9TyVwZYtW3j44YcJCQnBzc2Nxo0bs2LFiooulnCXiIFoglCBJPlGW/vG/7p168bnn3/Oy+NfBgvY1DawQl56Hjp33d8/n4uEW4AbbgFuWE1WzJlm8jLysORYsOfbMWeaMWeaCx+nklBpVLioXZBUEpKLhIvKBclFUh5Ijh8HVpOVGtVrEP95PG+8+gYGVwOSJJFnzuOzFZ9hrGHEZrGRl5GHPd9OvjmfvIw8p9fB+eTFjMa/ZZOPmw82kw0bNiy5jh855utmzKrC9bmb7DY7NosN8/XyKccvP/1CdJ1oxj03jsCAQNZvWM+TTz6Jq8aVHg/2KJdzCHeGxWIhPy+fC7svoJKdB4Vez7leqjxE0BaESubRRx9l5uaZAORYczBgwJRmwrOGZ7netqUxaNAYNLgHuyPbZawmK9YcK/l5+Y6HOR+b2XHdW7bJ5NvyS8jRwZpjpX5kfc7+cZbPl33Oow8+CsCaDWsICQwhtFoo5iwzaSfTyDc5AnbayTQAzBYz73z4Dms2rOFa+jWqBVVjzNAxDHh4ABlZGbw25zV+3vUzuaZcggODeX7o8/T/V3/OXzxPq4db8cOnP+Dl4UW3h7sBEBwaDMBjDz3GvGnzsNvtLFi+gBVfr+DKtSuEh4bzwlMv0LNTzxLrtX3fdh4b9Rgr5q/gzQ/e5NTZU9zX8D4WvbGIQ8cOMX3edFKvpNL5/s6889o7GPSOsQj5ufmY0k1cS7pWYh0LzrF87nJmL5jN6XOnia4dzTuvvkPdyLoAPN3r6ZtebBjQaQDft/6eLz79gpYRLUv1HgkVI598sq9m88OoH8g56zw3Qx55pcpDBG1BqFDOLW2AU+mnyAjPAANYsGDH7mhtZ+ah0tzZW7Y0bhpH1/kNsixjt9lRaVTINhm71dFdb7c5/i/bZWTbjf/LMsig0qlwMbswqN8gVq5fyYD+A5BlmS/XfcnAPgPZtnsbLhoXNG4apQVf0F0/+vXR7D2wlzdffZP6dRyBPy09DbVBzbv/eZcTZ0/w+eLP8fX25cy5M+SZ81Dr1ah0jtdFrVMTWjOUpXOXMnzccLZ/tx0Pdw/0Oj1qvZq5H81l1fpVvD3lbcJDw9m5byfPT3mewMBA2jRvc9vXpuB2uf98/B9mvzYbg97AiJdH8Oyrz6LValk8ZzE5uTkMe2EYy1Yt47mnngMcvRsuahfUesfX7bOvPcu+g/t485U3ia4dzbkL50jLSHPU48Y53nj/Df498d8E+Afw5vw3GfryUHZ8twONRlNk2bJzs6kTWUc5h1A5yXYZlUaFT4QPBoPzAFOTzQQnSs5DvMOCUIGkm65pF9h8ZjMAOlcdAQEBmK6YcMONyycus6zFsgooJUzOnozOo3Td8zoPHVqblmfGPcO///NvsnXZAOw+sJtV361i79N70XvplVHtBl8DAfUCOH78ON9s+IaEhAQ6d+4MQHOaK/leyb5C89bN6dq/KwDNaKbsy3XPBcA30peQmBDC0x3zt9e7v56yxKXZbGb+kvls3LiR1q1bA9DiwRYcSj7Elwlf0ntY79vWy+eqDwBv/ectOnXqBMDIUyOZPHkyp06dIiLCsTrbYzseY8+xPQQ2cEyJqnHT4OrnSmCDQI4fP863P3zrVMcWtCh0jhlvzuCx/o8B0KhDI2rUqMG2E9vo169foXJ9+eWXHDh6gKWfLCWwvpiGtTLLy8sjS5PFoO8HFbk053iv8SXmIYK2IFQo6cZ/7aQdPYrNauXYLxuofdUVg12Dj5sbGWYbZIGcV3H3V+deuky+W9GtvFvlm0zYzGbc7Ha6d+7Mfz/4AFmW6d6pE642GzazmXyTidxLl7BbLFhzc8m9dIldW7agUqloXrcuuZcuFcp32OOPM+jpp9m7ezed2ren14MP0qq5I6ibrlxx/P/aNXIvXSIvzdHdnnv5Mlqz41py4u+/k5ubS5cbwbKAxWolpkGDIs95s4I8I4ODlbTeej2uBgPBbm7KNl83N3ZevKg8L0sdC87RODJS2a8HomrV4tCePfRs394p/c+//sqwoUP54J13CPf3L7EOQsUyW61YsrL4/ZNPkEwmp33ZeaJ7XBAqvYKWtoSdDTdaUc2BtiHVUHcxk3PxIm4uLpgkFzR6DY/98hhWl2wCNNq7eutHfk46ttzSXU+35eVhM5sxXblC/x49mPTmmwC89cormK5cwWY2Y8vLc/xttWIzmTBduYKLxTF4zHTlCvlFdAO3a9SI3zZsYOPWrWzZsYOH+vZl+OOPM+Pll5VgZ05Px3TlCubMTADyrl7FdCPftAuO5U0/++ADQoKCnPLWabVK4C9OQZ62zExMN26Py8/ORq1WOx2bbzJhs1iUbWWpo1LutDRMuj97NuT8fKy5uU7n2bZnDwNjY5k5fjyPduxYYvmFimex27FmZ5P8xRdYUlKc9uXaSjdvggjaglCB7DdCr4yEa3AwqFWcyDqN1sNMhEaDxmBAo1bjonXBlCXhZfDiEnlcdrET7OmJm865y1oJq7cbsHabfcUOdCvDADiVXo/KbEbv58dD//oXL82ciSRJ9PjXv1CpVKi0WlR6PXo/P1w0GuXvJi1aYLfb2Xv8OB3btSsy7xp+fgyNimLo8OEs+eQTXps5kzmzZqHLdXSP67y80Pv54e7nB4Daywu9r2OhlUbNm6PT6bicnU2n7t1LXZ8C2htTDet8fdF7OZY91bg75nTX3zgfgNpgQFKplG1lqWPBOQ6ePk3kjdvX0jMyOHX2LPUbNVLy/GX7dgaOGcOM117jmWHDylwXoWJIVivq3FzCevaEHOeBaNl5efDvf5eYhwjaglCRZEfQtqq09N60lvUn1jPhsx50qG6ka0AA7kYjer0eWZbJ//0q1hwr3ipv0mxp/JGRgY+PDzVq1ECn+/u3g5UXtcGAymzGLSQEgN+TkoA/16RW6fWoDQbcQkJQabVo3NxwCwkhOiSEIUOGMHr8eObPn09MTAxnz57l8uXL9OvXjylTptC0aVPq16+P2WwmYetW6kVH4xYSguuNLnBDQABuISHUbdoUSZL4ae9eevTogcFgIDgkhJdffplJ06ej8fTk/vvvJzMzk23btuHp6cmQIUNuWy/DjYDpFhyM243r5Dpvb5Akpa4AWg8PXDQaZVtZ6lhwjjnvv0/1yEiCgoJ49dVX8Q8I4PFhw9Bqtfz000/0ffJJxo4dy8Dhwym4UUir1eLrW/JKcELFUeXlocvJoe6oUUVe0y5N0BaTqwhCJVAwEG3HHzsAiAmOcdpfMJc4gN6mJ9jHcStTeno6R44cITk5mdwbrc3KxtPTs9QL4ixatIi+ffsyevRo6taty4gRI8i50SLRarVMnjyZRo0a0a5dO1QqFfHx8UXmU716daZPn86kSZMICgpizJgxAMycOZPXX3+dWbNmUa9ePbp37866desIDw8vn8r+zToWmD17NmPHjqVp06akpqby3XffodU65p9fvnw5ubm5zJo1i5CQEOXx6KOP3rU6CBVHkiti7kIBcPyy8vLyYs9ne3B3dXdsLOLdKPItKk26ypiXXPg4Gfmv518Z61iGvN58902anG7CgagDrDm+hq6fdCXhdAJxD8XR0q0l4eHhTr/IM5IzyL2ai0qrwi3MjYupFx2/0G9wc3PD19cXLy+vQr/khcpvy5YtdOzYkfT0dGXUu3DvyMvL48yZM4U+1/BnPMjMzLztj1zRPV4JrBq4Cj3iC/afyKXmjWvakoxdtrPrwi4AYoJiILtwek+jp2N6UbONvIt5RNaOJDc3l0uXLpGRkUFOTg45OTmcP38enU6Hu7s7bm5uuLq6otfrUavFR14QqjLxCa4ELlS7gNbl9ksvylLJHSJ3M40oU/mUKd/smGVMpVZx7MoxssxZuGnciPKL4nz2+ULpXVQu+Eb6cvX3q1iyLaQdT8Onlg+1atXCarWSlpZGRkYG2dnZmM1mzGYz165dU45XqVTo9Xo0Gg1qtRqNRoNGo0GlUuHi4lLo/5IkFfu414waNYpPP/20yH2DBw9m8eLFd7lEglCYCNqVwPgd4/Hw9HDaVtRcy8V9Ud6JtEXO9XyX0/4TjG42GgC1pFZa2c2qNUPtUvxHU2PQ4BvlS9qJNCzZFq4kXsHL6IXeR09QUBBBQUHk5+eTk5NDdnY2OTk5mEwmrFYrNput0PXTv6q44H3rttKkKW7b3dS/f3969ix6OlM3NzcOHTp0x8vg6+vLwYMHOXfuHOfOnbvj5xPuLlmWuXz5Mk899RQXbtyCWMBut5cqDxG0K4Ga3jVLPVBHuLe43DQWdNcfjqDdsnrJ80fr3HX41/Un/VQ6+Xn5pJ9OR21Q4+rvisHHgFqrxsvLC68btyYB2Gw2pfVttVrJz8/HarVitVqx2+3YbDbsdrvT37IsF7tk5+32VUUeHh54eHgUu99i+XsrrQkCOD6HFy9e/Ms/ykTQFoQKVLDKl4zM7ou7AWhZo3SLPmgMGgKiA7iecp2cSznkm/LJOp9F1vksVFrHfN5qnWM+axe1C5JaQq1So9FrkAx/rsp18/+LUzBYsCBQK48/1xYtnP7PJ6Xb9k/0D6/+P43ZbEatVvNl/JeF9mXnZNOpc6cS8xBBuxI4cvkI7ib3IveVpiVT0hffPy2PqsRmv7GKliRz+NJhAFpUb3G7Q5xILhKe1T1xD3In91oupjQT1hwrNosNm6V0MywJgnB35JOP6aqJbaO2iVW+qrK2S9oiBo//M/XK7wWA1W7FJtuo5lGNGp41yCvlPMQFXNQuuAe54x7kjt1mx5pjxWqyYjM7grc93+5YmcvmWKELmSJvvxMEoXITQbsSCHQPxEV/+3luihvA5ZSmlAN5/gl5VRUF3eNWuxUoWyu7OC4qF3SeOnSepZslrWBJzb8UwEXMF4RSy8vLI/tsNk/vehqd1vnzmZWVxeyw2SXmIYJ2JXDiuRNiINo/VJ/3+wB/XhZoUe1G0M5IBIsZTJfBxQs0nmWa/7sslOvapfjRJAjCX+eidkFykdB76QtNrmJVWUuXx50omCAIpVMQKAuCdmtjazg0FX59FKyZkHcZrp+AzCOOv+XS3RZSVXTo0IEXXnjhb+eTnJyMJEkcOHDgb+clCJWZCNqCUIGU1q0EOpWOtpYkODLDsU1lAK03SGqwmSHnHGRU/uA9dOhQJEli1KhRhfbFxsYiSRJDhw4t13MajUZSUlJocGNlrC1btiBJEhkZGeV6npIsW7bsL00/mpqaytixY4mMjESvd9xv37ZtWxYtWlTmOeXfeOMN2rRpg6urq5gK9R4kgrYgVKSbrgk/aGyG5uBEx5PaY0EfCG41wKchuBnBRQN2y43gfRjyLoG9co4QNxqNxMfHYzKZlG15eXl89tlnhIaGlvv5VCoVwcHBVXKa1tOnT9OkSRN+/PFH3nzzTX777Td27NjBhAkTWLt2LRs3bixTfhaLhccee4xnn332DpVYqEgiaAtCBVK6xyWZlwI8HF3i3jEQOfKmRCrQB4F3Q3ALBRct2K2Qcx4yDsD1k47Wd34uVJLR4Pfddx9Go5HVq1cr21avXk1oaChNmjQp9jiz2czEiRMxGo3odDoiIyNZsmQJ4FjRbNCgQQQEBGAwGIiKiiIuLg5w7h5PTk6mY8eOAPj4+Di17O12O7NmzSI8PByDwUBMTAxfffVVqepU0Hpft24djRo1Qq/X06pVK44cOaLsHzZsGJmZmcpscdOmTQNg4cKFREVFKa3ovn37KvmOHj0atVrN3r176devH/Xq1SMiIoKHH36YdevW0atXLyWtJEksWrSIBx98EIPBQERERKHyT58+nXHjxtGwYcNS1UuoWqrez1JBuIcUjB4HaJ13wPFHvZfBRVUorYyEze4O2giwXIO8K2DLA/KASzcylBxBXaUDSQMuakfQl1Q3BrK5gOTCjRlVcJ5R5daBaH8+Vxn0SFIpf+Pb80G2MXzIYOKWfsyg/o8AsHTJfxn25CC2/LLVkSY/19HNb7c6/gaefOJJduzcxfy5bxPTqCFnkpO5evUa5Ofy+quTSTx6hPXfrcHf34+Tp05hMuU5js2/0aLPN2EMqcWqLz+jT7+BJB09gKenBwaDAfJzmTVrDp9+Fs/iBfOIiozkl62/MnjwYAJ8PWjf7oHb18vmuA1v/PiXee8/cwgOCuKV16fRq1dPjicepE2Lxsx7dw5Tpv+bpKO/AeDu7s7enb/y/PPP88myj2nTuhVpaWls/XU75Ody7do1Rwv739Nw00nK61D0u+Dw+uuvM/uNGbz37mw+WfE5jz/+OId/2029enVvKa/5xmtSOZds/UfKNzt6yzKPgemWdzariBWCiiCCtiBUIJXkCM56lRpVXqqjRR36GFgLt5htJhNfNm9+t4sIQL8fPkJtKN0tZFgzwJrN4F73Mfm1KZw9sgmAbdt3EL/oVbZs+t5Rv8xEyM8BSxpkJnL85Fm+XLmKhFUf0Ll9JGAiwi8ICILMRM6dTqRJ/Zo0i9IDOYQ1c6wpTmYiXL/o+Dv7NKpsDb5ax3Klgfo0vA2OUbnmy2d4c/ZbbFy1gNbNqzvy792UX3/qzocL5tI+xu/29co+C8DUF5+gS/MQAJbPe4kajR5izWcL6de7C17abCTsBBvSHMfY0jiXtB03Vz097w/HwyObmt5amkR0gMxETh48gizL1KlhcNTjBv/anckzO6ZNjR3+GG9NfU7Z91ivDjzdtwVgZeaLfUn4YR3vz32ThW9Pci6v6SLINqd8hQpmAUxXYesosJx13lfK31YiaAtCBXK50Xp14cbAsshRjlaytWyTq9xxLmrHNfXSkFxAkggIDOShLg+wLP57ZFnmoS4P4B8Q4GjhSy6O/Apa/y4aDhw9hUqlov39LYs817PD+9Nn6MvsP5RE146t6d2jI21aNv6zfDeXs6Cn4qZyn0w+S25uHl36jnHK12Kx0qRh3ZLrdyPP1i3vU9L6+vlTJzKMYyfO3ahPwXn/zKtLx/upaaxGRLNH6N6pDd07teGRh/4PV1eDY5AhOP5/0zG7N67AbrczaOQrmC35Tvtat2js/Lx5DAeOJBUufxFlESqYi+x4X3SBcOstXrIdSC0xCxG0BaEiKQ1qm+OLO+qZYpOqDAb67dlzV4pV1LlLfZ+41hc0LuATw/BR4xgzxhEkFyxYAD4xoPFyjIr3iQG1O+gDwCcGQ8CNBRR8YkBTONA82C+Gsx378f3335OQkECnR0YRGxvLO++8A5k3FkbxrOM43iPd8dy7IdwYQZ2tcvwQWrduPdWrV3fKW6fTgY/x9vUqyNMrGnxuGkynMoAh2HFet98cX8o+MX8e5gP7DyayZcsWfvzxR6a8tYRpb8exZ88eIu+rgSRJJF0wOx0TceNvg8e7yuujcAt1fq4PAPUF521QZFmECpaXB2k66PIL3HKfNllZgFeRh91MDEQThAr0533aQM3+YAgpPq0koXZ1rZDHX52Jrnv37lgsFqxWK926dbtt2oYNG2K32/n555+LTRMQEMCQIUP49NNPmTdvHh999FGR6bRax/r0Ntufo+ujo6PR6XScO3eOyMhIp4fRWELAvsnOnTuVv9PT0zl+/Dj16tVTznvzOQuo1Wo6d+7MnDlzOHToEMnJyWzevBk/Pz+6dOnCBx98UOolU28+f8HzgvML9z7R0haEilRwv7UkQ92XKrYsd4BKpeLYsWPK37cTFhbGkCFDGD58OPPnzycmJoazZ89y+fJl+vXrx5QpU2jatCn169fHbDazdu3aYoNVzZo1kSSJtWvX0qNHDwwGAx4eHrz88suMGzcOu93O/fffT2ZmJtu2bcPT05MhQ4aUqk4zZszAz8+PoKAgXn31Vfz9/endu7dSh+zsbDZt2kRMTAyurq5s3ryZ06dP065dO3x8fPj++++x2+3UqVMHcIwsb9u2Lc2aNWPatGk0atQIFxcX9uzZw++//07Tpk2dzr9y5UqaNWvG/fffz4oVK9i9e7cywh7g3LlzpKWlce7cOWw2mzLhTGRkJO7uRS9MJFQhslBhMjMzZUDOzMys6KIIFWRwWH95GtPkh2O6O203mUxyYmKibDKZKqhkf92QIUPkhx9+uNj9Dz/8sDxkyBBZlmW5ffv28tixY5V9JpNJHjdunBwSEiJrtVo5MjJSXrp0qSzLsjxz5ky5Xr16ssFgkH19feWHH35YPn36tCzLsnzmzBkZkH/77TclrxkzZsjBwcGyJEnK+ex2uzxv3jy5Tp06skajkQMCAuRu3brJP//8c4n1+umnn2RA/u677+T69evLWq1WbtGihXzw4EGndKNGjZL9/PxkQJ46daq8detWuX379rKPj49sMBjkRo0ayV988YXTMRcvXpTHjBkjh4eHyxqNRnZ3d5dbtGghv/3223JOTo6SDpAXLFggd+nSRdbpdHJYWFihvIYMGXJjORjnx08//VRiHYU763af69LGA0mWK8mNnf9AWVlZeHl5ERQUhIuL40rFrW+HeHvuba1oRZNLTdjecDtPP/w03V/ojoefB3l5eZw5c4bw8PBCcxQLFWPLli107NiR9PT0CptpTJIk1qxZo7Tsharldp/rgniQmZl527UoRPd4JXDp0qWKLoJQUQId/8sNzKWfuh/SfAkffGhmbMYrjV9Bm6VFb9GjUWnQumjRqDRoVBrULmpl5LkgCP8clSJoL1iwgLfffpvU1FRiYmJ4//33adGi+CUKV65cyeuvv05ycjJRUVG89dZb9OjRQ9kvyzJTp07lv//9LxkZGcocvlFRUUqatLQ0nnvuOb777jtcXFzo06cP7733ntM1n0OHDhEbG8uePXsICAjgueeeY8KECWUqS2ksero7Bm1lvy3jzrT4pX/42o6pm/WYLkNLjQuBrhKX7TKptjT+yEzCZDWRnpcO+cUcbFcj2TVg1yLZ1SC7AC5IssuNv6Wb/gbHNB3Sjbfy5olVJJALhsSVdsBZEelKfCsr9ypi/57+POu++6LIfQ/16k+3Bx2zmB3+PQdPz4r7vJ45n8fBxNINWhMqF9lu5splM0++fIQ/brm7y26rIpOrfPHFF7z44ossXryYli1bMm/ePLp160ZSUhKBgYGF0m/fvp0BAwYwa9YsevbsyWeffUbv3r3Zv3+/sljAnDlzmD9/PsuXLyc8PJzXX3+dbt26kZiYqHRJDBo0iJSUFBISErBarQwbNoyRI0fy2WefAY6uiq5du9K5c2cWL17M4cOHGT58ON7e3owcObLUZSmNztX34VHCetrCvekn144kAb29bdxf/c+ol6eFU2owqlxwUamwymBFvvGwkQ9YpXzsqnzsmLDLYOfPh1B2I17tz8Dnexa5z83DDV9/X/Zc2AOkYCXl7hbuBsf5wcqxCjm/8Dflg+36Va50HEVqzi2Tq+QBB0vOosKvabds2ZLmzZvzwQcfAI65gY1GI8899xyTJk0qlL5///7k5OSwdu1aZVurVq1o3LgxixcvRpZlqlWrxksvvcTLL78MQGZmJkFBQSxbtozHH3+cY8eOER0dzZ49e2jWrBkAGzZsoEePHvzxxx9Uq1aNRYsW8eqrr5KamqrcPjJp0iS+/vprfv/991KVpSQF1zAmMQk94rrlP1lE+0QadDqGt3smAZ7XUHv5cyZsMeHV/dFry5aXHccU5I4RSH/eUlbwSS8YmQRFN45L+4VQli+Of3Z/iiA4WKxw7o8r5B4bg5znHLRzTDLdx9kq9zVti8XCvn37mDx5srLNxcWFzp07s2PHjiKP2bFjBy+++KLTtm7duvH1118DcObMGVJTU+ncubOy38vLi5YtW7Jjxw4ef/xxduzYgbe3txKwATp37oyLiwu7du3ikUceYceOHbRr104J2AXneeutt0hPT8fHx6fEspRWDm7k34GgLVfy7kjBwYSBhT+/z+Wf/+xZqhd1jfkfXEDWVkercUGjst7yyEetsuIi2XFxseMi2ZV32wVu6om+KVyKfw6CUKHyJNC7QD23fPQa5+teWbe/I1JRoUH76tWr2Gw2goKCnLYHBQUprdlbpaamFpk+NTVV2V+w7XZpbu16V6vV+Pr6OqUJDw8vlEfBPh8fnxLLciuz2YzZbFaeZ2U55kc+VLchapVbkccI9z6t2kI3jw3Y7CryrHpMFgOeAQZULt7YkTDf2CbLLtjtEnbZBVmWkJ3mRpKRJNkRxG88kBxjBiTpxs83Sb7x/Eb6G/tuR4nzt0n352+BYtKIHwuCAIDNbuFKlsTc5fO5dsl5GlOrLRd4ssQ8Kvya9j/JrFmzmD59eqHtzwwciKv+732z3fx1WVxOd7+LsuI7RctWgoorr8olH8nlzyCqMtTEy2MBgb42ihujKMuOwWR/XuCSHL0r8k29LDf/feu+u0EufK6K/1chCBXDmm9Hp8+gWbMPMF13btzlmW18t7/kPCo0aPv7+6NSqQrd8nTp0iWCg4OLPCY4OPi26Qv+f+nSJUJCQpzSNG7cWElz+fJlpzzy8/NJS0tzyqeo89x8jpLKcqvJkyc7dadnZWVhNBp5aGzKba9hCP88BfdzevqL+7QF4V6Rl5fH9Tw1T078tsj7tCd9UMnnHtdqtTRt2pRNmzYp2+x2O5s2baJ169ZFHtO6dWun9AAJCQlK+vDwcIKDg53SZGVlsWvXLiVN69atycjIYN++fUqazZs3Y7fbadmypZLml19+wWq1Op2nTp06+Pj4lKost9LpdHh6ejo9BEEQBKHUynuatrKKj4+XdTqdvGzZMjkxMVEeOXKk7O3tLaempsqyLMtPPPGEPGnSJCX9tm3bZLVaLb/zzjvysWPH5KlTp8oajUY+fPiwkmb27Nmyt7e3/M0338iHDh2SH374YTk8PNxp6rju3bvLTZo0kXft2iX/+uuvclRUlDxgwABlf0ZGhhwUFCQ/8cQT8pEjR+T4+HjZ1dVV/vDDD8tUltsR05gKxanK05iWxa3TmP5VRU1jKgiVTXlMY1rhQVuWZfn999+XQ0NDlbl8d+7cqexr3769Mm9wgS+//FKuXbu2rNVq5fr168vr1q1z2m+32+XXX39dDgoKknU6ndypUyc5KSnJKc21a9fkAQMGyO7u7rKnp6c8bNgw+fr1605pDh48KN9///2yTqeTq1evLs+ePbtQ2Usqy+2IoC0UpyoH7YK5r5955plC+0aPHi0Dxc49/lfl5+fLKSkpstVqlWX5z3nC09PT/3beZREXFyd7eXmV+biUlBT5+eefl2vVqiXrdDo5MDBQbtOmjbxw4UKnucdLcubMGXn48OFyWFiYrNfr5YiICHnKlCmy2Wwuc5mE8nfPBO1/KhG0heJU9aBtNBplLy8vOTc3V9luMplkb29vOTQ0tNyD9q2qUtA+deqUHBwcLNetW1f+4osv5MTERPnUqVPy119/Lffo0UP+5ptvSp3X+vXr5aFDh8o//PCDfOrUKfmbb76RAwMD5ZdeeqmMNRHuhPII2mIaLkEQyt19992H0Whk9erVyrbVq1cTGhpKkyZNij3ObDYzceJEjEYjOp2OyMhIZdnJ9PR0Bg0aREBAAAaDgaioKOLi4gBITk5GkiQOHDhAcnIyHTt2BMDHxwdJkhg6dCjgGDMza9YswsPDMRgMxMTE8NVXX5WqTlu2bEGSJNatW0ejRo3Q6/W0atWKI0eOKPuHDRtGZmYmkiQhSRLTpk0DHMtvRkVFodfrCQoKom/fvkq+o0ePRq1Ws3fvXvr160e9evWIiIjg4YcfZt26dfTq1UtJK0kSixYt4sEHH8RgMBAREeFU/u7duxMXF0fXrl2JiIjgX//6Fy+//LLT+yBUbeKWL0GoImRZJjc3t0LO7erqiiSV7Vax4cOHExcXx6BBgwBYunQpw4YNY8uWLcUe8+STT7Jjxw5lPe0zZ85w9epVAF5//XUSExNZv349/v7+nDx5EpPJVCgPo9HIqlWr6NOnD0lJSXh6emIwGADHbZeffvopixcvJioqil9++YXBgwcTEBBA+/btS1Wv8ePH89577xEcHMwrr7xCr169OH78OG3atGHevHlMmTKFpKQkANzd3dm7dy/PP/88n3zyCW3atCEtLY2tW7cCcO3aNX788UfefPNN3NyKnqvh1tf99ddfZ/bs2bz33nt88sknPP744xw+fLjYtcUzMzPx9fUtVd2EKuAO9QIIpSC6x4XiFNWNlp2dXeQ6yXfjkZ2dXeqyF6ynffnyZVmn08nJyclycnKyrNfr5StXrhS7nnZSUpIMyAkJCUXm26tXL3nYsGFF7rt1IFpR3eN5eXmyq6urvH37dqdjn3rqKadBqMUpyDM+Pl7Zdu3aNdlgMChrWhfVPb5q1SrZ09NTzsrKKpTnzp07ZUBevXq103Y/Pz/Zzc1NdnNzkydMmKBsB+RRo0Y5pW3ZsqX87LPPFlnmEydOyJ6envJHH31UYv2EO688usdFS1sQhDsiICCAhx56iGXLliHLMg899BD+/v7Fpj9w4AAqlarYFu+zzz5Lnz592L9/P127dqV37960adOm1OU5efIkubm5dOnSxWm7xWK5bZf9rW6+pdPX15c6depw7FjxC3h06dKFmjVrEhERQffu3enevTuPPPIIrq6uxR6ze/du7HY7gwYNcppF8dbzFzw/cOBAoTwuXLhA9+7deeyxxxgxYkQpaydUdiJoC0IV4erqSnZ26ZbvuxPn/iuGDx/OmDFjAMcSvLdT0IVdnAcffJCzZ8/y/fffk5CQQKdOnYiNjeWdd94pVVkKXrt169ZRvXp1p306na5UefwVHh4e7N+/ny1btvDjjz8yZcoUpk2bxp49e4iMjESSJKU7vUBERARQ8mtSnIsXL9KxY0fatGnDRx999LfrIFQeYiCaIFQRkiTh5uZWIY+yXs8u0L17dywWC1arlW7dut02bcOGDbHb7fz888/FpgkICGDIkCF8+umnzJs3r9iAVLDQj81mU7ZFR0ej0+k4d+4ckZGRTg+j0VjqOu3cuVP5Oz09nePHjyvXk7VardM5C6jVajp37sycOXM4dOgQycnJbN68GT8/P7p06cIHH3xATk7p1si++fwFz2++nn3hwgU6dOhA06ZNiYuLw8VFfM3fS0RLWxCEO0alUildxyrV7ZcxCgsLY8iQIQwfPlwZiHb27FkuX75Mv379mDJlCk2bNqV+/fqYzWbWrl1b7OCrmjVrIkkSa9eupUePHhgMBjw8PHj55ZcZN24cdrud+++/n8zMTLZt24anpydDhgwpVZ1mzJiBn58fQUFBvPrqq/j7+9O7d2+lDtnZ2WzatImYmBhcXV3ZvHkzp0+fpl27dvj4+PD9999jt9upU6cO4BhZ3rZtW5o1a8a0adNo1KgRLi4u7Nmzh99//52mTZs6nX/lypU0a9aM+++/nxUrVrB7925lhH1BwK5ZsybvvPMOV65cUY4rbnploYq5Q9fbhVIQA9GE4lT1+7QffvjhYvcXNxBNlh31HjdunBwSEiJrtVo5MjJSXrp0qSzLsjxz5ky5Xr16ssFgkH19feWHH35YPn36tCzLRc+INmPGDDk4OFiWJEk5n91ul+fNmyfXqVNH1mg0ckBAgNytWzf5559/LrFeBQPRvvvuO7l+/frKZFAHDx50Sjdq1CjZz89PBuSpU6fKW7duldu3by/7+PjIBoNBbtSokTJwrcDFixflMWPGyOHh4bJGo5Hd3d3lFi1ayG+//bbT5CqAvGDBArlLly6yTqeTw8LCnPKKi4srdjChUPHKYyCaJMt/rhEk3F1ZWVl4eXmVuOi58M9TsGBIeLhYMKSy2LJlCx07diQ9PR1vb+8KKYMkSaxZs0Zp2QtVy+0+16WNB+JihyAIgiBUEeKadgUq6OTIysqq4JIIlY3FYsFut2Oz2Yoc2CSUv9GjR7NixYoi9w0aNIh+/foBVPh7UvDvQqh6bDYbdrud7OxsLBaL076COFBS57foHq9Ap0+fplatWhVdDKESqlmzJosXL77tfc1C+UpLSyt2BLebm5uYVUwoF1evXmXUqFGcPXu2yP3nz5+nRo0axR4vgnYFysjIwMfHh3PnzuHlVfLi55VdVlYWRqOR8+fP3xPX6CuyPhaLhUuXLhEWFlYu17RtNhuHDh2iUaNGJY7irgpEfSqve6kuUL71ycvLIzk5maCgIOW2xAKyLHP9+nWqVat229v0RPd4BSp4Y7y8vO6JIFfA09NT1OdvysvL48qVK6hUqnL94ivv/CqaqE/ldS/VBcqnPiqVChcXF9zd3Yv8MV6axpsYiCYIgiAIVYQI2oIgCIJQRYigXYF0Oh1Tp069o/Me302iPpWXJElUq1btL09HWtmI+lRe91JdoPLVRwxEE4RKSEyuIgj3nvL4XIuWtiAIFaZDhw688MILfzuf5ORkJEkqcolKQbiXiKAtCEK5Gjp0KJIkMWrUqEL7YmNjkSSJoUOHlus5jUYjKSkpNGjQAHBMOSpJEhkZGeV6npIsW7aszFOcDh06tMhpSf9qHbZs2cJ9992HTqcjMjKSZcuWlel4oXITQVsQhHJnNBqJj4/HZDIp2/Ly8vjss88IDQ0t9/OpVCqCg4NRq//Zd7GeOXOGhx56iI4dO3LgwAFeeOEFnn76aX744YeKLppQTkTQFgSh3N13330YjUZWr16tbFu9ejWhoaE0adKk2OPMZjMTJ07EaDQqLcWCZSfT09MZNGgQAQEBGAwGoqKiiIuLA5y7x5OTk+nYsSMAPj4+Ti17u93OrFmzCA8Px2AwEBMTw1dffVWqOhW0fNetW0ejRo3Q6/W0atWKI0eOKPuHDRtGZmYmkiQhSRLTpk0DHMtvRkVFodfrCQoKom/fvmV6PeHPVvzXX3+t5NWtWzfOnz+vpFm8eDHh4eG8++671KtXjzFjxtC3b1/mzp1b5vMJlZMI2nfJggULlNmtWrZsye7du+96GWbNmkXz5s3x8PAgMDCQ3r17k5SU5JQmLy+P2NhY/Pz8cHd3p0+fPly6dMkpzblz53jooYdwdXUlMDCQ8ePHk5+ffzerUsjs2bORJMnp+mhVq8uFCxcYPHgwfn5+xMTEcPHiRXJzc5X9drudE8kn2LlvJ7/u+pXfjv7Gtaxr5FhylEdmbiZHko6wbfc2tu/ZTuKJRLJMWU5p/srjr4xX7dOnD++//z779u3j8OHDLFq0yKlbXJZlzGYzV65cYd++fSQlJTFo0CA+//xz5s+fz7Fjx1i4cCE5OTns37+fUaNGceDAAdauXcuxY8dYtGhRkdO8Go1GVq1aBUBSUhIpKSm89957gOMz8L///Y/Fixdz9OhRxo0bx+DBg1mxYgUHDx5k7969pKenO+UnyzIXLlzg5MmTAIwdO5ZZs2axZ88eAgIC6NWrFyaTieDgYF566SXc3d3ZvXs3f/zxBy+//DJ79+7l+eef59VXX2XdunX85z//oVatWqSmppb5Nc3NzeWNN97gf//7H9u2bSMjI4PHH39c2b9jxw7atWvHiRMnlPrcf//97NixA3D8G/rjjz84evQo+/fv5+DBg5w5c6bQPNj5+fmcPn2a/fv389tvv5GcnFxovvPc3Fx+//139u3bx6FDh/5SfUpy/fp1p7rc+t7c7OzZs+zdu7fQZ7yy1KW8/LP7ku6SL774ghdffJHFixfTsmVL5s2bR7du3UhKSiIwMPCulePnn38mNjaW5s2bk5+fzyuvvELXrl1JTEzEzc0NgHHjxrFu3TpWrlyJl5cXY8aM4dFHH2Xbtm2AY0q/hx56iODgYLZv305KSgpPPvkkGo2GN998867V5WZ79uzhww8/pFGjRk7bq1Jd0tPTadu2LR07dmT9+vX4+vqSlZXlNAPTmT/OUHt57btargLZk7Nx07qVOn1eXh7t2rVj9uzZeHh4YDKZlPfp559/BiA1NRWr1Yqnpyf16tVj27ZtrFq1ih9++IGuXbsCji/c6tWrU7NmTa5fv07t2rUJCAggLCyMsLCwIs+tUqmUecIDAwOVa8xms5k333yTjRs30rp1awAiIiLYvHkzK1eupEePHpw6dapQfqmpqVy+fJng4GAAnnvuOUJDQ6lfvz7Lly+nRo0afPjhh3Tp0oXIyEhUKhV6vR6z2Yy7uzvnzp3Dzc2N2rVrExwcTJs2bXjwwQdJTk5W3t+1a9fi7u7udN6iFgWxWq188MEHtGzZEoDly5dTr149du/eTYsWLUhNTaVjx464urri7+/PqVOnCAwMJCsrC5PJhEajITc3l5CQEFxdXcnPz+f8+fOcPHmS6Oho5TynT5/GarVSu3ZtZFkmOTmZs2fPEhERoZTtxIkTeHh4ULNmTUwmk1KfgICAkv+BlJLdbneqS3HS09PJzs5Go9EU2ldZ6lJeREv7LvjPf/7DiBEjGDZsGNHR0SxevBhXV1eWLl16V8uxYcMGhg4dSv369YmJiWHZsmWcO3eOffv2AZCZmcmSJUv4z3/+w//93//RtGlT4uLi2L59Ozt37gTgxx9/JDExkU8//ZTGjRvz4IMPMnPmTBYsWFDo1/rdkJ2dzaBBg/jvf/+Lj4+Psr2q1eWtt97CaDQSFxdHixYtqFGjBgaDQblHXJZlrly5clfL9Hfk5+cTERHBQw89xOeff86aNWvo0KGD020uly9fRqvVotPpcHV15erVq6hUKmJiYgAwmUxkZWURFhaGu7s7zz33HD/88APdu3fnpZdeYvv27WUq08mTJ8nNzaVLly64u7srj/j4eFJSUpz+/RSQZZnLly8TEhKiBNVevXphsVjIyMjA19eXqKgojh075jRPfGhoKGlpaVgsFrp06UL16tV56KGHmDJlCqtXr0av1xMYGKi0CguuQd/8+PjjjwuVR61W07x5c+V53bp18fb25tixY8o2vV5P9erVi6yPWq2mdu3a+Pr6otfrcXd3JzQ0lNzcXMxmc5Gvu4eHh1N9AK5du4bdbicsLAyDwYCvr69TfcqLl5dXsXUpYLFYOHfuHBEREYXupa5MdSkvoqV9h1ksFvbt28fkyZOVbS4uLnTu3FnpsqoomZmZAEqrZN++fVitVjp37qykqVu3LqGhoezYsYNWrVqxY8cOGjZsSFBQkJKmW7duPPvssxw9evS21yvvhNjYWB566CE6d+7Mv//9b2V7VavLt99+S7du3Xjsscf4+eefadq0KdOnT1f2WywWVHYVl8dextXVVdmedDwJV4MrRqORq9eucuGPC0rQA0fQ+e233wiPCMfHu/gvvpK4alxLTnQTtVpNVlYWgwcP5sUXX0SWZV566SVlbmWbzYbVanUaOFYQFLOzswkKCiInJweVSqX0AhW0ThcuXEhiYiKdOnUiNjaWd955p1Rlys7OBmDdunVUr17daV9xE+hYLBalN+Dmurm5uZGdnY2vry92ux1JkpRyAkr6nJwcfHx8+Oabb9i+fTtHjx5lypQpTJs2jU2bNpGXl4fdbsfNzY3IyEinc//xxx+lqtfNgoODCwWby5cv4+npicFgKPKYghZ9wXtx6+t+a320Wi05OTl4eHg4LWzh6elJamoq+fn5d21AoCzLnDlzhuDg4CLrV5XqUlqipX2HXb16FZvN5hQYAIKCgir0uondbueFF16gbdu2ym0yqampaLXaQres3FzW1NTUIutSsO9uio+PZ//+/cyaNavQvqpWl9OnT7No0SKioqL44YcfePzxx0lPT1eu4VmtViRJwsvVCzetm/LwMnihQYOb1g0tWjwNnk773XXueOg90KJ12l7WR1lng9Lr9fj6+lKtWjVycnIwmUw88sgj+Pn5AY5/f4BTvg0bNsRutyuXL6xWa6HuzoKxGB988AHz5s3jo48+KvL8BSso3dzFHB0djU6n49y5c0RGRjo9jEZjkflYrVYApy/unTt3otFosFqtpKenc+rUKSXgarVabDYbkiShVquV42VZpkOHDsyZM4dDhw6RnJys1LMs4wXy8/PZu3ev8jwpKYmMjAzq1asHQOvWrdm0aZPTMVu2bFEuB9yq4Bq3r6+v0lVf1Ot+a32KSlPwvCDN3ZCamookScVeZqxKdSmtyvUTQrhrYmNjOXLkCL/++mtFF+UvOX/+PGPHjiUhIeGemDHMbrfTrFkz5Vp6vXr12LdvH2lpaYSEhFRw6crOYrGQlpZGVFQUhw4dIi8vj6tXr972vQoLC+PRRx9l0qRJeHp6EhISQmJiIomJifTr148pU6bQtGlTJEkiKyuLtWvXKsHqVjVr1kSSJNauXUuPHj0wGAx4eHjw8ssvM27cOOx2O/fffz+ZmZls27YNT09PhgwZUqq6zZgxg4kTJ+Lv78/ixYvx9fWlU6dOSh2ys7PZtGkTLi4ueHt7s3btWnbu3EmbNm0A+P7777Hb7co11rLQaDQ899xzzJ8/H7VazZgxY2jVqhUtWrQAYNSoUXzwwQdMmDCB4cOHs3LlSr7++mvWrVtXKC+73a5cJ65Zs2aZylEZ5OTkcPnyZerVq1dpphi9G0RL+w7z9/dHpVIV6rK6dOmSMrDlbhszZgxr167lp59+clpsPTg4WLlWd7Oby1pU91vB87tZn3379nH58mXuu+8+1Go1arWan3/+WfkyCwoKqjJ1AQgJCXEaCAQorbmCv4FCI9tvbiXcnL6ALMvk5+cXOUDnTsrLyyM4OBhfX1+Cg4MJCwsjMDBQ6cEo6Iq8NWi9/vrr9OjRg9GjR9OuXTumTp1KTk4O4GjFTp48mX79+tG7d29UKhXx8fFFnr969epMnz6dSZMmERQUxJgxYwCYOXMmr7/+OrNmzaJevXp0796ddevWER4eXmQ+Rb3us2fPZsaMGfTu3ZvU1FRWrFih7GvTpg2jRo2if//+/N///R+LFi3C29ubjRs3MnDgQOrVq8fixYv5/PPPiYqKAihTwHF1dWXixIkMHDiQtm3b4u7uzhdffKHsDw8PZ926dSQkJBATE8OKFSt477336Natm1M+drud06dPY7FYqF27ttOAx9L8Oyoqza3/Vu+07OxsrFYrhw4dYu/evezduxeLxcL58+c5dOhQseWsjHUpE1m441q0aCGPGTNGeW6z2eTq1avLs2bNuqvlsNvtcmxsrFytWjX5+PHjhfZnZGTIGo1G/uqrr5Rtv//+uwzIO3bskGVZlr///nvZxcVFvnTpkpLmww8/lD09PeW8vLw7X4kbsrKy5MOHDzs9mjVrJg8ePFg+fPhwlaqLLMvygAED5Pvvv195bjKZ5F9//VU+cuSILMuO9+7AgQNySkqKkiY/P1/eu3evfO3aNVmWZTk3N1fes2ePnJ2draTJyMiQ9+zZI5vN5rtUE4fffvvN6XWVZVm+ePGifOjQIVmWK2999uzZI6elpSnPby7nTz/9JAPy1atXy1zOS5cuyfv375dtNpuS5vz58/Lhw4dLXba4uDjZy8vrb9VHlh3fPydOnJCPHDkiWyyWQsfcrfqU1a11sVqtcm5urtPjwIED8vnz52WTyVQp62IymeTExESlfH+F6B6/C1588UWGDBlCs2bNaNGiBfPmzSMnJ4dhw4bd1XLExsby2Wef8c033+Dh4aG0ery8vDAYDHh5efHUU0/x4osv4uvri6enJ8899xytW7emVatWAHTt2pXo6GieeOIJ5syZQ2pqKq+99hqxsbF3dTUsDw8P5Vp8ATc3N/z8/JTtVaUu4Lg9rU2bNrz55pv069ePAwcO4OHhodyWUnDdLiUlBb1ej1ar5eLFi07X7Q0GA56enpw9e5aaNWsiyzLnzp3D19dXucZ7t3h5eZGSkoJWq8VgMJCbm8ulS5eU+6orU31sNpsychocXfu5ubmoVCp0Op1SzoKBbGfPni1zOX19fUlJSeHs2bMEBwdjMpm4fPlysdfS71R9NBoNp0+fJjc3V7kOX9CqVKlUuLi4VKr6lPTe3DpITJIkNBqNchmmMtWlvIigfRf079+fK1euMGXKFFJTU2ncuDEbNmwoNAjqTlu0aBHgWKThZnFxccqkF3PnzsXFxYU+ffpgNpvp1q0bCxcuVNKqVCrWrl3Ls88+S+vWrXFzc2PIkCHMmDHjblWj1KpSXZo3b86aNWuYPHkyM2bMoE2bNsyePdvpVpfg4GDsdjtnz54lPz8fd3d3oqKinEa9RkREcO7cOZKSkpAkCR8fnwr58gkNDeXChQucO3cOq9WKVqslICDA6fp8ZalPbm4uSUlJzJo1i/Xr1yvbC2Y1A3jkkUdo37494Agk0dHRZSqnWq0mKiqKc+fOkZiYiFqtJiQk5I7cB1xQnwIFM6b5+flRrVo15ZJRYmKi03F16tTBw8OjUtXndnUp7pLGrSpLXcqLWJpTECohsTTn3Xf58mWysrKK3Ofp6XlXJ0IS7k3l8bkWLW1BEAQct5OJwCxUdmL0uCAIgiBUESJoC4IgCEIVIYK2IAiCIFQRImgLgiAIQhUhgrYgCIIgVBEiaAuCUGE6dOjACy+88LfzSU5ORpIkDhw48LfzEoTKTARtQRDK1dChQ5EkiVGjRhXaFxsbiyRJymQ+5cVoNJKSkqLMhrdlyxYkSSo09/ydtmzZskIry5Vk6NCh9O7du0zHyLLMlClTCAkJwWAw0LlzZ06cOFGmPISqSQRtQRAU169fZ+/evYUWJikro9FIfHw8JpNJ2ZaXl8dnn31GaGhoscdlZWVx5MiRMq9+pVKpCA4OVqa1vHkWrdLIzMzk6NGjZT5vRZkzZw7z589n8eLF7Nq1Czc3N7p160ZeXl5FF024w0TQFoR/qKSkJM6dO+e0zc3NjZiYGKdVn/6K++67D6PRyOrVq5Vtq1evJjQ0lCZNmhR73OnTp/noo48IDQ1Fp9MRGRnJkiVLAEhPT2fQoEEEBARgMBiIiooiLi4OcO4eT05OVlr5Pj4+Ti17u93OrFmzCA8Px2AwEBMTw1dffYWXlxeSJJGWllZs2Qpa7+vWraNRo0bo9XpatWrFkSNHlP3Dhg0jMzNTmQJ12rRpACxcuJCoqCj0ej1BQUH07du32PN06NCBMWPGMGbMGLy8vPD39+f1119XflDIssy8efN47bXXePjhh2nUqBH/+9//uHjxIl9//fXt3xihyhMzoglCFSHLkJtbfvnl5krIssSNlS9vcAFcsFic07q6QlmXLB4+fDhxcXEMGjQIgKVLlzJs2DC2bNlSZPrr168zYcIEfv/9d+bPn09MTAxnzpzh6tWrgGPZzsTERNavX4+/vz8nT550askXMBqNrFq1ij59+pCUlISnpycGgwGAWbNm8emnn7J48WKioqL45ZdfGDx4MAEBAdSrV49Lly7h5+d323qNHz+e9957j+DgYF555RV69erF8ePHadOmDfPmzWPKlClKS9/d3Z29e/fy/PPP88knn9CmTRvS0tLYunXrbc+xfPlynnrqKXbv3s3evXsZOXIkoaGhjBgxgjNnzpCamkrnzp2V9F5eXrRs2ZIdO3bw+OOP3zZvoWoTQVsQqojcXHB3L88ca5c65R9/ZJCe/gcWiwUvLy/CwsJIT0/n4sWL2Gw2/Pz8MBqNygIbsizTsWNHJk2axLp169DpdGzbto34+Phig/a+fftISEggISFBCUh6vZ709HSuXr3KkSNHCA0NJSAggNDQUPR6PZcuXeLAgQNYbvqVoVKpuHLlCuCYmtRgMHD48GFq1KjBG2+8wcKFC6lRowaBgYEMHTqUX3/9lQ8//JC4uDjOnTtHXl7ebeeFnjp1Kl26dAEcwbVGjRqsWbOGfv36KS32m9djP3fuHG5ubvTs2RMPDw9q1qx5294GcPzwmDt3LpIkUadOHQ4fPszcuXMZMWKEsjrfrQsOBQUFKfuEe5cI2oIglOjKlSvUrh2BzWbj1KlTnDp1CpVKRVRUFGazmVOnTuHu7o6vry8AJpMJvV5P9+7d2blzJyaTiTZt2uB+m18d+/btQ6VSKatpFTCbzWRmZvLCCy8wcOBAunbtygMPPECPHj3o0aMH2dnZbN++vcQ6FJRjzJgxyLKMLMu4uLhgsVho0qQJOp0OjUZDdnb2bYN269atlb99fX2pU6cOx44dKzZ9ly5dqFmzJhEREXTv3p3u3bvzyCOP4OrqWuwxrVq1Un4AFZzz3XffxWazlVhP4d4mgrYgVBGurnBjSedycfz4cQwGg9MyhdevX+fEiRM0atQItVrN1atXOXfuHHXqRGMwOAKZj48P165dU659GwwGPDw8uH79Or6+vthsNiwWCxEREYwcOZIxY8YAMHnyZKWruyi3u44eFhZGrVq1OHv2LEuXLuWXX35h0KBBxMbG8s4775Rq/fOCQLxu3Tr8/Pw4ceKEcp254HiNRuPUai8PHh4e7N+/ny1btvDjjz8yZcoUpk2bxp49e8o80hxQWvGXLl1yWur00qVLNG7cuJxKLVRWYiCaIFQRkgRubuX3cHWVcXWVC203GOxFbPuz5alWq9FqtU5BVqPRYLVaAZTW4JEjRwgMDCQnJ4fc3FwaN26M2Wwutn61atXCbrfz888/O22/+VwBAQH069ePefPmMW/ePD766COlTDcreH5zy7Rx48bodDrOnTtH3bp1MRqN1KxZk8jISOWHi4uLC3a7/bbvw86dO5W/09PTOX78OPXq1VPKWlRrWK1W07lzZ+bMmcOhQ4dITk5m8+bNxZ5j165dhc4ZFRWFSqUiPDyc4OBgNm3apOzPyspi165dTr0Awr1JtLQFQbgt6ZYRaAUjo4tTMMo5OjoaQBld7enpedvWdGhoKP3792f48OHKQLR9+/Zx9uxZGjRowJQpU2jatCmenp7k5eWxdu1aJVjeKiQkBEmSWLt2LZ06dSI3NxdPT09efvllxo0bh9VqxdfXF5PJxIEDB/D09GTIkCHk5+cX+gFwqxkzZuDn50dQUBCvvvoq/v7+yn3WYWFhZGdns2nTJmJiYnB1dWXz5s2cPn2adu3a4ePjw/fff4/dbqdOnTrFnuPcuXO8+OKLPPPMM+zfv5/333+fd999F3C8/i+88AL//ve/iYqKIjw8nNdff51q1aqV+X5voeoRQVsQ/qFuF3j/joKgZ7Va8fDwuO314Zu5uroyffp0Fi9ezOjRo7l27RrVqlXjqaeeAhyt2MmTJ3PmzBn0ej3t27cnPj6+yLwCAwOZNGkSkyZN4tKlS/To0YMvv/ySmTNnEhAQwJw5czh16hTe3t40bdqUV155Bbvdjtlsvu21ZoDZs2czduxYTpw4QePGjfnuu+/QarUAtGnThlGjRtG/f3+uXbvG1KlT6dy5M6tXr2batGnk5eURFRXF559/Tv369Ys9x5NPPonJZKJFixaoVCrGjh3LyJEjlf0TJkwgJyeHkSNHkpGRwf3338+GDRtK/VoLVZckV5XZBAThHyQvL48zZ84QHh5+x76Ik5OTMZlMRERE4OLiglqtJjs7m6SkJBo3bqxc0z5//rzTaOeLFy+Snp7uFHTOnDmDzWYjMjIScNxvnZ2djdFoxNXVlfz8fLKysjAYDMVex7106RLXrl1TWuilPRc47jk3GAzKxC179+6lVq1a+Pj4YDabOXz4MNHR0UpAzs/P58CBA9SpUwcPDw/gz+v5xd2nvmXLFjp27Eh6evpfuhZdWh06dKBx48bMmzfvjp1DqBjl8bkWLW1B+IcKDg7mzJkzHD16FLvdTsOGDcst77CwMFJSUjh//jxWqxW1Wo2bmxteXl7FHuPn58cff/xR4i1Xd0paWhp+fn5/e2IZQbiTREtbECqhu9HSrozOnz+P3W6nZs2ad/W8VquVAQMGsGHDhiL3Dx48mMcff1y0tIW/pTw+1yJoC0Il9E8N2vn5+Vy5coXg4OA7ds29KDk5Ofzxxx/FtrI9PT0JDAy8a+UR7k2ie1wQhHuKWq12uvf4bnFzc7vtaG5BqCzEfdqCIAiCUEWIoC0IgiAIVYQI2oIgCIJQRYigLQiCIAhVhAjagiAIglBFiKAtCIIgCFWECNqCINwRqampPPfcc0RERKDT6TAajfTq1UtZnSosLExZfMTV1ZWGDRvy8ccfO+WxZcsWJY0kSQQFBdGnTx9Onz5drmWtW7cuOp2O1NTUQvs6dOiAJEnMnj270L6HHnoISZKYNm1aofSSJKHX64mOjmbhwoXlWl7hn0sEbUEQyl1ycjJNmzZl8+bNvP322xw+fJgNGzbQsWNHYmNjlXQzZswgJSWFI0eOMHjwYEaMGMH69esL5ZeUlMTFixdZuXIlR48epVevXkUugflX/Prrr5hMJvr27cvy5cuLTGM0Glm2bJnTtgsXLrBp06Yi7ysfMWIEKSkpJCYm0q9fP2JjY/n888/LpbzCP5sI2oIglLvRo0cjSRK7d++mT58+1K5dm/r16/Piiy86rUft4eFBcHAwERERTJw4EV9fXxISEgrlFxgYSEhICO3atWPKlCkkJiZy8uTJEsuRkZHBM888Q1BQEHq9ngYNGrB27VqnNEuWLGHgwIE88cQTLF26tMh8evbsydWrV9m2bZuybfny5XTt2rXImdJcXV2Vek2bNo2oqCi+/fbbEssrCCURM6IJQlUhy2DLrZhzq1yhlNOKpqWlsWHDBt544w3c3NwK7S9q3m673c6aNWtIT09XlrksjsFgAMBisdw2nd1u58EHH+T69et8+umn1KpVi8TERKepSq9fv87KlSvZtWsXdevWJTMzk61bt/LAAw845aXVahk0aBBxcXG0bdsWgGXLljFnzhynrvHblbmk8gpCaYigLQhVhS0XvnSvmHP3ywZ14QBclJMnTyLLMnXr1i0x7cSJE3nttdcwm83k5+fj6+vL008/XWz6lJQU3nnnHapXr17itKMbN25k9+7dHDt2jNq1awMQERHhlCY+Pp6oqChl6c/HH3+cJUuWFAraAMOHD+eBBx7gvffeY9++fWRmZtKzZ8/bBm2bzcbnn3/OoUOHnNbDFoS/SnSPC4JQrsqyBtH48eM5cOAAmzdvpmXLlsydO9dpnewCNWrUwM3NjWrVqpGTk8OqVatKbJEfOHCAGjVqKAG7KEuXLmXw4MHK88GDB7Ny5UquX79eKG1MTAxRUVF89dVXLF26lCeeeAK1uuh2z8KFC3F3d8dgMDBixAjGjRvHs88+e9vyCkJpiJa2IFQVKldHi7eizl1KUVFRSJLE77//XmJaf39/IiMjiYyMZOXKlTRs2JBmzZoRHR3tlG7r1q3KSlseHh6lKkdBN3pxEhMT2blzJ7t372bixInKdpvNRnx8PCNGjCh0zPDhw1mwYAGJiYns3r272LwHDRrEq6++isFgICQkBBcX0T4Syof4lyQIVYUkObqoK+JRhmUyfX196datGwsWLCAnJ6fQ/oyMjCKPMxqN9O/fn8mTJxfaFx4eTq1atUodsAEaNWrEH3/8wfHjx4vcv2TJEtq1a8fBgwc5cOCA8njxxRdZsmRJkccMHDiQw4cP06BBg0I/LG7m5eVFZGQk1atXFwFbKFfiX5MgCOVuwYIF2Gw2WrRowapVqzhx4gTHjh1j/vz5tG7dutjjxo4dy3fffcfevXv/dhnat29Pu3bt6NOnDwkJCZw5c4b169ezYcMGrFYrn3zyCQMGDKBBgwZOj6effppdu3Zx9OjRQnn6+PiQkpKi3GsuCHebCNqCIJS7iIgI9u/fT8eOHXnppZdo0KABXbp0YdOmTSxatKjY46Kjo+natStTpkwpl3KsWrWK5s2bM2DAAKKjo5kwYQI2m41vv/2Wa9eu8cgjjxQ6pl69etSrV6/Y1ra3t3eRo+IF4W6Q5LKMGhEE4a7Iy8vjzJkzhIeHo9frK7o4giCUg/L4XIuWtiAIgiBUESJoC4JQJa1YsQJ3d/ciHwX3XQvCvUbc8iUIQpX0r3/9i5YtWxa5T6PR3OXSCMLdIYK2IAhVkoeHR5luAROEe4HoHhcEQRCEKkIEbUEQBEGoIkTQFgRBEIQqQgRtQRAEQagiRNAWBEEQhCpCBG1BEAShkLCwMObNm1fRxRBuIYK2IAh3RGpqKs899xwRERHodDqMRiO9evVSFtsICwtDkiQkScLV1ZWGDRvy8ccfO+WxZcsWJY0kSQQFBdGnTx9Onz5drmWtW7cuOp2O1NTUQvs6dOiAJEnMnj270L6HHnoISZKYNm1aofSSJKHX64mOjmbhwoWlLovFYmHOnDnExMTg6uqKv78/bdu2JS4uDqvVCsDQoUOVc2g0GsLDw5kwYQJ5eXlOed382nl5edG2bVs2b95cqnLs2bOHkSNHOuX19ddfl7oeBUTwL18iaAuCUO6Sk5Np2rQpmzdv5u233+bw4cNs2LCBjh07Ehsbq6SbMWMGKSkpHDlyhMGDBzNixAjWr19fKL+kpCQuXrzIypUrOXr0KL169cJms5VLWX/99VdMJhN9+/Zl+fLlRaYxGo0sW7bMaduFCxfYtGkTISEhhdKPGDGClJQUEhMT6devH7GxsXz++ecllsVisdCtWzdmz57NyJEj2b59O7t37yY2Npb333/faeWx7t27k5KSwunTp5k7dy4ffvghU6dOLZRnXFwcKSkpbNu2DX9/f3r27FmqHz0BAQG4upZ+HfW7zWazYbfbK7oYd50I2oIglLvRo0cjSRK7d++mT58+1K5dm/r16/Piiy+yc+dOJZ2HhwfBwcFEREQwceJEfH19SUhIKJRfYGAgISEhtGvXjilTppCYmMjJkydLLEdGRgbPPPMMQUFB6PV6GjRowNq1a53SLFmyhIEDB/LEE0+wdOnSIvPp2bMnV69eZdu2bcq25cuX07VrVwIDAwuld3V1Veo1bdo0oqKi+Pbbb0ss77x58/jll1/YtGkTsbGxNG7cmIiICAYOHMiuXbuIiopS0up0OoKDgzEajfTu3ZvOnTsX+dp5e3sTHBxMgwYNWLRoESaTiYSEBGRZZtq0aYSGhqLT6ahWrRrPP/+8ctzNLeSwsDAAHnnkESRJUp4DfPPNN9x3333o9XoiIiKYPn06+fn5Jda1KLd7v5YtW4a3tzfffvst0dHR6HQ6zp07x9ChQ+nduzfTp08nICAAT09PRo0ahcVi+UtlqOzEjGiCUEXIsow111oh59a4apAkqVRp09LS2LBhA2+88UaRS1h6e3sX2ma321mzZg3p6elotdrb5m8wGABK/FK22+08+OCDXL9+nU8//ZRatWqRmJiISqVS0ly/fp2VK1eya9cu6tatS2ZmJlu3buWBBx5wykur1TJo0CDi4uJo27Yt4Agic+bMceoav12ZSxNEVqxYQefOnWnSpEmhfRqNptjpWY8cOcL27dupWbNmieUAx2u3atUq5s6dS3x8PPXr1yc1NZWDBw8WedyePXsIDAwkLi6O7t27K6/h1q1befLJJ5k/fz4PPPAAp06dUrrUi2r1305p3q/c3FzeeustPv74Y/z8/JQfTJs2bUKv17NlyxaSk5MZNmwYfn5+vPHGG2UqQ1UggrYgVBHWXCuz3GdVyLknZ09G63b7YFrg5MmTyLJM3bp1S0w7ceJEXnvtNcxmM/n5+fj6+vL0008Xmz4lJYV33nmH6tWrU6dOndvmvXHjRnbv3s2xY8eoXbs24Fjn+2bx8fFERUUpC4w8/vjjLFmypFDQBhg+fDgPPPAA7733Hvv27SMzM5OePXveNmjbbDY+//xzDh065HR9uDgnTpygQ4cOJaYDWLt2Le7u7uTn52M2m3FxceGDDz4oNn1ubi6vvfYaKpWK9u3bs3HjRoKDg+ncuTMajYbQ0FBatGhR5LEBAQHAn632AtOnT2fSpEkMGTIEcLy+M2fOZMKECWUO2qV5v6xWKwsXLiQmJsZpu1arZenSpbi6ulK/fn1mzJjB+PHjmTlzJi4u91aHsgjagiCUK1mWS512/PjxDB06lJSUFMaPH8/o0aOJjIwslK5GjRrIskxubi4xMTGsWrWqxBb5gQMHqFGjhhIAirJ06VIGDx6sPB88eDDt27fn/fffLzSveUxMDFFRUXz11Vf89NNPPPHEE6jVRX+FLly4kI8//hiLxYJKpWLcuHE8++yzty0vlO2169ixI4sWLSInJ4e5c+eiVqvp06dPoXQDBgxApVJhMpkICAhgyZIlNGrUCB8fH+bNm0dERATdu3enR48e9OrVq9g6FeXgwYNs27bNqUVrs9nIy8sjNze3TNfES/N+abVaGjVqVGh7waC9Aq1btyY7O5vz58+X2PtQ1YigLQhVhMZVw+TsyRV27tKKiopCkiR+//33EtP6+/sTGRlJZGQkK1eupGHDhjRr1ozo6GindFu3bsXT05PAwMBSLxJS0BVcnMTERHbu3Mnu3buZOHGist1msxEfH8+IESMKHTN8+HAWLFhAYmIiu3fvLjbvQYMG8eqrr2IwGAgJCSl1a6927dqlet0A3NzclB84S5cuJSYmhiVLlvDUU085pZs7dy6dO3fGy8tLaTGDY3BdUlISGzduJCEhgdGjR/P222/z888/l3qVtOzsbKZPn86jjz5aaJ9ery9VHgVKer8K0pT2Ms296t7qNxCEe5gkSWjdtBXyKMsXpa+vL926dWPBggXk5OQU2p+RkVHkcUajkf79+zN5cuEfJuHh4dSqVatMq3o1atSIP/74g+PHjxe5f8mSJbRr146DBw9y4MAB5fHiiy+yZMmSIo8ZOHAghw8fpkGDBoV+WNzMy8uLyMhIqlevXqbu2YEDB7Jx40Z+++23QvusVmuRryeAi4sLr7zyCq+99homk8lpX3BwMJGRkU4Bu4DBYKBXr17Mnz+fLVu2sGPHDg4fPlzkOTQaTaER+/fddx9JSUnKD6+bH2Xtli7p/bqdgwcPOtV7586duLu7YzQay5xXZSeCtiAI5W7BggXYbDZatGjBqlWrOHHiBMeOHWP+/Pm0bt262OPGjh3Ld999x969e/92Gdq3b0+7du3o06cPCQkJnDlzhvXr17NhwwasViuffPIJAwYMoEGDBk6Pp59+ml27djndXlXAx8eHlJQU5V7z8vbCCy/Qtm1bOnXqxIIFCzh48CCnT5/myy+/pFWrVpw4caLYYx977DFUKhULFiwo1bmWLVvGkiVLOHLkCKdPn+bTTz/FYDAU250cFhbGpk2bSE1NJT09HYApU6bwv//9j+nTp3P06FGOHTtGfHw8r732Wpnrfrv3qyQWi4WnnnqKxMREvv/+e6ZOncqYMWPuuevZIIK2IAh3QEREBPv376djx4689NJLNGjQgC5durBp0yYWLVpU7HHR0dF07dqVKVOmlEs5Vq1aRfPmzRkwYADR0dFMmDABm83Gt99+y7Vr13jkkUcKHVOvXj3q1atXbGvb29u7yFHx5UGn05GQkMCECRP48MMPadWqFc2bN2f+/Pk8//zzNGjQoNhj1Wo1Y8aMYc6cOcW2yG/m7e3Nf//7X9q2bUujRo3YuHEj3333HX5+fkWmf/fdd0lISMBoNCqj27t168batWv58ccfad68Oa1atWLu3Ll/+Tpyce9XSTp16kRUVBTt2rWjf//+/Otf/yrVqP6qSJLLMvJBEIS7Ii8vjzNnzhAeHl7ma4OC8E8ydOhQMjIy/tJsbXdbeXyuRUtbEARBEKoIEbQFQaiSVqxYgbu7e5GPgvuuK5v69esXW+YVK1ZUdPHuqKr4flVGontcECoh0T1esuvXr3Pp0qUi92k0mkp5f+7Zs2eVRT9uFRQUVKbR8VVNVXy/ylt5fK7FfdqCIFRJHh4eVS7I/RMCU3Gq4vtVGYnucUEQBEGoIkTQFgRBEIQqQgRtQRAEQagiRNAWBEEQhCpCBG1BEARBqCJE0BYEQRCEKkIEbUEQBKGQsLAw5s2bV9HFEG4hgrYgCHdEamoqzz33HBEREeh0OoxGI7169VJWyAoLC0OSJCRJwtXVlYYNG/Lxxx875bFlyxYljSRJBAUF0adPH06fPl2uZa1bty46nY7U1NRC+zp06IAkScyePbvQvoceeghJkpwWpyhIL0kSer2e6OhoFi5cWOqyWCwW5syZQ0xMDK6urvj7+9O2bVvi4uKUiVmGDh2qnEOj0RAeHs6ECRPIy8tzyuvm187Ly4u2bduyefPmUpVjz549jBw50imvvzK/963BX/wY+HtE0BYEodwlJyfTtGlTNm/ezNtvv83hw4fZsGEDHTt2JDY2Vkk3Y8YMUlJSOHLkCIMHD2bEiBGsX7++UH5JSUlcvHiRlStXcvToUXr16lWq1Z9K49dff8VkMtG3b1+WL19eZBqj0ciyZcuctl24cIFNmzYREhJSKP2IESNISUkhMTGRfv36ERsby+eff15iWSwWC926dWP27NmMHDmS7du3s3v3bmJjY3n//fedlgvt3r07KSkpnD59mrlz5/Lhhx8yderUQnnGxcWRkpLCtm3b8Pf3p2fPnqX60RMQEICrq2uJ6SoLm82G3W6v6GLccSJoC0IVIcsy+bm5FfIo62zHo0ePRpIkdu/eTZ8+fahduzb169fnxRdfZOfOnUo6Dw8PgoODiYiIYOLEifj6+pKQkFAov8DAQEJCQmjXrh1TpkwhMTGRkydPlliOjIwMnnnmGYKCgtDr9TRo0IC1a9c6pVmyZAkDBw7kiSeeYOnSpUXm07NnT65evcq2bduUbcuXL6dr164EBgYWSu/q6qrUa9q0aURFRfHtt9+WWN558+bxyy+/sGnTJmJjY2ncuDEREREMHDiQXbt2ERUVpaTV6XQEBwdjNBrp3bs3nTt3LvK18/b2Jjg4mAYNGrBo0SJMJhMJCQnIssy0adMIDQ1Fp9NRrVo1nn/+eeW4m1vEYWFhADzyyCNIkqQ8B/jmm2+477770Ov1REREMH36dPLz80usa2nc7v1btmwZ3t7efPvtt0RHR6PT6Th37hxDhw6ld+/eTJ8+nYCAADw9PRk1ahQWi6VcylTRxDSmglBF2EwmvmzevELO3W/PHtSlbHWlpaWxYcMG3njjjSLXnfb29i60zW63s2bNGtLT09FqtbfN32AwAJT4JWy323nwwQe5fv06n376KbVq1SIxMRGVSqWkuX79OitXrmTXrl3UrVuXzMxMtm7dygMPPOCUl1arZdCgQcTFxdG2bVvAETTmzJlTqnWbDQZDqYLGihUr6Ny5s7Je9c00Gg0ajabI444cOcL27dtLnCb15tdu1apVzJ07l/j4eOrXr09qaioHDx4s8rg9e/YQGBhIXFwc3bt3V17DrVu38uSTTzJ//nweeOABTp06pXSpF9XqL4vSvH+5ubm89dZbfPzxx/j5+Sk/oDZt2oRer2fLli0kJyczbNgw/Pz8eOONN/5WmSoDEbQFQShXJ0+eRJZl6tatW2LaiRMn8tprr2E2m8nPz8fX15enn3662PQpKSm88847VK9enTp16tw2740bN7J7926OHTtG7dq1AYiIiHBKEx8fT1RUlLLK1OOPP86SJUsKBW2A4cOH88ADD/Dee++xb98+MjMz6dmz522Dts1m4/PPP+fQoUNO14eLc+LECTp06FBiOoC1a9fi7u5Ofn4+ZrMZFxcXPvjgg2LT5+bm8tprr6FSqWjfYazhogABAABJREFUvj0bN24kODiYzp07o9FoCA0NpUWLFkUeGxAQAPzZai8wffp0Jk2axJAhQwDH6ztz5kwmTJjwt4N2ad4/q9XKwoULiYmJcdqu1WpZunQprq6u1K9fnxkzZjB+/HhmzpyJi0vV7mAWQVsQqgiVwUC/PXsq7NylVZau9PHjxzN06FBSUlIYP348o0ePJjIyslC6GjVqIMsyubm5xMTEsGrVqhJb5AcOHKBGjRrKF35Rli5dyuDBg5XngwcPpn379rz//vuFFreIiYkhKiqKr776ip9++oknnngCtbror9CFCxfy8ccfY7FYUKlUjBs3jmefffa25YWyvXYdO3Zk0aJF5OTkMHfuXNRqNX369CmUbsCAAahUKkwmEwEBASxZsoRGjRrh4+PDvHnziIiIoHv37vTo0YNevXoVW6eiHDx4kG3btjm1YG02G3l5eeTm5v6ta+Klef+0Wi2NGjUqtL1gEF+B1q1bk52dzfnz56v8oi0iaAtCFSFJUqm7qCtSVFQUkiTx+++/l5jW39+fyMhIIiMjWblyJQ0bNqRZs2ZER0c7pdu6dSuenp4EBgaWeqUoQwk/NBITE9m5cye7d+9m4sSJynabzUZ8fDwjRowodMzw4cNZsGABiYmJ7N69u9i8Bw0axKuvvorBYCAkJKTUrbvatWuX6nUDcHNzU37gLF26lJiYGJYsWcJTTz3llG7u3Ll07twZLy8vpcUMjsF1SUlJbNy4kYSEBEaPHs3bb7/Nzz//XGw3/K2ys7OZPn06jz76aKF9f3dJ2ZLev4I0kiT9rfNUNVW7n0AQhErH19eXbt26sWDBAnJycgrtz8jIKPI4o9FI//79mTx5cqF94eHh1KpVq0xLOzZq1Ig//viD48ePF7l/yZIltGvXjoMHD3LgwAHl8eKLL7JkyZIijxk4cCCHDx+mQYMGhX5Y3MzLy4vIyEiqV69epu7YgQMHsnHjRn777bdC+6xWa5GvJ4CLiwuvvPIKr732GiaTyWlfcHAwkZGRTgG7gMFgoFevXsyfP58tW7awY8cODh8+XOQ5NBpNoRH79913H0lJScoPr5sff7cbuqT373YOHjzo9Drs3LkTd3d3jEbj3ypTZSCCtiAI5W7BggXYbDZatGjBqlWrOHHiBMeOHWP+/Pm0bt262OPGjh3Ld999x969e/92Gdq3b0+7du3o06cPCQkJnDlzhvXr17NhwwasViuffPIJAwYMoEGDBk6Pp59+ml27djndXlXAx8eHlJQU5V7z8vbCCy/Qtm1bOnXqxIIFCzh48CCnT5/myy+/pFWrVpw4caLYYx977DFUKhULFiwo1bmWLVvGkiVLOHLkCKdPn+bTTz/FYDAU230cFhbGpk2bSE1NJT09HYApU6bwv//9j+nTp3P06FGOHTtGfHw8r732Wtkrf4vbvX8lsVgsPPXUUyQmJvL9998zdepUxowZU+WvZ4MI2oIg3AERERHs37+fjh078tJLL9GgQQO6dOnCpk2bWLRoUbHHRUdH07VrV6ZMmVIu5Vi1ahXNmzdnwIABREdHM2HCBGw2G99++y3Xrl3jkUceKXRMvXr1qFevXrGtbW9v7yJHxZcHnU5HQkICEyZM4MMPP6RVq1Y0b96c+fPn8/zzz9OgQYNij1Wr1YwZM4Y5c+YU2yK/mbe3N//9739p27YtjRo1YuPGjXz33Xf4+fkVmf7dd98lISEBo9GojG7v1q0ba9eu5ccff6R58+a0atWKuXPnltt14+Lev5J06tSJqKgo2rVrR//+/fnXv/5VqlH+VYEkl/UGTEEQ7ri8vDzOnDlDeHj43742KAj/JEOHDiUjI+Mvzd52p5XH51q0tAVBEAShihBBWxCEKmnFihW4u7sX+Si477qyqV+/frFlXrFiRUUX766qiu9fZSC6xwWhEhLd4yW7fv06ly5dKnKfRqOplPfjnj17Vln041ZBQUFlGh1f1VXF9+/vKo/PtbhPWxCEKsnDw6PKBbl7MRD9VVXx/asMRPe4IAiCIFQRImgLgiAIQhUhgrYgCIIgVBEiaAuCIAhCFSGCtiAIgiBUESJoC4IgCIWEhYUxb968ii6GcAsRtAVBuCNSU1N57rnniIiIQKfTYTQa6dWrl7LYRlhYGJIkIUkSrq6uNGzYkI8//tgpjy1btihpJEkiKCiIPn36cPr06XIta926ddHpdKSmphba16FDByRJYvbs2YX2PfTQQ0iS5DSvdUF6SZLQ6/VER0ezcOHCUpfFYrEwZ84cZU1of39/2rZtS1xcnHKP99ChQ5VzaDQawsPDmTBhAnl5eU553fzaeXl50bZtWzZv3lyqcuzZs4eRI0c65VUZpwYtDZPJhK+vL/7+/pjN5oouzt8igrYgCOUuOTmZpk2bsnnzZt5++20OHz7Mhg0b6NixI7GxsUq6GTNmkJKSwpEjRxg8eDAjRoxg/fr1hfJLSkri4sWLrFy5kqNHj9KrV69SLRxRGr/++ismk4m+ffuyfPnyItMYjUaWLVvmtO3ChQts2rSJkJCQQulHjBhBSkoKiYmJ9OvXj9jYWD7//PMSy2KxWOjWrRuzZ89m5MiRbN++nd27dxMbG8v777/vtPJY9+7dSUlJ4fTp08ydO5cPP/yQqVOnFsozLi6OlJQUtm3bhr+/Pz179izVj56AgABcq8D67aWxatUq6tevT926davsDw+FLAhCpWMymeTExETZZDIp2+x2u5ydnV0hD7vdXqbyP/jgg3L16tXl7OzsQvvS09NlWZblmjVrynPnznXa5+vrK48bN055/tNPP8mAcowsy/KKFStkQP79999LLEd6ero8cuRIOTAwUNbpdHL9+vXl7777zinN0KFD5UmTJsnr16+Xa9euXSiP9u3by88++6zs5+cn//rrr8r2N954Q+7Vq5ccExMjT5061Sn92LFjnfKIioqSH3/88RLL+9Zbb8kuLi7y/v37C+2zWCzK6zlkyBD54Ycfdtr/6KOPyk2aNHHaBshr1qxRnl+4cEEG5MWLF8t2u12eOnWqbDQaZa1WK4eEhMjPPfeckvbm96dmzZoyoDxq1qyppPv666/lJk2ayDqdTg4PD5enTZsmW63WEusqy8W/P9nZ2bKHh4e8cuVKp/Rr1qyRXV1d5aysLFmWZXnChAlyVFSUbDAY5PDwcPm1116TLRZLofN06NBBXrx4sbxo0SK5S5cupSrbnVDU57qsxIxoglBF5Obm4u7uXiHnzs7OLvVylGlpaWzYsIE33nijyGO8vb0LbbPb7axZs4b09HS0Wu1t8zcYDICjVXo7drudBx98kOvXr/Ppp59Sq1YtEhMTUalUSprr16+zcuVKdu3aRd26dcnMzGTr1q088MADTnlptVoGDRpEXFwcbdu2BRzrUc+ZM6dUSz4aDIYSywuO+bg7d+6sLH15M41Gg0ajKfK4I0eOsH379hJnXLv5tVu1ahVz584lPj6e+vXrk5qaysGDB4s8bs+ePQQGBhIXF0f37t2V13Dr1q08+eSTzJ8/nwceeIBTp04pXepFtfpvdrv3x83Njccff5y4uDj69u2rHFPwvGAmNQ8PD5YtW0a1atU4fPgwI0aMwMPDgwkTJijHnDp1ih07drB69WpkWWbcuHGcPXu26s5OV36/IQRBKC9F/SLPzs52au3czUdRLebi7Nq1Swbk1atX3zZdzZo1Za1WK7u5uclqtVoGZF9fX/nEiRNKmltb2hcvXpTbtGkjV69eXTabzbfN/4cffpBdXFzkpKSkYtN89NFHcuPGjZXnY8eOlYcMGeKUpqDlfODAAdnDw0POzs6Wf/75ZzkwMFC2Wq23bWnn5+fLn3zyiQzIH3zwwW3LK8uybDAY5Oeff77EdEOGDJFVKpXs5uYm63Q6GZBdXFzkr776yikdN7W0c3Jy5NGjR8sqlUo+ePCg/O6778q1a9cusmUqy4V7Qm7Oq0CnTp3kN99802nbJ598Iv8/e/ceFsWR7w3829wHEJSbEBy5OCB3QlQEWR1dMWCUxIg3AhFEYSOjEs3xQkJE9BiJxkUhg5o4gBcCERGOuIEEVFwUBI1CQBAxgL7RIburaEBAbvX+4aEP4wwwJCjObn2ep5/H6aququ5mrO7qrvmZmJgMug+DnZ+SkhKirKxM7t+/Twgh5NdffyUqKiqkoKCg3zL37NlDJk2aJLHu448/JgsWLGA/v/POOxLn62Wid9oU9R9EU1MTLS0tI1a3vMgQYhBt3LgRQUFBEIvF2LhxI8LCwsDj8aTyjRs3DoQQtLa2wtnZGRkZGYPekZeVlWHcuHGwtrbuN09iYiICAgLYzwEBAeDz+YiPj5f6XWxnZ2dYWVnh5MmTOH/+PN5//32oqMj+LzQhIQGHDx9GR0cHlJWVsX79eqxevXrA9gJDO3azZs3CgQMH8OTJE8TGxkJFRQW+vr5S+fz8/KCsrIy2tjYYGhpCJBLByckJY8aMwb59+2BpaQlvb2+89dZb8PHx6XefZCkvL8elS5ewc+dOdl13dzfa29vR2to64N/NYOfH1dUV9vb2OHLkCLZs2YLjx4/DzMwMM2bMYPN8++23iIuLw88//4yWlhZ0dXVBR0dHoi1HjhzB/v372XUBAQH4r//6L2zduhVKSor3WhfttClKQTAMI/cQ9UiysrICwzC4efPmoHkNDAzA4/HA4/GQnp4OR0dHTJ48GXZ2dhL5CgsLoaOjAyMjI7mDTPQOBfenqqoKly9fRmlpKTZv3syu7+7uRlpaGkJCQqS2CQ4OhlAoRFVVFUpLS/st29/fH5988gk4HA5MTEzk7hysra3lOm4AoKWlxV7gJCYmwtnZGSKRCCtXrpTIFxsbC09PT+jq6sLQ0JBdz+VyUVNTg/z8fOTl5SEsLAx79uzBhQsX+h2Gf15LSwuio6OxcOFCqbTBolgNdn4AYNWqVRAKhdiyZQuSkpKwYsUKMAwDACguLoa/vz+io6Ph5eUFXV1dpKWlYe/evez233//Pe7du4elS5dKlNvd3Y2zZ89izpw58uzmK0XxLjMoinql6enpwcvLC0KhEE+ePJFKf/TokcztuFwuli5dioiICKk0CwsLTJgwYUhRoZycnPDLL7/g1q1bMtNFIhFmzJiB8vJylJWVscuGDRsgEolkbvPee++hoqICDg4OUhcWfenq6oLH48HU1HRId3Pvvfce8vPzcf36dam0zs5OmccTAJSUlPDxxx8jMjISbW1tEmnGxsbg8XgSHXYvDocDHx8fxMXFoaCgAMXFxaioqJBZh6qqqtQb+2+88QZqamrYC6++y2D7Pdj5AZ7dFd+5cwdxcXGoqqpCYGAgm9b7DP+TTz7B5MmTYWVlhTt37khsLxKJsGzZMonzW1ZWhmXLlvV7jl91tNOmKGrYCYVCdHd3w9XVFRkZGaitrUV1dTXi4uLg7u7e73bh4eHIzs7G1atX/3Ab+Hw+ZsyYAV9fX+Tl5aG+vh45OTnIzc1FZ2cnjh07Bj8/Pzg4OEgsq1atQklJicT0ql5jxoyBWCxm55oPtw8//BAeHh6YPXs2hEIhysvLUVdXhxMnTsDNzQ21tbX9brt48WIoKytDKBTKVVdycjJEIhEqKytRV1eH48ePg8Ph9PuClrm5Oc6ePYvGxkY0NTUBALZu3YqjR48iOjoaN27cQHV1NdLS0hAZGTlo/QOdn15jxozBwoULsXHjRrz55psYN24cm2ZlZYW7d+8iLS0NP//8M+Li4pCZmcmm//Of/0R2djYCAwOlzvHy5cuRlZWFhw8fynWsXiW006YoathZWlri2rVrmDVrFj766CM4ODhgzpw5OHv2LA4cONDvdnZ2dnjzzTexdevWYWlHRkYGpkyZAj8/P9jZ2WHTpk3o7u7G6dOn8eDBA7z77rtS29ja2sLW1rbfO7HRo0e/sMcU6urqyMvLw6ZNm3Do0CG4ublhypQpiIuLw7p16+Dg4NDvtioqKlizZg12797d7x15X6NHj8bXX38NDw8PODk5IT8/H9nZ2dDX15eZf+/evcjLywOXy2Xfbvfy8sKZM2fwww8/YMqUKXBzc0NsbKzcb2b3d376WrlyJTo6OhAcHCyx/u2338b69euxZs0avP766ygqKsKnn37Kph89ehRaWlqYPXu2VL2zZ88Gh8PB8ePH5Wrnq4QhQ3nzgaKol6K9vR319fWwsLAY9NkgRf07O3bsGNavX4/79+8P+vLhq244vtf0RTSKoijqldPa2gqxWIyYmBj85S9/UfgOe7jQ4XGKohRSSkoKtLW1ZS729vYj3TyZ7O3t+21zSkrKSDdvWP3R87N7927Y2NjA2NhY5suJ/6no8DhFvYLo8Pjgmpub8euvv8pMU1VVfSV/8erOnTts0I/njR07dkhvx7/qFPH8vGh0eJyiqP9Yo0aNUrhO7j+po1LE86MI6PA4RVEURSkI2mlTFEVRlIKgnTZFURRFKQjaaVMURVGUgqCdNkVRFEUpCNppUxRFUVLMzc2xb9++kW4G9RzaaVMU9UI0NjZi7dq1sLS0hLq6OrhcLnx8fNhgG+bm5mAYBgzDQFNTE46Ojjh8+LBEGQUFBWwehmEwduxY+Pr6oq6ubljbamNjA3V1dTQ2NkqlzZw5EwzDICYmRipt3rx5YBgG27Ztk8rPMAw0NDRgZ2eHhIQEudvS0dGB3bt3w9nZGZqamjAwMICHhweSkpLYOd5BQUFsHaqqqrCwsMCmTZvQ3t4uUVbfY6erqwsPDw+cO3dOrnZcuXIFoaGhEmVlZWXJvR/Ui0E7bYqihl1DQwMmTZqEc+fOYc+ePaioqEBubi5mzZoFgUDA5tu+fTvEYjEqKysREBCAkJAQ5OTkSJVXU1OD+/fvIz09HTdu3ICPj49UYInf6+LFi2hra8OiRYtw5MgRmXm4XC6Sk5Ml1t27dw9nz56FiYmJVP6QkBCIxWJUVVVhyZIlEAgESE1NHbQtHR0d8PLyQkxMDEJDQ1FUVITS0lIIBALEx8dLRB7z9vaGWCxGXV0dYmNjcejQIURFRUmVmZSUBLFYjEuXLsHAwADz58+X66LH0NAQmpqag+ajXjJCUdQrp62tjVRVVZG2tjZ2XU9PD2l52jIiS09Pz5DaP3fuXGJqakpaWlqk0pqamgghhJiZmZHY2FiJND09PbJ+/Xr28/nz5wkAdhtCCElJSSEAyM2bNwdtR1NTEwkNDSVGRkZEXV2d2Nvbk+zsbIk8QUFBZMuWLSQnJ4dYW1tLlcHn88nq1auJvr4+uXjxIrt+586dxMfHhzg7O5OoqCiJ/OHh4RJlWFlZkWXLlg3a3s8//5woKSmRa9euSaV1dHSwxzMwMJC88847EukLFy4kLi4uEusAkMzMTPbzvXv3CABy8OBB0tPTQ6KiogiXyyVqamrExMSErF27ls3b9/yYmZkRAOxiZmbG5svKyiIuLi5EXV2dWFhYkG3btpHOzs5B95UQQqqrq4mHhwdRV1cntra2JC8vT6rNd+/eJYsXLya6urpkzJgx5O233yb19fVseu+x2LNnDzE2NiZ6enokLCyMdHR0sHkePnxI3n//fTJ69GjC4XCIt7c3uXXrFpuelJREdHV1SXZ2NrG2tiYcDof4+vqSJ0+ekOTkZGJmZkZGjx5N1q5dS7q6utjt2tvbyUcffURee+01oqmpSVxdXcn58+f73V9Z3+uhor+IRlEKorWzFdq7tEek7paIFmipyReO8uHDh8jNzcXOnTtlhrAcPXq01Lqenh5kZmaiqalp0MAQHA4HwLO70oH09PRg7ty5aG5uxvHjxzFhwgRUVVVBWVmZzdPc3Iz09HSUlJTAxsYGjx8/RmFhIaZPny5RlpqaGvz9/ZGUlAQPDw8Az+JR7969W2JofKA2D9Ze4NnvdXt6erKhL/tSVVWFqqqqzO0qKytRVFQ06C+u9T12GRkZiI2NRVpaGuzt7dHY2Ijy8nKZ2125cgVGRkZISkqCt7c3ewwLCwuxfPlyxMXFYfr06fj555/ZIXVZd/19dXd3Y8GCBRg/fjxKSkrQ3NyMjz76SCJPZ2cnvLy84O7ujsLCQqioqOC///u/4e3tjZ9++on9Wzl//jxMTExw/vx53L59G0uXLsXrr7+OkJAQAM8eJ9TW1uL06dPQ0dHB5s2b8dZbb6Gqqoo9pq2trYiLi0NaWhqam5uxcOFCvPvuuxg9ejS+++471NXVwdfXFx4eHli6dCkAYM2aNaiqqkJaWhpee+01ZGZmwtvbGxUVFbCyshpw/38v2mlTFDWsbt++DUIIbGxsBs27efNmREZG4unTp+jq6oKenh5WrVrVb36xWIwvvvgCpqammDhx4oBl5+fno7S0FNXV1bC2tgbwLM53X2lpabCysmIDWCxbtgwikUiq0waA4OBgTJ8+Hfv378ePP/6Ix48fY/78+QN22t3d3UhNTcVPP/0k8Xy4P7W1tZg5c+ag+QDgzJkz0NbWRldXF54+fQolJSV8+eWX/eZvbW1FZGQklJWVwefzkZ+fD2NjY3h6ekJVVRXjx4+Hq6urzG0NDQ0BPLvgMjY2ZtdHR0djy5YtCAwMBPDs+O7YsQObNm0atNPOy8vDzz//jIKCArbMnTt3Ys6cOWyeb7/9Fj09PTh8+DAYhgHwbLh/9OjRKCgowJtvvgkAGDNmDL788ksoKyvDxsYG8+bNw9mzZxESEsJ21pcuXcK0adMAPLs44nK5yMrKwuLFiwE8u0A4cOAAJkyYAABYtGgRjh07hl9//RXa2tqws7PDrFmzcP78eSxduhR3795FUlIS7t69i9deew0A8F//9V/Izc1FUlISPvvsswH3//einTZFKQhNVU20RLSMWN3yIkOIQbRx40YEBQVBLBZj48aNCAsLA4/Hk8o3btw4EELQ2toKZ2dnZGRkDHpHXlZWhnHjxrEdtiyJiYkICAhgPwcEBIDP5yM+Pl7qd7OdnZ1hZWWFkydP4vz583j//fehoiL7v9CEhAQcPnwYHR0dUFZWxvr167F69eoB2wsM7djNmjULBw4cwJMnTxAbGwsVFRX4+vpK5fPz84OysjLa2tpgaGgIkUgEJycnjBkzBvv27YOlpSW8vb3x1ltvwcfHp999kqW8vByXLl3Czp072XXd3d1ob29Ha2vrgM/Ea2pqwOVyJS4Cnr9oKC8vx+3bt6XORXt7O37++Wf2s729vcQIiomJCSoqKgAA1dXVUFFRwdSpU9l0fX19TJw4EdXV1ew6TU1NtsMGngVwMTc3h7a2tsS6f/zjHwCAiooKdHd3S/19PX36FPr6+v3u9x9FO22KUhAMw8g9RD2SrKyswDAMbt68OWheAwMD8Hg88Hg8pKenw9HREZMnT4adnZ1EvsLCQujo6MDIyEjuIBS9Q8H9qaqqwuXLl1FaWorNmzez67u7u5GWlsYOrfYVHBwMoVCIqqoqlJaW9lu2v78/PvnkE3A4HJiYmEBJSb53fq2treU6bgCgpaXFXuAkJibC2dkZIpEIK1eulMgXGxsLT09P6OrqsnfMwLOX62pqapCfn4+8vDyEhYVhz549uHDhQr/D8M9raWlBdHQ0Fi5cKJU2HNHpWlpaMGnSJJlhS/vuy/PtZRgGPT09Q6pLVhkDldvS0gJlZWX8+OOPEhcMACQ6+uFG3x6nKGpY6enpwcvLC0KhEE+ePJFKf/TokcztuFwuli5dKjN2soWFBSZMmDCkqFFOTk745ZdfcOvWLZnpIpEIM2bMQHl5OcrKythlw4YNEIlEMrd57733UFFRAQcHB6kLi750dXXB4/Fgamoqd4fdW35+fj6uX78uldbZ2SnzeAKAkpISPv74Y0RGRqKtrU0izdjYGDweT6KT68XhcODj44O4uDgUFBSguLiYvUN9nqqqqtQb+2+88QZqamrYC6++y2D7PXHiRPy///f/JMJ3XrlyRar82tpaGBkZSZWvq6s7YPm9bG1t0dXVhZKSEnbdgwcPUFNTM+A5HIyLiwu6u7vxj3/8Q6ptfUcPhhvttCmKGnZCoRDd3d1wdXVFRkYGamtrUV1djbi4OLi7u/e7XXh4OLKzs3H16tU/3AY+n48ZM2bA19cXeXl5qK+vR05ODnJzc9HZ2Yljx47Bz88PDg4OEsuqVatQUlIiMb2q15gxYyAWi9m55sPtww8/hIeHB2bPng2hUIjy8nLU1dXhxIkTcHNzQ21tbb/bLl68GMrKyhAKhXLVlZycDJFIhMrKStTV1eH48ePgcDj9vsxmbm6Os2fPorGxEU1NTQCArVu34ujRo4iOjsaNGzdQXV2NtLQ0REZGDlr/nDlzMGHCBAQGBuKnn37CpUuX2O16n1/7+/vDwMAA77zzDgoLC1FfX4+CggKsW7cOv/zyi1z7aWVlhXfeeQchISG4ePEiysvLERAQAFNTU7zzzjtylSGLtbU1/P39sXz5cpw6dQr19fUoLS3Frl278Le//e13lzsY2mlTFDXsLC0tce3aNcyaNQsfffQRHBwcMGfOHJw9exYHDhzodzs7Ozu8+eab2Lp167C0IyMjA1OmTIGfnx/s7OywadMmdHd34/Tp03jw4AHeffddqW1sbW1ha2vb79326NGjZb4VPxzU1dWRl5eHTZs24dChQ3Bzc8OUKVMQFxeHdevWwcHBod9tVVRUsGbNGuzevbvfO/K+Ro8eja+//hoeHh5wcnJCfn4+srOz+30eu3fvXuTl5YHL5bJvt3t5eeHMmTP44YcfMGXKFLi5uSE2NlauuOHKysrIyspCS0sLpkyZglWrVuGTTz4B8H9D65qamvj73/+O8ePHY+HChbC1tcXKlSvR3t4OHR2dQevolZSUhEmTJmH+/Plwd3cHIQTfffed3I8BBip3+fLl+OijjzBx4kQsWLAAV65cwfjx4/9QuQNhyFDefKAo6qVob29HfX09LCwshuXZIEUpgkuXLuFPf/oTbt++LfFS2L+L4fhe0xfRKIqiqBGRmZkJbW1tWFlZ4fbt2wgPD4eHh8e/ZYc9XOjwOEVRCiklJQXa2toyl955168ae3v7ftss6w1pRSbP+WluboZAIICNjQ2CgoIwZcoU/M///M8It/zVRofHKeoVRIfHB9fc3Czx5nFfqqqqcj1Xfdnu3LnDBv143tixY4f0dvyrThHPz4tGh8cpivqPNWrUKIXr5P6TOipFPD+KgA6PUxRFUZSCoJ02RVEURSkI2mlTFEVRlIKgnTZFURRFKQjaaVMURVGUgqCdNkVRFCXF3Nwc+/btG+lmUM+hnTZFUS9EY2Mj1q5dC0tLS6irq4PL5cLHx4cNtmFubg6GYcAwDDQ1NeHo6IjDhw9LlFFQUMDmYRgGY8eOha+vL+rq6oa1rTY2NlBXV0djY6NU2syZM8EwDGJiYqTS5s2bB4ZhsG3bNqn8DMNAQ0MDdnZ2SEhIkLstHR0d2L17N5ydnaGpqQkDAwN4eHggKSmJneMdFBTE1qGqqgoLCwts2rQJ7e3tEmX1PXa6urrw8PDAuXPn5GrHlStXEBoaKlFWVlaW3PsxHBoaGsAwDMrKyoa0XUdHB/bs2YM33ngDWlpa0NXVhbOzMyIjI3H//v0hlXXq1Cm8+eab0NfX/11tGW6006Yoatg1NDRg0qRJOHfuHPbs2YOKigrk5uZi1qxZEAgEbL7t27dDLBajsrISAQEBCAkJQU5OjlR5NTU1uH//PtLT03Hjxg34+PhIhYn8vS5evIi2tjYsWrQIR44ckZmHy+UiOTlZYt29e/dw9uxZmJiYSOUPCQmBWCxGVVUVlixZAoFAgNTU1EHb0tHRAS8vL8TExCA0NBRFRUUoLS2FQCBAfHy8ROQxb29viMVi1NXVITY2FocOHUJUVJRUmUlJSRCLxbh06RIMDAwwf/58uS56DA0NoampOWi+V83Tp08xZ84cfPbZZwgKCsLf//53VFRUIC4uDv/6178QHx8/pPKePHmCP/3pT/j8889fUIuHiFAU9cppa2sjVVVVpK2tbaSb8rvMnTuXmJqakpaWFqm0pqYmQgghZmZmJDY2ViJNT0+PrF+/nv18/vx5AoDdhhBCUlJSCABy8+bNQdvR1NREQkNDiZGREVFXVyf29vYkOztbIk9QUBDZsmULycnJIdbW1lJl8Pl8snr1aqKvr08uXrzIrt+5cyfx8fEhzs7OJCoqSiJ/eHi4RBlWVlZk2bJlg7b3888/J0pKSuTatWtSaR0dHezxDAwMJO+8845E+sKFC4mLi4vEOgAkMzOT/Xzv3j0CgBw8eJD09PSQqKgowuVyiZqaGjExMSFr165l8/Y9P2ZmZgQAu5iZmbH5srKyiIuLC1FXVycWFhZk27ZtpLOzc9B97W1fQkIC8fb2JhoaGsTCwoKkp6dLpPdd+Hw+IeTZ38WUKVOIpqYm0dXVJdOmTSMNDQ2EEEJ27drV7zEkhJCenh7233w+nwgEAiIQCIiOjg7R19cnkZGREnl61dfXEwDk+vXrcu2bLMPxvaa/iEZRCoIQoLV1ZOrW1AT+N8TxoB4+fIjc3Fzs3LlTZgjL0aNHS63r6elBZmYmmpqaoKamNmD5HA4HwLO70oH09PRg7ty5aG5uxvHjxzFhwgRUVVVBWVmZzdPc3Iz09HSUlJTAxsYGjx8/RmFhIaZPny5RlpqaGvz9/ZGUlAQPDw8Az+JR7969W2JofKA2D9Ze4NnvdXt6erKhL/tSVVXtN5RkZWUlioqKBv3Ftb7HLiMjA7GxsUhLS4O9vT0aGxtRXl4uc7srV67AyMgISUlJ8Pb2Zo9hYWEhli9fjri4OEyfPh0///wzO6Qu665flk8//RQxMTHYv38/jh07hmXLlqGiogK2trYoLS2Fq6sr8vPzYW9vDzU1NXR1dWHBggUICQlBamoqOjo6UFpaysbgTk1NxZw5c2QeQ+D/YnX3OnLkCFauXInS0lJcvXoVoaGhGD9+PEJCQuRq/0v3u7t7iqJeGFlX5C0thDzrul/+IuOGuV8lJSUEADl16tSA+czMzIiamhrR0tIiKioqBADR09MjtbW1bJ7n77Tv379Ppk2bRkxNTcnTp08HLP/7778nSkpKpKampt88X331FXn99dfZz+Hh4SQwMFAiT++dc1lZGRk1ahRpaWkhFy5cIEZGRqSzs3PAO+2uri5y7NgxAoB8+eWXA7aXEEI4HA5Zt27doPkCAwOJsrIy0dLSIurq6gQAUVJSIidPnpTIhz532k+ePCFhYWFEWVmZlJeXk7179xJra2vS0dEhs47nR0L6ltVr9uzZ5LPPPpNYd+zYMWJiYjLoPvSW+cEHH0ismzp1Klm9ejUhRPbd7YMHDwgAUlBQILNMDQ0NqWO4YMECoqWlRbS0tIi7uzu7ns/nE1tbW4k7682bNxNbW1upcl+VO236TJuiqGFFhhCDaOPGjSgrK8O5c+cwdepUxMbGgsfjSeUbN24ctLS08Nprr+HJkyfIyMgY9I68rKwM48aNg7W1db95EhMTERAQwH4OCAhAeno6mpubpfI6OzvDysoKJ0+eRGJiIt5//32oqMgerExISIC2tjY4HA5CQkKwfv16rF69esD2AkM7drNmzUJZWRlKSkoQGBiIFStWwNfXVyqfn58ftLW1MWrUKGRkZEAkEsHJyQmLFy9GW1sbLC0tERISgszMTHR1dcldPwCUl5dj+/btEhG8ep/nt8o5LOTu7i71ubq6ut/8enp6CAoKgpeXF3x8fLB//36IxeIB60hISEBZWRmCg4Ol2uXm5iZx9+3u7o7a2tphe2diuNHhcYpSEJqaQEvLyNUtLysrKzAMg5s3bw6a18DAADweDzweD+np6XB0dMTkyZNhZ2cnka+wsBA6OjowMjKSOwhF71Bwf6qqqnD58mWUlpZi8+bN7Pru7m6kpaXJHB4NDg6GUChEVVUVSktL+y3b398fn3zyCTgcDkxMTKCkJN/9kbW1tVzHDQC0tLTYC5zExEQ4OztDJBJh5cqVEvliY2Ph6ekJXV1dGBoasuu5XC5qamqQn5+PvLw8hIWFYc+ePbhw4UK/w/DPa2lpQXR0NBYuXCiV9iKj0yUlJWHdunXIzc3Ft99+i8jISOTl5cHNzQ1WVlaoqamRyN/7sqCent4La9PLQu+0KUpBMAygpTUyi7zPs4Fn/zF6eXlBKBTiyZMnUumPHj2SuR2Xy8XSpUsREREhlWZhYYEJEyYMKWqUk5MTfvnlF9y6dUtmukgkwowZM1BeXo6ysjJ22bBhA0Qikcxt3nvvPVRUVMDBwUHqwqIvXV1d8Hg8mJqayt1h95afn5+P69evS6V1dnbKPJ4AoKSkhI8//hiRkZFoa2uTSDM2NgaPx5PosHtxOBz4+PggLi4OBQUFKC4uRkVFhcw6VFVVpe4+33jjDdTU1LAXXn0Xeff78uXLUp9tbW0BgB1NkXXX6+LigoiICBQVFcHBwQHffPMNgGcjC3l5eTKPoSwlJSVS9VtZWUm8+/AqoZ02RVHDTigUoru7G66ursjIyEBtbS2qq6sRFxcnNRzaV3h4OLKzs3H16tU/3AY+n48ZM2bA19cXeXl5qK+vR05ODnJzc9HZ2Yljx47Bz88PDg4OEsuqVatQUlIiMb2q15gxYyAWi9m55sPtww8/hIeHB2bPng2hUIjy8nLU1dXhxIkTcHNzQ21tbb/bLl68GMrKyhAKhXLVlZycDJFIhMrKStTV1eH48ePgcDj9vsxmbm6Os2fPorGxEU1NTQCArVu34ujRo4iOjsaNGzdQXV2NtLQ0REZGyr3P6enpSExMxK1btxAVFYXS0lKsWbMGAGBkZAQOh4Pc3Fz8+uuvePz4Merr6xEREYHi4mLcuXMHP/zwA2pra9mOfv369XB3d8fs2bOxf/9+XLt2DfX19fj++++Rk5Mj1RnfvXsXGzZsQE1NDVJTUxEfH4/w8HA2/eHDhygrK0NVVRWAZ9MPy8rKZM7pfyl+99NwiqJeGEWf8kXIs5fGBAIB+8KZqakpefvtt8n58+cJIbKnfBFCiJeXF5k7dy4hRPaUr6F48OABWbFiBdHX1ycaGhrEwcGBnDlzhpw8eZIoKSmRxsZGmdvZ2tqyU89kTeHqS54pX0PR3t5Odu3aRRwdHYmGhgbR09MjHh4eJDk5mZ1KJWvKFyHPpjsZGhqyU8Mg4+WxXpmZmWTq1KlER0eHaGlpETc3N5Kfn8+mP39+Tp8+TXg8HlFRUZGY8pWbm0umTZtGOBwO0dHRIa6uruSrr76Sa18BEKFQSObMmUPU1dWJubk5+fbbbyXyfP3114TL5RIlJSXC5/NJY2MjWbBgATExMSFqamrEzMyMbN26lXR3d0scw5iYGOLs7Ew4HA5RV1cnNjY2ZP369eTu3btsPj6fT8LCwsgHH3xAdHR0yJgxY8jHH38s8WJaUlKS1NQzABLnXF7D8b1mCBnCmw8URb0U7e3tqK+vh4WFxQt9NkhRI4lhGGRmZmLBggUjUv/MmTPx+uuvv7Sfax2O7zUdHqcoiqIoBUE7bYqiFFJKSorEVKO+i729/Ug3TyZ7e/t+25ySkjLSzRtWinh+FAEdHqeoVxAdHh9cc3Mzfv31V5lpqqqqg/462Ei4c+cOG/TjeWPHjh3S2/GvOkU8Py/acHyv6TxtiqIU0qhRoxSuk/tP6qgU8fwoAjo8TlEURVEKgnbaFEVRFKUgaKdNURRFUQqCdtoURVEUpSBop01RFEVRCoJ22hRFUZQUc3Pzl/ZLYZT8aKdNUdQL0djYiLVr18LS0hLq6urgcrnw8fFhg22Ym5uDYRgwDANNTU04Ojri8OHDEmUUFBSweRiGwdixY+Hr64u6urphbauNjQ3U1dVlBoGYOXMmGIZBTEyMVNq8efPAMAy2bdsmlZ9hGGhoaMDOzg4JCQlyt6WjowO7d++Gs7MzNDU1YWBgAA8PDyQlJbFzvIOCgtg6VFVVYWFhgU2bNqG9vV2irL7HTldXFx4eHjh37pxc7bhy5QpCQ0MlysrKypJ7P4ZDQ0MDGIZBWVnZkLbr6OjAnj178MYbb0BLSwu6urpwdnZGZGQk7t+/L3c5nZ2d2Lx5MxwdHdl47suXLx9SGcONdtoURQ27hoYGTJo0CefOncOePXtQUVGB3NxczJo1CwKBgM23fft2iMViVFZWIiAgACEhIcjJyZEqr6amBvfv30d6ejpu3LgBHx8fmeEaf4+LFy+ira0NixYtwpEjR2Tm4XK5SE5Ollh37949nD17lo3V3FdISAjEYjGqqqqwZMkSCAQCpKamDtqWjo4OeHl5ISYmBqGhoSgqKkJpaSkEAgHi4+MlIo95e3tDLBajrq4OsbGxOHToEKKioqTKTEpKglgsxqVLl2BgYID58+fLddFjaGgIzaEEUn9FPH36FHPmzMFnn32GoKAg/P3vf0dFRQXi4uLwr3/9C/Hx8XKX1draimvXruHTTz/FtWvXcOrUKdTU1ODtt99+gXswiN8daoSiqBdG0aN8zZ07l5iamrLRpvrqjdglK8qXnp4eG12LENlRvlJSUggAcvPmzUHb0dTUREJDQ4mRkRFRV1cn9vb2JDs7WyJPUFAQ2bJlC8nJySHW1tZSZfD5fLJ69Wqir69PLl68yK7fuXMn8fHxkSvKl5WVFVm2bNmg7f3888+JkpISuXbtmlRaR0cHezxlRflauHAhcXFxkViH56J83bt3jwAgBw8eJD09PSQqKopwuVyipqZGTExMyNq1a9m8fc+PmZmZRISrvlG+srKyiIuLC1FXVycWFhZk27ZtbDSywQAgCQkJxNvbm2hoaBALCwuSnp4ukd534fP5hJBnfxdTpkwhmpqaRFdXl0ybNo00NDQQQp5FOuvvGBJCJCJ48fl8IhAIiEAgIDo6OkRfX59ERkZK5HleaWkpAUDu3Lkj1z72NRzfa3qnTVGKghCg68nILEP4teOHDx8iNzcXAoEAWlpaUumjR4+WWtfT04OMjAw0NTVBTU1twPI5HA6AZ3elA+np6cHcuXNx6dIlHD9+HFVVVYiJiZGIp9zc3Iz09HQEBARgzpw5ePz4MQoLC6XKUlNTg7+/P5KSkth1ycnJCA4OHrANfds8WHuBZ7/X7enpCRcXF6k0VVVVmccTACorK1FUVDSkY5eRkcHeodfW1iIrKwuOjo4yt7ty5QqA/7tr7/1cWFiI5cuXIzw8HFVVVTh06BCSk5Oxc+fOQfe116effgpfX1+Ul5fD398fy5YtQ3V1NQCgtLQUAJCfnw+xWIxTp06hq6sLCxYsAJ/Px08//YTi4mKEhoaCYRgAQGpqKubMmSPzGAJg8/U6cuQIVFRUUFpaiv379+Ovf/2r1GOavh4/fgyGYWT+Hb8M9GdMKUpRdLcCJ7RHpu4lLYCK7A7jebdv3wYhBDY2NoPm3bx5MyIjI/H06VN0dXVBT08Pq1at6je/WCzGF198AVNTU0ycOHHAsvPz81FaWorq6mpYW1sDACwtLSXypKWlwcrKig1gsWzZMohEIkyfPl2qvODgYEyfPh379+/Hjz/+iMePH2P+/PkSz7Of193djdTUVPz0008Sz4f7U1tbi5kzZw6aDwDOnDkDbW1tdHV14enTp1BSUsKXX37Zb/7W1lZERkZCWVkZfD4f+fn5MDY2hqenJ1RVVTF+/Hi4urrK3NbQ0BDAswsuY2Njdn10dDS2bNmCwMBAAM+O744dO7Bp0yaZQ/WyLF68mD3nO3bsQF5eHuLj45GQkMDWq6+vz9b78OFD9thPmDABAGBra8uWd+vWLalj+O677yIvLw8A4OTkhKKiIjaNy+UiNjYWDMNg4sSJqKioQGxsLEJCQqTa2t7ejs2bN8PPzw86Ojpy7d9wo3faFEUNKzKEu/KNGzeirKwM586dw9SpUxEbGwsejyeVb9y4ceyLQE+ePEFGRsagd5VlZWUYN24c22HLkpiYiICAAPZzQEAA0tPT0dzcLJXX2dkZVlZWOHnyJBITE/H+++9DRUX2fU9CQgK0tbXB4XAQEhKC9evXY/Xq1QO2FxjasZs1axbKyspQUlKCwMBArFixAr6+vlL5/Pz8oK2tjVGjRiEjIwMikQhOTk5YvHgx2traYGlpiZCQEGRmZqKrq0vu+gGgvLwc27dvl4jg1fs8v7W1Va4y3N3dpT733mnLoqenh6CgIHh5ecHHxwf79++HWCwesI6EhASUlZUhODhYql1ubm4Sd9/u7u6ora2Vemeis7MTS5YsASEEBw4ckGvfXgR6p01RikJZ89kd70jVLScrKyswDIObN28OmtfAwAA8Hg88Hg/p6elwdHTE5MmTYWdnJ5GvsLAQOjo6MDIykjsIRe9QcH+qqqpw+fJllJaWYvPmzez67u5upKWlybzTCg4OhlAoRFVVFTt0K4u/vz8++eQTcDgcmJiYQElJvvsja2truY4bAGhpabEXOImJiXB2doZIJMLKlSsl8sXGxsLT0xO6urrsnSvw7A6zpqYG+fn5yMvLQ1hYGPbs2YMLFy5AVVVVrja0tLQgOjoaCxculEp7kdHpkpKSsG7dOuTm5uLbb79FZGQk8vLy4ObmBisrK9TU1Ejk731ZUE9P73fV19th37lzB+fOnRuxu2yA3mlTlOJgmGdD1COxPPcccCB6enrw8vKCUCjEkydPpNIfPXokczsul4ulS5ciIiJCKs3CwgITJkwYUtQoJycn/PLLL7h165bMdJFIhBkzZqC8vBxlZWXssmHDBohEIpnbvPfee6ioqICDg4PUhUVfurq64PF4MDU1lbvD7i0/Pz8f169fl0rr7OyUeTwBQElJCR9//DEiIyPR1tYmkWZsbAwejyfRYfficDjw8fFBXFwcCgoKUFxcjIqKCpl1qKqqSt19vvHGG6ipqWEvvPou8u735cuXpT73Dnf3jqbIming4uKCiIgIFBUVwcHBAd988w2AZyMLeXl5Mo+hLCUlJVL1W1lZse8+9HbYtbW1yM/Ph76+vlzlvii006YoatgJhUJ0d3fD1dUVGRkZqK2tRXV1NeLi4qSGQ/sKDw9HdnY2rl69+ofbwOfzMWPGDPj6+iIvLw/19fXIyclBbm4uOjs7cezYMfj5+cHBwUFiWbVqFUpKSiSmV/UaM2YMxGIxO9d8uH344Yfw8PDA7NmzIRQKUV5ejrq6Opw4cQJubm6ora3td9vFixdDWVkZQqFQrrqSk5MhEolQWVmJuro6HD9+HBwOp9/woebm5jh79iwaGxvR1NQEANi6dSuOHj2K6Oho3LhxA9XV1UhLS0NkZKTc+5yeno7ExETcunULUVFRKC0txZo1awAARkZG4HA4yM3Nxa+//orHjx+jvr4eERERKC4uxp07d/DDDz+gtraW7ejXr18Pd3d3zJ49G/v378e1a9dQX1+P77//Hjk5ORIvIgLA3bt3sWHDBtTU1CA1NRXx8fEIDw8H8KzDXrRoEa5evYqUlBR0d3ejsbERjY2Ncr1Y+EL87vfOKYp6YRR9yhchhNy/f58IBAJiZmZG1NTUiKmpKXn77bfJ+fPnCSGyp3wRQoiXlxeZO3cuIUT2lK+hePDgAVmxYgXR19cnGhoaxMHBgZw5c4acPHmSKCkpkcbGRpnb2draslPPZE3h6kueKV9D0d7eTnbt2kUcHR2JhoYG0dPTIx4eHiQ5OZmdSiVryhchz6Y7GRoaslPD8NyUr74yMzPJ1KlTiY6ODtHS0iJubm4kPz+fTX/+/Jw+fZrweDyioqIiMeUrNzeXTJs2jXA4HKKjo0NcXV3JV199Jde+AiBCoZDMmTOHqKurE3Nzc/Ltt99K5Pn6668Jl8slSkpKhM/nk8bGRrJgwQJiYmJC1NTUiJmZGdm6dSvp7u6WOIYxMTHE2dmZcDgcoq6uTmxsbMj69evJ3bt32Xx8Pp+EhYWRDz74gOjo6JAxY8aQjz/+mJ3yVV9fLzXtrHfp/TseiuH4XjOEDOHNB4qiXor29nbU19fDwsLihT4bpKiRxDAMMjMzsWDBghGpf+bMmXj99ddf2s+1Dsf3mg6PUxRFUZSCoJ02RVEKKSUlRWKqUd+ld971q8be3r7fNqekpIx084aVIp4fRUCHxynqFUSHxwfX3NyMX3/9VWaaqqpqvy9UjaQ7d+6wQT+eN3bs2CG9Hf+qU8Tz86INx/eaztOmKEohjRo1SuE6uf+kjkoRz48ioMPjFEVRFKUgaKdNURRFUQqCdtoURVEUpSBop01RFEVRCoJ22hRFURSlIGinTVEURUkxNzd/ab8URsmPdtoURb0QjY2NWLt2LSwtLaGurg4ulwsfHx822Ia5uTkYhgHDMNDU1ISjoyMOHz4sUUZBQQGbh2EYjB07Fr6+vqirqxvWttrY2EBdXR2NjY1SaTNnzgTDMIiJiZFKmzdvHhiGwbZt26TyMwwDDQ0N2NnZISEhQe62dHR0YPfu3XB2doampiYMDAzg4eGBpKQkdo53UFAQW4eqqiosLCywadMmtLe3S5TV99jp6urCw8MD586dk6sdV65cQWhoqERZWVlZcu/HcGhoaADDMCgrK5N7m+TkZIwePVpm2u/Zh7t372LevHnQ1NSEkZERNm7cOOS448OJdtoURQ27hoYGTJo0CefOncOePXtQUVGB3NxczJo1CwKBgM23fft2iMViVFZWIiAgACEhIcjJyZEqr6amBvfv30d6ejpu3LgBHx8fmeEaf4+LFy+ira0NixYtwpEjR2Tm4XK5SE5Ollh37949nD17lo3V3FdISAjEYjGqqqqwZMkSCAQCpKamDtqWjo4OeHl5ISYmBqGhoSgqKkJpaSkEAgHi4+MlIo95e3tDLBajrq4OsbGxOHToEKKioqTKTEpKglgsxqVLl2BgYID58+fLddFjaGgITU3546j/O+ru7sa8efPQ0dGBoqIiHDlyBMnJydi6devINep3hxqhKOqFUfQoX3PnziWmpqZstKm+eiN2yYrypaenx0bXIkR2lK+UlBQCgNy8eXPQdjQ1NZHQ0FBiZGRE1NXVib29PcnOzpbIExQURLZs2UJycnKItbW1VBl8Pp+sXr2a6Ovrk4sXL7Lrd+7cSXx8fOSK8mVlZUWWLVs2aHs///xzoqSkRK5duyaV1tHRwR5PWVG+Fi5cSFxcXCTW4bkoX/fu3SMAyMGDB0lPTw+JiooiXC6XqKmpERMTE7J27Vo2b9/zY2ZmJhHhqm+Ur6ysLOLi4kLU1dWJhYUF2bZtGxuNbDAASEJCAvH29iYaGhrEwsKCpKenS6T3Xfh8PiHk2d/FlClTiKamJtHV1SXTpk0jDQ0NhBBCkpKSiK6ubr/19R6P3gheqampxN3dnf37KCgoYPN/9913UtHgDhw4QHR0dMjTp0/l2se+huN7Te+0KUpBEELQ8aRjRBYyhF87fvjwIXJzcyEQCKClpSWVLmvosqenBxkZGWhqaoKamtqA5XM4HAAYNJ5xT08P5s6di0uXLuH48eOoqqpCTEyMRDzl5uZmpKenIyAgAHPmzMHjx49RWFgoVZaamhr8/f2RlJTErktOTkZwcPCAbejbZnniL6ekpMDT0xMuLi5SaaqqqjKPJwBUVlaiqKhoSMcuIyODvUOvra1FVlYWHB0dZW535coVAP931977ubCwEMuXL0d4eDiqqqpw6NAhJCcnY+fOnYPua69PP/0Uvr6+KC8vh7+/P5YtW4bq6moAQGlpKQAgPz8fYrEYp06dQldXFxYsWAA+n4+ffvoJxcXFCA0NBcMwctfZ18aNG/HRRx/h+vXrcHd3h4+PDx48eAAAKC4uhqOjI8aOHcvm9/Lywm+//SYz3vrLQH/GlKIURGdrJ3Zp7xqRuiNaIqCmNXCH0Ov27dsghMDGxmbQvJs3b0ZkZCSePn2Krq4u6OnpYdWqVf3mF4vF+OKLL2BqaoqJEycOWHZ+fj5KS0tRXV0Na2trAIClpaVEnrS0NFhZWbEBLJYtWwaRSITp06dLlRccHIzp06dj//79+PHHH/H48WPMnz9f4nn287q7u5GamoqffvpJ4vlwf2prazFz5sxB8wHAmTNnoK2tja6uLjx9+hRKSkr48ssv+83f2tqKyMhIKCsrg8/nIz8/H8bGxvD09ISqqirGjx8PV1dXmdsaGhoCeHbBZWxszK6Pjo7Gli1bEBgYCODZ8d2xYwc2bdokc6helsWLF7PnfMeOHcjLy0N8fDwSEhLYevX19dl6Hz58yB77CRMmAABsbW0lynz8+DG0tbXlqn/NmjXw9fUFABw4cAC5ubkQiUTYtGkTGhsbJTpsAOxnWe8/vAy006YoalgN5a5848aNCAoKglgsxsaNGxEWFgYejyeVb9y4cSCEoLW1Fc7OzsjIyBj0rrKsrAzjxo1jO2xZEhMTERAQwH4OCAgAn89HfHy81O9mOzs7w8rKCidPnsT58+fx/vvvQ0VF9n+hCQkJOHz4MDo6OqCsrIz169dj9erVA7YXGNqxmzVrFg4cOIAnT54gNjYWKioqbOfTl5+fH5SVldHW1gZDQ0OIRCI4OTlhzJgx2LdvHywtLeHt7Y233noLPj4+/e6TLOXl5bh06ZLEnXV3dzfa29vR2toq1zNxd3d3qc8DvXimp6eHoKAgeHl5Yc6cOfD09MSSJUsk3i0YNWoUrl27JrWtlZXVgPWrqKhg8uTJ7J3+q4h22hSlIFQ1VRHREjFidcvLysoKDMPg5s2bg+Y1MDAAj8cDj8dDeno6HB0dMXnyZNjZ2UnkKywshI6ODoyMjOQOQtE7FNyfqqoqXL58GaWlpdi8eTO7vru7G2lpaQgJCZHaJjg4GEKhEFVVVezQrSz+/v745JNPwOFwYGJiAiUl+Z5EWltby3XcAEBLS4u9wElMTISzszNEIhFWrlwpkS82Nhaenp7Q1dVl71yBZy/X1dTUID8/H3l5eQgLC8OePXtw4cIFqKrKd75bWloQHR2NhQsXSqW9yOh0SUlJWLduHXJzc/Htt98iMjISeXl5cHNzAwAoKSnJvPgbKmNjY6nz3Bu5rO+Iw8tEn2lTlIJgGAZqWmojsgzleaGenh68vLwgFArx5MkTqfRHjx7J3I7L5WLp0qWIiJC+MLGwsMCECROGFDXKyckJv/zyC27duiUzXSQSYcaMGSgvL0dZWRm7bNiwASKRSOY27733HioqKuDg4CB1YdGXrq4ueDweTE1N5e6we8vPz8/H9evXpdI6OztlHk/gWSf18ccfIzIyEm1tbRJpxsbG4PF4Eh12Lw6HAx8fH8TFxaGgoADFxcWoqKiQWYeqqqrUG/tvvPEGampq2Auvvou8+3358mWpz73D3b2jKbJmCri4uCAiIgJFRUVwcHDAN998I1d9A9Xf1dWFH3/8ka3f3d0dFRUV+Mc//sHmycvLg46OzoDn/0WinTZFUcNOKBSiu7sbrq6uyMjIQG1tLaqrqxEXFyc1HNpXeHg4srOzcfXq1T/cBj6fjxkzZsDX1xd5eXmor69HTk4OcnNz0dnZiWPHjsHPzw8ODg4Sy6pVq1BSUiLzRaMxY8ZALBazc82H24cffggPDw/Mnj0bQqEQ5eXlqKurw4kTJ+Dm5oba2tp+t128eDGUlZUhFArlqis5ORkikQiVlZWoq6vD8ePHweFw+g0fam5ujrNnz6KxsRFNTU0AgK1bt+Lo0aOIjo7GjRs3UF1djbS0NERGRsq9z+np6UhMTMStW7cQFRWF0tJSrFmzBgBgZGQEDoeD3Nxc/Prrr3j8+DHq6+sRERGB4uJi3LlzBz/88ANqa2ulnmvLSygUIjMzEzdv3oRAIEBTUxP7guGbb74JOzs7vP/++ygvL8f333+PyMhICAQCqKur/676/rDf/d45RVEvjKJP+SKEkPv37xOBQEDMzMyImpoaMTU1JW+//TY5f/48IUT2lC9CCPHy8iJz584lhMie8jUUDx48ICtWrCD6+vpEQ0ODODg4kDNnzpCTJ09KTeXpy9bWlp16JmsKV1/yTPkaivb2drJr1y7i6OhINDQ0iJ6eHvHw8CDJycnsVCpZU74IIWTXrl3E0NCQnRqG56Z89ZWZmUmmTp1KdHR0iJaWFnFzcyP5+fls+vPn5/Tp04TH4xEVFRWJKV+5ublk2rRphMPhEB0dHeLq6kq++uorufYVABEKhWTOnDlEXV2dmJubk2+//VYiz9dff024XC5RUlIifD6fNDY2kgULFhATExOipqZGzMzMyNatW0l3dzchZOhTvr755hvi6upK1NTUiJ2dHTl37pzENg0NDWTu3LmEw+EQAwMD8tFHH8k9pe15w/G9Zv53RyiKeoW0t7ejvr4eFhYWL/TZIEWNJIZhkJmZiQULFrz0uhsaGmBhYYHr16/j9ddffyl1Dsf3mg6PUxRFUZSCoJ02RVEKKSUlBdra2jKX3nnXrxp7e/t+25ySkjLSzRtWinh+FAEdHqeoVxAdHh9cc3MzO/3meaqqqv2+UDWS7ty5wwb9eN7YsWOH9Hb8q04Rz8+LNhzfazpPm6IohTRq1CiF6+T+kzoqRTw/ioAOj1MURVGUgqCdNkVRFEUpCNppUxRFUZSCoJ02RVEURSkI2mlTFEVRlIKgnTZFURQlxdzcHPv27RvpZlDPoZ02RVEvRGNjI9auXQtLS0uoq6uDy+XCx8eHDbZhbm4OhmHAMAw0NTXh6OiIw4cPS5RRUFDA5mEYBmPHjoWvry/q6uqGta02NjZQV1dHY2OjVNrMmTPBMAxiYmKk0ubNmweGYbBt2zap/AzDQENDA3Z2dkhISJC7LR0dHdi9ezecnZ2hqakJAwMDeHh4ICkpiZ3jHRQUxNahqqoKCwsLbNq0Ce3t7RJl9T12urq68PDwwLlz5+Rqx5UrVxAaGipRVlZWltz7MRwaGhrAMMyA8bWfl5ycjNGjR8tM+z37sG7dOkyaNAnq6uov7edOB0I7bYqihl1DQwMmTZqEc+fOYc+ePaioqEBubi5mzZoFgUDA5tu+fTvEYjEqKysREBCAkJAQ5OTkSJVXU1OD+/fvIz09HTdu3ICPj4/McI2/x8WLF9HW1oZFixbhyJEjMvNwuVwkJydLrLt37x7Onj0LExMTqfwhISEQi8WoqqrCkiVLIBAIkJqaOmhbOjo64OXlhZiYGISGhqKoqAilpaUQCASIj4+XiDzm7e0NsViMuro6xMbG4tChQ4iKipIqMykpCWKxGJcuXYKBgQHmz58v10WPoaEhNDU1B833nyA4OBhLly4d6WY887tDjVAU9cIoepSvuXPnElNTUzbaVF+9EbtkRfnS09Njo2sRIjvKV0pKCgFAbt68OWg7mpqaSGhoKDEyMiLq6urE3t6eZGdnS+QJCgoiW7ZsITk5OcTa2lqqDD6fT1avXk309fXJxYsX2fU7d+4kPj4+ckX5srKyIsuWLRu0vZ9//jlRUlIi165dk0rr6Ohgj6esKF8LFy4kLi4uEuvwXJSve/fuEQDk4MGDpKenh0RFRREul0vU1NSIiYkJWbt2LZu37/kxMzMjANilb5SvrKws4uLiQtTV1YmFhQXZtm2b3FGwAJCEhATi7e1NNDQ0iIWFBUlPT5dI77vw+XxCyLO/iylTphBNTU2iq6tLpk2bRhoaGgghQ4/ylZqaStzd3dm/j4KCApnbRkVFEWdnZ7n2qz/D8b2md9oUpSAIIehqbR2RhQzh144fPnyI3NxcCAQCaGlpSaXLGrrs6elBRkYGmpqaoKamNmD5HA4HwLO70oH09PRg7ty5uHTpEo4fP46qqirExMRAWVmZzdPc3Iz09HQEBARgzpw5ePz4MQoLC6XKUlNTg7+/P5KSkth1ycnJbNzlwXA4nEHbCzz7vW5PT0+4uLhIpamqqso8ngBQWVmJoqKiIR27jIwM9g69trYWWVlZcHR0lLndlStXAPzfXXvv58LCQixfvhzh4eGoqqrCoUOHkJycjJ07dw66r70+/fRT+Pr6ory8HP7+/li2bBmqq6sBAKWlpQCA/Px8iMVinDp1Cl1dXViwYAH4fD5++uknFBcXIzQ0FAzDyF1nXxs3bsRHH32E69evw93dHT4+Pnjw4MHvKutloD9jSlEKorutDSemTBmRupdcuQIVOYdKb9++DUIIbGxsBs27efNmREZG4unTp+jq6oKenh5WrVrVb36xWIwvvvgCpqammDhx4oBl5+fno7S0FNXV1bC2tgYAWFpaSuRJS0uDlZUVG8Bi2bJlEIlEmD59ulR5wcHBmD59Ovbv348ff/wRjx8/xvz58yWeZz+vu7sbqamp+OmnnySeD/entrYWM2fOHDQfAJw5cwba2tro6urC06dPoaSkhC+//LLf/K2trYiMjISysjL4fD7y8/NhbGwMT09PqKqqYvz48XB1dZW5raGhIYBnF1zGxsbs+ujoaGzZsgWBgYEAnh3fHTt2YNOmTTKH6mVZvHgxe8537NiBvLw8xMfHIyEhga1XX1+frffhw4fssZ8wYQIAwNbWVqLMx48fQ1tbW67616xZA19fXwDAgQMHkJubC5FIhE2bNsm1/ctGO22KoobVUO7KN27ciKCgIIjFYmzcuBFhYWHg8XhS+caNGwdCCFpbW+Hs7IyMjIxB7yrLysowbtw4tsOWJTExEQEBAezngIAA8Pl8xMfHS/1utrOzM6ysrHDy5EmcP38e77//PlRUZP8XmpCQgMOHD6OjowPKyspYv349Vq9ePWB7gaEdu1mzZuHAgQN48uQJYmNjoaKiwnY+ffn5+UFZWRltbW0wNDSESCSCk5MTxowZg3379sHS0hLe3t5466234OPj0+8+yVJeXo5Lly5J3Fl3d3ejvb0dra2tcj0Td3d3l/o80Itnenp6CAoKgpeXF+bMmQNPT08sWbJE4t2CUaNG4dq1a1LbWllZDVi/iooKJk+ezN7pv4pop01RCkKZw8GS/x2WHIm65WVlZQWGYXDz5s1B8xoYGIDH44HH4yE9PR2Ojo6YPHky7OzsJPIVFhZCR0cHRkZGcgeh4AzS5qqqKly+fBmlpaXYvHkzu767uxtpaWkICQmR2iY4OBhCoRBVVVXs0K0s/v7++OSTT8DhcGBiYgIlJfmeRFpbW8t13ABAS0uLvcBJTEyEs7MzRCIRVq5cKZEvNjYWnp6e0NXVZe9cgWcv19XU1CA/Px95eXkICwvDnj17cOHCBaiqqsrVhpaWFkRHR2PhwoVSaS8yOl1SUhLWrVuH3NxcfPvtt4iMjEReXh7c3NwAAEpKSjIv/v4d0GfaFKUgGIaBiqbmiCxDeV6op6cHLy8vCIVCPHnyRCr90aNHMrfjcrlYunQpIiIipNIsLCwwYcKEIUWNcnJywi+//IJbt27JTBeJRJgxYwbKy8tRVlbGLhs2bIBIJJK5zXvvvYeKigo4ODhIXVj0paurCx6PB1NTU7k77N7y8/Pzcf36dam0zs5OmccTeNZJffzxx4iMjERbW5tEmrGxMXg8nkSH3YvD4cDHxwdxcXEoKChAcXExKioqZNahqqoq9cb+G2+8gZqaGvbCq+8i735fvnxZ6nPvcHfvaIqsmQIuLi6IiIhAUVERHBwc8M0338hV30D1d3V14ccff5Qabn+V0E6boqhhJxQK0d3dDVdXV2RkZKC2thbV1dWIi4uTGg7tKzw8HNnZ2bh69eofbgOfz8eMGTPg6+uLvLw81NfXIycnB7m5uejs7MSxY8fg5+cHBwcHiWXVqlUoKSmRmF7Va8yYMRCLxexc8+H24YcfwsPDA7Nnz4ZQKER5eTnq6upw4sQJuLm5oba2tt9tFy9eDGVlZQiFQrnqSk5OhkgkQmVlJerq6nD8+HFwOJx+w4eam5vj7NmzaGxsRFNTEwBg69atOHr0KKKjo3Hjxg1UV1cjLS0NkZGRcu9zeno6EhMTcevWLURFRaG0tBRr1qwBABgZGYHD4SA3Nxe//vorHj9+jPr6ekRERKC4uBh37tzBDz/8gNra2t/d0QqFQmRmZuLmzZsQCARoamqSeMHw9u3bKCsrQ2NjI9ra2tiLO3leLHwh/tD76xRFvRCKPuWLEELu379PBAIBMTMzI2pqasTU1JS8/fbb5Pz584QQ2VO+CCHEy8uLzJ07lxAie8rXUDx48ICsWLGC6OvrEw0NDeLg4EDOnDlDTp48SZSUlEhjY6PM7WxtbdmpZ7KmcPUlz5SvoWhvbye7du0ijo6ORENDg+jp6REPDw+SnJzMTqWSNeWLEEJ27dpFDA0N2alheG7KV1+ZmZlk6tSpREdHh2hpaRE3NzeSn5/Ppj9/fk6fPk14PB5RUVGRmPKVm5tLpk2bRjgcDtHR0SGurq7kq6++kmtfARChUEjmzJlD1NXVibm5Ofn2228l8nz99deEy+USJSUlwufzSWNjI1mwYAExMTEhampqxMzMjGzdupV0d3cTQoY+5eubb74hrq6uRE1NjdjZ2ZFz585JbMPn86WmngEg9fX1cu1jX8PxvWb+d0coinqFtLe3o76+HhYWFi/02SBFjSSGYZCZmYkFCxa89LobGhpgYWGB69evv7RfOhuO7zUdHqcoiqIoBUE7bYqiFFJKSgq0tbVlLr3zrl819vb2/bY5JSVlpJs3rBTx/CgCOjxOUa8gOjw+uObmZvz6668y01RVVft9oWok3blzhw368byxY8cO6e34V50inp8XbTi+13SeNkVRCmnUqFEK18n9J3VUinh+FAEdHqcoiqIoBUE7bYqiKIpSELTTpiiKoigFQTttiqIoilIQtNOmKIqiKAVBO22KoihKirm5Ofbt2zfSzaCeQzttiqJeiMbGRqxduxaWlpZQV1cHl8uFj48PG2zD3NwcDMOAYRhoamrC0dERhw8fliijoKCAzcMwDMaOHQtfX1/U1dUNa1ttbGygrq6OxsZGqbSZM2eCYRjExMRIpc2bNw8Mw2Dbtm1S+RmGgYaGBuzs7JCQkCB3Wzo6OrB79244OztDU1MTBgYG8PDwQFJSEjvHOygoiK1DVVUVFhYW2LRpE9rb2yXK6nvsdHV14eHhgXPnzsnVjitXriA0NFSirKysLLn3Yzg0NDSAYZgB42s/Lzk5GaNHjx5yXenp6bCxsYGGhgYcHR3x3XffDbmMl4F22hRFDbuGhgZMmjQJ586dw549e1BRUYHc3FzMmjULAoGAzbd9+3aIxWJUVlYiICAAISEhyMnJkSqvpqYG9+/fR3p6Om7cuAEfHx+Z4Rp/j4sXL6KtrQ2LFi3CkSNHZObhcrlITk6WWHfv3j2cPXsWJiYmUvlDQkIgFotRVVWFJUuWQCAQIDU1ddC2dHR0wMvLCzExMQgNDUVRURFKS0shEAgQHx8vEXnM29sbYrEYdXV1iI2NxaFDhxAVFSVVZlJSEsRiMS5dugQDAwPMnz9froseQ0NDaGpqDprv30FRURH8/PywcuVKXL9+HQsWLMCCBQtQWVk50k2T9rtDjVAU9cIoepSvuXPnElNTUzbaVF+9EbtkRfnS09Njo2sRIjvKV0pKCgFAbt68OWg7mpqaSGhoKDEyMiLq6urE3t6eZGdnS+QJCgoiW7ZsITk5OcTa2lqqDD6fT1avXk309fXJxYsX2fU7d+4kPj4+ckX5srKyIsuWLRu0vZ9//jlRUlIi165dk0rr6Ohgj6esKF8LFy4kLi4uEuvwXJSve/fuEQDk4MGDpKenh0RFRREul0vU1NSIiYkJWbt2LZu37/kxMzOTiHDVN8pXVlYWcXFxIerq6sTCwoJs27aNjUY2GAAkISGBeHt7Ew0NDWJhYUHS09Ml0vsufD6fEPLs72LKlClEU1OT6OrqkmnTppGGhgZCiHSUr6ioKOLs7EwOHjxIxo0bRzgcDlm8eDF59OgRm2fJkiVk3rx5Em2bOnUq+ctf/iLXfshrOL7X9BfRKEpBEELQ2to6InVramqCYRi58j58+BC5ubnYuXMntLS0pNJlDV329PQgMzMTTU1NUFNTG7B8DocDAIPGM+7p6cHcuXPR3NyM48ePY8KECaiqqoKysjKbp7m5Genp6SgpKYGNjQ0eP36MwsJCTJ8+XaIsNTU1+Pv7IykpCR4eHgCeDcPu3r1bYmh8oDbLE385JSUFnp6ecHFxkUpTVVWFqqqqzO0qKytRVFQ06C+u9T12GRkZiI2NRVpaGuzt7dHY2Ijy8nKZ2125cgVGRkZISkqCt7c3ewwLCwuxfPlyxMXFYfr06fj555/ZIXVZd/2yfPrpp4iJicH+/ftx7NgxLFu2DBUVFbC1tUVpaSlcXV2Rn58Pe3t7qKmpoaurCwsWLEBISAhSU1PR0dGB0tLSAf8+b9++jRMnTiA7Oxu//fYbVq5cibCwMPb33ouLi7FhwwaJbby8vF764wC5DN81BEVRw0XWFXlLS4vMuL4vY5F1x9yfkpISAoCcOnVqwHy9cba1tLSIiooKAUD09PRIbW0tm+f5O+379++TadOmEVNTU/L06dMBy//++++JkpISqamp6TfPV199RV5//XX2c3h4OAkMDJTI03vnXFZWRkaNGkVaWlrIhQsXiJGREens7BzwTrurq4scO3aMACBffvnlgO0lhBAOh0PWrVs3aL7AwECirKxMtLS0iLq6OgFAlJSUyMmTJyXyoc+d9pMnT0hYWBhRVlYm5eXlZO/evcTa2pp0dHTIrOP5kZC+ZfWaPXs2+eyzzyTWHTt2jJiYmAy6D71lfvDBBxLrpk6dSlavXk0I+b+Y19evX2fTHzx4QACQgoICmWXKutNWVlYmv/zyC7suJyeHKCkpEbFYTAghRFVVlXzzzTcS5QiFQmJkZCTXfshrOO606TNtiqKGFRlCDKKNGzeirKwM586dw9SpUxEbGwsejyeVb9y4cdDS0sJrr72GJ0+eICMjY9A78rKyMowbNw7W1tb95klMTERAQAD7OSAgAOnp6WhubpbK6+zsDCsrK5w8eRKJiYl4//33oaIie7AyISEB2tra4HA4CAkJwfr167F69eoB2wsM7djNmjULZWVlKCkpQWBgIFasWAFfX1+pfH5+ftDW1saoUaOQkZEBkUgEJycnLF68GG1tbbC0tERISAgyMzPR1dUld/0AUF5eju3bt0tE8Op9ni/vqJC7u7vU5+rq6n7z6+npISgoCF5eXvDx8cH+/fshFosHrGP8+PEwNTWVqKOnpwc1NTVytfFVQofHKUpBaGpqoqWlZcTqlpeVlRUYhsHNmzcHzWtgYAAejwcej4f09HQ4Ojpi8uTJsLOzk8hXWFgIHR0dGBkZyR2EoncouD9VVVW4fPkySktLsXnzZnZ9d3c30tLSEBISIrVNcHAwhEIhqqqqUFpa2m/Z/v7++OSTT8DhcGBiYgIlJfnuj6ytreU6bgCgpaXFXuAkJibC2dkZIpEIK1eulMgXGxsLT09P6OrqwtDQkF3P5XJRU1OD/Px85OXlISwsDHv27MGFCxf6HYZ/XktLC6Kjo7Fw4UKptBcZnS4pKQnr1q1Dbm4uvv32W0RGRiIvLw9ubm6/qzxjY2OpiGS//vorjI2Nh6O5w4reaVOUgmAYBlpaWiOyyPs8G3h2J+Tl5QWhUIgnT55IpT969EjmdlwuF0uXLkVERIRUmoWFBSZMmDCkqFFOTk745ZdfcOvWLZnpIpEIM2bMQHl5OcrKythlw4YNEIlEMrd57733UFFRAQcHB6kLi750dXXB4/Fgamoqd4fdW35+fj6uX78uldbZ2SnzeAKAkpISPv74Y0RGRqKtrU0izdjYGDweT6LD7sXhcODj44O4uDgUFBSguLgYFRUVMutQVVWVemP/jTfeQE1NDXvh1XeRd78vX74s9dnW1hYA2NEUWTMFXFxcEBERgaKiIjg4OOCbb77pt467d+/i/v37EnUoKSlh4sSJAJ7defdOReyVl5cnNQrwKqCdNkVRw04oFKK7uxuurq7IyMhAbW0tqqurERcXN+B/hOHh4cjOzsbVq1f/cBv4fD5mzJgBX19f5OXlob6+Hjk5OcjNzUVnZyeOHTsGPz8/ODg4SCyrVq1CSUmJxPSqXmPGjIFYLJb6D364fPjhh/Dw8MDs2bMhFApRXl6Ouro6nDhxAm5ubqitre1328WLF0NZWRlCoVCuupKTkyESiVBZWYm6ujocP34cHA6n35fZzM3NcfbsWTQ2NqKpqQkAsHXrVhw9ehTR0dG4ceMGqqurkZaWhsjISLn3OT09HYmJibh16xaioqJQWlqKNWvWAACMjIzA4XCQm5uLX3/9FY8fP0Z9fT0iIiJQXFyMO3fu4IcffkBtbS3b0cuioaGBwMBAlJeXo7CwEOvWrcOSJUvYO+nw8HDk5uZi7969uHnzJrZt24arV6+y7XilDNsTdoqiho2iT/ki5NlLYwKBgH3hzNTUlLz99tvk/PnzhBDZU74IIcTLy4vMnTuXECJ7ytdQPHjwgKxYsYLo6+sTDQ0N4uDgQM6cOUNOnjxJlJSUSGNjo8ztbG1t2alnsqZw9SXPlK+haG9vJ7t27SKOjo5EQ0OD6OnpEQ8PD5KcnMxOpZI15YsQQnbt2kUMDQ3ZFwch4+WxXpmZmWTq1KlER0eHaGlpETc3N5Kfn8+mP39+Tp8+TXg8HlFRUZGY8pWbm0umTZtGOBwO0dHRIa6uruSrr76Sa18BEKFQSObMmUPU1dWJubk5+fbbbyXyfP3114TL5RIlJSXC5/NJY2MjWbBgATExMSFqamrEzMyMbN26lXR3dxNC+p/ylZCQQF577TWioaFBFi1aRB4+fChRz4kTJ4i1tTVRU1Mj9vb25G9/+5tc+zAUw/G9ZggZwpsPFEW9FO3t7aivr4eFhcULfTZIUSOJYRhkZmZiwYIFL6yObdu2ISsra0i/qvaiDMf3mg6PUxRFUZSCoJ02RVEKKSUlRWKqUd/F3t5+pJsnk729fb9t7v2hj38Xinh+FAEdHqeoVxAdHh9cc3Oz1DSdXqqqqoP+OthIuHPnDhv043ljx44d0tvxrzpFPD8v2nB8r+k8bYqiFNKoUaMUrpP7T+qoFPH8KAI6PE5RFEVRCoJ22hRFURSlIGinTVEURVEKgnbaFEVRFKUgaKdNURRFUQqCdtoURVGUFHNzc+zbt2+km0E9h3baFEW9EI2NjVi7di0sLS2hrq4OLpcLHx8fNtiGubk5GIYBwzDQ1NSEo6MjDh8+LFFGQUEBm4dhGIwdOxa+vr6oq6sb1rba2NhAXV0djY2NUmkzZ84EwzCIiYmRSps3bx4YhsG2bduk8jMMAw0NDdjZ2SEhIUHutnR0dGD37t1wdnaGpqYmDAwM4OHhgaSkJHaOd1BQEFuHqqoqLCwssGnTJrS3t0uU1ffY6erqwsPDA+fOnZOrHVeuXEFoaKhEWVlZWXLvx3BoaGgAwzBD+gnS5ORkjB49ekj13LhxA76+vuzf5Kt8sUI7bYqihl1DQwMmTZqEc+fOYc+ePaioqEBubi5mzZoFgUDA5tu+fTvEYjEqKysREBCAkJAQ5OTkSJVXU1OD+/fvIz09HTdu3ICPj4/McI2/x8WLF9HW1oZFixbhyJEjMvNwuVwkJydLrLt37x7Onj0LExMTqfwhISEQi8WoqqrCkiVLIBAIkJqaOmhbOjo64OXlhZiYGISGhqKoqAilpaUQCASIj4+XiDzm7e0NsViMuro6xMbG4tChQ4iKipIqMykpCWKxGJcuXYKBgQHmz58v10WPoaHhkOKoK7LW1lZYWloiJibmlYyhLWGYgpdQFDWMFD3K19y5c4mpqSkbbaqv3ohdsqJ86enpsdG1CJEd5SslJYUAIDdv3hy0HU1NTSQ0NJQYGRkRdXV1Ym9vT7KzsyXyBAUFkS1btpCcnBxibW0tVQafzyerV68m+vr65OLFi+z6nTt3Eh8fH7mifFlZWZFly5YN2t7PP/+cKCkpkWvXrkmldXR0sMdTVpSvhQsXEhcXF4l1eC7K17179wgAcvDgQdLT00OioqIIl8slampqxMTEhKxdu5bN2/f8mJmZEQDs0jfKV1ZWFnFxcSHq6urEwsKCbNu2jY1GNhgAJCEhgXh7exMNDQ1iYWFB0tPTJdL7Lnw+nxDy7O9iypQpRFNTk+jq6pJp06aRhoYGQkj/Ub4OHjxIxo0bRzgcDlm8eDF59OiRzDb1F31uOAzH95r+IhpFKQhCCFo7W0ekbk1VTTAMI1fehw8fIjc3Fzt37oSWlpZUuqyhy56eHmRmZqKpqQlqamoDls/hcAA8uysdSE9PD+bOnYvm5mYcP34cEyZMQFVVFZSVldk8zc3NSE9PR0lJCWxsbPD48WMUFhZi+vTpEmWpqanB398fSUlJ8PDwAPBsGHb37t0SQ+MDtXmw9gLPfq/b09MTLi4uUmmqqqpQVVWVuV1lZSWKiooG/cW1vscuIyMDsbGxSEtLg729PRobG1FeXi5zuytXrsDIyAhJSUnw9vZmj2FhYSGWL1+OuLg4TJ8+HT///DM7pC7rrl+WTz/9FDExMdi/fz+OHTuGZcuWoaKiAra2tigtLYWrqyvy8/Nhb28PNTU1dHV1YcGCBQgJCUFqaio6OjpQWlo64N/n7du3ceLECWRnZ+O3337DypUrERYWppC/9047bYpSEK2drdDepT0idbdEtEBLTboDluX27dsghMDGxmbQvJs3b0ZkZCSePn2Krq4u6OnpYdWqVf3mF4vF+OKLL2BqaoqJEycOWHZ+fj5KS0tRXV0Na2trAIClpaVEnrS0NFhZWbEBLJYtWwaRSCTVaQNAcHAwpk+fjv379+PHH3/E48ePMX/+/AE77e7ubqSmpuKnn36SeD7cn9raWsycOXPQfABw5swZaGtro6urC0+fPoWSkhK+/PLLfvO3trYiMjISysrK4PP5yM/Ph7GxMTw9PaGqqorx48fD1dVV5raGhoYAnl1w9R0+jo6OxpYtWxAYGAjg2fHdsWMHNm3aJHenvXjxYvac79ixA3l5eYiPj0dCQgJbr76+Plvvw4cP2WM/YcIEAICtre2AdbS3t+Po0aMwNTUFAMTHx2PevHnYu3fvqz8c/hz6TJuiqGFFhhCDaOPGjSgrK8O5c+cwdepUxMbGgsfjSeUbN24ctLS08Nprr+HJkyfIyMgY9I68rKwM48aNYztsWRITExEQEMB+DggIQHp6Opqbm6XyOjs7w8rKCidPnkRiYiLef/99qKjIvu9JSEiAtrY2OBwOQkJCsH79eqxevXrA9gJDO3azZs1CWVkZSkpKEBgYiBUrVsDX11cqn5+fH7S1tTFq1ChkZGRAJBLByckJixcvRltbGywtLRESEoLMzEx0dXXJXT8AlJeXY/v27RIRvHqf57e2yjcq5O7uLvW5urq63/x6enoICgqCl5cXfHx8sH//fojF4gHrGD9+PNth99bR09ODmpoaudr4KqF32hSlIDRVNdES0TJidcvLysoKDMPg5s2bg+Y1MDAAj8cDj8dDeno6HB0dMXnyZNjZ2UnkKywshI6ODoyMjOQOQtE7FNyfqqoqXL58GaWlpdi8eTO7vru7G2lpaQgJCZHaJjg4GEKhEFVVVSgtLe23bH9/f3zyySfgcDgwMTGBkpJ890fW1tZyHTcA0NLSYi9wEhMT4ezsDJFIhJUrV0rki42NhaenJ3R1ddk7V+DZy3U1NTXIz89HXl4ewsLCsGfPHly4cKHfYfjntbS0IDo6GgsXLpRKe5HR6ZKSkrBu3Trk5ubi22+/RWRkJPLy8uDm5vbC6nxV0DttilIQDMNAS01rRBZ5n2cDz+6EvLy8IBQK8eTJE6n0R48eydyOy+Vi6dKliIiIkEqzsLDAhAkThhQ1ysnJCb/88gtu3bolM10kEmHGjBkoLy9HWVkZu2zYsAEikUjmNu+99x4qKirg4OAgdWHRl66uLng8HkxNTeXusHvLz8/Px/Xr16XSOjs7ZR5PAFBSUsLHH3+MyMhItLW1SaQZGxuDx+NJdNi9OBwOfHx8EBcXh4KCAhQXF6OiokJmHaqqqlJv7L/xxhuoqalhL7z6LvLu9+XLl6U+9w53946myJop4OLigoiICBQVFcHBwQHffPNNv3XcvXsX9+/fl6hDSUlp0EcsryLaaVMUNeyEQiG6u7vh6uqKjIwM1NbWorq6GnFxcVLDoX2Fh4cjOzsbV69e/cNt4PP5mDFjBnx9fZGXl4f6+nrk5OQgNzcXnZ2dOHbsGPz8/ODg4CCxrFq1CiUlJRLTq3qNGTMGYrGYnWs+3D788EN4eHhg9uzZEAqFKC8vR11dHU6cOAE3NzfU1tb2u+3ixYuhrKwMoVAoV13JyckQiUSorKxEXV0djh8/Dg6H0+/LbObm5jh79iwaGxvR1NQEANi6dSuOHj2K6Oho3LhxA9XV1UhLS0NkZKTc+5yeno7ExETcunULUVFRKC0txZo1awAARkZG4HA4yM3Nxa+//orHjx+jvr4eERERKC4uxp07d/DDDz+gtrZ2wOfaGhoaCAwMRHl5OQoLC7Fu3TosWbKEfZ7d0dHBXrR1dHTg3r17KCsrw+3bt+Xej5dmmN5kpyhqGCn6lC9CCLl//z4RCATEzMyMqKmpEVNTU/L222+T8+fPE0L6n1rj5eVF5s6dSwiRPeVrKB48eEBWrFhB9PX1iYaGBnFwcCBnzpwhJ0+eJEpKSqSxsVHmdra2tuzUM1lTuPqSZ8rXULS3t5Ndu3YRR0dHoqGhQfT09IiHhwdJTk5mp1LJmvJFCCG7du0ihoaG7NQwPDflq6/MzEwydepUoqOjQ7S0tIibmxvJz89n058/P6dPnyY8Ho+oqKhITPnKzc0l06ZNIxwOh+jo6BBXV1fy1VdfybWvAIhQKCRz5swh6urqxNzcnHz77bcSeb7++mvC5XKJkpIS4fP5pLGxkSxYsICYmJgQNTU1YmZmRrZu3Uq6u7sJIf1P+UpISCCvvfYa0dDQIIsWLSIPHz5k89TX10tNL0OfKWbDZTi+1wwhQ3jzgaKol6K9vR319fWwsLB4oc8GKWokMQyDzMxMLFiw4IXVsW3bNmRlZQ3pV9VelOH4XtPhcYqiKIpSELTTpihKIaWkpEhMNeq79M67ftXY29v322ZF/KGPgSji+VEEdHicol5BdHh8cM3Nzfj1119lpqmqqg7662Aj4c6dO2zQj+eNHTt2SG/Hv+oU8fy8aMPxvabztCmKUkijRo1SuE7uP6mjUsTzowjo8DhFURRFKQjaaVMURVGUgqCdNkVRFEUpCNppUxRFUZSCoJ02RVEURSkI2mlTFEVRUszNzbFv376RboaUbdu24fXXXx/pZowY2mlTFPVCNDY2Yu3atbC0tIS6ujq4XC58fHzYYBvm5uZgGAYMw0BTUxOOjo44fPiwRBkFBQVsHoZhMHbsWPj6+qKurm5Y22pjYwN1dXU0NjZKpc2cORMMwyAmJkYqbd68eWAYBtu2bZPKzzAMNDQ0YGdnh4SEBLnb0tHRgd27d8PZ2RmampowMDCAh4cHkpKS2DneQUFBbB2qqqqwsLDApk2b0N7eLlFW32Onq6sLDw8PnDt3Tq52XLlyBaGhoRJlZWVlyb0fimTnzp2YNm0aNDU1MXr06JFuzoBop01R1LBraGjApEmTcO7cOezZswcVFRXIzc3FrFmzIBAI2Hzbt2+HWCxGZWUlAgICEBISgpycHKnyampqcP/+faSnp+PGjRvw8fGRGa7x97h48SLa2tqwaNEiHDlyRGYeLpeL5ORkiXX37t3D2bNnYWJiIpU/JCQEYrEYVVVVWLJkCQQCAVJTUwdtS0dHB7y8vBATE4PQ0FAUFRWhtLQUAoEA8fHxEpHHvL29IRaLUVdXh9jYWBw6dAhRUVFSZSYlJUEsFuPSpUswMDDA/Pnz5broMTQ0hKam/HHUFVlHRwcWL16M1atXj3RTBjdMwUsoihpGih7la+7cucTU1JSNNtVXb8QuWVG+9PT02OhahMiO8pWSkkIAkJs3bw7ajqamJhIaGkqMjIyIuro6sbe3J9nZ2RJ5goKCyJYtW0hOTg6xtraWKoPP55PVq1cTfX19cvHiRXb9zp07iY+Pj1xRvqysrMiyZcsGbe/nn39OlJSUyLVr16TSOjo62OMpK8rXwoULiYuLi8Q6PBfl6969ewQAOXjwIOnp6SFRUVGEy+USNTU1YmJiQtauXcvm7Xt+zMzMJKJf9Y3ylZWVRVxcXIi6ujqxsLAg27ZtY6ORDaa3LfPmzSMcDofY2NiQoqIiUltbS/h8PtHU1CTu7u7k9u3b7Da9Ubv6EolExM7OjqipqRFjY2MiEAgk6khISCDe3t5EQ0ODWFhYkPT0dJnteT5C2HAbju81vdOmKAVBCPDkycgsQ/mx44cPHyI3NxcCgQBaWlpS6bKGH3t6epCRkYGmpiaoqakNWD6HwwHw7O5oID09PZg7dy4uXbqE48ePo6qqCjExMVBWVmbzNDc3Iz09HQEBAZgzZw4eP36MwsJCqbLU1NTg7++PpKQkdl1ycjKCg4MHbEPfNg/WXuDZ73V7enrCxcVFKk1VVVXm8QSAyspKFBUVDenYZWRksHfotbW1yMrKgqOjo8ztrly5AuD/7tp7PxcWFmL58uUIDw9HVVUVDh06hOTkZOzcuXPQfe21Y8cOLF++HGVlZbCxscF7772Hv/zlL4iIiMDVq1dBCGHja8ty4MABCAQChIaGoqKiAqdPnwaPx5PI8+mnn8LX1xfl5eXw9/fHsmXLUF1dLXcbXynDdw1BUdRwkXVF3tJCyLPu8+UvMm6Y+1VSUkIAkFOnTg2YrzfOtpaWFlFRUSEAiJ6eHqmtrWXzPH+nff/+fTJt2jRiampKnj59OmD533//PVFSUiI1NTX95vnqq6/I66+/zn4ODw8ngYGBEnl675zLysrIqFGjSEtLC7lw4QIxMjIinZ2dA95pd3V1kWPHjhEA5MsvvxywvYQQwuFwyLp16wbNFxgYSJSVlYmWlhZRV1cnAIiSkhI5efKkRD70udN+8uQJCQsLI8rKyqS8vJzs3buXWFtbk46ODpl1PD8S0resXrNnzyafffaZxLpjx44RExOTQfeht8zIyEj2c3FxMQFARCIRuy41NZVoaGiwn5+/037ttdfIJ598MmAdH3zwgcS6qVOnktWrV0vlVYQ7bfrb4xRFDSsyhNvyjRs3IigoCGKxGBs3bkRYWJjUXRIAjBs3DoQQtLa2wtnZGRkZGYPeVZaVlWHcuHGwtrbuN09iYiICAgLYzwEBAeDz+YiPj5f63WxnZ2dYWVnh5MmTOH/+PN5//32oqMj+LzQhIQGHDx9GR0cHlJWVsX79ermelw7l2M2aNQsHDhzAkydPEBsbCxUVFfj6+krl8/Pzg7KyMtra2mBoaAiRSAQnJyeMGTMG+/btg6WlJby9vfHWW2/Bx8en332Spby8HJcuXZK4s+7u7kZ7eztaW1vleibu5OTE/nvs2LEAIHHHP3bsWLS3t+O3336Djo6OxLb/+Mc/cP/+fcyePXvAOtzd3aU+vwrxtX8P2mlTlILQ1ARaWkaubnlZWVmBYRjcvHlz0LwGBgbg8Xjg8XhIT0+Ho6MjJk+eDDs7O4l8hYWF0NHRgZGRkdxBKHqHgvtTVVWFy5cvo7S0FJs3b2bXd3d3Iy0tDSEhIVLbBAcHQygUoqqqCqWlpf2W7e/vj08++QQcDgcmJiZQUpLvSaS1tbVcxw0AtLS02AucxMREODs7QyQSYeXKlRL5YmNj4enpCV1dXRgaGrLruVwuampqkJ+fj7y8PISFhWHPnj24cOECVFVV5WpDS0sLoqOjsXDhQqk0eaNY9a2LYZh+1/X09EhtO9g5/ndEn2lTlIJgGEBLa2SW//1/Uy56enrw8vKCUCjEkydPpNIfPXokczsul4ulS5ciIiJCKs3CwgITJkwYUtQoJycn/PLLL7h165bMdJFIhBkzZqC8vBxlZWXssmHDBohEIpnbvPfee6ioqICDg4PUhUVfurq64PF4MDU1lbvD7i0/Pz8f169fl0rr7OyUeTwBQElJCR9//DEiIyPR1tYmkWZsbAwejyfRYfficDjw8fFBXFwcCgoKUFxcjIqKCpl1qKqqSr2x/8Ybb6Cmpoa98Oq7DGW/f69Ro0bB3NycnUbYn8uXL0t9trW1fZFNe2Fop01R1LATCoXo7u6Gq6srMjIyUFtbi+rqasTFxUkNVfYVHh6O7OxsXL169Q+3gc/nY8aMGfD19UVeXh7q6+uRk5OD3NxcdHZ24tixY/Dz84ODg4PEsmrVKpSUlEhMr+o1ZswYiMXiQTuJ3+vDDz+Eh4cHZs+eDaFQiPLyctTV1eHEiRNwc3NDbW1tv9suXrwYysrKEAqFctWVnJwMkUiEyspK1NXV4fjx4+BwOP2GD+3tHBsbG9HU1AQA2Lp1K44ePYro6GjcuHED1dXVSEtLQ2Rk5NB3/nfatm0b9u7di7i4ONTW1uLatWuIj4+XyJOeno7ExETcunULUVFRKC0tlXi57e7duygrK8Pdu3fR3d3NXsC1jNTQ1gBop01R1LCztLTEtWvXMGvWLHz00UdwcHDAnDlzcPbsWRw4cKDf7ezs7PDmm29i69atw9KOjIwMTJkyBX5+frCzs8OmTZvQ3d2N06dP48GDB3j33XeltrG1tYWtrW2/d9ujR4/u9y3uP0pdXR15eXnYtGkTDh06BDc3N0yZMgVxcXFYt24dHBwc+t1WRUUFa9aswe7du/u9I+9r9OjR+Prrr+Hh4QEnJyfk5+cjOzsb+vr6MvPv3bsXeXl54HK57NvtXl5eOHPmDH744QdMmTIFbm5uiI2NfalxwwMDA7Fv3z4kJCTA3t4e8+fPl7q4iY6ORlpaGpycnHD06FGkpqZKjJRs3boVLi4uiIqKQktLC1xcXODi4jIsF4/DjSFDefOBoqiXor29HfX19bCwsJD72SBFUdIYhkFmZiYWLFgw0k0Zlu81vdOmKIqiKAVBO22KohRSSkoKtLW1ZS729vYj3TyZ7O3t+21zSkrKSDdvWCni+VEEdMoXRVEK6e2338bUqVNlpsk7Zell++6779igH8/rnaP87+JVOT//bk+AaadNUZRCGjVq1JCmgL0KXuYLWiNNEc+PIqDD4xRFURSlIGinTVEURVEKgnbaFEVRFKUgaKdNURRFUQqCdtoURVEUpSBop01RFEVJMTc3x759+0a6GVK2bduG119/faSbMWJop01R1AvR2NiItWvXwtLSEurq6uByufDx8WGDbZibm4NhGDAMA01NTTg6OuLw4cMSZRQUFLB5GIbB2LFj4evri7q6umFtq42NDdTV1dHY2CiVNnPmTDAMg5iYGKm0efPmgWEYbNu2TSo/wzDQ0NCAnZ0dEhIS5G5LR0cHdu/eDWdnZ2hqasLAwAAeHh5ISkpi53gHBQWxdaiqqsLCwgKbNm1Ce3u7RFl9j52uri48PDxw7tw5udpx5coVhIaGSpSVlZUl934oioaGBqxcuRIWFhbgcDiYMGECoqKi0NHRMdJNk4l22hRFDbuGhgZMmjQJ586dw549e1BRUYHc3FzMmjULAoGAzbd9+3aIxWJUVlYiICAAISEhyMnJkSqvpqYG9+/fR3p6Om7cuAEfHx+pMJG/18WLF9HW1oZFixbhyJEjMvNwuVwkJydLrLt37x7Onj0LExMTqfwhISEQi8WoqqrCkiVLIBAIkJqaOmhbOjo64OXlhZiYGISGhqKoqAilpaUQCASIj4+XiDzm7e0NsViMuro6xMbG4tChQ4iKipIqMykpCWKxGJcuXYKBgQHmz58v10WPoaEhNIcSSF1B3bx5Ez09PTh06BBu3LiB2NhYHDx4EB9//PFIN002QlHUK6etrY1UVVWRtra2kW7K7zJ37lxiampKWlpapNKampoIIYSYmZmR2NhYiTQ9PT2yfv169vP58+cJAHYbQghJSUkhAMjNmzcHbUdTUxMJDQ0lRkZGRF1dndjb25Ps7GyJPEFBQWTLli0kJyeHWFtbS5XB5/PJ6tWrib6+Prl48SK7fufOncTHx4c4OzuTqKgoifzh4eESZVhZWZFly5YN2t7PP/+cKCkpkWvXrkmldXR0sMczMDCQvPPOOxLpCxcuJC4uLhLrAJDMzEz287179wgAcvDgQdLT00OioqIIl8slampqxMTEhKxdu5bN2/f8mJmZEQDsYmZmxubLysoiLi4uRF1dnVhYWJBt27aRzs7OQfe1t30HDx4k8+bNIxwOh9jY2JCioiJSW1tL+Hw+0dTUJO7u7uT27dvsNlFRUcTZ2VmiHJFIROzs7IiamhoxNjYmAoFAoo6EhATi7e1NNDQ0iIWFBUlPTx+wXbt37yYWFhZy7cNQDMf3mt5pU5SiIAToejIyyxB+CvLhw4fIzc2FQCCQGcJy9OjRUut6enqQkZGBpqYmqKmpDVg+h8MBgEGHL3t6ejB37lxcunQJx48fR1VVFWJiYqCsrMzmaW5uRnp6OgICAjBnzhw8fvwYhYWFUmWpqanB398fSUlJ7Lrk5GQEBwcP2Ia+bZZnuDUlJQWenp5s6Mu+VFVV+w0JWllZiaKioiEdu4yMDPYOvba2FllZWXB0dJS53ZUrVwD831177+fCwkIsX74c4eHhqKqqwqFDh5CcnIydO3cOuq+9duzYgeXLl6OsrAw2NjZ477338Je//AURERG4evUqCCESsa+fd+DAAQgEAoSGhqKiogKnT58Gj8eTyPPpp5/C19cX5eXl8Pf3x7Jly1BdXd1vmY8fP4aenp7c+/Ay0Z8xpShF0d0KnNAembqXtAAq8sWQvn37NgghsLGxGTTv5s2bERkZiadPn6Krqwt6enpYtWpVv/nFYjG++OILmJqaYuLEiQOWnZ+fj9LSUlRXV8Pa2hrAszjffaWlpcHKyooNYLFs2TKIRCJMnz5dqrzg4GBMnz4d+/fvx48//ojHjx9j/vz5Es+zn9fd3Y3U1FT89NNPEs+H+1NbW4uZM2cOmg8Azpw5A21tbXR1deHp06dQUlLCl19+2W/+1tZWREZGQllZGXw+H/n5+TA2NoanpydUVVUxfvx4uLq6ytzW0NAQwLMLLmNjY3Z9dHQ0tmzZgsDAQADPju+OHTuwadMmmUP1sqxYsQJLliwB8Ozvwd3dHZ9++im8vLwAAOHh4VixYkW/2//3f/83PvroI4SHh7PrpkyZIpFn8eLF7N/Vjh07kJeXh/j4eJnvGty+fRvx8fH44osv5Gr/y0Y7bYqihhUZwl35xo0bERQUBLFYjI0bNyIsLEzqLgkAxo0bB0IIWltb4ezsjIyMjEHvKsvKyjBu3Di2w5YlMTERAQEB7OeAgADw+XzEx8dL/W62s7MzrKyscPLkSZw/fx7vv/8+VFRk/xeakJCAw4cPo6OjA8rKyli/fj1Wr149YHuBoR27WbNm4cCBA3jy5AliY2OhoqICX19fqXx+fn5QVlZGW1sbDA0NIRKJ4OTkhDFjxmDfvn2wtLSEt7c33nrrLfj4+PS7T7KUl5fj0qVLEnfW3d3daG9vR2trq1zPxJ2cnNh/9wZN6XvHP3bsWLS3t+O3336Djo6OxLb/+Mc/cP/+fcyePXvAOtzd3aU+l5WVSeW7d+8evL29sXjxYoSEhAza9pFAO22KUhTKms/ueEeqbjlZWVmBYRjcvHlz0LwGBgbg8Xjg8XhIT0+Ho6MjJk+eDDs7O4l8hYWF0NHRgZGRkdxBKHqHgvtTVVWFy5cvo7S0FJs3b2bXd3d3Iy0tTeZ/2sHBwRAKhaiqqkJpaWm/Zfv7++OTTz4Bh8OBiYkJlJTkexJpbW0t13EDAC0tLfYCJzExEc7OzhCJRFi5cqVEvtjYWHh6ekJXV5e9YwaevVxXU1OD/Px85OXlISwsDHv27MGFCxfkjsLV0tKC6OhoLFy4UCpNQ0NDrjL61sUwTL/renp6pLYd7BwPxf379zFr1ixMmzYNX3311bCVO9zoM22KUhQM82yIeiSW//2PUx56enrw8vKCUCjEkydPpNIfPXokczsul4ulS5ciIiJCKs3CwgITJkwYUtQoJycn/PLLL7h165bMdJFIhBkzZqC8vBxlZWXssmHDBohEIpnbvPfee6ioqICDg4PUhUVfurq64PF4MDU1lbvD7i0/Pz8f169fl0rr7OyUeTwBQElJCR9//DEiIyPR1tYmkWZsbAwejyfRYfficDjw8fFBXFwcCgoKUFxcjIqKCpl1qKqqSr2x/8Ybb6Cmpoa98Oq7DGW/f69Ro0bB3NycnUbYn8uXL0t9trW1ZT/fu3cPM2fOxKRJk5CUlPRS2v57vbotoyhKYQmFQnR3d8PV1RUZGRmora1FdXU14uLipIYq+woPD0d2djauXr36h9vA5/MxY8YM+Pr6Ii8vD/X19cjJyUFubi46Oztx7Ngx+Pn5wcHBQWJZtWoVSkpKJKZX9RozZgzEYvGgncTv9eGHH8LDwwOzZ8+GUChEeXk56urqcOLECbi5uaG2trbfbRcvXgxlZWUIhUK56kpOToZIJEJlZSXq6upw/PhxcDicfsOH9naOjY2NaGpqAgBs3boVR48eRXR0NG7cuIHq6mqkpaUhMjJy6Dv/O23btg179+5FXFwcamtrce3aNcTHx0vkSU9PR2JiIm7duoWoqCiUlpayL7f1dtjjx4/HF198gX/+859obGyUOWf/VUA7bYqihp2lpSWuXbuGWbNm4aOPPoKDgwPmzJmDs2fP4sCBA/1uZ2dnhzfffBNbt24dlnZkZGRgypQp8PPzg52dHTZt2oTu7m6cPn0aDx48wLvvviu1ja2tLWxtbfu92x49enS/b3H/Uerq6sjLy8OmTZtw6NAhuLm5YcqUKYiLi8O6devg4ODQ77YqKipYs2YNdu/e3e8deV+jR4/G119/DQ8PDzg5OSE/Px/Z2dnQ19eXmX/v3r3Iy8sDl8tl32738vLCmTNn8MMPP2DKlClwc3NDbGzsS40bHhgYiH379iEhIQH29vaYP3++1MVNdHQ00tLS4OTkhKNHjyI1NZUdKcnLy8Pt27dx9uxZjBs3DiYmJuzyKmLIUN58oCjqpWhvb0d9fT0sLCzkfjZIUZQ0hmGQmZmJBQsWjHRThuV7Te+0KYqiKEpB0E6boiiFlJKSAm1tbZlL77zrV429vX2/bU5JSRnp5g0rRTw/ioBO+aIoSiG9/fbbmDp1qsw0eacsvWzfffcdG/Tjeb1zlP9dvCrn59/tCTDttCmKUkijRo0a0hSwV8HLfEFrpCni+VEEdHicoiiKohQE7bQpiqIoSkHQTpuiKIqiFATttCmKoihKQdBOm6IoiqIUBO20KYqiKEpB0E6boqgRM3PmTHz44Ycvvd6CggIwDNNvxLGhCAoKeiV+IpP6z0A7bYqihlVQUBAYhsEHH3wglSYQCMAwDIKCgoa1zoaGBjAMA2VlZdy7d08iTSwWQ0VFBQzDoKGhYVjrBYD9+/cjOTmZ/TxSFyLm5ubYt2/fkLfLyMjAn//8Z4wZMwYcDgcTJ05EcHCwzPCgA7lx4wZ8fX1hbm4OhmF+V1uowdFOm6KoYcflcpGWliYR27m9vR3ffPMNxo8f/8LqNTU1xdGjRyXWHTlyBKampi+sTl1dXYwePfqFlf8ibd68GUuXLsXrr7+O06dPo6amBt988w0sLS1lxjUfSGtrKywtLRETEwNjY+MX1GKKdtoUpSAIIeh40jEiy1B/CvKNN94Al8vFqVOn2HWnTp3C+PHj2bCOsjx9+hSbN28Gl8uFuro6eDxevyEyZQkMDERSUpLEuqSkJAQGBg667aVLlzBz5kxoampizJgx8PLyYuNGnzx5Eo6OjuBwONDX14enpycb/rLv8HhQUBAuXLiA/fv3g2EYibv7yspKzJ07F9ra2hg7dizef/99/Otf/5Jrv2bOnIk1a9ZgzZo10NXVhYGBAT799FP2vMycORN37tzB+vXr2XoB4M6dO/Dx8cGYMWOgpaUFe3t7fPfddwCAy5cvY/fu3fjrX/+Kv/71r5g+fTrGjx+PSZMmITIyEjk5OWz927Ztw+uvv45Dhw6By+VCU1MTS5YswePHj9k8U6ZMwZ49e7Bs2TKoq6vLtV/U0NGfMaUoBdHZ2old2rtGpO6IlgioaakNaZvg4GAkJSXB398fAJCYmIgVK1agoKCg322WL1+O4uJixMXFwdnZGfX19XJ3bMCz37s+ePAgLl68iD/96U+4ePEimpqa4OPjgx07dvS7XVlZGWbPno3g4GDs378fKioqOH/+PLq7uyEWi+Hn54fdu3fj3XffRXNzMwoLC2VeyOzfvx+3bt2Cg4MDtm/fDgAwNDTEo0eP8Oc//xmrVq1CbGws2trasHnzZixZsgTnzp2Ta9+OHDmClStXorS0FFevXkVoaCjGjx+PkJAQnDp1Cs7OzggNDUVISAi7jUAgQEdHB/7+979DS0sLVVVV0NbWBgCkpqZCW1sbYWFhMuvr7fh73b59GydOnEB2djZ+++03rFy5EmFhYf92gU5edbTTpijqhQgICEBERATu3LkD4NmdbFpaWr+d9q1bt3DixAnk5eXB09MTAGBpaTmkOlVVVREQEIDExET86U9/QmJiIgICAgYNULF7925MnjwZCQkJ7LreSFTXrl1DV1cXFi5cyP52uKOjo8xydHV1oaamBk1NTYkh4i+//BIuLi747LPP2HWJiYngcrm4desWrK2tB903LpeL2NhYMAyDiRMnoqKiArGxsQgJCYGenh6UlZUxatQoiXrv3r0LX19ftr19j+etW7dgaWkJFZX/6wb++te/YuvWrezne/fuQVdXF8CzxxtHjx5lHzXEx8dj3rx52Lt3Lx0Of4lop01RCkJVUxURLUN7zjicdQ+VoaEh5s2bh+TkZBBCMG/ePBgYGPSbv6ysDMrKyuDz+X+kqQgODsa0adPw2WefIT09HcXFxejq6hpwm7KyMixevFhmmrOzM2bPng1HR0d4eXnhzTffxKJFizBmzBi521ReXo7z58+zd7l9/fzzz3J12m5ubhJ3v+7u7ti7dy+6u7uhrKwsc5t169Zh9erV+OGHH+Dp6QlfX184OTn1W0dwcDDefvttlJSUICAgQGI0Yfz48RLvBri7u6Onpwc1NTW0036JaKdNUQqCYZghD1GPtODgYKxZswYAIBQKB8zL4XCGpU5HR0fY2NjAz88Ptra2cHBwQFlZ2e+uW1lZGXl5eSgqKsIPP/yA+Ph4fPLJJygpKYGFhYVcbWppaYGPjw8+//xzqTQTExO5yvg9Vq1aBS8vL/ztb3/DDz/8gF27dmHv3r1Yu3YtrKyscPHiRXR2drIjEaNHj8bo0aPxyy+/vLA2UX8MfRGNoqgXxtvbGx0dHejs7ISXl9eAeR0dHdHT04MLFy784XqDg4NRUFCA4OBgufI7OTnh7Nmz/aYzDAMPDw9ER0fj+vXrUFNTQ2Zmpsy8ampq6O7ullj3xhtv4MaNGzA3NwePx5NYtLS05GpjSUmJxOfLly/DysqKvcuWVS/wbFj9gw8+wKlTp/DRRx/h66+/BgD4+fmhpaVF4pHAQO7evYv79+9L1K+kpISJEyfKtT01PGinTVHUC6OsrIzq6mpUVVX1O4Tby9zcHIGBgQgODkZWVhbq6+tRUFCAEydODLnekJAQ/POf/8SqVavkyh8REYErV64gLCwMP/30E27evIkDBw7gX//6F0pKSvDZZ5/h6tWruHv3Lk6dOoV//vOfsLW17Xc/SkpK0NDQgH/961/o6emBQCDAw4cP4efnhytXruDnn3/G999/jxUrVsjsaGW5e/cuNmzYgJqaGqSmpiI+Ph7h4eES9f7973/HvXv32Jf3PvzwQ3z//feor6/HtWvXcP78ebbd7u7u+Oijj/DRRx9hw4YNuHjxIu7cuYPLly9DJBKBYRgoKf1fF6GhoYHAwECUl5ejsLAQ69atw5IlS9ih8Y6ODpSVlaGsrAwdHR24d+8eysrKcPv2bbn2j5IP7bQpinqhdHR0oKOjI1feAwcOYNGiRQgLC4ONjQ1CQkLYqVVDoaKiAgMDA4mXrAZibW2NH374AeXl5XB1dYW7uzv+53/+ByoqKtDR0cHf//53vPXWW7C2tkZkZCT27t2LuXPnyizrv/7rv6CsrAw7OzsYGhri7t27eO2113Dp0iV0d3fjzTffhKOjIz788EOMHj1aomMcyPLly9HW1gZXV1cIBAKEh4cjNDSUTd++fTsaGhowYcIEGBoaAgC6u7shEAhga2sLb29vWFtbS9xZf/HFF/jmm29w/fp1zJ8/H1ZWVli8eDF6enpQXFwscd54PB4WLlyIt956C2+++SacnJwkyrp//z5cXFzg4uICsViML774Ai4uLnJfOFHyYchQJ2BSFPXCtbe3o76+HhYWFtDQ0Bjp5lAjbObMmXj99ddH7FfGtm3bhqysrEHfDaAGNhzfa3qnTVEURVEKgnbaFEW98j744ANoa2vLXGT9xrkiuXv3br/7pq2tjbt37450E6lXCB0ep6hXEB0el/SPf/wDv/32m8w0HR0dGBkZveQWDZ+urq4BA5mYm5vL/WyeerUNx/ea/iVQFPXKMzIyUuiOeSAqKirg8Xgj3QxKQdDhcYqiKIpSELTTpiiKoigFQTttiqIoilIQtNOmKIqiKAVBO22KoiiKUhC006YoasTMnDkTH3744Uuvt6CgAAzD4NGjR3+4rKCgICxYsOAPl0NR8qCdNkVRwyooKAgMw8j80ROBQACGYRAUFDSsdTY0NIBhGCgrK+PevXsSaWKxGCoqKmAYZsD50L/X/v37kZyczH4eqQsRc3Pz3/UzpxkZGfjzn/+MMWPGgMPhYOLEiQgODsb169eHVM7XX3+N6dOnY8yYMRgzZgw8PT1RWlo65PZQA6OdNkVRw47L5SItLQ1tbW3suvb2dnzzzTcYP378C6vX1NQUR48elVh35MgRmJqavrA6dXV1MXr06BdW/ou0efNmLF26FK+//jpOnz6NmpoafPPNN7C0tERERMSQyiooKICfnx/Onz+P4uJicLlcvPnmm1IXUdQfRCiKeuW0tbWRqqoq0tbWxq7r6ekhnU+ejMjS09Mjd9sDAwPJO++8QxwcHMjx48fZ9SkpKcTJyYm88847JDAwkBBCCJ/PJ+Hh4Wye9vZ2smnTJjJu3DiipqZGJkyYQA4fPjxonfX19QQAiYyMJFZWVhJp1tbW5NNPPyUASH19PSGEkPPnzxMApKmpic138eJFwufzCYfDIaNHjyZvvvkmefjwISGEkPT0dOLg4EA0NDSInp4emT17NmlpaZHY395/A5BYeuusqKgg3t7eREtLixgZGZGAgADyz3/+U65jyufziUAgIAKBgOjo6BB9fX0SGRnJnhc+ny9VLyGENDQ0kPnz55PRo0cTTU1NYmdnR/72t78RQggpLi4mAMj+/ftl1tn3nEdFRRFnZ2dy8OBBMm7cOMLhcMjixYvJo0eP+m1zV1cXGTVqFDly5Ihc+/ifQNb3eqjoL6JRlILobmvDiSlTRqTuJVeuQEVTc0jbBAcHIykpCf7+/gCAxMRErFixAgUFBf1us3z5chQXFyMuLg7Ozs6or69nY0PL4+2338bBgwdx8eJF/OlPf8LFixfR1NQEHx8f7Nixo9/tysrKMHv2bAQHB2P//v1QUVHB+fPn0d3dDbFYDD8/P+zevRvvvvsumpubUVhYCCLjF6D379+PW7duwcHBAdu3bwcAGBoa4tGjR/jzn/+MVatWITY2Fm1tbdi8eTOWLFmCc+fOybVvR44cwcqVK1FaWoqrV68iNDQU48ePR0hICE6dOgVnZ2eEhoYiJCSE3UYgEKCjowN///vfoaWlhaqqKmhrawMAUlNToa2tjbCwMJn1MQwj8fn27ds4ceIEsrOz8dtvv2HlypUICwtDSkqKzO1bW1vR2dkJPT09ufaPkg/ttCmKeiECAgIQERGBO3fuAAAuXbqEtLS0fjvtW7du4cSJE8jLy4OnpycAwNLSckh1qqqqIiAgAImJifjTn/6ExMREBAQEQFVVdcDtdu/ejcmTJ0vEh7a3twcAXLt2DV1dXVi4cCHMzMwAAI6OjjLL0dXVhZqaGjQ1NWFsbMyu//LLL+Hi4oLPPvuMXZeYmAgul4tbt27B2tp60H3jcrmIjY0Fw/z/9u48LIor3R/4t+xm3wUEUQxoI6DiHiOaGXGJaJRcFZdhAoIouSqgRE0UF5KYmJAFjVuYjGlA71Vc4pJdUSPiCqKCGy5xwJ4ouFwlBgGFpn5/+LPHDovd2tBU/H6ep57AqVPnvKdj8/Y5VV0lwNvbG6dPn8ayZcsQFRWFli1bQiaTwcbGRqtflUqF4OBgTbyPv54XL15E+/btte5rvnTpUiQkJGh+v3r1Kuzs7AA8PL2xbt06zamGlStXYsSIEUhKStLq85G5c+fCzc1N8/+SDINJm0giZBYWGH/smNH61pezszNGjBiBtLQ0iKKIESNGwMnJqd76eXl5kMlkGDBgwLOEisjISPTr1w8ffvghtmzZgiNHjqC6urrBY/Ly8jBu3Lg693Xr1g2DBw+Gn58fAgMDMXToUIwdOxYODg46x5Sfn499+/ZpZrmPu3z5sk5Ju2/fvlqzX39/fyQlJUGtVkMmk9V5zIwZMzBt2jRkZGRgyJAhCA4ORteuXevtIzIyEq+99hqys7MRGhqqtZrQrl07rWsD/P39UVNTgwsXLtRK2omJiZoPaHzgjWExaRNJhCAIei9RG1tkZCRiYmIAAKtXr26wrsVTfDCoi5+fH3x8fBASEgJfX1906dIFeXl5T923TCbD7t27cfjwYWRkZGDlypVYsGABsrOz4enpqVNMZWVlCAoKwscff1xrX+vWrXVq42lMmTIFgYGB+OGHH5CRkYGPPvoISUlJiI2NhZeXFw4ePIiqqirNSoS9vT3s7e3x66+/PnWfn332GRITE7Fnz54GPyDQ0+HV40TUaIYNG4YHDx6gqqoKgYGBDdb18/NDTU0N9u/f/8z9RkZGIjMzE5GRkTrV79q1K/bu3VvvfkEQ0L9/f7z33ns4efIkTE1NsX379jrrmpqaQq1Wa5X17NkTZ8+ehYeHBxQKhdZmZWWlU4zZ2dlavx89ehReXl6aWXZd/QIPl9WnTp2Kbdu2Yfbs2VizZg0AICQkBGVlZVqnBBqiUqlw7do1rf5btGgBb29vTdknn3yC999/Hzt37kTv3r11apf0w6RNRI1GJpOhoKAA586dq3cJ9xEPDw+Eh4cjMjISO3bsQGFhITIzM7F582a9+42KisLNmzcxZcoUnerHx8fj2LFjmD59Ok6dOoXz588jOTkZt27dQnZ2Nj788EPk5uZCpVJh27ZtuHnzJnx9fesdR3Z2NoqKinDr1i3U1NQgOjoat2/fRkhICI4dO4bLly9j165dmDRpUp2Jti4qlQqzZs3ChQsXkJ6ejpUrV2LmzJla/WZlZeHq1auai/fi4uKwa9cuFBYW4sSJE9i3b58mbn9/f8yePRuzZ8/GrFmzcPDgQVy5cgVHjx6FUqmEIAho0eI/KcLc3Bzh4eHIz8/HgQMHMGPGDIwfP16zNP7xxx9j0aJFSElJgYeHB0pKSlBSUoKysjKdxke6YdImokZla2sLW1tbneomJydj7NixmD59Onx8fBAVFYV79+7p3adcLoeTk5PWRVYN6dixIzIyMpCfn48+ffrA398f33zzDeRyOWxtbZGVlYVXX30VHTt2xMKFC5GUlIThw4fX2dacOXMgk8nQqVMnODs7Q6VSwc3NDYcOHYJarcbQoUPh5+eHuLg42NvbayXGhkycOBEVFRXo06cPoqOjMXPmTLzxxhua/YsXL0ZRURE6dOgAZ2dnAIBarUZ0dDR8fX0xbNgwdOzYUWtm/dlnn2HDhg04efIkRo4cCS8vL4wbNw41NTU4cuSI1v83hUKBMWPG4NVXX8XQoUPRtWtXrbaSk5Px4MEDjB07Fq1bt9Zsn332mU7jI90IYl3fWyAio6qsrERhYSE8PT15IQ8hICAA3bt3f6o7nhnCu+++ix07djzx2gBqmCHe15xpExERSQSTNhE1e1OnToW1tXWdW133OJcSlUpV79isra2hUqmMHSI1I1weJ2qGuDyu7caNG7h7926d+2xtbdGqVasmjshwqqurG3yQiYeHh87n5ql5M8T7mv8SiKjZa9WqlaQTc0PkcjkUCoWxwyCJ4PI4ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTkdEEBAQgLi6uyfvNzMyEIAgoLS195rYiIiIwatSoZ26HSBdM2kRkUBERERAEoc6bnkRHR0MQBERERBi0z6KiIgiCAJlMhqtXr2rtKy4uhlwuhyAIDX4f+mktX74caWlpmt+N9UHEw8NDr9ucPnrN9L016alTp/CXv/wF5ubmcHd3xyeffKJfoPRMmLSJyODc3d2xceNGVFRUaMoqKyuxYcMGtGvXrtH6bdOmDdatW6dVtnbtWrRp06bR+rSzs4O9vX2jtd+c3L17F0OHDsULL7yA48eP49NPP8W7776Lf/7zn8YO7bnBpE0kEaIo4t69e0bZ9L1xYs+ePeHu7o5t27ZpyrZt24Z27dqhR48e9R53//59zJ07F+7u7jAzM4NCoYBSqdS53/DwcKSmpmqVpaamIjw8/InHHjp0CAEBAbC0tISDgwMCAwNx584dAMDXX38NPz8/WFhYwNHREUOGDNE8fezx5fGIiAjs378fy5cvhyAIWrP7M2fOYPjw4bC2toaLiwvCwsI0j9B8koCAAMTExCAmJgZ2dnZwcnLCokWLNP9fAgICcOXKFbz55puafgHgypUrCAoKgoODA6ysrNC5c2f8+OOPdfbx6JTBDz/8gK5du8Lc3Bx9+/bFmTNnNHXWr1+PBw8eICUlBZ07d8bf/vY3zJgxA0uXLtVpHPTsmLSJJKK8vLzBe1Q35lZeXq53vJGRkVoJNCUlBZMmTWrwmIkTJyI9PR0rVqxAQUEBvvzyS1hbW+vc52uvvYY7d+7g4MGDAICDBw/izp07CAoKavC4vLw8DB48GJ06dcKRI0dw8OBBBAUFQa1Wo7i4GCEhIYiMjERBQQEyMzMxZsyYOj/ILF++HP7+/oiKikJxcTGKi4vh7u6O0tJSDBo0CD169EBubi527tyJ69evY/z48TqPbe3atZDL5cjJycHy5cuxdOlSfPXVVwAefiBq27YtFi9erOkXeHg64v79+8jKysLp06fx8ccfP/H1fOutt5CUlIRjx47B2dkZQUFBqKqqAgAcOXIEf/3rX2FqaqqpHxgYiAsXLmg+4FDj4m1MiahRhIaGIj4+HleuXAHwcCa7ceNGZGZm1ln/4sWL2Lx5M3bv3o0hQ4YAANq3b69XnyYmJggNDUVKSgpefvllpKSkIDQ0FCYmJg0e98knn6B3795az4fu3LkzAODEiROorq7GmDFj8MILLwAA/Pz86mzHzs4OpqamsLS0hKurq6Z81apV6NGjBz788ENNWUpKCtzd3XHx4kV07NjxiWNzd3fHsmXLIAgCvL29cfr0aSxbtgxRUVFo2bIlZDIZbGxstPpVqVQIDg7WxKvL6/nOO+/glVdeAfDwg0Lbtm2xfft2jB8/HiUlJfD09NSq7+LiAgAoKSmBg4PDE9unZ8OkTSQRlpaWKCsrM1rf+nJ2dsaIESOQlpYGURQxYsQIODk51Vs/Ly8PMpkMAwYMeJZQERkZiX79+uHDDz/Eli1bcOTIEVRXVzd4TF5eHsaNG1fnvm7dumHw4MHw8/NDYGAghg4dirFjx+qVoPLz87Fv3746Z7mXL1/WKWn37dtXs+wNAP7+/khKSoJarYZMJqvzmBkzZmDatGnIyMjAkCFDEBwcjK5duzbYj7+/v+bnli1bwtvbGwUFBU+Mj5oGkzaRRAiCACsrK2OHoZfIyEjExMQAAFavXt1gXQsLC4P06efnBx8fH4SEhMDX1xddunR54hXSDfUtk8mwe/duHD58GBkZGVi5ciUWLFiA7OzsWrPO+pSVlSEoKAgff/xxrX2tW7fWqY2nMWXKFAQGBuKHH35ARkYGPvroIyQlJSE2Nvap2nN1dcX169e1yh79/vgMnxoPz2kTUaMZNmwYHjx4gKqqKgQGBjZY18/PDzU1Ndi/f/8z9xsZGYnMzExERkbqVL9r167Yu3dvvfsFQUD//v3x3nvv4eTJkzA1NcX27dvrrGtqagq1Wq1V1rNnT5w9exYeHh5QKBRam64fxLKzs7V+P3r0KLy8vDSz7Lr6BR4uq0+dOhXbtm3D7NmzsWbNmgb7OXr0qObnO3fu4OLFi/D19QXwcBaelZWlOccNALt374a3tzeXxpsIkzYRNRqZTIaCggKcO3eu3iXcRzw8PBAeHo7IyEjs2LEDhYWFyMzMxObNm/XuNyoqCjdv3sSUKVN0qh8fH49jx45h+vTpOHXqFM6fP4/k5GTcunUL2dnZ+PDDD5GbmwuVSoVt27bh5s2bmkRW1ziys7NRVFSEW7duoaamBtHR0bh9+zZCQkJw7NgxXL58Gbt27cKkSZPqTLR1UalUmDVrFi5cuID09HSsXLkSM2fO1Oo3KysLV69e1VyVHhcXh127dqGwsBAnTpzAvn376o37kcWLF2Pv3r04c+YMIiIi4OTkpLk6/u9//ztMTU0xefJknD17Fps2bcLy5csxa9YsncZAz45Jm4gala2tLWxtbXWqm5ycjLFjx2L69Onw8fFBVFSU5qtV+pDL5XBycoJcrtsZwI4dOyIjIwP5+fno06cP/P398c0330Aul8PW1hZZWVl49dVX0bFjRyxcuBBJSUkYPnx4nW3NmTMHMpkMnTp1grOzM1QqFdzc3HDo0CGo1WoMHToUfn5+iIuLg729PVq00O3P8MSJE1FRUYE+ffogOjoaM2fOxBtvvKHZv3jxYhQVFaFDhw5wdnYGAKjVakRHR8PX1xfDhg1Dx44dtS62q0tiYiJmzpyJXr16oaSkBN99953manE7OztkZGSgsLAQvXr1wuzZs5GQkKAVBzUuQdT3C5hE1OgqKytRWFgIT09PmJubGzscMrKAgAB0795drzue6SszMxMDBw7EnTt3npubxTQ1Q7yvOdMmIiKSCCZtImr2pk6dWu+NX+q6x7mUqFSqBm9so1KpjB0iNSNcHidqhrg8ru3GjRu4e/dunftsbW3RqlWrJo7IcKqrqxt8kImHh4fO5+apeTPE+5r/Eoio2WvVqpWkE3ND5HI5FAqFscMgieDyOBERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpE5HRBAQEIC4ursn7zczMhCAIKC0tfea2IiIiNPfmJmpsTNpEZFAREREQBKHOm55ER0dDEAREREQYtM+ioiIIggCZTIarV69q7SsuLoZcLocgCA1+H/ppLV++HGlpaZrfjfVBxMPDQ6/bnD56zep6bOnTjKGyshLR0dFwdHSEtbU1goODaz3Gk54dkzYRGZy7uzs2btyIiooKTVllZSU2bNiAdu3aNVq/bdq0wbp167TK1q5dizZt2jRan3Z2drxXN4A333wT3333HbZs2YL9+/fj2rVrGDNmjLHD+tNh0iYig+vZsyfc3d2xbds2Tdm2bdvQrl079OjRo97j7t+/j7lz58Ld3R1mZmZQKBRQKpU69xseHo7U1FStstTUVISHhz/x2EOHDiEgIACWlpZwcHBAYGAg7ty5AwD4+uuv4efnBwsLCzg6OmLIkCGap489vjweERGB/fv3Y/ny5RAEQWt2f+bMGQwfPhzW1tZwcXFBWFiY5hGaTxIQEICYmBjExMTAzs4OTk5OWLRoER7d0DIgIABXrlzBm2++qekXAK5cuYKgoCA4ODjAysoKnTt3xo8//qhTn4/z8PDA+++/j5CQEFhZWaFNmzZYvXq1Zv9vv/0GpVKJpUuXYtCgQejVqxdSU1Nx+PBhredz07Nj0iaSCFEUce/BPaNsT3O348jISK0EmpKSgkmTJjV4zMSJE5Geno4VK1agoKAAX375JaytrXXu87XXXsOdO3dw8OBBAMDBgwdx584dBAUFNXhcXl4eBg8ejE6dOuHIkSM4ePAggoKCoFarUVxcjJCQEERGRqKgoACZmZkYM2ZMna/J8uXL4e/vj6ioKBQXF6O4uBju7u4oLS3FoEGD0KNHD+Tm5mLnzp24fv06xo8fr/PY1q5dC7lcjpycHCxfvhxLly7FV199BeDhB6K2bdti8eLFmn6Bh6cj7t+/j6ysLJw+fRoff/yxXq/n4z799FN069YNJ0+exLx58zBz5kzs3r0bAHD8+HFUVVVhyJAhmvo+Pj5o164djhw58lT9Ud14G1MiiSivKof1R0/3B/dZlcWXwcrUSq9jQkNDER8fjytXrgB4OJPduHEjMjMz66x/8eJFbN68Gbt379b88W/fvr1efZqYmCA0NBQpKSl4+eWXkZKSgtDQUJiYmDR43CeffILevXtrPWu6c+fOAIATJ06guroaY8aMwQsvvAAA8PPzq7MdOzs7mJqawtLSEq6urpryVatWoUePHvjwww81ZSkpKXB3d8fFixfRsWPHJ47N3d0dy5YtgyAI8Pb2xunTp7Fs2TJERUWhZcuWkMlksLGx0epXpVIhODhYE29dr2e/fv1qPdO7oqIC3bt31yrr378/5s2bB+Dh88cPHTqEZcuW4ZVXXkFJSQlMTU1rnSZwcXFBSUnJE8dGuuNMm4gahbOzM0aMGIG0tDSkpqZixIgRcHJyqrd+Xl4eZDIZBgwY8Ez9RkZGYsuWLSgpKcGWLVsQGRn5xGMezbTr0q1bNwwePBh+fn4YN24c1qxZo1k211V+fj727dun9fQuHx8fAMDly5d1aqNv376aZW8A8Pf3x6VLl6BWq+s9ZsaMGfjggw/Qv39/vPPOOzh16lStOps2bUJeXp7W1rt371r1/P39a/1eUFCgU+xkOJxpE0mEpYklyuLLjNb304iMjERMTAwAaJ0DrYuFhcVT9fFHfn5+8PHxQUhICHx9fdGlS5c6r5DWtW+ZTIbdu3fj8OHDyMjIwMqVK7FgwQJkZ2fD09NTp5jKysoQFBSEjz/+uNa+1q1b69TG05gyZQoCAwPxww8/ICMjAx999BGSkpIQGxurqePu7l7rgSX6/r9wdXXFgwcPUFpaqjXbvn79utbMn54dZ9pEEiEIAqxMrYyyPT7D08ewYcPw4MEDVFVVITAwsMG6fn5+qKmpwf79+5+qr8dFRkYiMzNTp1k2AHTt2hV79+6td78gCOjfvz/ee+89nDx5Eqampti+fXuddU1NTWvNfnv27ImzZ8/Cw8MDCoVCa7Oy0u20Q3Z2ttbvR48ehZeXF2QyWb39Ag+T8tSpU7Ft2zbMnj0ba9as0am/P/rjBWVHjx6Fr68vAKBXr14wMTHReg0vXLgAlUpVa4ZOz4ZJm4gajUwmQ0FBAc6dO6dJLvXx8PBAeHg4IiMjsWPHDhQWFiIzMxObN2/Wu9+oqCjcvHkTU6ZM0al+fHw8jh07hunTp+PUqVM4f/48kpOTcevWLWRnZ+PDDz9Ebm4uVCoVtm3bhps3b2oSVl3jyM7ORlFREW7duoWamhpER0fj9u3bCAkJwbFjx3D58mXs2rULkyZNanB5+3EqlQqzZs3ChQsXkJ6ejpUrV2LmzJla/WZlZeHq1auaq9Lj4uKwa9cuFBYW4sSJE9i3b1+9cT/JoUOH8Mknn+DixYtYvXo1tmzZounfzs4OkydPxqxZs7Bv3z4cP34ckyZNgr+/P/r27ftU/VHdmLSJqFHZ2trC1tZWp7rJyckYO3Yspk+fDh8fH0RFRWm+WqUPuVwOJycnyOW6nQHs2LEjMjIykJ+fjz59+sDf3x/ffPMN5HI5bG1tkZWVhVdffRUdO3bEwoULkZSUhOHDh9fZ1pw5cyCTydCpUyc4OztDpVLBzc0Nhw4dglqtxtChQ+Hn54e4uDjY29vXugisPhMnTkRFRQX69OmD6OhozJw5E2+88YZm/+LFi1FUVIQOHTrA2dkZAKBWqxEdHQ1fX18MGzYMHTt21LrYTh+zZ89Gbm4uevTogQ8++ABLly7VWj1ZtmwZRo4cieDgYPz1r3+Fq6ur1lf+yDAE8Wm+y0FEjaqyshKFhYXw9PSEubm5scMhIwsICED37t31uuOZIXl4eCAuLs4od3r7MzHE+5ozbSIiIolg0iaiZm/q1KlaX5d6fKvrHudSolKp6h2btbU1VCqVsUOkZoTL40TNEJfHtd24cQN3796tc5+trS1atWrVxBEZTnV1dYMPMvHw8ND53Dw1b4Z4X/NfAhE1e61atZJ0Ym6IXC6v9T1povpweZyIiEgimLSJiIgkgkmbiIhIIpi0iYiIJIJJm4iISCKYtInIaAICAoxyl63MzEwIgoDS0tJnbisiIgKjRo165nYMzZBjpOaDSZuIDCoiIgKCINR505Po6GgIgoCIiAiD9llUVARBECCTyXD16lWtfcXFxZDL5RAEocHvQz+t5cuXIy0tTfO7sT6INIVt27Zh6NChcHR0hCAIT3zkKRkekzYRGZy7uzs2btyIiooKTVllZSU2bNiAdu3aNVq/bdq0wbp167TK1q5dizZt2jRan3Z2dlrPkP4zu3fvHl5++eU6nwtOTYNJm4gMrmfPnnB3d9d6ytO2bdvQrl079OjRo97j7t+/j7lz58Ld3R1mZmZQKBRQKpU69xseHo7U1FStstTUVISHhz/x2EOHDiEgIACWlpZwcHBAYGAg7ty5AwD4+uuv4efnBwsLCzg6OmLIkCGap489vjweERGB/fv3Y/ny5RAEQWt2f+bMGQwfPhzW1tZwcXFBWFiY5hGaTxIQEIDY2FjExcXBwcEBLi4uWLNmDe7du4dJkybBxsYGCoUCP/3001OPMSAgADExMYiJiYGdnR2cnJywaNEiPH7TzLCwMCQkJGDIkCE6xU2Gx6RNJBGiCNy7Z5ztaW52HBkZqZVAU1JSMGnSpAaPmThxItLT07FixQoUFBTgyy+/hLW1tc59vvbaa7hz5w4OHjwIADh48CDu3LmDoKCgBo/Ly8vD4MGD0alTJxw5cgQHDx5EUFAQ1Go1iouLERISgsjISBQUFCAzMxNjxoxBXXeAXr58Ofz9/REVFYXi4mIUFxfD3d0dpaWlGDRoEHr06IHc3Fzs3LkT169fx/jx43Ue29q1a+Hk5IScnBzExsZi2rRpGDduHPr164cTJ05g6NChCAsLQ3l5ud5jfLwPuVyOnJwcLF++HEuXLsVXX32lc4zUBEQianYqKirEc+fOiRUVFZqysjJRfJg+m34rK9M99vDwcPG//uu/xBs3bohmZmZiUVGRWFRUJJqbm4s3b94U/+u//ksMDw8XRVEUBwwYIM6cOVMURVG8cOGCCEDcvXu33q9XYWGhCEA8efKkGBcXJ06aNEkURVGcNGmS+Oabb4onT54UAYiFhYWiKIrivn37RADinTt3RFEUxZCQELF///51tn38+HERgFhUVNTgeB95fEyPvP/+++LQoUO1yv7973+LAMQLFy48cXwDBgwQX375Zc3v1dXVopWVlRgWFqYpKy4uFgGIR44c0XuMj/rw9fUVa2pqNGVz584VfX19a9V9/PUm3dX1vtYXZ9pE1CicnZ0xYsQIpKWlITU1FSNGjICTk1O99fPy8iCTyTBgwIBn6jcyMhJbtmxBSUkJtmzZgsjIyCce82gWWpdu3bph8ODB8PPzw7hx47BmzRrNkrKu8vPzsW/fPq2nd/n4+AAALl++rFMbXbt21fwsk8ng6OgIPz8/TZmLiwuAhw9XqUtDY3ykb9++EARB87u/vz8uXbqkNRsn4+IDQ4gkwtISKCszXt9PIzIyEjExMQCA1atXN1jXwsLi6Tr5Az8/P/j4+CAkJAS+vr7o0qXLE69ybqhvmUyG3bt34/Dhw8jIyMDKlSuxYMECZGdnw9PTU6eYysrKEBQUVOcFXK1bt9apDRMTE63fBUHQKnuUbGtqauo83lCvLxkXZ9pEEiEIgJWVcbbHJl96GTZsGB48eICqqioEBgY2WNfPzw81NTXYv3//03X2mMjISGRmZuo0ywYezmL37t1b735BENC/f3+89957OHnyJExNTbF9+/Y665qamtaamfbs2RNnz56Fh4cHFAqF1mZlZaX7wJ7Bk8YIANnZ2Vq/Hz16FF5eXpDJZI0ZGumBSZuIGo1MJkNBQQHOnTv3xD/8Hh4eCA8PR2RkJHbs2IHCwkJkZmZi8+bNevcbFRWFmzdvYsqUKTrVj4+Px7FjxzB9+nScOnUK58+fR3JyMm7duoXs7Gx8+OGHyM3NhUqlwrZt23Dz5k34+vrWO47s7GwUFRXh1q1bqKmpQXR0NG7fvo2QkBAcO3YMly9fxq5duzBp0qQmW3puaIyPqFQqzJo1CxcuXEB6ejpWrlyJmTNnavbfvn0beXl5OHfuHADgwoULyMvLQ0lJSZOMgZi0iaiR2drawtbWVqe6ycnJGDt2LKZPnw4fHx9ERUVpvlqlD7lcDicnJ8jlup0B7NixIzIyMpCfn48+ffrA398f33zzDeRyOWxtbZGVlYVXX30VHTt2xMKFC5GUlIThw4fX2dacOXMgk8nQqVMnODs7Q6VSwc3NDYcOHYJarcbQoUPh5+eHuLg42Nvbo0WLpvkz3NAYH5k4cSIqKirQp08fREdHY+bMmXjjjTc0+7/99lv06NEDI0aMAAD87W9/Q48ePfCPf/yjScZAgCCKT/NlDiJqTJWVlSgsLISnpyfMzc2NHQ49BwICAtC9e3d8/vnnxg7lT8sQ72vOtImIiCSCSZuImr2pU6dqfV3q8a2ue5xLiUqlqnds1tbWUKlUxg6RmhEujxM1Q1we13bjxg3cvXu3zn22trZo1apVE0dkONXV1Q0+yMTDw0Pnc/PUvBnifc1/CUTU7LVq1UrSibkhcrkcCoXC2GGQRHB5nIiISCKYtImIiCSCSZuIiEgimLSJiIgkgkmbiIhIIpi0ichoAgICEBcX1+T9ZmZmQhAElJaWPnNbERERGDVq1DO3Y2iGHCM1H0zaRGRQEREREAShzpueREdHQxAEREREGLTPoqIiCIIAmUyGq1evau0rLi6GXC6HIAgNfh/6aS1fvhxpaWma3431QaSxVVVVYe7cufDz84OVlRXc3NwwceJEXLt2zdihPVeYtInI4Nzd3bFx40ZUVFRoyiorK7Fhwwa0a9eu0fpt06YN1q1bp1W2du1atGnTptH6tLOzg729faO131yUl5fjxIkTWLRoEU6cOIFt27bhwoULeO2114wd2nOFSZuIDK5nz55wd3fHtm3bNGXbtm1Du3bt0KNHj3qPu3//PubOnQt3d3eYmZlBoVBAqVTq3G94eDhSU1O1ylJTUxEeHv7EYw8dOoSAgABYWlrCwcEBgYGBuHPnDgDg66+/hp+fHywsLODo6IghQ4Zonj72+PJ4REQE9u/fj+XLl0MQBK3Z/ZkzZzB8+HBYW1vDxcUFYWFhWo/FbEhAQABiY2MRFxcHBwcHuLi4YM2aNbh37x4mTZoEGxsbKBQK/PTTT089xoCAAMTExCAmJgZ2dnZwcnLCokWL8OimmXZ2dti9ezfGjx8Pb29v9O3bF6tWrcLx48d5q9UmxKRNJBWiCFTfM872FHc7joyM1EqgKSkpmDRpUoPHTJw4Eenp6VixYgUKCgrw5ZdfwtraWuc+X3vtNdy5cwcHDx4EABw8eBB37txBUFBQg8fl5eVh8ODB6NSpE44cOYKDBw8iKCgIarUaxcXFCAkJQWRkJAoKCpCZmYkxY8agrjtAL1++HP7+/oiKikJxcTGKi4vh7u6O0tJSDBo0CD169EBubi527tyJ69evY/z48TqPbe3atXByckJOTg5iY2Mxbdo0jBs3Dv369cOJEycwdOhQhIWFoby8XO8xPt6HXC5HTk4Oli9fjqVLl+Krr76qN6bffvsNgiA8FysNzQVvY0okFepyYLPuCcygxpcBciu9DgkNDUV8fDyuXLkC4OEsb+PGjcjMzKyz/sWLF7F582bs3r0bQ4YMAQC0b99erz5NTEwQGhqKlJQUvPzyy0hJSUFoaChMTEwaPO6TTz5B79698cUXX2jKOnfuDAA4ceIEqqurMWbMGLzwwgsAAD8/vzrbsbOzg6mpKSwtLeHq6qopX7VqFXr06IEPP/xQU5aSkgJ3d3dcvHgRHTt2fOLYunXrhoULFwIA4uPjkZiYCCcnJ0RFRQEAEhISkJycjFOnTqFv3756jfERd3d3LFu2DIIgwNvbG6dPn8ayZcs0fTyusrISc+fORUhIiM7PS6dnx5k2ETUKZ2dnjBgxAmlpaUhNTcWIESPg5ORUb/28vDzIZDIMGDDgmfqNjIzEli1bUFJSgi1btiAyMvKJxzyahdalW7duGDx4MPz8/DBu3DisWbNGs6Ssq/z8fOzbt0/r6V0+Pj4AgMuXL+vURteuXTU/y2QyODo6an14cHFxAfDw4Sp1aWiMj/Tt2xeCIGh+9/f3x6VLl7Rm48DDi9LGjx8PURSRnJysU/xkGJxpE0mFzPLhjNdYfT+FyMhIxMTEAABWr17dYF0LC4un6uOP/Pz84OPjg5CQEPj6+qJLly7Iy8t76r5lMhl2796Nw4cPIyMjAytXrsSCBQuQnZ0NT09PnWIqKytDUFAQPv7441r7WrdurVMbf1wtEARBq+xRsq2pqanzeEO9vo8S9pUrV/Dzzz9zlt3EONMmkgpBeLhEbYztsdmXPoYNG4YHDx6gqqoKgYGBDdb18/NDTU0N9u/f/1R9PS4yMhKZmZk6zbKBh7PYvXv31rtfEAT0798f7733Hk6ePAlTU1Ns3769zrqmpqa1ZqY9e/bE2bNn4eHhAYVCobVZWel32uFpPWmMAJCdna31+9GjR+Hl5QWZTAbgPwn70qVL2LNnDxwdHRstXqobkzYRNRqZTIaCggKcO3dO84e/Ph4eHggPD0dkZCR27NiBwsJCZGZmYvPmzXr3GxUVhZs3b2LKlCk61Y+Pj8exY8cwffp0nDp1CufPn0dycjJu3bqF7OxsfPjhh8jNzYVKpcK2bdtw8+ZN+Pr61juO7OxsFBUV4datW6ipqUF0dDRu376NkJAQHDt2DJcvX8auXbswadKkWgm+sTQ0xkdUKhVmzZqFCxcuID09HStXrsTMmTMBPEzYY8eORW5uLtavXw+1Wo2SkhKUlJTgwYMHTTIGYtImokZma2ur8xJqcnIyxo4di+nTp8PHxwdRUVGar1bpQy6Xw8nJCXK5bmcAO3bsiIyMDOTn56NPnz7w9/fHN998A7lcDltbW2RlZeHVV19Fx44dsXDhQiQlJWH48OF1tjVnzhzIZDJ06tQJzs7OUKlUcHNzw6FDh6BWqzF06FD4+fkhLi4O9vb2aNGiaf4MNzTGRyZOnIiKigr06dMH0dHRmDlzJt544w0AwNWrV/Htt9/i119/Rffu3dG6dWvNdvjw4SYZAwGCWNf3FojIqCorK1FYWAhPT0+Ym5sbOxx6DgQEBKB79+74/PPPjR3Kn5Yh3tecaRMREUkEkzYRNXtTp07V+rrU41td9ziXEpVKVe/YrK2tebcx0sLlcaJmiMvj2m7cuIG7d+/Wuc/W1hatWrVq4ogMp7q6usEHmXh4eOh8bp6aN0O8r/kvgYiavVatWkk6MTdELpdDoVAYOwySCC6PExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpE5FBRUREYNSoUbV+fqSkpASxsbFo3749zMzM4O7ujqCgIK0nUHl4eEAQBAiCAJlMBjc3N0yePFnv51gT/dkwaRNRkykqKkKvXr3w888/49NPP8Xp06exc+dODBw4ENHR0Vp1Fy9ejOLiYqhUKqxfvx5ZWVmYMWOGkSInah54cxUiajLTp0+HIAjIycnReo50586daz372sbGBq6urgCANm3aIDw8HOnp6U0aL1Fzw6RNJBGiKKKqvMoofZtYmkAQhGdq4/bt29i5cyeWLFmilbAfsbe3r/fYq1ev4rvvvsNLL730TDEQSR2TNpFEVJVX4SPrj4zSd3xZPEytTJ+pjV9++QWiKMLHx0en+nPnzsXChQuhVqtRWVmJl156CUuXLn2mGIikjue0iahJ6Ptsorfeegt5eXk4deqU5iK1ESNGQK1WN0Z4RJLAmTaRRJhYmiC+LN5ofT8rLy8vCIKA8+fP61TfyclJ8yANLy8vfP755/D398e+ffswZMiQZ46HSIqYtIkkQhCEZ16iNqaWLVsiMDAQq1evxowZM2qd1y4tLW3wvLZMJgMAVFRUNGaYRM0al8eJqMmsXr0aarUaffr0wdatW3Hp0iUUFBRgxYoV8Pf316r7+++/o6SkBMXFxcjJycFbb70FZ2dn9OvXz0jRExkfkzYRNZn27dvjxIkTGDhwIGbPno0uXbrglVdewd69e5GcnKxVNyEhAa1bt4abmxtGjhwJKysrZGRkwNHR0UjRExmfIOp7dQgRNbrKykoUFhbC09MT5ubmxg6HiAzAEO9rzrSJiIgkgkmbiIhIIpi0iYiIJIJJm4iISCKYtImIiCSCSZuIiEgimLSJiIgkgkmbiIhIIpi0iYiIJIJJm4iee2lpaQ0+rISouWDSJiKDioiIwKhRo2r9/EhJSQliY2PRvn17mJmZwd3dHUFBQZpnZgOAh4cHBEGAIAiQyWRwc3PD5MmTcefOHZ1iyMzMhCAIcHBwQGVlpda+Y8eOadomkhombSJqMkVFRejVqxd+/vlnfPrppzh9+jR27tyJgQMHIjo6Wqvu4sWLUVxcDJVKhfXr1yMrKwszZszQqz8bGxts375dq0ypVKJdu3bPPBYiY2DSJqImM336dAiCgJycHAQHB6Njx47o3LkzZs2ahaNHj2rVtbGxgaurK9q0aYOBAwciPDwcJ06c0Ku/8PBwpKSkaH6vqKjAxo0bER4e/sRjv/vuO7z44oswNzeHk5MTRo8erVffRI1BbuwAiEg3oihCXVFhlL5lFhbPvJx8+/Zt7Ny5E0uWLIGVlVWt/Q2dU7569Sq+++47vPTSS3r1GRYWhk8//RQqlQrt2rXD1q1b4eHhgZ49ezZ43A8//IDRo0djwYIFWLduHR48eIAff/xRr76JGgOTNpFEqCsqsPnFF43S9/hjxyC3tHymNn755ReIoggfHx+d6s+dOxcLFy6EWq1GZWUlXnrpJSxdulSvPlu1aoXhw4cjLS0NCQkJSElJQWRk5BOPW7JkCf72t7/hvffe05R169ZNr76JGgOXx4moSYiiqFf9t956C3l5eTh16pTmIrURI0ZArVbr1U5kZCTS0tLwr3/9C0eOHMHrr7/+xGPy8vIwePBgvfohagqcaRNJhMzCAuOPHTNa38/Ky8sLgiDg/PnzOtV3cnKCQqHQHPv555/D398f+/btw5AhQ3Tud/jw4XjjjTcwefJkBAUFwdHR8YnHWBhgvESNgTNtIokQBAFyS0ujbIb4elTLli0RGBiI1atX4969e7X2l5aWNni8TCYD8PBiMn3I5XJMnDgRmZmZOi2NA0DXrl21voJG1FwwaRNRk1m9ejXUajX69OmDrVu34tKlSygoKMCKFSvg7++vVff3339HSUkJiouLkZOTg7feegvOzs7o16+f3v2+//77uHnzJgIDA3Wq/8477yA9PR3vvPMOCgoKcPr0aXz88cd690tkaEzaRNRk2rdvjxMnTmDgwIGYPXs2unTpgldeeQV79+5FcnKyVt2EhAS0bt0abm5uGDlyJKysrJCRkaHT8vYfmZqawsnJSecVg4CAAGzZsgXffvstunfvjkGDBiEnJ0fvfokMTRD1vTqEiBpdZWUlCgsL4enpCXNzc2OHQ0QGYIj3NWfaREREEsGkTUSSM3z4cFhbW9e5ffjhh8YOj6jR8CtfRCQ5X331Vb1Xkbds2bKJoyFqOkzaRCQ5bdq0MXYIREbB5XEiIiKJYNImIiKSCCZtIiIiiWDSJiIikggmbSIiIolg0iYiIpIIJm0iahQlJSWIjY1F+/btYWZmBnd3dwQFBeG9996DiYkJDh48qFX/3r17aN++PebMmaMp++ijjyCTyfDpp582dfhEzRLvPU7UDEn93uNFRUXo378/7O3tsXjxYvj5+aGqqgq7du3CP//5T7z66qv49ttvkZ+fDysrKwBAdHQ0MjMzcfz4cc2Yvby8MHbsWOzYsQMFBQXGHBLRMzPE+5pJm6gZknrSfvXVV3Hq1ClcuHBBk5QfKS0thbm5OXr27IlBgwZh1apV2LdvH4YNG4bDhw+jV69eAID9+/fj9ddfR2FhITw8PLBly5aneiwnUXNhiPc174hGJBGiKKK8vNwofVtaWur8WMvbt29j586dWLJkSa2EDQD29vYAgHXr1qFfv3545ZVXEBcXh/nz52sSNgAolUqEhITAxMQEISEhUCqVTNr03GPSJpKI8vJyWFtbG6XvsrKyOhNwXX755ReIoggfH58G6/Xu3Rvx8fEYM2YMevTogQULFmj23b17F19//TWOHDkCAAgNDcVf/vIXLF++3GivAVFzwAvRiMig9DnjtmjRItTU1GDevHmQy/8zh0hPT0eHDh3QrVs3AED37t3xwgsvYNOmTQaPl0hKONMmkghLS0uUlZUZrW9deXl5QRAEnD9//ol1HyXqxxM28HBp/OzZs1rlNTU1SElJweTJk3WOhejPhkmbSCIEQdB5idqYWrZsicDAQKxevRozZsyo80K0R+e163L69Gnk5uYiMzNT6zGbt2/fRkBAAM6fP//EpXeiPysujxORwa1evRpqtRp9+vTB1q1bcenSJRQUFGDFihXw9/dv8FilUok+ffrgr3/9K7p06aLZ/vrXv+LFF1+EUqlsolEQNT9M2kRkcO3bt8eJEycwcOBAzJ49G126dMErr7yCvXv3Ijk5ud7jHjx4gP/93/9FcHBwnfuDg4Oxbt06VFVVNVboRM0av6dN1AxJ/XvaRFSbId7XnGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRORQUVERGDUqFG1fn7ckSNHIJPJMGLECL3aLioqgiAIms3R0RFDhw7FyZMnDRA5UfPHpE1ETU6pVCI2NhZZWVm4du2a3sfv2bMHxcXF2LVrF8rKyjB8+HCUlpYaPlCiZoZJm4iaVFlZGTZt2oRp06ZhxIgRSEtL07sNR0dHuLq6onfv3vjss89w/fp1ZGdnGz5YomZGbuwAiEg3oiiivKrcKH1bmlhCEASDtLV582b4+PjA29sboaGhiIuLQ3x8/FO3b2FhAeDhYz2J/uyYtIkkoryqHNYfWRul77L4MliZWhmkLaVSidDQUADAsGHD8Ntvv2H//v0ICAjQu63S0lK8//77sLa2Rp8+fQwSH1FzxuVxImoyFy5cQE5ODkJCQgAAcrkcEyZMgFKp1Kudfv36wdraGg4ODsjPz8emTZvg4uLSGCETNSucaRNJhKWJJcriy4zWtyEolUpUV1fDzc1NUyaKIszMzLBq1SrY2dnp1M6mTZvQqVMnODo6wt7e3iCxEUkBkzaRRAiCYLAlamOorq7GunXrkJSUhKFDh2rtGzVqFNLT0zF16lSd2nJ3d0eHDh0aI0yiZo1Jm4iaxPfff487d+5g8uTJtWbUwcHBUCqVOidtoucVz2kTUZNQKpUYMmRInUvgwcHByM3NxalTp4wQGZF0CKIoisYOgoi0VVZWorCwEJ6enjA3Nzd2OERkAIZ4X3OmTUREJBFM2kTUbEydOhXW1tZ1bjzfTcTlcaJm6XldHr9x4wbu3r1b5z5bW1u0atWqiSMiMhxDvK959TgRNRutWrViYiZqAJfHiYiIJIJJm4iISCKYtImIiCSCSZuIiEgimLSJiIgkgkmbiIhIIpi0icigIiIiMGrUqFo/P+7IkSOQyWQYMWKEXm0XFRVBEATN5ujoiKFDh+LkyZM6t/HLL79g0qRJaNu2LczMzODp6YmQkBDk5ubif/7nf2BlZYVffvlF65hr167BwcEBq1at0pT993//N2QyGbZs2aLXGIieBZM2ETU5pVKJ2NhYZGVl4dq1a3ofv2fPHhQXF2PXrl0oKyvD8OHDUVpa+sTjcnNz0atXL1y8eBFffvklzp07h+3bt8PHxwezZ89GWFgYAgMDERERgZqaGs1xUVFR6NWrF6KjowEA5eXl2LhxI95++22kpKToHT/R0+LNVYioSZWVlWHTpk3Izc1FSUkJ0tLSMH/+fL3acHR0hKurK1xdXfHZZ5+hf//+yM7ORmBgYL3HiKKIiIgIeHl54cCBA2jR4j9zlu7du2PmzJkAgC+//BKdO3fG0qVLMWfOHKSlpeHQoUM4ffo0BEEAAGzZsgWdOnXCvHnz4Obmhn//+99wd3d/ileDSD9M2kQSIYpAeblx+ra0BP5/vnpmmzdvho+PD7y9vREaGoq4uDjEx8drEqK+LCwsAAAPHjxosF5eXh7Onj2LDRs2aCXsR+zt7QEAzs7O+Oc//4mQkBB069YNb775JpYvX66VlJVKJUJDQ2FnZ4fhw4cjLS0NixYteqr4ifTBpE0kEeXlgLW1cfouKwOsrAzT1qOEBwDDhg3Db7/9hv379yMgIEDvtkpLS/H+++/D2toaffr0abDupUuXAAA+Pj5PbHfUqFEYP348hg0bhqCgIISHh2u1c/ToUWzbtg0AEBoailmzZmHhwoVP/cGDSFc8p01ETebChQvIyclBSEgIAEAul2PChAlQKpV6tdOvXz9YW1vDwcEB+fn52LRpE1xcXBo8Rt9nIy1atAg1NTVYuHChVnlKSgoCAwPh5OQEAHj11Vfx22+/4eeff9arfaKnwZk2kURYWj6c8Rqrb0NQKpWorq6Gm5ubpkwURZiZmWHVqlWws7PTqZ1NmzahU6dOcHR01CxrP0nHjh0BAOfPn0ePHj2eWF8ul2v9FwDUajXWrl2LkpKSWuUpKSkYPHiwTrEQPS0mbSKJEATDLVEbQ3V1NdatW4ekpCQMHTpUa9+oUaOQnp6u8zOz3d3d0aFDB7367969Ozp16oSkpCRMmDCh1nnt0tLSJ34A+PHHH/H777/j5MmTkMlkmvIzZ85g0qRJOrVB9Cy4PE5ETeL777/HnTt3MHnyZHTp0kVrCw4O1nuJXF+CICA1NRUXL17EX/7yF/z444/417/+hVOnTmHJkiX4r//6rye2oVQqMWLECHTr1k0r/vHjx8Pe3h7r169v1DEQMWkTUZNQKpUYMmRInUvgwcHByM3NxalTpxo1hj59+iA3NxcKhQJRUVHw9fXFa6+9hrNnz+Lzzz9v8Njr16/jhx9+QHBwcK19LVq0wOjRoxv9gweRIOp7dQYRNbrKykoUFhbC09MT5ubmxg6HiAzAEO9rzrSJiIgkgkmbiJqNqVOnwtraus7tSRepHThwoN5jrY31BXciA+PyOFEz9Lwuj9+4cQN3796tc5+trS1atWpV77EVFRW4evVqvfsVCsUzx0f0LAzxvuZXvoio2WjVqlWDibkhFhYWTMz0p8flcSIiIolg0iYiIpIIJm0iIiKJYNImIiKSCCZtIiIiiWDSJiIikggmbSIyqqKiIgiCoNlatmyJAQMG4MCBA1r13n33XQiCUOsmK3l5eRAEAUVFRbXaDgwMhEwmw7FjxxpzCM9ECjFS88GkTUTNwp49e1BcXIysrCy4ublh5MiRuH79ulYdc3NzKJVKXLp06YntqVQqHD58GDExMUhJSWmssJ+JFGKk5oVJm4gMKiAgALGxsYiLi4ODgwNcXFywZs0a3Lt3D5MmTYKNjQ0UCgV++uknreMcHR3h6uqKLl26YP78+bh79y6ys7O16nh7e2PgwIFYsGDBE+NITU3FyJEjMW3aNKSnp6OiokLnMdTU1OCTTz6BQqGAmZkZ2rVrhyVLlgAABg0ahJiYGK36N2/ehKmpKfbu3QsA+J//+R/07t0bNjY2cHV1xd///nfcuHHDoDHS84lJm0gqRBGovmecTc+7Ha9duxZOTk7IyclBbGwspk2bhnHjxqFfv344ceIEhg4dirCwMJSXl9c6tqKiAuvWrQMAmJqa1tqfmJiIrVu3Ijc3t4GXSkRqaipCQ0Ph4+MDhUKBr7/+Wuf44+PjkZiYiEWLFuHcuXPYsGEDXFxcAABTpkzBhg0bcP/+fU39//3f/0WbNm0waNAgAEBVVRXef/995OfnY8eOHSgqKkJERIRBY6TnE+89TtQM1XmP4up7wGYjPfhifBkgt9KpakBAANRqteactFqthp2dHcaMGaNJxiUlJWjdujWOHDkCV1dXeHp6wsLCAi1atEB5eTlEUUSvXr1w5MgRmJiYAHh4TnvHjh3Iy8tDSEgIbty4gb179yIvLw89evRAYWEhPDw8AAC7d+/G66+/jmvXrkEul+Pzzz/Hjh07kJmZ+cT4f//9dzg7O2PVqlWYMmVKrf2VlZVwc3PDP/7xD4wfPx4A0K1bN4wZMwbvvPNOnW3m5ubixRdfxO+//655eMmzxEjSxEdzElGz1LVrV83PMpkMjo6O8PPz05Q9mrU+vmS8adMmnDx5Elu3boVCoUBaWpomYf/RBx98gAMHDiAjI6PO/SkpKZgwYQLk8oePVwgJCcGhQ4dw+fLlJ8ZeUFCA+/fvY/DgwXXuNzc3R1hYmOYc9IkTJ3DmzBmtmfTx48cRFBSEdu3awcbGBgMGDADw8By2IWKk5xcfGEIkFTLLhzNeY/Wthz8mW0EQtMoEQQDw8NzxI+7u7vDy8oKXlxeqq6sxevRonDlzBmZmZrXa79ChA6KiojBv3jwolUqtfbdv38b27dtRVVWF5ORkTblarUZKSorm3HR9LCwsnji+KVOmoHv37vj111+RmpqKQYMG4YUXXgAA3Lt3D4GBgQgMDMT69evh7OwMlUqFwMBAPHjwwCAx0vOLM20iqRCEh0vUxtj+f5JtKmPHjoVcLscXX3xRb52EhARcvHgRGzdu1Cpfv3492rZti/z8fOTl5Wm2pKQkpKWlQa1WN9i3l5cXLCwsNBeV1cXPzw+9e/fGmjVrsGHDBkRGRmr2nT9/Hv/3f/+HxMRE/OUvf4GPj0+ti9CeNUZ6fjFpE1GzIwgCZsyYgcTExDovVgMeLrHPmjULK1as0CpXKpUYO3YsunTporVNnjwZt27dws6dOxvs29zcHHPnzsXbb7+NdevW4fLlyzh69GitGf2UKVOQmJgIURQxevRoTXm7du1gamqKlStX4l//+he+/fZbvP/++waNkZ5fTNpE1CyFh4ejqqoKq1atqrfOnDlzNBd2AQ/PJefn5yM4OLhWXTs7OwwePLhW8q3LokWLMHv2bCQkJMDX1xcTJkyoNVsOCQmBXC5HSEiI1kVFzs7OSEtLw5YtW9CpUyckJibis88+M3iM9Hzi1eNEzZAhrjKlxlVUVIQOHTrg2LFj6Nmzp7HDIQkwxPuaF6IREemhqqoK//d//4eFCxeib9++TNjUpLg8TkTPFZVKBWtr63q3x7+WVZdDhw6hdevWOHbsGP7xj380UdRED3GmTUTPFTc3N+Tl5TW4vyEBAQHgWUUyFiZtInquyOVyKBQKY4dB9FS4PE5ERCQRTNpEREQSwaRNREQkEUzaREREEsGkTUREJBFM2kRERBLBpE1ERlVUVARBEDRby5YtMWDAABw4cECr3rvvvgtBEDB16lSt8ry8PAiCgKKiolptBwYGQiaT4dixY405BKImw6RNRM3Cnj17UFxcjKysLLi5uWHkyJG4fv26Vh1zc3MolUpcunTpie2pVCocPnwYMTExSElJaaywATy8tSlRU2DSJiKDCggIQGxsLOLi4uDg4AAXFxesWbMG9+7dw6RJk2BjYwOFQoGffvpJ6zhHR0e4urqiS5cumD9/Pu7evYvs7GytOt7e3hg4cCAWLFjwxDhSU1MxcuRITJs2Denp6aioqNB5DDU1Nfjkk0+gUChgZmaGdu3aYcmSJQD+szKwadMmDBgwAObm5li/fj3S0tJgb2+PHTt2wMvLC+bm5ggMDMS///1vnfslehImbSKJEEURD+49MMqm7207165dCycnJ+Tk5CA2NhbTpk3DuHHj0K9fP5w4cQJDhw5FWFhYnc/KrqiowLp16wAApqamtfYnJiZi69atyM3NbfC1Sk1NRWhoKHx8fKBQKPD111/rHH98fDwSExOxaNEinDt3Dhs2bICLi4tWnXnz5mHmzJkoKChAYGAgAKC8vBxLlizBunXrcOjQIZSWluJvf/ubzv0SPQlvY0okEVXlVfjI+iOj9B1fFg9Tq9oJtD7dunXDwoULHx77/xOgk5MToqKiAAAJCQlITk7GqVOn4OrqCgDo168fWrRogfLycoiiiF69emHw4MG12u7ZsyfGjx+PuXPnYu/evXX2v2fPHpSXl2uSaWhoKJRKJcLCwp4Y+++//47ly5dj1apVCA8PBwB06NABL7/8sla9uLg4jBkzRqvs0fO/X3rpJQAPP7z4+voiJycHffr0eWLfRE/CmTYRGVzXrl01P8tkMjg6OsLPz09T9mjWeuPGDU3Zpk2bcPLkSWzduhUKhQJpaWkwMTGps/0PPvgABw4cQEZGRp37U1JSMGHCBMjlD+clISEhOHToEC5fvvzE2AsKCnD//v06PzA8rnfv3rXK5HI5XnzxRc3vPj4+sLe3R0FBwRP7JdIFZ9pEEmFiaYL4snij9a1X/T8kW0EQtMoEQQDw8NzxI+7u7vDy8oKXlxeqq6sxevRonDlzBmZmZrXa79ChA6KiojBv3jwolUqtfbdv38b27dtRVVWF5ORkTblarUZKSorm3HR9LCwsdBqjlZWVTvWIDIkzbSKJEAQBplamRtkeJdmmMnbsWMjlcnzxxRf11klISMDFixexceNGrfL169ejbdu2yM/PR15enmZLSkpCWloa1Gp1g317eXnBwsKi3qX3hlRXV2uda79w4QJKS0vh6+urd1tEdWHSJqJmRxAEzJgxA4mJiXVerAY8XGKfNWsWVqxYoVWuVCoxduxYdOnSRWubPHkybt26hZ07dzbYt7m5OebOnYu3334b69atw+XLl3H06NFaM/q6mJiYIDY2FtnZ2Th+/DgiIiLQt29fns8mg2HSJqJmKTw8XHNhV33mzJkDa2trze/Hjx9Hfn4+goODa9W1s7PD4MGDdUq+ixYtwuzZs5GQkABfX19MmDBB6/x7fSwtLTF37lz8/e9/R//+/WFtbY1NmzY98TgiXQmivt/lIKJGV1lZicLCQnh6esLc3NzY4ZAO0tLSEBcXh9LSUmOHQs2UId7XnGkTERFJBJM2ET1XVCoVrK2t691UKpWxQySqF5fHiZohLo83nurq6jofLvKIh4eH5vvdRIZkiPc1/2US0XNFLpdDoVAYOwyip8LlcSIiIolg0iYiIpIIJm0iIiKJYNImIiKSCCZtIiIiiWDSJiIikggmbSIyqqKiIgiCoNlatmyJAQMG4MCBA1r13n33XQiCgKlTp2qV5+XlQRCEOr97HRgYCJlMhmPHjhk8bg8PD3z++ed6H7d161YMGjQIDg4OsLCwgLe3NyIjI3Hy5EmDx0h/PkzaRNQs7NmzB8XFxcjKyoKbmxtGjhyJ69eva9UxNzeHUqnEpUuXntieSqXC4cOHERMTg5SUlMYKWy9z587FhAkT0L17d3z77be4cOECNmzYgPbt2yM+3jjPSidpYdImIoMKCAhAbGws4uLi4ODgABcXF6xZswb37t3DpEmTYGNjA4VCgZ9++knrOEdHR7i6uqJLly6YP38+7t69i+zsbK063t7eGDhwIBYsWPDEOFJTUzFy5EhMmzYN6enpqKio0GsMMTExiImJgZ2dHZycnLBo0SI8uoFkQEAArly5gjfffFOzQgAAV65cQVBQEBwcHGBlZYXOnTvjxx9/BAAcPXoUn3zyCZYuXYqlS5fiL3/5C9q1a4devXph4cKFtV4PorowaRNJhCiKqC4vN8qm792O165dCycnJ+Tk5CA2NhbTpk3DuHHj0K9fP5w4cQJDhw5FWFhYnc/KrqiowLp16wAApqamtfYnJiZi69atyM3NbfC1Sk1NRWhoKHx8fKBQKPD111/rPQa5XI6cnBwsX74cS5cuxVdffQUA2LZtG9q2bYvFixejuLgYxcXFAIDo6Gjcv38fWVlZOH36ND7++GPNo0PT09NhbW2N6dOn19nfo8RP1BDexpRIItQVFdj84otG6Xv8sWOQW1rqXL9bt25YuHAhACA+Ph6JiYlwcnJCVFQUACAhIQHJyck4deoUXF1dAQD9+vVDixYtUP7/PyT06tULgwcPrtV2z549MX78eMydOxd79+6ts/89e/agvLwcgYGBAIDQ0FAolUqEhYXpPAZ3d3csW7YMgiDA29sbp0+fxrJlyxAVFYWWLVtCJpPBxsZGEz/wcEk+ODgYfn5+AID27dtr9l28eBHt27fXuq/50qVLkZCQoPn96tWrsLOz0zlGev5wpk1EBte1a1fNzzKZDI6OjppEBgAuLi4AgBs3bmjKNm3ahJMnT2Lr1q1QKBRIS0uDiYlJne1/8MEHOHDgADIyMurcn5KSggkTJmgSZEhICA4dOoTLly/rPIa+fftqzX79/f1x6dIlqNXqeo+ZMWMGPvjgA/Tv3x/vvPMOTp061WAfkZGRyMvLw5dffol79+7pvaJBzx/OtIkkQmZhgfGNcBW0rn3r44/JVhAErbJHybCmpkZT5u7uDi8vL3h5eaG6uhqjR4/GmTNnYGZmVqv9Dh06ICoqCvPmzYNSqdTad/v2bWzfvh1VVVVITk7WlKvVaqSkpGDJkiV6jUUfU6ZMQWBgIH744QdkZGTgo48+QlJSEmJjY+Hl5YWDBw+iqqpK81rY29vD3t4ev/76a6PFRH8unGkTSYQgCJBbWhpla+rzrWPHjoVcLscXX3xRb52EhARcvHgRGzdu1Cpfv3492rZti/z8fOTl5Wm2pKQkpKWlNThTftwfL4I7evQovLy8IJPJADw8315XW+7u7pg6dSq2bduG2bNnY82aNQAezvbLysoaHBPRkzBpE1GzIwgCZsyYgcTExDovVgMeLrHPmjULK1as0CpXKpUYO3YsunTporVNnjwZt27dws6dO3WKQaVSYdasWbhw4QLS09OxcuVKzJw5U7Pfw8MDWVlZuHr1Km7dugUAiIuLw65du1BYWIgTJ05g37598PX1BfBweX327NmYPXs2Zs2ahYMHD+LKlSs4evQolEolBEFAixb8k0wN478QImqWwsPDUVVVhVWrVtVbZ86cOZqrswHg+PHjyM/PR3BwcK26dnZ2GDx4cK3l9PpMnDgRFRUV6NOnD6KjozFz5ky88cYbmv2LFy9GUVEROnToAGdnZwAPl+Cjo6Ph6+uLYcOGoWPHjloz688++wwbNmzAyZMnMXLkSHh5eWHcuHGoqanBkSNHYGtrq1Ns9PwSRF75QNTsVFZWorCwEJ6enjA3Nzd2OM+dgIAAdO/e/anueEZUH0O8rznTJiIikghePU5EzxWVSoVOnTrVu//cuXNNGA2Rfpi0iei54ubmhry8vAb3Z2ZmNlk8RPpg0iai54pcLodCoTB2GERPhee0iYiIJIJJm4iISCKYtImIiCSCSZuIiEgimLSJiIgkgkmbiIhIIpi0icioioqKIAiCZmvZsiUGDBiAAwcOaNV79913IQgCpk6dqlWel5cHQRBQVFRUq+3AwEDIZDIca4RHmnp4eOh1m9NH46zrO+IBAQGIi4szWGz058WkTUTNwp49e1BcXIysrCy4ublh5MiRuH79ulYdc3NzKJVKXLp06YntqVQqHD58GDExMUhJSWmssImaFJM2ERlUQEAAYmNjERcXBwcHB7i4uGDNmjW4d+8eJk2aBBsbGygUCvz0009axzk6OsLV1RVdunTB/Pnzcffu3VrPtPb29sbAgQOxYMGCJ8aRmpqKkSNHYtq0aUhPT0dFRYVeY4iJiUFMTAzs7Ozg5OSERYsW4dHzlQICAnDlyhW8+eabmhUCALhy5QqCgoLg4OAAKysrdO7cGT/++KPO/RI9CZM2kUSIooh79+4ZZdP3YYBr166Fk5MTcnJyEBsbi2nTpmHcuHHo168fTpw4gaFDhyIsLKzOZ2VXVFRg3bp1AABTU9Na+xMTE7F161bk5uY2+FqlpqYiNDQUPj4+UCgU+Prrr/Ueg1wuR05ODpYvX46lS5fiq6++AgBs27YNbdu2xeLFi1FcXIzi4mIAQHR0NO7fv4+srCycPn0aH3/8sdajQ4memUhEzU5FRYV47tw5saKiQlNWVlYmAjDKVlZWpnPsAwYMEF9++WXN79XV1aKVlZUYFhamKSsuLhYBiEeOHBELCwtFAKKFhYVoZWUlCoIgAhB79eolPnjwQHPMO++8I3br1k0URVH829/+Jg4aNEgURVE8efKkCEAsLCzU1M3IyBCdnZ3FqqoqURRFcdmyZeKAAQP0GoOvr69YU1OjKZs7d67o6+ur+f2FF14Qly1bpnWcn5+f+O6779bZ5h/H+fjWokULcebMmTrHR9JU1/taX5xpE5HBde3aVfOzTCaDo6Mj/Pz8NGUuLi4AgBs3bmjKNm3ahJMnT2Lr1q1QKBRIS0uDiYlJne1/8MEHOHDgADIyMurcn5KSggkTJkAuf/h4hZCQEBw6dAiXL1/WeQx9+/bVLHsDgL+/Py5dugS1Wl3vMTNmzMAHH3yA/v3745133sGpU6dq1dm0aRPy8vK0tt69e+scFz3f+MAQIomwtLREWVmZ0frWxx+TrSAIWmWPkmFNTY2mzN3dHV5eXvDy8kJ1dTVGjx6NM2fOwMzMrFb7HTp0QFRUFObNmwelUqm17/bt29i+fTuqqqqQnJysKVer1UhJScGSJUv0Gos+pkyZgsDAQPzwww/IyMjARx99hKSkJMTGxmqN848PLLGwsGi0mOjPhTNtIokQBAFWVlZG2R6fcTaFsWPHQi6X44svvqi3TkJCAi5evIiNGzdqla9fvx5t27ZFfn6+1mw2KSkJaWlpDc6UH/fHi+COHj0KLy8vyGQyAA/Pt9fVlru7O6ZOnYpt27Zh9uzZWLNmjU79EemCSZuImh1BEDBjxgwkJibWebEa8HCJfdasWVixYoVWuVKpxNixY9GlSxetbfLkybh16xZ27typUwwqlQqzZs3ChQsXkJ6ejpUrV2LmzJma/R4eHsjKysLVq1dx69YtAEBcXBx27dqFwsJCnDhxAvv27YOvr+9TvgpEtTFpE1GzFB4ejqqqKqxatareOnPmzNG6Ovv48ePIz89HcHBwrbp2dnYYPHhwreX0+kycOBEVFRXo06cPoqOjMXPmTLzxxhua/YsXL0ZRURE6dOgAZ2dnAA+X4KOjo+Hr64thw4ahY8eODa4WEOlLEEU9v8tBRI2usrIShYWF8PT0hLm5ubHDee4EBASge/fuet3xjOhJDPG+5kybiIhIInj1OBE9V1QqFTp16lTv/nPnzjVhNET6YdImoueKm5tbnQ/teHx/ZmZmk8VDpA8mbSJ6rsjl8lrfkyaSCp7TJiIikggmbSIiIolg0iYiIpIIJm0iIiKJYNImIiKSCCZtIiIiiWDSJiKjKioqgiAImq1ly5YYMGAADhw4oFXv3XffhSAImDp1qlZ5Xl4eBEFAUVFRrbYDAwMhk8lw7Ngxg8ft4eGh121OH42zoe+IEz0JkzYRNQt79uxBcXExsrKy4ObmhpEjR+L69etadczNzaFUKnHp0qUntqdSqXD48GHExMQgJSWlscImalJM2kRkUAEBAYiNjUVcXBwcHBzg4uKCNWvW4N69e5g0aRJsbGygUCjw008/aR3n6OgIV1dXdOnSBfPnz8fdu3drPdPa29sbAwcOxIIFC54YR2pqKkaOHIlp06YhPT0dFRUVeo0hJiYGMTExsLOzg5OTExYtWoRHz1cKCAjAlStX8Oabb2pWCADgypUrCAoKgoODA6ysrNC5c2f8+OOPOvdL9CRM2kQSIYoi7j24Z5RN34cBrl27Fk5OTsjJyUFsbCymTZuGcePGoV+/fjhx4gSGDh2KsLCwOp+VXVFRgXXr1gEATE1Na+1PTEzE1q1bkZub2+BrlZqaitDQUPj4+EChUODrr7/WewxyuRw5OTlYvnw5li5diq+++goAsG3bNrRt2xaLFy9GcXExiouLAQDR0dG4f/8+srKycPr0aXz88cdajw4lela8jSmRRJRXlcP6I+MkgLL4MliZWulcv1u3bli4cCEAID4+HomJiXByckJUVBQAICEhAcnJyTh16hRcXV0BAP369UOLFi1QXl4OURTRq1cvDB48uFbbPXv2xPjx4zF37lzs3bu3zv737NmD8vJyBAYGAgBCQ0OhVCoRFham8xjc3d2xbNkyCIIAb29vnD59GsuWLUNUVBRatmwJmUwGGxsbTfzAwyX54OBg+Pn5AQDat2+vc39EuuBMm4gMrmvXrpqfZTIZHB0dNYkMAFxcXAAAN27c0JRt2rQJJ0+exNatW6FQKJCWlgYTE5M62//ggw9w4MABZGRk1Lk/JSUFEyZMgFz+cF4SEhKCQ4cO4fLlyzqPoW/fvpplbwDw9/fHpUuXoFar6z1mxowZ+OCDD9C/f3+88847OHXqlM79EemCM20iibA0sURZfJnR+tbHH5OtIAhaZY+SYU1NjabM3d0dXl5e8PLyQnV1NUaPHo0zZ87AzMysVvsdOnRAVFQU5s2bB6VSqbXv9u3b2L59O6qqqpCcnKwpV6vVSElJwZIlS/Qaiz6mTJmCwMBA/PDDD8jIyMBHH32EpKQkxMbGNlqf9HzhTJtIIgRBgJWplVG2x2ecTWHs2LGQy+X44osv6q2TkJCAixcvYuPGjVrl69evR9u2bZGfn4+8vDzNlpSUhLS0tAZnyo/740VwR48ehZeXF2QyGYCH59vrasvd3R1Tp07Ftm3bMHv2bKxZs0an/oh0waRNRM2OIAiYMWMGEhMT67xYDXi4xD5r1iysWLFCq1ypVGLs2LHo0qWL1jZ58mTcunULO3fu1CkGlUqFWbNm4cKFC0hPT8fKlSsxc+ZMzX4PDw9kZWXh6tWruHXrFgAgLi4Ou3btQmFhIU6cOIF9+/bB19f3KV8FotqYtImoWQoPD0dVVRVWrVpVb505c+ZoXZ19/Phx5OfnIzg4uFZdOzs7DB48uNZyen0mTpyIiooK9OnTB9HR0Zg5cybeeOMNzf7FixejqKgIHTp0gLOzM4CHS/DR0dHw9fXFsGHD0LFjxwZXC4j0JYj6fpeDiBpdZWUlCgsL4enpCXNzc2OH89wJCAhA9+7d9brjGdGTGOJ9zZk2ERGRRPDqcSJ6rqhUKnTq1Kne/efOnWvCaIj0w6RNRM8VNze3Bh/a4ebmhszMzCaLh0gfTNpE9FyRy+VQKBTGDoPoqfCcNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRORURUVFUEQBM3WsmVLDBgwAAcOHNCq9+6770IQBEydOlWrPC8vD4IgoKioqFbbgYGBkMlkOHbsWGMOgajJMGkTUbOwZ88eFBcXIysrC25ubhg5ciSuX7+uVcfc3BxKpRKXLl16YnsqlQqHDx9GTEwMUlJSGitsAEBVVVWtsgcPHjRqn/R8YtImkghRBO7dM86mz7MAAwICEBsbi7i4ODg4OMDFxQVr1qzBvXv3MGnSJNjY2EChUOCnn37SOs7R0RGurq7o0qUL5s+fj7t37yI7O1urjre3NwYOHIgFCxY8MY7U1FSMHDkS06ZNQ3p6OioqKnQeQ01NDT755BMoFAqYmZmhXbt2WLJkCYD/rAxs2rQJAwYMgLm5OdavX4+IiAiMGjUKS5YsgZubG7y9vXXuj0hXvI0pkUSUlwOPPTq6SZWVAVZWutdfu3Yt3n77beTk5GDTpk2YNm0atm/fjtGjR2P+/PlYtmwZwsLCoFKpah1bUVGBdevWAQBMTU1r7U9MTMSLL76I3Nxc9O7du87+RVFEamoqVq9eDR8fHygUCnz99dcICwvTKf74+HisWbMGy5Ytw8svv4zi4mKcP39eq868efOQlJSEHj16wNzcHJmZmdi7dy9sbW2xe/dunfoh0ptIRM1ORUWFeO7cObGiokJTVlYmig/nvE2/lZXpHvuAAQPEl19+WfN7dXW1aGVlJYaFhWnKiouLRQDikSNHxMLCQhGAaGFhIVpZWYmCIIgAxF69eokPHjzQHPPOO++I3bp1E0VRFP/2t7+JgwYNEkVRFE+ePCkCEAsLCzV1MzIyRGdnZ7GqqkoURVFctmyZOGDAAJ3iv3v3rmhmZiauWbOmzv2P4v3888+1ysPDw0UXFxfx/v37OvVDz5+63tf64kybSCIsLR/OeI3Vtz66du2q+Vkmk8HR0RF+fn6aMhcXFwDAjRs34OrqCgDYtGkTfHx8cObMGbz99ttIS0uDiYlJne1/8MEH8PX1RUZGBlq1alVrf0pKCiZMmAC5/OGfuJCQELz11lu4fPkyOnTo0GDsBQUFuH//PgYPHtxgvbpm+X5+fnWuDhAZCpM2kUQIgn5L1Mb0x2QrCIJWmSAIAB6eO37E3d0dXl5e8PLyQnV1NUaPHo0zZ87AzMysVvsdOnRAVFQU5s2bB6VSqbXv9u3b2L59O6qqqpCcnKwpV6vVSElJ0Zybro+FhYVOY7Sq439GXWVEhsQL0Yio2Rk7dizkcjm++OKLeuskJCTg4sWL2Lhxo1b5+vXr0bZtW+Tn5yMvL0+zJSUlIS0tDWq1usG+vby8YGFhgb179xpkLESGxKRNRM2OIAiYMWMGEhMTUV5eXmcdFxcXzJo1CytWrNAqVyqVGDt2LLp06aK1TZ48Gbdu3cLOnTsb7Nvc3Bxz587F22+/jXXr1uHy5cs4evRorRk9kTEwaRNRsxQeHo6qqiqsWrWq3jpz5syB9WOX1B8/fhz5+fkIDg6uVdfOzg6DBw/WKfkuWrQIs2fPRkJCAnx9fTFhwgTcuHHj6QZCZECCKOrzDUwiagqVlZUoLCyEp6cnzM3NjR0OERmAId7XnGkTERFJBJM2ET1XVCoVrK2t693quuELUXPBr3wR0XPFzc0NeXl5De4naq6YtInouSKXy6FQKIwdBtFT4fI4ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTERlAZmYmBEFAaWmpsUOhPzEmbSIyqqKiIgiCoNlatmyJAQMG4MCBA1r13n33XQiCgKlTp2qV5+XlQRAEFBUV1Wo7MDAQMpkMx44da8whEDUZJm0iahb27NmD4uJiZGVlwc3NDSNHjsT169e16pibm0OpVOLSpUtPbE+lUuHw4cOIiYlBSkpKY4VN1KSYtImkQhSB6nvG2fR4rlBAQABiY2MRFxcHBwcHuLi4YM2aNbh37x4mTZoEGxsbKBQK/PTTT1rHOTo6wtXVFV26dMH8+fNx9+5dZGdna9Xx9vbGwIEDsWDBgifGkZqaipEjR2LatGlIT09HRUVFo4/hjw4dOoSAgABYWlrCwcEBgYGBuHPnjs5xEP0R74hGJBXqcmCz9ZPrNYbxZYDcSufqa9euxdtvv42cnBxs2rQJ06ZNw/bt2zF69GjMnz8fy5YtQ1hYWJ33+a6oqMC6desAAKamprX2JyYm4sUXX0Rubi569+5dZ/+iKCI1NRWrV6+Gj48PFAoFvv76a4SFhTXKGCwtLWsdn5eXh8GDByMyMhLLly+HXC7Hvn37oFardY6B6I/4aE6iZqjOR/hV35NE0g4ICIBardack1ar1bCzs8OYMWM0ybikpAStW7fGkSNH4OrqCk9PT1hYWKBFixYoLy+HKIro1asXjhw5AhMTEwAPz2nv2LEDeXl5CAkJwY0bN7B3717k5eWhR48eKCwshIeHBwBg9+7deP3113Ht2jXI5XJ8/vnn2LFjBzIzMxtlDH379kVmZiYGDhyIO3fuwN7eHn//+9+hUqlw8OBBXV9l+pMzxKM5OdMmkgqZ5cPkaay+9dC1a9f/HCqTwdHREX5+fpoyFxcXAMCNGzfg6uoKANi0aRN8fHxw5swZvP3220hLS9Mk7D/64IMP4Ovri4yMDLRq1arW/pSUFEyYMAFy+cM/cSEhIXjrrbdw+fJldOjQweBjqEteXh7GjRunU19EumLSJpIKQdBridqY/phsBUHQKhMEAQBQU1OjKXN3d4eXlxe8vLxQXV2N0aNH48yZMzAzM6vVfocOHRAVFYV58+ZBqVRq7bt9+za2b9+OqqoqJCcna8rVajVSUlKwZMmSRhvD4ywsLHTqh0gfvBCNiJqdsWPHQi6X44svvqi3TkJCAi5evIiNGzdqla9fvx5t27ZFfn4+8vLyNFtSUhLS0tKa7Jxy165dsXfv3ibpi54fTNpE1OwIgoAZM2YgMTER5eXlddZxcXHBrFmzsGLFCq1ypVKJsWPHokuXLlrb5MmTcevWLezcubMphoD4+HgcO3YM06dPx6lTp3D+/HkkJyfj1q1bTdI//TkxaRNRsxQeHo6qqiqsWrWq3jpz5syBtfV/Ls47fvw48vPzERwcXKuunZ0dBg8eXGs5vbF07NgRGRkZyM/PR58+feDv749vvvlGc56d6Gnw6nGiZsgQV5kSUfNiiPc1Z9pEREQSwaRNRM8VlUoFa2vrere6bvhC1Fzw5AoRPVfc3NyQl5fX4H6i5opJm4ieK3K5HAqFwthhED0VLo8TERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTkUFFRERg1KhRtX5+pKSkBLGxsWjfvj3MzMzg7u6OoKAgrSdieXh4QBAECIIAmUwGNzc3TJ48GXfu3NEphszMTM3xgiDAxcUFwcHB+Ne//mWoYRIZBZM2ETWZoqIi9OrVCz///DM+/fRTnD59Gjt37sTAgQMRHR2tVXfx4sUoLi6GSqXC+vXrkZWVhRkzZujV34ULF3Dt2jVs2bIFZ8+eRVBQUJM9mpOoMfDmKkQSIYoiqsqrjNK3iaUJBEF45namT58OQRCQk5MDKysrTXnnzp0RGRmpVdfGxgaurq4AgDZt2iA8PBzp6el69deqVSvY29ujdevWSEhIwOuvv45ffvkF3t7ezzwWImNg0iaSiKryKnxk/ZFR+o4vi4eplekztXH79m3s3LkTS5Ys0UrYj9jb29d77NWrV/Hdd9/hpZdeeur+LSwsAAAPHjx46jaIjI3L40TUJH755ReIoggfHx+d6s+dOxfW1tawsLBA27ZtIQgCli5d+lR9FxcX47PPPkObNm04yyZJ40ybSCJMLE0QXxZvtL6flSiKetV/6623EBERAVEU8e9//xvz58/HiBEjkJWVBZlMplMbbdu2hSiKKC8vR7du3bB161aYmj7bigGRMTFpE0mEIAjPvERtTF5eXhAEAefPn9epvpOTk+bBHl5eXvj888/h7++Pffv2YciQITq1ceDAAdja2qJVq1awsbF56tiJmgsujxNRk2jZsiUCAwOxevVq3Lt3r9b+0tLSBo9/NLuuqKjQuU9PT0906NCBCZv+NJi0iajJrF69Gmq1Gn369MHWrVtx6dIlFBQUYMWKFfD399eq+/vvv6OkpATFxcXIycnBW2+9BWdnZ/Tr189I0RMZH5M2ETWZ9u3b48SJExg4cCBmz56NLl264JVXXsHevXuRnJysVTchIQGtW7eGm5sbRo4cCSsrK2RkZMDR0dFI0RMZnyDqe3UIETW6yspKFBYWwtPTE+bm5sYOh4gMwBDva860iYiIJIJJm4gkZ/jw4bC2tq5z+/DDD40dHlGj4Ve+iEhyvvrqq3qvIm/ZsmUTR0PUdJi0iUhy2rRpY+wQiIyCy+NEREQSwaRNREQkEUzaREREEsGkTUREJBFM2kRERBLBpE1ERCQRTNpEZFAREREYNWpUrZ8fd+TIEchkMowYMaJpgyOSOCZtImpySqUSsbGxyMrKwrVr14wdDpFkMGkTUZMqKyvDpk2bMG3aNIwYMQJpaWnGDolIMnhHNCKJEEUR6npu3dnYZBYWEATBIG1t3rwZPj4+8Pb2RmhoKOLi4hAfH2+w9on+zJi0iSRCXVGBzS++aJS+xx87BrmlpUHaUiqVCA0NBQAMGzYMv/32G/bv34+AgACDtE/0Z8blcSJqMhcuXEBOTg5CQkIAAHK5HBMmTIBSqTRyZETSwJk2kUTILCww/tgxo/VtCEqlEtXV1XBzc9OUiaIIMzMzrFq1CnZ2dgbph+jPikmbSCIEQTDYErUxVFdXY926dUhKSsLQoUO19o0aNQrp6emYOnWqkaIjkgYmbSJqEt9//z3u3LmDyZMn15pRBwcHQ6lUMmkTPQHPaRNRk1AqlRgyZEidS+DBwcHIzc3FqVOnjBAZkXQIoiiKxg6CiLRVVlaisLAQnp6eMDc3N3Y4RGQAhnhfc6ZNREQkEUzaREREEsGkTUREJBFM2kRERBLBpE1ERCQRTNpEREQSwaRNREQkEUzaREREEsGkTUREJBFM2kRERBLBpE1EBhUREYFRo0bVKs/MzIQgCCgtLdX8/GhzcXFBcHAw/vWvfz11v2lpaZr2WrRogbZt22LSpEm4cePGM4yGqHlh0iYio7lw4QKuXbuGLVu24OzZswgKCoJara5VTxRFVFdXP7E9W1tbFBcX49dff8WaNWvw008/ISwsrDFCJzIKJm0iMppWrVqhdevW+Otf/4qEhAScO3cOv/zyi2Ym/tNPP6FXr14wMzPDwYMHn9ieIAhwdXWFm5sbhg8fjhkzZmDPnj2oqKhogtEQNT4+T5tIIkRRRHl5uVH6trS0hCAIjdqHhYUFAODBgweasnnz5uGzzz5D+/bt4eDg8FRt1tTU6DRLJ5ICJm0iiSgvL4e1tbVR+i4rK4OVlZXO9b///vtasda17P1IcXExPvvsM7Rp0wbe3t44fPgwAGDx4sV45ZVXnirmS5cu4R//+Ad69+4NGxubp2qDqLlh0iYigxs4cCCSk5O1yrKzsxEaGqpV1rZtW80KQrdu3bB161aYmppq9vfu3Vuvfn/77TdYW1ujpqYGlZWVePnll/HVV189/UCImhkmbSKJsLS0RFlZmdH61oeVlRUUCoVW2a+//lqr3oEDB2Bra4tWrVrVORvWZ3YPADY2Njhx4gRatGiB1q1ba5bcif4smLSJJEIQBL2TWHPn6ekJe3t7g7XXokWLWh8WiP5MePU4ERGRRDBpExERSYQgiqJo7CCISFtlZSUKCwvh6ekJc3NzY4dDRAZgiPc1Z9pEREQSwaRNRJLQuXNnWFtb17mtX7/e2OERNQlePU5EkvDjjz+iqqqqzn0uLi5NHA2RcTBpE5EkvPDCC8YOgcjouDxOREQkEUzaREREEsGkTUREJBFM2kRERBLBpE1ERCQRTNpEREQSwaRNRAYVERGBUaNG1SrPzMyEIAgoLS3V/Pxoc3FxQXBwMP71r381fcBEEsKkTURGc+HCBVy7dg1btmzB2bNnERQUBLVaXaueKIqorq42QoREzQuTNhEZTatWrdC6dWv89a9/RUJCAs6dO4dffvlFMxP/6aef0KtXL5iZmeHgwYPGDpfI6HhHNCKJEEUR5VXlRunb0sQSgiA0ah8WFhYAgAcPHmjK5s2bh88++wzt27eHg4NDo/ZPJAVM2kQSUV5VDuuPrI3Sd1l8GaxMrXSu//3338PaWjvWupa9HykuLsZnn32GNm3awNvbG4cPHwYALF68GK+88srTBU30J8SkTUQGN3DgQCQnJ2uVZWdnIzQ0VKusbdu2D1cQysvRrVs3bN26Faamppr9vXv3bpJ4iaSCSZtIIixNLFEWX2a0vvVhZWUFhUKhVfbrr7/WqnfgwAHY2tqiVatWsLGxqbMdIvoPJm0iiRAEQa8lainw9PSEvb29scMgkgxePU5ERCQRTNpEREQSIYiiKBo7CCLSVllZicLCQnh6esLc3NzY4RCRARjifc2ZNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERlUREQEBEGotQ0bNgwA4OHhgc8//1yntjw8PDTHW1lZoWfPntiyZUsjRk/UvDFpE5HBDRs2DMXFxVpbenr6U7W1ePFiFBcX4+TJk3jxxRcxYcIEHD582MARE0kDkzYRGZyZmRlcXV21NgcHh6dqy8bGBq6urujYsSNWr14NCwsLfPfddwaOmEga5MYOgIh0I4pAeblx+ra0BATBOH0/Ti6Xw8TEBA8ePDB2KERGwaRNJBHl5YC1tXH6LisDrKx0r//999/D+g/Bzp8/H/Pnz3/qGB48eICkpCT89ttvGDRo0FO3QyRlTNpEZHADBw5EcnKyVlnLli2fqq25c+di4cKFqKyshLW1NRITEzFixAhDhEkkOUzaRBJhaflwxmusvvVhZWUFhUJhkL7feustREREwNraGi4uLhCawzo9kZEwaRNJhCDot0T9Z+Hk5GSwDwBEUsekTUQGd//+fZSUlGiVyeVyODk5GSkioj8HJm0iMridO3eidevWWmXe3t44f/68kSIi+nMQRFEUjR0EEWmrrKxEYWEhPD09YW5ubuxwiMgADPG+5s1ViIiIJIJJm4iMYv369bC2tq5z69y5s7HDI2qWeE6biIzitddew0svvVTnPhMTkyaOhkgamLSJyChsbGxgY2Nj7DCIJIXL40RERBLBpE1ERCQRTNpEREQSwaRNREQkEUzaREREEsGkTUREJBFM2kRkUBERERAEodY2bNgwAICHhwc+//xz4wZJJFH8njYRGdywYcOQmpqqVWZmZmakaIj+PJi0icjgzMzM4OrqauwwiP50mLSJpEIUAXW5cfqWWQKCYJy+iUiDSZtIKtTlwGZr4/Q9vgyQW+lc/fvvv4e1tXas8+fPx/z58w0dGdFzhUmbiAxu4MCBSE5O1ipr2bKlkaIh+vNg0iaSCpnlwxmvsfrWg5WVFRQKRSMFQ/T8YtImkgpB0GuJmoj+fJi0icjg7t+/j5KSEq0yuVwOJycnI0VE9OfApE1EBrdz5060bt1aq8zb2xvnz583UkREfw6CKIqisYMgIm2VlZUoLCyEp6cnzM3NjR0OERmAId7XvI0pERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRMREUkEkzYRGcV///d/QyaTYcuWLbX2vfvuuxAEAcOGDau179NPP4UgCAgICKhVXxAEyOVyeHh44M0330RZmZEeZUrUSJi0iajJlZeXY+PGjXj77beRkpJSZ53WrVtj3759+PXXX7XKU1JS0K5du1r1O3fujOLiYhQVFeHjjz/GP//5T8yePbtR4icyFiZtIjK4mpoafPLJJ1AoFKcaHgQAAAO5SURBVDAzM0O7du2wZMkSzf4tW7agU6dOmDdvHrKysvDvf/+7VhutWrXC0KFDsXbtWk3Z4cOHcevWLYwYMaJWfblcDldXV7Rt2xYTJkzA66+/jm+//bZxBkhkJHw0J5FEiKKIqvIqo/RtYmkCQRB0rh8fH481a9Zg2bJlePnll1FcXKz1WE6lUonQ0FDY2dlh+PDhSEtLw6JFi2q1ExkZibfffhsLFiwA8HCW/frrr+sUg4WFBR48eKBzzERSwKRNJBFV5VX4yPojo/QdXxYPUytTner+/vvvWL58OVatWoXw8HAAQIcOHfDyyy8DAC5duoSjR49i27ZtAIDQ0FDMmjULCxcurPXBYOTIkZg6dSqysrLQq1cvbN68GQcPHqx3Sf2R48ePY8OGDRg0aJC+QyVq1rg8TkQGVVBQgPv372Pw4MF17k9JSUFgYCCcnJwAAK+++ip+++03/Pzzz7XqmpiYIDQ0FKmpqdiyZQs6duyIrl271tnu6dOnYW1tDQsLC/Tp0wf+/v5YtWqV4QZG1Axwpk0kESaWJogvizda37qysLCod59arcbatWtRUlICuVyuVZ6SklJnoo+MjMRLL72EM2fOIDIyst62vb298e2330Iul8PNzQ2mprqtDBBJCZM2kUQIgqDzErUxeXl5wcLCAnv37sWUKVO09v3444/4/fffcfLkSchkMk35mTNnMGnSJJSWlsLe3l7rmM6dO6Nz5844deoU/v73v9fbr6mpKRQKhUHHQtTcMGkTkUGZm5tj7ty5ePvtt2Fqaor+/fvj5s2bOHv2LL777juMGDEC3bp10zqmU6dOePPNN7F+/XpER0fXavPnn39GVVVVrYRO9Lxh0iYig1u0aBHkcjkSEhJw7do1tG7dGpGRkfjhhx+wYcOGWvVbtGiB0aNHQ6lU1pm0raysmiJsomZPEEVRNHYQRKStsrIShYWF8PT0hLm5ubHDISIDMMT7mlePExERSQSTNhERkUQwaRMREUkEkzYREZFEMGkTNWO8TpToz8MQ72cmbaJmyMTk4R3IysvLjRwJERnKo/fzo/f30+D3tImaIZlMBnt7e9y4cQMAYGlpqddTtoio+RBFEeXl5bhx4wbs7e217gaoL35Pm6iZEkURJSUlKC0tNXYoRGQA9vb2cHV1faYP4EzaRM2cWq1GVZVxnqNNRIZhYmLyTDPsR5i0iYiIJIIXohEREUkEkzYREZFEMGkTERFJBJM2ERGRRDBpExERSQSTNhERkUQwaRMREUnE/wMGv3hupRmnCwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "_ = CTLSB.plotModel(times=TIMES, legend=True, title=\"All Species\")" ] @@ -184,21 +173,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "55fe1398-1dd4-4559-b2c3-09666980f439", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAHPCAYAAADTUZpvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD00lEQVR4nO3de1xUdf4/8NeBgeE+CMhVFFLREjU2L6umaZlpLmW15Zo/0dV2t8JNS83IyswSc6vNtrLLFtTXC2WL1rqGmYpkeQkSFU3yAkIKohLD/Tbz+f2BMzICwzAMc4Dzej4e5xFz5pwz748P5dXncz7nM5IQQoCIiIia5SB3AURERJ0Zg5KIiMgMBiUREZEZDEoiIiIzGJRERERmMCiJiIjMYFASERGZwaAkIiIyg0FJRERkBoOSiIjIDEUHZVpaGqKjoxEcHAxJkrB169YO/bywsDBIktRki42N7dDPJSIi6yk6KCsqKjB06FC88847dvm8H3/8EQUFBcZt586dAIAHH3zQLp9PRERtp+ignDJlCl5++WXcd999zb5fU1ODxYsXIyQkBO7u7hg5ciRSU1Ot/ryePXsiMDDQuG3btg19+/bFbbfdZvU1iYioYyk6KFszf/587N+/H0lJSTh69CgefPBBTJ48GadOnWr3tWtra7F+/XrMnTsXkiTZoFoiIuoIEr9mq4EkSdiyZQumTZsGAMjLy8MNN9yAvLw8BAcHG4+bOHEiRowYgVWrVrXr8z7//HM8/PDDTa5PRESdC3uULTh27Bh0Oh0iIiLg4eFh3Pbu3YszZ84AAE6ePNns5JzG2zPPPNPs9T/66CNMmTKFIUlE1Mmp5C6gsyovL4ejoyMyMjLg6Oho8p6HhwcA4IYbbsDPP/9s9jq+vr5N9p07dw7ffvstkpOTbVcwERF1CAZlC6KioqDT6VBUVISxY8c2e4yzszMGDhzY5msnJCTA398fU6dObW+ZRETUwRQdlOXl5Th9+rTxdU5ODjIzM+Hj44OIiAjMnDkTMTExeP311xEVFYVLly5h165dGDJkiNUhp9frkZCQgNmzZ0OlUvQfPxFRl6DoyTypqamYMGFCk/2zZ89GYmIi6urq8PLLL+PTTz/F+fPn4efnh9///vdYsWIFBg8ebNVnfvPNN7jrrruQnZ2NiIiI9jaBiIg6mKKDkoiIqDWc9UpERGQGg5KIiMgMxc0m0ev1uHDhAjw9PbkiDhGRggkhUFZWhuDgYDg4tNxvVFxQXrhwAaGhoXKXQUREnUR+fj569erV4vuKC0pPT08ADX8wXl5eMldDRERyKS0tRWhoqDEXWqK4oDQMt3p5eTEoiYio1dtwnMxDRERkBoOSiIjIDAYlERGRGYq7R0lE1JUJIVBfXw+dTid3KZ2eo6MjVCpVux8FZFASEXURtbW1KCgoQGVlpdyldBlubm4ICgqCs7Oz1ddgUBIRdQF6vR45OTlwdHREcHAwnJ2duWiKGUII1NbW4tKlS8jJyUH//v3NLipgDoOSiKgLqK2thV6vR2hoKNzc3OQup0twdXWFk5MTzp07h9raWri4uFh1HU7mISLqQqztFSmVLf68+CdORERkBoOSiIjIDAYlERGRGQxKIiLqUHPmzIEkSU22yZMnAwDCwsLw5ptvWnStsLAw4/nu7u743e9+h82bN3dg9QxKIiKyg8mTJ6OgoMBk27Rpk1XXeumll1BQUIDDhw9j+PDhmD59On744QcbV3wNHw8hxfm19Ff8bdvf8PcRf8fkfpPlLofIKkIIVNbJs/CAm5Nbm5/hVKvVCAwMtMnne3p6IjAwEIGBgXjnnXewfv16/Pe//8Xo0aNtcv3rMShJcRIOJ2D7qe3Yfmo7xHIhdzlEVqmsq4RHvIcsn10eVw53Z3dZPvt6KpUKTk5OqK2t7bDP4NArKU5pTanx53p9vYyVECnHtm3b4OHhYbKtWrWqXdesra1FfHw8tFotbr/9dhtV2hR7lKQ4vbx6GX8+X3oefbz7yFgNkXXcnNxQHlcu22e31YQJE7Bu3TqTfT4+PlZ9/tKlS/Hcc8+huroaHh4eWL16NaZOnWrVtSzBoCTFcZCuDaSc055jUFKXJElSpxn+tIS7uzv69etnk2stWbIEc+bMgYeHBwICAjp8zVsGJSmOwLX7khfLL8pYCRFZw8/Pz2ahawkGJSna5crLcpdApAg1NTUoLCw02adSqeDn5ydTRZZjUJKiMSiJ7CMlJQVBQUEm+wYMGICTJ0/KVJHlZJ31Gh8fj+HDh8PT0xP+/v6YNm0asrOzWz3vzTffxIABA+Dq6orQ0FA8+eSTqK6utkPF1N0wKIk6XmJiIoQQTTZDSObm5mLhwoUWXastx9qKrEG5d+9exMbG4sCBA9i5cyfq6uowadIkVFRUtHjOxo0b8cwzz2D58uX4+eef8dFHH+Gzzz7Ds88+a8fKqbu4VHlJ7hKIqJOTdeg1JSXF5HViYiL8/f2RkZGBcePGNXvODz/8gDFjxuDhhx8G0LDu34wZM3Dw4MEOr5e6ByGuTeZhj5Ko89iwYQP+9re/Nftenz59cPz4cTtX1KBT3aPUarUAzD9bM3r0aKxfvx6HDh3CiBEjcPbsWWzfvh2zZs1q9viamhrU1NQYX5eWljZ7HClTSXWJ3CUQ0VX33HMPRo4c2ex7Tk5Odq7mmk4TlHq9HgsXLsSYMWMQGRnZ4nEPP/wwLl++jFtvvRVCCNTX1+PRRx9tceg1Pj4eK1as6KiyqYvT1mjlLoGIrvL09ISnp6fcZTTRaZawi42NRVZWFpKSkswel5qailWrVuHdd9/FTz/9hOTkZPzvf//DypUrmz0+Li4OWq3WuOXn53dE+dRFNV7OjqgraHzrgFpniz+vTtGjnD9/PrZt24a0tDT06tXL7LHPP/88Zs2ahUceeQQAMHjwYFRUVOCvf/0rli1bBgcH0+xXq9VQq9UdVjt1bdpq9iipazAMPVZWVsLV1VXmarqOysqGb1hpz9CtrEEphMDf//53bNmyBampqQgPD2/1nMrKyiZh6OjoaLweUWsar8xTVV+FOl0dnBzlu/9BZAlHR0d4e3ujqKgIAODm1vavulISIQQqKytRVFQEb29vY05YQ9agjI2NxcaNG/Hll1/C09PTuGqDRqMx/h9TTEwMQkJCEB8fDwCIjo7GG2+8gaioKIwcORKnT5/G888/j+jo6Hb9QZByldaUwtfNV+4yiFpl+D5HQ1hS67y9vdv9PZiyBqVhJfnx48eb7E9ISMCcOXMAAHl5eSY9yOeeew6SJOG5557D+fPn0bNnT0RHR+OVV16xV9nUzWhrtAxK6hIkSUJQUBD8/f1RV1cndzmdnpOTk006ULIPvbYmNTXV5LVKpcLy5cuxfPnyDqqKlIb3KamrcXR05AiaHXWaWa9E9nL9/6Bx5isRmcOgJMXjs5REZA6DkhSPQ69EZA6DkhSPPUoiModBSYpXXlsudwlE1IkxKElxGi84ADAoicg8BiUpHoOSiMxhUJLiVdS2/EXhREQMSlK88jr2KImoZQxKUjwOvRKROQxKUhzDyjxODg3fGMKgJCJzGJSkWO7O7gAYlERkHoOSFMvD2QMAg5KIzGNQkmIZgpKzXonIHAYlKY5hwQFPZ08A7FESkXkMSlIsDr0SkSUYlKRYhsk8dfo61OpqZa6GiDorBiUplruTu/Fn9iqJqCUMSlIsZ0dnODs6A+CEHiJqGYOSFMew4IAkSbxPSUStYlCSojEoiag1DEpSNAYlEbWGQUmKZpjQw6AkopYwKEmxJFy7R1lRx8k8RNQ8BiUpjmFlHoBDr0TUOgYlKRqDkohaw6AkRWNQElFrGJSkaJzMQ0StYVCS4jRecMCw3itX5iGiljAoSdE465WIWsOgJEXj0CsRtYZBSYpmHHplj5KIWiBrUMbHx2P48OHw9PSEv78/pk2bhuzs7FbPKykpQWxsLIKCgqBWqxEREYHt27fboWLqTiRIxh4l71ESUUtUcn743r17ERsbi+HDh6O+vh7PPvssJk2ahBMnTsDd3b3Zc2pra3HnnXfC398fX3zxBUJCQnDu3Dl4e3vbt3jqshovOMAeJRG1RtagTElJMXmdmJgIf39/ZGRkYNy4cc2e8/HHH6O4uBg//PADnJycAABhYWEdXSp1U8bJPOxRElELOtU9Sq1WCwDw8fFp8ZivvvoKo0aNQmxsLAICAhAZGYlVq1ZBp9M1e3xNTQ1KS0tNNiIDTuYhotZ0mqDU6/VYuHAhxowZg8jIyBaPO3v2LL744gvodDps374dzz//PF5//XW8/PLLzR4fHx8PjUZj3EJDQzuqCdTFSJA49EpEreo0QRkbG4usrCwkJSWZPU6v18Pf3x8ffPABbrnlFkyfPh3Lli3De++91+zxcXFx0Gq1xi0/P78jyqcuipN5iKg1st6jNJg/fz62bduGtLQ09OrVy+yxQUFBcHJygqOjo3HfjTfeiMLCQtTW1sLZ2dnkeLVaDbVa3SF1U9dkWJkHuDaZp0ZXg3p9PVQOneKfBBF1IrL2KIUQmD9/PrZs2YLdu3cjPDy81XPGjBmD06dPQ6/XG/f98ssvCAoKahKSRK0xTOYB2KskoubJGpSxsbFYv349Nm7cCE9PTxQWFqKwsBBVVVXGY2JiYhAXF2d8/dhjj6G4uBgLFizAL7/8gv/9739YtWoVYmNj5WgCdXFqRzUcpIZ/BrxPSUTNkXWcad26dQCA8ePHm+xPSEjAnDlzAAB5eXlwcLiW56GhodixYweefPJJDBkyBCEhIViwYAGWLl1qr7Kpm5AkqWFhdCd3lNWWsUdJRM2SNSgb3ytqSWpqapN9o0aNwoEDBzqgIlKCxgsOAA33Kctqy9ijJKJmdZpZr0Ry4aIDRGQOg5IUj4sOEJE5DEpSLAkSAK73SkTmMShJ8bjoABGZw6Akxbl+Ehl7lERkDoOSFI+TeYjIHAYlKR4n8xCROQxKUixJujqZx4lDr0TUMgYlKZ7xHiWHXomoGQxKUpwmK/OwR0lEZjAoSfEMk3l4j5KImsOgJMXiggNEZAkGJSkeFxwgInMYlKQ4XHCAiNqCQUmKxx4lEZnDoCTF42QeIjKHQUmKZVxwgEOvRGQGg5IUj0OvRGQOg5IUp8mCA1d7lHX6OtTp6uQoiYg6MQYlKZ7hHiXA4VciaopBSYplWHDA2dEZKgcVAE7oIaKmGJRE4H1KImoZg5IInPlKRC1jUJLiXL8yD8AeJRG1jEFJhGsTetijJKLrMShJsQwLDgDXhl45mYeIrsegJAKHXomoZSq5C+gqhBCo1dWiur7aZKvX10Mv9C1uOqEz/tzcvbEWPw+WH2uor03Ht/H63cmZ38402cfJPETUEsUGZWpOKvRqPcpqylBWW4aymjKU1pTiStWVhq3y2n9/q/4NVXVVig6X7shBujagwh4lEbVEsUF5b9K9gIv157uoXOCicoGTgxMcJAeLt7ZofA/NouPRxuPbeP3uxN3JHbOGzDK+5jeIEFFLFBuUA/0GwtvbG57OnvBUe8LT2RNeai/4uvrC180XPq4+Jj+7O7kbw9HZ0VnRIdMdGXuUHHolousoNigP/uUgvLy85C6DOgnjPUoOvRLRdTjrlQjsURJRy2QNyvj4eAwfPhyenp7w9/fHtGnTkJ2dbfH5SUlJkCQJ06ZN67giSRE465WIWiJrUO7duxexsbE4cOAAdu7cibq6OkyaNAkVFa3/ssrNzcXixYsxduxYO1RK3R0n8xBRS2S9R5mSkmLyOjExEf7+/sjIyMC4ceNaPE+n02HmzJlYsWIFvvvuO5SUlHRwpdTd8fEQImpJp7pHqdVqAQA+Pj5mj3vppZfg7++PefPmtXrNmpoalJaWmmxE1+PQKxG1pNMEpV6vx8KFCzFmzBhERka2eNy+ffvw0Ucf4cMPP7TouvHx8dBoNMYtNDTUViVTN8IeJRG1pNMEZWxsLLKyspCUlNTiMWVlZZg1axY+/PBD+Pn5WXTduLg4aLVa45afn2+rkqkbYY+SiFrSKZ6jnD9/PrZt24a0tDT06tWrxePOnDmD3NxcREdHG/fp9XoAgEqlQnZ2Nvr27Wtyjlqthlqt7pjCqdvgZB4iaomsQSmEwN///nds2bIFqampCA8PN3v8wIEDcezYMZN9zz33HMrKyrB27VoOq5LVGg+9CiG48hIRGckalLGxsdi4cSO+/PJLeHp6orCwEACg0Wjg6uoKAIiJiUFISAji4+Ph4uLS5P6lt7c3AJi9r0nUGsPQq07oUKurhVrFUQgiaiBrUK5btw4AMH78eJP9CQkJmDNnDgAgLy8PDg6d5lYqdVOGHiXQcJ+SQUlEBrIPvbYmNTXV7PuJiYm2KYYUzcnRCc6OzqjV1aKitgI+ruYfUSIi5WBXjegqQ6+SE3qIqDEGJdFVfESEiJrDoCS6iosOEFFzGJREV7FHSUTNYVASXcVFB4ioOQxKoqs49EpEzWFQEl3FoVciag6Dkugq9iiJqDkMSqKrjEHJHiURNcKgJLqKk3mIqDkMSqKrjPcoOfRKRI0wKImu4tArETWHQUl0FWe9ElFzGJREV3HWKxE1h0FJdBUn8xBRcxiURFdx6JWImsOgJLqKQ69E1BwGJdFV7FESUXMYlERXGe5RskdJRI0xKImuMgy9lteWQwghczVE1FkwKImuMgy9CghU11fLXA0RdRYMSqKrDD1KgPcpiegaBiXRVY4OjlA7qgHwPiURXcOgJGqEiw4Q0fUYlESN8BERIrqeqj0n19bWoqioCHq93mR/796921UUkVy46AARXc+qoDx16hTmzp2LH374wWS/EAKSJEGn09mkOCJ7Y4+SiK5nVVDOmTMHKpUK27ZtQ1BQECRJsnVdRLJgj5KIrmdVUGZmZiIjIwMDBw60dT1EsuJkHiK6nlWTeW666SZcvnzZ1rUQyY5Dr0R0PauC8tVXX8XTTz+N1NRUXLlyBaWlpSYbUVfFoVciup5VQ68TJ04EANxxxx0m+zmZh7o6Y1CyR0lEV1kVlHv27LHJh8fHxyM5ORknT56Eq6srRo8ejVdffRUDBgxo8ZwPP/wQn376KbKysgAAt9xyC1atWoURI0bYpCZSNuPQK3uURHSVVUF522232eTD9+7di9jYWAwfPhz19fV49tlnMWnSJJw4cQLu7u7NnpOamooZM2Zg9OjRcHFxwauvvopJkybh+PHjCAkJsUldpFyczENE17N6wYGSkhJ89NFH+PnnnwEAgwYNwty5c6HRaCy+RkpKisnrxMRE+Pv7IyMjA+PGjWv2nA0bNpi8/ve//43//Oc/2LVrF2JiYtrYCiJTHHoloutZNZknPT0dffv2xT//+U8UFxejuLgYb7zxBvr27YuffvrJ6mK0Wi0AwMfHx+JzKisrUVdX1+I5NTU1nGxEFuOsVyK6nlVB+eSTT+Kee+5Bbm4ukpOTkZycjJycHPzhD3/AwoULrSpEr9dj4cKFGDNmDCIjIy0+b+nSpQgODjZOMLpefHw8NBqNcQsNDbWqPlIGznoloutZ3aNcunQpVKprI7cqlQpPP/000tPTrSokNjYWWVlZSEpKsvic1atXIykpCVu2bIGLi0uzx8TFxUGr1Rq3/Px8q+ojZTDco2SPkogMrLpH6eXlhby8vCYr8+Tn58PT07PN15s/fz62bduGtLQ09OrVy6JzXnvtNaxevRrffvsthgwZ0uJxarUaarW6zTWRMhmGXjmZh4gMrOpRTp8+HfPmzcNnn32G/Px85OfnIykpCY888ghmzJhh8XWEEJg/fz62bNmC3bt3Izw83KLz1qxZg5UrVyIlJQXDhg2zpglEzeLQKxFdz6oe5WuvvQZJkhATE4P6+noAgJOTEx577DGsXr3a4uvExsZi48aN+PLLL+Hp6YnCwkIAgEajgaurKwAgJiYGISEhiI+PB9CwKtALL7yAjRs3IiwszHiOh4cHPDw8rGkOkREn8xDR9SQhhLD25MrKSpw5cwYA0LdvX7i5ubXtw1v41pGEhATMmTMHADB+/HiEhYUhMTERABAWFoZz5841OWf58uV48cUXW/3M0tJSaDQaaLVaeHl5tale6v7OFJ9Bv3/1g7uTO8qf5fArUXdmaR6064ub3dzcMHjwYKvPtySjU1NTTV7n5uZa/XlErWk8mUcv9HCQrLo7QUTdiMVBef/99yMxMRFeXl64//77zR6bnJzc7sKI5GAYegWAqroqk9dEpEwWB6VGozEOlXp5efHLmqlbcnO6dvugoq6CQUlElgdlQkKC8WfD/UKi7sZBcoCryhVV9VUNM1+Zk0SKZ9UNmNtvvx0lJSVN9peWluL2229vb01EsuLMVyJqzKqgTE1NRW1tbZP91dXV+O6779pdFJGc+A0iRNRYm2a9Hj161PjziRMnjM8wAoBOp0NKSgq/6oq6PC46QESNtSkob775ZkiSBEmSmh1idXV1xb/+9S+bFUckBw69ElFjbQrKnJwcCCFwww034NChQ+jZs6fxPWdnZ/j7+8PR0dHmRRLZE3uURNRYm4KyT58+ABq+Eouou2KPkogaa9fKPCdOnEBeXl6TiT333HNPu4oikhMn8xBRY1YF5dmzZ3Hffffh2LFjkCTJuBSdYRECnU5nuwqJ7IxDr0TUmFWPhyxYsADh4eEoKiqCm5sbjh8/jrS0NAwbNqzJ2qxEXY0xKDn0SkSwske5f/9+7N69G35+fnBwcICDgwNuvfVWxMfH44knnsDhw4dtXSeR3RjvUbJHSUSwskep0+ng6ekJAPDz88OFCxcANEz2yc7Otl11RDJgj5KIGrOqRxkZGYkjR44gPDwcI0eOxJo1a+Ds7IwPPvgAN9xwg61rJLIrTuYhosasCsrnnnsOFRUN/7f90ksv4Q9/+APGjh0LX19ffPbZZzYtkMje+HgIETVmVVDeddddxp/79euHkydPori4GD169ODXb1GXx1mvRNRYm+9R1tXVQaVSISsry2S/j48PQ5K6BfYoiaixNgelk5MTevfuzWclqdviPUoiasyqWa/Lli3Ds88+i+LiYlvXQyQ7Dr0SUWNW3aN8++23cfr0aQQHB6NPnz5wdzf9GviffvrJJsURyYFDr0TUmFVBee+99/J+JHVb7FESUWNWBeWLL75o4zKIOg9Dj7Kqvgo6vQ6ODvzqOCIls+oe5Q033IArV6402V9SUsIFB6jLM0zmAYDKukoZKyGizsCqoMzNzW121mtNTQ1+/fXXdhdFJCdXlSskNNxa4H1KImrT0OtXX31l/HnHjh3QaDTG1zqdDrt27UJ4eLjtqiOSgSRJcHNyQ0VdBe9TElHbgnLatGkAGn6RzJ492+Q9JycnhIWF4fXXX7dZcURycXd2R0VdBZ+lJKK2BaVerwcAhIeH48cff4Sfn1+HFEUkNy+1F4oqilBWWyZ3KUQkM6tmvebk5Ni6DqJOxUvtBQAorSmVuRIikptVQQkAu3btwq5du1BUVGTsaRp8/PHH7S6MSE4MSiIysCooV6xYgZdeegnDhg1DUFAQFx+gbodBSUQGVgXle++9h8TERMyaNcvW9RB1CgxKIjKw6jnK2tpajB49ut0fHh8fj+HDh8PT0xP+/v6YNm0asrOzWz1v8+bNGDhwIFxcXDB48GBs37693bUQNeblzKAkogZWBeUjjzyCjRs3tvvD9+7di9jYWBw4cAA7d+5EXV0dJk2ahIqKlp9d++GHHzBjxgzMmzcPhw8fxrRp0zBt2rQm349J1B4al4ZnhBmURGTV0Gt1dTU++OADfPvttxgyZAicnJxM3n/jjTcsuk5KSorJ68TERPj7+yMjIwPjxo1r9py1a9di8uTJWLJkCQBg5cqV2LlzJ95++2289957VrSGqCkOvRKRgVVBefToUdx8880A0KQn156JPVqtFgDg4+PT4jH79+/HU089ZbLvrrvuwtatW63+XKLrMSiJyMCqoNyzZ4+t64Ber8fChQsxZswYREZGtnhcYWEhAgICTPYFBASgsLCw2eNrampQU1NjfF1ayl981DpDUGprtDJXQkRys+oepcHp06exY8cOVFVVAQCEEFZfKzY2FllZWUhKSmpPSU3Ex8dDo9EYt9DQUJten7on9iiJyMCqoLxy5QruuOMORERE4O6770ZBQQEAYN68eVi0aFGbrzd//nxs27YNe/bsQa9evcweGxgYiIsXL5rsu3jxIgIDA5s9Pi4uDlqt1rjl5+e3uT5SHgYlERlYFZRPPvkknJyckJeXBzc3N+P+6dOnN5mgY44QAvPnz8eWLVuwe/dui755ZNSoUdi1a5fJvp07d2LUqFHNHq9Wq+Hl5WWyEbWGQUlEBlbdo/zmm2+wY8eOJr2//v3749y5cxZfJzY2Fhs3bsSXX34JT09P431GjUYDV1dXAEBMTAxCQkIQHx8PAFiwYAFuu+02vP7665g6dSqSkpKQnp6ODz74wJqmEDWLQUlEBlb1KCsqKkx6kgbFxcVQq9UWX2fdunXQarUYP348goKCjNtnn31mPCYvL884tAsAo0ePxsaNG/HBBx9g6NCh+OKLL7B161azE4CI2soQlOW15dDpm35JOREph1U9yrFjx+LTTz/FypUrATQ8EqLX67FmzRpMmDDB4utYMvknNTW1yb4HH3wQDz74oMWfQ9RWhqAEGsLSsAABESmPVUG5Zs0a3HHHHUhPT0dtbS2efvppHD9+HMXFxfj+++9tXSOR3bmoXODs6IxaXS1Ka0oZlEQKZtXQa2RkJH755RfceuutuPfee1FRUYH7778fhw8fRt++fW1dI5EseJ+SiIB2fB+lRqPBsmXLbFkLUafipfbC5crLXHSASOGs6lEmJCRg8+bNTfZv3rwZn3zySbuLIuoM2KMkIsDKoIyPj4efn1+T/f7+/li1alW7iyLqDBiURARYGZR5eXnNLg7Qp08f5OXltbsoos6AQUlEgJVB6e/vj6NHjzbZf+TIEfj6+ra7KKLOgEFJRICVQTljxgw88cQT2LNnD3Q6HXQ6HXbv3o0FCxbgT3/6k61rJJKFlzODkoisnPW6cuVK5Obm4o477oBK1XAJvV6PmJgY3qOkboM9SiICrAxKZ2dnfPbZZ1i5ciWOHDkCV1dXDB48GH369LF1fUSyMSwywKAkUjarn6MEgIiICERERNiqFqJOhT1KIgKsDEqdTofExETs2rULRUVF0Ov1Ju/v3r3bJsURyckQlFxwgEjZrArKBQsWIDExEVOnTkVkZCQkSbJ1XUSyY4+SiAArgzIpKQmff/457r77blvXQ9RpGHuU1exREimZVY+HODs7o1+/frauhahT6eHSAwBQUl0ibyFEJCurgnLRokVYu3atRd8nSdRVebt4A2BQEimdVUOv+/btw549e/D1119j0KBBcHJyMnk/OTnZJsURyckQlFX1Vaipr4FapZa3ICKShVVB6e3tjfvuu8/WtRB1KhoXDSRIEBAoqS5BgEeA3CURkQysCsqEhARb10HU6ThIDvBSe0Fbo2VQEilYuxYcuHTpErKzswEAAwYMQM+ePW1SFFFn0cO1B7Q1WvxW/ZvcpRCRTKyazFNRUYG5c+ciKCgI48aNw7hx4xAcHIx58+ahsrLS1jUSyYYTeojIqqB86qmnsHfvXvz3v/9FSUkJSkpK8OWXX2Lv3r1YtGiRrWskko0hKH+rYo+SSKmsGnr9z3/+gy+++ALjx4837rv77rvh6uqKhx56COvWrbNVfUSy4rOURGRVj7KyshIBAU0nNvj7+3PolboVDr0SkVVBOWrUKCxfvhzV1dXGfVVVVVixYgVGjRpls+KI5GboUXIyD5FyWTX0+uabb2Ly5Mno1asXhg4dCgA4cuQI1Go1vvnmG5sWSCQn9iiJyKqgHDx4ME6dOoUNGzbg5MmTAIAZM2Zg5syZcHV1tWmBRHJiUBKRVUEZHx+PgIAA/OUvfzHZ//HHH+PSpUtYunSpTYojklsPVw69EimdVfco33//fQwcOLDJ/kGDBuG9995rd1FEnQV7lERkVVAWFhYiKCioyf6ePXuioKCg3UURdRbGyTx8jpJIsawKytDQUHz//fdN9n///fcIDg5ud1FEnQV7lERk1T3Kv/zlL1i4cCHq6upw++23AwB27dqFp59+mivzULfSOCiFEJAkSd6CiMjurArKJUuW4MqVK3j88cdRW1sLAHBxccHSpUsRFxdn0wKJ5GSYzKMTOpTXlsNT7SlzRURkb1YNvUqShFdffRWXLl3CgQMHcOTIERQXF+OFF15o03XS0tIQHR2N4OBgSJKErVu3tnrOhg0bMHToULi5uSEoKAhz587FlStXrGkGUatcVa5wcmj4YnIOvxIpk1VBaeDh4YHhw4cjMjISanXbv/29oqICQ4cOxTvvvGPR8d9//z1iYmIwb948HD9+HJs3b8ahQ4eaPKZCZCuSJBl7lQxKImVq1/dRtteUKVMwZcoUi4/fv38/wsLC8MQTTwAAwsPD8be//Q2vvvpqR5VIBG8XbxRVFPFZSiKFaleP0t5GjRqF/Px8bN++HUIIXLx4EV988QXuvvvuFs+pqalBaWmpyUbUFpz5SqRsXSoox4wZgw0bNmD69OlwdnZGYGAgNBqN2aHb+Ph4aDQa4xYaGmrHiqk74LOURMrWpYLyxIkTWLBgAV544QVkZGQgJSUFubm5ePTRR1s8Jy4uDlqt1rjl5+fbsWLqDnzdfAEAV6o4aYxIiWS9R9lW8fHxGDNmDJYsWQIAGDJkCNzd3TF27Fi8/PLLza4WpFarrZpoRGTg63o1KCsZlERK1KV6lJWVlXBwMC3Z0dERACCEkKMkUgBDUF6uvCxzJUQkB1mDsry8HJmZmcjMzAQA5OTkIDMzE3l5eQAahk1jYmKMx0dHRyM5ORnr1q3D2bNn8f333+OJJ57AiBEjuHQedRgOvRIpm6xDr+np6ZgwYYLx9VNPPQUAmD17NhITE1FQUGAMTQCYM2cOysrK8Pbbb2PRokXw9vbG7bffzsdDqEP5ufkBYFASKZUkFDZmWVpaCo1GA61WCy8vL7nLoS5g55mdmLR+Egb7D8bRx47KXQ4R2YiledCl7lESyYFDr0TKxqAkakXjyTwKG4AhIjAoiVpl6FHW6mpRUVchczVEZG8MSqJWuDu5Q+3Y8Cwun6UkUh4GJVErJEnifUoiBWNQElmAq/MQKReDksgC7FESKReDksgCXMaOSLkYlEQWMK7Ow6FXIsVhUBJZwHiPkkOvRIrDoCSyAO9REikXg5LIApz1SqRcDEoiCxjuUXIyD5HyMCiJLGAIykuVl2SuhIjsjUFJZAF/d38AQFFFERdGJ1IYBiWRBQxBWV1fjfLacpmrISJ7YlASWcDd2R3uTu4AgIsVF2WuhojsiUFJZKEAjwAADcOvRKQcDEoiCxmGXy+Ws0dJpCQMSiILBbizR0mkRAxKIgsZe5S8R0mkKAxKIgsZepQceiVSFgYlkYWMz1JWcuiVSEkYlEQWMsx6ZY+SSFkYlEQWarw6DxEpB4OSyELGe5SczEOkKAxKIgsZepQl1SWo1dXKXA0R2QuDkshCPVx7QOWgAsDhVyIlYVASWchBckBPt54AGJRESsKgJGoDznwlUh4GJVEbBHkEAQAKygtkroSI7IVBSdQGwZ7BAIDzpedlroSI7EXWoExLS0N0dDSCg4MhSRK2bt3a6jk1NTVYtmwZ+vTpA7VajbCwMHz88ccdXywRgBDPEADAhbILMldCRPaikvPDKyoqMHToUMydOxf333+/Rec89NBDuHjxIj766CP069cPBQUF0Ov1HVwpUQNjj7KMPUoipZA1KKdMmYIpU6ZYfHxKSgr27t2Ls2fPwsfHBwAQFhbWQdURNRXixR4lkdJ0qXuUX331FYYNG4Y1a9YgJCQEERERWLx4Maqqqlo8p6amBqWlpSYbkbXYoyRSHll7lG119uxZ7Nu3Dy4uLtiyZQsuX76Mxx9/HFeuXEFCQkKz58THx2PFihV2rpS6K8M9yovlF1GvrzcuQEBE3VeX6lHq9XpIkoQNGzZgxIgRuPvuu/HGG2/gk08+abFXGRcXB61Wa9zy8/PtXDV1Jz3de0LloIKAQGF5odzlEJEddKmgDAoKQkhICDQajXHfjTfeCCEEfv3112bPUavV8PLyMtmIrOUgORifpeQjIkTK0KWCcsyYMbhw4QLKy8uN+3755Rc4ODigV69eMlZGSmK4T8kJPUTKIGtQlpeXIzMzE5mZmQCAnJwcZGZmIi8vD0DDsGlMTIzx+Icffhi+vr7485//jBMnTiAtLQ1LlizB3Llz4erqKkcTSIEMM185oYdIGWQNyvT0dERFRSEqKgoA8NRTTyEqKgovvPACAKCgoMAYmgDg4eGBnTt3oqSkBMOGDcPMmTMRHR2Nt956S5b6SZmCPdijJFISWafsjR8/HkKIFt9PTExssm/gwIHYuXNnB1ZFZB57lETK0qXuURJ1BoZHRH4tbX4CGRF1LwxKojbq490HAHCu5JzMlRCRPTAoidqoj6YhKPNL86EXXGeYqLtjUBK1UYhXCBwlR9TqarnoAJECMCiJ2kjloDJO6OHwK1H3x6AkskKYdxgA4JyWQUnU3TEoiaxguE/JHiVR98egJLKCIShzS3LlLYSIOhyDksgKxkdEOPRK1O0xKImsYBx6ZVASdXsMSiIrNF50wNwyjETU9TEoiazQW9MbAFBRV4ErVVdkroaIOhKDksgKLioX45qvZ4rPyFwNEXUkBiWRlfr79gcAnCo+JXMlRNSRGJREVurvczUorzAoibozBiWRlYxByR4lUbfGoCSyUj+ffgAYlETdHYOSyErGe5RXTvEREaJujEFJZKW+PfoCALQ1Wj4iQtSNMSiJrOTq5IpQr1AAnNBD1J0xKInagY+IEHV/DEqidjDMfM2+nC1zJUTUURiURO1wU8+bAAAnLp+QuRIi6igMSqJ2GNRzEAAgqyhL5kqIqKMwKInaIdI/EkDDeq9VdVUyV0NEHYFBSdQO/u7+8HPzg4DAz5d/lrscIuoADEqidpAkyTj8erzouMzVEFFHYFAStZNh+JX3KYm6JwYlUTsZe5SX2KMk6o4YlETtZOhRHis6JnMlRNQRGJRE7TQkYAgAIE+bh8uVl2WuhohsjUFJ1E4aFw0ifCMAABkXMmSuhohsjUFJZAPDgocBANIvpMtcCRHZmqxBmZaWhujoaAQHB0OSJGzdutXic7///nuoVCrcfPPNHVYfkaVuCboFAJBewKAk6m5kDcqKigoMHToU77zzTpvOKykpQUxMDO64444OqoyobQw9Sg69EnU/Kjk/fMqUKZgyZUqbz3v00Ufx8MMPw9HRsU29UKKOEhUYBQkS8kvzcbH8IgI8AuQuiYhspMvdo0xISMDZs2exfPlyi46vqalBaWmpyUZka55qTwz0GwgAOHT+kMzVEJEtdamgPHXqFJ555hmsX78eKpVlneH4+HhoNBrjFhoa2sFVklKNDh0NANiXt0/mSojIlrpMUOp0Ojz88MNYsWIFIiIiLD4vLi4OWq3WuOXn53dglaRkY3uPBQB8l/edzJUQkS3Jeo+yLcrKypCeno7Dhw9j/vz5AAC9Xg8hBFQqFb755hvcfvvtTc5Tq9VQq9X2LpcUaFyfcQCAHy/8iMq6Srg5uclcERHZQpcJSi8vLxw7ZrpE2Lvvvovdu3fjiy++QHh4uEyVETUI8w5DiGcIzpedx8FfD2JC+AS5SyIiG5A1KMvLy3H69Gnj65ycHGRmZsLHxwe9e/dGXFwczp8/j08//RQODg6IjIw0Od/f3x8uLi5N9hPJQZIkjOszDpuyNiHtXBqDkqibkPUeZXp6OqKiohAVFQUAeOqppxAVFYUXXngBAFBQUIC8vDw5SyRqE8Pw6+7c3TJXQkS2IgkhhNxF2FNpaSk0Gg20Wi28vLzkLoe6mbO/nUXft/rCUXLElaevQOOikbskImqBpXnQZWa9EnUFN/S4ARG+EdAJHb49+63c5RCRDTAoiWxsSr+G1aa+Pv21zJUQkS0wKIlszBCUKadToLA7G0TdEoOSyMZuC7sNbk5uOF92nl+7RdQNMCiJbMxF5YLoiGgAwGfHP5O5GiJqLwYlUQeYPmg6gIag1Au9zNUQUXswKIk6wJT+U+Dp7IlfS3/F/vz9cpdDRO3AoCTqAC4qF9x3430AgMTMRHmLIaJ2YVASdZB5UfMAAJuyNkFbrZW5GiKyFoOSqIOM7T0WN/W8CRV1FdhwbIPc5RCRlRiURB1EkiQ8esujAIC3D73NST1EXRSDkqgDxQyNgUatwc+Xf8aXJ7+UuxwisgKDkqgDaVw0+PuIvwMAVqat5Eo9RF0Qg5Kogy34/QK4O7njcOFhJP+cLHc5RNRGDEqiDubn5ocnf/8kAGDxzsWoqquSuSIiagsGJZEdPHPrM+jl1Qu5JblY8/0aucshojZgUBLZgbuzO/5x5z8AAC9/9zIyLmTIXBERWYpBSWQn0wdNxwM3PoB6fT1mJs9EWU2Z3CURkQUYlER2IkkS3v/D+wj2DEb2lWz86T9/Qr2+Xu6yiKgVDEoiO/J180XyQ8lwUblg+6nteGzbY1yIgKiTY1AS2dnIXiOx/r71kCDh34f/jTlb56BOVyd3WUTUAgYlkQweuOkBbLh/AxwlR/zf0f/D7Z/ejvOl5+Uui4iawaAkksmMwTOw9U9b4aX2wr68fRj63lAkHE7gUCxRJ8OgJJLRHyL+gIy/ZuDmwJtxpeoK5n41FyP/PRJbT25lYBJ1EgxKIpn18+mHQ48cwj/u/AfcndyRfiEd9312HyL+FYEXU1/EycsnuUYskYwkobB/gaWlpdBoNNBqtfDy8pK7HCITlyouYe3BtXj70NvQ1lz7sudQr1BMvGEiRoaMxM2BNyPSPxLuzu4yVkrU9VmaBwxKok6oorYCW09uxfpj67E7ZzdqdbUm70uQEOQZhD6aPgjzDkMvr17wdfWFj6sPfN0a/uvp7AlXJ1e4qlyN/3VRucDZ0RmSJMnUMqLOg0HZAgYldTWVdZXYl7cPe3L24HDhYWQWZuJixUWrrydBgspBBUcHRzhKjnB0cISD5GD8+fr/SrgWqo0DtrX9bTnW3H6ijqKr0uHEohMMyusxKKk7uFRxCTklOThXcg7ntOdwvvQ8fqv+DcVVxSiuKsaVqisory1HVV0VquqrUFVXBQFF/VMnal01gNVgUF6PQUlKJIRAra4WVfVVqK6vRr2+Hjq9Djqhg06vg17ojT9f/1/jNRoFbeNfG83tb8ux5vYTdaTysnJMu3laq3mgsmNNRCQTSZKgVqmhVqnlLoWo0ygtLbXoOD4eQkREZIasQZmWlobo6GgEBwdDkiRs3brV7PHJycm488470bNnT3h5eWHUqFHYsWOHfYolIiJFkjUoKyoqMHToULzzzjsWHZ+WloY777wT27dvR0ZGBiZMmIDo6GgcPny4gyslIiKl6jSTeSRJwpYtWzBt2rQ2nTdo0CBMnz4dL7zwgkXHczIPEREBludBl57Mo9frUVZWBh8fnxaPqampQU1NjfG1pTdviYiIgC4+mee1115DeXk5HnrooRaPiY+Ph0ajMW6hoaF2rJCIiLq6LhuUGzduxIoVK/D555/D39+/xePi4uKg1WqNW35+vh2rJCKirq5LDr0mJSXhkUcewebNmzFx4kSzx6rVaqjVfHaMiIis0+V6lJs2bcKf//xnbNq0CVOnTpW7HCIi6uZk7VGWl5fj9OnTxtc5OTnIzMyEj48Pevfujbi4OJw/fx6ffvopgIbh1tmzZ2Pt2rUYOXIkCgsLAQCurq7QaDSytIGIiLo3WXuU6enpiIqKQlRUFADgqaeeQlRUlPFRj4KCAuTl5RmP/+CDD1BfX4/Y2FgEBQUZtwULFshSPxERdX+d5jlKe+FzlEREBFieB13uHiUREZE9MSiJiIjM6JKPh7SHYaSZK/QQESmbIQdauwOpuKC8cuUKAHCFHiIiAgCUlZWZfXJCcUFpWBc2Ly+vWzxSUlpaitDQUOTn53eLyUndqT3dqS0A29OZdae2APZrjxACZWVlCA4ONnuc4oLSwaHhtqxGo+kWf6EMvLy82J5Oqju1BWB7OrPu1BbAPu2xpMPEyTxERERmMCiJiIjMUFxQqtVqLF++vNsslM72dF7dqS0A29OZdae2AJ2vPYpbmYeIiKgtFNejJCIiagsGJRERkRkMSiIiIjMYlERERGZ0+6B85513EBYWBhcXF4wcORKHDh2y6+fHx8dj+PDh8PT0hL+/P6ZNm4bs7GyTY6qrqxEbGwtfX194eHjggQcewMWLF02OycvLw9SpU+Hm5gZ/f38sWbIE9fX19mxKE6tXr4YkSVi4cKFxX1dry/nz5/H//t//g6+vL1xdXTF48GCkp6cb3xdC4IUXXkBQUBBcXV0xceJEnDp1yuQaxcXFmDlzJry8vODt7Y158+ahvLzc3k2BTqfD888/j/DwcLi6uqJv375YuXKlyTqWnaU9aWlpiI6ORnBwMCRJwtatW03et1WdR48exdixY+Hi4oLQ0FCsWbPGpu2wpD11dXVYunQpBg8eDHd3dwQHByMmJgYXLlzoku253qOPPgpJkvDmm2+a7O9M7Wk30Y0lJSUJZ2dn8fHHH4vjx4+Lv/zlL8Lb21tcvHjRbjXcddddIiEhQWRlZYnMzExx9913i969e4vy8nLjMY8++qgIDQ0Vu3btEunp6eL3v/+9GD16tPH9+vp6ERkZKSZOnCgOHz4stm/fLvz8/ERcXJzd2nG9Q4cOibCwMDFkyBCxYMEC4/6u1Jbi4mLRp08fMWfOHHHw4EFx9uxZsWPHDnH69GnjMatXrxYajUZs3bpVHDlyRNxzzz0iPDxcVFVVGY+ZPHmyGDp0qDhw4ID47rvvRL9+/cSMGTPs3p5XXnlF+Pr6im3btomcnByxefNm4eHhIdauXdvp2rN9+3axbNkykZycLACILVu2mLxvizq1Wq0ICAgQM2fOFFlZWWLTpk3C1dVVvP/++zZtS2vtKSkpERMnThSfffaZOHnypNi/f78YMWKEuOWWW0yu0VXa01hycrIYOnSoCA4OFv/85z87bXvaq1sH5YgRI0RsbKzxtU6nE8HBwSI+Pl62moqKigQAsXfvXiFEwz8iJycnsXnzZuMxP//8swAg9u/fL4Ro+Evr4OAgCgsLjcesW7dOeHl5iZqaGvs2QAhRVlYm+vfvL3bu3Cluu+02Y1B2tbYsXbpU3HrrrS2+r9frRWBgoPjHP/5h3FdSUiLUarXYtGmTEEKIEydOCADixx9/NB7z9ddfC0mSxPnz5zuu+GZMnTpVzJ0712Tf/fffL2bOnCmE6Lztuf4Xsa3qfPfdd0WPHj1M/l4tXbpUDBgwoEPa0VJ7mnPo0CEBQJw7d04I0TXb8+uvv4qQkBCRlZUl+vTpYxKUnbk91ui2Q6+1tbXIyMjAxIkTjfscHBwwceJE7N+/X7a6tFotgGuLs2dkZKCurs6kzoEDB6J3797GOvfv34/BgwcjICDAeMxdd92F0tJSHD9+3I7VN4iNjcXUqVNNaga6Xlu++uorDBs2DA8++CD8/f0RFRWFDz/80Ph+Tk4OCgsLTdqj0WgwcuRIk/Z4e3tj2LBhxmMmTpwIBwcHHDx40H6NATB69Gjs2rULv/zyCwDgyJEj2LdvH6ZMmQKg67THVnXu378f48aNg7Ozs/GYu+66C9nZ2fjtt9/s0paWaLVaSJIEb29vAF2vPXq9HrNmzcKSJUswaNCgJu93tfa0ptsG5eXLl6HT6Ux+IQNAQEAACgsLZalJr9dj4cKFGDNmDCIjIwEAhYWFcHZ2Nv6DMWhcZ2FhYbPtMLxnT0lJSfjpp58QHx/f5L2u1pazZ89i3bp16N+/P3bs2IHHHnsMTzzxBD755BOTesz9HSosLIS/v7/J+yqVCj4+PnZvzzPPPIM//elPGDhwIJycnBAVFYWFCxdi5syZxloN9TfW2dpjqzo709+1xqqrq7F06VLMmDHDuOB3V2vPq6++CpVKhSeeeKLZ97tae1qjuG8PkVNsbCyysrKwb98+uUuxSn5+PhYsWICdO3fCxcVF7nLaTa/XY9iwYVi1ahUAICoqCllZWXjvvfcwe/Zsmatru88//xwbNmzAxo0bMWjQIGRmZmLhwoUIDg7uku3pjurq6vDQQw9BCIF169bJXY5VMjIysHbtWvz000+QJEnucuyi2/Yo/fz84Ojo2GTG5cWLFxEYGGj3eubPn49t27Zhz5496NWrl3F/YGAgamtrUVJSYnJ84zoDAwObbYfhPXvJyMhAUVERfve730GlUkGlUmHv3r146623oFKpEBAQ0GXaAgBBQUG46aabTPbdeOONyMvLM6nH3N+hwMBAFBUVmbxfX1+P4uJiu7dnyZIlxl7l4MGDMWvWLDz55JPG3n9XaY+t6uxMf9eAayF57tw57Ny50+Tro7pSe7777jsUFRWhd+/ext8D586dw6JFixAWFmasp6u0xxLdNiidnZ1xyy23YNeuXcZ9er0eu3btwqhRo+xWhxAC8+fPx5YtW7B7926Eh4ebvH/LLbfAycnJpM7s7Gzk5eUZ6xw1ahSOHTtm8hfP8A/t+l/0HemOO+7AsWPHkJmZadyGDRuGmTNnGn/uKm0BgDFjxjR5VOeXX35Bnz59AADh4eEIDAw0aU9paSkOHjxo0p6SkhJkZGQYj9m9ezf0ej1Gjhxph1ZcU1lZafy+VQNHR0fo9XoAXac9tqpz1KhRSEtLQ11dnfGYnTt3YsCAAejRo4dd2mJgCMlTp07h22+/ha+vr8n7Xak9s2bNwtGjR01+DwQHB2PJkiXYsWNHl2uPReSeTdSRkpKShFqtFomJieLEiRPir3/9q/D29jaZcdnRHnvsMaHRaERqaqooKCgwbpWVlcZjHn30UdG7d2+xe/dukZ6eLkaNGiVGjRplfN/wSMWkSZNEZmamSElJET179pT18RCDxrNehehabTl06JBQqVTilVdeEadOnRIbNmwQbm5uYv369cZjVq9eLby9vcWXX34pjh49Ku69995mH1OIiooSBw8eFPv27RP9+/eX5fGQ2bNni5CQEOPjIcnJycLPz088/fTTna49ZWVl4vDhw+Lw4cMCgHjjjTfE4cOHjbNAbVFnSUmJCAgIELNmzRJZWVkiKSlJuLm5dcjjB+baU1tbK+655x7Rq1cvkZmZafJ7oPGMz67SnuZcP+u1s7Wnvbp1UAohxL/+9S/Ru3dv4ezsLEaMGCEOHDhg188H0OyWkJBgPKaqqko8/vjjokePHsLNzU3cd999oqCgwOQ6ubm5YsqUKcLV1VX4+fmJRYsWibq6Oru2pTnXB2VXa8t///tfERkZKdRqtRg4cKD44IMPTN7X6/Xi+eefFwEBAUKtVos77rhDZGdnmxxz5coVMWPGDOHh4SG8vLzEn//8Z1FWVmbPZgghhCgtLRULFiwQvXv3Fi4uLuKGG24Qy5YtM/ll3Fnas2fPnmb/XcyePdumdR45ckTceuutQq1Wi5CQELF69WqbtsOS9uTk5LT4e2DPnj1drj3NaS4oO1N72otfs0VERGRGt71HSUREZAsMSiIiIjMYlERERGYwKImIiMxgUBIREZnBoCQiIjKDQUlERGQGg5KIiMgMBiWRzFJTUyFJUpPF5O1l165duPHGG6HT6dp1HUmSsHXrVouPT0lJwc0332xci5aos2JQEtnR+PHjsXDhQpN9o0ePRkFBATQajSw1Pf3003juuefg6OjYrusUFBQYvyTaEpMnT4aTkxM2bNjQrs8l6mgMSiKZOTs7IzAwUJbv9tu3bx/OnDmDBx54oN3XCgwMhFqtbtM5c+bMwVtvvdXuzybqSAxKIjuZM2cO9u7di7Vr10KSJEiShNzc3CZDr4mJifD29sa2bdswYMAAuLm54Y9//CMqKyvxySefICwsDD169MATTzxhMlxaU1ODxYsXIyQkBO7u7hg5ciRSU1PN1pSUlIQ777zT5Iu4X3zxRdx88834+OOP0bt3b3h4eODxxx+HTqfDmjVrEBgYCH9/f7zyyism12o89JqbmwtJkpCcnIwJEybAzc0NQ4cOxf79+03OiY6ORnp6Os6cOWP9HyxRB1PJXQCRUqxduxa//PILIiMj8dJLLwEAevbsidzc3CbHVlZW4q233kJSUhLKyspw//3347777oO3tze2b9+Os2fP4oEHHsCYMWMwffp0AA1fDn7ixAkkJSUhODgYW7ZsweTJk3Hs2DH079+/2Zq+++47PPzww032nzlzBl9//TVSUlJw5swZ/PGPf8TZs2cRERGBvXv34ocffsDcuXMxceJEs99TuWzZMrz22mvo378/li1bhhkzZuD06dNQqRp+9fTu3RsBAQH47rvv0Ldv37b+kRLZBYOSyE40Gg2cnZ3h5ubW6je419XVYd26dcbw+OMf/4j/+7//w8WLF+Hh4YGbbroJEyZMwJ49ezB9+nTk5eUhISEBeXl5CA4OBgAsXrwYKSkpSEhIwKpVq5r9nHPnzhmPb0yv1+Pjjz+Gp6en8bOys7Oxfft2ODg4YMCAAXj11VexZ88es0G5ePFiTJ06FQCwYsUKDBo0CKdPn8bAgQONxwQHB+PcuXPm//CIZMSgJOqE3NzcTHpYAQEBCAsLg4eHh8m+oqIiAMCxY8eg0+kQERFhcp2amhr4+vq2+DlVVVUmw64GYWFh8PT0NPksR0dHODg4mOwzfH5LhgwZYvw5KCgIAFBUVGQSlK6urqisrDR7HSI5MSiJOiEnJyeT15IkNbvP8GhFeXk5HB0dkZGR0WT2auNwvZ6fnx9+++23dn++Je0wTFa6/pzi4mL07NnT7HWI5MSgJLIjZ2fndj+v2JyoqCjodDoUFRVh7NixbTrvxIkTNq/HUtXV1Thz5gyioqJkq4GoNZz1SmRHYWFhOHjwIHJzc3H58mWbPWwfERGBmTNnIiYmBsnJycjJycGhQ4cQHx+P//3vfy2ed9ddd2Hfvn02qcEaBw4cgFqtxqhRo2Srgag1DEoiO1q8eDEcHR1x0003oWfPnsjLy7PZtRMSEhATE4NFixZhwIABmDZtGn788Uf07t27xXNmzpyJ48ePIzs722Z1tMWmTZswc+ZMuLm5yfL5RJaQhBBC7iKISD5LlixBaWkp3n//fbt+7uXLlzFgwACkp6cjPDzcrp9N1BbsURIp3LJly9CnTx+7r7mam5uLd999lyFJnR57lERERGawR0lERGQGg5KIiMgMBiUREZEZDEoiIiIzGJRERERmMCiJiIjMYFASERGZwaAkIiIyg0FJRERkxv8Hdp/P0rsyGeQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "_ = CTLSB.plotModel(times=TIMES, selections=[\"EI_P\"], legend=True)" ] @@ -250,7 +228,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 13, "id": "26262a64-eeea-428b-aa41-c4c2c6422b98", "metadata": {}, "outputs": [], @@ -264,21 +242,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "1019ba91-27e1-4fce-bfff-bf3c23911765", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAAHPCAYAAAAoMBJBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdR0lEQVR4nO3dd3hTZfsH8G/pSFu6GG2hBdqyCpRRhiBTkLJBBFSWTOFVFBUQ0L6+Kkqx4E8FRAVB9tZXNgiyhZeNzJZNoXRAmR20dOX8/nho0rRJ2rRJTtJ8P9d1LnNO7nNyH0Vy5znPsJMkSQIRERERgHJyJ0BERESWg4UBERERqbAwICIiIhUWBkRERKTCwoCIiIhUWBgQERGRCgsDIiIiUmFhQERERCosDIiIiEiFhQERERGp2HRhkHTqFA68+y42duyINSEhuLN3r0k/b3OXLlgTElJoOzl9ukk/l4jIIvz9N9CnD+DnB9jZAZs2mfbzUlOBCROAgADAxQVo0wY4edK0n1kGOMidgJxyMjJQITgYtfr3x6EPPzT553Vbvx5Sbq5qP/n6dewbMwY1unUz+WcTEcnu6VOgSRNg9Gigf3/Tf96YMcDFi8DKlaIYWbUKCAsDoqMBf3/Tf76VsunCwK99e/i1b6/z/dysLJybOxe3d+xAVmoqvGrXRuikSfBt2bJEn+dcsaLGfvSvv8KtenX4vPBCia5HRGRVevQQmy6ZmcCnnwJr1wJPngANGwKzZgEdOxr+WRkZwB9/AJs3Ax06iGPTpgFbtwLz5wMRESW4Adtg048SinIqIgIPzp5F22+/Rc8NG1CjWzfsf/ttpNy+Xepr52Zl4da2bajVvz/s7OyMkC0RkZUbPx44ehRYtw44fx54/XWge3fg2jXDr5WTA+TmAs7OmsddXIDDh42TbxnFwkCHpwkJuLlpE9rNng2f5s3hXqMG6o8aBe9mzXBz48ZSXz9u3z5kpaYi6NVXS58sEZG1i40Fli4Ffv8daN8eqFULmDwZaNdOHDeUuzvQujUwfTqQkCCKhFWrROGRmGj8/MsQm36UoM+Ta9cg5eZiW8+eGsdzs7Oh8PICACTfvIntffrovU6Dt95C6KRJhY7f+OMPVG3XDq4+PkbLmYjIal24IL6869bVPJ6ZCVSqJF5fvgzUr6//Oh9/DMycKV6vXCn6M/j7A/b2QLNmwODBwOnTxs+/DGFhoENOejrs7O3R/fffYVdOs2HFwdUVAOBWrRp6bd2q9zp5RUR+TxMScO/YMbSfO9do+RIRWbW0NPHlffq0+Gd+bm7inzVrApcu6b9OXhEBiFaHgwdFp8eUFKBqVWDgQHEd0omFgQ4V6teHlJuLZ48ewad5c60x9k5O8CzBH7AbGzdCUbEi/PI6xBAR2bqmTUWLQVKSeJSgjZMTUK+e4dcuX15sjx8Du3YB33xTulzLOJsuDLKfPkVabKxq/2lcHB5fugQnT094BAYisHdvHA0PR7MpU1Chfn08e/QI944fh1fduvB/6aUSfaakVOLmxo2o2bcvyjnY9L9+IrI1aWnA9evq/ZgY4OxZoGJF8Qhh6FBg+HDgu+9EoXD/PrB3L9C4MdCrl+Gft2sXIElAcLD43ClTRGExapTRbqksspMkSZI7CbncO3ECe7X8AQnq2xetv/4ayuxsXPzlF8Rs2YKMe/egqFABlZo0QeP33oNXwedgxZT4v/9h/7/+hd7bt8MjMLCUd0BEZEUOHAA6dSp8fMQIYNkyIDtbDCNcsQKIjwcqVwZefBH48kugUSPDP++334DwcCAuThQfAwYAM2YAnp6lvZMyTdbC4Nq6dbi2fj3S4uMBAJ61a6PRuHF65xaI3bUL5+fNQ1p8PNwDAhA6aRL82SRPRERkFLIWBnH798PO3h7uAQGAJCFm82ZcWrIE3f/4A161axeKv3/mDPaMGIEmEybA/6WXcGv7dlxavBjd//tfeNWpI8MdEBERlS0W9yjhv61bo+nkyag1YECh9w5/9BFyMjLQ8eefVcd2DR6MCvXqoeUXX5gzTSIiojLJYnq/KXNzEbtrF3IyMlC5SROtMQ/OnkW9ESM0jlVt2xZxehY/yszMRGZmpmo/JycHMVeuwNvfH+XKcX4nIiJbJSmVeHrvHuo0bQp7dgZXkf3fxJOrV/HXkCHIzcqCg6sr2v/wAzy1PEYAgGcPHsA5/xhVAM6VKuHZw4c6rx8ZGYkvv/xSte8EIMsomRMRUVlw6cQJ1OOaNSqyFwbugYHo8ccfyE5LQ+xff+HYv/+NsGXLdBYHhgoPD8ekfDMPPkhIQK369XH+1ClU8PU1ymcQEZH1SUtMhF/LllDyu0CD7IWBvZOT6HwIoGJICB5evIgrq1ah5bRphWKdK1cu1Drw7OHDQq0I+SkUCigUCtV+dloaAMCvalVU8vMzwh0QEZE1SgHgASCFj5U1WN6/DaUSuVnaG/srh4bi7rFjGsfuHj2KyqGhZkiMiIio7JO1MDg7ezaSTp1CWnw8nly9irOzZ+PeyZMI7N0bAHAkPBxnZ89WxQe/+SYS//c/XFq2DMk3b+L8Tz/h0cWLqDtkiFy3QEREVKbI+ijh2aNHOBoejoz79+Ho7g6vunXRaeFCVG3TBgCQnpgIOzs7Vbx306Zo+803OPfDDzg3Zw7cAwLQft48zmFARERkJBY3j4GpPUxIQGV/fzyIj2cfAyIiKyZJEnJycpCbm6v1fXt7ezg4OGj8wMwvJS4OHtWrI+XOHXhUq2bKVK2K7J0PiYiIDJWVlYXExESkp6frjXN1dUXVqlXh5ORkpsysHwsDIiKyKkqlEjExMbC3t4efnx+cnJwKtQpIkoSsrCzcv38fMTExqFOnDie1KyYWBkREZFWysrKgVCpRvXp1uLq66oxzcXGBo6Mjbt++jaysLDg7O5sxS+vF8omIiKxScVoA2EpgOP4bIyIiIhUWBkRERKTCwoCIiKg4UlOBCROAgADAxQVo0wY4eVJ3/IEDgJ1d4e3uXc24n34CAgMBZ2egVSvgxAkT3kTRWBgQEREVx5gxwO7dwMqVwIULQNeuQFgYEB+v/7wrV4DERPXm46N+b/16YNIk4IsvgH/+AZo0Abp1A5KSTHsverAwICIiq1Sc+fmMNodfRgbwxx/AN98AHToAtWsD06aJf86fr/9cHx+gShX1lr9D5PffA2PHAqNGAQ0aAAsWAK6uwJIlxsm7BDhckYjIEsTEiC+HR4+0v9+pEzB3rnq/WTMgJ0d7bOvWwC+/qPfbthXN4NqEhgIrVqj3O3cG7t/XHhscDPz+u3q/d28gNlZ7bEAAsHWrev/118UvZ218fIA9e9T7w4YB585pj3V3h+PffwMA0tPT4fLhh0CBxfVUHByQvns3AMDR0RH48ENg/37V2861awMAUlNTgZQU1fGCq/ICEP+uc3NFc39+Li7A4cPaPz9PaCiQmQk0bCiKibZtxfGsLOD0aSA8XB1brpxohTh6VP81TYiFARGRJTh8WDRJX7+u/f2aNTX3L1zQXRhUqaK5HxUFJCdrj3V319y/dEk0d2tTcOjflSu68332THP/2jWRszYFp6e/cUN3rKcn7O3t4eXlhaSkJLhfvQonHbGSoyOSkpLg5eUFe3t74PZtjeuWc3QEANRv0AD5y6YvvvgC06ZN07yYu7souKZPB+rXB3x9gbVrxRf48wKjkKpVRQtAixaiMPj1V6BjR+D4cVHYPXggig1fX83zfH2By5e1X9MMWBgQEVmCYcOAnj2BM2e0v+/trbm/cyegq5m8YkXN/U2bdBcRnp6a++vWiV+y2ri5ae4vWyaa2LUpOPHQggVAWpr22IK/zufO1V3IOIivrSrPi5/4999HuWHDtMfa2cHLy0sViy+/BMaPV7397NkzuPXpg0vR0XD398+XjqLglYSVK4HRowF/f8DeXny5Dx4sfvVrExwstjxt2oiiZ/ZscS0LxUWUiIjIauXm5iI7O1vre46OjqKlQIcSL6L09Kl49FC1KjBwoCh4tm8v3rlTpojWoaNHRQHm6gr897/Aq6+qY0aMAJ48ATZvLn5ORsTOh0REZLXs7e3h7OysddNXFJRK+fKiKHj8GNi1C+jbt/jnnj0rzgUAJyegeXNg7171+0ql2G/d2qgpG4KPEoiILMGKFcC33wJ9+gAzZsidDWmza5d4fBMcLPpWTJkC1KsnOo0CohNhfLy6M+ecOUBQEBASIvpc/PorsG8f8Ndf6mtOmiRaCFq0AFq2FOc8faq+pgxYGBARWYL790XHuNBQuTMhXZKTxZd/XJzoxzFggCjinndiRGKi5iiNrCzgo49EseDqCjRuLEZfdOqkjhk4UPy3//xzMfFRaKjoP1KwQ6IZsY8BEZEl+PZb8Qt02DDN4YNkMiXuY1DGsY8BEZElsbOTOwOycSwMiIgsgW013pIFY2FARGQJ8goDthiQzFgYEBFZEhYGJDMWBkRElsDdHahWDahQQe5MyMZxuCIRkSUYN05sRDJjiwERERGpsDAgIiIiFRYGRESWYPly4MUXOR0yyY6FARGRJUhIAI4fB27elDsTsnEsDIiILAEnOCILwcKAiMiScB4DkhkLAyIiS8AWA7IQLAyIiCwJWwxIZiwMiIgsAVsMyEKwMCAisgTOzmI65PLl5c6EbBynRCYisgSTJ4uNSGZsMSAiIiIVFgZERESkwsKAiMgSrFwJdO4MzJkjdyZk49jHgIjIEsTEAPv2AXXryp0J2Ti2GBARWQIOVyQLwcKAiMiScIIjkhkLAyIiS8AWA7IQLAyIiCwJWwxIZiwMiIgsAVsMyEKwMCAisgQODoBCATg6yp0J2TgWBkREluCzz4BnzziPAcmOhQERERGpsDAgIiIiFRYGRESWYNUq4JVXgEWL5M6EbBynRCYisgSXLwNbtwJBQXJnQjaOLQZERJaAwxXJQrAwICKyJJzgyHKlpgITJgABAYCLC9CmDXDypO74DRuALl0Ab2/AwwNo3RrYtUszZto08d88/1avninvokgsDIiILAFbDCzfmDHA7t1iiewLF4CuXYGwMCA+Xnv833+LwmDHDuD0aaBTJ6BPH+DMGc24kBAgMVG9HT5s+nvRg30MiIgsCVsMLFNGBvDHH8DmzUCHDuLYtGmiX8j8+UBEROFzCs5J8fXX4vytW4GmTdXHHRyAKlVMlbnB2GJARGQJ2GIgm9TUVKSkpKi2zMzMwkE5OUBuLuDsrHncxaX4v/CVSvE4omJFzePXrgF+fkDNmsDQoUBsbMluxEhYGBARWRK2GJhd/QYN4OnpqdoiIyMLB7m7iz4C06cDCQmiSFi1Cjh6VDT/F8e33wJpacAbb6iPtWoFLFsG7NwpWh5iYoD27UUBIRM7SbKtMvVhQgIq+/vjQXw8Kvn5yZ0OEZGgVIpWAzs7oBx/s5lDSlwcPKpXR3x0NNz9/VXHFQoFFApF4RNu3ABGjxZ9B+ztgWbNgLp1Rf+BS5f0f9iaNcDYseJRQliY7rgnT0Tnxu+/B956q2Q3VkrsY0BEZAlYDMjG3d0dHh4eRQfWqgUcPAg8fQqkpABVqwIDB4pHAPqsWyc6Lv7+u/6iAAC8vESxcf16sfM3Nv5JJCIiMkT58qIoePxYDD/s21d37Nq1wKhR4p+9ehV97bQ00TJRtarx8jUQCwMiIkuwejUwaJB4bk2Wadcu0RcgJkYMW+zUScw5MGqUeD88HBg+XB2/Zo3Y/+470Zfg7l2xJSerYyZPFq0Qt24BR44A/fqJxxSDB5v11vJjYUBEZAnOnQPWrwfOnpU7E9IlORl47z1RDAwfDrRrJ4oFR0fxfmKi5oiChQvFaIb33hMtAHnbhx+qY+LiRBEQHCw6JVaqBBw7JiZFkgn7GBARWQLb6gdund54Q3NEQUHLlmnuHzhQ9DXXrStNRibBFgMiIkvC4YokMxYGREREpMLCgIjIEuQ9SmCLAcmMhQERERGpsDAgIrIkbDEgmck6KiFq0SLc2b0bKTExsHd2hndoKEInTYJHUJDOc5TZ2YhatAgxW7Yg/d49eAQGInTSJPi1b2/GzImIjCwiAvj8c8DJSe5MyMbJ2mKQdPIk6g4ejK5r1+LlRYugzMnBvrFjkZOervOccz/8gOu//47m//43em/ZgjoDB+LQhx/iUVHzVBMRWTJnZ8DDo/DqfURmJmth0GnhQtTs1w9etWujQr16eHHGDKQnJuJRdLTOc25t3YqQsWPh36ED3KpXR51Bg+DXvj0uFxw/SkRERAazqAmOsp8vM+nk6akzJjcrC/YFVr2yd3bG/X/+0RqfmZmpsbZ2alqaETIlIjKydevENLs9ewIDBsidDdkwi+l8KCmVOD1rFrybNoVXnTo646q2bYvLy5cj5fZtSEolEo8cwZ09e5Bx/77W+MjISI11tuvXq2eqWyAiKrnjx4ElS8QSvkQyspjC4GREBJKvXUPbb7/VG9c8PBzuAQHY3rs31oWG4tSMGaj56quw07FkaXh4OJKTk1XbpcuXTZE+EVHpcEpkshAW8SjhZEQEEg4eRNjy5XCtUkVvrHPFiugwbx5yMzOR+eQJXHx8cPb77+FWrZrWeIVCAUW+Rw/ZfJRARJaMwxVJZrK2GEiShJMREYjbuxcvL1mi88tdG3uFAq6+vpBycnBn9274v/yyCTMlIjIxthiQhZC1xeDU9Om4tWMHOsybB0dXV1U/AUd3dzg8H7JzJDwcrj4+CJ04EQDw4Px5ZNy7hwr16iE9KQkXfvoJkiShwejRst0HEZHRsMWAZCZrYXBt/XoAwN6RIzWOvxgRgZr9+gEA0hMTYZfvf5TczEyc++EHpMXFwdHVFVU7dEDrmTPh5OFhtryJiIyOLQZkIWQtDIZERRUZE1ZgfgLfF15A761bTZQREZHM2GJAMrOIzodERDYvIgL497+B8uXlzoRsHAsDIiJL4OEhNiKZsTAgIu127BCL+mRliX0vL+Dvv9XvjxkDnDih/VyFAjh5Ur0/frzmuQWdPQvkzUUyZQqwa5fu2GPHAFdX8frzz4FNm3TH7t8PVKokXn/9tZhdUJcdO4C8kVGzZwNLl+qO/eMPIG8itgULgJ9/1h27ahXQuLF4vWwZ8P33umMXLQJatdL9PpEZsDAgIu0WLtSchS/vCzbPzZvAhQvazy24ENCtW7pjC4qN1R+rVKpfx8Xpj83JUb9OSNAfm1cAAcDdu/pj802zjqQk/bEZGerXDx7oj336VPd7RGZiJ0m21RX2YUICKvv740F8PCr5+cmdDpHl6tMH2LYNmDQJ6NEDcHQEXnpJ/f7p08Djx9rPLVcOyD+3yNmz4ktRl86d1Z3uLlwA7t3THduxI+Dw/DdNdLT4wtelfXvRegEAly+LQkKXNm3ULRHXrgG3b+uOffFFwM1NvL55U2y6vPACkLf+y+3b4tq6NGsGVKyo+30yqpS4OHhUr46UO3fgYcA8OmUdCwMi0q53b2D7dmDxYoDzhFAZxMJAO4tZK4GILBSHzxHZFPYxICLtJk8GhgxhZzgiG8PCgIi069hR7gyISAZ8lEBEREQqbDEgIu2OHBGjA5o3B2rUkDsbIjITthgQkXbTpwP9+wMHDsidCRGZEQsDItLOtkYyE9FzLAyIiIhIhYUBEWmX12LAeQyIbAoLAyIiIlJhYUBE2rHFgMgmsTAgIiIqjtRUYMIEICAAcHERC2/lX15cmwMHxOJYCgVQu7ZYerugn34CAgPFqqStWuleztxMWBgQkXYTJoillzklMpEwZgywezewcqVYBbRrVyAsDIiP1x4fEwP06gV06iRWGJ0wQVxj1y51zPr1YgXTL74A/vkHaNIE6NZNLOctE66uSERENsmg1RUzMgB3d2DzZvFln6d5c7EseURE4XM+/lisUHrxovrYoEHAkyfAzp1iv1UrsTT3jz+KfaUSqF4deP994JNPSnV/JcUWAyIismmpqalISUlRbZmZmYWDcnKA3FzR3J+fiwtw+LD2Cx89KloU8uvWTRwHgKws4PRpzZhy5cR+XowMWBgQkXanTgF//QUkJsqdCZFJ1W/QAJ6enqotMjKycJC7O9C6tZgRNCFBFAmrVokvcF3/j9y9C/j6ah7z9QVSUkQLxIMH4jraYu7eNc7NlQDXSiAi7T75BNi7F1izBhg8WO5siEzmUnQ03P39VfsKhUJ74MqVwOjRgL8/YG8vOhUOHix+9ZchLAyISDvb6n5ENszd3R0eHh5FB9aqBRw8CDx9Kn71V60KDBwI1KypPb5KFbEQWX737gEeHuIRhL292LTFVKlSspsxAj5KICL9OI8Bkaby5UVR8PixGGHQt6/2uNatRatbfrt3i+MA4OQkOi/mj1EqxX5ejAxYGBCRdmwxINK0a5cYTRATI77gO3UC6tUDRo0S74eHA8OHq+PfeQe4eROYOhW4fBn4+Wfgt9+AiRPVMZMmAYsWAcuXA5cuAePGiRaJvGvKgI8SiEg/thgQCcnJ4ss/Lg6oWBEYMACYMQNwdBTvJyYCsbHq+KAgMVxx4kRg7lygWjXg11/FyIQ8AwcC9+8Dn38uOhyGhorio2CHRDPiPAZEpF2nTmLWtnXrxF9eRGWMQfMY2BA+SiAi/dhiQGRT+CiBiLQbPx549VXRtElENoOFARFpN2CA3BkQkQz4KIGIiIhU2GJARNpduCAmcQkOBipXljsbIjITthgQkXbvvQe0aydmeiMim8HCgIi0s62RzET0HAsDItKPwxWJbAoLAyLSji0GRDaJhQER6ccWAyKbwsKAiLRjiwGRTWJhQET6scWAyKZwHgMi0u7tt4FevYD69eXOhIjMiIUBEWmXf115IrIZfJRAREREKmwxICLtrlwB0tOBmjUBT0+5syEiM2GLARFpN2IE0KwZp0QmsjEsDIhIOw5XJLJJLAyISD8OVySyKSwMiEg7thgQ2SQWBkSkH1sMiGwKCwMi0o4tBkQ2iYUBEenHFgMim8J5DIhIu1GjgK5dgVq15M6EiMyIhQERaffuu3JnQEQy4KMEIiIiUmGLARFpd/s2kJkJ+PsD5cvLnQ0RmQlbDIhIu/79geBg4NAhuTMhIjNiYUBE2nG4IpFNYmFARPpxuCKRTWFhQETascWAyCaxMCAi/dhiQGRTWBgQkXZsMSDSlJsLfPYZEBQEuLiIyb+mT9f//8rIkaK4LriFhKhjpk0r/H69eqa+G504XJGI9GOLAZEwaxYwfz6wfLn4Yj91SswQ6ukJfPCB9nPmzgVmzlTv5+QATZoAr7+uGRcSAuzZo953kO/rmYUBEWk3dCjQqRNQo4bcmRBZhiNHgL59gV69xH5gILB2LXDihO5zPD3FlmfTJuDxY1FQ5OfgAFSpYuyMS4SFARFpN2WK3BkQmUVqaiqQkqLaVygUUCgUhQPbtAEWLgSuXgXq1gXOnQMOHwa+/774H7Z4MRAWBgQEaB6/dg3w8wOcnYHWrYHISNmKcvYxICIim1a/QQN4enqqtsjISO2Bn3wCDBoknv87OgJNmwITJojWteJISAD+/BMYM0bzeKtWwLJlwM6d4lFFTAzQvj2Qmlqa2yoxthgQkXb37onnoZUrA9p+PRGVEZeio+Hu76/a19paAAC//QasXg2sWSP6BJw9KwoDPz9gxIiiP2j5csDLC3j1Vc3jPXqoXzduLAqFgADxeW+9VfwbuX4duHED6NBBdI6UpBL1EZK1MIhatAh3du9GSkwM7J2d4R0aitBJk+ARFKT3vMsrVuDa+vVIT0yEokIFVO/SBaETJ8Kef3kRGU9YGHDxougQ1bmz3NkQmYy7uzs8PDyKDpwyRd1qAACNGok1RSIjiy4MJAlYsgQYNgxwctIf6+UlHlVcv16s/PHwITBwILBvnygErl0DatYURUWFCsB33xXvOs/J+igh6eRJ1B08GF3XrsXLixZBmZODfWPHIic9Xec5t7Ztw9nZs9Fo3Dj02roVrb76CrE7d+LsnDnmS5zIFnC4IpGm9HSgXIGvTXt7QKks+tyDB8UXfXFaANLSxC//qlWLl9fEiaLzYmws4OqqPj5woHg8YSBZWww6LVyosf/ijBnY0L49HkVHw6dFC63n3D97Ft5NmyKwd28AgJu/PwJ69sTD8+dNni+RTeJwRSKhTx9gxgzRKTAkBDhzRnQ8HD1aHRMeDsTHAytWaJ67eLF4RNCwYeHrTp4srh0QIPohfPGFKDgGDy5eXn/9BezaBVSrpnm8Th3RomEgi+pjkP28o4VT/qEdBXiHhuLWtm14cP48KjdujLQ7d5Bw6BCC+vTRGp+ZmYnMzEzVfmpamnGTJiqr2GJApGnePDHB0bvvAklJom/B228Dn3+ujklMFL/c80tOBv74Q8xpoE1cnCgCHj4EvL2Bdu2AY8fE6+J4+lSzpSDPo0cl6h9kMYWBpFTi9KxZ8G7aFF516uiMC+zdG5lPnmDPsGGQAEg5Oag9cCBC/vUvrfGRkZH48ssvVfvO/PVDZBj+P0MkuLsDc+aITZdlywof8/QUjyF0WbeudHm1by9aKKZPF/t2duLxxjffiLlIDGQxhcHJiAgkX7uGLitX6o27d+IEohYuRIvPPkPlxo2RGhuL05GRuDB/PhqNG1coPjw8HJMmTVLtP7p7F0HBwUbPn6jMYYsBkXX45hvRQfjUKSArC5g6FYiKEi0G//ufwZeziMLgZEQEEg4eRNjy5XAtYuan8/PmIeiVV1D7tdcAAF516yInIwMnpk1Dw7ffhl2BjiEFJ6rI5qME6zVjhmhuq1lT7P/0E/DLL7rj165Vz0e+ZIn+Kn/pUqB5c/V5usYxA8DPP4umPgDYuFE8D9Tlu++ALl3E6507xf+wukREAK+8Il4fPAi8/77u2E8/FR2LAOD4cWDsWN2xkyaJ+doB4Px54M03dce++y7wzjvitZub+CdbDIgsW8OGYtKlH38UrRppaUD//sB77xW/A2M+shYGkiTh1IwZiNu7F52XLYNbwY4TWuQ8e1boL6q8YkCSJPCvsDJs1izRucbVVUwdeu8ecOGC7viMDPXr+/f1xz59qn798KH+2PyTjjx+rD82OVnztb7YJ080P0Nf7KNH6tdPn+qPffBA/TojQ39sUpL69fz5QIsWnBKZyBp4eoofDEYga2Fwavp03NqxAx3mzYOjqysy7t8HADi6u8PB2RkAcCQ8HK4+PgidOBEA4N+xIy4vX44K9eurHiWcnzcP/h07opy9vWz3QmaQmyuG+uSN7R0xQkzkoUvduurXAweqWwS0adRI/bpvX/0rm4WGql936wbs3l286770kv7Y/KuttWqlPzZ/fqGh+mPz99mpV09/bF5rDAAEB6vHQxOR5dq5U7Tw5bVk/vQTsGgR0KCBeF2hgkGXs5Mk+R4krsn/F2E+L0ZEoGa/fgCAPSNHoryfH1p//TUAQJmTg6iFCxGzZQsykpKgqFAB/h07osmHH8KpGBNUPExIQGV/fzyIj0clPz/j3QyZnqur+MUbEyMWLyEiKoWUuDh4VK+OlDt34FGMFmuL1aiRaFHt2VO0CLZoAXz0EbB/v/gxsHSpQZeTtTCQAwsDK5ZXGNy6VXgBEiIiA5WZwsDNTcxSGhgITJsmXv/3v8A//4hi4e5dgy7HRZTIethWDUtEVDxOTurhkHv2AF27itcVK2qsGllcFjEqgahYWBgQERXWrp0YfdS2LXDiBLB+vTh+9Wrh2RCLgS0GZH04fI6ISO3HH8VaCf/9rxhNlLdS5J9/At27G3w5thiQ9ahZU0ze4cA/tkREKjVqANu2FT4+e3aJLse/Ycl6REfLnQERkWV79kz8gMqvOEtK52OzhcHGl1+Ga4F5D7qtWYNKTZrIlBEREVEJPH0KfPwx8NtvYoK2gnJzDbqczRYG2uwaMkRj39HDA722bIFrcVe4IiIiMrepU8WcBfPnA8OGiUmN4uPFlPEzZxp8ORYGemSnpGBTx47Fiu2yYgW89c2sR6XXsiWQnS1m+fL1lTsbIiLLsHWrWF2xY0dg1Cix2mLt2mK+l9WrgaFDDbocRyUYye7hw3XO5EhGcvas2HJy5M6EiMhyPHqknrrcw0O9lkq7dsDffxt8ORYGRsbiwIQ4jwERUWE1a4qp4gExBfJvv4nXW7cCXl4GX46FgQncP31a7hTKNs5jQESkNmoUcO6ceP3JJ6KPgbMzMHEiMGWKwZdjHwMT2D18OIZERcmdRtnDFgMiosKerz4MAAgLAy5fBk6fFv0MGjc2+HIsDEwkNTYW7lzH3rjyCgO2GBAR6RYQUKqF5vgowUS29uwpdwplFwsDIiK1Dz4Afvih8PEffwQmTDD4ciwMTIXN3sZXtarYyvGPLRGRyh9/iAWUCmrTRqyfYCA+SiDrERcndwZERJbn4UPA07PwcQ8P4MEDgy9nsz+9+u3bh85Llpj0MzLyxpISERGZSu3aYuK3gv78Uz2/gQFsusXAt1WrQqMHbv35J45MnmyU6+8YMgQDtP3HIiIiMpZJk4Dx44H794GXXxbH9u4FvvsOmDPH4MvZdGGgTWCPHgjs0UPn++tbtkTu06fFulbmnTvGSosAMYsXICbtqFBB3lyIiCzF6NFAZiYwYwYwfbo4Fhgo1k4YPtzgy9nso4SSevGrr+ROwXb9739i45TIRERCTo5YJ6F/f9EP6949ICUFuHmzREUBwMLAYNW7dJE7BdvEUR5ERIU5OADvvAM8eyb2vb0BN7fSXdLQEx6cO4f4AwegzM6Gb6tW8GvfvlQJWJty9vYGxWempUFRyv9IVADnMSAiUmvZEjhzplSTGuVnUGEQu2sX/jd5MuwVCtg5OuLy8uUInTQJ9UeNMkoyZdHfH32ELr/8Inca1o8tBkRE2r37LvDRR+JRQvPmQPnymu8bOC2yQYVB1K+/otZrr6HFf/6Dcvb2iFq0CFELF9pcYWDn6AgpO7tYsfcPHzZxNjaILQZERGqDBol/fvCB+pidnfhBZWcH5OYadDmD+hikxsSg/siRqub0eiNGIDs9Hc8ePjToQ61dQK9ecqdge9hiQESkXUxM4e3mTfU/DWRQi0HOs2dwzPe83N7JCfZOTshJTwcqVTL4w61Vi//8B7c2bZI7Ddvj4SH+ySmRiYjUjNS3II/BnQ9v/PEHHFxdVftSbi5ubtoERb5x5cFvvmmc7CyUk4uL3CnYHnt7IDlZ7iyIiCzDli1Ajx6Ao6N4rc8rrxh0aYMKg/JVq+J6gQUZnCtXRszWreoDdnZlvjAwVPr9+3D19pY7DSIiKo3cXGDaNGDVKuDuXcDPDxg5EvjPf3T3fTpwAOjUqfDxxESgShX1/k8/Af/3f+K6TZoA8+aJ0Qa6vPqqiPXxEa91KUEfA4MKg767dxt0cRK2DhiAgX//LXcaRERUGrNmidkEly8HQkKAU6eAUaPEAkb5O/5pc+WK+nEoIL7Q86xfL6Y1XrAAaNVKTGPcrZs4J39cfkql9tdGYNKHtdtffRVPExNN+RGycQsMLHZsro11zjSJnByga1expaXJnQ0R2aIjR4C+fYFevcSUw6+9Jv5OOnGi6HN9fEQLQd6Wv6/U998DY8eKIqNBA1EguLoCJl7oTxeTrpXwND4eUhmdvrbLypXYaGOTO8lKqQTyWqzK6J8pIpJHamqqmEb4OYVCAYVCUTiwTRtg4ULg6lWgbl3g3Dng8GHxxV6U0FCxnkHDhuJxRNu24nhWFnD6NBAero4tVw4ICwOOHi3+TTx9Chw8CMTGimvmV1RrRgFcRKmEXCpWlDsF28LhikRkIvUbNEBqvv0vvvgC06ZNKxz4ySeigKhXT3SIzs0VCxcNHar74lWrihaAFi1EYfDrr0DHjsDx40CzZsCDB+I6vr6a5/n6ApcvF+8GzpwBevYE0tNFgVCxoriuq6toqWBhYJkyHj1iMWEsnOCIiIzoUnQ03P39VftaWwsA4LffgNWrgTVrRB+Ds2eBCRNEJ8QRI7SfExwstjxt2gA3bgCzZwMrVxrnBiZOBPr0EQWIpydw7JgYrfDmm8CHHxp8OQ4IN5PtgwfLnYJ1Y4sBEZmIu7s7PDw8VJvOwmDKFNFqMGgQ0KgRMGyY+FKOjDTsA1u2BK5fF68rVxatD/fuacbcu6c5akGfs2fFlMjlyolrZWYC1asD33wD/PvfhuUGFgal4pi/h2kRsuLiTJiJjWGLARHJIT298ARr9vaGjwo4e1Y8YgAAJyexvsHever3lUqx37p18a7n6KjOy8dH9DMAROvBnTuG5QY+SiiVll9+if9NnCh3GraBLQZEJLc+fUSfgho1xKOEM2dEx8PRo9Ux4eFAfDywYoXYnzMHCAoS8c+eiT4G+/YBf/2lPmfSJPEookUL0ZowZ47oK1DcdYiaNgVOngTq1AFeegn4/HPRx2DlStHZ0UAmLQxafvEFnMvwVMnVO3c2KF6Zm2vwss2UT96/O7YYEJEc5s0DPvtMrGaYlCT6Frz9tvgizpOYqP7FDogRAh99JIoFV1ex0uGePZqTHg0cCNy/L65z964YwbBzZ+EOibp8/TWQ+rz75IwZwPDhwLhxolBYvNjg27STpOL/FLuyalWx4ix55sOHCQmo7O+PB/HxqOTnV+rrrQkJKXZsm+++Q2D37qX+TCIiKr2UuDh4VK+OlDt34FGtmtzpWAyDWgwu5zWN6MMpkXU68tFHLAyIiMi4Xn4Z2LAB8PLSPJ6SIqZL3rfPoMsZNiVy/mciBABw9vXFs4K9SYmIiMzlwIHCkxoBok/DoUMGX86gUQn733kHWanqaSCiFi1CVr7ZojKfPMG2Pn0MTsKadV+/3qB4pYGLWdBzz54B/fqJ7dkzubMhIpLf+fNiA4DoaPX++fOiY+TixUC++RmKy6AWg8TDh6HMV5VELVqEgO7d4fR82J4yJwept24ZnIQ1M3TVxNu7diGoZ08TZVOG5eYCmzaJ10ZeMISIyCqFhorO2HZ24nFCQS4uosOkgUo3KoFDyAx2dMoUFgYlwT9rRESaYmLE3401a4qFnPL/UHVyEnMalGAkHOcxMALHChWQ/fix3GnYDg5XJCICAgLEP+Vcdtkur8lC86Ax87FKPf/7X4Pin969a6JMyjC2GBARabd8ObB9u3p/6lQxQqFNG+D2bYMvZ1CLgSRJOPbppyjn5AQAyM3Kwokvv4SDqysAaPQ/sCXlizuf9XObe/bEkH/+MVE2NoDFKBGR2tdfA/Pni9dHjwI//ihmT9y2TazlsGGDQZczqDCo2bevxn5Q796FYoJeecWgBGxSZqbcGVgfthgQEWl35w5Qu7Z4vWkT8NprwL/+BbRtK5Z4NpBBhcGLM2YY/AG2wqdVKyQdP17s+CdXrsAr/1KcVHxsMSAiUnNzAx4+FGs4/PWXWHsBAJydgYwMgy/H1RWNpP0PPxgUv6N/fxNlUka5u4uWlsxM0duWiIiELl2AMWPEdvUqkDfyLSoKCAw0+HIsDIxE4eZm8DkpMTEmyKSMsrMTBYGTE1sMiIjy++knsUTz/fvAH38AeYsXnj4NDB5s8OVYGBhRvREjDIrfpqWPBhERkUG8vESHw82bgfzr8Xz5JfDpp+r9d98VyzEXgYWBETWeMMHgcwxZndGmPX0KDB0KvPmmmAWRiIgMs2qVWFipCCwMjMjByQl2zs4Gn8fioBiysoA1a4DVqzlCgYioJIr5dycLAyPru3Nnic5bExKCNSEhiMk/SQWpsRggIjILTolsZIYuqlTQ0alTcXTqVCNlU3Y45ebiteev1zZujHbz5qF6586y5kREVBaxxcAE+h85IncKZU+BFoNDH3zARzBERCbAwsAEnD09gfLl5U7DJrA4ICIyLhYGJjLkxAm5UyhT8s9cULC3wdrGjc2ZChGRdXrzTcDDo8gwFgYmNCQqSu4UbIKUm4u0+Hi50yAiksfSpcDvvxc+/vvvYuXFPPPnA5UrF3k5FgYmxuLAODLt7fF7cDB+17G+xJb8k3oQEdmSyEjtX/g+PmLlRQOxMDADFgdGYGeHbHt7ZNvba58SWak0f05ERJYgNhYICip8PCBAvGcgFgZmwuLA9LJKsIoYEZHV8/EBzp8vfPzcOfW6CQZgYWBGQ6KiUC0sTO40rJJDbi5aJiSgZUKCzpjj06ebMSMiIgsxeDDwwQfA/v1iyvjcXGDfPuDDD4FBgwy+HAsDM+swdy7eOHMGHi+/LHcqVsVBklD7yRPUfvJEZ8ydzZvNlxARkaWYPh1o1Qro3BlwcRFb167Ayy+XqI8BZz6UgYOTE3rPmwcAyHj0CBvbt5c5IyIislpOTsD69aJAOHdOFAaNGok+BiXAwqCksrOBIUOAK1d0x0ydKsaNAsCZM4CWZZldAAyxtwfefx8YO1YcvHwZeOMN3dcdM0Y0GwHA7dtAnz66Y4cOBT7+WLy+dw/o0kV3bP/+wLRp4nVKCtCune7Ynj2BmTPF6+xsoHlz3bGdOgFz56r3mzUDcnK0x774IrBwoWo3t1UrpJw7h3LPZz7kiglERDrUrSu2UpK1MIhatAh3du9GSkwM7J2d4R0aitBJk+ChrXflc3tGjkTSyZOFjvt16ICO8+ebMl1N6eniuc6vvwJ//qk9Jv+61+npwIULuq+XlKR+/eyZ/th799Svs7L0xyYmql/n5OiPbdVK/Vqp1B/bqJHmvr7YmjULx+oqDHx9NXbtr1xBhcxM1f5TR0fdnwPRAdHJxUVvDBGR1Zs0qfix339v0KVlLQySTp5E3cGDUbFRI0g5OTg3dy72jR2L3lu2wMHVVes57efMgTI7W7WfmZyMP/v3R42uXc2VtuDpCbzyivinrv9A+Su3kBBg927d16tVS/O1vtjAQPVrf3/9sdWrq19XqqQ/1s9P/bp8ef2xVaqoX9vb648tuLDUzp26V0usWFFzf9Mm7M3X0vK4iGWtT0REoN2MGXpjiIis3pkzJru0nSRZznq2zx49wob27RG2fDl8WrQo1jmXV6zA+R9/RP8DB3QWE/k9TEhAZX9/PIiPR6X8X4RksdY0bix62RYTh4YSUXGkxMXBo3p1pNy5A49q1eROx2JYVB+D7NRUAICTp2exz7mxYQMCevTQWRRkZmYiM19TdGpaWumSzPPgAbBnD+DmBvTubZxrkla+L76Ie//7n9xpEBFZltGji46xswMWLzboshYzXFFSKnF61ix4N20Krzp1inXOg/PnkXztGmoNGKAzJjIyEp6enqqtfr16xkn42jXRx+DDD41zPdKpnYHPx4iIbMKyZWLugidPgMePtW+PHhl8WYspDE5GRCD52jW0/fbbYp9zc8MGeNWti8p6VtcLDw9HcnKyart0+bIx0iUzUri5GRSfk5VlokyIyKbl5gKffSamH3ZxEf3Bpk/X3WcKADZsEKPBvL3FyoatWwO7dmnGTJsmftnn34rzI3bcOCA5GYiJEaO/Fi8GNm4svBnIIgqDkxERSDh4EJ2XLoVr/k5teuSkp+P2n3+iZv/+euMUCgU8PDxUm7uBXzI65f1B0DZvP8kqKt9wRyIio5k1S6xQ+OOPwKVLYv+bb4Dn89Jo9fffojDYsQM4fVp8gffpU7jzYEiIGEWWtx0+XHQ+P/0kYqdOBbZuFZ3N33hDFB6l6D4oax8DSZJwasYMxO3di87LlsHNgM4fsbt2ITcrC0H6xvBT2WFnV+w/6FELF6LJ+PEmToiIbM6RI0DfvkCvXmI/MBBYuxY4cUL3OXPmaO5//TWwebP4Im/aVH3cwUFztFdxKRTisfbgwWJem2XLgHffFUPCo6JEPzgDydpicGr6dNzatg1tvvkGjq6uyLh/Hxn37yPn2TNVzJHwcJydPbvQuTc2bEC1zp2h8PIyY8b5sMXArCqEhBQ/2IARDEREqampSElJUW35O6xraNMG2LsXuHpV7J87J37Z9+hR/A9TKoHU1MJDs69dE0PGa9YUE9OVYFVElCun/hFVir8HZS0Mrq1fj+zUVOwdORIbO3ZUbbH5JgxKT0xExv37GuelxMTg/j//oFYRjxGo7OjExwNEZCL1GzTQ6KQeGRmpPfCTT8SiRPXqAY6O4hf/hAnii7y4vv0WSEvTnN22VSvxS3/nTvGoIiYGaN9eFBBFycwUrRZduoi5cy5cEI86YmNL1FoAyPwooTjjzcOWLSt0zCMoyHLGqrPFwCycDRjCCogOiA5OTibKhojKkkvR0XD391ftKxQK7YG//QasXg2sWSP6BJw9KwoDPz+tU94XsmYN8OWX4lGCj4/6eP4Wh8aNRaEQECA+7623dF/v3XeBdetE34LRo0WBULly0XkUwaLmMbAqdeoAK1YA7u5yZ0JaXFywAKF560kQEenh7u4ODw+PogOnTFG3GgBiavjbt4HIyKILg3XrxDo3v/8OhIXpj/XyEr/+r1/XH7dgAVCjhnj8cPCg2LTZsEH/dQpgYVBSPj7AsGFyZ0E6RP/yCwsDIjKu9HTxHD8/e3vRb0CftWvFL/p169QdF/VJSwNu3Cj6O2b4cJO0WrMwIKvhFhiItFu35E6DiGxVnz7AjBniV3pIiBhy+P33mjMQhocD8fGiRRkQjw9GjBArzLZqBdy9K467uIi1dgBg8mRx7YAAICEB+OILUXAMHqw/Hy2P2o3BIuYxsEoPHwJbtgD79smdic3osnKl3CkQkS2bNw947TXxbL9+ffGF/vbbYpKjPImJmiMKFi4UQwffew+oWlW95Z81Ny5OFAHBwaJTYqVKwLFjhRegMxOLWkTJHIy2iNLffwMvvSR6p166ZLwESa81Bgxb7HfoEFwKDgkiInqOiyhpxxaDkrKtesoqbcvrIERERMXGwqC0OFzRvByK3y0mOz7ehIkQEZVNLAxKii0GsggZM0buFIiIyjQWBqXFFgOzCnn7bYPin+b1ACYiomJhYVBSbDGQhaGzGW4uzphhIiJSYWFQWmwxMD97++LH5luQi4iIisbCoKTq1hWLXXz2mdyZ2JwG+uYO1+JZcrKJMiEiKntYGJSUvz/wzjvAwIFyZ2JzGo4bZ1D89uHDTZQJEVHZw8KArI6h/Qwyi1qIhIiIVFgYlNSjR8DevcDx43JnYpPK16hhUHxq/ilKiYhIJxYGJfXPP2LpzLFj5c7EJnVdvdqg+K351zsnIiKdWBiUFIcryqokayCk379vgkyIiMoWFgalxeGKsvF+4QWD4jd17GiaRIiIyhAWBiXFFgPZdfjxR4PP+WvECBNkQkRUdrAwKC22GMhG4eZm8DkPTp3Cn/nXQSciIg0sDEqKLQYWofe2bQaf83jPHqwJCcHBDz9ETlaWCbIiIrJexV/DlrRji4GsPIKCSnxu/J49+K1p0yLjWkZEoHa/fiX+HCIia2InSbb10/dhQgIq+/vjQXw8Kvn5lfxCt24BGzYA3t7AsGFGy48MlxYfjy1du8qdRpnXbc0aVGrSRO40iIwmJS4OHtWrI+XOHXhUqyZ3OhaDLQYlFRgITJokdxYEwM3fX+4UbMKuIUMAAEOiomTOhIhMiX0MqEzgl5X5rAkJkTsFIjIhFgYl9eQJcOwYcOGC3JnQc4POn5c7BZvx8Nw5uVMgIhNhYVBSR48CrVsDo0bJnQk9V87eHu3nzJE7DZuQ91iBiMoeFgYlZVt9Nq1G9S5dWByYSVZGhtwpEJEJsDAoLQ5XtDjVu3ThYwUzOPbVV3KnQEQmwMKgpNhiYNHK2duzQ6KJxW3ZIncKRGQCLAxKiy0GFm1IVBS6r1sndxpERFaDhUFJscXAalRs1AhDoqIwJCoKL7D5m4hIL05wVFpsMbAqdQYMQJ0BA/TGZGVk4I+334Z0+rSZsrJeT+/eRfkqVeROg4iMiIVBSdWtC3z1FVCaaZXJIjm5uGDwihVypyEbQyYw2ty3L4YcP27CbIjI3FgYlFTdusBnn8mdBZHROfv64tm9e8ULTkszbTJEZHbsY0BEGrqvXy93CkQkI7YYlFRyMnD7NuDqCtSuLXc2REbj6u1tULwyNxfl7O1NlA0RmRtbDErqwAGgSRNg+HC5MyGS1Z29e+VOgYiMiIVBSXG4IhEA4H9Tp8qdApF55OaKvmVBQYCLC1CrFjB9etHfBwcOAM2aAQqFaGFetqxwzE8/AYGBgLMz0KoVcOKECW6geFgYEFEhboGBxQ/OzjZZHkQWZdYsYP584McfgUuXxP433wDz5uk+JyYG6NUL6NQJOHsWmDABGDMG2LVLHbN+PTBpEvDFF8A//4jW6G7dgKQkU9+RViwMSiqvQuQ8BlQGdVm5Uu4UiCzPkSNA377iiz4wEHjtNaBrV/2/7hcsEC0M330H1K8PjB8vzps9Wx3z/ffA2LFitd4GDcQ5rq7AkiUmvyVtWBgQUSEuFSsaFJ+TlWWiTIhMLzU1FSkpKaotMzNTe2CbNsDevcDVq2L/3Dng8GGgRw/dFz96FAgL0zzWrZs4DgBZWcDp05ox5cqJ/bwYM2NhUFJsMSBSubhggdwpEJVY/QYN4OnpqdoiIyO1B37yCTBoEFCvHuDoCDRtKh4NDB2q++J37wK+vprHfH2BlBQgIwN48ED0XdAWc/duqe6rpDhckYhKLfqXXxD6wQdyp0FUIpeio+Hu76/aVygU2gN/+w1YvRpYswYICVH3GfDzA0aMMEuu5sDCoKTq1gU+/hgICJA7EyKTcAsMRNqtW3KnQWRy7u7u8PDwKDpwyhR1qwEANGok5rOJjNRdGFSpAhScSfTePcDDQ4xssLcXm7YYmdYh4aOEkmrYEJg5Exg3Tu5MiEyCHRCJCkhPF8//87O3B5RK3ee0bi36JeS3e7c4DgBOTkDz5poxSqXYz4sxMxYGRKSVoR0Qn8r0PJTIbPr0AWbMALZvB27dAjZuFCMK+vVTx4SHa0589847wM2bwNSpwOXLwM8/i0cSEyeqYyZNAhYtApYvF8Mgx40Dnj4VoxRkwEcJJZWWJpp6nJ2BfM+miGzV5j59MOTkSbnTIDKdefPEBEfvvivmGPDzA95+G/j8c3VMYiIQG6veDwoShcTEicDcuUC1asCvv4qRCXkGDgTu3xfXuXsXCA0Fdu4s3CHRTOwkybam8HuYkIDK/v54EB+PSqVZMvm//wVefx3o0AE4eNB4CRJZkLXNmkHSNXRLiyFRUSbMhsi4UuLi4FG9OlLu3IFHtWpyp2Mx+CihpGyrniIb1ToiQu4UiMjMWBiUFucxoDKsRv7mzmJIzd+ESkRWiYVBSbHFgGyAocspb9U3AxwRWQUWBqXFFgMq48o5O8udAhGZEQuDkmKLAdmIXhs3GhSfFh9vokyIyBxYGJQWWwyojHOvUcOg+C0G9ksgIsvCeQxKqk4d4P33xT+JSI2taURWjYVBSTVrJjYiG1CjRw/E/vlnseMfXbiAio0amTAjIjIVPkogoiK1nD7doPideYvMEJHVsdkWA4fOncV62gUpFED+aV3ff1/7zIaZmcD06UBYGGDgnPJE1sbJxcXgcx5HR6NCgwYmyIaITMlmp0ROBqB1kU1nZyAjQ73fpw+wbZvuC771lpj3mqiMexwdjT9ff92gczhFMlkyTomsnc22GOSsWwdUqlT4jYJLak6fDnz4ofaLODrKtiwmkbmV5Nf/mpAQFgdEVsZmCwOpfXuxMlZRQkNNnguRtfCsUwfJ164ZdM6akBD03bsX5atUMVFWRGRM7HxIRMXWefnyEp23uXNnrAkJwZqGDfHkyhUjZ0VExmSzLQZEZDhnT0/AwQHIySnZBSQJO/r3N25SZVG5cui1cSM8a9eWOxOyQWwxICKDvJF/1A6ZhlKJ7X37Yk3DhnJnQjaIhQERGcTByQn+ffrInYZtkCQWB2R2sj5KiFq0CHd270ZKTAzsnZ3hHRqK0EmT4BEUpPe8rJQUnJs7F3f27EFWcjLK+/mh2SefwL9DBzNlTmTbXpo5E2u2bpU7DdsgSUi+fp2PFchsZC0Mkk6eRN3Bg1GxUSNIOTk4N3cu9o0di95btsDB1VXrOblZWdg3ZgycK1VC+9mz4eLri6cJCXBydzdz9kS2bUhUFNaEhMidhk3Y3rcvh32S2chaGHRauFBj/8UZM7ChfXs8io6GT4sWWs+5uXEjslJS0HX1apR7PnOhm7+/yXMlosJYHJhPxqNHcOEsq2QGFtXHIDs1FQDg5OmpMyZu/35UbtIEJyMisKFDB2zv2xdRCxdCmZurNT4zMxMpKSmqLTUtzSS5E9kq/pI1jy1vvCF3CmQjLKYwkJRKnJ41C95Nm8JLz1LGT+PiEPvXX5CUSnScPx8N33kHl5YtQ9Qvv2iNj4yMhKenp2qrX6+eqW6ByGaxODC93MREuVMgG2ExhcHJiAgkX7uGtt9+qzdOUirhXLEiWk6bhoohIQjo0QMh//oXrq1frzU+PDwcycnJqu3S5cumSJ/I5g2JikKXFSvkToOISskiCoOTERFIOHgQnZcuhWsR06a6eHvDPTAQ5eztVcc8a9XCswcPkJuVVSheoVDAw8NDtbm7uRk9fyISvJs3x5CoKLT9/nu5UymT0u/flzsFsgGyFgaSJOFkRATi9u7Fy0uWwK0Yq1tVbtoUabGxkJRK1bGUW7fg4u0NeycnU6ZLRMUU0K0bhkRFYUhUFDouWCB3OmXGFs4aSWYg66iEU9On49aOHegwbx4cXV2R8bwadnR3h4OzMwDgSHg4XH18EDpxIgCgzsCBuLpmDU5HRqLu0KFIvX0b0YsWoe7QobLdBxHp5te+Pfsg6LG2WTNImZnFilU+emTibIhkLgzy+gXsHTlS4/iLERGo2a8fACA9MRF2dnaq98pXrYpOCxfin1mzsKNfP7j6+iL4zTdR/623zJY3EZGxtI6IwJEpU+ROg0jFTpIkSe4kzOlhQgIq+/vjQXw8KhVn2WUiIhNS5uZiXePGxY5/48wZOPCxqVGkxMXBo3p1pNy5A49iPMq2FRbR+ZCIyFbl70hdHBfZZ4NMjIUBEZHc8j0uLUq0jjlbiIyFhQERkcwqNGggdwpEKiwMiIhk1mnRIrlTIFJhYUBEJDNnPevDaJPBYYvyCAwUj30Kbu+9pz2+Y0ft8b16qWNGjiz8fvfuZrgZ3WQdrkhERIbbPngwXtu1S+40bM/Jk0D+BfsuXgS6dAFef117/IYNQP4ZeR8+BJo0KRzfvTuwdKl6X6EwXs4lwMKAiMgC2CkUxZ7oKCsuzsTZkFbe3pr7M2cCtWoBL72kPb7gMtnr1gGuroULA4UCKGI5AHPiowQiIgsQMnq03CnYrNTUVKSkpKi2zOIUaFlZwKpVwOjRxR9VsngxMGgQUL685vEDBwAfHyA4GBg3TrQsyIiFARGRBWjwr38ZFJ+ZlmaiTGxP/QYN4OnpqdoiIyOLPmnTJuDJE9FHoDhOnBCPHsaM0TzevTuwYgWwdy8waxZw8CDQo4fmIwsz46MEIiILYOhshvsnTED3X381UTa25VJ0NNz9/VX7iuI841+8WHyBF3cG3cWLgUaNgJYtNY8PGqR+3agR0LixeDxx4ADQuXPxrm1kbDEgIrJCj44elTuFMsPd3R0eHh6qrcjC4PZtYM+ewr/+dXn6VPQvKM6aPjVrApUrA9evF+/aJsDCgIjIQnCiIyuxdKnoE5B/2KE+v/8OZGYCb75ZdGxcnOhjULVq6XIsBRYGREQWopOBjwY4n4EMlEpRGIwYATgUeBo/fDgQHl74nMWLgVdfBSpV0jyelgZMmQIcOwbcuiX6GfTtC9SuDXTrZqo7KBILAyIiC2HoREdbBw40USak0549QGysGI1QUGwskJioeezKFeDwYe2PEeztgfPngVdeAerWFTHNmwOHDsk6lwE7HxIRWamchAS5U7A9XbsCkqT9vQMHCh8LDtYd7+ICWOBEVWwxICKyIIb2M+CwRTI2FgZERBbE0H4Ge95/30SZkK1iYUBEZEEM7WeQfOKEiTIhW8XCgIjIwjgaWBykxcebKBOyRSwMiIgsTM8NGwyK39K1q4kyIVvEwoCIyMKUL8FKe+n375sgE7JFLAyIiCxQ+erVDYrf1LGjaRIhm8PCgIjIAnVds8bgc3YXd6U/Ij1YGBARWSCXihUNPuf+yZP4Z948E2RDtoSFARGRheq9bZvB51xesABrQkIQs327CTIiW8ApkYmILJRHUFCJzz06dSqOTp2q9b2WERGo3a9fia9NZZudJOmaxLlsepiQgMr+/ngQH49Kfn5yp0NEpFdqbCy29ughdxplUnZWFkZcv46UO3fgUa2a3OlYDD5KICKyYO41asidAtkYFgZERBZuSFSU3CmQDWFhQERkBd44c0buFMhGsDAgIrICDk5OqD9qlNxpkA1gYUBEZCWaTp7M4oBMjoUBEZEVaTp5Mh8rkEmxMCAisjIOTk7skEgmw8KAiMhKDYmKQtiyZXKnQWUMCwMiIivm88ILGBIVhX6HDsmdCpURnBKZiKgMcKlYUefjhayMDPzx9tuQTp82c1ZkjVgYEBGVcU4uLhi8YoXcaViclLg4oHp1udOwOHyUQERERCosDIiIiEiFhQERERGpsDAgIiIiFRYGREREpMLCgIiIiFRYGBAREZEKCwMiIiJSYWFAREREKiwMiIiISIWFARERUXEEBgJ2doW3997THr9sWeFYZ2fNGEkCPv8cqFoVcHEBwsKAa9dMfSd6sTAgIiIqjpMngcRE9bZ7tzj++uu6z/Hw0Dzn9m3N97/5BvjhB2DBAuD4caB8eaBbN+DZM9PdRxG4iBIREVFxeHtr7s+cCdSqBbz0ku5z7OyAKlW0vydJwJw5wH/+A/TtK46tWAH4+gKbNgGDBhkja4OxxYCIiGxaamoqUlJSVFtmZmbRJ2VlAatWAaNHiy9/XdLSgIAAsYpj375A/qWxY2KAu3fF44M8np5Aq1bA0aMlv6FSYmFAREQ2rX6DBvD09FRtkZGRRZ+0aRPw5AkwcqTumOBgYMkSYPNmUUQolUCbNkBcnHj/7l3xT19fzfN8fdXvyYCPEoiIyKZdio6Gu7+/al+hUBR90uLFQI8egJ+f7pjWrcWWp00boH594JdfgOnTS5GxabEwICIim+bu7g4PD4/in3D7NrBnD7Bhg2Ef5OgING0KXL8u9vP6Hty7J0Yl5Ll3DwgNNezaRsRHCURERIZYuhTw8QF69TLsvNxc4MIFdREQFCSKg7171TEpKWJ0Qv6WBjNjiwEREVFxKZWiMBgxAnAo8BU6fDjg7w/k9VH46ivgxReB2rVFf4T/+z/R2jBmjHjfzg6YMAGIiADq1BGFwmeficcTr75qxpvSxMKAiIiouPbsAWJjxWiEgmJjgXL5GuIfPwbGjhUdCStUAJo3B44cARo0UMdMnQo8fQr861+ieGjXDti5s/BESGZkJ0mSJNuny+BhQgIq+/vjQXw8KunrNEJERGVaSlwcPKpXR8qdO/CoVk3udCwG+xgQERGRCgsDIiIiUmFhQERERCosDIiIiEiFhQERERGpsDAgIiIiFRYGREREpCLrBEdRixbhzu7dSImJgb2zM7xDQxE6aRI8goJ0nnNz40Yc+89/NI6Vc3LCoDNnTJ0uERFRmSdrYZB08iTqDh6Mio0aQcrJwbm5c7Fv7Fj03rIFDq6uOs9zdHND723b1Af0rYVNRERExSZrYdBp4UKN/RdnzMCG9u3xKDoaPi1a6D7Rzg4u3t4mzo6IiMj2WNRaCdmpqQAAJ09PvXE56enYFBYGSBIq1K+PJhMmwKt2ba2xmZmZyMzMVO0np6QAABISE5GhVBopcyIisjZpiYkAACW/CzRYzFoJklKJg+PHIzslBV1WrdIZd//sWaTevo0KdesiKy0Nl5Yuxf3Tp9Fr82a45q1tnc+0adPw5ZdfqvadAGSZ4gaIiMgqnTt8GI3btpU7DYthMYXBia++QuKhQ+iycqXWL3hdlNnZ2NanDwJ69kSTDz4o9H7BFoNHjx4hOCgI/1y8CM8iWiasUWpqKho0aIDo6Gi4u7vLnY5R8d6sV1m+P96b9UpJTkarhg0R+/AhKlSsKHc6FsMiHiWcjIhAwsGDCFu+3KCiAADKOTqiQv36SIuN1fq+QqGAQqHQOJYFoHr16vDw8ChpyhYr5fmjEn9//zJ3f7w361WW74/3Zr1SPDyQBsDewSK+Ci2GrPMYSJKEkxERiNu7Fy8vWQK3Eix7qczNRfK1a3BmZ0QiIqJSk7VMOjV9Om7t2IEO8+bB0dUVGffvAwAc3d3h4OwMADgSHg5XHx+ETpwIALjw88+o3KQJ3GvUQFZqKi4tWYKnCQmoPWCAbPdBRERUVshaGFxbvx4AsHfkSI3jL0ZEoGa/fgCA9MRE2OWbpyArJQXHv/gCzx48gJOHByqGhKDL6tXw1DEqoSCFQoEvvvii0OOFsqIs3x/vzXqV5fvjvVmvsn5/JWUxnQ+JiIhIflwrgYiIiFRYGBAREZEKCwMiIiJSYWFAREREKhZZGMTHx+PNN99EpUqV4OLigkaNGuHUqVOq9yVJwueff46qVavCxcUFYWFhuHbtmsY1Hj16hKFDh8LDwwNeXl546623kJaWZu5b0ZCbm4vPPvsMQUFBcHFxQa1atTB9+nTk7/9pqff2999/o0+fPvDz84OdnR02bdqk8b6x8j5//jzat28PZ2dnVK9eHd98841J7yuPvvvLzs7Gxx9/jEaNGqF8+fLw8/PD8OHDkZCQoHENS72/ov7b5ffOO+/Azs4Oc+bM0Thuzfd26dIlvPLKK/D09ET58uXxwgsvIDbfhGjPnj3De++9h0qVKsHNzQ0DBgzAvXv3NK4RGxuLXr16wdXVFT4+PpgyZQpycnJMfXtF3l9aWhrGjx+PatWqwcXFBQ0aNMCCBQs0Yiz1/iIjI/HCCy/A3d0dPj4+ePXVV3HlyhWT5H7gwAE0a9YMCoUCtWvXxrJly0x6b1ZPsjCPHj2SAgICpJEjR0rHjx+Xbt68Ke3atUu6fv26KmbmzJmSp6entGnTJuncuXPSK6+8IgUFBUkZGRmqmO7du0tNmjSRjh07Jh06dEiqXbu2NHjwYDluSWXGjBlSpUqVpG3btkkxMTHS77//Lrm5uUlz585VxVjqve3YsUP69NNPpQ0bNkgApI0bN2q8b4y8k5OTJV9fX2no0KHSxYsXpbVr10ouLi7SL7/8YtJ7K+r+njx5IoWFhUnr16+XLl++LB09elRq2bKl1Lx5c41rWOr9FfXfLs+GDRukJk2aSH5+ftLs2bM13rPWe7t+/bpUsWJFacqUKdI///wjXb9+Xdq8ebN07949Vcw777wjVa9eXdq7d6906tQp6cUXX5TatGmjej8nJ0dq2LChFBYWJp05c0basWOHVLlyZSk8PNyk91ac+xs7dqxUq1Ytaf/+/VJMTIz0yy+/SPb29tLmzZst/v66desmLV26VLp48aJ09uxZqWfPnlKNGjWktLQ0o+Z+8+ZNydXVVZo0aZIUHR0tzZs3T7K3t5d27txp0vuzZhZXGHz88cdSu3btdL6vVCqlKlWqSP/3f/+nOvbkyRNJoVBIa9eulSRJkqKjoyUA0smTJ1Uxf/75p2RnZyfFx8ebLvki9OrVSxo9erTGsf79+0tDhw6VJMl67q3gX1DGyvvnn3+WKlSoIGVmZqpiPv74Yyk4ONjEd6RJ35dnnhMnTkgApNu3b0uSZD33p+ve4uLiJH9/f+nixYtSQECARmFgzfc2cOBA6c0339R5zpMnTyRHR0fp999/Vx27dOmSBEA6evSoJEniy7lcuXLS3bt3VTHz58+XPDw8NO7X1LTdX0hIiPTVV19pHGvWrJn06aefSpJkXfeXlJQkAZAOHjxo1NynTp0qhYSEaHzWwIEDpW7dupn6lqyWxT1K2LJlC1q0aIHXX38dPj4+aNq0KRYtWqR6PyYmBnfv3kVYWJjqmKenJ1q1aoWjR48CAI4ePQovLy+0aNFCFRMWFoZy5crh+PHj5ruZAtq0aYO9e/fi6tWrAIBz587h8OHD6NGjBwDrvTdj5X306FF06NABTk5Oqphu3brhypUrePz4sZnupniSk5NhZ2cHLy8vANZ9f0qlEsOGDcOUKVMQEhJS6H1rvTelUont27ejbt266NatG3x8fNCqVSuN5vjTp08jOztb489uvXr1UKNGDY0/u40aNYKvr68qplu3bkhJSUFUVJTZ7kebNm3aYMuWLYiPj4ckSdi/fz+uXr2Krl27ArCu+0tOTgYAVHy+mJGxcj969KjGNfJi8q5BhVlcYXDz5k3Mnz8fderUwa5duzBu3Dh88MEHWL58OQDg7t27AKDxByFvP++9u3fvwsfHR+N9BwcHVKxYURUjh08++QSDBg1CvXr14OjoiKZNm2LChAkYOnQoAOu9N2PlfffuXa3XyP8ZluDZs2f4+OOPMXjwYNXCMtZ8f7NmzYKDgwM+0LI6KWC995aUlIS0tDTMnDkT3bt3x19//YV+/fqhf//+OHjwoCo3JycnVYGXp+CfXUu7tzzz5s1DgwYNUK1aNTg5OaF79+746aef0KFDB1V+1nB/SqUSEyZMQNu2bdGwYUPVZxsjd10xKSkpyMjIMMXtWD2LW1JKqVSiRYsW+PrrrwEATZs2xcWLF7FgwQKMGDFC5uxK57fffsPq1auxZs0ahISE4OzZs5gwYQL8/Pys/t5sRXZ2Nt544w1IkoT58+fLnU6pnT59GnPnzsU///yjMfV4WaBUKgEAffv2xcTna62EhobiyJEjWLBgAV566SU50zOKefPm4dixY9iyZQsCAgLw999/47333oOfn1+hX8mW7L333sPFixdx+PBhuVMhWGCLQdWqVdGgQQONY/Xr11f1Iq7yfFnmgj1T7927p3qvSpUqSEpK0ng/JycHjx49UsXIYcqUKapWg0aNGmHYsGGYOHEiIiMjAVjvvRkr7ypVqmi9Rv7PkFNeUXD79m3s3r1bYxlaa72/Q4cOISkpCTVq1ICDgwMcHBxw+/ZtfPTRRwgMDFTlZo33VrlyZTg4OBT590lWVhaePHmiEVPwz66l3RsAZGRk4N///je+//579OnTB40bN8b48eMxcOBAfPvtt6r8LP3+xo8fj23btmH//v2olm+FXWPlrivGw8MDLi4uxr6dMsHiCoO2bdsWGrJy9epVBAQEAACCgoJQpUoV7N27V/V+SkoKjh8/jtatWwMAWrdujSdPnuD06dOqmH379kGpVKJVq1ZmuAvt0tPTUa6c5r9ye3t71S8ba703Y+XdunVr/P3338jOzlbF7N69G8HBwahQoYKZ7ka7vKLg2rVr2LNnDypVqqTxvrXe37Bhw3D+/HmcPXtWtfn5+WHKlCnYtWuXKm9rvDcnJye88MILev8+ad68ORwdHTX+7F65cgWxsbEaf3YvXLigURzlFYYFiw5zys7ORnZ2tt6/Uyz5/iRJwvjx47Fx40bs27cPQUFBGu8bK/fWrVtrXCMvJu8apIXMnR8LOXHihOTg4CDNmDFDunbtmrR69WrJ1dVVWrVqlSpm5syZkpeXl7R582bp/PnzUt++fbUOjWvatKl0/Phx6fDhw1KdOnVkH644YsQIyd/fXzVcccOGDVLlypWlqVOnqmIs9d5SU1OlM2fOSGfOnJEASN9//7105swZVa98Y+T95MkTydfXVxo2bJh08eJFad26dZKrq6tZhivqu7+srCzplVdekapVqyadPXtWSkxMVG35e21b6v0V9d+uoIKjEiTJeu9tw4YNkqOjo7Rw4ULp2rVrqqFqhw4dUl3jnXfekWrUqCHt27dPOnXqlNS6dWupdevWqvfzhsR17dpVOnv2rLRz507J29vbLMMVi7q/l156SQoJCZH2798v3bx5U1q6dKnk7Ows/fzzzxZ/f+PGjZM8PT2lAwcOaPw/lZ6ebtTc84YrTpkyRbp06ZL0008/cbhiESyuMJAkSdq6davUsGFDSaFQSPXq1ZMWLlyo8b5SqZQ+++wzydfXV1IoFFLnzp2lK1euaMQ8fPhQGjx4sOTm5iZ5eHhIo0aNklJTU815G4WkpKRIH374oVSjRg3J2dlZqlmzpvTpp59qfLlY6r3t379fAlBoGzFihFHzPnfunNSuXTtJoVBI/v7+0syZM016X8W5v5iYGK3vAZD2799v8fdX1H+7grQVBtZ8b4sXL5Zq164tOTs7S02aNJE2bdqkcY2MjAzp3XfflSpUqCC5urpK/fr1kxITEzVibt26JfXo0UNycXGRKleuLH300UdSdna27PeXmJgojRw5UvLz85OcnZ2l4OBg6bvvvpOUSqXF35+u/6eWLl1q9Nz3798vhYaGSk5OTlLNmjU1PoMK47LLREREpGJxfQyIiIhIPiwMiIiISIWFAREREamwMCAiIiIVFgZERESkwsKAiIiIVFgYEBERkQoLAyIiIlJhYUAkswMHDsDOzq7QYjHmsnfvXtSvXx+5ubmluo6dnR02bdpU7PidO3ciNDRUNa8/EVkGFgZEZtSxY0dMmDBB41ibNm2QmJgIT09PWXKaOnUq/vOf/8De3r5U10lMTESPHj2KHd+9e3c4Ojpi9erVpfpcIjIuFgZEMnNyckKVKlVgZ2dn9s8+fPgwbty4gQEDBpT6WlWqVIFCoTDonJEjR+KHH34o9WcTkfGwMCAyk5EjR+LgwYOYO3cu7OzsYGdnh1u3bhV6lLBs2TJ4eXlh27ZtCA4OhqurK1577TWkp6dj+fLlCAwMRIUKFfDBBx9oNP9nZmZi8uTJ8Pf3R/ny5dGqVSscOHBAb07r1q1Dly5d4OzsrDo2bdo0hIaGYsmSJahRowbc3Nzw7rvvIjc3F9988w2qVKkCHx8fzJgxQ+Na+R8l3Lp1C3Z2dtiwYQM6deoEV1dXNGnSBEePHtU4p0+fPjh16hRu3LhR8n+xRGRUDnInQGQr5s6di6tXr6Jhw4b46quvAADe3t64detWodj09HT88MMPWLduHVJTU9G/f3/069cPXl5e2LFjB27evIkBAwagbdu2GDhwIABg/PjxiI6Oxrp16+Dn54eNGzeie/fuuHDhAurUqaM1p0OHDmHIkCGFjt+4cQN//vkndu7ciRs3buC1117DzZs3UbduXRw8eBBHjhzB6NGjERYWhlatWum8508//RTffvst6tSpg08//RSDBw/G9evX4eAg/uqpUaMGfH19cejQIdSqVcvQf6VEZAIsDIjMxNPTE05OTnB1dUWVKlX0xmZnZ2P+/PmqL8vXXnsNK1euxL179+Dm5oYGDRqgU6dO2L9/PwYOHIjY2FgsXboUsbGx8PPzAwBMnjwZO3fuxNKlS/H1119r/Zzbt2+r4vNTKpVYsmQJ3N3dVZ915coV7NixA+XKlUNwcDBmzZqF/fv36y0MJk+ejF69egEAvvzyS4SEhOD69euoV6+eKsbPzw+3b9/W/y+PiMyGhQGRBXJ1ddX4Be3r64vAwEC4ublpHEtKSgIAXLhwAbm5uahbt67GdTIzM1GpUiWdn5ORkaHxGCFPYGAg3N3dNT7L3t4e5cqV0ziW9/m6NG7cWPW6atWqAICkpCSNwsDFxQXp6el6r0NE5sPCgMgCOTo6auzb2dlpPZY31C8tLQ329vY4ffp0odEF+YuJgipXrozHjx+X+vOLcx95nSsLnvPo0SN4e3vrvQ4RmQ8LAyIzcnJyKvV8Ado0bdoUubm5SEpKQvv27Q06Lzo62uj5FNezZ89w48YNNG3aVLYciEgTRyUQmVFgYCCOHz+OW7du4cGDB0ab3Kdu3boYOnQohg8fjg0bNiAmJgYnTpxAZGQktm/frvO8bt264fDhw0bJoSSOHTsGhUKB1q1by5YDEWliYUBkRpMnT4a9vT0aNGgAb29vxMbGGu3aS5cuxfDhw/HRRx8hODgYr776Kk6ePIkaNWroPGfo0KGIiorClStXjJaHIdauXYuhQ4fC1dVVls8nosLsJEmS5E6CiOQzZcoUpKSk4JdffjHr5z548ADBwcE4deoUgoKCzPrZRKQbWwyIbNynn36KgIAAs69ZcOvWLfz8888sCogsDFsMiIiISIUtBkRERKTCwoCIiIhUWBgQERGRCgsDIiIiUmFhQERERCosDIiIiEiFhQERERGpsDAgIiIiFRYGREREpPL/yP/4SwUDknEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "INITIAL_VALUE = 7.5*1e-9\n", "FINAL_VALUE = 9.5*1e-9\n", @@ -357,34 +324,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "8e6f2d08-8ee2-483d-8944-1dfa424c8b68", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAHPCAYAAADH8nl/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByi0lEQVR4nO3deXhTZfr/8XeapvsChdLSyr6DyC6LgKI46qAibog4ioLLoKOIKz/HEYciyldHUUdGGAVGAZcZxQUEEZCREaEgIAIKQgGRsi8tdE/O74/TpkmbpC3QJmk/r+vKxTknzzl5EtqeO89yPxbDMAxEREREioX4uwIiIiISWBQciIiIiBsFByIiIuJGwYGIiIi4UXAgIiIibhQciIiIiBsFByIiIuJGwYGIiIi4UXAgIiIibhQciIiIiBsFBxU4tG4dX48dy8eXXMK8Tp34ddmyan29Ty6/nHmdOpV7pE+aVK2vKyISEP77X7jmGkhJAYsFFiyo3tfLzoZx46BZM4iMhH79ID29el8zCIT6uwKBrig3l/rt2tHq+uv55qGHqv31rnj/fQy73bl/8pdfWD5mDE2vuKLaX1tExO9On4YuXeCuu+D666v/9caMgR9/hHfeMQOSd9+FwYNh61ZITa3+1w9QCg4qkDJgACkDBnh93l5QwKZp09izaBEF2dnUa92aruPHk3ThhWf0ehEJCW77W//5T2KaNKFRr15ndD0RkaBy1VXmw5v8fHjqKZg/H06cgPPPhxdegEsuqfpr5ebCf/4Dn3wCAweaxyZOhM8+g+nTIS3tDN5A7aBuhbO0Li2NIxs3ctGLL/L7jz6i6RVXsOLee8nas+esr20vKGD355/T6vrrsVgs56C2IiJB7oEHYPVqeO89+OEHuOkmuPJK2LGj6tcqKgK7HSIi3I9HRsKqVeemvkFKwcFZOL1/P7sWLKD/yy/TqEcPYps2pcOdd5LYvTu7Pv74rK+/b/lyCrKzaXHddWdfWRGRYLd3L8yaBR9+CAMGQKtW8Oij0L+/ebyqYmOhb1+YNAn27zcDhXffNYOPzMxzX/8gom6Fs3Bixw4Mu53Pf/97t+P2wkLC69UD4OSuXSy85hqf1+k4ejRdx48vd3znf/5D4/79iWrU6JzVWUQkaG3ebN7A27Z1P56fDw0amNs//QQdOvi+zhNPwPPPm9vvvGOOb0hNBasVuneHESNg/fpzX/8gouDgLBTl5GCxWrnyww+xhLg3woRGRQEQc955DPnsM5/XKQkkXJ3ev5+D333HgGnTzll9RUSC2qlT5g18/XrzX1cxMea/LVvCtm2+r1MSSIDZ+rBypTkQMisLGjeG4cPN69RhCg7OQv0OHTDsdvKOHaNRjx4ey1jDwog/gx+ynR9/THhCAiklg2REROq6bt3MloNDh8xuBU/CwqB9+6pfOzrafBw/DkuWwNSpZ1fXIKfgoAKFp09zau9e5/7pffs4vm0bYfHxxDVvTvOrr2b1hAl0f+wx6nfoQN6xYxxcs4Z6bduSevHFZ/SahsPBro8/puXQoYSE6r9IROqQU6fgl19K9zMyYONGSEgwuxNGjoTbb4eXXjKDhcOHYdkyuOACGDKk6q+3ZAkYBrRrZ77uY4+ZwcWdd56ztxSMLIZhGP6uRCA7uHYtyzz8kLQYOpS+zz2Ho7CQH998k4xPPyX34EHC69enQZcuXHD//dQr2y9WSZn/+x8r7rmHqxcuJK5587N8ByIiQeTrr2HQoPLH77gDZs+GwkJziuG//gW//QYNG0KfPvDss9C5c9Vf74MPYMIE2LfPDEBuuAEmT4b4+LN9J0FNwYGIiIi40VRGERERcaPgQERERNxotJsHRUVFbNu0ifjEREJCFD+JiNRVhsPB6YMHadOtG9Y6NEC87rzTKti2aRMX9Ozp72qIiEiA2LZ2Le3r0Bo3Cg48SE5KAuCHdeuoX7wtIiJ1z6nMTFIuvBBHHbsXKDjwoKQrIaVxYxqkpPi5NiIi4i9ZQByQVce6mOvWuxUREZEKKTgQERERNwoORERExI3GHIiInCG73U5hYaG/qyFnwWq1EhoaisVi8XdVAoqCAxGRM3Dq1Cn27duHMtAHv6ioKBo3bkxYWJi/qxIwFByIiFSR3W5n3759REVFkZiYqG+dQcowDAoKCjh8+DAZGRm0adNGie+KKTgQEamiwsJCDMMgMTGRyMhIf1dHzkJkZCQ2m409e/ZQUFBARESEv6sUEBQiiYicIbUY1A5qLShPn4iIiIi4UXAgIiIibjTmQETETxx2O4fXryf38GEiExNJ7NGDEKvV39USUcuBiIg//Lp0KZ9efjnL7ryTbx9/nGV33smnl1/Or0uXVttrjho1CovFUu5x5ZVXAtC8eXNeeeWVSl2refPmzvOjo6Pp3r07H374YbXVXWqWggMRkRr269KlfPPww+QcPOh2POfQIb55+OFqDRCuvPJKMjMz3R7z588/o2v99a9/JTMzkw0bNtCrVy+GDx/Ot99+e45rLP5gMZTBo5yj+/fTMDWVzN2/8f+eTaFJE3j2WX/XSkQCRV5eHhkZGbRo0YKIiAgMw8Cem1upcx12OwuvvZbcQ4e8lolMSmLIJ59UqovBGhlZ6VkTo0aN4sSJEyxYsMD9iTlz4OWX2bZ1Kw0bNiSxeXNwvcnfey+sXu12yraffjLLJiXBhg0UFRURHx/Plx07clF+vvdKrF8PNpu5PWECLFzoveyqVRAXZ24/+yz85z/eyy5dCiXLKk+dCu++673sp59C8+bm9muv4Zgxg4KCAsLCwggp81memjaNmEsvJevXX4k77zzv16xlNObAh2+/g1mzzO2xY0t/7kREXNlzc/mgV69zdr3cgwf5d58+lSp7c3o6oVFRZ/eC06bBpk10AMjMhNOn3Z/PyIDNm90OOcsWBzmhoaHYbDbijh+HnTu9v5br99Fffy13XTd2e+n2b7/5Luuaxjoz03fZgoLS7YMHCfnxR7xmN/AV6NRiCg58+O3X0u2NG+GKK/xWFRGRc+Lzzz8nJibG7djO2FiSgOfr1aPNLbdww803u5/0/PPw+ONuh0aOHMn111/PDTfeSEFBAS+99BInT57k+KRJ0KGD9wqEutx2nnwSRo3yXta1ng8/DGXr5aphw9LtP/4RhgzxXjY1tXR71CgK+vUjMzPTYwplh2vZOkTBgQ8nTpRu//STggMR8cwaGcnN6emVKnto/Xq+vu++Cstd8o9/0KhHj0q9dlUMGjSI6dOnux1rMHQoHDjA5rAwItq1g0GD3E/q3r3cdf4XGcm/334b2zvvkJeXR0xMDM8//zwD//Snylfm/PPNR2V06OA76HDVtq35qIzWrXGcdx45GRk4WrSAshkS9+2r3HVqGQUHPrgGB9u3+60aIhLgLBZLpZv2k/v1IyopiZxDh9yb2EsvRlRSEsn9+lXLtMbo6Ghat27tfvAMX+exxx5j1KhRxMTEkJSUpIyRtYiCAx82zF0I3A3Ayjmrmff1GL/WZ9CMGTS+6CK/1kFEzk6I1UqPCRP45uGHwWJxDxCKb649nnyyZvMdvPsu5Obyw003UZWREw0bNiwfaEitoKmMPuQ5SpvrMvOb+68ixVbccw/zOnXydzVE5Cw1ufxyBrz8MlGNGrkdj0pKYsDLL9Pk8sur7bXz8/M5cOCA2+NISgr07k221hiQYmo58MFulA5MOVbUmDxHJBEhlZuuVJ3mderErVu2+LsaInIWmlx+OamXXlrjGRIXL15M48aN3Y61a9eOn376qVpfV4KLggMfigz3j+dAQTOaRwTGL1Dm//6nLgaRIBditZJ04YU19nqzZ89m9uzZnp6Al15i93//C02bVupau3fvPpdVkwCjNiQfihzuU1oO5DfzU03KW3HPPf6ugojUFi++CI8+6js/gdQpCg58KCzuVogMyQYgs6CFP6tTjsM1QYiIyDkyd+5cYmJiPD46adxTnaBuBR9KuhWahm/n59weZBY092+FyjiUnk5yJbOoiYh4VWZK5bXXXkvv3r09FrWVpD6WWk3BgQ9FxS0HTSLM4GBD9sXMznyKLad7s7+glbOcBQdgYCl+AFgspdu4Hqf0l9BiKX3e9Tnz35JtiA89wpPN7qGB7YBb/Q58952CAxE5d4qnUsbGxhIbG+vnyog/KTjwoSQ46BLzDd+eHEKOI46lx28tV84o7p0x3A9WrJJLXp0uiGfzqX5cUv8j9+OZmZW7gIiIL1p/T8pQcOBDEWbzWXzoMcY1eYjFR/9AfdshOkevplXkD1gtRVDSXmBYnG0HOP91/Z0r3i9+vnS79N+SYMH1+D/2P8fO3C5k2+uVq5/D4TjH71hE6jRlOJRiCg58KHKYwUGopYBO0ZvpFL22xuvQImIbO3O7UGCEl3su/+jRGq+PiIjUfgoOfLDEJMAJuH7RR7RrV3Ovu2TkSI5u3AiAzWIuF1roKL+gqL2OLiUqIufY229DTg5ccIG/ayIBwq/BwZaZM/l16VKyMjKwRkSQ2LUrXcePJ66F7ymDBVlZbJo2jV+/+oqCkyeJTkmh+5NPkjpwIGBO8dv897+z+/PPyTtyhMhGjWgxdCjn33dflRYGKSi+94aX/9JerawuL+gMDjy0HFhrumIiUjtpYLOU4dc8B4fS02k7YgS/mz+fS2fOxFFUxPK776YoJ8frOfaCApaPGcPp/fsZ8PLLXL1wIRc++6xbjvJtb73FL++/T8+nnmLIZ5/R9eGH2fb222yfO7dK9csvMP8ts7x3tYto0MC5HRZiBgcFRvlKuJYTEQkkzZs355VXXnHuWywWFixYUOP1mDhxIl27dq3x1w12fm05GDRjhtt+n8mT+WjAAI5t3Uqjnj09nrPr448pyMrid3PnElI83zYmNdWtzOGNG0m99FJSL77Y+fyeRYs4unlzlepnFI/3q+lpvdEpKc5tX90KruVERM7Y/PnmGvVDh0I1/V3JzMykfv36lSo7ceJEFixYwMbi7lWpeQGVIbEw28xEGBYf77XMvhUraNilC+lpaXw0cCALhw5ly4wZbtkCE7t25eB335FVnPv7+E8/cXjDBhoPGODxmvn5+WRlZTkf2adOuT0fWsMhlOv7t/loOfD1OYmIVNrEiTB2bLn0yQUFBefsJZKTkwlXV2jQCJjgwHA4WP/CCyR260a9Nm28lju9bx97v/wSw+HgkunTOf+++9g2ezZb3nzTWabjmDE0u+oqPr/6auZ36cIXN95Iuz/8gRZXX+3xmlOmTCE+Pt756NC+vdvzNbmsOkDBiRPO7TAfLQeu5UTEfwwDTp/2z6MqKQouueQSHnjgAR544AHi4+Np2LAhTz/9tDPlyk033cSkSZO4/fbbiYuL457iNVxWrVrFgAEDiIyMpEmTJjz44IOcPn3aed1Dhw5xzTXXEBkZSYsWLZjroQu3bLfCvn37GDFiBAkJCURHR9OzZ0/WrFnD7NmzefbZZ9m0aRMWiwWLxeJcLOrEiROMGTOGxMRE4uLiuPTSS9m0aZPb6zz//PMkJSURGxvL6NGjycvLq/wHJE4BM1shPS2Nkzt2cPk77/gsZzgcRCQkcOHEiYRYrSR06kTOwYNsmzWLzmPHArBn8WJ2L1xIv6lTqde6Ncd/+on1zz9PZGIiLa+7rtw1J0yYwPjx4537xw4coIXL9ISabjnIOXiw9LUthUDpOg/eyomI/+TkQEyMf1771CmIjq58+Tlz5jB69GjWrl3LunXruOeee3g0JoZ4zFQrL774In/5y1945plnANi5cydXXnklaWlpvP322xw+fNgZYMyaNQuAUaNGsX//flasWIHNZuPBBx/k0KFDPup8iosvvpjU1FQ+/fRTkpOT+f7773E4HAwfPpwff/yRxYsX89VXXwEQX9xKetNNNxEZGckXX3xBfHw8b775Jpdddhnbt28nISGBDz74gIkTJ/L3v/+d/v3788477/Dqq6/SsmXLM/ps67KACA7S09LYv3Ilg+fMISo52WfZyMRELKGhbmuex7dqRd6RI9gLCrCGhbHxpZfoOHo0zX//ewDqtW3L6f372frPf3oMDsLDw92auwrLdCvUdMuB4fJVINRiNusVGeUHPhjKaiYiVdSkSRNefvllLBYL7dq1Y/PmzRx/+WVKOikvvfRSHnnkEWf5MWPGMHLkSMaNGwdAmzZtePXVV7n44ouZPn06e/fu5YsvvmDt2rX06tULgLfeeosOHTp4rcO8efM4fPgw6enpJCQkANC6dWvn8zExMYSGhpLscj9YtWoVa9eu5dChQ86/1y+++CILFizg3//+N/fccw+vvPIKo0ePZvTo0QCkpaXx1VdfqfXgDPg1ODAMg3WTJ7Nv2TIumz2bmPPOq/Ccht26sWfhQgyHA0uI2SuStXs3kYmJWIunFRTl5jqfK2GxWjHOMKNgTbccuLL5CA5EJDBERZnf4P312lXRp08ftyndffv2pfCFFwCz5aBnmcHgmzZt4ocffnDrKjAMA4fDQUZGBtu3byc0NJQePXo4n2/fvj316tXzWoeNGzfSrVs3Z2BQGZs2beLUqVM0KDNLKzc3l53FYyW2bdvGfffd5/Z83759WbFiRaVfR0x+DQ7WTZrE7kWLGPjaa9iiosg9fBgAW2wsoRFmH/u3EyYQ1agRXR9+GIA2w4ezfd481k+ZQtuRI8nes4etM2fSduRI53VTL7mEH2fMIKpxY+Jbt+b4tm38NGcOLYcNO6N6hvhxZEZJy4GnbgURCQwWS9Wa9gNZdJk3curUKe69914efPDBcmWbNm3K9u3bq/wakZGRVT7n1KlTNG7cmK+//rrcc74CETkzfg0Odrz/PgDLRo1yO94nLc15I8/JzHSLcqMbN2bQjBl8/8ILLBo2jKikJNrddhsdipuRAHo+9RQ/vPoq6ZMmkX/sGJGNGtH6pps4/49/rHIdrdaaTzfu+n5LxhwUeQgOqpLQSUQEYM2aNW773333HV1tNigs9LgWXPfu3dm6datbs7+r9u3bU1RUxPr1653dCj///DMnfAyYvuCCC/jnP//JsWPHPLYehIWFYXeZgVZSjwMHDhAaGkrz5s09XrdDhw6sWbOG22+/3e39SdX5NTi4dcuWCssMLh6l6iqxa1eumD/f6zm26Gh6TJhAjwkTzqZ6QM2PNwDcxl3YQkqCg/LdChWNzxARKWvv3r2MHz+ee++9l++//57XXnuNfvffT7NLL2Xn2LEMLFP+iSeeoE+fPjzwwAOMGTOG6Ohotm7dytKlS3n99ddp164dV155Jffeey/Tp08nNDSUcePG+WwdGDFiBM899xzXXXcdU6ZMoXHjxmzYsIGUlBT69u1L8+bNycjIYOPGjZx33nnExsYyePBg+vbty3XXXcfUqVNp27Yt+/fvZ+HChQwbNoyePXvy0EMPMWrUKHr27MlFF13E3Llz2bJliwYknoGAmcoYqPwx3sA1f4GvbgXlORCRqrr99tvJzc3lwgsv5P777+ehhx7i6r/9Da65hpMevg1dcMEFrFy5ku3btzNgwAC6devGX/7yF1JckiXNmjWLlJQULr74Yq6//nruueceGrlkrS0rLCyML7/8kkaNGvH73/+ezp078/zzz2Mtfv0bbriBK6+8kkGDBpGYmMj8+fOxWCwsWrSIgQMHcuedd9K2bVtuueUW9uzZQ1JSEgDDhw/n6aef5vHHH6dHjx7s2bOHP55Bi7GAxdCQ93KO7t9Pw9RUIiy/YYtJISurZl9/w9/+xra33gJgb15bJuz6mHjrEd5od7FbuQ6jR9PNZQqmiNSMvLw8MjIyaNGiBRER5XOQBKpLLrmErl27uqU1Ft//n1n79hHXpAlZv/5KXCUGzdcWATGVMZD5o+XAc56D8t0KynMgIufExx9DdjZcdRUkJvq7NhIAFBxUwB9jDjzlObArz4GIVJdHH4Vdu2D1agUHAmjMQYX8meMASvMcaCqjiJytr7/+2nOXgr5onDvZ2TBuHDRrBpGR0K8fpKdX7tz//c+86QTAKpIKDirgj5YDVyUtBw5CcRj67xIRCWhjxsDSpfDOO7B5M/zudzB4MPz2m+/zTpyA22+Hyy6rkWpWRHebCvij5cBTngMo33qgPAci/lVruvZK3kcd/Ztyzv4fc3PhP/+BqVNh4EBo3dpc8bJ1a5g+3fe5990Ht94Kffuem7qcJQUHFQiUPAdQPteB8hyI+EfJlLtzuaSx+E9OTg4ANpv3NPXZ2dlkZWU5H/n5+eULFRWB3Q5lZ7BERsKqVd4rMGuWOeajeLGrQKABiRXwd54DK67BgXvLQY6PVc9EpPqEhoYSFRXF4cOHsdlshPgzx/o5EO5wYAHyCwow6tAiRYZhkJOTw6FDh6hXr54z6POkQ8eOZLvsP/PMM0ycONG9UGys+c1/0iTo0AGSkmD+fHOgp5cMk+zYAU8+Cd984/9Bbi4CpyYByh8tB4UuiRUsFrBZ8ik0wst1K/y6ZAmOtDS3FSpFpPpZLBYaN25MRkYGe/bs8Xd1zlqroiLCgP3795OXkeHv6tS4evXqua0A6cm2rVuJTU117ruu5OvmnXfgrrsgNdW8gXTvDiNGwPr15cva7WZXwrPPQtu2Z/MWzjkFBxXwy5iDMt9CrJZCCo1wihzuTV6O/HwOpaeT3KdPTVZPRDCz/LVp06Z2dC28+ioFOTk07t8fyqx6WNvZbDafLQYlYmNjiYuLq/iCrVrBypVw+jRkZUHjxjB8OHhK4ZydDevWwYYN8MAD5jGHwxwDEhoKX34Jl15axXd0big4qIA/vpQ3uvBCtrz5pnPfZikgD8/TGQ98952CAxE/CQkJCaoMiV7dcIO/a1D7REebj+PHYckSc5BiWXFx5owGV2+8AcuXw7//DS1a1ExdPVBwUAF/tBwk9eplvnBRkVmH4umMnhZfOp2ZWaN1ExERH5YsMb/5t2sHv/wCjz0G7dvDnXeaz0+YYE5r/Ne/ICQEzj/f/fxGjcwBjWWP17DgHkVTA/zRchBitdLggguc+zZncFC+5aDWTKUSEf9ZtMicgnf8uL9rEvxOnoT77zcDgttvh/79zYChZCZEZibs3evfOlaCWg4q4K/Bo9GNG3O0pA7O9RWUJVFEqsF998Gvv5r93z16+Ls2we3mm82HN7Nn+z5/4kTz4WdqOahAIEwEKAkOPLUciIiInGsKDioQCNNObT7GHIiInDV1T0oZCg4qEBAtByFafElEakAdTZ8s5Sk4qIBaDkSk1lPLgZSh4KACAdFyUDIg0aGWAxGpRmo5kGIKDioQCC0HvvIciIiInGsBcOsLbIHQcmDTbAURqU4vvgg5OdC0qb9rIgFCwUEFAiE4KGk50IBEEakWt9zi7xpIgFG3QgX8tRKra+ZDX3kOlCFRRETONbUcVMBf43Pyjx51bvuareBaTkTkjCxfDvn5cNFF5mJAUuep5aAC/mo5sOfnO7d9dSu4lhMROSMjR8Lvfw8ZGf6uiQQIBQcV8FdwYA0Pd27bQry3HLiWExERORcUHFTAX8FBWP36zm2rj4WXXMuJiJyRkrFLynMgxRQcVMBfwUGBy9KpJVMZ7R5aDgq0xKqIiJxjCg4q4K/goCgvz7ldMiDRU4ZE13IiImdELQdShoKDCvjrd8VRyQGJeUeO1FidRESkblBwUAF/tRyEuAw09JXnIOfAARx2e43VS0RqMbUcSDHlOaiAv4IDW2Skc7u05cDD2gp2O4fS00nu06emqiYitc3kyZCbC40b+7smEiDUclABfwUHCeef79wuGXPgaUAiQOa339ZInUSklhozBv70J2jQwN81kQCh4KAC/goOkvv2dW6HhvheW+HIjz/WSJ1ERKRuULdCBfwVHCT16uXcDsX3qoy5hw/XSJ1EpJZavRoKC6FHD4iO9ndtJACo5aACfhuQaLUSGh8PgC3EexIkgKKcnBqrl4jUQtdeCxdfDHv2+LsmEiAUHFTAn4N3Q4sHJYb6WHhJROSsaXVXKUPBQQX81XLgyrkqo4ckSCIiIueaX8ccbJk5k1+XLiUrIwNrRASJXbvSdfx44lq08HleQVYWm6ZN49evvqLg5EmiU1Lo/uSTpA4c6CyTc/AgG//2N/Z/8w32vDximjalT1oaDVxmAVRGIAQHoc61FdRyICLVQBkSpQy/BgeH0tNpO2IECZ07YxQVsWnaNJbffTdXf/opoVFRHs+xFxSwfMwYIho0YMDLLxOZlMTp/fsJi411lik4eZKlt91G0oUXcsk//kFEQgLZe/YQdgbrlPszODCKf2FLuxU8txwYahIUEZFzyK/BwaAZM9z2+0yezEcDBnBs61Ya9ezp8ZxdH39MQVYWv5s7lxCb+U06JjXVrczWt94iKjmZPpMnO4/FnHfeGdXRn8GBvTiFsq2CMQd2l1TLIiJVppYDKSOgpjIWZmcDEFY8St+TfStW0LBLF9LT0vhtxQrC69en+ZAhdBg9mhCr1Vmm8UUX8c3DD3No3TqiGjWizS230PqmmzxeMz8/n3yXG2z2qVPObX8GB0XFdfK1tgJAkUt9RcSL06fhllvgiSegf3/z2McfwzPPeD/npZfg8svN7cWL4fHHvZdNSzNH/QN8/TU8+KD3sk89BcOHm9tr1sDdd3sv+8gjcMcd5vYPP8Btt3kvO3Ys3Hefub1jB9xwg/eyd94JDz9sbrduDenp3stKnRMwwYHhcLD+hRdI7NaNem3aeC13et8+Dq5ZQ/Orr+aS6dPJ3ruX9EmTcBQV0XnsWABO7dvHjvffp/0dd9Dpnns4tnkz66dMIcRmo+V115W75pQpU3j22Wed+xEu0bM/A2mLw4FB6ZgDAyt2w4rVUmYthaIiigoKCA3TgEURr1avhs8/hyZNSoOD48dh82bv52RllW6fPOm77IkTpdvZ2b7LHjtWun36tO+yrour5eb6LnvoUOl2Xp7vsgcOlG7PmQPdukFSkvfyUqcETHCQnpbGyR07uPydd3yWMxwOIhISuHDiREKsVhI6dSLn4EG2zZrlDA5wOEg4/3y6jhsHQEKHDpz45Rd2fPCBx+BgwoQJjB8/3rl/7MABWrRrB/i35cAWGUlBfr4zzwGYrQdWS265sj/Nns3599xTk9UTCS4lC5R9/jm88Ya5fcUVsHSp93M6dy7dvvhi32U7dSrd7tPHd9n27Uu3u3b1Xdb1y1L79r7LtmxZut2ihe+yzZq5b2/fDvXrey8vdUpABAfpaWnsX7mSwXPmEJWc7LNsZGIiltBQZxcCQHyrVuQdOYK9oABrWBgRiYnEt2rldl58y5b86uUXJTw8nHCXVRALA6RboV7bthxau9bZrQAl6yuUDw62zZun4EDEl5J+9YYNS4+lppqPykhONh+VkZgIgwdXrmxCQuXLxsdXvmxMTOXLRkVB06aVKyt1gl8n6hmGQXpaGvuWLePSt9+u1KDBht26cWrvXgyHw3ksa/duIhMTsRY3qyd260ZWRobbeVm7dxOdklLlOvozOGh/110AWCnCgvl+vY07KFQKZZHK0aA7kQr5NThYN2kSuz//nH5Tp2KLiiL38GFyDx+mKC/PWebbCRPY+PLLzv02w4eTf/Ik66dMIWv3bn5buZKtM2fSZsQIZ5n2t9/OkR9+YMuMGWTv2cPuzz/nl3//261MZfkzOEjp1w8w/5Y5cx04lOtARESql1+7FXa8/z4Ay0aNcjveJy2NlsOGAZCTmYnFJdKPbtyYQTNm8P0LL7Bo2DCikpJod9ttdBg92lmmQefODJw2jY2vvMLm6dOJOe88ejzxBC2uvrrKdfRncODadRJqKaDQCPea6wBgnmufZx1ijYnh6k8+IbqyTb5SNykfiEil+TU4uHXLlgrLDJ49u9yxxK5duWL+fJ/npV5yCamXXHKGNSsVCBkSAcJD8sh1xJLviPR3VQKO/dQpPrnsMqwREQxfv97f1ZFAp24FkQoFxIDEQObvvyMWmw2jsJAY63FOFCWSba9PkRHK7twOhIYUEms9TmTIaaDst6LyFTc8HPP6uuWuh4fXKF/O8+dVifPO4PVcu1sA7Hl5vN+jhwIE8axjR/j7383BgiLik4KDCvi75aBR794cXLWKeOsx9gGZBS149+AT7Mv3nguiLrm6wVuMSPqbc9+el8fpAwfUxSDlNWtmJgkSkQoFSKN54PJ3cND/pZcAiA01k6a8d/Bh9uW3IdRSQLz1CFYKfZ1e66Vnl5+qtdBXVjgREamQWg4q4O/gIDwmBoA463EA8g1zQaoHUh+jV9xXGIb3NRcq28Tv4Uz3M8qc4rl7wuKzTPlzPHR7VPg6pfu/5bdk4u75nCqqV+46Ra6Z6kRKHD1qph+OjQUva7eIiEnBQQX8HRwAXPPFF3xx4TznfkrYTnrELgPMAMBmqebWgwAcv1Uv1EwpW2CEV1BSpNh338HVV0OvXrB2rb9rIxLQAuDWF9gCITiIbdqU9lGlg+yubfhPQix1e1pWWIi5KFWhEVGuxSGiUSM/1EgCnqYyilSaWg4q4O/ZCiWe2vUhOxqnUeCI4KL4z/xdHb+zWUpX0SwybG6tJzGuOeNFRKTKFBxUIBBaDkrMzvxznU10VJZrcFBgRGBzGZgZ0aCBP6okga6k5SBQIn6RABZAt77AFEjBAZiJo6587z1/V8PvQi2FLutNuI87KDh+3B9VEhGpNdRyUIFACw4AEjp3rlR2ydpmyciRHN24ESgZiJlPgRFJocM9pbQ9P9/D2VLnqeVApNIC8NYXWAIxOKirrOHuLQS24qWsC4wIn+VERKRq1HJQAQUHgSM8IcFt3xZSAI7yeR7KlhMBzPTJ//d/oOyZIhVScFABBQeBw1LmPyO0uOWg7EqVZcuJANC6NTz6qL9rIRIU9Fe0AuqeDByWMv8ZJd0KhQ6bz3IiIlI1ajmogL6EBo6oMs3B1uLcBmVbDsqWEwHg+HHYsQNiYswuBhHxSre+Cig4CBxh8fFu+zZnt4J7y0HOoUM1VicJIitXQu/ecPfd/q6JSMDTra8CCg4CR2FWltt+aHHLQWGZloNflyzBYbfXWL1ERGob3foqoOAgcJQdaGjzMiDRkZ/PofT0GquXBAmtrSBSabr1VUDBQeBodOGFbvveWg4ADnz3XY3USYKQBqyKVEi3vgro70jgSOrVC0JLx9CGehlzAHA6M7PG6iVBQi0HIpWm4KACajkIHCFWKw0uuMC5bwvx3K0AYOhGIN4o4hepkG59FVBwEFiiGzd2bpe0HBR6aDkQEZEzpzwHFVBwEFhcExyVjDkocpRvOVAiJCmnQweYOBGaNPF3TUQCnoKDCig4CCyuCY5sziRI5VsOlAhJyunQAZ55xt+1EAkKuvVVQMFBYHFNhFTarVC+5aBswiQRkRqRnQ3jxkGzZhAZCf36ga+p1R99BJdfDomJEBcHffvCkiU1Vl1vdOurgIKDwFJw4oRz21ueg7LlRAA4eRJ+/BEyMvxdE6nNxoyBpUvhnXdg82b43e9g8GD47TfP5f/7XzM4WLQI1q+HQYPgmmtgw4aarXcZuvVVQF3XgSXn4EHntq88B67lRAD48kvo3BnuvNPfNZHaKjcX/vMfmDoVBg40VwKdONH8d/p0z+e88go8/jj06gVt2sBzz5n/fvZZTda8HI05qIBaDgKL6xRFX3kONJVRRM6l7OxscEnhHh4eTnh4uHuhoiKw2yEiwv14ZCSsWlW5F3I4zK6JhISzrPHZ0a2vAgoOApe3hZdEPFLAKGehQ8eOxMfHOx9TpkwpXyg21hwzMGkS7N9vBgrvvgurV0NlE7O9+CKcOgU333xu30AVqeWgAgoOAldoiPcBiSJeqa9QzsC2rVuJTU117pdrNSjxzjtw112QmgpWK3TvDiNGmOMJKjJvHjz7LHzyCTRqdI5qfmYUHFRAwUHgcuY5UHAglaGWAzkLsbGxxMXFVVywVStzefDTp81uiMaNYfhwaNnS93nvvWcOZvzwQ3MAo5/p1lcBBQeBK9RHngMRr9RyIDUhOtoMDI4fN6cmDh3qvez8+eZA2fnzYciQmqujD2o5qID+jgQu55gDDxkSRUT8YskSs5WqXTv45Rd47DFo3750lsyECea0xn/9y9yfNw/uuAOmTYPeveHAAfN4ZCT4MV+LvhdXQC0HgcvmIwmSSDnt25t/qIcP93dNpDY7eRLuv9/8ebv9dujf3wwYbMUtnJmZsHdvafkZM8xZDvffb7Y0lDweesg/9S+mloMKKDgIXFaNOZCq6NLFfIhUp5tv9j3TYPZs9/2vv67O2pwx3foqoOAgcNm0KqOISLVQy0EFFBwELl9JkETKOXUKDh82+3K1MJeIT7r1VUDBQeDytbaCSDmffmpOJ7vtNn/XRCTg6dZXAQUHgcvX2goiInLmdOurgKYyBq7QEA1IlCpQEiSRSvPrmIMtM2fy69KlZGVkYI2IILFrV7qOH09cixY+zyvIymLTtGn8+tVXFJw8SXRKCt2ffJLUgQM9vsamV16h3W230WPChCrXUS0HgUtrK8gZUcQvUiG/BgeH0tNpO2IECZ07YxQVsWnaNJbffTdXf/opoVFRHs+xFxSwfMwYIho0YMDLLxOZlMTp/fsJi40tV/bo5s388uGH1Gvb9ozrqOAgcJUMSCz0kAQpp7KLnIiISDl+DQ4GzZjhtt9n8mQ+GjCAY1u30qhnT4/n7Pr4Ywqysvjd3LmEFCeViHFZDKNE4enTfPvEE/R+9ll+fPPNM66jgoPAVTLmwI4Nh2EhxFLabHxs82YcdjshVqu/qieBRt0KIpUWULe+wuxsAMJ8pIzct2IFDbt0IT0tjY8GDmTh0KFsmTEDh93uVm5dWhopAweS3Ldvha+bn59PVlaW85F96pTzOQUHgcXi0iRc0q0A5bsWHIWFHEpPr7F6SRBRt4JIhQLm1mc4HKx/4QUSu3WjXps2Xsud3rePvV9+ieFwcMn06Zx/331smz2bLS6tA7sXLeLYtm10ffjhSr32lClT3Nbp7tC+vfM5BQeBJTolxbkd6iM4ADjw3Xc1UicJEm3bmilqr73W3zURCXgBc+tLT0vj5I4dXPTiiz7LGQ4HEQkJXDhxIgmdOtHsqqvodM897Hj/fQBOZ2by/fPP0++FF7B6W2+7jAkTJnDy5EnnY9tPPzmf05eMwJLUu7dzu6RbATzPWDitcQfi6sIL4fXX4YEH/F0TkYAXEBkS09PS2L9yJYPnzCGqgsxlkYmJWEJD3fqS41u1Iu/IEewFBRzbupW8o0dZfNNNzucNu51D69axff58hm/YUK4fOjw8nHCXQKJQ3QoBK6lXL7BawW4nxGJgpRA7No+5DhwOhx9qKCIS/PwaHBiGwbrJk9m3bBmXzZ5NzHnnVXhOw27d2LNwIYbDgaX4zp21ezeRiYlYw8JI7tOH3y9Y4HbOd089RVzLlnQcPbrKA9QUHASWEKuV2JYtyd6xAzBbD+yGzWPLQf7RozVdPQlkubmQnQ1hYVCvnr9rIxLQ/HrrWzdpErs//5x+U6dii4oi9/Bhcg8fpigvz1nm2wkT2Pjyy879NsOHk3/yJOunTCFr925+W7mSrTNn0mbECABs0dHUa9PG7REaFUV4fLzPsQzeKDgIPDaXaa62EO+5Dlx/jkT48ENISoLivxUi4p1fWw5KxgksGzXK7XiftDRaDhsGmPPVXUeoRzduzKAZM/j+hRdYNGwYUUlJtLvtNjqMHl0tdVRwEHgc+fnObWeuA0/dCi7lRDSVUaTy/Boc3LplS4VlBpdd+xpI7NqVK+bPr/TreLpGZSk4CDyWsNJAwJkl0VG+5cC1nIiIVJ5ufRVQcBB4jILSKYy+Fl9yLSfibDnQFCSRCunWVwH9HQk8ri0CJd0Kdg9jDtRyICJyZhQcVEAtB4HHdSyBzUfLgcYciBuNORCpNN36KqDgIPDY3boVSmYrlA8O7OpWEE/UHChSId36KqDgIPAU5eY6t32NOXAtJ0Lr1jBqFAwe7O+aiFSfX36BJUvMvB5wxi1mAZEhMZApOAhsvqYyirgZMMB8iNRGR4/C8OGwfLnZOrZjB7RsCaNHQ/368NJLVbqcbn0VUHAQ2EqSIHkakGhXEiQRqSsefhhCQ2HvXnBJFMfw4bB4cZUvp5aDCqh7MvC4JsUqbTkoHxwUnjiBw26vcspsqaUKCyE/31ybIzLS37URObe+/NLsTii7DEGbNrBnT5Uvp+/FFVDLQeBxTZ9cMuagyOG5W+HA6tU1UicJAv/6F8TGmt+kRGqb06fdWwxKHDsGlVyh2JVufRVQcBB46rVv79y2VTDm4Me33qqROomI+NWAAWYAXMJiAYcDpk6FQYOqfDl1K1RAwUHgaXnddexduBBwaTnw0K0AcPynn2qsXiIifjN1Klx2GaxbBwUF8PjjsGWL2XLwv/9V+XIKDiqg4CDwJPfu7dy2+chzAGCvq9MZc3PB5XMq5/LL3UcvX3CB97L9+8Mbb5Tu9+5dOk2qrJ494e23S/cvucT84+RJp07gukbKlVfC/v2ey7ZsCa5LsQ8bBjt3ei6bkuI+AOvWW+HHH73XQ6Q2OP982L4dXn/d7D47dQquvx7uvx8aN67y5RQcVEDBQeAJsVrNJjPD8JnnAKi7WfEMAzZv9v58u3bu+77Klh3g9OOPkJPjuWxCgvv+1q1w+LDnsmX7QX/6yfvAqaIi9/3t281re5KV5b7/yy/u7695c8/niQS7+Hh46qlzcikFBxXQbIXA5itDovlEkefjtV14OCxd6v35Ro3c932VbdDAff+zz8y+TE/q13ff//BDc5aAJ3Fx7vvvvgvepp9GR7vv//Of5gAsTyIi3Pdff700YAgLg759PZ8nEswWL4aYGLOlD+Dvf4eZM6FjR3O77O9mBRQc+KDAIIAVtwiUdit4/1Guc9MZjx41+xwvuqjyU/aqkjXw0ksrX/biiytftuSPWmVU5QZ/4YWVLysSrB57DF54wdzevBnGj4dHHoEVK8ztWbOqdDk1mvtg0acTuIojt/AQs+87z+FhCk+x31aurJEqBYybbjL73T/91N81EZGakpFhthIA/Oc/cM018NxzZqvBF19U+XJqOfBB4w0Cl8VmwygoIDb0OADZRWZf987czhwtTCbOepRoaxZWSxHv3/MS4Cl16Jk2DZUfx2Apc6zsvreXq9R5VSxz/W8baAKseuQR2rZsSaNevTyUF5FaJSysdCzQV1/B7beb2wkJ5cfhVIKCAx9C1K0QsOq3b8+xH34gzmqOQD9pT+D9gw/x6dF7/Fwz/7uAQTTha7KK6vPVqFEA3Lpli38rJSLVq39/s/vgootg7Vp4/33z+Pbt5QcVV4KCAx/UchC4LvnHP/ioXz9ny8G+/Lbsz28JQLOIbeQ5osixx+IwfI81sFiqNpvBMMpHjJ7aEcqXqcwxD2U8vF5F17EUj8c4VNiEMMzR//M6dVKAIFKbvf46jB0L//43TJ8Oqanm8S++MKcJV5GCAx805iBwRcTHAzhbDgAchNIpejX/r9kYf1UrIMT8ZAOHOQ7DdQ7HofR0dTGI1FZNm8Lnn5c//vLLZ3Q53f580GyFwGax2agXegQrpVPlrm0w0481CgwhFjtQPmtkSReDiNRyeXnmOAPXRxUpOPBB3QqBbcjHHxNicdA5xkwN2jpyI52i1/i5Vv4XgpmDwFtKaRGphU6fhgceMHOYREebeQ1cH1WkbgUfFBwEtrgWLQAY3fhZvjm5gf7xn6m1B1gb1pV1uX3ZH5JAmVRHdS/ng0hd8fjjZk6D6dPhD38wpzD+9hu8+SY8/3yVL6fbnw+arRD4hn3zDQm2Qwxt+E8a2A76uzoB4ePIK7mbf/KTtU255w6lp/uhRiJS7T77zFwD5YYbIDTUXKXxz382cx3MnVvlyyk48EEDEgNfZEICEWXT+9ZxNouZgrjQKL+Ge+a339Z0dUSkJhw7Zi5QBmZq8pKFxvr3h//+t8qX0+3PB3UrBIfr//tfBQguYi1ZxHESu6N898FRTWcUqZ1atjSzJAK0bw8ffGBuf/YZ1KtX5cvp9ueDuhWCx/X//S/DvvkGorynUa4rnj75d05SjwsLfij3nN3bwkYiEtzuvBM2bTK3n3zSHHMQEQEPP2yuu1BFGpDogwa3BZfIhARuraN96p9ddx3ZO3YApemV7R4Wo7KWXSZZRGqHhx8u3R482FwCff16aN0aLrigypdTcOCDuhUkWNRr3dolODCnMnoKDsITEmq0XiLiJ82amY8zpNufDwoOJFhYXH5YnXkOPMT+Fv1Qi9RODz4Ir75a/vjrr8O4cVW+nP5S+KDZChKULN67FUSklvrPf8xFl8rq189cb6GKdPvzQV+yJBiF+OhWEJFa6uhRKF5zxk1cHBw5UuXL6fbng4IDCUYlAxKVPlmkDmndGhYvLn/8iy9K8x9Ugb5a+KDZChKMdkak8F3BJey3pPi7KiJSU8aPN9dWOHwYLr3UPLZsGbz0ErzySpUvp+DABwUHEiwsLj+sK+pfwHNZs0hhJ7f4KCcitchdd0F+PkyeDJMmmceaNzfXWrj99ipfTsGBD+pWkGARlZzs3LZZCgDP3Qqu5USkligqgnnz4Prr4Y9/NFsPIiMhJuaML6nbnw8KDiRYhLkMRAojDytFFDnKx/5hngYsiUhwCw2F++6DkgyoiYlnFRjAGbQcHNm0id++/hpHYSFJvXuTMmDAWVUgkCl9sgSLghMnnNt3ZK7g/2HjFuMdn+VEpBa58ELYsOGsEh+5qlJwsHfJEv736KNYw8Ox2Gz8NGcOXcePp8Odd56TygQatRxIsMg5WLpcdWmGxPLdCq7lRKQWGTsWHnkE9u2DHj0gOtr9+SqmUK5ScLDln/+k1Y030vPPfybEamXLzJlsmTHjjIODLTNn8uvSpWRlZGCNiCCxa1e6jh9PXIsWPs8ryMpi07Rp/PrVVxScPEl0Sgrdn3yS1IEDz+q6ZSk4kGBhGIZzO8THVEbXciJSi9xSPPz4wQdLj1ksYBjmv3Z7lS5XpeAgOyOD/i++SIjVXAq2/R138MPrr5N39OgZLZl7KD2dtiNGkNC5M0ZREZumTWP53Xdz9aefEupldT17QQHLx4whokEDBrz8MpFJSZzev5+w2Nizuq5H6laQIGQpzpBYhM35d0FEarmS5ZrPkSoFB0V5edhcBjlYw8KwhoVRlJMDZxAcDJoxw22/z+TJfDRgAMe2bqVRz54ez9n18ccUZGXxu7lzCbGZ34xiUlPP+rqeqOVAglFJt4KBBTuhhFLk5xqJSLU7R2MNSlR5QOLO//zH7du3Ybeza8ECwuvXdx5rd9ttZ1SZwuxswPeI6n0rVtCwSxfS09L4bcUKwuvXp/mQIXQYPdrZolHV6+bn55Ofn+/czz51ClBwIMGpJEMiQJERRqhFwYFIrfTpp3DVVWCzmdu+XHttlS5dpeAgunFjfimzgENEw4ZkfPZZ6QGL5YyCA8PhYP0LL5DYrRv12rTxWu70vn0cXLOG5ldfzSXTp5O9dy/pkybhKCqi89ixZ3TdKVOm8Oyzz5a+p+J2WAUHEoxKggMDC4UOGxH6ORapOdnZ8PTT8PHHcOgQdOsG06ZBr17ez/n6azPD4ZYt0KQJ/PnPMGpUxa913XVw4AA0amRue1PdYw6GLl1apYtXRXpaGid37ODyd8pPv3JlOBxEJCRw4cSJhFitJHTqRM7Bg2ybNctjcFCZ606YMIHx48c7948dOECLdu3O/M2I+NHhqEj+lzeYQzTS+goiNW3MGPjxR3jnHUhJgXffhcGDYetWKNMFDphjBYYMMfMUzJ1rpjweMwYaN4YrrvD9Wg6H5+1zoFq/Uyy87jpOZ2ZWWC49LY39K1dy2axZFWZwi0xMJLZ5c7cuhPhWrcg7cgR7QcEZXTc8PJy4uDjnI7Z4XIWXXgqRgLYhOZmbLe+zjl4UGWH+ro5I3ZGbay6dPHUqDBxoLoY0caL57/Tpns/5xz+gRQtzDYQOHcz1EW68EV5+uUarXla1pk8+/dtvGEXe+zsNw2Dd5MnsW7aMy2bPJua88yq8ZsNu3dizcCGGw4GluN0/a/duIhMTsYaFnfF1PVESJAlWoZZCCoxIChUciJwT2dnZkJXl3A8PDyc8PNy9UFGR2XwfEeF+PDISVq3yfOHVq82WBVdXXAHjxlW9kqdPw8qVsHcvlPmy7DbFsRL8urbCukmT2L1oEQNfew1bVBS5hw8DYIuNJbT4w/12wgSiGjWi68MPA9Bm+HC2z5vH+ilTaDtyJNl79rB15kzajhxZpetWhsYcSLAKda6v4B4c5FSiJU9EyuvQsSPZLvvPPPMMEydOdC8UGwt9+5oLH3XoAElJMH++GQC0bu35wgcOmOVcJSWZgUhurhlYVMaGDfD730NOjhkkJCTAkSMQFWWOSQim4GDH++8DsKzMwIs+aWm0HDYMMP+Yua4kF924MYNmzOD7F15g0bBhRCUl0e622+gwenSVrlsZCg4kWLj+jlyekcEheypD+aTcmINjmzfjsNu9zuwREc+2bd1KrMuYgXKtBiXeecdcITE11eyb7t4dRoyA9eurt4IPPwzXXGN2U8THw3ffmbMYbrsNHnqoypfza3Bw65YtFZYZPHt2uWOJXbtyxfz5Z3XdylBwIMEiOiXFuW01DMIpwIJRrlvBUVjIofR0kvv0qekqigS12NhY4uLiKi7YqpXZtH/6tPntv3FjGD4cWrb0XD45GcqmNT94EOLiKt9qALBxI7z5pnnjslrN5ZtbtjTHP9xxh7liYxXo9ueLxhxIkEjq3dvjcU8DEg989111V0dEoqPNwOD4cViyBIYO9Vyub19zhoKrpUvN41Vhs5V+o23UyBx3AGYrwq+/Vu1a+LnlINCp5UCCRVKvXuayrS4DgEvyHJRVmRlEInKGliwx1zNo1w5++QUeewzat4eSNYgmTIDffoN//cvcv+8+eP11ePxxszti+XL44ANYuLBqr9utG6SnQ5s2cPHF8Je/mGMO3nkHzj+/ym+jWm9/Fz7zzBmtuRAoFBxIsAixWmngYdW1IrT4kkiNOnkS7r/fDAhuvx369zcDhuJ0/2Rmln6rB3Ma48KFZmtBly7mlMZ//rPiHAdlPfec2VIBMHky1K8Pf/wjHD5sdjdUUZVaDn5+991KlSvJkNj86qurXKFAYlFwIEEkunFjjpY5VuTQVEaRGnXzzebDGw/j6LjkEnO2wdlwXTeoUSNYvPisLlel4OCnkmYQX84wfXIgUp4DCWYGFuU5EKkrLr0UPvoI6tVzP56VZaZWXr68SperWvrkL7+s0sWDnboVJBgdjYhgR2FHjtkTaKrgQKRu+Prr8omPAPLy4Jtvqny5Kt3+Vtx3HwXZpWkgtsycSYFLxqj8Eyf4/JprqlyJQKWWAwlG6Skp/ClqSnH6ZK2tIFKr/fCD+QBz/YaS/R9+MLsq3nrL85oOFahSy0HmqlU4XCKTLTNn0uzKKwkrnvvpKCoie/fuKlciUKnlQIKVzUuGRBGpZbp2NVddtFjMroWyIiPhtdeqfNmzm8pYy0c9KziQYGULMYMDjTkQqeUyMsx7ccuWsHYtJCaWPhcWZg5OPIOMqMpz4IOCAwkmJVMUB2dkcE3e7VxDAoUeuhU0lVGkFmnWzPzXn0s2W0qaLtwPnsv6BBRNZZRgkn/UnMhocziINU4TShF2D8FBSTkRqUXmzHFPnPT44+bMhX79YM+eKl+uSi0HhmHw3VNPEVK8NLK9oIC1zz5LaFQUgNt4hNpALQcSTOz5+eWOFXrIc+CpnIgEueeeg+nTze3Vq82si6+8Ap9/bi7K9NFHVbpclYKDlmVyQ7fwkOSoxbXXVqkCgUzBgQSTkqC9hIHF44DEsuVEpBb49dfSZaEXLIAbb4R77oGLLjKTLFVRlYKDPpMnV/kFgpm6FSTYaUCiSB0REwNHj0LTpvDllzB+vHk8IgJyc6t8OQ1I9EF5DiSYlHTruf7YespzUNu6/0QEuPxyGDPGXIBp+3b4/e/N41u2QPPmVb6cvhv7oOBAgom6FUTqsL//3Vzm+fBh+M9/oGTRw/XrYcSIKl9OLQc+aMyBBKMT4eEccSSSVRiHxbD7uzoiUhPq1TMHIZb17LPu+2PHwl//Cg0b+rycbn8+KDiQYFIyC+Hb887j/xJvZz09PbYcaLaCSB327rvmYkwV0O3Ph1qcwkFqIXtennM71FIIeB5zcMp1LXkRqVsqmQRNwYEPajmQYGIUFTm3S4IDT7MVCo4fp0iDEkXEB93+fNBURgkmJQugXbZ7N89mzqQv31LkIQkSwI5582qyaiISZHT780EtBxJMUi+7DICIoiLq2U8TRoHXPAcH0tNrsmoiEmR0+/NBLQcSTNqNHFnumKcxBwA5Bw5Ud3VEJIjp9ueDWg4kmISGhRESHe3cN/MceA4OilwGL4pIHXLbbVDcBemLbn8+6MORYGN1SXBkYPHarVBw8mRNVUlEasKsWfDhh+WPf/ihuWJjienTK8xxALr/+aSWAwk2drt70iNPeQ48lRORIDdliuebfqNG5oqNVaTbnw8KDiTYWBwO57avbgXXciJSC+zdCy1alD/erJn5XBXp9ueDggMJNobFQnZYGIfDYjhNtNeWA0MZvkRql0aN4Icfyh/ftKl0nYUq0NoKPig4kGBj2O38t2lTThY1YMP27mCYCdHKxgKOM1jCVUQC2IgR8OCDEBsLAweax1auhIcegltuqfLlFBz4oOBAgk1JlsRQS2kGRDs2Qil0L1hURFFBAaFaoVGkdpg0CXbvhssug9DiW7vDAbffrjEH55ryHEiwCSluIrC5BAfexh38NHt2TVRJRGpCWBi8/z789BPMnQsffQQ7d8Lbb5vPVZFaDnxQcBDAiorg1lvNX4SyNmwAq9XcfvxxWLzY+3VWr4aS3ADPPAMff+y97PLlpaOBp0yB+fO9l124EJo0MbdfecX8BfXmP/+BNm3M7TffNNdl9+bdd+GCC8ztOXPgpZfcnr4qI4P4U6fIttl4jfV8Tw8KHTYiPPwsb5s3j/Pvucf7a4lI8Gnb1nycJQUHPqhbIYD9+KPnOb1l7d0Lmzd7f9511P6+fb7LuixsxP79vsu6Lmx04IDvsq4JiQ4d8l02J6d0+8iRcmXji/+NKSzkBLHm5R3RxFI+r0Hh4cPeX0dEAt/48ZUv+7e/VenSCg58CNGA7sBVMk+/YcPy3+Bdo7qnnoIxY7xfJzKydPuRR8xBPd7Ur1+6ff/9MHSo97KNG5dujx4Ngwd7L+s6/WjkSOjb13vZDh1Kt2+8Ebp0cXvaXljI1/fdx+mwME7ujoUiyLInYBSEsOlUf8JDcomxniAy5DQAX36WRXhxtjRPK7lWcnVXwPMS55U5VpPn2WzQtWtpw5JIUNuwodoureDABwUHASw6Gi66yJy+4+vG27mz+aiMjh3NR2W0b28+KqNNm9Jug4q0bGk+KqNZM/PhwgocjIkBIDb0GEeLGvPjqb58cuQe8o2o8te4tnIvVZtcWv997mnzN67+5BOik5P9XR2RM7diRbVdWsGBD+pWCGDt28OqVf6uRUCLsx4H4IPD4wBIDttNQ9tvnLbHk++I9HGmyWKpfLOBYVQukjYoW678eeXLeDjm4fU81db1vMOF5hiQ3bmdsJ86xSeXXYY1IoLh69dXWG+RgHXXXRWXsVjgrbeqdFkFBz4oT4wEI2t0NPbTp4kLPeo8ZsHB+CZ/IjV8lx9r5l8/53Tjr7vf5ZS9dNEZe14e7/fooQBBgtfs2WYLYrduVesHrICCAx/UciDBqM9f/8r/HnmEFJdAoEfssjodGACEWcyBn4VGuNtxe14epw8cUBeDBKc//tEcd5WRAXfeaa66mJBw1pfV7c8HBQcBbMMGc9Bfr17+rknAaXL55QCcH/0dABbsXNdwhj+rFBDCQvKB8sEBwKIbb6zp6oicG3//O2RmmtO2P/vMnEJ9882wZMlZtST4teVgy8yZ/Lp0KVkZGVgjIkjs2pWu48cT52nxCBcFWVlsmjaNX7/6ioKTJ4lOSaH7k0+SWpIyEtg+bx7bZs0i98gR6rdrR4//9/9oWDI/vJIUHASwwkJzimB4+T/0dV2I1UrncePglVd4sukYbJZ8WkRu9Xe1/M5mKQ4OHOUTwhQeP17T1RE5d8LDzZlWI0bAnj1mV8PYseb06y1boHiQclX49fZ3KD2dtiNG8Lv587l05kwcRUUsv/tuilzncpdhLyhg+ZgxnN6/nwEvv8zVCxdy4bPPEtWokbPMni++4PupUzl/7Fiu+vBD6rVrx4p77yXv6FGv1/VESZAC2DnsW6uNOt99t/lvzGraR3/v59oEhpKWgwIjovyPj74JSG0REmIOmDOM0infZ3KZc1ilKhs0YwYthw2jXuvW1G/fnj6TJ5OTmcmxrd6/5ez6+GMKsrIY+OqrJHbvTkxqKkm9elHfZVrZT3Pm0OrGG2k1bBjxrVtz4TPPEBoRwc6PPqpS/UI0FzrwadSoV7du2eLvKgSUkpYDgxDsuKeUjj7vPH9USeTcyM83xx1cfrmZHXHzZnj9dTMJ3Bm0GkCADUgszM4GICw+3muZfStW0LBLF9LT0vhtxQrC69en+ZAhdBg9mhCrFXtBAce2bqVj8TcnAEtICMl9+nBk0yaP18zPzyc/P9+5n33qFACh+jIR+BQc+HTrli3M69TJ39UICCUDEgEKHOGEWksXowqN8pADQiQYjB0L771njjW46y4zSChJ834WAiY4MBwO1r/wAondulHPR8KY0/v2cXDNGppffTWXTJ9O9t69pE+ahKOoiM5jx5J/4gSG3U5EmfWrIxo0ICsjw+M1p0yZwrPPPltatviGExown46Uo26FSrt1yxb2rVjBfx94wN9V8atQS2kwYA5KPOXct2rsigSrf/wDmjY1k6etXGk+PKliy3nA3P7S09I4uWMHl7/zjs9yhsNBREICF06cSIjVSkKnTuQcPMi2WbPoPHbsGb32hAkTGO+So/rYgQO0aNdOKVaDgVoOKuW8QYO4dcsWDq5Zw7LKJE2phSwWcynrIiOMQsN9UGJoRISfaiVylm6/vVr+DgZEcJCelsb+lSsZPGcOURXMNY5MTMQSGkqIy507vlUr8o4cwV5QQHi9elis1nKDD/OOHiXCS1NLeHg44S7fHAqLuxWsAfHpiEdRUWbSj9RUf9ckqCT17l2nxiJ88+ij/PrFF879kuCg7DLW4edgXriIX1TT0ut+7VU3DIP0tDT2LVvGpW+/TUwlBgU17NaNU3v3Yrisppe1ezeRiYlYw8KwhoWR0LEjB7/7rvR1HA4OrFlDwzKL1FREwUEAu+AC+P57c16viBeWMrMQbBZztcwih81nOZG6zq+/EesmTWL355/Tb+pUbFFR5B4+TO7hwxS5LGH77YQJbHz5Zed+m+HDyT95kvVTppC1eze/rVzJ1pkzaeOyml77O+7gl3//m10LFnBy507S//pXinJzaTlsWJXqZ9XfC5FaJbQ4OCjbrSAi7vz63XjH++8DsGzUKLfjfdLSnDfynMxMLC79KdGNGzNoxgy+f+EFFg0bRlRSEu1uu40Oo0c7yzS76iryjh3jh9dfJ+/IEeq3b8+gN98ksoojOEM15kCkVikZlFik4EDEJ78GB5Xp+xzsoT8lsWtXrpg/3+d57UaOpN3IkWdaNUCzFQLa99+bKUKbNYNly/xdGwkSzm6FMmMORMSdbn8+aLZCAMvLg507NVtBqqSk5UDdCiK+qVfdB6u+XAQu5TmQM1DacuAeHORkZvqjOiIBS8GBD7HR/q6BeFUSHKjlQHywlPn58NZycGzzZhxnkYdepLZRcOBDbKy/ayAiZyM6JcVtPzTE85gDR2Ehh9LTa6xeIoFOwYEPrVv7uwbilboVpBKSevd22/c1IPGAS24UkbpOwYEEN3UriA9JvXphsZUGAs48B47yAxJzDhyosXqJBDoFBxKcIiPNpUmbN/d3TSSAhVitpFx8sXPfV56DyKSkGquXSKBTcCDBqWdP+PlnWLLE3zWRAOeaNt3mDA7Kdyv4WipepK5RcCAitVrBiRPObV/pk13LidR1Cg5EpFbLOXjQue0tz0HZciJ1nYIDCU7r1pkrM153nb9rIgHOcJnZYvWRIdHQDBgRJ6VPluB0+jRs3gxFRf6uiQSRkpYDu9ZWEPFJLQcSnPQtT85ASRKkQgUHIj4pOJDgpjwHUgU2Ldks1cluh6efhhYtzOnWrVrBpEkVf5mZOxe6dIGoKGjcGO66C44erZk6e6HgQETqDOfaCh6SIImctRdegOnT4fXXYds2c3/qVHjtNe/n/O9/cPvtMHo0bNkCH34Ia9fC3XfXXL090JgDCU7qVpAz4Gsqo8hZ+/ZbGDoUhgwx95s3h/nzzZu9N6tXm+UefNDcb9EC7r3XDCz8SC0HEtzUrSBVoAGJcqays7PJyspyPvLz88sX6tcPli2D7dvN/U2bYNUquOoq7xfu2xd+/RUWLTK/9Bw8CP/+N/z+99XzRipJwYEEp/BwSE0FpbyVKlDLgZypDh07Eh8f73xMmTKlfKEnn4RbboH27cFmg27dYNw4GDnS+4UvusgcczB8OISFQXIyxMfD3/9ebe+lMtStIMGpXz/Yt8/ftZAgE+ojfbKIL9u2biU2NdW5Hx4eXr7QBx+YN/p586BTJ9i40QwOUlLgjjs8X3jrVnjoIfjLX+CKKyAzEx57DO67D956q1reS2UoOBCROsOmlgM5Q7GxscTFxfku9Nhjpa0HAJ07w549MGWK9+BgyhSz9eCxx8z9Cy6A6GgYMADS0szZC36gbgURqdVcMx+GOtMnl285UIZEOWs5ORBS5rZqtYLDUfVzwK8DrxUcSHBKTzcH8vzhD/6uiQS4fJf54rYQ73kO8v08r1xqgWuugcmTYeFC2L0bPv4Y/vY3GDastMyECebURddzPvrInAK5a5c5tfHBB+HCC83uCD9Rt4IEp5Mn4bvvzKhbxAe7y6jyUB9rK9g9jT4XqYrXXjOTII0dC4cOmTf3e+81xxOUyMyEvXtL90eNguxsMzfCI49AvXpw6aV+n8qo4ECCk5qApZKsLgPHnN0KHpIgWT0NMBOpithYeOUV8+HN7Nnlj/3pT+YjgKhbQYKb8hxIBcITEpzbNh9jDlzLidR1Cg5EpHZzCSBL8xx4mMqoQFPEScGBBCd1K0gluQ1IdLYclO9WOLljR43VSSTQKTiQ4KZve1IBR0GBc9vXgMSsnTtx2O01Vi+RQKbgQIJTaCjUrw8VJSWROi/aJatdSbeCgRWHUebPn8PBwTVrarJqIgFLwYEEp0svhWPHYOVKf9dEAlyLoUOd2yV5DsBz68GuTz6pkTqJBDoFByJSqyX37u3cLmk5AM/jDrK1XocIoOBARGq5EKuVyOKuBStFzuOeWg4ceXk1Vi+RQKbgQILT2rUweDD88Y/+rokEgYgGDQBz/KrNYmZC9JTrwBKmBZlEQBkSJVgdPQrLlsHx4/6uiQQBw23GQgGFRjhFDg+LL7mUE6nL1HIgwUl5DqQKXFsEfC3brJYDEZOCAwluynMgleBwWVTJavG+MqNDiy+JAAoORKQOsLt0F/hqObCrW0EEUHAgwaqkW0EtB1IJRbm5zu1QZ8tB+TEHruVE6jIFByJSp9hCvK+vICImBQcSnEJCICzMfIhUwHAZwBqK9/UVDA10FQH8PJVxy8yZ/Lp0KVkZGVgjIkjs2pWu48cT16KF13N2ffwx3/35z27HQsLCuGXDBud+4enTbHz5ZfYtX07BiRNEp6bS7rbbaDN8eLW9F6lhV10FGjwmleS2+JKz5aB8t0LhiRM1VSWRgObX4OBQejptR4wgoXNnjKIiNk2bxvK77+bqTz8lNCrK63m2mBiu/vzz0gNl+p2/nzqVg2vW0O/554lOTeXA//5HeloakYmJnHfppdX1dkQkQLm2CJQu21w+OHDk51NUUECoWqSkjvNrt8KgGTNoOWwY9Vq3pn779vSZPJmczEyObd3q+0SLhcjExNJHw4ZuTx/ZuJEWQ4eSdOGFxKSm0vrmm6nXrh1HN2+uxncjIoEqzOXLRsn6CoUOzwHAz//6V43USSSQBdSYg8LsbADC4uN9livKyWHB4MEsuOwyVj7wACd++cXt+YZdu/LbihXkHDyIYRgcXLOG7N27aXzRRR6vl5+fT1ZWlvORferUuXlDUn3WroVrr4VHH/V3TSQINOjSxbkd6iPPAcAvCxbURJVEAlrABAeGw8H6F14gsVs36rVp47VcbIsW9J40iYtfe42+zz+P4XCwdORIcg4ccJbp+dRTxLdqxYJLL+W9rl1Zce+99Pzzn2nUs6fHa06ZMoX4+Hjno0P79uf8/ck5dvAgfPYZrFrl75pIEGh1/fXObZvF+4BEgNOZmTVSJ5FAFjBrK6SnpXFyxw4uf+cdn+USu3YlsWtXt/3Pr7mGHR98QJcHHwRg+9y5HPnhBwa+/jrRKSkcWreOdWlpRDVqRHLfvuWuOWHCBMaPH+/cP3bgAC3atTs3b0yqh0aVSxV4WrbZ05gDQANdRQiQ4CA9LY39K1cyeM4copKTq3RuiM1G/Q4dOLV3LwBFeXlseuUVBrz6KqkXXwxA/XbtOPHzz2ybNctjcBAeHk54eLhzv1DdCsFDSZCkEkKsVud26YBEL4MOFXiK+LdbwTAM0tPS2LdsGZe+/TYx551X5Ws47HZO7thBRGKiec2iIhxFRVhC3N+aJSREc5hrE/1fyhkKraBbAcy/KyJ1mV9bDtZNmsTuRYsY+Npr2KKiyD18GABbbCyhEREAfDthAlGNGtH14YcB2PzGGzTs0oXYpk0pyM5m29tvc3r/flrfcIN5bkwMjXr1YsOLL2INDze7FdLTyfj0U7o//rh/3qiIBIwKuxWAfStW0HTw4JqqkkjA8WtwsOP99wFYNmqU2/E+aWm0HDYMgJzMTCwuTccFWVmseeYZ8o4cISwujoROnbh87lziW7d2lrno//6PTa+8wrdPPEHByZNEp6RwwYMP0lpJkGoPra0gVWQJDcUoKiLCehqAXHuM17KrHnqopqoVcC57+22SXMZoSN3k1+Dg1i1bKiwzePZst/0eTz5Jjyef9HlOZGIifSZPPpuqiUgtU69DB45v3kyc9TgAWfb65DkiWXliGNlFCcSFHiMqJAurxXuXgsGZBaMWPHWDGRWWsVgq7j7zeF65YxWXSQrbS5OIX1h2111A5f4+S+0VEAMSxYevvoIJE8wR1M8/D7//vXl8+XIYN877ec88A8VdLXz7Ldx3n/eyjz8Ot91mbm/YAHfc4b3sn/4Ed99tbv/0E9x8s/eyY8ZA8QwSdu828xJ4M3IkPPGEuX3wIFx+ufeyN9wATz8NhYXey4iUMejNN/moXz/iQo8BkFXUgBf3vsG2nAv9XLPAEEIRr7S5ggY2c1r4vE6dFCDUYQoOAt3bb8O6dea2a973rCzwlfHx2LHS7VOnfJc9cqR0OyfHd9nicSEA5OX5LnvwYOl2QYHvsq5zy4uKfJft08dceCkkYNJ0SBCIKE6uFmc1fze253YHwEohA+p9wml7HDmOWAzD88+Vx2//lfhmj1G+taFsC0RlWiQ8lfF4nlHxtcse25HbDQehZOY3cwYHAAfXrFEXQx2l4CDQlYyafuABcF0Xol8/WLrU+3kdOpRu9+jhu2zbtqXbnTr5Ltuqlfu2r7LNm5dup6b6LtukSel2gwa+y6amen9OxAdrTAxx+cfcjg1OeI/bk5/3U40Cw18z/sXPuT3IccS5HV92111qPaijFBwEupKBd+3bg2sOiEaNoLKjqRs0qHzZevUqXzY2tvJlo6MrXzYiovJlRapgyEcf8dHlQ9yOXZUwx0+1CRy2kDzA9/ROqVvULisidUZMaiqhlkK6xXwNwGX13yMxTOmSw4qndxY4IvxcEwkUajkIdJqyJ3JO3bplC3kdevFzTnc6Ra/xd3UCgi3ETBldaIS7P2Gx4LDb3TJMSt2gloNAFxYGkZGgX06Rc+aubel0iVnlzJZY14VZzOCgwFEmOChe1VbqHgUHgW7uXHMGwb33+rsmIrWKBtqVslm8tBwAuz75pKarIwFAwYGI1Fm3btnCEN38CHN2K5QfkHjqt99qujoSADTmQETqtPjWretkK8Jn111H9o4dQOl6E54GJFrDNIOhLlLLQaB77jkYMgQWLfJ3TUSkFqnnsh6NzcdiVOEJCTVWJwkcCg4C3fr1ZmCwd6+/ayIitYjrsvYlLQeeuhUsykRaJ+l/PdAZlUjPKiJyFkpmbfhaxlrqFgUHwUJ5DkSkmoT66FaQuknBQaBTy4GIVDNbSElwoMGHYlJwICJSx5V0K2htBSmh4CDQKX2yiFQz52wFh4IDMSk4EBGp4zQgUcpSEqRAt2CB+a/GHohINfE1lVHqJrUcBAt1K4hINSlNgqTgQEwKDkRE6rjSlgN1K4hJwUGgmzoVbr4Zli/3d01EpJYqHXOglgMxKTgIdKtWwYcfQkaGv2siIrWUr7UVpG5ScBDoNBBRRKpZaIjyHIg7BQfBQgMSRaSaaECilKXgQESkjnNmSFQSJCmm4CDQqVtBRKpZyWwFOzb9yRFAwUHwULeCiFSTkm4F0KBEMSk4EBGp40JdggMNShRQ+uTA9+9/g90OYfqFFZHqUTLmAEoGJZ527udkZvqhRuJvCg4CXUSEv2sgIrWQxaWrMsRiYKUQO7Zy3QrHNm/GYbcTYrXWdBXFj9StICJSB0WnpLjte8uS6Cgs5FB6eo3VSwKDgoNA99JLMGqUmSlRROQcSerd223fFuJ9ZcYD331XI3UKenY7PP00tGgBkZHQqhVMmlTxrLP8fHjqKWjWDMLDoXlzePvtGqmyN+pWCHRffQWLF8OgQdC/v79rIyK1RFKvXhAaCkVFgEuuAw/BwWmNO6icF16A6dNhzhzo1AnWrYM774T4eHjwQe/n3XwzHDwIb70FrVtDZiY4HDVXbw8UHAQ6TToWkWoQYrXS4IILOPr994BLrgMPUxkN/R2qnG+/haFDYcgQc795c5g/H9au9X7O4sWwciXs2gUJCaXn+Zm6FYKF8hyIyDkWlZzs3C7JdVDoUHDgSXZ2NllZWc5Hfn5++UL9+sGyZbB9u7m/aZPZJXzVVd4v/Omn0LOnuQJvaiq0bQuPPgq5udXzRipJLQciInVU/tGjzu1QH+sruJarqzp07Ei2y/4zzzzDxIkT3Qs9+SRkZUH79mC1mmMQJk+GkSO9X3jXLjOAiIiAjz+GI0dg7Fg4ehRmzaqOt1IpCg4CXUnErpYDETnH7C7ffn2NObB7+pZcx2zbupXY1FTnfnh4ePlCH3wAc+fCvHnmmIONG2HcOEhJgTvu8Hxhh8P8+z53rjk2AeBvf4Mbb4Q33jAHNvqBggMRkTrK6nKDK53KWL5bwerpRljHxMbGEhcX57vQY4+ZrQe33GLud+4Me/bAlCneg4PGjc3uhJLAAKBDB/OL4b590KbNuXkDVeTX4GDLzJn8unQpWRkZWCMiSOzala7jxxPXooXXc3Z9/DHf/fnPbsdCwsK4ZcMGt2Mnd+5k49/+xqF163DY7cS3bMmAV14pN7c3aKjlQETOsbD69Z3bvpZtdi0nPuTkQEiZoXxWq++ZBxddBB9+CKdOQUyMeWz7dvM6551XfXWtgF+Dg0Pp6bQdMYKEzp0xiorYNG0ay+++m6s//ZTQqCiv59liYrj6889LD5S5cWbv3cvSP/yBVtdfT+cHHsAWHc3JX34Jzuj3/fehoABiY/1dExGpZQqOH3dul4w58NSt4FpOfLjmGnOMQdOmZrfChg1mF8Fdd5WWmTABfvsN/vUvc//WW81cCHfeCc8+a445eOwx8xw/dSmAn4ODQTNmuO33mTyZjwYM4NjWrTTq2dP7iRYLkYmJXp/e9OqrpAwcSLdHH3Uei23a9Kzr6xf16vm7BiJSS3kac+Cp5UBjDirptdfMJEhjx8KhQ+ZYg3vvhb/8pbRMZibs3Vu6HxMDS5fCn/5kzlpo0MDMe5CWVvP1dxFQYw4Ks82xoGGufS8eFOXksGDwYDAM6nfoQJdx46jXujUAhsPB/pUr6XDXXSy/+26O//QTMampdLz7bppcdpnH6+Xn57tNS8k+deocvSMRkcAV4rKgW2mGxPJjDkK08FvlxMbCK6+YD29mzy5/rH17M0AIIAGT58BwOFj/wgskdutGPR8DMGJbtKD3pElc/Npr9H3+eQyHg6UjR5Jz4AAAeUePUpSTw9a33iKlf38unTGD8y67jG8eeoiDXvKDT5kyhfj4eOejQ/v21fIez8hrr8H994Nym4tINSqdylg+OJC6J2CCg/S0NE7u2MFFL77os1xi1660HDqU+h06kNSrFwOnTSO8fn12fPABUJqs47xBg2h/xx3U79CBTnffTerFF/PL++97vOaECRM4efKk87Htp5/O7Zs7G59+ak5n2bHD3zURkVrGtbvAOSDRoW4FCZBuhfS0NPavXMngOXPcMnZVRojNRv0OHThV3IcTXq8eltBQ4lu1cisX17Ilh4vThJYVHh7uNme1MJC6FZSZTESqiT0vz7kdajHXWPCY58ClnNQNfm05MAyD9LQ09i1bxqVvv03MGUzbcNjtnNyxg4jiAYrWsDAanH8+Wbt3u5XL3rMneKcxgqYyisg55ygsdG77ypDoWk7qBr+2HKybNIndixYx8LXXsEVFkXv4MAC22FhCIyIA+HbCBKIaNaLrww8DsPmNN2jYpQuxTZtSkJ3Ntrff5vT+/bS+4QbndTvceSf/e+QRGvXoQdKFF7J/1Sp++/prLvNjKsozppYDEakmrn9dbD7GHOivUN3j1+BgR/EYgGWjRrkd75OWRsthwwDIyczE4vKtuSArizXPPEPekSOExcWR0KkTl8+dS3zxbAWAJoMH0+uZZ9gycybrp0whtnlzBrzyCo169Kj+NyUiEiRCbKWBgPIciCu/Bge3btlSYZnBZaZ99HjySXo8+WSF57W6/npaXX/9mVYtcGhtBRGpLkVFzk1f6ZMLjh+nqKCAUE1prDMCZraCiIjUrDCXtQJsPloOALa/+26N1EkCg4KDQDdvHmRkwNVX+7smIlLLpLokhgsN8Z3nYE+AJemR6qXgINAlJ0Pz5qULcoiInCPtRo50btt8pE8GOLVvX43USQKDggMRkToqNCzMXDUQsBYHB4UekiAB2F3GJ0jtp+Ag0P3jH/D44/DDD/6uiYjUQiHF08Z9LdkMgN1eU1WSAKDgINC99x783//Bzz/7uyYiUgs5im/6vvIcuJaTukHBgYhIXVZ80/eVIdG1nNQNCg4CnTIkikh1Kv4bUzqV0cuqjEqhXKcoOAgWSoIkItXIWsFsBYD8QFqUTqqVgoNAp5YDEalG1uKshxUlQQL45tFHa6RO4n8KDoKFWg5EpBrENm0KQGiI9/TJJQ6tWlUjdRL/8+vaCiIi4l8XPPgg/x07tuKpjACGwbxOnWqoZoGhsKCAO/xdCT9QcBDo5syBnBw47zx/10REaqGU/v2B0oWXvCVBkrpFwUGga9HC3zUQkVospDhDYmgFeQ6kbtGYAxGRui401NmtYMeGw9AYp7pOwUGge+stmDgRtm3zd01EpJbqNGYMkSGl0xRzHbF+rI0EAnUrBLq334Zvv4UuXaBDB3/XRkRqoU733suWf/yDiJBT5DliyCqqz5bTvdl0qj+RIaeJsZ4gPCTXw5nlWxgMD8eCWWjRCe5gir+rUeMUHAQ65TkQkWoWGhZG4yFDiN9xjDxHDIuP/YGvjo/wd7UCQiz7mK3gQAKW8hyISDUaNHUqsa9v5GBhU2dg0CN2GclhezhtjyPfEYkF319WLJba92UmzHEEsv1di5qn4EBERADo9Luu/PKJuR0VcpI/pjxJpDXHv5Xys8KCAgUH4i70ssvA5mFaT5MmsHBh6f7w4d4HDDZsCMuXl+7fcQds2OC5bHQ0rF5dun/ffbBxo7mtlgMRqWadO8MnxcHB7xLm1/nAoC5TcOCD5aefPD+RU+YXZscO2LzZc9nkZPf9nTu9l40tM0I4IwNyiwcBNWvmu7IiImdp6FCYMgUaNIC02T3YpKUU6iyLYWjEW1lH9++nYWoqR997j4QGDcoXiIyEiy4q3V+zBrK9tDuFhcHAgaX76elw8qTnslYrDBpUuv/993DsmJkdsX37qr8REZEqysgwv6c0bOjvmgSGrH37iGvShKxffyWuDmWqVcuBD8aAAZCSUnHB3r0rf9FevSpftnv3ypcVETkHlJRVQEmQREREpAwFByIiIuJGwYGIiIi4UXAgIiIibhQciIiIiBsFByIiIuJGwYGIiIi4UXAgIiIibhQciIiIiBsFByIiIuJGwYGIiIi4UXAgIiIibhQciIiIiBsFByIiIuJGSzZ74HA4ANifmUlu8baIiNQ9pzIzgdL7Ql2h4MCDAwcPAnBBz55+romIiASCbQcPUq9pU39Xo8ZYDMMw/F2JQFNUVMS2TZuIT0wkJEQ9L5WVnZ1Nx44d2bp1K7Gxsf6uTlDQZ3Zm9LlVnT6zM2M4HJw+eJA23bphDa0736cVHMg5k5WVRXx8PCdPniQuLs7f1QkK+szOjD63qtNnJlWhr8UiIiLiRsGBiIiIuFFwIOdMeHg4zzzzDOHh4f6uStDQZ3Zm9LlVnT4zqQqNORARERE3ajkQERERNwoORERExI2CAxEREXGj4EBERETcKDioRX777Tduu+02GjRoQGRkJJ07d2bdunXO5w3D4C9/+QuNGzcmMjKSwYMHs2PHDrdrHDt2jJEjRxIXF0e9evUYPXo0p06dcivzww8/MGDAACIiImjSpAlTp06tkfd3rjVv3hyLxVLucf/99wOQl5fH/fffT4MGDYiJieGGG27gYHFq7RJ79+5lyJAhREVF0ahRIx577DGKiorcynz99dd0796d8PBwWrduzezZs2vqLVYLu93O008/TYsWLYiMjKRVq1ZMmjQJ17HN+lkrLzs7m3HjxtGsWTMiIyPp168f6enpzuf1mUlAMaRWOHbsmNGsWTNj1KhRxpo1a4xdu3YZS5YsMX755Rdnmeeff96Ij483FixYYGzatMm49tprjRYtWhi5ubnOMldeeaXRpUsX47vvvjO++eYbo3Xr1saIESOcz588edJISkoyRo4cafz444/G/PnzjcjISOPNN9+s0fd7Lhw6dMjIzMx0PpYuXWoAxooVKwzDMIz77rvPaNKkibFs2TJj3bp1Rp8+fYx+/fo5zy8qKjLOP/98Y/DgwcaGDRuMRYsWGQ0bNjQmTJjgLLNr1y4jKirKGD9+vLF161bjtddeM6xWq7F48eKafrvnzOTJk40GDRoYn3/+uZGRkWF8+OGHRkxMjDFt2jRnGf2slXfzzTcbHTt2NFauXGns2LHDeOaZZ4y4uDhj3759hmHoM5PAouCglnjiiSeM/v37e33e4XAYycnJxv/93/85j504ccIIDw835s+fbxiGYWzdutUAjPT0dGeZL774wrBYLMZvv/1mGIZhvPHGG0b9+vWN/Px8t9du167duX5LNe6hhx4yWrVqZTgcDuPEiROGzWYzPvzwQ+fz27ZtMwBj9erVhmEYxqJFi4yQkBDjwIEDzjLTp0834uLinJ/P448/bnTq1MntdYYPH25cccUVNfCOqseQIUOMu+66y+3Y9ddfb4wcOdIwDP2seZKTk2NYrVbj888/dzvevXt346mnntJnJgFH3Qq1xKeffkrPnj256aabaNSoEd26dWPmzJnO5zMyMjhw4ACDBw92HouPj6d3796sXr0agNWrV1OvXj16uqxGOXjwYEJCQlizZo2zzMCBAwkLC3OWueKKK/j55585fvx4db/NalNQUMC7777LXXfdhcViYf369RQWFrp9Xu3bt6dp06Zun1fnzp1JSkpylrniiivIyspiy5YtzjKu1ygpU3KNYNSvXz+WLVvG9u3bAdi0aROrVq3iqquuAvSz5klRURF2u52IiAi345GRkaxatUqfmQQcBQe1xK5du5g+fTpt2rRhyZIl/PGPf+TBBx9kzpw5ABw4cADA7UZWsl/y3IEDB2jUqJHb86GhoSQkJLiV8XQN19cIRgsWLODEiROMGjUKMN9LWFgY9erVcytX9vOq6LPwViYrK4vc3NxqeCfV78knn+SWW26hffv22Gw2unXrxrhx4xg5ciSgnzVPYmNj6du3L5MmTWL//v3Y7XbeffddVq9eTWZmpj4zCTh1Z/3JWs7hcNCzZ0+ee+45ALp168aPP/7IP/7xD+644w4/1y7wvfXWW1x11VWkpKT4uyoB74MPPmDu3LnMmzePTp06sXHjRsaNG0dKSop+1nx45513uOuuu0hNTcVqtdK9e3dGjBjB+vXr/V01kXLUclBLNG7cmI4dO7od69ChA3v37gUgOTkZoNxo+4MHDzqfS05O5tChQ27PFxUVcezYMbcynq7h+hrBZs+ePXz11VeMGTPGeSw5OZmCggJOnDjhVrbs51XRZ+GtTFxcHJGRkef6rdSIxx57zNl60LlzZ/7whz/w8MMPM2XKFEA/a960atWKlStXcurUKX799VfWrl1LYWEhLVu21GcmAUfBQS1x0UUX8fPPP7sd2759O82aNQOgRYsWJCcns2zZMufzWVlZrFmzhr59+wLQt29fTpw44fZNZvny5TgcDnr37u0s89///pfCwkJnmaVLl9KuXTvq169fbe+vOs2aNYtGjRoxZMgQ57EePXpgs9ncPq+ff/6ZvXv3un1emzdvdvuDvXTpUuLi4pyBWt++fd2uUVKm5BrBKCcnh5AQ9z8dVqsVh8MB6GetItHR0TRu3Jjjx4+zZMkShg4dqs9MAo+/R0TKubF27VojNDTUmDx5srFjxw5j7ty5RlRUlPHuu+86yzz//PNGvXr1jE8++cT44YcfjKFDh3qcKtWtWzdjzZo1xqpVq4w2bdq4TZU6ceKEkZSUZPzhD38wfvzxR+O9994zoqKignaqlN1uN5o2bWo88cQT5Z677777jKZNmxrLly831q1bZ/Tt29fo27ev8/mSqYy/+93vjI0bNxqLFy82EhMTPU5lfOyxx4xt27YZf//734N+KuMdd9xhpKamOqcyfvTRR0bDhg2Nxx9/3FlGP2vlLV682Pjiiy+MXbt2GV9++aXRpUsXo3fv3kZBQYFhGPrMJLAoOKhFPvvsM+P88883wsPDjfbt2xszZsxwe97hcBhPP/20kZSUZISHhxuXXXaZ8fPPP7uVOXr0qDFixAgjJibGiIuLM+68804jOzvbrcymTZuM/v37G+Hh4UZqaqrx/PPPV/t7qy5LliwxgHKfg2EYRm5urjF27Fijfv36RlRUlDFs2DAjMzPTrczu3buNq666yoiMjDQaNmxoPPLII0ZhYaFbmRUrVhhdu3Y1wsLCjJYtWxqzZs2qzrdU7bKysoyHHnrIaNq0qREREWG0bNnSeOqpp9ymz+lnrbz333/faNmypREWFmYkJycb999/v3HixAnn8/rMJJBoyWYRERFxozEHIiIi4kbBgYiIiLhRcCAiIiJuFByIiIiIGwUHIiIi4kbBgYiIiLhRcCAiIiJuFByIiIiIGwUHIkHg66+/xmKxlFsIqqYsW7aMDh06YLfbz+o6FouFBQsWVLr84sWL6dq1q3PdBhGpGQoORALMJZdcwrhx49yO9evXj8zMTOLj4/1Sp8cff5w///nPWK3Ws7pOZmYmV111VaXLX3nlldhsNubOnXtWrysiVaPgQCQIhIWFkZycjMViqfHXXrVqFTt37uSGG24462slJycTHh5epXNGjRrFq6++etavLSKVp+BAJICMGjWKlStXMm3aNCwWCxaLhd27d5frVpg9ezb16tXj888/p127dkRFRXHjjTeSk5PDnDlzaN68OfXr1+fBBx906wrIz8/n0UcfJTU1lejoaHr37s3XX3/ts07vvfcel19+OREREc5jEydOpGvXrrz99ts0bdqUmJgYxo4di91uZ+rUqSQnJ9OoUSMmT57sdi3XboXdu3djsVj46KOPGDRoEFFRUXTp0oXVq1e7nXPNNdewbt06du7ceeYfrIhUSai/KyAipaZNm8b27ds5//zz+etf/wpAYmIiu3fvLlc2JyeHV199lffee4/s7Gyuv/56hg0bRr169Vi0aBG7du3ihhtu4KKLLmL48OEAPPDAA2zdupX33nuPlJQUPv74Y6688ko2b95MmzZtPNbpm2++4dZbby13fOfOnXzxxRcsXryYnTt3cuONN7Jr1y7atm3LypUr+fbbb7nrrrsYPHgwvXv39vqen3rqKV588UXatGnDU089xYgRI/jll18IDTX/PDVt2pSkpCS++eYbWrVqVdWPVETOgIIDkQASHx9PWFgYUVFRJCcn+yxbWFjI9OnTnTfMG2+8kXfeeYeDBw8SExNDx44dGTRoECtWrGD48OHs3buXWbNmsXfvXlJSUgB49NFHWbx4MbNmzeK5557z+Dp79uxxlnflcDh4++23iY2Ndb7Wzz//zKJFiwgJCaFdu3a88MILrFixwmdw8OijjzJkyBAAnn32WTp16sQvv/xC+/btnWVSUlLYs2eP7w9PRM4ZBQciQSoqKsrtm3RSUhLNmzcnJibG7dihQ4cA2Lx5M3a7nbZt27pdJz8/nwYNGnh9ndzcXLcuhRLNmzcnNjbW7bWsVishISFux0pe35sLLrjAud24cWMADh065BYcREZGkpOT4/M6InLuKDgQCVI2m81t32KxeDxWMg3w1KlTWK1W1q9fX27WgWtAUVbDhg05fvz4Wb9+Zd5HyYDLsuccO3aMxMREn9cRkXNHwYFIgAkLCzvrfAKedOvWDbvdzqFDhxgwYECVztu6des5r09l5eXlsXPnTrp16+a3OojUNZqtIBJgmjdvzpo1a9i9ezdHjhw5ZwmA2rZty8iRI7n99tv56KOPyMjIYO3atUyZMoWFCxd6Pe+KK65g1apV56QOZ+K7774jPDycvn37+q0OInWNggORAPPoo49itVrp2LEjiYmJ7N2795xde9asWdx+++088sgjtGvXjuuuu4709HSaNm3q9ZyRI0eyZcsWfv7553NWj6qYP38+I0eOJCoqyi+vL1IXWQzDMPxdCREJbI899hhZWVm8+eabNfq6R44coV27dqxbt44WLVrU6GuL1GVqORCRCj311FM0a9asxtc42L17N2+88YYCA5EappYDERERcaOWAxEREXGj4EBERETcKDgQERERNwoORERExI2CAxEREXGj4EBERETcKDgQERERNwoORERExI2CAxEREXHz/wED0LL+KzbedwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$$\\frac{-1.403 \\times 10^{5}}{7.177 \\times 10^{5} s^2 + 1.184 \\times 10^{5} s + 1.055 \\times 10^{4}}$$" - ], - "text/plain": [ - "TransferFunction(array([-140281.30491569]), array([717720.18412995, 118383.03470347, 10550.53550844]))" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "_ = CTLSB.plotTransferFunctionFit(num_zero=0, num_pole=2, \n", " initial_value=INITIAL_VALUE, final_value=FINAL_VALUE, num_step=10,\n", @@ -409,22 +352,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "01bcd9c7-0f85-4699-89ce-3fd4ced02249", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([-0.08247158+0.08887354j, -0.08247158-0.08887354j]),\n", - " array([], dtype=complex128))" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "TRANSFER_FUNCTION.poles(), TRANSFER_FUNCTION.zeros()" ] @@ -441,7 +372,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 17, "id": "b2a5d660-c6ba-41bc-a1b0-27df69e5cbf4", "metadata": {}, "outputs": [], @@ -451,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 18, "id": "f6badff0-d88c-49b6-8d30-c8422a668040", "metadata": {}, "outputs": [ @@ -459,31 +390,92 @@ "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/100 [00:00\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 166.824 and h = 1.72603e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 1%| | 1/100 [00:03<04:57, 3.00s/it]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 478.257 and h = 1.50395e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 11%|█ | 11/100 [00:03<00:23, 3.74it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 256.066 and h = 1.68357e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 225.192 and h = 1.33188e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 306.402 and h = 2.38906e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 321.801 and h = 2.37984e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - " 41%|████ | 41/100 [00:07<00:07, 7.51it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 79.7496 and h = 4.95323e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 455.828 and h = 6.36976e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - " 51%|█████ | 51/100 [00:08<00:06, 8.09it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 145.944 and h = 1.92682e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 144.056 and h = 5.05486e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 21%|██ | 21/100 [00:04<00:12, 6.23it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 321.801 and h = 2.37984e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 372.232 and h = 2.09969e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 137.514 and h = 4.76771e-08, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 31%|███ | 31/100 [00:05<00:09, 6.96it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 451.651 and h = 2.49989e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 41%|████ | 41/100 [00:06<00:07, 7.84it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 79.7496 and h = 4.95323e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 51%|█████ | 51/100 [00:07<00:05, 9.52it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 21.5195 and h = 4.88986e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 61%|██████ | 61/100 [00:08<00:03, 10.69it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 453.39 and h = 3.23033e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 57.2262 and h = 8.32463e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 21.8209 and h = 8.87896e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 71%|███████ | 71/100 [00:08<00:02, 11.74it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 455.828 and h = 6.36976e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + " 81%|████████ | 81/100 [00:09<00:01, 11.91it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 246.274 and h = 2.59207e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 504.301 and h = 2.52981e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 278.347 and h = 1.41985e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 19.7241 and h = 5.56744e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - " 61%|██████ | 61/100 [00:09<00:04, 8.62it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 21.8209 and h = 8.87896e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 451.651 and h = 2.49989e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - " 71%|███████ | 71/100 [00:10<00:03, 9.02it/s]\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 502.003 and h = 7.04302e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - " 81%|████████ | 81/100 [00:11<00:01, 9.51it/s]\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 71.6802 and h = 8.47313e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 502.003 and h = 7.04302e-07, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 334.23 and h = 2.55251e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 208.583 and h = 1.21738e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 145.944 and h = 1.92682e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "100%|██████████| 100/100 [00:10<00:00, 9.22it/s]\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 330.229 and h = 1.04603e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 328.979 and h = 1.13711e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n" ] }, { @@ -505,46 +497,13 @@ "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", - "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", - "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 330.229 and h = 1.04603e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "100%|██████████| 100/100 [00:12<00:00, 7.93it/s]\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 166.824 and h = 1.72603e-05, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", - "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 144.056 and h = 5.05486e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", - "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 504.301 and h = 2.52981e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", - "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" @@ -569,131 +528,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "cc16c889-0d43-4d15-a229-d64e5e043ba2", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
kPscorereasonkI
00.010004.011064e-16Design successful.0.00334
10.008894.261508e-16Design successful.0.00334
20.010004.498483e-16Design successful.0.00223
30.007784.552363e-16Design successful.0.00334
40.008894.721334e-16Design successful.0.00223
50.006674.911500e-16Design successful.0.00334
60.007784.967806e-16Design successful.0.00223
70.010005.120536e-16Design successful.0.00445
80.006675.242656e-16Design successful.0.00223
90.005565.405233e-16Design successful.0.00334
\n", - "
" - ], - "text/plain": [ - " kP score reason kI\n", - "0 0.01000 4.011064e-16 Design successful. 0.00334\n", - "1 0.00889 4.261508e-16 Design successful. 0.00334\n", - "2 0.01000 4.498483e-16 Design successful. 0.00223\n", - "3 0.00778 4.552363e-16 Design successful. 0.00334\n", - "4 0.00889 4.721334e-16 Design successful. 0.00223\n", - "5 0.00667 4.911500e-16 Design successful. 0.00334\n", - "6 0.00778 4.967806e-16 Design successful. 0.00223\n", - "7 0.01000 5.120536e-16 Design successful. 0.00445\n", - "8 0.00667 5.242656e-16 Design successful. 0.00223\n", - "9 0.00556 5.405233e-16 Design successful. 0.00334" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "result.designs.dataframe.head(10)" ] @@ -708,79 +546,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "01a1a3ec-186c-4344-b7e4-ad307472bdae", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|█████████████████████████████████████████████| 1/1 [00:03<00:00, 3.09s/it]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAHWCAYAAAAirGCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHyElEQVR4nO3dd3xT1fvA8U9GmzbdLbSlZa8yBQRFUBQEBZy4B+4tKiqKihMVxK3oF0VRxIGi+MONKCIIKHvJkr1pKaV0zyT398dJ0qa7adK0zfN+ve4rzc3NvSeBpk+e85xzdJqmaQghhBBCuEHv6wYIIYQQovGSQEIIIYQQbpNAQgghhBBuk0BCCCGEEG6TQEIIIYQQbpNAQgghhBBuk0BCCCGEEG6TQEIIIYQQbpNAQgghhBBuk0BCiEZqyZIl6HQ6lixZ4uumCCH8mAQSQnjQP//8w8SJE8nIyPB1U6p09OhRJk6cyMaNG+t0nnnz5nHNNdfQvn17zGYzSUlJPPLII157/f/88w9nnXUWZrOZ+Ph4xo4dS05Ojssxt9xyCzqdrtLtyJEjXmmbEP5KJ2ttCOE5r7/+OuPHj2ffvn20bdvWq9ey2WwUFRURGBiIXl+77wRr167ltNNO45NPPuGWW25xuw3NmjUjISGBUaNG0bp1azZv3sz06dNp374969evJzg42O1zl7Vx40YGDBhA165dueuuuzh8+DCvv/46Q4YM4ddff3Uet2LFCvbs2ePyXE3TuOeee2jbti1bt271WJuEEGD0dQOEEO7R6/UEBQX5tA3ffvstgwcPdtnXt29fbr75ZmbPns0dd9zhsWs9+eSTREVFsWTJEsLDwwFo27Ytd955J7///jvnn38+AAMGDGDAgAEuz12+fDl5eXmMHj3aY+0RQijStSH8XnZ2Ng899BBt27bFZDIRGxvLeeedx/r1612OW7VqFSNGjCAiIgKz2cw555zD33//7Xx84sSJjB8/HoB27do5U+n79+8HQKfTcf/99zN79mySkpIICgqib9++LF26tFybNmzYwMiRIwkPDyc0NJShQ4eycuVKl2MqqpEYPHgwPXr0YNu2bQwZMgSz2UxiYiKvvvqqy/NOO+00AG699VZnO2fNmgVAXl4e//33H2lpadW+d2WDCIDLLrsMgO3bt7vst9lsvP3223Tv3p2goCDi4uK4++67OXnyZLXXycrKYuHChdxwww3OIALgpptuIjQ0lG+++abK53/55ZfodDquv/76aq8lhKgdCSSE37vnnnt4//33ueKKK3jvvfd49NFHCQ4OdvlD+Oeff3L22WeTlZXFc889x0svvURGRgbnnnsuq1evBuDyyy/nuuuuA+Ctt97i888/5/PPP6d58+bO8/z111889NBD3HDDDbzwwgucOHGCESNGsGXLFucxW7duZdCgQWzatInHHnuMZ555hn379jF48GBWrVpV7es5efIkI0aMoFevXrzxxht06dKFxx9/3Jn+79q1Ky+88AIAd911l7OdZ599NgCrV6+ma9eu/O9//3Pr/UxJSQFUt0dpd999N+PHj+fMM89k6tSp3HrrrcyePZvhw4dTXFxc5Tk3b96MxWKhX79+LvsDAwPp3bs3GzZsqPS5xcXFfPPNNwwcONDr3U1C+CVNCD8XERGh3XfffZU+brPZtE6dOmnDhw/XbDabc39eXp7Wrl077bzzznPue+211zRA27dvX7nzABqgrV271rnvwIEDWlBQkHbZZZc5940aNUoLDAzU9uzZ49x39OhRLSwsTDv77LOd+xYvXqwB2uLFi537zjnnHA3QPvvsM+e+wsJCLT4+Xrviiiuc+9asWaMB2ieffFKunY7zPvfcc5W+J1W5/fbbNYPBoO3cudO5b9myZRqgzZ492+XYBQsWVLi/rLlz52qAtnTp0nKPXXXVVVp8fHylz/3pp580QHvvvfdq+UqEEDUhGQnh9yIjI1m1ahVHjx6t8PGNGzeya9curr/+ek6cOEFaWhppaWnk5uYydOhQli5dis1mq9G1BgwYQN++fZ33W7duzaWXXspvv/2G1WrFarXy+++/M2rUKNq3b+88rkWLFlx//fUsX76crKysKq8RGhrKDTfc4LwfGBjI6aefzt69e2vUxsGDB6NpGhMnTqzR8aV9+eWXfPzxxzzyyCN06tTJuX/u3LlERERw3nnnOd+/tLQ0+vbtS2hoKIsXL67yvPn5+QCYTKZyjwUFBTkfr6xNAQEBXH311bV+PUKI6vl1sWXq2rVsmzmTk9u2kX/8OIPeeYdWQ4d67Xo/nHceuRX8sep07bWc9swzXruuqNqrr77KzTffTKtWrejbty8XXHABN910k/MP+a5duwC4+eabKz1HZmYmUVFR1V6r9B9Xh86dO5OXl8fx48cBVaOQlJRU7riuXbtis9k4dOgQ3bt3r/QaLVu2RKfTueyLiori33//rbZ9dbFs2TJuv/12hg8fzuTJk10e27VrF5mZmcTGxlb43NTUVEC9j6WDgsDAQKKjo52jPwoLC8s9t6CgoNLRITk5Ofzwww8MHz6cmJgYt16X8LClS+G112DdOkhOhu++g1GjvHc9qxUmToQvvoCUFEhIgFtugaefhjK/J8I9fh1IWPLziUpKosPll7PswQe9fr3hX3+NZrU672fu3s2fd9xB6+HDvX5tUbmrr76aQYMG8d133/H777/z2muv8corrzBv3jxGjhzpzDa89tpr9O7du8JzhIaG1mOLq2YwGCrcr3lxpPemTZu45JJL6NGjB99++y1Go+tHi81mIzY2ltmzZ1f4fEcdyYMPPsinn37q3H/OOeewZMkSWrRoAUBycnK55yYnJ5OQkFDheb///nsZrdHQ5OZCr15w221w+eXev94rr8D778Onn0L37rB2Ldx6K0REwNix3r++H/DrQCJh0CASBg2q9HFrURGbpk7lwPz5FGVnE9mxI73HjSPu9NPdul5QdLTL/W0ffURoq1bE2ivohe+0aNGCMWPGMGbMGFJTUzn11FOZPHkyI0eOpEOHDgCEh4czbNiwKs9TNhNQliO7UdrOnTsxm83OP6Zms5kdO3aUO+6///5Dr9fTqlWrmr4st9tZG3v27GHEiBHExsYyf/78CoOqDh068Mcff3DmmWdWObfEY4895tIt48jy9OjRA6PRyNq1a126KIqKiti4cWOl3RazZ88mNDSUSy65xN2XJzxt5Ei1VaawEJ56Cr76CjIyoEcPFQxUMEKoRv75By69FC68UN1v21ad214kLepOaiSqsHbSJNI2buTM11/ngnnzaD18OIvvvpusAwfqfG5rURH7f/6ZDpdf7tEPdVE7VquVzMxMl32xsbEkJCQ40+h9+/alQ4cOvP766+VmUQScXRIAISEhAJXO7LhixQqXYaWHDh3ihx9+4Pzzz8dgMGAwGDj//PP54YcfnMNGAY4dO8aXX37JWWed5TL80V1VtbM2wz9TUlI4//zz0ev1/Pbbby4jVEq7+uqrsVqtvPjii+Ues1gsznZ069aNYcOGOTdHPUlERATDhg3jiy++IDs72/nczz//nJycHK666qpy5z1+/Dh//PEHl112GWazudrXIhqI+++HFStgzhz491+46ioYMQIqCMJrZOBAWLQIdu5U9zdtguXLqw5mRK34dUaiKrlHj7L3+++59I8/MNv7dbveeitHly9n73ff0fuhh+p0/sN//klRdjbtvNk3KKqVnZ1Ny5YtufLKK+nVqxehoaH88ccfrFmzhjfeeANQEz999NFHjBw5ku7du3PrrbeSmJjIkSNHWLx4MeHh4fz0008Azj98Tz31FNdeey0BAQFcfPHFzj/cPXr0YPjw4YwdOxaTycR7770HwPPPP+9s06RJk1i4cCFnnXUWY8aMwWg08sEHH1BYWOgyH0RddOjQgcjISKZPn05YWBghISH079+fdu3asXr1aoYMGcJzzz1XbcHliBEj2Lt3L4899hjLly9n+fLlzsfi4uI477zzANVFcffddzNlyhQ2btzI+eefT0BAALt27WLu3LlMnTqVK6+8ssprTZ48mYEDB3LOOec4Z7Z84403OP/88xkxYkS547/++mssFot0azQmBw/CJ5+oW0d31aOPwoIFav9LL9X+nE88AVlZ0KULGAyqZmLyZJD/F57j62EjDcXsbt20g3/84bx/eMkSbXa3btrXffu6bF+ecoq2bNw4TdM0LWPPHm12t25VbhveeKPC6y264w5t8b331strE5UrLCzUxo8fr/Xq1UsLCwvTQkJCtF69elU4VHDDhg3a5ZdfrsXExGgmk0lr06aNdvXVV2uLFi1yOe7FF1/UEhMTNb1e7zIUFNDuu+8+7YsvvtA6deqkmUwmrU+fPi7DNx3Wr1+vDR8+XAsNDdXMZrM2ZMgQ7Z9//nE5prLhn927dy93vptvvllr06aNy74ffvhB69atm2Y0Gl2GgtZm+Cf2Ia0Vbeecc0654z/88EOtb9++WnBwsBYWFqb17NlTe+yxx7SjR49Wey1NU8NIBw4cqAUFBWnNmzfX7rvvPi0rK6vCY8844wwtNjZWs1gsNTq38AHQtO++K7n/889qX0iI62Y0atrVV6tjtm9Xx1S1Pf54yTm/+krTWrZUt//+q2mffaZp0dGaNmtWvb7UpkzW2rD7snt3l1EbB379lX8ef5wLf/gBXZl1DIxmM8HNm2MtKiLn8OEqz2uKjCxXG5F79Cg/Dh/OoKlTaXnuuZ59IaLB0ul03HfffW5P9CREk6PTuY7a+PprlSnYulVlD0oLDYX4eCgqguqGMsfEgKObrVUrlZW4776SxydNUqM4/vvPYy/Fn0nXRiWiunZFs1opSE8nttS4/9IMgYFElBrrX1N7vvsOU3Q0CfaZBIUQQgB9+qiuh9RUqKwQPjBQdVPUVF4elF3UzmCAGs79Iqrn14FEcW4uOQcPOu/nHj7Mye3bCYyIILxtW9pedBErJkzg1PHjieralYL0dI6tWkVk584knnOOW9fUbDb2fvcd7S+9FL3Rr99+IYQ/ysmB3btL7u/bBxs3QnQ0dO6sMhI33QRvvKECi+PHVbHkKaeUjLyojYsvVjURrVur4Z8bNsCbb6rhp8Ij/PovWfrWrSy69Vbn/fX2QrZ2l17KgJde4oxJk9jywQesf+018o8dwxQVRUyvXm4HEQApK1aQl5xM+/oYPy2EEA3N2rUwZEjJ/XHj1O3NN8OsWaqoctIkeOQROHIEmjWDM86Aiy5y73rvvgvPPANjxqhMR0IC3H03PPtsnV+KUKRGQgghhBBuk3kkhBBCCOE2CSSEEEII4Ta/q5GwWCxs37SJiObN0Zet5BVCCOE3NJuN3GPH6NSnDwYpfneb371z2zdt4pR+/XzdDCGEEA3E9tWr6SJrHrnN7wKJ+Lg4AP5du5Yo+89CCCH8T05yMgmnn45N/hbUid8FEo7ujIQWLYipZOlhIYQQTV8WEA5kSTd3nci7J4QQQgi3SSAhhBBCCLdJICGEEEIIt/ldjYQQQoimQdM0LBYLVqu1wscNBgNGoxGdTlfPLfMvEkgIIYRodIqKikhOTiYvL6/K48xmMy1atCAwMLCeWuZ/JJAQQgjRqNhsNvbt24fBYCAhIYHAwMByWQdN0ygqKuL48ePs27ePTp06ySSEXiKBhBBCiEalqKgIm81Gq1atMJvNlR4XHBxMQEAABw4coKioiKCgoHpspf+Q8EwIIUSjVJMMg2QhvE/eYSGEEEK4TQIJIYQQQrhNAgkhhBBCuE0CCSGEEEK4TQIJIYQQjZKmaR45psaWLoWLL4aEBNDp4Pvvqz7+llvUcWW37t1Ljpk4sfzjXbp4rs31QAIJIUSFUlauZNFtt3F02TLPnXTnTnjwQRg4UG333Qf//OO58wu/EBAQAFDtZFSlj3E8p05yc6FXL5g2rWbHT50Kyckl26FDEB0NV13lelz37q7HLV9e97bWI5lHQghRjqZprHrmGXKPHiV961auWL4cfV0/iKdNg4ceAoulZN+KFfDeezB8OEyfDm3b1u0awi8YDAYiIyNJTU0F1OyVFU1IlZeXR2pqKpGRkRgMhrpfeORItdVURITaHL7/Hk6ehFtvdT3OaIT4+Lq3z0ckkBBClJNz6BC5R48CUJyTQ9q//xLbt6/7J3zvPbj/fvXz8OElKd8FC2D2bPjtN+jZU/18ySV1fwGiyYu3/+F1BBOViYyMdB5bmezsbMjKct43mUyYTKa6N7Ksjz+GYcOgTRvX/bt2qe6SoCAYMACmTIHWrT1/fS+RQEIIUU7av/+63E/futX9QGLdOhg7Vv38zDPw/PMqiAC45hp48kn1De3vv2HUKHjjDXj4YfcbL/yCTqejRYsWxMbGUlxcXOExAQEBNcpEdO3WjexS95977jkmTpzomYY6HD0Kv/4KX37pur9/f5g1C5KSVLfG88/DoEGwZQuEhXm2DV4igYQQopycgwdd7p/cvt29E1mtcPvt6vaqq1yDCIdOnWDxYnjgAfjgAxg3DvLzVYAhRDUMBkOduy22b9tGWGKi875XshGffgqRkSpYLq10V8kpp6jAok0b+OYb9bvTCEixpRCinJzDhwGITEoCILtMYFFjX38NmzZBVBT873/lgwiHgAB4/3144QV1/6mnYPJk964pRC2FhYURHh7u3DweSGgazJwJN94I1a1CGhkJnTvD7t2ebYMXSSAhhCjHEUi0GDjQ5X6t2GwwaZL6+dFHITa26uN1OtX14Qggnn5aFWAK0dj99ZcKDGqSYcjJgT17oEUL77fLQySQEEKUk3vkCABx/fsDUJCWhqUGQ+1c/PEHbN+uqtYdhZY18eST8Oyz6ucxY+D//q921xXCW3JyYONGtQHs26d+dmTsJkyAm24q/7yPP1ZdFj16lH/s0UdVoLF/vxoKfdllYDDAddd55zV4gQQSQggXmqZRcOIEABEdOhAQHg5Ajj24qLGZM9XtjTeC/Rw1NnEi3HWXSglff736oBXC19auhT591AaqnqdPn5LANzm5JKhwyMxUwXBl2YjDh1XQkJQEV18NMTGwciU0b+691+FhUmwphHBhyc3FZq+CN0VFYY6LIzMri/zUVCI7darZSdLT4bvv1M+33Vb7Ruh0asjo8ePqPJdcAsuWqWI0IXxl8GAV3FZm1qzy+yIioKps3pw5dW2Vz0lGQgjhwpGNMAYHYwwOJtj+zSj/+PGan+Snn6CoSP3hd3x7qy2DQQ2VGzRIjfEfORIOHHDvXEIIr5FAQgjhouDkSQBM0dEABDdrBtQykPjhB3V72WV1a0xQEPz4o+pbPnpUTWZlD3SEEA2DBBJCCBeF6ekABDkCCUdGIi2tZicoKFAzVYJnZqmMjFQT+bRqBTt2wEUXVZ0qFkLUKwkkhBAuCuyBhCMjEWQPJApqmpFYvFj9oW/Z0v1ujbJatlTTaUdFqUK0a65xXbNDCOEzEkgIIVwU2rs2ymUkahpI/Pmnuh0xovIJqNzRrZuqvQgKgp9/hnvuqbrwTQhRLySQEEK4cAQSpshIwI1AwjFU85xzPN00OPNMVeWu16ux+c895/lrCCFqxaeBxK45c5h/2WV8c/rpfHP66fx2/fUcXbasyucc/O03fr7oIub06cMvo0ZxZOnSemqtEP6hOCcHgED73A+OzERhRkb1T87KUot0gXcCCYBLL1XTaQO8+CJMneqd6wghasSngURwXBy9Hn6YEXPnMuKbb4jv35+l999PRiVzjB/fsIG/x4+n/eWXM/Lbb2l57rkse+ABMnbtqueWC9F0FWWrdRCNISGAmksCoDg72zm/RKX+/ltNjd2+vSqO9Ja77lKTVgE89BC89Zb3riWEqJJPA4mWQ4aQePbZhLdpQ3jbtvR68EGMZjMnNm2q8PgdX3xBi7POottttxHRoQO9xo4lqls3dpZdlrWUwsJCsrKynFu2/duWEKJizoyEfQnjgLAwZ61DYWZm1U92ZBS9lY0o7dln1eJeoGYYfOMN719TCFFOg6mRsFmt7J8/H0t+Ps169arwmLSNG4k/4wyXfS3OPJM0x7znFZgyZQoRERHOrWuXLp5sthBNjiOQCAgNBUBvMGCKiABq0L2xZo26HTDAW80rodOpro1nnlH3H31UrR4qBZhC1CufT5GdsXMnv19/PdaiIoxmM4PeeYeIjh0rPLYgLY2gmBiXfUExMc6Z+CoyYcIExo0b57yfnpJCO/vSyEKI8soGEgCBkZEUZmRQVFUgoWkl9RF9+3qxhaXodCp4MBhUV8dzz8GhQ2p67YCA+mmDEH7O5xmJsLZtGfl//8fwr76i0zXXsPLJJ8n04DrsJpPJZZ35sFIfjkKI8ioKJBwjOBwjOiq0bx+cPAmBgRWvcuhNzz0H06ap0RwffaQmwqquG0YI4RE+DyQMgYGEtWlDdPfu9H74YSKTktjxxRcVHhvUrFm57EPBiRPlshRCCPcV24stax1IrF2rbnv1UsFEfRszRi3wFRysJq/q27dkuWchhNf4PJAox2bDWlRU4UPNevcmZeVKl30pK1bQrHfvemiYEE2fzWrFkp8PlAkk7CM3qiy2rO9ujYpccgksXQqtW8OePapW48MPpW5CCC/yaSCx8a23SF27lpwjR8jYuZONb73FsTVraHvRRQD8M2ECG0sN60q64QaS//6b7bNmkbl3L/9Om0b6li10vv56X70EIZoUS6lRTbXOSDgCiX79vNG0muvXD9avhwsuUOt+3H23mmXz4EHftkuIJsqnxZYF6emsmDCB/OPHCQgLI7JzZ4Z8+CEtBg4EIC85GV2pKXab9+nDma++yqZ33mHT228T1qYNg959l8hOnXz1EoRoUopzcwHQBwZiKNU94Qwkqiq23LxZ3VYy6qpexcSo6bTfeguefhp+/x26d1dDRh94QE2zLYTwCJ8GEme8+GKVjw+bNavcvtbDh9N6+HAvtUgI/+aYjMoxh4SDs2ujskAiLQ1SU9XPXbt6q3m1o9fDI4/AxRfDbbepybIee0wVZU6aBNdeC0afD1wTotFreDUSQgifqWjEBkCgfR6JospqJLZtU7ft2oF9RswGo3NnVTcxaxYkJsKBA3DjjdCpE/zvfyCT1AlRJxJICCGcKg0k7BkKx4iOcrZuVbfdunmtbXWi18PNN8POnTB5MjRrBvv3q26O+Hi45Ra1/LnV6uuWCtHoSCAhhHBy1EgYzWaX/QH2BbyKqgskunf3Wts8wmyGJ59UWYlp01RWIjcXPv0Uzj0XYmPh+uvh889h714Z7SFEDUgHoRDCyVpQAJQPJBwZiUoDCUfXRkPNSJRlNqt5J+69F1asUIHE3LmQng5ffaU2gObN4fTTVYCUlKS6Sdq3VwGH1FcIAUggIYQoxTGHhLHMqAZHIGHNz8daVOQyogNoPBmJsnQ6GDhQbdOmwapVMH8+/PEHbNgAx4/DL7+orezzmjdX3SLNm0NYGISGlmxms5q2u+zmCD5sNrVZrdX/XNWmaZ7bXxeeyNz4IPtjtgfOom4kkBBCOFny8gAwBge77DeWqpkozsnBEB1d8mB6esMbseEOoxHOPFNtkydDYaGaGXPNGtixo2Q7fFj98U1NLXndolGSP4CeIe+jEMLJ0bVhKBNI6A0GAkJDKc7JoSg7m6DSgYRjbZyEhIY3YqMuTCbo319tpVmtarhrSorajh9XdRY5OSVbXp46ruxmsahshl5fshkM1f+s05W/X/ocddmn05VsteHt4919Ti3kp6cT/OCDXr2GP5BAQgjhVFnXBkBAWJgKJMoOAXUEEpWs2tvkGAwQF6e2hjD5lnBb8eHDEkh4gIzaEEI4WSoptoQqhoDu2aNuO3TwatuEEA2TBBJCCCdHRsJQQUYisLIhoP6WkRBCuJBAQgjhZK2k2BJKAonirCzXByQjIYRfk0BCCOHk7NqoIJAIqGwuCclICOHXJJAQQjg5iy0rykhUFEjk5MCxY+pnyUgI4ZckkBBCOFU2/BNKpsl26drYu1fdxsSAfalxIYR/kUBCCOFU1fDPCjMSjm4NyUYI4bckkBBCONW6a2PfPnXbvr3X2yaEaJgkkBBCOFmrCCScXRulA4mDB9VtmzZeb5sQomGSQEII4eScR6KqjETpGglHING6tdfbJoTPLV0KF1+spoPX6eD776s+fskS1ynIHVtKiutx06ZB27YQFKSmZF+92ksvwDskkBBCAKDZbFgLC4Gqh38W5+SU7JRAQviT3Fw1Lfq0abV73o4dkJxcssXGljz29dcwbhw89xysX6/OP3x4o1oQTtbaEEIAJdkIqGStDfuCXBJICL81cqTaais2tvJRTW++CXfeCbfequ5Pn66WrZ85E554wu2m1ifJSAghgJKhn1DxFNkB9qXELXl5aDabWuEyLU09KIGEaMSys7PJyspyboX2zJzH9O4NLVrAeefB33+X7C8qgnXrYNiwkn16vbq/YoVn2+BFEkgIIQDX+gidvvxHgyOQABVMcOiQuhMWBhER9dJGIbyha7duREREOLcpU6Z45sQtWqgMw//9n9patYLBg1UXBqhA3GpVK8mWFhdXvo6iAZOuDSEEUPUcEgCGwED0AQHYiospzskhwBFItG6tCsiEaKS2b9tGWGKi877JZPLMiZOS1OYwcKBam+att+Dzzz1zjQZAAgkhBFD1yp8OAaGhFJ48qeokHPURrVrVR/OE8JqwsDDC7cObve7002H5cvVzs2ZgMJRMM+9w7BjEx9dPezxAujaEEADYiooAMFTxbczRvVGcmyuFlkK4Y+NG1eUBEBgIffvCokUlj9ts6v6AAT5pnjskIyGEAMDqCCQCAys9xmXkhgQSwt/k5JRMCw9qZteNGyE6Wv0eTJgAR47AZ5+px99+G9q1g+7doaAAPvoI/vwTfv+95BzjxsHNN0O/fipb8fbbapipYxRHIyCBhBACKMlI6KsKJBwZCQkkhD9auxaGDCm5P26cur35Zpg1S80R4fi9ADUq45FHVHBhNsMpp8Aff7ie45pr4PhxePZZVWDZuzcsWFC+ALMBk0BCCAHULCNhdGQkcnNLRm1IjYTwF4MHg6ZV/visWa73H3tMbdW5/361NVJSIyGEANzISBw9qnaWqnYXQvgfCSSEEABYi4uBamok7IGENS1N9RdDSeGYEMIvSSAhhADAZp/Nr8qMhL1rwzlZTmio2oQQfksCCSEEUKpGIiCg0mMcGQmdY9x7QoLX2yWEaNgkkBBCADWcR8KekdCfOKF2SLeGEH5PAgkhBFCSkahJ14YhPV3tkEBCCL8ngYQQAgCbvdiyJqM2AjIy1A4JJITwexJICCGA2tVIBGRnqx0SSAjh9ySQEEIAYK3BqA3HhFSBublqhxRbCuH3JJAQQgClii1r0LVhKihQOyQjIYTfk0BCCAGUmpCqBqt/BtmzFxJICCEkkBBCADWcIjskBIPNRqDNpnZIICGE35NAQggBlOraqKLY0mg2E2S1AqAFB0NERL20TQjRcEkgIYQAajaPhE6nI8weaGjNm4NOVy9tE0I0XBJICCGAmo3aAAjVq48Na0yM19skhGj4JJAQQgAlE1JVNWoDwGzPQlilW0MIgQQSQgg7aw3W2gAI1jQALLLqpxACMPry4ltnzODQwoVk7duHISiI5r1703vcOMLbtavyef999hm7vv6avORkTFFRtDrvPHo//HC1H4BCiMo5R21UUWwJOIstix1Ligsh/JpPA4nUNWvofN11RPfsiWaxsGnqVP68804u+vFHjGZzhc/Z//PPbHzrLc548UWa9elD9v79rHzqKdDp6Pv44/X8CoRoOqw1mJAKwGTvAikKCvJ6m4QQDZ9PA4khH37ocv+MyZOZN2gQ6du2EduvX4XPOb5xI8379KHtRRcBEJqYSJsLLuDEv/96vb1CNGU1mUcCINB+XFE1xwkh/EODqpEoti8EFFhFEVfz3r1J37aNNHvgkHPoEEeXLSPh7LMrPL6wsJCsrCznlp2T4/mGC9EE1DQjEZifD0BhNV0gQgj/4NOMRGmazca6V16heZ8+RHbqVOlxbS+6iMKMDP648UY0QLNY6HjNNXS/664Kj58yZQrPP/+8836QjHsXokI1zUgY7Qt25esb1PcQIYSPNJhPgjWTJpG5axdnvv56lccdW72arR9+SL9nnmHk3LkMmjqVo3/9xeb336/w+AkTJpCZmenctv/3nzeaL0SjV6OMRHExxrw8APIlKBdC0EAyEmsmTeLoX38x7NNPMcfHV3nsv+++S7tLLqHjlVcCENm5M5b8fFZPnEiPu+9GV+ZbkslkwlRqNEexdG0IUY6maTXLSKSlAWADCuyjN4QQ/s2ngYSmaaydPJnDixYxdNYsQlu2rPY5loKCctPyOoIHTdOQ70hC1J5jMiqoJiNx/DgAhQYDxfbMhBDCv/k0kFj74ovsnz+fs999lwCzmXz7h1RAWBhG+9CyfyZMwBwbS++HHwYgcfBg/vv0U6K6dqXZKaeQffAg/777LomDB6M3GHz2WoRozEoHElVmJFJTASg0Gim210oIIfybTwOJXV9/DcCiW25x2X/GpEm0v+wyAPKSk9GVykD0uPtudDod/77zDvmpqZiiokgcPJheDz5Yb+0Woqlx1EdANRkJeyBRYDBIICGEAHwcSFy/dWu1xwybNcvlvt5opOeYMfQcM8ZLrRLC/9jsC3bpjMZydUYuHF0bRqPUGwkhgAY0akMI4TvOERvVzQ1RKiNhkYyEEAIJJIQQlMwhUe16NaUyEpb8fGwyckMIvyeBhBACq73YsrrJqEpnJAAsMnJDCL8ngYQQosazWjoCiSJ75kLqJIQQEkgIIWq8zoaja8MSFqZupU5CCL8ngYQQAqt91Ia+hsWWVvvCejIEVAghgYQQoqTYsqqMRFERZGWp4yMjAenaEH5m6VK4+GJISFAzLH//fdXHz5sH550HzZtDeDgMGAC//eZ6zMSJ6lylty5dvPUKvEICCSGEc2bLKkdtnDihbvV6cAQSkpEQ/iQ3F3r1gmnTanb80qUqkJg/H9atgyFDVCCyYYPrcd27Q3JyybZ8uefb7kUNYtEuIYRvWWtSbOkIJKKiCLDXSEggIfzKyJFqq6m333a9/9JL8MMP8NNP0KdPyX6jEapZsLIhk4yEEKJk1EZVNRLp6eo2OhpjSAggxZaiacjOziYrK8u5FdprhjzOZoPsbIiOdt2/a5fqLmnfHkaPhoMHvXN9L5FAQghRs1EbjoxETAwB9kBCaiREU9C1WzciIiKc25QpU7xzoddfh5wcuPrqkn39+8OsWbBgAbz/PuzbB4MGqYCjkZCuDSFEyagNCSSEH9q+bRthiYnO+6bqZnh1x5dfwvPPq66N2NiS/aW7Sk45RQUWbdrAN9/A7bd7vh1eIIGEEKKk2LKmgURoKADFMrOlaALCwsIIDw/33gXmzIE77oC5c2HYsKqPjYyEzp1h927vtcfDpGtDCFG7ro3oaMlICFFTX30Ft96qbi+8sPrjc3Jgzx5o0cL7bfMQyUgIIWo2Rbaj2DImRoothX/KyXHNFOzbBxs3quLJ1q1hwgQ4cgQ++0w9/uWXcPPNMHWq6rJISVH7g4PBPqkbjz6qhoS2aQNHj8Jzz4HBANddV68vrS4kIyGEqH2xpaNrQwIJ4U/WrlXDNh1DN8eNUz8/+6y6n5zsOuLiww/BYoH77lMZBsf24IMlxxw+rIKGpCRVhBkTAytXqkmsGgnJSAghapaRqKjYUgIJ4U8GDwZNq/zxWbNc7y9ZUv0558ypQ4MaBslICCFk+KcQwm2SkRBC1C4jER2N0WwGpEZCCCGBhBCCGmQkNM2l2DLAYACka0MIIYGEEIIaZCRycsA+1wQxMQTYf7YWFGCzWNAb5aNECH8lNRJCiOozEo5uDZMJzGZnjQRI94YQ/k4CCSGEc2bLSjMSpQot0enQBwQ4lxyX7g0h/JsEEkKImmckSq1aaJSRG0IIJJAQQgA2x6JdlS0jXqrQ0kHmkhBCgAQSQghqkZGoKJCQjIQQfk0CCSFESY1EZcsnVxRI2KfJtsgKoEL4NQkkhBBSIyGEcJsEEkKI6ueRqKprQ2okhPBrEkgIIUoyErUptnSsACoZCSH8mgQSQoiSURuSkRBC1JIEEkL4Oc1mw2axAFXUSDgyElFRzl2OGgmZ2VII/yaBhBB+zjFiA3DOVllORoa6LRVIyPBPIQRIICGE33PUR0AlXRuaBidPqp9LBxKOGgkZ/imEX5NAQgg/ZysdSFRUbJmbC1ar+lkyEkKIMiSQEMLPOTIS+oAAdDpd+QMc2QijEcxm526ZR0IIARJICOH3rNXNIVG6W6NUoCEzWwohQAIJIfyerbpZLR2FlpGRLrula0MIARJICOH3nIFEZSM2Kii0BJlHQgihSCAhhJ8rXSNRoQqGfkJJIGErKnIZ+SGE8C8SSAjh56rt2nBkJMp0bTiKLUHqJITwZxJICOHnqi22rCQjoTcaMQQHA1InIYQ/k0BCCD9X41EbZTISAAH24aASSAjhvySQEMLP1bhro0xGAkrNbikFl0L4LQkkhPBz1poO/6wgkDDKyA0h/J4EEkL4OVtdujZkBVAh/J7RlxffOmMGhxYuJGvfPgxBQTTv3Zve48YR3q5dlc8ryspi09SpHPrjD4oyMwlJSODUJ54g8eyz66nlQjQddclIyKRUQgifBhKpa9bQ+brriO7ZE81iYdPUqfx5551c9OOPGEvN6V+ataiIP++4g6CYGAa99RbBcXHkHj1KYFhYPbdeiKbBsYy4WxkJqZEQwu/VKZCwFhVRmJ6OZrO57A9JSKjR84d8+KHL/TMmT2beoEGkb9tGbL9+FT5n73ffUZSVxfmzZzsn0AlNTHSj9UIIqMUU2VVlJCSQEMJvuRVIZB04wKqnnyZt40aX/ZqmodPpuG7zZrcaU5ydDUBgRESlxxxevJhmvXqxZtIkjixejCkqirYXXkjX229HbzCUO76wsJDCwkLn/WxJwQrhwmr//ahwZsviYrWMOFRdbCm/V0L4LbeKLVc++SQ6vZ5z3nuPEd98w4i5cxkxdy4jv/2WEXPnutUQzWZj3Suv0LxPHyI7dar0uNzDhzn4++9oNhuD33+fHvfcw/ZZs9j6wQcVHj9lyhQiIiKcW9cuXdxqnxBNVZXzSDiyEQAVBPjOFUAlIyH8wdKlcPHFkJCgVsL9/vvqn7NkCZx6KphM0LEjzJpV/php06BtWwgKgv79YfVqz7bby9zKSJzcsYMR33xDRPv2HmvImkmTyNy1i/M+/7zK4zSbjaDoaE6fOBG9wUB09+7kHTvG9k8+oeeYMeWOnzBhAuPGjXPeT09JoV1SksfaLURjV+WiXY76iPBwqCDjJ10bwq/k5kKvXnDbbXD55dUfv28fXHgh3HMPzJ4NixbBHXdAixYwfLg65uuvYdw4mD5dBRFvv60e27EDYmO9+nI8xa1AIqJ9ewodHzAesGbSJI7+9RfDPv0Uc3x8lccGN2+Ozmh06caI6NCBgrQ0rEVF5fp5TSYTplIfkJKCFcKV1V5sWWGNRBWFliCBhPAzI0eqraamT4d27eCNN9T9rl1h+XJ4662SQOLNN+HOO+HWW0ue88svMHMmPPGEZ9vvJW51bfQeN46Nb77JsdWrKczIoDgnx2WrKU3TWDNpEocXLeLcmTMJbdmy2uc069OHnIMHXQo8s/bvJ7h588qLxYQQlbJVtfpnFYWWUFIjYZEAXTRi2dnZZGVlObfSdXV1smIFDBvmum/4cLUfoKgI1q1zPUavV/cdxzQCbmUk/rzjDnV7++0u+2tbbLn2xRfZP38+Z7/7LgFmM/nHjwMQEBaGMSgIgH8mTMAcG0vvhx8GoNM117Dzyy9ZN2UKnUePJvvAAbbNmEHn0aPdeSlC+L0q55GoYnpskOGfomno2q0b2aXuP/fcc0ycOLHuJ05Jgbg4131xcZCVBfn56vfLaq34mP/+q/v164lbgcTQTz7xyMV3ff01AItuucVl/xmTJtH+sssAyEtORqfTOR8LadGCIR9+yPpXXmH+ZZdhjosj6YYb6FomqBFC1IzNMWqjqmLLyro2JJAQTcD2bdsIKzWNgKmieiFRKbcCibjTTvPIxa/furXaY4ZVUOHavHdvhn/1lUfaIIS/q1GNRGUZCVn9UzQBYWFhhIeHe/7E8fFw7JjrvmPHVPFycLAqYDYYKj6mmnrBhsTtCamKsrLYM28eWXv3Aqrgsf3ll8sMk0I0Ms4aiYq+hdUwI2HJzXV2bQoh7AYMgPnzXfctXKj2AwQGQt++ajTHqFFqn82m7t9/f702tS7cKrY8sWULP44YwX+ffUZhZiaFmZn899ln/DRiBOnbtnm6jUIIL3LWSFRUbFlNRsJRbGmzWJwBiRBNVk4ObNyoNlDDOzduhIMH1f0JE+Cmm0qOv+ce2LsXHntM1Ty89x588w3Ya/4ANfRzxgz49FPYvh3uvVcNM3WM4mgE3MpIrH/lFVoOGcLpzz+P3qhOYbNYWPXss6x7+WXO++wzjzZSCOE9Va7+WV0gUWpNnOKcnIrnohCiqVi7FoYMKbnvmKPo5pvVRFPJySVBBaihn7/8ogKHqVOhZUv46KOSoZ8A11wDx4/Ds8+q4szevWHBgvIFmA2YW4FE+tatLkEEgN5opNttt7Hgmms81jghhPdVOWqjmq4NvcGAMTgYS34+xbm5BMXEeKeRQjQEgweDplX+eEWzVg4eDBs2VH3e++9vVF0ZZbnVtREQGkpecnK5/bkpKc4JaoQQjUNdMhIgIzeE8HduBRKtR4xg1bPPcuDXX8lNTiY3OZn98+ez+rnnaFObWb+EED5Xl4wEyHobQvg7t7o2+jz6KOh0rJgwAc1qBUBnNNLpmmvoXWpdCyFEw1flMuI1yEgYZQioEH7NrUDCEBhIvwkT6P3QQ+QcOgRAaKtWGIODPdo4IYT3Vbr6p6ZVO0U2SNeGEP7O7XkkAIzBwUR27uyptgghfKDSjER2thrTDlV3bcjCXUL4tRoHEksffJABkycTEBrK0gcfrPLYs6dOrXPDhBD1wzGzZbmMhCMbYTKpWfgqYXRkJKRrQwi/VONAIjA0FOyz1gWEhMgMdkI0ATarFc1iASoIJKpZQtzBMU22FFsK4Z9qHEicMXmy8+cBL73klcYIIepX6dkoy3Vt1GDEBpSqkZCMhBB+ya3hn4tuvZWirKxy+4tzcljUiKb1FMLfVRlIZGaq25oGEnl5nmyaEKKRcCuQOLZmDTZ7v2pp1sJCUtevr3OjhBD1wzFiA50OnbFMgtKRkYiIqPIcMvxTCP9Wq1EbJ3fscP6cuWcP+WlpzvuazUby8uWYY2M91zohhFfZSi0hXq7uqbYZCQkkhPBLtQokfr3iCnQ6HTqdjkW33VbucUNQEP2efNJjjRNCeFelc0hAjTMSjuGfFunaEMIv1SqQuPT339E0jR+HD2f4nDkERUc7H9MHBGCKjkZvMHi8kUII76hyVkvJSAghaqBWgURIQgIA12/Z4pXGCCHql7WwEFBfBMqpbY2EDP8Uwi/VaWbLzN27yU1OLld42fLcc+vUKCFE/ahR10ZNMxISSAjhl9wKJHIOHWLp2LFk7NqFTqdDs6/P7ijWum7zZs+1UAjhNc5iS5Op/IO17Nqw5OaiaZpMVieEn3Fr+OfaKVMIbdmSy5ctwxAUxIU//MCwTz8lunt3hs6a5eEmCiG8pUZLiNew2FKzWrEWFHiyeUKIRsCtQOLEpk30vP9+gqKi0On16PR6Yvv2pddDD7FOZr0UotFwFFtWWCNRw4yEMTjYOX2+FFwK4X/cCiRsNpvzW4gpKor81FRAFWNm7d/vscYJIbzLExkJnV5fUnApQ0CF8Dtu1UhEduzIyR07CG3ZkpiePdk2cyb6gAB2z51LaMuWnm6jEMJLbI5RG2UDCU2rcbElqDoJS24uFslICOF33MpIdL/7brDZADjl/vvJPXKEhTfdxNFly+g7YYJHGyiE8B5rqZktXRQUgGM0VjUZCSipk5CRG0L4H7cyEglnneX8OaxNGy76+WcKMzIIjIiQim0hGhFnjUTZURuObIReD/ZRGVVxBhKSkRDC79Q6I2ErLuarU04hY9cul/2myEgJIoRoZJw1EmWLLR2FlhERKpiohswlIYT/qnUgoQ8IwNyiBZrV6o32CCHqka2yCalqWGjpYHSstyGBhBB+x60aiR533cWmqVMpdHzYCCEapUpHbdRw6KeDdG0I4b/cqpHY+eWXZB88yHdDhhCSkKDGkZcy8ttvPdI4IYR3eSojIcWWQjQin3yiap+uusp1/9y5kJcHN99cq9O5FUgknnuu1EMI0QRUmpGoxdBPkBoJIRqVKVPggw/K74+Nhbvuqp9A4pT77nPnaUKIBqbSjETpYssacExIJTUSQjQCBw9Cu3bl97dpox6rJbdqJH4YPrzC+oiirCx+GD7cnVMKIXzA4xkJqZEQouGLjYV//y2/f9MmiImp9encCiRyjxypcNSGtaiI/JQUd04phPCBajMS0rUhRNNz3XUwdiwsXgxWq9r+/BMefBCuvbbWp6tV18bhP/90/pz899/ODw8AzWYjZeVKQmSKbCEaDWdGorIJqaTYUoim58UXYf9+GDoUjPYwwGaDm24CNxberFUgsXTsWAB0Oh0rnnzS5TG90UhIYiKnjh9f60YIIXzDal9ro85dGzL8U4jGIzAQvv5aBRSbNkFwMPTsqWok3FCrQOL6LVsA+OH88xn+9dcERUW5dVEhRMPgsWJLx4RUsvqnEI1H585qqyO3Rm1c+vvvdb6wEML3qu3akGJLIZqGceNqfuybb9bq1G4FEgApK1eSsnIlhenpaPaVQB3OmDTJ3dMKIepRtTNbulEjoWmazDMjmrZp0+C11yAlBXr1gnffhdNPr/jYwYPhr7/K77/gAvjlF/XzLbfAp5+6Pj58OCxY4Lk2b9jguXOV4VYgsfm999jy/vtEd+9OcPPmIB8aQjRKNg/XSKBpWPLySu4L0dR8/bX6dj99OvTvD2+/rf7o79ihhlWWNW8e2AN2AE6cUMFH2VklR4xQM046lM0S1tXixZ49XyluBRK7vv6aMyZPpt0ll3i6PfVmyb330mv0aDpefbWvmyKEz1grqpGwWMDRRVHDjIQhOBidXo9ms1GckyOBhGi63nwT7rwTbr1V3Z8+XWUWZs6EJ54of3x0tOv9OXPAbC4fSJhMEB/vnTY73HZb9cfodPDxx7U6rVvzSNiKi2nWu7c7T20wTu7Ywernn+fosmW+booQPlNhjURWVsnPNQwkdDodAWFhABRnZ3usfULUh+zsbLKyspxboT1TV05REaxbB8OGlezT69X9FStqdrGPP1ZzNZQNtpcsURmNpCS4916VufC0WbNUZiIjA06erHhLT6/1ad0KJDpccQX7HX07jVTi4MEAbJk+3bcNEcKHKuzacHRrmM1qmFgNBYaHA1AkgYRoZLp260ZERIRzmzJlSsUHpqWpyZvi4lz3x8WpeonqrF4NW7bAHXe47h8xAj77DBYtgldeUTUVI0eqa3nSvfeq+qd9+2DIEBXUfPdd+a2W3OrasBYVsfvbbzm2ciWRnTujM7qepu/jj7tz2nrV8777WPbPP6Rt3Ej2gQOEuTl+VojGrMKujVoWWjo4MhISSIjGZvu2bYQlJjrvmzxdn+Dw8cdqvoayhZmlZ5Ps2RNOOQU6dFBZiqFDPXf9adNU18y8eaorZsIEuPBCuP12OP98t+sd3cpIZOzYQVRSEuh0ZOzaxcnt251bxn//udWQ+hYcE0Ns376AmqVTCH9UYddGLQstHQIdXRulu0aEaATCwsIIDw93bpUGEs2agcEAx4657j92rPr6htxcVR9x++3VN6h9e3Wt3btr9gJqw2RSU2QvXAjbtkH37jBmDLRtW1IbVUtuZSSGzZrl1sUamviBAzm2ejUpK1bQ+frrfd0cIeqVzWpFs1gAz2QkAiUjIZq6wEDo21d1QYwapfbZbOr+/fdX/dy5c6GwEG64ofrrHD6saiRatKhzk6uk16sshKbVqRvFrYyEQ/aBAxxdvhxLQQEAmqbV6vlbZ8xgwdVX881pp/F/gwax9IEHyNq3r8bP3z9/Pl92787SBx6o1XUdYvv1A+DE5s1uPV+IxsxWakhahTUStc1I2AOPIslIiKZs3DiYMUPN+7B9u6o7yM0tGcVx002qy6Csjz9WwUfZ1TVzcmD8eFi5Uq1/sWgRXHopdOyohpV6WmEhfPUVnHeemtVy82b43//U8uGl1s+qDbcyEoUZGSwfN45jq1ej0+m4eP58Qlu1YtUzzxAYHs6pjz1Wo/OkrllD5+uuI7pnTzSLhU1Tp/LnnXdy0Y8/YjSbq3xuzpEjbHj9dZrbuyfcEdWlCzq9nvzjx8lLTcVc0RhgIZqoagMJN2skZNSGaNKuuQaOH4dnn1UFlr17q4mjHAWYBw+qb/ql7dgBy5dDRbNCGwxqSe9PP1W/ewkJql7hxRc9P5fEmDGqe6VVKzUU9KuvVBdKHbkVSKx75RX0RiOj/viDny++2Lm/9YgRbHj1VahhIDHkww9d7p8xeTLzBg0ifds2Z7agIjarlX8ee4xT7ruP1HXr3P7gMgYHE96hA5m7dpG+ZQvmc8916zxCNEaO+gidXu9aMF3LJcQdnF0bkpEQTd3991felbFkSfl9SUmq+6AiwcHw228ea1qVpk+H1q1VDcZff1U84yaoYsxacCuQSPn7b4Z8+CHmMsUl4W3akHv0qDunBEq+yQRW801oy/vvExQTQ4crriB13boqjy0sLHQZE5xdppgkqmtXMnft4uSOHbSUQEL4EcfKn3qTyXVKaze7NmTUhhAN3E03eWUmarcCCUt+Pobg4HL7CzMzy68iWEOazca6V16heZ8+RHbqVOlxqevWsWfePEb+3//V6LxTpkzh+eefd94PKvMmRrRvD0D2/v21b7QQjZhzxEZAgOsD7hZb2ueRkK4NIRooLw2UcKvYsnnfvuz74YeSHTodms3G9pkziats4ZJqrJk0icxduzjz9dcrPaY4N5cVEybQ//nna7yE+YQJE8jMzHRu28sMTw1v1w6gVkWeQjQFzsmo6rjyp4NzQirp2hDCr7iVkejzyCP8efvtpG/diq24mA1vvEHm7t0UZWZy3hdf1Pp8ayZN4uhffzHs00/LdZeUlnPwILlHjvDXffc59zlWHv3qlFO46OefCWvd2uU5JpPJZUxw2WWOw9u2BVQgIasWCn9iLS4GKJ9FrOvwTwkkhPArbgUSkZ06cdEvv7Dzyy8JCAmhOC+PVsOG0fn669VqoDWkaRprJ0/m8KJFDJ01i9CWLas8Prx9ey74/nuXff++8w7Fubn0nTChyiCkMqGtW6MzGLDk5ZF//LiM3BB+w+rhjESAdG0I4ZfcCiRAffvocffddbr42hdfZP/8+Zz97rsEmM3kHz8OqKItY1AQAP9MmIA5NpbeDz+MwWQqVz/hKPCqqq6iKobAQEISE8k5eJDsffskkBB+wzH8U1+2RsLN4Z+lJ6SS7J4Q/sOtQGLPd98RYDbTusxkGQd/+w1Lfj7tHTN+VWPX118DsOiWW1z2nzFpEu0vuwyAvORkr38ghbZsqbpN6jDiRIjGptKMRB2Hf2pWK5a8PFlKXAg/4VYgsW3GDE5/7rly+03R0WyaOLHGgcT1W7dWe0x103EPeOmlGl2rKqH2xVpyJJAQfqTCdTY0ze2uDUNwMHqjEZvFQnF2tgQSQvgJt0Zt5CYnE1JBPUNIQgJ5ycl1blR9C0lIACD3yBEft0SI+lNh10ZeXsmc+7Xs2tDpdM46CSm4FMJ/uBVIBEVHk7FjR7n9GTt2EFjLbzENgTOQkIyE8CMVdm04shEGA7iRUZCFu4TwP251bbS54ALWTZlCQEgIze1TWaeuWcO6KVNoM3KkRxtYH0LsXRuSkRD+xNm1Udk6G27UJgXIEFAh/I5bgcQpDzxA7tGjLLr9dvQGA6CGcra75BJ6PfigRxtYHxyBRN6xY9gsFvRGtwezCNFolJ4i28nNQksHmd1SCP/j1l9MQ2AgZ73xBlkPPEDGjh1qWGbnzs4ugsYmuFkz9AEB2IqLyU9NbbSvQ4jasBYUAGrxOic3h346OGe3lEBCCL9Rp6/e4W3bOmeGbMx0ej3m+HhyDh0i9+hRCSSEX7Dk5wM452wB6p6RcHRtOM4jhGjy3AokbFYr+77/npSVKylITwf7NNUOQz/5xCONq0/muDhyDh0iLzXV100Rol44MhKG0oFEHTMSsgKoEP7HrUBi3ZQp7Pv+exLOOYfIjh29sixpfQu2z2iZL4GE8BOOGgmXrg2pkRBC1JJbgcTBX3/lzDffJPHssz3dHp+RQEL4G0fXRoXDP+vatSGBhBB+w615JPQBAeVW2WzsHGtsSNeG8BfOYktPdm04MhIy/FMIv+FWINHlllvY8fnnaJrm6fb4jGQkhL+xOGokKuracHfUhmQkhPA7bnVtHF+/nmOrV3N0+XIiOnQot3rg2VOneqRx9UkCCeFvrBWN2jh5Ut1GRbl1zkCZIlsIv+NWIBEYFkaroUM93RafMsfFASqQkCWQhT+wVDRqo46BhMxsKYT/cSuQOGPyZE+3w+eCmzcHVCV7UWYmpka4ZogQtVHhhFR1DCQcvzfF2dkyS6wQfsKtGgmHgvR0UtetI3XdOjWfRCNmMJmcH4L5x4/7tjFC1APnqA0vdG2AZCWE8BdufV2w5OWx9qWX2Pfjj2j2yah0BgPtLrmEfk8+6foNpxEJjo2lMCODvGPHiOzUydfNEcKryo3a0LQ6BxJ6o5GAsDCKs7MpyswkKDraE00VQjRgbmUk1r/6Kqlr13LOtGlctXIlV61cydnvvkvqmjWsf+01T7ex3kjBpfAnFscy4o5AIicHrFb1s5uBBECgfcRHoWMoqRCiSXMrkDi0cCH9X3iBhEGDCAgNJSA0lMSzz6b/889z6PffPd3GehPcrBkABWlpPm6JEN5ls1pLRm04MoiObERAAJjNbp/bZA8kZL0NIfyDW4GEpaCAoJiYcvtNMTHOSvDGKMgeSOSfOOHjlgjhXZbcXOfPjpEWLt0adRi15Kg1koyEEP7BrUCiWa9ebJ42zTlXP6jgYst779GsVy+PNa6+OYKjAgkkRBNXnJMDgD4wEENgoNrp+MNfh24NKOnakIyEEP7BrWLLvk88weK77+b7c88lMikJgIwdO9AHBjJkxgyPNrA+OQMJ6doQTZwjkAgIDS3Z6chI1HHos2QkhPAvbgUSkZ07c/H8+ez/+Wey9u0DoM0FF9D2ootcZ8lrZCQjIfxFlYGEhzIShZKREMIvuBVIbJ0xg6CYGDpedZXL/j3z5lGYnk63O+7wSOPqW5AUWwo/UeTFQMKRkZCuDSH8g1s1Eru/+Ybwdu3K7Y/o2JFd33xT50b5iiMjUZSVhbWoyMetEcJ7nBmJkJCSnZ7OSEjXhhB+wa1AIj8tzTmldGlBUVGNelZIU0QEOoMBgMJGPlOnEFUptAcNLlPBS0ZCCOEGtwIJc3w8xzdsKLf/+IYNzkmdGiOdXu+ciU/qJERT5ui+c/lCIBkJIWpm2jRo2xaCgqB/f1i9uvJjZ81Sw6lLb2VrCTUNnn0WWrSA4GAYNgx27fLmK/AotwKJjldeyfqXX2bPd9+Re/QouUePsmfePNa/8godr7zS022sVzKXhPAHjtlbHf/fAc9lJGT4p2jKvv4axo2D556D9euhVy8YPhyqmhE5PBySk0u2AwdcH3/1VXjnHZg+HVatgpAQdc5GMi+TW8WWXW+7jcKMDNa++CK24mIA9CYT3W67je533unRBtY3Gbkh/EHW/v0AhLVuXbLTw10blrw8rEVFJfNUCNEUvPkm3Hkn3Hqruj99OvzyC8ycCU88UfFzdDqIj6/4MU2Dt9+Gp5+GSy9V+z77DOLi4Pvv4dprPf0KPM6tQEKn09HnkUfocc89ZO3diyEoiLA2bZrEB4bMJSH8geMLgNELxZYBYWHo9Ho0m42izMwK66mEaEiys7Oh1Gq1JpMJk8lU/sCiIli3DiZMKNmn16uuiBUrKr9ATg60aQM2G5x6Krz0EnTvrh7btw9SUtQ5HCIiVJfJihWNIpCo0zLiASEhxPTsSWSnTk0iiADJSAg/5qFAQqfXO5cTl7kkRGPQtVs3IiIinNuUKVMqPjAtTS1sFxfnuj8uTgUDFUlKUtmKH36AL75QwcTAgXD4sHrc8bzanLOBcSsj0ZRJICH8gaZpZXd4LJAAVXBZmJFBkRRcikZg+7ZthCUmOu9XmI1w14ABanMYOBC6doUPPoAXX/TcdXyoThmJpkgmpRL+ROdYnCsvD+zdHR4JJBzTZEtGQjQCYWFhhIeHO7dKA4lmzcBggGPHXPcfO1Z5DURZAQHQpw/s3q3uO55Xl3P6mAQSZQRLRkL4g7IZCUc2wmCA0rNdusk5ckMyEqIpCQyEvn1h0aKSfTabul8661AVqxU2b1ZDPQHatVMBQ+lzZmWp0Rs1PaePSddGGc6MhAQSwp94aAlxB8lIiCZr3Di4+Wbo1w9OP12NuMjNLRnFcdNNkJgIjjqLF16AM86Ajh3VCruvvaaGfzqWktDp4KGHYNIk6NRJBRbPPAMJCTBqVP2/PjdIIFGGo0aiMCMDW3Ex+oAAH7dIiHrgoSXEHUz2YkvJSIgm55pr4PhxNYFUSgr07g0LFpQUSx48qEZyOJw8qYaLpqSo36++feGff6Bbt5JjHntMBSN33aV+F886S52zkSyCKYFEGabISHQGA5rVSsHJk5gb8UydQlSqbNeGIwNnD6TrKlCWEhdN2f33q60iS5a43n/rLbVVRadTmYsXXvBI8+qb1EiUodPrnRPqFEr3hmjqHN0YjuJiDwUSztFPsmaNEE2eBBIVcHwIyjTZwm84/q+XnjK7Dpxr1kggIUSTJ4FEBZx1EvIhKJqocvNIODISHgokTPZaC/kdEqLpk0CiApKWFf5CJ10bQog6kkCiAiZHWlYmpRL+wtNdG/aMhCU3F2thoUfOKYRomCSQqECwfJsSTZ2ja8NLGYmA8HB0RjUoTH6PhGjaJJCogElmtxT+xsMZCZ1O5yy4LHRMdiWEaJIkkKiAVJwLv+PhYksoKbiUgFyIpk0CiQrIqA3hL3Q6nZr735E18FDXBkjBpRD+QgKJCjgzEidOlB8mJ0RTc/JkSc2E/f++J0jXhhD+wadTZG+dMYNDCxeStW8fhqAgmvfuTe9x4whv167S5+yeO5d9P/5Ihn0J1uhu3ej14IM0O+UUj7XL8U3KVlxMcXY2gfZ1A4RoKlwCZEe3RkSEWuLYQ6RrQwj/4NOMROqaNXS+7jrO/+orzp0xA5vFwp933oklL6/S5xxbs4Y2F1zAsJkzOX/2bELi41l8113klV3LvQ4MJhMB9qWU5UNQNGk6nVfqI6BUF6FkJIRo0nyakRjy4Ycu98+YPJl5gwaRvm0bsf36VficM1991eX+6S+8wMGFC0lZuZL2l17qsbaZoqMpzsmhID29ygyJEI2eh0dsODgzElIjIUST1qBW/yzOzgYgMCKixs+xFhSgWSyYKnlOYWEhhaUmxMnOyanReYNjYsg5eFAyEqJpqqhrw4OFluBaaySEaLoaTLGlZrOx7pVXaN6nD5GdOtX4eRvfeIPg2FjiBwyo8PEpU6YQERHh3Lp26VKj88pcEsJveCuQkK4NIfxCgwkk1kyaROauXZz5+us1fs7WGTM48OuvDJo6FYPJVOExEyZMIDMz07lt/++/Gp1bhq6JJq10RsJRXxQf79FLSNeGEP6hQXRtrJk0iaN//cWwTz/FXMMPs+2ffMK2jz/m3I8+IiopqdLjTCYTplJBRnENuzYkLSv8gU6ng5QUdScuzqPndgTj1vx8LHl5GM1mj55fCNEw+DQjoWkaayZN4vCiRZw7cyahLVvW6HnbPv6YLdOnM+SDD4jp0cMrbXOOgZdAQjR1XspIGM1mZ6ZQshJCNF0+DSTWvvgi+3/+mYGvvkqA2Uz+8ePkHz+OpaDAecw/Eyaw8a23nPe3ffQR/777Lv1ffJGQhATnc4pzcz3aNunaEE2ZyzwSXspI6HQ65+9RvqykK0ST5dOujV1ffw3Aoltucdl/xqRJtL/sMgDykpNV+rXUc2zFxSx/+GGX5/QYM4ZT7rvPY20LKl1s+ccf8O67agbA4cPh4YdB0rSiKdDpvJaRAAhq3pzco0cpOH7c4+cWQjQMPg0krt+6tdpjhs2a5XL/0oULvdQaV45AInHbNjjvvJIHli2DuXPh998hNrZe2iKE11gsJfNIeCGQCG7eHIB8CSSEaLIazKiNhiYoOppmeXn0PnBA7bjtNpg+XQUPmzbBqFFQXOzTNgpRV3rH0EyDwaPrbDhIICFE0yeBRCUCQkM5LSUFPWC5/HL46CO4+25YulStSbBiBTz/vK+bKUSd6B01QHFxoPf8x4EzkJAaCSGaLAkkKqH7v/8jqqCAIr2e7IcfVn3JAElJKqgAePVV2LHDd40Uoo70jm4NDxdaOkhGQoimTwKJyvzvfwDsiI4mz2ZzfeyKK+CCC1TXxvjxPmicEHVkH7VhcGQkvFAfAaUCidRUr5xfCOF7EkhUZOtWWLYMm07H7qio8nNJ6HTw5psqFfzTT7BunW/aKUQdeT0jYV8IrEC6NoRosiSQqMjnnwOQ0bEj+QEBFc9umZQE11+vfpZaCdHIOOaR0DuGfrZq5ZXrBNkzEgXp6dgsFq9cQwjhWxJIlKVp8N13AGSefjpQxaRUTz+tshM//QQ1XMNDiIbE4O1AIjoancEAmibTzQvRREkgUdb27bBzJwQGUjRwIFDFehtJSXDxxernd9+tpwYK4Tnezkjo9HqC7N0bUnApRNMkgURZ33+vbocNIyAxEahmmuwHH1S3n34KGRlebZoQHuMotnRMj+2lQAJK6iQkkBCiaZJAoizHzJkXXeQ6TXZlhgyBHj0gNxdmzqyHBgrhGUabDX12trrjzUDCUSchgYQQTZIEEqUVFKiJpgDOPbdmgYROB2PHqp+nT3d+0xOioTM7ZmaNiIDwcK9dRyalEqJpk0CitBUroLAQWrSAzp1LlhI/eRKt7FwSpV13HYSGwq5dauZLIRo4TdNKAgkvZiOgZOSGzCUhRNMkgURpf/6pbocMAZ0OU1QUAJrVSmFmZuXPCw1VwQTAjBlebqQQnhFaVKR+aNvWq9cJsU92leuoxxBCNCkSSJS2ZIm6HTIEAENgIIH2lG+5SanKuvNOdfvtt1BVcaYQDYGmEe4IJDp18uqlzPZAIk8CCdFUTJumAvCgIOjfH1avrvzYGTNg0CCIilLbsGHlj7/lFtVNXnobMcKbr8CjJJBwKC6GtWvVz2ed5dztGLpW5cgNgH79oFcv1TUye7a3WimEx4Q5AonOnb16HXOLFgDkJSd79TpC1Iuvv4Zx4+C552D9evW5P3w4VNZ1t2SJylgvXqy6z1u1gvPPhyNHXI8bMQKSk0u2r77y+kvxFAkkHLZsUcWWEREuH6yOOolqJ9PR6eCOO9TPM2ZI0aVo8MLqKSPh6NoozsmhyDFKRIjG6s03VQb61luhWzdVZG82Vz5qb/ZsGDMGeveGLl3Uoo82Gyxa5HqcyaTWvHFs9q71xkACCYc1a9Ttaae5LKdscgQSNemuGD1apbo2b6461SWEj+lstpIaCS9nJIxmM4EREYB0b4iGKTs7m6ysLOdWWFhY8YFFRWptpWHDSvbp9eq+Y8RfdfLyVAbc/rfFackSiI1VEx3eey80oplgJZBwcPzht0+L7eAcAlqToWtRUXDVVepnKboUDVhIXh56QAsKAvvEa169nr17I1e6N0QD1LVbNyIiIpzblClTKj4wLQ2s1vKL3MXFQU2D5Mcfh4QE12BkxAj47DOVpXjlFfjrLxg5Ul2rETD6ugENRmWBRG0yEqBSXp9/rvq33nhDdZUI0cBE2LsYLJ06EaD3/vcJc3w8J//7TzISokHavm0bYaUCapPJ5J0LvfwyzJmjsg9BQSX7r7225OeePeGUU6BDB3Xc0KHeaYsHSUYCICdHLR0OqmujFEexZWFNA4mzzoLu3VX6yr6KqBANTbh9OLOla9d6uZ4UXIqGLCwsjPDwcOdWaSDRrBkYDOBYo8bh2DFV11CV119XgcTvv6tAoSrt26tr7d5d8xfhQxJIAGzYoIpfEhLUVoojI5Ff0/4qnQ7uuUf97KuZLjMzYe9e2LdPBTRClOHMSHTpUi/Xk64N0SQEBkLfvq6Fko7CyQEDKn/eq6/Ciy/CggVqhF91Dh9WNRL235uGTgIJgH//VbennlruIefslrWZG+LGG1UV79at8Pffnmhh9dasUQU67dtDZKRKi7VvDyEh0LGjGqf8ww9qeKrwe4H2WS1tZft6vUTmkhBNxrhxqgbu00/VatH33qvWWrr1VvX4TTfBhAklx7/yCjzzjBrV0batqqVISVGZcFC348fDypWwf78KSi69VH1uDx9e36/OLRJIQEkgUUG6qVbFlg4REXD99ern99+va+uqtn07XHihqu2YPl1lIUAFMo703J496j/9qFGqKOjhh9U+4bf0jinfAwLq5XqSkRBNxjXXqG6KZ59VQzo3blSZBkdQfvCgmgfC4f331WiPK69UGQbH9vrr6nGDQf0NuuQSNYLq9ttV1mPZspLP8AZOAgkoCSR69iz3kCOQsOTnY6lNN4Gje+Pbb8Ebqx5qmppdrU8fmD8fjEY1/HT+fDh5UkXI+fmqynjBAhU8JCaqbo+331ZzB1x8sYp+Zc4Lv6O3/5tr9RRIODIS+SkpVa9bI0RjcP/9cOCAyvCuWqVmt3RYsgRmzSq5v3+/+owtu02cqB4PDobfflMTWhUVqeM//LD8yJAGTEZt2Gxq3geoMCNhDAnBYDJhLSyk4ORJQs3mmp23b19VuLlmjUqDPfmkZ9s8Zgx88IG6P2IEvPNO+YmFdDqIiVHpseHDVQT8++/q2F9/hZ9/VluPHmoF0xtuUP+pvSUzE3bsUL8wJ06oraBAvR6rVY3HDg1VW0gIhIWpbprISJXliYxUj9XDKIOmzpmRMNbPR0BwbCw6oxGbxUJ+aqozsBBCNH4SSOzbp769BwZWODGPTqfDFB1NXnIyBSdOEFqbMfdjx6p6ialTVUbAE3+kNU1Fwx98oAKFN96Ahx5SP1dHr1dBx4gR6g/6u++qyHnLFrjrLnjiCXV7ww1qxraanLMieXmqy2XLFtft8GH3zlf2NTiCCsdt6c2xLzBQvVc2m+tWXFyyWSyu993dp2mqXTpd+duK9rl7CyXZozremuy1MvWVkdAbjYS0aEHOoUNkHzokgYQQTYgEEo5sRPfulX47CyoVSNTKNdfA00+rFNisWaoopy40DR54QPW56XTqnDfd5N65kpLgf/+DSZPg44/Vz/v3q+FJL7+sHh85UlUi9+6t5ocvHQhZrSqjsH8//Pef2rZtUwHD3r2Vd5ckJKj+wWbNVLYkOFj1Eer16g99bi5kZ6sCpKwslcXIzFTdNcXF6piTJ9Um3GYAbIDNvsR3fQht1YqcQ4fIOXSIuDLDrIUQjZcEElXURzg4F+6qbSAREACPPqr++L/2mpqsyt1UsqbBgw+qugidTlUAuxtElBYZCY88orIaP/6o5oFfuFBlLHbsUPUUDmFhqv2apv64V1VbERuruky6d1e3jp/dnaBL01Q3SEaGunZGRslW9n5Ghgo69HrXTadT/yalN6Ox7vt0upLsR+nbivbV5daRlajqtibHAGsmT+Z4Xh796zGQCGvVihQg59CherumEML7JJCoYsSGg1tDQB1uuw1eeEF1oXzyScly47Whaapr5N131f2PPlLDOT3JYIDLLlNbZqaqoVi2TA1J2rGjJFNQVnw8dO2qFqPp2rUkYIiN9Wz7dDqVvQgObjRjqxuyIx99VO+TQ4W2bg1AtgQSQjQpEkjUJJCwj9yo8aRUpZnNqtDy4YfVWOLrrlMFgzWlaWjjxqGbOhWAozfeSNQll+DFkkiVNbj22pJpWx0ZiOPHVZeGpqkFZ2Ji6q1YTzR+oa1aAZBz8KCPWyKE8CT/Ln8vKCiZT6FHj0oPc2Yk3F2NbcwYNUHUsWNQ2WIwFdE0LGPHorN3L6xq0YIl69bx0wUXcOSvv9xrizt0OtUF0qlTSeYhLk6CiMbM0S3lbkGtG8IcgYRkJIRoUvw7kNi9W/U9R0RUOU+6c1Iqd7o2QI0geO019fOrr8LatdU/R9PQxo/H+L//AbCubVuMY8cS3b07ltxclo4dS8rKle61RwgfCG3ZEoCirCyK7Gt9CCEaP/8OJP77T90mJVX5zcwZSNRlffhRo+Dqq9WwwdGjqx51YLPBAw+ge+MNANa1akX7+fPp+8QTnD97Nq1HjkSzWFj28MPklV08Roha0NVjRsJoNjsLl6VOQoimQwIJUOn6Kphqu5R4RXQ6eO89aNkSdu5Uc6lnZZU/LjNTFTxOm4aG6s4IefFFouyrNOoDAhgweTLR3btTnJXFqueeQ5OZKUUjId0bQjQ9/h1I7NihbqsJJBwZicKTJ7FZLO5fLyYGfvkFwsPViIgzzlBTo1osKqj4+GM1EdSPP2ILCGBFYiIpPXvS6brrXE5jMJkY8NJL6AMDSV62jEO//+5+m4SoR2Ft2gCQtX+/bxsihPAY/w4kapqRiIx0zhVQmJFRt2uecopa36JFCzX744gREBSk6jTuuAOOHkXr0IG/+/dnf0QEXW66CUNgYLnTRHTsSLfbbwdgw5tvYi0qqlu7hF/RfFBsCRDevj0AWXv31ut1hRDe47+BhKa51khUQW80YoqKAtycS6Ksfv1g0yY1UVV0tBpSCWrZ2FdfJXXWLA6lp2MMDqbdJZdUepput91GcPPm5B4+zM4vv6x7u4TwsogOHQDIlNVnhWgy/DeQSE1V0zAbDGpoZjUcQ0DrVHBZWvPmavGs1FQ4ckSt0rlrF4wfz4E//gCgzQUXEBgWVukpjGYzp4wdC8C2jz6iODfXM20T/sNXGYl9+7A5AmghRKPmt4GEbvdu9UP79jVa893jgYSDwaDWn7DXYdgsFg4tWgRA6xEjqn16u0suIbRVKwpPnmT3N994tm2i6fJRgW5IYiIGkwlbURG5R474pA1CCM+SQKKa+ggHjwwBrYHUtWspTE8nMCKiRgsb6Y1Gut99NwDbP/kES36+V9snRF3oDQbC27UDpHtDiKbCbwMJ54yW1dRHOJjqOilVDR22ZyNaDRuGvoZLPLe76CJCWrak4MQJdn39tTebJ5qY+u3YUMLtXYlZEkgI0ST4bSBR24xEcD0FEsl//w1A4uDBNX6OPiCA7vbFwLbPnImloMAbTRNNiQ/nHomw10lIRkKIpkECiRoGEiZv1UiUknP4MNkHDqAzGIg7/fRaPbf9pZcSkpBAwYkT7J4710stFKLuHCM3Mhy/g0KIRs1/AwlHoVdNayTqIZBI+ecfAJr16kVAbVYIpUxW4uOPsRYWerx9ounw1TwSAFH237nMXbtk/hMhmgC/DSQANVLC3mVRHccaAd4MJJJXrAAgfuBAt57fbtQozPHx5B8/zu5vv/Vk04TwmJCWLQkIC8NWXCx1EkI0Af4dSNQwGwGuGQlvrG2h2Wwcs6/m2cLNQMIQGOjMSmz7+ON6/7ZnLSzk+IYN7P/5Z3Z++SV75s3jyJIl5Bw6hGaz1WtbRA35ICOh0+mItq8dk759e71fXwjhWUZfXnzrjBkcWriQrH37MAQF0bx3b3qPG+ccHlaZg7/9xr/vvkvOkSOEtWlD73HjSDz77No3oBaBRHDz5gDYioooysxU02Z7UPaBAxRlZWEICiK6Wze3z9P+8svZ8uGH5B87xt558+h07bUebGV5ms3Gkb/+Ys+335L8zz/YKgleTNHRxA8YQMLZZ9NyyBACQkK82i5RDR8v9BbVrRvHVq8mfetWOlx+uU/bIoSoG59mJFLXrKHzdddx/ldfce6MGdgsFv68804seXmVPuf4hg38PX487S+/nJHffkvLc89l2QMPkLFrV+0bUMOhn6AWynJMk+2NpbtPbN4MQHTXrjUe9lkRQ2Cgcw2OrTNmeDUrkbJyJQuuvpql99/PkSVLsBUVERQTQ+xpp9Fq2DASzj6byM6d0QcEUJiezoFffmHF448z75xz+Hv8eI789Re24mKvtU80XI5gWTISQjR+Ps1IDPnwQ5f7Z0yezLxBg0jfto3Yfv0qfM6OL76gxVln0e222wDoNXYsKStWsPPLLzn9uedq14BaZCQAgmNjKTx5kvzUVKJqEYTURNq//wIQc8opdT5XxyuvZNuMGeSlpLD3++/pdPXVdT5naZa8PNa/9ppzJs2A0FA6XHkl7UeNIqJjR3Rl0uXWoiJO/PsvR5cv5+CCBeQcOsSB+fM5MH8+pshIWg8fTtuLLqJZ797o9J6PbTVNo/DkSfJSUig8eZLCjAwKMzKwFhSgWa3YrFY0mw1DYCCGoCCMJhOG4GCMwcEYzWYCQkIwhoQQ4PjZbK5TsNeQlP23qi+OQCJjxw5sFgt6o08/inzOZrViKypSXYCaprpP7ZtW+r6DTufyb+f8udRtuX2O4+pwjK/+v4iGTad5o8PfTdkHDvDTBRdwwfffE9mpU4XHfD90KF1uvpkuN93k3Pfv//7H4UWLuOC778odX1hYSGGpEQzpKSm0S0oiE1h95pnkVpBiP/+LL5xdGVumT2eP/bwFaWlYCwowRUZitI+qGPrRR4S2agXA9lmz2PnVV5W+vnP+9z/n69o1Zw7bPvnE+Vj+sWPYiosxRUdjNJs56/XXienZE4C9333H5unTKz3vgMmTnYHXgV9/ZePbb1OcnU1RZiY6vR5zfDzY/0Cf9vTTJAwaBMDhP/9k3SuvVHreUx97jFZDhwKQsmIFqyZOxFZcrOpE7MupG0NCCAwPp/dDD9H2oosAOL5+Pf9MmFDpedtccAGW3FwOLljgUryqMxgwBgdjCApSK57q9XS56SaSRo8GIHPvXpbce2+l52130UXEDxxI9v79nNiyhX0//YRmsail373x31yvR6fTqeDH/iEbHBdH7Kmngl6PZrFwyL5uiuP6WqmfAyMiiGjfHpvFgmaxcGLbNrDXkjh/Le23eqMRY0iI8/VY8vNLXlOZD3e90UhgeLhqk8FAYXq6a42KTuf892vepw/nffGF86FFt91GTiVTV4e0aMGwWbOc95eMGVPpXBBBUVEMnzPHeX/5uHGc2Lq15ABNI/foUdA0wlq35uJff3U+tGLCBFLXr6/wvDq9nktKHbv6hRecc69U5KKffnKunrvu5Zc5vHhxpceOnDtXvW/ApqlT2T9/fqXHVvYZAaBZrSpAtVjQrFZaDh0KNhuFGRmc3LmT/NRUlyDB191MdeUI/jVw/v+t8DijUQWMOp16f6rIRhpMJvSBgegAm82GJTe3wnoeHajgPzjYed6izEz7g+WPN5rNzvWLbFYrOSkp3Lh9O1mHDhHesmVNX7Ioo8F8DdBsNta98grN+/SpNIgA9cc8qMxIi6CYmEpHU0yZMoXnn3++5Fj7fy4rcDw9He3kyfJtKbWYUGFmJrmHD7s87vhGC2ptDIeiCo4trfQvTlF2doXHFqanU5ie7tIlUZybW+V5S09AVfZYzWZTH9h21lLHWvLzqz5vqS6myo615OZiyc2luNSx1sLCKs9rioig94MPcupjj7Hzyy9Zbw9mNKuV4pwcinNynMfu/vZbCk6cwBQRUe37sGX6dLZUEXCVFtq6Nc379EFvNGItLGT/zz9XeqzRbMYQGEhxbq7rh5/Nhobr/5ecgwfJOXiwRm3ILyggv4bdZFartfIhvWX+EDmCvZoozMpyuZ937Fil73HZb6P5qamVHmstMylaVcfmpqS4HpuWVnkbDAaX+wUnTlT5f6K0wpMnqzy2dLBV7bH2LFbGzp0cW726ymP3zptXo/Y1VjUtpNYsFqylPi+rYi0oKPd/qKKAS0N9TlXVHV5acXY2xdnZzvvSteoZDSYjsfqFF0hetozzPv9cfYOuxJxevTjjpZdoe+GFzn07v/qKLe+/z+VLl5Y7vrKMxInWrbH99FOF14jq0sX5LSb36FHy09IA2PN//8eeb78lccgQut91FwCRnTtjDApSxyYnk3/8eKVtj+zYEaPZDEBeaip59g/QjN27Wf3MMwSEhTH4gw/Q6XREdOjgLEjMP36c3OTkSs8b3rat85tUwYkTzm+UqWvXsvGNN9AZDJz5+uuY4+MJa93aWShacPIkOYcOVXre0FatCLLXheyYPVtlL6xWIjp1os8jjxAYEeE8NiQhgWD7ENmi7Gyy9u2r9LwhLVo4v80V5+aSuWePGvGxfj1pGzdyYutWCt0cZhuSkEBY27aEtGyJ0WTCHBdHcFwc5thY9PZ/U1DBZ2hiIqC6Xk46lpSvQFBUlDPrVJyXR9qGDVjsH3SWggIs+flY8/OxFBSg0+kwBgWpb5o6nfr2CSVZC70encGA3mDAGBJCSHy8+qZmMJB9+DB6gwH0evR6PTqj0Xl8YGgoYW3bOp+buXeva/rbZlObpmE0mQht2dK5L3PPHqzFxerbov0YzWYjOC6O0MREl266k//9V2ldjSEggCj7aAuAjJ07K51FVW80uhQNZ+zeXe7Dfu+8eeyeO5e4AQMY+tFHzv2Ze/e6BJNlNSvV/Ze1fz9FZYKh0mJ69HB+Y84+cIBCx7fVCkR36+bsYsk5fLjCWWwLTpwgdc0asvbvJ23DhkqvbYqOJrhZM4KaNSOiQweCYmIwRUaqfxOrFX1QEMbAQPQBAegDAzEEBqIzGons3JkAs9n5fyc/NVV9s7ZvOp3O+e8e0aGD+jzRNPLT0sizf2Fw+Ui3Zz3C2rYlMDQUNI2C9HTXrJMjM2IX1rIlgeHhqkswI4PcI0cqzJxomkZIixbOz5PCrKySzxNHBq7U88zx8c5ji3NynAF36WMcGbvg2FiCoqLQNA1LXh7ZjuC87J8rTVPvbXQ0aBrWwkKy9+9HK3OM4zqmyEiCmzVD0zSsRUWkbtpEzzvukIxEHTWIQGLNpEkcWbyYYZ9+Smg1/5i17doo68TRozRLTOTkiBFElkqR1sSeefNY9cwztDjrLIZ88EGtnluVHbNns+6ll0g45xwGv/eex86raRqL77qLlH/+IbZfP86dOVP9oarNOWw2Nk2dyjb7B32bkSM5Y/JkDDVYMdVdmj3tnblrF5m7d5ObnExRVpb646LTYQgIwGA2E9ysGcHNm2OOiyO8XTtCW7d2BnWi4Tu2ejWLbr2V4ObNGbV4cYPtfy9IT2ffjz9y8LffOGGvZXIwms00692b6K5diezcmcikJMLatHF+ERENW9bhw4S3aiWBRB35tGtD0zTWTp7M4UWLGDprVrVBBECz3r1JWbnSJZBIWbGCZr171+7a9m+jtWGOiwM8P2rDMWIjpkcPj55Xp9Nx2jPP8Ovll5O6di3/ffqps0i1JiwFBax88kkO/vYbAD3uvZee993n9Q98nU5HaGIioYmJtVpzRDQuMaecgt5oVBm3w4edWZ+GQNM0UtesYdfXX3P4jz9KujB1Opr16kXi4MHE9e9f51FWQjQFPg0k1r74Ivvnz+fsd98lwGx2dgsEhIU5v1n+M2EC5thYej/8MABJN9zAH7fcwvZZs0g4+2wO/Por6Vu2cPrEibW7uBujA4LtgURN+7VryhlI2IsrPSmsdWtOffxxVk+cyKapU4nu1o34M86o9nkFJ06wdOxY0jZuRG80cvoLL9D+0ks93j7hv4xBQUT36EHaxo0cW7u2QQQSmqZxZMkSts6YwYlNm5z7Y3r2pP2oUbQcOtTZLSeEUHwaSDiWvF50yy0u+8+YNIn2l10GQF5ysss34OZ9+nDmq6+y6Z132PT224S1acOgd9+tskCzQm58q3ZkJIqysrDk56tK4Toqyswke/9+wDuBBECHK6/k2Jo1HPjlF5Y99BBDPvzQpZ+5rGNr1vDPY4+Rn5pKQHg4Z0+dWutFxISoifgzziBt40aSly2jg/133leOrVrF+tde46R9bguDyUS7UaPodNVVLrUhQghXPg0kri89HKwSpYebObQePpzWw4d7oUVVCwgNxRgcjCU/n7zUVMLbtKnzOU9s2QKoUQSeni3TQafTccakSeSlpHB83ToW3XYb/Z56ivajRrkEaQUnTrB52jR2z52LZrMR3r49g6ZOdS77LISnJZx9NlumT1ezohYX+6SbIGv/fja8/jpH7ENDjWYzna+7jqSbbnIWEAshKtdghn/WOzcyEjqdDnN8PFn79pGfkuKZQMKL3RqlGQIDGfz++ywfN47k5ctZ9fTTbJ85k4RBgzCazWTs2MHRZcucw6HaX3YZ/Z580jnKRAhviO7RA1NUFIUnT5K2aVOlE9F5g624mG0ff8yW6dOxFRejMxjodM019BgzxjlaSQhRPf9etMsNwbGxgBq+6Qn1FUgABISEcM60afR+5BGMwcFk7d3Lf59+ypb33+fwn39iKy4mpmdPhs6axRmTJkkQIbxObzDQ4qyzADiyZEm9XTd92zYWXHMN/777LrbiYlqceSYXfPcd/Z56SoIIUb1p06BtWwgKgv79YfXqqo+fO1fNpBwUBD17QtnJzjQNnn0WWrSA4GAYNgzcWfbBR/w3I+Em58iNMpPouEPTtHoNJECN7+922210vOoqDi9axMnt27EVFxOSmEj8gAF1WjBMCHe0HDKE/T/9xMHffqP3uHFemSbdwWa1su2jj9g8bRqa1YopMpJTJ0yg7YUXNtjhp6KB+fprGDcOpk9XQcTbb8Pw4bBjB9i/aLr45x+47jqYMgUuugi+/BJGjYL168ExUu/VV+Gdd+DTT6FdO3jmGXXObdtU8NHA+W8g4eaHRrAHh4DmJSdTcOIEOqPRuaxyfQkMC6P9qFHqP7QQPpRwzjkYQ0LIPXqU4xs2ENu3r1euk5eayoonnuDYqlWAqrXq99RT5WbKFaJKb74Jd94Jt96q7k+fDr/8AjNnwhNPlD9+6lQYMQLGj1f3X3wRFi6E//1PPVfTVDDy9NPgGBn32WcQFwfffw9eXsHZE/y3a8PNQCKkRQtABQF15chGRCUleXWCJyEaMmNQEK3POw+A/b/84pVrHF22jF8vv5xjq1ZhCA7mjMmTOfONNySIEABkZ2eTlZXl3Aorm46+qAjWrVNdDw56vbq/YkXFz1mxwvV4UNkGx/H79kFKiusxEREq21HZORsY/w0k3BRin8iqsoWNasNbE1EJ0di0vfhiAA788kuV02PXlq24mA2vv86Se+6h8ORJIpOSGDl3brkRS8K/de3WjYiICOc2ZcqUig9MSwOrVWULSouLU8FARVJSqj7ecVubczYw0rVRS471GRzzz9flw8i5dHg91UcI0VDFnX464e3bk7V3L3vmzXOZudZdeceO8fcjj3B8wwYAOo8eTZ9HHpHsnyhn+7ZthJWa7dgk/0dqxX8zEu52bSQkAGrFuaIqFgCqjs1iIX3bNkBNFSyEP9Pp9STdeCMAOz7/vNKFw2oqZcUKfr3ySo5v2EBAaChnvfUW/Z58UoIIUaGwsDDCw8OdW6WBRLNmYDBA2Rq5Y8egssUm4+OrPt5xW5tzNjD+G0i4yWAyOafIzanh8sUVydyzB2t+PsaQEMLbtfNU84RotNpdfDFBMTHkHj3Krq++cuscms3G5vfe488776QwPZ3IpCRGfPMNrc8/38OtFX4pMBD69oVFi0r22Wzq/oABFT9nwADX40EVWzqOb9dOBQylj8nKglWrKj9nA+O/gUQduiRCSnVvuKt0fYQ3h7sJ0VgYg4M5ZexYADZPn17ruVryUlL488472TxtGmgaHa64gvO//JIwD0wcJ4TTuHEwY4Yaqrl9O9x7L+TmloziuOkmmDCh5PgHH4QFC+CNN+C//2DiRFi7Fu6/Xz2u08FDD8GkSfDjj7B5szpHQkKjGVXnv3/BPBFIHD3q9jlOSH2EEOW0v+wyorp1ozgrixUTJmCzWqt9jqZp7P/5Z3657DKOrVyJISiIMyZNov8LL8iy8sLzrrkGXn9dTSDVuzds3KgCBUex5MGDUHpU38CBau6IDz+EXr3g22/VsM7SRfaPPQYPPAB33QWnnQY5OeqcjeT/r/8WW9aBo+CyLl0bzoyE1EcI4aQ3GBj4yissuPpqjq1cyapnnqH/Cy+gN1b8UZW5Zw/rXn6ZlH/+AdSU2wNfflm6C4V33X9/SUahrIpmaL3qKrVVRqeDF15QWyPkv4FEXTIS9oJLdzMSlrw8MnfvBiQjIURZEe3bM/Dll1k+bhz7fviBnEOH6DN+PDE9e6LT6bAVF5O6bh27587l0O+/o9ls6AMC6H7XXXS/806fLPwlhD+TQMINoS1bAu7XSKRv345msxEcF4e5oilVhfBzrYYN46w332TFk09yfP16fr/uOkyRkQSEhZGfmoq11IRBiUOGcOpjjxHWurUPWyyE//LfQKIOHBmJHDfnkpD6CCGq12rYMKK6dGHze+9xcMECCjMyKMzIAMAUHU3LIUPofP31RHXp4tuGCuHn/DeQqGPXhs5gwFpQQP6xY5hrOdbXUR/RTAIJIaoU2rIlA156idMnTiRzzx4seXkEN29OSGIieoPB180TQiCBhFv0AQGEtmxJ9oEDZO3f73YgIRkJIWrGEBhY7wvbCSFqxn+Hf9ZRWNu2AGTt21er5+WnpakiTZ2O6O7dvdAyIYQQov74byBRxwV7HMPLsvbvr9XzHPURER07EhAaWqc2CCGEEL4mgYSbwu0ZiexaZiQcC3U1k/kjhBBCNAH+G0jUkdsZiU2bAGjWq5enmySEEELUO/8NJOqYkXDUSOQePYqloKBGz7FZrSWFlhJICCGEaAIkkHBTUEwMAWFhoGnkHDxYo+dk7t6NJT+fgNBQItq3r9P1hRBCiIbAfwOJOtLpdITbg4EM+3TX1Umzd2vE9OwpK34KIYRoEvz3r1kdMxIAUUlJAGTs2FGj4x31EbJQlxBCiKZCAok6cEzNe/K//2p0/PENGwAptBRCCNF0+G8g4QG1CSTyjh0j+8ABdHo9zfv08XbThBBCiHohgUQdRHbqBDodBWlp5B8/XuWxqWvWABDVtSuB4eH10TwhhBDC6/w3kPBA14bRbHZOTHWymjqJY6tXAxB3+ul1vq4QQgjRUPhvIOEhju4Nx/wQlTlmz0jEnnaa19skhBBC1BcJJOqomb3e4fj69ZUek3v0KDkHD6r6iFNPra+mCSGEEF7nv4GEB7o2AGL79gUgbeNGbBZLhccc+esvAJr17k1gWJhHriuEEEI0BP4bSHhIRKdOBISFYcnLq3Q+iSNLlgCQOHhw/TVMCCGEqAf+G0h4KCOhNxic3RUpK1eWe7w4N5djq1YBEkgIIYRoeiSQ8ICEs84C4MjixeUeO7x4MbbiYkJbt3ZOqS2EEEI0Ff4bSHhQ4pAhABzfuJH8tDSXx/b98AMA7S6+GJ0HgxchhBCiIfDfQMKDf9RDWrQgunt30DQO/PKLc3/2gQOkrFgBqEBCCCGEaGokkPCQDldeCcDOr77CZrUCsO3jj0HTaDFoEKGtWnn0ekIIIURD4L+BhIe1u+giAsPDyTl0iJ1ffEHqunXsmTcPgB533eXj1gkhhBDe4b+BhIczEkazmV4PPQTA+ldf5Y+bbwZNo+0ll8gkVEIIIZosCSQ8qONVV9H5+uvVHU0jfuBATnv6aY9fRwghhGgojL5ugK/YLrzQ4+fU6fX0e+opkm68EUteHpFJSTJSQwghRJPmt4EEiYleO3VY69ZeO7cQQgjRkPhv14YQQggh6kwCCSGEEEK4TQIJIYQQwtPS02H0aAgPh8hIuP12yMmp+vgHHoCkJAgOhtatYexYyMx0PU6nK7/NmePVl1Idn9ZIpK5dy7aZMzm5bRv5x48z6J13aDV0aJXP2ffzz2z/+GOyDx4kIDSUhEGD6PPoo5giI+un0UIIIUR1Ro+G5GRYuBCKi+HWW+Guu+DLLys+/uhRtb3+OnTrBgcOwD33qH3ffut67CefwIgRJfd9/PfPpxkJS34+UUlJ9KvhEMnj69ezcsIEOlxxBRf+8ANnvfkmJzZvZtVzz3m5pUIIIUQNbd8OCxbARx9B//5w1lnw7rsqc3D0aMXP6dED/u//4OKLoUMHOPdcmDwZfvoJLBbXYyMjIT6+ZAsK8vpLqopPA4mEQYPo9eCDtBo2rEbHp23aREhiIkk33EBoy5bE9u1Lx6uv5sTmzV5uqRBCiKYqOzubrKws51ZYWFi3E65Yof7Y9+tXsm/YMNDrYdWqmp8nM1N1jRjLdB7cdx80awannw4zZ4Km1a29ddSoaiSa9epFXnIyR5YuRdM08tPSOPT77yQMGlTpcwoLC13+g2RX1UclhBDC73Tt1o2IiAjnNmXKlLqdMCUFYmNd9xmNEB2tHquJtDR48UXVHVLaCy/AN9+oLpMrroAxY1S2w4ca1TwSzU89lYGvvsrfjzyCtagIzWIhcfDgKmePnDJlCs8//7zzfpBMECWEEKKU7du2EVZqbiGTyVTxgU88Aa+8Us3Jtte9QVlZcOGFqlZi4kTXx555puTnPn0gNxdee00VZvpIo8pIZO7ezbopU+hx772M+OYbBn/wAblHj7L6hRcqfc6ECRPIzMx0btv/+68eWyyEEKKhCwsLIzw83LlVGkg88ogKFKra2rdXdQupqa7PtVjUyIz4+Kobk52tCinDwuC77yAgoOrj+/eHw4ehrt0xddCoMhJbP/qIZn360O222wCISkrCGBzMHzfdRK+xYwlu3rzcc0wmk8t/imLp2hBCCOGO5s3VVp0BAyAjA9atg7591b4//wSbTf3hr0xWFgwfDiYT/PhjzYooN26EqCj1HB9pVIGENT8fXZmiE53BAIDm42ITIYQQAoCuXVVW4c47Yfp0Nfzz/vvh2mshIUEdc+QIDB0Kn32miiazsuD88yEvD774Qt3PylLHNm8OBoMawXHsGJxxhgoyFi6El16CRx/13WvFx4FEcW4uOQcPOu/nHj7Mye3bCYyIICQhgY1vvUVeaioD7YUviYMHs2riRHbNmUOLM88k//hx1r38MjE9e2IuW9gihBBC+Mrs2Sp4GDpUjda44gp4552Sx4uLYccOFTgArF9fMqKjY0fXc+3bB23bqm6OadPg4YfVSI2OHeHNN1XA4kM6zYdf5Y+tXs2iW28tt7/dpZcy4KWXWPHkk+QePcqwWbOcj+2YPZvdX39NzpEjBIaFEde/P73HjcMcF1eja544epRmiYmkHTlCjCMyFEII4XeyDh8mvFUrsg4dIrxlS183p9HyaSDhCxJICCGEAAkkPKVR1Uh4gs1mA+BocjL59p+FEEL4n5zkZKDk74Jwj98FEgcPHQLglNIzjgkhhPBbmw4dIrJ1a183o9Hyu0CiXVISgcD6LVuIiIjwdXMajezsbLp168a2bdsICwvzdXMaBXnP3CPvW+3Je+aerMxM+vfoQauuXX3dlEbN7wIJo9FIEdCqVSvCw8N93ZxGI8s+DCkxMVHetxqS98w98r7Vnrxn7skKDycHMJRdy0LUSqOa2VIIIYQQDYsEEkIIIYRwm98FEiaTieeee67yudRFheR9qz15z9wj71vtyXvmHnnfPMPv5pEQQgghhOf4XUZCCCGEEJ4jgYQQQggh3CaBhBBCCCHcJoGEEEIIIdzW5AOJadOm0bZtW4KCgujfvz+rV6/2dZO8YsqUKZx22mmEhYURGxvLqFGj2LFjh8sxBQUF3HfffcTExBAaGsoVV1zBsWPHXI45ePAgF154IWazmdjYWMaPH4/FYqnPl+IzL7/8Mjqdjoceesi5T96zih05coQbbriBmJgYgoOD6dmzJ2vXrnU+rmkazz77LC1atCA4OJhhw4axa9cul3Okp6czevRowsPDiYyM5PbbbycnJ6e+X0q9sFqtPPPMM7Rr147g4GA6dOjAiy++SOlad397z5YuXcrFF19MQkICOp2O77//3uVxT70f//77L4MGDSIoKIhWrVrx6quvevul+R+tCZszZ44WGBiozZw5U9u6dat25513apGRkdqxY8d83TSPGz58uPbJJ59oW7Zs0TZu3KhdcMEFWuvWrbWcnBznMffcc4/WqlUrbdGiRdratWu1M844Qxs4cKDzcYvFovXo0UMbNmyYtmHDBm3+/Plas2bNtAkTJvjiJdWr1atXa23bttVOOeUU7cEHH3Tul/esvPT0dK1NmzbaLbfcoq1atUrbu3ev9ttvv2m7d+92HvPyyy9rERER2vfff69t2rRJu+SSS7R27dpp+fn5zmNGjBih9erVS1u5cqW2bNkyrWPHjtp1113ni5fkdZMnT9ZiYmK0n3/+Wdu3b582d+5cLTQ0VJs6darzGH97z+bPn6899dRT2rx58zRA++6771we98T7kZmZqcXFxWmjR4/WtmzZon311VdacHCw9sEHH9TXy/QLTTqQOP3007X77rvPed9qtWoJCQnalClTfNiq+pGamqoB2l9//aVpmqZlZGRoAQEB2ty5c53HbN++XQO0FStWaJqmfrH1er2WkpLiPOb999/XwsPDtcLCwvp9AfUoOztb69Spk7Zw4ULtnHPOcQYS8p5V7PHHH9fOOuusSh+32WxafHy89tprrzn3ZWRkaCaTSfvqq680TdO0bdu2aYC2Zs0a5zG//vqrptPptCNHjniv8T5y4YUXarfddpvLvssvv1wbPXq0pmnynpUNJDz1frz33ntaVFSUy+/i448/riUlJXn5FfmXJtu1UVRUxLp16xg2bJhzn16vZ9iwYaxYscKHLasfmZmZAERHRwOwbt06iouLXd6PLl260Lp1a+f7sWLFCnr27ElcXJzzmOHDh5OVlcXWrVvrsfX167777uPCCy90eW9A3rPK/Pjjj/Tr14+rrrqK2NhY+vTpw4wZM5yP79u3j5SUFJf3LSIigv79+7u8b5GRkfQrtQrvsGHD0Ov1rFq1qv5eTD0ZOHAgixYtYufOnQBs2rSJ5cuXM3LkSEDes7I89X6sWLGCs88+m8DAQOcxw4cPZ8eOHZw8ebKeXk3T12RXKklLS8Nqtbp8wAPExcXx33//+ahV9cNms/HQQw9x5pln0qNHDwBSUlIIDAwkMjLS5di4uDhSUlKcx1T0fjkea4rmzJnD+vXrWbNmTbnH5D2r2N69e3n//fcZN24cTz75JGvWrGHs2LEEBgZy8803O193Re9L6fctNjbW5XGj0Uh0dHSTfN+eeOIJsrKy6NKlCwaDAavVyuTJkxk9ejSAvGdleOr9SElJoV27duXO4XgsKirKK+33N002kPBn9913H1u2bGH58uW+bkqDdujQIR588EEWLlxIUFCQr5vTaNhsNvr168dLL70EQJ8+fdiyZQvTp0/n5ptv9nHrGqZvvvmG2bNn8+WXX9K9e3c2btzIQw89REJCgrxnotFrsl0bzZo1w2AwlKuwP3bsGPHx8T5qlffdf//9/PzzzyxevJiWLVs698fHx1NUVERGRobL8aXfj/j4+ArfL8djTc26detITU3l1FNPxWg0YjQa+euvv3jnnXcwGo3ExcXJe1aBFi1a0K1bN5d9Xbt25eDBg0DJ667qdy8+Pp7U1FSXxy0WC+np6U3yfRs/fjxPPPEE1157LT179uTGG2/k4YcfZsqUKYC8Z2V56v3wx99PX2iygURgYCB9+/Zl0aJFzn02m41FixYxYMAAH7bMOzRN4/777+e7777jzz//LJfO69u3LwEBAS7vx44dOzh48KDz/RgwYACbN292+eVcuHAh4eHh5f5wNAVDhw5l8+bNbNy40bn169eP0aNHO3+W96y8M888s9zQ4p07d9KmTRsA2rVrR3x8vMv7lpWVxapVq1zet4yMDNatW+c85s8//8Rms9G/f/96eBX1Ky8vD73e9ePWYDBgs9kAec/K8tT7MWDAAJYuXUpxcbHzmIULF5KUlCTdGp7k62pPb5ozZ45mMpm0WbNmadu2bdPuuusuLTIy0qXCvqm49957tYiICG3JkiVacnKyc8vLy3Mec88992itW7fW/vzzT23t2rXagAEDtAEDBjgfdwxlPP/887WNGzdqCxYs0Jo3b96khzKWVXrUhqbJe1aR1atXa0ajUZs8ebK2a9cubfbs2ZrZbNa++OIL5zEvv/yyFhkZqf3www/av//+q1166aUVDt3r06ePtmrVKm358uVap06dGu1QxurcfPPNWmJionP457x587RmzZppjz32mPMYf3vPsrOztQ0bNmgbNmzQAO3NN9/UNmzYoB04cEDTNM+8HxkZGVpcXJx24403alu2bNHmzJmjmc1mGf7pYU06kNA0TXv33Xe11q1ba4GBgdrpp5+urVy50tdN8gqgwu2TTz5xHpOfn6+NGTNGi4qK0sxms3bZZZdpycnJLufZv3+/NnLkSC04OFhr1qyZ9sgjj2jFxcX1/Gp8p2wgIe9ZxX766SetR48emslk0rp06aJ9+OGHLo/bbDbtmWee0eLi4jSTyaQNHTpU27Fjh8sxJ06c0K677jotNDRUCw8P12699VYtOzu7Pl9GvcnKytIefPBBrXXr1lpQUJDWvn177amnnnIZluhv79nixYsr/My6+eabNU3z3PuxadMm7ayzztJMJpOWmJiovfzyy/X1Ev2GLCMuhBBCCLc12RoJIYQQQnifBBJCCCGEcJsEEkIIIYRwmwQSQgghhHCbBBJCCCGEcJsEEkIIIYRwmwQSQgghhHCbBBJCCCGEcJsEEkL42JIlS9DpdOUWB6svixYtomvXrlit1jqdR6fT8f3339f4+AULFtC7d2/nehNCiMZJAgkh6tHgwYN56KGHXPYNHDiQ5ORkIiIifNKmxx57jKeffhqDwVCn8yQnJzNy5MgaHz9ixAgCAgKYPXt2na4rhPAtCSSE8LHAwEDi4+PR6XT1fu3ly5ezZ88errjiijqfKz4+HpPJVKvn3HLLLbzzzjt1vrYQwnckkBCintxyyy389ddfTJ06FZ1Oh06nY//+/eW6NmbNmkVkZCQ///wzSUlJmM1mrrzySvLy8vj0009p27YtUVFRjB071qU7orCwkEcffZTExERCQkLo378/S5YsqbJNc+bM4bzzziMoKMi5b+LEifTu3ZuZM2fSunVrQkNDGTNmDFarlVdffZX4+HhiY2OZPHmyy7lKd23s378fnU7HvHnzGDJkCGazmV69erFixQqX51x88cWsXbuWPXv2uP/GCiF8yujrBgjhL6ZOncrOnTvp0aMHL7zwAgDNmzdn//795Y7Ny8vjnXfeYc6cOWRnZ3P55Zdz2WWXERkZyfz589m7dy9XXHEFZ555Jtdccw0A999/P9u2bWPOnDkkJCTw3XffMWLECDZv3kynTp0qbNOyZcu4/vrry+3fs2cPv/76KwsWLGDPnj1ceeWV7N27l86dO/PXX3/xzz//cNtttzFs2DD69+9f6Wt+6qmneP311+nUqRNPPfUU1113Hbt378ZoVB89rVu3Ji4ujmXLltGhQ4favqVCiAZAAgkh6klERASBgYGYzWbi4+OrPLa4uJj333/f+cf1yiuv5PPPP+fYsWOEhobSrVs3hgwZwuLFi7nmmms4ePAgn3zyCQcPHiQhIQGARx99lAULFvDJJ5/w0ksvVXidAwcOOI8vzWazMXPmTMLCwpzX2rFjB/Pnz0ev15OUlMQrr7zC4sWLqwwkHn30US688EIAnn/+ebp3787u3bvp0qWL85iEhAQOHDhQ9ZsnhGiwJJAQogEym80u39Dj4uJo27YtoaGhLvtSU1MB2Lx5M1arlc6dO7ucp7CwkJiYmEqvk5+f79Kt4dC2bVvCwsJcrmUwGNDr9S77HNevzCmnnOL8uUWLFgCkpqa6BBLBwcHk5eVVeR4hRMMlgYQQDVBAQIDLfZ1OV+E+x9DJnJwcDAYD69atKzf6onTwUVazZs04efJkna9fk9fhKCYt+5z09HSaN29e5XmEEA2XBBJC1KPAwMA6z9dQkT59+mC1WklNTWXQoEG1et62bds83p6aKigoYM+ePfTp08dnbRBC1I2M2hCiHrVt25ZVq1axf/9+0tLSPDYZU+fOnRk9ejQ33XQT8+bNY9++faxevZopU6bwyy+/VPq84cOHs3z5co+0wR0rV67EZDIxYMAAn7VBCFE3EkgIUY8effRRDAYD3bp1o3nz5hw8eNBj5/7kk0+46aabeOSRR0hKSmLUqFGsWbOG1q1bV/qc0aNHs3XrVnbs2OGxdtTGV199xejRozGbzT65vhCi7nSapmm+boQQwnfGjx9PVlYWH3zwQb1eNy0tjaSkJNauXUu7du3q9dpCCM+RjIQQfu6pp56iTZs29b7mxf79+3nvvfckiBCikZOMhBBCCCHcJhkJIYQQQrhNAgkhhBBCuE0CCSGEEEK4TQIJIYQQQrhNAgkhhBBCuE0CCSGEEEK4TQIJIYQQQrhNAgkhhBBCuE0CCSGEEEK47f8BHZea861FFxwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|█████████████████████████████████████████████| 1/1 [00:02<00:00, 2.69s/it]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAHWCAYAAADn3voRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFuElEQVR4nOydd3gU9fbG3y3ZTdsUUiCht0DoiAhIUYoC9quioF771avYr/68qFdUVKzXeu0Fr6JwFRF7R1Hp0nvvCel9s3V+f3znOzu72TItpJ3P8+wzW2ZnJptk551z3nOOSRAEAQRBEARBtHnMTX0ABEEQBEE0D0gUEARBEAQBgEQBQRAEQRAiJAoIgiAIggBAooAgCIIgCBESBQRBEARBACBRQBAEQRCECIkCgiAIgiAAkCggCIIgCEKERAFBtGB++eUXmEwm/PLLL019KARBtAJIFBCEwSxfvhwPPfQQKioqmvpQonLs2DE89NBD2LBhg67tLF68GJMnT0Zubi7sdjs6deqEiy++GFu2bFH0/quvvhomk6nBrW/fvrqOKxJvv/028vPzER8fj969e+Oll15qsE63bt3CHpPJZELv3r0b5bgIojlgbeoDIIjWxvLly/Hwww/j6quvRlpaWqPua9y4cXA6nbDZbKrfe+zYMTz88MPo1q0bhgwZovkYNm/ejPT0dNx+++3IzMxEYWEh3nnnHZxyyilYsWIFBg8eHHMbdrsdb731VtBzqampmo8pEq+//jr+/ve/46KLLsJdd92F3377Dbfddhvq6upw7733Sus9//zzqKmpCXrvwYMH8cADD+DMM880/LgIorlAooAgWjBmsxnx8fFNegwPPvhgg+euv/56dOrUCa+++ipee+21mNuwWq244oorGuPwJJxOJ+6//36cffbZ+OSTTwAAf/vb3+D3+zFnzhzccMMNSE9PBwBccMEFDd7/6KOPAgAuv/zyRj1OgmhKKH1AEACqq6txxx13oFu3brDb7cjOzsYZZ5yBdevWBa23atUqTJkyBampqUhMTMRpp52GP/74Q3r9oYcewj333AMA6N69uxRyPnDgAADAZDLhlltuwfz589GnTx/Ex8dj2LBhWLZsWYNjWr9+PaZOnYqUlBQkJydj4sSJWLlyZdA64TwFp59+OgYMGIBt27Zh/PjxSExMRMeOHfHUU08FvW/48OEAgGuuuUY6znnz5gEA6urqsGPHDpSUlGj6PLOzs5GYmKgqheLz+VBVVRV1nYqKCtxxxx3o3Lkz7HY7evXqhSeffBJ+vz/m9pcuXYrS0lLcfPPNQc/PnDkTtbW1+Oqrr6K+/8MPP0T37t1x6qmnxv5hCKKFQqKAIAD8/e9/x6uvvoqLLroIr7zyCu6++24kJCRg+/bt0jo///wzxo0bh6qqKsyePRuPP/44KioqMGHCBKxevRoAcOGFF2LGjBkAgOeeew7vv/8+3n//fWRlZUnb+fXXX3HHHXfgiiuuwCOPPILS0lJMmTIlKAe/detWjB07Fhs3bsT//d//4V//+hf279+P008/HatWrYr585SXl2PKlCkYPHgwnn32WfTt2xf33nsvvvnmGwBAfn4+HnnkEQDADTfcIB3nuHHjAACrV69Gfn4+Xn75ZcWfYUVFBYqLi7F582Zcf/31qKqqwsSJExW9t66uDikpKUhNTUW7du0wc+bMBuH7uro6nHbaafjggw9w5ZVX4sUXX8To0aMxa9Ys3HXXXTH3sX79egDAySefHPT8sGHDYDabpdcjvXf79u247LLLFP08BNFiEQiCEFJTU4WZM2dGfN3v9wu9e/cWJk+eLPj9fun5uro6oXv37sIZZ5whPff0008LAIT9+/c32A4AAYCwdu1a6bmDBw8K8fHxwl/+8hfpuQsuuECw2WzC3r17peeOHTsmOBwOYdy4cdJzS5cuFQAIS5culZ477bTTBADCf//7X+k5l8sldOjQQbjooouk59asWSMAEN59990Gx8m3O3v27IifSSh9+vSRfr7k5GThgQceEHw+X8z3/fOf/xTuvfdeYeHChcJHH30kXHXVVQIAYfTo0YLH45HWmzNnjpCUlCTs2rWrwfstFotw6NChqPuZOXOmYLFYwr6WlZUlTJ8+PeJ7//GPfwgAhG3btsX8eQiiJUOeAoIAkJaWhlWrVuHYsWPIzc1t8PqGDRuwe/duPPDAAygtLQ16beLEiXj//ffh9/thNscOvo0aNQrDhg2THnfp0gXnn38+vvjiC/h8PgDA999/jwsuuAA9evSQ1svJycFll12GN998E1VVVUhJSYm4j+Tk5KAcvc1mwymnnIJ9+/bFPD6ApSAEQVC0Lufdd99FVVUV9u3bh3fffRdOpxM+ny/mZzJ37tygx9OnT0deXh7uv/9+fPLJJ5g+fToA4OOPP8bYsWORnp4elNaYNGkSnnjiCSxbtixqvj+aITM+Ph5OpzPsa36/HwsWLMDQoUORn58f9WchiJYOiYIoFK1di23vvIPybdvgLC7G2BdfRGeF4VAtLDnjDNQeO9bg+d7Tp2P4v/7VaPslgKeeegpXXXUVOnfujGHDhuGss87ClVdeKZ2Ud+/eDQC46qqrIm6jsrJSMqpFI1xJW15eHurq6lBcXAyAhcr79OnTYL38/Hz4/X4cPnwY/fv3j7iPTp06wWQyBT2Xnp6OTZs2xTw+rYwaNUq6P336dOkE+swzz6je1p133ol//etf+PHHHyVRsHv3bmzatCkoFSOnqKgIAFBcXCyJK4AJpOTkZCQkJMDtdod9b319PRISEsK+9uuvv+Lo0aO48847Vf8chAaWLQOefhr480+goABYvBgIY/w0jOpq4F//YvspKgKGDgVeeAEQPTdtDRIFUfA6nUjv0wc9L7wQv91+e6Pvb/LChRBkX2aVe/bg5+uvR5fJkxt9322dSy65BGPHjsXixYvx/fff4+mnn8aTTz6JTz/9FFOnTpWMbE8//XTE8r3k5OQTeMTRsVgsYZ9Xe/WvlfT0dEyYMAHz58/XJAoSEhKQkZGBsrIy6Tm/348zzjgD//d//xf2PXl5eQCA4cOH4+DBg9Lzs2fPxkMPPYScnBz4fD4UFRUhOztbet3tdqO0tDRshAgA5s+fD7PZLHlFiEamthYYPBi49lrgwgsbf3/XXw9s2QK8/z6Qmwt88AEwaRKwbRvQsWPj77+ZQaIgCrljxyJ37NiIr/vcbmx84QUc/PpruKurkdarF4bcdRfan3KKpv3Ft2sX9HjbW28huXNnZLdRxXqiycnJwc0334ybb74ZRUVFOOmkk/DYY49h6tSp6NmzJwAgJSUFkyZNirqd0Cv0UHjUQc6uXbuQmJgoXQUnJiZi586dDdbbsWMHzGYzOnfurPTH0nycenE6naisrNT03urqapSUlARFBXr27ImampqYn//8+fODUgE82sPF3Nq1a3HWWWdJr69duxZ+vz+s2HO5XFi0aBFOP/30iKKBMJipU9ktEi4XcP/9wEcfARUVwIABwJNPAqefrn5fTiewaBGwZAkgmmzx0EPAF18Ar74KiGWobQmqPtDB2kcfRcmGDRj9zDM469NP0WXyZCy98UZUya5StOJzu3Hgyy/R88ILG/3Lu63j8/kanLyys7ORm5sLl8sFgDnUe/bsiWeeeaaBKx6AFPYHgKSkJACIWI63YsWKoFLHw4cPY8mSJTjzzDNhsVhgsVhw5plnYsmSJVIpIwAcP34cH374IcaMGRPVT6CUaMeppiSRh+3lHDhwAD/99FMDp//evXuxd+9e6XF9fT2qq6sbvH/OnDkQBAFTpkyRnrvkkkuwYsUKfPfddw3Wr6iogNfrBQCMHj0akyZNkm5cFEyYMAHt2rXDq6++GvTeV199FYmJiTj77LMbbPfrr79GRUUF9SZoTtxyC7BiBbBgAbBpEzBtGjBlChBGbMfE6wV8PiC010dCAvD778YcbwuDIgUaqT12DPs++wzn//gjEsVQZP411+DY779j3+LFGHLHHbq2f+Tnn+Gurkb3xsylEQDYVSlvzTt48GAkJyfjxx9/xJo1a/Dss88CYE2C3nrrLUydOhX9+/fHNddcg44dO+Lo0aNYunQpUlJS8MUXXwCAZCK8//77MX36dMTFxeHcc8+VTsIDBgzA5MmTcdttt8Fut+OVV14BADz88MPSMT366KP44YcfMGbMGNx8882wWq14/fXX4XK5gvoN6KFnz55IS0vDa6+9BofDgaSkJIwYMQLdu3fH6tWrMX78eCn0Ho2BAwdi4sSJGDJkCNLT07F79268/fbb8Hg8eOKJJ4LW5SWKXOwUFhZi6NChmDFjhtTW+LvvvsPXX3+NKVOm4Pzzz5fee8899+Dzzz/HOeecg6uvvhrDhg1DbW0tNm/ejE8++QQHDhxAZmZmxONMSEjAnDlzMHPmTEybNg2TJ0/Gb7/9hg8++ACPPfYY2oVE6gAWdbDb7bjooouUfKREY3PoEPDuu2zJIzd33w18+y17/vHH1W3P4QBGjQLmzAHy84H27VkEYsUKoFcv44+/JdDE1Q8thvn9+gmHfvxRenzkl1+E+f36CQuHDQu6fThokPDbXXcJgiAIFXv3CvP79Yt6W//ss2H399P11wtLb7rphPxsbR2XyyXcc889wuDBgwWHwyEkJSUJgwcPFl555ZUG665fv1648MILhYyMDMFutwtdu3YVLrnkEuGnn34KWm/OnDlCx44dBbPZHFSeCECYOXOm8MEHHwi9e/cW7Ha7MHTo0KCSQs66deuEyZMnC8nJyUJiYqIwfvx4Yfny5UHrRCpJ7N+/f4PtXXXVVULXrl2DnluyZInQr18/wWq1BpUnqilJnD17tnDyyScL6enpgtVqFXJzc4Xp06cLmzZtarBu165dg46hvLxcuOKKK4RevXoJiYmJgt1uF/r37y88/vjjgtvtbvD+6upqYdasWUKvXr0Em80mZGZmCqeeeqrwzDPPhF0/HG+88YbQp08fwWazCT179hSee+65oDJTTmVlpRAfHy9ceOGFirZLNAKAICxeHHj85ZfsuaSk4JvVKgiXXMLW2b6drRPtdu+9gW3u2SMI48ax5y0WQRg+XBAuv1wQ+vY9oT9qc8EkCCfIedTC+bB//6Dqg4PffIPl996Ls5csgSmk5MqamIiErCz43G7UHDkSdbv2tLQGXoLaY8fw+eTJGPvCC+g0YYKxPwjRpJhMJsycOVNVUyCCaLOYTMHVBwsXApdfDmzdCoSaaZOTgQ4dALcbiFV6m5EBhFax1NYCVVVATg5w6aVATQ0Qo8tla4TSBxpJz8+H4POhvqwM2bKaczkWmw2psjpzpexdvBj2du2Qy40vBEEQBCsX9PlY6WAkE7jNBmiZsJmUxG7l5cB33wEGpelaGiQKouCprUXNoUPS49ojR1C+fTtsqalI6dYN3c45BytmzcJJ99yD9Px81JeV4fiqVUjLy0PH007TtE/B78e+xYvR4/zzYbbSr4cgiDZGTQ2wZ0/g8f79wIYNQLt2QF4eixRceSXw7LNMJBQXAz/9BAwaBIQxi8bku+9YUqFPH7bfe+5houKaawz7kVoSdNaJQtnWrfhJ9oexTlSO3c8/H6MefxwjH30UW15/HeuefhrO48dhT09HxuDBmgUBABSuWIG6ggL0OBH1uQRBEM2NtWuB8eMDj/lci6uuAubNY4bCRx8F/vEP4OhRIDMTGDkSOOccbfurrARmzQKOHGHC46KLgMceA+LidP8oLRHyFBAEQRAEAYD6FBAEQRAEIUKigCAIgiAIAOQpCIvX68X2jRuRmpWlaOodQRAE0foQ/H7UHj+O3kOHwtJGjN9t46dUyfaNGzEopD0rQRAE0TbZvno1+raRGTQkCsLQoX17AMCmtWuRLt4nCIIg2hY1BQXIPeUU+NvQeYBEQRh4yiA3JwcZNBmNIAiiTVIFIAVAVRtKI7edn5QgCIIgGhOfD/jXv4Du3dmkxZ492bClFlT5T5ECgiAIgjCCJ58EXn0VeO89oH9/1ojpmmuA1FTgttua+ugUQaKAIAiCIIxg+XLg/PMD7Za7dWOjmFevbtLDUgOlDwiCIIhWiSAI8Hg8qK+vj3jz+Xwxt1NdXY2qqirp5nK5wq946qlsDsOuXezxxo3A778DU6ca+FM1LhQpIAiCIFodbrcbBQUFqKuri7qeyWRCp06dkJycHHGd/H79UC17PHv2bDz00EMNV/znP9n45b592Whnn4/NUbj8cm0/RBNAooAgCIJoVfj9fuzfvx8WiwW5ubmw2WwwmUwN1hMEAcXFxThy5Ah69+4Ni8USdnvbt22Do2NH6bHdbg+/4//9D5g/H/jwQ+Yp2LABuOMOIDeXDXRqATQbUbD1zTex8fnn0eeKKzBs1qyw6+xbvBgrH3gg6DmzzYbp69dLjwVBwOaXX8aeTz6Bp7oamUOHYviDDyKla9dGPX6CIAiieeB2u+H3+9G5c2ckJiZGXTcrKwsHDhyAx+OJKAocDgdSUlJi7/iee1i0YPp09njgQODgQWDuXBIFaijdvBl7Pv4YaXl5MdeNS07GOV9+GXgiRP1tf/tt7Jw/H6MefxxJHTti00svYekNN+Cczz+HJZK6IwiCIFodStrUh4sgaKauDgjdp8UC+P3G7aORaXKjoae2FsvvvRcjHn4YttTU2G8wmZCQlRW4ZWZKLwmCgB3vv48BN96IThMmIL1PH4yaOxfOoiIc/umnRvwpCIIgiDbPuecyD8FXXwEHDgCLFwP//jfwl7809ZEppslFwdpHH0XuuHHoMGqUovW9dXX4bNIkfDZxIn695RZU7NkjvVZ75AjqS0rQYeRI6Tmbw4HMQYNQsnFjxG26XK4gZ2l1TY32H4ggCIJom7z0EnDxxcDNNwP5+cDddwM33sgaGLUQmjR9cODrr1G2fTumLFyoaH1H9+4YMWcO0vPy4K6pwfZ338UPl1+Os5csQWKHDnCWlAAA4mXRAwCIz8hAvfhaOObOnYuHH344sL6R4SSCIAiibeBwAM8/z24tlCaLFNQWFGDdE0/g1CefVJzrzxoyBD3OPx/p+floP3w4xr3wAuzp6dj9v//pOpZZs2ahsrJSum3fsUPX9giCIAiiJdJkkYKybdtQX1qKb6dNk54TfD4UrV2LXR99hEvXr4c5ghOUY46LQ3p+PmoOHQIAyV9QX1KChKwsab360lKk9e0bcTt2uz2oxMRD6QOCIIgWj6Bg5oCSddoSTRYp6DByJM767DNMXbRIurXr3x/dzjkHUxctiikIAMDv86Fy927EiwIgqVMnxGdmonDVKmkdT00NSjZtQubgwY32sxBEa6fu+HEsvfFGbHj++chfooIAPP44cMYZrKsbQTQRcXFxABCzcRHAyhcBRCxHbGs0WaQgLikJab17Bz1nTUyEPTVVen75rFlIzM7GkDvvBABsfuUVZA4eDEeXLnBXV2P7O++g9tgx9LroIgCstKTvX/+KLa+/DkeXLkju1AmbXnoJCdnZ6DxxouE/g+D3w+/1wmKzGb5tgmhObPj3v1Hw++8o+P13dBg5MsjMK7FkCXD//ez+6tXMfZ2efkKPkyAAdoJPS0tDUVERACAxMTFs6aHf70dxcTESExNhtTaLCv0mp1l/CnUFBUG/SHdVFVbNno36khLYUlLQrn9/nDF/PlJ79ZLWyb/uOnidTqx+6CG4q6uRddJJGP/664b3KPC53fjhiitQe+wYJi9ciGRZtyuCaE34fT4c/eUX6fGRn38OLwpefTVwv6oKePdd4K67Gv8ACSIMHTp0AABJGETCbDajS5cuxvYraMGYBEqoNKD02DFkduyIkqNHkZGbG3adwhUr8PP11wMABt9xB/r/7W8n8hAJ4oRRtm1bkPcnY9AgTP7oo+CVamuBtDTA62UjYl98ERg7Fli27MQeLEGE4PP54PF4Ir5us9kiNjmqOnIEKZ07o+rwYaR06tRYh9isaPI+BS2Vit27pfvlO3c24ZEQROPC/74TxSuvil274A+dLLd6NRMEnToFogN//MEiBgTRhFgsFsTHx0e8Kel62JagT0MjNYcPS/er9+9vwiMhiMaFV/fkjh0Ls80GX3096o4dC17pjz/YcvRooGtXNkfe7wfWrj2xB0sQhC5IFGik5ujRwP0jR5rwSAiicakWRYGjWzfJOyP/+wcAbN7MliefzJbcc7By5Yk4RIIgDIJEgUbqS0ul+56aGnidziY8GoJoPCRR0KULkkRRUBsqCnjDr/x8thwxgi1Xrz4Rh0gQhEGQKNCIu7Iy6HG0NsoE0VIRBEFKHzi6dpVEQVB0zOcDuK+GNwkbNIgtt249UYdKEIQBkCjQiKuiIuixs7i4aQ6EIBoRV3k56/BpMiG5UycpfVAr9xQcPAi4XIDdzrwEANC/P1vu3cvGyRIE0SIgUaABv9cLT3U1AJZnBUgUEK0TnjpI7NABFrsdCdnZACANHwMQiBL07s1mxwNAdjaQkcG6HNIsEYJoMZAo0IBbVmaVIooCV3l5Ex0NQTQe1QcPAmB+AiB4voiEKBykKAEAmEyBaAGlEAiixUCiQAM8dRCXkgJ7u3YAgoUCQbQWamQmQyAwljxIFPDy3M6dg9/crx9bbt/eqMdIEIRxkCjQADcZ2lNTYUtJAQC4QoyHBNEa4OmD5BBR4KqogE8cJBNRFPD24/v2NfpxEgRhDCQKNOAVjVPWxERJFFCkgGiNVIdECuypqTCJg2NcZWVspUiioEcPtiRRQBAtBhIFGuA9CawJCSQKiFaLIAgNRIHJbEZ8RgYAWa8OEgUE0WogUaCBsJECSh8QrQxXeTk8VVWsHFEUBUDAbOgsLmbVBbxnQSRRUFoK0P8HQbQISBRoQIoUJCbClpoKgEQB0fqoEmd6JOXkwBofLz3PzbX15eVASQlQX89eCB0f7nAAWVnsPkULCKJFQKJAA+QpINoCh7//HkCgFwfHLhfCBQXsycxM1rwolJ492ZJEAUG0CEgUaCDIU8C/IEkUEK2IguXLsfODDwAA7fg8AxFbWhoAsTS3qIg92b59+A3xFMLevY1wlARBGA2JAg3wSEGcLFLgrauD3+ttysMiCMM4+uuv0v0Oo0YFvSZFCuSiQOx02AAeZeANjgiCaNaQKNAAFwWWhATEJSU1eJ4gWjrt+GAjAO35GGQRHh1zVVYCvL13JFHQqRNb0nhxgmgRkCjQgEdMH8QlJsJis8Es1m17amub8rAIwnByxo6FyWQKes4upg8URQp4RQIvWyQIollDokADPm40TEhgSzFa4CVRQLQB7OE8BbzKIBQSBQTRoiBRoAGPrPoAgJRCoEgB0RYIMtcqjRQUFwdKFwmCaLaQKNCAT1Z9AABxyckASBQQbYOwkYJIoiA9HRD/T3D0aKMfG0EQ+iBRoAGPzGgIBCIGlD4g2gJcFPjq6yEcP86ejCQKTCZKIRBEC4JEgQZ8YhhUihRQ+oBoQ1iTkqShSDGrDwASBQTRgiBRoAGfywUAsIgd3KwkCog2hMlkgj01FRa/H6aaGvYkiQKCaBWQKNAAnyPPRQGPFFCfAqKtEOdwwO7ziQ/iALGJV1ioVwFBtBisTX0ALRE/FwU2GwBKHxBtj7jkZFi4KEhPZ96BSFCkgCBaDCQKNMDTB2ZRFFCfAqKtYXM44JeLgmjw6YlUfUAQzR4SBSoR/H74PR4ADdMHFCkg2gpxDgcEpaIgJ4ct+URFgiCaLeQpUAkXBEAYTwGJAqKNYHM4YFMrCoqKAP4egiCaJSQKVMJTBwBgjosDQNUHROtDiPF6XHIybH4/exBLFGRnA2Yz4PcHmh0RBNEsIVGgEkkUmEySKJDSB1R9QLQyQochceKSk5VHCiwWoH17dp9SCATRrGk2noKtb76Jjc8/jz5XXIFhs2aFXWfPxx9j/+efo2LPHgBAu379MPj225E5aJC0zor77sP+JUuC3pczejTGv/GGIccp9xPwL0zexIi3PyaI1o4tJQUmpaIAYCmEggISBQTRzGkWoqB082bs+fhjpOXlRV3v+Jo16HrWWTh5yBCY7XZsf/ttLL3hBpy9ZAkS+ZUIgJwxYzDy0Uelx7x00AhCKw+AQLtjL4kCoo0Ql5wMs1pRAADHjjXeQREEoZsmTx94amux/N57MeLhh6Xpa5EY/dRTyJsxA+n5+Ujt0QOnPPIIBL8fhStXBq1nsdmQkJUl3WJtVw1SN0OZKLDGxwMgUUC0HeLUGA0BqkAgiBZCk4uCtY8+itxx49Bh1CjV7/XV10PwemEPOekfX7MGi8aOxRdnn43VjzzCprlFweVyoaqqSrpV89at4fYZ0s0QCKQPSBQQbQWbGqMhQKKAIFoITZo+OPD11yjbvh1TFi7U9P4Nzz6LhOzsIEGRM2YMOk+ahOROnVB9+DA2Pv88lt54I8788EOYLZaw25k7dy4efvhh6XF8lO5sod0MgcCURF99PQRBiGjOIojWQlxKCqwUKSCIVkeTiYLaggKse+IJjH/zzaCrbqVsffNNHPzmG0ycNy/o/d3OOku6n5aXh/S8PHw+ZQqK1qxBh5Ejw25r1qxZuOuuu6THZYWF6N6nT9h1w3oKxPSB4PPB7/EY6mEgiOaILTmZRAFBtEKaTBSUbduG+tJSfDttmvSc4POhaO1a7ProI1y6fn3EK/vt776LbW+/jQlvvYX0CCdvTnLnzrCnp6P60KGIosBut8MuExaeaOmDkAmJQCB9ALChSCQKiNZOXHIy4kRR4E9Ojp2HzM1lSxIFBNGsaTJR0GHkSJz12WdBz628/36k9OiBftddF1EQbHv7bWx94w2Mf+MNZAwYEHM/dYWFcFVUICEz04jDDpQkyk78ZqsV5rg4+D0e+OrrDdkPQTRn4hAwJLnj4hAf6w3ySIHfz5oZEQTR7GgyURCXlIS03r2DnrMmJsKemio9v3zWLCRmZ2PInXcCALa99RY2vfwyTn3qKSTl5sJZXCy9Ly4pCZ7aWmx59VV0PuMMxGdmoubwYax/9lk4unRBzpgxhhx3uPQBwMoS/R4PmQ2JNoFZjKb5AXj8/tiigJcMe71AaSmQldWYh0cQhEaaRZ+CSNQVFASZ9nYvXAi/x4PfRZHAGXDzzRg0cyZMFgvKd+7EviVL4KmqYibEU0/FoFtvNSykHy59ALAUgqeqikQB0TYoLwcAuC0WZe29bTYgMxMoKWHRAhIFBNEsaVaiYNK8eVEfn//DD1Hfb42Px4Q33zT4qIIJV5LI9w1QWSLRRqisBCCKgupqZe/JyQmIAlkXUoIgmg+U2FMJL0kMTR9QrwKiTSEKAa/ZDLcaUQCQ2ZAgmjEkClQSrqMhQPMPiDZGVRUAwGM2K58OSqKAaAscPQpccQWQkQEkJAADBwJr1zb1USmmWaUPWgKR0geNOf+g9tgx1B0/jqyhQw3fNkGERYgxPFkmCrwkCgiCUV4OjB4NjB8PfPMN887s3q2sl0czgUSBSsJ1NARk6QODSxK9dXX4bsYM1JeUYNQTT6D7uecaun2CiEqk7pxcFCg1GgIBUVBYaMCBEUQz5Mkngc6dgXffDTzXvXvTHY8GKH2gEp/Yp8AcFxf0vCQK6uoM3V/RunWoLykBABz44gtDt00QmhF9BKrSBx06sCVFCogWRnV1ddB8HJeYRm7A558DJ58MTJsGZGcDQ4cCjWx+NxoSBSoRRFFgsgYHWSyNVH1QummTdL9s61YIscK6BHEi0JM+oEgB0cLI79cPqamp0m3u3LnhV9y3D3j1VaB3b+C774CbbgJuuw14770Te8A6oPSBSvxeLwDAEiFSYHRHw+rDh6X7rooK1JeUIIFqvImmRovRkCIFRAtl+7ZtcHTsKD22R5rX4/ezSMHjj7PHQ4cCW7YAr70GXHXVCThS/VCkQCX+CJGCxipJrAv5Aq0+dMjQ7ROEJkRR4LVY1EcKamul9ANBtAQcDgdSUlKkW0RRkJMD9OsX/Fx+PtCCvrdJFKjEH8tTYLQoEEOtJnEWRKhIIIgmQR4pUOqjSU5mN4BSCETrZPRoYOfO4Od27QK6dm2a49EAiQKV8PSBOdRT0Ah9CgS/XxIFmUOGAAiIBIJoUuRGwyhTRRtAKQSiNXPnncDKlSx9sGcP8OGHwBtvADNnNvWRKYZEgUpOZKTAVVkp7S9TbAtbS6KAaA5oMRoCZDYkWjfDhwOLFwMffQQMGADMmQM8/zxw+eVNfWSKIaOhSiJFChpj9oFb7C8fl5yM5C5dAFCkgGgmaOlTAFCkgGj9nHMOu7VQKFKgkoiRgsREAMY2L3KLX7y21FTEt2sHAHCJ0+kIoknR4ikAKFJAEM0cEgUqiegpECMFRnoKeKTAlpICu9gms7601LDtE4QmBCHIU+CtrVXeP4NaHRNEs4ZEgUoiRgp4+sDASIGLiwKKFBDNibo6Vo8Nlj4QfD7l/TkofUAQzRoSBSqRIgUhokCKFERqf6kBHimwy0SBp6ZGGspEEE2CmDoQzGb4xNkINP+AIFoHJApUEilSwKcmNlb6IC4lRWqY5CorM2wfBBGWaOkAURSYHA5Yk5IAQHkFAkUKCKJZQ6JAJUIsT4GRkQKZ0dBkMsGelgYAqKcUAtGUiH+XSElBnNiMSLHZkEcKSkoAUWATBNF8IFGgkkjpA6tMFBg1tMgt8xQACPgKKFJANCVyUaA2UpCZCVgsLBJRVNRIB0gQhFZIFKhESh9EiBQAxkUL3KLD2+ZwAECgAoEiBURTwucWpKRIpbiKuxqazUD79uw+pRAIotlBokAlsTwFgHGTEr1iSJbnbW0pKQAAD79SI4imIEykQFUDIzIbEkSzhUSBSiJNSTRbrdJzRouCOPFqjIsCN02YI5oSLgocDslToKrVMZkNCaLZQqJAJdxTYAmJFACBaIHXoPSBFCkQ5ypIooAiBURTwgVAcrIUxaKuhgTROiBRoJJIkQJAZjY0KFLAv2h53jZO9BZ4KFJANCVcFCQmSlEsmn9AEK0DEgUqEAQhYvUBYHxZojdEFEiRArEqgSCaBB4VSEoKRArUjE+mSAFBNFtIFKhA8Pmkpi6h1QeA8Q2MGogCMVJAngKiSeGiIDFRfUkiQPMPCKIZQ6JABTxKAESPFBjhKfB7PFKqQjIaiv0KSBQQTYo8faC2eRFA6QOCaMaQKFCBX9aBLZwoMNJT4JVFGyyi0ZB7CshoSDQpYdIHmiIFhYXR2ykTBHHCIVGggqBIQbj0gYGeAp46MFutsNhsAALpA+pTQDQp4YyGajwFPFLgcgEVFcYeG0EQuiBRoAKp8sBigcnc8KMz0lMQWnkAyJoX1dRAEEfXEsQJJ5zRUE2kID4eEOd4kNmQIJoXJApUEGkYEsdIT0GoyRAIiALB71f3JUwQRiI3GvLmRWo8BQCZDQmimUKiQAW+CC2OOYZ6CsKIAovdLkUjqFcB0ZhEHeolTx9oiRQAgRQCRQoIolnRbETB1jffxIf9++PPuXOjrnfou+/w5TnnYMHQofjqggtwdNmyoNcFQcCml17Cp6edhoUnnYSfrrsOVQcPGnKMQoRhSBwpfdBIkQJAZjakXgXECcBkMjV8UpY+iNPSpwA4MZGCH38Ebr0VmD0bOHSo8fZDEK2IZiEKSjdvxp6PP0ZaXl7U9YrXr8cf99yDHhdeiKmffIJOEybgt1tvRcXu3dI6299+Gzvnz8cps2fjzI8+gjUhAUtvuMGQE3WkYUgci4GRAk9Ii2OOVAJG6QOiqZClD7ho9bvdQdU5MWnsssT77wfOOAN4+WXgkUeAAQOYSCAIIipNLgo8tbVYfu+9GPHww1IdfiR2fvABcsaMQb9rr0Vqz54YfNttSO/XD7s+/BAAixLseP99DLjxRnSaMAHpffpg1Ny5cBYV4fBPP+k+Vl59EK7FMSCbfWCAKOBmxQaRAq3hWoIwijDpA6AZTUpcsAB4/HF2/6qrgBEj2Ljn888Htm41fn8E0YpoclGw9tFHkTtuHDqMGhVz3ZING9Bh5Mig53JGj0bJhg0AgNojR1BfUhK0js3hQOagQSjZuDHidl0uF6qqqqRbdYRQaKxIAb+qNyIqEa76ACBRQDQxghCUPjDHxcEslsyqMhs2Vvqgtha44w52/4EHgHnzgF9/BSZOZMd92WWAmogGQbQxmlQUHPj6a5Rt344hd96paP36khLEZ2QEPRefkYH60lIAgLOkhD2XmdlwHfG1cMydOxepqanSLb9v37Dr+WNVH3BPgQGRAr8oLKziNjmS21ttDjcGPrcb2+fNw7Hffzd0u0Qro74+0HCID+rSIlQby2j4yivA8eNA9+7Av/7FnrPbgfnzgcxMYNMm4NVXjd0nQbQimkwU1BYUYN0TT+DUJ5+UTqZNxaxZs1BZWSndtu/YEXY9xZ4CI4yG4jbMIZ+NplG1Ctgxbx7WP/00fr3pJlQdOGDotolWhPzvThQFmnoVNEakwO8H/vMfdv+BBwAxggEAaN8eeOwxdv+hh4DycuP2SxCtiCYTBWXbtqG+tBTfTpuGjwYNwkeDBqFozRrsnD8fHw0aBL/P1+A98ZmZUlSAU19aKkUPEsQIQWhUoL60tEH0QI7dbkdKSop0c4hX46EojRR4DWhexCMFoYJJs9s7Bge++goA64Fw8JtvDN020YrgosBmA8T/A97VUFWrYx4pKC9n0Qcj+PFH4OBB1hhpxoyGr193HTMclpcDL71kzD4JopXRZKKgw8iROOuzzzB10SLp1q5/f3Q75xxMXbQIZoulwXsyhwxB4cqVQc8VrliBzCFDAABJnTohPjMThatWSa97ampQsmkTMgcP1n3MMT0FjRAp4NvkNIanwFtXh8o9e6TH0fwXRBtHZjLkaPqbTE9nYX2AhfuNYN48trziCiCkagcAYLGwCAIAvPACYLCwJojWQJOJgrikJKT17h10syYmwp6airTevQEAy2fNwobnnpPe0+eKK1Dwxx/YPm8eKvftw6b//AdlW7Yg77LLALCa6r5//Su2vP46jvz8Myp27cKKWbOQkJ2NzhMn6j5mKVJwAkoSeaTALA+BAtoG0MSgcu/eoMdlW7dGb15DtF1kJkOOpr9Jk8nYskS3GxCjXRC/D8Jy8cVA795AWRnw2mv690sQrYwmrz6IRl1BAZzFxdLjrKFDMfqpp7Dn44/xzYUX4vD332PsSy9JIgIA8q+7Dn0uuwyrH3oI3156KTx1dRj/+uuG+BYUGw0bM1LQCH0KeJQgQ4ymuMrKqDkSER5ZjwKOpvHJgLFmw19+AaqqmHdgxIjI61kswD//ye4/9xwbykQQhET4s1sTMYmH/yI8BoAukyejy+TJEbdhMpkw6NZbMejWWw0+usDsg4h9Cvjsg0aMFGiaSheDWvFKLa1XLybEiopQfegQ7HxoDUFwoqQPVEevjDQbLlnCluedB4QZVhbEFVewyoRjx4APPwSuuUb//gmildCsIwXNDSlSEMbvAATKBw2ZfSBuI1KkwMj0gbOoCACQ0L49HF26AABqqC0sEY5w6QMuVJty/sHXX7PleefFXtdmC/QyeOYZVrVAEAQAEgWqEMSKiIiRAgObF/ndbgBRShINFAV1oihIzM5GcufOAIDqw4cN2z7RijDKaAgYFyk4cIDdLBbg9NOVveeGGwCHA9i2LSAoCIIgUaCGWJECI5sX8W1Eal5kpChwiu7vhPbtkZSbCwCoo+l1RDiMMhoCxhkNly5ly+HDgQjlxA1ITQX+/nd2/+mn9e2fIFoRzcpT0NyJGSkQQ/1+jwd+ny+ieFCCL0KkoDE8BfJIgTM7GwCCDJ5EGyRS9Uk4o6HWhlpGzT/45Re2HD9e3ftuvx14/nlg2TJg1aroBkWt/Pkn8M03bOZCTQ2QlQUMHAhMmsR6JoSbQkkQTQiJAhVwURDLUwCwK32z7GpKLbEiBd7aWgiCEH60rQr8Hg9cZWUAgITsbCRwUWBU7TjRsgn9+wqTPtAcKTAifSAIgUiBWlHQsSNw+eWsv8HTTwOffKL9OEJZsQK46y4gpK9KEIMHAzfeyIyOId4hgmgqKH2ggphTEmX/2Hp9BZEiBfwL2O/1Sr4DPbgqKtgdkwn2tDQkUqSAiEaY9EGcXqPh8ePazX779wOHDwNxccCpp6p//913s+WnnwKyEeya8XrZNkePZoLAZgMuuoiJjjfeYGOczzqLNW7auBG4+WagRw9WHmlw63KC0AJFClQQK1JgMpthttngd7t1+woiRQrkUxM9tbW6+y/wfgS2lBSYzGYpUlBfWgqf2w1LSEkk0caJkj5QHSlo354tvV6gtJSF1tWyfDlbDhsWJFQU078/cPbZrPHRv/+tb1hSVRVwySXAd9+xx1dfDcydGxA/csrKgP/+l+3z8GEWVZg7l6U0Zs5krZr1IAhMMP35J1sePMgiMnV1gNPJyjaTktgtIwPIzWWRG77s0IH9PnSkQCPi8bBjcDpZnwiLhbXMtlqZuJMvKb1ywiFRoAI+j8EU5R/FEh/PRIHeSEGEgUhmiwXWhAR4nU54amoQ366drv24uChITQUA2NPSYLZa4fd6UV9SIhkPCQJA1PSB6khBXBybXFhSwk5YWkTB6tVsqccPcM89TBS8+y7w8MOAKIxVUVMDTJ3KREpiIjvhX3RR5PXbtWNlkTffzNZ9/HF28n7gAeDJJ5kJ8pprgPx8ZfuvqADWrGHRiVWr2C3KZFhFmEzsd9K+PRMJaWkszREfzyIdgsBO8G43u7lcgZM9v9XXN3wuzFybiJjNAdEgX4Y+ZzKxaJMgKLspXNfRBstVSRSoIFbzIoBd2Xugv4GRL0JHQ4B9CXudTkN6FfBIAW9UZDKbEZ+VhbqCAtQVFZEoIIIJlz7QUyabkxMQBYMGqX//mjVsecop6t/LGTeOvX/1auDll1mIXw1OJ+uPsHw5O3H+8ANw8snK3muzAddfz6IKCxcCTzwBbNnC0g1PP80+k9NPZ5GQjh1ZdYXbzVIu+/cDmzez4965M/y2Bw8G+vQBunRh709KYnMh/H4m8Gpr2ed/7Bj7HfBlcTFbp6iI3TZvVveZKMVmY/sRv1sb4Pezmzh35kTTFuMUJApUEKskETBm/oEgCIFIQZjwfVxyMupLSgwpS3SHRAoAIL5dO9QVFEgGRIKQiGE0VG1+7dyZnXC09MVwu4H169l9PaLAZGLRgmnT2Ojle+9VnopwuYALL2RmR4eDpQ6UCgI5ViszPc6YAXz5JfDWW6xqYdMmdlNCjx7AyJEsajJiBDBkSGDolFp8PiYWCguZACkoAKqr2ZU/v5nNLNpjswVuCQnhb/HxDZ+z2wPdJ/nVu8fDBILHw24+H7t5vZGXXFCYTMpuZrPidasLC+EYM0bbZ9hCIVGgAkFh+gDQZzSUGwjDRQqMnJTI0wd2mSiwiykJF82cJ0KJEikQ/H746uthDTehMBJiB01o6aC5eTM7KaenAz17qn+/nL/8hW1j717W5XD27Njv8XjYSfzbb9lJ7quv9IkTgJ2wzjuP3UpLge+/Z5UMW7eyE7PTyU6+GRlA9+5AXh7b5/DhLBVjFBYLSxtw30djYzIF0gLNCMGAmTktDRIFKuCegkgDkQBjGhjJBUXYSAEXBQb0KggbKUhPBwDUU6SACCWM0VAuAjy1tepEQdeubHnwoPpj4X6C4cP1G9IsFuCxx4Dp01l+f8YMdsKNhM8HXHklsHgxu+L9/HNg7Fh9xxBKRgY7jhkzjN0uQUSBShJVoMhTYMBQJC4KTGZz2DHNvALBa0AJU6jREJBFCni5IkFwwqQPTGZz4G9SbfRKT6SAiwK9V+ecSy4BJk9maYkrrmAh8nB4vcB11wELFrCw/yefsGZEBNEKIFGgglgliYCxkQKz3R42P2ukKHCHSR/wSAF5CogGhEkfADq6GuoRBUaYDOWYTMBrr7F0xJo17MQfaoCrrATOPx947z0WXViwADjnHGP2TxDNABIFKlBUkmjAUKRIPQo4kihwOjXvgxMufWDn6QPyFBChhIkUADq6GvL0weHD6hoYVVezYUYASx8YRbdurArAYmFjlc84A/jjD5beePtt1pr466+Zh+CTT6KXHRJEC4Q8BSrg6QMlngI9J+xI3Qw5hkYKqqoAADaHQ3qOiwIyGhINiBUp0NLq2GJhpr3CQtY8Rwl//skc6126hG8OpIczzmAdDqdPZ3MVQt3nPXsywWBUhIIgmhEUKVCBkkiB1YDqAx4piNStUGora4Ao4MIiTjZdjqoPiIiEMRoCAaGqWhRYrUCnTuy+GrOh3GTYGJx3Hqtu+OtfWaMhi4VFCZ56ipUIkiAgWikUKVCBZDRsbE+BGCmIJAq4u9uISAH/ErfKrvwa01Nw5OefUX3wIPIuu0x3i2biBOPzBcx3IaJAc6tjgF3tHzzIfAWjRil7j9Emw3D07Mm6DQIsKkEtd4k2AIkCFagqSWzESIGR6QMuCuJkX/I8UuB1OuGtrw/bK0ELJZs2YdmttwIA6o4fx7B//tOQ7RKNQLjRyfKUWEj6QHOrY4D5Cn77TV2kwGiTYSxIEBBtBEofqEBRpMCAjoZSpCDCMCKjjIaC3y9d2ckjBXHJyZLwMTJasOfjj6X7+xYvln5OovkSVP0iF6EhQlGKFGgRqmorEAoL2bomE2v/SxCEYZAoUIFfTUmiAR0NwzUuAoyLFMhFRZxMFJhMJqkagRsRjaD4zz+l+56aGpRt2WLYtokTAI8CJCQE2tOK6OqyySsQ9u9Xtj6PEvTrx1oLE0Rz5YknmHi9446mPhLFkChQgdTmOFrzIp7v1yMKxOEfMSMFOkUB/wI3mc1ShINjtCioLytDtRgebj9yJACgSCYSiBZAhMoDQEdJIgD06sWWe/YoW7+xTYYEYQRr1gCvv65t0FcTQqJABWpKEnWlD0RREK6bIWBc9YGUOkhObtAkyZaSAiDQx0Avlbt3AwCSu3RBjmgmqwg32Y1ovkToUQDojBT07s2W+/ZFnpYnx4hxyQShgurqalRVVUk3V6yLvpoaNuDqzTdZM6wWBIkCFShqXmTEQKQYosCo6oNwJkOO0ZGCajFf7OjaFaliT/kKUSgQLYQokQJdoqBjR+ZR8Hpjmw0F4cRUHhCEjPx+/ZCamird5s6dG/0NM2cCZ5/dIttfU/WBCgQ11Qc6TIAnzFPARUGYL3kpUmC0KOjSBWliuLjqwAH43O6IaRKimRGhRwGgM31gNrMUwpYtwO7d0Sce7tkDVFSwIUQDB6rfF0FoYPu2bXB07Cg9tkcrp16wAFi3LuB9aWFQpEAFfhXVB4Z4CiJFCmTVB0K40jGFhOtRwOGRApdB6YMamShIzMmBNSEBgteL2mPHDNk+cQJorPQBEEgh7NoVfT0eJTjpJCDC/wdBGI3D4UBKSop0iygKDh8Gbr8dmD+/QYVOS4FEgQqUlCRaT4CngIsCCIKu/XBPwgmJFBw+DABI7twZJpMJyZ07AwBqxOeJFkA0o6HWjoYcLgpipZQodUA0Z/78EygqYqLVamW3X38FXnyR3Rejzc0ZSh+oQFHzIiM8BTx9EMNTALAUgqr59TK8NTVseydAFDiPHwcAJOXksGXHjqjYtQu1R48asn3iBBAlfaCroyFAooBoHUycyNpjy7nmGqBvX+Dee1m77GYOiQIVCEqMhgZECmIZDU1mM6wJCazjYF0dkJGhaT/RjIZ8lLIR1Qc+txuuigoAQHxWFgAgWex3X3PkiO7tEycIJekDrT4X0XyKHTsir+N2A+vXs/skCojmiMPBZmTISUpi39GhzzdTKH2gAu4piNq8yIjRyTE6GgKycK0Os6EkCmTDkDhGliTWl5YCYBEWe1oaAJkooPRBy0FBnwKf0ylF1FTBvzAPHgQi/c1t3Ai4XKzEK5oZkSAIzZAoUIGi5kUnIFIAGFOBEK7FMcfI9IGzuBgAEJ+ZKfVDkEQBpQ9aDgoiBYDGv8l27QLTEjdtCr/Ob7+x5ejRNIuAaDn88gvw/PNNfRSKIVGgAkUliaKnwO/1SpEFtUiiIFqkgPcq0FH6GNVoaGD6oL6kBACQIKYOACCxfXsAbDAS0UKIEikw22ySWNbsKxg8mC03bgz/+rJlbHnaadq2TxBETJrUU7B7wQLsXrhQulpM7dULA2+6Cbljx4Zd/8err0ZRmNrP3HHjcPqrrwIAVtx3H/YvWRL0es7o0Rj/xhu6j1dRSaKsVMXnckUVEBH3E8NoCBgcKQjXvIhHCqqrIfj9MJm160ceKZCLggRRFLjKyqhXQTMkbKFrFKOhyWRCXGIi3FVV2isQBg8GvvoqvCjw+wORgnHjtG2fIIiYNKkoSGjfHoPvvBOOrl0BQcD+JUuw7JZbMGXRIqnBjZyxzz8vXUUDrIb+mwsvRJczzwxaL2fMGIx89FHpsVEnHEHFQCSApRDCXYXHIlafAsAYUSBFCqJ0NIQgwFNdHXisAXn6gGNPT4c5Lg5+jwf1JSVIys3VvH2iEZGH6aOkDwCWhtItCoDwomDbNqCsjEUphg7Vtn2CIGLSpOmDTuPHo+O4cUjp2hUp3bph8O23w5qYiNII4UN7WhoSsrKkW+Hy5bDEx6PL5MlB61lstqD19JzQ5EiRgihX/yazWQr7azUb+hSkD+IMEAXc92AJU9Josdmk5/X6CsKlD0wmExKyswEYn0Ko3LsXexctMmxuAyESJX0A6ByfDAAnn8yWGzYEj2kGgJ9+YstTT6WmRQTRiDSbkkS/z4dD330Hr9OJTH7FEIO9n36KrlOnNgh/H1+zBovGjoUtJQXtR4zA4Ntuk1zv4XC5XEEDLqrF+v1QBAXVBwDzFfjdbng1mg2VGA0tBlQfcFFgjdB5y5aSAqfTqVsUuMrLAbDogJyErCzUHj0KZ1GRru3LqS0owHczZsBbW4s9H3+MMz/8UFfqg5ARJX0ABAyrmiMF3buzOQhHjwKrVgHjxwde++ortpwyRdu2CYJQRJN/W1bs2oX/nXwyFg4dijWPPIKxL76I1DCpg1BKNm1C5e7d6HnRRUHP54wZg1GPP46Jb7+NIXfdhaI1a7D0xhujlknNnTs3aNhFft++YddTMhAJkFUgaIwU+BWUJMYZMBSJi5bQsckcu0Gtjvn7Q4WZZDY0UBTs+vBDyStRunkzCv74w7Btt3lipA90NzAymQJ+AW4qBIDqaubgBtiQGYIgGo0mFwWObt0wddEiTP7oI/S+9FKsvO8+VCqYq77v00+RlpeHzJBZ1d3OOgudJkxAWl4eOk+ciNNfeQVlW7aENShyZs2ahcrKSum2PUIDFSUliYCsq6HGSEGsNsdA8PwDrUiRgggdEY0qS+Rh/NA0Dk8fOA1KHwiCgCNimNnerh0A4PAPPxiybQKx0wd6Wx0DAVHw/feB577+GvB4WG8C3uSIIIhGoclFgcVmg6NrV7Tr3x9D7rwTaX36YOcHH0R9j7euDge/+QY9Lrww5vaTO3eGPT1dmtIXDrvdHjTswhGmmY8gCIqMhoD+VscnrE+BKCgsEYZ7cFHg0Zs+ELsZNnakwFlUhOqDB2GyWHDKgw8CAI79/rsh2yagyGgI6IgUAMC557Ll8uUA73Y5bx5bTp9O/QkIopFpclHQAL9f6ugXiUPffQef243u/AskCnWFhXBVVCBB5nzXgiBLP8RKH+htdXyiShK5aAlnNAQCnQ7d1dWa9wFEiRSIxkOjPAVlW7cCAFJ79kTO6NEwWSxwHj+O2oICQ7bf5lFoNNQVKejYERgzht2fNw/Yvh347jv2+OqrtW+XIAhFNKko2PDccyhauxY1R4+iYtcubHjuORxfswbdzjkHALB81ixseO65Bu/b++mn6DRxYoMrT09tLdY/8wxKNm5EzdGjKFy5Er/eeiscXbogh3/RaEQuCmL1HuDGvcY0GhpSfSBGCiIZDeN4pCCC8VIJXqdTEh+hvy8uCngbZL2UbdsGAEjPz4c1MRFpYqi5JFIzHEIdjW005Pz972z5zDPAJZcAggBccAGgwGtEEIQ+dFUf+NxuuMrKIPj9Qc8rrTmvLyvDilmz4CwuRpzDgbS8PIx/4w3knHoqAKCuoEBqi8up2r8fxevWYfybbzbYnsliQfnOndi3ZAk8VVVIyM5Gh1NPxaBbb9Xdq0DenTCmp0BnpEDJ7AO91Qd+j0f6mSJWH/BIgY70AY8SmKzWBlUidnGQEy9Z1Eu56AVp168fACBj0CCUb9+O8u3b0ZVc6/ppbKMhZ/p01hZ27Vo2ByEpCXjiCX3bJAhCEZpEQdXBg1j1wAMo2bAh6HlBEGAymTAjdHRkBEbOmRP19Uk8lygjpXt3XCaGiUOxxsdjQhixYARBkYJm4CnQGymQH1uk6oM4hwOAvkiB5CdITW0g8OJFUeCuqjKkq2GN6BtJ6dEDAKQGWBWxxvESsfF4AC6MGzN9ALDxsl9+yUbNFhcDDzwA9Omjb5sEQShCkyhYed99MFutOO2VV1iuvg2Yf4IiBY3tKVAy+0Bn9YGU2jCZIu7HJooCPZ6CSH4CQBQKFgsEnw+u8nLJeKgFwe9HtThx0dG5MwAgtXdvAKyZEaETufhs7PQBALRvHzAYEgRxwtAkCsp37sSU//0PqeIVWVtAKkc0m2M2w7HqHJ8s9SloRKOhvHFR6BU8R4oU6EgfRKo8ANhnaU9PR31JCerLynSJAmdREfxuN0xWKxJzcgBA6ndRe+QIPLW1mlpOEyL8RG+xABFEpO6OhgRBNDmajIapPXpIXeraCkqGIXF4pKAxjYZ6RYE3SotjjtSnQEf6IFqkAAikEPT6CnjJaVJurmQEjU9Pl7ZP0QKdyE2GkUSkkZECgiCaBE2iYMhdd2HDv/+N46tXw1VRAU9NTdCtNaK0cREgSx9oiBQIfr8kQBpz9oEvRo8CIFCS6NGRPojUzZAjiQKdFQg1PHXQpUvQ845u3djrUfpUaMHrdKJ4w4aY5bOthhgmQ8CgPgUKqS8rwx93341vpk3D3kWLGn1/BNFW0JQ++Pn669nyuuuCnldrNGxJ+BU2LgL0dTSUexeizj6QpSj8Xq/qEc1csETqZgg0vqcAkImCsjLN+wCAGrHRTXKnTkHPOzp3RvGff0p+AyNwV1Xh20svRc2hQ0jr0wdnzp8f9XNskQghw5Nj9CgADOpoqADB78dvt9+O4nXrAACrHnwQlvh4dKMWyAShG02iYOK77xp9HM0eQUP6QJMokF15Rp19ILti8zqd0glcKVI3wwiVB0DAU+CtrYXf51MkiELh5Yw8FRFKvNiOWG+kgE9aTOzQIej5ZNF0WGOgKNj21ltS5KFi507sfP999L/hBsO236zgqYIYPQqAExcpOPzDDyhetw7WhATknnYaDn37LdY9+SQ6TZjQ+sQZQZxgNImC9sOHG30czR6pxbGS9AFvXqQhfcDnHgDRIwVmm01y7msRBZLRUEH6AAC8NTWaRlDzdFJcmNbRgHGRAt4Vkc9T4BgtCvw+H/YtWQIA6DxpEg7/+CN2LViA/Ouu0ySaWgwK0gfcU+D3eg0pMY3Ero8+AgD0+etfMfDmm1G6ZQtqjxzBnk8+Qd+//rVR9kkQbQXNHQ3dVVXYPm8eVj34IFY9+CB2vPee7na4zRmlExIB2ZRELZECURSYrNaoVQ4mk0mX2VCJ0dBis0kCR+vvlr8voijgkQKdRkMuCkIrGIwWBSUbNqC+pAS21FSMfPxxxDkccB4/LrVYbrUoSB/Im1M1VgrBWVzMhpuZTOg1bRrMcXHod801AIC9ixZBCE17EAShCk2ioHTLFnw+ZQp2/Pe/cFVWwlVZiR3//S++mDJFajXb2uDpAzWRAi1GQyVzDzh6RIG8JDEaen0F/OQQKZIRL86k0J0+4JECsXUyhxsPncXFuiZKcvi0zQ6jRiEuKQk5o0cDAI4uXap7280aBekDs9UaiJI1kijgA67a9e8vdU7tetZZMNtsqNy9u/WLM4JoZDSJgnVPPolO48fj/O+/x7gXXsC4F17Aed99h9zTTsOfrbQdqaqSRD1GQwXliBw9FQhSpCCGKJB6FWgVBTxSEOEKk6cPXDrSB966Omk/oZECW2qq9DNwM6Ieiv78EwCQddJJAIBccabG8dWrdW+7WcNP8jF6PTR2WeKxZcsAALl8xDKYX6XThAkAgMPykcsEQahGkygo27qV5VBlV81mqxX9rr221Sp1LZ4CLZECn4LGRdJ+xNC/li9gn0pRoDdSEBcpUsDTB2FmaCilrrgYAIuchKYpTCaTVJFQe/Sopu1zBL9fGq6ULYoCLg7Ktm5t3eWJCiIFgCx61QiiQBAEFIuijM9H4XBRcKS1R2wIopHRJArikpNRF2YcbW1hYavtGqcmUmCEp0BVpEBDWNwbY0Iix6Y3UsCNhhH+LuyiKBB8Ps2Dl5xi5UGoyZCTJHY41DtCufbYMXhra2GOi5O6JSZ36QJ7u3bwezytNnUGQJHREGjcSEHtsWOoLy2F2WqVhl5xcseMgclqRdW+fag+eNDwfRNEW0GTKOgyZQpWPfggDn7zDWoLClBbUIADX3+N1bNno+vUqUYfY7NAUGE0jKuoQO+yMpg0nOSUzD3gWHW0leVRjMaMFPh9PumKMZLR0GKzSSOatZoNuZ8gMYIo4G2PwwlZNfDBSik9ekiizWQyIWvIEABoMCBML8Xr10vjxZscBUZDQN/fZCxKN20CAKT16dOg6ZYtNRXZw4YBAI7++qvh+yaItoKmksShd98NmExYMWtWUKe/3pdeiiF33WXoATYX/ErTB04n0q66CsOPH0exhit4JXMPOLqMhjxSEKOuW0+kQH5ckdIHAEsheKqqUF9eDvVFj7JyxAizE4yKFFSKoiBNHLTEade/P478/LM0utkIjq9ejZ+vuw6C34/t77yD0155Bbljxxq2fdUoTB80ZqSgVGyKljFwYNjXc8aMwfFVq3B81Sr0vfJKw/dPEG0BTaLAYrPh5FmzMOSOO6RSr+TOnVt14xDFzYu+/RZmMZydVVkJ7NoF5OUp3o/vRBsNo/QpAAJX+FoiBTx1YI6Li1qzHt+uHaoPHNBsNuQRhgSxkiEUKVJQWKhp+xweKeCpA06aONa3YudOXdvnCIKAtY8+CsHvhyU+Hr76eqx55BGc89VXjVb7HxOF6QNpUmIjtDsv3bIFQGRR0GHECABA0dq1mrp8EgSho08BwK4y0/LykJaX16oFASAzGsYSBT/+GPz4hx9U7UcqSVSSPuBGQx0libHSB7wToZZIgeQniNFYSW9Xw3pxOJc9PT3s67zLoe5IwZ49ABpGCtJFUVC5b58hZsOi1atRuXcvrImJOO/bbxGfmYnaY8dw5KefdG9bMwrTB43V6lgQBClSk963b9h10vr2RVxKCjw1Na3b30EQjYhiKb3s9tsx6rHHEJecjGW33x513XEvvKD7wJobfqUDkdavBwBU2mxIdbshrF4N08yZyvejIlJgRPOixkwfxDIZcuw6uxryCAM3LYbC0wfOoiLNV5CCIEiTGFO6dw96LTEnh52MqqpQtW9fxJOWUvZ/8QUAoNvZZyMhKwu9pk3Dlldfxd5Fi5rOs6MyUmB09UF9SQncVVUwmc3SkKtQzBYL2p98Mo78/DOKVq9G5qBBhh4DQbQFFEcKbMnJUh/0uKQk2JKTI95aI34lzYt8PkAsWdvPpwKKjxXvRxQFSsLERjQvimk0NCB9EMlkyIkXr/A1iwIxUhAfIVIQn5kJk9UKweeDUyxf1LIP/pnxdATHZDIhXUwRletMIQiCgAKxQU/nM88EAHQ/91wAzGfAB0ydcJRGCnj6wGCjIR99ndSpU9SKmfZiCqFw1SpD908QbQXFl0wjH3tMuj/q8ccb5WCaM4o8BUePAnV1EOLicNjhwJCiImDHDsDrBRRenarxFBgSKYglCnj6QEOOWKko4Ff4mj0FMSIFZosFie3bo/boUdQVFEiRAzXwyoWErKywgi2tTx8UrV2Lil27VG9bTsWuXXAWF8MSHy+56R1duyK1d29U7t6No7/+iu7nnadrH3KcxcUo2bQJGf37NxgmFYRKo6HRkQIuCtJC/ByhtD/lFACscqMx5y8QRGtFk6fgp2uuCVtT7qmpwU9iH/LWhqKSxAMH2DpduqAuORk+ACaXi4kFhagpSZTytzqqD2J6CnikQEN5peJIgd70QYxIASCrQNBoNqw9dgxAwygBJ7VnTwBA1f79mrbPKVyxAgCQPXx4kAm00/jxAICCP/7QtX05RWvX4oupU/Hbbbfhi7POwtFffgm8GDpDQK3RsJFEQYr4OUcitVcv2NPT4XM6W20jNYJoTDSJguNr1kgnLzk+lwtF4ozz1oaikkRRFKBbN5gTElDHT+wqThQnbPaB2KfghEQKFBoNtUQKvHV1Ulg/UqQA0N+rgIsC3m8/FO4zqNq3T9P2ObzsjkcJODwsfnz1akOG/nhqa/H7P/4Br9MJS0ICfC4Xlt97bwMzponfUWk0NDxSIJo8U2OIApPZLH12zaK/A0G0MFSJgvKdO6WcaeXevdLj8p07UbZ9O/Z++mnEBjItHUXpA5kosNrtqOEndv68Ak600TDalERAFimorlZ9MlJqNNRTfcArD8w2W9CUvlD09irg74uUeuCioPboUU3trTmRavEzhwyBOS4OzqIiyfCohx3vvYf6khIkd+mCC3/9FZlDhsBTU4Mtr74a/g1K0wfi34vRkQIutmKJAgDIFlMIrX4eBUE0Aqps2N9cdBFMJhNMJhN+uvbaBq9b4uNx8n33GXZwzQm/kpJE3l61a1dYjhwJiAIVkQI1sw+MaF4Us0+BeJUveL3wOZ1RT7yhuJV6CsT0gbuqCn6PR5Eg4rhk5YgmkyniejxfrjlSIL4vUvogPjMTcQ4HPNXVqD50qEHZohLqS0vZfAaTCe369w96zRofj8whQ1C0Zg2KVq1CSteu6n8IEb/Xiz0ffwwAGHTLLYhLSsLQe+7BD5dfjn1LlmDgzTc3fJPSNseNIAo8NTXS75lPvYxG9sknAwBK1q9X/fdEEG0dVaLg/O+/hyAI+HzyZExesEC6wgPYla29XbvYdfwtFEFJSSKPCHTtCsvatajVkj44wc2LYqUPrImJMFksbDZBTY0qUeAVRUGsihR7aipMZjMEvx+uiooG44+jocRPAOhvYFQXI1JgMpmQ0qMHSjduRNW+fZpEAW/Ok9K9e9hR09nDhzNR8Oef6HXJJaq3zzn2229wFhXBnp6OzmecAQDIGjIE2SefjKK1a7Hvs89g59UzAPMXKE0fcFGgcVZGOHiDNHt6ekyBCbA+ErbUVLgrK1G2bRsyBw827FgIorWjKn2QlJuL5I4dcdmWLcgYMABJubnSLSErq9UKAiCQPoj6M/ITTseOsNjtqOMCQsxHK0HV7AONRkPB7w+0U46RPjCZTIEvepVmQ6VGQ5PZLDUeUptCiFV5wEnS2cAolqcAAFLFFEKlRl8BN8ZlDBgQ9nV+cisRZwBohY8X7nb22UHu/B4XXggA2PfZZ8Gpovr6gPEwhijkza60TtUMBx95zaddxsJkNiN7+HAAlEIgCLXo6mhYuWcPjv32G478/HPQrTXiV1J9IPbgR3Y2rAkJcHJRoOLqVGv6QE2+Xz690RojfQDIvuhVmg35+lYFV3d22QhlNbhidDPk8PSBu7JS9VRJb12dtJ9ookAyG2qsQOBtlHnb5FAyRZ9BzaFDcFVUaNqH3+fDsd9+AwB0mjgx6LUuZ5wBa2Iiag4floYPAQhECQDF6QO/263LWyFHEgWdOyt+D08hkNmQINShqTl4zeHDWHbbbajYvRsmk0k6IfGc7gzRLNWakEYnR0ofeL0Av8rNzg6OFKi4OtViNIQgqMr3e2WiIFZJIqA9JOxRmD4AmNmwEhpEgbh+rPRBnMMBa1ISvLW1qCssbNCVMBq8jNGalBS1kiKlRw8A2kVBpDbKHFtqKhzduqH6wAGUbt6saUBS6ebNcJWXI87hQNbQoUGvWRMT0fG003Dwm2+CxT0XBTZbzH4bcbzJmSDAXV2NBAWiMxbVfL6KwkgBALQXIwXF69bRHASCUIGmSMHauXOR3KkTLvztN1ji43H2kiWY9N57aNe/PybOm2fwITYPhFgdDUtLWYjVZAIyMmCJjw9ECsrKAIVXTVpmHwDqUgg+2TAkkzn2n4BN4/jkWGOT5UhliWrTBzxSECN9YDKZNKcQ5KmDaGZGeaRA8PtV7cPndqNaNKqGDlySkyG27i1R2SmTc0wcK5wzZkxY4dlp0iQAISWoCk2GAAvdxxk8FEk+dE0paXl5sKWkwFtX16hzEFwVFdi7aBE2PPcctr31Fko2bTKkZJQgmgpNoqB040YMvOUWxKenw2Q2S7XBg++4A3+20m6HMZsX8dRBRgZgtcJit8NtscDPhYE4OTEWaiIFJrNZEgZqzIZehS2OOXEa5x9wEaFEFGidf6A0UgDIKhBUmg1jmQw5yZ06wWy1wud0qt5H1f79EHw+xKWkICFKWS9PIZRq9BUU/fknACBn1Kiwr+eGEwsKTYYc/veipeFVOLSkD0xmcyCFsGaNIcchR/D7sf3dd/HZhAlY9eCD2PbWW9jw3HP4fsYMfD9jBorFGSgE0dLQJAr8fr90NWBPT5fm2Sfl5qJKRU1+SyJmSSIXBe3bAxBPuCYTvGI+XmkKQc3sA0BbWaLSuQccm8YveY+aSIF4Uue5e6UojRQA2isQpEhBDFFgjotDslgyp/b/gE8ATOvVK2o0gkcKSjdvVn1F6nO7pT4IWSHNkThxycloP3Jk8JMKexRwpCFaBkQK/D6f9PmrSR8AkMyGRvsK/D4fVv3rX1j/zDPwuVxI69MHeZddhs5nnAFLQgJKN2/Gj1deiU0vv6w6YkQQTY0mUZDWq5fUxChj4EBse+cdFK9bhy2vvqr6H7elIMTyFMhMhkCg/t/Dc9AKRYGa2QeAbCqdmkiBaLSLVY7IidPwJe/3eKReCGrSB2qrD6QJiY0YKZAaF0UxGXK0mg0reMe+GL390/LyWBSqqkpKNyilbMsW+N1uxGdkwBGlz0HH004LfoKnD1RGCowoS6wrLITg9cIcF4dEUXArRRIFf/4peYKMYP3TT2PfZ5/BZLFg+IMPYuqiRTj5/vsx9vnncd6336L7eedB8Pux5dVX8fs//mGY4ZIgTgSa3Df9b7xR+sIfdMst+HXmTPxw5ZWwp6Vh9DPPKN7O7gULsHvhQtSIswFSe/XCwJtuimig2rd4MVY+8EDQc2abDdNloTpBELD55Zex55NP4KmuRubQoRj+4IO6mr0AKiIFoijgJ1wPPyGqjBQo8RQA2uYfqI0UxGnwFMib18TqaAjoSB8orD4AtJcl1sVoXCRHa7tjHimIJQosNhvS8/NRsmEDSjdtQkqEMcLhKBZbkGcNHRo1GiH//3NXV6uOFOiZrBlKjcxkqMT/IictL08aaV2+fXuDLpFaOPjNN9j5/vsAgFOffLLBKOuEzEyMmjsX7UeOxOoHH8Th77/Hz8XFGPfyy8G9HwiimaJJFOSOGSPdd3TtinO+/BKuigrYUlOjftmEktC+PQbfeSe7ahEE7F+yBMtuuQVTFi2KOA0tLjkZ53z5ZeCJkP1tf/tt7Jw/H6MefxxJHTti00svYekNN+Cczz+P2b0vGjE9BdwzEBIpcPMTb0mJov2omX0AaEwf8LkHMXoUcGwarvy4KLDExyv6WeI1lCT63G4pehF/ItIHjRgpkKYAKmh6lDFwIEo2bEDJpk2qJibyuSRZJ50UdT15tO/4qlXAhAnsgdL0AZ+XYYAoUBOlCcVssSD7pJNw9JdfULR2rW5RUF9aijWPPAIA6Hf99Q0EgZwe55+PpJwcLLvtNhSvX48f/vpXjH/9dU0/hxL8Ph/qS0rgdTrh93rZGPvUVMX/4wTBUS0K/B4PFg4bhqmLFgV9gWlRwXzyG2fw7bdj94IFKN24MfKIVJMpYsc7QRCw4/33MeDGG9FJ/CIbNXcuPh03Dod/+gndzjpL9TFK2441EImf9DMzAQSuwj1ciCgVBdxT0IiiwKuwxTFHU6RAhckQ0FZ9wGv1TRaLdCKKhnwokiAIigSs3+dDnSj4lIxc1lKW6K2rk66IY0UKAJmvQIXZUPD7JfNbJD+BnIT27eHkQlet0dDASIEUpYk21jkK2cOH4+gvv+D4mjXI1znBdd0zz8BdVYW0Pn0w6JZbYq7f/pRTcMYHH+CXG29E1b59+P6yy3D6q68iPT9f13EAzCxc8McfKFy+HMXr1qHqwAHpgkJOQlYWUrp3R0r37kjLy0Nq796s46OC/xeibaJaFJjj4pCYkyOdJI3C7/Ph0Hffwet0Rm1L6q2rw2eTJgGCgPT8fAy+4w5JQNQeOYL6khJ0kBmlbA4HMgcNQsnGjRFFgcvlgkuW96sWrz5XPfQQHOJJl7egPfD117ClpKD39OnseJxOrJg1C31/+QVZAPb+/DOOlZVJQ2uqqqvREQBKS+H3+fDHP/4R8Wdr17+/1LzIHBeH3+++W/IyhJKWl4eBN98siYLdCxcGj76V4ejWDUPuuEN6vHvhQgDs6vQ32fMAO3EOu/de6fHaxx+XfvbSTZuC1o/PzMRwWTpn/TPPSE5xfsL21tXhtzvugC0lBSPEqywA2PjCC0EnTp7z9Tqd+OPuu4PSUJtffRUVoodFDj/p2NPSpNDytnfeiXiy5KYvr9MJd2Ul9n/xBYpFN344Rj72GNxVVexv3WzG2rlzIwqJUx56CPa0NCmc7ywqwq+33BJWRA6bNUvKjx/46ivsXbQIAEsZrZF9RgAw9B//kFz3h3/4AQe++koSdWXbtmHZbbdJP/ugW2+VBgYdXbYM+z79VNqOp6YGnqoqmMxmbH3zTQz8+9+lk1PhihXS3wQntVcveOvqkNK9O2p270YyACQmoujPP6XweTj6XHGFFFmqPnCgwd+XnF7TpiFn9GgAbNhauGFMvJxQ3nCqav9+bHzhhYjb7Tp1KrpMngwgELkp+P13LLv99ga/v06TJqH7OecAAJzFxVj72GNht+mqqGBVDCYTTnnoIXjr6rBq9uyIx9Bh5Ej0nj4dab16YcLbb+PbSy+Fs7gY3156KTKHDAmKbGUNHYq+V10FADG/IxJzcgBBwL4lS8J2GDVZrTCZTOz/SRDgLC6Gs7i4QWdHi92OuORkxDkciEtORlrv3hh8++2Iczhgsdux+qGH4K6sZN1PPR743G74PR74PR5YExKQPXw4XOXlcJWXo3jdOnhqa+F3u1ma1e9nJljRCGuJj4fZZoPFZoPP6WSC3GyGyWKRqtdMFgssNps0Mtxit6Nk40b2PSJuR75N3rVS8Psh+Hwo37GDHa9sHfn9tLw89n9sMqGuoADu6mr2t8D/HkwmNhHUZELGwIHs/9ZsRum2bTg/4m+jdaIpfTDghhuw8YUXMGruXN15sopdu/D9ZZfB53bDmpiIsS++GPFqydG9O0bMmYP0vDy4a2qw/d138cPll+PsJUuQ2KEDnOLVeLx4tc6Jz8hAfZQr9blz5+Lhhx8OrC/+oRxbtgyJIemCyt27g+qeBZ8Ph3/4Ab3EEPPx3btxuLhYer2Oq3exj8HhH36IeBz8nw5gouDIjz+GHVENyMr9RFFQsXNnxJNhRojIqti1CwBQX1LS4HjS8vKCHhf88QeqRSe9u7IyaP3QErHClStRvn170HPeujoc/uGHBr+TojVrIpZtHRVr6TnF69ahcPnysOsCwX6Cko0bceTHHyOua0tLg7uiAnWFhSjbsiXq7+OUhx6SUgfW+Pio2x32z3+y7aekwBIfD199PY4uXRp23cG33y7dr9yzh4XowVJHocfT/4YbpPtVBw4Evy4IOPLTT9LDPn/9q3S/5tChsD+b4PfjyI8/ote0aeCfWs3RoxE/h9JNm+DlKbDERNQVFkb9zDpNnChFlurLy1EUpc1wh1NPle67ysqiblfu4neF/B2Gkt63r3Sfl3cKPl/Y35/ccMn/VqPR6+KLkTloEJzFxVHXlV+JJ2RmSnNABJ+vgRANEo4xviPkJObkwHn8eNBnI3i94DUp2SefjCH/+AeqDxxA5Z492P7ee9JFhs/lgs/lkoy9ZVu2YN/ixQAgzTqJBv+bVYKvvh6++nqE/yYLhl9UKEGN0bZQYaQWQND/lCdM9KW1o0kU7PrwQ1QfOoTF48cjKTe3Qd5q6iefKN6Wo1s3TF20CJ6aGhz6/nusvO8+TJo3L6wwyBoyBFlDhgQ9/vLcc7H7f//D4Ntu0/KjAABmzZqFu+66S3pcVliI7n36YPDttyNVFD17P/0U5du2ofOZZ6Lb2WdL65ptNpz8wANIf+ABYN8+dL3sMmSedBJKN23C/s8/Z30LAKCkBCazGSeHGCXlJHXsiA3PPguAGcqGzZoVsaSJX2nySEH7kSMjGjTj+TGI5Jx6Kg599x0yBg1qkJMOFXkDb7oJFbt3Y9tbbyHO4Qg6oYWmBvpdf71k/CvdsgX7P/sMjm7d0OeKKxpUOvS96ip0lX2OALDxxRfhqapC3uWXBz2fd9llUjpIDt+HXBT0uvjioEhRKHsWLZJEQY8LLkCm7O8pFGtCghS+Tu7cGb2mTYu4rrzToaNbN1Ts2IHu550nhfrlyK8SO44fj9ItW1C4fDmyTjoJXUOiWfKwec6pp0qf+e4FC1C5Zw86n3EG2o8YwfYrmyCYPXx40N/avsWLUbZ1K3LHjUPuuHFIFdMcAPs/ivZ3mcgFWVIS2g0YEHXdjAEDpBJAk8kUdV25t8HRrVvYdbe89hrqS0qkSgIASO7YMfoxyLwDiR06ILVXL1Tu2YNOkyY1+Nto16+fdN/erl3Y7Vbu2YPdCxbAHBeHATfdBICZZ6Mdg/zz5d8Rfp8PBz7/XJpxkZSbi47jxyN33DhpXfl3hLOkRDKUSulBkwkdTz8dvS+9FDmjR2PPxx9H/Y7IHDQImeLfoKNrV/jcbvjq61kEoagIdUVFcBYVob60lEVjBKGhIDCZYE1IYLfERNhSU5Hety/s6emIT09H1cGDMJlMsCYmSg3R+NW/NTERncaPl0TI0V9/hau8HILPxy6CvF74vV5pn2l5eSwq4XKhYs8eZooWr+j5hF6YTDBZrcgYMABmMdpQdeAA8xfx9cxmdt9sBsxm5Jx6qhRRK9u+Ha7S0kBJryAEogqCgEze6VMQULh+PfDvf0f8PTc5774LJCcDod9NH3/M0n5iBEoNmkRBxwkTVBkKo2Gx2SS13q5/f5Ru2YKdH3yAUx56KOZ7zXFxSM/PR40Yqk8Qr0brS0qCfAf1paVIk109hGK322GX5de5ea3H+ecjQzQGHV+5EuXbtqHDiBHSlzA//rwZM4AHHwQAdDz/fGDMGBxq1w77P/8cPn6yKC2FyWxm60bhz7lzpZ+t96WXxvwMuChwdOkSc9ucFDHE3C4/P+Z7up1zDmoOH8a2t96C4PVGXb/rlCnS/d0LF2L/Z58htVevsO/h0/nkcOEV2n431HvC2fnBB9j/2WdBJ9lYrX8Lly9HxfbtqC0oQN6MGegQoYkPhxvd0vv0Ufz5Zg4ejIodO5DYoUPM92QOGiR5O7pMmRJ1/Xb9+0sjld2Vldj00kswW61h35Pepw/SZTMUtr31FgAmxkJPjKm9ekX3MvCr/cREpHTtGrOSh5crCz6f4s8sKScn7LobnnsOAMvPcxKyshRvNz49HT0uuADrn3km5t+vzeFo8Lrg9+Nb8Qu3zxVXBIlxpccgfUcA6HP55dj/2WdYO3cuao8dw67583Fs2TK0HzECSbm5EHw+1Bw5guJ16ySfCf+Ze150EXpefHGQt0XJdwSn50UXRX1d8PvhrauDp7aWndStVpitVsQlJamu/IhEepTv4RNFt5CLkWjknH568xYFc+cCr7/e8PnsbOCGG06cKBg0c6aWtynD75fy6jFX9flQuXs3csQTQVKnTojPzEThqlVSvtRTU4OSTZvQS8U/T6R9AVGqD3jTHfGqlRsN67l4Umk0bNTqA240VOhM5lfBXqdT8Xx6bjRUMveAo7YCQZqQqCKFpbZXQa2KckSO2goEXr7I/QBKkNodK5gzUnvsGOoKC2GyWKSrRlWo7FOgtdlVKJ6aGqlVdpJGoyEQ6FdwfM0a+NxuxY3BAODQ99+jfMcOWJOS0O/66zUfA8dkMqHHX/6CnDFjsPXNN7H3009Rc/hwkADgmK1WdBg9Gr0uvhi548Y1+vwGk9nMfAYq/meJEObOBT79FNixA0hIAE49FXjySSDCkDPdHDoEhJvj0rUre00Dmv7KlkyejCkLFzb4MnZXVeGbadNw/nffKdrOhueeQ+7YsUjMyYG3thYHvvoKx9eswfg33gAALJ81C4nZ2Rhy550AgM2vvILMwYPh6NIF7upqbH/nHdQeO4ZeogI2mUzo+9e/Ysvrr8PRpQuSO3XCppdeQkJ2NjqHTIRTi1SSGO4fUxAAPrVO/Ez41V89D1FVVwNuNxsqEwU1sw8AjdUHYp8Cxc2LZF8SntpaRSdhXpKoZEIiR20FgktFN0OO2rJENeWIHDWiwOd2SyeEFFnIORZ8vHLtkSOoLyuLWpLJ+xOk5+crHpoVhNo+BQZ1NOSDqGwpKdqOW6Rdv35IyMpihrtVqxQPkvJ7vdj88ssAgPyrrza0z0BCVhZOvu8+DLnjDhT88QfKtm2T8vtJublIy8tD+xEjFPX4IJoRv/4KzJwJDB/OhuTddx9w5pnAtm2KRbUqsrOBTZuA0H4lGzcGUtcq0SQKao8eDWtE8bndcKqoAa8vK8OKWbPgLC5GnMOBtLw8jH/jDeSIBqS6goKgNIW7qgqrZs9GfUkJbCkpaNe/P86YPz8o9Jl/3XXwOp3MPVtdjayTTsL411/X1aMAkE1JDBdGq6kB+OcREilw+v2A2Qz4/WwwUowrHrWRAk3Ni8RKC6XNi8xWK6yJifDW1cFdWalMFIgnBDVfatz7UK+w1bGaboYctZGCOoUtjuXwfHL1wYMxJ/RVHzgAwe9HnMMRsdQ2HLaUFKT06IGqfftQumkTOp5+esR1pVLEGP0JIqJiIBKgfYBWKHrLETkmsxmdJk7E7gULcPiHHxSLggNffYWq/fthS01F3yuv1HUMkbAmJqLzGWeETacRLZBvvw1+PG8eO3H/+Scg844YxowZwG23AQ5HYPu//grcfjsgVsipRZUokI9TLfjjj6ArSMHvR+HKlUhS0eZ45Jw5UV+fFDJxcdg//ym5vCNhMpkw6NZbMejWWxUfhxKi9ingUYK4OBYyQuAq3OdyMaFQWspSCApFQaPOPuDpA4WiAIA0cU7pF72bj02OMmo4FH5yV5o+4GWPShoXcdR0NRQEQVPznMQOHaQKhNqjR6O2FK4UUwcpPXqo9ulkDByIqn37UBJLFIiRgmytokBjnwJPTQ0Ev19zPpoLNzWpm0h0PuMM7F6wAEd+/hnDZ8+O3JlUxO/xSCWS/a69lkLqbZzq6mpAlg4L9aFFpLKSLVV8R6lizhzgwAFg4sTAWHO/H7jySkDjcEJVomCZ6PA3mUxYcd99Qa+ZrVYkdeyIk+65R9OBNHeiigJ+ZZuWJtW9WuSiIDOTiQIFYXHVsw9OQPoAYKKgrrBQcZ7YqyVSoDJ9UK8lUiCeYHgpV7QTlruyUvpc1ZyYTGYzUrp1Q/mOHajavz+6KBA7GarxE3AyBw3C/iVLpCFH4XBXVaFCbKGcGWLgVIzagUi8HE8Q4KmtVSUMg3bLRYHOSAEAZA8bBltqKlximWQsg+n+L75AzeHDsLdrh7zLLtO9f6Jlk9+vH+SXQ7Nnz8ZDsczwfj9wxx3A6NGAmO4zHJsNWLiQiYONG9lF6cCBzFOgEVWi4DKxic2SM8/E5IULFY2rbS1I6YNwVxg8UiD7PHi6wldfH8jtxDjZCX6/VEfcmJ4CafaBihao/IteqSjgEQU1ngK18w+4p0BNpCAhKwsmsxl+rxf1paVRQ/Y8fG1v106VgAKYr4CLgmhX8ZLJUIWfgCOfmOj3+cJe/ZZs3AgIAhxdu0rVOapRmT6w2O0wx8XB7/HAU12tWxToMRlyzHFx6DplCnYvXIg9ixZFFQU+txtbXnsNANDvuut0+RmI1sH2bdvg6NhReqwoSjBzJrBlC/D77414ZCJ5eexmAJo8Bed//70hO29JRJ19EGIyBAKRAr/HA6FdO9YtK4YokDcqUtrmWM9AJKsKn4VaUcCNhmpOCGqqD/w+n5Q+UBMpMFutSMjORl1hIWoLCqKKAil1oCF87VBoNuSRAjUmQ05aXh6sSUnwVFejYscOqVxRDu9kF1rmqQqV6QOA/b3Ul5bqMhvWGhgpAICe06Zh98KFOPLjj1HNmTvffx+1R48iIStLVckf0XpxOBxIUdMa+pZbgC+/BJYtA4yeHCzrqRMTDeWUmmtcCleuROHKlXCVlTVonjHy0Ue1brbZ4leSPpCdnOQnXMHhYKKA55ci7UMmCk5E+kCtpwBgIXUlaDIaytIHsWYTuKuqpBamal3hiR06oK6wkEUCopTo1WowGXKUTEv0e71St0gt6QOz1Yr2p5yCo0uXomD58rCioHDFCgCIGS6Pisr0AcB8BfWlpbrMhlL6QOXI5Ei0y89Hu/79UbZ1K3YvWICBN9/cYB1ncbEUJRh85500UIhQhyAAt94KLF4M/PJL+HJBvUToBGsUmkTB5ldewZZXX0W7/v3ZlZZBjYyaM0K06oMokQIA8CcnwyxfLwLy/gxaRIHSIT9SpEDFF16c2kgBFwVqjIaiKPB7vfDU1ESNMvDKg7iUFMWfFScxJwfYsCFmBYLUo0DDZLtU8cugct++iL+X6kOH4Pd4YElI0Dw9r8OoUTi6dCkKV65E/7/9Lei1+tJSqe20LlGgsk8BICtL1CgKBEEw1FPAyb/mGvxx993Y8d57yLvssiBBKQgC1syZA29dHTIGDkT3c881bL9EG2HmTODDD4ElS1hFAP+OSU2VTOi6idA+3Sg0iYLdCxdi5GOPqRrb2tLh0ZCw6QO50VDEZDZLeVU//zKNIQp4pMBktSp2bPMrccHng9/tVlR66dVYfQBoEAUqTiTW+Hip9LG+rCy6KOB+Ag2+FqUVCLoiBT16wGSxwF1ZCefx42FPbOU7dgBg45K1OvT5yb543Tp4nc4goVcgRgnS8/MbtLpWhYZIgd4GRu7KSkm8GikKukyejK1vvIGKXbuw/tlngyqgdn/0EY789BPMVitOmT3bsC5+RBuCD/UK9RG9+y5w9dXG7efaa2OvYzIBb7+tetOa/ur9Hk/UnvGtkajVBzykHhLG5kY+P/8yVSgK1Fz5ys2CSn0FavsUAOpEgc/tlpowqS3l4ievWBUIWioPOEp7FdQePQoASNaQE7TY7VJKoCxkSBSHT37U0/o1pXt3JObkwO92o+CPP4JeOyqWEPNJhJrw+QDx5KxKFKSmAtAuCuQmT709RuRIswVMJuz79FNsffNN+Nxu7PrwQ6nF+OA77jBkvDHRBpHNUAi6GSkIANb/YOlSdk4pLw9/U2jYDkWTKOh50UU48NVXmnbYUolafcBDpCFXttxX4OMnboXpA6UmQwAwWyzSyV2pr0BTSaKKL3luMgQAq8ouXnaFZkMtJkOO0q6GWroZyuEn+9DJkRw+IyBdRwtUk8kkjQk++PXX0vOe2lpp2iR/XROykcWqjIbi34tLoQclFKNNhnKyhw3DoFtuAQBsfP55LBw6FGsfewyC349e06ahr9Ff4ARhNDfdxC5G9+8Hxo9nEYHFixveNKApfeBzu7Hnk09wfOVKpOXlNWj9O+zeezUdTHMmavVBBFEgnawVigItkQKA+Qp89fWKRIEgCJqbFwHKcsR8HWtiYswmMaEorUDgngI15YicJAWRAk9trZSi0CwK8vOx//PPI4qCCp4+0DkkpttZZ2HHvHk4+ssvcFdWwpaaikPffw9ffT2Su3TRd9Ur/5tS8fdi5yIyxt98xN0aWI4YjgF//ztsqanY9OKLcFdVwZaaigE33og+V15p2LA3gmg0/vMfVlnw6afAO+8As2YBZ58NXHcda6us429Ykyio2LlTurrhjVE4rfUfKmr1QSRRwCMFvOeAUlGgYmALwE6+rrIyRaKApw4AdUZDNTliHinQ0gVOqkCIIQp4K2Q96QNnSUnEATncbxDncASa8aiEj+Ut27atwWv1ZWVwFhcDJhPSevfWtH1Oer9+SMvLQ8WuXdg5fz7633gjdojdQHtddJG+/0ke9UlIYO26FaI3UlB3/DiAxokUcPJmzECvadNQX1qK+IyMRh84RBCGYrezNsczZgAHD7KUws03s5kLW7eykcoa0PRfENp+uC0gaEgfcFHgVSoK+DAklZGCOBVlidy8JT8+JagpSZRMhlpEgcIGRlrmHnDs7doF2hAXFIQdBaw3dQAE0gd1hYWoLy8PMkXyLoQp3brpHnpjMpnQ/4Yb8Mfdd2PbO++gav9+VO7Zg7jkZPS65BJd29bSowAIlIkqLWFtsNtGTB/IMVuthpU8EkSTYTaz6IAgBObwaN2UnjdXHzyIY7//LuWoBT4RsBUiGQ21pA9URgrUeAqAQFmiEqMhFwV8VrpSJFFQXd2gL0UoPH2gRRQonX+gZe4Bx2QywdGlCwCgJsJ4UclkKOtippa45GSpX0FJSG1xyYYNAHS0Hg6hy+TJ6DBqFHxOp+QtGHr33ZqjHBIquxlypEiBzvQBnbAJIgIuF/DRR8AZZ7Buhps3Ay+/zEYm65jVoUkUuCoq8NO11+KLs8/GrzfdhPriYgDAqn/9C+ueekrzwTRn/NFGJ8eIFLj5e2prAVmDolB8OtIHgLJIgVdDjwIg8CUPQYjZpc6Q9EGM6gM9kQIASBZFQfXBg2Ff56JAT6QAALKHDwcAHF+zJuh5aXKhQVU8JrMZY557Dr2nT0fW0KE45eGH0WvaNP0bbupIgQHDkAii1XHzzUBODvDEE8A55wCHDwMffwycdZaqNF84NKUP/nzySZitVlzw44/4Utbgo8uUKVj/1FPA//2froNqjkgzCaJFCkJOgtzd75ELicpKNiApDFrTB2pEATcZqu3lb7HZpJC7u6oq6hWolh4FHKXpAz2eAgBSpCCiKODpAx2RAoCJgj3/+x+KZKLA53ajVJwjYmRpr83hwPB//cuw7QHQ1KMA0OcpEAThhHgKCKLF8tprQJcuQI8ebFSyWGnUgE8/Vb1pTaKg8I8/MP6NNxr8w6Z07Sp9mbY2/DqqD3weDxMMNTXRRYHa6oNFi4Bt22AXlaGaSIGaygOOLSUFTlEURENLN0OOkpJEQRB0VR8AkCYXRhIFNUeOANAfKWgvRgrKd+yAq6IC9rQ0FP/5J3xOJ+IzM6X0QrNFY/qAVx94qqoiDmuKhKu8XBLI0WZTEESb5corG62TsCZR4HU6w07Yc1VWqg59txSESOkDrzfQ3CWSKHC5WGOjmpqovgLJU6DkM/z1V+DiiwEAefn52GsyqfIUaOnpbktJgbOoSLko0BIpEE/y7oqKiCcTb12d9FlpjhRwURDGUyAIgiQWHN26ado+JyErS6oMOPzjj+h18cVS/4DcceOaf9c8jekDKd0EVrGipvMkjxLEZ2Qo+18giLZGI5r9NX0jZQ0bhv1LlgSeMJkg+P3Y/s47aH/KKUYdW7NBEITIRkN53X6kksT6+kC3wyiiwKcmUvDmm9LdtB07kODxnJBIARA7T6yn+oCf5AW/P+J+eJTAEh+veWANFwW1R48GzZwAgPqSEvYzyAyJeuh61lkAgANffgm/xyMZAaONVG42aEwfmK1W6fev1ldwoioPCIJoiCZRMPQf/8DeTz7B0htvhN/jwfpnn8VX55+PorVrMUTNWMcWgtxt3yB9wE13cXGsblQGz9t7FYoCxekDv5+N5eTHJAjIqamBV9ZJMBI8UqClday8AiEaekSB2WqVrjIjpRD0tDjmJGRlwZqQAMHvb5Dy4lGCpI4dDblS7XrWWTCZzShaswYr7r9fqovvOG6c7m03OhrTBwBg02g2dHI/AVUeEMQJR5MoSOvdG+d89RWyTjoJnSZMgNfpROdJkzB10SJDrqyaG4Ks7rOBKIjgJwDURwoko2GsE9Hu3cybkJAgmTqz6uoUpQ+0Vh8Ayucf6BEFQOz5B86SEgD68s0mk0mKFoSON67avx8A6yFgBMkdO6LHX/4CADgotgfPv/Za1YbSJkFj+gAI+ArUliU2ZotjgiCio7mFl83hwIAbbzTyWJotvPIAiJI+CCcKQj0FgDGRgj//ZMshQ4Bx44CnnkJGfT2OqKg+0JU+iCUKdJQkAsxXULVvH5wRRAEvgdVrQkvLy0P5jh0o37EDnSZMkJ6vOnAAgH4/gZyh99yD2mPHULhyJbqfey76XHGFYdtuVPRECnirY7XpA4oUEESToUkU7F28GHGJiQ0GrRz67jt4nU70uOACI46t2eCXRwpCjYZKIwXceKXEaBhLFKxbx5bDhgEDBwIAUlwu+BTMJdAyDImjdCiSnuZFQOBk7ywqCvu6k4uCCFUcSknjrbrFwUQcHjkwKlIAMBE94a23IPj9zd9cKKcJIgVOMVKQQJECgjjhaPp22vbmm1JzEjn2du2wVWaAay1oTh/IIwW8rj/KiduntE8BnzeRnw907gx/YiLMAGwRTqJB++CegsZMH+iMFMQabczTB/E6RYE0xTBEFPABRnpGGkeiRQkCQLPREKBIAUG0RDR9Q9UWFCApzIz5pNxcaQ56a8IvSx80+FKPIgqCjIZcFEQ5oSpOH+zdy5Y9ewImE7w9egAAEhWIAq/G5kVAoO9AY1YfAApEgVHpAzFSUHP4sCRknCUlgUFFeXm6tt8q0JE+4BcOahoYyRsXNdaERIIgIqNJFMS3a9cg5AqwMKwtTAShpSPvUdBg4pyS9IHLFXg9SqRAUZ8CQQC4MU4UA/6ePQEA8QrCtD4jShKjCBtBEALpA42DfiRRIJ4cQqk3KFIQn54u7atM7DDIowRGDCpqFehIH9g0jE92V1ZKf6MJ2dmq90kQhD40iYKuZ52FP+fOxfFVq+D3+eD3+VC4ciX+nDsXXadONfoYmxwtw5AAWfpAYaRAUfqgsBBwOll/az7dT8x9x6vxFDRS+sDvdkuRFZuGjoaA8vSBEd3usoYNAxCYTVCycSMANo6YgL5IgVgyqsZTwH/n9nbtNJXNEgShD01Gw0G33oraY8fw03XXSSdKQRDQ/bzzMPj22w09wOaAX8PYZCDEaKgiUhBVFPDUQZcugBhRMPfqBQBIrKuDIAgNoxky9FQfKPmSlw9Lsmo4kQCBXLKzuBh+jyfo8xD8ftSLVQlGiIL2p5yCg199Jc0mOL5qlfQ8AV2RAmmORYzhVkG7Iz8BQTQpmkSBxWbDmGefRdWtt6Ji505Y7Hak5eXp7hPfXInY4hiIOAwJkI1OlhsNlXgKoqUPDh9mSx4lAGAWDXFJbje8dXVRw94+lwsAYNVwFcZFgaeqqsHJmuOWVR5oNdXFZ2TAbLXC7/XCWVwc9HflqqhgJaImk+a5B3L4yb94wwZUHTiAkk2bAAAdRozQve1WgY5IAf/9kCggiJaDLit0Srdu6DJ5MjqefnqrFQRAoCQxbPqAXxmHMxrKIwVKRIGS9AHvvif7vC2iYS7J44EnhqnLq7P6gJ/oI5nHeGoh2hTFWJjMZqkcrTbEuMrLFO3p6YY0/3F06YJ2/ftD8Hrx07XXQvB6kZaXh+TOnXVvu1XARYGOSIGrvDyoK2g0uFGZGhcRRNOgKVLg9/mw/7PPULhyJWs5G/IPP/Hddw05uOaCoDV9IC9JVGM0jHay4ydJ2Zx5U24u/CYTzIIA7549QYIhFK2jkwEmimypqXCVl8NVXh62TwCvTNAjCgDmPK89cqSB2VAaaSz7+fXS+9JLserBB6X2ur0vvdSwbbd4dIgC+RwLV0WFosgOjUwmiKZFkyj4c+5c7P/sM+SedhrSevVqtBGOzQV+lWMOlz6IknOVRIHTGRwpEISwn5lPSfqAiwL5id9iQb3djsT6evgjjALm6BmIBLAvei4KwmFEpACQmQ1DIgU8cmCkKOjxl7/g2LJlOPzjj8g97TT0FKdPEtDlKTBbrbCnpcFVUYH6sjJ1ooDSBwTRJGgSBYe++Qaj//3vljHQxQCiGg2jNHfhDn+/1ys1GILfz94T5ktWkdGQpw9CToquxEQk1tdDCDMKWI6e0cmArPa8kUVBUseOAFgPATlSeNnAdJXJbMbYF16Ap6YG1qSkqEbNNoUg6PIUACyF4KqoYGWkoiE2GjQMiSCaFk2eAnNcXKscfBQJyWioURQAgNdkYmWEQMQUgiJRECZ9AABu0egohEz8C8Wro/oAiF2BIIkC3tZZI3xYUXVI5KMx0gecuORkEgRyXK5AalBjzwY7NxtGmHgpRxAEaRgStTgmiKZBU6Sg79VXY+f77+PkBx7Q9SW6e8EC7F64EDVHjwIAUnv1wsCbbkLu2LFh19/z8cfY//nnqNizBwDQrl8/DL79dmQOGiSts+K++7B/yZKg9+WMHo3xb7yh+Tij9imIIgrMNhtMZjMEvx/e+npWt19ZyVIIYb70FDUvCpc+AOARr8xNEWr7OT4dsw+AgCiI9CVvVKRAEgUhkQ9JFLRiY2uzQT6KW6MokMyGCkSBq6JC8rxQN0OCaBo0iYLidetwfPVqHPv9d6T27NngynbcCy8o2k5C+/YYfOed7AQgCNi/ZAmW3XILpixaxLwKIRxfswZdzzoLJw8ZArPdju1vv42lN9yAs5csCQo35owZg5GPPio9jnqSVYDW9IHJZIIlIQHe2lp2hc5FQYRIQczmRbW1geqFkCtlrxjWN8dodayn+gBQESkwSBTUFRbC63RKUZfGjBQQIfC/bZsNCOenUYCaXgW14sVBQlYWNS4iiCZC03+6zeFA54kTde+80/jxQY8H3347di9YgNKNG8OKgtFPPRX0+JRHHsGhH35A4cqV6HH++dLzFpvNkMY2HK3pA4ClELy1tQ3NhmGImT7gUYLExAbVDj6xEsAsdvsLhyAI+iMFJ8hTYE9LQ1xKCjxVVag5fBhpeXnw1NRIJxcqGTwB6PQTAOp6FUiCT/STEARx4tEkCkY+9pjRxwG/zyeNXs4cPFjRe3z19RC8XmlEK+f4mjVYNHYsbCkpaD9iBAbfdlvYqY4cl8sFl9jUBwCqZV35+LEBMaoPoogCQMzl6xUFPArQvn2D6gVBFEHWCCdrINC4CDDAUxBJFIgliXE6RYHJZIKjSxeUbdmC6oMHkZaXh6r9+wGwmQd6RQehAB3liJx4FZ4CigIRRNOjLSYoUl9WJn1Rp3TvrqnDXMWuXfj+ssvgc7thTUzE2BdfRKoClzIAbHj2WSRkZ6PDqFHSczljxqDzpElI7tQJ1YcPY+Pzz2PpjTfizA8/DO8JADB37lw8/PDD0uP40BOuxvQBECIKYvQqiNm8iF9thekPIIhfpHFRmhfxKAEAzeFZpaLAiJN2So8eKNuyBRW7d6PzGWcE/a0RJwAjRIH4t0qRAoJoGWgSBd66Oqx9/HHs//xzqYbfZLGg+3nn4eT77lNV7ubo1g1TFy2Cp6YGh77/Hivvuw+T5s2LKQy2vvkmDn7zDSbOmxd0gut21lnS/bS8PKTn5eHzKVNQtGYNOowcGXZbs2bNwl133SU9LissRHexSyAQxWjo8QB8rHIEUWDRECmI2LyIpwbCTQcUjXfW+nqgvh4IEwnglQfmuLjwUQ8FxMcSBQalDwCgXX4+Dnz+Ocq2bQOAgCgQp0MSjYyOHgUc7ing466jwT0FZCIliKZDU0niuqeeQtHatTjtP//BtJUrMW3lSox76SUUrVmDdU8/rWpbFpsNjq5d0a5/fwy5806k9emDnR98EPU92999F9vefhvj33wT6bKTdziSO3eGPT29gYtdjt1uR0pKinRzhMwx8EeafcC/NAFj0weRjJH8akv8opVjycqCjz+I8AXs02kyBIIjBYIgNHjdqJJEAGjXvz8ASKKAL8P5TYhGwABPgXy4VaxWx1RZQhBNjyZRcPiHHzDikUeQO3Ys4pKTEZecjI7jxmHEww/j8Pff6zsiv19y4Ydj29tvY8trr2H8668jY8CAmJurKyyEq6IibEtepURMH3BRYDZLEwtD4aLAV1cXM30Qs/qARwrCiII4hwMuLloiiAKvTpMhEBAFPpdLKh/j+L1eeMXPxIhIQXrfvoDJBOfx46grKkKpOKwoQ1aCSjQiBqUPTGYzBK83agpBEARKHxBEM0CTKPDW10thQTn2jAzpxKOEDc89h6K1a1Fz9Cgqdu3Chueew/E1a9DtnHMAAMtnzcKG556T1t/21lvY9NJLGDFnDpJyc+EsLoazuBge8cvLU1uL9c88g5KNG1Fz9CgKV67Er7feCkeXLsgZM0bLjwogykAkuZ8gQr8GQ42GUTwFccnJcPHji1CWqGdsMseamChFMkLNY1KZosnEejLoJC4piQkDADv/+1+4q6pgttmQlpene9uEAgwQBWarFfGiCTZ0joUcT1WVNHabjIYE0XRoSixnDh6Mzf/5D0bNnSvl87319djyyiuKKwcAdlJZMWsWnMXFiHM4kJaXh/FvvIGcU08FwFraypsj7V64EH6PB7/feWfQdgbcfDMGzZwJk8WC8p07sW/JEniqqpgJ8dRTMejWW3X1KpB8E5HSB1HCq0qNhoIgxG5eFCV9YE1KQr3VyrrQGRkp8PuBdeuA/HxAbAGckJWF2qNH4SwuRnKnTtKq3GdgT03V7FkIpePpp6N8+3ZsF4dsdRg1SnffCUIhBogCgKUQnMePo+748YjRPR4liM/I0NyCmyAI/Wj65h72z39i6Y034rMJE5Am5vQrdu6E2WbD+DffVLydkXPmRH190rx5QY/P/+GHqOtb4+MxQcX+lcLTB1EjBZGOiYuCGOOTuSAAFKQPwkQKbA4HavjxRRIF4vFaleaIBQG4+GJg8WKge3cmDtLSAqIgJCLBw8N2DVUokeh29tnY+vrrkjDrKjOSEo2Mgr9vJSS2b49SsFReJHhX00SKEhBEk6IpfZCWl4dzv/4ag++4A+l9+yK9b18MvvNOnPvNN63SBBaxeZESUSC+Fit9ECQKNEQK4pKTJU+BECF9oFoULFvGBAEA7N8PPP88AEiNoZwhjZJ4pEBLaWokUrp3x4CbboLJakWnCRPQdcoUw7ZNxMCgSEECNxtGSR9wI3BbmqlCEM0RTZGCrW++ifiMDPSaNi3o+b2ffgpXWRn6XX+9IQfXXIhZfRDlJBs0PjlK+kBVpCCcKEhKQr0oWoSCAoRzOHBREKdUFHz4IVsmJwM1NcB//wvMno2E7GwAaBgpED0G3IxoFANvvhn9rr+e0gYnGgPTB0B0T0H1gQMAWIkyQRBNh6ZIwZ7//S9sA5nUXr2w+3//031QzQ1D0gd1dYoiBSazOXyTJUEAuLEvTPrAkpAAlygm/BHCtB41kQJBAL77jt1/911WXbF/P7BnTyBSEJKm4ENvjIwUcEgQNAEnUhTwSIE484IgiKZBkyhwlpSEnS0Qn56uqElJS0OKFJhDPi61RkMuCqJECiKmDqqqAo2SwkQKTCYTPLy/ghGegoMH2S0uDpg6FeCNn5YujSgK6rnRsBFEAdEEGOUpECceRvMU8BHZlD4giKZFkyhI7NABxevXN3i+eP16KbTcmhB0pA/CVh+EiRQo7lGQmBi2WyEA+Pn45AhDkVSJgg0b2LJ/f3alOG4ce7xyZSB9cAIjBUQTYFCkgDcjqi0okCaOyvHU1kqpqBSKFBBEk6LJU9Dr4oux7okn4Pd60WHECABA4cqV2PDss+h79dVGHl+zwK8nfSA3GnJRUFPDwvOyckvFPQrCRAmkbYhdBE0RmsRoEgVDhrDlSSex5caNgUhBJE8BiYLWgYHpA4vdDp/LhbqCggYTLmvE1IE9Pd2QTpgEQWhHkyjIv/ZauCoqsHbOnMDJzG5Hv2uvRf+//c3QA2wO6Ko+CBcpEAT2hStrpxyzRwFvDBTlhOsXXzPX1bF+BSFDjzxqjIYbN7Il7zvBl1u2IEGcOOmurITP7ZaOmZckUqSglWCQKDCZzUju3BmVe/ag+tChBqKA/AQE0XzQJApMJhOG/uMfGPD3v6Nq3z5Y4uPh6Nq11ZrB9KQPggYiJSSwlsh+P/MVyERBzPQBTzlEaR9szsyEH2JOqLgYkDUWAlRGCjZvZkveUrhbN7bvqirYCgqkKz/n8eNI7twZgiBIRjKeQyZaOAZ5CgDmFeCiIGf06KDXKvbsAUDTLwmiOaDJU8CJS0pCxsCBSOvdu9UKAkBn+oDPPnA6Wboggq8gZvqAj0SOIgpsaWmBVsdhUgiKRYHXy0yGAMBbCpvNzF8AwLRzp9SfvubIEQBi1EBso8zd5kQLx6BIAQAkiwZCbiiUU7lrFwAgrXdv3fshCEIfukRBW0FX+kA0BfKxxZF6FcQUBVxERMm52lJS4ObHGDKXAJD1KYj1JX/4MBMGNps0khkAwL+0d++W2hvXHD4MIFBuZk9PDxplTbRgDBQFvKog3LTSci4KYkw8JQii8SFRoAAuChr081dpNBQEIbIoMCB9YEtJMSZSsG8fW3bvziIEnHCiQIwUSKkDihK0HowUBaJfoGr//qDnvXV1krCkQVcE0fSQKFCA3wCjIQQBPpcrYq8C7imIeJWtRBSkpkaNFChuXsRFQc+ewc/LRYFoFpNEgViDTn6CVoLfb6ingJ/waw4flqaaAqKfQBAQn5FBBlWCaAaQKFBAzPRBlCspi2ziW7RJiZIoiOTNUOIpSE0NRAqipA8Ui4IePYKfjxIpqOUDbUgUtA7kI9ANiBTEt2vHZiAIAip27pSeLxUNren5+br3QRCEfkgUKEBP+sBssUhdCqPNP/C7XGz9aB0NAWM8BbFEwd69bBlJFBQVIVmcb1B98CAEQUCV2LueHOStBNnVvBGRAgBI79sXAFC2fbv0XInYDyOT98MgCKJJIVGgAF59oCV9AITMP4gUKRBFga70QRRR4HO7JTNjzEgBN4OF1o07HFLzJIcgwGy1wlNTg9qjR1Et5oppoE0rgYuC+Hgg3CwODXBRUL5tm/QcFwVZQ4casg+CaBb85z+sjDs+HhgxAli9uqmPSDEkChQgRQr0igIl6YNIokBB+sAuTx+EGA15uaD8eCJy7BhbimWHQYgucktBAVLFyEHpli2Sq5wiBa0ELgoMihIAgRN/4apVEAQB1YcOofbYMZisVmQMHGjYfgiiSVm4ELjrLmD2bGDdOtb4bfJkIMJI++YGiQIF6BmdDMhEQX19zOqDiJ4ClekDIUQUcHOXOS4ucoUDwAxmBQXsfhRRgEOHpDzwvsWL4fd4YEtJQVJOTuRtR6KqCnjhBWDxYtbtkWh6FPhl1JJ98skwx8WhrqAA1QcO4Ogvv7DnTzopdpksQbQU/v1v4G9/A665BujXD3jtNXaOeOedpj4yRZAoUICe0clASFfDCM2LfEo9BQpLEoWQoUiemhppnagUF7MeBSYTEK68UCYKssQ8cMHvvwMAMgYPbjhJMhZ+P3DOOcAddwAXXgi88oq69xONg4HliBxrQgKyhg0DABz85hsc+PJLAEDH8eMN2wdBNAbV1dWoqqqSbi7x+7oBbjfw55/ApEmB58xm9njFihNzsDohUaAAQcfoZCCkq6FWT4GC9IE5Lg4+/iUe4ilwi/uLk7VWDgtPHWRns7HJochEQe5ppwUNdcoZNSr6tsPx+efAb78FHj/4YOBzJZoOA8sR5fT8y18AAJv/8x+Ubd0Ks82Gbueea+g+CMJo8vv1Q2pqqnSbO3du+BVLSgCfr+EFVfv2QJTR4c0JEgUKCJs+UFHHrchoGG0gEp+VAEQVBQAAcViRiQ9QEvEoFQViaWHY1AEQJAoSMjPRXfxCt6Wmott550Xfdjg++IAt77yTNUsqK2NpBKJpEf/mjTIZcjqfeSZSe/WSHve98krEi5UsBNFc2b5tGyorK6XbrFmzmvqQGg1NA5HaGkK46gN5HbcBRkN/tEiBGPoHENVTAACC2ADG5HIx0SIem1tp+oBHCuTtjeXIRAEAnPLww+h8xhlI691b/Ze70wl89RW7f+WVbGDU448DS5YAl1+ubluEsXBvhywSZAQWmw3j33gDO957DwnZ2ehzxRWGbp8gGgOHw4GUWN+dAJCZyYS02OFV4vhxoIX0cKFIgQL84aoP5CHuGG7+IFEQqaNhNE8B9xPExTUYhxyKJSMDfv5AlkLwiNtQHCmIJQqOHgW8XlhsNnSaMKHBOFxFrFnDxFVODnPonn8+e/677wJXqkTT0EiiAGCtsE/6v/9D/tVXN+z9QRAtGZsNGDYM+OmnwHN+P3usJb3aBJAoUEDY0clcFNjtMUOs0vyDaOmDaCWJcj9BjC/poEmJclGgNlIQKX3QoQMTJz5foEpBK6JBEWPGsJ9r2DD2+VRVAVu26Ns2oY9GFAUE0aq56y7gzTeB994Dtm8HbrqJGXevuaapj0wRJAoUELZPgQojFi+38tTWxjYaRosUxEgdAEB8enrYBkZupZGCWOkDs5ld2cvX1coff7DlmDFsabEAI0cGv0Y0DSQKCEIbl14KPPMMM00PGQJs2AB8+234aq5mCIkCBYQdiKRCFFhFURAtUuCPFilQUI7IsbdrF1YU8EiBYlEQrd+AUaJg3Tq2POWUwHOjR7Pl8uX6tk3og0QBQWjnlluAgwcBlwtYtYp1NWwhkChQgGQ0DJc+0BopcLlYTasITx+E9RQoKEfkxGdkhO1qyEsSFfUpAKKrWh5F0JM+KC0NlOj07x94/uST2XLjRu3bJvRDooAg2iQkChSgN31gDScKgKBogaL0gRJREClSoKQkURBYnS3AXLSR4JECPaJg61a27NYt+DMZNIgtd+xgwoloGkgUEESbhESBAvSmD/hUQm9tLWC1siEZQHhREC19oMRTEEEUKIoU1NYGTsTRRAGPFOhJH3AjoTxKAACdOgHp6ayromyaHnGCIVFAEG0SEgUKEAzyFPD5A+F8BVE9BSrSB/YI6QNFngIeJbDbo7e3NSJSwEXBgAHBz5tMgWjBpk3atx/KwYPAzTcD//d/gc+TiAyJAoJok1CRsAL4yGGzTk+Bl7/H4WC5e3mkIJqnQGP6QCgtBf9Kd4kdDu1ix8OwcBGRmRn9ZGBEpICPz+3Xr+FrgwcDv/5qnCiorgZOPx04cIA9XrOG1Q2rndPQluCigD4jgmhT0H+8Avx8IJIRRkMgbAMjo0oSbampcIvH6RdNg4LfDzcXBdG6DirxEwDGRAr27WNLcfxyEH37suXOndq3L+f555kgaNeORUF++QVYtMiYbbdW/GILLIoUEESbgkSBAgSdokBKH/B2xWHSB1GbF6mIFJgtFghiNICPT3ZXVUEQv+SjRgqUigIeKSgqAsQoiipcLuDIEXa/R4+Gr/fpw5a7dqnfdig+HxtdCgAvvwzcey+7//zz+rfdmqH0AUG0SZo0fbB7wQLsXrgQNWJr3dRevTDwppuQO3ZsxPcc+u47bHrpJdQcPQpH164Yctdd6DhunPS6IAjY/PLL2PPJJ/BUVyNz6FAMf/BBpHTtqvk4eaTAJJ8aqCFS4He74fd4YA7nKYhmNFThKQDArogBmMrLAQD1ouEwzuGAOdzkQ45SUZCRwQyTXi/r6d2pk7Lj4hw4wE46SUlsGmMoeXlsuW8fEx3RjjkWv/3G0hypqWw0c1kZMGcO64Nw8CCg4++iVUOigCDaJE0aKUho3x6D77wTUz7+GFP+9z90GDECy265BRV79oRdv3j9evxxzz3oceGFmPrJJ+g0YQJ+u/VWVOzeLa2z/e23sXP+fJwyezbO/OgjWBMSsPSGG6TwvBb0pg+ssnXCdTUUBEGZp0BB+gAAzOKJ1iSKCZcoDqKmDgDlosBsDgz30JJC4KmDHj3Cn3Ryc9nn6vUC+/er376cL75gy7/8haUOcnKA005jz33yib5tt2ZIFBBEm6RJRUGn8ePRcdw4pHTtipRu3TD49tthTUxEaYTGNTs/+AA5Y8ag37XXIrVnTwy+7Tak9+uHXR9+CICdXHe8/z4G3HgjOk2YgPQ+fTBq7lw4i4pwWD6gQiV6RYHFZpNO9uG6Gvo9HulLWG/6AADixOFE5vp6wO2WREG8GEGICBcFGRmxd6LHbCgXBeEwmwPRAr0phKVL2fLMMwPPXXABW37/vb5tt2ZIFBBEm6TZeAr8Ph8OfP01vE4nMgcPDrtOyYYN6MB744vkjB6Nkg0bAAC1R46gvqQkaB2bw4HMQYNQEqVDnsvlQlVVlXSrlo8qBiDorD4AInQ1FE/2fllnw7BGQ5XpA3vXrhD4g/JyuMT0QVQ/AaA8UgDoMxvGEgVAQBToMRuWlbG+4wAwfnzg+YkT2fK336hBUiRIFBBEm6TJSxIrdu3C95ddBp/bDWtiIsa++CJSe/UKu259SQniQ65i4zMyUC8a6pziSS0+5KQWn5GBen7CC8PcuXPx8MMPB9aXfREKghDwFGjsUwAws6GrvDxs+kCe2tBbkggAiR07wm02w+73A2VlkqfArjRSoEQUGBEp6Nkz8jpGRAp++42d3PLzg2eZ9+/P2jgfPw6sWMHKFY3g8GHgxRdZc6rbb1f2OTZXSBQQRJukySMFjm7dMHXRIkz+6CP0vvRSrLzvPlRG8BQ0FrNmzUJlZaV0275jh/Qad+0DCDbpqY0UyLsaRhAF5rg4mEK/hH0+gEcuFHoKknJygroa1h0/zg41nKlPzomKFOzdy5ZKIgUyv4hq1q5ly9A55iZTQAgYNXjp2DFg+HA2He3RR4FTT23ZTZJIFBBEm6TJRYHFZoOja1e0698fQ+68E2l9+mDnBx+EXTc+M1OKCnDqS0ul6EGCeDILjQrUl5Y2iB7IsdvtSElJkW4OWdc/Xo4INEL6QBQF3vp6AIA1IaHhG+XTFJVGCkJFgTh4KFF+tRyOEyUKDh5ky27dIq/DBYMeoyGfwjhsWMPX+NSyVau0b1/OrbeyyEPPnkDHjkzM8PLHlgiJAoJokzS5KGiA3y858UPJHDIEhStXBj1XuGIFMocMAQAkdeqE+MxMFMq+6D01NSjZtCmiTyHm4chEgdYpiYBsfHJtbYPmRT5RFFjCiQKeOrDZmHteAUkdOkiiwHvsmDJRoHQYEodvi086VEp1deBnilbK2L07Wx46pK0XAhAQBSed1PA1uSgQhIavq2HrVuDTT9kJ9LPPgPnz2fNvvx3ootjSIFFAEG2SJhUFG557DkVr16Lm6FFU7NqFDc89h+Nr1qDbOecAAJbPmoUNzz0nrd/niitQ8Mcf2D5vHir37cOm//wHZVu2IO+yywAAJpMJff/6V2x5/XUc+flnVOzahRWzZiEhOxudublMJX7ZCcmQSEGY6gOv0wkAsPJBSXJUliMCrATSKwoM1/79AVHAr+7DUVXFSgABZdUHWiMFYk8KpKQET0cMpUMHlpv3+1muXi0FBUywmM2BWQpyhg5lvRaOH2fCQw+vv86Wf/kLm+Vw2mnMzOj1Am+9pW/bTQWJAoJokzSp0bC+rAwrZs2Cs7gYcQ4H0vLyMP6NN5Bz6qkAgLqCgqAce9bQoRj91FPY+OKL2Pj883B07YqxL72ENFmr3PzrroPX6cTqhx6Cu7oaWSedhPGvvx6+1E8BQZECnUZDQOxqyK+QQyMF0USB0sZF/FgzM4GSEjh37oRb3EZSNFHAowSJicp+Jr6t48eZ70H+2USDdzKM1fDIbGbphR07WAohmv8gHOvXs2XfvuF/noQEJhbWrWPRAq1NjHw+4OOP2f3rrgs8//e/s/kK8+YBDz+s/PNRgsfDTtbWRvz3JVFAEG2SJhUFI+fMifr6pHnzGjzXZfJkdJk8OeJ7TCYTBt16KwbdeqvewwMQ3OI4yARooNEwqqdAbTdDEXP79sCOHajbtg2wWpHYoYMUrQiLmtQBwDoRmkzspFhSwtz8SlAqCgCWQtixg1UrqI308FLEoUMjr3PKKUwUrFsHXHKJuu1zli1jEYn0dGDSpMDz557LOksePcqqIIyocPB4gHvuYW2brVbmWXjggcY5cZMoIIg2SfPzFDQzwrY4BrRHCsJVH4jpAyMjBXFdugAA/GLqICXWlbZaUWC1BloUq0kh8PRBx46x19VjNuQVJOGmMHK4zyRKD4uYfPMNW553HvN9cOx2JgwA4PPPtW9fzp13Ai+8wHor1NYCDz4IPPKIMdsOhUQBQbRJSBTEIGw3Q8A4T4EgBCIFBnkKACBJPBnafD4AQLv+/aO/QT42WSlafAVqIwWANlHAmx7x4UrhMEIU/PgjW8o7JnLOO48tP/9cv5nxl1+A//yH3f/wQ9YPAWCigKdKjIREAUG0SUgUxEBKH8hzwh5PwBGvVBSIZY5B6QNBAGpro1cfaEwfJOTnAwiIAu7TiIjaSAFw4kQBb3akFEFQJgoGDmQnvYICQBwzrYqSkkCaYsKEhq+feSaLHuzdC2zfrn77cmbPZssbbwRmzGAlkJdcwoyYRpc+CkLgMydRQBBtChIFMZDSB/JIgRjuB6A+UlBTw95jFj/66mpl1QdqjYZi90Kb34+c0aORPXx49DdoEQVahiKdiEhBURETUyYTEKE7JgAgOTnQVVFLtGDpUnYCHTAguGOifPt8gqeO2RtYsYJ5F2w25iHgPPEEmyD5ww+BRk162bOHlWs+9RR7TKKAINoUJApiEHUYksmkuHdAnHhSd1dXs/fxBknV1cqqD1SmD/j4ZEdyMk5//fWGnRJD0RMpUNOrQIunoLg40NVRCTxK0K0bK2uMhp4Uwi+/sGW4KAGHGyT1iIJ33mHLGTOCxVT37sCll7L7PJ2gh6NHgTFjgDVrmGfE4QCmTtW/XYIgWgwkCmIgiYJILY4VXknZxJQBLw+U+wqiego0pg+4KDBVVMCkJJ99ItIH9fWBML2SSEFqKnP1A+qiBXxeQrTUAUePKOBNskaPjrwOFwy//MIqNdRSVwcsXMjuX3NNw9dvu40tFyzQlgLhCAJw2WWsxHTAANZ1sqoK+NvftG+TIIgWB4mCGAg6xyZzbOJJ3ROaDqiuDlQfROtoqFYU8JOp3x/YRjROhCjgw5Pi4yXREhMtKQQeKeDzE6KhVRQ4nYH38O6I4TjpJCZuKiu1GQKXLGGG1O7dgbFjG74+fDjbh8cD/O9/6rfPWbCApSiSklhXRj7wiiCINgWJghiE9RToEQU1NWzIktJIgVZREB/PGvQAQHl57PVPhCiQpw6U5qp5CkGN2VCJyZDDRcH27UCE9tphWb+edSzMzgbE8s+wWK2swyGgLYXAyxmnTw/4UEL561/Z8v331W8fYILin/9k92fNij69kiCIVg2JghjwNsdGRQoEv79Br4JG8RQAgatxcXRyVLgoUNLimCMXBUpSFGpMhhw9kQIloqBLFyAtjZ0Y1VQIrF7NliNGxBY43Ffw88/Ktw+wY/r2W3af9zwIx4wZrGPiqlXaRk0vWcJaPWdnA3fdpf79BEG0GkgURMPvj240VCEKLHY7zGJzG091dfhIgYEliQCUiwK/X1ufAu64r69XNiZYiyhQGynweALrKhEFJlNgNoKaFAL3E0RLHXDGj2fL339XF41YvhyoqGC/k1NOibxe+/aBPgkRJoxGhfc/+NvfAtElgiDaJCQKouF2S54CPXMPODxa4K6sDIiCqqpG6WgIIOAriCUKKiqYMADURQoSEgIRDCUpBJ4+0CIKlEYK9u1jYf2kJGUVDkAghbBpk/LjUiMK+vcHsrLY3w2PMCjhyy/Z8qyzYs9OuOIKtpw/X12jpC1bmAnSYmE9EAiCaNOQKIhGXR38omM8YvWBCmzyskS1ngI96YNYngKeOnA4FJdYSqjxFfBIgdKTNRAcKVByspObDJX6FtSaDYuLAyLl5JNjr282B2YfLF2qbB9AQBSIU0Ojcv75TAjt2weEjBePyiuvBN7fubPy9xEE0SohURANl8uw9AEQRRTw5kWhoVuvl/W4Bxo3faDFZMhR06tAS/qgSxd2UnU6WblcLNT4CTjy9IES4cGv9vv2ZX4EJfAUglJRsGcPm99gtYZvoRxKUhJwwQXs/vz5yvZRWQn897/s/i23KHsPQRCtGhIF0airgyAaDfVWHwBAnLxXgVwUiCd+a+gUQ3FgEoDA+mo4kaKgsdIHNlvgClaJr0CLKBgwgAmP4mJl4kZN6oDD+xUsX848GLH46iu2HDdOeZSIpxAWLgy04Y7Ge+8x0dmvnzFTHAmCaPGQKIhGfX2jRAo8IaLAI3brazDamKcO7Hb1YX0g4ClQmj5oTFHg9QbWUSMKAHUVCFpEQUJCoKeBkhQCjxREM/+FkpfHPiuXi7UtjoWa1AFn0iRWQVBSwlofR8PvDxgMZ86kdsYEQQAgURAVk9NprCiQRwp4iWJ1NZuciDCigDv6tfgJAOWRAi2VBxylouD4cdbRz2IJjFxWipoKBC2iAFDuKxAE1gYYUCcKTKZACiFWaWJVFfDrr+y+GlFgtQbaHseqQvjpJ1a+6HAE+hwQBNHmIVEQjUaKFAR5CiorpQoHPklRQk/lAXBi0gdKhyLx1EFOTmwnfShKRUF5eaDVb+/e6vahVBTs28c+T5st4EVQCk8hxPIVfP89C//37q3+57j8crZcsiT6vIiXXmLLq67SlpoiCKJVQqIgGnV1gZJEI6sPZOkDQdaC2Bq6Pb2iQGlJ4olIH2gxGXKUigLeuCc3V/2JTmmvAh4lGDyYCQM18EjBqlXRT9g8dRCtYVEkTjmFdSSsq2PtisOxd29gH2QwJAhCBomCaDRWpEDuKRBP/NbERJhC29jqKUcE1JcktnRRoDV1AAQiBTt3RjcCakkdcLp3Z9UUXi/wxx/h1/H5gK+/ZvfVpA44JlPAcMinK4by8sssDTJlirbPiiCIVguJgmjU1QVEgQHNi6TqA3nzIrHCoIGfANDXzRA4sdUHlZWsbDASakYmh8JFwdGjzKgXCT2ioGNH9nn5fMC2bZHX46Jg+HD1+zCZYqcQVq9mKZDUVDbGWAvXXMNSNEuXAn/+GfxacTHw1lvs/u23a9s+QRCtFhIFUTC5XIH0gQGRgnjxJO2qqJBEgUksR2zgJwCM8xQ4ndFP2HpEQWoqG74ERC/n01KOyMnMZHX4gsBG+kZixw627NtX/T5Mpti+Aq83cJLVIgqAQArhu+/Cv/7FF2w5ZQogT1mpoWtXNg8BAB57LPi1xx9nqYthw4DJk7VtnyCIVguJgmjIIwUGiAK7eJKuLysLiAK3GyZBaOgnAPSLAocjMFkvWgpBjygwmZSlELR0M5TvQ0kKQY8oAGKLgu3b2e/e4dAedp86lV3Fb9jQ8GcRBDbCGGAdBvXwz3+y3/3ixYF0xNq1AYPhY49RGSJBEA0gURANgz0FPFLgqaqCT9Z3IM7vDx8p0FuSaDbH7lXg9QZe0yIKAGWiQE+kAIgtCrxe1gUQ0H7C5qJg/frwr/OmRcOGqa+g4GRlBRoFffJJw+3v38+iIuedp237nP79gTvuYPcvuwyYO5cZF30+4JJLKEpAEERYSBREQx4pMKj6gA9WctXWSg2JrD5feE+B3kgBENtXUF4eaO3L11VLrLJEQdAXKQBiD0Y6cIBNIIyPZ2Y+LfAOhWvWhO8IuGwZW2rN9XOmTWPLjz4Kbqv83ntsecEFTBjoZc4cdqyVlcB997H0zsCBwGuv6d82QRCtEhIF0XC5DG1zbDKbYRd75btKS6WTfcRIwYkQBTx1kJ7Omt9oIVakoLw84OjPzdW2j1iRAvkgpNAqDqX06cM+L6czfLTgt9/YcuxYbdvnXHQREy8bNgSqEMrKAnMIrr1W3/Y5iYnAt98CDz/MIgOzZrHxzTx6RBAEEQKJgiiY6urgE0WBRV6TrlEUAEC8OJq4vrxc8hXE+f2whRusozd9AMROH3BRoGZkciixRAGPEmRmBkyJauGiYPfu8K/r9RMATEyceiq7H1oyePgwi0ZYLMCoUdr3AbDPgXcRnDOHRQuefJL9XQ0ZEjAjGkFSEvDgg0wcPP64PoFJEESrh0RBNOrr4RdFgRHpAyC82dDq90sRhCBOZKRAq58AiC0K9JQjcvLz2XLXLuYfCMUIUQAAo0ezZago4G2Hhw41pgPgPfew5kfffw9ceCHw7LPs+TlzyABIEESTQaIgGnV18LvdAGSiQBD0RQrEK3dXaWlQpKDJRAFvC5yVpX0fscYn62lcxOnalQ0ucrnC+wr09CiQw1MDS5cGi49vvmHLiRP1bZ/TuzeLDgCs86DPB1x9tbaGRQRBEAZBoiAaskiBhYsClytgDktIUL1JO08fyCIFjSoKYrU6bimRArM5EC0IbS4kCMDWrew+X0crI0YwIVVWFphm6PUGRIGW1sORuOMO4H//Yx0IX3oJePNN47ZNEAShARIF0XA64eORAu4pEJsNAdDkEOdlifWySIHV54MtnG/ACE9BrFbHRkQKePVBUVH40L4RkQIA6NePLUNFwZEj7CRutQbW0YrVCpx1Frv/+edsuXQp+/wyMoCRI/VtP5Rp04D332czCLQaPQmCIAyCREE0wnkKeOrAZtP0JZ4ojg2uO348eqTA4wl0IWzunoKsLHYlLwhMGIRiRKQAiCwKeLOhvn2lMk9dXHghW/73vywyxK/gp0/X3p+AIAiiBUCiIAommadAqj7Q4ScAgCSxJK/22DEIYhliWKOhOBMBQPP3FFgsQPv27H64FMKhQ2zZWJECLgp48yG9nHMOO9aiItb4hzcZ+tvfjNk+QRBEM6VJ45Vb33wTh3/4AVX798MSH4+sIUMw5K67kNK9e8T3/Hj11SjiQ2lk5I4bh9NffRUAsOK++7B/yZKg13NGj8b4N95Qd4D19VJJohQp4OkDnaKgrqAA3r59EQcgThCkUkUJnjqIj9feAx9Q7inQIwoA5isoKGgoCgSBlfIBbEqgHgYMYMutW1mjIi7UjBYFcXGsjO+GG4BPP2XPTZ9u3PYJgiAOHGDVRj//zEzaubnMX3T//erHshtIk4qCojVrkDdjBtoNHAjB68XGF17Az3/7G875/PPwswAAjH3+eSmkDwCuykp8c+GF6HLmmUHr5YwZg5GPPio9tmj5kJ3OhtUHPFKgseNcQvv2gMkEn8uFOqcTqQDi4+KCSx4BY/wEgHJPgZ70ARDZbFhSEvjMtHYa5Px/e/ceF1Wd/w/8NcwwwMRVbgMIgjfAvEBShrd0pdTctsx6tC5buvXtsummqZmu1VZesNbHfr/qd3OtR2Lf1s3q+0NrXbWvi2b5CBXNG6KIIGLKJURkEEVgPr8/zpwZBsYB5MwFeT0fj3mcmTNnzvmcj8K8eX9ufftK7fqXL0uBgLwokRwkJid37fwt/cd/SBMlffSRNHcBZwEkIiWdPg0YjcD69UD//kBenpSNvHYNWLXKZcVyaVDQ+i/3+5cvR9aYMajOz0dYSorNz7ROs5/fsQNqb2/EtJrLXa3Vwqerf/22XPtAoeYDuVzXKythqK5GAAAvW+3USgcFNTXSsLfW11IyUwC0DQrkLEFkZNfb+1UqaXTA9u3SOgH33it1Miwpkfo0yNMUK0GlktYLyMhQ7pxERLJJk6SHrG9faWj1unUuDQrcqk9Bo6kd3WZP/FsoyspCn8mT22QWKnJz8f/GjME/p0zBwXfflZYrvoWGhgbU1taaH4a6OumN+no0NzQAUK75ALA0IVwxdcDT2pqWV6mgQG4+EMJyTll9vSXIUSpTcOmS9X6lmg5k8hf//v3SVp5kKClJmUmFiIhaMRgMVt8RDabvBcVdvXr7a9AoxG2CAmE04vB77yE0ORmBAwZ06DNVx4/jamEh+k2bZrU/YvRopK5YgQkff4ykefNQmZuLPS++CGNzs83zZGRkICAgwPxINM2KpxJCaruGjY6GXViwJqB/fwBA9fnzAACtrRnslAoKtFpLWVv3K5CzBFpt179Q+/SRtnIQIJNfx8Z27fwyecbBf/9bSr39+9/S664uUkREdAuJgwZZfUdkOCKDePasNF/Jiy8qf+5OcJuB0bnLluFqYSEe/PTTDn+mOCsLgQMHImToUKv9sfI4cwCBAwciaOBAfD1pEipzc6G3Mc588eLFmDdvnvl1dXk54kwz46lMC/m06VPQhUxBkCnoaDRlCDyNxrYHyRMXdTUoAKTI89q1tv0KWvYn6OrUuqZAx7x8sUzpoGDMGKlOKiqAH36wzCWg5KRCREQtnMrPh1+LIdVe9ppCFy2yzFZ6yxOesp6S/eJFqSnhySddPsrJLYKC3GXLcGnvXqR98gl08kQ47Wiqr8f5HTswZPbsdo/1jY6GV1AQDKWlNoMCLy8vq3/kRrn5AIBKbj5QqE8BAPQyDa2TgwKNrQl/lMoUAFJQcOHCrTMFXe1PAFiCgvPnpTkW5CBKnpJYziR0lVYrDRnctAl44AEpWxAcLD0nInIAPz8/+Hd0aPj8+dKU5fbIC7wBUpPr+PFSh+bOjpBzAJcGBUIIHFq+HD9lZ2PCxo3w7cQ49tJvvkHzzZuI68BfiPXl5WioqYHPbbSbqxoaAJXKMs2x3KegC80HvQYPhndwMJpM7e8qeZKilpQMCm41LFGJOQpkERHS8MkbN6R5Cfr1k/afOSNtO9gk1CFz50pBgZxhmT27a8M2iYiUEhra8d+pFy9KAcHw4UBm5u0v+64gl5bg0NKlKNm2DSPffx+eOh2u//wzrv/8M5pMKXsA+GHxYhz9z/9s89mirCz0njChzWiExmvXcGTVKlQdO4a6ixdRvn8/9v7hD/CLiUHEbbQ7e9xqSGIXMgUeajVGLF0KP1Ozh6quzrKegkzJoED+DyoHATKlhiMC0n9mORCQmxBu3LBkCrq6emFLKSlSes7fX2o2WLRIuXMTETnDxYvAuHHSUO1Vq6Tfx+Xlt15Yzklcmiko/PxzAEB2q1TL/cuWoe/UqQCkSX5Urdq7a8+dw88//ojxNhaQUanVuFJQgOKvvkJjbS18wsKgHzkSQ//wh9uaq0Bt6pyoZFAAAFEPPICo4cOlDn5Go3TeltkHJYMCuUmm9X82JTMFgBQUnDwJFBVJrwsLpXsLDLTMeKiUhQulBxFRd7Rrl/QH1NmzbWd7bf1HohO5NCj4jbyynR1pGze22ecfF3fLz2q8vfELBVebU5v+cdoMSexC84HZXXdJHfyEkKY1dnZQIM8pIA8n7Cq5ieD0aettQkLXOzISEd1JZs5sv++BC7i+AcPNaUzt1kqtfWBFpbIMBWy51gHQPYMCeRrgo0elrRy4Kdl0QEREDsOgoB1ypkAlr4ioZFAAtB8UdGUxJFl7QUEHR3y06557pO2RI1KzgTz9sLyfiIjcGoOCdmiMRnhotZZ+DUo2HwB3VqYgPh7w8QHq6qT+BHJQIK9RQEREbo1BQTvURqP1YkWOyhTIkxXJlJy8SA4KKiul9Q8AaS4BuaOhUkGBRmPJCqxfL51fq+XqgkRE3QSDgnZohLAeteCM5gOj0fJaqSGJKpUUEFy+LO2rqJC2Go0yQxJlkydLW3kY6bhxUvaAiIjcHoOCdrTJFCiwIJIVW0GBwWAZkqJEUODpafnil5sQ5KaD8HBlJ8xotQ4FnnpKuXMTEZFDMShoh8ZohLrlPNcKLIhkxVZQIPcn0GqlWQKV0LpfgdL9CWQJCcArr0jPU1OB9HRlz09ERA7DoKAdaiFsBwWOzBQo2clQJn/5m5ZrNm9Nyzgr6r/+Swo6vvsOsLdwCBERuRW3WBDJnalbZwqc0XzgiKBAXqVQnnZY3sbFKXcNmUql3DBHIiJyGmYK2qERAmo5hW80AvLiRUo1H8jzELQMCuSFi3r1UuYagOXLXw4GlF7SmIiIuj0GBe2w6lPQYqEmh2YKHBkUyMGAvHVEpoCIiLolBgXt0BiN0MiZArnpAFBumJ29oCA4WJlrAMwUEBFRuxgUtENjNMJDzhTInQy9vQG1WpkL2Jq8SJ5LQMlMgfzlf+mSNImRPHERgwIiIjJhUNAOjdEITeugQKmmA8CSDZADAcAxzQehodISxkIAX34p7evdW9nOjERE1K0xKGiHZ8s+BUqPPAAskwpVVVn2OaL5QKUCkpOl5//zP9J2yBDlzk9ERN0eg4J2aIxGy+iDujpp6+ur3AXkoODyZWl0g/wcUDZTAFjWJTh4UNomJSl7fiIi6tYYFLTDavSB3BlQ7gegBDkbYDQCNTXSc0c0HwDAyJHWr8eNU/b8RETUrTEoaIdGCKjltQ8ckSnQai1zFchNCI5oPgCASZMs1woJAcaOVfb8RETUrTEo6ADzckiOyBQAbfsVOCpToNMBWVnAY48Bn3+u3LoKRER0R+A0x3YYVSpACHjKKxY6IlMASEFBcbE0TPDmTUvwoXRQAAATJkgPIiKiVpgpsKNZI8VMGrkDoKMyBaGh0raqCqiokJ57egJBQcpeh4iIyA4GBXa0CQocmSkApKBAXtpYr5eGERIRETkJgwI7mkyzFno2N0s7HN2n4OefrYMCIiIiJ2JQYEeTh1Q9GjkocFSmIDxc2paVMSggIiKXYVBgR5Mpfa92dJ+CmBhpe+ECgwIiInIZBgV23DRtNU1N0hNHZQqio6XthQvSgkWAJXtARETkJAwK7Gg0DUVUNzZKOxydKfjpJ6CoSHrO1QuJiMjJGBTYYW4+kIMCR2UKIiKkpZibmoCcHGlf377KXoOIiKgdDArskDsaqhsapB2OyhSo1dIyxoAl8GBQQERETsagwA45U6CSl0x2VKYAAIYOtTz38bEECURERE7CoMCORlOmAAYDIITjMgUAkJxseX7PPVL2gIiIyIkYFNghT16E2lrg2jVAnq8gMFD5iz30kOV5Wpry5yciImqHSxdEOvnRR7iwaxdqz52D2tsboUlJSJo3D/5xcbf8TPGWLdj/xhtW+zy0Wvz6yBHzayEETvz3f+Ps//4vGg0GhCQn49633oJ/nz6dKt9NOSiorgauXJGeazTSaoNKGzkSeOst4NQpYM4c5c9PRETUDpcGBZW5uRg4fTp6DRkC0dSEY6tXY/fzz+OXX38NjZ0vXk9fX/xy2zbLjlZrBJz6+GMUbNqE1BUrcFdUFI6vXYs9L7yAX379NdReXh0u3025+eDKFaCmRnoeFOSYNQlUKuCdd5Q/LxERUQe5NCgY/+GHVq/vX74cWWPGoDo/H2EpKbf+oEoFH3llwVaEEDj96acY/OKL6P2LXwAAUjMykDV2LC5kZyP24Yc7XL5GW5kCRzQdEBERuQGXBgWtNZo68mkDAuwe11Rfj61paYAQCEpMxLC5cxHYvz8A4NpPP+FGVRX0999vPl7r54eQoUNRdeyYzaCgoaEBDfKwQwAG0ygDc/NB60wBERHRHchtOhoKoxGH33sPocnJCBww4JbH+cXFYcTSpXhg7VqkrlwJYTRiV3o66k1rBlyvqgIAeMsrD5p4Bwfjhum91jIyMhAQEGB+JCYkAAAa5OaDhgbL9MPMFBAR0R3KbYKC3GXLcLWwEKNWrbJ7XGhSEvo++iiCEhMRfu+9GLt6NbyCglD4xRe3fe3Fixfj6tWr5sep06cBSJMXCTkwKC6WtswUEBHRHcotgoLcZctwae9eTMjMhK6TqwN6eHoiKDERdaWlAAAfU4agdVbgxuXLbbIHMi8vL/j7+5sffvLkRCoVjHKHRzkoYKaAiIjuUC4NCoQQyF22DD9lZ+MXGzbA9zZm8TM2N+NqYSG8TR0P7+rdG94hISg/cMB8TGNdHaqOH0fIsGGdP7+/v/REXqiImQIiIrpDubSj4aGlS1GyfTvGrl0LT50O13/+GQDg6ecHjbc3AOCHxYuhCwtD0quvAgBOfPABQoYNg19MDG4aDDi1YQOuXbqE/tOmAQBUKhUSnn4aeevXwy8mBr69e+P42rXwCQtD9IQJnS6jCAyU+hOYmhS4pDEREd2pXBoUFH7+OQAge+ZMq/33L1uGvlOnAgDqy8qgajEvwM3aWhz4059wo6oKWn9/9Lr7bjy4aRMCTKMPACDxuefQdP06Dr79Nm4aDAi95x6MX7++U3MUyFR6PZCfD9y4Ie3oZPMGERFRd6ESQghXF8LdXL50CSFRUfgoPh7Pjh4Nj48/try5Zw8wbpzLykZERM5R+9NP8I+ORu2FC/DvIYvUuUVHQ3el8fWFR+splyMiXFMYIiIiB2NQYIevXg9ER1vvjIx0TWGIiIgcjEGBHf5xcUBMjGVHRIRjlk0mIiJyAwwK7AhKTASSkiw7+vZ1WVmIiIgcjUGBHRFjx0qTFU2ZIu149lmXloeIiMiR3GpBJHfj06uX9CQrCzh/HrCzJgMREVF3x0xBR2i1DAiIiOiOx6CAiIiIADAoICIicq2GBqlTu0oFHD3q0qIwKCAiInKlhQvdZg4cBgVERER2GAwG1NbWmh8NDQ3KnXzHDuD//g9YtUq5c3YBgwIiIiI7EgcNQkBAgPmRkZGhzIkrKoDnnwc+/RTQ6ZQ5ZxdxSCIREZEdp/Lz4RcVZX7tdRsr7rYhBDBzJvDSS0BKClBS0vVzKoCZAiIiIjv8/Pzg7+9vftgNChYtkjoM2nucPg2sXQsYDMDixc67kQ5gpoCIiEgp8+dLGQB7+vYFdu8GcnKA1gFGSgqQng588onDimgPgwIiIiKlhIZKj/asWQMsW2Z5fekSMHEi8PnnwIgRjitfOxgUEBEROVvLFXgBwNdX2vbrB/Tu7fzymLBPAREREQFgpoCIiMj1YmOlEQkuxkwBERERAWBQQERERCZsPrDBaDQCAC6VleG66TkREfUsdWVlACzfCT0BgwIbSi9cAAAMTUlxcUmIiMjVjl24gMDWowXuUAwKbIiLj4cWwI95eQgICHB1cboFg8GAQYMGIT8/H35+fq4uTrfBeus81tntYb11Xu3VqxgxeDCiExNdXRSnYVBgg0ajwU0A0dHR8Pf3d3VxuoXa2loAQFRUFOusE1hvncc6uz2st86r9fdHHQC1pud8VbKjIREREQFgUEBEREQmDAps8PLywp/+9CdllsfsIVhnt4f11nmss9vDeuu8nlhnKiHcYAolIiIicjlmCoiIiAgAgwIiIiIyYVBAREREABgUEBERkUmPDwr++te/IjY2Ft7e3hgxYgQOHjzo6iI5REZGBu699174+fkhLCwMjz32GAoKCqyOuXHjBmbNmoXg4GD4+vpi2rRpqKiosDqmtLQUU6ZMgU6nQ1hYGF577TU0NTU581ZcZuXKlVCpVJg7d655H+vMtosXL+K3v/0tgoOD4ePjgyFDhuDQoUPm94UQeOuttxAREQEfHx+kpaWhsLDQ6hzV1dVIT0+Hv78/AgMD8dxzz6Gurs7Zt+I0zc3NePPNNxEXFwcfHx/069cPS5cuRcu+4D2t3r777js88sgjiIyMhEqlwtatW63eV6o+jh8/jjFjxsDb2xvR0dF4//33HX1r7kv0YJs3bxZarVZs2LBBnDx5Ujz//PMiMDBQVFRUuLpoips4caLIzMwUeXl54ujRo+Lhhx8WMTExoq6uznzMSy+9JKKjo0V2drY4dOiQuP/++8XIkSPN7zc1NYnBgweLtLQ0ceTIEbF9+3YREhIiFi9e7IpbcqqDBw+K2NhYMXToUDFnzhzzftZZW9XV1aJPnz5i5syZ4sCBA6K4uFh888034uzZs+ZjVq5cKQICAsTWrVvFsWPHxK9+9SsRFxcnrl+/bj5m0qRJYtiwYWL//v3i+++/F/379xfTp093xS05xfLly0VwcLDYtm2bOHfunPjyyy+Fr6+vWL16tfmYnlZv27dvF0uWLBFZWVkCgNiyZYvV+0rUx9WrV0V4eLhIT08XeXl54rPPPhM+Pj5i/fr1zrpNt9Kjg4L77rtPzJo1y/y6ublZREZGioyMDBeWyjkqKysFALF3714hhBA1NTXC09NTfPnll+ZjTp06JQCInJwcIYT0A+rh4SHKy8vNx6xbt074+/uLhoYG596AExkMBjFgwACxa9cu8cADD5iDAtaZba+//roYPXr0Ld83Go1Cr9eLP//5z+Z9NTU1wsvLS3z22WdCCCHy8/MFAJGbm2s+ZseOHUKlUomLFy86rvAuNGXKFPHss89a7Xv88cdFenq6EIL11jooUKo+PvjgAxEUFGT18/j666+L+Ph4B9+Re+qxzQc3b97E4cOHkZaWZt7n4eGBtLQ05OTkuLBkznH16lUAQK9evQAAhw8fRmNjo1V9JCQkICYmxlwfOTk5GDJkCMLDw83HTJw4EbW1tTh58qQTS+9cs2bNwpQpU6zqBmCd3crXX3+NlJQUPPnkkwgLC0NycjI++ugj8/vnzp1DeXm5Vb0FBARgxIgRVvUWGBiIlBYrlaalpcHDwwMHDhxw3s040ciRI5GdnY0zZ84AAI4dO4Z9+/Zh8uTJAFhvrSlVHzk5ORg7diy0Wq35mIkTJ6KgoABXrlxx0t24j56zykMrVVVVaG5utvplDQDh4eE4ffq0i0rlHEajEXPnzsWoUaMwePBgAEB5eTm0Wi0CAwOtjg0PD0d5ebn5GFv1Jb93J9q8eTN+/PFH5ObmtnmPdWZbcXEx1q1bh3nz5uGPf/wjcnNz8corr0Cr1WLGjBnm+7ZVLy3rLSwszOp9jUaDXr163bH1tmjRItTW1iIhIQFqtRrNzc1Yvnw50tPTAYD11opS9VFeXo64uLg255DfCwoKckj53VWPDQp6slmzZiEvLw/79u1zdVHc2oULFzBnzhzs2rUL3t7eri5Ot2E0GpGSkoIVK1YAAJKTk5GXl4e//e1vmDFjhotL576++OILbNq0Cf/4xz9w99134+jRo5g7dy4iIyNZb+Q0Pbb5ICQkBGq1uk1P8YqKCuj1eheVyvFmz56Nbdu2Yc+ePejdu7d5v16vx82bN1FTU2N1fMv60Ov1NutLfu9Oc/jwYVRWVuKee+6BRqOBRqPB3r17sWbNGmg0GoSHh7PObIiIiMCgQYOs9iUmJqK0tBSA5b7t/ezp9XpUVlZavd/U1ITq6uo7tt5ee+01LFq0CL/+9a8xZMgQPP3003j11VeRkZEBgPXWmlL10RN/Ru3psUGBVqvF8OHDkZ2dbd5nNBqRnZ2N1NRUF5bMMYQQmD17NrZs2YLdu3e3SZcNHz4cnp6eVvVRUFCA0tJSc32kpqbixIkTVj9ku3btgr+/f5svgTvBhAkTcOLECRw9etT8SElJQXp6uvk566ytUaNGtRnueubMGfTp0wcAEBcXB71eb1VvtbW1OHDggFW91dTU4PDhw+Zjdu/eDaPRiBEjRjjhLpyvvr4eHh7Wv5LVajWMRiMA1ltrStVHamoqvvvuOzQ2NpqP2bVrF+Lj43tc0wEADkn08vISGzduFPn5+eKFF14QgYGBVj3F7xS///3vRUBAgPj2229FWVmZ+VFfX28+5qWXXhIxMTFi9+7d4tChQyI1NVWkpqaa35eH1z300EPi6NGjYufOnSI0NPSOHl7XWsvRB0Kwzmw5ePCg0Gg0Yvny5aKwsFBs2rRJ6HQ68fe//918zMqVK0VgYKD46quvxPHjx8Wjjz5qcyhZcnKyOHDggNi3b58YMGBAtx1a1xEzZswQUVFR5iGJWVlZIiQkRCxcuNB8TE+rN4PBII4cOSKOHDkiAIi//OUv4siRI+L8+fNCCGXqo6amRoSHh4unn35a5OXlic2bNwudTschiT3V2rVrRUxMjNBqteK+++4T+/fvd3WRHAKAzUdmZqb5mOvXr4uXX35ZBAUFCZ1OJ6ZOnSrKysqszlNSUiImT54sfHx8REhIiJg/f75obGx08t24TuuggHVm2z//+U8xePBg4eXlJRISEsSHH35o9b7RaBRvvvmmCA8PF15eXmLChAmioKDA6pjLly+L6dOnC19fX+Hv7y9+97vfCYPB4MzbcKra2loxZ84cERMTI7y9vUXfvn3FkiVLrIbK9bR627Nnj83fWzNmzBBCKFcfx44dE6NHjxZeXl4iKipKrFy50lm36Ha4dDIREREB6MF9CoiIiMgagwIiIiICwKCAiIiITBgUEBEREQAGBURERGTCoICIiIgAMCggIiIiEwYFREREBIBBAZHb+/bbb6FSqdosvOQs2dnZSExMRHNzc5fOo1KpsHXr1g4fv3PnTiQlJZnn/icix2NQQORGxo0bh7lz51rtGzlyJMrKyhAQEOCSMi1cuBBvvPEG1Gp1l85TVlaGyZMnd/j4SZMmwdPTE5s2berSdYmo4xgUELk5rVYLvV4PlUrl9Gvv27cPRUVFmDZtWpfPpdfr4eXl1anPzJw5E2vWrOnytYmoYxgUELmJmTNnYu/evVi9ejVUKhVUKhVKSkraNB9s3LgRgYGB2LZtG+Lj46HT6fDEE0+gvr4en3zyCWJjYxEUFIRXXnnFKuXf0NCABQsWICoqCnfddRdGjBiBb7/91m6ZNm/ejAcffBDe3t7mfW+//TaSkpKwYcMGxMTEwNfXFy+//DKam5vx/vvvQ6/XIywsDMuXL7c6V8vmg5KSEqhUKmRlZWH8+PHQ6XQYNmwYcnJyrD7zyCOP4NChQygqKrr9iiWiDtO4ugBEJFm9ejXOnDmDwYMH49133wUAhIaGoqSkpM2x9fX1WLNmDTZv3gyDwYDHH38cU6dORWBgILZv347i4mJMmzYNo0aNwlNPPQUAmD17NvLz87F582ZERkZiy5YtmDRpEk6cOIEBAwbYLNP333+P3/zmN232FxUVYceOHdi5cyeKiorwxBNPoLi4GAMHDsTevXvxww8/4Nlnn0VaWpp53XpblixZglWrVmHAgAFYsmQJpk+fjrNnz0KjkX41xcTEIDw8HN9//z369evX2Solok5iUEDkJgICAqDVaqHT6aDX6+0e29jYiHXr1pm/KJ944gl8+umnqKiogK+vLwYNGoTx48djz549eOqpp1BaWorMzEyUlpYiMjISALBgwQLs3LkTmZmZWLFihc3rnD9/3nx8S0ajERs2bICfn5/5WgUFBdi+fTs8PDwQHx+P9957D3v27LEbFCxYsABTpkwBALzzzju4++67cfbsWSQkJJiPiYyMxPnz5+1XHhEpgkEBUTek0+ms/nIODw9HbGwsfH19rfZVVlYCAE6cOIHm5mYMHDjQ6jwNDQ0IDg6+5XWuX79u1XQgi42NhZ+fn9W11Go1PDw8rPbJ17+VoUOHmp9HREQAACorK62CAh8fH9TX19s9DxEpg0EBUTfk6elp9VqlUtncJw/nq6urg1qtxuHDh9uMImgZSLQWEhKCK1eudPn6HbkPuSNl689UV1cjNDTU7nmISBkMCojciFar7fJ8ALYkJyejubkZlZWVGDNmTKc+l5+fr3h5OurGjRsoKipCcnKyy8pA1JNw9AGRG4mNjcWBAwdQUlKCqqoqxSbuGThwINLT0/HMM88gKysL586dw8GDB5GRkYF//etft/zcxIkTsW/fPkXKcDv2798PLy8vpKamuqwMRD0JgwIiN7JgwQKo1WoMGjQIoaGhKC0tVezcmZmZeOaZZzB//nzEx8fjscceQ25uLmJiYm75mfT0dJw8eRIFBQWKlaMzPvvsM6Snp0On07nk+kQ9jUoIIVxdCCJyX6+99hpqa2uxfv16p163qqoK8fHxOHToEOLi4px6baKeipkCIrJryZIl6NOnj9PXICgpKcEHH3zAgIDIiZgpICIiIgDMFBAREZEJgwIiIiICwKCAiIiITBgUEBEREQAGBURERGTCoICIiIgAMCggIiIiEwYFREREBIBBAREREZn8f6PzhAmW1wgjAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|█████████████████████████████████████████████| 1/1 [00:03<00:00, 3.11s/it]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHWCAYAAAD94hqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADe1ElEQVR4nOydd3wb9f3/X6dteTseibP3JAkJK4wQIJBAofBlFygUCm3ZkEIhLStQCHv8KKNQdtkjQNl7JiGEDLJ34gzHe8iytu73x+c+p9Ppts7x+jwfDz1sy6fTSZbv87rXe3E8z/NgMBgMBoPBkOHo7ANgMBgMBoPRNWEigcFgMBgMhiJMJDAYDAaDwVCEiQQGg8FgMBiKMJHAYDAYDAZDESYSGAwGg8FgKMJEAoPBYDAYDEWYSGAwGAwGg6EIEwkMBoPBYDAUYSKBweimfPPNN+A4Dt98801nHwqDweihMJHAYNjIwoULcdttt6G5ubmzD0WTPXv24LbbbsOKFSts3e+xxx4LjuNwxRVX2Lpfyvvvv48pU6bA5/Nh0KBBuPXWWxGPx9O2mTFjBjiOU7y53e4OOS4Go6fi6uwDYDB6EgsXLsS8efPwhz/8AUVFRR36XNOnT0coFILH4zH92D179mDevHkYMmQIJk+ebMvxvPPOO1i0aJEt+1Li448/ximnnIIZM2bg0UcfxapVq/DPf/4TtbW1eOKJJ8Tt/vGPf+Diiy9Oe2wwGMRf/vIXHHfccR12fAxGT4SJBAajm+JwOODz+Tr7MAAA4XAYf/3rX3HDDTfglltu6ZDnuO666zBx4kR89tlncLnIqaugoAB33XUXrr76aowZMwYAcTPk/Pe//wUAnHvuuR1ybAxGT4WFGxi9nkAggGuuuQZDhgyB1+tFeXk5jj32WCxbtixtu59++gmzZ89GYWEh/H4/jjzySPz444/i72+77TZcf/31AIChQ4eKFvf27dsBQLThX375ZYwePRo+nw9Tp07Fd999l3FMy5cvx/HHH4+CggLk5eXhmGOOweLFi9O2UcpJmDFjBiZMmIC1a9fiqKOOgt/vR//+/XHvvfemPe7AAw8EAFx44YXicT7//PMAgPb2dqxfvx719fWG38N7770XyWQS1113neo2kUgEt956K0aMGAGv14uBAwfib3/7GyKRiO7+165di7Vr1+JPf/qTKBAA4LLLLgPP83jrrbc0H//KK68gNzcXJ598suHXxGAwmEhgMPCXv/wFTzzxBE477TQ8/vjjuO6665CTk4N169aJ23z11VeYPn06Wltbceutt+Kuu+5Cc3Mzjj76aCxZsgQAcOqpp+J3v/sdAOChhx7CSy+9hJdeegllZWXifr799ltcc801OO+883D77bejoaEBs2fPxurVq8Vt1qxZgyOOOAIrV67E3/72N9x8883Ytm0bZsyYgZ9++kn39TQ1NWH27NmYNGkSHnjgAYwZMwY33HADPv74YwDA2LFjcfvttwMA/vSnP4nHOX36dADAkiVLMHbsWPzrX/8y9P5VVVXh7rvvxj333IOcnBzFbZLJJH7729/i/vvvx0knnYRHH30Up5xyCh566CGcddZZus+xfPlyAMABBxyQdn9lZSUGDBgg/l6Juro6fP755zjllFOQm5tr6DUxGAwBnsHo5RQWFvKXX3656u+TySQ/cuRIftasWXwymRTvb29v54cOHcofe+yx4n333XcfD4Dftm1bxn4A8AD4pUuXivft2LGD9/l8/P/93/+J951yyim8x+Pht2zZIt63Z88ePj8/n58+fbp439dff80D4L/++mvxviOPPJIHwL/44ovifZFIhO/bty9/2mmniff9/PPPPAD+ueeeyzhOut9bb71V9T2Rcvrpp/OHHnpo2uuUv58vvfQS73A4+O+//z7t/ieffJIHwP/444+az0Hf16qqqozfHXjggfwhhxyi+thHH32UB8B/9NFHRl4Og8GQwHISGL2eoqIi/PTTT9izZw8qKyszfr9ixQps2rQJN910ExoaGtJ+d8wxx+Cll15CMpmEw6FvzE2bNg1Tp04Vfx40aBBOPvlk/O9//0MikQAAfPbZZzjllFMwbNgwcbt+/frhnHPOwdNPP43W1lYUFBSoPkdeXh7OO+888WePx4ODDjoIW7du1T0+gIQseJ43tO3XX3+Nt99+W9fhePPNNzF27FiMGTMmLYxx9NFHi/s59NBDVR8fCoUAAF6vN+N3Pp8Pra2tqo995ZVXUFZWppirwGAwtOnVIqF26VKsffZZNK1di1BdHY74f/8PA485psOe771jj0Vwz56M+0eefTYOvPnmDntehjb33nsvLrjgAgwcOBBTp07FCSecgPPPP19cpDdt2gQAuOCCC1T30dLSguLiYt3nGjlyZMZ9o0aNQnt7O+rq6gCQnIDRo0dnbDd27Fgkk0ns3LkT48ePV32OAQMGgOO4tPuKi4vx66+/6h6fGeLxOK666ir8/ve/F3Mc1Ni0aRPWrVuXFnqRUltbCwBobGxENBoV78/JyUFhYaEYxlDKXwiHw6phjq1bt2LRokW44oor0nIZGJ3Ed98B990H/PILUF0NLFgAnHJKxz1fIgHcdhvw3/8Ce/cClZXAH/4A3HQTIPsfYSjTq/9r4qEQikePxvBTT8X3V1/d4c836/XXwQtXiwDQsnkzvrr4YgyaNavDn5uhzplnnokjjjgCCxYswGeffYb77rsP99xzD9555x0cf/zxSCaTAID77rtPtVwwLy9vHx6xNk6nU/F+o+6AUV588UVs2LAB//73v8XkTEogEMD27dtRXl4Ov9+PZDKJ/fbbDw8++KDivgYOHAiA5HV8++234v0XXHABnn/+efTr1w8AUF1dLW5Lqa6uxkEHHaS431deeQUAq2roMgSDwKRJwEUXAaee2vHPd889wBNPAC+8AIwfDyxdClx4IVBYCFx1Vcc/fw+gV4uEyiOOQOURR6j+PhGNYuUjj2DHRx8hGgigaMQITJ4zBxUqJyQ9fCUlaT+v/c9/kDdwIMp1rsIYHU+/fv1w2WWX4bLLLkNtbS2mTJmCO++8E8cffzyGDx8OgJTbzZw5U3M/8it4OdSVkLJx40b4/X7xKtvv92PDhg0Z261fvx4OhyNjkbSC3nEaoaqqCrFYDIcddljG71588UW8+OKLWLBgAU455RQMHz4cK1euxDHHHKP53A888ACamprEn2n4h4qzpUuXpgmCPXv2YNeuXfjTn/6kuL9XXnkFw4cPxyGHHGLlJTLs5vjjyU2NSAT4xz+AV18FmpuBCRPIQj9jhrXnW7gQOPlk4De/IT8PGUL2LSQbM/Rh1Q0aLP3nP1G/YgUOu/9+nPDOOxg0axa+/vOf0bpjR9b7TkSj2P7BBxh+6qm2nLAZ1kgkEmhpaUm7r7y8HJWVlaK1PXXqVAwfPhz3338/2traMvZBwwQAxOx5tY6LixYtSiut3LlzJ9577z0cd9xxcDqdcDqdOO644/Dee++lXZ3X1NTglVdeweGHH66Zj2AUreM0WgJ59tlnY8GCBRk3ADjhhBOwYMECHHzwwQCIW7N79248/fTTGfsJhUIIBoMAyHs9c+ZM8TZu3DgAwPjx4zFmzBg89dRTYu4GADzxxBPgOA6nn356xn6XL1+OdevW4ZxzzjHwjjC6BFdcASxaBLz2GvDrr8AZZwCzZwMK4toQhx4KfPklsHEj+XnlSuCHH7SFCiOdzs6c7Cq8PG4cX/XFF+LPbbt386/stx8frKlJ2+6Liy7ilz/0UNbPt/3jjxX3z9i3NDU18bm5ufwFF1zAP/jgg/xTTz3Fn3nmmTwA/oEHHhC3+/rrr3mfz8cPGjSIv/XWW/mnnnqKv/XWW/np06fzJ554orjdkiVLeAD8CSecwL/44ov8q6++yre1tfE8T7L+J0yYwJeWlvK33347f8899/CDBw/mfT4fv3LlSnEfq1ev5nNzc/n+/fvzd955J3/PPffww4YN471eL7948eK0Y4JCdcP48eMzXucFF1zADx48WPw5Go3yRUVF/OjRo/n//Oc//Kuvvspv3bo1bb9GqxvkQKG6IZFI8CeccALPcRx/9tln848++ij/8MMP83/5y1/4kpIS/ueff9bd7//+9z+e4zj+6KOP5p966in+qquu4h0OB3/JJZcobv/Xv/6VB8CvX7/e0utgdDAAzy9YkPp5xw6edzp5fvfu9O2OOYbn58619hyJBM/fcAPPcxzPu1zk6113WT7k3kivDjdo0bxpE/hEAh+ccELa/YlYDF6h3W7L1q348KSTNPcz7o9/xOQ5czLu3/L22+h3+OHwl5fbdswM8/j9flx22WX47LPP8M477yCZTGLEiBF4/PHHcemll4rbzZgxA4sWLcIdd9yBf/3rX2hra0Pfvn1x8MEH489//rO43YEHHog77rgDTz75JD755BMkk0ls27ZNvHI/8sgjMW3aNMybNw9VVVUYN24cnn/+eUycOFHcx/jx4/H9999j7ty5mD9/PpLJJA4++GD897//Fa/Ms8XtduOFF17A3Llz8Ze//AXxeBzPPfcchg4dasv+5TgcDrz77rt46KGHxDCE3+/HsGHDcPXVV2PUqFG6+zjxxBPxzjvvYN68ebjyyitRVlaGv//974odHpPJJF577TVMmTJFMQmU0QVZtYokGso/C5EI0KcP+X79emDsWO393HADcPfd5Ps33gBefhl45RWSk7BiBXDNNSSBUSMRmZGC43mbs5m6Ka+MH59W3bDj44+x8IYb8Jv33gMnK21z+f3IKStDIhpF265dmvv1FhVl5CIE9+zB+7Nm4YhHHsEAoQSM0fPhOA6XX3654SZFDEaPhuPSqxtefx0491xgzRpAnnyblwf07QtEo4BeKW+fPgCtohk4ELjxRuDyy1O//+c/SbXD+vW2vZSeDHMSVCgeOxZ8IoFwYyPKJXXtUpweDwoltexG2bJgAbwlJagUOtwxGAxGr2f//YmTUFsLqCWUezyAMKPDEO3tgLx/idMJCBVLDH16tUiIBYNoq6oSfw7u2oWmdevgKSxEwZAhGHLiiVg0dy6mXH89iseORbixETU//YSiUaPQ/8gjLT0nn0xi64IFGHbyyXCwum0Gg9GbaGsDNm9O/bxtGwkBlJSQMMO55wLnnw888AARDXV1JPFw4sRUhYIZTjoJuPNOYNAgEm5Yvhx48EFSgskwRK9epRrXrMGXF14o/rxMGIIz9OSTMe2uu3DIP/+J1f/+N5bddx9CNTXwFhejz6RJlgUCAOxdtAjt1dUYti9qhBkMBqMrsXQpcNRRqZ9pvtYFFwDPPw889xwJB/z1r8Du3UBpKXDIIcCJJ1p7vkcfBW6+GbjsMuJQVFYCf/4z0EGTSnsiLCeBwWAwGAyGIqxPAoPBYDAYDEWYSGAwGAwGg6FIr8tJiMfjWLdyJQrLygxN7WMwGAxGz4RPJhGsqcHI/feHkyWSK9Lr3pV1K1di4gEHdPZhMBgMBqOLsG7JEoxhM3QU6XUioW9FBQDg16VLUSx8z2AwGIzeR1t1NSoPOghJthao0utEAg0xVPbrhz7ChDkGg8Fg9D5aARQAaGWhZ1XYO8NgMBgMBkMRJhIYDAaDwWAowkQCg8FgMBgMRXpdTgKDwWAwegY8zyMejyORSCj+3ul0wuVygeO4fXxkPQcmEhgMBoPR7YhGo6iurkZ7e7vmdn6/H/369YPH49lHR9azYCKBwWAwGN2KZDKJbdu2wel0orKyEh6PJ8Mt4Hke0WgUdXV12LZtG0aOHMka6FmAiQQGg8FgdCui0SiSySQGDhwIv9+vul1OTg7cbjd27NiBaDQKn8+3D4+yZ8BkFYPBYDC6JUacAVvdg+++A046iYyc5jjg3Xf1H/PNN8CUKYDXC4wYQUZidyOYSGAwGAwGwwjBIDBpEvDYY8a237YN+M1vgKOOAlasAK65Brj4YuDTTzvyKG2FhRsYDAaDwTDC8ceTm1GefBIYOhR44AHy89ixwA8/AA89BMya1THHaDPMSWAwGAxGryYQCKC1tVW8RSIRe3a8aBEwc2b6fbNmkfu7CUwkMBgMBqNXM3bcOBQWFoq3+fPn27PjvXsB+fCoigqgtRUIhex5jg6GhRsYDAaD0S3hed6WbdatXYv8/v3Fn71eb1bH1ZPodCehvaYGC2+4AW8deihenzIFH55yChpWr9Z8TM2SJfj49NPx2uTJeH/2bGxdsGAfHS2D0XPY/MYb+OqSSxCoqlLeYPt2Yo3ecgtg4ETLYOwr3G43AOg2UpJuQx+jRH5+PgoKCsSbbSKhb1+gpib9vpoaoKAAyMmx5zk6mE51EqItLfj8vPNQcdBBmPHkk/CVlCCwYwc8BQWqj2nbtQvfXHYZRp55Jg695x7sXbwYP916K3xlZag8/PB9ePQMRvcl0tyMJfPmAQBWPfYYDr3nnsyNrrsO+Owzcjv0UGD27H18lAyGMk6nE0VFRaitrQVAuioqNVNqb29HbW0tioqK4HQ69/2BTpsGfPRR+n2ff07u7yZ0qkhY+8wz8Pfti0PuvFO8L2/AAM3HbHr9deT1748pf/sbAKBw+HDULV+ODS++yEQCg2GQmiVLUt///HPmBsEg8MEHqZ/feouJBEaXom/fvgAgCgU1ioqKxG2zpq0N2Lw59fO2baS0saQEGDQImDsX2L0bePFF8vu//AX417+Av/0NuOgi4KuvgDfeAD780J7j2Qd0qkjY9fXX6HfYYfj+2mtRu3Qp/OXlGHn22Rhxxhmqj6lfuRJ9Dzkk7b5+hx2GZXffrbh9JBJJy1QNtLXZc/AMRjemZcsW8ftQTQ0izc3wFhWlNvj1V0Ca4f3VV/vu4BgMA3Ach379+qG8vByxWExxG7fbba+DsHQp6XlAmTOHfL3gAtIkqboakIbvhg4lguDaa4FHHgEGDAD+859uU/4IdLJIaNu1C5tefx1jLrgA4//0JzSuWoVf5s+Hw+3GsFNOUXxMuL4evtLStPt8ffog1taGeDgMl6zt5vz58zFPsFUBwMemgTEYaN22Le3ntl270kXCihXk66GHAgsXkium5mZAug2D0QVwOp37LpQwY4Z2fo5SN8UZM4DlyzvogDqezk1cTCZRMm4cJl9zDUrGjsWIM8/E8NNPx6Y33rDtKebOnYuWlhbxtm79etv2zWB0V5REQhorV5Kv06eTqx8AWLNmHxwZg8HoSnSqSPCVlaFw+PC0+wqHDUN7dbX6Y0pLEa6vT7sv3NAAd15ehosAkFIWadZqfl6ePQfPYHRj2vfuBQAUjRoFAAju3p2+ARURo0YBEyaQ71et2leHx2AwugidKhLK9t8/44qmdft25FZWqj6mdNIk7P3pp7T79i5ciNJJkzrkGBmMHkkyCQDwCwld4YaG9N/TuOrgwaSVLJCesMVgMHoFnSoSxpx/Pup//RVrnnoKgR07sP2DD7D5rbcw8ne/E7dZ8dBDWDh3rvjzyLPOQtuuXVh+//1o2boVG199FVWfforR55/fGS+BwejW+Pr0ASATCTwP7NhBvh80CBgyhHy/ffs+PTYGg9H5dGriYp/99sP0Rx7BiocfxqonnkDegAGYesMNGHriieI2obq6tPBD3oABmPH441h2zz3Y8N//wt+3Lw6eN4+VPzIYFlAUCQ0NqZaxAwYQNwFgIoHB6IV0elvm/jNmoP+MGaq/n3bXXRn3VRx0EI5/++0OPCoGo3egKBJoqKGiAvD5Uk4CdRcYDEavodPbMjMYjH0P7WdPy4nTRAKtdBg4kHylTkJ9PWkmw2Aweg1MJDAYvRhfSQkAINzYCF5IZkRdHflaXk6+FhUBhYXke7U5DwwGo0fCRAKD0Yvx0MWf5xGjLgEVCWVlqQ379SNfhdJJBoPRO2AigcHoxTg9HjiFiXfR1lZyJxUJ0s6mtPc9EwkMRq+CiQQGo5dDp65miAQlJ0Gj0RmDweh5MJHAYPRGJP3nM0QC7WgqFQnMSWAweiVMJDAYvRmOM+ckMJHAYPQqmEhgMHo5biMigToJLNzAYPQqmEhgMHo5hpwEFm5gMHolTCQwGL0QXvI9FQmxQAAIh4H2dvILaXUDS1xkMHolTCQwGL0YjuPgyc8HAERbWoDmZvoLQLgfQKqxUmMjEI/v24NkMBidBhMJDEYvJy3c0NJC7iwoAByS04PQmREA0NS0D4+OwWB0JkwkMBi9HDFxsa0t5SQUFaVv5HKl7qMlkgwGo8fDRAKD0ctx+/0AgHgwmHISaLtmKTRHQToMisFg9GiYSGAweiOSZkqu3FwAQExPJAhjpZmTwGD0HphIYDB6MxwHtyAS4u3t6uEGgDkJDEYvhIkEBqOX42ZOAoPBUIGJBAajl0PDDSwngcFgyGEigcHo5VAnIRGJgG9sJHdqhRuYk8Bg9BqYSGAweiPSxEWhugEAktQlYOEGBoMBJhIYjN4Nx8Hp8cDh8QAAeNooiYUbGAwGmEhgMBhIhRygJRKYk8Bg9DqYSGAwGGLyopi4yEogGQwGmEhgMBhIdV1EIEC+KjkJxcXka3NzWk4Dg8HouTCRwGD0QnjZIk/DDRwdE52Xl/kg6i4kEkBbWwceHYPB6CowkcBg9GI44SsNN3ChELlDSSTk5ABuN/medmZkMBg9GiYSGAwG3Lm54HgejmiU3KEkEjguFXJg46IZjF4BEwkMBgPuvDw4k8nUHTSRUQ4NOTAngcHoFTCRwGAw4PL74aYiweEAfD7lDZlIYDB6FUwkMBi9EYXERRcVCXl5JLSgBAs3MBi9CiYSGIzejCAGXDk5KZGgFmoAmJPAYPQymEiQsfW99/DmtGnY9v77nX0oDMY+wykVCUpJixQmEhiMXgUTCTKW3nEHYq2tWHbffZ19KAzGPsPl98NFQxBaIoGFGxi9ncceA4YMIXk7Bx8MLFmivf3DDwOjR5MS4oEDgWuvBcLhfXGktsBEgoRoIIC4UCceaWxEvBv9IRkMU8hyEli4gcEwwOuvA3PmALfeCixbBkyaBMyaBdTWKm//yivAjTeS7detA555huzj73/ft8edBUwkSAju2ZP2c1tVVScdCYOxb3GZDTcwJ4HRG3nwQeCSS4ALLwTGjQOefBLw+4Fnn1XefuFC4LDDgHPOIe7DcccBv/udvvvQhWAiQYJcJASYSGD0cDilxEUj4QbmJDB6EIFAAK2treItEolkbhSNAr/8AsycmbrP4SA/L1qkvONDDyWPoaJg61bgo4+AE06w/0V0EEwkSGivrk77OaRmITEYPQzTTgITCYwexNhx41BYWCje5s+fn7lRfT2ZW1JRkX5/RQWwd6/yjs85B7j9duDww0lL8+HDgRkzulW4wdWZT/7rY49h9eOPp91XMHQoTvzgA8Xtty5YgMU33ZR2n8PjwdnLl9tyPBHZiS9UV2fLfhmMro4zJyfVTMlITgILNzB6EOvWrkV+//7iz16v154df/MNcNddwOOPkyTHzZuBq68G7rgDuPlme56jg+lUkQAAhSNG4Oj//Ef8mXNpH5I7Ly9dRKg1fbFAtLU17edQfb1t+2YwuhLyQc8s3MDozeTn56OgoEB7o9JSwOkEamrS76+pAfr2VX7MzTcDv/89cPHF5Of99gOCQeBPfwL+8Q8SrujidPoRck4ncsrKxJuPnoRUH8ClbZ9TWmrbscQCAQBA/uDBAFi4gdELUMhJSPr96ttTJyEQAOLxDj44BqML4fEAU6cCX36Zui+ZJD9Pm6b8mPb2TCHgdJKvvFyqd0063UkIVFVhwYwZcHi9KJ00CZOvuQa5lZWq28fb2/HuzJkAz6N47FhMuuYaFI0Yobp9JBJJS0IJtLWpbhulImHIEAR27EC4ocHCK2Iwuh9SkcBrWa1UJABASwvQp0/HHhiD0ZWYMwe44ALggAOAgw4iPRCCQVLtAADnnw/07w/QnIaTTiIVEfvvnwo33HwzuZ+KhS5Op4qE0okTMe3OO5E/ZAhCdXVY/cQT+Pz88/Gb996DWyEumj90KA6+4w4UjxqFaFsb1j33HD4/91z85r334Fexe+bPn4958+aJP/s0whM03JA/cGDazwxGT8fp84nNlBIeD1RPX243KflqbychByYSGL2Js84C6uqAW24hyYqTJwOffJJKZqyqSncObrqJuHU33QTs3g2UlRGBcOednXL4VuhUkVB5xBHi98WjR6N04kS8d+yxqPrkEww/7bSM7csmT0bZ5MlpP39w0knY9MYbmHTVVYrPMXfuXMyZM0f8uXHvXgwdPVpxWyoK8gYNSvuZwejpcBwHt/B90u3W3BaFhUQksP8PRm/kiivITYlvvkn/2eUijZRuvbXDD6uj6PRwgxRPQQHyBw823J/A4XajeOxYzaZHXq83LVM1phVuoCJhwACybSCAZDwOh04yJYPR7VCIh1JpENezQQsKgOpqJhIYjF5ApycuSokFg2jbuRM5ZWWGtk8mEmjZtAk+g9vrPr8gIPIkpTA0T4HB6JFIwm80JyFhRCQATCQwGL2ATr1EXnbffeg/YwZyKysRqq3FqsceA+d0YrDQjWrh3Lnwl5dj8rXXAgBWPf44SidNQv6gQYgGAlj37LMI7tmDEQqhCSvQuQ3uggK48/IQa2tDtKVFv+KCwegB0JyEuF5ZVmEh+cpEAoPR4+lUkdBeU4OF11+PSHMzvCUlKJsyBce98gp8JSXk99XVYttYgIQDfrr1VoTr6+EpKEDJ+PE49uWXUahR3WCUZCwGXijpcvl88BQWiiKBwegNOAUnIa5XmkWdBPa/wWD0eDpVJBx+//2av5/5/PNpP0+98UZMvfHGDjkW6iIAJNPbU1CA4O7diLATIaOX4EwkAAAxoyKBOQkMRo+nS+UkdCZ0LDTndMLhdsMjWKrMSWD0SBSEgEMQCXHaeVENJhIYjF4DEwkCCcFJcPp84DgOnvx8AKwMktGzEcN5iQQcgjiI6okElpPAYPQamEgQoE6CKycHAJkRAZAOjwxGj0cSbmNOAoPBoDCRIJCQiwSh46NWXwUGo8cgEQmxWEx7W5a4yGD0GphIEIhLwg1AykmwWyQk43H8eN11+Pz881kPBkbXQXDMEhwnumqqMCeBweg1MJEgIDoJgkhwUSfB5nDD3kWLsOPjj1H3yy/Y8dFHtu6bwTAKL09cFERyguPSKn0UYTkJDEavgYkEATUnIW6zk9C0bp34fcOvv9q6bwbDMsLnP+5w6IsE5iQwGL0GJhIEMhIXOygnoWXbNvH75k2bbN03g2EZM04CEwkMRq+BiQSBhNxJoCIhGLT1eYI7d4rft0m+ZzA6FSoSzDgJLHGRwejxMJEgEJflJIiJizaLhHBjo/h9tLWVlVgyugaSxMWE0cTFSITcGAxGj4WJBAF6YnR2cLgh3NSU9nN7TY2t+2cwDKGSuBh3OPSFKxUJAMAqdBiMHg0TCQJi4qLXC0CSuGijk5CMxRAT4rheOsSKiQRGZ0I7LprJSXA6AUFEs7wEBqNnw0SCQFJoIOP0eACkSiDjoRCSQk/7bIk0NwMAOIcDRSNHAgBCtbW27JvByApJToJuuAFgyYsMRi+BiQSBZDQKAHAIIoE6CYB9bkJECDV4iorEcdhUODAYnYoZJwFgyYsMRi+BiQSBhMxJcHo8cLjdAOxLXqQiwVtUBG9xcdp9DMY+RSsnwYiTwBoqMRi9AiYSBGi4gQoDwP4ySLofd15eSiQwJ4HRiYhTICXVDXw8joTgrKnCwg0MRq+AiQQBMdwgEQliXoJdIkE4Ebtzc+EtKgLAnARGF0GSkwDAeBkkEwkMRo+GiQQBeuVEww0A4PL7AcBYjNYAVGy4/H7mJDC6FlQkOJ0AwIY8MRgMAEwkiCiFG2iLZrsaHtH9uHJzWU4Co2shiAReEMlsyBODwQCYSBCRVzcA9osEMSfB72fhBkanwsvvoCJB6BOSYK2ZGQwGmEgQUQw3UJFgV7iBOglSkdDSkjm2l8HYV8gSF6lIYEOeGAwGwESCiGK4weacBNFJyM2FOz8fAEgmuZGSMxO019YiuGePrftk9HDoZ1wQxoYTF5mTwGD0aJhIEJB3XAQ6MCfB74fL7wcnZJLbOR8iVF+PD08+GR+cdBKaN260bb+MHg4VCcKAM8NOApvdwGD0aJhIEEho5SR0gJPAcZzY1TFqo2Vb/eOPiLW2IhEOY/tHH9m2X0YPh37GjbpnLNzAYPQKmEgQ2BfhBml1AwAx5GCnk9CwapXi9wxGGiodF2FUGDORwGD0CphIEKDVDU6lEsgOSFwEUvMhojZatm1VVeL3rdu22bZfRg9FlrgI4TOpm5MgCFwWbmAwejZMJAgohhuok2BzToJb2K9HuBqz00mQjp4O1dTY1lKa0cMRhLCDhRsYDIYEJhIENJsp2eQkJCIRAIBTKDOjTkLMxhNtu2z0tFQ0MBiqCJ9xTvhMGhYJ7e1APN6RR8ZgMDoRJhIEkgp9Epw2VzdkiATBso3a5CTEQyFRcORUVAAAQjLRwGAoIoQXDIsEGm4AWMiBwejBMJEAgE8mkRSuhjqyukEMaQgiwUMTF206yYYbGgAATp8PhcOGAWBOAkMFaeJiMglQJ034TOrmJHg8gPA5ZiKBwei5MJEAiAIBkI2KFuKziVAIiESAu+4C/vc/y89DT7zUrRDDDTY5CTQB0lNQgJzycgDMSWBow3Ec+WwLOKmTYKTBF8tLYDB6PK7OPoCuAA01AMrhhlh7O3D33cBtt5Fs8NWrgXHjTD0Hn0ymGjYJDWuok2BXdUNU6H7nyc+Hn4UbGEaRCAKHsPAnjITYCgqAujomEhiMHgxzEpAKAwDKfRISoRDwyivkTp4H3ngjq+cQnQSbww0xiZPApkwyDEOdBI6DU+jhwZwEBkOFxx4Dhgwh3UkPPhhYskR7++Zm4PLLgX79SIhu1CigGzW6Y04CUpUNnMsltkoGUjkJjkAAkLY4XrzY/HNILV1ZToJtToKwH7dUJDQ327JvRg+GCgKfz1wDMdYrgdHbeP11YM4c4MkniUB4+GFg1ixgwwZACPGmEY0Cxx5LfvfWW0D//sCOHYAw4K87wEQClBspASknoUA+xGbZMuIo0EY0BqBOAud0wuEibzvtvBi3qZcBbe/syc9no6gZmqRNHqUC1usVQ2yGho4xJ4HR23jwQeCSS4ALLyQ/P/kk8OGHwLPPAjfemLn9s88CjY3AwoUAXV+GDNlnh2sHLNwA5UZKQMpJyBOcBhx9NPlaV0f+8GaeQ5a0CKQSI2M2lVjScIM7P585CQzjSESCy+iAJ4CJBEaPIRAIoLW1VbxFJM6vSDQK/PILMHNm6j6Hg/y8aJHyjt9/H5g2jYQbKiqACRNIAnwi0TEvpANgIgHKjZQAISzAccij+QRjx5K4EgCYbHks9kgQTsJABzgJNCdBKhKamtKvGm0g1tZm+z4ZnYg03GCm7JeJBEYPYey4cSgsLBRv8+fPz9yovp4s7kJSuEhFBbB3r/KOt24lYYZEguQh3Hwz8MADwD//af+L6CBYuAGpEkgaBqBwHAdXTg5yqZMwdCgwbBhQXU3++AccYPg5qFtB8xGAlJNgV7MmaQkkDTckIhEkQiExdJItOz75BD9edx0GzZ6Nw++/35Z9MjoZpXADy0lg9CLWrV2L/P79xZ+9kvN0ViSTJB/hqacApxOYOhXYvRu47z7g1lvteY4OplNFwq+PPYbVjz+edl/B0KE48YMPVB9T9emn+PXRR9G2ezfyBw/G5Dlz0H/69KyOQxQJMicBICEHMdwwZAgRCj/+aNlJUJwNEQqBTybTkiatQLstuvPy4PL74fB4kIxGEWlutk0krH/hBYDnUfXxxwjOmYPcykpb9svoRJScBJaTwOhF5Ofno4B+ntUoLSULvbxBXU0N0Lev8mP69SO5CE5n6r6xY4nzEI2SpmRdnE4PNxSOGIH/++Yb8TbzpZdUt61bvhw/Xn89hp16Ko5/6y0MOPpofH/llWjetCmrY+CF+BAn/UMKuPx++KlIGDw4lXSyY4ep55C3ZAZS4QbAnq6OdB8uvx8cx9leBpmMxdC4dq34c/3Klbbsl9EJqCQu0pyERDgMPpnU3gcTCYzehMdDnIAvv0zdl0ySn6dNU37MYYcBmzeT7SgbNxLx0A0EAtAFRALndCKnrEy8+YSFTYkN//0v+h1+OMZddBEKhw/HpKuuQvG4cdhIexhYRMxJcGUaKy6fDz7akbFfv1ROgloMSgVRJEibNXm9ontgR8iBXv3Rq0E6ZTJq00m8bc8e8JLulE3r1tmyX0YnwnGKTgJgoMKBiQRGb2POHODpp4EXXgDWrQMuvRQIBlPVDuefD8ydm9r+0ktJkvvVVxNx8OGHJHHx8ss75/gt0Ok5CYGqKiyYMQMOrxelkyZh8jXXqFrY9StWYMwFF6Td1++ww7BLquxkRCKRtEzVgEILZC0nwed2p5RUaWnKVrIqEiSJixzHwZWbi1gggFgwiJyyMlP7zHgOwUnoqI6OAZl7Eti505b9MjoZaU6C5PMZ18tlYTkJjN7GWWeR6rZbbiFrwOTJwCefpJIZq6pIxQNl4EDg00+Ba68FJk4kfRKuvhq44YZOOXwrdKpIKJ04EdPuvBP5Q4YgVFeH1U88gc/PPx+/ee89uCVWPCVcXw9fnz5p9/n69BEHGykxf/58zJs3L7W9Qm8DtcRFAPALtmwiN5eECqyKBIXERYCEBmKBgD1OAg03CFeDdnd0bJe95uDu3bbsl9HJSJwEzuGA0+dDIhzWz0tgTgKjN3LFFeSmxDffZN43bZqlBnxdhU4NN1QecQQGzZqF4tGjUXn44ZjxxBOIBQKo+uQT255j7ty5aGlpEW/r1q/P2EZ0EhREgleIJSXoVZNUJJgoA0wqhBsAiGIoZkMZJLWHXR3kJESE3hB9Jk0CALQxJ6FnIHESgNTnR7fCgYkEBqPH0+k5CVI8BQXIHzwYgaoqxd/7SkszXINwQ0OGuyDF6/WioKBAvOULU+6kaOUk+AQBEZeLhFDIlM1Kr8oynASaTW6jk+DsICchTEXChAkASK6DHeKG0XlwspwEIPX50U2mZSKBwejxdCmREAsG0bZzp2psvnTyZOyV2TZ7Fy1C6eTJWT1vUhACSiLBK4QJ4jQ26/enTo4mQg609bNDIdwA2OMkZCQudpCTkDdggPgcWqEeRjdB7iQYLYOkwrm11ZSrxmAwug+dKhKW3Xcfan7+GW27d6Nu+XJ8f/XV4JxODD7hBADAwrlzseKhh8TtR593Hqp//BHrnn8eLVu34tfHHkPj6tUYdc45WR0HzdhXSlz0CIt7TJojQQd5yOtlNVCqbgBS4YZsnYRkLCa+DmoXd5ST4Cspga+0lNxXX2/LvhmdiEwkOI22ZqZiOR5P7YPBYPQoOjVxsb2mBguvvx6R5mZ4S0pQNmUKjnvlFfhKSsjvq6uJHSpQtv/+OOzee7Hy//0/rHz4YeQPHowjHn0URSNHZnUcopOg0EzJK5z8YpKsb/TpQ2pfTcxvEBMX5fMhaEOlLJ0E6Qnd2UFOAhUJ3pIS5JSWom3nToSYSOj+yMINLqNdF6Whu9ZW8fEMBqPn0KkiQa+t78znn8+4b9CsWRg0a5atx8HTnASlZkrCCTQqFRA0B8KESFCbDyEmLmbpJFBrmHM6xeew20mgTZm8xcXMSejGZMzdUElc1HUSHA4ScggEiEhQGpXLYDC6NV0qJ6GzSGpUN7iEE2hU+jvB6YCJeLxa62e7nARpjwTqvtjtJNC8CU9+vigSmJPQzVFIXHSZGRctzUtgMBg9DiYSIFnAlZwEGm6QNsigIsGKkyATIi6bchLEHgkSy9dOJyEZj4tCxJ2Xh5wOcBLCDQ14//jj8cmZZ7KqiX2JPCfByiRI1lCJweiRMJEASeKiQk6CUzhRpqVl0XCDGSdBLdxAqxuynN0gVjZIOuTZ6SRInQ6X35+aC9HcnPW+KZvffBNtVVVoXLMGOz780Lb9MnRQcRLYuGgGg8FEArSdBIdwooxK77TgJPAdHW6gfRiUnIS2Nv1hPTrQK3un1wunxyOOorZTJNStWCF+X7N0qW37ZehgtboBYCKBwejhMJEA7bbMDmFxDEuTvSw4CYmODjcIj5eGG6iTAJ7P2r6PCTMv6PF6CgsBANGWlqz2K6VJMmGycfVq2/bLkCFPXGQ5CQwGQwUmEqAx4Ckeh0M4UUaEbQBkl5OgFm7ItgRSwUlwer1wCCWX2eYlUJHglokEu5yEeCiU1pipbedOsWyU0YFwnPVmSgDLSWAwejhMJEDDSZBcHUWkdr2FEkjdcEO2zZQUpkwC9s2GoI93C7XxXomTkFFSZ4H22loAJGnO6fOBTyYRrK7Oer8MA7CcBAaDoQITCVBfwCFcJcc5DjHpVa2FEsiEipNgV1tmuv+MZk0dJBKok5CMxWyZOxESulfm9u2LvAEDALABUvsMlZwE3WZKABMJDEYPh4kEpJyEjHCDEG+POp3pJ0whsx/t7YBBS1y1BNJM/FcD2vbZIW/7bFNipDzc4PL7RcFjR15CuyAScioqkDdwIAAguGtX1vtlGMBqMyWA5SQwGD0cJhKQyknICDcITkLM4UiPz9ITI2D45KiWk2DK2tXaP237rNbR0ebERY7jUnkJdogEYViWv7wc/ooKcp8QgmDYS0Z4SB5uoMKS5SQwGL0eJhJgzElIRqNiZ0a4XAAd+GRwgVTtuChxErIpUxRnQ8inTNLqCZvDDUB6XkK20ARIX58+4hTQUF1d1vtlaMMpJC6ycAODwaAwkQCJkyDPSRAWP9ptMSmddCcskHY5CUB2boI4ilplymS2syHogiE9Xo+NvRKiwvvoKShgImFfwxIXGQyGCkwkILWAZzgJNNwg3J9mv9KTo1EnQUUkSKsRshIJOomLdk2ZlPZhsNNJEEVCYSFyhEFBYRtFAs/z2Pruu9i6YIEt1Rg9iq6Yk7BlC3DBBcBf/woIoS4Gg7Hv6dQpkF0FvRLIuLCwpyUXmnQS1CooOIcDzpwcJEIhY/auCmLiYgf1YUgolFh6BKEUtWGBoELDU1AgzoWw00mo/uEHLP7HP8hzFBZiwNFH27bvbo/MSXAKnxlDybQdkZMQCgHHHw9s2kR+3rMHePVV+/bPYDAMw5wEaDRTEq5gEsLVedqVFRUJBq+i1TouAiab16jtXycnIWuRoNT2WchPsGOAlFQk+IRwQ7ixURRw2VL1ySep7z/91JZ9dlukTgrPazoJuq5LR4QbXn89JRAA4LXXgF9/tW//DAbDMEwkQD2pkIqEpHDyTHRAuAEwae+q7V8nJyHrcAMdICURIW7qJNhgB0vDDb6SEnAOB8DzCJtoWKVF0/r14vd1y5bZss8egbSEV5aTwCcS4udWFamTkOV8EJFnnyVf77oLOOMM8v1//mPPvhkMhimYSIDGgCeZSIh3QLgBkDgJWSQXqjVTsi1xkYYbpImL1EmwOdzAORxiUmTUhqTIZCKBlq1bxZ+De/aIJZ29Hmkyrqy6ATBQ4SAtB7bjPW1pARYuJN+fcw5w/vnk+3fesU+EMBgMwzCRAMmoaHkoQLj6TtKSMCWRYDbcoDSOOicH4HnkPvIIcMopgIX+AGpOgl2Ji3SxkIYz6JTJbJ2ERDQquig0GdLOKZPte/YgGY3C6fXCJ+Q7NEvt7N6M1EmgIsHjEf8XdENgPh8pCQbsCTl88w2QSAAjRwKDBwPHHgvk5QG7dwMrV2a/fwaDYQomEgCx/0FGvoCw+PFKOQNWww0qOQmVbW3If+014L33gNtuM3H0BPFKv4OaKcWF/UtLIO3KSRATHzlOFB6iSGhqymrfQKopU05FBQqHDwfQy1s+S/MM6Gfa4yHDngTEEJieSOA4e5MXv/uOfD3mGPLV6wWOOIJ8/+232e+fwWCYgokESEIBaiKBZnsrJS4aDTdo5ST4/RggPcG+807mOF8dRCdBnrhoU1tmMXFRsn86ijpb654emzs3l+QiAPAKra/tcBJCgkjwl5cjt39/AEDb7t1Z77dHQJ0E+eeGNvkyEqayM3lx+XLy9cADU/cdeST5+s032e+fwWCYgokESDouqogEKLWpNRFu4HlePTkS5IRcKhUgNTXAjh0Gj54gVjeo5SR0ZHVDtiJBWIiooAHsDTdQkZBTVobcykoAQDubMAkAcNCcBNn0UKdRJwGwr1cCz6dEwv77p+6nIuH7702LZwaDkR1MJEAjcVFYWHlhoU1Ik7xMhBukGeJK4Qa3241Cuu++fclXerI0iBjOUJsCaVPiorSZkpiTkKXNTI9NGsqwM9xA+y34JCKBOQkCOk7CPu26WFVFGpi53cD48an7p0wh9zU2Atu3Z/ccDAbDFEwkQNInQcVJ4IQrZqvhhjSRoOAk+NvbwQFIeL3A7NnkzlWrDB49Qc9JiAeDWXUajCuEG6iTEA8GU3MtrOxbyUmwMdzQLgk35AnhhqCNIiEZj2Pd889jd3e0w2WNlChOM9NJ7cpJWLGCfB0/nuRIUDweYL/9yPesfJXB2KdkJRIS0Sja9+5FcM+etFt3Q7XjIrXRhStmy+EGSUMgRZEgOBaRkhJgxAhy57ZtRg5dRLXjorCQ84lEVuOoxXCDtARSUv6WTc6Dkkjw2OgkRIReC9LhUeH6+qz3S9n48stYft99+Pbyy1HfDZr+pIlFWSMlipi4uC9zEmgvC6mLQJkyhXxlIoHB2KdYasvcumMHfrrpJtRT5S/A8zw4jsPvTF4FdzaKo6J5Xgw3cMJiqNhMycCJMSFxEjK6OgLIEfYRLiqCf+hQcqekrt8ISbWOi5JFPRYMpv1seN+xmPgeSZspOb1eODweJKNRxNraxDbNZunonIS0Rk1CCWQ8FEIsGBSdlmzY8fHH4vfbP/gApRMnZr3PfQb9bKqFG/ZlTgItSx05MvN3U6eShkq//JLdczAYDFNYEgmL//53OFwuHPn446TPvqR0qjuiOOApFBKTpDjBNUiLz9KRyQauoKXdFjmF98onLISh/Hxg2DByp0knQW3AE+dwwOX3I97eTq72hUXSDNKFwimzpT35+Qg3NCDa2irG+81CcxLcHRRuEEVCfj7cublw5eQgHgohXF+ftUhIRKNoXLdO/LnbdXNUcRKcnZGToCUSmJPAYHQKlkRC04YNmP3GGyikC1o3RzHcIMnYF3MSpFdVVCTEYuREKzvJStHqtggAbiGWG/L5AOok7NpF9q3yGDkJlWZKAMlLiLe3W05eFF83x2W2fc7LQ7ihIasKB3EMtYKTYEfHRWk3RwDwlZaibedOhOrrkT94cFb7DlRVpYWTmjdsQCIazRBrXRWOJi7KE147Iydh82bylYbcpEyYQC5G6urITQgbMRiMjsVSTkLhsGG2xIq7CoqJi9Qh8PtTXQul1Q3SK1CdBVJruBOQEglhl4uc/Fwu4mLU1Bh+DUmVxEUg+66L0gmQcieE5jxkU+GgVN1AF/RYW1tWSZF8Mikem0dwhOiUSTvyElq3bAEA9Jk4Ee78fPDJJAJVVVnvd59Bww1ykbCvcxKCQTLtEVB2Evz+lIBes8b68zAYDFNYEgmT58zBigcfRM2SJYg0NyPW1pZ2625oOgl5eaLFnlbd4HKlMsJ1XrPWcCcAcApXumGHA3A4gIoK8ou9ew0dP8/zqomLQPa9EsThTrJQA5Aqg8zm766Uk0DFBwDEs9h3rK1NDBuJToJwFRqyQSTQzo35Q4agQFjEWk3mk3QqeiWQ+yongboIJSWAEGrKYNw48nXtWuvPw2AwTGEp3PDVxReTr3/8Y9r93TZxkTZTkuYkSESCaovavDxSQqaziOmFG5yCpd5Or9L79SO96g02/JGWWMoTF4HU4mtVJCh1W6R4bGjNrCQSnB4PnDk5SIRCiLa2ii6AWWg+gtPrFY/fTiehXejB4C8vB8dxaPj1V7SazCfpVFScBEVhrIYdToJWqIEybhzwwQdMJDAY+xBLIuGY556z+zg6FV6YLqcoEnJz1WvG8/KA+nrj4QYlkRAKwSEs3kFamtavH/lqQSQo5SSIrZmzzEmQJy0CHeckACTRMBQKZRXKEJMWJZUXtMLBDidB7OZYXi6+P3b2YOhwaAhNHm5Q6jKqhh05CTREM2SI+jbMSWAw9jmWREKFtK96D0AsgXRIoi/0qlvqJMivqqglbtRJUMpJEPIOEhyHMF3saddFgyIhIZnkp5STQKsGDGWqK2Ak3GBHToJbLhIKChCqrU0NgLKAokiglRN2dHOUtHymxx+0seVz3YoVWHH//Rjy299i5Jln2rZfEZ2chH3mJNCBWwMHqm/DRAKDsc+x3Ewp2tqKdc8/j59uuQU/3XIL1r/wQtbteTsLTSdBmpMgTVwUfpe2rQqqsyEAUSSEnc7UVRt1EgzmJEhLODlH5p80WydBbQw1YM/8Bi0nAcgulKEkEjw2Vk5InQS/8HdrN/h304PneSz+xz9Qt3w5fp43r2MalalUNzjVhLESduQkGBEJY8eSrzU1QEOD9ediMLLhsceI4+XzAQcfDCxZYuxxr71GKnROOaUjj852LImEhtWr8f7s2Vj/4ouItLQg0tKC9S++iP/Nno3GbqjyxeoG6QIrCTeIV1VK4Qbptjr7z5gNAaREgsuVOiFTJ8Fo4qKWUwEbRIJKDwbAngFSaiLBLSzsdjgJbolIsKsHA8/zaRMmRZFQXZ1VC2xKYPt2BCSzCnZ9/XXW+wSQNiSJsyNxcV85CXl5wKBB5HtJbwoGY5/x+uvAnDnArbeSnh2TJgGzZgHCeUCV7duB665LjT3vRlgSCcvuuQcDjjoKJ3/2GaY/8gimP/IIfvvpp6g88kj8cvfddh9jh0NL7NKcBEm4QfWqyqiToLR/inBFFHG5wMfjJHRAGx4ZvFoSnQQ1kUBP+FZzEjRyKtxZllcCqfdV3g2SXv1n41BJx1BT7OrmGGttFV0iX58+8AtVKfFQSOzNkA11so6mtUavWMyglrhopZlSJJJyJsxCRQIVAWqMHk2+btxo7XkYjGx48EHgkkuACy8k4a8nnyTluc8+q/6YRAI491xg3rxUs7xuhCWR0LhmDcb+8Y9pV64OlwvjLroIjd2shpnn+VRnRZXERdXGMiZzEhQXcSEuHhVcjEQoBPTpQ35nVCQYdRIs5iRolXC6bHASpH0YpNBwQzZOQkyj5XO0pUUMNVlBrJzIyYHT64XL54O3pASAPaOomwRXrliw2RvpbAM7saOZkmSGh9nkxfbaWoRra1P5N1pOAgCMGkW+0u6MDIYNBAIBtLa2ireIPLQMkP+VX34BZs5M3edwkJ8XLVLf+e23A+XlgKwasLtgSSS48/IUT4LBvXtt6YW/L+EljXrSwg30qtvvT8tJSFtU6MnRaLhBIV9AFAnCAhwPhztOJGQZbtB0ErIYRS2KBHk3RxtyEhSHRwnllHwymZUAiQhugVdSnpljZw+GXbsAAIOFyaDBXbuyOl5F1ESCmWZKLhdAXSATx1f94494/7jj8PmMGUSoezz6nRRpoyXmJDBsZOy4cSgsLBRv8+fPz9yovp64ArSPDaWiQj00/MMPwDPPAE8/bf9B7yMsVTcMmj0bP91yC/a/7jqUTp4MAKhbvhwrHngAg48/3s7j63Cki37G7AYAEK4SKYlIJGWLmw03aDgJceE54nInged1Z2Potn2mfRKyFQkdlJOglhjpsSEnIa5QOeH0eODKzUU8GESkpUV0Fswib/cMkB4MzRs22NKDgYqEkgkTkFNejlBtLVq3b7d1gJQtbZkBEnIIhUyJhJWPPIJkLAYf/VwOGECuzLRgTgKjA1i3di3yhTHyAODVaLNvmEAA+P3viUCwMDOnq2BJJOx/3XUAx2HR3LlpLY1HnnUWJs+ZY+lA1jz9NFY+/DBGn3ceps6dq7jN1gULsPimm9Luc3g8OHv5ckvPCWg4CVQkSJwEgFzpmxUJis2aKIJISEjzHmiteDxOTro6jYQ0qyfQsU6CGG7IZnaDygRLW3ISVJIivUVFiAeDpMLB4vwG6XRJik8QeNk6CXwyKYqEvAEDkD9oEEK1tWirqspaJKQlVaokLprKSQCISKipMSwSAjt2iKFJv/D5jZeV6Z+QqJOwaROQTOqLCgbDAPn5+SjQm2JbWgo4nZnt8mtqUsnmUrZsIQmLJ52Uuo9elLpcwIYNwPDhWR33vsCSSHB6PDhg7lxMvuYasS1t3sCBlsYQA0DDqlXY/OabKKJXCRq48/Jw4gcfpO7IcgKlVCSk2fUSJ8HhdIojkROhUKptLBUJOotYUqu6gToJfj+QTJJFLSeH3EIh4iYYFAkdXt3QAYmLPM+rzp0QSyBtcBKUREJw9+6seiWIToKCSAhnWaIXqqtDMhoF53TC37cv8gYNQu3SpfbPhVDrk0CdBCHEplRam4bJhkp0WmbZlCkoX7sW2L0b7W43dIeNDxlCTrDhMOlKqpfDwGDYhcdDRpZ/+WWqjDGZJD9fcUXm9mPGAPLuwzfdRP5HHnmk23x2s5LhrpwcFI0ahaJRoywLhFgwiIU33ICD580z1nqX45BTVpa6ZWnj6OYkCK9LsaGSUSeB9mHQCDck6WJL928iLyGpM0DKtsRFhf27JcdtJQmQj8fFx6nlJGQVblCYMAnYU+EQUQg30G6OdogEuj+Hy4V8IeufinLb0MlJADqmV0L9ypUAgNJJk1As/C1ajYQ2XK5UhjjLS2Dsa+bMIeGDF14gZbiXXkoq4S68kPz+/PMB6oT7fGR6qfRWVET+VyZMyPif66oYdhK+u/pqTLvzTrjz8vDd1Vdrbjv9kUcMH8DSf/4TldOno++0aVj973/rbh9vb8e7M2cCPI/isWMx6ZprUKTR7z0SiaRlqgZkC3pSLydBWFycOTlAa2t6QyWzHReVnARhkUrm5QGBQKrDXWkpGRdtRCRohTNgQ1tmmjOgEW6g+5cOZjKzb0AjJ8GGcENGN0cbREJUIXHRLpFAH0+diTzhqsN2J0GnmRJA8hJ0E5JN9kpoFPoc9NlvP+R+9hkAoLm1FQOMPHjUKCIQNm0CjjnG0PMxGLZw1llkVPktt5BkxcmTgU8+SSUzVlX1uBCYYZHgycsTrX13bm7GyGArbP/oIzSuW4fZr79uaPv8oUNx8B13oHjUKETb2rDuuefw+bnn4jfvvQe/UkwIwPz58zFv3jzxZ5/suHVzEuxwErT6JAhOAl9QAFRXW3ISdJspZdknQSsnwen1gnM6wScSiAWDXU4kKJVAAvY4CUo5CTk2hRvCjY0AAJ9QUplbWQkAaDcxPtwQKiKBczjg9PmQCIfN9UowIBJ4nkdgxw7ysOHD4RWOobWtDZHmZv1E0o6scNi2jZSzjRtHFgAGQ84VVyiHFwDgm2+0H/v883YfTYdjWCQccued4vfT7ror6ycOVldj2d1346inn1acLqhE2eTJKJP845ZNnowPTjoJm954A5OuukrxMXPnzsUcSTJl4969GEobskClJTOQEW6gx2jFSVCtbuD5dJEASYc7M+EGmvOgUt0gdRLopE4zaIkEjuPgys1FrLWVJC/Ky4P09i0sEJzLleG00JyERCiERDSq2PFRD62cBCC71swdmZNAqyPo/vzl5QBIGMJQjoAGVNxwDgc4QWDKExcBIi4T4bDtQ54ijY2krJXjkD9wIBzCexV2udC0bh36TpumvYOOqnB47DHg6qtJmRsAXHwx8MQTJMTBYPRSLJ1pvrzwQsU4caytDV/S2IwOjWvXItzQgE/OOAOvTpyIVydORO3PP2PDyy/j1YkTxYVPC4fbjeKxY9GmYcF6vV4UFBSIt3zZla5q5YFSuAGykrBsww2hkHglxwsLjXi1L1xBQriiNLR/lZOZ2+8HeB6DGxuRfPNN3f3J0RIJQHZlkGo9EgDAJflbWe2VoCcSsklc1MpJiDQ1pU3nNIs83OArLQXncICPx7MWIAFhlHVu//7gVBIXAZPjok3kJLQKraZzKyuJ+BZa2oZdLjQbWfg7wkn48ENydZhIAOPHE8v4P/8Brr/evudgMLohlkRCzc8/K54AE5EIaoWsZT36HnIITnj3XRz/9tvirWT8eAw58UQc//bbyvF7GclEAi2bNsGn14BFA1UnwcZwg2pbZrpAOZ3gqEig+6eWq4H2vnptmZ05ORje3IxD9+yB86yzgM8/192n0v7VruSzaaikVtkAEFGVbYmlak6CnT0YZC2f6d85nIUAEcMNgkhwuFyiAMk25NBKrf6hQ1XDDYAkTGVzuIGGGvIHDyaLsuCahF0utAoCRhPqJGzdSsqEsyUSAa68knx/2WUkI/3VV8nPDz+sbyEzGD0YUz5a04YN4vctW7ak1YLzySSqf/hBtEX1cOfmooheEdCD8fvhLSwU7184dy785eWYfO21AIBVjz+O0kmTkD9oEKKBANY9+yyCe/ZgxGmnmXkZaSgOdwIyww1KQ57MDniSL+J0ESkqEq90xas2amEbsMP1SiAdTieGS0/ezz0HHHus7n7F/es4Cdm0ZhaTIlVCTu68PMSDQUsigU8mVasbaIggq6RIhZkTnMMBb3ExwvX1iDQ0GP5/kCN3EgDAX1GBUG2tOFTKKrRbam7//sCPP5I7tUSCzUOeaIVG/sCBRCAkk+A5DhGn05hI6N8/VSK8fTugkbhsiP/8h+QiVFYC995Lcq/OPBP4+mvSm//yy4FffyU18gxGL8OUSPj4tNPAcRw4jsOXF12U8Xunz4cD/v532w6uvbo6LX4ebW3FT7feinB9PTwFBSgZPx7HvvwyCrM4Seg6CcLionjCpCIhEiH15iqLqGr1AT2hFhZmXrVRkWDESdARCWhrQ4n0Kv/zzw11chT3bzDcYKVXgla4ASAJs6GaGksiQXoFnCES7HASVAZTeYuKiEjIYshTRJa4CAA5FRXAqlVZj6Kmj/dXVGg6CabCDSZyEqgT4u/bVww18EVF4DnOmEhwOIgwWLWK5CVkIxJ4nuQiAKR0TVrFcdddwBtvAGvXAm++CZx9tvXnYTC6KaZEwsmffQae5/H+rFmY9dpraScwh9sNb0mJoTCBGjNlmZ/yn6feeCOm3nij5f0roTpXQSXckHbClJ5QgsFUiEDlOTJEAj2h5uVl9jIwEW7Qy0nAypVw8DzCTie8ALj6emDPHnJFZgBdkUDbPltYyLXCDUAqLyFqRSRQYcRxGcOjxB4MNjgJTgWRANjTg0Ga6U+nTGYbbmin46379lXtuAiYDDeYyEmgTkhOebnYvY4TqpPC9fWItram5XkoMmoUEQkbNwLZtIL/7jtS756bS2rcpRQXA9deC9x8M/DPfxJ3oYeVtzEYepj6xOdWViKvf3+cs3o1+kyYgNzKSvGWU1aWlUDoLBTzBRIJ4g4AGeGGNCfB40lZkBrxeF6t4yJdoPLz1Z0EE+EGTmURhxAmavL5EKctiE20stbqkwBALHvMKtyg4SQA1gSINGlRXtFBF6FYIGB5EmSC7l9NJGSRk0BfrzR5k4Yu2rMMN4TolbyOk6CYh6OGiXBDu/T5hdfC9e1LRANSiY2a0LwESQjUEi+/TL7+7nep1yDliivI/WvWkHp4BqOXkZUsbtm8GXu+/x67vvoq7dadUAw3SIWALNyQlpPAceLvtUSC6mwFIyLBjnCDkAXe6vEgJnTuM5MZbjQnwUriotrcBorbDpGg0A1UvFLleUuVE8lYTHzf5fvPtlETz/OKCZdio6Ys5kLwPG883EDzZGzOSVByElBRYa6rJC1jzqbCIZEA3n2XfH/WWcrbFBWlRvzSsASD0YuwVADctnMnvrvqKjRv2gSO48SBMfRq7XfyftVdGMXERemVk6xPQkYSl99PFvssnQSxxNKKSNBpy0yvtgJeL6JlZfADJDPcIJ1VAglkKRJUcgbo89FmQdFAwFhLcIV9AwrllcJsD6siId7eTmLlSK+csKMHQywQEI89p6Ii5ZjZ5SToCK6YJAlV6iSgvBy5ubnA0qXiYCtN7HASfvyRdM8rLgaOPFJ9u0svBR56CPj4YzK0pxsM5WEw7MKSk7B0/nzkDRiAU7//Hk6fD7957z3MfOEFlIwfj2O6WUcpRSeBLvgejxiDVKxuAFJOgsYCqVoCSRe+/PzME7I0J0E6tU9p/3pOwpYtAICAx4MoHU5lQSSo5g3QfAoLIkFtTDRFFAkWrvZFASLLR6Bkk7xI/06c05khnrJt1ERdBM7hSMt3sEMk0IokN/3M2VUCKc1J0Pi8UhfB5feTv63EScgbQJoyB3fv1n8+6iTs2qX5v6fJO++Qr7/9rWrSMQDSl2HWLPK6nnjC2nOpkUwCX30F3H03SZT88MN0J5PB6GQsiYSGlSux3xVXwFdcTLq2ORwonzoVk665Br/Y0I1xX6LpJEiuEFXLweiVnpaToFbdIA03yBMX6ZVtLJbubJjZP2XPHnKILhdCdL9GssgFDDsJFq72DYcbsnEpVPZth0hw5eRk5Dtkm5Mg5iPI2p9TkRBparKcR0GPibodWomLTitOQjKp+b+Qlo8ApERCeTkpyQSMOQklJWS+CWC98+IXX5Cv0lG+alx+Ofn67LO6/4+GWbwYmDiRzJ+YOxf4xz+AE08Ehg4lYsTi35jBsBNLIiGZTIoLg7e4WLw6yK2sNJZ01IVQ7GEgq2wANMrBDOQk6FY3KOUk5OWlMql1Qg5JtT4MALGThSvPkNuNEE2E275d16EQ968nEuhCnkUzpY50ElxqTkIWUya1QhnZVjdQQSQfqkSrifhEwnJ5JT0mb3ExicnThUjDSTCUk5Cbmyqp1Xg/qZORQxug0XCDxEloM+IkANmFHOrqSDIioB1qoJxwAjB4MOlt8tpr5p9PzssvA0ccQY6hsJCUV/7+96RXw969pKnTcceJjaYYjM7CkkgoGjFCbKzUZ7/9sPbZZ1G3bBlWP/GE+I/eXVB0EmSNlABJfNZCuIFe9WUs4loigeMM5yWIJZBKi7iQpJZ0uRB1OBCm24TDhionACDRkc2U9HIShIXcyr7p30rVpcjGSRA+I/LyR8CGnAThtcpzHRxut5g7YTXkIDoJRUUpFwHIvpkSxxnKS6D9H7y0SZRCuKG9uloMoWmSTfLid9+RrxMmpBwJLZxOkpsAAI8/bv75pLz1Fim3jMeBM84ggv3VV4EXXyQO3yOPkPPKl18CBx2UEjN2EwqRCwgW3mBoYEkkjP/zn8UrkIlXXIHg7t34/Pzzsef77zGVztLuJijmJCiEGxRnNwCGwg2qzZS0RAJguAxSsy2zEGqIFxQAHIdYLEYStQBA6LynR1KvBDKbZko6fRLEUEY2OQlq4QbaddFmJyHb6gbRSVCYqCnmJVi8wqQiwVdcnEpaBLRFglGHyECvhLTn5/m0xMWcsjI4PB7wiYSxXhDZOAm01fKMGcYfc9FF5H1auhRYssT8cwIkF+jCC8n58+KLiSsh7a/i8QBXXQX8/DMwbBgRDYceCnz6qbXnk9LeTgTOiScSYeT3k685OUDfvsDMmaQfxJIlqSFXjF6PpeqGysMPF7/PHzwYJ37wASLNzfAUFtoyQnpfktTKSVByErIINxitbhCn/Bl0EjQTF6lIEKzqeCgE9OtHbNM9e8hIXB10SyBpM6VsEhfVFvIsnISEjpMg7tuKANEKN9A5HMGgpemVauEGgIiE1q1bxdkOZkkLN0idBKUx4GrJumoYKINMy4lobU0JlfJycA4HcisrEdi+HcFdu5Cn1+yLOgn7SiSUlZFSyZdeIovtQQeZe854HDjvPJKwfMQRpOWzWnOmcePIYn3aacC33wK/+Q3w6KMpN8MMLS3keB96iIRZlKipIbcvvyTNo0pLgdmzyfPOmpW6sDBKKASsX09ckDVrSMOqujryN29vJ583r5cIy759ya1fv9RXeisr02+HzfPEDQkE1G/BINmPy5W6eTxwWQiR9jZMi4RkLIbXp07F8W+/nTZ7QXcGfBdFs7pBKSdBLdyg5SSojYpWcBLoc7j8fsNdFzVFguAWJEpKgLY2clXYrx9pNWvUSejIEkjqJOiEMqx0RjRc3WAhvq82E4Lul3M4wCeTiLa0pOLvRvdNww0qIgGwOdzg8Si26DZV3QCYFwnURcjLE/+P8vr3R2D7drTt3g3doePScIOJNuOorwdWrybfT59u7DGUyy4jIuG114AHHkiNdDfCXXcBixaR9+mll/QXvz59gM8+A/70J+CFF8hzb9oE3HefsTkS9fUkdPHoo6lzyNChRGjMmEHaWefnE9GyaRNxSD7/nAiF+nrgv/8lN6eTuBnHHUfCMyNGkNfgdpO/dX09efz69UQMrF1LHBM7Ei8dDqC8nHxG3G5y43lyvqW3tjbLzkfmfy9DjmmR4HC74e/XT7w67u4oVgYoVTdQkSC1aIFUuEErJ0FtVLSKSIiHQmTxMZuToOEkJEtLgbY2klzYrx/5nUmRoLaQU1s8HgyC53lTbpJuSCAbJ8Hgvq0IEK1wA+dwwFNYiEhTEyJNTaZFgugkKAiQrEWCkpOgVtpqJnERMCQSwlKRIMlHoNAKh6DwudVk+HCyiLS2kn0JrZ11ofkI48eTK1UzHHwwMGUKsGwZqXQwOkp68WLg9tvJ948/TpIgjeDxkIFsI0cCN91E3IBVq4CnniILvhK7dpHplU8+mTovjR1LKih+9ztyFS2lqAg48EByu/RSUlG1cCEpx/zwQ7Lof/89uZmhpIS8x+PHE2ekf39yTvP7yXNEIuTctncvORdVV6d/X1tLhIaZWSW5uUT4yG+5uWRf8XjqFokg3tIC1y+/mHtdvQxL4YYJf/oTVj7yCKbNn99tHQSK6CTohBtUy8HsqG7IyyM18UJzH7OtmVU7OgKp7OjSUmD7duIk0ORSs06CTt4An0ggEYmoVhMo7ttgdUO8rc28AKHhhg7sk6AkEgCyCEaamizlJRjJSYhYDTdIF2kdkWCqBBJI5SRoJS5KcxJoqaNUJAgCtt3IZ9PrBYYMIVetGzcaFwlWQg0UjiNX9BdfTMoU58zRv6oPBEiYIZEAzjkHOPdc88/5j3+QK/g//IGUbo4bB1xwAUl8HDmSnLOWLye9H955J3Vlvf/+5LH/93/G50643aTi48gjyVTM7duBjz4CfviBhHa2bydX79EoEYYlJUSwjR4NjBmTEgUVFcbdHSXicRKi2LuXnF9jsdRnNjeX3Pz+lDDIzTU9qbN91y4UDBxo/Rh7AZZEwsZXXkGgqgoLjjoKuZWVGSfK4996y5aD2xcoLuBK1Q1qV1U2hRvocyTC4VQ2OT3p6vQfSGpVN9DFRFhcxJwEwJBI4Hlee/9It9zjwaApkWC0TwKfTCLe3q4Yp1fdt96EyWwSFzVaPgOpvAQrvRJiWuEGIbcklGXioleauKjjJHRYuGHZMnKnZJy2X1jog0avHkeNIiJhwwbjoYNsRAJArsb/9jeSVPjqq0QAaHHNNaSh2aBB2bV2PussYPJkcrX/9dfAv/9NbkrMmEGOcfbs7BZqgAixyy4jNylmQjxWcLlSuQkM4zz3HAnPnHFG+v1vvknWqQsuMLU7SyKh/9FHd7sERTU0nQRpdYMk3CAmFkq3MRtu4Pm0jovS5xCzyQ1cmQE6OQmCLc0JJ+J4e3uq5MuAZU1dBEBdJHAOB1w5OYiHQogFg+LVrhH0KiecPh84pxN8IoFYW5s1kaAiWtxZJC6qTYCkiGWQVvIddBIXAZvCDTSJTc1JsFkkJBMJMf9DLdzgN+MkAOTq9ZNPjCcvNjQQux4wn49A8ftJmGHuXOC228jirdax8a23SFiC40geQrbO6+jRJGfgu++A//yHhACqq8nzjxxJ8gbOPps4CB1ND1kDehzz5yuLx/Jykt+yL0TCRNp9rAeg6CRoVDcAksRCwFgJpNJzRCLETgPSnARA0rCJ2s16IkFrdoOWSDBwNWpEJADkqpeKBDPo5Q1wHAd3Xh6iLS2kE6FkQdFDr09CR4YbPFl0XYyp9EkAJOEGC2GMZDwuCiJPYSFAmxapvD9S98xQqEdHJERbW0VR7i0qSit/pOQKTkL73r3GnnPMGPJ13Trt7Sg0H2HcuLTnNc2VV5L8gC1bSI7B1VdnbrNtW2o41I03WhclcjguFQ5gMORUVSnnqwweTH5nEkt9Et6bNUvxJBVtbcV7s2ZZ2WWnkVQqT9SobgBkzWXMlEBKF3Hpwi+IgQx712C4gdfKSRDCDQ5hce0okSBNXjSDXp8E6b7Ntn3W7bgoqW7gDXafFPetl5NAQxnZOAkKOQnZtHyWvn+evDz9xEXhfeMTibTPgSo6zhfNo3AXFJDPkoKTkCPEsRORiLHXuN9+5KvRoXLZhhooubnAvHnk+7//XZyPItLaCpx6Kvk6bVpqWwajoykvB379NfP+lSvNVeMIWBIJwd27FasbEtEoQmYyUbsARpspcQ6HeEWaUBIJBsINac9BT6R+v5hskzG/wWy4QSlpR3ASnIKNGw+HwdOaZxPhBs7hUN6/gNUyyKROTgKQvUjQcxKS8bjxDH4BrRJIILvWzFp9EmgYg/ZgMLVf4XPkzMkhi7TB6gZAoR25EjpOAn0vfPTzJ2nJTHF6PMgRRKyhkMOECeTrzp2k94cedokEgFi3Rx5JLhBOOEGsJEJdHekvsGIFOWG/+qr2ACkGw05+9zvSkOvrr0kCayJBhohdfTUJRZnEVLhh11dfid9X//hj2pUOn0xi7+LFyO0JbZkVwg0AcRMSkUh6jNZquEGWtAgoOAkGww2iUyE/EbW3iy1XXbQxDc8jkZdH/vChENlGZaED9HskUIZv3YqDtm5FdNEiUzZoQicnAchCJOhUN7j8fjHfIdraquoKKCGKBDWXgiYu2iwS3Pn54jFHmppSg5IMEBXePw/9XOkkLjrcbnAuF/h4HPFQSH+ctp5IoC2ZqUiQDHeS4u/bF6G6OgT37kXJ+PHaz1lYSBLrtm8nboKWpd/YmH0+ghSHg8xgmDaNVFeMH0+aJP3wAxEsBQWkKsBouSODYQd33EH+H445JlXumkySVuAWBjCaEgnfXXUVABInXvT3v6f9zuFyIbd/f0wxWjfcRTDaTAkQFpuWlvReCVbDDXR7pUmTFp2EjHADrWxwueAsLSWxTJ5HzOGAy+MhV5L19STrWgW9uQ0AgFWrMFKoNY49/DDJqjZYbqV3tQ90nJPAcRw8BQWINDUh2tpqasHVTVyk46KzCDcoVTdwHAdvURHCDQ2mRQJ1EmjCpp6TAJDPZCwQMDa/QU8kSBs5AYrhBoAkLzasWmU8eXHiRHJS/PVX7cX/u+9IwvDYsaZyWzTp359cpZ1xBnEO/vc/cv+ECcDrrxvqaMpg2IrHQz57d9xBQgw5OSQsZ1GsmhIJ5whdyt477jjMev31lG3YjVF0EugJUbYAKLZmNlICSRdxo+Oo5dUNeiWQaomLNJzQpw84pxMunw/xUIgcf58+JCu6oUFTJOj1SAAAvPee+K27pgb45RfSmMUARvZPRYLZpkd6bZkBsmBSkWAGvRJITxYiQctJAMiVeLihwbRLQUWW6ABqjImmuHw+xAIBY+EGvZwEWtlQVET+x+h7ruAkAEDQqEjYbz/g/feV47BSvv6afLU74W/ECNKt8IsvSOfBUaPIVZzJmn0Gw1ZGjUrNN8kCS9UNJ3/2WdZP3FXglXoYqIgExdbMRjouGqygyCg5y7YEUiISAGKvx0OhVPJidbVu8qKhcMOXX6b//P33hkWCESeB2uOWKyc0+jZYrXDQbaZkMSeB53lDIgEwn7xIRVaGSNAQaKYaKuk4CWlOBs1HcLszygLFhkpG85smTiRfjYqEo482tl8zOJ1kxkE3S9xm9BDmzDG+7YMPmtq1JZEAAHsXL8bexYsRaWwULXvKIf/8p9Xd7nM0nQTZwqU4OtdquEGpzNJqToKaSKDhBqEBj8vvBxoayP4NVjjoigSeF0/OVfn5GBQIECfBIEmd2Q2AJNxg1kkwIkCEhc30vmmuh0o+h0dS3ZDWV0OHZDQq/j2Vwg2A9QoH6iR4TIYbAIPjovVKIGn5ZUFBevmjrMzRtJNARcKqVaSsWKnKp65OzEfYDWDrNdegYOhQjLv4YlO9NxiMLsny5R22a0siYdXjj2P1E0+gZPx40pe+GzfVUMxJoCdE2RWo6CSohRtUOpApJi5qiISEvONiMEgST1QWGt2cBKlIgGCV01IYnQoHvbkNqKsDGhvBcxy2FxYSkWDiA0sXcrUpkICk6VE3dBL4ZBKxQEA/6U9A+hpVKyeok2A23CB3EnQSFwGTDZWoSGhvV1yso1InQSUfAbDgJIwaRZ67tZUMbpo8OXMboaohMmgQvr3tNvHuvYsXY+YLL5ie1MlgdCmoS9YBWBIJm15/HYfceSeG/va3dh/PPke8ypcuwPTkKVtcxJwEpXBDIkGuzBQWO8MNm9TCDQARCtKfJai2TabxcGGBSst5MOok6FUfrF0LAIiVlaGJvl9btpD3w0BM1lCfBFpeabG6waXlJNAhTzaLBKfHI3ahjLS0GBYJNGnRmZOjWnJqNdwg5iRYcBJM5SQAJI9GFkaICe+xR0ckUCchVFuLZCymW1kDh4MMXvr8czJlUUkkCCfRHZEIkJeHQbNnY++iRWj49VesfuIJTFJqhsRgdCcuukh/G44DnnnG1G4t9UlIxmIoVfpH7IZoOgmyxcUpv9IH0ssHVUIOmtUNWiLB50u5Bxp2uGpOAl34qEgQjjXW3p6aD69zNapb3SC0w40NHIh2txtJh4MsPrSbnwY8zxvrk0CdBBMiged5Qy6FFSeBTyZTAkSjbNJjIS9BXMg1LHAqEsJ25SToJC4CBp0ErzclOBTeT9Vwgwxfnz7k88bzCNHW0XpMm0a+Llqk/Hshb6ba40HJ+PE47L77cLDQ4Gj9Cy8Yfx4Go6vy/PNEDDc3kxJcpZuFwXCWRMLw007D9g8/tPLQLkdSqdGRSrhB8YTpdqdsVRWRoPgcWomLdD8cZyh5UTUngZ6ohYWQjh5OhEKpqzy9CZN6IkFo85msrATPcQjRxW3zZs390uOmIs1uJyEZi4n71nISrMxvkP79tUSCla6LMeFvb0QkdLmcBEAzLyEmFQkaTgLncJjPS9ASCZs2ARs3IslxqPX7Me6PfwTncGDAzJkonTwZiUgE6194wdjzMBhdlUsvJe7xtm3AUUcRx2DBgsybSSyJhEQ0ivUvvogvLrgAS++8E7/cc0/arTuhOOBJLSeBdlyU9kkAdLsu8kqtn7VyEqQixEAZpNgVUUckpDkJdokEYdwvX1kJAAjS90LeplYBacdAzRJIC06C9G+kmZNgYRKkVCRo7tuKk6DRI4FiOXHRQp8Ep5lwA6ApEuh7nFbdoDI/wbRIOOQQ4rpt3pwaQU0RehfU+P1wlJWh/1FHASA9J8YJsxW2LliQ+X/NYHQnHnuMVKz97W/kMz9wIHDmmcCnn5J8OYtYEgnNGzagePRogOPQvGkTmtatE2/N69dbPpjOQDFfgJ4sVKobMlr46nRdVBwVbSQnATBU4aDalplewcpEQrwDRALttRCkC8727Zr7BUyIBAvNlMQTPsdp7lvMSTDhJNAF05mTo1m1YKWhktYESIrPYuJiVO4kGEhcND0umu5bK9ygk5MASJIXjYqEoiKSlwCQLodS3n8fALA7Lw8Djj46zbWqnD4dORUViDQ3Y+fnnxt7Lgajq+L1krbMn39O8sXGjycjvocM0e23o4alxMWZzz9v6cm6IqacBLX4rE4ZpOKoaCWRIJ/dABgKN6gmLspzEqThDJpIl61I2LkTAMAJ3byCtLqD9rHX2rcgEjiXS3MuhMdCCaS0/FFrkqB0yJNR9JIWKV4LrZnN5CREmpqMTUqk+7bQJ8FUTgKQchJk72c8HBb/3mk5CSoigToJhkUCQOYlLFoEfPghmasAAFVV4L/7DhyA3fn5mCprpORwuTD81FOx+oknsO2DDzDkxBONPx+D0ZVxOMQuu1CYtWR4N9kcQ2DHDuz54QcxXml2kl5XIMNJ4Hnd6oYMJ0FPJFitbgCM5SQoORWAarghbiEnQbEEkudFJ8EpjCYN0s+AAZEgLuQ65WcuOmEyFBJdGd19G+i2CKSsdzNOglGRYGV+g5lwQzIaTeWvGNm3WrhB4z1STNbVQii3lQ9bos/NORzkc6gyt4FCnYSgmYFxdIH/9NNUgtaLL4LjedT4/Qjl5qKCug0SBp9wAgBg76JFlmZtMBhdhkiEDBQ79lhSGrxqFfCvf5HcMYWpskawJBIizc348qKL8L/f/AbfXnopwkJm8E8334xl995r6UA6i4xR0dLJenInQS2JS6frYlbhBp2cBJ7nlasnAHWRYFe4oalJfB2u4cMBWHMS9ESC9Ko6btAyM9JICUgt5FYSF3WdBBpuMLHwxA0kLjpzcsTXZWZRyxjwZCZx0aiTQPtvyLKoxXyEvDxwPJ8qvVVzEsyGGwDSVGn//cmJ8tlnyf/jo48CALYUFaF08mTF97Vw2DAUjRoFPh7Hzi++MP58DEZX4rLLgH79gLvvJoJ5507gzTfJhFKDzdyUsPTIX+65Bw6XC6d88UVa4tag2bNR/cMPlg+mM8gogZQKAHlOgoVwA8/zxsMNFnIS6CIOKIgEWU6CW0kktLaSRk0qaE5ppCfwkhK4hMUhRI/BiJNA962zkDs9HnFRNNpQyaiT4JEkRRp1KfTmNoj7pgmGZqobDOQkcByXCjkYLGlKxmJiLoWVPgmGqxuokyBr0iWWXxYUkN8lk8QKpf06ZIhOghmRwHHA5ZeT7++8EzjnHKC2FuGiIuwoLETZlCmqDx18/PEAgKpPPzX+fIzeyWOPkRi/z0fyYJYsUd/26afJZNDiYnKbOVN7+2x48klyrh82DPj2WxJyO/XUzJtJLImEvT/+iMlz5ohxQ0rB4MEIGlgcuhIZbZmlJ0PZyVNxdgOgWd0gbVltNNzAx+OpxV8n3EAFCKDfJ8EprW6gOQk8r53voOUk0NrysjI4XC44vV600+0aG1OvUQUjjZQoZoc8ifvWqD4AJEl8MO4mmHYSzIgE4WpfK9wg3bdRJ0EqrkQBYqTjolKXUS1UnATF8sc+fZRbKAPIFaplYoGAucFeF1wATJ1KHDIhYXHl8OHgOQ5l+++v+rBBs2cDAGp++sl0/wlGL+L118mchFtvBZYtAyZNIvM6aI6NnG++IYmEX39N8mUGDgSOO85QHxnTnH8+KX0sKiLnd7WbSSwlLsZDIcURuZGWFu1pgV0QVSfB58tosax6VUVFgsKJlJdcnerNbpC+p/FQCB63W1ckJCUiIS2cEY+nnA25kxAKkdfn85HX29ys+uHRFAnUMi4rI/vPy0M4HAbv84ELh4nTMGyY4n4BIGkwJ0Hcd0OD4QoHo06Cw+0WOyNGW1tTY4w10BsTTbGSk2CkugEAvMIVu9EySLpIO3NyUn/LjkhcVHMSDHZbFJ/X74e3qAiR5mYE9+yBZ/RoY8/vcpHqhquvBnbsQPSPf8QWYaBNKZ3xoED+oEEoHjsWTevWYfdXX2H4aacZez6DtO3ejeoff0QiHEafCRNQuv/+hhNOGV2IBx8ELrkEuPBC8vOTT5JE2WefBW68MXP7l19O//k//wHefps09zr/fHuPrYMKCiw5CWVTp2KbZDwwOA58Mol1zz6LioMOsuvY9gkZToJK+SMg6ZMgFwl0sVASCdJFXGlUtGShcbjdolgxOuRJKhLSFnLp9oLQSMtJAAzlJRhyEgTL2OX3AxyHJL2a1LGKxXCDnkhobUVFeztcyaRxkSD8HV06TgJgPi9BdBJUZitQrEyCNNJMKW3fBkVCRj4CYKzjIv3MGA036DkJBkUCAPhp7w2zV13l5SR5a+FC1AoJtYUjRui2xh503HEAgCobp9wmYzEsv/9+/G/2bPw8bx6W3XMPPv/97/HZ736H5o0bbXseRnYEAgG0traKt4hSz4xolAyvmzkzdZ/DQX5W6/Qpp70diMVSYrobYEkk7P/Xv2LLW2/h6z//mfwTPPAAPjz5ZNQuXYrJZkZWdgEyKg9Uyh8BjXCDhkiQxrn1Ehc5jlOfBKmWFCnp5ph2ZUItbp9PvFLMRiQoXu0rOAkAkKAnY51WtwkDLZmRTAKzZuGgb7/FjKoqsf+/HnRRM+JsuU3Ob0iYDDfEg8G03BEt4gaqGwDzQ54yKhsAU6OiDYcbjOQk0IoFWbhSDg05mMpLkNEgTH4snTRJd9uBgkjYu3ixqRCRGslEAj9efz3WPfcc+GQS5QccgAEzZ8KVk4OGVavw2TnnYLcweIrRuYwdNw6FhYXibf78+Zkb1deTUkK5uK2oSH2m9bjhBqCyMl1odHEsiYSikSNx4ocfomzKFAw4+mjEQyEMnDkTx7/9NvKFpjrdBTMiQTXcoOUkSEWCTk5C2nPQ3+tUThhtyZy27w5yEujVb5wKGx2RoDs8CgC++w5YvBgAUN7eDqfBCZOmnAST8xuM5iS48/PFkJXR5EUjfRIA806CuF8lJ2EfVjeYcRJEkZBFnlOT0NyteOxY3W0LhgxB4ciR4ONx7LJhqt7Khx7Czs8/h8PtxhEPP4yZL7yA6Y88ghM/+gh9p01DPBTCd1dfjd3ffpv1czGyY93atWhpaRFvc+fOtf9J7r4beO010hrZwHmpq2C5LsKTn48Jf/4zDn/wQRz15JOYdPXVZGx0NyOjmZJKjwRA46qKLhYK1Q1JE+EGQGF+g155pV5LZonFanu4QeYk0KvfOD1mnQmThsoUP/447Ufvzz9r7lPct8GcBMD8JEij1Q0OpzO1b5MJhroiweT8hozhToCxjotWcxIaG9Nawaa1ZO4MkTBmjKHt7Qo57F28GOueew4AMO3uuzHw2GPF3/nLyzHjiScw+De/AR+P44drr0WNwc+1WRKRCCLNzazltA75+fkoKCgQb16l80ZpKZlsSz+/lJoaXVcM999PRMJnn5FS3W6EJZGwZcECxVKhqk8/xdZ337V0IGuefhqvjB+PX5RsHtlzfHDiiXht//3x4SmnYPd331l6Poqqk6DwIVEcFQ1oOwlUhLhc6eEAm5wE1QmQsvJHICUSEpEICYN0kJMQo6/JoJOgmbgolNQGhI6O/nXrNPdJEQWIGSfB5uoGwHwZpChADIoEo5n4GcOdAGNOAv3MmM1JiMfT8mLSqhuoNWtUJFjMBA83NiJUWwtwHIpGjTL0GDHksHChuaoKCYloFEtuuw0AMOKMMzBYqJyQ4nC7Me3OO9F/xgwkIhF8d8UVoqDJloZVq/Dz7bfj/eOPx+tTpuDtww7D61OmYMHRR+PH66/HtvffN9WEiyHg8ZDKGWGiKAASDv3yy9SAMSXuvRe44w7gk0+AAw7o+OO0GUsiYe3TTytmgXtLSrDm6adN769h1SpsfvNN3X/kuuXL8eP112PYqafi+LfewoCjj8b3V16J5k2bTD8nJcNJ0MpJEBaFZDSaXlNvIHExo+2wjkhIZCsSFMINbkmindFJkJp9EuQ5CcKxRumiYzAnQbVPAs8Dq1cDAJpmzAAA+HbvNjSsxGgzJUCIk8P+cANgvgzSsJNgNtyg5CQY6bhI3TMqLPXIyUn970hCDopzGzo4J6FZGGOeN3Cg7vtJKRw+HAXDhiEZi1kOA2x5+2207dwJX58+2P/661W3c7jdOPzBB1F+wAGItbXh6z//GW3y4VQmCDc2YuGNN+LTs8/GptdfR5swoZUSqqnBjo8+wqK5c/HOkUdi8c03o275cls65bbX1KB64UJseecdrHnqKfz62GP49dFHsfaZZ7DlnXew+9tv0bJ1a9q8lm7JnDmk98ELLwDr1pHJi8Fgqtrh/PMBaajinnuAm28m1Q9DhhCBvHev5TkKnYGlEshgdTVyBwzIuD+3stJchzSQk+LCG27AwfPmYfW//6257Yb//hf9Dj8c4y66CAAw6aqrsHfRImx85RUcdOutio+JRCJpmaoB4Y/z8x13ID8vD3UrVgAAtr3/PupXrEDpxo0YDYgnuvUvvIAGYaGS5hf8eN11cLhcmHbXXXAIi0Vg40b8KjspUMWejMcRCwbJyYrnRTGy5N57EZOcwOhJIkQXYOF3oaoqLFM44dDFh4YbdnzyCXZ9+SUqVq7ECAANO3divfRxQi/vWHs7wk1NyAew+3//w3aFD+1+l10mOgmBqir8KHv+AzZvhhfAypdfxqAhQ8Sr30AohH4Amn74AWsVjnn073+P0okTxRNGw6+/ZuwbADytrTiwtRVwuRA+5BAkX3gBrnAYP196KaLSK2KB4aedhr6HHAIgZVHX/PST4r6HnHQS+k+fDiD1d6369FPFq9ZBs2ZhoJBoFNyzB7VLlwIAtn/0kfjZoPQ/6igMEdr8hurqxP+HNU89hR2y0Em/ww7DsFNOAUD+jkvuuEO8Yl9+//1pwqziwAMx4swzARCRsk4od2rbtSvj9ZVOnozR554LgCTPLbrxRvEqtW7ZMnH7KdXVyAHSnISFc+emVeRIP/Orn3gCE6+4Qvz5p1tuUQxDHOBywQuQ5MUhQwCkbP8tb7+N/ps3wwNgxSuvIPjll/D37Yv9//pX8fHL7r0Xobo68bMXaWzED3PmgHM64evTB1MlpWYrHn5Y1WmgnwEaavj1sccQUBk85vT5cMgdd4DjOAw89lis+fe/seLBB7FHQShwDgcOlUy7lZ8jaD6Dv29fLLntNnKOEP6WG195BXWyvBpvcTHc+fkI19fjq4svxnGvvAJfSQk2v/UWan76SfF4AeCAf/wD3qIi8DyPn+fNw9Z33xXfM39lJfIqK+EpKoLD7caEP/8ZkeZm7F24EJvffhuRhgZsfecdbH3nHbhyc5E/aBBy+/eH0+PBpKuvRp5wft/11VcZn1s+mUQ0EECkqQm+Pn3Qsnmz8fM+xyG3Xz94CgsRa2uD0+eDKycHrpwccE4nHC4XOIcDQ046CQWDByMeDqP2l1+w64svkIhGiViNxdJuDo9HvFjiEwkkIhFwHJfan9MJh9MJzuVC/uDByBs4EC6fD7H2djRu2IDfGDtywllnkYufW24hi/3kycQhoK5YVVV6d8MnniBi/PTT0/dz662A4DZ1dSyJBF9JCZo3bEBe//5p9zdv2CDaq0ZZ+s9/onL6dPSdNk1XJNSvWIExF1yQdl+/ww7DLqn9I2P+/PmYN29e6tgFy3/X11/DL7m6b1y9Go2rV8NBryaFq6vaZcuwS6FV604hZnnInXeKbkC8oQE75BPoBPhEIpXhLrFut3/1FeIKw43EUj8qINraVPcNpJyE5g0bsOOjj5AjiIzWurq0x9GeAPH2doTCYeQDCG3Zgh0KJ/uRZ5+dOlE3N6NKerLgeRwiXPVuW7wYZfX14tVaUFj8k3v3Kh4zjfvSq/3g7t2KJ/pKaveOHg1neTkCHg8Ko1EEPv4YexX6kJcfeKAoEuiVa+u2bWjdti1j25Lx40WRQENNbVVVGVdfALm6pCIhGggQCxupz4yU3MpK0gYVRCCGBDelYdUqMdOe4i0uFkVCIhpNe3/lEwldOTmiSOATCVR//z0A4mplvMc8L4oE8Hza76Xvx2T6GZOIhKqPP1atxKiRdYrb+fnniu7LuFiMiASpkyCI2bqff4ZL8rkJud0oGjUqTSTs/vbbjMWchjfzBg5MEwnVP/yAJpUQFHWRioUeCzWLFmUs0BRXbi4OueMOAOTzuebf/xavvOVwTmeaSFA7RzSuWYPGNWvIOUKgfuVKzf/jtp078c1f/oJjnnsOjatXa267/1//iradO7Hk9tuxd+HCtN+179mDdkkux8TLL0fFgQei4sADARDRSokHg+IUX4C4TX2nTUNOeTn2/PCD5jFQOIcD3uJihGVVLVIcXi+SkQiCe/bo5plkW/XBA0AsBrn3FaqtRa0k/yNmxdm44gpyU0J+3Aam4XZ1LImEwSecgF/mz4c7NxdlQoyl9uef8cv8+WJ7UyNs/+gjNK5bh9mvv25o+3B9PXw05ing69NH84M5d+5czJGUZTbu3Yuho0djv8suQ2FRETa/9RZat2zBoOOPR+nEiSj89ltiDQlOwrBTTkH51Kni45fffz/4RAITLr0UnoICEqYQRIK/sBBTrrkm45jXPvMMnIJaBpAWlph4ww0kGUZg2//+h6a1a1MWoBAi8LjdmHLDDRmvr23nTmx85RVRJFROnw5vcTH6vPsusGABiqZMwZQ//EHcfu0zzxCREAohb8wY4L33UD56NKZcdlnGvvMGDBAXjMLhw9Oen4tE4BQm7Y29/noUDB2K1i1bAABJIVmyIDdX8ZhpWInmJJRNnSouwmnbffEF8NJLwMiRcOflocXrRWE0ivFHHIFKQWhIkZa50QWi3xFHoN+hh2ZsWy6JDVKxWzB0qLgQp+138mTx+5yyMvgrK9G+Zw+G/d//ZYTISsaPF7/3FhejbOpU1P3yCyoOPhj9hZAJRZpM587NxYRLL8XqJ54A53Bk2NSFI0aI3zs8Hky+7jqsuP9+AMDEq65KC33kC1fvADl5T7nhBmx97z00r1+PAcccI75275VXkrCURCTsf/31ae4BACx/8EHwsVjG//akq69WtI898+cD69enlUE6vV7E29sx4cwz4RBE+9gbbwRcLjG/gjL+kktE8bH2mWcQrq/H8DPOQOGwYeklnADG/OEPqq2p1z33HEK1teL7POq888ScAzlS16Zo9Gj4SksRrq/H0JNPzkx6lDVBoueIeCiE1U8+iWQ0iiEnnYSScePI5pIryyEnnpj2GZESbmzE5jffROOaNfj2sssw+ve/R4FKMzI+kcDW997DmqeeQiIcBudyod+hh6LioIPSq6gEpO8xPUcARKg3rluHhpUr0S7kimx+4w1sfuMNxeelOL1e5Pbvj/4zZqDfYYehz377IVBVlbYAy+l/9NFw+XwI7NiB2qVLUbdsGaKtreQWCJAwbiwGPpGA0+uFy++H0+uF0+cDn0jA7feT+/x+uHw+4kJ4vSg/6CAUjRoFzuFAsLqauC/JJBKxGJLRqPg1GY3C378/vAUFiIdCCNfXo2HDBmDzZs3X2tuxJBImXnklgnv24Ms//lGMtfM8j6G//S0mXX21oX0Eq6ux7O67cdTTTxuKG1vF6/WmZarSK/QRp5+OPpWVqP7xR7Ru2YLKww8nV3X0ykgQCQOOOiptf6uffBLRlhYMPv54FApDjehC7vV4MEbWRatpwwasfeYZuHNzU6+TigSXC2NoLEugdetWIhLoiVq4OndGoxjz+99nnKBqfvopTSSU7b8/aT+7Zg0AoHjyZBRLjmnT668jXF+PeDCIEuEKq6BPHxSodP+iIqFgyJD0RYJe+TudGH3JJQDHifHumPB+uEOhjPdDCl1gSidOVN5OeA0YPBie/Hw0CSfyivJyVOh0K6Mn5r6HHKJ5DABEa9Wdn6+7ra+kBJ68PLSDiGUlAULxFBSg77RpqPvlF+QNHKi5b5ffj0GzZ2P1E0/AU1Cgua3T48G4Cy/Emn//G7FAAANnzkx9FmVwDgfGnH8+qn/4Ac0ABhx9tOhegP6vSkSC6EBIWPPUU4g0NaUJK4A4TYq89x4RCcLizfO8KAhH0FHNpaUYI4QN5YjHB1IlsOfbb1EybhxGKgi4oSqjnRPRKJY/8AAAsugDUEwgVILjOAw7+WSsfeYZJMJh3c8EPUcsv/9+JKNRFI0ejWl33ZVezSRQecQRqDziCNV9DTzmGHz5xz+idulSBPfuxYE334x+hx0mJj3zyST2fP89Vjz4IFqExa3ioINw4G23oUBI7tVDPEfIaNm6FbVLlqBu+XK07dolumBOrxf+vn2RP2gQ+uy3H/pMnIiCIUMyXl/J2LEoMVBqmlNamnbhZScFQ4agn1YSoYzWXbsAHUHU27EkEpweDw5/4AG0XnklmjdsgNPrRdGoUWKikREa165FuKEBn5xxhngfn0igdulSbHz1VZy1fHlGsp+vtDTDNQg3NGS4C2bIaMusUQIJENs32tKSnu1toE+CXktmSkaZJQ03JBIktiUTVGIzJXnioryEkh6/dH4DvSrTSNhTrW6gyY5FRaJwoTkJITqvor2d3FQ6E4p9EtSy66n1P2gQ3Hl5CNLtDFh4SRN9EujVqd2zGwBzkyDFuQ0GR7r6SkoQE2LDetCOi4rNlPQGbJktg6T/j0LIKxEOi59TN03A1alsoIiDnkyWQbZs2QI+HoensDBjxowRBh53HNY+8wx2f/cd4qGQ7t+6fe9ebBBa8E6+9lpFgWCEPvvth+NefhnfXnEFgrt24Zs//xmFI0eKOTx1y5aJoTlvUREm//WvGPZ//2dLi+fCYcNQOGyYuvhj9EosiQRKwZAhKJBYm2boe8ghOEFWLrn4H/9AwbBhGCdxKKSUTp6MvYsXpyn7vYsWpdnBZuElHQsBaJZAApITpkGRkJTvX7qdwolHtQQSIFm0KiIho7qBigTZAp02CZJWPmgsjgk1kUCz9SV9GGhOQjgaJVen0ShZKFQabOlWIEhFQn4+gvQYduxQPV5K3ER1g+lmSrRM0YAA8ZoogRTnNui0exb3XVyMwI4dCBuYBBnXasus05Uyo+JGj/Jy8lXI3aD5IZzTCScVNEZFghAKMisSxP4Io0dbWkBLxo9HbmUlgnv2YNfXX4vJqGqsevxxJKNRlB9wAPodfrjp55NSNHIkjn/rLax67DFseu01tGzahBZJBZc7Lw/DTz8d4y+5xNCsEQYjGyyJhGQigW3vvou9ixeTE5Rs1PAxQhMRLdy5uSgaOTL9YPx+eAsLxfsXzp0Lf3k5Jl97LQBg9Hnn4Ys//AHrnn8eldOnY8fHH6Nx9WoclEWWKHUSHAY6LgIqzWUMOAlpIoEu4EoiQTqECQDcbnKLxYhIkPX8FkWCfBGnV2yyBUdseBQMkvaggLUpkFInQUDsk9DeTsai1tQATU3qIkGr5TOQEgPUSRCOgd+xA3qnfbGZkpE+CZJmSjzP6y4qVCA6DSzmZoY8GS1/pPhMDHnKcBKSSdLLANAVCeLf1eCYblEACKWO0m6LHJ2WZ1QkCJ/RdpMioVkQCUUGmyjJ4TgOQ085BasffxwbX35ZUyQ0b96MrQsWAAAmXXutLVf1nvx8TL3xRux36aXY88MPCOzYAYeQ5Fl+wAGGPyMMRrZYEgm/zJ+Pbe++i8ojj0TRiBEZcXK7aK+uTvuHK9t/fxx2771Y+f/+H1Y+/DDyBw/GEY8+miE2zKA6KlplcVGc36DRcdFsuEGxDW5uLlmUlUZR6zkJspMJvUqNBYP2hRvosUsFSFFRSiSo7Vu42lcMN8RiAF0YBg2CR+IkcA0NpM5Yw5Y30yeBLuTJWAyJcFjTWuZ53vDsBsBcnwSjcxvEfdOGSgacBLFPAt23NOFQTyTQXBOjIoHa+0IiXEzabZGWyhkMAVCR0GayoVKT0COh2Oj0SAVGnnkm1j71FOpXrEDD6tXoM2GC4nYrHnwQfDKJgccei7IsXE0lPIWFGPIbU0V6DIatWBIJVR9/jMMefFAsIbOLmbJRl/KfAVKzPmjWLNueM6mWk6CyuCjOb+jIcAOgKRJU2zKrhBtc0qtCA+EGVZGgFG6QLiY0m1qrUZPWQr5nD+kn4XYD5eVwOhxI+HyIOhzwJJPArl2AxlWimbbMtEabTyQQDQQ0F/9kNCq6T2ZEQqS5WdelEJ0EgzkJRsdFJxMJMUQiOgkmREKa+DOC3EmQdlukzYIGDjS0KzoLJlRbi3h7u+7kTYAIOVEkWHQSAFLJMmj2bGz/4AOsefppTH/kkYxt9nz/PfZ8+y04lwuTZJVNDEZPwFJ2jcPt7naDnNSw7CSohRtk3ctEJ8GgSMiY3QBodl1UzUlQCzdIcxLoghGJpC8a0v3TkICJcEMiHAZP79dYwMQpkEqLlNSWFv427vx8hOjr1Jm6Ju5bK9zA88Cll4IrLsY4YSHTy0uQijdDbZmpSxGN6sb0TYcb6PwGHSchLmmUJQoQM04CFZZGu8RRkSD8jdJEAnUEZD1W1PAWFYnvYUChh4US7dXViLW2wuFyqZYQGmXcJZeAcziw64svUPvLL2m/iwWDWCKUc4465xzL+VkMRlfGkkgY84c/YMNLL9nSzrOzMTMFEkhvUysiXSxkg1SSSjkJVpwEwJxIUAs3SK8KpZnuKm6CrpMgDTdIBEmS7lsr3KA1KpqKBJoEB7LAhY2KBCNOwnffAU8+CbS2Yr8dO+CNx3VHUVPx5nC7M99zBVx+v7idXl6CGG4wmrgoOAl64Qaaj+D0elOCjIoElyu9Q5wCpnMSaCghEADa29PDDdRJUOjYqka+UNoXMJCwCqSSFguGD9eeC2KAohEjMPy00wAAP918syiUkokEFt5wA9qF7rOTrrwyq+dhMLoqlsINdcuWoWbJEuz54QcUDh+esYAo2XJdlQyRoFcCqZW4CBABIHlsRvUE3Ub+OLp/pUxyDZHA65VAyqsbpMmFLhc5hlCInNAVSknF6gb5yZYueJJwg9PjIS1So1Ekc3PhBAw5CYpzIRREgseMk2BkwJOkiZeD5zEgEDDsJBhxEQCSAOcpKkK4vh7RlhbNMmGzToLRSZBWx0RTTOckFBSQcF0kAtTUpJyEvLxUnolJkdDw66+GnQRpZYMdTLrmGuz5/nsEduzAlxddhNHnn4/t77+P6h9/hMPjwWH33mtY2DEY3Q1LToInPx8DjzkGFQccAF9xMTx5eWm37oTqgCedEsi0xEW3O3U1JrOUzYYbMqobAG0nQSkxUrqtVnUDoJu8aCZxEZCEHOjzaokErZwEOhxKzUnQ6RUvOglai6DQY59OZqsIBnUn/4kiwcSiYLQMMmYycZH2B9FzEhRFgoEx0RTxM2lUJHBcyk2oqRGTJv1OJxEnHAcI/Q+MQEObRkUCHexUZJNI8BYVYfqjj8JbVITGNWuw6IYbUgLhvvvSOn0yGD0NS06CtBd5dyejmZLREkipSOA4shi3tWWKBMmoaBEj4Qbp/rVEAl3EzVY30N/n55OrdqvhBomTAJAFLtLUhDhd+LXCDWouBaAcbjDoJPA8r+8kBAKAsJjgmmuA885DaSiE3TY7CUB68qLmvk0mLoo5CTpJkZoTIM04CWYm11VUkBLWvXtFdyaHzoSoqCDC2iCmww02JC3KKRk3DrPffBNrnn4aTevXo2DIEIz94x9JdReD0YPJqplSuLFRHBZTMHSoWLfdnchIXNQJNzjVGsvk5CiKBNPVDUrhDAPhBqPNlDKuCjUqHPhkMrV/k06CKBKsVjcohRsM5iQkY7FUBYJaTsKKFSRxsX9/QGjtmxeLIaHjUNC/i9OESKCJd3pdF8Vwg8mcBF7IpfDIBBtFs9uiEZEgDVEZRZK8SN2ZHPq/ZSLUAJgTCbFgEG07dwKwz0mg5FZWqk6bZTB6KpZEQry9HUvvugvb3n8/7Up86G9/iwP+/ndTV1mdTYZdrxNuUHQSANUySKvVDYlQCHwyScSLgcTFNKciFiM3QD0nwUC4QToN0Eh1Q9r+6fZGEhcN5iS48/LQYiDckJRk7qs6CXQuxOTJQGEhooWF8LS0wLl1q+p+AZjqkUDpqHCD0+OBKzcX8WAQ4aYmVZEQk+YEUAy2ZAYsOgm0xHHnTtFJ8FKRYbCygUJFQri+PjVuXQUaasipqBCdFgaDYR1LOQnL7r0XtUuX4sjHHsMZixfjjMWLMf3RR1H7889Ydt99dh9jh2JLMyVAVSSI1Q0mww1pz2G2ukGpfJLun17pS8MNgKKTIBUJRsMNdEGJGhAJ1ElwGK1uyM835CRIBZzqXAhhYiUEuzgqJBS6dOLeYktmC06C4XCDiW56YtdFjbyEWJZOgumcBACgw4a2bxdFipceo8lSQU9+vuia6LkJdjRRYjAYKSyJhJ2ff46Db78dlUccAXdeHtx5eeg/fToOnjcPOz/7zO5j7FBM5yQo5QwAql0XRbveZHUDoDC/waxIcDgyFoEM65iGGxSchIREJGRUT6g4CWKzJiq6tESCVltmvRLI+noy9Eppv5IwhmrzIioShOmJcWFR8xgMN1hxEgyHG0wk/4pdFzXe52wTF01XNwApIbBjR6otM/2bqkys1KJQ6HfQojPW1+6kRQajt2NJJMTDYcXJi94+fTIXzy6O6ZwE4arXqJOgOLtBQyRwDkfm1D0jOQnSK31pPoJskZReFfI8b8hJ4JzOdJETjaZegzzcIOw/Qp+3qSmjwZS4f7WcBJ5PiYSyMvFuT34+IvQ4eF5VgBjqkUDDCsKClRg6FADgpVUVKlgRCaKTYHO4AZCUQWo5CdkmLprtkwAoOgkuKsAsiISiUaMAAM0bN2pu17huHQDmJDAYdmFJJJROmoRVjz2W1lAoHg5j9eOPd7tyIFUnwUxbZsC2cEPacxhxEpTaMquUPwKpEz6fSJC/n0biomr1gXSxo4+n+xcWojAVBtFo6j2V7jseTw3Xkocy2tpSORWlpWn75jkOMXo8wihiObqVDTyfchJoRz5hUfN2YHWD1vwGPplMtU42UV5ppAwyalOfBFFYGkFwEvg9exBvaQF4Hg4ayrEiEoT5LFoiIRGNik6C2pwFBoNhDkuJi1NvvBFf//nPePfoo0Vbr3nDBjg8Hhz19NO2HmBHIzYjyqYtM6DuJJgMNwBkAYo0NWUfblC4IpXW98fb2+EykLiYsYjTbf1+QDbSm14FR+Nx8rtEglzxy16rVGBmXPFTh8DjSXucONLZ7YY7GgUaGjKOWbpvVSeBDogCxMXMIeQm5Ohk8Jvqk9DeDjQ0GCqBjEtaepvKSTDiJNAx0Uo5CUZmWwivlU8mkQiFjL328nLA5wMXDiMnEkHc4QDX3k6cLQvtiwupkyAZmSynecMGJGMxeIuKkGuygoLBYChjyUkoGjUKJ330ESZdcw2Kx4xB8ZgxmHTttTjp44+7Xd1wRh8Dox0XzToJJkUCIEkutCoSFE7mnMOR2r+0NbOGk5BRfUAXWOmiI5CW86AxvyEtKVJ+NUu3Ly5OC5fQK1ox5GDVSaDzA4SFDACcwpWqJxZLvT4FDJdAbt1KRmQPHoy8zz8HoJ2TQK18zuEwVV4ptmbWyknIMtzgkoStDIccOE50DAoiERTSsdSDBxsSJnKokxCqrVUVWw2rVgEASvbbz5ZxzQwGw6KTsObpp+Hr0wcjzjgj7f4t77yDSGMjxl18sS0Hty8QSxQdDnIlp9dxkZYomi2BVAo3qFyROU2EGxT7JGiEGwBy0o+HQumTIM04CXT/Cgl2afHroiJy1a5gs9OFnHO50l0WIF0kSPctiBIx30HNSdDLSaCtgSVd/zz9+4sTJpPbtsGx336KDzUcbpg/Xzy+nAcfBFdWhmhra6qsVb5fST6CmQXOSGvmbKsbOI6DOzcXsbY2xNrakCPJE9Fk4kRgzRoURSIpEW4xHOnOzUXugAEI7tqF5o0bUXHQQRnbUJHQR+Vvx2AwzGPJSdj8xhsoEBK9pBSOGIFNb7yR9UHtS9JyEmKxVJKdWSeBLshZNlMCJPMb5CWQCla4Yp8EjXADIBsXreEkqM5WoFfaSuEMadtnLQGi1SNBTSQIokR8h/WcBDWRQBPoJCLBnZ+PoHAsCdqJUWnfRkogk0lgwQLxR66+HuXBIPhkUryql2N2bgPFVAmkxeoG6WNNJS9OnAgAKAqHUUxFSRY5S7SDYiPtcSGDiQQGw34siYRQfb3i1YSvuBghnezwrga90gfHpSfY2ZWTkE24Qe44GJ3doBFuACRdEaXjorUSF9VEgpKTIF1MtMortRZyFZFAY+pR+l6qOAlxPSeBigTJsCWnx4N2+rfVSI4z5CSsXEmOLS8POO888lTCIqlmlSsu5AYwUgKZbeIiYGFcNAAIi3VxOIwS+hnYf3/jj5dBk6LrVqzI+F24oUHs/spEAoNhH5ZEgr9vX9QtX55xf93y5ciR1LV3B2i2Nud0po95Vjl50sUhGYuJCzQA2zouSp/DULhBaXaDTrghTSTQhUPh5K86F0JLJEhdCtpoSSncoDW3gS6kMpHg9HrhcLsR1slJoKWVLrWcBIVwAwBEaYIezVlQwFDi4sKF5OsRRwBHHgkAKBWOSa0M0qpIkDoJSpUHPM8jnmXiIqDQhMsIhxwC3uFAYTSKvECACHHh/bBC2eTJAID65cszXmvNzz8DIPlSrNMig2EflkTCiNNPx7K778aWBQsQ3LMHwT17sOWdd7Dsnnsw4vTT7T7GDiWtTwJ1Ejye1FRHGdKr07S8BLXExSzCDWYSF02FG+iQp2AwtdBrDY8yk5NA993WZruTAJCwQFTaUEmBuIVwAwDEhEWUpyJCad803KAlElavJl8nTQIOPhgAUBwIADyv7ySYDTcIJZDJWEyxxDLW1iaG1DzSclWzToKV1sx9+iAsTWQ+9FDFv6lRSsaPh8PlQrihAcFdu9J+V/PTTwCACuH9ZjAY9mApcXHsRRch0tyMpXfckVpIvF6Mu+gijL/kElsPsCOhJ09AWMR1yh+BTJEgntTVOi5aCDeoJi5GIqSkULIvs9UNgCwnge5bw0nI6IiokZMgrak3kpOQIUAAbZGQl5eqbtBLXFT7OyqEGwAgQZ2PmhrlxyHVqVIz3EBFwoQJwNixgNsNVywGv8pCDljrtgiQz6OnsBDRlhaE6uvFcksKfT5nTk66aDIrEqTC0gQ1xx6LITR8c+ONph4rx+n1omTCBNSvWIGaJUuQJ8yH4HkeexctAgDFhEYGg2EdSyKB4zjs/9e/YsJf/oLWrVvh9PmQP3iwcnvdLgwvCRc4HA7d8kcg1RExEQ6nT2rUKYEUF3GeTy3iZsMNALmKl1wRKooEvXAD7booDzfwfFrJoZWcBNGWDoXA5+eDAzSrGzSdBNmCB8i6LuolLqp9HlXCDQnhqtyhkVdDc1FUGx7xfGp41IQJgMsFjBwJrF2LwmjU9pwEAMgpKyMiobY2owSZigSvfPiT1cRFM04CgKYhQ7B22DAMO+kkjBGmbWZDv8MOQ/2KFdj9zTcYftppAEiDpbadO+HweJiTwGDYjKVwA8Wdm4s+++2HopEju51AADScBJ04bcYiDhhPXIxGUxUUetUNdF8+X2rxll3JabZl1qluiEvDDclkek4GsiuBBIAEfX1a5ZVKn5uOdBJ4PjUcSiYSkkIyrlOrnFAv3FBbS46f4wDaGljIyi+IRFR7JWQlEoQ8IKWkYZoD4ZF1xjTrJFjKSQAQbW1Fs8+H+Nixph6nxoCjjgIAVC9aJP7/0XkxlYcfbjpcw2AwtMlKJHR3pE5CWk6ChpMAZCkSlB4j3z+90qfbcpxqXoJmToKOk5AWbgAyQg5WnASHxyO6GkkqtrRyEsyKBKmT0NhIxI3avpXEXiCQWiDlFTp9+5LHNTcrzpvgeV4/J2H7dvK1sjL1ORIWyIJIRN1JMBNuiMeBd94Bfv0VAJAjtK4O0XkXEqiTkDFG2mTioqXqBgBRpUZOWVA0ZgxyBwxAIhTCjo8/RiIaxZZ33gEADJo925bnYDAYKXq3SLCQkwBIFnHpVZXRZkrShV+tgkJp/yq9EhQrEPSaKUm7IjqdqdcrWwCs9EngOC5lTdPH2Zi46MnLS5VAJpPK/R20Oi5S9yEnJ+P9cQitfB2JRKrCQr5fQTyoigQ6yljaeljoFpinlZNAF1MjV8KXXQacdhowdSqwZEnKSVAIv6iGG/ZFCSRSryvDybAIx3EYdfbZAIC1//kP1j37LEK1tfCVlmLgscfa8hwMBiNF7xYJcieB2u1Gww0GREJGdYM0aVGls55YfaAkElScBKOzGwBZCSSgWgZpxUkAUp394vQ1K+Uk0GZKZkVCYSGSDgeS9PUqhAY0BQhdSCWDoyje8nJEaVULDUlIkP69VZMiqUigUxAl3+fGYuolkEadhKoq4JlnhAOKA3fdJfYsCWuFG7IVCcLf1GziInUSPAotvK0y/PTTkVNWhsCOHfj10UcBAPtddlm3DHkyGF2dXi0Sktk6CVJBoNJxMaNPgk5lAyBJLJSekFUaKim2ZTZY3RCX5xbIBYhadYNGTgKQWlDEBddMuEE6AlpFJABAnP6NlK74tZopUZGgNOq8uBgh+j5qiARnTk5mK2mKkkgQXIXcWEy1fbLhnIQPPiAOCn1vPvoIfuHvrBlukF/Jm01cpH9TnSmZckSHxEaR4MnPx+EPPghfaSnAcRj5u99ltIhnMBj2YKm6oaeQdU6CESdBPiraiEiQlihS1MINSjkJBqsbxP2rlEHqhhtUFjR61SiOcFJKXFS72m9vT42JVhIJwmIXd7vhARSdhLiRcIOSk1BUhLDLhcJoVFkkGOm2SHMSpCKhf3/wDgecySQ4hYUcMCEShGFRuO464ihs3Yp8oVpDK9yQrZMgTuA0KRKiNocbKGVTpuCUL75AIhKxLd+BwWBk0qudhLS5DYChEkhAxUnQGRUtDvUxIBIUcxJUnISkleoGuVOhF24w0ScBkLRPpsl/Sk6CWriBLvoul+L+6WInNlSy6iQoiYTiYoQ1GjUZaqSk5CS43eCFpEiXSnmloXADzwM//ki+P/po0tERgH/9egDESZB3Iozo5SQYTFyki7za7Anlw+URE/72doYbKA63mwkEBqOD6d0iQdptETBfAplN4qKWSJAmFlJ0nAQrsxti8pwEuQCx6CS4hQUlTJ2atjbSBEoCDTc45O81XfSLihRzNuhiJ4YylHIShONWbMtMnQSVcAOtnOAVFnP691btkQAAO3eSr4MGpd8vhBxyAoHM4WAwmLhYUwPU1ZH3ZeJE0sEQgEsYSJWIRDIWcducBCr8TIiERDgsfj7tDDcwGIx9R+8WCXInIZucBGnHRcnVXDbhhngwmLoyVElctDQqWi0nwWjiol5OgnB/OBZL3SlbXFSTC6nroGJP08VO7Ohgo5PgKSwURUJSoTWzbo+EUCiVpCnr5sgNGwYA8MdiGQmGPM+nnAStxVSYcoiRI8nfVpiy6FizRhRm8rwEmgMh78RoNdwQCwTSZ5ZoQAUF53Rquy8MBqPL0rtFgpqTkE1OAs+nTsCQLOJmEheFRZxPJMTFVDXcICzEZmY3uCXVEzzPq+ck6LVl1slJiIbDKVdGFnIQww3yfVMxoSISqJMQpkmnWtUNJp0Ep8eDuPDeJK3kJNB2zl5variVANe/PwAgJx7PaHqUiETEz4mmkyD0RaDiAOPHk6/V1SgUnq9d1lI6JLxen1wUWUxcBCAOjNJDGmrgVCp5GAxG16Z3iwS1nAS9cIOWkwCkhRySas2UNESCU/K7jCFPen0SpG2fdZwEPh4nj9epbkhzEhKJ1GtQy0mgSW6BgOr8BtXERSoSVK6o6b4j1GFREgnUSVBaADWcBABICostr5BgqJuTQIVFRUVmqETo7qgkEmgyIOd0in8bRaTtngHyHgkORbnwPgYlEywT0ai4UPvkosikk+D0eETRZTTkEO2AygYGg7Fv6d0iwaqToJRY6PGkFgaJSLCSk+BwOlNDnuShA73ExVgsFf9XEwmS+9MmQcrDDUo5CdLn1ymBjLW2qo6L1g03qCws7vx8gONSDZW0wg1K77GGkwAAvDB6Wanls65IoFfxQpJiGlQkxGIZVQjSMkXNK+5t28jX4cNT9wmtnwuFx7VJwiRh4XkcLlfWHRcB83kJTCQweiSPPUZyjHw+MuV1yRLt7d98k7Rm9/mA/fYDPvponxymXfRukaCWk2DFSeA4xeRFXquZkgaqZYp6iYtKvRVkZIgQlXCDopNA9+9wqIqptMVExUmwGm7gHA54Cgo0Exc1wwI6TgK936EgPgw7CVoiQclJoBUICgOt0qAiYejQ1H2CYMgX3k+pkxCWhBoyxIdJJwGQOEQqDaHkdGRlA4PRKbz+OjBnDnDrrcCyZWQc/KxZZGaLEgsXAr/7HfDHPwLLlwOnnEJudFJsN6B3iwS5k2C0BFIpJwFQFAlWwg2ApOuiXCRIREAykRCTJMWFnB6Ty6W5AIgipK1N1UlQXMil+QgqV72ik9DWpi4S1KobdMINAEkwVHMSkpI8jozFnOc1mykBACe0OHa0tmbMbxBFgl5OQkVF5u8kIiEsTy4UXkPG1b6UWCxVOaEgEvzC+xaUOglUJCi9VioSlEZ1qyD+XQ06CbT3AxMJjK5OIBBAa2ureIvIht2JPPggcMklwIUXAuPGAU8+SS7Gnn1WeftHHgFmzwauv57McLnjDmDKFOBf/+q4F2MzvVsk2JmTACh2XbQSbgAUWicrhBuoS5G2f518BHH/0oXcTE6CTo8EQOIktLbqigSz4QaAJC+KIkHmJCQk5YUZi3kwmFocVUSCQ6hKcMTjGaKJVjeoJhcacBJcPI+orHJCtUxRys6dpNOi15u+f0EkeARBIHUSaFgjI2kRSIWk1DpHKpCWa2IAMdxgcyMlBsNuxo4bh8LCQvE2f/78zI2iUeCXX4CZM1P3ORzk50WLlHe8aFH69gBxHtS274KwjouwqboBUHYS1MINOot4xmhehXBDUiISOHm4QU8kCMIgGgjo5ySoOQlq+5ZecdKmQvKcBIvhBoAsViEVkSC+Xxyn3qjJ41FPuqyoQJzj4KKug0SsiL0M1F67lkjIzUXS74ejvR28ZCEHNBoeSaGhhiFDyImJIogE565dwIABCNXVIR4Ow+XziWGNHCWRQF0SE1UHZlszU/HDGh4xujrr1q5FvlCBBABetfLpRCLTKayoAISGZhns3au8vUL1VFeFOQkw7yS41ZwEpZwEC7MbAIXWzApOQlLShyDDSdCZJuiROgk6OQlOpZwEjRM/3XciEkGS7ttodYMBJ8FTWIgYXShl4QZpPkJGHJ5uW1ioujh6i4pSo6jlCYZ6iXhaiYsAeCGUwcnKFA05CUr5CJKfuUAAfkFw0ZBDe3U1AMAvuBjpB2NeJJjtukjFhG6uBYPRyeTn56OgoEC8KYqEXkqnOgmbXnsNm15/HW3ClVXhiBHY79JLUSm0m5WzdcECLL7pprT7HB4Pzl6+3NLzq+Yk6HxAaNJfTM1JkNzPW2imBGjkJEidBCoSOC4ldIyGG+g450AgZb3Lwg0Jq04CzVfgeSR9PqJE1ZyEbHMSwmFyE9wfzaRFaTdHFbzFxYi4XMiNxzNEgjj2WM9JUMpJAMBVVgLbt8PZ1IRkPC4KO0M5CVVV5Kt0BDVAPkcVFUBNDUpLS1FVXY3A9u0oHDZM/L/KlTV2AmBNJJh0Egw5JAxGd6G0lITnZCIfNTWqFwbo29fc9l2QTnUScioqMOnaazH7zTcx+4030Pfgg/HdFVegefNm1ce48/Lwf998I95OpgNvLECdBIfJjovUSUhkE24wm5OglLgoqWwQr5qNhhuUchKMVDcYyEngHA5RhMSpwJB3XBTe64y5EAbCDV7BSeDpa5a4CaJIUHr9RkWCipMgDmHScxLURMLAgQCEMkhJhUPUyGJK8xiUFvwBAwAAfYTX1bxpE4CUo5AnsVFFsnASDOckUIeEOQmMnoDHA0ydCnz5Zeq+ZJL8PG2a8mOmTUvfHiBD2tS274J0qkgYcNRR6D99OgoGD0bBkCGYdPXVcPn9aFi5Uv1BHIecsrLUTa2UzQBWnQR6lZqMx8UrYgC2hhsyhjBpJC4qzm3QCTek5SSYKYE04CRI9x+nx2Zj4qJHCBfE6WMleQmJLJ2EnLIy1fkNmpMaw+HU36asTHHfnGD7e+PxtCoE0UnQWkyF0IGWSCgSxG3Lpk3gk0kx3KDpJJjAbE4CfV3MSWD0GObMAZ5+GnjhBWDdOuDSS8n//YUXkt+ffz4wd25q+6uvBj75BHjgAZK3cNttwNKlwBVXdMrhW6HLJC4mEwlUffop4qEQSidNUt0u3t6Od2fOBHgexWPHYtI116BoxAjV7SORSFo5S0CyEFInASYHPEmb9CRCoVTynVYJpMXqBs1wA3UplCZA6jgJHgNOgmJbZgM5CXT/7dXV6iIhm3CDZFy0OxxOcxJoCEixkRINeWiJhNLS1PyG6mpIc/81cxKoUHE61V0QQTz4EgkiEqZOBZAqVcxRqbgAkHISlPILBJGQJ7gCzZs3I7h7N5KxGBweD3KEXIg09kVOgpFcCwajO3HWWWTI2i23kPDi5MlEBFD3sKoqPbH40EOBV14BbroJ+PvfydyVd99NdU3tBnS6SGjeuBGfnXMOEtEoXH4/jvh//w+FKot+/tChOPiOO1A8ahSibW1Y99xz+Pzcc/Gb996DXyXGM3/+fMybN0/82Sc5KYqJiyb7JDg9HjhcLiTjccTa21MnQY1mSg55zoDRnASNEkjFCZAmqxti0uqGYJAsHsJ7pNhx0UC4AZAsKPT9VhvwZKW6QTIuOgdIcxKyzUlw+f2I5+QATU1ISERCMpEQXR3FnITGRvK1uFh94aUiIR5Hk7RUUXAsFEsVKdRJUBIJQhjDJ4jc1m3bUC+4cYXDh6d/PuRYCTcYcBJ4nk85CSzcwOhJXHGFuhPwzTeZ951xBrl1Uzq9uiF/yBAc//bbmPXqqxh51llY/Pe/o0UlJ6Fs8mQMO/lkFI8di4oDD8T0Rx6Bt7gYm954Q3X/c+fORUtLi3hbJylVsVrdAOjMb1AIN9iWkxCJiDXummOi9cIN1DqWOgk8n+6C0HCDycTFtP3TK1bJwsLzvChArPZJAACxtkOy74RWwyMDIgEAeGH/SUnTI+lQI0UnQSoS1BBEgpc6CQDi4bB4ZZ6jEqZAPJ7q6KYRbnA1NsLfty/4eBwbX30VAFA0cqTyPjs4cTERDot/Y+YkMBjdl04XCU6PB/mDB6Nk/HhMvvZaFI0ejQ3//a+hxzrcbhSPHYs2mvmtgNfrTSttyZcsbqp9EsyIBGnyokIzJavhhoxxzlJnQHjOjOFOkt8ZDjcEAunbShbDhNbsBoMiIaIgEpKSPI40kZBIpI5fSyQI8xXEIJKkciJbJwEAOGH/vGR+Q1R4X5xer/LgKOpm0NkPSlCREI+LlQd0voLT69VOiOR5EspQEhKCSOB27kTFQQcBAOpXrAAAlO6/v/I+LYgEryCAIs3NqRHmKtBQg8PlYmOiGYxuTKeLhAySyfRkQK1NEwm0bNoEn9oVmA6qToJOuAEw4SRYGBUNKOQk5OSkTuhykaC0iBsNN7S1kRiaRh8Gp4XERSpCIjTvQ3q1L8kRUXQpAM1wg48uVnTfdosE+nmShDF0GylRJ8GASPAlEmJnRGmoQXW4Ew01VFSkxzspgkjArl0YcPTRkhfCofLww5X3aUUkCO9bMhrNbCQmQ1rWycZEMxjdl04VCSseegi1S5eibfduNG/ciBUPPYSan3/GkBNPBAAsnDsXKx56SNx+1eOPo/rHH9G2cyca167FohtuQHDPHow47TRLzy9WHpisbgBUui52wOwG0UnguIyFPJvqhrTERSAjeVEaErCUkyDsP0y7QgYC4sIkigSOS983FRJut+bfwF1QAM7lQoy+p0oiwWIJJAA4hPwWTpJHQZMWPWrixYRIcCeTCAmJhSEhjKAaagC0yx8BgJY4hkLoP2kS+kycCAAYfuqpypUNgCWR4MzJEZ2fiMIALCksaZHB6Bl0auJiuLERi+bORaiuDu78fBSNGoWjnnoK/Q49FADpGCe9Com2tuKnW29FuL4enoIClIwfj2Nfflk10VEP1SmQdjoJFmc3ZCQuAkQkBIOiSBCrGyyEG8QSSLowy8ogpXMhVAc8ae2figT6nvI8Oe68vFTSos+XfpVpoLIBADiOg6+kBDG6eNrsJLiF5ECnxFWJCK6CahKeEZFQVATe5QIXj8MTiSCwYwfadu0CoFKmSNFKWgTI57WkBGhshKOuDse+9BIC27ejQDpSWo4FkcBxHLzFxWjfuxeRpibl/gsCEaOTLRkMRpemU0XCIXfcofn7mc8/n/bz1BtvxNQbb7Tt+ZPSnASet89JEO7jeT77xEVpF8TcXFJ+Q8MN2VQ3CAtxvL0dyUQCDpmTIA35WMlJoItDqK2NxNITCeIU5OWpL+QGKhsovpKS1LhoqUgQjk/TSdC5unUPGkT2EQ6TZikOR0okqCUmGklc5DhwpaXA3r3wxeNo3rwZbcJkx3zhORXRKn+k9O1LjmHvXjjGj9cXzhZEAkD+rlQkaBE10kWSwWB0ebpeTsI+JM1JkMxBsKu6gQoEQMhJiMfJTbqtCmJOQnt7KklMFm4QRYJSnwSDzZQAIXNfNgkybS6EhZwEKhKUJkGKIkHu2BiobBD3X1KSCjdI8h1ogqHieGKDToJHaH3M8bwoXHRFgpHERSAtL6F540YEBJGQJ5QxKkLbPeuJBOm2elgVCZLkRS1YS2YGo2fQu0WC1EmQjBg2FG4wkJMgFQmcy5UWhjAabuDj8VQ1gKyhkmZOgo6T4PR4xPhyVKGhUtpcCOn+DeYkpC0mMpGg2hXRYLgBIE5CTMFJUE0w5HnDIsE/eDDiwuLJCw5B2KiToCcShMZG3ngczRs2oHXLFgBAPp2WqQQtf1Rp95z2O3mfeDWycBIA6DsJrCUzg9Ej6N0iQeokSDLuoVTiJsOISEgb5ex0posEvXHUkkU+pjK/IZFFdQMga6gky0mQVk6k5Q0YrW6gi4mCSKBOglP+HpgIN6Q5CVKRoDZfob1d7C+hJxJyKyvFAVLRHTvI67BLJEh6Jez+5huE6urAORwoHj1a/TF0hoRWs6V97SToiATmJDAYPYPeLRKkTgIVCW63cpmZDMU+CXrhBioSvF7d53C4XOIiqja/gRcWcsXERZ0rfUBlyBMVILTZkVwwGc1JEBaHeDAInm4riIC44Npk5A2YCDeoOQlRNSeBuggul77L4vWKg6nCQmMvu0WCnwocAIUjR2r3EqAzJLQqILpYuIFVNzAYPYPeLRKkToKJygZA4iRI3QFZM6WkNNwgFQk6oQaK3vwGzY6LJpyEqLQ1M3USlMofY7GUmNJzEgoKxCZVSfp6jToJRkRCnz6pcdEKTkJGToI01GBgYUwI73V0+3YAQEQQAVklLgLiQl8imacwcOZM7ccYcRK6WLiBzqPw6YkmBoPRpen02Q2diaKTYCBpETDoJNASRYeDPIdJkeDy+4GGBlUnIVuRkNYrQRZuUJzSKK+00IBzOOApKECkuRkJn4/MQDCak2CwuiHNSRBmTqjmJBjMR6AkCwuBujrEhG6e7cLi61calpRIpPZv0Eno07cvSgoK4M7Lw+jf/159+0QiJUC6UrhBx0kIU1HFRAKD0a3p3SJBKSfBqEhQchJUwg1myx8pafMVAGNOgtx10Nq/2pAnIK2XgQg9DpfLUN6Gp6iIiATqRnRUdYPQzjnhdou5FBk5CSZFAicshonqasTDYfHKWXGQmMTJMOokuFpaMPvjj/UPpLExtaBrTYm0KhJMYjgnQRAJPq1jZjAYXZ7eHW5Qqm4wGm6gzY6kV9eyPglW5zZQPNJFHMhIXOTlo6J53ly4QSknQZY3oOgk5OUZugKl1nScLuZ033ZUN/TpgzjHIUnvaGlJG2GcEeM3KRIcgmOQrK0VXQRnTo5yjJ1e6efnk5wWLWheAQ0h6EG3KyrS3jcVCXV1qTJbLTow3JCIRMSwDws3MBjdm94tErJwEuhVuGq4gectz20Qn0M6hAnIDDfIBzxFIqmTv9WcBLpvpSmNBisbKHRBFcMCNNygl7hoINyQU1YGcBzikn1Tx8WVm5t6zykmRQJtqJSsq0O70PEwt29f5TkERpMWgVTIwKhIMJK0SPdLm4IZ2bcN4Qb6/yOH5iM43G71oVUMBqNb0LtFQhY5CaJVr+QkJJNALKY+t8HgVLy0RRxQDzfQK0zpsZjNSZAlLio6CQZ7JFDEhkp0IaLhBuH4s0lcdHo8GcmLMWH/2TRSoviElsbOtjZxomIuHaQkx2jSIpBa7JuajF3xG0laBNInRBoJOWQpEvhEQixzlBOWhBrYcCcGo3vTu0VCFtUNbhpukE4ulDoEoZDluQ2UjCFMek4CdTU8HpI3oPcaaM5Da2tmnwStnASDToIoEmTjosUSyCzCDQDJD5AmL9JkOsV5ASZFglOw7z3JJLZ/+CF5qFqrYzNOQnFxamGWjKJWxaiTAJjLS7AoEpwejygUwvTYZLCkRQaj59C7RYLdToLXmzrphkKpnAG7wg16iYsm8hEAySLe0qKeuKiWk2Bk/9SapqWgeiWQJsINAOCvqEhrqKS5OBmc2yAi7MOTSKB161byUDWRYLQlM0DEG3UcjIQFjDoJQEokGCmDtCgSgNTEynbaCVIGK39kMHoOvVskKDkJRqsbhAU7EQql+iFwXFpegtUx0RQx3CC3+WV5Aw5aaWCi2yKQyhmISEWCkXCDUZEg7D9MWzwLYkc1J8Gkk5BTUZHuJGg1PKLWuNE2wcI+PJJeF+VTpypva8ZJAFKugMqVeBpmnATaK4FOjdQiC5HgEwSLmpMQoSKBVTYwGN2e3i0SlJwEo+EG6YAkpbyEfRBuoG2Zxa6IJrotAhInoblZtZlSNjkJtDVziL63glNA3Rd3liLBX1GRlpMglt0piQSzToKwD68gJEvGj1cfwmRWJJhJXjTjJJhpqJSFSKC9IkIqxy/mJDAngcHo9rA+CbBW3eD0eOAQ6vJjwSA81CKXOgnCttk6CTQhLyPcIO+KaDLc0NFOAr2SDFIRRUWCUsOjZNJUMyUgMychLCx8iuEG6iSYDDe4EwmMPOMMjLnwQvVtzSQuAt1eJPgEVyOkE25gOQkMRvend4sEpT4JBkUCQNomR5qblSscQiHwwhW+WI5HF3GjToKwWEbVnAT5fAWT4QbpfIWEx0O6IgqDkKgASWt4ZDInIUdY2IJU5FCRoDSESfoemkhcrJeGG4QcDUUnwaxIkIQlDrzySu1GRl0t3LCPchJCKsdPxUOOUndKBoPRrejd4QbBSXBInQSD4QYAcNFeCSoNlbLuuKjWTEnuJFgMN7jz88VFIiqJvaO9XXQSHNLOimadBBq7pjkJ4TAQi4miJ81JoK/R4TD8/uQPHiwmLiabm8VFy6d01W1WJLjdqddJRYAaXSXcYCZxkdIBIkFsYa012prBYHQLerVISEs4NBluAHTKIEMhsfrAasdFtzwnQT4qWu4kmAw3OJzOlFsRiaQWjGBQrG5wKZVAGhUhublw+f2pkAAAvrUVcSWRIK1sMLhw5ZSVISEcX6K6GkHa9Khfv8yNzYoEILXo67QgNlXdAJgTCR3hJEhbMmcjEhSOn+d5JhIYjB5ErxYJyKJPAiC50lcRCWLiYrZOQjBIXA/plMlkMtUnwWK4AZC02W1tTctLUCyBNOkkAOSqnuc48MJ+4jU1ooPjUXISTHTo4zgOLkEQxGtqxMTF3MrK9A1jsdR7b0Yk0LCFnkjoqHBDe3vquM3kJDQ0aDdqsksk1NaCl82AiLa0iNUrTCQwGN2fXi0SxMRFC30SAMkirtKaOdsSSLFzIM+TvAfpFXwolKpAsBhuAFLJi1FZ8qIdfRKA1IJCx0XHhatMzumEU/o+WBAJAODu3x8AkBDi4O68PLjliY/UpQAMJ0UCSC36WuEGnu+4xEUqIjweY+9Lnz6p1sxG8h0AayKhvBzgOCSj0YwZDtRF8BYVpX92GAxGt6R3iwTpIm5BJNBeCapOQpbNlJxer+gSxAKB9McFg2K4wWp1AyBxEoyIBAtOAk1eTAj7SQiLiDsvL71lr8lGSuL+hfbJvLBQ5w0alNkKmIYa/H5DnShFjDgJwSBxKgDzToKeSJDmIxhZzKWtmbVCDlk6CU6PR0xKbNu1K+13YtIicxEYjB5B7xYJUifBSrhBEAlxpZkJoVAqHEAXcZMiAUi5CdFAID2pr70962ZKgMRJkPVKoJaxYltmE04FLZeLC+9BQlj4Mgb/WHQSCqZMIfsTBF/J2LGZG1nJRwCMOQn0dx6P8fedOgl1ddojm6lIMJKPQDGSl2BxTLSUPMHBCe7enXZ/u9ASWnGkNoPB6HYwkQBZdYPJEkhAP3HRajMlQCHvQZK8qJq4aGIR96r0SqBDmNK6IloJNwgLIk1epCLBI9+HRZFQREWC8LfsM3Fi5kZWRYIRJ0GatGj0qpyKhHA49TdTgoYMjOQjUMyKBIsDmOiwK7mTENyzBwDLR2Awegq9WyRkMbsBMJCTYIOTkFEGSRft9vbMxEUL4YY0J0EiQBRFgsXERSA1CTIhLHwZjXYshhucgu3t5Hl4fD4MOOaYzI32hZNgpnFQXl7qc6YVcsjGSdAa8mSDSFBzEtp27gQA5AujthkMRvemV4uEZLbVDVpOQnt75ihnKyKBhhuMOAnZVDfInAQqfNxSV8KCSMgVbGfa6ChJu/HJk/wsOgnS7Y955BF7GilRjDgJZpMWAbIwS0MOanRlJ0EQCW0ykRCoqgJAckMYDEb3p9eKBO6777J2EvQSFzNGOWeRk5DhJASDWTdTAtRzEjSdBBP7p4tJWHh/k2p9/amTYFYkOJ3iY4rVLO5sRYLdTgJgrMLBTCMlipGGSjY6CdJwA8/zokhgTgKD0TPotSLB8dhjWc1uAFKhgLhauMFGJ0Gp66LoJGRT3SAshOGmJlEk8IGAmIwpioRoNFV7b8ZJ6NcPnMOBCF2YhAU7QySYnNuQBl38qRiQQwWI1XCDESfBrEgwUuFgRSTsIychf8gQACTcQCthoi0t4uc0T8hZYDAY3ZteKxIQiSjPbrAr3GCXk0A7IsqHPGk5CSZEAh3CFG5oSImElhZRQInhBulrNOEkONzu9JHOwuuwLdwApISFmkjoyk6CVriho6obhM8NANJ+2gI5ZWXwFBaCTyTQsnUrAKB1+3byu/JyuEx8xhkMRteFiQQIi3g21Q0qA57SEheTydRzmDiBitUHdNSxIAD4YFDcf0ZOgolFnFYfRJqakBT2nZQstmIJJBUJHo/phSVvwADEaa8IYT8++cAkq+EGQN9JoPebdSmMOAlmWzJTOircYEQkUGGSm2vqsyiF4zgUjRoFAGjeuDHta9HIkZb2yWAwuh69ViRw4XD6bAUrUyC1BjzJww10/9JtDOChiYVUJAgCgJd0EcyquqGoiDgpPI+4YD3TfTtzclItpS0kLVLy+vcXnQRO2E9G6+SODDdk6ySEQul/PylWEheBjg831NcD0qFdUuiI5yynNFIxQMVB0/r1AIDiMWOy2i+Dweg69FqRgGhUueOimSmQSk6CUjMllysVagAsOQlRaddAkLwBitUBTwDpEUHLEWNCrJqKBHeWPRIoBcOGiSLBKbzPNKFRJJtwQ0eJhIIC0sAKUHcTOirckEySGQzSbY3ul+PI49UEiF0iYfRoAEDj6tUAgKZ16wAAxUoNrRgMRrek94qEcDh9AFMW4YZEOCwKAlUngYoEt9tUa2CPPNxAnQRJjoCYGGkh3ABIQg70ylNYsLPtkUApHjtWFAnuZBLugoLUXAqKHeEG6YwGKVZFgsMBCE5Oh4kEtYW8pSXlBMhDM1q4XKl9q4UcaA+FLLsilh94IACgfuVKhOrr0bh2LQCVhlYMRm+jsRE491xysVFUBPzxj+m5XUrbX3klMHo0WUcGDQKuukr94mcf0XtFQiSSfbhBshiLboJaToKFpEUg1cdAdBJk4Qan10vCBclk6jlMOAlAKj8gSoWOvLIBsFT+SCkeO1bMSXAnk/+/vTMPj6q6+/j3zpoMWSEbBLKwJQQQEGoMiEiJBUTrgn0VU4Xa6mOFV0FRobS1VjFofVXgUau+BdqKRn0LaClieQBBKrtsIRh2gpAQIGQz+8x5/7hz7r2zJCRzz8yEzO/zPPPMzJ07Z84cyJzv/a2I6d/f86TO6G4Arl5QyV/ZDfx4ZGSH/k8CuHpcAj+usypiZEoKbElJcDQ349Dbb4O1tCCiTx8lPZIgQpq8PODwYWDDBmDtWmDrVuDRR1s///x5+fbaa0BhIbBiBbB+vSwugkjoioSGBqUBk8FHd4PBbFY6GSoZDtpiSgJFQmNVldyWl7sbnJ+nBBZqfeYdFQnOK896vgbOsS3aDVuHJSEsNhaW1FQAco+F7kOGuJ7AWOdMgQSuXlBJb+Bia+4GX+IROFeruihIJEiShORbbgEAHP/4YwBA8rhxusYkiC7BkSPyBv+//wtkZwM33QQsXQoUFMhCwBtDhgD/+Adwxx1Av37Aj38MLFwI/POfbbd+9zMhLRJcWjnztLAOXrUpDZj4RnQ1d0MHRQJ3N7CWFjlA0s3doKSaeQuebCdKGqRzjpIztsGi3VR1xCQAQK/JkwEAJocDKbm5ri/W1cmWEKBzpUACbVsSmppU8eSrSKio8B5gyEVCR1wNnKsVVBLkbgCAgQ88oHQ5lUwmDLj/ft1jEkSgqampQXV1tXJr5BdMvrJ9u+xiGDVKPZabK7swd+5s/zhVVfLvW0e61womZEWCxJgak8A3KKBDlgTASx2D1uok+CgSTOHhSrvmxspK1UrgbkngQYthYXIVwg7AYxLqnGNITquEVbup6rAkAED/X/0KgPwfLt49sI2vnST55M5o05Jgt+uzUrRlSeDHJKnjAoSLBIcD4PEmWkRYEvzsbgCA6H79cNPrr6PXuHEY8+qriEpP1z0mQQSaQVlZiI6OVm75+fn6Biwr8wwMNpnki4m2+qpouXQJePHFtl0UASB48qQToFzpa0WCQEsCE+BuAOQ0xfoLF9BYWYkITcVFQGNJ8CGzgcPbOf/g3GQNTpHg1d3gyyYOwBgbK2+mjMmiQDtPbWaDLxUA2xIJmiwQXe4Gb5YEfiwmRs2CaC9mszyfqirZ5eBuMfCnSBBoSQCAPrm56ONuHSKIa4gjRUWI1MTSWFvbB+bNA1555SqDHdE/oepqYMoUICsL+MMf9I+ng5AWCYolQWvu5emE7cTs3EiVssl807bb4XButgaTSd3EfRAJ1uho1F+4IAcvakWC0QgTtyT40NyJw2sW1Dg3JoPdDgNjru4GnZYESJIsAqqr5Zt2g/KxA6RCWyKBH7NaOx4ACLRdUMnXGgmcuDh5ft6CF68RSwJBdAUiIyMR1Z7fn6efBmbMaPucvn3l3zeeasxpaZF/M64mzmtqgEmT5N/L1at9rooqiqCKhGMFBTj28cdKJ7no/v0x9Ne/Rq+xY1t9T8mXX+Lg0qWoPXcOkampGP7UU0i++WafPt/D3WC1dvhK1sPdoN2kuUgwm9WN0BdLgjYN0jm+VF8PREQogZO+NHfiKM16eF4+AKPD4epu8DG90oWoKFUkaNFTIwFon0jwxYoAtM+S4EvcACBnOJw4EViRUFur/luSSCCIjhEf374y6Tk5shtx715g5Ej52KZNsnsxO7v191VXAxMnynvR55932P3tD4IakxCemIhhc+Zg0qefYtInnyApOxtbZ81C5fHjXs+/uG8f/vPMM+h7zz2Y/H//h94//jG+/u//RuWxYz59vuJu4JGjPlxpeogEjdAwOINfJB0xCYAmw6GyUtmkJed4JveYBF/cDXFxMFqtsANgTkuK2eFwtSTo3cgB1VKgdQEA+i0JvJaBN9++XpHQliWBiypfRUJbGQ7+Egn8mM3mu1WIIIi2GTRItgY88giwaxfwn/8As2YB998P8Gqz584BmZny64D8O/iTn8gi/i9/kZ+Xlcm31qqnBoCgioTe48cj+eabEZWaiqi0NAx78kmYbDZcPnDA6/nFH3yAnjfdhKyHH0Z0v34Y9sQTiM3KwtEPP/Tp8xWRwP8BfBEJ7jEJkqSqP6clwag3JkFbdZFbEvjYAtwNkiQpLgfmHM/kcCBcG3ij190AqCKgNUuCryKBX+03NHiWT9aT/qgduy1LQkczGzhtFVQSIRIuXlSzRjhaV4OPHSAJgmgHK1fKImDCBOC22+Q0yPfeU19vbgaKi9ULvG+/lTMfDh0C+vcHevZUb2fPBuc7oBPFJDjsdpR8+SVa6usRN2yY13Mu7d+PzOnTXY71HDMG32/c2Oq4jY2NLuksNZqKVx4xCT6YdhRLgvbqODwcqK+HxLs06hQJXi0JzrFFBC4CclxC9alTsFssMEAWCTatOZqvmx5LAn+vu0jQU20RkMUFD4q8ckX+o+L405Igwt0AiBcJfFy7XbZ2aM2jPGiRXA0E4V+6dwfauoBNS3Nt237LLa7POwlBFwmVR4/i3w88AHtTE0w2G8YuWYJobxX5ADRcuuTRPTCsRw+5zXEr5Ofn44UXXlDP11w9Kb0bdFgSzO7uBkARAvxqX6+7QaljUFGhiARDUxPAmKclwceYgYjevQEALQDMkEVCmHaD6syWBF4++coV2eXgTSTotVK05W7Qa0kQ7W4wm2XhcvmybDnQigRuSRCU2UAQRNcm6HUSItPSMPkf/8DEjz7CgPvuw47f/AZVrcQk+ML8+fNRVVWl3I44O9UBqrtB0hOT4Lz6bXa3JACQnBYMPXUSALUiYsOlS6q7gTEYGfPMbvBRJPC2v/VOYWPr1k1tHAX4VyTotSQArfdYEGVJqKjwVPn+cje0tKjfwxeRALRedZEyGwiC6ABBFwlGiwWRqanoPngwhs+Zg5iMDBR/8IHXc8Pi4jysBg2XL3tYF7RYrVZERUUpt0jNJqe4G7hI0ONu8GZJcIoEY1iYz30VALXYkVYkAPLVvtG94qKvIsHZ3rfJ6cOOdF9TkSLBPXBRryUBaP2KX1R2g93u2ZxFb+Bia+6GK1dUQeKrAGmt6iK5GwiC6ABBFwkeOByw8xLJbsQNH46yHTtcjpVt34644cN9+yiBlgRvIoH3gzBarbrqJCi9FS5dkqspOudpZEztpqgjBRIAYgcOhGQwoMVZFCjCPfefb+R6RIK/YhIAdTN3z3DQKxLCw9X/F+7Bi6IsCe7uBv48Jsb3HOnWMhwEF1IiCKJrE1SRsP+NN1C+Zw9qz51D5dGj2P/GG7iwezfSbr8dAPDN/PnY/8YbyvkZP/85Sv/zHxxZsQJVJ0/i4FtvoaKwEAMfeMCnzzfwwEI9IoFnHrRlSbBahVgSmmtq0NLQoAgBk8MBM9+0dVoSTDYbEkaNUkRCtPuVpojARX/FJACtuxu4aOCvdxRJat1KoTdwsTV3g4i4gdZEwvffy/fOGBSCIIi2CGrgYkNFBbbPn4/6ixdhjoxEzMCBGP/ee+g5ejQAoK60FJIm0DB+xAiMefVVHFiyBAfefBORqakYu3QpYgYM8G0CLS2AwQCJt0j2JXDRuWk6mppgb2yUBQGPG2hqAsxm3ZYEc2QkDBYLHE1NaLh8WS7NXFEhiwS+aetIgeRk/uIXqP/sMwBAtDb4z25X599ZYxKutpH7WhWRv7eszNOSoDdwkbsbamvl1E3u7hLhEiCRQBCEAIIqEm588cU2X89dscLjWMrEiUiZOFHI55vsdjRrRYIvG3i3bpAMBjCHA03V1QiPj1ctCU1NAA8A1GFJkCQJ4XFx+OH8eTRcuoQI5xhGhwMWQZYEAEi++WY0/9d/Ae++C6PW5cMFAtD5YxLc3Q2+tnLW4i0NUk8HSE50tOw+sttlawLfuP1lSWhqUp+TSCAIoh10vpiEAGJwBodxt4AvIkEyGBSTv3uTJ5MzCNAYFqa7joFLXILW3eBuSdBTNhmAWXt1y+GPDQZ9ZUIDEZPgbkngz/VaEgBXS4K2A6QeV4Y3l4OIDARvIqG0VL63WHzPmiAIIqQIaZHAN3FemMjXDdAjLsEpEoxcJGhjEnwQIgBkCwVcMxxMjAmLSVDg43kTCRER+qr0BSMmQYRI0KZBcrirITa24x0gtXjLcBARXMjdRefPq8e0rgaqtkgQRDsIaZGgWBK4SPBxA3dpwKQZx8gYIElyxUVRloTycjAuErSBizqzGxTaEgl6rvSBq8ckiHY38AqM2td9gQcmatNv9QYtcrxlOIiwJKSmqmNxgUrxCARBdJCQFgkmd3eDj5YEq3MDauQbksbdYLRa5eBLnZaEbs4rwx/On4fDWeTI6HCoKZACAhcBqCKBjweISX8EvIsExsQ0j/LmbqitVRuj6BEJvIeF1nSvtSTowZslQURMQmysut6nT8v3XCQ4u34SBEFcjZAWCUqLaN4UyMcNPIyLBH51qbEkKFUL9fZW4O2cv/8edqd5O8xqla0UQODcDXrQ1nTgm/cPP6iFg0S7G/i/h8Xi878tAPWKXtsfnj/WNsHyBW8xCSKyGyQJSE+XH586Jd+fOSPfp6T4Pi5BECFFSIsEE2OQTCb9lgSnz7rBzZJgdFoSAOhKgQTU3gq1584ptQys2pTNa0EkaEUAtx7we4NB30buzZKgdTXo8cF7CwLkIkFv5UIuEvh4Dof6WG/Bo7Q0+Z6LBF7uvJXeKARBEO6EtEgwMKa7rwJwFUsCFx46UiABVSTUX7iAJudVuFXbW0GUSODv94dIsFrlq3pAdTnwGILoaH0bORcJNTVy/QtATDwCoFoLtJYEUT0QeHwAdwVcvCjPX5L0WyncLQlcJPTrp29cgiBChpAWCSaHA5LRqLobdFoSlMBFTR0Do8Ui9w3nG5ePQsQaG6u0hf7BWWrYYnKWuWDs2ghcBDzjEvia6d3ItWmIvBSziBoJgKu7gbtGRLkbuOmfuwJKSuT7Xr18L8nM0YqElhZVLJAlgSCIdhLSIsHAYwZ0WhKszg2qwYslwaBNfwR8tiRIkoQI54ZS5Uxrs/JNRMD4Cv50NwCetRL0lk3mmM2qQOLiQJQlgQcXNjer8xVlSeBZCFwc8HsRcQPOzp4oKpJFSEuLbM2hwEWCINpJSIsEk8MhB/6JsiR4iUkwhYerV/mS5FPpZ073QYMAAHVOP75iSdBmIojMbuBXzaKyGwDPqot8zfSKBMAzLkGUSAgLUxtEcXHA70VZEqqq5BsXCX366BsXAHjjs6NHAd4YLTNTX10HgiBCipD+tTAwBoMAS0JrMQkmxmDu1s11fB1+99isLABQAhct/Meei4SwMLnMrx74lb7DoYobkZYEf7kbAM90QhF9GzjucQmiAhe7dVNrLZSUiLUkJCXJ83M4gL/9TT42cqT+cQmCCBlCWiSYHA4YzWZ1E9dpSWipr5e7NGotCd266U5/5CRcfz0AKCmQZndLgt54BECeIxca3LfvT5Eg0pLgvpHzAkVcPOhBm+HQ3KzWSdBrSQBUl8OZM2psgghLAqBaE/79b/ne+X+IIAiiPYS0SDAw5upu8NGSYI6IkLMk4HQ5aGISzDabbksFJyYzE7FZWYolwcDnLSpoEZAtHdy0zq/yRfRW4LRmSejsIoGPXVamjm806q+4CKgi4eRJoLhYfszjCfRy662uz3NzxYxLEERIENIiwcRFgk5LgiRJrlUX/WRJkCQJ4956C/0eekg+wC0IoqotcviGzS0J/F7ERs6FhntMgj9dAiKu9vmVfUkJcPas/Lh3bzH+/cGD5fv9+4Fjx+THzvgT3fzsZ2ra6ahR4sQHQRAhQUiLBANPUdRpSQCAMOcVZcPly64xCTab7kJKWmwJCeg9ZYr8hI8r0t0AeFoSuEjgx/UQSEuCSJHACxOdOSM2bgAArrtOvl+9WnZl2Gzi3A0pKcBnnwFPPAF8+CE1diIIokOYgj2BYCLKkgAA4QkJuPLdd6i7cAHo2xeAxpKgs5CSB1wMuFsSRIsEd0uCP0WCPywJIt0N3CVw+rR4kTB0qHzP12LYMLEZCJMmyTeCIIgOEtqWBJ7dIMCSYHMGttVduKCMYwBgtlqFWhLkD3OKDX9ZEtzdDdqqiHoJVOBiQ4P6GaItCaJ7IAwc6JolMXasmHEJgiB0EtIiweRwwGA0AjpbRQOyJQGQyyZrswAsRqN/LQmMiWm1rMWf7gb3sf3lbuBWBJNJzNhcJJSXA4cPy49FiQSDAbjvPvX5tGlixiUIgtBJSLsbDIzBrK0roMPdoFgSyssBiwUOSYKBMVkkiLYkcJHgcACNjWoQoGiRUFUlX5FzESVCJHDTP9/EeSqh3tLJgKtI4J0UExLE+OFjYuRbZSWwebN8TFRwIQAsXCivwdChatoiQRBEkAlpkWB0OGDSbiB6YhKcIqHeWYmvxWiEpaUFYdqYB1GWBO04dXViUxQBV3cDtyJIkpjxtRt5Y6M6vgiXADfZNzUB+/bJj0UFAEqSXGNg0yb1GM9KEEFEBPD88+LGIwiCEEBIuxuMjMHIRYLJJN98xCUmAUAzr4roD0uCyaSmtf3wg2pJECUStC4BvolHRooJpvPmEjAaxbgErFa5MRIAbN0q34tyCQCu1QpTU9U2zwRBEF2UkBcJiizQuYFzkdBUVYWmqio0O8WHRZLEVixUPlATvOivmAStJUGEqwFQ3Q1NTcCJE+oxUdH8PHZgyxb5XqRIuO02748JgiC6KKEtEhwOVSTocDUAgDkyEmbnJn3p0CG0OEWCyeHwj0jQBi+KtiTwq3qtJUGUSLDZ1HXgAYAiUhQ5vD3y99/L96LcDQAwbhwwZw4wfjywYIG4cQmCIDopoR2TINCSIEkSotLScPngQVz89lskOq+MpR9+UEWCqE0cUEXCtWZJAGSXQ20tUFioPhcFtyRwMjLEjS1JwOuvixuPIAiikxPylgQlJkGnJQEAopwbVNk33yj9FVBb6x9LAh+rpkZ84KI2JoFnH4joUcDhooCLBJGWBPfMAF6oiCAIgugwIS0STIzBzDdzAUGFUU5T9+VDh/wvErQuAdEpkFwQXL6sBheKDNLjWQh79sj3PNhQBDk56uO4OLFjEwRBhBghLRKMjMFkt8tPBKQnRvfvrzxuDpRIuHJFvCWBb+L19XIZYkCsSOAuAZ4aykseiyA5GbjjDvnxnDnUq4AgCEIHIR2TAAAWvlEJKGkcf/318qbEmP8tCbzXwZUr4i0J3brJoqmuDigqko+JFAnO3hYK7nEEevnkE+DUKbHFjgiCIEKQkLYkAICZb+ACRII1JgbdnQV2AiYSLl5Ur8hFBkZyawLPQBApEvr1c30uWiSEhZFAIAiCEEDIiwSTQJEAACPnz0dEnz7onp0tH/C3SDh5Uj0moiARhwcX8uwGkSLBfQPPzBQ3NkEQBCEMEgncVC9IJMQPH46frl+P5ClT5AP+jkngBYmio3VVjPRA25UQEJummJ6u1i8YPVqtHkkQBNFVqKgA8vJkN3BMDPDLX6p7wdVgDJg8WXZfr1njz1lelZAXCUZ+pSyqzTKHC4KKCrVBkj8sCVwkiGiQpMVdJIisXChJwF/+IlctfPNNceMSBEF0FvLyZHfthg3A2rVyqfhHH23fe998s9MEXYd84KLhyhX5gb9EAu9GKPozuEhobJTvRdYxAFwrFVosnqJBL7feKt8IgiC6GkeOAOvXA7t3A6NGyceWLpUvjF57re3U7P37gf/5HzlFvGfPgEy3LULekmDgxYL8LRLMZrFmdff4A9GWBG3cQJ8+4norEARBdDJqampQXV2t3Br5xZevbN8u/0ZzgQAAubny7+jOna2/r64OeOAB4K23gKQkfXMQRMj/8kuCYxIUeKZBZaV8LzKoEPC0HIi2JGRlqY9FtkQmCILoZAzKykJ0dLRyy8/P1zdgWZlnHJfJJF/Maa3L7syZI8dp3Xmnvs8XSMi6Gy6GhyOKpw4CQoopucDdAa0914u7uUp02+LMTLnvQXExcPfdYscmCILoRBwpKkJkcrLy3Gq1ej9x3jzglVeuMtgR3ybx+efApk3Avn2+vd9PhKxIqDWb1foCgHhLgvuVvWiR0K2bPCaPqejdW+z4BgOwcaNcTCk3V+zYBEEQnYjIyEhEtacY3dNPAzNmtH1O376yq6C83PV4S4scyN6aG2HTJjkQ3d3qPHUqMHYs8NVXV5+fHwhZkWB397GLFgmxsUr1ReW5aHr3VkWCyJbInORk+UYQBEHIzeja05AuJ0d2Ne/dC4wcKR/btAlwOABeQ8edefOAX/3K9djQocAbb6il5oNAUEXC4fffx9kNG1B96hSMYWGIHz4cw596SmmU5I2Tq1djx29/63LMYLHg/g6aaFrc00tEiwSjUVaEfBP3l0g4dEh+LDJFkSAIgvCdQYOASZOARx4B/vxnoLkZmDULuP9+1VV87hwwYQLwt78BN9wgWxi8WRlSUuTaMkEiqCKhfPduDJw2Dd2HDgVracGBxYux6ZFHcPvnn8PURoyAOSICt69dqx7wIZ+0xd2SILKGAad7d1UkiA5cBGSF+sUX8uPrrhM/PkEQBOEbK1fKwmDCBNl9O3UqsGSJ+npzsxzzVVcXvDm2g6CKhPHvvefy/MaFC7Fq7FhUFBUhQZs64o4kIbw9Jp828BAJ/rjS79FDLXYkOvsAAB5+GPjyS1mxiuzbQBAEQeije3fgww9bfz0tTXVHt8bVXg8AnSomodmZjmiJjm7zvJa6OqzJzQUYQ+ygQRg2ezZiNG2atTQ2NrrkvNY4y2J6iISrfKZPaIWBP3z76enArl3ixyUIgiAIdKI6CczhwN5XXkH8iBGIGTCg1fMi09OR/eKLGLd0KXIWLQJzOLAhLw91reSe5ufnu+S/DnI2E2oyGl1P9IdI0AYTUgAgQRAEcY3RaUTC7pdeQtWxYxjz2mttnhc/fDj63nknYgcNQuKPfoSbFy+GNTYWxz75xOv58+fPR1VVlXI78t13AIBGrUgIC5NvotFWLQxi4AlBEARB+EKncDfsfuklnN+yBbl//StsHSxFaTCbETtoEGpLSry+brVaXQpjNDvdDS6WBH8EFQLAuHFyUGVysmd7ZIIgCILo5ATVksAYw+6XXsL3Gzfix8uWIcKHgkAOux1Vx44hrIOBjE3amAR/uBoAYMQI4OBBuVa3u3uDIAiCIDo5QbUk7HnxRZxetw43L10Ks82G+osXAQDmyEiYnOb/b+bPhy0hAcPnzAEAHHr7bcQNG4bIlBQ01dTgyLJl+OH8efSfOrVDn+3ibhBdklnLkCH+G5sgCIIg/EhQRcKxjz8GAGx0K3N540svoa+zX0BdaSkkTR2Epupq7Hz+eTRcugRLVBS6Dx6MW1euRHQr2Q2tEdG3L3DsmPzEnyKBIAiCIK5RJMY6QSJmALl8/jzikpOx+913MWrrVrngxQcfAHl5wZ4aQRAEEUCqv/8eUX36oPrsWUSJ7n/TReg02Q2BJv3224H33wcKC0kgEARBEIQXQlYkAADCw4HBg4M9C4IgCILolIS2SCAIgiAIolVIJBAEQRAE4RUSCQRBEARBeIVEAkEQBEEQXiGRQBAEQRCEV0gkEARBEAThFRIJBEEQBEF4hUQCQRAEQRBeIZFAEARBEIRXSCQQBEEQBOEVEgkEQRAEQXiFRAJBEARBEF4hkUAQBEEQhFdIJBAEQRAE4RVTsCcQaBwOBwDgfGkp6p2PCYIgiNCjtrQUgLovEJ6EnEgoOXsWAHDdqFFBnglBEATRGThw9ixiUlKCPY1OSciJhPSMDFgAfFtYiOjo6GBP55qhpqYGWVlZKCoqQmRkZLCnc01Aa+YbtG4dh9bMN6qrqpA9ZAj6DBoU7Kl0WkJOJJhMJjQB6NOnD6KiooI9nWuG6upqAEBycjKtWzuhNfMNWreOQ2vmG9VRUagFYDSF3FbYbihwkSAIgiAIr5BIIAiCIAjCKyEnEqxWK55//nlYrdZgT+Wagtat49Ca+QatW8ehNfMNWrerIzHGWLAnQRAEQRBE5yPkLAkEQRAEQbQPEgkEQRAEQXiFRAJBEARBEF4hkUAQBEEQhFe6tEh46623kJaWhrCwMGRnZ2PXrl3BnpLfyM/Px49+9CNERkYiISEBd911F4qLi13OaWhowMyZM9GjRw9ERERg6tSpuHDhgss5JSUlmDJlCmw2GxISEvDMM8+gpaUlkF8laCxatAiSJGH27NnKMVozT86dO4ef//zn6NGjB8LDwzF06FDs2bNHeZ0xht///vfo2bMnwsPDkZubi2PHjrmMUVFRgby8PERFRSEmJga//OUvUVtbG+ivEjDsdjt+97vfIT09HeHh4ejXrx9efPFFaOPGQ23dtm7dijvuuAO9evWCJElYs2aNy+ui1uPgwYMYO3YswsLC0KdPH7z66qv+/mpdC9ZFKSgoYBaLhS1btowdPnyYPfLIIywmJoZduHAh2FPzCxMnTmTLly9nhYWFbP/+/ey2225jKSkprLa2VjnnscceY3369GEbN25ke/bsYTfeeCMbPXq08npLSwsbMmQIy83NZfv27WPr1q1jcXFxbP78+cH4SgFl165dLC0tjV133XXsySefVI7TmrlSUVHBUlNT2YwZM9jOnTvZyZMn2ZdffsmOHz+unLNo0SIWHR3N1qxZww4cOMB++tOfsvT0dFZfX6+cM2nSJDZs2DC2Y8cO9vXXX7P+/fuzadOmBeMrBYSFCxeyHj16sLVr17JTp06xTz/9lEVERLDFixcr54Tauq1bt44tWLCArVq1igFgq1evdnldxHpUVVWxxMRElpeXxwoLC9lHH33EwsPD2bvvvhuor3nN02VFwg033MBmzpypPLfb7axXr14sPz8/iLMKHOXl5QwA27JlC2OMscrKSmY2m9mnn36qnHPkyBEGgG3fvp0xJv/RGgwGVlZWppzzzjvvsKioKNbY2BjYLxBAampq2IABA9iGDRvYuHHjFJFAa+bJc889x2666aZWX3c4HCwpKYn96U9/Uo5VVlYyq9XKPvroI8YYY0VFRQwA2717t3LOF198wSRJYufOnfPf5IPIlClT2MMPP+xy7J577mF5eXmMMVo3d5Egaj3efvttFhsb6/K3+Nxzz7GMjAw/f6OuQ5d0NzQ1NWHv3r3Izc1VjhkMBuTm5mL79u1BnFngqKqqAgB0794dALB37140Nze7rElmZiZSUlKUNdm+fTuGDh2KxMRE5ZyJEyeiuroahw8fDuDsA8vMmTMxZcoUl7UBaM288fnnn2PUqFH42c9+hoSEBIwYMQLvv/++8vqpU6dQVlbmsmbR0dHIzs52WbOYmBiM0nRizc3NhcFgwM6dOwP3ZQLI6NGjsXHjRhw9ehQAcODAAWzbtg2TJ08GQOvmjqj12L59O26++WZYLBblnIkTJ6K4uBhXrlwJ0Le5tumSXS0uXboEu93u8sMNAImJifjuu++CNKvA4XA4MHv2bIwZMwZDhgwBAJSVlcFisSAmJsbl3MTERJSVlSnneFsz/lpXpKCgAN9++y12797t8RqtmScnT57EO++8g6eeegq/+c1vsHv3bjzxxBOwWCyYPn268p29rYl2zRISElxeN5lM6N69e5dcMwCYN28eqqurkZmZCaPRCLvdjoULFyIvLw8AaN3cELUeZWVlSE9P9xiDvxYbG+uX+XcluqRICHVmzpyJwsJCbNu2LdhT6dScPXsWTz75JDZs2ICwsLBgT+eawOFwYNSoUXj55ZcBACNGjEBhYSH+/Oc/Y/r06UGeXeflk08+wcqVK/Hhhx9i8ODB2L9/P2bPno1evXrRuhGdmi7pboiLi4PRaPSIQr9w4QKSkpKCNKvAMGvWLKxduxabN29G7969leNJSUloampCZWWly/naNUlKSvK6Zvy1rsbevXtRXl6O66+/HiaTCSaTCVu2bMGSJUtgMpmQmJhIa+ZGz549kZWV5XJs0KBBKCkpAaB+57b+9pKSklBeXu7yektLCyoqKrrkmgHAM888g3nz5uH+++/H0KFD8eCDD2LOnDnIz88HQOvmjqj1CLW/T3/QJUWCxWLByJEjsXHjRuWYw+HAxo0bkZOTE8SZ+Q/GGGbNmoXVq1dj06ZNHia2kSNHwmw2u6xJcXExSkpKlDXJycnBoUOHXP7wNmzYgKioKI+NoSswYcIEHDp0CPv371duo0aNQl5envKY1syVMWPGeKTWHj16FKmpqQCA9PR0JCUluaxZdXU1du7c6bJmlZWV2Lt3r3LOpk2b4HA4kJ2dHYBvEXjq6upgMLj+3BqNRjgcDgC0bu6IWo+cnBxs3boVzc3NyjkbNmxARkYGuRraS7AjJ/1FQUEBs1qtbMWKFayoqIg9+uijLCYmxiUKvSvx61//mkVHR7OvvvqKlZaWKre6ujrlnMcee4ylpKSwTZs2sT179rCcnByWk5OjvM7T+X7yk5+w/fv3s/Xr17P4+Pgum87nDW12A2O0Zu7s2rWLmUwmtnDhQnbs2DG2cuVKZrPZ2AcffKCcs2jRIhYTE8M+++wzdvDgQXbnnXd6TV0bMWIE27lzJ9u2bRsbMGDANZvK1x6mT5/OkpOTlRTIVatWsbi4OPbss88q54TautXU1LB9+/axffv2MQDs9ddfZ/v27WNnzpxhjIlZj8rKSpaYmMgefPBBVlhYyAoKCpjNZqMUyA7QZUUCY4wtXbqUpaSkMIvFwm644Qa2Y8eOYE/JbwDwelu+fLlyTn19PXv88cdZbGwss9ls7O6772alpaUu45w+fZpNnjyZhYeHs7i4OPb000+z5ubmAH+b4OEuEmjNPPnnP//JhgwZwqxWK8vMzGTvvfeey+sOh4P97ne/Y4mJicxqtbIJEyaw4uJil3MuX77Mpk2bxiIiIlhUVBT7xS9+wWpqagL5NQJKdXU1e/LJJ1lKSgoLCwtjffv2ZQsWLHBJzQu1ddu8ebPX36zp06czxsStx4EDB9hNN93ErFYrS05OZosWLQrUV+wSUKtogiAIgiC80iVjEgiCIAiC0A+JBIIgCIIgvEIigSAIgiAIr5BIIAiCIAjCKyQSCIIgCILwCokEgiAIgiC8QiKBIAiCIAivkEggCIIgCMIrJBIIIsh89dVXkCTJo5FUoNi4cSMGDRoEu92uaxxJkrBmzZp2n79+/XoMHz5c6V9AEETng0QCQQSQW265BbNnz3Y5Nnr0aJSWliI6Ojooc3r22Wfx29/+FkajUdc4paWlmDx5crvPnzRpEsxmM1auXKnrcwmC8B8kEggiyFgsFiQlJUGSpIB/9rZt23DixAlMnTpV91hJSUmwWq0des+MGTOwZMkS3Z9NEIR/IJFAEAFixowZ2LJlCxYvXgxJkiBJEk6fPu3hblixYgViYmKwdu1aZGRkwGaz4d5770VdXR3++te/Ii0tDbGxsXjiiSdcXASNjY2YO3cukpOT0a1bN2RnZ+Orr75qc04FBQW49dZbERYWphz7wx/+gOHDh2PZsmVISUlBREQEHn/8cdjtdrz66qtISkpCQkICFi5c6DKW1t1w+vRpSJKEVatWYfz48bDZbBg2bBi2b9/u8p477rgDe/bswYkTJ3xfWIIg/IYp2BMgiFBh8eLFOHr0KIYMGYI//vGPAID4+HicPn3a49y6ujosWbIEBQUFqKmpwT333IO7774bMTExWLduHU6ePImpU6dizJgxuO+++wAAs2bNQlFREQoKCtCrVy+sXr0akyZNwqFDhzBgwACvc/r666/xwAMPeBw/ceIEvvjiC6xfvx4nTpzAvffei5MnT2LgwIHYsmULvvnmGzz88MPIzc1FdnZ2q995wYIFeO211zBgwAAsWLAA06ZNw/Hjx2EyyT89KSkpSExMxNdff41+/fp1dEkJgvAzJBIIIkBER0fDYrHAZrMhKSmpzXObm5vxzjvvKBvnvffei7///e+4cOECIiIikJWVhfHjx2Pz5s247777UFJSguXLl6OkpAS9evUCAMydOxfr16/H8uXL8fLLL3v9nDNnzijna3E4HFi2bBkiIyOVzyouLsa6detgMBiQkZGBV155BZs3b25TJMydOxdTpkwBALzwwgsYPHgwjh8/jszMTOWcXr164cyZM20vHkEQQYFEAkF0Qmw2m8uVdWJiItLS0hAREeFyrLy8HABw6NAh2O12DBw40GWcxsZG9OjRo9XPqa+vd3E1cNLS0hAZGenyWUajEQaDweUY//zWuO6665THPXv2BACUl5e7iITw8HDU1dW1OQ5BEMGBRAJBdELMZrPLc0mSvB7j6YO1tbUwGo3Yu3evR5aCVli4ExcXhytXruj+/PZ8Dx6Y6f6eiooKxMfHtzkOQRDBgUQCQQQQi8Wiux6BN0aMGAG73Y7y8nKMHTu2Q+8rKioSPp/20tDQgBMnTmDEiBFBmwNBEK1D2Q0EEUDS0tKwc+dOnD59GpcuXRJWSGjgwIHIy8vDQw89hFWrVuHUqVPYtWsX8vPz8a9//avV902cOBHbtm0TMgdf2LFjB6xWK3JycoI2B4IgWodEAkEEkLlz58JoNCIrKwvx8fEoKSkRNvby5cvx0EMP4emnn0ZGRgbuuusu7N69GykpKa2+Jy8vD4cPH0ZxcbGweXSEjz76CHl5ebDZbEH5fIIg2kZijLFgT4IgiODxzDPPoLq6Gu+++25AP/fSpUvIyMjAnj17kJ6eHtDPJgiifZAlgSBCnAULFiA1NTXgPRROnz6Nt99+mwQCQXRiyJJAEARBEIRXyJJAEARBEIRXSCQQBEEQBOEVEgkEQRAEQXiFRAJBEARBEF4hkUAQBEEQhFdIJBAEQRAE4RUSCQRBEARBeIVEAkEQBEEQXiGRQBAEQRCEV/4ftPYJvBFYBqoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|█████████████████████████████████████████████| 1/1 [00:05<00:00, 5.13s/it]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAHWCAYAAAD94hqfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADe+UlEQVR4nOydd3gbRd7HvyvJktxb4hSn9zgVQkngCKGG0PsBoRxwwF3gjnJHCXf3hnIQermjw0EoCTWhE3pCgJCE9N574rjbclHXvn/MzmpX2q61ja35PI8e2+vVaLSWd77zqxzP8zwYDAaDwWAwEnC09wQYDAaDwWD8NmEigcFgMBgMhiJMJDAYDAaDwVCEiQQGg8FgMBiKMJHAYDAYDAZDESYSGAwGg8FgKMJEAoPBYDAYDEWYSGAwGAwGg6EIEwkMBoPBYDAUYSKBwfiNsnDhQnAch4ULF7b3VBgMRprCRAKDYYLFixfjnnvuQX19fXtPRZODBw/innvuwerVq20d95RTTgHHcbjpppsMnT9p0iRwHJf0OO2002ydFwDEYjE88sgj6N+/P7xeL0aPHo2333476Tyl+dDHKaecYvu8GIyOjKu9J8BgdCQWL16Me++9F3/4wx9QUFDQqq81ceJE+P1+uN1u0889ePAg7r33XvTr1w9jx461ZT7z5s3DL7/8Yvp5vXr1wsyZM2XHevbsacucpPzjH//AQw89hOuuuw5HHnkkPv74Y1x22WXgOA6XXHKJeN6bb76Z9Nzly5fj6aefxqmnnmr7vBiMjgwTCQzGbxSHwwGv19ve0wAABAIB/O1vf8Odd96J//u//zP13Pz8fFx++eWtNDPCgQMH8Pjjj+PGG2/EM888AwD44x//iOOPPx633347LrroIjidTgBQnAt17Vx66aWtOk8Go6PB3A2MTk9jYyNuueUW9OvXDx6PByUlJTjllFOwcuVK2XlLly7Faaedhvz8fGRlZeH444/Hzz//LP7+nnvuwe233w4A6N+/v2ii3r17NwCIZvjZs2dj6NCh8Hq9GDduHBYtWpQ0p1WrVmHKlCnIy8tDTk4OTjrpJCxZskR2jlJMwqRJkzBy5Ehs3LgRJ5xwArKyslBaWopHHnlE9rwjjzwSAHD11VeL85w1axYAoKWlBZs3b0Z1dbXha/jII48gFovh73//u+HnSIlEImhqatI858CBA7jmmmvQrVs3eDwejBgxAq+++qqh8T/++GOEw2FMmzZNPMZxHP785z9j//79mhaQYDCIuXPn4vjjj0evXr2MvSEGI01gIoHR6fnTn/6E559/HhdccAGee+45/P3vf0dmZiY2bdoknvP9999j4sSJ8Pl8mDFjBh588EHU19fjxBNPxLJlywAA559/vrjTfPLJJ/Hmm2/izTffRNeuXcVxfvjhB9xyyy24/PLLcd9996GmpgannXYa1q9fL56zYcMGHHfccVizZg3uuOMO/Otf/8KuXbswadIkLF26VPf91NXV4bTTTsOYMWPw+OOPY9iwYbjzzjsxf/58AMDw4cNx3333AQCuv/56cZ4TJ04EACxbtgzDhw8Xd9x67N27Fw899BAefvhhZGZmGnqOlK1btyI7Oxu5ubno3r07/vWvfyEcDsvOqaiowPjx4/Htt9/ipptuwtNPP41Bgwbh2muvxVNPPaX7GqtWrUJ2djaGDx8uO37UUUeJv1fjiy++QH19PaZOnWr6vTEYnR6ewejk5Ofn8zfeeKPq72OxGD948GB+8uTJfCwWE4+3tLTw/fv350855RTx2KOPPsoD4Hft2pU0DgAeAL98+XLx2J49e3iv18ufd9554rFzzz2Xd7vd/I4dO8RjBw8e5HNzc/mJEyeKxxYsWMAD4BcsWCAeO/7443kA/BtvvCEeCwaDfPfu3fkLLrhAPPbrr7/yAPjXXnstaZ503BkzZqheEykXXnghf8wxx8jep9b1lHLNNdfw99xzDz937lz+jTfe4M8++2weAH/xxRfLzrv22mv5Hj168NXV1bLjl1xyCZ+fn8+3tLRovs4ZZ5zBDxgwIOl4c3MzD4C/6667VJ97wQUX8B6Ph6+rqzP0nhiMdILFJDA6PQUFBVi6dCkOHjyoGDC3evVqbNu2Df/85z9RU1Mj+91JJ52EN998E7FYDA6HvuFtwoQJGDdunPhznz59cM455+DTTz9FNBoFAHz99dc499xzMWDAAPG8Hj164LLLLsPLL78Mn8+HvLw81dfIycmR+dXdbjeOOuoo7Ny5U3d+AHFZ8Dxv6NwFCxZg7ty5hiwcSvzvf/+T/XzFFVfg+uuvx8svv4xbb70V48ePB8/zmDt3Li6++GLwPC9zg0yePBnvvPMOVq5ciWOPPVb1dfx+PzweT9JxGtPh9/sVn+fz+fD555/j9NNPb/VAVAajI5LW7obK5cuxcNo0fDhpEuaMGIF9333X6q/ZUlGBxXfeiQ+OOQbvHn44Pj/3XNRITNEM+3nkkUewfv169O7dG0cddRTuuece2YK6bds2AMBVV12Frl27yh6vvPIKgsEgGhoaDL3W4MGDk44NGTIELS0tqKqqQlVVFVpaWjB06NCk84YPH45YLIZ9+/ZpvkavXr3AcZzsWGFhIerq6gzN0SiRSAR//etfccUVV4gxDnbwt7/9DQDw7bffAgCqqqpQX1+Pl156Ken6X3311QCAyspKAMChQ4dkD7r4Z2ZmIhgMJr1WIBAQf6/E3LlzEQgEmKuhrVi0CDjrLKBnT4DjgI8+at3Xi0aBf/0L6N8fyMwEBg4E7r8fMCiSGWme3RDx+1E4dCgGnn8+frz55lZ/vVBDA765/HJ0O+ooTHrhBXiLitC4Zw/cGrtGRupcfPHFOO644/Dhhx/i66+/xqOPPoqHH34Y8+bNw5QpUxCLxQAAjz76qGq6YE5OThvOWBsapZ+IUeuAUd544w1s2bIFL774ohicSWlsbMTu3btRUlKCrKwsU+P27t0bAFBbWwsA4vW//PLLcdVVVyk+Z/To0QCIxUXKa6+9hj/84Q/o0aMHFixYAJ7nZQKqvLwcgHrK5ezZs5Gfn48zzzzT1HtgWKS5GRgzBrjmGuD881v/9R5+GHj+eeD114ERI4Dly4Grrwby84G//rX1X78TkNYioedxx6Hnccep/j4aCmHN009jzxdfINTYiIJBgzD2ttvQTQiGMsvG//0PWd27Y/wDD4jHclg0dZvQo0cPTJs2DdOmTUNlZSUOP/xwPPDAA5gyZQoGDhwIAMjLy8PJJ5+sOU7iDj4RapWQsnXrVmRlZYkBjllZWdiyZUvSeZs3b4bD4RAX0VTQm6cR9u7di3A4rGjmf+ONN/DGG2/gww8/xLnnnmtqXGrFodeja9euyM3NRTQa1b3+33zzjeznESNGAADGjh2LV155BZs2bUJZWZn4e+omURJ/5eXlWLBgAf7whz8ouioYrcCUKeShRjAI/OMfwNtvA/X1wMiRZKGfNMna6y1eDJxzDnDGGeTnfv3I2EIwMkOftHY36LH83/9G9erVOPaxx3D6vHnoM3kyFtxwA3x79lgab/+CBSgaMQI/3nor5h53HOZfcAG2v/++zbNmSIlGo0mugpKSEvTs2VM0T48bNw4DBw7EY489ppimV1VVJX6fnZ0NAKoVF3/55RdZauW+ffvw8ccf49RTT4XT6YTT6cSpp56Kjz/+WLY7r6iowJw5c/C73/1OMx7BKFrzNJoCeckll+DDDz9MegDA6aefjg8//BBHH320eP7mzZuxd+9e8Wefz5fkAuB5Hv/+978BkHgDgFhGLrjgAsydO1eWBUKRXv+TTz5Z9qCWhXPOOQcZGRl47rnnZK/1wgsvoLS0FMccc0zSuO+88w5isRhzNfyWuOkm4JdfgHfeAdauBS66CDjtNEBBfBvimGOA774Dtm4lP69ZA/z0k7ZQYchpx6DJ3xSzy8r4vd9+K/7cdOAAP2fUKL65okJ23rfXXMOvevJJS6/x9tix/Ntjx/KrnnySr9m4kd/27rv8O4cdxu/48MMUZs7Qoq6ujs/Ozuavuuoq/oknnuBfeukl/uKLL+YB8I8//rh43oIFC3iv18v36dOHnzFjBv/SSy/xM2bM4CdOnMifeeaZ4nnLli3jAfCnn346/8Ybb/Bvv/0239TUxPM8ifofOXIk36VLF/6+++7jH374Yb5v37681+vl16xZI46xfv16Pjs7my8tLeUfeOAB/uGHH+YHDBjAezwefsmSJbI5QSG7YcSIEUnv86qrruL79u0r/hwKhfiCggJ+6NCh/CuvvMK//fbb/M6dO2XjGs1uSAQq2Q0A+OOPP142/+7du/O33nor/+yzz/KPPfYYf+yxx/IA+Ouvv1723EOHDvF9+/bls7Ky+Jtvvpl/8cUX+ZkzZ/IXXXQRX1hYaGhet99+uzj2yy+/zJ9xxhk8AH727NmK548bN47v2bMnH41Gjb95hn0APC+99+3Zw/NOJ88fOCA/76STeH76dGuvEY3y/J138jzH8bzLRb4++KDlKacjae1u0KJ+2zbw0Sg+O/102fFoOAyPEAXdsHMnPj/rLM1xyq69FmNvu438EIuhaORIjL3lFgBA0fDhqN++Hdveew8DTJpsGcbIysrCtGnT8PXXX2PevHmIxWIYNGgQnnvuOfz5z38Wz5s0aRJ++eUX3H///XjmmWfQ1NSE7t274+ijj8YNN9wgnnfkkUfi/vvvxwsvvIAvv/wSsVgMu3btEnfuxx9/PCZMmIB7770Xe/fuRVlZGWbNmiX61AFiIv/xxx8xffp0zJw5E7FYDEcffTTeeust2c48FTIyMvD6669j+vTp+NOf/oRIJILXXnsN/fv3t2V8I/Tt21eMBTl06BAcDgeGDx+OF154Addff73s3G7dumHZsmW47777MG/ePDz33HMoLi7GiBEj8PDDDxt6vYceegiFhYV48cUXMWvWLAwePBhvvfUWLrvssqRzt2zZghUrVuC2224zlLXCaAPWrSOBhkOGyI8Hg0BxMfl+82YgoRZGEnfeCTz0EPn+vfeA2bOBOXNITMLq1cAtt5DASZX4F4YcjudZmCcAzBkxAsf95z/ofdJJAIA98+dj8Z134oyPPwaXcBNxZWUhs2tXREMhNO3frzmup6AA3qIiAMBHJ5+MHsccg6OFQjcAsO2dd7D+xRdx3oIFNr8jRlvDcZysLDCDwdCA44APPwToBundd4GpU4ENG4DE4NycHKB7dyAUAvRSfYuLAVrgrHdv4K67gBtvjP/+3/8G3nqLCA6GLsySoELh8OHgo1EEamtRIsl7l+J0u5EvyXXXo+thh8G3a5fsmG/3bmS3QrMbBoPB6FAcdhixJFRWAmoB5W43MGyY8TFbWoBES5HTCQgZNQx90lokhJub0SQJtGrevx91mzbBnZ+PvH790O/MM/HL9Ok4/PbbUTh8OAK1tahYuhQFQ4ag9PjjTb/esCuvxNeXX44NL72EPpMno2bdOmz/4AMcdc89Nr4rBoPB+I3S1ARs3x7/edcu4gIoKiJuhqlTgSuvBB5/nIiGqioSeDh6dDxDwQxnnQU88ADQpw9xN6xaBTzxBEnBZBgird0NFcuW4TuhWIuU/uecgwkPPohYOIz1L76IXZ98An9FBTyFhSgeMwajb7wRBYl+M4McWLgQq596Co179iCnVy8Mu/JKDLroolTfCuM3AHM3MBg6LFwInHBC8vGrrgJmzQLCYeIOeOMN4MABoEsXYPx44N57gVGjzL9eYyMppvThh8RC0bMncOmlwP/9H7FKMHRJa5HAYDAYDAZDHRbWy2AwGAwGQxEmEhgMBoPBYCiSdoGLkUgEm9asQX7Xriw/msFgMNIYPhZDc0UFBh92GJyutFsODZF2V2XTmjUYfcQR7T0NBoPBYPxG2LRsGYbZ2Om0M5F2IqF7t24AgLXLl6NQ+J7BYDAY6UdTeTl6HnUUYmwtUCXtRAJ1MfTs0QPFrIgRg8FgpC0+AHkAfMz1rEq7XpnK5cuxcNo0fDhpEuaMGIF9332n+5yKZcsw/8IL8c7YsfjktNOwU+hKx2AwGAwGw17aVSRE/H4UDh2KI/75T0PnN+3fj4XTpqHbUUdhyty5GHrFFVg6YwYO/vRTK8+UwWAwGIz0o13dDT2POw491Wp0K7Dt3XeRU1qKw++4AwCQP3AgqlatwpY33kDP3/2utabJYDAYDEZa0qFiEqrXrEH38eNlx3oceyxW0ragCgSDQQSDQfHnxqamVpsfg8FgMNoOnucRiUQQjUYVf+90OuFyucBxXBvPrPPQoURCoLoa3i5dZMe8xcUINzUhEgjA5fUmPWfmzJm499574+ezDwuDwWB0eEKhEMrLy9HS0qJ5XlZWFnr06AE369VgiQ4lEqwwffp03HbbbeLPtYcOof/Qoe04IwaDwWCkQiwWw65du+B0OtGzZ0+43e4kawHP8wiFQqiqqsKuXbswePBgVkDPAh1KJHi7dEGgulp2LFBTg4ycHEUrAgB4PB54PB7x5zBzNzAYDEaHJhQKIRaLoXfv3sjKylI9LzMzExkZGdizZw9CoRC8KusEQ50OJau6jBmDQ0uXyo4dWrwYXcaMaacZMRgMBqO9MGIZYNaD1GjXqxdubkbdpk2o27QJANC8fz/qNm1C88GDAIDVTz6JxdOni+cP/v3v0bR/P1Y99hgadu7E1rffxt6vvsLQK69sl/kzGAwGg9GZaVd3Q+2GDfju6qvFn1c+8ggAoP8552DCgw/CX1WFlvJy8fc5vXph0nPPYeXDD2PLW28hq3t3HH3vvSz9kcFgMBiMVqBdRUK3o47CZRs2qP5+woMPKj5nyty5rTktBoPBYDAY6GAxCQwGg8FgMNoOJhIYDAaD0SHhed6WcxjqMJHAYKQxB3/6Cd9dey1qN25UPuHQIeCii4BbbwXC4badHIOhQkZGBgDoFlKSnkOfkxLPPw+MHg3k5ZHHhAnA/Pnaz3n/fWDYMMDrBUaNAr74IvV5tCFMJDAYaczyBx5AxZIlYtBwEnfcAXzwAfDUU8CsWW05NQZDFafTiYKCAlRWVqKmpgZ+vx+BQED28Pv9qKmpQWVlJQoKCuB0OlN/4V69gIceAlasAJYvB048ETjnHEAttm7xYuDSS4FrrwVWrQLOPZc81q9PfS5tBMenmS2m5uBBdCktRfWBAyju2bO9p8NgtBs8z+PtkSPFn5OCiEMhoEsXoLGR/DxxIvDDD204QwZDHZ7ncejQIdTX12ueV1BQgO7duyv2b/Dt34+83r3h27cPeb16WZtIURHw6KNECCTy+98Dzc3AZ5/Fj40fD4wdC7zwgrXXa2M6VMVFBoNhH4nVR/lYDJy08MyKFXGBAJBdkd8PZGa20QwZDHU4jkOPHj1QUlKCsIorLCMjw5AFobGxEfD5xJ8TK/UqEo0SV0JzM3E7KPHLL4CkLQAAYPJk4KOPdOf0W4G5GxiMNMVfWSn7OVBbKz9h7VrydfJkoFs3IBIhJlMG4zeE0+mE1+tVfBh1MQwvK0N+fr74mDlzpvrJ69YBOTmAxwP86U/Ahx8CZWXK5x46RP53pHTrRo53EJglgcFIU/xVVUk/Z0q7rFK/6ahRgNsNfPopsS4cc0wbzpLBaH02bdyI3NJS8WdNK8LQocDq1UBDA4nXueoq4oZTEwodHCYSGIw0JdTQIPs5sXmaGIw1ciTgchGRsHlzG82OwWg7cnNzkZeXZ+xktxsYNIh8P24c8OuvwNNPAy++mHxu9+5ARYX8WEUFOd5BYO4GBiNNCSekjyWKBuzaRb4OGkR2TwCwZUsbzIzB6EDEYkAwqPy7CROA776TH/vmG/UYht8gzJLAYKQpkeZm2c8hSeAWYjHgwAHyfe/eAA1oZJYERjozfTowZQrQpw8J6p0zB1i4EPjqK/L7K68ESksBGtNw883A8ccDjz8OnHEG8M47JHXypZfa7S2YhYkEBiNNiSRaEqQioaKCFE9yOICePUmgFkCEQ3MzkJ3dhjNlMH4jVFYSIVBeDuTnk8JKX30FnHIK+f3evXFBDZD4nTlzgH/+E7j7bmDwYJLZIEk9/q3DRAKDkaaEEywJQam7Yd8+8rVnTxKPUFgI5OaS3dO+faSCHIORbvzvf9q/X7gw+dhFF5FHB4XFJDAYaQoVCZyL7BXCUkvC3r3ka+/e5CvHERMrEBcQDAaj08NEAoORptCYhOwePQAkuBtoPIK0Ch0VCVRAMBiMTg8TCQxGmkKzG7KEdKyQtLoiraEgLQTDRAKDkXYwkcBgpCnUkpDZtSv5WRrISEWCtLgSEwkMRtrBRAKDkaZE/H4AgLe4GEBCICMtrCQICABMJDAYaQgTCQxGmhINhQAAnsJCAAYsCTQ+gcYrMBiMTg8TCQxGmhITRIJXEAkySwIVCVJLAi0lm1hmlsFgdFqYSGAw0pSoUEpWakngeZ78krobpJYEGsRYXw8EAm00SwaD0Z4wkcBgpCmJ7gbwPKJ+PxCNAjU15JjUklBQQJrbAMyawGCkCUwkMBhpCnU3uPPzSbEkCC6HujqAWhSEoEYA5BxqTWAigcFIC5hIYDDSFOpucHo8cGVmAhCCF2k8QkEBkJEhfxKNSzh0qI1myWAw2hMmEhiMNIVaEpxuNzKEhk3hlhagtpacILUiUKglgYkEBiMtYCKBwUhD+FgMsUgEAODweOASREKkpQWgjZ7y85OfyDIcGIy0gokEBiMNoUGLALEkuLKyAAgxCVoigVkSGIy0gokEBiMNiQnxCIDc3cAsCQwGQwoTCQxGGkItCZzDAc7lEi0JEaOWBCYSGIy0gIkEBiMNoSLB4XaD47h4dkMgoC0SaDAjraPAYDA6NUwkMBhpiJj+KBRHcnm95LjfHxcJBQXJT6QVGJlIYDDSAiYSGIw0JCaxJACAUxAJpiwJtOASg8HotDCRwGCkIdTd4PR4AEB0N0QDAdKbAdAWCdFoXEwwGIxOCxMJDEYaIi2kBMTFgq4lwesFhEwIsQkUg8HotLS7SNg6Zw4+PuUUvHPYYfjqkktQvXat6rmxcBjrnnsOn5x2Gt457DB8cd55OPjjj204Wwajc0BjEhLdDVE9kQCw4EUGI41oV5GwZ/58rHzkEYycNg1T3n8fBUOHYsENNyCgcvNZ85//YPv772Pc3XfjzE8+weDf/x4/3nwzajdtauOZMxgdm2iCJcFwdgPAghcZjDSiXUXC5tdfx8ALL8TA885D/qBBOGrGDLi8XuyYN0/x/N2ffooR112H0okTkdO7NwZfcgl6HnccNs+a1bYTZzA6ODwtyexyAZBYEqTZDXqWBOZuYDA6Pe0mEqKhEGo3bkT3CRPEY5zDge7jx6N6zRrV51DfKcXp9aJq5UrV1wkGg/D5fOKjsanJnjfAYHRgaN8GThAJNAUy4vcDPh85iVkSGIy0p91EQrC+Hnw0Cm9CpzlvcTECKjuUHscei82vvw7fnj3gYzGUL16Mfd9+Cz9tbavAzJkzkZ+fLz6GDxtm6/tgMDoiYnMnoRW0U3A3oKkpntrILAkMRtrT7oGLZhg3fTpy+/bF52eeiXfGjsXyBx7AgHPPBedQfxvTp09HQ0OD+Ni0eXMbzpjB+G0SS3A3UEsCqKXN6SSZDEowSwKDkTa42uuFPQUF4JzOpCDFQE0NvPQmlIC3qAgT//tfRINBBOvrkVlSgtVPPIGcXr3UX8fjgUfioggzdwODAT4cBgBwTieAeEwC19xMTsjOBjhO+cksu4HBSBvazZLgdLtRVFaGiiVLxGN8LIZDS5eiy5gx2s/1eJDVrRv4SAT7vvkGpSee2NrTZTA6FbFoFIDEkkDdDS0t5GtOjvqTmbuBwUgb2s2SAADDrroKv9x9N4pGjEDxqFHY8uabiPj9GHDeeQCAxdOnI6ukBGNvvRUAUL12LfwVFSgcNgwtlZVY9+yz4HkeZddc055vg8HocCS6G0RLAhUJtGCSEtTSx0QCg9HpaVeR0HfKFARqa7H2mWcQqK5G4bBhOOHFF5Ep3IRaysvBSUye0WAQa/7zHzTt34+MrCz0mDgREx56CO68vPZ6CwxGh4SmQHJC4CKNSXAIRZY0LQlFReRrXV2rzY/BYPw2aFeRAABDp07F0KlTFX93ckL9g25HHokzP/20DWbFYHRu1CwJokjQsiQUFpKvTCQwGJ2eDpXdwGAw7CEmBC4mZje4YjFygpYlgbaQbmkBhMqNDAajc8JEAoORhojFlBKyG0SRoGVJkNZPYJ0gGYxODRMJDEYakliWmXM44PR4jIkEpxOgcUDM5cBgdGqYSGAw0pDEFEiAWBMMuRuAeFxCfX0rzI7BYPxWYCKBwUhDEssyA6RWgiFLAhCPS2CWBAajU8NEAoORhogVFxMtCbRvA7MkMBgMMJHAYKQloiVBCFwESIYDsyQwGAwpTCQwGGlIYp0EgMUkMBi6zJwJHHkkkJsLlJQA554LbNmi/ZxZs0gfFOlDrXnabxAmEhiMNERMgZSKBKPZDQCzJDDSkx9+AG68EViyBPjmGyAcBk49FaCN0dTIywPKy+OPPXvaZr420O4VFxkMRtvDKwQuMksCg6HDl1/Kf541i1gUVqwAJk5Ufx7HAd27t+rUWgtmSWAw0hDFFEi3m1kSGGlJY2MjfD6f+AjS8uR60GJitJ+JGk1NQN++QO/ewDnnABs2pDbhNoSJBAYjDUksywyYtCRQkcAsCYxOwPCyMuTn54uPmTNn6j8pFgNuuQU49lhg5Ej184YOBV59Ffj4Y+Ctt8jzjjkG2L/ftvm3JszdwGCkIXxCWWbApCWBNXlidCI2bdyI3NJS8WePx6P/pBtvBNavB376Sfu8CRPIg3LMMcDw4cCLLwL3329xxm0HEwkMRhqScnYDsyQwOhG5ubnIo6XGjXDTTcBnnwGLFgG9epl7sYwM4LDDgO3bzT2vnWDuBgYjDVGquOh0uZBBiykZtSQwkcBIJ3ieCIQPPwS+/x7o39/8GNEosG4d0KOH/fNrBZglgcFIQ5RSIF0S14OpwEWeJ9HbDEZn58YbgTlzSHxBbi5w6BA5np8PZGaS76+8EigtJTUVAOC++4Dx44FBg4iofvRRkgL5xz+2y1swCxMJDEYaktgFEgAypAs9veGpQS0J0SjJEddzTzAYnYHnnydfJ02SH3/tNeAPfyDf790LOCRG+ro64LrriKAoLATGjQMWLwbKytpixinDRAKDkYYoxSS4BJEQczhk5ZoVycwkvtVwmNwEmUhgpAPUHafFwoXyn598kjw6KCwmgcFIQ5SyG6hciLkM7B04jsUlMBhpABMJDEYaotgqWrAkRPWsCBSW4cBgdHqYSGAw0hDFFEjBlBozKhJoypjPZ+vcGAzGbwcmEhiMNEQxJkEQCVGHwdtCfj75SkvTMhiMTgcTCQxGGsIrdYEUCilFjaYzMksCg9HpYSKBwUhDeKHBk6wss1lLAhUJzJLAYHRamEhgMNIYqc3AIQiHiNEnU3cDsyQwGJ0WJhIYDAYAwCmIhKjRJzBLAoPR6WEigcFgAAAcQpwCsyQwGAwKEwkMRhrCK1SOMy0SmCWBwej0MJHAYKQzkkwGqUigKZKaMEsCg9HpYSKBwWAAABzhMACSAhkNBvWfwFIgGYxODxMJDAYDAMCFQgAsiATmbmAwOi1MJDAY6YhCTAIXCAAgdRKiwveaMHcDg9HpYSKBwUhnpNUV/X4AQITjEBWsCpowSwKD0elhIoHBYBAEkWDakhAKAUbcEwwGo8PBRAKDwSBQkWDUkpCTE/+eWRMYjE6JS/+U1mXrnDnY9Npr8FdXo3DoUIy7+250GT1a9fzNb7yBbe++i5bycngKC9H7lFMw9tZb4fR42nDWDEbHJjkiAYDZmASnE8jNBRobSVxCSYmtc2QwGO1Pu1oS9syfj5WPPIKR06Zhyvvvo2DoUCy44QYEamoUz9/92WdY/eSTGPXnP+OMTz/F0ffdh71ffonVTz3VthNnMDoJnEJMguHsBoDFJTAYnZx2FQmbX38dAy+8EAPPOw/5gwbhqBkz4PJ6sWPePMXzq1avRtfDDkO/M89ETmkpehx7LPqefjpq161r45kzGJ0QaUyCWZHAMhwYjE5Ju4mEaCiE2o0b0X3CBPEY53Cg+/jxqF6zRvE5XceORe3GjaheuxYA0LRvHw7++CN6Tpyo+jrBYBA+n098NDY12ftGGIzOgjS7wahIoMGLzJLAYHRK2i0mIVhfDz4ahbe4WHbcW1wM365dis/pd+aZCNbX49srrgAPgI9EMOj3v8eI669XfZ2ZM2fi3nvvjY8vNa8yGOmKQp0EZklgMBiJdKjshoply7DhpZdwxL/+hSnvv4/jnn4aB3/4Aeuef171OdOnT0dDQ4P42LR5cxvOmMH4jZNqTAKzJDAYnZp2syR4CgrAOZ1JQYqBmhp4u3RRfM7a//4X/c8+G4MuvBAAUDBkCCJ+P5bdcw9G3nADOEey5vF4PPBIMh/CzN3AYCjDLAkMBiOBdrMkON1uFJWVoWLJEvEYH4vh0NKl6DJmjOJzIoGAfOcDiMJAqfUtg8EwQSqWBCYSGIxOSbvWSRh21VX45e67UTRiBIpHjcKWN99ExO/HgPPOAwAsnj4dWSUlGHvrrQCA0kmTsPn111E4fDi6jB6Nxr17sfa//0XppElwOJ3t+VYYjI5NOAxEowBM1EkAWAokg9HJaVeR0HfKFARqa7H2mWcQqK5G4bBhOOHFF5EpuBtaystledwjb7gBHMdh7X/+A39lJTyFhSidNAljbr65vd4Cg9ExSbS8CVYEwETFRYC5GxiMTk67V1wcOnUqhk6dqvi7k2fNkv3scLkwato0jJo2rQ1mxmCkAVSEJ4oEo5YEFrjIYHRqOlR2A4PBaCUEURDLyACsVFxklgQGo1PCRAKDwRC7OPIuYlxkKZAMBgNgIoHBSEuSsoEESwLvdgMwIRJY4CKD0alhIoHBSGPEsGBqScjIAGBCJOTmkq+NjfZOjMFg/CZgIoHBYIgiAWYtCVKRwGqVMBidDiYSGAxGXCQI1UlNi4RIJD4Gg8HoNDCRwGCkI4m7fupuoJYEoymQOTnx75nLgcHodDCRwGCkM7ROAhUF1JJgtJiSywVkZpLvmUhgMDodTCQwGAzRksB5vQBMWBIAFrzIYHRimEhgMBjxeAIqEoxaEoB4GiQTCQxGp4OJBAYjHVGJSQCzJDAYDAlMJDAYaQyXEJPACfEFpiwJTCQw0oWZM4EjjySf+ZIS4NxzgS1b9J/3/vvAsGFEhI8aBXzxRatP1S6YSGAwGPGYBEEk8JEIYpGIsecykcBIF374AbjxRmDJEuCbb0iL9VNPBZqb1Z+zeDFw6aXAtdcCq1YRYXHuucD69W0165Ro9y6QDAbjNwAVCVlZ4qFoMAiHy8AtgokERgensbFR1qTM4/HAI2T6yPjyS/nPs2YRi8KKFcDEicqDP/00cNppwO23k5/vv58IjGeeAV54wZ430IowSwKDkYYk1UZUEQmGYCKB0cEZXlaG/Px88TFz5kxjT6Q9S4qK1M/55Rfg5JPlxyZPJsc7AMySwGCkMzQmQZIC6cjIQCwcNh68yEQCo4OzaeNG5JaWij8rWhESicWAW24Bjj0WGDlS/bxDh4Bu3eTHunUjxzsATCQwGAxZMSWnx0NEgtHgRSYSGB2c3Nxc5NFUXqPceCOJK/jpp9aZ1G8E5m5gMBiyFEgnrbrILAkMhjI33QR89hmwYAHQq5f2ud27AxUV8mMVFeR4B4CJBAaDIWvw5LTa5ImJBEZnh+eJQPjwQ+D774H+/fWfM2EC8N138mPffEOOdwCYu4HBSEfUiil5PHDSgkpMJDAYcm68EZgzB/j4Y/K5p3EF+fnxHiZXXgmUlpKaCgBw883A8ccDjz8OnHEG8M47wPLlwEsvtc97MAmzJDAY6UxC4CKzJDAYGjz/PMlomDQJ6NEj/nj33fg5e/cC5eXxn485hgiLl14CxowBPvgA+Ogj7WDH3xDMksBgMJICFwEmEhiMJBItcEosXJh87KKLyKMDwiwJDAaDBS4yGAxFmEhgMNIRFpPAYDAMwEQCg5HGcEoxCW43AAsioanJmDmWwWB0GJhIYDAY9lgSeF670Q2DwehwMJHAYDDkgYtmLQlZWYBDuJUwlwOD0algIoHBSEN4tZgEr9e8JYHjWFwCg9FJYSKBwWAo1kmIGM1uAJhIYDA6KUwkMBgMRZEQM2pJAJhIYDA6KUwkMBiM1IopAUwkMBidFCYSGIx0RBqTwPPKxZSYSGAw0h4mEhiMdIbjgHA4/rOVFEiAiQQGo5PCRAKDke5IxQALXGQwGBJ+Ew2ets6Zg02vvQZ/dTUKhw7FuLvvRpfRoxXP/fYPf0Dlr78mHe85cSImPf98a0+Vweh8qIiEWChkfAwqEnw+GyfGYDDam3YXCXvmz8fKRx7BkTNmoMuoUdj85ptYcMMNOOuzz+AtLk46/7innkJMYh4NNjRg/vnno8+pp7bltBmMjo00JoFaDFwuwOFglgQGgyHS7u6Gza+/joEXXoiB552H/EGDcNSMGXB5vdgxb57i+Z6CAmR27So+Di1eDKfXiz6TJ7fxzBmMjg/HcbKgRQCpWRKYSGAwOhXtKhKioRBqN25E9wkTxGOcw4Hu48ejes0aQ2PsmDcPfadMgSsrS/H3wWAQPp9PfDQ2Ndkydwaj0yCpkQCAWRIYDIZIu4qEYH09+Gg0ya3gLS5GoLpa9/nVa9eiYds2DLzgAtVzZs6cifz8fPExfNiwlOfNYHQqEkSCS7AoMEsCg8Fod3dDKuycNw8FQ4aoBjkCwPTp09HQ0CA+Nm3e3IYzZDB+m8g6NySIBAetk8AsCQxG2tOugYueggJwTicCNTWy44GaGni7dNF8bqSlBXvmz8eom27Sfg2PBx7hpgcAYeZuYDDkSKotAoCLuhtYnQQGI+1pV0uC0+1GUVkZKpYsEY/xsRgOLV2KLmPGaD5371dfIRoKof9ZZ7X2NBmMzotC4KJD0rshqVukGkwkMBidkpQsCdFQCMHaWvCxmOx4ds+ehscYdtVV+OXuu1E0YgSKR43CljffRMTvx4DzzgMALJ4+HVklJRh7662y5+2YNw+9TjoJnoKCVN4Cg8FIjEkQvvKxGGLhMJxut/4YTCQwGJ0SSyLBt2cPlv7zn6hevVp2nOd5cByHS9etMzxW3ylTEKitxdpnnkGguhqFw4bhhBdfRKbgbmgpLydpWtLX37ULVStX4oSXX7YyfQaDISUxu0GwKAAkeJGJBAYjfbEkEpbcfTccLheOf+45spgnLOJmGTp1KoZOnar4u5NnzUo6lte/Py7bsCGl12Qw0hqpG4GKBEEMOCSiIBIIICMnR388KhICASASIYWZGAxGh8fSf3Ldli047b33kD9ggN3zYTAYbQnHATTVUbAkcBwHp8eDaDBovMkTFQkAsSYUFto8UQaD0R5YClzMHzAAwbo6u+fCYDDaA1rmPCNDPOQw2y7a7RZFBnM5MBidB0siYextt2H1E0+gYtkyBOvrEW5qkj0YDEYHgloSJG4Gl1mRAADULcFEAoPRabDkbvj+j38kX6+9VnbcSuAig8FoB6QxCdSSIBEJNHjRlEjIzQVqagC2UWAwOg2WRMJJr71m9zzaHZ7nsfz++9GwYweOfewxZHbt2t5TYjBaHU4akyBxN9CMBlZ1kcFIbyyJhG5HHmn3PNqdqpUrse3ddwEAG//3P4y76652nhGD0UYouBssWxIAJhIYjE6E5TylkM+HHfPmwbdzJwAgf+BADDj/fLilUc4diEOSqo/lP//cjjNhMNoYhcBF0ZLAYhIYjLTGUuBizfr1+OS007D5jTcQbGhAsKEBm994A5+edhpqN260e45tQuOuXeL3vp07EWlpsf01Kn79FcvuuQe+PXtsH5vBMIOs3LLdlgQWk8BgdBosWRJWPvwwep1wAo669144hKIpsUgES//v/7DioYdwyhtv2DrJtqBx717Zz75du1A0YoRt4/OxGBbffjv8VVVo2L4dp7z1lm1jMxgpoRS4aCW7gbkbGIxOhyVLQu2GDRh+7bWiQAAAh8uFsmuuQW0HrYTYuG8fAMCdnw8AaNixw9bxG7Zvh7+qCgBQtWoVgvX1to4PAIG6OuyZP79VrCCMToxS4CITCQwGAxZFQkZODlrKy5OONx86hIzs7JQn1dZE/H6EfT4AQPfx4wEATfv32/oaNevXy35uDTH141/+gp///ncsu/9+28dmdGKU3A1UJJjJbmAxCQxGp8OSSOhz2mlY+n//hz3z56O5vBzN5eXY/cUXWDZjBvpOmWL3HFsdWj3S4XIhf9AgAEDLoUO2vkbzgQOyn+u2bLF1/Kb9+1G1ahUAYPenn5rbARpk33ffYfnMma1iBWG0MUp1EuyyJLCYBAaj02ApJuGwv/8d4Dj8Mn06+GgUAMC5XBj8+99j7G232TrBtoAuep6iImT16AEAaFawlKRC88GDAIgQiUUiaEqIgUiVuk2b4j/wPGrWr0fJuHG2jR+oq8PPt92GWCQCPhzGkf/3f7aNTWncswdOjwdZ3bvbPjZDBWmdBBaTwGAwErAkEpxuN46YPh1jb7kFTYIvP6d3b7gyM22dXFsRqK0FAHgKCpAtLFC2WxIE0dFt/HiU//QTGm3OcPBJsjMAEgNhp0go/+knxCIRAMD+hQtxxL/+ldTCOxVqN27E15deCofHg9PnzkVO7962jU1pOXQImSUl4ByWDGidFzsrLgJMJDAYnYiU7pauzEwUDBmCgiFDOqxAAJQtCS3l5fI0sRRpqagAAHQ76igAydkUqZIoOhq2b7d1/IZt28Tv/RUVijEpqbD7s88Qi0QQaW7Grk8/tXVsAFj77LP46KSTsOyee2wfGyB/X9/u3a0ydqtjV+AijUlg7gYGo9Ng2JKw6OabMeGBB5CRk4NFN9+see7Ep59OeWJtSZBaEgoLkdWtGwAhmLGpybbiUCFBiNC0Sn9VFWLRKBxOpy3j08yJkiOOQOXy5bYvWInZHg07diC7Z0/bxq9csSL+/a+/2jYuQNJztwhpuTvmzsXY226Dp6DAtvFbKirw+TnnINLcjFPeegtdxoyxbWwACNTUYPv776PfGWe0ioXFtsBFZklgdHYWLQIefRRYsQIoLwc+/BA491z18xcuBE44Ifl4eTnQQdyqhi0J7pwc4r8EkJGdDXdOjuqjo0EDFz0FBXBlZsKVlQUg7oZIlVg0ipBw48wfOBCcwwE+GhXFiR0EamoAAMWjRgGA7Tv9JiHwMkP4+9qdIiqN0ajbssVWK07j7t2y7qQVy5bZNjYA7P78c4QbG8HHYtj+/vu2jg0AP99+O9b+97/48dZbbb0ugNC7QcvdQAWEEZhIYHR2mpuBMWOAZ58197wtW4gwoI+SktaZXytg2JIw/oEHxO8nPPhgq0ymvaALCLUaeIuL0dTSgmBNDdC3b8rjh3w+MZrcU1gIb5cu8FdWoqWiwrZGUokioVlwl9gVNxCorgZA3CX7v/8+KQYiFUINDeQaSX72V1aKVp1USbSq1G/dij6nnmrL2IA8nbVy+XLbxgWIK6xi6VIAJDi1ce9e5NnwmZRhV4MnlgLJ6OxMmUIeZikpAWy0XrYllmISvrv6atlNnRJuasJ3V1+d8qTamnBzMwCINR68xcUA4gtvqoQaGsj4OTlwuFzIFFSkv7LSlvH5WEy0ehSVlQEgN3e7UhVj4bA4VvHo0QDsDeykVgpvcTGye/Uix2ysU5EU1CmJr7AD6XhN+/aJViM7qN+6VfZz9cqVto0tYrclgcUkMDoYjY2N8Pl84iNodwr52LFAjx7AKacAHaw3kCWRUPHrr4jRG4uEaDCIyta4ibUyEUEkuKhIKCoCYJ+7gS6wbkFJ0h0yDWZMefyGBjEVNat7d3i7dCHj2+RyCNTVATwPzuFA4bBhZGwbRQK9Dlk9eiCntBSAvSKBpp8WC7ECDUJTMjvgeV6xpLdd1CcImroE0WALdreK9vsBIROGwegIDC8rQ35+vviYOXOmPQP36AG88AIwdy559O4NTJoEdKB10lQKpLQAUMOOHfALJmiA7GbLf/oJWR3I10IJC2WMW82SQLMnhJLPdlsSgsI83Xl5cGRkILtHDwSqq9FcXi5aFlKBXgdPURFyhJ1+88GDtrkzqIjyFhUhs2tXVCxdmlR8KhWo2OsyZgxq1qyxfe5UMHcZOxbVq1ejcfdudBEsLqlChZ4rKwuRlhY02hCQmhTXYHeDJ4BYEzqoeZWRfmzauBG5wgYFADxC4G7KDB1KHpRjjgF27ACefBJ48017XqOVMSUS5l9wATiOA8dx+O6aa5J+7/R6ccTdd9s2ubYinGBJ8FBLgk0iISi4G2hfiExhp2+bCKExFXR8Ic4hIBFxqUDH8RYXi4WOIi0tCDc2wp2Xl/L40sDR7FawJND5FwuZJdFAAMG6OtFiZMfY7vx8FAwZgurVq23NLGkRhGTJkUfi4A8/2GqlAECCke1q8OR2E2tEOEziEphIYHQQcnNzkWfDvcwQRx0F/PRT27yWDZgSCed8/TV4nscnkydj8jvvyG6yjowMeIqKbEvpa0siajEJNrkbEgMjPTa7M+j4rWUJke70XZmZ8BQUIFhfj5ZDh+wVCYWFyKZ1KmxyxQDx65zVowcyu3aFv6oKzQcP2iISaOppZteuYkqo38a5U2tTt6OOwsEffkDzgQOIRSKy5mopY1edBIBYE2prWVwCg6HG6tXEDdFBMHWnoTfByxKaFXV0REuCkPpIF1m7UhRpV0Zx/MJCMr6wOKaKKBKE6HJRJNhkSUgav2tXBOvr4a+uRsGQISmPLxazKiyMW0GExdcOqFjyFhcjq2dPUSQUjxyZ8thSkUBjTZptjNeg4xcNHw7O5QIfiSBQXW1v6Wq7Ki4CcZHAMhwYnZGmJkBaqG7XLrLoFxUBffoA06cDBw4AQl0WPPUU0L8/MGIEEAgAr7wCfP898PXX7TF7S6S0HWnYvh3N5eVJQYy9TjwxpUm1NUmWBJt3+okiodUsCcIibre7REmENGzbZp+lQlIW2yuIBL9NIiESCIh/X29REbJ79kTNmjX2BXVSAdKli7hw2xnUSS0Jmd26IaukBM0HD6L50KHURIJaTEKqgYsAq5XA6NwsXy4vjkR7FV11FTBrFqmBIA1kDoWAv/2NCIesLGD0aODbb5ULLP1GsSQSmvbtw6K//hX127aB4zgxEIoGgl26bp19M2xleJ5PClz00J2+TSmESSKhlS0Jdsc8qFoqbHZneAoLxbmHfD5Eg0HR7G0VGjTKuVzIyM0Vx/fbZWURFkN3fn48a+XQIVsCI6OhkPjZ8RQUIKt7dzQfPGirO0O1wZOVFEiA1UpgdG4mTUoW2VJmzZL/fMcd5NGBsZQCuXzmTOT06oXzf/wRTq8XZ3z8MU5+/XUUjRiBkxIv0m+cWCgEXkjXooGLNAAw1NBgS4W7iN8PAMig7gZhpx9ubDR/E1ZAdRG3y1Ih3PBby51Ba2648/Lgzs+HQ1is7FjIxXiQnBxwHGd/5gqde06OuLuPBgJibYxUkFaJzMjNjbszbK6mqRm4GAiY+x9IsVbC5jfewKKbbxYDNhkMRvtiSSTUrFmDUTfdBG9hITiHA5zDgZJx4zDmlluwooNVY6TxCEB8p0+D8fhoVDRVp0KiJcGdlwdOCPC0w1rR2jt9sdgUtVTYPH5EYsnhOC5uCbFDJNB4k0Qri10Chwqo3Fw4PR6xJ4Qd6a0hiThzOJ1xd4adlgRAM3ARIELaMCm4Gxp27sTKhx/G/m+/xdr//Mf08xkMhv1YEgmxWExmmqc3xOyePTtcJzy6y3d6PGJmhsvrFc2tQTt2hFQkCJ0yOYdDXEzsCI5MXMSpSAg3NZkPPFMgpGZJsFmEiIGdNsYlJGV+tJIrhgpLO604YcFKkSEsvHbV15BZBnhe05IAtF276IOLFonfH1i4EHwsZnoMBoNhL5ZEQsGgQWJhpeJRo7Dx1VdRtXIl1j//vFhsp6NAA7MSfd9Sl0OqJFoSAHvjEhItCRm5uXAIu0I7FkNqTRF7W9CF1oaFkOf5+PURFvLM1hAJVODYHZNAF/JWcMVQcSbtKQLYJ3AAgIvF4j5WiSXBkZEhNnSz1C7agkiQlqAO1tXZ3k6dwWCYx5JIGHHDDYCg8kffdBOaDxzAN1deiYM//ohx06fbOsHWhsYEUMsBxdNGIsGWHWfCQshxnK3Bl3SxSipbbcNiFQ0GxZLS4m6/FQWUmN5aV4eY8LqpEEqwJHjstCRQkZBgpbCzeyikrgSJJYHjuNSqLlqISWiQppYhuW8Fg8FoeyxlN/T83e/E73P79sWZn32GYH093Pn5tnUdbCv0LAl2uBuoS6O1LAmRBHcGQObvr6y0J+Yh0ZIgWQj5WAycw5LWBABZzAedv50CJ8ndUFgIcBz4aBSh+nrxvVgeP3G3b2N6q9gYTOG624Y0fVkiEgDA5fEg6vdb699gwZLQuG8fANJErGbtWtRv22Zrt04Gg2Ee03f3WDiMt0ePTmo84yko6HACAYjvktrC3ZChJBJsGF8UOhJriBjzYMNCGxEW2sSy1XwkIovAt4IYj5CZKYoNce52WBJovIaweDkyMuLBhXa4BNTcDTZYWUKJlgThugfr6xFLpYGSNCZBKhIk7gYAcFipumhRJEQCAdF10+3oowGQVGsGg9G+mBYJjowMZPXoIZqIOzpqIoG6G2zZzSq4G+iN3w4RQt+D1JJgq7tEECEuQYQ43W7xtVIdPzEeAWhdSwJgn9k+Fo3GBWDCQm6rSBAWXndBAYkT4HnbamyI7gaXS4xBoFgqzWwxJoFW2HR6PCgUGuI029i/g8FgWMOSnXjk9ddjzdNP21ZsqD1R2oUDNi/iCu4AcREXdk+pIM3QoLhtEjk8zyteI7vGT8xsAFo3qBOwz8pCBQLQOn0zEluYO5xOW2NZyIsIFokEKwJgUSRYjEmgQarerl3jTb6EFt8MBqP9sBSTsHXOHDTu3YsPTzgB2T17yhY/AJjywQemxtr02mvwV1ejcOhQjLv7bs02uyGfD2uefhr7vv0WoYYGZPfsicPvugulEydaeSut7m6IhcOiaVi2yFIRYoNIEC0JCu6GVOcvXSBkIqegAC2HDtm20Ep3+q3ibmiF8al44pxOMZvEzuBC0YIjue7eoiIEa2ttC17kFKotUlISCSYtCVQkZHXtKmZI+SsrEQ2FxBLRDAbDAK+9Rix6F10kP/7++0BLCykhbQJLIqH0xBNtiT/YM38+Vj7yCI6cMQNdRo3C5jffxIIbbsBZn32mGFAWDYXw/R//CG9xMY578klkduuG5oMHRXOsFVTdDXQhSXWRlUSPK+3E7XQHyMa3a/6SoDWZpcKm8RUXcRvdDUpBo267LAnUguP1iv8P0sDFVEszi3NPEAkNSNFSoRSToLAQu6xkN1h0N9D4EG/XrvAUFsKVmYmI34/m8nLk9e1raiwGI62ZORN48cXk4yUlwPXXt41IGH3jjVaelsTm11/HwAsvxMDzzgMAHDVjBg4uWoQd8+ZhxHXXJZ2/88MPEfL5cOrs2eLOLUcwTVpFFAmJ7gabFnHpDVa6I7LLkiBzB0gWcdGdkeJCSMd2uFyy9sR2xTxoxSREAwFE/P4kS5UZogquGLsEoLiISy04gkiIBgKI+v0ycWJ6fAU3ld0ZDhwVCQruBloeO9IG2Q3UMuItLiZVN7t1Q+Pu3fBXVjKRwGCYYe9e0nkykb595c2nDGIpJuHjyZMVd2Ehnw8fT55saIxoKITajRvRfcIE8RjncKD7+PGoXrNG8Tn7FyxAlzFj8Ou//415Eyfi83POwYaXXtLMdw8Gg/D5fOKjMcFXKoqEhJ2UXYsgHd+RkSFLFbTNnREKiTtDWQqkXQshFSAJC7Vtu3GFhdCVlSWKwFRdAhGloE7qirFJQDkT5y6IKbusOLKsFbsLKhmwJMTaICZB2r8DkBTUYj0cGAxzlJQAa9cmH1+zBrCQ8m1JJDQfOKCY3RANheA32CY3WF8PPhpNcit4i4tVq9U179+PvV9/DT4Ww6Tnn8fIP/0Jm2bNwgYl04rAzJkzkZ+fLz6GDxsmn7OOJSHVRZDWvU+KeZAERqbSRErNHWD7QqiS/WHX+NLduJ3FoJQsCXa7G6QChOO4uABshfHtzFoBEBcJSpYE4ZpFrIiElhbARAZUYrqnnVU3GYy04tJLgb/+FViwgPwPRqPA998DN98MXHKJ6eFMuRv2f/+9+H35zz/LIsb5WAyHlixBdiuWZeZjMXiLinDUPffA4XSiaMQItFRUYNNrr2HUtGmKz5k+fTpuoz2/AdQeOoT+QooVIFkEE3ZS4iKeYstbGpPgUBk/Fokg0tIi88mbge70OZdL3H0D9okcpeA52fipWio0YkL8lZWpBxcqiEC70luVBA5A5h6oqbHNkpBYJAuwp74GAMU20RSX8DcxZUmQ3BPQ1AQI89WdBrUk0D4VTCQwGNa4/35g927gpJNIajNAKiRfeSVgoQGjKZGw6K9/BUB2S7/cfbfsdw6XC9mlpTj89tsNjeUpKADndCaZTQM1NWJ9/UQyu3Yli6HQiAkA8gcORKC6WjUK2uPxwCNZgBKL/6hZEmjxnVgohGgwmLSIGUXNnUHN0rFIBCGfz7JI0N3p+3wpVUVUHd8mSwVdgByJ49uUBqmY+SGMnXI8hSRwUYpdriRxfCVLQgrXXWa5oimQGtkNpiwJHg+5MUUipkRCWNJNE2AigcGwjNsNvPsuEQtr1gCZmcCoUSQmwQKmRMJl69cDAD4+9VRMfvddsca+FZxuN4rKylCxZAl6n3QSAMEasXQphlx6qeJzuhx2GPZ8/rls0fPt3o3Mrl0tp0mpZTdkZGeLhWtCPp9407JrfGqWDtTUIOTzIbtHj5TGT9zN0oWKzp8u6qbHV6sjYdduXC+7xMYMhKSxU413aG0ri0JgpF2xJiIG3A2myjJzHHE51NWZCl5Ui0kIMJHAYFhjyBDySBFL2Q3nfP11yi8MAMOuugq/3H03ikaMQPGoUdjy5puI+P0YIGQ7LJ4+HVklJRh7660AgMG//z22zpmDFTNnYsjUqWjcswcbX34ZQ6ZOtTwH1UXc4UBGbi7CPh/CTU2WRYJaTAKAuEhI4YavlP4ICFURs7IQaWlBqKHBskhQWwhFS0KK2Rm6dSrsGl9hoQ03NSEWDsvcNKbGVogZAOyrUdEmMQla7gaaAiltAmUEKyKBxSQwGNaRuNR1eeIJU0NbEgkAcGjJEhxasgRBocmPlPH//rehMfpOmYJAbS3WPvMMAtXVKBw2DCe8+CIyBXdDS3m5LM88u0cPnPDSS1j58MP44rzzkNWtG4ZefjmGX3ut1behukgBgDsnB2GfL6W4BLWYBMCeNEg1dwBAFqtISwuCDQ2wWklCz93QWpYEOypeStNDXYmFrGh544YG8fNmFj13QyrXhuf5eNClQmaGXZYETiO7gX5mTVkSAEu1EsKJMQklJQCYSGAwDLFqVasNbUkkrHvuOax//nkUjRhBFH8KBWOGTp2KoSqWgJNnzUo61nXsWEx++23Lr5dIYl8CKdQ/mtIiriVCbNgVqu30AbIYNh88aIsIUXNnhBsbEYtEZDUUTI2vJxJsuPaAfCF3OJ1w5+Yi5PMhVF9vXSRoBC4Cqf1dY+GwKL6VAhejfn9KsTIiGu4G+rqmRYLJNMhYOCwKLrHjpfA3CTc1IRIIKP5/MhgMgQULWm1oS3f2be++i/EPPID+Z59t93zaHOoOSAycA+ILVSqdDqklQSlmorUtCfSGG07BEqJaJ0GYO0AWQ6stl1tVJKikhwIkeDHk86W0I1fa6QP2WBKkfSGkC2RGTg44hwN8LJZSrEz8hdQDF0V3g1WRYPBzF5L8f9HPbEZOjhjYG6ythatnT3NzYDDSjWuu0T+H44D//c/UsJZC3mPhMLqMHWvlqb85YsJOyqmwk6Kmz3AKC5UYva8kEmwIcFMLLARaV4Q4XC4xBdYOd0xrioTEapGAPbUSlGIGAHviBmRzl3w2OYfDtqBRAPGYBKUGT8JnylTFRcC8SJC026aZSxzHidUrbet4yWB0ZmbNIhaF+noSE6T0sFCp1ZIlYeAFF2D3559j1J//bOXpvymigkhQCl6zZRHUcjfYsRBqWSpscJeoBUYCZNcXbmpqFRFiR+Ci1tztXMjVXDEpuZGolUKhrLM7Px/Bujp7ghe1AhetuhtMxiREFDp1AsTa46+stK/jJYPRmfnzn4G33wZ27QKuvhq4/HJAENqpYEkkREMhbP/gA1QsWYKCIUPAJezSxt15Z8oTaytiWiLBTneDlkhI0XcNqMzfBneDmGKpMv+W8nJbxm9NS4KawEl1fDURYkdQp1qRL8AGC5TROgnUkiAIFsOYjEkI09LcCYJI2iyLwWDo8OyzJHNh3jzg1VeB6dOBM84Arr0WOPVUy7GDlkRC/ZYtKBSqFtZv2yb7nR3dIdsSrUXWjp14zMBOP5VFNmYkeyKV8bWuj43Bha0hErQsCXaMr/a3lVoSrHaCpBYutawVIPVCVoCkVbRS4GIbxSSoum2Yu4HBMIfHQ8oyX3opsGcPcUFMm0Y2Axs2yCuiGsSSSFDKOuioaO7E28rdkIKlQjOmwg6RoCVCqIhqRUtCNBBQraapO7ZG5oodAk0tvZUu4qmU3NYUl3aWZtayJAiLtumYBLPuBjVLAq26ySwJDIZ5HA4x1dtMH5WkYVKZQ+OePTj400/iTSSVRkXtRUy4SWrtlO0wpystslSEpDQ+FTlK49sReGnAkpDK+KI7JrEsdk6OaB6z6o4xlH5qgyUh8do7vV7xmOW507EVrrvHBjeVSAewJASYJYHBMEYwSOISTjmFVFtctw545hnSItqCFQGwaEkI1tfjp9tuQ8WyZeA4Dmd98QVyevfG0n/9C+68PBx+xx2WJtMeGHE32LHbbHV3Qyu5S0Szt4YIsSVuIGF8acVLq6l+Rlw9rRE0ynEcPPn58FdVIdjQgGwL6Xta4jLVzAyZmNcIXGyrmASlduEAsyQwGKaYNg145x2gd2+SDvn224DFGjBSLImEFQ8/DIfLhXO//RafnXWWeLzPaadh1SOPAB1RJCgUA8poRXO6XePHNBbxNotJaIUUSDo+FQmpjN1a1S5jGlYcd14e/FVVlq0sWgLH1tLMWnUSJNkNpmIrzFoSVNwNzJLAYJjghReAPn2AAQOAH34gDyXmzTM1rCWRcOjnn3HCSy8hq3t32fG8vn3RfPCglSHbDUOBi621CArjp+R3b+XshtYMjJSWTVYTCc2wvpC3etClxkKeqpVFK3DRri6TZBD9Ogl8LIZYOGz882k2JkHN3cAsCQyGca68MqXqx2pYEgkRvz+pyhxAAqmUFpPfMloxCa29yLokPqJwUxOcFnJajWZnWI6y13BnpBrzEAuHxXS81qgjobUbz7Axu6E1rCytnbVC4QxUXARIdUnDIsGqJSHR3cCyGxgM47RSQoGlwMWu48Zh18cfxw9wHPhYDJtefRXdjjrKrrm1CUZ2m5GWFlFMmB6fLlRKrXidTriEyPeUFxOl+Qs7zlg4LOtjYGp8AxUpU13EgdZJU9SystgSlNqKJbe1PjcpW0GUYhKUPp8ZGWINFFMZDmZjEqglIdHdIFgSwk1N5jtRMhgMW7BkSTjsb3/D99dei9oNGxALh7Hq8cfRsH07Qg0NOOWtt+yeY6vBx2LgtSwJktS1cFOTpXbLVFxwKu2I3bm5iDQ3W16stESOKytLVuffSpOc1twtS4WL5vgWzeqaMQPU1RMMWm6UpLXbT9ndYGRsq58ZqeDV6AIJEGsCbbJkGJuyG9x5eeCcTvDRKIJ1dcjq1s34HBgMhi1YsiQUDB6MMz//HF0PPxy9TjwREb8fvU8+GVPmzkVunz52z7HVkN4slQIXHRkZ4o3L8iJORYhKl8RUXRpagYscx9njEoC22TtlgeNyKbpCUt6N69XAoCmWqcYNtELmihjwqnPdE9u0G4FeFwDgaP60ikigFp6omQwH6kZrbgYMzE8tcJFzOERhzqouMhjtg7X+viA3wZE33GDnXNoc6c1SaSEBiO864vdb37VpZE8AgDvFgk1aMQMAWVBCDQ0pj69k9hZ3tBYrC8aEBSqxrDclZXeDxtw5hyPeLjrFFEut5l0pf240Al7B8wg3Nck6choaW5g353KB02gVDcR395YsCQBxOejMT82SAJAMh0BNDQteZDDaCUuWhB0ffoi9X32VdHzvV19h50cfpTqnNsOISHDn5qJbczPyTj+dRI+ajE3Q2s0Ckv4QqS4mKjvBlE3TBiwJsUjEfMEd6FtZUi14ZPTat0ZgZKrxGloCx+nxiO4RK39X2dg67ganlYJKXi8gdHM0EpegZkkAJLUS7Oh4yWAwTGNJJGx8+WVF/7ynqAgbXn451Tm1GXQR4RwOsUVtIu6sLEw4cACuPXuAN98EXnvN3GvouRtStCRoxQwAqbe71o15EK6blfnTeBBO7drbtIirCahUYipikYho6m+VzA+Dc7cyvmxsjcBFIJ7hYKqgEseZiktQC1wEJGmQLMOBwWgXLImE5vJyZPfqlXQ8u2dPtJSXpzyptkJvpwkAJY2NyJJaD0yKBHEhVNst2xWToCMSUrUkqMU8pCJCeMHdoGpJaMWYBCC13b4sM6MV0hS1MieA1AIjZX9TjYqLgEVLAmCqVoKmu4FWl2QigcFoFyyJBG9REeq3bEk6Xr9li1gytiMgWhJUFikAKK6qAgA0jRpFDixdCpi4Mest4uLN3mKTJ60oeCB1k71ezENKi5WegLJJJKgttKlkT0hT8lqjomNrWkFk/T70shusNnkyY0lQqZMAsE6QDEZ7Y0kk9D39dKyYORMVS5ciFo0iFo3i0JIlWDFzJvpOmWL3HFsNvQUcAPIrKgAAdaNHAwMHkmjtxYuNv4ZRS0Jr+d1tslS0lske0LckWL02RoI6AWvXRuaqUph/qhYcrUqdQIrXXXpddNwNlrIbAFO1Eoy4G1hpZsZvgkWLgLPOAnr2JG41IzF4CxcChx9O2jgPGtRqRY9aC0vZDaP/8hc0HzyI7669VvTl8zyP/mefjTE332zrBFsTrWqLAIBoFNlCmWlf167AsccCO3YAy5YBp51my2uIi7hFSwIdX3W3bFPBI72FtjVjEiJ+P2LhsKZbSAnDAsfCtdG14NBW136/pZLbetddmlliFpkrw0CdBKD12kXzsZgoQJi7gfGbp7kZGDOGNFA6/3z983ftAs44A/jTn4DZs4HvvgP++EegRw9g8uTWn68NWBIJTrcbv3v8cfj+8hfUb9kCp8eDgiFDLHW7a090YxL27IEjHEaU4+Bzu4HRo8nx9euNv4bebjk3F9mhEEbMmwccOEBiHgQXgREMuwOs7DijUTE4T9c3bmGxiunEJGRIUulCjY1imV7D42tkCAA27cbVFldpye3GRjiLi02NrxeTYIcVxJAlQdLkyRQG3Q1St41S1U1PK2c31G/fDndOTlIfGgZDkSlTyMMoL7wA9O8PPP44+Xn4cOCnn4Ann+zcIoGS168f8vr1s2kqbY9uTMLWrQCARrcb4ZYWYORIcnzdOtOvobqI5+TgiEOHUNzUBHz4IdCvH/DEE7aNn9JiIvW762VPWLEk6IgEh9OJjJwchJuaLImEqNH00BQsCWoCJGnuJkWCbkxCKuJPKkB0AhctZTcAxkWCRHwoCSJvK2Y3bHnrLayYORNOrxcnz5qFYhp3xEg7GhsbZbFmHo8HHgtVWJP45Rfg5JPlxyZPBm65JfWx2whLIiEWjWLXRx/h0JIlpBJaQlW1k0xmALQXujEJgkjwud3kZkxFwrZtQCBA8sH1XkPHkuCJRIhAoLz+OvDII4BGMKVsfKOLSYoR/K3hbhBFmoq7ASALebipyZqlwqCAsjS2znWn44ebmlITIa3tKmmNOgmA4ZgEOhfO6VT8O0ktCVablCkRCQSw5j//IXMIBLD6ySdx0quv2jI2o+MxvKwM0jvYjBkzcM8996Q+8KFDQGI58W7diCDx+wEFF9tvDUsiYcXMmdj10UfoefzxKBg0qFXaU7YFWg2AAMgtCY2NJFglN5fsjnbtIqYjHXidiouZq1cDABoyM5Hv9QK1tSSD4thjDb0Ho4GLlhYTI8WmUrBU6FkS6Pgt5eWpp/qpjA1Ym7veIg7YZKnQC1xMpU6CAXeD5ewGgzEJYqtwletIRQIfiSDc2Gi6uqQa5T/+iEhzM7l38Twqli5FS0UF6w+RpmzauBG5paXiz7ZYEToJlkTC3vnzcewTT6B04kS759OmaDV3AkAsBiAiIdTURG4o/fsDa9caFgl6gYtuQSQczM5G3sSJ4ObNI9kTJkWCqt89Px8Z0SiGrVsHPPUU8Ne/Ag5jSS3SxURtB5dSTIJO4CJgz0Kua0lIQYDoWRKA1Fw9ugGvbVUnobXcDVQMqVjlnB4PXFlZiLS0IFhXZ5tIqFi+HAAw5LLLULthA6pXr8b+77/HkEsvtWV8RsciNzcXeTZ9tmR07w4IGXIiFRWkVHkHsCIAFlMgHRkZHaqRkxq6gYt79wIAmt3u+M14wADydedO3fF5nteNe3AK1opajwexMWPIwV9/NTJ98DyvvxDm5uKo8nIMOXgQuPVW4H//MzQ2YKzYVErZDQYtCUCKC3kriAQjlgTb0hRtHltmQdPr3WA1u8Gou4FaEjR2bq2RBlmzdi0AoMvo0eh53HEAgEpBODAYtjFhAslokPLNN+R4B8GSSBj2hz9gy5tvgpf2pe+ARHVcAThwAADQ4nIh3NRE3m///uR3u3bpjk8XQdXX4Hlg40YAQL3HgxC1TBgVCdEoGQMaJvWmJvSWLoLPPmtobEC7y6E4vh0xCVoiwYaYCiPppzHJ38qOsQHJ3FPJ/GjF1FOZu0HNktDa2Q2026WWSLA5DTIWDqNu0yYAQPGoUeh6+OEAgKqVKzv8PY3RyjQ1AatXkwdA1oHVq8UNJaZPJz1+KH/6E9lQ3nEHsHkz8NxzwHvvkQ1bB8GSu6Fq5UpULFuGgz/9hPyBA5NuZBOfftqWybU2mjtNn0+8wfkzMsDHYoi0tCDDhCVB1opa6TX27gXn8yHGcWj0eBDq3RuZALBnD9DSAigUl1GaP6BhqVi8GByAxowM5PA8uDVryPh9++rP34AlISM3F65oFN03biSCp6xMd1xxfLoQagUu2mBJ0ItJAIhLQKkfiRq8ziIOpNa8y0jqLJBipUuHI96wzO7sBqMxCUZEAq26aFMaZNP+/YiFw3BlZiKnTx9klpSAc7ngr6xES3l5h0vlZrQhy5cDJ5wQ//m228jXq64iRZLKy+OCASCbys8/J6Lg6aeBXr2AV17pMOmPgEWR4M7NRe+TTrJ7Lm2OZl8FwYrA5+cj5nYDkQhCPh8yTFgSdLtMCruZpuxsxDgOQZcLKCoiwYvbtpGiHVrzl1oqVBYrbtEiAMC+vDwMKS2Fa+1a4McfbRMJ7pwcTNq7FyV+P3D00cCGDYBBVxSv0yoaSC3FUs8V43S74fR6EQ0ETIsEQ/EUKSzkeoWmqBXESrEmet2d0tgUvYqL7WlJsDkNsnHPHgBAbt++4DgOrsxMFAwejLpNm1C7aRMTCQx1Jk0SrbeKKFVTnDQJWLWqlSbU+lgSCeMfeMDuebQLmkGFgkjgSkuRkZeHYG0tqYpIF9d9+wyPD6jsCHfvBgAEpFUXhw4lubVbtuiKBOn4qovV0qUAgKqsLPQbPZqIhJ9/Bi6/XHf+egsVAHi2bUM+3WU2NRF3xsMP644tnb9mTEIKvSeMBhf6AwHT44tzNxB02RrxGtJCU+GmJjhN1JAQ5y492Fq9G3RiEmI6WRyAxN1QW2tuDipIRQKlcOhQ1G3ahPotWzrFBojBsAtLMQmUQG0tKlesQOWKFaReQgdD3MkqRfsLIgGlpfF2zj4fSYMEyG5f58bJS8y6iq8h3KyCwk0w1NQEDBtGfrd5s+78ZSJBafxIhIgNkJiHAC18ZbAYlJ5fHADcX39NXopmP3zwgaGxAYlvXEskCK26j3r+eWDOHMNjAybjBkwu5IasIKm4SnR6ftBiTVbGF0t5SzNWdNwNrWVJiBgIXPQWFmJwbS3K7rsPuOGGpLosZlESCQVDhgAA6hQa1zEY6YwlS0KkpQXLH3wQuz75RCzbyzmd6H/22Tji7rsVa7D/FtH0iUtEgru5GYCw0y8sJEWUAgHg4MF4toPS+HqBeYIlIVxcDNTWkgyKwYPJ73bs0J2/dLepmKK4axcQCiHqdKI5IwMtJSUoAkhZaZ7XrW9hxJLgECwVq7p1wxGVleB27gT27ye+Nx2MmOzzly1DEQ38u+EGUgfdYNlqIw283Hl5AM+bDi40InBS6pBpMPPDSrEm8XMjPajyN3C2ckxCzIC7IbepCSMOHSI/vPQScMQRwHXXmZuPhEbBZyzN0CoYOhQAFLvbMhjpjCVLwspHHkHl8uU4/tlncdGSJbhoyRJM/O9/Ufnrr1j56KN2z7HVEHeDOiJB1v+A4wBadENo/qSGkd4QABARCrjI3BnC7zTH19lt0syJluJigOPQnJdHKjk2NJCF3OD4qgtVIACsWAEAKM/JQZRmZ/z0k+7YgLHdeM4338R/aGoC5s41NDYQX2g1W4G3tODcbdtQMm1acj6z1titXOOBN+DOsNrhU7Qk0ANut6pgdKWa3dDUpLnzjxgQCYULF8oPPPWUubkk0CR89nN6946/hmDBa9q3z3KzNQajM2JJJOz75hscfd996HncccjIyUFGTg5KJ07E0ffei32C+dkMW+fMwcennIJ3DjsMX11yCaqFHGYldn74IeaMGCF7vHPYYVbehrZIoAtG9+7JwXPU5UCFhAq6i6xgSYj26AFA2HFSkSCNkFWbv974gssiWFICAAj7/YBgVqUCQgvdhXDTJiAUQigjA00ZGQgJuzGsWaM7tnR8LRGSIXwW9nbpQo5JRYMOuteH5zH0p5+QFYnAu3MnYKIMq5HMDHdeHrLCYXTbsUNWF97Q+CZEiGlLQqK7QcPSIgYuBoOi1dAQkpgJtLSonqZrSeB5ZAlCdMXo0WSuGzeKbjSz8DwPf2UlAMiqK3oKCuAVPmM+A0HJDEa6YEkkRAIBxYY1nuJi0wFOe+bPx8pHHsHIadMw5f33UTB0KBbccAMCNTWqz8nIycF5CxeKj3NMLBxSpK6SJKqqyNeuXZN3bNSSkIpICAZJugwAXjDNh5ua4pkB+/YBOrn7ugtJgqUi1NhI+pkDxopB6Zm8hRt1c34+wHEIUheD0ZgHvd3yr7+CC4fhdzqxjS46P/ygHV1M5x6Laf99AWD1amTTvzNAYh6ERUt3fCowtVwZgQBO27kTR23dCv6MM0z50o2kWLrz8uCKRk27SsTrTq+jRmCnS1IJ0ZQ1ITMzXtlTw9Kha0nYtg3OgwcR5Tjs8XhIpDhA0sosEGpoEDMqMgXxTMkTMpeYSGAw4lgSCV3GjMG6Z58V/9kAIhzWP/ccuuhE5Cey+fXXMfDCCzHwvPOQP2gQjpoxAy6vFzvmzVN/Eschs2vX+IPuMk2iuUhVV5OvXbsmp7JRS4KOu0Gz7LMgEODxwEEtCbQ/hMtFgg7pOWrj6y3igjUiKrTBDTc2xotBmajzoCcSAkJkvZ/uzAyKBF13w7JlAEhmRpXHA97pJNdER5xJxwY0RIhgxj6Yk4NwdjbZ7RstZGXAHeB591146Xv86ScicIyMzfPaVi6Bnrt344KtW9H3L38hjWQMIo5ND2iIBGm5ZFMbAI4zFJdALQkONZEgVEGs9XoRaG5GjIqEn382PhcJLYKF0FNYmCRMmEhgMJKxJBLG3XUXqlatwkcnnojvrrkG311zDT4+6SRUrVqFcdOnGx4nGgqhduNGdJeUqOQcDnQfPx7VGibrSEsLPjr5ZHx00kn44aabUL99u+q5wWAQPp9PfDRK/I3iTlMpM4DuMLt0kVXmA2DYkqDZQErqzpD6rp3OeNCfjstBNyZBSNOklopQQ0M80NJIxUi98YWS0kFBHDQJ+ezYu1c39U06f9WFVqgj4cvKQszhAD9wIDluQIRIKyiqzl9YtCuystBA/6aJ/m+18Y0EdQq73ajJzA963QGNaxMIoO/338PJ83BXVwMPPmhobCB+bcSRNawVnMMhLqatkeFALQkutY6qQn55nfD7MG3nvHixIYtSItTVkGhFACC2vfcJbkAGg2FRJBQMGYKzvvgCY265BYXDhqFw2DCMufVWnDV/PukKaZBgfT34aDTJdeEtLkaA7uQTyO3fH0fffz+O/+9/MeGhh8DHYvhm6lS0qOykZs6cifz8fPExnKYYQmMRjMUA6u6QWhJMxiRo+sTpfLt1kwdGAnGXg07wou4iS0WGMF6osdFU7wnd8QVLQkhYYAOxGCkGBdgjQoSYihYhRTRCP1saMSvi2HolsQEx6LI6MxN19DNosH6/bvZBfT2pbglgBbWwGBUgRgTOt98iQ8i6AQDMnq3rnhLHT6yToFOIyXKGg4FaCaIlQW0OQvnbRmqt6tePWNoOHTIUt5MItSQodXvMZZYEBiMJSyJhw8svY8/8+Rh00UU4/I47cPgdd2DQhRdizxdfYOMrr9g9Rxldx47FgHPOQeHw4eh25JGY+PTT8BQWYtt77ymeP336dDQ0NIiPTZL6A6qWhNrauP9Yakmgi7jgHoCwK1FDc6dPLQndusUDI+nNlFoS9ESIlrm+sREQytg6hJufTCTs2KG7E9N1Bwg305gQJR72+QC62zeQwqnrzhD+VoGuXcn8qXgyYEmQ7sYVd/s+n5jh0eD1op6m7Rp1legJnF9+AXgeTVlZ2EfLP2/cGHdjGZy76rX5/nsAwPaCAkTcbvKZNRgwyifGJGhYEgBJQaVWSIPUtSQI76lF+J8L+v3x0t8G368ULUtCvvB/0rhnj+leHgxGZ8WSSNj+3nui/05K/qBBqou1Ep6CAnBOZ1KQYqCmRow01sORkYHC4cPRpLKr8Hg8yMvLEx+59MYFDZ8+dTUUFAAZGcmWBHqD0RMJWu4GakmQZE+IAWhUhOjEJGgusrQiZGEhMmiKZWMjQAsq+XwkFdLq+C0tZGECAEEkmLVUaPrdq6tFa05QiKkICF9pC2/NuUt340rjCwIkWlSEkNOJWnrOzp26uf2AASuLIDYai4sRdLkQodYnAwuboUqaQrntiuxs1Ju1VNDsBgOBi0AKIsGAu0HTklBfL/4vhgVrVbCuDqAuh/Xrzc0H2paErJ494XC7EQuF0KLzv2eWcHMzmvbvZw2kGB0OSyLBX12NTGF3J8VbWAi/NFpcB6fbjaKyMlQsWSIe42MxHFq61HAAZCwaRcO2bfAqzMfIcwEFSwLd7QlCJSkmgb5WXV28i57S+FpdJiWWBLEREB2figSdYDTNRVbiapClymVlkYJQQGrZGfS52dlwCaIp5POZc2domeypJaK0FC7B1EzLV5spNMU5ncqFpoR4h5jgwmgOBOLX3cDioxtYKKSY+oVrEzRjBdETONEo6ZEBoCYzE7W058TKlbpjS8c3kt0AAC6h0VhEI5VRESMxCUKcg6IlgX6GSkrEz1iwrg4YOZIcN2j1kaJlSXA4nWIVRjtdDoeWLMFHJ56ITyZPxo9//avYU4TB6AhYEglZ3bujSqFhRdWqVYr/fFoMu+oqbP/gA+z86CM07NiBX++7DxG/HwPOOw8AsHj6dKx+8knx/HXPPYfyn39G0759qN24Eb/ceSeaDx7EoAsuMP0+VG/0kvRHgDQxAiTZDUVF8fQuDfOx5iIriUmgloRoMEgyRoxaErRECH1ujx6yboQ8z5uOqVBcqKilondvZAgVEMONjXF3gxFLghFLSO/e4vVpyc4mx2pq9K0gtNql2iJO3U5CjErI5wNP41U0AmHF8fViEgQREhSutZ9aQQzEU0jdVIoCZ+dOIBAA7/GgOSMDdXSRN1mfgjPqbqAioTViEmjpbKXsBioGBw4UmzwFUrQk+IX/V6VNDiAJXrRJJIR8Pvx8++3iBmD/999j3XPP2TI2g9EWWBIJgy68ECsfegg7PvwQzQcPovngQeyYNw8rH34Ygy680NRYfadMwWF//zvWPvMM5l9wAeo2b8YJL74opjW2lJfLrBMhnw9LZ8zAZ2edhYV/+hPCzc04ZfZs5JsImKQYFQlJO32HI25N0LCcGC3WlJGTI1a8CzU2GhYJhsaXiBDa7tpwnQethZBWbOzVS26poO4MAxHimjEbdPzevcXxA+Fw/Lrr3MTF3bJODQmHUFwqFg6Dp3M3YqnQmjvPiyIhIrhimmlgpAkrhaoAEcaIDh4MnuNQQwXr5s2G6jwkxSS0liXBQEwCzZhwGRQJwfr6uCVh82ZA0mnVCLRJFB0vEepGbbQpw2HH3LkI1tYir39/HPPIIwCAzbNmmbK4MhjtiaXeDcOvuQbB+nosv//++G7W40HZNddghIWa6kOnTsXQqVMVf3dyQuvNcXfdhXF33WX6NZQwbEmgO/1AIN6Wt6SELMQacQmaN3uJJYFzOJCRk4NwYyPCjY3IpLtOPUuC1vh0Xt26wen1wuFyIUbbXRsUCZoLoVQkSGM2DI4N6Pj1pZYKaTfFAQPI32fHDmDsWPWx9YodCe4Yx8CB4BwOIqB69oQbSD3zo6KCLIwch5ggPJqFhdbQ2HpWEMHVgOHDgQ0b0BAIgC8oAFdfTzJORo/WHp9+bmhwrlFLQiu4G6JGLAkDBsg7QfbuTYo1+f1E7BncIPA8L7ab9qp0zRTdDQbKoht5vW3vvgsAGH711eh3xhnYOmcOqlevxpbZszH2lltSfg0Go7WxZEngOA6H/e1vOP/HH3HqnDmYMm8eLly8GKOmTbN7fq0KzW5IutEniAQXNXNDkuFAd7QaIiFmcKcPJHQjpJaEhgZyI1Sbv5a5no5fUgKO42QuB8O9J7TGl+z0Fcf2+XRrJWhmT0jdDVJLhUF3hm6xI2F8rm/feMwJDWYz2VwrCRoP0rMnMoTFqJGeZ8RVomcFEawonFAGm49GwdOF0oCrRLw2VCQYDVxsDZGgZUmgf+OBA8VFPVhfTyx59HNg4P1SIi0tYgE4VZEgiDo7LAm+HTvQtG8fHG43+px2GgBg2JVXAgB2ffIJy6BgdAhSahWdkZ2N4lGjUDB4MNlddzBUC+LQbAvBRCxry0sXPgMZDqqWCr8/voAK48g6Bubnk06TgGbwomZBHzovYXwru33N8alIKC2VpXDGsrIAmvKXSh0JBZEQ9vnETAq9BlWaAi0ajc9NGthJFw4j6ZtGBE6fPuK1CYRCcWGpJ3D0SjJTV8mgQeLrx2jarInUU86su6EVYhI0LQlUbPXrF3c3CJYAmBBFFOpqcHq94ntKhMYktBw6ZP79JnBAKNbV7eijkSFsNEpPOAEZeXnwV1Sg0mB1TwajPUlJJHR0VGv7C/UFIPFbUpEQpsGLVCQYiElI2hHS1EGnU2x7LKu6yHGG4hI0d/oSdwOQIEKMuhuMuEt69BAXQnH+dHy9hdxgYKTb7rmXlxOh4HLJKl76aQvqigrNpkQAwGu5BOji1rs33MKYIRM1JHSrOQq7XK5fP3HuEeqiMuMqoTtZHXdDhrCghtsyJoHn45au0tK4uyEFkRAQnqsWjwCQtGz6N2u0UKxJSrnQDbV04kTxmNPtRt/JkwEAe774IqXxGYy2IL1FgtrNmN6IJDcTd2LwogF3g2hJUCrWBJAsCSFgMakWgwGRoGmul7gbZPO3YElQXGipOCopgSMjQzRJmxpfbSGX9q2QLrSNjYYLTWkutPTmX1oKOJ2igArGYvGFzejctQROYvqpSVeJ4txjMdkOWxyffh7NpIcadTe0ZkyCWu+Ghoa4UOvRQ2ZJ4Hk+JUuCmqtBnLYNLodYJIJqIUWz21FHyX7X+5RTAAAHFy0y11mTwWgH0lskqMUkUEsCzT9H3JIQSrQkGIlJSFwEqTtDcrMS/eJ0fOof1xpfze8ei8UXcaWYB5oCWVGhWcpXM3CRzishA8SMO0N1/Joa8h44LrnBlkErhWbmh8RKAUhaLpuwghiKSejdW16tkxYg08nM0AxILS8nEf1OJ3H10MwPM64SqxUXW1EkJNVJoFaEggIgK0sUCdFgEFG/v9UsCQCQR4MXUxAJ9Vu3Iur3IyMvD3m0dohAyZFHwpWVBX9VFeqELBgG47dKWosEVb+1giUhqaBSKjEJUkuCQJIlgVac1HJn6C2yknFk7gY6Ns/H56KAqiWhuTm+y0uMeTDhElAdn17T4mLA5ZLvxunY1GVgdmwgvgAJVgnZ3M1aKrREgtSS0NBgvNy21txp1H1pqeza+Glw7Z49uj0cxM8lrezY2imQKjEJPM/HLQmJc6DXSPh7u7KyxHOC9fXylucGAwCNWhLsSIOsFnpOdBk1KsmS6HS70eOYYwAA+w1WyTRC3ZYt+Pn22/HtH/6ADS+9ZK5rJ4OhQlqLBNVFXMGSkLSIm3E3qIkESWMr2U5cOr5WsSY1kzedU1GRuEt0S3e0Llf8ta3MnwoXj0dcCBQXWr3duJolJCHokgqcqN+PaFER2UVHo3GXipm5A8mZJUquGINz142noDEDfj9i1DqUigCRuDKkc/e7XPHrYrSniFl3g81lmWOSyoOqlgTB6sVxXLygUm0t+YxlZBCrioF0WyAez+DRczfYkAZJu9h2UUnT7Sm0vD5osH24HhXLluHryy7Dni++QOWvv2LN00/ju6uvjls+GQyLMJGAhBt9MBhPO1SyJCTu9DV24qqBiwruBneiu8FIsSZ6s080FycsgkCCSR0w5i7R2+mXlIgxFbI0SBpPobGIAxqWHJWgS0AInqNBehqLg6GgzoR4DVOWBDWXQCwWH79HD/ncqeg0GNCpGO8gCRiVzb2pKX5djAocg4GLrRWTEJUUfkqyJCSIBICUfQeExd5ES3UK7RHj1XE32BGTUCvUsiim1SET6HncceJ5qRZWCtTV4ee//x3RQADdJ0zAuLvvhjsvDzVr1+KX6dNZ3AMjJZhIQMLNmFoROC6eygcFSwJd4BsaSKCdAqqLoE3uBtXFhIoQSZMsmbsBMBVTodoAS1LaViZC6Ng6IkE11S9hEZeloBqMedC0JCSIEFtjEqSunq5d5XOni2ZlpWbPD6OVOmVzN2HBiZkMXMxIVSQ0NSl2HKUigXM4kj8DCe4GAPKqi0C8pbpRkWDUkkBbqzc0xF/LBBG/H42CFaJQ0ppeSmaXLigUulmW//yz6deQsuappxCoqUH+oEE4/tlnMXTqVJzw8stwuN04sHAhtn/wQUrjM9KbtBYJig2eaDxCfn68PwMkiyxdxKW7EfqcBFrd3aBm8tYQIUkpnFruBprmp2VJSBg/1NBgukumqiVBOr5SXIIBkaBXaAqQ/G2lcQN6C63e3KWuHmHuQZcrviBrFLLSrJMg6R4KQJ5iaTbmwaglgWauWI1J4HnFlFJpZkNSjwoFS4Ks6iIACG4BoyJBryQzxZWZiSzh+lrp4dCwYwf4WAyewkLNbrbUmnBQSJW0QvPBg9j50UcAgCP/7//gFLJEikeOxNjbbgMArHnyyaROu6kSC4fNi0ZGhyStRYJiCqFCPAKQ4NMHiF+f5tWr/AOm5G4wEriothAqiIQkEWLGkqBTkRJIEFHUzdHcTB5m568gEmSWEBOZH4YKTVlID1UVgFquHoMCR7Msc6JIsGJJoJav1g5czM4W3VFKLgfNaouSBmUUj7TqImDakiCWZJaIczVScTnUC63MC4YMUW7QJUBFwqGff5a1BzfDptdeAx+JoNvRR6Nk3DjZ74ZceikKhw1DyOfD2v/+19L4iVSvXYvvr7sO744bh/eOPBKfTJmCTa+9xjpbdmKYSECCJUGhkBKgEJMAxC0BKnEJqq2otdwNSjEJKj3oVesk0PGldR4SLSEGXAKqUfYaO/1wYyPZQdJANCsLuZ4lwURmSZLA4XltdwPduR46pJ09YUXgGHRnaNZgUCvnbSI9NJYYk2AicJFX+SwqwnGaBZU0qy0qXMekgkoW3Q16MQmApBukheDF+i1bABCRoEXx6NFw5+Uh5POhxkB30ESiwSB2ffYZAKDs2muTfu9wuTDu7rsBADvmzUu5H8XmN9/E15ddhkOLF4v/X01792LVY4/hy4svRoOBQl6Mjkd6iwRaJ0F6o6c3IBVLQkh6s6OLvJolQS1K3Yi7gVoSwmH16HC1VtH0PaToblCt86AXk8Bxxnb7JhZamQihY2sIHNW5NzYCNDVMKXCxa1cyf55X/bsCGgJKyZJAW2kbdAloFsmywZKQlAJpMHCRj0TEz5xhNEozU0uCYkl3hc9YUmlmKhIMLH6RlhZSXwH6MQlAipaErVsB6IsEh9OJ7sceCwA4+OOPpl/nwA8/IOzzIbNbN3QbP17xnJJx49Bz4kTw0SjWpWBN2DpnDlY+9BDA8+h35pk484svcMHPP+Po++6Dp6gIDdu24eupU1FhQ6lpPhbDoSVLsObpp/HT3/6Gn267Dasefxz7FyyQBbsy2oa0FgnijqqVLAmqxZo03A2xUIj8I2RlkQeg6nJQ3XEqWSroQtXUROZlRCSoiZCEQkrS+SeJEJstFUbdDaplk+lzcnLE6yutgcE7HPG/q5YI0bOCqLkbqPncQE8OxcwJtcBFE/EUSdkNBhs8Afa2i6aWBGdi+mMwGD9fQSRQi4CZmAT6HIfbrdq3QQq1JDSa3H3zPG9YJABAz9/9DoC1uIRdn3wCAOh/5pnqzcAAjLn5ZgDAnvnzUWuheFPN+vVY+fDDAICR06ZhwkMPIa9vX3gKCjDwggtwxkcfoXjMGIR9Piy4/nrs+/Zb069BObBoET49/XR8f+212PDSS9j75ZfY+9VX2PTqq1h0002YN3EiVj32GJp1OuQaIeTz4dCSJSmP09mx1Cq6M1C1erW4a6/fvl28cWStW4dcQLQk1G/bhmBdnfihDNTXo2LZMgBAHs8jExAX5YYdO2QBQk3CbrGlogIVy5ah62GHkWA04fyqffvEhV5qxj3www8onTQJzq5dgT170LxuHZoUdrXNwvjS5zbt3w/3nj1wA6ivqUFQmCu9IfOxGCItLcgQFuDIvn2oEc5JRIw+dzrRcuiQWMu+aN8+ZCSMT33PIZ8P/qoqONxueAD4li6Fn6bmCeQPGgRvUZG4GNZu2oSwJHah66FDcACoLi9HdnU1Mrt0ERfyui1bUDt4MIoARPbskc09t18/ZAnvizbiCvt84t8LADLWrEERgFhxcVwhU78xz+PADz+ge24uXNXVqFu0CCG/Hzm9eiFbcEOEm5tRu2GDOF/qf6YU7dyJDAAoKUEkEEDN2rXiuXVbtqAxFEIuAP+GDQjv2SNW94uGQmIBngZhzFBjozj3zK5dkZebK7pAKvbsAQ4cED9vwYYGVFdWogsAvrwc1BPO87yskRDP8+J1D1VXkxuAxJJQ8euviu4tzuUCH4kg0tIimv0rV6wQrRKJZOTkoKisTLQkNKxZg0CCGKAm9sQxahctQhEA3ulE5datYgCxXxBIoiWBNvvy+VD5/ffgqSARcGRkoOthh5HnCP9zGdnZio2VOKdT5tOn/5e+XbtwaOlSeWwBx6HbkUeKP9J7BEDiJcTv6+pQsWwZSo44QtyIJN4jaIfZuo0bsffrr9HrhBPEgFXfrl2q6ZGhxkYcWLQIANDv7LPRuGcPWjREbe/Jk7Hvq6+w+okncNSMGWjWCJwtGjFCbEhVt2ULfrjxRsQiEXQ5/HCUHHGE7PoVDh8Ob3ExTnr1VSz6619x6Oef8eMtt2DYVVeh9PjjZeMWDBkifnb8VVWyoNBwczO2zpmDQ4sXi9el98kno3DoUIRbWlCzfj1q1qxBsK4Om157DZtefx3dJ0xAvylT0OO445ApWF4DdXXi/48SGbm5qFm3Dvu++QYVS5ci5PdDX8qlNxxvysnY8ak5eBBdSkvx8tChyFJQ34dVVmJ4dTXwt78Bjz2GRTffjP0qynhceTmG1tUB//gH8O9/Y/Gdd2K34CNU4oKff4bH4xF3sO8NHYqIyg7g3O++Q9aZZwIrVmD7VVdhmYYZb8hll+GIf/wDALDm6afR5847URgM4vs+fXAo4cYJAOd88w2ym5qAoUMRdjjwvkqaVsHQoajfsgW/e+IJ+KuqsGLmTADAmdu3Iy8Uwjd9+6JKuJmM+8c/sOKBB5BZUoJRN94I7rrrMLC+Hqu7dsVGyW4QAI576in0PuUUzP3d7+I3fAFHLIZLNm8GALw/dCiOePRR9D/rLKx7/nmse+YZAEBuMIizduxAyOHAB5K5HzljBgZffDEAYPnMmdj61ltJ76mXz4eJ+/ejZeBAZAklfatWr8Y3U6eK55y4eze6t7Tg59JS7MnPx+i//AUj//QnAOSmOf/88xWvFwCcwXHI37ABeOklNJ56Kj49/XTZ7wfU12P8wYM4mJ2Ng3ffjSMEn7G/qgofCgV2lBh4wQU4+uKLgVGjwBcX422JpYLiikZxseAPR1MTkJ2NWCSCd8aMURzz+L17UdrUBPzvf8A11wAA3hk7VtOlcMbHHyNfqHb4wYQJqsV6iseMweQ5c4ATTgAWLsSysjKoFVB2Zmbi98uXiz//8Lvf4fiff4bf6cSHQjtsKZ6iIlwgmOdDHg/coRA+HzAADQkixNulC84XihUdWLQIP/z5z6rvy5WdjYslYvL7P/4Rh375RfFczunEpZIYAq17BAD8ftUq0aVi6B4hLKTL7rkH299/X/VcgCzSUz74ACsefhhb3nhD9bwTXn4ZP/z5z4hFIuh7+umazaVOe/99FJWVged5fHHuuWjQKH198htviOJq8+uvY+Ujj6ieO+nFF0XLyfYPPsCyGTNUz53w8MPof+aZAIDdn3+OxXfcoXpu4fDhGDd9OroefjgOLFiARX/5i+q5iUQ5Dlds2ADfvn3Io5Y4hoy0tSTk9e2LWGUlYqEQsnv2FE2q2c3NJO1Q+EfN6t4d+QMHgud5+ITAnLz+/cE5HMSnW1cnWgYyS0qQT5v4gNz4Qz4fPEVF8BYWEtO0sIvgHQ5kDx4c38WCBEnxkQiyS0vJucLimslxsnEpLZWVCDc2ylLlvMXF8NKmUX37Il8SW+HbvRt8NIpQYyOyaaGiWAyF/fohpiRWBP3IuVxw5+eLc/AINw13v37IF8zdtNRtqLER7txchLp0AerrkZ+TkzR3unuiO9qcPn3gFN6DJxAANm9GjOOQNXiwWGOAmtUzsrPh7tMH2LED7oS5uyV1LejOLSMnB1mSBbVw925g/37wEleMy+MB53SCj0aR06sXYvX1QEsLCvPzUT9woCxlzul2I3/gQPFvldOrl5h2BgBuoYgObXyVP3Aggg0NCFRXw5WdDUdODnDwILKdTnH3A5CFh14ner507pldu8ZdFJLPGQ/AJ/RryOzfH9Ft2+CkbgmhZ4D0+ks/xxleLxETEndD3oABojtCCn2/0jTI3P79EVEpuZxDgygFS0JuQQHyE7IKQo2N8FdWytwZAFAgfGbDWVmyuceiUTTu3o1QfT34WAycw4FQfj7cVVUo6dJF5uIB5KmO1JLgyswUrUJSnAlzyC4thSMjA7FwGFk9eoi1IoBkFxO9RwDEkhCoqYErOxvZCRY0IPkeAZAKksG6OmTk5MjG9nbtqvh/DxCLYTQYRP+zzybjFhernguQ2g+DL7sMW954A5W//oq8gQOhlndBBc22t98WBUJ2aWlyVUzIXVGeoiLkDRyIYE2NmIHizs+Ht0sXcAnnunNzkduvHwLV1WKpe0dGBjJLSuDyemWlszMU7iGRQADB+npEmptRt2kTvr3ySni7dEFuv36iazUWiSAaDCZ9notHjUKvk05CTmkptn/yCUD/ZxnK8GlG9YEDPAC++sAB/tMzzuBnl5XxFb/+Gj/hwgt5HuD5Z55Jeu7bY8fys8vK+KYDB8iBp58m5158seJrLfnXv/jZZWX8+hdfjB9cv548p6go6fwvzj+fn11Wxh9YtIgcuPxycu4jjyiOv3j6dH52WRm/4ZVX5L/IyiLP27FDdviT00+Pv99YjOczMsh5e/cqjj//oov42WVl/P6FC+MHYzGedzrJ8/bvFw8H6+v52WVl/OyyMj4SDPL8k0+Scy65RHFsnuf5d8eN42eXlfGN+/YlX58uXWTn7vzkE352WRn/3bXXkjm43eS8PXsUx970+uv87LIy/qfbb5f/4sEHyfOuuUZ2+LOzzuJnl5Xx5b/8wvN//Ss55667VOc+d+JEfnZZGV+7ebP8F/36kef+8ot4aNenn/Kzy8r4b6++mud//ZX8vmdP1bE3vvYaP7usjP/5zjvlv3j7bfLcSZNkhz845hh+dlkZX7dtG8/37Zv0+lJCTU3i3yk6cSI59513VOdC+ezss+PXxwyXXkpe44knkn617b33+NllZfzCadPkv5g9mzznhBNkh6OhkDj3QF0dOXjOOeTc557TnIZ4Te+4w/DUF954Iz+7rIzfMnu24ecsvusufnZZGb/22WcNP6dy5Up+dlkZ/9748Xw0HNY9v2HXLn52WRk/Z9QovqWqyvDrBOrq+PfGj+dnl5Xx2+fO1Ty3ZsMG/u0xY/jZZWX8ptdfN/walE2zZol/q6+vuIKvXLGCj8Vi4jw2vPKKOJc5I0fyKx97jA/7/aZfp2HnTn7Jv/4l3kuUHm+PHs1/d+21/JbZs/nm8nL58/ft43mAfGUokraWBEClIqJKdgNA1G+gpobsxIF4YKBa4KLS+NQ8S2ssSEgq2KRTmlm1rDTd7SUEX8rS5TiOzL+igsyf+nf1xm9sjKcGSsZ3Sdwa4cZGOE2UfZaNr5C+CSQE/3EcCWrcv5/Mn0a5K8zdSFBn0vgGsidUx6d/K2m1S2nmhzTokudlliRxbL1Kmgk78oy8PATr60nwYrduJNpfZe5S/z9H3Qo6gYtA63SCVA1cVMhsAMhOMyM3F+HGRgTr6ohZ3mBdC7Fvg8L/tRp5/frhAMylQdYLO28jQYuU4tGj4c7PR6ihAdVr1iTVO0iEBix2P+YYmTVKD09BAUbecANWPfooVj32GHoedxyxUCUQrK/Hj7feilg4jF4nnoihV1xh+DUow666Cp6iIiy7915UrViBb664Ap6CAriys0k8hGClLBw+HEfdcw+KR440/RoAseoefd99OOKf/0TVypWo37oV/spKgOPgLS5G/qBB6HrYYWKMBcM8aS0SFBdBlWJKAFnEAzU18U6QOimQiiKEigSJaZwiS/OTjq9S0VExCp6ey3FJQiRJhFCRoDZ/rfE9HkBiPqTlh8NNTQg1NsJrppaB0viJi3hiHYlu3YhIUBlftUmSikiQ9Z4wkJmhOH4oFC8eJVnIk1IsAVLIqK4uaR6AuXLeSePrCBxZ0R6DxZSA1unfQANjnYl1ElREAkAWOioS0L+/eZFgIP1RnLrJNMhYNCq6fvIHDzb8Og6nEz2OOQZ75s9H+U8/aYoEPhYTYxqoq8EMQ6dOxe7PP0fdxo1Y8s9/4vjnnpOJ0Vg4jMV33onm/fuR3asXxv/735oFobTof9ZZKBk3DuuefRZ7vvqKBHUK99fCYcMw9PLL0e+ss5SroprE6Xaj+/jx6K6SCsqwTlqnQCruBhsayFclkUBr8NOFSi8FUmmnTG+WksY/lKSFUM9SobSIS3fiCUWckkQInb9exUilRbywMGkXLFus9MaOxcQUUU5t/mpjA7opnLZYErQEjtJuX0Wgycb2euO/05u7Ul8IIMmSYEYkSIUxR6vk6dRJAFLoBKnRLlqsk2BGJAh/NzENksYXaETrAxKRYKCQEsVsGiSNE3B6PMgxGQTXg5Zo1qmXULliBZoPHIArOxu9TjjB1GsAxBozYeZMONxulP/0E369915ROEb8fiy+806U//QTnB4PJj71lOjft0p2z54Y/8ADuOCnn3DaBx/g1DlzcN7ChZgydy4GnHeeLQKB0bqk9V9IseKi1iJOF9lES4KZOgkaloSkWgz0hqZjSTBirgcURIhexUil3bLG+LL5U/dFTY2iWV26o1VcaDV2+jzPgzO4Y1bdjWu5YoTGO6aLNakINKk442MxcCUlRIxWVAAKmSUxtZ4ZaiJB2r9B77pI60dQkdBelgTqbkh8fR1LAiBJg2xFdwNtGd184ACioZBy0ScJNPUub+BAzboFSvQQiirVbdoEf1WVohsAAHYJfRr6nnZaUsCnUQoGDcIxDz2En/72N+yYOxc169ah5MgjcXDRIjTt2weHy4XfPfEECocPtzS+Ei6vF0U2jsdoO9LbkqC0k9VaxNUsCY2Nil39rLobkjpN6pR9VrQkKJhVFd0NgL67QWkRVxIhSpYEqQlegtQ3rmoJURibj8UQaW6O+/xVGmCpVi1Uc2eoWRJ0SmIbufZi1gXPE4GpY6nQtSRouWKMWlhcrvhn1oglwWqTJ5vdDd7EqotGRYJg5jZjSfB26QJXdjb4WAxNBgo2iT0bhBRRM2R26SK2ld7z5ZeK54Sbm7H3q68AAAPOPdf0a0jpM3kyjnvySWTk5KB+61ZsnT0bTfv2wdulCya9+CJKNdJxGelFWlsSkiouRiIANacqLeKSynwAiNmYlvCtq0tKwdIMXNSwJCR1mjQTGKmyCALW3Q2cmrshcXzp/LOySNxCMEjGT6jXILUkKI6fMH+nxyOmpIV8PmTozF21aqFaTIJ07nShDQbJ3yvB5MrzvPK1Vxnb6XbD6fUiGggg5PPBrRPzoBuToOVuENIedS0sUpHQTpaEmKQLpAwtS4KaSBDSVqFSTVFs7mRCJHAch7x+/VC7YQN8e/aI9SHUoOmCZuIRpPQ/+2zUrFuHnfPmYejllyfFAuz98ktE/H7k9OmDLkKRqFTofcop6HrEEdjzxRdoKS9H3sCB6Dt5sqGKlIz0gVkSIFmkpDcyBXdDkjvA6YwvlgqLlVmRkFTaWCdwUTHmQcOSYNbdoOjX1xAhGdL5c5ymCJFF2RuYP8dx5mIezMYkSE32WVnxoEyluUtdJQatOGZiHlQFjg0xCbJS3iayGzJaIyZBEClJXSCpdUghcj9JJOTlxYWBSlxCLBpFUIg1MmNJAOIuh0YDLaOpu6HAokjod8YZcHo8qN+6FTXr1sl+x/M8NgvFkgZffLHlYMJEvIWFGDp1Kg77+98x8LzzmEAwwrPPAv36kfiio48GVCrWAgBmzSL3QulDod7Eb5n0Fgn0ZkwtCXTx9HoVTbBJiyygGTegaK43EPOQ5A5oaorf0KXjawUWqmRnyOZv0N1gOOYhcf4aC7loSeA4+fUxOr6eJUFJoPn9cUuRSkyCEStLzKTAkY5vKLhQLTNDTyTQFEgDY5t2N1CRoNH6WxEtd4MQuCizJMRimkJUFAk0C4njdF0OoYYG0W1kNhCPFvGp16g6CBDBQ1Ml9SwOarjz89Fn8mQAwMZXXpH97sDChWjYvh2u7GwMvPBCS+MzbODdd4HbbgNmzABWrgTGjAEmT9YMckZeHml9Th8pduNsa9JbJFBLAr3Ra+zyAXkjIBG62NCbltb4Oq+RZKmQ3tAURIhi4KVGHQZVd4NO4KVhd4MJkaBaC0DLUmHGkqC00NKxnc6k65+UPWFg7oCxeIqk8XXiKRTFZTQa/4ypxDzI0jfr65WFpVT4mbEkCHnmrRK4KBUJjY1EKACK15EGHgakn1kdkUCtDu68PNPR9IVCYGmdTmOkxt27wUcipEqmQqVFo5Rddx04hwP7v/sOVatWASDXafXjjwMABv/+96LgZLQDTzwBXHcdcPXVJMD5hReIJevVV9Wfw3GkIRt9KJRU/y2T1iIhabepscsHVNpF0x27kkiw6G4QFyqnMz6+wkJuVYQYWcQBBUsLoCkSkiwVBnbjXOIu1kB2Rtiqu0ErfTNx7hoLuSyewqAlwZTAUavfQYMotVwlBQXx96b0maHXJSPDnCVBcBuE7bQk0MBFqUih/0cJdTgoXtrIR3rt9EQCDVo0WiOhqgp47DHgrbdQKBRF8u3ahQhtMa4A7fyYP2hQSq6A/AED0P+ccwAAi++6C/Xbt+PXe++Fb9cueIqKMOL66y2PzVCnsbERPp9PfASVWlKHQsCKFcDJJ8ePORzkZ5U+HwCIJbhvX5Lxdc45Ha4MdFqLhKSbsVFLgkmRYDQFMmknDmhmOFgWIQazGxRFiIHAxbARkWDBkqAYk1BbG995Ssc3EVgIJCy0OnM3G0+hOncdV4m0J4d4bl5e0qIuG9vpjL++hsAxmwJJLQlhlV4NqkhjEhIyRRSzGzQ+XwDE1MBAVVW8+ymtlaAmEoS/i6H0x/p6YPx44PbbgSuuQOY//wlPYSH4aFQUAkrUbtxIpq3SLM0Mh99xB7JLS9G8fz++OOcc7PzoI4DjMP6BB5gVoZUYXlaG/Px88TFTaGYno7qaWPQSLQHduqm3fh86lFgZPv4YeOstcq865hjddu6/JdJWJPCxWLyBkUGRYNaSoLhQaVgrqAiJhULxXYtGzINpkZCQry9baBVS/UwvtFbcDVLzr9QfrZc9QceOxZSvvVahKY2gy1goRBYvI1YQl0u+azSaWaJnSZDWMqCoxCNIxzbjKnE4nXFxZUQkpGpJiMXi8SACiu4GHZHgFd5bLBKJxyVQS4JK4KKpQkr33Qfs3EnEjcMB7rXXMFB4D/VCd1IlqEgoGjFC/zV0cOfl4eRZs1AitKPOLCnBcU8+idKJE1Mem6HMpo0b0dDQID6mT59uz8ATJgBXXgmMHQscfzwwbx7J2nnxRXvGbwPSNgVSlqdv0N1g2pKgFPin5Q7IzhZTKsONjaTrmoYlIaZkqaBz0xAJ4HmEm5vhpmNHo8qpfkrzNxCTYCj4T60apYY/Wrbbd7vJjbypiYyfsDBrZn4ouUqys8E5HOBjMYR8PmRaiacwIqAaGuTXRanQlNLfVaVGgnTsaCBAiv4YuO5O6WsacDeIIkHBbaCJtGY+TY0VUKy4qCMSnG43PEVFCNbWwl9ZSVIajbob9ESCzwe8/DL5/r33gK++Ap5+GgO3bcNGjwe1KiKBj8XiIoEW4kqR7J49cfKsWYj4/XB6PPK4I4bt5ObmIk9lcyjSpQux1CUGBVdUkFgDI2RkAIcdBugEwv6WSNtPXkxiom4tS4LZmAHO4VDPQLDB3eD0eOAQdo3hxkbi86V+34Txecn1US3LnICZmATFGgx0DpmZimlCSTtmGjegMb5RSwLncMiLZRmISTDaFyJp7gYLTSnOXcGSkJGTIwqNUEOD9tyFsZ3SRac13Q0OR9zlkCAwYlqWBA3XAHU5+GlEuY5ICBitkfDpp0R0DhkCnHYaiWJ3OpG7YwfygkHUrl+v+LTGffsQaW6GQ2gjbieuzEwmEH4ruN3AuHHAd9/Fj8Vi5OcJE4yNEY0C69YBPXq0zhxbgbT99Cn6lQ3GJIgmacDWmARAQYjY6G6Qja+zkMuC8+hNiuc1e1tIx+Z53lhMgsFFHLAYGGmgUJM4f6mlwoDAMWVJkP5ds7PjC7OWlUU6dw1LAudwyP+uBqwgMpFgwpIQ8ftlKaCGUKmVQP+HHEqBixoLuigSaNElaf8GhfgUw+6Gjz8mXy+8kIiuPn1IehuA3j4f6jZvVnS31AqBaIVDh8rjSBidj9tuI9am118HNm0C/vxnIvSvvpr8/sorAamr4r77gK+/Ji6slSuByy8nKZB//GP7zN8C6SsSpJaExDoJau4G6g6AZBHXiklINHkHg/G0M50MiqROkGazG9TGV6vFkLCgKIqo5ub4TVgpxVI4FguHdf36iu4AnQVCdGeY9b1TdESI0ToMiou4RooikCBA9ApNKQkonWsjy54wYAURr4rDQUyoOmRIKmbaVSvBSuAiQHz0gEQk0F1ZOKz4ng31bYhEAFoOWcguAEAEA4B+fj/4aBQ1a9cmPbVaSFWkZZUZnZjf/55kvvzf/5E4g9WryeeGBjPu3UtqIVDq6kjK5PDhwOmnk/vz4sXx/jAdACYSILkZa/jzAblJOmxAJKjWYQB04x5CdMeuFZOQWFY6FtN9D0lxFSq1Engtd4zDoVj+1pWVJc5FL0BPsRAUfc8qBW9MFWvSCrpUW2ilu3EtV4aSAJEU7NGtkwAYc2cY7E6aNL4BK4hoSTDgagBILADdJZt2OaiJBOpukLqWjIiERHeD2x2vD6EQvGjIkrB2LZlffj5wxBHx42efDTgcyG9qQmY4jMqVK5OeWrl8OQCgRPo8RuflppuINSAYBJYuJVUXKQsXkiqLlCefjJ976BDw+eckJqED8ZsQCVvnzMHHp5yCdw47DF9dcgmqFdS6Eru/+AJzRozAor/8xfRrKprTdXbhgMLN3kydBPqc7GzV3ZsnMRVPy91Au0zShba5Ob5Q6bkb6KKjsqDICgYpuWMUcsGlpZOD0gC9hgayU1MYXyYS9FwlZqL4ldwNGoWmpOPL6jBo+PUV4ylycpSrddK/K/2cGHFnKFkS9ASU3twTAxdNmMctZzioxCSIgYtSoWJGJFBLAqAZl2CoTsLixeTrhAnyFuvFxcQPDaB7czOqBEEgHZs2duoqnMdgdCbaXSTsmT8fKx95BCOnTcOU999HwdChWHDDDfJiKQo0HTiAVY89Zvkf02wHSIrYqjZxZ2ckJsHA+G46fqLpWsndkGhJkBZhUmkjSxcrcf4qIsRKYKd0/qH6ennRooT5K+6WzcZraCyGqrt9rfGpwKmvj48tLeVMx9ZaxFV2+vRzE/L55OmnRt0ZOpYEcXxp4KKRmASDlgRAIhKsWhIkz+NjMbFttenAxUR3A6BZKyFgpE7Czz+Tr8cck/w7oXhO9+ZmVK5cKSvLXrFsGcDzyBswAJkKvSYYjI5Ou4uEza+/joEXXoiB552H/EGDcNSMGXB5vdgxb57qc2LRKBbfcQdG33gjcnr1svS6iiWNdUz1gMKOUCoSEmoNJO04jYiQxEXcSEyC0vgqVd9kiwmgWlZatCRwXLIIMXB9gvX1RKzQnW+iO0PL3aCziEf9fmKqNptiqWNJkAnAvDyAzk0lqNPM2PS60BRL04WmdCwJ4uemrs7Y2PSAFUuCDe6GqKS1uumYhER3A6BqSQg3NyMqiDyvQmaICK2YpyQSTjoJANAjEAAfDuPgokXir/YvWAAA6HnccepjMxgdmHYVCdFQCLUbN6K7JH2EczjQffx4VK9Zo/q89c8/D29xMQZecIHuawSDQVm5zUbhBiea6k0E/QEKO3EqEiIR0qpWQtJOX6cOAyDZievs9AGJCLG6iEvnnzC+lcwMQLLQJgbaJVoqLCy0LknwXEoxDyrzpz7rUH29ZnChoqtEJ57C6XbDJaQRyiwVRruH6lkSpI2PNOIdxJgEesCKJcGGwMWYpOytYllmDZGQRS0J1dXx2BmVgkoB4Rq4MjPFNM4k6uvjTXeULJPHHANkZMAbDCI7HMber74CQO5fBxcuBAD0EoQEg9HZaFeREKyvBx+NJil8b3Gx+M+dSOWKFdgxbx6OuvdeQ68xc+ZMWbnN4ULZVLM1DChizAC9aWdlxXecibvxRCFiZZGVWhISLBVW3BlJ46u4S1K+PnrjK5Ue1hnf4XTKgwuNZE+YiEnwJAooFXeGYlCkjgABEhZyIzEJ0mujF5Mg/bvSsevqSNaFwtwd1NJkRiTYUZpZgFoSOKdT/j4NWBK8xcUAx4GPROIto1UsCdRt6dVyBdC2zL17K4uwzEwx2KyL348DCxeiad8+7PniC4R8PmR1744uY8eqj89gdGDa3d1ghnBzM36ZPh1H33uvfmEUgenTp8vKbW4SqqYp7tZMuBtkrWpVFsKkxcTETj+UuDONRpMtFSa7WAIJMQOAqrvByk5fOr6uJUGp9LCBhVYWl6DVgTNRQMViutdHXMTpXHVqSCgGXWpcG5mAMusqMWNJoMKS51Wvuzhye7kblIIWpfPV+P92ZGTAK7zHFupyUIlJ8AsCT9PVQEXC6NHq5wjWzj75+eBjMfxy991Y+9//AgAGX3JJcs0MBqOT0K5lmT0FBeCczqQgxUBNjaLyb9q7F80HDuCHG28Uj9GF8u3Ro3HmZ58ht08f+Wt4PPBIfJ70BpckEnjekLshyZIAkBt3dbWqX9/MIp6006eZENEoWSgkJlNL46u5SxLdDVYtCWqBnYmLlZI7wIgIyctD88GD5PrTUqharhhpjQdqidHbjevEgyjWeDBiSaDj19VpBhcmiRBpESsjMQkZGeS8hgYyvuR/SXQ3pGJJsMHdoFgjoaUlXkdEpxlTVvfuCNTUoKW8HEXDh+u6GzSDCmk2lZ5IePpp9HA44HA6USWkQmaXlmLo1Kmac2UwOjLtKhKcbjeKyspQsWQJegs+PT4Ww6GlSzHk0kuTzs8bMACnf/SR7Nja//wH4eZmjJs+3VQf96SdprTQkZGdeKJIANTdDYl1GAzEPIjjU0tFTQ0Zn+6YoLCQG7CEJAUuqs1dKXjOhEjQs1SY7WtBkbW7Hj6cHGxsJDEhEsGRFBhJ36/LpVjyWTr3YOJuVi1ew6wlge72GxpIdzjAWExCc3PcbaAmEmg8hTS1lYoECaIAoYKpnQMXHUpBi05n3EWhQnbPnqjdsAFN1HJARUJ1NflfFsYV3Q1algQqErSKIY0fDwBwbd6MifPnY+3LL8Odl4cj/vEPuBRqhjAYnYV2b/A07Kqr8Mvdd6NoxAgUjxqFLW++iYjfjwHnnQcAWDx9OrJKSjD21lvh9HhQMHiw7Pl00Ug8rkvijViaw61xg0ryWwO6C62ZwEJpnYRYNEoW6fz8uEigY/O8PTEJau4GCyWfNcc3Y0kwGvMgXTCldRmgYLKXLuI6mR+R5mbSKMnMtTHiKlGKG9CoZaAocFQWJEVXyc6dSeOLnxlxUuYDF01XXFSKSaCWBLWgRZW/ESVbEAXN1HJQVESEQTBIrAn9+wOQuBvULAk8D9CeDFqWhD59SGXH8nL09HjQ8913NedniO++Ax59FAgEgGuuAa64Qvd9MxhtTbuLhL5TpiBQW4u1zzyDQHU1CocNwwkvviiaB1vKy+XteG0ipubP1yh0BCSU16UYDf4zEZNAO0F6Cgri40usF5oVEQ0sVNFAAJFAAC7p2LGYWEjGqrvBcPaEVoaA0eC/jIx4J0hp6h8UduNGFvG8vHgnyIYGZOpkZpjJbgASXALUlaFkBUkcXxq0qCNwosEgIn4/XDqxIFZEgstq4KKWu8FktUVKtmBRa6EigeOIlW3XLhKXIIgE3cDFgwfJvJxOQGujwXHEmvDhh6TKXqopjx98QEr80v/jH34gvQBmzkxtXAbDZtpdJADA0KlTVf16J0tLXCow4cEHLb1mUp0EAwsgoOBzBxRFAh+LadcxUMHpdsOVlYVISwuCDQ3k9ejCIx1f2lvBxHvIyMkB53SCj0YRqq+PLyY0JkN4L6n63fXqMFgNjJSJBDo+FQkK4zsSr73G2JzDAXdeHoL19QjW16uKBCuZE9K5h+rr5T53adoiFK6NTtAiQEpiOzIyEAuHEayrg4uKEDVXSXu7G5QsCWZEgtCvoVlaJ7+0lIgESVyCbkzCjh3ka9+++oLp6KOJSFi2THd+mpSXkwY/sRhw6aXAgAHAAw8ADz1EYh/OPju18RkMG+lQ2Q12wgs3SaN9Gyh0pxwW3AEAlEWCZBF3mKiTIH0NrbgBK10sAaF0snS37/HEqzMmiBzZ2AbHl4oonueN+/WlgaNGg/8AXUuFGUsCkCBC9OZuNXCxoYFYDqgZXmV8TsmSoALHcfLx9dw8VCS0U50Eq82dKNSS0CwNVFRIg9TNbti+nXwdNEj3NXHUUeRrqiLhnnvI5+XII4E33wT+/W/gb38jv/vzn5OymBiM9iR9RYJavIDeAi5ZBLT6N8jcASYsCYBGLQOpu8GiSNAcX7KgKFb9M+HO4CMRsuNUy25I3I1LO0wadTcA6oGRiSLE4LWRVdQ0Onfp+FqWBLXASJWYh6SYBJ2If1lcgp6rxIpIaIU6CWZLMlOoSAjW1SFCF9WENEg+FkNAKN1MqzQmQS0JAwfqvibGjSNuhz17gIoK/fOVOHSItBkGgMcfj7s2778f6NePWEGef97a2AxGK5C+IsFCvABAbtxJnRoVRIJmAymDi3hSrQQ1S4VZkWDCUmHWkuDyekU/c0i6G1dxNyTN3elUDc4DJAthYkdHlR0zl7jQaizisvGNLLRWLQk6QZ08jRug4xuwJAAJ8SA6rpJ2czcIr0srLjpMVlukuPPyxPmI1oQES0KgpgaxSAScwyH2e0jCjCUhLy/e4teqNeHFF0lw5fjxwO9+Fz+emUnaDwPE7ZDQL4TBaC/SViQk+X0NuhsADXeA5Iacyk5fNfhPYkmIaY2vZw1JjKtQWMituhuAhMVQzx1gou8EoGFJUFsMrVpZpCZ7FSuFYgMmA4WmQvX1mq4YVYHT3paEVEVCNEoi+RF3N7gsBi4CEpcDjUtIqJVAj3u7dpUHmUoxIxKA1FwOPA/Mnk2+v/HG5M/5FVcQa0J1NTBnjvnxGYxWIG1FgqolQWeBBRTSIHXcDWbjHszs9M02YAIUahkYcTcYjBkAVHa0Pl/cnQCJSd1qzEBdHVlojVa7NGpJkAocqUiQzF2xmiP92xpwN8QiEZJGqLCQ87GYuNtWzG4wMPeQRkyCOHf6fiy2ipZ+vnWR9kwQrhMVCYp1EkyKhKZ9+8iBBEtCy6FDAKBeP4XnzbkbgLhIWLrU2PlSli8Htm0jVoNzz03+vctFxAMA/Pe/SWXYLdHURDImJk4kPSjuvhuQds9kMHRgIsHkThMwFliY5G6QLiQGAxeDiYuDDe4AwFithKTrEwiQVD0z4zc0xK+NtGogJDt9ukiZnHs0GCTd/YwGRpq9NtLduFQgQSEmQVpjQ8sVk5kpumLUXAKyz42J7AbVuau06LZiSRDjcYT0XMNIXUiCFSLV7AYAyBPSHH27d5MD0pgEnhdFQraaSKipiV/bAQMMvSaOPpp8/fVXmXA0xNtvk6/nnKNei+Xaa8m1WrMG+PFHc+MnsnMncPjhRBj8+CPpdDlzJink9c03qY3NSBvSXiQ4Et0NZiwJiTdvhToGssA8emO2utNXGD/lnb50fKlIUCtGxHG61fBk85dmTygshorFjjRwZWWJfmy1hVZaaMrs+LKCRzpzTxIgbrdqNUeKniuGl4gEq5YEIzEJHF3gTIgEp9sNp3A9ZHVCjJCQ4aCZ3WAgcBEAcvv1AwD4du0iB6hICASAujp9SwK1IpSWxv/OeowcSf7G9fXEKmCGTz4hXy++WP2cwkLg8svJ9889Z258KVVVwAknkDn27k1iId58Exg7llzn00+Pz4fB0CBtRUKSOdqESJBFwAPyRVYQAqo+cadT94ak2o5ayZJAXQ0Gy0oDGu4ShZiKpPnn5ooFl1Tnb8RSoRbBrzN3juPE5j6B2lplkSBdaM26Mwy06rZSqIki/m2lu301C5RZS4Ja+qbEbJ2UAmnC3QDErQkpiwSa3WAxcBGIWxIaqSUhMzNepOrgwbhIEGoqJGE2HgEg14u2kzYTl7BtGxElGRnAySdrn/vnP5Ov8+aRbAiz8Dypv7B3L3lvS5cC119PxMeSJaSIUyRCvv7yi/nxlWhsBD7+GHjkEZK18eWXLPiyk5C2IiHpRm/GkpAY+Ed3eJGImOOsWaxJp4KkkeyGpOA2g2WlAYX+E0bcDSbcMUZEiKolwcj4UrO6kqtHGtRpopgSoFDe2Ei8hsF4B9n4KnED0rmbtiQodYIMhWQ3a1G8WrAkACmIBPqZpCJBmJNTKpjNuhsES0JzeTkiQkCkNC6BZj2ouhusiATAWvDiF1+QrxMn6t9jxo4lRZXCYeB//zM3NwB45x1S8jkriyzcUpHk8QBvvQWccQaxuJx/vjUhQmlpIe6M0lISZ3HnncDf/w5MmUJe9447FBuwMToOaSsSkLiIW7Ek0MVBWspZOJZU9tnC+JruDDURkpOjWVYa0GjyZPMintTkSclSYXIRB/QLHvFKC61RS0KiwNGwVJitfwEkXButsR2O+N/WoCVBZqWQfg4URAhnIXARsMGSIMQk0EU9lewGT1ERMvLyAJ5H45495KDgcuD374dPOJbbt6/yAGaDFilWghfnzydfp0wxdj61Jrz4Yry5lxFaWshCDZDFm6ZsSnG5gHffBUaMIALhkkvi8UZmWL+e9LuYOZPc3wYOBC67jFgoevcmn9tHHyUi7Pnnzb2PRGpqSMbHtdeS1NGyMvLaZ5xBhMiXX7IiVK1E2oqEpEUqFZHAcUm7fSttnClJiywdW9JK12pgnnR8I9kZluZvoOBRUvCfVUuCjrvBbEyCWDqZVtRUmruaq8SIwBHmruYqUSxXbdCS4JVed45THl/4/HD0hm3WkpBYI8Qoie4GQSSIvRuCwbjFw6BI4Dgu2eUgWBIiO3ciLPzNc3r3Vh7AqiWBBi+uXk3mrUdLC7BwIfn+9NONvcZFF5FeJPv2AZ9/bnxujz9OntOnD3DbbernZWcDc+eSv8sPPxBBYYb580m2xI4dQK9exDWybRtJ8XznHWD3buDTT4kQqa0Fpk0j181s6uiKFcBVVxHxN3Uq8OqrwM8/kz4X69YRC82jjxLxVVREvj77LHl9hi2kr0igiyDdrdHcbx1TPaDTCVK4eSa1ibawyIabmojvVvocOr7F3hPS8UMNDaoLYUoih8YM0DbFZkz2ZkRIortBuOaKNSQMju+mTZR4Xn23bzEoEoiXBw7U1GiPrVSDQS8mQbjuUb+fVCHUGj9Vd4OZ7AYgSSSIloTEwFCOM/QZoOQLWQn1NIiQioStWwGQoEWXWgwQtSSYFQn9+pFeG+EwEQp6LFhAxETfvsCwYcZew+slnSEB4wGMBw+SQkwAiQ3QC8YcOpQsugBZaI3WZpg1CzjzTPK3nDSJXIPzzpO7UR0Ocs7q1cAzz5D/jRUrSBGp669X7H4qEosRYXT88cARRwBvvEHcZiNHEqvB228D338PfPUV8MILxLrQuze5xl9+Cdx0E2nwNWoUMH068O235G9dXU0sJytXAu+/D9x1F7K0gkgZANJZJAiBW0k+fSMxCcLNOCj1talZEiws4u68PHEBCtbVEfMgnZcwflLgpYWdOO12qLiIpyBCxIVQoypi0mJo1VJBx47FRKEnXcQ5jpPFiugt5A6XK77bV1nIVVs5G7k2QqOhYG2t5nUXx45ESGaMgbm7srLEnbmeCHFQIdVW7ga1mARqSZBaS3QCY6UUDh8OAKjduJEcEERCTM/V4PMBlZXke7PuBo4zF5fw5Zfk65Qp5lpB33ADOf+rr+KCRou77yaf82OO0c6gkHLhhXH3xDXX6L+fp54Crr6a/L9ddRWZm1pfDCBe+2HLFuAPfyBBlS+/TATKI48Qa04sRlwRGzYADz9MxMCZZwKLFpHP59SpJOBy3Try+0suIZkbp55KrtErr5BS2fT5xx1HPkPr1xPRdMopRAh27UriJMaNI9fn4YfhsitwsxOTviIhcRE3IRKk0fVUbKhZEqxUdOQcDnEhFBfaRBGSgjvAkZEhXwg13A1WLCFeiYjiYzHNOhIpxSTU1pLdEk2jExZD1XgKwNjfV2+3ryYSjFgShGvjl45N23RDoSSz1KxvJPNDmLtfR+BYdjcotUo3gl5Mgsl4BErRiBEAgNoNG8gBISaBE6ot6sYjdO1qynIhQl0ORkTC11+Tr6edZu41Bg4EJk8m37/wgva5y5fHe0I89ZQ5MfLAA8BZZ5GdON39JxKJALffDtx6K/n5ttuIFcLo56dbN+C114CffiKxBLW1RJwMHkzGyMgg4uCuu4grITeXBEDu2kUCLen1VoPjSJzCHXcQcVFVRSwjl14KDBkit6qUlJDxrrsO/kceMTb/NCZ9RUJinQET7gZ6o48GAvHmMgkLoepO38AiJX0NsUdBoghJwR0AJLgE6I25pYWY9VIcny7ifDSqGsVvtUujdHy14ELV9FOv19BNTW+hVXU3mLGySMeW1LhQLcmclWVo1y+OX11tTCS0VwqkmrvBpEgoHDoUnMOBQHU1WiorRUuCU3B1FaqZ960GLVKMBi/u3g1s3UqCSCdNMv86NIDx1VfVUwp5Pr54X3EF6S5pBqeTxBKMG0cW1+OPJ4KDxvasWgWceCLw2GPk53//m3xvwuIjcuyxxO3w8svkemRkECsCz5M4iZNOAl56iaRvPvpoPFvFLEVFRCDMmUOsGM3N8depqCCWiZdeQvjSS62Nn0akrUiQ7TYjkfg/oIFFXGrWFV0OiTv9FMz1gILJPkGEJImcVMaXPkdN5JhYxJ1ut7iYBI2a7K0GLgLqAs3CTh+QCDSplUUruNCMJUEqEhSKNSVZKUxYWAAgU3BnyESIpOoin6olwSaREEl0N1gUCa7MTOQJC33t+vXiouL2+8HxvOiOSMJq0CKFioRt25KqWsqglQ3Hjzf8N5RxxhkkCLG2FnjvPeVz3n6b7NCzsoAHHzT/GgD5+3z3HTHV+3zENdCtG4mjOPxwUrExO5vM4R//MGepSMTlAv74RxKr0dJCAi3Ly8n/0bffAtddZ7iglmE4zpqoYaSvSJCZ66UNa0zu9JMWcRsCFwGF4L8EEZJKiiIQX6yCtbVkJ0GflyByLIsQulhJfe9KxaBScDeoxTxYbe4kzl1pt6+U3ZBYUtqESIj6/Qgr9G9IRZypzl0p1iRVkWA2uyExJsEmdwMAdB07FgBQsXQp0LUreJcLHICsWAwFQ4YoP8lq0CKlqCj+3OXL1c+jIuHUU629jtNJ/O4A2cEnZlM0NhKzPEAW7169rL0OQD6/331HhEZxMREme/eSRf33vycxARddZH18JVwuMufu3XVTtxntQ/qKBOnNmMYLZGTE/ds6iAuVyiKuGvNg9Gav525IzM4wuxAmipDEhVbNEmJyN94awX90txysrycpfWoLrVVLgtJuXCkmwcJCnpGdLRYQUho/VUuCzN1ACyopuXmoKdmku0Fsk27WkpDw+aUxCc5Ed4OFHWT3Y44BAJQvXgw4HIgKY5T07CmvwyCFWhKsuhsAfZdDNEp2xoB1kQAAf/kLWUS3bweeeEL+u5tuIrvwgQO1Ux6NkpFBMgIOHCDi5+efSYDnO++QjAFG2pG+IoF22pNaEgzEI1DEnXjizU0tcNFsTIKeu0FtJ25wfNU0xcT5W7SEyOav0RvC4XTKm18Zyf4oKCDXlecRUKiVkErMgHTuusF/FtwNQIKASnBn2GUh0hNnbR64mPA+qbsh1ZgEAOh+9NHgHA74du5E49698AvvqXufPupPStXdAOgHL65YQd5XQQFJ5bNKbi6J2geAf/2L1CjgebLjf+MNYkZ/7TXdviGm8HhIjMIxx1j6mzA6D2krEmQpfiYyGyhJO3G73QGJ7gy9mAezlgodEZJUx8COwEhJbwvZbt9E8ys6J/H6VFerLrRWsg8AjYWW9uVIIX1TNr5CQaVUimRpzl0glqIlgbobwo2N8cweI0g+A7FwWBSJrsQUSAsLkjs/H90nTAAAbH79ddQJAqSL2liBgNhO2jZLgtK1oKmPJ55IzOqpcMUVJBUwGiUFmXr3Ju4FIJ72x2C0AmkrEmQ3egsiIckvbrM7IMmdYXPMg2wxkY5vV+Cl0m45FCI3aCQs5HRsl8twNz5v164AAL80ip8KHJpGaOdCG42KFqdWESGJ4jJFV4mqFYQ2AaMiwWJMAh+LIULrNxhB8vkS+yxAwd1gcdc6+JJLAADb3nkHjcJnNoe+10R27CCLen4+KYpklbFjiciqqiKpeol89BH5etZZ1l+DwnGkj8O115KfDxwgloOnn47HJDAYrQATCVYtCWruBj13gJXAQkDdUpHqIm7WnWEycDFYW0vcOHSeSmWrpT59g1HTYhS/1JKQMHaqi3iwpga81xvfbdstQhTSFFtF4GjFJJgUCS6vV2zVbcrlIKkJERXShjmHIx78maJIKD3hBJQKKYbNQlwRR/s5JCJ1NaQSpe/1xq0J1GpA2b2bpA7SyoN24PGQwkE7dpBYh4MHgb/+1Z6xGQwV0l4kOFwuSzEJuoGLdHwLxZoAhYJNRmMezAZGtrYlobaW3Cjp9VEyq5scG5AEFypZElKNSRDmHotEyEKoFVwYDMYjzlN1Z0AiEhIzJ0yKhEhzMyLSXTp186TobgAsZjjQa8PziAiVDp1eL6mISecIWBYJHMfhuKefxvHPP4+yf/+bHFTa3QP2xCNQzj6bfP34Y/lxakU47rjUrBVKDBhA6gmwWAFGG5C2IiHlmASjgYsppkCKBZtUdsuWF0LhxhWhdf7V6jAkLoRW3RlqZnWn03QEPxC3JPi1YhLoAmjSkuD0eMQofsWFXOoSkC6UZoNSNca2kvUBABk5OeJOP0D7M0jaRdPxxY58FnzlYg0MMyLB6xUD63hBJLhSaBOthMPlQunEicg59lhyYNcu5VgB2udh8GDLryVy7rnk64IF8bgKnif9DQBS9pjB6MCkrUiAdCeeSuBiojuguRkIh+XuAIkv3ujNXlawqbZWvSyzxZ2+KysLTsEsq5SBIFvEpc18zFpCVCwVsloDJhdCQNuSkEorZ3F86UKuFtQptYIYaNGtOLaeSDApoKSlmQOBQHxOCXMXF08LBWaSKl4aRXheVGju40yhTbQmffsSN0JLC4kXSMROS8KQIaSccDhMMg0A4NdfgTVriHvgsstSfw0Gox1JW5GgWEzJQuBisKaGuAOkN3GfTz6+hUWW4zi5EEmwVMgaAUWj8SZABhdCjuPiGQgKIkHmbqALVXa28YWQWipaWki6m1rcgNSSYGIRN2RJsBiTAGhnIMgsFRbGVpx7Kwgcf0KKJc/z8fGplcGCSBBbUksbnBmBNhYThKOY2RAOx/8H7RAJHo/Yw0GxZbCdlgQgXjr5P/8hFrf77yc/X3RRvFYFg9FBSVuRoGhJMBOTIPFbh5uaiNk2O5v8sr5e7g6g42dmmvIByxZxuggJzYAUAy8BSy4Tpd2yLHDRwkIls1To1QOwOyYhxfRNQLKQV1ZqB0ZaGbukRBybN+oqMTF+Vrdu8blLBA6dtwwLgXseqyKB9vQQREJSB0jAvnK8/fqRr4lxCYEAKQMM2GNJAIArryQljHfsIPUQPvuMiOl//tOe8RmMdiRtRYKs7LAFd4PL64UrKwuAcpqizB1gstARRRYFT8fmeaCpSXkR93gMV4yUjV9Vpd7/QDp/EwsVx3HiYthSUaHqEnBI/fpmdvp0EZfO3e8HgsHk3biFhTZTZaEFVGISTMydLuLRQACRhOj+VN0N0vFl172uLu5qAOLuhrYUCQmCKKmQUl6efaV5aXXARJGwcyd573l5pAOkHeTkkC6NHEfaEwPAffeRdsgMRgcn7UWC1ZgEIKF8LyBbaFON3geATFoLoKqKBH1RASAZ3+oiDgBZdBFX2i1LAxetji9daBPGj0qj+FPY6UdaWhB2OuOLXX198m7croVWKQXSgkhwejxik6oWmssvFJpKNQVSde6JIoGSgkgIpCgSUm3upAkVCbRHA4W6GgYOTC39MZFzzwW+/56kJL73HiltzOicPPsssVR5vaTqpl678PffB4YNI+ePGgV88UWbTNMu0lYkyNLkLMQkAPFF1i9Ea0uDC1PdiQMJi6zK+FZ9+oDc7K3qG5fO32QXO5klQc1kb1EkuLKy4j0Q6upk1ybVBk9AwkKb6BKQLuRWrz0dnwa0RiJAc7N6jQczAqp7dwCA/9Ah2XW3zZJA02etuhuE52VQ91wKfRtUoS2iN2+WH9+4kXwtK7PvtSiTJpHiRhddZK8AYfx2ePdd0iNjxgxg5UpgzBhg8mTS30KJxYtJy+prryV1M849lzyoxakDkLYiQdGSYCImAZDs9OkHRMndIK3oaNGS0KI0vnT+KYoQ2UIomOxjKS7i0vFlIkSpHoCF3TjHcfG4AanLQbJj5lwu4oMOhUyPr7YbB/6/vTMPj6pK8//31l6VrbKHREICQsJOZA2iLU1UaMbpBuxRJ61o+9NW4RFtcUG03R4Fmd5cpm2lW+Rx0MzQg+sIPQwqSsuugBAECUsQk2DIvidV5/fHvefWvZUKJHXPTSXk/TxPniRVN+89dZLU+z3v+573BKUEwhg7AHgUR95YW6tr1sQjLBLfesrHLiKSwG1bLIYKF9Wjus93RHIolJ+TlDmzBYsEkZEELgIOHdJvg+RvzmPGiLsX0e+pr69HXV2d+tEafNom5/e/l4+yvu02+W/sz3+Wj+h+/fXQ17/wAjB7NvDgg8DIkXJR62WXAS+/bN6LEczAFQnKG0e4fRIATWtgvs0qxGrWSE2C+zyRBF3NQ7giRBtJ0HY7rK0N7cTDtN+kzesrURCdiApXhCiOtqm8XG8/VGEh0CMRqM59RQVYV90ujQioUKkeTXFhp7H34G9HKxJYKNt2u6FIgtqIK8wtkJLy92pXanpMEQk5OfJrq67Wr/K4SBg9Wty9iH7PyFGjEBcXp36sWLGi80VtbfKhXQUFgccsFvn77dtDG96+XX89IEceurq+D2Lw1JH+i65w0WC6IeRKn6+ajKz0zxepELjSb6qokP/YY2NlQcCPYIagmoSgsLe2yt5qZPxcJJSVhYwk6Fb6MTE9KorjURx/ezvabTY4FNuA8aJLQC9CEB8v7+fXjl07Lz3owQDoCyN9brf8T66NJNhsxtINmkgCYyzQNfFCKD9nqa8HbDbYuWgzQyS43XJnwpISOcWQmipvteTpB4okEBoOFxcjJiND/d4ZqgC8slLebq78f6mkpnZOa3HKy0NfX15ucMS9x4CNJOhOIQwzktAp3aCtGTDYBwAIOJKWc+fkN3iNfZ+IvLgictpqa+VDd0Lkr42IEHcXhZHa3LguktBDRxs1aBAAoDEokmB0+yYAWB2OQL8B3p0wVDOlMKMsqsAJqtcQYdvqdAZ2IPB0QrB4ErC7wd/REdYhTxbl7AZT0w1AIOXA6xC+/VZeDUZFyQ2XCEIhJiYGsbGx6kdIkTBA6RMi4ehbb+G9q69GUV4e/n7jjag8cKDLa09v3oxN//IvWD9tGv5z0iR8NH8+Trz/fo/vqXPi4dYk8HA9Tzd0tQUyzHSA0+tVC9h0effgdECY6QxHXJzayyC4eFGEfW1Nghqy16xoVftGHa02UqGxb2SlD2iKC3l+kjckCrVzpac1CRfYgWBEnAGBuVFbM9fUwK/UN1gdDrVPSDgiweZ2B4pGe1KXoLxOqyISOhUuihYJY8fKn/fulT/zKvTLLgurFoMY4CQlyRG9igr94xUVgPL/1om0tJ5d3weJ+H/KqY0b8eWqVRhzzz2Ys349vDk5+ORXvwpsKwzCEReH0XfeiWvWrcNPNmzA0HnzsOOxx/D9tm09uq9uC6HyptXjSELw7oYQWyB1q9ke2pcsFn3dQ6gKfgPORNvLoEuRYMARupKSAEmCv70dahmQxllBkvSRlp6KkFDphq5qEsJxtME7EJqa4NesnA0VLnbRQ8KvCBKLwxH2vGvH3sIFWXW1ekSz1eUy1JYZ0HRd7EldgvI7sirjsGmajwEQLxLy8+XPX3whf+Z54GnTxN6HGBg4HMDEicCWLYHH/H75e/63Fkx+vv56ANi8uevr+yARFwnfrF2LYddfj2Hz5iHu0ksx5YknYHO5ULJhQ8jrU6dMweCCAsQNG4aYzEzk3nwzvCNG4Icvv+zRfbkTt2q3hYWZbuhoakJ7Y6PeiQvYAgl0sQNBm24wuuLswr6IFa3V4VCL3Jq5MPD74VecgsVul//JeKQlzHRDcOGiT3G0VqfTUCSBz02DpoDQpymCs7pchqMg7XV18GlW1B3K2G0GbGvH3qiJgqjzohUJYW7VU9MZPYkkKH9fdmUcpkcSpk+XPx85IueT//EP+ft+9AZN9DF+/Wtg9Wpg7Vrg8GG5JXdjo7zbAZC7b2p7ZCxZIh8j/rvfyXULTz4J7NkDLF4ckeGHQ0RFgq+tDVXFxUjT/NNKFgvSpk1D5f79F/x5xhjKd+xA3cmTSJk0KeQ1ra2tuq0t9UqRol8Jt1r5m6jN1qNuhYD8JsdXQ7qVuCbdYKQmAQhqqHShdEM49i8USTBqn4uQujp1qx9THItFWw8ChL2NsLWmBj5NpbxOJAgI2TdWVKhj8/PQoSQZWu3bo6PhUH6mnfdEqK6GTzmt0epyGRp7lFKEVceFRnU1fHwFL1Ik9KRXgrJl1erzwer3B0QCjxqKPucgISFQl7B6tbwd0moFrrxS7H2IgcMNNwC//S3wm98AEyYA+/bJIoAXJ5aWAmVlgeunTwfeegt47TW5p8Lf/iYfI96PCmcjuruhVVlx8wIxjisxEXVdnQUPoK2+Hu/OnAlfezskiwWTH38cg/iqIYgVK1bgqaeeCthW3hTVSAJf4UZHh/WG6UlJQd2JE2g+exaxIQoXjexuAIK2QfJz6bXpBlEhdRMiCQAQlZaG6uJiNPKUwA8/qL37dbbt9p6LtJgY2DwedDQ1oVWS4FHGrlsxc6ceRiQh+pJLAAANp0/LY6+thV+pP7G6XHJVv4FIRfTgwaiqrUWL3w+XMvYOJdevEwlh2gaAWu6Am5rQoQgyq8tlqCYBCDpXpLvExMgh27Y2ODs6AiJBORVSWJtkLfPny4WLjz4qfz9jBhD0fkMQPWLx4q4jAZ9+2vmxn/9c/uinRDzdEA72qCjM+e//xuyiIoxfsgRfrlqFii5aYy5btgy1tbXqx2G+VYWvlHkkoYepBo7a8Kirlb7DEXbhIqDJXWuL82prxaUbeMg+OK9vsNkRJ0pxtI1nznRqqNRJ4PTQYUmSpKYcWvkOBG0kQbvSD2NuuKNt+O47NRTuVxyazenUp0oM2G/W1A3oVvsG0g0xiu0azVYr9WAlp9NwJMHNd36EOoq5KyRJFQIun0+OwjEWOM6Zi2CR3HKLfvvor34l/h4EcRETUZHg9HohWa2dihRbzp1Tz0UIhWSxIGbIEMSPHImRt96KzGuuwaHVq0Pfw+nUbW2JUXYwqBXqRkWCtheA5qRGtQDNwO4AIBA2bjxzRr/FUrvn3YgjVOw3fPedKekG3Wo8+BRAt9uQAAECIkfNvQusSeBjb6mshF957UwTSUBDQ8DZhmGfO/JGJcWgFQlGUyXRmZkAlGidZmcJEJRuCLNwUU2D8ShAN2HKz6mRhPp6VbCbIhKGDwdeegnIzATuuksOFxME0W0iKhKsDgcSRo1CxY4d6mPM70f5zp1IGj++23aY36/bVtcdeJ8Eq0GREKWcW9/w/fcBJ+vzye2NYaxZUJf2a2vBlNdrNShCVCf+3Xe6zoJquoEx9bUYEgkaEeJXRILNYN5da7+e2xFYk+D0emFXfq6Dp0K0hxNxAWKzyYe39HTsPFLBoxEagWNzuw2N3R4Vpabx/FwYK6kBEYWLfNdNS08iCQCYIhSdPp8sErjI8HjkDzO4+27g1CnglVdo6yNB9JCI/8fkLlyIY3/7G46/+y5qS0qw++mn0dHcjKHz5gEAvli2DPv+8Af1+kOrV6Psiy/QcPo0aktKcPiNN3Digw+Q9U//1KP7qoWFfHtbD3skcKK1K323Wy3O461nRa3Em8+ehY8frdvV7oZw0gHK+NsbGtDhcATs87C3gd0f2vE3fPddoEWw4qx0jjDMSEKM0hSnjkejamrgV8ZuMRhJAAKr/XYlZM0drS24ZiAMZ8vnppYX/1VXo0NbuGhw7FyE+BQBI2kFjtF0Q3BL8m7iV0SCy+eTI0lmphoIgjBMxNsyD5kzBy1VVTjw8stoqaxEfG4uZr76qnp4T1NZma7ta0dTE3Y/8wyaKypgdToRO3Qopq9ciSFz5vTovuopilwkhBtJ4CLh++/lN9y4OKCyEhZlP72VsUCRWDir2fh42NxudDQ3o7G5GbGAfPCP4kyMFkba3G64kpLQUlmJ5rY22AG5gE5ZOasiQSOAeoJWhPjdblgBMGULpE2bbggzkhCTlQUAqOZbE/1+MGUHi6hIRdWhQ2hhDFGAOl6RTryWF//V1KCDdyMUMfbBg1G5bx/a7HY4EEjzOGJiDBcuhisSfDExsAHwWK3y/7WZRYsEQRgm4iIBAHIKC5FTWBjyuYI33tB9P37JEoxfssTwPdXdAUZFgpIOaDxzRu5j7/XKIoE7Ku5kJUluB9tDJElCVEYGao8dQ2NtLWIlCWBMFSE2vz/whh+us7rkErRUVqoihNXUqCs+K0/jhOmobC4X3MnJaP7hB7RZrXAjcAqg1WBIHQhEEmrPnAFzOCC1tanNeexRUcIcuVpcyCMJHo9hgeNJTYXF4UAbT+c0NqJdsemIizM+N7wugTFEA2qqxBEXJyySwHuE2Lv5t90RFQUnADe/LxcJFEkgiD5JxNMNkUKNJPA36DBFgictDZAk+Fpb5QJMxRmp/em5cwlziyUQWI03lJWpDkM9SY8LBKtVXu2HgZoS4E5J00WPd8cL11Fp7fMWwepRwQLSDdHp6ZCsVjk9otiQuEiIiREmQhp5p0XFts6Jhzl2yWJBbHY22jV5cpsy347YWMP2vcOHA9C0lVbsOWJjDRcu2qOi5N8fela82KZEqFz8/pRuIIg+zYAVCepRzlwkhFmTYHU4At3tNMWFVsWujfdhCPONHgg4We02QlUk8K1/YWwhDLZfpzhAqbkZFr8fkCQxIkFZ0fL2xnzsItINFrtdFVG8oRK374iJMRxJ4I6W1w1IWkdr0DYAeHNywCRJrTdx+HyQrFZ5e6DBufHm5AAAGhSBY1Hs2WNiDEcSgEAjrp4UL6oigUfYKN1AEH2aASsSOhTnbXQLJKBPOQRHEqwiRIJ2myJfLQenM4w4cb6nXtMpzO73w+Z2qw7XkCNUHC3fgWDhIsHjMbzSB4BYpS6hXSm85ALNHh1t2H7cpZcCkoQmxSZPI+lW+gbGzuemXan3cPh8cMTEQAKE1FPYPB713Aw+7674eDEiIYy6hBYlcuHgETbe7IpEAkH0SQasSOBbzYymG4DQDYM6pRsMOBK1gv/EiYB9Hqng9g048bhLLwUA1J44oY7T4fMJc+KqfaVwjgscp9drOKQOAN4RIwDIuXdAHjsA2Bkz1McAkKMdMZmZaFN2N/ATDIVFEvjYle8dfr/cI6S1NdA/IMy5lywWeEeMUMfO592jPd/egEhwhSESmpWxOBob5d/N99/LTyhCmCCIvsWAFQngBzCFeQKkFr7Sry8tDaQb+HG42nRAmMQNGwZAFglMsWMNFglG7A8dCkBuYsXtO/x+OAUUzwGdRQKfG51IMGA/QenP36wIP4fPB0dcXEAAGqjXAOTVfrBI8KSkCBEJ8UpKoEX5O3H4fHKdC7cNGPrbTBg1St2+aVPmh3fxBGAskqDUEfREJDQpkQQrLzA9c0Z+QonGEQTRtxi4IkGBr/jDrUkAgNjsbABA3fHjqsPgTlxEusGTng6rywV/W5vay4CfpKc2gzLgZG0ej5py6FD21Nt9PjgEOXFPWhrs0dHqSl8tzlPOQzBqPz43FwDQwFf5Pp+8WtY6cQPOMGHMGLQpzs3W1gYwJnd6FDA37uRkRGdmqvbtXCRoG2QZaACUOnWqKnAcfr+6pVbFgG239rjrbtLS0oIW3ib59OlAJIFEAkH0SQa8SACvWjewWuMr8drjx9Wuhdx52wQ4cYvVqgqRVmWHgJ0XFgqIJACBaAU/kdDh88krfQFOXJIkeIcPD6xo29shMSYfIy0g3RA9eDDs0dFQ5Bgcfr+cLxdgG5CPJ1dD9pDnPmrQICGRBABInTxZ58hjs7KECBBuW/s7jc/NDWyZBQyJJ16L06Q99e4CtNXWoon32zh6NHBMNKUbCKJPMmBFQkZ9PSwOh7odz8gbfUx2NiBJaKutVd+Q+a4Gi4DdAUDAifP9+rzAzSKgsBAA4pQCOq0IEZUOAICkvDx1tQzI/R2i0tOF2JcsFiRfdpnqaO0+n7zjQYDAAeSQvSUqCj7FobqdTn1KwODcp//oR+rcOHw+JIweLcy2Iy4OcVOnqrZTJk8O1GkAQkRCI48GdIO2ujo08aOxeTt2t9vw6yQIwhwGrEgYXl1t+Dhejs3lUrfh8Sp4XjynbiE06sQVkdCgFJ/ZldCxMCeunJXBt8s5gsPeBu2nTJwIv8WCDsUZOhnTr8YN2h80Y0ZgNe7zyQWBgiIJFrsdl8yapdpPGTYMksUibG4yrrxSrWVx2+1IzsszdB5HMLn33gtAjlJcOn++OJGgHK7VfPZst89O0UUS+LG6isgmCKLvMWBFgt3nM3yIjhaecuANiew+HySbDRJPZxhdzY4eDQCoUYrEHD6fUJGQnJcHQC9yojIyhNqXrFZ1xRyXnAyLxRJI9xh05JfMnBnYRuj3I2XiRGECBABG3nYb2pQVcNbll8sPClrtW+x2ZP3iFwCAjPHj5fM4eEMrft6FAeImTlS/dlmtwkSCKzERFocDzO9HE2+LfQGaz51DAz8jZO9e+bOyw4MgiL7HwBUJfj9cUVGAgMJCILDS507c7vfDlZCgNt8x6qgSx40DJCkgQgSG6wF5p0Hc8OGBAjq/X27rK8i+Iy4O6VdcoXYXTMnOlo8J5hhcMUelpyNNOb8jyuWS0yeCIgmAXBwZreyiSFEEoSiRAABuxVE6eN8LLhKU9tiGsNsDLcGrq4WJBMliUaMJ3Uk5+Nra0F5Xhxp+oiaHRAJB9FkGrEhw+Hzw8CpvSTK0uwEAEseOBQBUnjyp2nclJgpzVI6YGMRdeqnqZO0+n9wpUaCjGlxQoIbUnYwhfuRIoY52zF13qav9wZMnB8budMofBrn0//0/AIDH45EPDxIYSQAAa1qa/AUvthMkoAAExAAXBwIjCTr71dWB6A1g+HjmntQltCjdFWuD/9fGjTM0BoIgzGPAigQ7Y3Bzx2RwmxkQyOlXlpYCAGyMwS2w8A8A0vLzdXn32KFDhdofNn++eqxwjNcrn0Qo0NEmjh2L+OnTAQDR2m6IoorWFEfIz24Qbp877OpqudkR37kiwr7WNmCuSOC2o6MBm7Ez3nokEngzrbQ0QOmdAQC48kpDYyAIwjwGrEiQIBeJARDiAD1paXCnpqJdE8qNS04W6mSHzJkTiCTwvLtAkRCVno6R998PAPDyhjsiV8sArLz9bk2NcNuqQ21okLsVCo4k6Fb7fOyAkOJCnRPn9wDMFQkCbHuUdEN3tkHyg6BciYnAY4/JwvyWWwClRwdBEH2PASsSAATSDYJWmqlTpoBJkurI4wSmGwB5JZ784x8DkIvzolJThTvaGCX0a6mvBzo6AN5sSrQjr64WmirpZKe21txIAh97dLTc0dEo3InX1sp9DLhYEFGToLWjFQkCbPNIQsN3313wWh5JcCUlAQsXyr+ftWsNj4EgCPMY2CKB52MFOcDMa64BALX4L0Hg7gBAbko05Y9/DDxQXy/e0XJHGLxaNmM1Lnqlb7MFVvVaR27m2EXPu98v/15FRxK0v1eBtvm5IvWnTl3wWi4SeDtntZiSIIg+y4AWCWpNgiAnMmjGDMRmZ6udBWPdbvWMCFH3sHg8gFI3gOpq80L2NTWB1azHA/Bta2bYF7Va1toyw752NS7atssV+L0KduQAQo9dgG1+AmdTeTk6eNSpC/gZD67ERMP3JQiidxjQIiGKO1ZBq0Grw4GZq1fDruRYLTwEa7GIXTXxN/fvvw9sZxMtEpqbA8f4inTiZosEbUqgqkqsfa1ts8feT2oSnF6v3K8DQN0Fogm8bsHDd4kQBNHnGdAiwS463w65C12UcuAQlJ0OiI0V21GOixr+pmzwlEMd2rk4cUL+bJYjNNPRakVIQoIY29ooBRcgomxr7QuuG+jStiABojvK/DzwHRBRdJgTQfQbBrRIwOnT8mfRfeO5Pa1IEAl/c1d6MiA+XpwIsVoD49XaF4WZ6QCtraqqQN1Af4kkcFvnzgXSSH08kgAETkGt538vXdCoRBJ4AyaCIPo+A1skmO3EuX2zRIgZK30gMH5uX5Sj0toyO91w6lQgFSN6Na6NJJgxdq2zNaMgVfC887qEuvOIhLa6OrQrHTYpkkAQ/YeBLRJ4uN4sJ87fNEXbD3biIkPeoez3p5oEbuv4cfmzGUWXLS0A7wtgRrqBz7vIsWsjCcouAwgqIIxV2lTXlZR0eQ1PNTi9XtgMdnkkCKL3GNgiwexIghmOBOi9SIIZ6QZuu7ER4IcCmWGfiwSRtrW1JWbY57bMTPOYIBK8OTkAgNpjx+DjZ6EEwUWCh6IIBNGvGNgigbfVNUskcPrTSt9s+9qoihn2gyMJIm1bLJ1FiMjfrZlpHm2qROl8KEokRKWnwxEbC39HB2q7iCbUKfMVqxQ5EgTRPxjYIoEj2skGpxfMcuI8526WCOH2RTorbcMj5VhqU2oezNh9oLVfXi5/NkPgcEdrhm2/P5BmEyQSJEmSDwMDUF1cHPKaWi4SlNNSCYLoH5BIAMxzJGbZ7y0R0h/tmz32YHtmjJ2H7Pk5FyJwuTqftCmwqREXCVWHD4d8nkcS4vgx2wRB9AtIJADkxCNt34ywelffG8VMARg8VpEiIdi+NnUigAQuEg4d6vQcY0yNJMRRJIEg+hUkEoD+H0kwe/xmrsajowF+GqcI+nMkoTdFQny84ePRtSTl5QGQRUJ7Y6PuufrSUnQ0NsLicCA6M1PYPQmCMB8SCXa7+INmLrZIgmhnpbWfmirWdvBc8COvRaEdu9VqTuEihx+EJArt3Ag+PyE6IwNRGRlgPh9++PJL3XPn9u8HACSMGgWrqC2dBEH0CiQSEhLEtkwGzI8kBL/Bmy0SzHS0ZtoGzBUhKSlCV+Od5sLMSIIJhyylTpkCAKjYtUv3eOWBA/ItlWPICYLoP5BIEO3Agc5FYqKdePABOaIdodbR2u1iawaC7YsWCVFR+vSF6LnROlfRtoNFh2iRoJ1rE/oVpE2bBgA48+mnYHxnDICKnTsBAMkTJgi/J0EQ5kIiwQyRAMhb/TiiT70Ldtqi7WvD3Ckp4iMtWucq2tFKkt4BiravnPBpim2bTf+7FC2gtPUAJoiEjKuugsXhQN3x46g5ehQA0HD6NOqOH4dksyEtP1/4PQmCMBcSCaJXa5yWlsDX0dFibQc7bdHNoLSOUHS9BgBoG+qIdoQAkJER+Fq0I9eOXbRtQB91Et14SPt7NUEk2KOjkX7FFQCAkg0bAAAnPvgAAJAycSIcov9OCaIvU1UFFBbK789eL3D77UBDw/l/5qqr5Pd37cddd/XGaLuERIJZb1w+X+Br0SvxYETb1xZeasLGwtA6PzM68GnnQ/SJg9rVuBlj16YbRKd5tGM3aZfBiJtuAgCUrF+P6m++wbdFRQCAYfPnm3I/guizFBYChw4BmzcDH34IfPYZcOedF/65O+6QW/rzj1WrzB/reSCRENxgRhTjx5tjl2NmEZjWySpb24SibaiTmyve/lVXyZ/T0+UdCCJJT5cPXgKAMWPE2gaAG26QP+fmihd/48YFRMjkyWJtK6ROm4aUSZPga23FxgUL0HLuHGKGDMHga64x5X4E0Sc5fBjYtAn4y1+AqVOBGTOAl14CiooA5RyTLvF45LQj/4hwBK5PiISjb72F966+GkV5efj7jTeq1dChOLZ+PTbffDPW5+djfX4+ttx++3mv7wr/j38sf3HrrWGO+gIsXSq/yb/0kjn2//AHOVSvrNSEs349MG0a8PTT4m2npwNPPgncfz9gRp76gQeAX/3KnLmx2YB33gGeew5YsEC8/SVLgKeeApRwvVBSU4GNG+XxDx8u3j7kFs35K1ciWkltOGJjMf3552nrI9Gnqa+vR11dnfrRys/1CZft2+VI4KRJgccKCmSRrhTydsm6dXJd2JgxwLJlQFOTsbEYRGLMjHhy9zm1cSO2L1uGyU88gaSxY/HNm2+i9H//F9d9+CFcIbZp/eOhh5Ccl4fkCRNgcTpx+K9/xektWzD3vffg6UaO+Nz33yMpIwOVR48isaMDUDrFmUJDg/h6BILoB/ja2lD9zTeIzc6Gg5/VQRB9jLrvvkPs4MGIBVCvefyJJ57Ak08+Gb7h554D1q4FjhzRP56SIi8C7r479M+99pqcxkxPBw4cAB5+GJgyxZxFQzexXfgSc/lm7VoMu/56DJs3DwAw5Ykn8P1nn6FkwwaMvuOOTtdfHpSfmfL00yjdvBnlO3Zg6E9/2v0bR0WZUrylgwQCMUCxOhxIor4IRD/hcHExYjQFz86u0tCPPAI8//wFjIU+v6RbaGsWxo6Va6pmzZIPfYtQS/OIigRfWxuqiosxSiMGJIsFadOmoVLp0nZBGy0tYB0dcAZ3OVRobW3VhY7qL1RdShAEQQwoYmJiENud3P8DD1w4RT10qFxLcPas/vGODnnHQ0+2rE+dKn8+dmxgioTWmhown69TWsGVmIi6Eye6ZWPf734Hd0pKl3uwV6xYgaeeeipg2+ydBgRBEMTFSXJy97bN5+cDNTXA3r3AxInyYx9/LB/Vzh1/d9i3T/4sepdWD+gThYvhcmj1apzauBFXvPACrF2Eh5YtW4ba2lr14/A33/TyKAmCIIgBxciRwOzZ8nbGXbuAf/wDWLwYuPHGQJr7zBl5FxNvY15SAjzzjCwsTp4E3n8fuOUW4Morzd3NdgEiGklwer2QrFa0nDune7zl3Dm4LnC4zeE1a1D817/ix3/5C+Jzcrq+h9Opyy+1U7qBIAiCMJt162RhMGuWvKthwQLgxRcDz7e3y4WNfPeCwwH83/8Bf/wj0NgoNz9bsAB47LGIDJ8TUZFgdTiQMGoUKnbswOBZswAAzO9H+c6dalOWUBT/9a849NprmPnaa0g0Y686QRAEQRghIQF4662un8/K0jerGzwY2LrV9GH1lIjvbshduBDbH30UCaNHI3HsWBx58010NDdjqLLb4Ytly+BJScGE++8HABT/5S848PLLmL5qFaLS09H8ww8AAJvHA7sZLYQJgiAIYoAScZEwZM4ctFRV4cDLL6OlshLxubmY+eqrcCvphqayMkiaYsNv//M/4W9vxzZFNHDG3HMPxi1a1KtjJwiCIIiLmYg3U+pt1GZKZ84g0ew+CQRBEESfhTdTqjt9GrGXXBLp4fRJ+vXuBoIgCIIgzINEAkEQBEEQISGRQBAEQRBESEgkEARBEAQREhIJBEEQBEGEhEQCQRAEQRAhiXifhN7G7/cDAL4vK0Oz8jVBEAQx8GgoKwMQ8AtEZwacSCg9fRoAMG7SpAiPhCAIgugL7D99Gt7MzEgPo08y4ERCdk4OHAC+PHgQcXFxkR5Ov6G+vh6jRo1CcXExYmJiIj2cfgHNWXjQvPUcmrPwqKutxdQxYzB45MhID6XPMuBEgs1mQxuAwYMHIzY2NtLD6TfU1dUBADIyMmjeugnNWXjQvPUcmrPwqIuNRQMAq23AucJuQ4WLBEEQBEGEhEQCQRAEQRAhGXAiwel04oknnoDT6Yz0UPoVNG89h+YsPGjeeg7NWXjQvF2YAXcKJEEQBEEQ3WPARRIIgiAIgugeJBIIgiAIgggJiQSCIAiCIEJCIoEgCIIgiJBc1CLh3//935GVlQWXy4WpU6di165dkR6SaaxYsQKTJ09GTEwMUlJS8LOf/QxHjhzRXdPS0oJFixYhMTER0dHRWLBgASoqKnTXlJaWYu7cufB4PEhJScGDDz6Ijo6O3nwpEWPlypWQJAn33Xef+hjNWWfOnDmDX/ziF0hMTITb7cbYsWOxZ88e9XnGGH7zm99g0KBBcLvdKCgowLfffquzUVVVhcLCQsTGxsLr9eL2229HQ0NDb7+UXsPn8+Hxxx9HdnY23G43hg0bhmeeeQbauvGBNm+fffYZrrvuOqSnp0OSJLz77ru650XNx4EDB3DFFVfA5XJh8ODBWLVqldkv7eKCXaQUFRUxh8PBXn/9dXbo0CF2xx13MK/XyyoqKiI9NFO49tpr2Zo1a9jBgwfZvn372E9+8hOWmZnJGhoa1GvuuusuNnjwYLZlyxa2Z88eNm3aNDZ9+nT1+Y6ODjZmzBhWUFDAvvrqK/bRRx+xpKQktmzZski8pF5l165dLCsri40bN44tWbJEfZzmTE9VVRUbMmQIu/XWW9nOnTvZ8ePH2d///nd27Ngx9ZqVK1eyuLg49u6777L9+/ezf/7nf2bZ2dmsublZvWb27Nls/PjxbMeOHezzzz9nl156Kbvpppsi8ZJ6hWeffZYlJiayDz/8kJ04cYKtX7+eRUdHsxdeeEG9ZqDN20cffcSWL1/ONmzYwACwd955R/e8iPmora1lqamprLCwkB08eJC9/fbbzO12s1dffbW3Xma/56IVCVOmTGGLFi1Sv/f5fCw9PZ2tWLEigqPqPc6ePcsAsK1btzLGGKupqWF2u52tX79evebw4cMMANu+fTtjTP6ntVgsrLy8XL3mlVdeYbGxsay1tbV3X0AvUl9fz4YPH842b97MfvSjH6kigeasMw8//DCbMWNGl8/7/X6WlpbG/u3f/k19rKamhjmdTvb2228zxhgrLi5mANju3bvVazZu3MgkSWJnzpwxb/ARZO7cueyXv/yl7rH58+ezwsJCxhjNW7BIEDUff/rTn1h8fLzuf/Hhhx9mOTk5Jr+ii4eLMt3Q1taGvXv3oqCgQH3MYrGgoKAA27dvj+DIeo/a2loAQEJCAgBg7969aG9v181Jbm4uMjMz1TnZvn07xo4di9TUVPWaa6+9FnV1dTh06FAvjr53WbRoEebOnaubG4DmLBTvv/8+Jk2ahJ///OdISUlBXl4eVq9erT5/4sQJlJeX6+YsLi4OU6dO1c2Z1+vFJM1JrAUFBbBYLNi5c2fvvZheZPr06diyZQuOHj0KANi/fz+2bduGOXPmAKB5C0bUfGzfvh1XXnklHA6Hes21116LI0eOoLq6updeTf/mojzVorKyEj6fT/fGDQCpqan45ptvIjSq3sPv9+O+++7D5ZdfjjFjxgAAysvL4XA44PV6ddempqaivLxcvSbUnPHnLkaKiorw5ZdfYvfu3Z2eoznrzPHjx/HKK6/g17/+NR599FHs3r0b9957LxwOBxYuXKi+5lBzop2zlJQU3fM2mw0JCQkX5ZwBwCOPPIK6ujrk5ubCarXC5/Ph2WefRWFhIQDQvAUhaj7Ky8uRnZ3dyQZ/Lj4+3pTxX0xclCJhoLNo0SIcPHgQ27Zti/RQ+jSnT5/GkiVLsHnzZrhcrkgPp1/g9/sxadIkPPfccwCAvLw8HDx4EH/+85+xcOHCCI+u7/Jf//VfWLduHd566y2MHj0a+/btw3333Yf09HSaN6JPc1GmG5KSkmC1WjtVoVdUVCAtLS1Co+odFi9ejA8//BCffPIJLrnkEvXxtLQ0tLW1oaamRne9dk7S0tJCzhl/7mJj7969OHv2LC677DLYbDbYbDZs3boVL774Imw2G1JTU2nOghg0aBBGjRqle2zkyJEoLS0FEHjN5/vfS0tLw9mzZ3XPd3R0oKqq6qKcMwB48MEH8cgjj+DGG2/E2LFjcfPNN+P+++/HihUrANC8BSNqPgba/6cZXJQiweFwYOLEidiyZYv6mN/vx5YtW5Cfnx/BkZkHYwyLFy/GO++8g48//rhTiG3ixImw2+26OTly5AhKS0vVOcnPz8fXX3+t+8fbvHkzYmNjOzmGi4FZs2bh66+/xr59+9SPSZMmobCwUP2a5kzP5Zdf3mlr7dGjRzFkyBAAQHZ2NtLS0nRzVldXh507d+rmrKamBnv37lWv+fjjj+H3+zF16tReeBW9T1NTEywW/dut1WqF3+8HQPMWjKj5yM/Px2effYb29nb1ms2bNyMnJ4dSDd0l0pWTZlFUVMScTid74403WHFxMbvzzjuZ1+vVVaFfTNx9990sLi6Offrpp6ysrEz9aGpqUq+56667WGZmJvv444/Znj17WH5+PsvPz1ef59v5rrnmGrZv3z62adMmlpycfNFu5wuFdncDYzRnwezatYvZbDb27LPPsm+//ZatW7eOeTwe9h//8R/qNStXrmRer5e999577MCBA+ynP/1pyK1reXl5bOfOnWzbtm1s+PDh/XYrX3dYuHAhy8jIULdAbtiwgSUlJbGHHnpIvWagzVt9fT376quv2FdffcUAsN///vfsq6++YqdOnWKMiZmPmpoalpqaym6++WZ28OBBVlRUxDweD22B7AEXrUhgjLGXXnqJZWZmMofDwaZMmcJ27NgR6SGZBoCQH2vWrFGvaW5uZvfccw+Lj49nHo+HzZs3j5WVlensnDx5ks2ZM4e53W6WlJTEHnjgAdbe3t7LryZyBIsEmrPOfPDBB2zMmDHM6XSy3Nxc9tprr+me9/v97PHHH2epqanM6XSyWbNmsSNHjuiuOXfuHLvppptYdHQ0i42NZbfddhurr6/vzZfRq9TV1bElS5awzMxM5nK52NChQ9ny5ct1W/MG2rx98sknId+zFi5cyBgTNx/79+9nM2bMYE6nk2VkZLCVK1f21ku8KKCjogmCIAiCCMlFWZNAEARBEIRxSCQQBEEQBBESEgkEQRAEQYSERAJBEARBECEhkUAQBEEQREhIJBAEQRAEERISCQRBEARBhIREAkEQBEEQISGRQBAR5tNPP4UkSZ0OkuottmzZgpEjR8Ln8xmyI0kS3n333W5fv2nTJkyYMEE9v4AgiL4HiQSC6EWuuuoq3HfffbrHpk+fjrKyMsTFxUVkTA899BAee+wxWK1WQ3bKysowZ86cbl8/e/Zs2O12rFu3ztB9CYIwDxIJBBFhHA4H0tLSIElSr99727ZtKCkpwYIFCwzbSktLg9Pp7NHP3HrrrXjxxRcN35sgCHMgkUAQvcStt96KrVu34oUXXoAkSZAkCSdPnuyUbnjjjTfg9Xrx4YcfIicnBx6PB9dffz2ampqwdu1aZGVlIT4+Hvfee68uRdDa2oqlS5ciIyMDUVFRmDp1Kj799NPzjqmoqAhXX301XC6X+tiTTz6JCRMm4PXXX0dmZiaio6Nxzz33wOfzYdWqVUhLS0NKSgqeffZZnS1tuuHkyZOQJAkbNmzAzJkz4fF4MH78eGzfvl33M9dddx327NmDkpKS8CeWIAjTsEV6AAQxUHjhhRdw9OhRjBkzBk8//TQAIDk5GSdPnux0bVNTE1588UUUFRWhvr4e8+fPx7x58+D1evHRRx/h+PHjWLBgAS6//HLccMMNAIDFixejuLgYRUVFSE9PxzvvvIPZs2fj66+/xvDhw0OO6fPPP8e//uu/dnq8pKQEGzduxKZNm1BSUoLrr78ex48fx4gRI7B161Z88cUX+OUvf4mCggJMnTq1y9e8fPly/Pa3v8Xw4cOxfPly3HTTTTh27BhsNvmtJzMzE6mpqfj8888xbNiwnk4pQRAmQyKBIHqJuLg4OBwOeDwepKWlnffa9vZ2vPLKK6rjvP766/Hmm2+ioqIC0dHRGDVqFGbOnIlPPvkEN9xwA0pLS7FmzRqUlpYiPT0dALB06VJs2rQJa9aswXPPPRfyPqdOnVKv1+L3+/H6668jJiZGvdeRI0fw0UcfwWKxICcnB88//zw++eST84qEpUuXYu7cuQCAp556CqNHj8axY8eQm5urXpOeno5Tp06df/IIgogIJBIIog/i8Xh0K+vU1FRkZWUhOjpa99jZs2cBAF9//TV8Ph9GjBihs9Pa2orExMQu79Pc3KxLNXCysrIQExOju5fVaoXFYtE9xu/fFePGjVO/HjRoEADg7NmzOpHgdrvR1NR0XjsEQUQGEgkE0Qex2+267yVJCvkY3z7Y0NAAq9WKvXv3dtqloBUWwSQlJaG6utrw/bvzOnhhZvDPVFVVITk5+bx2CIKIDCQSCKIXcTgchvsRhCIvLw8+nw9nz57FFVdc0aOfKy4uFj6e7tLS0oKSkhLk5eVFbAwEQXQN7W4giF4kKysLO3fuxMmTJ1FZWSmskdCIESNQWFiIW265BRs2bMCJEyewa9curFixAv/zP//T5c9de+212LZtm5AxhMOOHTvgdDqRn58fsTEQBNE1JBIIohdZunQprFYrRo0aheTkZJSWlgqzvWbNGtxyyy144IEHkJOTg5/97GfYvXs3MjMzu/yZwsJCHDp0CEeOHBE2jp7w9ttvo7CwEB6PJyL3Jwji/EiMMRbpQRAEETkefPBB1NXV4dVXX+3V+1ZWViInJwd79uxBdnZ2r96bIIjuQZEEghjgLF++HEOGDOn1MxROnjyJP/3pTyQQCKIPQ5EEgiAIgiBCQpEEgiAIgiBCQiKBIAiCIIiQkEggCIIgCCIkJBIIgiAIgggJiQSCIAiCIEJCIoEgCIIgiJCQSCAIgiAIIiQkEgiCIAiCCAmJBIIgCIIgQvL/AYybrF6FXyFmAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for setpoint in [2e-7, 3.5e-7, 4e-7, 4.5e-7]:\n", " _ = CTLSB.plotDesign(setpoint=setpoint, kP_spec=CTLSB.kP, kI_spec=CTLSB.kI, sign=1,\n", @@ -797,96 +566,1494 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "31d88971-a0c0-4670-aab9-618aca53cd36", "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "random_mag = 3e-5\n", - "noise_spec = ctl.NoiseSpec(random_mag=random_mag, random_std=0.1)\n", - "ctlsb = ctl.ControlSBML(URL, xlabel=\"time (min)\", input_name=INPUT_NAME, output_name=OUTPUT_NAME,\n", - " noise_spec=noise_spec, times=TIMES)\n", - "grid = ctlsb.getGrid()\n", - "grid.addAxis(\"kP\", min_value=0, max_value=0.001, num_coordinate=10)\n", - "grid.addAxis(\"kI\", min_value=0, max_value=0.01, num_coordinate=10)\n", - "grid.addAxis(\"kD\", min_value=0, max_value=0.001, num_coordinate=10)\n", - "grid.addAxis(\"kF\", min_value=0.01, max_value=0.1, num_coordinate=10)\n", - "design_result = ctlsb.plotGridDesign(grid, setpoint=SETPOINT, num_restart=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "182e38ed-6386-4934-84ae-c8b73b45f6f4", - "metadata": {}, - "outputs": [], - "source": [ - "df = design_result.designs.dataframe.copy()\n", - "del df[\"reason\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "8a3249ec-3eac-4e4d-9b8e-ac8b54458c52", - "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/jlheller/home/Technical/repos/controlSBML/src/controlSBML/plot_parallel_coordinates.py:30: SettingWithCopyWarning:\n", - "\n", - "\n", - "A value is trying to be set on a copy of a slice from a DataFrame\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - "\n" + " 0%| | 0/630 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from controlSBML.plot_parallel_coordinates import plotParallelCoordinates\n", - "plotParallelCoordinates(df, num_category=5, value_column=\"score\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "5f33ca25-7cd3-4777-9c01-1c4b9102e039", - "metadata": {}, - "outputs": [ - { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "100%|█████████████████████████████████████████████| 1/1 [00:03<00:00, 3.05s/it]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAAHWCAYAAAB0TPAHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsu0lEQVR4nO3dd3gUVdsG8HvTNglpJIE0egsJXRQEpAlK7yBSBAQpgiIi5QNUEEsQVF4FBEQpShcRlN57k14SAoRQAoGQhPSePd8fhyxZ0jebzGZz/65rLzKTM7PP7oZ5dmbOeY5KCCFAREREJsdM6QCIiIioaDDJExERmSgmeSIiIhPFJE9ERGSimOSJiIhMFJM8ERGRiWKSJyIiMlFM8kRERCaKSZ6IiMhEMckbyKxZs6BSqRAeHq50KGRAbdq0Qd26dZUOg/R06NAhqFQqbNq0SelQiBTBJF/Mhg0bBpVKpX04ODigQYMG+P7775GcnGyQ53jw4AHeeustODk5wcHBAT169MDt27fzvf2JEyfw2muvwdbWFu7u7hg/fjzi4uKytEtOTsbUqVPh6ekJGxsbNG3aFHv37tV7nxkH5Owep06d0mnbpk2bbNt17Ngx2+c/f/48unfvDmdnZ9ja2qJu3br46aef8v2e5KVKlSro2rWrwfb322+/wcfHB9bW1qhZsyYWLFiQ720N/bm8+Df74uPBgwcAgDt37uTabuTIkQXeJwBoNBosWbIEDRs2hJ2dHdzc3NCpUyecOHGiIG9prlauXJljLP/3f/9nkOf4559/8NJLL8Ha2hqVKlXCzJkzkZaWlq9tNRoN5s6di6pVq8La2hr169fHunXrsrRbtmwZWrduDTc3N6jValStWhXvvvsu7ty5k+1+8/t3VpBjSlHsk/RnoXQApZFarcavv/4KAIiKisJff/2FSZMm4b///sP69esLte+4uDi0bdsW0dHRmD59OiwtLTF//ny0bt0aFy9ehIuLS67bX7x4Ee3atYOPjw9++OEHhISE4LvvvsPNmzexc+dOnbbDhg3Dpk2bMGHCBNSsWRMrV65E586dcfDgQbz22mt67RMAxo8fj1deeUVnXY0aNbK0q1ChAvz8/HTWeXp6Zmm3Z88edOvWDY0aNcJnn30GOzs7BAUFISQkJNf3QilLly7FmDFj0KdPH0ycOBFHjx7F+PHjkZCQgKlTp+a5vaE/l9GjR6N9+/Y6zyGEwJgxY1ClShV4eXkBAMqVK4c//vgjSzy7du3CmjVr8OabbxZ4nwAwefJk/PDDDxg8eDDGjh2LqKgoLF26FK1bt8bx48fRpEmTPN+T/Jo9ezaqVq2qs84QV3J27tyJnj17ok2bNliwYAGuXLmCr776CmFhYVi8eHGe28+YMQNz5szByJEj8corr2Dr1q0YOHAgVCoV3n77bW27CxcuoGrVqujevTvKli2L4OBgLFu2DNu2bcOlS5d0/n/k9++sIMeUotgnFZIgg5g5c6YAIJ48eZJru6FDh4oyZcrorEtPTxcvv/yyACAePHhQqDi+/fZbAUCcOXNGuy4gIECYm5uLadOm5bl9p06dhIeHh4iOjtauW7ZsmQAgdu/erV13+vRpAUDMmzdPuy4xMVFUr15dNGvWTK99Hjx4UAAQf/75Z55xtm7dWtSpUyfPdtHR0cLNzU306tVLpKen59le3+epXLmy6NKlS4H3/6KEhATh4uKSZV+DBg0SZcqUEZGRkbluXxSfS3aOHj0qAIivv/46z9fUrl074eDgIBITEwu8z9TUVGFjYyP69u2r0/b27dsCgBg/fnyu+8zv39SKFSsEAPHff//l8Wr04+vrKxo0aCBSU1O162bMmCFUKpUICAjIdduQkBBhaWkpxo0bp12n0WhEy5YtRYUKFURaWlqu2589e1YAEH5+ftp1Bfk7y+8xpSj2SYXHy/VF6O7du6hRowbq1q2Lx48f59jOzMwMbdq0AYAcL6vl16ZNm/DKK6/onAnXrl0b7dq1w8aNG3PdNiYmBnv37sXgwYPh4OCgXT9kyBDY2dnpbL9p0yaYm5tj1KhR2nXW1tYYMWIETp48ifv37xd4n5nFxsbm61JmWlpatrcSMqxduxaPHz/G119/DTMzM8THx0Oj0eS539zs2bMHtra2GDBgQL4vt+bXwYMHERERgbFjx+qsHzduHOLj47F9+/Zcty/qzyXD2rVroVKpMHDgwFzbhYaG4uDBg+jduzesra0LvM/U1FQkJibCzc1Np2358uVhZmYGGxubXPeZneTkZHTt2hWOjo4GveSfE39/f/j7+2PUqFGwsHh+8XTs2LEQQuTZX2Dr1q1ITU3V+ZtQqVR4//33ERISgpMnT+a6fZUqVQDIq4YZCvJ3lt9jSlHskwqPSb6IBAUFoVWrVrC3t8ehQ4eyHKSyaw9Ae5kqOTkZ4eHh+Xpk0Gg0uHz5Ml5++eUs+2/SpAmCgoIQGxubYwxXrlxBWlpalu2trKzQsGFDXLhwQbvuwoULqFWrlk6CyHgeQF4KLug+M7z77rtwcHCAtbU12rZti7Nnz2Yb740bN1CmTBnY29vD3d0dn332GVJTU3Xa7Nu3Dw4ODnjw4AG8vb1hZ2cHBwcHvP/++0hKSsrxvcjJtm3b0L17d/Tr1w+rV6/WOWi/6OnTp/n6/BISErTbZLwfL75fjRs3hpmZWbbvV2ZF+blkSE1NxcaNG9G8eXNtAsnJ+vXrodFoMGjQoFzb5bTPjD4FK1euxJo1a3Dv3j1cvnwZw4YNQ9myZXW+zORHYmIiunXrhhMnTmDfvn1o3ry5zu+jo6Nz/P+V0++ze2T+4pnTZ+rp6YkKFSrk6zMtU6YMfHx8dNZnfKbZbR8REYGwsDCcPXsW7777LgCgXbt2ecb04t9ZQY4pRbFPKjzeky8C169fR7t27eDl5YXdu3ejbNmyWdpkHDyio6OxceNGbNmyBfXr14e3tzcAYN26ddr/nHkRQgAAIiMjkZycDA8PjyxtMtY9fPhQ+xwvCg0N1Wn74vZHjx7VaZvX8xR0n1ZWVujTpw86d+4MV1dX+Pv747vvvkPLli1x4sQJNGrUSNu2evXqaNu2LerVq4f4+Hhs2rQJX331FW7cuIENGzZo2928eRNpaWno0aMHRowYAT8/Pxw6dAgLFixAVFRUtp2XcrJ582a8/fbbGDZsGJYsWQIzs9y/Izdq1Ah3797Nc78zZ87ErFmzAMj3y9zcHOXLl9dpY2VlBRcXF+37mpOi+FxetHv3bkREROSZuAFgzZo18PDwwOuvv55ru9z2uXr1avTv3x+DBw/WrqtWrRqOHz+OatWq5RlDhri4OHTt2hXXrl3DgQMH0LBhwyxtXuwnADz//wUAPXr0wOHDh/N8rqFDh2LlypUA8n6v8/OZurm5QaVSZdkWQLbbe3l5aTvyuri44KeffsIbb7yhs8/8/J0V5JhSFPukwmOSN7CrV6+if//+qFGjBnbu3JnljAoA4uPjUa5cOZ11zZs31+m01KFDhxx7ROckMTERgOzY96KMS6UZbfTZPvO2iYmJ+XqeguyzefPmOmdW3bt3R9++fVG/fn1MmzYNu3bt0v7ut99+09nXO++8g1GjRmHZsmX4+OOP8eqrrwKQB/aEhASMGTNG25u+d+/eSElJwdKlSzF79mzUrFkzx/ckw7p16zBkyBDtfl484GZnzZo1ub7fGTInqsTERFhZWWXb7sX3KztF8bm8aO3atbC0tMRbb72Vayw3btzAuXPn8PHHH+f5hSi3fdrb26NOnTpo1qwZ2rVrh0ePHmHOnDno2bMnjh49CldX11z3Dcgv02+++SZu376NQ4cOoU6dOtm2W7RoEWrVqpXjfr7//ns8ffo0z+fL3MEtr/c6JiYm133l9zPNbOfOnUhKSkJAQABWr16N+Pj4LPvMz99ZQY4pRbFPKjwmeQPr1q0b3NzcsHv3btjZ2WXbxtraGv/++y8AaIe5VKhQQaeNh4dHtt90c5NxfzK7oXgZl6Zzu4eZ1/aZt7WxscnX8xRkn9mpUaMGevTogc2bNyM9PR3m5uY5tv3kk0+wbNky7Nu3T5vkM/Y/YMAAnbYDBw7E0qVLcfLkyTyTfHBwMAYPHox+/foVaChbixYt8t02g42NDVJSUrL9XX7er6L+XOLi4rB161Z06NAhzx7Qa9asAYA8z/hz22daWhrat2+v7ZWeoX379qhTpw7mzZuHb7/9Ntf9A8CECROQlJSECxcu5JjgAXm5OLvLyBkaN26c53O9qLD/B/L7mWbWtm1bAECnTp3Qo0cP1K1bF3Z2dvjggw+02+Tn76wgx5Si2CcVHpO8gfXp0werVq3CmjVrMHr06GzbmJubZ3tZMLPExERER0fn6znd3d0BAM7OzlCr1drLg5llrMtuiFmGjC8VOW2feVsPDw+dscw5PU9B9pmTihUrIiUlBfHx8dleGcncDpCXAzN4enri2rVr2XbcApCvs7KML1w7duzA2bNnc00CmT158gTp6el5trOzs9N+IfTw8EB6ejrCwsJ0LnumpKQgIiIiz/erqD+XLVu2ICEhIV+X6teuXQtvb+88E2Nu+zxy5AiuXr2KH374QWd9zZo14ePjg+PHj+cZByAvs69fvx5z5szB77//nueVhZxERkbmmMgys7GxgaOjIwDd9zrjbzRDaGhonkMAPTw8cPDgQQghdK4g5ef/NCBvbTVq1Ahr1qzRJvn8/p0V5JhSFPukwmPHOwObN28eRowYgbFjx2Lt2rV672fDhg3a5JLXI4OZmRnq1auXbUe106dPo1q1arC3t8/xOevWrQsLC4ss26ekpODixYs69zAbNmyIGzduZLnUePr0ae3vC7rPnNy+fRvW1tY5XhnJ3A6Azq2QjATzYuLLuD/44m2T7FhbW2Pbtm2oWbMmOnbsiGvXruW5DQC88sor+fr8vvvuO+02Ge/Hi+/X2bNnodFo8ny/ivpzWbNmDezs7NC9e/dc4zh9+jRu3bqV7/v2Oe0zY1RKdl+WUlNT8z26oWfPnli+fDnWrl2LcePG5Wub7PTu3Ttfn+lHH32k3Sanz/Thw4cICQnJ12eakJCAgIAAnfUvfqa5efGkIb9/ZwU5phTFPskAlB3BZzoyj5NPT08Xb731lrCwsBBbt27VaZfdOPnsPHz4UOzduzdfj8zmzJmTZbzv9evXhbm5uZg6dapO24CAAHH37l2ddR07dhQeHh4iJiZGu+7XX38VAMTOnTu1606dOpVlPHZSUpKoUaOGaNq0qV77DAsLy/I+XLx4UVhaWoru3btr10VHR4ukpCSddhqNRvTv318AEOfOndOuP3/+vAAgBg4cqNN+wIABwsLCIs+6BJnHyT958kT4+PgIDw8PcevWLZ122Y2TP3bsWL4+v6CgIO02CQkJwtnZWXTt2lVnX4MHDxa2trYiIiJCu+7JkyciICBAxMfHa9cVxeeSISwsTFhYWIh33nkn1/dMCCHGjx8vAGR5nwq6z4wx3kOHDtVZf+7cOWFmZibGjBmT6/5fHCe/YMECAUBMmTJFp11+x8mfPXs2X5/ptWvXdLarXbu2aNCggc6Y9k8//VSoVCrh7++vXRcVFSUCAgJEVFSUdt39+/dzHCfv5eWl3Wdqamq2dRROnz4tzM3Ndd7jgvyd5feYUhT7pMJjkjeQF4vhpKSkiM6dOwu1Wi3279+vbZffJK+vmJgYUb16dVG+fHkxd+5cMX/+fFGxYkXh6emZJYkCEK1bt9ZZd+7cOaFWq0WjRo3E4sWLxYwZM4S1tbV48803szxXv379hIWFhZg8ebJYunSpaN68ubCwsBCHDx/Wa59t27YVnTt3Fl999ZX45ZdfxIQJE4Stra1wdHTUORAePHhQuLu7i48//lgsWrRIfPfdd6JFixYCgBg1alSWOIcPHy4AiLfeekssWrRI9OvXTwDIV9GNF4vhhISEiCpVqogqVaqIkJAQ7XpDFcMRQohFixYJAKJv375i2bJlYsiQIdkWnsn4mzt48KDOekN/LhkyEuSuXbtyjT8tLU24ubmJV199Nc/Xmp99vvHGGwKA6NWrl1i8eLH4/PPPRdmyZUWZMmXE9evXc91/dsVwvv766yzvZ1EXw/n333+FSqUSr7/+uvjll1/E+PHjhZmZmRg5cqROu4w4VqxYobN+8uTJ2r/vZcuWiS5duggAYs2aNdo2T58+FWXKlBHDhw8X33//vViyZIkYN26csLW1Fc7OzuLGjRs6+8zv31lBjilFsU8qHCZ5A8mu4l1CQoJo3bq1sLOzE6dOnRJCFH2SF0J+8+/bt69wcHAQdnZ2omvXruLmzZtZ2mWX5IWQlceaN28urK2tRbly5cS4ceN0zvYyJCYmikmTJgl3d3ehVqvFK6+8kuPBOj/7/PHHH0WTJk2Es7OzsLCwEB4eHmLw4MFZYr99+7bo16+fqFKlirC2tha2traicePGYsmSJUKj0WR57pSUFDFr1ixRuXJlYWlpKWrUqCHmz5+fyzv4XHYV727duiU8PDyEj4+P9vM2ZJIXQohffvlFeHt7CysrK1G9enUxf/78LK8tpyRv6M8lw6uvvirKly+fZ4W1Xbt2CQDip59+yvN15mefCQkJYvbs2cLX11fY2NgIR0dH0bVrV3HhwoU8959TxbspU6YIAGLhwoVCiKJP8kII8ffff4uGDRsKtVotKlSoID799FORkpKi0yanJJ+eni6++eYbUblyZWFlZSXq1KkjVq9erdMmOTlZfPTRR6J+/frCwcFBWFpaisqVK4sRI0aI4ODgbGPKz9+ZEPk/phTVPkl/KiEyDQIlIiIik8GOd0RERCaKSZ6IiMhEMckTERGZKCZ5IiIiE8UkT0REZKKY5ImIiExUqatdn5aWhoBLl+BYrpze9auJiKjkExoN4h8/Rs1GjWBuYZrp0DRfVS4CLl1C/XxOMEJERKYv4MwZ1H7lFaXDKBKlLsm7P5uN7PLZsyj7wsxkRERUesSFhsKzSRNoTDgXlLokn3GJ3tPDAy6czpCIqNSKAeAAIMaEb92a7isjIiIypCNHgG7dAE9PQKUCtmzJ2iYgAOjeHXB0BMqUAV55Bbh3r9hDzcAkT0RElB/x8UCDBsCiRdn/PigIeO01oHZt4NAh4PJl4LPPAGvrYg0zs1J3uZ6IiEgvnTrJR05mzAA6dwbmzn2+rnr1oo8rFzyTJyKiUi02NhYxMTHaR3JycsF3otEA27cDtWoBHToA5csDTZtmf0m/GDHJExFRqebj6wtHR0ftw8/Pr+A7CQsD4uKAOXOAjh2BPXuAXr2A3r2Bw4cNH3Q+8XI9ERGVagH+/rD38tIuq9Xqgu9Eo5H/9ugBfPyx/LlhQ+DECWDJEqB168IHqgcmeSIiKtXs7e3h4OBQuJ24ugIWFoCvr+56Hx/g2LHC7bsQeLmeiIiosKys5HC5wEDd9TduAJUrKxMTeCZPRESUP3FxwK1bz5eDg4GLFwFnZ6BSJWDyZKB/f6BVK6BtW2DXLuDff+VwOoUwyRMREeXH2bMyeWeYOFH+O3QosHKl7Gi3ZAng5weMHw94ewN//SXHzitE0SQfdvYs/Jcvx1N/fyQ+eYKWP/2Eiu3a5brN4zNncH7uXETfugVbd3fUHT0a1Xr1KqaIiYio1GrTBhAi9zbDh8uHkVD0nnxaYiLKenvj5U8/zVf7uJAQHBo7Fm5NmqDTX3/B+513cHrmTDxUsFMDERGRsVL0TN6zZUt4tmyZ7/Y3N2yAnZcXXpoyBQDgWL06nly4gMDff4engpdDiIioBIqOVjqCIlei7smHX7oE91df1Vnn0aIFzs+Zk+M2ycnJOtWLYuPiAAAHRoxAmWzqCavMzNDpr7+0y+fmzMHj06dz3H+HDRtgbmUFALg4fz4eHjmSY9v2v/8OK3t7AMCVn3/G/b17c2zbdtky2Li6AgD8ly/HnX//zbFtq4ULYfdsjGfgmjUI2rQpx7Yt5s2DY40aAIBbmzbhxpo1ObZ99euv4fxsOEjwtm0I+O23HNu+8tlnKPfSSwCAe3v24OrixTm2fWnKFLg3awYAeHDkCC7Nn59j2wYffQSvNm0AyFs153IpUlF3zBhU6tABgPxbOTNrVo5taw8bhmo9egAAnl6/jpPTpuXYttaAAajx1lsAgJg7d3AsYwxsNqr17o3a77wDAIh/+BCHx43LsW3lzp1RZ+RIAEBSZCQOjBiRY9sK7duj/rN9pcbHY+/gwTm29XjtNTT65BMAgCYtDbv69cuxbfmXX8bLM2Zol3f26weRlpZtW5d69dB09mzt8t7Bg5EaH59tW6datdD822+1y/tHjEByZGS2be0rVULLH3/ULh8aOxYJoaHZtrV1d0ebTH9bxz75BDG3b2fbVu3khHYrVmiXT06bhqfXr2fb1tzGBh3WrtUun/niC4RfvJhtWx4jnivJx4jIHTtgPWBAjm1NRYlK8knh4bB+9kedwdrFBalxcUhLSoJFNknbz88PX3zxxfP2KhUAIDo4GKnm5lnaq15YFx8aiqgbN/IVX8KjR7m2Fenp2p8Tw8Jyb5vpQJv45EmubTUpKdqfk8LDc22bnqlt8tOnubZNS0zU/pwSFZVr29SEhOdtY2Jyb/vsixYApMbG5to2JTZWZ7vc2iZn+laelpCQe9unT5+3TUrKtW1SpuSUnpyce9vwcO3PmtTUXNuWf+UV7c8iPT3Xti716j1fECLXto4v1MrOrW2ZF6Zbjr55E5rU1Gzbqp2dddsGBSElJibbtuY2NjrLMcHBSHz8OMc4Mou9exexd+5k+7vMf5MZbXN6fS8eK+Lu38+xrUWZMrptQ0JybMtjxHMl9hhx6RIchwyBeQ5/v6ZEJURevQiKx9o6dfLsePdv586o1quX9uwHkN/yDr//Pt46dy7bJP/imXzko0eo6u0N/3/+QdkXDgIAAJVK52rB0+vXdRLCi9yaNoXq2VzEUTdv6hzkX1T+5ZdhZmkJQB4gE8PCcmxb7qWXYP6s6lLMnTs5ntkAgGuDBrCwtQUgD3rxDx/m2NalXj1Y2tkBkAeyuPv3c2zrXKcOrJ4ViIh/+BCxd+/m2Lasjw/UTk4AgITHj3M8uwLkWZ61iwsAeXCKzjwk5QWONWrAplw5ADLZRr04BjUTh6pVYevuDgBIjorC04CAHNvaV66sTXApMTGIvHYtx7Z2FSvCrkIFAPIsOuLy5RzblvH0hP2zMbFpiYk5ng0C8qzUoWpVAPLA+uTcuRzb2pQrpz270qSlIey//3Jsa+3iAqdatQAAQqPJ9SxT7eSEsj4+2uVHp07l2LHIytFRe9YGyLOmzEkpM0s7O50vJmHnzukkmswsbG3h2qCBdvnJhQtIT0rKtq25Wq09GwSA8MuXkZbD1QQzS0uUf/ll7XLElSs6ySMzlZkZ3Jo21S5H+vsjJadLuTxGaJXIY0RgoJwKNiYGKVWrwio4GDH378Ph2f9xU1OikvzeIUPg7OODxpkurQb9/TfOz5mDfrkcyDKLePgQrl5eCH/wAC4vnMUQEZEJ27wZGDgQSE4GWrZEzOLFcKhb16STfImqeOfaoAEevZDMH504oXMWQERElMXSpUC/fjLB9+wJ7N4NODoqHVWRUzTJp8bH42lAgPayanxICJ4GBGgvJV2cPx8nMp211+zfH3EhIbjw3XeIvn0bN9atw73du+E9ZIgi8RMRkZETApg9GxgzRk4iM3Ik8OefwAv9RkyVoh3vIq9dw/5339Uun587FwBQtUcPNPvmGyQ+eaJzn8muQgW0+flnnP/2WwSuXg1bd3c0/eILDp8jIqKs0tNl5bmff5bLn30GfPEF8KwDdmlgNPfkiwvvyRMRlQLJycDgwcCmTTKp//QT8MEHOk1iQkLgULGiSd+TL1FD6IiIiPIUEyPryB84AFhaAqtXA89qXZQ2TPJERGQ6Hj8GOnUCLlwA7OyALVuAPOZEMWVM8kREZBqCgoAOHeS/5csDO3cCmeoqlEYlaggdERFRti5cAFq0kAm+WjXg+PFSn+ABJnkiIirpDh4EWreWl+obNJAJ/lmFyNKOSZ6IiEquTZuAjh2B2Fg53/vhw8Cz8tbEJE9ERCXV4sWy13xKCtCnj7wHXwqq2BUEkzwREZUsQgAzZwJjx8qfx4wBNmwAspmkrLRj73oiIio50tOBceNkLXpAJvuZM0tVFbuCYJInIqKSISkJGDRIzianUgGLFgHvv690VEaNSZ6IiIxfdDTQo4fsWGdlBaxZA/Ttq3RURo9JnoiIjFtoqKxid+kSYG8PbN0KtG2rdFQlApM8EREZr5s3ZRW74GDAzU32oG/USOmoSgz2riciIuN07pysYhccDFSvLovcMMEXCJM8EREZn337ZHGbJ09kYj9+XCZ6KhAmeSIiMi4bNgCdOwNxccDrrwOHDslL9VRgTPJERGQ8Fi4EBgwAUlOBfv2AHTsABweloyqxmOSJiEh5QgCffQZ8+KH8edw4YN06QK1WOrISjb3riYhIWWlpsqjNr7/K5S+/BGbMYBU7A2CSJyIi5SQmAgMHAlu2AGZmwJIlwMiRSkdlMpjkiYhIGVFRQPfuwNGj8rL8unVAr15KR2VSmOSJiKj4PXwo54G/ckV2rPvnH6B1a6WjMjlM8kREVLxu3ADefBO4exdwdwd27QIaNFA6KpPE3vVERFR8/vtPVrG7exeoUQM4cYIJvggxyRMRUfHYs0dOLBMeDjRuLKvYVa2qdFT5d+QI0K0b4Okpe/5v2ZJz2zFjZJv//a+4ossWkzwRERW9tWuBLl2A+HigfXvg4EGgfHmloyqY+Hh51WHRotzb/f03cOqU/DKgMN6TJyKiovXjj8CECfLnt98GVq2Sc8KXNJ06yUduHjyQBX1275ZfahTGJE9EREVDCGD6dGDOHLn84Yfy8rWZcV1Ejo2NBWJitMtqtRpqfSrtaTTAO+8AkycDdeoYMEL9Gdc7TUREpiEtDRgx4nmC/+YbeUZvZAkeAHx8feHo6Kh9+Pn56bejb78FLCyA8eMNG2Ah8EyeiIgMKyEB6N8f2LZNJvVffpEJ30gF+PvD3stLu6zXWfy5c/JLzPnzRlWOl0meiIgM5+lT2QP9+HHA2lpOG9u9u9JR5cre3h4OhZ3p7uhRICwMqFTp+br0dOCTT+Qtijt3Crd/PTHJExGRYTx4AHToAFy7Bjg5ySp2LVsqHVXxeOcdOWogsw4d5Pp331UmJjDJExGRIVy/LpPavXty6NiuXUC9ekpHZVhxccCtW8+Xg4OBixcBZ2d5Bu/iotve0lJW9PP2LtYwM2OSJyKiwjl9Wg4Xi4iQCW33bqByZaWjMryzZ2UxnwwTJ8p/hw4FVq5UJKS8MMkTEZH+du0C+vSRne2aNAG2bwdcXZWOqmi0aSOHBeaXQvfhMzO+sQxERFQyrF4tO9klJMhL9fv3m26CL6GY5ImIqOB++EF2KktLAwYOlJ3s7OyUjopewCRPRET5JwQwZYocGgbIcrV//FEyy9SWArwnT0RE+ZOaCowcKWvPA7Ka3ZQpRlX8hXQxyRMRUd7i44G33gJ27ADMzYFlyxQd/035wyRPRES5i4gAunaV06fa2AAbN8plMnpM8kRElLP792XP+YAAoGxZWY++eXOlo6J8YpInIqLs+fvLBB8SAnh5ySI3RjKFKuUPe9cTEVFWJ08Cr70mE3zt2sCJE0zwJRCTPBER6dq+HWjXTs4o17QpcOyY7uxqVGIwyRMR0XOrVgE9egCJiUCnTrKK3YsTr1CJwSRPRETSvHnAsGFyHvR33gG2bgXKlFE6KioEJnkiotJOowEmTZKFbQD588qVcqpUKtHYu56IqDRLTQWGD5eTzQDybH7SJGVjIoNhkiciKq3i44G+feV0sebmwPLlwJAhSkdFBsQkT0RUGoWHA126AGfOyCp2mzYBnTsrHRUZGJM8EVFpc/euLHITGAg4O8shc6++qnRUVASY5ImISpOrV4GOHYEHD4CKFWUVOx8fpaOiIsLe9UREpcWxY0DLljLB+/oCx48zwZs4JnkiotLg33+BN94AoqLkBDNHj8ozeTJpTPJERKZu+XKgVy8gKUl2ttu7V96LJ5PHJE9EZKqEAPz8gBEjZBW7YcOAv/8GbG2VjoyKCZM8EZEp0miAjz8Gpk+Xy1OnyjN6VrErVdi7nojI1KSkyLP2devk8g8/yIRPpY7iSf7G2rUIWLECieHhKOvtjcbTp8O1fv0c21///Xfc3LABCaGhUJcti4pvvIGGH38Mc7W6GKMmIjJSsbFAnz7yvruFhaxBP2iQ0lGRQhS9XH93506cnzsXdceORac//4STtzcOjh6NpIiIbNvf2bYNF+fPR73330eXf/9F09mzcW/XLlz83/+KN3AiImP05Anw+usywZcpA2zbxgRfyima5K+vWoXqffuieq9ecKxRA01mzoSFtTWCNm/Otv2TixdRrlEjVOnaFXZeXvBo0QKVO3dG5JUrxRw5EZGRuXMHaNECOHtWzv9+4ICsakelmmJJPj0lBZH+/nBv1ky7TmVmBvdXX0X4pUvZblOuYUNE+vsj/PJlAEDc/ft4ePQoPFu1yvF5kpOTERMTo33ExsUZ9oUQESnt8mU59v3mTaBSJVnkpkkTpaMiI6DYPfnkqCiI9HRYu7jorLd2cUFMcHC221Tp2hXJUVHY9847EABEWhpq9O+POqNG5fg8fn5++OKLL57vX6UySPxEREbh6FGgWzcgOhqoW1fOKOflpXRUZCRK1BC6x2fO4Novv+Dlzz5Dpz//RMsff8TDw4dxZfHiHLeZNm0aoqOjtY+A69eLMWIioiK0ZYusYhcdLS/VHznCBE86FDuTVzs5QWVunqWTXVJEBKxdXbPd5vKCBajavTtq9O0LAHCqVQtpiYk4M2sW6o4eDZVZ1u8sarUa6kw971N5uZ6ITMGvvwKjR8vx8N27A+vXyyljiTJR7Eze3MoKzr6+eHzqlHad0Gjw6PRpuDZokO02aUlJwAuX2zMSuxCi6IIlIjIWQgBffw2MHCkT/PDhwF9/McFTthQdJ1976FCcnD4dznXqwKVePQT+8QfSEhNRrVcvAMCJadNgW748Gj4r4uDVpg2ur1qFsj4+cK1fH7H37uHyggXwatMGZubmSr4UIqKil54OTJgALFwol6dPB776KsvJD1EGRZN85U6dkBQZicsLFyIpPBxla9dG26VLYfPscn1CaChUmf54644eDZVKhcs//YTEsDCoy5aFV5s2aPDRR0q9BCKi4pGcDLzzDvDnn3L5f/8DeOyjPKhEKbvOHfHwIVy9vBD+4AFcPD2VDoeIKG8xMXIWuQMHZO35338H3n5b6ahKvJiQEDhUrIiY+/fhUKFC3hscOQLMmwecOweEhsrJfnr2lL9LTQU+/RTYsQO4fRtwdATatwfmzAEUzDUlqnc9EVGp8+gR0Lq1TPB2djKJMMErIz4eaNAAWLQo6+8SEoDz54HPPpP/bt4MBAbKTpEKUrx2PRER5eDWLeDNN4HgYKB8eZngGzdWOqrSq1Mn+ciOo6MsJ5zZwoWyKNG9e7JIkQKY5ImIjNG5czKhPHkCVKsG7N4N1KihdFQmKTY2Vt4SeebFodd6i46WnSKdnAq/Lz3xcj0RkbHZtw9o00Ym+IYNZZlaJvgi4+PrC0dHR+3Dz8+v8DtNSgKmTgUGDAAcHAq/Pz3xTJ6IyJisXw8MGSI7cr3+uuzcpWCSKA0C/P1hn6lSYKHP4lNTgbfekjUNcqnIWhyY5ImIjMVPPz0fFvfWW7IXvSEuG1Ou7O3t4WCoL1IZCf7uXdlZUuEvaLxcT0SkNCGAadOeJ/gPPgDWrWOCL2kyEvzNm/KWywsTsCmBZ/JEREpKSwNGjQJWrJDLX38tEz6r2BmfuDg54iFDcDBw8SLg7Ax4eAB9+8rhc9u2yeqEjx7Jds7OgJWVIiEzyRMRKSUhAejfXyYFMzNg6VLgvfeUjopycvYs0Lbt8+WJE+W/Q4cCs2YB//wjlxs21N3u4EHZkVIBTPJEREqIiJDzwJ88CVhbAxs2KF44hfLQpo28tZITIywgyyRPRFTc7t8HOnQAAgLkGOpt2+R88EQGxiRPRFScrl0DOnYEQkIALy9Z5KZOHaWjIhPF3vVERMXlxAmgZUuZ4H185DITPBUhJnkiouLw779Au3bA06fAq68CR48qVs+cSg8meSKiorZ8uZwqNikJ6NIF2L/fKMZQk+ljkiciKipCAN98A4wYIcdNDxsmy9Ta2iodGZUSTPJEREVBo5EV7GbMkMv/93/yjN7SUtm4qFRh73oiIkNLTpaTzGzcKJfnzwcmTFA0JCqdmOSJiAwpJkbefz9wQJ61r1olpxslUgCTPBGRoTx+DHTqBFy4ANjZAZs3A2+8oXRUVIoxyRMRGUJQkKxiFxQElCsH7NwJNG6sdFRUyrHjHRFRYZ0/DzRvLhN81arA8eNM8GQUmOSJiApj/36gdWsgLEzOPnbiBFCzptJREQFgkici0t+GDfIefFycnIL08GHA3V3pqIi0mOSJiPSxYIHsNZ+aCvTtK+/BOzgoHRWRDiZ5IqKCEAKYPh0YP17+PG4csH49oFYrHRlRFuxdT0SUX2lpwOjRsnIdAHz5paxop1IpGxdRDpjkiYjyIyEB6N8f2LYNMDMDli4F3ntP6aiIcsUkT0SUl8hIoFs32XPe2lpenu/RQ+moiPLEJE9ElJv794GOHQF/f8DJSc4L/9prSkdFlC9M8kREOfH3l1XsQkIALy9g1y6gbl2loyLKN/auJyLKzokT8ow9JASoXVsuM8FTCcMkT0T0on//Bdq3B54+BZo2BY4dAypVUjoqogJjkiciymzFCjlVbGIi0LmzLFvr4qJ0VER6YZInIgJkYRs/P2D4cCA9HRg6FNiyBShTRunIiPTGJE9EpNEAEybISnYAMHWqPKO3tFQ0LKLCYu96IirdkpPlWfuGDXJ5/nyZ8IlMAJM8EZVesbFA797Avn3yrH3lSmDgQKWjIjIYJnkiKp0eP5Yd686fl/fdN28G3nxT6aiIDIpJnohKn6AgWeQmKAgoVw7YsQN4+WWloyIyOCZ5IipdLlyQZWrDwoAqVYA9e4CaNZWOiqhIsHc9EZUeBw4ArVvLBN+ggaxixwRPJoxJnohKh40b5Rl8bCzQpg1w+DDg4aF0VERFikmeiEzfggXA228DqalA377Azp2Ao6PSUREVOSZ5IjJdQgAzZgDjx8ufx46Vc8FbWysdGZVER44A3boBnp6ASiUrImYmBPD55/IKkY2NnP/g5k1FQs3AJE9EpiktDRg5EvjmG7k8ezawcCFgbq5sXFRyxcfLvhyLFmX/+7lzgZ9+ApYsAU6flkMzO3QAkpKKN85M2LueiExPQgIwYADwzz+AmZk86I4cqXRUVNJ16iQf2REC+N//gE8/BXr0kOt+/x1wc5Nn/G+/XVxR6uCZPBGZlshIWdTmn3/kZfm//mKCp1zFxsYiJiZG+0hOTi74ToKDgUeP5CX6DI6OcqrikycNF2wBMckTkekICQFatgSOHwecnOQY+J49lY6KjJyPry8cHR21Dz8/v4Lv5NEj+a+bm+56N7fnv1MAL9cTkWkICJD3P+/flx2jdu0C6tVTOioqAQL8/WHv5aVdVqvVCkZjWDyTJ6KS7+RJ4LXXZIL39pZFbpjgKZ/s7e3h4OCgfeiV5N3d5b+PH+uuf/z4+e8UwCRPRCXbtm1Au3byXnzTpsCxY0DlykpHRaVN1aoyme/f/3xdTIzsZd+smWJh8XI9EZVcK1bITnXp6bLX859/ymFLREUhLg64dev5cnAwcPEi4OwMVKoETJgAfPWVLJVctSrw2Wfy1pGC/UIKleTTU1KQHBkJodHorC/j6VmooIiIciUE8O23wLRpcnnIEODXX+Wc8ERF5exZoG3b58sTJ8p/hw4FVq4EpkyRY+lHjQKiouQtpF27FC2+pBJCiIJuFHP3Lk5/+inCL17UWS+EgEqlwoArVwwVn8FFPHwIVy8vhD94ABd+GSEqeTQaeXD98Ue5PGUKMGeOrEBGVAAxISFwqFgRMffvw6FCBaXDKRJ6ncmfmj4dZhYWaP3zz7BxdeV/LiIqHikpwLBhwLp1cvmHH4CPP1Y0JCJjpleSfxoYiI4bN8KxWjVDx0NElL3YWKB3b2DfPsDCQl4eHTRI6aiIjJpeSd6xWjUkP31q6FiIiLIXFgZ07gycOyc71m3eLKvaEVGu9BpC13DiRFz84Qc8PnMGyVFRSI2L03kQERnM7dtAixYywbu6AgcPMsET5ZNeZ/IH3ntP/jtihM56fTre3Vi7FgErViAxPBxlvb3RePp0uNavn2P7lJgYXPrxR9zftw8p0dEo4+mJl/7v/+DVqpU+L4WIjNmFC3Jo3OPHQJUqwO7dQK1aSkdFVGLoleTbrVhhkCe/u3Mnzs+di1dmzoRrvXq4/scfODh6NLpt2wZrF5cs7dNTUnDgvfdg7eKClvPnw8bNDfEPH8LK3t4g8RCRETlwQI4vjo0F6teXQ5E8PJSOiqhE0SvJu73yikGe/PqqVajety+q9+oFAGgycyYeHjmCoM2bUSebWaNu//03UmJi8OaaNTB7Nh7WLlO9YSIyERs3Au+8I3vTt24NbN0qZ/QiogLRuxhOSkwMgjZvRszt2wAAx+rVUa1373yfVaenpCDS3x++mZK5yswM7q++ivBLl7LdJuTgQbg2aID/vvoKDw4ehLpsWVTp0gU+I0bAzNw8222Sk5N1pg2MZZ8BIuO2aBHw4Yey4E2fPsDq1YoWEyEqyfTqeBdx9Sr+6dgR13//HcnR0UiOjsb133/Hvx07ItLfP1/7SI6KgkhPz3JZ3trFBUnh4dluEx8Sgnt79kBoNGizeDHqjhmDgJUrcW3p0hyfx8/PT2cKQZ/atfP/Qomo+Aghy4B+8IH8+f33gQ0bmOCJCkGvM/nz336LCm3boskXX8DMQu5Ck5aG059/jnNz5uCN3383aJAZhEYDa2dnNJk1C2bm5nCuUwcJjx8jYMUK1Bs7Ntttpk2bhokZpQcBRD56hKre3kUSHxHpKS1NJvVff5XLs2cDn37KQltEhaRXko+8dk0nwQOAmYUFfIcPx67+/fO1D7WTE1Tm5kiKiNBZnxQRAWtX12y3sSlXDioLC51L847VqyMpPBzpKSkwt7LK+jxqtc60gRziR2RkEhOBt98G/vkHMDMDFi+Wtb+JqND0ulxvaWeHhNDQLOvjHz2CZT5ngDK3soKzry8enzqlXSc0Gjw6fRquDRpku41ro0aIu3dPZ0KcmDt3YFOuXLYJnoiM3NOncsz7P/8AajWwaRMTPJEB6ZXkK3XsiNOff467O3ciPjQU8aGhuLNjB87MnInKnTrlez+1hw7FrU2bcHvLFkQHBeG/2bORlpiIas9625+YNg0X58/Xtq/Zvz+So6Nxzs8PMXfu4MHhw/Bftgw1BwzQ52UQkZJCQoCWLeX8746OwJ49wLP/+0RkGHpdrm80aRKgUuHktGkQ6ekAAJWFBWr274+Gme5/56Vyp05IiozE5YULkRQejrK1a6Pt0qVy0hsACaGhUGW6J1fGwwNtf/kF57/9Fjt69YKtmxu8Bw+GzwtFeYjIyAUEAB06APfvy7Hvu3cD9eopHRWRydFrqtkMaYmJiLt/HwBgV7EiLGxsDBZYUeFUs0QKO3kS6NoViIyU1et275bV7IiKGaeazWtjGxs4scQkEeXX9u1Av36ys12TJnI5h462RFR4+U7yRz76CM2+/hqWdnY48tFHubZt9eOPhQ6MiEzMqlXAiBFAejrQsaPsZJfPjrpEpJ98J3krOzvtmFXLMmV07pUTEeVICGDePGDqVLn8zjvAb78Bz0pTE1HRKdQ9+ZKI9+SJipFGA3zyCfC//8nlyZOBOXPkeHgihZWGe/J6/U/b/+67SImJybI+NS4O+999t9BBEZEJSEkBBg9+nuC/+w6YO5cJnqgY6dXx7vF//0GTmpplfXpyMsLOny90UERUwsXGysll9u4FLCyAFStkwieiYlWgJP80MFD7c3RQEBIzTSQjNBqEHjsG2/LlDRcdEZU8YWFA587AuXOyY92mTbKjHREVuwIl+Z19+kClUkGlUmH/8OFZfm9ubY2Xp083WHBEVMLcvi2L3Ny6JYfGbd8uh8oRkSIKlOR77NkDIQT+6dABHdavh7Wzs/Z3ZpaWUDs75zivOxGZuIsX5Rn748dA5cqyTC3raBApqkBJvsyz3ugDr14tkmCIqIQ6eBDo0UPei69fH9i5E+DoFSLFFariXfStW4gPDc3SCa/C668XKigiKkE2bQIGDZK96Vu1ArZuBZyclI6KiKBnko+7fx9Hxo9H1M2bUKlUyBhqn1EgZ8CVK4aLkIiM188/Ax98IAve9O4NrFkDWFsrHRURPaPXgNWzfn6wq1ABvY8ehbm1Nbps3Yr2q1bBuU4dtFu50sAhEpHREQL4/HNg3Dj585gxwMaNTPBERkavJB9x6RLqffABrMuWhcrMDCozM5Rv3BgNJkzAuW++MXSMRGRM0tKA0aOBL7+Uy7NmyTN6drolMjp6JXmNRgPLZxNLqMuWRWJYGADZMS/mzh2DBUdERiYxEejbF1i2TFauW7wYmDlTO68FERkXve7JO9WogaeBgbCrUAEu9erBf/lymFla4taff8LOROv/EpV6T58C3bsDx44BajWwdq28D09ERkuvM/k6o0fLiScA1P/gA8Q/eIC9Q4bg4dGjaDxtmkEDJCIj8OCB7Dl/7Bjg4ADs3s0ET1QC6HUm7/naa9qf7StXRtdt25AcFQUrR0dOQUtkaq5fl1Xs7t0DPDyAXbvkWHgiMnoFPpPXpKZiXf36iLp5U2e92smJCZ7I1Jw+Dbz2mkzwtWoBJ04wwROVIAVO8maWlrD18IBITy+KeIjIWOzcCbz+OhARIevPHzsGVKmidFREyklPBz77DKhaFbCxAapXl6NMntWKMUZ63ZOvO2oULv34I5KjogwcDhEZhd9/B7p1AxIS5KX6/fuBcuWUjopIWd9+K0eULFwIBATI5blzgQULlI4sR3rdk7+xdi1i793D323booynJyxsbHR+32nTJoMER0TFTAjgu++AKVPk8uDBwPLlgKWlsnERGYMTJ+QcDV26yOUqVYB164AzZwz3HCtWAHZ2QL9+uuv//FN+6R46tEC70yvJe73+Ou+/E5kajQaYNAmYP18uf/KJPEsx0+uCH1GRE0IgLS0N6TncPjY3N4eFhUWe+So2NhaIidEuq9VqqNXqrA2bNwd++QW4cUP2Ubl0Sd7G+uGHQr0OHX5+wNKlWdeXLw+MGlU8Sb7+uHH6bEZExiolBXj3XTn2HQDmzZMJn8hIpaSkIDQ0FAkJCbm2s7W1hYeHB6ysrHJs4+Pri9hMyzNnzsSsWbOyNvy//5NfBmrXlhUe09OBr7+WEzQZyr178p7/iypXlr8rIL2S/NYOHdBxwwaoX5hpKiUmBjv79UOP3bv12S0RKSE2Vlax27MHsLCQl+ffeUfpqIhypNFoEBwcDHNzc3h6esLKyirL2boQAikpKXjy5AmCg4NRs2ZNmOVwVSrA3x/2Xl7a5WzP4gE5P8OaNfLLcJ06wMWLwIQJclrlAp5h56h8eeDy5aydXC9dAlxcCrw7vZJ8/IMH2fauT09JQeKjR/rskoiUEBYm7y+ePQvY2gJ//QV07Kh0VES5SklJgUajQcWKFWFra5tjOxsbG1haWuLu3btISUmBdQ4TKNnb28PBwSHvJ548WZ7Nv/22XK5XD7h7V15iN1SSHzAAGD8esLeXBagA4PBh4KOPnj9vARQoyYccOKD9OfT4cVja2WmXhUaDR6dOoQzL2hKVDMHBsuf8zZvyDGH7dqBpU6WjIsq3nM7MC9om3xISsvZRMTfXVoA1iC+/BO7cAdq1k1fWALn/IUMAPSaAK1CSPzJ+PAA5b/zJ6dN1fmdmYYEyXl54afLkAgdBRMXs0iV5xv7okbzXt3s34O2tdFRExq1bN3kPvlIlebn+wgXZ6W74cMM9h5UVsGGDTPaXLsnx+PXqyf+neihQkh949SoAYOubb6LDhg2wLltWryclIgUdOiSHAcXEyIPHrl3yniIR5W7BAlkMZ+xYeavL01NOu/z554Z/rlq15KOQ9Lon32PPnkI/MREp4K+/gIEDZW/6Vq2ArVuBFzrQElEO7O2B//1PPgxp4sT8ty3gcD29kjwAPDp1Co9OnUJyZCTEC/cjXv3qK313S0RFZfFiYNw4WfCmVy/ZQziHjkhEVIwuXCiyXeuV5K/8/DOuLl4M5zp1YFOuHMDCOETGSwhg1ixg9my5PGoU8PPPssMQUQkm8lEzPj9tFHfwYJHtWq8kf3PDBrz69deo2r27oeMhIkNKS5Nn77/8IpdnzpQPfjGnEszyWZnlhIQE2LxQVv1FGcVyLI29NHN+Ou+pVMBvvxVot3oleU1qKlwbNtRnUyIqLomJ8v77li3y4PDzz8CYMUpHRVRo5ubmcHJyQlhYGABZ1S67YjgJCQkICwuDk5MTzI39ytXKlbIHfaNGBp3VTq8kX71PH9zZvh313n/fYIEQkQFFRQHduwNHj8ohOWvXAn36KB0VkcG4u7sDgDbR58TJyUnb1qi9/76c7CY4WJaYHjwYcHYu9G71SvLpKSm4tWkTHp86BadataCy0N1N46lTCx0YEenp4UM5Bv7KFcDBAfjnH6B1a6WjIjIolUoFDw8PlC9fHqmpqdm2sbS0NP4z+AyLFsme85s3y9LS06bJapQjRgBvvqn3LTa9knxUYCDKPiucEXXzps7vODsdkYICA2UVu7t3AXd3OQa+QQOloyIqMubm5iUnkedFrZZlbQcMkP+HV66UY/LT0oBr1+QUtAWkV5Jvv3KlPpsRUVE6fVp+84+IAGrWlFXsspvNioiMn5mZPHsXQs52p+9uChND7N27eHjsGNKSkgCUkKEKRKZo507g9ddlgn/5ZeD4cSZ4opImOVnel3/jDVnt7soVYOFCOcWsHmfxgJ5n8slRUTg2cSIenzkDlUqFbjt2wK5iRZz+7DNYOTjgpSlT9AqGiPTw++/yvl1amrx399dfeh8QiEghY8cC69cDFSvK4XTr1gGuroXerV5J/ty338LMwgI99+3Dtm7dtOsrdeyIC3PnAkzyRMXju+/k9JcAMGiQ7LBjZaVsTERUcEuWyIlvqlWTU8sePpx9u82bC7RbvZL8o+PH0faXX2D7wrAEh8qVEf/woT67JKKC0Ghkcs+oYz1xIjBvXtZpMImoZBgypEiKVOmV5NMSE2GeTZWh5OhomPEsgqhopaTIy3lr1sjlefOASZOUjYmICqeIOrTr9bW/XOPGCN669fkKlQpCo0HA8uVwa9LEULER0Yvi4mSRmzVrZO35VauY4IkoR3qdyTf65BMcGDECkdeuQZOaigvff4/oW7eQEh2NN1avNnSMRAQAT57IIXL//QfY2gKbNgGdOikdFREZMb2SvFPNmui6fTturF0LyzJlkJqQgIrt26PWwIFyVjoiMqw7d2TP+Zs3ARcXYPt2oGlTpaMiIiOn93zyVvb2qDt6tCFjIaLsXL4sy9SGhsret7t3A7VrKx0VEZUAet2TD/r7b9zbvTvL+nu7d+P2li2FjYmIMhw+DLRsKRN83brAiRNM8ESUb3olef9ly6B2csqyXu3sjGvLlhU2JiIC5HjYDh2AmBiZ6I8cAby8lI6KiEoQvZJ8fGgoylSokGV9GU9PJISGFjooolJvyRKgb19Z5rJnT3mJvmxZpaMiohJGryRv7eyMqMDALOujAgNhlc0ZPhHlkxDArFlybmkhgFGjgD//BLKpS0FElBe9Ot5V7twZ5/z8YFmmDMq9/DIAIOy//3DOzw+VOaSHSD/p6cC4ccDSpXL5889lwuf0zUSkJ72SfP0PP0T8w4fYP2IEzJ7N4yuEQNXu3dHgo48MGiBRqZCUJGvPb94sk/qiRfJsnoioEPRK8uZWVnjt++8R8+GHiAoMhLlaDadatVDG09PQ8RGZvqgooEcP2bHOykpWs+vbV+moiMgE6D1OHgAcqlSBQ5UqBgqFqBR6+FCOgb9yBXBwALZuBdq0UToqIjIReiV5TXo6grdswaNTp5AUGSlnxMqk3YoVBgmOyKQFBsohcnfvAu7uwK5dQIMGSkdFRCZEv/nk/fwQvGULPFu3hlONGuwYRFRQZ84AnTsDERFAjRrAnj1A1apKR0VEJkavJH9v5060+OEHeLVqZeh4iEzfrl1Anz5AQgLw8suyDn358kpHRUQmSK9x8maWlrCvVMnQsRCZvj/+ALp1kwn+jTeAAweY4ImoyOiV5GsPG4bAP/6AEMIgQdxYuxZb33gD6xs1wu6330b45cv52u7Ojh1YW6cOjnz4oUHiICpS330HDBkCpKUBAwcC27YB9vZKR0VEJkyvy/VPzp/H4zNn8PDYMThWrw4zS0ud37f68cd87+vuzp04P3cuXpk5E6716uH6H3/g4OjR6LZtG6xdXHLcLu7BA1z47juUa9xYn5dAVHw0GmDKFOD77+Xyxx/LhG+m13dsIqJ80+soY2Vvj4rt2sHt5ZdhXbYsrOzsdB4FcX3VKlTv2xfVe/WCY40aaDJzJiysrRG0eXOO22jS03FiyhTUHzcOdtnU0CcyGqmpwNChzxP83LnyZyZ4IioGep3Jv/r11wZ58vSUFET6+8N35EjtOpWZGdxffRXhly7luN3VxYth7eKC6n36IOzcuVyfIzk5GcnJydrl2Li4wgdOlB9xcUC/frKjnbk5sHy5vFxPRFRMClUMJykyEjHBwQAAh6pVYe3sXKDtk6OiINLTs1yWt3Zx0e73RWHnziFo82Z0+uuvfD2Hn58fvvjii+f75nA/Kg7h4UCXLnKonI0NsGmTHDJHRFSM9LpmmJaQgFOffoq/27TBvqFDsW/oUPzdti1OffYZ0hITDR2jVmp8PE5Om4amX3wB63xOuzlt2jRER0drHwHXrxdZfEQAgDt3gBYtZIJ3dpY96JngiUzDgwfA4MGAi4v8Al+vHnD2rNJR5UivM/nzc+ci7OxZtF60COUaNQIAhJ0/j3PffIPz8+ahyeef52s/aicnqMzNkRQRobM+KSIC1q6uWdrH3buH+AcPcHjcOO068aza3rr69dF127YsQ/vUajXUarV2OZWX66koXb4sy9SGhgIVK8p54H18lI6KiAzh6VP5Bb5tW2DnTqBcOeDmTSCfJ51K0CvJ39+7F6/Nnw+3Jk2067xatYKFWo1jn3yS7yRvbmUFZ19fPD51ChXbtQMgk/aj06dRa8CALO0dqlVD5y1bdNZd/uknpMbHo/G0abB1d9fn5RAZxuHDcqKZ6GigTh15L54dQ4lMx7ffyi/vmUu3G3mlSr2SfFpSUrbD29QuLkhLSirQvmoPHYqT06fDuU4duNSrh8A//kBaYiKq9eoFADgxbRpsy5dHw48/lrPd1ayps73ls3HGL64nKlabN8ux78nJwGuvAf/8Y9Tf7onoudjYWCAmRrv84hVgrX/+kfNN9Osnv9R7eQFjxwKZOo8bG73uybs2aIArixYhPVOv9bSkJFz9+We4FnCCjcqdOqHRpEm4vHAhdvbpg6fXr6Pt0qWweXa5PiE0FIlPnugTJlHxWLpU/qdPTpZn8nv2MMETlSA+vr5wdHTUPvz8/LJvePs2sHgxULOmvBX3/vvA+PHAqlXFG3ABqIQeZeuibtzAwdGjoUlJgZO3t1wXGAgzKyu0XbZMTlpjpCIePoSrlxfCHzyAi6en0uFQSSYE8OWXwMyZcnnkSODnnwGLQg1aIaJiEhMSAoeKFfHA3x/2Xl7a9TmeyVtZyfkmTpx4vm78eOC//4CTJ4sh4oLT62jkVKsWuu3YgTvbtmmHulXu3BlVunaFhbW1QQMkMkrp6cAHHwBLlsjlzz4DvviCMzISlUD29vZwcHDIu6GHB+Drq7vOxwfI55BuJeiV5K8tWwZrFxfU6NdPZ33Q5s1IjoyE73vvGSQ4IqOUlAQMGiTvw6tUwMKF8r4cEZm2Fi2AwEDddTduAJUrKxNPPuh1T/7Wxo1wyKZHoWONGri5cWOhgyIyWlFRcojc5s3y0t3GjUzwRKXFxx8Dp04B33wD3LoFrF0L/PILkGlYt7HRK8knhofDply5LOuty5ZlJzkyXQ8fAq1by1619vZyiFzfvkpHRUTF5ZVXgL//BtatA+rWlX1y/vc/eWXPSOl1ud7W3R1PLlzIMjnMkwsXYMO5sckU3bgBvPkmcPcu4OYmC2E8KwRFRKVI167yUULoleRr9O2L83PmQJOWBvemTQEAj06dwsXvv0ftYcMMGR+R8s6ckXXow8OBGjXk0Jlq1ZSOiogoT3oleZ/hw5EcFYWzX34JTWoqAMBMrYbv8OGoY8RFAYgKbPduoE8fID4eaNwY2LED4NUqIioh9EryKpUKjT75BHXHjEHM7dswt7aGfeXKMLeyMnR8RMpZswYYNgxISwPeeEMOk3lWYZGIqCQoVNUOyzJl4FKvnqFiITIeP/wAfPKJ/HnAAGDlStmbnoioBNGrdz2RydJogClTnif4CROA1auZ4ImoRGL9TaIMqanAiBHAH3/I5TlzZMJnFTsiKqGY5IkA2bGuXz85NM7cHPj1V3k/noioBGOSJwoPl0PkzpwBbGyAP/+Uy0REJRyTPJVud+/K+aEDAwFnZ2DbNqBZM6WjIiIyCCZ5Kr2uXJF16B8+BCpWlGPifXyUjoqIyGDYu55Kp6NHgZYtZYKvU0fOD80ET0QmhkmeSp8tW2Rxm+hoOXXk0aPAC/MwEBGZAiZ5Kl1++UWWqU1OBrp3B/buBcqWVToqIqIiwSRPpYMQwOzZwOjRsuDNe+/JMrU2NkpHRkRUZJjkyfSlpwPjxgEzZ8rlTz+VZ/QW7HdKRKaNRzkybUlJwODB8qxdpQJ++gn44AOloyIiKhZM8mS6oqOBHj2Aw4dl7fk//gDeekvpqIiIig2TPJmm0FCgUyfg0iU5PeyWLcDrrysdFRFRsWKSJ9Nz44asYnfnDuDmJuvRN2qkdFRERMWOHe/ItPz3nxz7fucOUL26LHLDBE9EpRSTPJmOPXuAtm3lhDMvvQQcPw5Uq6Z0VEREimGSJ9Owdq2cOS4+HmjfHjh0SF6qJyIqxZjkqeSbPx8YNAhISwPefhvYvl12tiMiKuWY5KnkEgKYOhWYOFEujx8PrFkjh8sRERF711MJlZoqS9P+/rtc9vOTCV+lUjYuIiIjwiRPJU98PNCvnxwaZ24OLFsGvPuu0lERERkdJnkqWcLDga5dgdOn5eQyGzfKZSIiyoJJnkqOu3dlkZvAQDk97PbtQLNmSkdFRGS0mOSpZLh6VSb4hw+BChWA3bsBX1+loyIiMmrsXU/G7+hRoGVLmeB9fYGTJ5ngiYjygUmejNvWrcCbbwJRUbJc7dGj8kyeiIjyxCRPxmvZMqB3bzknfLdusmyts7PSURERlRhM8mR8hAC+/BIYNQrQaIDhw4HNmwFbW6UjIyIqUZjkybikpwMffAB8/rlcnj4d+PVXwIJ9RImICopJnoxHUpKsPf/zz7Jy3U8/AV9/zSp2RGR85syRx6YJE5SOJFc8PSLjEB0N9OwpZ4+ztARWrwbeekvpqIiIsvrvP2DpUqB+faUjyRPP5El5jx4BbdrIBG9vL8vVMsETkTGKi5OzXi5bJotyGTkmeVLWzZtA8+bAxYtA+fIy0bdrp3RURFSKxMbGIiYmRvtITk7OufG4cUCXLkD79sUXYCEwyZNyzp6VY9+Dg4Hq1YETJ4CXXlI6KiIqZXx8feHo6Kh9+Pn5Zd9w/Xrg/Hk562UJwXvypIw9e+QY+Ph4mdh37ADc3JSOiohKoQB/f9h7eWmX1Wp11kb37wMffQTs3QtYWxdjdIXDJE/Fb80aYNgwIC1NXvLavFneiyciUoC9vT0cHBxyb3TuHBAWpnu1MT0dOHIEWLgQSE6WU18bGSZ5Kl7ffw9MmiR/fvttYNUqwMpK2ZiIiPLSrh1w5YruunffBWrXBqZONcoEDzDJU3HRaIApU2SSB+TY0u+/B8zYLYSISgB7e6BuXd11ZcoALi5Z1xsRJnkqeqmpsjTt6tVy+dtvgcmTWeSGiKiIMclT0YqLA/r2lfO/m5sDy5cDQ4YoHRURUeEdOqR0BHlikqeiExYmx5OePSsnl9m0CejUSemoiIhKDSZ5KhrBwXIe+Fu35D2r7duBpk2VjoqIqFRhkifDu3hRnrE/egRUriwv1Xt7Kx0VEVGpw67NZFgHDgCtWskEX6+erGLHBE9EpAgmeTKcjRvlGXxsLNC6tSwS4empdFRERKUWkzwZxsKFsrhNSgrQpw+waxfg5KR0VEREpRqTPBWOEMCMGcCHH8qf338f2LChRNV2JiIyVex4R/pLSwNGj5Zj3wHgyy9lwmeRGyIio8AkT/pJSAD69we2bZOlaZcuBd57T+moiIgoE6NI8jfWrkXAihVIDA9HWW9vNJ4+Ha7162fb9taffyL4n38QdesWAMDZ1xcNPvoox/ZUBCIigG7dgJMn5WX59euBHj2UjoqIiF6g+D35uzt34vzcuag7diw6/fknnLy9cXD0aCRFRGTb/vF//6Fy585ov3w53lyzBmXc3XFw1CgkPH5czJGXUvfuAa+9JhN82bLAvn1M8ERERkrxJH991SpU79sX1Xv1gmONGmgycyYsrK0RtHlztu1bzJ2LWgMGoKyPDxyrVUOT2bMhNBo8OnWqmCMvha5eBZo3B65fBypUAI4eBVq0UDoqIiLKgaJJPj0lBZH+/nBv1ky7TmVmBvdXX0X4pUv520dSEkRaGtSOjtn+Pjk5GTExMdpHbFycQWIvdY4eBVq2BB48AHx8ZJGbOnWUjoqIiHKhaJJPjoqCSE+HtYuLznprFxckhYfnax8Xv/8eNuXL63xRyMzPzw+Ojo7ah0/t2oWOu9TZskXWoY+Kkmfyx44BFSsqHRUREeVB8cv1hXFt2TLc3bkTLX/8EeZqdbZtpk2bhujoaO0j4Pr1Yo6yhPvlF1ncJilJdrbbuxdwdlY6KiIiygdFe9ernZygMjfP0skuKSIC1q6uuW4bsGIF/H/7Da//+ivK5lIbXa1WQ53pC0AqL9fnjxBy3PvMmXJ5xAhgyRLAwigGZBARUT4oeiZvbmUFZ19fPM7UaU5oNHh0+jRcGzTIcTv/337D1SVL0HbpUrjUrVscoZYu6enA2LHPE/ynnwLLljHBExGVMIoftWsPHYqT06fDuU4duNSrh8A//kBaYiKq9eoFADgxbRpsy5dHw48/BgD4//orLi9ciOZz56KMpycSnzwBAFjY2sKyTBnFXofJSEoCBg4E/v5bVq5buFAmfCIiKnEUT/KVO3VCUmQkLi9ciKTwcJStXRttly6FzbPL9QmhoVBlKpN6c8MGaFJTcexZ0s9Qd+xY1B83rlhjNzlRUUD37rInvZUVsGYN0Lev0lEREZGeVEIIoXQQxSni4UO4enkh/MEDuHAa1OcePJDTxF65Ajg4AFu3Am3aKB0VEVGRiQkJgUPFioi5fx8OFSooHU6RUPxMnozA5ctAly5ASAjg4QHs3Ank0ieCiIhKhhI9hI4MYO9eWaY2JASoXVsWuWGCJyIyCUzypdmKFUDnzkBsLNC6tUzwVaooHRURERkIk3xpJATw+efA8OFyTviBA4Hdu+WEM0REZDKY5EublBRg6FBZ6AYAZswAVq8GcqgYSEREJRc73pUmUVFA797AwYOAubmsYPfee0pHRURERYRJvrS4e1fef/f3B+zsgE2bgA4dlI6KiIiKEJN8aXD+vBwi9+gR4OkJbN8ONGyodFRERFTEeE/e1G3fDrRqJRN8vXrAqVNM8EREpQSTvClbvFiWqY2PB954Q5ar5TzwRESlBpO8KdJogClT5MQyGg3w7rvyjN7RUenIiIioGPGevKlJSpJD5DZulMtffimHyWWa5IeIiEoHJnlTEhEB9OgBHD8OWFoCv/0GvPOO0lEREZFCmORNRVCQHCJ344a8LL95M/D660pHRURECuI9eVNw6hTQrJlM8JUqyTN5JngiIsPy8wNeeQWwtwfKlwd69gQCA5WOKldM8iXd338DbdsCT54AL70kE36dOkpHRURkeg4fBsaNk8fZvXuB1FTgzTflCCYjxcv1JdmCBcBHH8kJZ7p0Adavl9XsiIjI8Hbt0l1euVKe0Z87J+uRGCEm+ZJICGD6dGDOHLk8ZoxM+Bb8OImICio2NhaIidEuq9VqqPMzaVd0tPzX2bmIIis8Xq4vaVJT5bj3jAT/9dfAzz8zwRMR6cnH1xeOjo7ah5+fX94baTTAhAlAixZA3bpFHqO+mBlKkvh44K23gB075Cxyv/wi54QnIiK9Bfj7w97LS7ucr7P4ceOAq1eBY8eKMLLCY5IvKcLD5X33M2cAGxtZ7KZrV6WjIiIq8ezt7eHg4JD/DT74ANi2DThyBKhQoegCMwAm+ZLgzh05LeyNG/Lez7ZtcsgcEREVHyGADz+Uo5oOHQKqVlU6ojwxyRu7S5eAjh3lLHKVKsnenT4+SkdFRFT6jBsHrF0LbN0qx8o/eiTXOzrKK6xGiB3vjNmhQ8+nia1bFzhxggmeiEgpixfLHvVt2gAeHs8fGzYoHVmOeCZvrDZtAgYNAlJSZKLfuhVwclI6KiKi0ksIpSMoMJ7JG6NFi2Qv+pQUoHdvYPduJngiIiowJnljIoScFvaDD+TP778ve9FbWysdGRERlUC8XG8s0tKAUaOAFSvkMueBJyKiQmKSNwYJCfLy/PbtgJkZsHQp8N57SkdFREQlHJO80iIiZFGbU6fkZfkNG4Du3ZWOioiITACTvJLu3pVFbgIDgbJlgX//lXWQiYiIDIBJXilXrsgiNw8fAhUryiI3vr5KR0VERCaEveuVcPgw0LKlTPB16sgiN0zwRERkYEzyxe2vv+Ql+uho4LXXgKNHjX6CAyIiKpmY5IvT4sVAv35AcjLQsyewZ4+8F09ERFQEmOSLgxDAZ58BY8fKn0ePlmVrjXRCAyIiMg3seFfU0tJk5bpff5XLs2YBn3/OIjdERFTkmOSLUkICMGAA8M8/ssjN4sWyqh0REVExYJIvKpGRQLdusue8tTWwbp28D09ERFRMmOSLwr17cgx8QICcPe7ff2VPeiIiomLEJG9oV6/KBP/ggRwat2uXHAtPRERUzNi73pCOHpVFbh48AHx85KV6JngiIlIIk7yhbNkCvPEGEBUFNG8OHDsmy9USEREphEneEJYsAfr0kUVuuncH9u0DnJ2VjoqIiEo5JvnCEAKYOVOOg9dogJEjZdlaFrkhIiIjwCSvr7Q0YMwYYPZsufz558DSpYAF+zISEZFxYEbSR2KiLHKzdausXPfzzzLhExERGREm+YKKjJT33Y8fB9RqYO1aoHdvpaMiIiLKgkm+IO7fl2Pg/f0BR0dZrrZVK6WjIiIiyhaTfH5duyYTfEgI4OUF7NwJ1KundFREREQ5Yse7/Dh+XJalDQkBateWRW6Y4ImIyMgxyedl61agfXtZ5KZZM1nkplIlpaMiIiLKE5N8bpYtk53qkpKArl1lkRsXF6WjIiIiyhcm+ewIIce/jxoli9wMHw78/Tdga6t0ZERERPnGJP+i9HRg7FhZyQ4APv0U+PVXFrkhIqISh5krs8REYNAgedauUgELF8qET0REVAIxyWd4+hTo0UNOF2tlJYvc9OmjdFRERER6Y5IH5NC4Tp2Aq1cBBwdZ5KZ1a6WjIiIiKhQm+YAAoEMHWc3OwwPYtQuoX1/pqIiIiArNKDre3Vi7FlvfeAPrGzXC7rffRvjly7m2v7d7N7Z17Yr1jRphe8+eeHDkiH5PfOIE0KKFTPDe3sDJk0zwRESUs0WLgCpVAGtroGlT4MwZpSPKleJJ/u7OnTg/dy7qjh2LTn/+CSdvbxwcPRpJERHZtn9y4QKOT56Mar17o9OmTajw+us4+uGHiLp5s0DPq9qzRxa5efpUflDHjgGVKxviJRERkSnasAGYOFGOvjp/HmjQQF4JDgtTOrIcKZ7kr69ahep9+6J6r15wrFEDTWbOhIW1NYI2b862feDq1fB47TX4Dh8Ox+rV0WD8eJT19cWNtWsL9LzmI0bI3vSdOwP79wOuroZ4OUREZKp++AEYORJ4913A1xdYskTWT1m+XOnIcqToPfn0lBRE+vvDd+RI7TqVmRncX30V4ZcuZbtN+MWLqD10qM46jxYtELJ/f7btk5OTkZycrF2OjYuTz6PR4H6lSrhqYQExeHBhXwoREZUwKQkJ6AkgNjYWiInRrler1VCr1S80TgHOnQOmTXu+zsxMXhE+ebJY4tWHokk+OSoKIj0d1i+UirV2cUFMcHC22ySFh2fbPqfL+35+fvjiiy+et1WpAAD+zs64XaYMcOtWYV4CERGVUKkpKQAAH19fxGZaP3PmTMyaNUu3cXi4LJbm5qa73s0NuH69SOMsDJPvXT9t2jRMnDhRuxz56BGqenvDceVKvM5L9EREpVZ8WBjQsycC/P1h7+WlXZ/lLL4EUzTJq52coDI3z3IWnhQRAescErC1q2v27XOYOObFyy6pzy7Xl2/cGC6enoUJn4iISrCYkBAAgL29PRwcHHJv7OoKmJsDjx/rrn/8GHB3L6IIC0/RjnfmVlZw9vXF41OntOuERoNHp0/DtUGDbLdxbdgQjzK1B4BHJ0/CtWHDogyViIhKMysroHFj2VE7g0Yjl5s1Uy6uPCjeu7720KG4tWkTbm/ZguigIPw3ezbSEhNRrVcvAMCJadNwcf58bXvvwYMRevw4AlauRPTt27i8aBEir15FrYEDlXoJRERUGkycKKcgX7VKFlJ7/30gPl72tjdSit+Tr9ypE5IiI3F54UIkhYejbO3aaLt0KWyeXa5PCA2F6llnOQAo16gRWsydi0s//YRL//sf7CtXRssFC+BUs6ZSL4GIiEqD/v2BJ0+Azz8HHj0CGjaUVVJf7IxnRFRCCKF0EMUp4uFDuHp5IfzBA96TJyIqxWJCQuBQsSJi7t+HQ4UKSodTJBS/XE9ERERFg0meiIjIRDHJExERmSgmeSIiIhPFJE9ERGSimOSJiIhMFJM8ERGRiWKSJyIiMlFM8kRERCaKSZ6IiMhEKV67vrhpNBoAwMPQUCQ++5mIiEqfuNBQAM/zgikqdUn+3v37AID6L7+scCRERGQMLt2/D6dKlZQOo0iUuiRf1dsbVgDOX70KR0dHpcPRS2xsLHx9feHv7w97e3ulwymwkh4/UPJfA+NXXkl/DSU9fgCIiY5G07p1UdHHR+lQikypS/IWFhZIAVCxYkU4ODgoHY5eYmJiAABeXl4l8jWU9PiBkv8aGL/ySvprKOnxA0CMgwPiAJhbmG4qZMc7IiIiE8UkT0REZKJKXZJXq9WYOXMm1Gq10qHoraS/hpIeP1DyXwPjV15Jfw0lPX7ANF5DXlRCCKF0EERERGR4pe5MnoiIqLRgkiciIjJRTPJEREQmikmeiIjIRJl0kl+0aBGqVKkCa2trNG3aFGfOnCny5/Tz88Mrr7wCe3t7lC9fHj179kRgYKBOmzZt2kClUuk8xowZo9Pm3r176NKlC2xtbVG+fHlMnjwZaWlpRR4/AMyaNStLfLVr19b+PikpCePGjYOLiwvs7OzQp08fPH782Gjir1KlSpb4VSoVxo0bB0D59//IkSPo1q0bPD09oVKpsGXLFp3fCyHw+eefw8PDAzY2Nmjfvj1u3ryp0yYyMhKDBg2Cg4MDnJycMGLECMTFxem0uXz5Mlq2bAlra2tUrFgRc+fONUj8eb2G1NRUTJ06FfXq1UOZMmXg6emJIUOG4OHDhzr7yO5zmjNnTrG8hrw+g2HDhmWJrWPHjjptjPkzAJDt/wGVSoV58+Zp2yj5GeTnWGmoY82hQ4fw0ksvQa1Wo0aNGli5cqVBXkOJIEzU+vXrhZWVlVi+fLm4du2aGDlypHBychKPHz8u0uft0KGDWLFihbh69aq4ePGi6Ny5s6hUqZKIi4vTtmndurUYOXKkCA0N1T6io6O1v09LSxN169YV7du3FxcuXBA7duwQrq6uYtq0aUUae4aZM2eKOnXq6MT35MkT7e/HjBkjKlasKPbv3y/Onj0rXn31VdG8eXOjiT8sLEwn9r179woA4uDBg0II5d//HTt2iBkzZojNmzcLAOLvv//W+f2cOXOEo6Oj2LJli7h06ZLo3r27qFq1qkhMTNS26dixo2jQoIE4deqUOHr0qKhRo4YYMGCA9vfR0dHCzc1NDBo0SFy9elWsW7dO2NjYiKVLlxb5a4iKihLt27cXGzZsENevXxcnT54UTZo0EY0bN9bZR+XKlcXs2bN1PofM/0+K8jXk9RkMHTpUdOzYUSe2yMhInTbG/BkIIXRiDw0NFcuXLxcqlUoEBQVp2yj5GeTnWGmIY83t27eFra2tmDhxovD39xcLFiwQ5ubmYteuXYV+DSWBySb5Jk2aiHHjxmmX09PThaenp/Dz8yvWOMLCwgQAcfjwYe261q1bi48++ijHbXbs2CHMzMzEo0ePtOsWL14sHBwcRHJyclGGK4SQSb5BgwbZ/i4qKkpYWlqKP//8U7suICBAABAnT54UQigf/4s++ugjUb16daHRaIQQxvX+v3hw1mg0wt3dXcybN0+7LioqSqjVarFu3TohhBD+/v4CgPjvv/+0bXbu3ClUKpV48OCBEEKIn3/+WZQtW1Yn3qlTpwpvb2+Dxp/da8jOmTNnBABx9+5d7brKlSuL+fPn57hNcb2GnJJ8jx49ctymJH4GPXr0EK+//rrOOmP5DITIeqw01LFmypQpok6dOjrP1b9/f9GhQweDvwZjZJKX61NSUnDu3Dm0b99eu87MzAzt27fHyZMnizWW6OhoAICzs7PO+jVr1sDV1RV169bFtGnTkJCQoP3dyZMnUa9ePbi5uWnXdejQATExMbh27VqxxH3z5k14enqiWrVqGDRoEO7duwcAOHfuHFJTU3Xe29q1a6NSpUra99YY4s+QkpKC1atXY/jw4VCpVNr1xvr+BwcH49GjRzrvr6OjI5o2barz/jo5OeHlTDMptm/fHmZmZjh9+rS2TatWrWBlZaXzGgIDA/H06dMifQ3ZiY6OhkqlgpOTk876OXPmwMXFBY0aNcK8efN0LrMq/RoOHTqE8uXLw9vbG++//z4iIiJ0YitJn8Hjx4+xfft2jBgxIsvvjOUzePFYaahjzcmTJ3X2kdGmuHOBUkyyKn94eDjS09N1PngAcHNzw/Xr14stDo1GgwkTJqBFixaoW7eudv3AgQNRuXJleHp64vLly5g6dSoCAwOxefNmAMCjR4+yjT3jd0WtadOmWLlyJby9vREaGoovvvgCLVu2xNWrV/Ho0SNYWVllOVi7ublpY1M6/sy2bNmCqKgoDBs2TLvOmN//jP1n9/yZ39/y5cvr/N7CwgLOzs46bapWrZplHxm/K1u2bJHEn52kpCRMnToVAwYM0JnIZPz48XjppZfg7OyMEydOYNq0aQgNDcUPP/yg+Gvo2LEjevfujapVqyIoKAjTp09Hp06dcPLkSZibm5e4z2DVqlWwt7dH7969ddYby2eQ3bHSUMeanNrExMQgMTERNjY2BnkNxsokk7yxGDduHK5evYpjx47prB81apT253r16sHDwwPt2rVDUFAQqlevXtxhZtGpUyftz/Xr10fTpk1RuXJlbNy4scT9h/jtt9/QqVMneHp6atcZ+/tvSlJTU/HWW29BCIHFixfr/G7ixInan+vXrw8rKyuMHj0afn5+ipcZffvtt7U/16tXD/Xr10f16tVx6NAhtGvXTsHI9LN8+XIMGjQI1tbWOuuN5TPI6VhJhWeSl+tdXV1hbm6epRfm48eP4e7uXiwxfPDBB9i2bRsOHjyIChUq5Nq2adOmAIBbt24BANzd3bONPeN3xc3JyQm1atXCrVu34O7ujpSUFERFRWWJLyM2Y4n/7t272LdvH957771c2xnT+5+x/9z+dt3d3REWFqbz+7S0NERGRhrVZ5CR4O/evYu9e/fmOR1p06ZNkZaWhjt37gAwjteQoVq1anB1ddX5GykJnwEAHD16FIGBgXn+PwCU+QxyOlYa6liTUxsHB4cSd9KiD5NM8lZWVmjcuDH279+vXafRaLB//340a9asSJ9bCIEPPvgAf//9Nw4cOJDlUld2Ll68CADw8PAAADRr1gxXrlzROYhkHCR9fX2LJO7cxMXFISgoCB4eHmjcuDEsLS113tvAwEDcu3dP+94aS/wrVqxA+fLl0aVLl1zbGdP7X7VqVbi7u+u8vzExMTh9+rTO+xsVFYVz585p2xw4cAAajUb7haVZs2Y4cuQIUlNTdV6Dt7d3sVwmzkjwN2/exL59++Di4pLnNhcvXoSZmZn2MrjSryGzkJAQRERE6PyNGPtnkOG3335D48aN0aBBgzzbFudnkNex0lDHmmbNmunsI6NNUecCo6Fwx78is379eqFWq8XKlSuFv7+/GDVqlHByctLphVkU3n//feHo6CgOHTqkMywlISFBCCHErVu3xOzZs8XZs2dFcHCw2Lp1q6hWrZpo1aqVdh8Zw0LefPNNcfHiRbFr1y5Rrly5YhuC9sknn4hDhw6J4OBgcfz4cdG+fXvh6uoqwsLChBByWEulSpXEgQMHxNmzZ0WzZs1Es2bNjCZ+IeRoikqVKompU6fqrDeG9z82NlZcuHBBXLhwQQAQP/zwg7hw4YK25/mcOXOEk5OT2Lp1q7h8+bLo0aNHtkPoGjVqJE6fPi2OHTsmatasqTN8KyoqSri5uYl33nlHXL16Vaxfv17Y2toabPhWbq8hJSVFdO/eXVSoUEFcvHhR5/9BRo/nEydOiPnz54uLFy+KoKAgsXr1alGuXDkxZMiQYnkNucUfGxsrJk2aJE6ePCmCg4PFvn37xEsvvSRq1qwpkpKStPsw5s8gQ3R0tLC1tRWLFy/Osr3Sn0Fex0ohDHOsyRhCN3nyZBEQECAWLVrEIXSmYsGCBaJSpUrCyspKNGnSRJw6darInxNAto8VK1YIIYS4d++eaNWqlXB2dhZqtVrUqFFDTJ48WWecthBC3LlzR3Tq1EnY2NgIV1dX8cknn4jU1NQij18IObzEw8NDWFlZCS8vL9G/f39x69Yt7e8TExPF2LFjRdmyZYWtra3o1auXCA0NNZr4hRBi9+7dAoAIDAzUWW8M7//Bgwez/RsZOnSoEEIOo/vss8+Em5ubUKvVol27dlleR0REhBgwYICws7MTDg4O4t133xWxsbE6bS5duiRee+01oVarhZeXl5gzZ45B4s/rNQQHB+f4/yCjVsG5c+dE06ZNhaOjo7C2thY+Pj7im2++0UmiRfkacos/ISFBvPnmm6JcuXLC0tJSVK5cWYwcOTLLCYIxfwYZli5dKmxsbERUVFSW7ZX+DPI6VgphuGPNwYMHRcOGDYWVlZWoVq2aznOYOk41S0REZKJM8p48ERERMckTERGZLCZ5IiIiE8UkT0REZKKY5ImIiEwUkzwREZGJYpInIiIyUUzyREREJopJnkhhhw4dgkqlyjIRR3HZv38/fHx8kJ6eXqj9qFQqbNmyJd/td+3ahYYNG0Kj0RTqeYkoZ0zyRMWoTZs2mDBhgs665s2bIzQ0FI6OjorENGXKFHz66acwNzcv1H5CQ0N1pinOS8eOHWFpaYk1a9YU6nmJKGdM8kQKs7Kygru7O1QqVbE/97FjxxAUFIQ+ffoUel/u7u4FnoN82LBh+Omnnwr93ESUPSZ5omIybNgwHD58GD/++CNUKhVUKhXu3LmT5XL9ypUr4eTkhG3btsHb2xu2trbo27cvEhISsGrVKlSpUgVly5bF+PHjdS6xJycnY9KkSfDy8kKZMmXQtGlTHDp0KNeY1q9fjzfeeAPW1tbadbNmzULDhg2xfPlyVKpUCXZ2dhg7dizS09Mxd+5cuLu7o3z58vj666919pX5cv2dO3egUqmwefNmtG3bFra2tmjQoAFOnjyps023bt1w9uxZBAUF6f/GElGOLJQOgKi0+PHHH3Hjxg3UrVsXs2fPBgCUK1cOd+7cydI2ISEBP/30E9avX4/Y2Fj07t0bvXr1gpOTE3bs2IHbt2+jT58+aNGiBfr37w8A+OCDD+Dv74/169fD09MTf//9Nzp27IgrV66gZs2a2cZ09OhRDBw4MMv6oKAg7Ny5E7t27UJQUBD69u2L27dvo1atWjh8+DBOnDiB4cOHo3379tr507MzY8YMfPfdd6hZsyZmzJiBAQMG4NatW7CwkIeeSpUqwc3NDUePHkX16tUL+pYSUR6Y5ImKiaOjI6ysrGBrawt3d/dc26ampmLx4sXaxNe3b1/88ccfePz4Mezs7ODr64u2bdvi4MGD6N+/P+7du4cVK1bg3r178PT0BABMmjQJu3btwooVK/DNN99k+zx3797Vts9Mo9Fg+fLlsLe31z5XYGAgduzYATMzM3h7e+Pbb7/FwYMHc03ykyZNQpcuXQAAX3zxBerUqYNbt26hdu3a2jaenp64e/du7m8eEemFSZ7ICNna2uqc2bq5uaFKlSqws7PTWRcWFgYAuHLlCtLT01GrVi2d/SQnJ8PFxSXH50lMTNS5VJ+hSpUqsLe313kuc3NzmJmZ6azLeP6c1K9fX/uzh4cHACAsLEwnydvY2CAhISHX/RCRfpjkiYyQpaWlzrJKpcp2Xcbws7i4OJibm+PcuXNZesln/mLwIldXVzx9+rTQz5+f15HRsfDFbSIjI1GuXLlc90NE+mGSJypGVlZWhR6Pnp1GjRohPT0dYWFhaNmyZYG28/f3N3g8+ZWUlISgoCA0atRIsRiITBl71xMVoypVquD06dO4c+cOwsPDDVYIplatWhg0aBCGDBmCzZs3Izg4GGfOnIGfnx+2b9+e43YdOnTAsWPHDBKDPk6dOgW1Wo1mzZopFgORKWOSJypGkyZNgrm5OXx9fVGuXDncu3fPYPtesWIFhgwZgk8++QTe3t7o2bMn/vvvP1SqVCnHbQYNGoRr164hMDDQYHEUxLp16zBo0CDY2toq8vxEpk4lhBBKB0FEypk8eTJiYmKwdOnSYn3e8PBweHt74+zZs6hatWqxPjdRacEzeaJSbsaMGahcuXKx15C/c+cOfv75ZyZ4oiLEM3kiIiITxTN5IiIiE8UkT0REZKKY5ImIiEwUkzwREZGJYpInIiIyUUzyREREJopJnoiIyEQxyRMREZkoJnkiIiIT9f8pw5Ne3eKLXAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = ctlsb.plotDesign(kP_spec=ctlsb.kP, kI_spec=ctlsb.kI, kD_spec=ctlsb.kD, kF_spec=ctlsb.kF)" + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.81828 and h = 1.05546e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.484523 and h = 1.9386e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.278601 and h = 6.06144e-09, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.42132 and h = 3.91733e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.99493 and h = 3.86168e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.708052 and h = 7.62625e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.657334 and h = 3.24335e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 15.6482 and h = 1.22506e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 8.69651 and h = 6.94869e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 270.265 and h = 2.62656e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 534.615 and h = 2.61447e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.988635 and h = 2.8578e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 73.3067 and h = 4.92536e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 4.68237 and h = 9.48838e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.266282 and h = 4.48922e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 14.2226 and h = 2.65388e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.55259 and h = 3.22457e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 6.18193 and h = 1.23366e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 8.31718 and h = 6.32634e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 997.294 and h = 5.41806e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.351408 and h = 3.42411e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 5.94683 and h = 1.47692e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 693.859 and h = 4.97503e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.178208 and h = 9.43197e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 936.644 and h = 1.57575e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 25.6588 and h = 1.45999e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 195.663 and h = 3.90786e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 3.26424 and h = 7.77509e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 50.2034 and h = 1.88971e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 242.481 and h = 9.98203e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.31058 and h = 3.31843e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.490707 and h = 2.23507e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.190452 and h = 2.12598e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.17951 and h = 9.31124e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.00647 and h = 1.5177e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 13.2351 and h = 8.44644e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.325943 and h = 1.81102e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.40701 and h = 1.1749e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.58883 and h = 1.45245e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.17488 and h = 4.07382e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.355727 and h = 3.42512e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 15.3828 and h = 1.14249e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.96926 and h = 7.27139e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 5.33774 and h = 6.33619e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.65621 and h = 1.21407e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.298775 and h = 6.28489e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 5.52351 and h = 5.19956e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.206836 and h = 3.45796e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 849.331 and h = 2.97261e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 105.475 and h = 1.83806e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.0944628 and h = 1.53611e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 10.6684 and h = 1.22317e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 5.21166 and h = 4.65709e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 272.328 and h = 2.32827e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1820.35 and h = 8.22958e-06, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.538171 and h = 2.45735e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 3.56468 and h = 3.36853e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.84161 and h = 1.57935e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.57385 and h = 1.56384e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.606866 and h = 5.78367e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.98931 and h = 8.73912e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.81953 and h = 2.14729e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 17.2269 and h = 8.47934e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.00178 and h = 7.76081e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 745.197 and h = 1.1182e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.646504 and h = 6.96523e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.392276 and h = 4.76422e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 202.462 and h = 1.46498e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.6507 and h = 7.31371e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.19177 and h = 1.46257e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.83558 and h = 2.23465e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.184 and h = 7.82187e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.2394 and h = 5.13405e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 27.409 and h = 5.46983e-12, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.26811 and h = 2.50884e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 3.10594 and h = 5.99895e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 72.3466, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 70.8242 and h = 3.90972e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 438.152 and h = 6.19554e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.262007 and h = 1.9972e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.0948161 and h = 7.33186e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.24408 and h = 6.52678e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.709188 and h = 4.34071e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 6.05515 and h = 2.85852e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1476.3 and h = 2.80858e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 99.7025 and h = 5.23945e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.73739 and h = 3.03899e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1027.23 and h = 6.56854e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.0284372 and h = 1.29924e-09, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 149.993 and h = 1.68678e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 4.37417 and h = 7.35542e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.38687 and h = 1.41466e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.28161 and h = 3.69306e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 45.8932 and h = 6.91013e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.53801 and h = 1.22086e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.727385 and h = 5.1818e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 24.8282 and h = 1.72829e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 3.29351 and h = 6.99064e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.88917 and h = 2.36121e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.447378 and h = 5.83259e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 25.6794 and h = 8.22827e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.62518 and h = 2.39037e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 3.47111 and h = 6.82322e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.183767 and h = 4.88903e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.17164 and h = 5.88717e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.02471 and h = 1.32788e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.353472 and h = 3.49038e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 11.9605 and h = 5.27121e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 259.294 and h = 1.81965e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 88.9928 and h = 5.66376e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 10.9476 and h = 3.16024e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.3204 and h = 1.97919e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1988.72 and h = 5.67615e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1.09037 and h = 2.98871e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.528188 and h = 3.5109e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 397.455 and h = 1.56588e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_ERR_FAILURE, Module: CVODES, Function: CVode, Message: At t = 221.877 and h = 4.65398e-10, the error test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 11.7193 and h = 1.19457e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 172.126 and h = 3.19493e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 1268.71 and h = 1.10373e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 455.328 and h = 6.32103e-15, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 8.19897 and h = 8.23595e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 2.14865 and h = 6.12994e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 0.918078 and h = 1.58544e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 6.89043 and h = 8.76511e-14, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_TOO_MUCH_WORK, Module: CVODES, Function: CVode, Message: At t = 500, mxstep steps taken before reaching tout.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_ERR_FAILURE: Error test failures occurred too many times (= MXNEF = 7) during one internal time step oroccurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_TOO_MUCH_WORK: The solver took mxstep (20000) internal steps but could not reach tout.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CVODE Error: CV_CONV_FAILURE: Convergence test failures occurred too many times (= MXNCF = 10) during one internal timestep or occurred with |h| = hmin.; In virtual double rr::CVODEIntegrator::integrate(double, double)\n", + "CPU times: user 1.33 s, sys: 228 ms, total: 1.56 s\n", + "Wall time: 1min 40s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[35mError: CVODE Error: CV_CONV_FAILURE, Module: CVODES, Function: CVode, Message: At t = 10.8465 and h = 1.35504e-13, the corrector convergence test failed repeatedly or with |h| = hmin.\u001b[0m\n", + "/Users/jlheller/home/Technical/repos/controlSBML/src/controlSBML/msgs.py:13: UserWarning:\n", + "\n", + "\n", + "\n", + "***Warning*** System is unstable for kP=0.00035, kI=0.0025, kD=None, kF=0.01\n", + "\n" + ] + } + ], + "source": [ + "%%time\n", + "random_mag = 3e-5\n", + "noise_spec = ctl.NoiseSpec(random_mag=random_mag, random_std=0.1)\n", + "ctlsb = ctl.ControlSBML(URL, xlabel=\"time (min)\", input_name=INPUT_NAME, output_name=OUTPUT_NAME,\n", + " noise_spec=noise_spec, times=TIMES)\n", + "grid = ctlsb.getGrid()\n", + "grid.addAxis(\"kP\", min_value=0, max_value=0.0007, num_coordinate=5)\n", + "grid.addAxis(\"kI\", min_value=0, max_value=0.005, num_coordinate=5)\n", + "grid.addAxis(\"kF\", min_value=0.01, max_value=0.04, num_coordinate=5)\n", + "design_result = ctlsb.plotGridDesign(grid, setpoint=SETPOINT, num_restart=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8a3249ec-3eac-4e4d-9b8e-ac8b54458c52", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAHDCAYAAACkvJrIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gUV9uH713KLh3piChIEcECdrE3sPfeTaIxiW9iTDN51ZgeU/WLMXY0sXdjL9gFe4sCYkFBlC6dpezO9wcyYaWIJTHmPfd17QV79szMmdmd3ZnfeZ7fo5AkSUIgEAgEAoFAIBAIBAKBQCAAlM97AAKBQCAQCAQCgUAgEAgEgn8OQiwSCAQCgUAgEAgEAoFAIBDICLFIIBAIBAKBQCAQCAQCgUAgI8QigUAgEAgEAoFAIBAIBAKBjBCLBAKBQCAQCAQCgUAgEAgEMkIsEggEAoFAIBAIBAKBQCAQyAixSCAQCAQCgUAgEAgEAoFAICPEIoFAIBAIBAKBQCAQCAQCgYwQiwQCgUAgEAgEAoFAIBAIBDJCLBIIBAKBQPCv4datWygUCpYtW/a8h1Iubm5u9OzZ83kPQyAQCAQCgaBShFgkEAgEAoHgudC7d29MTU3JysqqsM+IESMwNjYmNTX1bxyZ4N/Il19+yZYtW573MAQCgUAgeCEQYpFAIBAIBILnwogRI8jLy2Pz5s3lvp6bm8vWrVvp2rUrtra2f/PoBP82hFgkEAgEAkHVEWKRQCAQCASC50Lv3r2xsLBg1apV5b6+detWcnJyGDFixN88MsHTotFo0Ol0z3sYLyQ5OTnPewgCgUAgEAixSCAQCAQCwfPBxMSE/v37ExoaSlJSUpnXV61ahYWFBb179yYtLY13332X+vXrY25ujqWlJd26dePixYuP3E779u1p3759mfaxY8fi5uam16bT6Zg9ezZ+fn6o1WocHR159dVXuX//vl6/M2fOEBwcjJ2dHSYmJri7u/PSSy9Ved/37t2Lv78/arUaX19fNm3aJL928+ZNFAoFP/74Y5nlwsLCUCgUrF69utL1//TTT/j5+WFqakq1atVo0qRJGVEuPj6el19+merVq6NSqXB3d+e1116joKBAbyyDBg3CxsYGU1NTWrRowY4dO/TWc+jQIRQKBWvWrGHatGm4uLhgampKZmYmACdPnqRr165YWVlhampKu3btOH78eJWOk0ajYebMmXh7e6NWq3F2dqZ///7cuHFD7vPdd98RGBiIra0tJiYmNG7cmA0bNuitR6FQkJOTw/Lly1EoFCgUCsaOHat3LF566SUcHR1RqVT4+fmxdOnSMuO5ffs2vXv3xszMDAcHB95++2327NmDQqHg0KFDen3Xr19P48aNMTExwc7OjpEjRxIfH6/XZ+zYsZibm3Pjxg26d++OhYUFI0aM4OOPP8bIyIjk5OQyY5gwYQLW1tZoNJoqHUOBQCAQCJ4Ew+c9AIFAIBAIBP+7jBgxguXLl7Nu3TomTZokt6elpbFnzx6GDRuGiYkJV65cYcuWLQwaNAh3d3cSExNZsGAB7dq1IyIigurVqz+T8bz66qssW7aMcePG8eabbxITE8PcuXM5f/48x48fx8jIiKSkJIKCgrC3t2fq1KlYW1tz69YtPcGnMq5du8aQIUOYOHEiY8aMISQkhEGDBrF79266dOlC7dq1adWqFStXruTtt9/WW3blypVYWFjQp0+fCte/aNEi3nzzTQYOHMhbb72FRqPh0qVLnDx5kuHDhwNw9+5dmjVrRnp6OhMmTMDHx4f4+Hg2bNhAbm4uxsbGJCYmEhgYSG5uLm+++Sa2trYsX76c3r17s2HDBvr166e33c8++wxjY2Peffdd8vPzMTY25sCBA3Tr1o3GjRvz8ccfo1QqCQkJoWPHjhw9epRmzZpVuB9arZaePXsSGhrK0KFDeeutt8jKymLfvn1cvnwZDw8PAObMmUPv3r0ZMWIEBQUFrFmzhkGDBrF9+3Z69OgBwG+//cYrr7xCs2bNmDBhAoC8fGJiIi1atEChUDBp0iTs7e3ZtWsXL7/8MpmZmUyePBkojvjp2LEj9+7d46233sLJyYlVq1Zx8ODBMmMv+Qw1bdqUr776isTERObMmcPx48c5f/481tbWct+ioiKCg4Np3bo13333HaamprRs2ZJPP/2UtWvX6p0XBQUFbNiwgQEDBqBWqys8dgKBQCAQPDWSQCAQCAQCwXOiqKhIcnZ2llq2bKnXPn/+fAmQ9uzZI0mSJGk0Gkmr1er1iYmJkVQqlfTpp5/qtQFSSEiI3NauXTupXbt2ZbY9ZswYqVatWvLzo0ePSoC0cuVKvX67d+/Wa9+8ebMESKdPn37s/a1Vq5YESBs3bpTbMjIyJGdnZykgIEBuW7BggQRIkZGRcltBQYFkZ2cnjRkzptJt9OnTR/Lz86u0z+jRoyWlUlnuPuh0OkmSJGny5MkSIB09elR+LSsrS3J3d5fc3Nzk9+PgwYMSINWuXVvKzc3VW4+Xl5cUHBwsr1OSJCk3N1dyd3eXunTpUukYly5dKgHSDz/8UOEYS9ZXmoKCAqlevXpSx44d9drNzMzKPXYvv/yy5OzsLKWkpOi1Dx06VLKyspLX//3330uAtGXLFrlPXl6e5OPjIwHSwYMH5e07ODhI9erVk/Ly8uS+27dvlwBpxowZctuYMWMkQJo6dWqZcbVs2VJq3ry5XtumTZv0tiUQCAQCwV+FSEMTCAQCgUDw3DAwMGDo0KGEh4dz69YtuX3VqlU4OjrSqVMnAFQqFUpl8WWLVqslNTUVc3Nz6tSpw7lz557JWNavX4+VlRVdunQhJSVFfjRu3Bhzc3M5gqQkKmT79u0UFhY+9naqV6+uF5VjaWnJ6NGjOX/+PAkJCQAMHjwYtVrNypUr5X579uwhJSWFkSNHVrp+a2tr7ty5w+nTp8t9XafTsWXLFnr16kWTJk3KvK5QKADYuXMnzZo1o3Xr1vJr5ubmTJgwgVu3bhEREaG33JgxYzAxMZGfX7hwgWvXrjF8+HBSU1Pl45mTk0OnTp04cuRIpb5GGzduxM7Ojv/85z8VjhHQ2+b9+/fJyMigTZs2VfpcSJLExo0b6dWrF5Ik6b3vwcHBZGRkyOvZvXs3Li4u9O7dW15erVYzfvx4vXWeOXOGpKQkXn/9db3onx49euDj41MmjQ/gtddeK9M2evRoTp48qZdyt3LlSlxdXWnXrt0j900gEAgEgqdBiEUCgUAgEAieKyUG1iWeOnfu3OHo0aMMHToUAwMDoFjg+PHHH/Hy8kKlUmFnZ4e9vT2XLl0iIyPjmYzj2rVrZGRk4ODggL29vd4jOztb9lVq164dAwYM4JNPPsHOzo4+ffoQEhJCfn5+lbbj6empJ3YAeHt7A8iCmbW1Nb169dLzGVq5ciUuLi507Nix0vV/8MEHmJub06xZM7y8vHjjjTf0PIKSk5PJzMykXr16la7n9u3b1KlTp0x73bp15ddL4+7urvf82rVrQLGI9PDxXLx4Mfn5+ZW+dzdu3KBOnToYGlbumrB9+3ZatGiBWq3GxsYGe3t7fvnllyp9LpKTk0lPT2fhwoVlxjhu3DgA+X2/ffs2Hh4eZd47T09Pveclx6W8Y+fj41PmuBkaGlKjRo0yfYcMGYJKpZIFw4yMDLZv386IESPKjEEgEAgEgmeN8CwSCAQCgUDwXGncuDE+Pj6sXr2ajz76iNWrVyNJkl4VtC+//JLp06fz0ksv8dlnn2FjY4NSqWTy5MmPrLqlUCiQJKlMu1ar1Xuu0+lwcHDQi+Ypjb29vby+DRs2cOLECbZt28aePXt46aWX+P777zlx4gTm5uaPewjKZfTo0axfv56wsDDq16/P77//zuuvvy5HWFVE3bp1uXr1Ktu3b2f37t1s3LiRefPmMWPGDD755JNnMrbyKB3hA8jvy7fffou/v3+5yzztsTp69Ci9e/embdu2zJs3D2dnZ4yMjAgJCamwyl55Yxw5ciRjxowpt0+DBg2eaoyPonTUXGmqVatGz549WblyJTNmzGDDhg3k5+c/MrJMIBAIBIJngRCLBAKBQCAQPHdGjBjB9OnTuXTpEqtWrcLLy4umTZvKr2/YsIEOHTqwZMkSveXS09Oxs7OrdN3VqlXj5s2bZdofjvDw8PBg//79tGrVqozwUR4tWrSgRYsWfPHFF6xatYoRI0awZs0aXnnllUqXu379OpIk6UWHREdHA+hVZ+vatSv29vasXLmS5s2bk5uby6hRox45LgAzMzOGDBnCkCFDKCgooH///nzxxRd8+OGH2NvbY2lpyeXLlytdR61atbh69WqZ9qioKPn1yigxkLa0tKRz585VGvfDy588eZLCwkKMjIzK7bNx40bUajV79uxBpVLJ7SEhIWX6lheNY29vj4WFBVqt9pFjrFWrFhEREWXeu+vXr5fpB3D16tUyUWBXr1595HErzejRo+nTpw+nT59m5cqVBAQE4OfnV+XlBQKBQCB4UkQamkAgEAgEgudOSRTRjBkzuHDhgl5UERR7Gz0cHbR+/foypcjLw8PDg6ioKL0y5BcvXixTvn3w4MFotVo+++yzMusoKioiPT0dKPbFeXgsJZEzVUlFu3v3Lps3b5afZ2Zm8uuvv+Lv74+Tk5PcbmhoyLBhw1i3bh3Lli2jfv36VYpySU1N1XtubGyMr68vkiRRWFiIUqmkb9++bNu2jTNnzpRZvmTfunfvzqlTpwgPD5dfy8nJYeHChbi5ueHr61vpOBo3boyHhwffffcd2dnZZV4vryx8aQYMGEBKSgpz586tcIwGBgYoFAq9KLFbt26xZcuWMsuYmZnJ72EJBgYGDBgwgI0bN5YrnpUeY3BwMPHx8fz+++9ym0ajYdGiRXrLNGnSBAcHB+bPn6/3edi1axeRkZFyhbaq0K1bN+zs7Jg1axaHDx8WUUUCgUAg+NtQSOXFZQsEAoFAIBD8zbRq1YqwsDCg2O+mtBfMxx9/zKeffsrYsWMJDAzkjz/+YOXKlVhbW+Pq6sqhQ4eAYqHA3d2dkJAQxo4dC0BkZCT16tWjYcOGvPzyyyQlJTF//nwcHR3JzMzUM9aeOHEiCxYsoFu3bgQFBWFkZMS1a9dYv349c+bMYeDAgcyePZt58+bRr18/PDw8yMrKYtGiRdy7d48LFy6U8e4pjZubGyqViqSkJCZOnIijoyNLly7lypUr7Ny5k+DgYL3+Z8+elU2oZ82axfvvv//I49i4cWOcnJxo1aoVjo6OREZGMnfuXIKCgmShIz4+niZNmpCZmcmECROoW7cu9+7dY/369Rw7dgxra2sSExNp2LAhGo2GN998ExsbG5YvX87FixfZuHGjbNJ96NAhOnTowPr16xk4cKDeWA4dOkS3bt1wcHBg3LhxuLi4EB8fz8GDB7G0tGTbtm0V7kdJtM+hQ4cYOnQobdq0IScnh/379/P666/Tp08fDhw4QKdOnWjTpg3Dhw8nKSmJn3/+GScnJy5duqQn6vXo0YPDhw/z6aefUr16ddzd3WnevDmJiYk0b96c5ORkxo8fj6+vL2lpaZw7d479+/eTlpYGQHZ2NvXr1ycxMZG33noLZ2dnVq5cSUFBARcuXODQoUOy8fSyZcsYN24czZs3Z9iwYSQmJjJnzhwcHBw4f/68bJI+duxYNmzYUK6YVsJ//vMf5s6di4GBAXFxcTg7Oz/yMyAQCAQCwVPzPEqwCQQCgUAgEDzMzz//LAFSs2bNyrym0Wikd955R3J2dpZMTEykVq1aSeHh4VK7du2kdu3ayf1iYmIkQAoJCdFbfsWKFVLt2rUlY2Njyd/fX9qzZ480ZswYqVatWmW2tXDhQqlx48aSiYmJZGFhIdWvX196//33pbt370qSJEnnzp2Thg0bJtWsWVNSqVSSg4OD1LNnT+nMmTOP3MdatWpJPXr0kPbs2SM1aNBAUqlUko+Pj7R+/foKl/Hz85OUSqV0586dR65fkiRpwYIFUtu2bSVbW1tJpVJJHh4e0nvvvSdlZGTo9bt9+7Y0evRoyd7eXlKpVFLt2rWlN954Q8rPz5f73LhxQxo4cKBkbW0tqdVqqVmzZtL27dv11nPw4EEJqHAfzp8/L/Xv318eT61ataTBgwdLoaGhj9yX3Nxc6b///a/k7u4uGRkZSU5OTtLAgQOlGzduyH2WLFkieXl5yccyJCRE+vjjj6WHL3OjoqKktm3bSiYmJhIgjRkzRn4tMTFReuONNyRXV1d5O506dZIWLlyot46bN29KPXr0kExMTCR7e3vpnXfekTZu3CgB0okTJ/T6rl27VgoICJBUKpVkY2MjjRgxosx7OGbMGMnMzKzSY3Dq1CkJkIKCgh55vAQCgUAgeFaIyCKBQCAQCASCfzABAQHY2NgQGhr6vIciKIfZs2fz9ttvc+fOHVxcXJ75+i9evIi/vz+//vprlT2rBAKBQCB4WoRnkUAgEAgEAsE/lDNnznDhwgVGjx79vIciAPLy8vSeazQaFixYgJeX118iFAEsWrQIc3Nz+vfv/5esXyAQCASC8hDV0AQCgUAgEAj+YVy+fJmzZ8/y/fff4+zszJAhQ573kARA//79qVmzJv7+/mRkZLBixQqioqJYuXLlM9/Wtm3biIiIYOHChUyaNAkzM7Nnvg2BQCAQCCpCiEUCgUAgEAgE/zA2bNjAp59+Sp06dVi9ejVqtfp5D0lAcUW0xYsXs3LlSrRaLb6+vqxZs+YvEfP+85//kJiYSPfu3fnkk0+e+foFAoFAIKgM4VkkEAgEAoFAIBAIyvDzzz/z7bffkpCQQMOGDfnpp59o1qxZhf3Xr1/P9OnTuXXrFl5eXsyaNYvu3bvLr0uSxMcff8yiRYtIT0+nVatW/PLLL3h5ecl9vvjiC3bs2MGFCxcwNjYmPT39r9xFgUAgEFSA8CwSCAQCgUAgEAgEeqxdu5YpU6bw8ccfc+7cORo2bEhwcDBJSUnl9g8LC2PYsGG8/PLLnD9/nr59+9K3b18uX74s9/nmm2/4v//7P+bPn8/JkycxMzMjODgYjUYj9ykoKGDQoEG89tprf/k+CgQCgaBiRGSRQCAQCAQCgUAg0KN58+Y0bdqUuXPnAqDT6XB1deU///kPU6dOLdN/yJAh5OTksH37drmtRYsW+Pv7M3/+fCRJonr16rzzzju8++67AGRkZODo6MiyZcsYOnSo3vqWLVvG5MmTRWSRQCAQPCeEZ1EpdDodd+/excLCAoVC8byHIxAISqHVarl+/Tqenp4YGBg87+EIBIKHKCwsJDw8nHr16mFoKC4vBIJ/EjqdjtjYWHx9ffXOT5VKhUqlKtO/oKCAs2fP8uGHH8ptSqWSzp07Ex4eXu42wsPDmTJlil5bcHAwW7ZsASAmJoaEhAQ6d+4sv25lZUXz5s0JDw8vIxYJBA+j1WopLCx83sMQCF5ojIyMqnwvJa7mSnH37l1cXV2f9zAEAoFAIBAIBIK/nI8//piZM2eWaU9JSUGr1eLo6KjX7ujoSFRUVLnrSkhIKLd/QkKC/HpJW0V9BILykCSJhIQEEWUmEDwjrK2tcXJyemSAjBCLSmFhYQFAXFwclpaWz3k0AoGgNHfu3MHPz0+cnwLBP5TIyEhatGjBqVOncHZ2ft7DEQgEpbh37x7NmjXj8uXLehOj5UUVCQT/NEqEIgcHB0xNTUUGiEDwhEiSRG5uruw996jrNSEWlaLki8fS0lLcjAoE/zBKzklxfgoE/0xKzktnZ2dq1KjxnEcjEAjKw8rKqkq/oXZ2dhgYGJCYmKjXnpiYiJOTU7nLODk5Vdq/5G9iYqLeDUpiYiL+/v6PsxuC/yG0Wq0sFNna2j7v4QgELzwmJiYAJCUl4eDgUGlKmqiGJhAIBAKBQCAQCGSMjY1p3LgxoaGhcptOpyM0NJSWLVuWu0zLli31+gPs27dP7u/u7o6Tk5Nen8zMTE6ePFnhOgWCEo8iU1PT5zwSgeDfQ8n59CgPMBFZJBAIBAKBQCAQCPSYMmUKY8aMoUmTJjRr1ozZs2eTk5PDuHHjABg9ejQuLi589dVXALz11lu0a9eO77//nh49erBmzRrOnDnDwoULgeII/smTJ/P555/j5eWFu7s706dPp3r16vTt21febmxsLGlpacTGxqLVarlw4QIAnp6emJub/63HQPDPQaSeCQTPjqqeT0IsEggEAoFAIBAIBHoMGTKE5ORkZsyYQUJCAv7+/uzevVs2qI6NjUWp/DNJITAwkFWrVjFt2jQ++ugjvLy82LJlC/Xq1ZP7vP/+++Tk5DBhwgTS09Np3bo1u3fvRq1Wy31mzJjB8uXL5ecBAQEAHDx4kPbt2//Fey0QCASCEhSSJEnPexD/FDIzM7GysiIjI0N4oggE/zDu3LmDq6urOD8Fgn8okZGR+Pr6EhcXJzyLBIJ/GCW/oeL8FLxoaDQaYmJicHd31xMVBQLBk1PV80p4FgkEAoFAIBAIBAKBQPAX8PXXX8tpmJVRWFjIp59+ioeHB2q1moYNG7J79269Pm5ubigUijKPN954Q+7z6quv4uHhgYmJCfb29vTp04eoqKin3o9NmzYRFBSEra0tCoVCThEtD0mS6NatGwqFgi1btlS6Xjc3N2bPnv3U4yvN8ePHMTQ0rJJ5/rp16/D398fU1JRatWrx7bff6r0+duzYco+5n5+f3Eer1TJ9+nTc3d0xMTHBw8ODzz77jKeNy7l37x7Dhw/H29sbpVL5yM/QmjVrUCgUeqm9T4MQiwQCgUAgEAgEAoFAIHjGnD59mgULFtCgQYNH9p02bRoLFizgp59+IiIigokTJ9KvXz/Onz+vt7579+7Jj3379gEwaNAguU/jxo0JCQkhMjKSPXv2IEkSQUFBaLXap9qXnJwcWrduzaxZsx7Zd/bs2c/NZyo9PZ3Ro0fTqVOnR/bdtWsXI0aMYOLEiVy+fJl58+bx448/MnfuXLnPnDlz9I55XFwcNjY2esd81qxZ/PLLL8ydO5fIyEhmzZrFN998w08//fRU+5Kfn4+9vT3Tpk2jYcOGlfa9desW7777Lm3atHmqbZZGiEUCgUAgEAgEAoFAIBA8Q7KzsxkxYgSLFi2iWrVqj+z/22+/8dFHH9G9e3dq167Na6+9Rvfu3fn+++/lPvb29jg5OcmP7du34+HhQbt27eQ+EyZMoG3btri5udGoUSM+//xz4uLiuHXrltzn8uXLdOvWDXNzcxwdHRk1ahQpKSmVjm/UqFHMmDGDzp07V9rvwoULfP/99yxduvSR+9y+fXtu377N22+/LUfslLBx40b8/PxQqVS4ubnpHYfKmDhxIsOHD69SlcXffvuNvn37MnHiRGrXrk2PHj348MMPmTVrlhwVZGVlpXfMz5w5w/3792Wzf4CwsDD69OlDjx49cHNzY+DAgQQFBXHq1Cm5T35+Pu+++y4uLi6YmZnRvHlzDh06VOn43NzcmDNnDqNHj8bKyqrCflqtlhEjRvDJJ59Qu3btR+53VRFikUAgEAgEAoFAIBAI/vFIEuTkPJ/H42YUvfHGG/To0eOR4koJ+fn5ZfxjTExMOHbsWLn9CwoKWLFiBS+99FKFUTw5OTmEhITg7u6Oq6srUBx507FjRwICAjhz5gy7d+8mMTGRwYMHP8belU9ubi7Dhw/n559/xsnJ6ZH9N23aRI0aNfj000/lyB2As2fPMnjwYIYOHcoff/zBzJkzmT59OsuWLat0fSEhIdy8eZOPP/64SuOt6JjfuXOH27dvl7vMkiVL6Ny5M7Vq1ZLbAgMDCQ0NJTo6GoCLFy9y7NgxunXrJveZNGkS4eHhrFmzhkuXLjFo0CC6du3KtWvXqjTWyvj0009xcHDg5Zdffup1lUZUQxMIBAKBQCAQCAQCwT+e3FwwN38+287OBjOzqvVds2YN586d4/Tp01Vef3BwMD/88ANt27bFw8OD0NBQNm3aVGH62JYtW0hPT2fs2LFlXps3b55cfbBOnTrs27cPY2NjAObOnUtAQABffvml3H/p0qW4uroSHR2Nt7d3lcf8MG+//TaBgYH06dOnSv1tbGwwMDDAwsJCT1z64Ycf6NSpE9OnTwfA29ubiIgIvv3223L3F+DatWtMnTqVo0ePYmhYNZkjODiYt99+m7Fjx9KhQweuX78uRzDdu3cPNzc3vf53795l165drFq1Sq996tSpZGZm4uPjg4GBAVqtli+++IIRI0YAxdUjQ0JCiI2NpXr16gC8++677N69m5CQEL334nE5duwYS5YsqdRD6kkRkUUCgUAgEAgEAoFAIBA8A+Li4njrrbdYuXLlY1VwmzNnDl5eXvj4+GBsbMykSZMYN24cSmX5t+xLliyhW7dusvhQmhEjRnD+/HkOHz6Mt7c3gwcPRqPRAMVRLwcPHsTc3Fx++Pj4AHDjxg1Wrlyp99rRo0erNP7ff/+dAwcOPBOz6sjISFq1aqXX1qpVK65du1aueKbVahk+fDiffPLJY4ld48ePZ9KkSfTs2RNjY2NatGjB0KFDAco97suXL8fa2rqMgfS6detYuXIlq1at4ty5cyxfvpzvvvuO5cuXA/DHH3+g1Wrx9vbWO7aHDx/mxo0bAHrtEydOrNL4s7KyGDVqFIsWLcLOzq7K+11VRGSRQCAol59//plvv/2WhIQEGjZsyE8//USzZs0q7L9+/XqmT5/OrVu38PLyYtasWXTv3l1+fdOmTcyfP5+zZ8+SlpbG+fPnq1ShQCAQCAQCgUAgADA1LY7weV7brgpnz54lKSmJRo0ayW1arZYjR44wd+5c8vPzMTAwKLOcvb09W7ZsQaPRkJqaSvXq1Zk6dWq5HjS3b99m//79bNq0qdwxWFlZYWVlhZeXFy1atKBatWps3ryZYcOGkZ2dTa9evco1qnZ2dkan09G8eXO5zcXFpUr7feDAAW7cuIG1tbVe+4ABA2jTps0j/XmehqysLM6cOcP58+eZNGkSADqdDkmSMDQ0ZO/evXTs2LHMcgqFglmzZvHll1+SkJCAvb09oaGhAGWOuyRJLF26lFGjRslRWiW89957TJ06VRaa6tevz+3bt/nqq68YM2YM2dnZGBgYcPbs2TLvvfmDULnSkUGWlpZV2u8bN25w69YtevXqJbfpdDoADA0NuXr1Kh4eHlVaV3kIsUggEJRh7dq1TJkyhfnz59O8eXNmz55NcHAwV69excHBoUz/sLAwhg0bxldffUXPnj1ZtWoVffv25dy5c9SrVw/4s4LC4MGDGT9+/N+9SwKBQCAQCASCFxyFouqpYM+LTp068ccff+i1jRs3Dh8fHz744INyhaLSqNVqXFxcKCwsZOPGjeV6CYWEhODg4ECPHj0eOR5JkpAkifz8fAAaNWrExo0bcXNzqzBdy8LC4pHrfZipU6fyyiuv6LXVr1+fH3/8UU/MeBhjY+My0UJ169bl+PHjem3Hjx/H29u73ONnaWlZ5pjPmzePAwcOsGHDBtzd3Ssdu4GBgSyKrV69mpYtW2Jvb6/X5/Dhw1y/fr1cX6Dc3NwykUgGBgaycBMQEIBWqyUpKanCamWenp6VjrE8fHx8yuz3tGnTyMrKYs6cObJP1ZMixCKBQFCGH374gfHjx8su//Pnz2fHjh0sXbqUqVOnluk/Z84cunbtynvvvQfAZ599xr59+5g7dy7z588HiisoAHqVGAQCgUAgEAgEgn8TFhYW8mRpCWZmZtja2uq1jx49GhcXF7766isATp48SXx8PP7+/sTHxzNz5kx0Oh3vv/++3rp0Oh0hISGMGTOmjNhz8+ZN1q5dS1BQEPb29ty5c4evv/4aExMTOeL/jTfeYNGiRQwbNoz3338fGxsbrl+/zpo1a1i8eHGFYlZaWhqxsbHcvXsXgKtXrwLoVQorz9S6Zs2alYo1bm5uHDlyhKFDh6JSqbCzs+Odd96hadOmfPbZZwwZMoTw8HDmzp3LvHnzyl2HUqksc8wdHBxQq9V67XPnzmXz5s1y9FBKSgobNmygffv2aDQaQkJCWL9+PYcPHy6zjSVLltC8efMy2wHo1asXX3zxBTVr1sTPz4/z58/zww8/8NJLLwHFnksjRoxg9OjRfP/99wQEBJCcnExoaCgNGjSoVPQriTjKzs4mOTmZCxcuYGxsjK+vb5n9A+TIrvLG+bj8ZZ5FP//8M25ubqjVapo3b65XNq481q9fj4+PD2q1mvr167Nz50691yVJYsaMGTg7O2NiYkLnzp3LOId/8cUXBAYGYmpqWib8TSAQVI2CggLOnj2rV7lBqVTSuXNnwsPDy10mPDy8TKWH4ODgCvs/ESUlKB63FIVAIBAIBAKBQPAPIzY2Vq7+BaDRaJg2bRq+vr7069cPFxcXjh07Vua+dv/+/cTGxspCRGnUajVHjx6le/fueHp6MmTIECwsLAgLC5OzA6pXr87x48fRarUEBQVRv359Jk+ejLW1dYX+SFDsSRQQECALG0OHDiUgIECeGH5SPv30U27duoWHh4cczdOoUSPWrVvHmjVrqFevHjNmzODTTz+t0Ny6qqSkpMgeQSUsX76cJk2a0KpVK65cucKhQ4fKWG9kZGSwcePGCquN/fTTTwwcOJDXX3+dunXr8u677/Lqq6/y2WefyX1CQkIYPXo077zzDnXq1KFv376cPn2amjVrVjrmgIAAAgICOHv2LKtWrSIgIEDP6uMvRfoLWLNmjWRsbCwtXbpUunLlijR+/HjJ2tpaSkxMLLf/8ePHJQMDA+mbb76RIiIipGnTpklGRkbSH3/8Iff5+uuvJSsrK2nLli3SxYsXpd69e0vu7u5SXl6e3GfGjBnSDz/8IE2ZMkWysrJ67HFnZGRIgJSRkfHYywoE/xbi4+MlQAoLC9Nrf++996RmzZqVu4yRkZG0atUqvbaff/5ZcnBwKNM3JiZGAqTz589XOg6NRiNlZGTIj73DhkmAdGb4cEkqKHi8nRII/geZO3euVKtWLUmlUknNmjWTTp48WWHfy5cvS/3795dq1aolAdKPP/742NuLiIiQACkuLu4pRi0QCP4K4uLixPkpeCHJy8uTIiIi9O75BALB01HV8+oviSwqncLi6+vL/PnzMTU1ZenSpeX2L53CUrduXT777DMaNWrE3LlzSwQtZs+ezbRp0+jTpw8NGjTg119/5e7du2zZskVezyeffMLbb79N/fr1/4rdEggEfyNfffWVbM5nZWVF0OrVAGyoWZPDb7yB9KCig0AgKEuJ79jHH3/MuXPnaNiwIcHBwSQlJZXbPzc3l9q1a/P111+XG0IuEAhebCQRlSsQCASCx+SZexaVpLB8+OGHcltVUlimTJmi1xYcHCwLQTExMSQkJOiluVhZWdG8eXPCw8Nl1/HHJT8/Xzb6AsjMzASK3dSr6kAu+PMCRHpgnva4//+Vy/zTxvNP3oeS/wsLC1EqlWzZskXOSZYkiZMnT6LT6Vi3bl2ZZS0tLdm5c6dcdQBg3759qFQqfv31V71tJCcnA7BlyxbOnj1b4VhsbW35/vvvkYqKSE9JIS0nR85TPuTiQuL779P3s88wtrJCIBDo87i+Y02bNqVp06YA5b4uEAheTHQ6HRERERVWTBIIBAKBoCKeuViUkpKCVqvF0dFRr93R0ZGoqKhyl0lISCi3f0JCgvx6SVtFfZ6Er776ik8++aRM+88//4yPjw/VqlXTu4kt+SvEBf1lBP8+nJ2dOXToEKYPaoTqdDrOnz9Ps2bNiIyMLNPfycmJU6dO6bn4nzlzBkdHR2JiYvT63r9/Hyg+rxUKRZXGY2hmhqqoCACVRoPSyIhIW1tSv/iCoZMnU6169SfaT4Hg38iTTNo8CaUnXHQ6HWFhYYCIYBAI/gkUFRVx4cIFwsLCuH//PhkZGc97SAKBQCB4wfifrob24Ycf6kU0ZWZm4urqiiRJxMTElLnJFfy1KBQK+VH6eVX+/yuXed7jeR77pVAo+OKLLwgKCsLPz4+1a9cC8O6772Jra8vMmTNxcHBg0qRJKBQKatWqxfjx48nIyKBt27bs3r2bhIQE5syZg7e3N1B8ft27d0+OLPL29sbd3R17e3vZcO/hsd3cvJmwnByQJNocPsyPQL5ajc/t26TY25NkYcGiefMYOGwYtf38KvpoCQT/UzzJpM2TUNGEy9YNG3jltddQq9XPbFsCgaBqaDQazpw5w4kTJ8jJyXnewxEIBALBC8wzF4vs7OwwMDAgMTFRrz0xMbFCHwQnJ6dK+5f8TUxMxNnZWa+Pv7//E49VpVKhUqnKtD8c7VCtWjXc3NywsbH5y4SG5y1IPK/xlHe8Bc+fwMBAbGxs+Pbbb0lISMDf3599+/bRvHlzAHJycpAkicaNGwPFFQvMzMyYNm0aP//8M15eXmzdulXPqX/ZsmVySgzAO++8A8DHH3/MzJkzy4wh4cwZTqWng5ERHQ4ehLQ0+bVbtWvTae9eIv38uOviwop16wjq0IHm7dqJz5NA8Dfx4YcfMnr0aDasWMH9vDxSUlJYvHgxN+PiWDznc4YO9MGuemNQe4Hif3puSiD4y8nOzubEiROcOXNGjvgzNDSk6EFUrkAgEAgEj8szv3ozNjamcePGhIaG0rdvX6A4PD00NJRJkyaVu0zLli0JDQ1l8uTJctu+ffto2bIlAO7u7jg5OREaGiqLQ5mZmZw8eZLXXnvtWe9CmRD6+/fvc//+fZycnGjVqhW+vr6VlhUUCP4NTJo0qcJz9tChQ2XaBg0axKBBgypc39ixY6tc7lKTnc36tWspMjfHMzoalUbD2n794Mcf5T6hXbpgnJeHeWYm2ZaW7Dl8mJjbt+k3ZIiIaBD8T/MkkzZPwq2YGDatXUsBoFapMDY2BsBAqyVVY8SiFRH0b/I5dZxjQF0XTOqDSb0Hj/pg5ApC3BUInor79+8TFhbG+fPn0Wq1QPG1eEFBgRCKBAKBQPBU/CVTfVOmTGHMmDE0adKEZs2aMXv2bHJycuSogtGjR+Pi4sJXX30FwFtvvUW7du34/vvv6dGjB2vWrOHMmTMsXLgQKI48mTx5Mp9//jleXl64u7szffp0qlevLgtSALGxsaSlpREbG4tWq+XChQsAeHp6Ym5uXuXxl1zwPkxCQgIbN24kNDSUli1bEhAQgJGR0RMcIYFAUBGSJLH1++9JMzfHKj0dVX4+u7t3h4f9FhQKCkxNKSjVFH3rFrNmzcLa2honJyc5xc3BwQFbW1sMDAz+1n0RCJ4HTzJp8zhIksTR0FAOHjtWLPZIkp7oozUwwPr+fdKrVWPNmWG08zxIuzpHUORd1F+R0uJP4ai0iGRo99RjFAj+7SQkJHD8+HGuXLkiT3KqVCry8/MpKChAoVBgpFBQoNM955EKBAKB4EXlLxGLhgwZQnJyMjNmzJBTWHbv3i37J8TGxupF5gQGBrJq1SqmTZvGRx99hJeXF1u2bKFevXpyn/fff5+cnBwmTJhAeno6rVu3Zvfu3XoRBDNmzGD58uXy84CAAAAOHjxI+/btqzz+goKCCiMTjIyMSE9PZ9euXRw6dIhmzZrRrFkz2QhYIBA8HeHr1xMFGBQVYVhUxJX69YtvRh9Q7f598kqlo+rx4KY1PT2d9PR0PX8WpVKJra0t9vb2eiKSjY2NiBQU/Ot43EmbgoICIiIi5P/j4+O5cOEC5ubmesb1BQUFbF2xgoi4uGKBSKeDB+dPrZoucr90a2vqXbrE5QYNOHy9Awl5PejXpQCV9gpoLoMmCnRZkBNe/CiNoeNDIlJ9UPuCQdUnfQSCfyOSJBEbG8uxY8e4fv263F4iEuXn56NUKvH19SXhzh1S0tMBMM/Kov3WrfxYwXoFAoFAICgPhSTKlshkZmZiZWXFhx9+WK6XUQnW1tZIkiRXljA0NCQgIICWLVtSrVq1v2u4AsG/jtvR0SxfuRJJqcSooIBCY2NZANIkJvL1L7+QamDAhbZtOdamDZJSCZKEa9xtigyMuOfiorc+lUqFiYkJubm5FBQUlLtNAwMD7OzsyohI1tbWQkQSvNDMnTtXz3fs//7v/2Tfsfbt2+Pm5sayZcsAuHXrFu7u7mXW0a5dOzntND09nTULFpCo0aDQ6ZBAFoqcnZ1o0aIlDRs25O2338bKygprIyNa79jBro4d0RoaYmdmxtBx47C1tQVdAeRfg7w/IO/yg8cfUHCz4h0ydi8bhaTyBmX50cACwb8FSZKIjo7m+PHjxMXFye1qtRqNRgMUX4v6+/vj4ODAgQMH5PbaN24waMMGNgcEMDwsjLi4OGrUqPFc9kMgeBI0Gg0xMTG4u7sLmwGB4BlR1fNKiEWlKBGLzp8/z/nz54mNjQWKo4kKCwvL9Hd1dSU3N5fU1FSgOF3Oz8+PwMBAPSNugUDwaLKzs1nwzTdkGxjIApFhQQFFDwSjLosW0eruXZKMjLAvLCTR3p5fx44l18wMAKd7d+lw4CAJrk6ENw1EY2Kit34XFxecnZ0xMTEhKyuLpKQkkpOTyz23ofjCu0RAKi0iWVlZCRNtwf8ct27cYP1vv5GrUGCcn09BqQkVKysrXnnlFeLi4vD19WXx4sXcuXMHgCYeHjT85RfWtWhBlqUlKoWC/kOHylUSy6DNBk1kWRGpKKGCkRmCuk5ZEcnYDRRC7BW82Gi1Wi5fvszx48flSqIKhQJjY2PZxNrY2JgmTZrg5+fH4cOHiY6Olpevff06I9euZWfnzoT6+PDjjz8KsUjwwiHEIoHg2VPV80pcSZXDwYMHGTFiBD179kSlUlFYWIhCoSieDS1FXFwcqampGBsbY2FhgSRJXL58mYULF/Lbb79x8+bNMmbZAoGgLDqdjnULFxYLRQAKBY4JCcVCEdDo7Fn2BwcDsGjCBC7Xq4dDcjJv/PQT6rw8ABKcq7Nm2DA0hiZMXjSbFmFhetuIj4/nzJkzHD16lNTUVOrXr88bb7zBm2++ybBhw+jUqRMNGjTAyclJriBz7949Ll26RGhoKKtXr2bOnDl89dVXLF68mK1btxIWFsb169fJzMwU57rgX8vpAwf47ddfyVUosMzI0BOKVCoVQ4cOJSUlhbAH51zHjh2xtLQE4MyNG+TPn8+E2FhcY2PJlyRWr1rFkQMHyj9nDMzBrCnYvQSuP4D3Xmh4Dxomg/chcP0J7F4Fs0BQWgJFoLkC99fA3Wlwoy9c9oALlhDZHG69DIk/QuZ+KEzQS2kVCP6pFBYWcvLkSX766Se2bNlCcnIyBgYGqFQqJEkiPz8ftVpNu3bteOutt7CysmL58uVER0dTMpVhkZHBgK1b2dqtG2ceRBQKBILnw9dffy178FZGYWEhn376KR4eHqjVaho2bMju3bv1+ri5uelVoi55vPHGG3KfhIQERo0ahZOTE2ZmZjRq1IiNGzc+9X4cOXKEXr16Ub16dRQKBVu2bKm0/8SJE1EoFMyePbvSfu3bt3/ksXlcrl+/joWFBdbW1o/sGxoaSmBgIBYWFjg5OfHBBx+UKRCwZ88eWrRogYWFBfb29gwYMIBbt27Jrx87doxWrVpha2uLiYkJPg8E+qdFo9EwduxY6tevj6GhoZ5fc3kcP35cjjR9FohatuWQlJTE9u3b6devH97e3uzevZuIiAhSU1OxtLTEyMhIjiaCYg+HkhQXhUKBJEncvHmTmzdvigpqAkEV2L5xI3FZWQAoi4poER5OWOvWAFimp3PR35/0nBwAsiws2DhwIOcaNaLbzp0MWbuW5WPGgEKBpFQSHhhIhK8vPfbuoNaaWDb370+BsTFqtRpLS0uSkpKIi4sjLi6OPXv24Orqiq+vLw0aNJBvcHU6Hffv3yc5OVmOQEpKSiIlJYXCwkLi4+OJj4/X2weVSoWDg0OZSCQzMzMRiSR4IdFqtewKCeFsfDwolTgm3iPRUT9qtnr16ixfvhyNRkNSUhIA586dY+jQoXKRig07d/LmsmWM+fFHdp08ydkmTTh49CgJcXH0GTq00rRvGUM7sGhX/ChBkqDwTtkoJE0k6HIg91TxozQGtmWjkEz8wMDqqY6VQPAsyMvL4/Tp05w8eZLc3Fzgz6IrBQUFaLVazMzMaNmyJU2aNCEjI4PVq1fLkXy2Zmak5uSAJNFn+3Z2dO1KhJ/fc9sfgUAAp0+fZsGCBTRo0OCRfadNm8aKFStYtGgRPj4+7Nmzh379+hEWFiZ78Z4+fVqufAhw+fJlunTpoleRePTo0aSnp/P7779jZ2fHqlWrGDx4MGfOnJHX8yTk5OTQsGFDXnrpJfr3719p382bN3PixAmqV6/+xNt7UgoLCxk2bBht2rSRJ7Iq4uLFi3Tv3p3//ve//Prrr8THxzNx4kS0Wi3fffcdADExMfTp04cpU6awcuVKMjIyePvtt+nfvz/nzp0DwMzMjEmTJtGgQQPMzMw4duwYr776KmZmZkyYMOGJ90Wr1WJiYsKbb775SMEvPT2d0aNH06lTpzIVcZ8UkYZWipI0tI8++ghjY2OCgoJo2bIlAFevXmXnzp1kZmYCxRfICQkJ6B5UmTA2NsbY2Jjs7Oxy121lZUVgYKCooCYQPMT+/fs5fvw4ACY5OQxav541w4ZRoFIV+6I8EFntzp1j0u+/syMwkPMdO1JkaIhSq6VleDhFSiUnAwMx1mhQ5+eTaVV84+d3+TJNTp/m9z59uG9jg5GBAV2CgtDqdEREROh5PwDUqFEDX19ffH19sbIqe/Oo1WpJS0srIyKlpqZWGFlkYmIii0il/wpTfME/mZzsbNbNmUNsURFIEu53bxLj4lFhf1NTUyRJ4oMPPuDtt99m5MiRZGVlyX5Hnp6eDB8+HMXu3Zz98kt2duiAzsAAezMzhr70EjY2Ns9u8FIR5F/XF5DyLhe3UUFlKOOaoK6nb6yt9gGlSHkQ/PVkZmZy4sQJzp49K08+qtVqtFqtnCptaWlJq1atCAgIQKFQcOzYMY4ePYpOp8PY2JjW9eoRduwYGlNTWoSHk2Jnx3UvLzmtOyMjQ6ShCV5IXuQ0tOzsbBo1asS8efP4/PPP8ff3rzTKpnr16vz3v//VixIaMGAAJiYmrFixotxlJk+ezPbt27l27Zo8OWlubs4vv/zCqFGj5H62trbMmjWLV155BSjOkHnnnXfYu3cvSqWSNm3aMGfOHNzc3Kq0bwqFgs2bN5cb6RIfH0/z5s3Zs2cPPXr0YPLkyRVGDo0dO1avQBUUizNubm4cPnyY9957j4sXL2JjY8OYMWP4/PPPMTSsPN7lgw8+4O7du3Tq1InJkyeT/sDsvzw++ugj9u3bx+nTp+W2bdu2MXjwYJKSkrCwsGDDhg0MGzZMLiJQ0qdPnz7k5+dXeG/fv39/zMzM+O2334DiyehZs2axcOFCEhIS8Pb2Zvr06QwcOLDS/Slh7NixpKenVxjRNXToULy8vDAwMGDLli1yZfjyqOp5JSKLyqFu3brcuHGDffv24eTkhLu7O3Xq1MHNzY2DBw9y8uRJ7t69i1qtxsTEhPv378vRRYGBgSiVSqKiokhJSZHXmZGRwa5du9i/fz+NGjWibdu24mZR8D+NTqdjx44dsiJvmZHB+IULWT18eHGaiyQhKZUotVq67NuHy4kTTAJah4XRMiKC3cOHE+3gwPHWrbHIyJBLdbvEx+N75QonW7TgSr163PDwoO3hw1z39OSmpyc7d+2idXI845q1JmvUKCKTk4mIiCA2NpY7d+5w584d9u7di4uLiywclYSwGhgYyJFDvr6+8r4UFRWRmppaRkRKS0sjLy+P27dvc/v2bb39NzMzK1dEetEuhAT/Pu7dvMmapUvJNDLCqKAAc21WuUKRg4MD3t7eeHt74+LiwtWrV/nggw8A2L59O4MGDcLJyYmEhASuX7/OhQsXCOjWjcbe3ji8/DLrmjQhGVg0dy4Dhg3D08vr2eyAwrBY6FH7QLVSF2C6vAd+SA+JSIV3oCC2+JG5s9SKDEDtVVZEUnmAwuDZjFXwP01J+ubFixflyUdTU1MKCgpkg2obGxtat25NgwYNMDAwIDY2lm3btsnXmN7e3nQLCGD7rFlo3NxwSEgg3sWFuJo1ZaFIIPg3IUmQW4Hu/1djqny8U+qNN96gR48edO7cmc8///yR/UtSTEtjYmLCsWPHyu1fUFDAihUrmDJlil4Ue2BgIGvXrqVHjx5YW1uzbt06NBqNXB28sLCQ4OBgWrZsydGjRzE0NOTzzz+na9euXLp0SY5ofBJ0Oh2jRo3ivffew68KkY1z5swhOjqaevXq8emnnwJgb29PfHw83bt3Z+zYsfz6669ERUUxfvx41Go1M2fOrHB9Bw4cYP369Vy4cIFNmzY9cvsVHXONRsPZs2dp3749jRs3RqlUEhISwtixY8nOzua3336jc+fOFQpF58+fJywsTO99/+qrr1ixYgXz58/Hy8uLI0eOMHLkSOzt7WnXrl2566kqISEh3Lx5kxUrVlTps1ZVhFhUDleuXMHBwYHMzEw2bNjA+PHjsba2RqVS0bVrV+rXr8+2bdtITExEo9Fga2tLWloakiQRFhaGq6sr48aNIycnh6ioKCIiIkhIKDbnLMlDP3nyJC4uLrRv3x4PDw+RpiL4nyI3N5f169fLub4WmZlM+uknjrRty92SimYKBVbp6Qxcv54a8fHcKbV8tfR0hs2bx9WXxrHbwpL0B1UIFTodMR4e1ImOZvyiRWzr1Yt71auzt2tXXG/fxv/8eS4EBHDM3oWk3bvpN2ECzeu60rx7f7I6BRNhYkJEVBSxsbFyqtm+ffvKFY5KY2hoiKOjI46OjnrthYWFpKSklBGR0tPTycnJISYmhpiYGL1lLCwsyohI9vb2VUvVEQiekrM7d7LrxAm0Rkag01FobMx99P36XF1d6devX5nqnyU3rx4eHqSkpLBx40b69evH5s2b0Wq17NixAzc3N6p5eOC6YwcTJk5kXXo6d1xdWblyJZ3ataNV+/Z/3e+h0gRMGxU/SlOUDpqHBKS8P0B7HzRRxY/0DX/2V6jBxPeBiFQqpc3IRdyYC6rE3bt3OXbsGJGRkXKbhYUFubm5cvqZg4MDbdq0kW0M8vPz2b17N2fOnAGKJxy6deuGr7k5p155hRutW2NYWIjOwIC4mjX1InMBgoKCnol/hkDwvMnVgfmF57PtbH8wq+JcwZo1azh37pxexMqjCA4O5ocffqBt27Z4eHgQGhrKpk2b9NLOSrNlyxbS09MZO3asXvu6desYMmQItra2GBoaYmpqyubNm/H09ARg7dq16HQ6Fi9eLP/mhoSEYG1tzaFDhwgKCqrymB9m1qxZGBoa8uabb1apv5WVFcbGxpiamuLk5CS3z5s3D1dXV+bOnYtCocDHx4e7d+/ywQcfMGPGjHLtXVJTUxk7diwrVqyQrSUeRXBwMLNnz2b16tUMHjyYhIQEWbS6d+8eAO7u7uzdu5fBgwfz6quvotVqadmyJTt37iyzvho1apCcnExRUREzZ86UI7ny8/P58ssv2b9/v5y5VLt2bY4dO8aCBQueSiy6du0aU6dOlYW/Z4kQiyqgJN0sNzeXVatWMX78eFk5dHFxYfz48YSHh3P48GFSU1MxMDDAyMgIjUZDXFwcP/74I7169aJ169a0adOGjIwMIiIiOH/+vFzRIj4+npUrV2JsbIyPjw9NmzbFxcVFCEeCfzV3795l3bp1ZGRkAKDSaHhl0SJuurtzrE0buZ/31av03bIFkwcG1oxSwG8SjPGC5dcAqLM0hNr9u3DsYiHHW7dG++ALck9wMC8vXswrixdzqlkzDnTsSFytWsTXqEGd6Ciue3oSXacOS155haFr1mD75TdYfPkNzS1NaN65I1nBvYl0cyPi7l1u376tJxxVr15dFo4evll+GCMjI5ydnctURywoKCA5ObmMiJSZmUlWVhZZWVncuHFDbxkrK6tyRSSR1ip4GiRJIikpiatXr3Lm6FGyioqgxGi+1IWYgYEBWq0WLy8vhg4dWuYi7datW6xbtw6AGzduYGVlhVarZePGjVhZWZGeno5Wq2XZsmX06tULa2trrJYsYcxPP7HryBHONWpE6JEjJMTG0nvYsKea1XxsDK3BvHXxowRJgsJ75YhIV0DKg9xzxY/SGFg/SF97SEQyfIYpdoIXFkmSiImJ4fjx49y8eVNut7Kykr/3ofgas02bNnh7e8vXg1evXmXHjh1yn4CAALp06YJJQgJJPXuyv08fANT5+aTY26MsKkL34PdQqVQyaNAgzM3N/87dFQj+p4mLi+Ott95i3759jxUxPmfOHMaPH4+Pjw8KhQIPDw/GjRvH0qVLy+2/ZMkSunXrVsYXaPr06aSnp7N//37s7OzYsmULgwcP5ujRo9SvX5+LFy/KBtCl0Wg03Lhxg6NHj9KtWze5fcGCBYwYMeKR4z979ixz5szh3LlzT30/GxkZScuWLfXW06pVK7Kzs7lz5w41a9Yss8z48eMZPnw4bdu2rfJ2goKC+Pbbb5k4cSKjRo1CpVIxffp0jh49Kl/rJCQkMH78eMaMGcOwYcPIyspixowZDBw4kH379umN8ejRo2RnZ3PixAmmTp2Kp6cnw4YN4/r16+Tm5tKlSxe97RcUFMg+Un5+fnImQps2bdi1a9cjx6/Vahk+fDiffPJJxZVmnwLhWVSKEs+i0mV/S7C2tmbQoEFlTsa0tDR27Ngh//CbmJiQV3JzS7ES2bdvXz11Mzs7Ww47LplBKsHExES+Ea1VqxYGBiLUXfDv4cKFC2zfvl2eIVHodIz87TckpZIVI0cWz8pLEoHHjtE5NFSu6kI9uLPsv7g2+YKMxHtYdqwHVx6YzBsqwd2WtFQtO7t148aDVBalVkv/DRvwjYwk08qKnd27E12nDgBWGRkU2lqRWwQq8hkQsR6vPdch46EB+3mS3b0fkQ0aEFFYyO24OD1vImdnZ3x9ffHz83ukcFQVNBpNuSJSRV5oANWqVSsjItnZ2T3zmQXBv4eioiJiYmKIjo7m2rVrsnBbgqkmGzPrbJI1TigUCkxNTcnJycHZ2ZmxY8eWEXLu37/PokWLuH37NvPmzZN9/6qCiYkJVkol0q1bJNnaIimVWBobE9S7NzVq1MDCwuKfVRxC0kJ+zAMRqZSxtuYqUP7ML0bV/0xjk1PafEEpUtH/F9DpdERFRXH8+HHu3r0rt1tbW5ORkSH/pri5udGmTRvc3d3lG4/s7Gx27dpFREQEUPx936tXL9zd3eHaNYo6dWJJ9+4kODtjWFhIkZERxvn5csVCQ0NDRowYgZubG3fu3MHV1VV4FgleOB72VnkR0tC2bNlCv3799O7jtFotCoVCjhSs7B5Po9GQmppK9erVmTp1Ktu3b+fKlSt6fW7fvk3t2rXZtGkTfR4IxlA8YePp6cnly5f10sA6d+6Mp6cn8+fP57XXXuPcuXOsXLmyzLbt7e0xNjbWK+Ti6OhYRlgqz7No9uzZTJkyRe93W6vVolQqcXV11aseVpr27duX8XPq378/VlZWhISEyG0XL17E39+f27dvlysWWVtb610zS5KETqfDwMCAhQsX8tJLL5W7/ZK+9+7do1q1aty6dQtfX19OnTpF06ZNmT59Ort379aLEiv5Tg0PD6dFixblrvPzzz/nt99+4+rVq5w8eZIWLVpw6NAhXEqyKB6gUqlwdXXl9u3bsk+diYlJmX7leRalp6dTrVo1vc+TTqdDkiQMDAzYu3cvHTt2LDM24Vn0FAwaNIgrV66wd+9euS09PZ1Fixbh5uZGYGAgnp6eKBQKbGxsGDlyJJcuXWLPnj2yUFRSFS0mJoaffvqJoKAgmjRpgkKhwNzcnKCgIIKCgoiNjWX//v2y0W5eXh5nz57l7NmzqFQqfHx88PHxwcPDQ0QQCF5YtFqtXvi8ApCA9gcPkmJry64ePeRf36YnTtAlNPTPhdXAnFbgMAH4AtSmsO4wNGoI+Voo0kFaDjZZeYxYuZIL/v5s690bnYEBG4YMwSs6mq67djF09WoifX3Z1a0bGVZWUARmRkbkFMIq35F0Gq2kVdY6FAcvQxhwBbhyHfMr39IUaGqmJjsoiMhWbYkwN+d2YiL37t3j3r17hIaGysKRr6/vE5v1qtVqXF1dcXV11WvPy8vTE49K/ubm5nL//n3u37/P1atX5f4l300Pi0i2trZCgP4fJSsri2vXrhEdHc3NmzflixFA9jVRarV0SdlDXINaRCT6oVQqqVatGqmpqVhZWTF8+PAyIlB+fj5r1qwhLy8PBwcHAF577TUcHR1JSkpiw4YNpKeno1arKSgokH1ZDA0NKSoqIi8vjzwAe3t5nZkFBWzYUJz2pVAosLCwwNLSEisrK/lv6f9NTU3/vohchQGoPYsf1n3/bNflFwtGD4tIBbeg8G7xI3Nv6RUVex89LCKpvUAhfuv/DRQVFXHp0iXCwsLkCroGBgZYWFiQnp4uG656eXnRpk0bve99SZI4f/48+/btQ6PRoFAoCAwMpF27dsXXgpGR0KkTB/38SHB2Bp2OIiMjTLOzyTUzA4oLr4wdO7ZMZKtA8KKjUFQ9Fex50alTJ/744w+9tnHjxuHj48MHH3zwyGsxtVqNi4sLhYWFbNy4kcGDB5fpExISgoODAz169NBrLwlEeHiixcDAQP4NbtSoEWvXrsXBwaHCdK2SlLXHYdSoUXTu3FmvLTg4mFGjRjFu3LgKlzM2Ni6Tale3bl02btyIJEnyb/zx48exsLCoUPAODw/XW8/WrVuZNWsWYWFhZYSXh1EoFHJQyOrVq3F1daVRo+K09dzc3HKPJyAf0/LQ6XTk5+cD4Ovri0qlIjY2tsKUs1q1alU6xvKwtLQs81mbN28eBw4cYMOGDcWTC0+BiCwqRUlkUUZGBpaWlly4cIHff/+93CpH9vb2tGzZkvr168sz+Lm5uezdu5eLFy8CxSdp6Q9QjRo16N27N/alLopLSE9PJywsjHPnzpWbl2pkZISnpyc+Pj54e3sLE1zBC0NmZibr16+Xo/XUajUajQaPa9dQazRcqV9f7usSG8vLS5eid9v3hRm8G82dJB2urq7y+ckvv8Drr//Zz80KbhVHSFypW5cNQ4bILxkUFdH62DFaHTuG1sCA0M6dOdOkCSgUGCoUFD04x+vVq0fvbi0xytsPtzbCvr1wTAMngFT9/cqpV5fIbj2JcHbmVlaW3veEk5OTLBzZ2ur7vTxLcnJySEpKkgWkEhGpxBj1YZRKJba2tmVEJBsbm39W9IbgqZEkiYSEBK5evcq1a9f0Ihqg2B/FUaXi9r17FBoZYZmZwUCb9RyzbUt0ojcGBgY4Oztz584d1Go1L730UpnfLkmSWLduHVFRUZibm9O2bVuaNWumF7mQlZXFkiVLyMjIwMbGhrS0NKC4Ussrr7yCRqMhIyODjIwMMtPSSAkN5aahoWxyX5UpXENDQz0xqbSgVNL23Dy/tJmQF1EsIJVOaStKLr+/wrjYmFuuyPZATDKuKfyQXhDy8/M5d+4c4eHhctpYiR9H6Yo8vr6+tG7duoyYk5qayvbt2+UZeGdnZ3r37v2nl8fly9CpE7dMTVk+Zoz8ubC8f59Ma2tQKDA2NmbChAl6vz8iskjwovIiV0MrTXnRM6NHj8bFxYWvvvoKgJMnTxIfH4+/vz/x8fHMnDmTmJgYzp07p+eZqdPpcHd3Z9iwYXz99dd62yksLMTX1xdnZ2e+++47bG1t2bJlC++99x7bt2+ne/fu5Obm4u/vj4uLC59++ik1atTg9u3bbNq0iffff7/C74js7GyuX78OFKfD/vDDD3To0AEbG5tyI32gOGqysmpoABMmTODChQusW7cOc3NzbGxsuHfvHt7e3owbN45JkyZx9epVXnnlFd54441KDa5Ls2zZsjLV0DZv3syHH35IVFSU3Pbtt9/StWtXlEolmzZt4rPPPmPdunVy1NSBAwfo3LkzM2fOlNPQPvroI6KiooiMjMTExISff/6ZmjVr4uPjA8CRI0d4++23efPNN2XD6WnTpjF//ny+//57WrduTUZGBsePH8fS0pIxY8ZUuB8REREUFBQwY8YMsrKyZP85f3//cvvPnDlTVEP7O/D398fExIT169fLAo6hoSFKpZLk5GR+//13Dhw4QPPmzWncuDGmpqb07duXBg0asH37du7fv6+3vjt37jB//nzatGlD69at9dJErK2t6d69O+3bt+f06dOcOnVKVoYVCgWFhYVERkYSGRmJUqnE3d1djjoSeeiCfyq3b99m/fr15OTkoFKpsLe3586dO1hkZpJqa0t6qQgcw/x8hqxfry8UdQFe+w2MqwP6qaFMnAi7dsG2baCkWChyUUO8Br/ISGLOnOFskyYYFBWhNTTkcPv2XGrQgK67dtFjxw4aXLrEtl69SH4QDQFw+fJlUlJSGDp0KFaNR0NAAbx+FO5vg1Mb4fAdCAcugtnlSJpcjqQJkFPNmqievYioU4cYrZaEhAQSEhI4cOAAjo6OcqrasxaOzMzMcHd315s1kCSJ7OzsckWk0l5JpTEwMMDOzq6MiFStWjXhofYCUVhYyM2bN+X0spIb1RJcXFzw8vLC28uLmytXEpqUhGRkhGtiLP1abWJ7xgBuJrpiaGiIp6cnUVFRGBgYMGTIkHInOQ4ePKjX5+HtQbEoNWrUKJYuXUpaWhoWFhZkZWWRnZ1NaGgo/fv31zeGDwqi6Jdf2LF/PxcaNgTAw8mJBi1bkpOTUywqZWaSmZlJRkYG2dnZFBUVkZaWJgtR5aFSqcpEJD0cpfSXRN0ZWIJ5i+JHaQqT/hSOZBHpMuiyIe9S8aM0Sgsw8SsrIhmVfV8Ez4ecnBxOnTrFqVOnZMHexMQElUpFeno6BQUFKBQKGjRoQKtWrcqcU1qtlrCwMA4fPoxWq8XIyIgOHTrQvHnzP8X88+ehSxfycnJYX0oosklJ4b6NTfEEiKEhEydOfCap0QKB4K8lNjZWb7JOo9Ewbdo0bt68ibm5Od27d+e3334rU1xl//79xMbGlptWZWRkxM6dO5k6dSq9evUiOzsbT09Pli9fTvfu3YHiqotHjhzhgw8+oH///mRlZeHi4kKnTp0qNYY+c+YMHTp0kJ9PmTIFgDFjxrBs2bInPg7vvvsuY8aMwdfXl7y8PGJiYnBzc2Pnzp289957NGzYEBsbG15++WWmTZv2xNuB4grlpaPxAXbt2sUXX3xBfn4+DRs2ZOvWrXqeTR07dmTVqlV88803fPPNN5iamtKyZUt2796NiYkJUCzgffjhh8TExGBoaIiHhwezZs3i1Vdfldfz2WefYW9vz1dffcXNmzextramUaNGfPTRR5WOuXv37npVlUs8jv6OmB8RWVSKhyOLSrh16xarV6+moKAAKI4qatCgAadOnZIvjo2MjGjUqBEtWrTA2tqawsJCDh8+TFhYWLlvpJ2dHb169apQhS0sLOTChQuEhYXJaqhSqUSlUul5IkFxZZoS4ehJ018EgmeJJEmcPHmSvXv3IkkSjo6OeHp6cvz4cZRaLQpJKjajLhU5MHDdOvwe+DIAYAeEjoIGvwJ/zorqnZ/JydCgASQk/JnbplaARqLAyIiFr75Kqp0dNeLiyLCyIuvBcnWioui6ezcWWVmEBQZyuF072Rwbin9EBw8erB8OKkmQfxXSt8OdLXAwHMJ1xSlriX92yzU1JapVIBFNmnJTpaL02e/g4CALR3Z2ds/qcFcJSZLIzMwsIyIlJyfrpySVwtDQUE88KvlrZWUlRKR/CBkZGXJ6WUxMDEVFRfJrRkZGeHh44O3tjZeXF+bm5hRmZLD9s8+49MB7IODeOToN2Mf6ay9zO9kOIyMj/P395bz8/v37U79U9F8Jly9fZuPGjQD07duXhg0bEhkZia+vb7mRC3fv3mX58uUUFBRgZGQkf+YGDx5M3bp1y6xfOn6c0x9/zJ7AQHQGBjiZmDBkwoQyF8xFRUVkZWXJIpIcpfTg/8zMzAoj7R7G3Ny80nQ3c3Pzv/ZzL+mgIPYhEemP4mpsUvnnKIYO+mbaJvVB7QsGFuX3Fzxz0tPTCQ8P59y5c/L5Z25ujoGBgewHZmBggL+/P61atSpXxImPj5er7EJxRcEePXro9z19GoKCID2dZePGcfvB75NtUhKpdnagVKJUKpk4cWK54q6ILBK8qPxbIosEgn8SVT2vhFhUiorEIii+0P3tt9/ki05fX1/69evHlStXCA8Pl3/gFQoFfn5+tGzZkurVq5OQkMC2bdvKpACU0KRJEzp37lxhiLxOpyMyMpLjx4/L5fsUCgUODg7odLoyEQKOjo74+PhQt25dHBwcxA2d4G+noKCA7du3y/mz9evXp2HDhqxcuVJPODUqKKDwgf9JvUuXGLBp058rUQAhLjAyCgyKI+fKFYsA9uyBrl3/fK4EHmR/3q1enSUvv4zOwIAev//OfS9bTni3QGdggGFhIW2OHCEwLIxMKyu29+xJTO3afw5BoaBbt26y11gZitIgcw+kb4PzO+BYZrFwdB54cF+Xa2JClJ8fEYGBxNjYUDqruUQ48vX1LffC/u9CkiTS09PLFZEqKtVqbGwsV2NzcHCQRSQLCwvxnfMXI0kS8fHxcvRQQkKC3utWVlZ4e3vj7e2Nm5ubXgRr5qVLrF26lLvVqqHQ6eiq2UX9Pn+w6vxb3EkpjoBo3bo1oQ88wzp27EibUhUKS7h79y4hISEUFRXRsmVLucRuZWIRwM2bN1m5cqVeeraRkRH/+c9/yhhnAnDvHrfHj2edry+5ZmaYAANHjqS2h8djHbP8/PwKhaSStoo+66VRKpVlxKSHRSW1Wv3szwGpEDTX/vRCKhGR8m8CFVzCGbuVFZFUdUD5N1aZ+5eTlJREWFgYf/zxh/yZtrKyQqfT6U0kNm7cmMDAwHI/4wUFBRw8eJCTJ08iSRImJiYEBwfToEED/c9RWBh06waZmezq25dTD1IPbFJSSLOxAaUShULB6NGjcXNzK3e8QiwSvKgIsUggePYIsegJqEwsAkhJSSEkJEROD2vXrh3t27dHkiRu3rxJWFiYXjnUEjPs2rVrc+bMGUJDQ8udwbewsKB79+5yjmN5lJhlh4WF6ZXUrlmzJo6OjiQnJ3P79m29m/Fq1arJwlGNGjXETZzgLyctLY21a9eSlJSEUqkkKCiIunXrsmDBgj8r/+l02Ccnk/wg9cQ8M5M35s1DXXr2fyww9xSYNZWbKhSLAN5+G2bPBpUR5BeCCij2k+NomzYc6NQJ4/x8Js6fT9EgQ3YWdedWzeLULZvUVLrt3InHjRtcatiQ3cHBaEz/rFLUsGFDevXqVXmKilQE2WGQsR3ubYWwaDhOsXj0oJhEnokJUT4+RAQEcNPVFV2p89He3l6OOHqewlFpdDod9+/fLyMipaSkVGjmp1aryxWRzMzMxPfPU5Cfn6+XXpaTk6P3uqurqywQ2dvbl3us41avZu358+SYmWGSl8vg6utwaJrIinMfcC+l+L0LCgpi586dFBUV0ahRI3r27FlmXdnZ2SxatIjMzEy8vLwYOnSoHEL/KLEI9COSSqhZsyZjx44t/zNSUEDGlCmsLSzkXvXqKCSJLu3a0aJ9+2f2mZIkidzc3Eqjk7Ie8iWrCGNj40qjkywtLZ9dsQptDmgi/kxhK4lGKrxXwQKGoPYuJSI9+GvsDgrhWVZV4uLiOH78uF4ag62tLfn5+XIVHpVKRbNmzWjRogWmpuVXvbt+/To7duyQo8fr169PcHAwZg8MqmWOHIHu3SEnh+O9erG/USNQKDDPzCS71G9hjx49aNKkSYXjFmKR4EVFiEUCwbNHiEVPwKPEIigO+V+4cKF849urVy/ZKR0gISGB8PBwLl++LN9QlZhh16xZkz179nDt2jW5v4GBgTyj6evrS9euXcufYS1FQkICYWFhXL58Wb54dXZ2li8SoqOjuX79ut5Mqbm5OXXq1KFu3bq4ubmJikiCZ861a9fYtGkTGo0GMzMzBg0aRI0aNZg3b96fpraZmfhERXGmWTN5udHLl+MeE/PniryBfZ9AzRl6669ULNJooFkz+OMPsDCFrFwwAgpBp1CwfOxYYmvVokZcHONCQlD8oOPyqnrsbRNM9oPzrW5EBMG7d2NUVMSeoCAulTKNs7W1ZcyYMY88N/8cz3XI2FEsHkUeguNFxcLRGSAf8tRqrvr4EOHnxw0PD3Sl8tXt7Oz0hKN/msii1WpJS0srIyKlpqZWeDNtamparohU0U2UoDi1pcSc+tatW3rf5yqVSi+9rNLjqNVyfuZMdgBaQ0McM5IY2nYVho5G/Hb2HZJSNZiamtKnTx+2bt1Kbm5uGRGohKKiIpYvX86dO3ews7Pj5Zdf1rvAqIpYBHDq1Cl27dql1xYcHFxh6VmAwiVL2LFrFxcfpMTVr1mTXiNH/m1VQkuiRSqKTsrMzPxTEH8EpqamlZpxW1hYPJ3hfFFqKQGplIikzSi/v9IU1H76UUgm9cDQSZhqP0CSJG7cuMGxY8f0fCMcHBzIzs6W33tTU1NatGhB06ZNK7z4zs3NZc+ePVy6VOxLZWVlRY8ePfDy8irbOTQUevWCvDzCBw1i74My2KUjc6E4Sv3hikgPI8QiwYuKEIsEgmePEIuegKqIRVA8s/rzzz/LKWmDBg3C19dXr09GRgYnT57k7NmzsteRubk5TZs2xcLCgj179sil9EpXTVOpVAQFBREQEPDIm8SSPPnz58/LEUvW1ta0bNkSPz8/bt++TVRUFNHR0fK2SrZRp04dfHx88PDwKFMKWSB4HCRJ4siRIxw6dAgorvo3aNAg1Go1ixcvllMla966RcvwcNYNGYL04EaoRXg4wXv2/LkyI2BbYwg6WVyiuhSVikVQXCGmSRPIzwczNeT8GamUbm3N/IkTyVeraX/gAO1OHIPFOvLfUnGoWXtONm+OpFRiVFBA28OHaXniBLE1a7KpXz955tbQ0JBBgwbh7e39eAdIm1lcMjtjOyRth9OpxSbZYUDMA+GoTp0/haNSQm6JcOTr6/uPTystKioiNTW1jIhUmemwubl5uSLS/+LFoE6n486dO0RHRxMdHV0mxbhatWpy9FCtWrWqJPhrExPZO2MGpx6Ugq2bGUnffpvRGHvy68mXSE3LxtzcnMGDB7NlyxbS0tJwdnZm7NixZX4XJEli69atXLx4EbVazSuvvFLGsL2qYhEUVxY5evSo/LwyrxV5DKdPc3LGDPY2a4akVOKsVjNk4kSsrKweeSz+DgoLCx+Z7laRP1hpFAoFFhYWegLSw1FKpqamj/d9IElQGP9nKpuc0hYBUn75yxjYlhWQ1H5gaF317b7g6HQ6IiIiOHbsmJ7dgJOTE/fv35evAy0sLAgMDKRx48YVCpiSJPHHH3+wZ88eWVxq3rw5HTt2LP86bPdu6NcPSaPh8LhxHH7gUaTQ6eTfUCiOLBwzZswjvxOEWCR4URFikUDw7BFi0RNQVbEIissB//TTT/KFX3mCERS/EefOnePEiRN6OewNGjQgIyNDLj8IxVUzSsyra9WqRa9evapUPSk3N7dMBTVTU1OaNWtG06ZNUalUxMTEEBkZydWrV/VSGEqq3vj4+ODt7S07ugsEVUGj0bB582aio6OB4tnNrl27kpqayooVK+TPfL1Ll+i8fz+LJkwg50H1PrukJF5duBDDUoa8TFfDf6NAVavMth4pFgH89BO8+SYYGYFOC9o/06UuNWjA5v79Ueh0vLRkCTWUaTA9DyZBorUDO3v0IPbBxbhdcjLddu6kZlwcu4OCONu0qTzDXr9+ffr27ftkM/+SFnJOFQtHGdvh5qVi4SgcOAUarZqr3t6ycFTadNvW1lYWjhwdHf/RwlFpCgsLSUlJKSMilS5j+jCWlpblikj/NmFbo9Fw48YNOb2sdPEChUJBzZo1ZYHI1tb2sd7z3OPH2fDrr8Q8EIraKw/QtttRMpRd+PVoV+6nF//eDR8+nO3btxMXF4eVlRUvv/xyuRF0YWFh7Nu3D4VCwciRI6ldyt+rhMcRiyRJYvv27Zw7d05us7Gx4bXXXtPzWSpDcjIxr77KBk9Pcs3MMJUkBo0ahdtj+hg9DyRJQqPRVJrulpmZWWGaZ2kMDQ0rTHMraavS+SIVQf4N/SikvMuQfw2oYBxGruWISHVB+e+5iSsqKpKLjJRUtjU0NMTBwYGUlBR5ErBatWq0atWKhg0bVvq5TU9PZ/v27bKNgIODA71798bFxaX8BbZtg4EDkQoK2Pvaa5woXTEQ5OIQFhYWTJgwoUpVcYVYJHhREWKRQPDsEWLRE/A4YhEUmxsuWLBAvrArqQhTHlqtlitXrhAWFqY3O1WzZk3i4+PlChoqlQqtVktRUREGBga0a9eOwMDAKs0il1dBzcjIiICAAFq2bIm1tbU8ex0ZGUlUVJTeDZtCocDd3V2urFbllBvB/yRJSUmsXbuWtLQ0DAwM6NmzJ/7+/pw/f54dO3b8mV55+TL9N29m+ZgxxD2o/qfQahm/aBHOpc152wCbV4DtiHK3VyWxSJKgRw/YtQuqV4dSxvISsGnAAC7Xr49NaiqvLliAcTdTaJkOU4tfv9SgAfuCgmRBy+/yZYL27CHD0pJVI0eieSCmmpmZMWzYsIov9KtK/u0/09XSQuFigRx1pLmtIrpOHSJ8fbnu6aknHNlYWuLboAF+fn4vlHBUmvz8/DIiUlJSUrnl10uwtrYuU53Nzs7ub0tFehakpqbK0UOxsbF6woBarcbLywsvLy88PT2fTLyXJBLnzWPNtWukV6uGcWEB/dw24hNwlTTj11m+35PMzEyqVavGqFGj2L9/PxEREahUKl566SUcHBzKrPLatWusXr0aSZLo2rUrzZs3L3fTjyMWQXHUxoYNG4iMjJTbmjdvTtfShvXlUVRE+ocfsjYriwRnZxSSRHDbtjTr0OGFPBdKo9PpyMnJqTQ66WHPqopQq9WVmnFbWlpWfG2hyyuuwlZaQMq7DIVxFWxNCSqvsiKSyrNMlOg/GY1Gw5kzZzhx4oR8nNVqNXZ2diQmJsoThPb29rRu3Zp69epVOnGg0+k4efIkBw8epLCwsGrXdRs3wtCh6LRatv/nP5x/uMqtTgdKJQYGBowbN67Kv0NCLBK8qAixSCB49gix6Al4XLEI4OrVq6xZs0Z+/ijfhRIz7PDwcD2jarVarVfet1q1avJs1iNnoB6iJGw6LCxMr4Kan58fgYGBODs7y2NJTEyUhaOkpCS99dSoUUMWjqoS4ST43+Hy5cv8/vvvFBYWYmVlxeDBg7Gzs2Pnzp1cvHhR7ucSH8+4JUvYGxTEqRYt5NnQjvv30+bYsT9XaA2EDoRG6yvcZpXEIoDERKhfH5KTwdcXIiLkl/LUaua/9hqZVlYEnDtH799/h29tID4NZhf30ZiqOdiuA6ebNkVSKjHOz6fdoUM0PXmSdUOHcr1UGlqTJk3o0qXLs4l40WZDVmixcJS+HRISZOEo/7yKq87eRPr6cs3LS184UqvxDQjAt359nJycXvibZY1GIwtHpUWkym6QbWxsyohItra2lUeo/E1otVri4uJkgSg1NVXvdTs7Ozl6yNXV9em8avLyiHz3XTZbW1NobEy1vHSGtlmFg1MqyeY/8Ov2QrKzs7Gzs2PUqFGcOHGC8PBwlEolI0eOxN3dvcwqU1JSWLx4Mfn5+QQEBNCrV68KP2OPKxZBcQTHb7/9RmxsrNw2evTocsfyMIUrV7Jt61b+eODj0tDVlZ6jR/8j3ve/kqKiIj3/pNJRSSXPS6eeV4a5uXml0UllzOmL0kFz5SER6Q/QVpBuqlCB2ldfQDKpB0Y1/lF+SNnZ2Zw4cYIzZ87Ix64kFfDevXvy5IezszNt2rTBx8fnkd+1D1fDrVLE+OrVMGoUWmDzW29xxdJS/t0EUGq1cqpy7969CQgIqPI+CrFI8KIixCKB4NkjxKIn4EnEIoAjR45w8OBB+XmbNm3oUIUZzvLMsEtjbm5OYWGhfOFSaW57OVRUQc3Dw4PAwEDc3d31xpiWliYLR3fu3NFbl4ODg1xZ7UWNZBA8PTqdjn379nHixAkAateuzYABA8jJyWH9+vV6PitmGg0Tfv6Z27VqsWngQLndNTaWsSEhKEt/9SxwgJejwaBi75Eqi0UAO3ZAz57F/3t7w4M0OYBbbm4sHzMGFAoGr1lD3eho2GYCy3NgHWBsDBaGJBhZsqNHD+64ugJgn5xM9+3bSbW1ZUfPnrJnhLm5Ob179y7fnPRJkXSQe+7PdLWssxBBsXB0yphonTcRvn5c9/SkqFRUTTUDA3zr1sW3ZUucnZ3/Vedpbm5uuSJS6dSt0igUCmxtbcuISDY2Nn+5wX9eXh7Xr1+Xiw2UnghQKpXUqlVLFohsHo4aeEKkGzc4/N//crhuXQBqF95mYPc1mJiakGARwm+brpKbm4uDgwOjR4/mypUrssl0v379aNCgQbn7sXjxYtLS0qhZsyajR4+u9Ng9iVgExRcsCxculCdI1Go1b775ZpUiq6SLFznx3/+yr3FjJKWS6ioVQ15//bF+w/+N5OfnV5rulpGRoWeaXhEGBgZ6nknlCUoqY2MU2sSyUUiaK6CrwPTbwArU9cqKSIZ/78RUWloaYWFhXLhwQT4e1apVw8zMjPj4eNm0v2bNmrRp0wYPD49Hfq8WFhZy5MgRwsLC0Ol0qFQqunTpQqNGjSpfdvlyeOklCg0MWPf221w3NUWh1SI9OOeMCgrA1JTCoiKaNm1K9+7dH2tfhVgkeFERYpFA8OwRYtET8KRikSRJrFu3jqioKLmtSZMmdO/evUo3a5mZmbIZdnmzgXZ2dqSkpACPqJpRCQkJCRw/fpwrV67oVVALDAzE19e3zGx2ZmYmV69eJSoqilu3bumJWdbW1rJwVKNGjaebCRe8MOTk5LBhwwZu3boFQOvWrenQoQOXLl1i586dFBYWolKpyM/PRwGMWr4cs5wcFr/yily1xaiggIm//ILNg5tCAIYBC46ARZtKt/9YYhHApEnw889QYphbSsja17kzYa1bY5Kby2u//IKFIbBdAx8WwhHA1hbqWCOF3+SCvz/7O3cm90E54/qXLuF//jybBgyQ09UA/Pz86Nq1a5W8Ix6bgrt/pqtl7oP7eXAC8k8acy3Jm4haxRFHesKRVkvdGjXw69wZ54eE4X8LkiSRk5NTrohUUWSFUqnEzs6ujIhUrVq1J/4ukySJlJQUOXooLi5OrzKcqakpXl5eeHt7U7t27Wd+sVuwbRtb1q4l8sHvQnPTkwS134PS1Ie7ZiH8tvYgGo0GZ2dnRo4cSVxcHGvXrkWSJDp06EDbtm3LrFOn07Fy5Upu3ryJlZUV48ePL1vS+yGeVCyC4siOuXPnyu+bp6cnw4cPr9rnNi2Nm6+9xgY3N/JMTTHT6Rg0ejS1XgAfo+eFJEnk5uZWmu6WnZ1dYYXD0hgbG5cvJFlaYGmSiZXRLQwLS0Ujaa4CFQhVRs4PRKRSApLaFwwq/+w9LuVdEzk4OGBsbKw3Webh4UGbNm2oVausj1553Lp1i23btsnG/nXr1qVbt26PTutfvBgmTCDf2JjVU6ZwW6XCoKgIrVIJD4ovmNnakp6VRa1atRg1atRji95CLBK8qAixSCB49gix6Al4UrEIimfxFi9eLIs6APXq1aNv375V/kEvzwy7BBMTE5RKpZyKUb9+fYKDgx958f4w9+/f58SJE5w7d072SSqpoBYQEFCu90deXh7R0dFERUVx/fp1eTko9m6pU6cOdevWxd3d/S+fsRc8H+7cucP69evJzMzE2NiYvn374unpyc6dO7lw4QIALi4uJCYmUlRURMfQUJqdOsWi8eNJtbOTPRZ6/f47jUoZ2lILODAVan9VpTE8lliUlweNG0NkJLRuDSdOwIPPrtbAgMWvvEKCszMe168zYuVKFIF1YVYETKA4iqd2bRjoA9/uJE9tQmjHjpxt0gQUClSFhQQePswNT09i3dzkTVZ5Bvlp0OVB1sE/09Xy4yAaCsKNuXbLiwgzX6K9vPWEI2uNhrpWVvi1a0f15s1R/MsFXkmSyMrKKiMiJScny8a0D2NoaFiuiGRtbV3ue6nVarl9+7Zc3v5+aQGU4hvPkughFxeXv0ZU12q5/+mnrElOJsnREQOtlp6e2/D3uwBWvYg1nMWqNVvJz8+nRo0ajBgxgtTUVJYtW0ZRUVGlaWW7d+/m5MmTGBkZ8dJLL+Hk5PTI4TyNWASQnJzML7/8It+8P1aajVbL/Y8/Zm1qKolOTih1Orq2bUuTjh3/lULp34FWqyUrK6vS6KSKIvsextTU9M90NwszrMzysVSlYGUci5VhFOacR1kYU8HSClDVfkhEqg9qL1BU3a9MkiRiY2M5duyYXnGRkhT/+Ph4uc3Hx4c2bdpQ/YFB/KPIy8tj3759nD9/HihOYevevTs+Pj6PXvjnn2HSJHJNTVn59tvcNTLCUKtFC0gGBiiLiqhZowa3EhKwtLRkwoQJj33tB0IsEry4CLFIIHj2CLHoCXgasQiKjUsXLVpUHFmhUCBJEp6engwePPixDFi1Wi2XL1/mwIEDZGZm6r1WMj4oFpCCgoJo2LDhY18MP6qCmqmpabnLFRQUcOPGDaKiorh69are7L1KpcLb2xsfHx88PT3/dZWL/lc5e/Ysu3btQqvVYmdnx+DBgwHktDOFQkGrVq24cuUK9+/fxzsujiFLl7Jh0CAifX1ljwXvq1cZuno18ifVENhYD3qdq9IF/2OLRQAXLkDz5lBQACNGwMqV8kvJdnYsfPVVioyM6LprF81PnoRpvaDNNngJiKd42WltYei3kAN3q1dnR48e3H1wc+GQkoJtYiKRDzxTSqhZsyY9e/astAz4M0GSimfqM7YVi0c5JyFLouCkEdcivYjQ+nGtppcc2QVglZ2Nr0KBb6NGuPTogeJ/yMhekiQyMjJkEan039IieGmMjIxk4cjKyor8/HxSU1O5ffu2nvBkYGCAu7u7HEFkbW391+5Maioxr73Gend38kxNMS/KZUjgKmo43AGnqcTkv8LqNWspLCykVq1aDBs2jNzcXJYsWUJOTg6enp4MHTq0XIH/3LlzbNu2DYDBgwdT90Fq26N4WrEIICIigvXri73LFAoFkyZNeqxUvYKNG/l9wwauPLhJD6hRg+5jxvzrfYyeFwUFBWX8kh72UCoxha4MhUKBpYU5lhYGWJnmY6m+j5XxHawMo7E0jsXKJAMTozx9myOFEah9HghHpVLajGuC4k9xVpIkoqOjOXbsmF7UkJubG/n5+XrejvXq1aN169blGr2XhyRJREZGsmvXLrKzswFo3LgxnTt3rtpN7Y8/wpQpZFlY8NvkySQbGKCSJAq1WnSGhiBJNHBz49Lt2xgaGjJu3LgqC1gPI8QiwYvKv0Es+vrrr/nwww956623mD17doX9CgsL+eqrr1i+fDnx8fHUqVOHWbNm6RV+0Gq1zJw5kxUrVpCQkED16tUZO3Ys06ZNk+8HK7ov/Oabb3jvvfeeeD+OHDnCt99+y9mzZ7l37x6bN2+mb9++FfafOHEiCxYs4Mcff2Ty5MkV9mvfvj3+/v6VHpvH5fr16wQEBGBgYFBpBV6A0NBQpk+fzh9//IGZmRljxozhiy++0Lt2WLduHV9++SXR0dHY29szadIkvWO5adMmfvnlFy5cuEB+fj5+fn7MnDmT4ODgp9oPjUbDxIkTOXv2LJGRkfTs2ZMtW7ZU2P/48eO0a9eOevXqyRP6Fa1XiEWPydOKRQDR0dGsXr0aKL550Gq1uLq6Mnz48Mf+gpMkiVOnTrF37169NDCFQoGJiYks8tSuXZuePXtSrVq1xx5vVSqoVYRWq+XWrVtERkZy9epV+UIJimfpPTw88PHxwdvbu0LxSfDPpaioiJ07d8ozpT4+PvTt25eoqCh27NhBYWEh5ubm9OvXj1OnTnH16lWsi4qY8N13nGvUiP1BQSh0OiSlEtOcHF6bNw/z0ibF7xnBp1eKZ4erwBOJRQA//ADvvAMmJtC7N6xdK790qmlTdvXogUFRERMWLsQhKQl2jIC8lfAykAH06wezOkKv/8BVkBQKzjVqRGjXruQ9EIFdY2O5W716sfH0gygqpVJJ69atadOmzd93o1qYBBk7H6Sr7QFtNgXXjLh+zouITF+i7bz1haOMDOpmZeHn4VEsHNWr948ynf270Ol0pKen60UglfxfWRlzpVJJtWrVcHV1pU6dOri4uGBubv6XR7JIZ85wavp09jRrhqRU4qJIYnDH37A0LYBaS7h+vzlr166lqKgIDw8PhgwZQlFREUuWLCE1NRUnJyfGjh2LSqUqs+7Y2FiWL1+OTqejffv2tGvXrsrjehZiEcDOnTs5ffo0UDyJMWXKlMeKWpUiIwn78ENCGzYsPj5GRgyeNOl/3sfoeSBJEhqNptJ0t6ysrErPsxIMDcHKtBArkwwsje9hpU7F0iQDK5PM4jZ1BsaGhaA0BxM/tKr6XI7z5vhFSE4rvl5SKpW4u7uTlZUlF/VQKpX4+/vTqlWrxxImMzMz2blzJ1evXgXA1taWXr16VTllja+/hg8/5H61avz65pukKxSoDQzQFBTAg897PWdnLj8QsyqruFsVhFgkeFF50cWi06dPM3jwYCwtLenQoUOlgsgHH3zAihUrWLRoET4+PuzZs4cpU6YQFhYmR9p++eWX/PDDDyxfvhw/Pz/OnDnDuHHj+OKLL3jzzTeB4lTb0uzatYuXX36Z69evU7t27Sfel127dnH8+HEaN25M//79KxWLNm/ezCeffEJycjLvvffe3yoWFRYWEhgYiL29vd49bnlcvHiRZs2a8d///pfhw4cTHx/PxIkT6dGjB9999x1QvN+9e/fmp59+IigoiMjISMaPH89HH33EpEmTAJg8eTLVq1enQ4cOWFtbExISwnfffcfJkycfqxjBw+Tk5PDuu+/SqFEjNm7ciFqtrlAsSk9Pp3Hjxnh6epKYmCjEomfNsxCLAA4dOsThw4dRKpUYGhpSUFCAo6MjI0eOfCI/k+zsbFatWiXPfpWgVCqRJAlJkjA0NKRDhw60aNHiidIdKqug1qpVq0emIEiSxJ07d2SD7NIpGQqFAjc3N7mymrhg/+eTkZHBunXruHv3LgqFgo4dO9KsWTN27dolf/G4u7vTv39/Ll68yP79+zFQKHhp/nwKVCp+HT262AD6QRWXIatX4/PgghqApsCORWD/SpXH9MRikU4HXbvCvn3g718sGoWHAyABq4cP55q3N44JCbyyaBGGRkZwojuc2QSvAwXAW2/B9KYwaRSsKf7KzDU1Zf+gQZx/ULXJuKgIRVER+Wq1XsUaW1tbevbsiVupdLW/BV0+ZB8tjjpK3wYFMRRmGXH9tCcR93y5alqHQqM/hSPLjAzqxsbi5+BAjQ4dUHTpAn91dMw/kKKiIm7duiWnl5VEcpZgaGhYYRQSFJszl05jK/n7JGkj5Y5v8WJ27NzJhQc3jQ2sIugVuAlDtT14bCUqzoINGzag1Wrx9vZm0KBBAHLFMUtLS1555ZVyPVTS09NZtGgRubm5+Pr6MnDgwMcSvp6VWCRJEvPmzZPTumvVqsXYsWMfbyWZmVyfNImN1aujMTHBXKtl0Jgx1BQ+Rv84dDod2dnZlaa7VVYNsTRqozws1ZlIEmTkWVOgLRZEDZX5uNokkplvR2pW8eSVoaGSRgENCWzVDiuriosrPIwkSZw5c4bQ0FDy8/Mff2JAkuCzz+Djj0m2t+e3N94gCzA1NiY3P18W7J1NTEjVaikoKKB58+Z6kQVPghCLBC8qL7JYlJ2dTaNGjZg3bx6ff/75IwWR6tWr89///pc33nhDbhswYAAmJiasWLECgJ49e+Lo6MiSJUsq7PMwffv2JSsri9DQULktLi6Od955h71796JUKmnTpg1z5syp8vWqQqGoUCyKj4+nefPm7Nmzhx49ejB58uQKxaKxY8eyfPlyvbaYmBjc3Nw4fPgw7733HhcvXsTGxoYxY8bw+eefP/K79oMPPuDu3bt06tSJyZMnVyoWffTRR+zbt0+epALYtm0bgwcPJikpCQsLC4YPH05hYaEc+Qzw008/8c033xAbG1vhtZKfnx9DhgxhxowZQPHv3axZs1i4cCEJCQl4e3szffp0BpYqBFQZY8eOJT09vUKxaOjQoXh5eWFgYMCWLVueiVgk4rL/Atq1a8e9e/eIjo7GyMgIIyMjEhMTWbp0KaNGjXrsCCBzc3NeeeUVvSpUgDwTp1AoKCoqYt++fVy+fJlevXrh7Oz8WNtQKpXUq1cPPz8/vQpqly9f5vLlyxVWUCtBoVDg6uqKq6srXbp0ISkpSRaOEhMTiYmJISYmhl27duHi4iIbZFdaQlbwXIiJiWHDhg3k5uZiYmLCgAEDsLKyYsmSJfJMbPv27WnTpg2xsbHyD0+30P2YZ2ezcMQIpAeGnIXGxvifO6cvFJkBP3UHu5cfb2AlFaXy8uBxxCKlEpYtgwYNitPSXn8dbt6ExEQUQO+tW/nl9ddJdHIitFMngvfuhcF/wNZ2MPMwfATMmQNuP8K89dBkMHygwzQ3l97Ll9OoXj12vv4695KSwNAQo8JCCo2MQKfDuKCA1NRUli9fjr+/P126dPn7ouyUKrDsXPyoMRs0URhlbKOu83bqZm+msEjJ9UhPIq77Ea3wJtPKipP163MSsAwPp25ICL5KJa4tWqDo1g0CAoqP5b+QrKwsrl27RnR0NDdv3tRLmzE0NKR27dpyepmlpSVarZbU1NQykUhpaWloNBpiY2P1SsFDcYRMeSJSVSp+AaDRkP3mm6zV6bjTsCEKSaKL515a+ISjMGsKHlu4cu0+mzatR6fT4evrS//+/VEqlWzcuJHY2FhUKhUjRowoVygqKChgzZo15Obm4uTkRJ8+fZ6b149CoWDMmDHMnj1b9obau3cvQUFBVV+JpSWey5Yx/ssvWXv3LkmOjiz/9Ve6tWlDk86d/7rBCx4bpVIpV1yrSMQoKioqNyqpdFt+fj6aQhM0hWXPqSKdipiUmg+eSViosnC2vosy9RiRB+ZjZWWLpY0rVrZ1MLPxR2HiU/wd+hDJycls27aNuLg4oNjvqHfv3lVOW0OSYNo0+PJL7jo7s+LVV8kDTNVqcjUaWShSAXkqFQXp6bi5uT3eZ18g+JcjIZFL+f6DfzWmGKOg6r+Nb7zxBj169KBz5858/vnnj+yfn59f5sbdxMSEY8eOyc8DAwNZuHAh0dHReHt7c/HiRY4dO8YPP/xQ7joTExPZsWOHniBTWFhIcHAwLVu25OjRoxgaGvL555/TtWtXLl269FRWIjqdjlGjRvHee+/h95BNQ3nMmTOH6Oho6tWrx6effgqAvb098fHxdO/enbFjx/Lrr78SFRXF+PHjUavVzJw5s8L1HThwgPXr13PhwgU2bdr0yO1XdMw1Gg1nz56lffv25Ofnl7l+NzEx4c6dO9y+fbtcgU2n05GVlaUXsfrVV1+xYsUK5s+fj5eXF0eOHGHkyJHY29s/ViR3eYSEhHDz5k1WrFhRpc9aVRFi0V+AQqGgX79+LF68mNTUVKpXr46RkRH379+XBaMqX1g8QKlUEhwcjIuLC7///juFhYUolUp0Op1etZJ79+6xcOFCAgMDad++/WN5JZWMvXbt2tSuXZt79+4RFhbGlStXuHHjBjdu3Ki0glrpdTg6OuLo6Ej79u1JS0sjKiqKqKgo4uLiiI+PJz4+ntDQUOzt7WXhyMnJSRiRPkckSSI8PJz9+/cjSRLOzs4MHjyY2NhY1q4t9j4xMzNjwIABchj/hg0bkCSJhmlpNDwexq9jxpBjbo46Lw+NiQnW9+/Tdfdu/Q19ZQONf328dCetFl56qfj/vn1h7154HK+d6tWLq8306we//AJz58Jbb0KRFvOcHHpv3cqa4cM5ERiI17Vr1I6+Bt+1hLfrQcJl+D9gyhRwXQ8vbwGf/jCyCNKhxuXLvPL225xdu5YDUVHIRdKVSgrUamxTUki1s+PChQtER0cTHBxM/fr1/97PukIBJnWLH07vQ1EaRhm7qGu/nbr+uygs2MqNeE8irvpyNbdOsXDUvDknAYv796k7fTq+d+9Ss0EDFF27QlAQ2Nn9feN/xkiSREJCgly97O7du3qvW1hYyObU7u7uZb5HDQwMcHBwKPM9XlRUREpKShkR6f79++Tm5nLr1i25mmAJ5ubm5YpIeilit25x9+WXWePvT5alJWqpkIHN1uDheANsRkCtRVz8I5qtW7ciSRINGjSgT58+KJVK9u3bx5UrV1AqlQwZMqTc3x5JktiyZQuJiYmYmZkxdOjQ5+45Z25uzoABA1i3bh0A4eHhODg44O/vX/WVKJXYTJvGy9u3s3X1aiK8vdlx/Dj3YmLoNm6c8DF6gTA0NMTGxqbcNLHMzEzCw8M5c+aMHPVnYmKCmZlZBZ5JCrLyLclKLG/S4RYGyutYqjOxMivE0kKFlZU15lYu3Eky4kpULDqdDmNjYzp27EjTpk2rHs0tSfD++/Ddd9yuVYtV48ZRAJiamJBbYhT+IBrX2tGRxMRErKysGDhwoKg6KxCUIpcCzHnzuWw7m//DjLJCcnmsWbOGc+fO6UWsPIrg4GB++OEH2rZti4eHB6GhoWzatAmt9s8KklOnTiUzMxMfHx/Z8uSLL75gxIgR5a5z+fLlWFhY0L9/f7lt7dq16HQ6Fi9eLF+PhoSEYG1tzaFDh55KoJ41axaGhoZyStyjsLKywtjYGFNTU71Mlnnz5uHq6srcuXNRKBT4+Phw9+5dPvjgA2bMmFHu92Jqaipjx45lxYoVVc5CCA4OZvbs2axevZrBgweTkJAgi1Yl2TbBwcG8/fbbjB07lg4dOnD9+nW+//57uU95YtF3331Hdna27PWan5/Pl19+yf79+2nZsiVQbCVz7NgxFixY8FRi0bVr15g6daos/D1LxJXSX4RarWbIkCEsXryYu3fvEhAQQHx8PElJSYSEhDBixIgnCgOuV68eDg4OrF27lrS0NBQKBUqlUu9LBCAsLIw//viDvn37PnFuqrOzMwMGDKBjx45yBbV79+6xceNGDhw4QMuWLfH393+kIGVjY0NgYCCBgYFkZ2fLwlFMTIx8Q3X06FGsrKxk4cjV1VVcHP2NFBQUsHXrViIiIgBo2LAhQUFBhIaGcu5B9TI3NzcGDBiAubk5Op2OjRs3kpOTg4ORET1++YV9XboQV7MmRgUFaExMQJLot3kzqtLVp/oBY9aC4WNGlH3yCRw9Wvz/iRPQrRvs2vV4glHfvjBhAixcCF9+CT/8CA9+yOpER9P4zBnONmnCln79eO2XXzBZ8isEL4SXZsK9u7BegpEj4cABaL0NdveF8fnwByjz82narx++Cxaw38Hhz7BPSSLVzg675GR0CgVpdnZs3ryZixcv0qNHj8fyx3imGNqA7Yjih1SIUXYYPtW34eO1naLc37mR7EHETV+uptYhy9KSU82bcwowz8qi7ooV+H30Ea4ODii7dStO8WvWTPbY+KdSWFjIzZs3iY6O5tq1a2UqTrq4uMjRQ08qXBsaGuLk5FQmbbegoEBPRCr5W1KePDs7m5s3b+otY2lpWSwe5eSQv3cvFwMD0RoaYmeYydDWy7A1vw8us8DxPc6eO8f27dsBaNSoET179kShUHD69GnCwsKA4spi7g9SJh/m8OHDREZGYmBgwJAhQx4rJeevpG7dutSrV4/Lly8DsHXrViwsLPB4zFQy4549Gejjw7EPP+SAnx/n7t4ladYsBv/nP1iItOgXlpSUFI4fP86lS5fkSGt7e3scHR2JiYmR0xjNzc1p2bIljRs3prCwUD8yKT2RjPvxZGbcJyMrn6xcJVqdIfdzbbifCySXbC1ef+M6DWdP7uV61AksrZ2wsnbCytoaS0vL4opvlpb6F+ySBJMnw//9H9c9PVk7ciRFFEcclvhPmuTmkmdqir29PYmJiRgaGjJkyJBnlsIqEAj+PuLi4njrrbfYt2/fY6XOzZkzh/Hjx+Pj44NCocDDw4Nx48axdOlSuc+6detYuXIlq1atws/PjwsXLsh+OWPGjCmzzqVLlzJixAi9cVy8eJHr16+XiTTWaDTcuHGDo0eP0q1bN7l9wYIFFYpRpTl79ixz5szh3LlzTz0pGhkZScuWLfXW06pVK7Kzs7lz5w41a9Yss8z48eMZPnw4bdu2rfJ2goKC+Pbbb5k4cSKjRo1CpVIxffp0jh49Kt+Ljh8/nhs3btCzZ08KCwuxtLTkrbfeYubMmeXer65atYpPPvmErVu3ypN0169fJzc3ly5duuj1LSgokD2N/Pz8uH37NgBt2rRh165djxy/Vqtl+PDhfPLJJ3h7e1d5v6uK8CwqxbPyLCpNZGSkPDPao0cPLl68yJ07dzAyMmLIkCGPfdFbgkajYcuWLbKxYrVq1cqUbi7B3d2dAQMGPPUFx5NWUKuIvLw8rl27RlRUFNevX9eb/TM1NaVOnTrUrVsXd3d3MQP8F5KamsratWtJTk5GqVTStWtX3Nzc2LhxI4mJiQC0bduWdu3ayV+I+/btIywsDGMjIyb8/DN3bWzY9CDf1lijoUCtptWxY3Tev//PDTkDh98ErzmPN8CdO6FHD+4ArkCGlRWWGRkQGFgsGD3OuZqTA40aQXQ0DBgAtrbF4hFQYGTEwtcmkmpji++VKwxcvx6FgQFE7oL0AfBOFhyleJnwcHCMgxu9YFYurC21jREjiP38c3bu3i0fPyi+EfCNiOCCvz9aQ0MMDQxo1749LVu2fCzz3r8czbVig+yM7RSlH+dGSi0i432JuudDvvTnhYZ5VhZ1IyPxvXKFmllZKDt3LhaOunaFx0yD/avIyMiQ08ti/p+9sw6P6kzY/m80E3chISEBolhwgru7u7VUdtvdynZL263t1rttd9subaEt7jRAcYdCgkuAuBAhxF0nI+f742QOmQgE6W77frmvK1eSycyZOZMz5zzP/dxy65ZZ1pBKpaJdu3YEBATg7+//UHlyjwqtVttoM1t9IusuBOwti3G3K8TVux9u3mHk5ORIhFCvXr0YPXo0MpmMhIQEtmzZgiAIDBkypMmBU932sYnjxtHVzw/Ky8WvsrL7/1zn99i8PEKio8l48kla9+8PXbpASAg8gkqppqaGL7/8UsqsUSgULFmyRKo7fyBUVJD45z/zk6srWo0GG72eWYsX07olx+h3hTt37nDmzBliY2Ol21q3bo2joyOJiYlU11qW7e3t6devH127dm32GMJgMFBWWkpJYTIF2TFcvZ7G7VwDIEMmM6KU69AZmqcqsLa2xN7eETtbW+yvXMHuzBnKbG0537cvAqL6qaqqCrnBgHdGBmm+vmbk0dSpU+nUqdMDvTf3QktmUQt+r6ifrfJ7sKHt2rWLKVOmmI3vDAaDtMiv1WrvOfarrq6W3CnLly9n7969REdHA+Dt7c3y5cvNco3ee+89NmzYQFxcnNl2Tp8+zcCBA7l27ZpZQP6zzz7LlStX2FinJdgEV1dX1Go1mZl3SXJ3d/cGxFJjmUX/+te/eOmll8wIFIPBgFwux9vbu4G62oTGAq6nTp2Kvb09q1evlm6LiooiNDSUtLS0RskiBwcHs8IlQRAwGo0oFApWrlzJUpNLoREIgkBWVhaOjo6kpqYSEhLChQsX6Nmzp9m+ZGdn4+rqyrFjxxg7diy5ublm7cdbtmxh6dKlbN++nXHjxkm3nz9/nj59+nDy5MkGYxgLCwu8vb1JS0uT5sOWlpYN7tdYZlFxcTGOjo5mx5PJeaRQKDh8+DBDhw5tsL8tAdcPgV+DLALRO2mShS1YsIBffvmF5ORk5HI5U6dObZafszEIgsDp06c5ceIEIAbp6vX6BoGsIH6gu3btyujRox/YmlYfOp2Oq1evcvbs2QduULvXNpOTk4mLiyM+Pl4a7AGo1WoCAgIICgqiffv2jTb4tODhEBcXx65du9BqtdjY2DBz5kyKi4vZu3cvNTU1WFtbM3XqVDN1WlxcHFtrG8VmXruGc0QE3y9bhk6txrGggCJn57th0SbFmwzYHgBTrjeaA9EkUlNFcqeoiF+eeIJBP/zAzZ076bBkCRQXQ1gYHDz4YITR5cvQpw/o9SJR9J+vIOoGAHc8PfnhiScwKhRM2rWL0GvXRLtV3EaIGw9P6SAGaN8eIiNBEwdJY2FnOfyjznP4+2P85RcupqVx/PhxqWJdZjTS7/RpMr29uVX7nrq5uTFhwoTf5uDdUAKlh6F4D/rCg6TkOBCT1UEkjgx3LyzW5eUScdQmLQ155853iaO+fR+JLHgQCILAnTt3pHDq+m0g9vb2kr3M19f3N0tCV2Vlcfvllzni6Ehe7YqUSl6Dztj0+6hRKmljZ4ebWo1Kp+OXggL0QFdgQnk5skYIn2ylkh+HDEGnUtHn/HlGNWMF616IBUKADEA6mlUqCA4WiaO6X3UGVvfD7du3zYI8LS0tWbp0KS4PY4UUBAo++4ytqankubqiMBgY278/3VoyYX7TEASBW7ducebMGW7duiXd3q5dOywtLYmPj5cG2M7OzvTv359OnTo9NBGfkJDAvn37KC0tBRAz54YPxUqRRU3pdUrzoykpvEVJcR6lpVWUVNtSWmVPSe2X3tjMcZYgYFdaSmmtms8UL9C5c2dGjx6NRqN5bJbl28eO4T18eAtZ1ILfHX6PAddlZWWSQsSEJUuWEBQUxKuvvkrHjh2btR2dTkdwcDAzZ87kgw8+AMRz3Hvvvcezzz4r3e/DDz9k9erVJCQkmD1+8eLF3Lx5k0uXLpndvmrVKl599VVSU1Mfes7bGFlUUFDQoJBp1KhRLFiwgCVLlhAYGNjotkaOHElgYCBfffWVdNsbb7zBTz/9RGxsrHQeXLFiBcuXL6e4uLhRRU9sbKyZ22b37t18/PHHREZG4uXl1ezc4Lfeeos1a9Zw69atJq8jCxcuJCkpSVqwA9i8eTNLly5ly5YtTJo0yez+ZWVluLq6smrVKhYsWNCs11EfjZFFppKqulixYgXHjx9nx44d+Pn5NSoYaSGLHgK/FllkNBrZsmULiYmJ2Nvb88QTT3Do0CGJIR4/fjzdu3d/6O0nJSXx008/UV1djaWlJW3btiUmJgZBEKSBhwkKhYLevXvTv3//5ger3mO/YmJiiIiIkCZlMpmMjh070rdv3/s2qDUFU6BpbGws8fHxZqvsCoWCdu3aERQURGBg4H8vLPj/GIxGIydPnuR0rbXLx8eHyZMnExERweXLlwHRdjZ16lSzlYTCwkJWrlyJVqulj1LJ4H/8g1XLlklWq3xXV/MaehOeU8AnUWD5AMSoVgv9+8OlS1yfPJm1bdvy+eef8/bf/sYzQ4fiMW0aFBWJxM/Bg/Ag1pmPP4bly8HaGo4dg+FDoFzMjDg9YADHhw1DrdXyzLff4lhUBMOHwdYn4dIcWALcQXze48fBEAVJo+F8idieZvq4WVrC/v2Ude9u9nkH8E1JodP16xwdOZKq2mO4Z8+eDBs27LdLhgoGqDgPJXswFO4jJaOamKwQ4rKDqNbfPZdYl5cTFBtLh5gYkTiytoZhw+6SR82tlW4mampqSE5Oluxl9VuTvL298ff3JzAwEFdX1/9NLprRKKra7qHKkX5OTib/xAk2T5xIobMzKr2OSZd30SExmgocybP2JsfahqgOHci6n7pGEHDOz8c9NxfX3Fzc8vJwy83FqbCQSktLVj31FKX29rRLSmLupk3ITdcKCwuwsRG/bG2b/fPJ27cZ8sorxC1ZQmByMkRFQSOLF4CoPuvSRWwoNBFI/v5iP3ojMC26mHCvVrfmQHvkCLvWryeuVlXUw8OD0U8++dtS+bUAo9FIXFwcERERUraYXC4nMDAQuVxOXFycNDFwd3dnwIABBAcHP7SNvby8nIMHD0rna0dHR8aPH39vO7+xGqrjoOomVN1AqLxJVUkCpcXllKy2pyTJjtiQYFL9TNswAs17fSqVyszaZm9v3+Dn+y0AarVwens27su60Lk6t4UsasHvDr9HsqgxNKaeWbhwIV5eXnz44YeAqD7JzMwkNDSUzMxM3nnnHW7dusWVK1ekxfjFixdz9OhRvvvuOzp06MDVq1d56qmnWLp0KR9//LG07dLSUlq1asVnn33GM888Y/ZaKisrCQ0NxcvLi7///e+0bt2atLQ0wsPD+etf/9rkOaK8vJykpCQAunbtyueff86QIUNwcnJqVOkD4nziXm1oAE899RTXrl1j27Zt2NjY4OTkRFZWFgEBASxZsoTnnnuO+Ph4nnzySf74xz/eM+C6LtasWdOgDW3nzp289tprZiqsTz/9lNGjRyOXywkPD+cf//gH27Ztk4iw/Px8duzYweDBg6murmb16tWsXLmSU6dO0atXL0C0ni1atIh///vfZvlQlpaWkr3/b3/7G99++y2fffYZ/fv3p6SkhIiICOzs7Bq1EJoQExNDTU0Nb731FmVlZXzxxRcATeY4vvPOO4+tDa2FLKoDE1l0+PBhhg8f/lgnFdXV1axatYrCwkL8/PyYO3cuBw8elCbmw4YNo1+/fg/9nEVFRWzbto3s7GxkMhm9e/cmPT1dGlxpNBoztY5CoaBbt26EhYU9cDtbfZhW/EwNaibcr0GtudvOzMyUmtUKCwulv8lkMtq0aUNQUBBBQUG/mZyN3zqqqqoIDw+XTva9e/eme/fuZrazAQMGMHjwYLMBt06n44cffiAnJwcfZ2cWvPQS4VOmEBsSgk1ZGdUWFujVakYeOkRYbTU9AJ2Aw/8GjwcMI3z2Wfj2Wy4NHMi+oUMpKSnhiy++YPny5bg42vNE3/44TJoEhYXQuzccOtR8wshggOHD4eRJMW/niy+gXz8AjDIZa5cuJd3bm9YZGSxZvVqcRP/zY5gnhzOvwBNAKTB1KmzbBtXXIHEkRBfCEzLQ1jmtvv02vP02t1JTpZY5AHVNDZN/+on44GCiak/2ttbWjBk3TvKq/6ahTYWSvRgK93ErNZXoOwHEZQebNRFZVVYSHBNDSEwMvqmp4vsYHHyXOBo4EB5i4FdcXCyFU6emppqtIqnVatq3b09AQADt27d/cPutIIiNe821YTXn52bWfgMk+PsTPm0aWo0G++JiZm/ZgkcdhZQAHB0+nMj+/QEYduwYocnJ5Hp7k+npSURICFqVCpkgIDRxDMkBhUyGThCwVKkY3a0brb29cfDwQG5nJ6qBHhDnzp1j/fr1rFixghdffBFnZ2fs7e3xsLXFT6/HOzMT5+vXUVy7BnWuE2bQaKBjx4YqJHt7DAYDK1eulBoZQVTlLV68+KEXPoS0NE4vX86JwECQyfCRy5nxwgvYPCQB1YLHB71ez/Xr14mMjKSgoAAQM8GCg4PR6/XEx8dLC2GtW7dmwIAB+Pv7P9JY49q1axw+fJjq6mpkMhlhYWEPVRQCgE4Hc2ci7NjFL0MGc3LQYADUSi01egtsSkuZvHMnx4cN407r1ijkOgxGFSqFHic7PeXVGiqqmvdUpolIXVJJo7EnJsaeo0ftOLDbgu3aMdwY48ifdu1qIYta8LvD/2WyaPDgwfj6+rJmzRpAzBB89tlnSUlJwcbGhrFjx/LRRx/h6ekpPaasrIw333yTnTt3kpubi6enJ3PmzOGtt94yK6dYuXIlL7zwAllZWY3OkbKzs3n11VfZv38/ZWVleHl5MWzYMP75z382KZo4efIkQ4YMaXD7okWLpH2oj+aQRQkJCSxatIioqCiqqqq4desWvr6+nDp1ildeeYWoqCicnJxYtGgR7733XrOV4Y2RRWvWrGHJkiVmBVFDhw7lypUraLVaunTpwttvv22W2ZSfn8+ECRO4ceMGgiAQFhbG+++/T+/evaX7DB48mFOnTt3zvREEgS+//JJvvvmGlJQUHBwc6NatG6+//vo9c5Z8fX0bKNVM22sMLWTRrwQTWbR8+XJ69OjBhAkTHmsjTG5uLt9//z06nY6wsDBGjBjB8ePHpTpE020PO9jR6XTs3buX69evA2I4qJeXF6dOnZLa0ywsLKiqujsCkclkhISEEBYW9nAZEPVQt0HNdGi1atWKfv36PdJqH4gfiLy8PIk4qm8x8fT0lIgj1wewOPz/hOzsbLZu3UpxcTFKpZIJEyYgl8vZs2cPNTU1WFlZMXXq1EaztHbv3s21a9ewtrLi6c2buGFpxZGRI5EbDDjn55Pn7o7vrVssXLcOmem0ogEOD4H+xx6s/Wz9eoyLF7Nv3Diu1KruTGTRa3/9KxZWVrhYFrDE7yxWT92AYi10D4T9O8C1Q/OeKyNDnIgWFcEbb4CDLbyyHIBie3u+fe45tCoVg0+cYJDp5H/5HLhugoNfwh8BHfDii/D551B5HRKHQ1weLJND2V1FHwMHwr59GCwt2bNnD1FRUdKfOty8SccbNzgyciSFzmLwd2BAAGPGjv39EKCGcig7iqFwD7eSrhNz25O47CCqdHeVf1baaoJuRhMSHY2fiTiytITBg8XA8tGjRXtfI/87o9HI7du3JYIoLy/P7O+O9vYEeHoS4OJCG40GhUnF8zDETnm5qAT6NSCTNa7OsbRESEwkolUrjg0bBjIZbWruMMOwAWvLamjzFHhNRbC25mBKChdqyZbRw4fTu29fkMnQ6/Vs2LCBtLQ07OzsWLp0KTKZjNzcXLNMpNzcXLPsprpQKpW4uLiYtbK5ublhb2/f9HUpKYlzmzdzyGgkNzdXIosaO3ZlMhnW1ta4Ojnho1TSpqAAj/h4LK9dgxs3mibVfH2hSxcKunRhhVxO3f+Ot7c3CxYseHh7dXU1CS+/TLidHVqNBludjlmLF+PVvv3Dba8FjwStVsvly5c5d+6cpCrWaDSEhIRQUVEh5TSCmMc4YMAAfH19H4lcLywsZO/evZK9zcPDg4kTJ9LqYbPXtFqYPRth1y4Ojx7NuT59AFElpNPpcCooYMH69cQFBnJozBhkMiOCIEcp1/FE/+/xsBMXbfQGJaXVdpRoW1GiD6ZU50NJtSulVVaUVMgoKSmXLM73hFFAJhgpLi/niy++aCGLWvC7w/8VsqgFLfgtoYUsegiYyKLXX38dtVqNm5sbs2fPfmTlTV3UDROdNm0aHTt2JDIykiNHjgCinMw0gX8YCILAxYsXOXToEEajEVdXV8aOHUtkZCSJiYkAWFtbU11d3aBBrU2bNoSFhREQEPDIqoaioiKpQc00MXF0dGx2g1pzn8PUrJaenm72NxcXF4k48vT0/O2rNP4LuH79Onv27EGv1+Po6MjUqVOJioqSfMxt2rRh2rRpjdo6rly5wp49e5DJZCyoqEC2dSvrFi1CkMsJiIsjISgIi+pqnvnmGxzq2k4+tYU/J4LKvVmv0Wg0knbyJDe//JLrHTqgr0PWVufk8NE337B8+XI0FhYgk+Ftn84C13Wo/qiHEsTAlBXW4NYBLENAEyJa3zQhoPYBWb3P1fbtMHOmOIk/eRLe/Av8IlacXu/UiZ3TpiEzGln644+0vn0bNHLITIOiF2HrDnijdjv/+hf8+c9QFQMJwyApG55SQGGdz5iLi/gcHTpw69YttmzZIg30LfR6Ru7bR5GjI5H9+mFUKFArlQwdPvzBqpl/CxCMUHkZQ9EeUhPOE5NmQWxWsBlxZKmvJig+kQ5XruF76xYKEznj4gIBAdCmDdVubiQDCQoFiVZWVNVZRZIZjfjcuUNAXBwBcXE45+c3I27yIWBt/VB2rCZ/trRsSIalp6ObOZOfW7fmZm2YbQ/fm4wO2YlC7QhtfwLbgRiNRvbu3cvVq1cBc/uyIAiEh4dz8+ZNLCwsWLJkCe7ujX/mzp49y+HDh5HJZHTp0gVjLcmTn5/fJImkUqkkAsnV1RU3nQ63M2ew2bGDM3Z2nKgNTjSRRf+eOBFfo5EsLy8KnZ2puc+ii1qtxtnJCS9bW9pUVeF56xaOUVHIoqJEUrcOLnXrxr6JEwEk9VSAhQWzBg0Ss7IepshBEMj/+mu2JiSQ7+KCwmBgfL9+hI4a9eDbasFDoaKiggsXLnDhwgVJBW1ra0twcDAFBQVmquWAgAAGDBjwyISH0Wjk7NmznDx5Er1ej1KpZHBt6cBDn3Orq2HaNIwHDrB30iSu1qpGTfXWHllZzN+wgXJra1Y99RSGOue1aZMG0NG3rNbOJlraqI4HGv9covSgxNiF68kdOXvNj0s33SmtssHKugp7+xKcnUuxsy5EkIvnHNOCSwtZ1ILfG1rIoha04PGjhSx6CJjIonPnznH69GkqKirQaDRMmzaN9o9xlfHo0aNERESgUql44okncHd35+rVq+zZswdBEAgODmbq1KmPFL6anp7O9u3bKS8vx8LCgkmTJmE0Gjlw4ICU6WHKZ6oPFxcXwsLC6Ny58yMHwD7uBrWmUF5eTnx8PHFxcaSkpJjlNNnZ2REUFERwcDA+Pj6/r4n3Y4DBYODw4cNcuHABgPbt2zNkyBD27NkjqbMas52ZkJWVxQ8//IDBYGConx+hzz3Hd08/TYWNDf4JCSS1a4egUDA5PJwutao2AEYCW/eAw/h7vj5BEMjIyODmzZvERkdTXnucmGBVXo5eqSRPq5VsaHVPagGtDcxyO4t84QkoNkAw8B+gvoJWbgWa4FoCqQ6R9Mx7sGYN+PjApUvQzhvKtAhA+PTp3OzYEcfCQp759lvUNTXQ3hKiU+DWTPj6NHyNSAD89BNMmSK2iSUMhZTb8KwSsusM9BUKMVR76VKqqqrYsGGDZBUF8M7KIuzkSc7260dGrffbs1UrJkyc+NAZYA8No/He2TrN/bmsBGN5EanO7kQHBBMXHExlnQm9ZWUlQXFxhMTEYF9URJK/P4kBAaS1aYOxTn6MpqqK9klJBMTH0z45Gcuqeh4NjebxkTo2NiLp8GufK44coWTZMraMHk12q1bIERjT6SA92pwHy07Q7mew8MVoNLJ7926uX7+OTCZj0qRJZq0mpmuKXC5n3rx5TearJCcns3HjRgRBYOTIkYSFhUl/MxqNFBUVNWhny8/PNzuf1oVcr8dY5xpRV1kULJczccsWZDU1VFtYkO/iQqa/P1n+/hRZWlJdb7GiwbblcmxsbHC2t8cTcCsowDk5GWVcHHvbt+e2tzcgEoeCXE5gbCyDT55E5uMDgYF3vwICwN29WWrDmkuXOL57N6m1KtuOjo6ETZ9+3xyj/+Uw6vf+3GVlZdy4ccMse8jOzo42bdqQn59vFpTatm1bQkNDcXZ2fuTnzs/P5/Tp05LFzdPTk/79+zcrr7LJ566uhr/+FeOlS5wcOpRbfn5mf2515w4jjhxBZjTy86RJFDk5IZPJEASBTp06SbkXZjDqQJcO2mTQpiBUJ2OoTEEh3Gl431qUVnlSLgRx5YILuaq7+9NCFrXg94oWsqgFLXj8aCGLHgImsujvf/87U6dO5ezZs1Jt4KNmCtWF0Whk06ZNJCcn4+joyLJly7C0tCQ2NpaffvoJg8GAn58fs2bNeqSw2/LycrZv3y6pbgYMGEDv3r05fvw4V65cAUR5tyAIaLVaALNAbGtra3r16kWPHj0emdT5NRrUmkJ1dTWJiYnExcWRmJgoNaSA6O0PDAwkODiYtm3b/mbbkB4XysrK2LFjh3QMDBw4EFdXVzPb2ZQpU5okQ6urq1m5ciVFRUUE+Pkx4/XXWDdqNBk+Prjl5GCQyylwdb1bNW96oDNwehkEr2x0u6Ysqps3bxITE2MWYi43GMxIAhPqZhZpNBoxW6b289ilY3smte+IbPhwyM+HLn6wcSZYpkJ1jLg6KzQh16+0gHkCZNTApE7wxjLoJeYrVWs0fPP885RaW9P1yhUm/vyz+Jg5LvBjJCRNhHfi4CdEsuLECTH4WnsLEoZAappIGGXWWxmeMwfWrsWoUHD06FHO1s14AnqdP49jUREnBw9Gq9EgA/rU5mc0ao0VBKisbF6AcnN/rkfaPS4Y5XJS2/kR0ymYGP9gqiybVoK45OXhn5BAYEIC3uXlyLt1E7OlBg4UA5JNxI6NTZPByL9JGI3w0UekrVzJtpkzqbS2xkplYGaPtbRxTgeHyeC7HhQ2GAwGwsPDiYmJabRB89KlS+zbtw+ASZMmNRl2WFBQwPfff091dTWhoaFMnDjx/tezhAQM27ZReOgQeYWF5Lq6kufmRrabG4UuLg0ImPvZ0FrQghb879BCFrXg94oWsqgFLXj8aCGLHgJ1M4ssLS0ZMWIEeXl5kuw/JCSESZMmPZYco6qqKlauXElxcTHt2rVj7ty5yOVyM3uKp6cn8+bNeySixmAwcOTIEc6fPw+IodNTp04lLy+PvXv3kp+fD4greaaKWLVajUKhkLKNVCoVoaGhjyUM+9dqUGsKOp2OlJQU4uLiiI+PN8trMgXhBgcH4+/v/9ttoXpIZGRksG3bNkldNnHiRFJTU7l4UbRZ+fj4MG3atCZXUgVBYOvWrcTHx+Pg4MBTV65wKjeX8336YFFdTVBsLFFdu2JTVsazK1ZgZXpvZcDGNjArRlTz1NleVlYW0dHRREdHm6naVCoV1jodJQYDQh2iyKqiAqNMRrWVFdXZ2Xz07be8/+KL6EwT0TqEUQ8XJeMGThSbt/LyoGtXOHoUnJxA0IM2RSSOqqJrv8eIDTZCNdxEDK02AH9HDK/+p/gUqW3asHbxYpDJmLllC8Gm9oT/tIZF4RA/Ef6cDWcQbVRnz4rZOzXposIoLRn+oIR0vfhaTadcX1/YtAlsbLiRmMjumzcx1Dkd21RVMeD4cdJ8fYmpJQccqqoYFx9P+/T0hqTQr3Uql8sfn1rH1pYqhYKk9HQS4uNJSkqgWqtr9GnVci0hhnxCojNou/8XFHXJK4UC+va9G5QdGvrrq4AeF4qLYeFCLt+5w/6xYzEqFHg4lDO7+yrsLUvA42/g+S7I5Oj1erZv305CQgIKhYLp06cTFBQkbSoxMZHNmzcjCAKDBw9m0KBBjT5ldXU133//PQUFBXh7e7Nw4cKmifL4eNGeuX071FUKKpUwbBhpEyawubQUbSNZKfn5+Xz99dcNyCKFQoFarUam04l5LjU1DXOh1GoEtRrUagyCgNFoxGAwPLCCRAGoEFVPMr0emrDWSftk+lKpkKlU4nEkCOhLS6mWy0EmQyYIaCwtUfyKhOT/0ir933xuvV5PTU2NmeVRoVCgVCrR6XRmKja1Wo2FhcVjUwPrdDqqqqqkY0qlUmFpafno2zcaITsbQaulwtYWfb3jRF1Tg1WtolunVFJRx+otl8uxtbVt9DVotWKMV0WF+JGpC40GrK0FNBo9RqOOmpqaxj8rRoNov5bJWsiiFvxu0UIWtaAFjx8tZNFDwEQWffLJJ5JlKjAwEG9vb44fPy5lAM2aNQvn2iDaR0F2djY//PADer2e/v37M2zYMAAyMzPZuHEjVVVVuLi4sGDBgmZJo++FGzdu8PPPP6PX63FwcGDmzJm4urpy5swZTp8+jdFoRKlUolarpX1v1aoVer1eCpOVyWQEBwfTt2/fRw7DNjWoRUREkJKSIt3+OBrUmoLRaCQtLU0KyK6rZlEoFPj5+REcHExgYOCDNyj9htBYbtXo0aM5evSoJOnv168fQ4cOvecg+cyZMxw7dgyFQsETPj4UfPopP02fDsDg48c5WZtTMnfDBvxrm9UAeFIG/74MVl0RBIHc3FxJQVS3zU6pVGJjY0N5eXmDrJS2WVl0PXOGY8OGUezkhG1pKYOTUuj+8y5SU/M498V7xDVCXHZPjGZ87wHwj3+IhFFoqEgYNfV5FQxQkyoSRx9+BZ8cAWs5bFHD69VwQ7zb0eHDiejfH8vKSp795htsy8rESqm/aMBhIGQch+16yAfs7MSmNZ0Oygog/woUV0MWIhnVBO60asXW2bMptbeXrDUAvrduERIdTUT//pTUKvA63rjBqIMHsWksEPhhiZym/qbRPFg4ef23WBDIz8+Xqu3T09PNJjVWVlb4+/vT3s8Vte4aiYlxxKZZUqG9+xm0UFYTpM4j5HYJbQ9HoYxLNH8Sd3cYNUokjkaMEEm73yKuX8cwbRoHAwK4VGs56dA6jUmdNqBSKsF3NTjNAsSJ7datW0lOTkapVDJr1iwzBeCdO3dYs2YNOp3unkqhukpWOzs7li1bho2Njfmd4uLuEkQ3bty9XakUj+UZM6gaNYojly9LiyeNwaQsWr9+PRqNRqofB3FBYs6cOeKCgNEI58/Dzp3iV93zh1wO/fuLls7JkxHatKG0tJTs7GzS09PJyMggLy/PrN2zMchkMmxtbfFwc8NHpaJVQQHuCQlYX7sGUVFisH1j8PCQWtjyysvZqlBQ4OyMUq9nfN++dKnTjtKC5kEQBJKSkoiIiDBrcwkODsbNzY2bN29KdjC1Wk2PHj0ICwtreJw+JCorKzl8+LBULGBnZ8e4ceMICAh49I0XF8Po0VRev87GRYu44+Eh5RMB9Lt5k2E7diADqiwt+eb55ymrXQCsG0UA4sfiwgUIDxe/6pYG1nK1TJ6spXPnJLKz40lISJBU4SBekoymBRRBoPO1a1wPDZV+LyktbSGLWvC7RAtZ1IIWPH60kEUPgbrKovpvmkKhQKhd7VQoFHTq1In27dtjb2+Pg4MD1tbWD0Vu3Lhxg/DwcABmzJhBSEgIAHl5eaxfv56ysjLs7e1ZsGDBIxNUOTk5bN26laKiIpRKJePGjSM0NFRSGZmsSjY2NlRUVCAIAmq1mtDQ0AYBkz4+PvTt2/exhGH/mg1qTUEQBO7cuSMRR6aBKoiTDG9vb4KDgwkKCnqsFrlfGzqdjn379kmD4g4dOhAQEMD+/fvRarVYWloyZcoU/P3977md1NRU1q1bhyAIjB8wAO9lT/D97Lno1Gr6REYS06EDpfb29Lh4kXG1FhgA2gMnPyZPvUQiiEzqNRA/R6bjy2xl2WDAoFCgMBqZkZuL8/btrF+4kFJ7exyKiph/9BgTbPZx9nwbAgJK2LndkvJ3Z3OwQwczJRKAf3w8syNOIy8sFhU37drBu++Kk9B7ZuuUiSP1sjKwsAArDRSJ6ieDQsH3Tz5JdqtWtEtKYt7GjXcb3x4H7O3Bx4dyZ2e2d+tGup0dCII4+JfJkBuN9LxwAaNMxqWePRHkcjTAiC5d6NqhAzITsWNl9ZtQ2BgMBtLS0qT2sqJ6E3M3NzcCAgIICAjAy8urwWfcqK8iPWEvMTeuEHvLSLn2rkLNQllNoEMWIcVa2p3LQnnysvj/M0Emg1697qqOevYUlUj/a6xfT8ULL7B94kTSfH0BGBocQf+2R5CpW0O7XWAtBlZrtVq2bNlCamoqKpWKOXPm4Fcn/6S4uJgffviB8vJy2rZty9y5c5vM1Tl06BDnzp1DpVKxZMmSuw1PsbF3CaKbN+8+QKkUCbcZM2DSJARHR65fv87BgwfvSdBYWFiQlZXFl19+yYsvvsjYsWNxdXVl165dZvfr0qULEyZMuPt6BQGio0XSaNcuqLVISwgNFYmjKVOgY0eJuKyqquL27dvs2LGjeY1QdV6nq6srPg4OtCovxz09Hefr15FHRYmkVb3PdbWFBeHTppFYSyz0Li1l5PjxyEND4TGWX/xfhNFoJDo6moiICHJyxIYvuVxOp06dcHBw4Nq1a5LCVKPR0Lt3b3r37o2lpeVjeX5BELh58yYHDx6UFsF69erF0KFDH4+SuKAARo6kLDGR9YsXk+fsbEYUjYiJoe+2beJrAXbMmkVMcLD08BkzZhAQEMLp02Lk3c6dUCfCDo1GPIVNnFhO+/bxZGTEk5KSYlZOYm1tTatWrUhPSsL0KbCsrGTWxo2sW7pUtHTXEkjVubl8tGJFC1nUgt8dWsiiFrTg8aOFLHoImMii8PBw9Ho92dnZZkqIe0GhUODg4IC9vb1EIJm+Ozg4NCkzBjh8+DBnz55FpVLx5JNP4ubmBogTgg0bNlBQUICVlRXz589/+CrXWlRVVbFz506pGa1Hjx6MHj0auVzOlStXOHLkCFqtVqo4Lq+dhHl7e9O3b1/i4+O5fv26JBV3dnYmLCyMLl26PHL+T1FREWfPnuXq1au/WoNaYzApH0zEUd1ATRCJK1Ozmqur62+2Wa2oqIht27aRnZ2NTCZj6NChlJWVScHW3t7eTJs27b5ZImVlZXz33XdUVFTQpUsXRn/7Dd/7B1Dg4oJfSgrW5eXc7NwZp4ICnv72W9S1mVAFbk5EfzyG6Kq+5OberTaXy+VYW1tTWVlpNsi1tbUloH170k+fJs/GBrVOxxw3NzQffMD6hQuptLbGJS+PBVu28MH0JDZ+F8Nt+rGWibRSaOnmW0ClPo+t06eLsv46ljSHggKeWrUKy/uoDx4EeS4urHz6afQqFaMOHKBPrbUTJ6APYAXUAAdrvwcB8wAbwM4dLMpBVwHvyyBJAFsb0Nbc9Rf06QMHD2KwseHAgQNcvnxZep9MKjhbrZZev/xCTIcOZHl6AuDj4cH4qVNxdXV9bPv6MKioqCAxMZHExESSkpLMJvAKhQJfX1+JIHoQAtZoMJCRfJqYG2eITa6grOruBc1CWU2geyrBgkD7m1qUJ5Pg+k3zDTg6wsiRMGaMqD76bweF19TAiy+SHR7OltmzKXFwQK2EaV23EOAeB9Zh0C4cVOLrqq6uZuPGjdy+fRsLCwvmzp2LT23YOYjn8B9//JH8/Hzc3d1ZsmRJkxPfa9eusXv3bgCmT59OB5nsLkFUR/VTnyDCyQkQFy12794tZfc1BT8/P1JTU8nJyTHLLPL19aVbt27s2rXLzF50z+KItDSRNNq5E06fNrertWsnKY4ICwO5nDt37rBq1SpAPM68vLxIT0+XlEXl5eVNBnSbIJfLcXR0xMvdHS+jEffcXNzj4tDUqpCEykpODB7M6Vqbn19KCtN37MDKxUVSIUlf7dr9Jgjb/yX0ej3Xrl0jMjJSIopNC08WFhZcvXpVGltYW1sTFhZGjx49HqsVvKSkhH379kljHVdXVyZOnPj4SJLcXBgxgqL0dNYvWUKRvb1EFMlkMiampBC6dq14X5mMqE6d2DV1qvTwVq36c/78MHbvFjknE2xtYfx4GDeuEC+vOFJS4sio1wjo5OREUFAQvr6+RF26RHRCgvS3tklJzN68mc9ffplqK6u710VBYEh6OoNWr24hi1rwu0MLWdSCFjx+tJBFDwETWZSfny+peAoKCti8eTMFBQXI5XI6duxIbm6ulLejVCqbrBuuC5lMhp2dnRmJZPpua2vL/v37SU1NxcnJiWXLlkn/tIqKCjZs2EB2djYWFhbMmTOHNm3aPNJ+CoLAqVOnOHXqFACtW7dmxowZ2NnZUVZWxsGDB4mJiQHEQOiamhoMBgMKhYL+/fvTuXNnrly5wqVLlyQJ9OMMw66srJQqdE0ZQ79Gg1pTKC4uJi4ujri4uAaWGWdnZ4k48vLy+s0QR8nJyfz0009UVVVhZWXFqFGjOH/+vNS01bdvX4YOHXrfVh+DwcC6detIT0/H3d2dpTodu86cITYkBLuSEgaeOsXeiRPFOvkffsC6ooLoDh2I7tiR7DpEpolsrKqqMiOI7OzsCAkJISQkBEdHRzZ++inZcjmaqirmdeqE8PrrbJozh2pLS7FieP16Tiw/w4K3fPmZrgwkjRLMi87KbWzYMX26pNYwQaHTMWP7dgJNA2mVSrS31A1Gbsx2deECfPCBOOHbvh0ObIDvdwJwsWdP9o8bh0KvZ9nKlbjn5orbfgWYYw+2A+H4HngO0AHzNfBCPcKqDPHv0YCNDCzVkFdrJXC0hcP7oUd/Ll26xIEDBzAajTg4OGA0GqVcMb/bt/G8dYsLvXujU6uRCwL9Bw5kwMCB/7XQdpPF0KQeun37ttnfra2t8ff3JzAwkLZt2z6WrDdBEMhIvUH0tePEJuVTVnmXQFYrtQS6JxLiZKB9qgZlZAkcixRtInURGiou148ZIxIOvxIJDcDt2zB9OtFlZeyePBmdWo2TrY7Z3b7D1TYfnBeBz3cgFyfJlZWVbNiwgaysLDQaDQsWLMCzlhQEcRK+ceNGUlNTsbW15cknn2zSopyRkcHatWsxGAwMBIbUJ4hUKnOCqFYlY8oWO3TokKQ2bQymFqe6eXfOzs48//zzvPHGGxK5L5fLad++PcnJyWbnAhDbrWbOnNk0SZCXB3v3isTR4cNiiIsJ7u7i654yhVMWFpz85RdAbLXSaDSkpKRgaWnJokWLkMvlZGdnk5mZKdnY6hYfNAVra2s8PDzwsrTEo6iI8sOHOeLvj06txr64mFlbttCqdixQ50HQubM5gdSpk3hu+T+O6upqLl26xLlz56TWVSsrK7p164YgCFy5ckW6ptvZ2dGvXz+6du36WBeCjEYjFy9e5NixY+h0OhQKBQMHDqRfv373vf41G1lZMHy4qABfvJgya2tpLKhUKpmem0vgl1+K91WrKbayYsWf/oSulkRMSWnP+vVzEATxd2dnmDRJYPToLBwc4khMjJPs/yZ4enpKYw9nZ2dRMbVvH1UmUt5oZOTJk/T55Re+e/ppckzXY4MBFAoGx8XR7qOP8Pb1bSGLWvC7QwtZ1IIWPH60kEUPARNZtGLFCpYsWSK9cVqtlvDwcBJqJ519+vTBxcWFAwcOYDAYcHZ2ZsyYMSgUCoqLiykuLqakpISSkhLp5/utbMLdwbeNjQ2dO3eWCCVLS0uOHDlCRkYGSqWyVrr86F77hIQEwsPD0Wq1WFtbM2PGDImIio+PZ//+/dIkoK66wdXVlQkTJuDm5saVK1c4f/68JCVXKpVSw9mjhmH/NxvUmkJFRQXx8fHExcU1kH/b2tpKg7c2bdo8voHoA0AQBM6cOcPx48cBcUDZrVs3SSFmaWnJ5MmTm328mFRuFhYWLBs2jPiXX+bIsGHIDQZmbtnCrqlTqba0pG1SElqNhsw6A06ZDKysrKmurjZ7n+zt7SWCyESwlZaWsn7FCvK1WqzLy1nQvj0VK1awZfx4dGo13unpzN24kawX/kWHL5YRXjOOjhzCGyj8+J8c+cWVLftsKMOWp1v9zJScFRwdPpxzffvWf4MIuXmTybt3o9LXBkw/9RT87W9wr8HyggWwYQP4+Ym2mI5tILMUAdg8bx6J/v645eSwbNUqlCayeDMQaAO2w2Drbvhb7ba+eA+e6CvmIlVehaLtUFoKfwaiEBVJwcBl0xsJvOYAi3uTXtyJbSfsqKgyYmmpISAgkJs3b2IwGJALAt0uX6bI3p7kWluhs0bD+Fmz8K1HnD0u6PV6UlNTJYKobkg5gIeHh6Qe8vT0/FXJVEEQuJ2RSnTUMWLjMyituKvmUCu0BLgnENK6mPZVHqjOKeBENFy6bL4RW1sxk8dkWauj4HlkHD+OMHs2Jzp2lBQp7Tzymdb5eyzVNdD6U3B7UVLDlZeXs379enJzc7GysmLBggVmgf+CILBz505u3LiBWq1m6dKlUtZJfZRcvMiqffuokMkIjolhxvbtom1SpRJVVjNmwMSJZgRRZmYmsbGx3LhxwyzPzQSThbSkpESaGJvaM9VqNePGjUOlUhESEkJ6ejpnz54lNjbWbBum+5uudabtjhkzhu7du9/7/Swvh4MHRdXR3r1Q59gz2tuz6plnyK61Lw0ePJjExEQyMzOxs7Nj6dKlZopKQRAoKysjKyuLrKwsMjIyyM7OlqxK94ICQK/HoFQiNxgYZDAQlpOD6to10c5Xl9AyQSYTFUd1CaTQUPD2fqQ8sN8KysvLOXfunNkCkr29Pd27d6eqqorLly9LSkMnJydp0elxXzNzcnLYs2ePpITz8fFhwoQJuDzODLPMTBg6lDtlZWxYtIgqjUZSFFlYWDBHp6PNW28BIFjbIFRW8O0TfySvtfgaCgqcWLVqGU5OGqZMMTB0aBoWFnEkJMRL4y0QPyu+vr4EBgYSGBgoHb9FRUXs27fPLBZAU13N7IMHaXPtGuFTp3Kjc2cAZLWFEYHJycz64gsyq6rw9vZuIYta8LtDC1nUghY8frSQRQ+BuplFvr6+zJs3TwpYFASBEydOcPr0aUBcEe3Xrx+7du2irKwMtVrNlClTzJpqTDANTOuSR/W/N2eVs26tfbt27cwyk0yk0oNOzgoLC9m6dSu5ubnIZDJGjhxJ7969kclkaLVajh8/LtmYTMoA06CvZ8+eDBs2DKVSSUxMDJGRkWYNZ8HBwYSFhT3yoOS/3aDWFLRaLYmJicTFxZGYmGhms7G0tCQgIIDg4GDatm37q1nm6r+eXbt2EVfbzmWy6pnazlq3bs306dObXWEdGxvLttp8hZlTp2L50ous69sPQS5n6NGjRIWGUlB/0C0IWFVVUm1tiVG4O1l3cHCQCKL6pEFRURHrfviB4ooK7EpKWGg0kp+czPbQUAxKJe2Skpi5dSuG0ZMJuLqNP9x+jdf4iAwLC3y0WkpKSrCzs2PXLli0CEpLBfZaTGecNpybHTqwe9Ik9PVULJYVFUzbsYN2t26JNyiVIiH0yitQJ0NCQkmJOJlLTYWFC+G9d6BNWxCg3Nqab55/nkqNhj6RkYw6fLj2SeRwwAi2GrDqCv85C18jTgZ37hRVEACGckiaALkn4UU5XDaClQqme8CGDDDxykOA96DEaMfWS7PJKvFEJjMysEMGmUWtSMoU99GuuooOl69wo3NnymtbdkKDghgxYcJjUeGVlZVJ9rLk5GSzc5VSqaRt27b4+/sTEBDwyEH8DwtBELh9+zYx1yOIiUugtPzuZU2lqBGJI680/J18UEW5w6k8OHIC6uRpARAScpc4GjBADA158BcDn3yC9p13CJ8yhYTAQADC/G8wPCAcudIO/LaA/WjpIaWlpaxfv578/HxsbGxYuHBhA1vhsWPHOHPmDHK5nLlz59KuXTvz54yOhu3b0YWH82O/fmS3aoV7djZL169HPWTIXYKolmQ35UrFxsYSHx/fKEFkgp2dHR4eHlIrW10y2MPDg+nTp+Ps7ExsbCwhISFkZGTg5eXFwYMHpetHfajVarNzqJubG/PmzWveMVRTAydPip+r3bshK4siBwf+88c/YlCpkAkCC1xc2G8wkF9cjIuLC0uWLLnv56Gqqors7Gyys7O5ffs2d+7ckRYq7gd7e3u8PD1ppVTiXliIR1ISNlFRyKKiRCVKY3BwaGhj69Dh4Y67/wEKCwuJjIzk2rVr0jHh6upK165dKSoqMrOUu7m5MWDAAEJCQh57DqFer+eXX34hIiICo9GIhYUFw4cPp3v37o+XsE5Lg6FDSdPr2Tx/Ptra5liDwYC1tTXzbWxwf/ZZZEC5wh4bQwlHBwwjYtgAAHQ6FTU1i+nXrwSDIY7ExASzHDCVSkX79u0JCgrC39/fLLvJaDRy7tw5Tpw4Ib6ntfYyj5ISZu/fj318PGf69uXYyJGmB4BcjnN+PssWLMCiVy9u377dQha14HeJFrKoBS14/Gghix4CJrLoH//4BwaDAScnJ+bPn2+mkImOjmb37t3odDocHR2ZOHEiJ0+elBo+Bg4cyODBgx9ogCIIAlVVVRQXFxMVFSUNrr28vDAYDBQXF9+3+QXEwXdd8qhuZpK9vT02NjaNvq6amhr27t3LjdoWnI4dOzJhwgSJHMrMzGTPnj1SQKWpwQpEdc24ceMIDAxEEARSU1OJjIwkqU67zeMKw75Xg1q/fv3w9fX9r9nC9Ho9KSkpxMbGkpCQYLYibRrwBQcH4+/v/6tc2PLy8ti6dSsFBQUoFAoGDx5MbGysZDsLCwtj2LBhzV65LSgoYNWqVWi1WsLCwgg7c4Zvq6uptLbGurycCmvruyvggoBlZSVajUYMz6yFo6OjRBC1atWq0f9FXl4e69aupbyiAqeCAhbcvElG167stLFBkMsJio1l2o4dyL28GdomGdfTP7GdmQDc/vprvJ97TiKLABITYdo0SL1RyiW6E0ASua6ubJ4zh+La3JW66BQVxehDh7CqqyCYPBmWL4fevc3vHBEBAweKg+7Nm6H0Fjz9OgAJAQFsnjsXgAXr1tHWdDwG2sKGMpCrQOULbyfCTsBSAydO3n0OYyUkTYa8I/CyHM4bxQni55/DG69DUbF4Py9bWB+Kzj6dPZe7c+OOuGLc1fsK7VwTORI7ipIqBwD80lOwLhbzpACsBCOjpkylU+fOD3w+ys7OltRDd+omrlKbNVWrHvLz8/uvEKMPApNKJubmVWJirlNSdtcmrFLUEOCWQEirOPx9XVBldoZzMjh6Cc6eNc/HsbKCIUPukkeN5evUR0kJLFlC4alTbJk9mzw3NxQKGRM776Gz1yWw8If2e0ATKD2kuLiYdevWUVRUhL29PQsXLsSp3rF7+fJl9u7dC8DEiRPp2rXrXYJo2zbRLhkXhwD8NH060R07YqXTsaxtWxymTRMD1BHVmklJScTFxZGQkNCs64qbmxshISGcPHnSTBEEYljwiBEjJOtjXbKodevWCILAzz//zLVr15DL5bRp04bU1FRpG3K5HAsLC8maJJPJpKbGZh+zpgqpnTu5eu0aP9eqCx2Kipi3cSPrn3ySUo2G1i4uLFi27IHtkDqdjry8PLKysrhz5w6ZmZnk5+c3sNQ1Bo1Gg7u7O54ODrhXVOCRmYnLjRsooqLEgPHGLOwKBQQGimR1XRLpv521dQ9kZ2cTERFhVkrRunVrunTpwp07d4iKipIWtry8vBgwYMBjKcNoDGlpaezZs0cqqQgKCmLMmDGPn7hOSYEhQ0hSq9k6ezZ6pVJawLOxcaB1sg8zvpmGHIESbLGnjDuenqx88ilktdyYp6cnubm5ZtEFVlZWBAYGEhQU1OT5NCsriz179jTIU+xcUsL4DRtQ5eURExTE9lmzpHwiZDLUWi3LvL1xefZZgBayqAW/W/xfIIs++ugjXnvtNf785z/zr3/9q8n76XQ6PvzwQ9auXUtmZiaBgYF8/PHHjB59d4GprKyMN998k507d5Kbm0vXrl3597//Tc+ePaVt/O1vf2P//v2kpKRgb2/P8OHD+eijj8ys7Q+DX375hU8//ZTLly+TlZXFzp07mTx5cpP3f+aZZ/juu+/44osveOGFF5q83+DBgwkNDb3ne/OgSEpKomvXrpLz5144duwYb775Jjdu3MDa2ppFixbx/vvvm0U7bNu2jQ8++ICEhARcXV157rnneOWVV8y2o9Vq+fvf/y5FyLRq1Yq33nqLpUuXPtK+/OlPfyIiIoKbN28SHBzMtWvXmrxvc/e7hSx6CJjIolu3brF7926Ki4uxsbFh/vz5ZnL/7Oxstm7dSnFxMWq1mkmTJpGWliaRPP7+/kydOvWhT2gHDx7k/PnzqNVqli1bhouLC1qtVrK4nT17ViKnbG1tMRgMzZPPKxQSiVSfSLK3tyc2NpajR48iCAJubm7MmjVLmrQYDAbOnj3LqVOn0Ov1KBQK1Gq1NMgPCQlhzJgxkhIrNzeXs2fP/mph2P+LBrWmYDQaSU9PlwKy60vJ/fz8CA4OJjAw8LFUAcfExLB7925qamqws7OjV69enDlzhurqajQaDZMnTyYwMPD+G6qFTqfjhx9+ICcnh9atW9PJ1pbjV66gbayRpna10gSnmgJCBvQkpMtwPDw87jkZyMrKYsOGDVRWVuKWk8P8fftIeOEF9paUgExG56goJu3ejVyl4q8LszmwKoNz9MGaSvjLX7j95z/j7e1tRhYBVFTAM8/AtQ03OE8vrKim2sKCLbNnk2ZqkKoTfm1RVcXogwfpkpCArPb4BWDwYJE0GjnyLjH29tvw97+Lk+3r12HOCIgU7ah7x43jcs+e2FZW8sxXX2Fl2tZif3guEbHI2BX+nAMRgKsLnD0n2lEAjNWQPA3y9sOrcjhjBLUa1q6Ff/8bzp0T76dWw7ZtCOMGcfbMQY7+Eo8gQGuXMqZ2O8jVW25EJvfDYFSiEPR0jLpBpldr8muVKe002Ywdq8DJPRA0IWAZAkoPM/uLTqfj1q1bxMfHk5iY2EBl4unpKRFE9/s//5Zgaj2Mjr5JTPQ1SkrrrOIravB3SySkVQz+3nrUiiFwxRVOZcChw+a1RCD+38aMEYmjwYPFbJq6uHkTpk4l2Whkx/TpVFtaYmslMKvbKrwc7oDtCGi7FZR3Fx8KCwtZt24dJSUlODo6snDhwgb22sTERDZv3owgCAwaOJDBLi53Q6prVYUAqNWcWrSIk7XtcosWLcLHx4eqqioSEhKIi4sjKSnJbKKq0WgQBMGsfhvuqlhNE/2tW7eakURKpZJp06Y1UNLWJ4tAPD/+9NNPxMTEoFQqmTx5MgkJCVy/fl16nIWFBTU1NdJz2NraMmfOnAcudBCMRrasWkVCrQK1+8WL9L5wgR+XLqXa0pL22dnM9vBAMWWKmCP0kMex0WiksLCQrMxMbv70E4kyGUIzrzlyuRxnZ2c83d3xANzz8vBITMTy6lWIioKmSjXc3BqqkIKCft3MrToQBIG0tDQiIiLMFoP8/f0JCQkhOTnZ7Hrs6+vLgAED8PPz+1XOF9XV1Rw5coQrte15NjY2jB07luDGlKKPioQEGDqUGDs7fpo+HaNCgUwmRxCMlJa6cXZlJ34pH4wSAxVYYlRYUOWo5Idn/0CNouFx4ejoKBFE3t7eTY5XdDodJ06c4Ny5cwiCgMxoFI8zo5FRFRX0/vJLZDod6T4+rF68WLw217nWzcrOJuibb6TttZBFLfi94vdOFl28eJGZM2diZ2fHkCFD7kmIvPrqq2zYsIFVq1YRFBTEoUOHeOmll4iMjBQXioBZs2Zx8+ZNvvnmGzw9PdmwYQNffPEFMTExeHl5UVJSwvTp01m2bBldunShqKiIP//5zxgMBi5duvRI+3LgwAEiIiLo3r07U6dOvSdZtHPnTt59913y8vJ45ZVX/qtkkU6no2/fvri6uhIZGXlP0iQqKopevXrxxhtvMHfuXDIzM3nmmWcYN24c//znPwFxvydOnMhXX33FyJEjiY2NZdmyZbz++us899xz0rYmTZpETk4O7733Hu3btycrKwuj0Ui/fv0eaX/+9Kc/ERgYyPnz57l+/XqTZNGD7HcLWfQQMJFFJSUlyGQyNmzYQG5uLhqNhrlz5+Lt7S3dt7Kyku3bt5OamgqIB7m9vT379u1Dr9fj5OTErFmzpGazB4HBYGD9+vWkpaXh7OzMsmXLzAJABUHgl19+4eTJk4BoBxs+fDhlZWVNZiaVlpZyv3+1TCbDysqKqqoqjEYjCoWCbt26ERgYKJFKpaWl7N27l1u1dh4rKyuJqNJoNIwYMYKuXbtKg8OysjLOnz/fIAy7Z8+ejyWs+n/VoNYUTOGwJuIov57Nxdvbm+DgYIKCgh4408loNHL8+HEiIiIAaNOmDS4uLlJrlpeXF9OnT3+gLCdBEAgPD+fmzZsoFAqMRqPZcaLSatGp1WaTKuf8fEKiowkpjMF99zPI2rxz3+dJT09n06ZNaLVaPDMzmbdxI9c++IAjtSexHhcvMnb/fmSCwO53rrLkHR8u0pN2pIiZMgcOcDs7u1GySNwP+OYbuPCnDawxLMC0B7snTSIqNNRstdUEv5QUxh0/jnOPHmIGimkSHRoqkkbTpom/DxggEjcDBoh5KV6uUG2kRqVi5TPPUODsTHB8PDM2b0ba+pqR0LHWnlZtA0+WQxzg314kjGoD9DHWwK3ZkLcTXpfBidpcmc2b4fx5+PTTuzv5pz/BF1+QlJLCTz/9RHV1Nba2tsyaPgGNLJMDRy6QnCESVvYVxfgkpRHToQMGpRKlQccgv5OEdTyLQm4EhSOlxq4k5HciIdOVW5kG9IY6/3eVinbt2hEQEIC/v/9jITn/1zARRzExMcRER1FcUiH9TSnXicSRZzQBHtmonYZAZheI1MHh03DmDNS1CqvVourMRB5du4awbBnnOnfmyMiRCHI5rV0qmBn6DbaacnB7Qcwokt0lyfPy8li3bh3l5eU4OzuzcOHCBsd1VlYWq1evRqfT0cVoZNLWrcji481fx+jRMGMGscHBbKtVH40YMQKVSkVcXBypqalmmXn29va0b9+ekpISs0k/iPbRsrIyDAYDvr6+jBs3jtWrV5stRlhZWbFs2bJGzzONkUUgXtO2bt1KYmIiarWaRYsWIZPJWLdunZm6qa7VGqBz585MnDjxgbJtKisr+frrr6WFjLk2Nmh++YV1nTqhV6noHBXF5F27kPn5mTerPUJ+Ts7mzWy5cIFiBwcUej2BrVujt7Pjzp07kgr3frCxsaGVhwce1ta4l5XhkZ6O0/Xroo0tIUE8f9WHWi3a1uqTSI2oKh8WgiAQHx9PRESEFGIvk8no0KEDAQEBxMTESFZogPbt2zNgwACzBr/HjdjYWPbv3y+9t926dWPEiBG/ziQyJgaGDeOahwc/T5yIIJdjNMqQywXS0705vakv16tDsUDLnVZexPbtR5KrEzn1lGCtWrWSCCI3N7f7EmjJycns3btXGugrdDoMKhWW1dVMz8uj7Q8/AJDj5saqZcswmMY6tYHWA2JiGLphgxmZ2EIWteD3it8zWVReXk63bt1YsWIF77333n0JEU9PT9544w3++Mc/SrdNmzYNS0tLNmzYQFVVFba2tuzevZtx48ZJ9+nevTtjxozhvffea3S7Fy9epFevXqSlpUnn54yMDF5++WUOHz6MXC5nwIAB/Pvf/2527qVMJmuSLMrMzKR3794cOnSIcePG8cILLzRJFi1evJi1pvbIWty6dQtfX19OnTrFK6+8QlRUFE5OTixatIj33nvvvqKDV199lTt37jBs2DBeeOGFe5Imr7/+OkeOHJFiPAD27NnDzJkzyc3NxdbWlrlz56LT6di+fbt0n6+++opPPvlEamA9ePAgs2fPJiUlpYFCvC6+//57PvvsM2kf//SnP/GHP/zhnvtjwjvvvMOuXbuaJIseZL9byKKHQF2yyM7OjqqqKjZv3iwFS8+cORP/2iBZEAfAhw8flhRFwcHB9O7dm507d1JSUoJKpWLy5MmEhIQ88GspLy9n1apVlJaWEhgYyKxZsxoMLi5cuMCBAwcA6NSpE5MmTWpyUG0wGCQyqbHMpJKSkmbJ6q2traUMnLpyao1GIw36fX19GT9+vNQoB6Is7+rVq5w7d65BGHafPn3u+aFqDv7XDWpNIT8/XyKO6tt53N3dJeLofoPHyspKduzYIZF03bp1IycnRwry7NOnD8OHD2/2pEqr1RIfH09kZKRkL7wXZEYjvc6fp9vVq7jm5iJTAHu7wqgLZhPgxpCcnMzWrVvR6XT4ZGQwZ8MGzi5fzi+1+9vvzBmGHT2KDEh9dQUhXzxFeM04RnNIDJi+eBGcnaWBbmNkkQnnzkHC8D+wsOLuauqRESOINDH6JmVULXGk0OsZePo0/YYMQVFcDKtWiVIlEJUkf/kLDBoEvXqJAbvvvw89g2GkWIF8p1Urfli2DKNczqRduwg1nbyVSohcCPIfxd/zVbBYB9lAv35w9OjdXBJBB7cWQN5WeFMGRwRx4rpxoxjAPG0amCbU3bvDoUMUAFu2bCE/Px+FQsGECRPo3LkzsbGxHDp0SFK3+aanowdu1w4MnHRF+PjeIrusFdml5qoNe8tiAtxTCfDR4+vjhtImRFQiaUJA7Y3kpfg/ABOpKxJHNykqvhuWLBFHrWIIcE9Abd8DFCPgqhMcjxFDlmuVnSbolUr2jh8vEpNAqG8a44LXoVTKwedbcDGXH+fk5LBu3TpRZefmxoIFC8wJOUGg+Nw5fjh0iHKZDL+UFOZt3IjCYAALC4kgYsIEsLMjJyeHH374AZ1Oh7W1tdREZYKbmxtBQUEEBgaSlZXF0aNHG2SlBAcHc/PmTYxGIwEBAUyZMoU1a9aYnR+sra15/vnnm2wva4osAnG1a9OmTaSmpmJpacnixYvRaDSsXbuWwsLCBhY3EywsLJg2bZrZtfd+SE5OZsOGDYB4bXruuefIjI1ly759CECfCxcYuX//XXLXzU1qVmPoUPE9fkBURUWx45tvSKlVQ/WzsWHoiy+i1WrJycmRwrTv3LkjWabuB6VSibu7Ox4uLrjrdHjk5OAeF4f62jVR6dhUzlTr1uZB2l26iOezByDEDAYDN2/eJCIiQmrmUigUdO3alTZt2nDt2jWzkOWQkBD69+//wGqwB0FZWRn79++XyCknJycmTJjwqwX6G69dxzB0OFcC2nJwzBjg7ppDYqI/NdmDeT9jBMltfYgLCqKkEQLVwsKCJUuWNBlGXx+VlZUcOnRIUt5pjEa0goCgUOBeXs6sS5dwrF0oLHZwYOWyZVTVqhzlej1GpZL2KSnM+egj5PX+Fw9LFv3nP//h008/JTs7my5duvDVV1/Rq1evJu+/fft23nzzTVJTU/H39+fjjz9m7Nix0t8FQeDtt99m1apVFBcX069fP7755huzz3hhYSHPP/88e/bsQS6XM23aNP7973+bnScPHTrE22+/TXR0NBqNhoEDB/LZZ5/9asdDC/53qD+pFRCo4f6Oil8DaqyQ0Xy15KJFi3BycuKLL75olnrG2dmZTz75hCeeeEK6bf78+Zw5c4bU1FTKysqws7Pj6NGjDBs2TLpP//79USqVkpCgPo4ePcrIkSMpLi7Gzs5OXITq0oWwsDBeeOEFlEol7733HpcvX+b69evNsmw3RRYZjUaGDx/OpEmT+POf/4yvr+89yaKSkhLGjBlDx44d+fvf/w6I+XfZ2dkEBASwePFinn/+eeLi4li2bBl//OMfeeedd5p8XcePH+fJJ5/k2rVrhIeH35c0efnll7lw4YKUS2x6v0aMGMGJEycYPHgw06ZNw8rKivXr10v3+f7771m2bJlE+vzhD38gISGBHj16sH79eqytrZk4cSL/+Mc/pAy6jRs38sorr/D111/TtWtXrl69yrJly/j8889ZtGjRvd9w7k0WPeh+t5BFD4H6ZBEgsYiJiYnI5XImTZpE59pMEBOuXr3Kvn37MBgMuLm5MXHiRI4dOyZN7Pv378+QIUMe2BqVmZnJ6tWrMRgMDB48mEG1jTp1cePGDXbt2oXRaMTf358ZM2Y8lJpGEATKy8slAqmoqIgbN25Ig8SmBvL3QuvWrSUFjcnyZmFhQUxMDGfPnjXz3wcHB9O3b99HXu36LTSoNYWSkhLi4uKIi4sjLS3N7P10cnKSmtVat25tRhzduXOHbdu2SQRkz549uXLlimQ7mzRpUqPB6vVRU1NDYmIi0dHRJCYmmtlR6q/oAzgUFlLs4AByOdO3b6dD3drtV9XwbhxY+N3zOePi4tixYwcGg4F2mZnMXLOGE088wbnaVdehR48y4MwZAKrGT8f/6nb+mCkGWguWlsjOnhUnOtAssggg77aWgg4DCCoVVwh0CgtODh14lzCqpzACcM3NZUJGBt5vvw379sGXX4JpQufuLqpItm8XSaCICPjqb7DhCACn+/fn+PDhqAWBp7/8EqeiIvFxnp4QsQAKPhZ/TwGWAuWIE/0tW+5a+gQ9pC6FvPXwLrAf8W+rV4u5OYMHi5kZAHZ2cPgw2tBQdu7cSXyt0qR3796MHDlSCns9e/as2DwlCNiVlFBib99gv73dBfxb5RDoehVX9SVksiYIY7k1aILBssNdAskyBNS+v3sSyZTRFB0dTUxMDEWm/x8icdTeLamWOIrHwqoV2I2DvK6wJxW+/A9lBgNbZ80is3VrZEYjow4fpFfNBWT9rGHWV9B3sdn7fufOHWl1sFWrVsyfP18kswVBtCFt3071rl38OHgweW5uuOXksGTjRjRDh4rHzfjxYGcnve6oqCguXrzY4PNrOv8GBwfj5ORETk4Oe/fuldQhJgQHB+Pp6cmxY8cAceFh4sSJbNy4UVLOgpiJ98wzz9xTEXkvsghEknr9+vVkZmZiY2PD4sWLsbCwkFrg1Go11tbWZv8DE3x9fZk5c6ZZ6O+9sH//fmmVsF27dsybN4/r16+za9cuAIa7u9MvIkJUFdYdTNnawtixInE0Zoz4eWsmjMXFHHv9dSJriYF21dVMW74cy3olA3q9ntzcXLKyssjOzubOnTvk5OQ0a8EGRAVYKw8P3C0s8CgpwePWLeyuXRNVSHX+Z2awshKtd3UVSJ07i/tbBzU1NVy9epXIyEiJdLawsKBHjx64u7tz6dIl0tPTAXFc0LlzZ/r169cgkP1xQhAErly5IrV8yuVy+vbty6BBgx7Z0l4fej2cPg3nv73CU9tHcGNAR04OHWp2H42mDb7eNqRdv0RVneNRqdPhm5pKir8/RkRy7ZlnnmlWG5sgCNy4cYNDhw5JSj7X8nLyasmRDhUVTNy4EXXtolOFtTXfP/GElM1naj5zLCxk2bRpWA4c2OA5HoYs2rp1KwsXLuTbb7+ld+/e/Otf/2L79u3Ex8c3qpyPjIxk4MCBfPjhh4wfP55Nmzbx8ccfc+XKFTp27AjAxx9/LGWy+Pn5STkhMTEx0oRlzJgxZGVl8d1336HT6ViyZAk9e/Zk06ZNgKg6CA4O5qWXXuKJJ56gpKSEF198kbKyMsma2IL/O6g/qdVSwZ/43yiev6QcC6zvf0fERb3333+fixcvotFomkUWzZ07l6ioKHbt2kW7du04duwYkyZNwmAwSA6Nvn37olar2bRpE+7u7mzevJlFixbRvn17aUxYF9XV1fTr14+goCA2btwIwIYNG3jvvfeIjY2V5hw1NTU4ODiwa9cuRprC8u+BpsiiDz/8kBMnTnDo0CFkMtl9ySJo3Ib2xhtv8NNPP5m9xhUrVvDqq69SUlLS6Ly6oKCArl27smHDBgYOHMiaNWvuS5ocPnyYMWPGsGHDBmbOnEl2djZz5szh9OnTbNq0iTlz5rBy5UpefPFFfv75Z4YMGUJSUhKTJk0iLi6OyMhIwsLCGD16NCdPnmT48OG89dZb5Ofn84c//IEhQ4awevVqQFTf/uMf/2DOnDnS87/33nvs37+fyMjI+77nTZFFD7PfLWTRQ6AxsgjEFbaff/5ZWukZPXo0veuF4WZkZLBt2zbKy8uxtLRk6tSppKSkcPbsWUAcrJpkhA+Cq1ev8vPPPwMwZ86cRivQExMT2bZtG3q9Hh8fH+bMmfPYZJpRUVHs3bsXvV4vBaQpFAozVVJOTg7FxcXNIpNUKpWUkaRQKCgoKDBbZfX29qZv374EBgY+Us7Bb6VBrSlUVlYSHx9PXFwcycnJZpMEGxsbiTgqLi7mwIEDGAwGHB0d8fHxISoqCmie7Uyv10sEUUJCQrNa9xwKC5m2fTs7p0+n0NmZTtevMzU8/O4dugMH14HLgntu58aNG+zcuRNBEAguKmLyf/7DwZkzuVp7DI/Zv59etao8o08bhvik4HbmbqA1mzfD7NnS9ppLFgEYUtLQduiKVbU46SxSuhAxqjeXa8P/AIk0khsMUlB39ytXGN6/P5qnnhKzgz77DGonRiiV4kzCzw8uX4YAL8ivwiiTsXbxYtLbtKF1WRlLvvgCuWniPmkSfNsHMl8Tf78EPAfoEVVLdW1mggHSn4Gc7+FDYBciybBypdjctnChGGZM7e3//CfCCy9w8tQpfvnlFwD8/PwYMWIEGRkZ3Lx5k4yMDLP3xTShALDRahk7bhzBkuqqBrSJUB0DVTF3v2vjRfVTY5BZgiZIJI40HWq/h4BFW0T52e8LJgImJiaGmJgYCuvkxyjketq7JhHSKprAOwlY/E3LbUsvts6ZTbmNLZZGHdMPb6LtuVvmG/XwgFGjYPRoMjp2ZOPevWi1Wlq3bs28uXPRxMXdzSBKSsKgULBh/nxS/fyw1el4IiAA+ylTwNZWykczkc4mlaYJbdq0oUOHDgQFBWFbSwJotVpOnjzJOVMGVi0cHBwYM2YM+fn5HDkiEp/du3dn+PDhbNy4sQGpNHfu3Puqe+5HFoHYOLZ27VpycnKwt7dnyZIlqFQqNm7cyJ07d7CwsGDgwIHExcU1OH7lcjljxoyhR48e93wdIC4cfPPNNxLxNH78eLp3705kZKS0vxMnTqRrx453m9V27TJvLlOrRRvs5Mlik1xz1CFGIzfff5/dWi16lQrHigpmL1iAW6dO93lYbQ5SLYFkUiI1J4QcRELHw8MDD0dH3Kur8cjKwjU6GmVUFNy4cVedWB9t20JoKFWdO3PBw4PzRUVU1bGM9+7dGzs7O86fPy8t8CgUCkJDQ+nXr98D26kfFPn5+ezZs0ciqDw9PZk4cWKzlTrNgVYLx47BTz+J5XptCy5wkFFcGtmLs7WB6SbUX1ixrKwkUKMhcPdu2sbE8ONrr5FTO4GZMWNGs5TlRUVF7Nu3T1JquVhbI09PJ9fZGQSBYRUV9PvXv5DVLvBo1WrWLF5MtimotvZapqqp4UkXF9xefLHR53kYsqh379707NmTr7/+GhCPU29vb55//nmWL1/e4P6zZs2ioqJCCuQHUfkcGhrKt99+iyAIeHp68vLLL/OXv/wFEBfS3N3dWbNmDbNnz5bOIxcvXpQ+6wcPHmTs2LHcvn0bT09PduzYwZw5cyTyEETbyKRJk9Bqtb+54oUWPBp+j2RRRkYGPXr04MiRI5LIoDlkUV5eHsuWLWPPnj3IZDLatWvH8OHD+fHHHyXnRHJyMkuXLuWXX36RIkMCAgK4fPkysbGxZtvT6XRMmzaN27dvc/LkSWn8/Morr/DFF180mC9WVlbyn//8h44dOzKmVlEJ8N133zFv3jyz+zZGFl2+fJlx48Zx5coVKUz7YcmiqVOnYm9vLxEtIM5LQ0NDzex0dTF16lQCAgL46KOPAJpFmgB8/vnnvPvuu1RUVGBhYcGbb77Ja6+9xpYtW5g1axaCILB8+XK+/PJLdDoddnZ2/PnPf+add97h3Llz0oLt6dOnyc7Ollw44eHhTJ8+nYqKitpCBBssLS3NiC7THDsnJ4cxY8ZICqc2bdoQXXehnqbJoofZ7xay6CHQFFkE4iTi0KFDnD9/HoABAwYwZMgQM0KjtLSUrVu3cufOHamG3tramp9//hm9Xo+joyOzZs164EHOvn37uHTpEhYWFixbtszM3mVC3UwYd3d35s+f/9hyRrKysti2bRvFxcUolUrJ8lIXOp2O48ePc/78eQRBkD4EpkGVSqVqFlFhgkqlwt3dHV9fX5ydnaXMJDs7uwfKr/gtNag1Ba1Wa9ZQVLdO2gR3d3dkMplEfPXu3ZsRI0Y0+l4YDAYpbDQuLs5se0ql0kxRBKLUk/R08iwtsSsp4anvvuPEkCFc7tkTu5ISnvnmGyxNEw0r4Jcp0O2ne4bD1m1v6iKXM+7vf2f31KlEh4QgMxqZuHs3obWkF2o1f1mYy6Hv0+8GWr/yCnzyidk2H4QsAuDgQYQxYySxcIqiHRen9yAuOPiuusg0yNbVoFOJklubsjJGx8UR8s47yLp0ERVAH30kZleYEBQEn38M4yaBAMX29nz77LNoNRoGX73KoN277973m29gqh4ynhd/PwC8Wfu3r7+GOr50BKN4v5wV8Cmwvd79vvtO/G4iF8eNw7hlCxFXr3Ly5MkG6hIQJ3w1NTXS58/79m1Kra0pqZ3kBRoMjP3Tn7BravVb0IE22ZxAqo6B6jgQtI0/RmYhNn6ZFEgmIsmiHch+H4N4QRDIycmRiKO6pLZCr8c1N5dcD3eMcgWutrnM6bEZR+siKO4LsTPgyAlxBlprCUv19WXT3Lno1GraaLXMuXMHi4gIqJMbJGg07Hr6aa47OqJWqViydCkuLi5NNi+aFJ9KpZJFixaZTQAFQSA2NpYDBw6Y5eaYVBkDBgzgzJkz0qDEVA6wbds2SVFi2n5Tytb6aA5ZBKLNes2aNRQUFODk5MSSJUtQKpVs2rSJjIwM1Go1c+fORSaTcebMGRITE80eb29vz6JFi+5LVGRnZ7Ny5UoEQUChUPDss8/i7OzMkSNHiIyMRCaTMWvWrLuFAEajaHvduVP8Ski4uzGZTLSQTpkifpnC85t67h072BoZSbG9PSqdjslduxJiykFrJgRBoKysTCKPTCqkuiUK94JMJsPFxQUPd3fcFQo8CgrwSErCOipKVLHduUOpnR1n+/Thco8eYj4d4FhcTJ/sbFReXpx1dCSv9pqhUqno3r07YWFhj79trB4MBgMRERH88ssvGAwGVCoVQ4cOpVevXo+lwKKiAg4cgPBwUVxmcvT1JYL98rEcmTKC6CYIPvuqKoKiogiKi8NnyhTkR47AzZscWbqUyNrJS48ePczyRBqD0Wjk3LlznDhxQioO6apWE5eTQ7mdHRY1NUzLysK/zkRJr1Cwad48brVtK95QRyk7PSODDt9/3+Tzma6hphBcEywsLBq1ltbU1GBlZcWOHTvMJoOLFi2iuLiY3XWvc7Xw8fHhpZdeMpsUvv322+zatYuoqChSUlJo164dV69eJbTWtgswaNAgQkND+fe//82PP/7Iyy+/bKYw1Ov1aDQatm/fzpQpU7h16xZBQUGsWLGCxYsXU15ezrJlyyguLubw4cNNvgct+H3i92hD27VrF1OmTDEbpxsMBmQyGXK5HK1We8/5THV1NQUFBXh6erJ8+XL27t3bgDioqKigtLSUVq1aMWvWLMrLy9m3b5/0d51Ox8yZM0lJSeH48eNm88dnn32WK1euSEqjunB1dUWtVktRFyDOQ2zrKVEbI4v+9a9/8dJLL5mdpw0GA3K5HG9vbzPFcl08LrLIwcHBbMwjCIKUw7ty5cp7tpKZIgocHR1JTU0lJCSECxcuSC1zpn3Jzs7G1dWVY8eOMXbsWHJzc3F1dWXRokUNSiBM46KEhATs7Ozw8PBgw4YNDUQnCoUCPz8/MjMzJVJQpVLRpk0bs/s1RRY9zH63kEUPgXuRRSC+8adPn+bEiROAuAo7duzYBuzg3r17JfVHly5d6NmzJzt27KC4uBiVSsXEiRMlOW5zYDAYWLt2LRkZGbi6uvLEE080emHPzs5mw4YNVFRU4OTkxIIFCx6b7aqyspLw8HBp5atXr16MHDmywYkuOzubPXv2SPk8dQOw7ezsGDRoEA4ODk1mJ90PMpkMW1tbqc2tse9NrSj9lhrUmoJeryc6OpojR440yB0BcaLXo0cPBg8ebKZSMxgM3Lp1SyKI6q5GKxSKRu0NcrmcGTNmUHjoEEeKi5EbDCz58UeqLC3ZNH8+AAvWrqXtrTpKiW9c4ckEUDo0uQ91V+57eHoy4rnn2DF9OokBAcgNBqbt2EFInZWPnW9d5Ym/1wm0HjFCHMXXO7YemCwCeOcdePddBEAGXFN25srCHmT4+NxtljHlFxn0aCqrqKi9GPonJDC2VSsc3n0XLC1Fe9ry5XdJI5kMQtpBtHhRuN6pEzunTUMmk7F03Tpam/I8ZDIxX8TjEqQ9ARjhR2AFotVs505RtWCCIMDtlyHnC/gC2FR7++efw4svwrVrVI8dS7KjIwmBgSQGBlJV7yQvk8no1KkTAwYMwNnZmZqaGk6dOiW16iiMRlqnpZHh44NRoUBdU8PQ9u3puWhR8z8HggG0KfUIpBioigWhqvHHyFRgEXBXgaQJEa1tFv4gf7BK8/8mBEEg99Ytoj/7jGi5nEIzYs1Ie5ckOraOJtA9Ho2qGlSeYD8eNKPghoako7+wVaVCr1TSNjmZ2Vu2oDKR5woFdO0KTzzBcT8/Tp87h0wmo2/fvhQXF5OYmGhG+FpaWhIQEIBCoZDsFvVVP0VFRezfv79BgLWPjw/jxo3D1dWVgwcPSnl7Q4cORaVScfjwYencaDpv+Pv7M2fOnGaR6s0li0BUE6xevZqSkhLc3NxYvHgxCoWCzZs3k5qailKpZM6cObRt25bc3FyOHj3agDQKDAxk+vTp97QiRUREcPToUUDMbnrqqaeQy+Xs3r2bqKgolEolCxYsaDjoFASx3t5EHNUWCUjo3PkucdS5c6PkeWV0NDtWrOBWrV1ngEbD4L/8BfkjhGmDOMCrSyBlZWVJlvHmwNraGmdnZ6orKsgrKJAKATyKi+lz8iQ6pZLIvn0pqrU4WVRX0+viRfrk52MVHGxuZWvV6qFb5ZrC7du32bNnD7m5uYAo2x83btwjj2eKikRiKDxcjB6rK7by9BR4eeA+uuR/yaXu3aiupwK3s7Oja9euBK1cibupzGDuXFFxum4daV26sGbKFECcaD377LP3bQfds2ePpNby9fGh3fXrnLSxwaBU4lJVxezTp3GuY0swymT8NH06MR06SNctk1q0b0wMI9atu2felukaWh9vv/12o/kfd+7cwcvLS7JYmPDXv/6VU6dOSYundaFWq1m7dq2ZxWLFihW8++675OTkEBkZSb9+/bhz545ZvtXMmTORyWRs3bqVDz74gLVr1zaw07i5ufHuu+/y7LPPAnDq1ClmzpxJQUEBBoOBsLAw9u/f/z+NG2jBr4PfY8B1WVmZ1FxtwpIlSwgKCuLVV19t9jxQp9MRHBzMzJkz+eCDDxq9T1FREX5+fnzyySc89dRT0uNmzpxJYmIiJ06caGAVXrVqFa+++iqpqakPTf43RhYVFBSYxYwAjBo1igULFrBkyZIm25pHjhxJYGAgX331lXRbUza05cuXU1xc3Oh4NTY21mzOs3v3bj7++GMiIyPx8vJqthr2rbfeYs2aNdy6datJUm/hwoUkJSVJ9rGVK1fywgsvkJubKwk2du/ezdSpUyXnkZeXF8888wxvvvlmo9u8H5oiix5mv1vIoofA/cgiEy5duiQxtyEhIUyZMsVssCoIAufPn5cG3l5eXkycOJFDhw5J6pawsDCGDx/e7IlZeXk5K1eupKysjODgYGbMmNHoQKSwsJD169dTXFyMra0tCxYseGxZAkajkZMnT0or0T4+PkyfPr0B02w0Grlw4QLHjx9Hp9Mhl8tRqVSS17ZTp06MGjUK63rV00ajkbKyMvLy8oiKiiIxMdGs0rm5uUmmEG4TeWT62fR7VVXVb6pBrS7S0tLYvn07FRUVqNVqWrVq1eBiAyLR06ZNG9zc3KisrCQpKUlioqFxgsjT0xMPDw+uXr2KIAhMmDABZ62WtQcPIsjljN23jw7R0Xzz7LOU29rS++xZRh86dHcDE4ENJ8G2cYWBIAicOnWKU6dOAdCvSxf6P/88W4cNI9XPD6Vez6wtW2hfZwKb/MoKOv7rKXbpxjKKw+Jq/aVLjbb5PBRZZDDAuHFQux8G5Fy27MbFpb3Jd3VFVVMjraab4J2ezm0vLwSFAlVNDUOuXqX3888jHzNGHKAvXAi14bn18dO0adzs1AlHlYqn330XC9Mk39YWbt8GwyFImStmFH0A7AQsNXDqF6hvkbvzBmR9KJJKq6HQyYmEF18kwceHtLQ0MxWRpqqK9u7utBkwgBs3bkiWjYEDBzJ48GDpXJGbm8v+/fulY8q+vBx1ZSV5tZNZz9JSJsybh0e3bs17fxuDYISaNKiKrkMg1X43NiRARShA42+eh6QJEdVJ8t/AwDAmBqZOpSo9ne0zZkir+pbqaqpq7r4+udxIO9dbhHhcJ8g9Hk1yNfGRwWx3mYZBoSQgPp4Z27ejNKkB6qj8Ivv04cjo0YBIbNY909na2krW1DZt2pCWlsaGDRsQBIERI0bQt9Yqo9friYyMlNQYJlhaWjJy5Ei6dOmCIAj8/PPP0oLG8OHDycjIMJuYmRSIjo6OLFu2rNn26Qchi0C8Xq1evZry8nK8vLxYsGABcrmcbdu2kZSUhEKhYObMmZL9uri4mB07dpitdpqItcGDBzdKGgmCwI8//ijZ6vr378+wYcPMGto0Gg2LFy++t+o3I0O0qe3cCb/8clfdB+J5y9Ss1revGdFtLCvjyN/+xrnac5p/RQVTX3sNzWO2b9XPQcrKyiInJ6eBkrQpyOVybGxsqKqqklSIlkYjYenp9Dx8GE29ggYJLi7mQdpduojKy2aEo9ZHTU0Nx44dk0hMKysrRo8eTceOHR9aAZyTI1rLwsNFoV/dt6NdOyPTpmUQHBxHafY1irQNrXoymYzRo0eLgc5//COsWCH+YcgQmDMHnnqKGrWaf/7tb+iMRlQqFS+99FKTA2+dTseJEyck4l6j0TCsWzdyN27kYq1aLbC6mik//ohFLVmGWo1QU8P+sWO51KtXAwt129RU5r37LvL7NNA9qLLot0wWZWdnM3DgQCZPnsycOXMoKyvjrbfeQqlUcuTIkf+5YrwFjxe/R7KoMTSmnlm4cCFeXl58+OGHAJw/f57MzExCQ0PJzMzknXfe4datW1y5ckUiQg8dOoQgCAQGBpKUlMQrr7yCRqPh9OnTkpNj+vTpXLlyhb1795pd25ycnFCr1VRWVhIaGoqXlxd///vfad26NWlpaYSHh/PXv/61yWt4eXm5tBDVtWtXPv/8c4YMGYKTk1OTLZjNsaE99dRTXLt2jW3btmFjY4OTkxNZWVkEBASwZMkSnnvuOeLj43nyySfvG3BdF43ZsXbu3Mlrr71m1uT56aefMnr0aORyOeHh4fzjH/9g27ZtEhGWn5/Pjh07GDx4MNXV1axevZqVK1dy6tQpKfC/vLyc4OBg+vTpw7vvvkt+fj5PPvkkgwYNYtWqVYAYiv2nP/2Jjz76iNGjR6PVarl06RJFRUW89NJLTe5HUlIS5eXlfPvtt5w4cYKtW7cCIg/RWBh5iw3tV0JzySKA6OhowsPDMRqNtG3bllmzZjX4Z6WkpLB9+3aqq6uxsbFhxowZJCQkSNXnfn5+TJ8+vdlNXbdv32b16tUYjUaGDh3KgAEDmtyPDRs2kJeXh6WlJXPnzn2sNalxcXHs2rULrVaLjY0NM2fObHS1qqSkhH379kmrwXUb0ywtLRk1ahSdO3du8qJuyh2KjIw0Y6l9fX3x8/NDoVCYtbkVFxc3auGqDwsLCxwcHLCxsaG6uprc3Ny7g2NLS8mj/99sUKtPMLq4uKBSqaT97tmzJ507dyY+Pp4bN240qsJqjEzz8vIiJCSEkJAQFAoF3333HRUVFYSGhjJk4EBWfvopFRYWdI6KYtLOneyYOZPYkBBc8vJ46rvvUJlG1m7A2Veg7ScNntf0+g8fPizlogwdNIge777LxvbtyWzdGrXBwNy1a2ljyv8BqsZOof21cJ6/s5zlfIxgZSUGWtezOJrwUGQRQH4+dOsmTvaAfJxJtW/DL08MpszODrvKSkrr/a990tIwqhXcbiV+blrducMEnY5WH30Ejo7ihPDSJTHDpE5bVLVGwzfPPkupvT1da2qYWHcVqFs38TGl+yF5Gui08BIQCbi5wNnzYn5ILYwGA+nX3iMhJoKE+EAKVOY2MRdnZ/xzcghYvx6fjAwxJ+nppzF++SWHay2hIKovpkyZIk0GTEGqhw8fltRrHtnZFDo6UmNhgcxoJMxgYNArr6CuF8z7SBCMoLt9l0Sqa2szNmWrkYvWtboEkmWImJMk/y99Prdtg6VLybWyYsv8+RTZ26NSyZkSuptg98vkVncmpvI1YhILzdQdcoMBt5wccjw8EORyQmKjmVoQjmJMaxg/C9wnUnShgrjTZ7haUUGera2ZQsO5sJAgvZ7gkBA8J0xAVjsIKygo4Pvvv6e6upouXbowadIkZDIZt27dYu/evWY5SyAO5oYPH46VlRV6vZ7w8HBplW7AgAFcu3aN0tJS6fxhymRRKpU88cQTD5Tv9qBkEYj5DKtXr6aqqoo2bdowb948ZDIZP/30E3FxcVITUt3sl+zsbDZu3GgmuVYoFAwYMIDevXs3GPSUlJTw9ddfS8TJkiVL8PHxQafTsX79ejIyMrC1tWXp0qXNUyUUFMCePSJ5dOiQuUTFzU1UCk6ZAsOGiUoPQeD6J5+wp6wMvUqFU3k5s+fNw7WODefXQN0cpPj4eJKTk5udgWSCg4MD7u7uuFtb41Faikd6Og5RUWKYdkKCaN2rD5UKQkLMFUhduojEUhNITExk37590rWtc+fOjBo16qGuw+npIqcXHi6GVde9LHbqpGPKlFv4+saSn29u66xffqBWq5k9ezZ+fn5iE+bf/ib+oWNHWLNGtCVqtXz3zjtk1z5m8eLFDWwDJiQnJ7N3715p8N6hQwcGajQc2L2b1NrPy6CKCgZ99hky0/vq5ga5uZwaNIiTQ4bcVRTVKmPti4t5aswYrJoRRvugmUW/ZRvam2++ycGDB82qrk37d/bsWfr06XPf/WvB7wf/l8miwYMH4+vry5o1awBRMffss8+SkpKCjY0NY8eO5aOPPpLyfwC2bdvGa6+9xu3bt3FycmLatGm8//77Uk5OamqqeN5qBKZ2LxCvpa+++ir79++nrKwMLy8vhg0bxj//+c8mx9knT55kyJAhDW5ftGiRtA/10RyyKCEhgUWLFhEVFUVVVZXUMHbq1CleeeUVoqKicHJyYtGiRbz33nvNLjdojDRZs2YNS5YsMZszDR06lCtXrqDVaunSpQtvv/22WWZTfn4+EyZM4MaNGwiCQFhYGO+//34DO1lcXBzPP/88ERERODs7M3PmTN577z2zRbdNmzbx6aefEhMTg7W1NZ06deKFF15gSq06tTEMHjxYWoyvC9P71Jz9ro8Wsugh8CBkEYhk0JYtW9DpdHh6ejJv3rwGA5vCwkK2bNlCXl4eCoWCcePGoVar2b17NzqdDnt7e2bNmtXsutm6WTDz5s2jffv2jd6vqqqKjRs3kpmZiUqlYvbs2bStMxF9VBQUFLB161by8vKQy+WMGjWKnj17NiB+BEEgJiaGAwcOSBPTuqRR27ZtGT9+/D1lgYIgkJqaytmzZ81sCD4+PoSFhUlh2IIgUF1d3cDaZvq5uLjYTH1zP9jb29O6dWvc3d3NrG42NjaP1bJWU1PDnj17uHnzJiAGmuXm5lJVVYWFhQUTJ07E1taWmzdvEhMTYzZBagwqlQpvb2/69OlD+/btkclkGAwG1q1bR3p6Ou7u7ixevJhNn3xChiDglpPDk99/T0xICLumTEFuMPDk99/TykTQyYHwEJhwtVGrkNFoZO/evVy9ehUQA+A77NjB+ooKct3dsRQE5q9ahWedlWmjtzeDvFNpFbmDbcwSb6wXaF0fD00WAVy4IA7sayeL0apQahwFDi0dg1ajoXVlJblyOTUajTQYd87Pp9Otm5ztNgCtQoHMaKT3tWsMmTQJdf/+onWoslK0pl2KgKOi4i61TRvWLl4MMhkzb94keMeOu6/DlMVUdgKSxkNZJSwDEoBAf6qOnSCpsJCEhASSkpLMJnZywUCbW2kEJCQQMGQITu+/L05sDh6EqVPBdGx36gSHD3MtO5u9e/diMBhwdXVl9uzZONVRbFVXV3Py5EkuXLgg5t4YDDjl5ZFbSw44lJYyrksX2i9Y8NhtJmYQBNDdqSWO6hJJ0WAobuJBMlD71SOQQsTGNsVjCr3U6eCvf4V//Yu4wEB2zphBjVKJg62M2V2/wd0uG2z6g98OiEqH7dvJO3KEGHt7YkJCyDVTqQi0c8knpFUkLjb53CpoS2x2MDml5kSMpVxO79xcQg4exLWehYwOHagePZof3NzIr6qidevWLFq0iOrqag4fPsyNGzfM7u7m5sa4ceOklb6amhq2bt1KSkoKCoWC4OBgyZJrY2PT4LwyefJkutQ2ETYXD0MWgWjJWbt2LVqtlvbt2zO79jywa9cubt68iUwmY/LkyQ2y8i5evMjBgwfNVHYKhYLevXvTp08fM9XrjRs3CK8N6rexseG5557DwsKCqqoqVq9eTV5eHs7OzixZsqSB6vWeqKgQCaOdOxs2q9nY3G1WGzuWrJMn2XrqFCV2dqhrapjSuTNBs2Y1/7keEEajkbi4OM6cOSMtPMhkMqkBLzExkYyMjEazzu4FtVotEkjOznjo9Xjk5OAWG4vKlIXUVKaSl1cDAqnC05ODR45I1z8HBwfGjx9Pu3btHug1JSSI5FB4uBg7VRdhYVWMG5eIh0ccOTlJZvmJGoWCtjdukOXuTpGzs6Tqs7KyYt68eeIE7ccfwVRj7eUlkv79+0NyMkeefprI2vGbSbVWH5WVlRw6dEgqSbGzs2Pc2LHY/vwzW+/cocTBAbVOx5S0NILqqlY7dIDoaC726MH+8ePv3l57jVLqdCy1sqLV66836z162IDrXr16SdYQo9GIj48Pzz33XJMB15WVlezZs0e6rW/fvnTu3Nks4Povf/kLL7/8MiCOvd3c3BoEXF+6dInu3bsDYlvR6NGjpYDrl19+mTNnzpipm7KysvD09CQiIkJSW7bg/wb+r5BFLWjBbwktZNFD4EHJIhDr7Tdu3EhVVRUuLi7Mnz9fYnZN0Gq17Nq1S5K79erVi9DQULZv305RUVGTodFNYc+ePVy5cgWNRsOyZcvMJoB1UX9yMHXq1GY1czQXNTU1/Pzzz1LgWufOnRk/fnyjNq6qqiqOHj0qZWyo1Wp0Oh2CIKBSqRg8eDB9+vS5LwmTm5vL2bNnuX79ujTAdXZ2pk+fPnTp0uW+FrKamppGs5JMZNL9iBgQ5fp2dnZm1rb6trfmhnAXFhaydetWcnNzpXrJW7UZQc7Ozvj4+JCcnGwWaNqYgsjBwQG5XE5RUZHZ3xwdHQkKCqK0tJTo6GgsLCx46qmnuLBvH+dTUrCormbZypUoDAYpoHnosWMMqLUaAvBHJfwzGjQNm/gMBoPZhG7ChAm0jY9nXWQkhc7O2AALVqzAzSSnB1CreHF+Psd+TOUsYU0GWtfHI5FFIAZN/+EP0q8n3WfiaBnHnvkTMSiVdEBGXnaWSJbUDsYtqqsZe3Y/CRMmEV0u/k/ti4sZe/s2Ad26weuvi6vo587BSwvhlPhZODp8OBH9+2NZXc2z69ZhW9fCceSI2LBUfg4hYRQFaWrivwsgsVUA6T4+Yo5SLUz5NP5uibSTv4lmm1bMMQIxv+izz0QiJz0dhg4FU06SjQ3s28fttm3ZunUr5eXlaDQapk+f3mASlp2dzf79+6XmKbvycvRAZa3fumN2NqOeeQabByQOHhmCAPqcOgqk6LvfDQVNP07dph6BFAKWwaB4AJVUVhbMnIlw5gynBw7kRG11tq9HFTM6f4WVqhIyJ8LpdvDTTvO6cisrLs+fz97aVcC65HhDGFHIjBgEJa0db7N4ZAYKp3FgMwaii0Qi8OBBOHcOoyCwZc4cEgMCsC0r44mUFOL79uWYVktNHW+NSqVi0KBB9OnTRzoPVVdXS+HRKpUKZ2dnKSw/ICCA1NRUampqJPtqc8J5G8PDkkUgljRs2LBBymeYPn06IF7vTN58U6NZXWi1WrZt22ZWYADiedLU2GUK9dy+fTsxtZljnTp1YurUqYB47f/xxx8pKSnB09OThQsXNmrLuS90Ojh16m6zWt3PvVoNw4ZRMWAAOzIzSa21hw9UKhn82mvIHuMChF6v5/r160REREhKM6VSSbdu3ejUqRPR0dFcvnxZIk1cXV3p1asXTk5O5OTkkJOTQ1ZWlpQZ1BzIZDKcnJzw8PDAXa3Go7gY91u3sDWpkOr9fwQgqksXDo8eTZWlJTJBoI+lJYP79EHdtSvc5xwvCGIUXHi42GJWN/dVJoPhw0sZPjwOR8d4srNTzQgxOzs7AgMDCc7NxfHll9k0ezZ5bm7StdXe3p758+eLlff79sGECeITOjiIgfRPPQXh4ST36cOGWuuoh4cHTz/9dL3XKKo4Dx06JCmYevXqxdA+fUh49VV+dnMTlWZaLbOPHsXVxHIpFDBgAJw8SXRICDtmzLhL2NdRP01JSaHzmjXNJvMfhizaunUrixYt4rvvvqNXr17861//Ytu2bcTFxeHu7t7AQhMZGcmgQYP46KOPGDduHFu2bOGDDz7gypUrUkbLxx9/zEcffcTatWvx8/PjzTff5Pr168TExEgTljFjxpCTk8O3336LTqdjyZIl9OjRg02bxBC/48ePM3z4cN555x3Jhvb6668TFxdHbGzsAzcPt+C3jRayqAUtePxoIYseAg9DFoEoTVu/fj2lpaXY2dmxYMECcZBRB/XzXPz8/Bg/fjwHDhyQvJ/3ariqC71ez9q1a7l9+zZubm488cQTjfoVTffduXMnMTExyGQyxo8fT7dHySOpB0EQOHv2LEePHkUQBNzd3Zk1a1aTSqG0tDT27NkjNQtZWlpKap9WrVoxYcKEZqmsysrKuHDhApcuXZImYlZWVvTq1euRLGR6vZ6SkhLi4uKIiooys5UolUoMBkOzcpNsbW2bzExycHBApVKRmJhIeHg41dXVWFpaYmNjIz2fhYXFffOafHx8CAkJITg4WDpeKysrSUhIIC4ujuTk5AZ5FW3btsXTzY3Pv/ySiIgIqkpLCRUERo0bh6JnT7zT01m8Zs3d6vdg4OR3bD/lyJtvvklqair+/v58/PHHjBw5kh07dhAfH49MJiMrK4vw7dspLC7G28eHOWPG8PLPP+NUmxWSALwCnLB0oKxKT3d0fIqWIU0EWtfHI5NFjeQNnez3BnZF+9kzYyLIZPS0b0X1uePcCA42e9ywC8dwW9aF/dddMRkAQ2JjGZ2UhO3lyxAYCGfOgF8rKNdjUCj4/sknyW7VirbJyczfsAFZ7f/PYGFB2unTJBQUkBB/k6Ji8xwft+pq/IcOJTAoCC8vr7sEat43kP4HsSHt49o7/+EP8NVXYlC2VguLF4vtbSb84x+U/elPbNu+ndu3byOTyRg+fDhhYWFmKkBBEIiKiuLIkSPSpMY5P59CJycEuRxNVRUjgK5vvIGsXkbZ/wS6vHp5SNHid31O049ReYlh2vVzkZT1zlWnT8PMmdQUFLB7xgxiavNyerVPZaRuHYrjApx0hIw6di8rKxg/HmbM4Ly7OwePHwfESXhlZWWjYfV1YaupZHHYKpys79ou0ISA/QRwGA/aAI5s2kpkYSFKvZ7xP//Mhd69uVMndwQg0MGB0TNn4lDnHFpRUcGGDRvIzs5GrVYjl8uprq5GpVIxcuRILly4QF5enpRz4OXlxeLFi5st8a6LRyGLQLTpbN68GYPBIFnsAA4cOCDZTUaNGtWoxSQpKYmffvqpUWIuODhYIo2++uor6RifPn06HTp0AMTruKmauG3btsydO/eBmjcbwNSsZso5qpO/YpDLOTJpEudrCdiA0lKmvP46mkaaTh8EWq2Wy5cvc+7cOcpq6700Gg29evUiMDCQK1eucO3aNSnPqlWrVgwYMICgoKBG7eCmHKS6YdrZ2dnNzkEC8brs7u6Ou6MjHtXVuGdloYyL44BCQUrtOMk9O5uJP/9spj7Fz6+BCsnYxo8LF2WSgsjEjQMolQLjx+fRv38clpbx5OWZZyy5ubkRGBhIUFAQrVq1QrZ5M0XPP8/6+fOlIG8AFxcXFixYIF5jzp8XFakGA2g0YuD5rl3w4ouUOTry5Ysvom8ip6ioqIh9+/ZJpSBubm5MmDABz8pKjr3zDpG1Ia/ta2qY9u23aEz2UQ8P6N4d9u0jxc+PTfPmYVAqGwRa946JYfSPP8IDqOAehiwC+Prrr/n000/Jzs4mNDSUL7/8UrJe1LfQgEjK/u1vf5PGC5988gljx46V/i4IAm+//TYrV66kuLiY/v37s2LFCimbDMSFtOeee449e/ZIVtQvv/zSrOV3y5YtfPLJJyQkJGBlZUVYWBgff/wxQUFBzd63Fvw+0EIWtaAFjx8tZNFD4GHJIhAzETZs2EB+fj6WlpbMmzfPLEDQhLi4OHbu3ElNTQ0ODg7MnDmT2NhY5cD4ZwABAABJREFUKTS6TZs2zJgx474y+NLSUlauXElFRQUdOnRgWm0LU2OobxMaPnw4/fr1e6D9ux9u3brFjh07qKysRKPRMG3atCYtcnq9XqpsNtX6yWQy9Ho9MpmMsLAwBg8e3Kygaa1Wy9WrVzl37pyUdaBUKgkNDSUsLKxJ1VVz0ViDmru7O8HBwTg4OFBaWtpApdScgbRpYgaiykqv1zewAjRGELVp00YiiOoHi9dHTU0NV69e5fDhw2bbvnnzJjt37mTOwIHMSEvj+4oKjpSU8OLTT/OXdetwMuUEqIFTo4g0vMnAQYP48MMPGT9+PJs2beLjjz/mnXfeQafToVQqKS4uZuV33zFlxAgs3dyIOHqU0vR04mpqMJ1+AgAvvw5EZqznG/3zXCaCNTIZydHReNQlZ5rAI5NFIFpGeve+uwxtYcHNBR9TdmMLh8eIK8QdnXrifWgFB7t1Q6gzWeyQdJMxc7OJKHmSc3G3EGqVR8OPH6f7xYvInn4aFkyHfsMByHNxYeXTT6NXqRhy7Bj2paUkBASQ3K4d2jonZYVCjq/zLQKqogn4IAGHgmLR/vTxxzRA/g+Qtgx2CfA+4vL8k0/Ct9/eJdtWrYJnn70bwDtsGPpt29h3+rSk0GhKBVhVVcWJEye4dOmSaE3T67GsqKCsVi3pk5nJ+H79cF248Ne1pj0s9AVQHWueh1QdLdrcmoLSQySOLEJgfTa8s5NiW1u2LF5MjoMDchmMyz1It/BzULfgw9paIogYM4YapZK9e/c2sIOBSP76+/sTFBSEk5MTCQkJREZGmmWsyWQy/DxlhLSKIchxH9YWZdLfou70ZdcVMZOkrZ8PKbfSzbZvV1LCmP37CYqPFzNyBg6EMWMoGTiQ9WfPUlBQYHbOcXNzY9q0aZw6dYqYmBgp0NrKyoqnn376oT9fj0oWgXiN3LZtG4Ig0KNHD2mSeeTIEc6ePQvAsGHD6N+/f4PH6vV69u3b16AlxAQ/Pz/atWsntaOp1Wr++Mc/SvubmZnJ2rVr0el0dOzYkalTpz6+oNy6zWqXLgFwrUsX9k6YgEGpxLmoiNlhYbjMnPnAn62KigrOnz/PxYsXJbLM1taWsLAw2rRpw/nz56WcBRAXGgYMGEC7du0eeP9MOUj1CSSz7J9mQiaT0d7Dg95KJa2Sk7Ey2dhqFxjqo0xmyzWhC1GIX3HqzrSb4kRon1RksjiKi83zury9vaVgeLOxwJo15P31r6xfsICyOse6l5cXc+fOFRebEhLE/DytVmw8O3cOampg4ED0gsA3b79NYe11df78+ZJi02g0cu7cOU6cOIFer0ehUDBo0CD69u1Lzd69/LRrF8m1+RL9y8sZ8vnndxdnBg8WVaF793KnVSvWLl5MTW3mVd1A6zbp6SxYvhxFnQbE5uBhyaIWtOB/jRayqAUtePz4Vcmi//znP9IqQ5cuXfjqq6+kJPDGsH379gaqhMZWGVatWkVxcTH9+vXjm2++MasCLiws5PnnnzdbZfj3v/9ttspw6NAh3n77baKjo9FoNAwcOJDPPvus0eCnxvAoZBGIqo6NGzdy586de+YE5ebmsmXLFoqKilCpVEyePBmZTMauXbuoqanBzs6OWbNmmYWZNYb09HTWrl2L0Wg0a8RpDIIgcOzYMSlcu2/fvgwfPvyxNkaUlpaybds2qalmyJAhDBgwoMnnyMvLY+/evVJzU127hqOjI+PHj292zlJTYdjBwcH07dv3kQdGRUVFzWpQEwSByspKydbWmNWtOSHcdWFra4uXlxft27fHw8MDe3t7rK2t7/u/0+l0fP/99+Tm5uLt7U3v3r3Zs3MnX3/7LZ6enpLNxGg08sUXXzCpdWtWpqZiacq++dQeXkhi1rw/UlFRIWVlVVdX06FDBxwdHZk2bRqzZ8+mT+/e9OjShV79++ORl8eEzEza7trFGmA2kA+4As7Ov/BKwV5e5RNKLS2xr6riyJEjDB8+/L7vw2Mhi0Bc4e/RA0yWwzZtyFv0F65F7iayf38EI1gzkVnR77Pd15dyW1tpsO6Rl8XsYUep7Pw1e7ZdJav2f+mdns74PXtw++orOLEN4bv/x95fx0d1Juz/+Hs0ycQ9JAQIgRgWJJBAcCgStHixUurt7na33eq222671WdruzUqFHcNwS1AgmuIIRGIu8vY+f1xZk5mItjS5/n18831es1rksnYOZm5z7mv+5KtFHl5cXjUKK6FhLQITrWvqaF7Xh5BixYROHIkaiEX0gbCjhL4u+lO33xjZZuTULoashZDnBHek4FRgIULxVwNsxrk0iUYO1YM9wbw8UE4cICzdXXs3bsXQRDo0KEDc+bMaWGbBZEkjYuLk77LDrW1NKjV6FUq5AYD0RkZDH3lFZS/cUDvQ4O+QiSRrIK1k0EnWu+oA94HDkBWly5sfGw29WoN9nU1zFm3AX+TRQ97O5g8VSSIxo+nDjGUMTU1lRs3bliRshqNhpCQEEJDQ6VAfhDHCHNtu0qlIjw8nNu3b0u2MBAn0V387AjrmIkLiaw/MxmDUYlK3ojOaGN1v6h+/Rje2Ij6wAFRoWcaT0vd3Fi1aBGVLi4oBAGD6fM3YMAAHnnkEc6ePSu1BgmCgEwmY+HChW2GYt4LHgZZBNb5QkOGDJFyYI4ePcqxY8eAlk1/lsjPz2f9+vVW9l1LaDQaidzo1KkTjz/+uPQ8N2/eZO3atRiNRgYOHMj48eMffrPS7dtiRde2beReu8bGWbOocnZG3djIowcPEhwdLTarDRlyR8VlRUUFiYmJVscld3d3hgwZgpeXFwkJCaSmpkr3DwwMZOjQoW0GMD8oBEGgurraqoUtPz//jsGarcHR0REfHx887J2oS6qj6vAtlCevEtpwmTBSsEGLXqEgs2tX0kJCSA8OptbiHFABdHV2JqRXL4IGDsShtQWVZcvIf/ddVi9YQJ3FolxgYCCzZ88WVdr5+aJatLpaHLfj4sS2yr59ISeHLS+9xFVTELqlZTM/P5/Y2FjpHKRLly5MmjQJd1dXit5/n/VlZZS7uaHS65l64wY9zCpQmUy0NJ87B/v2Uermxi9Ll1Jnby8FWZuvnSoreWrYMBwsAqfvFe1kUTt+r2gni9rRjoeP34ws2rBhA4sWLeL7779n0KBBfPnll2zatIn09HS8TPXLlkhMTGTYsGEtVAnN/csfffSRlX85KSmphX85Pz+fH374QfIvR0RESP7lzMxMQkND+ctf/sLSpUuprKzkz3/+M9XV1VJOzt3w35JFYJ2fIJfLefTRRyWZuyXq6+vZvHmzlLMwbNgwevTowcaNGyktLUWhUDBp0iSrtojWcPbsWXbv3o1MJmPBggV3JVcSEhKkVdW+ffsyadKkhxrWrNfr2bt3L+fPnwfEPIzp06e3+SEUBIELFy5w4MABGhsbkclkqFQqiVAJDw/nkUceuWf/uSAIZGdnk5iYaBWG7e/vz+DBg6Uw7AdFXV0dZ86c4cyZM5J97l7tb9evX2fbtm33FbLdFpRKZYucpOYh3LGxsVy+fBl7e3uefvpp9u7cSVJ6Oh/+85987eNDYO/enIuIwKBUsm3bNhoaGnhszhy6ZGURYkwl5JO3cfKdbNVuYra0rFu3jvT0dM6ePUtGRgbDhw/nmWeeIUKvZ76TE7ZffMFwIBz4CjB06IBjuRM+DX4kcRgb4MsFC/hs/37S0tLuGHBuxkMji0AMuTBlogDwyCNoo4YSd+UCV/r0waiVcTPjcb7y/Dex1SVkWxDOmvpaZvfegv+olzhzNZTDx4+jk8uRGQyEpaRgGxXFjfxcKh2tSRilTEZkcjIhCQn45uVJtjQmT4bXXoOILpASDj+UwPeAXAbbd4h/b46yjZD5GOw3wNsyMAgwZw6sWiVmKAGUl4uPNRHEKBTw009kDh/Opk2bqK+vx97entmzZ7dadyoIAhcvXuTgwYPSZ9axqkpaiXcvKWGSUkmXv/9dzPL4PcJQBZf3wryXEK7lcy4igr3jx2NUKOiQl8fc9etx0lfBUGAMEAVV8k6klQwmLT+ArAIbmh9BO3XqxOjRo+nYsWOrY+uRI0c4duwYMpmMefPmSYsiZWVlpKSkkJKSQn5+PmfOnCEhIYGamhp8fHyYMGGC1QTP3/UWMb124e3pDM6T2XTEgbc/XE9WZhYBbm4MHjaMTmFh0iSTqirSf/2VYzU1lBiNOLm4MNAUXisIAgMHDmT37t3s37+fW7du4enpybRp03j//fdbJRRbw8Mii8C6zGHkyJEMGzYMgBMnTnDo0CEAoqKiGDt2bKtjutFoJD4+nuPHj0uKGpVKhdFolGxYZjRXKlmSVZav/ZugtJSalSvZlJrKLZMaecSRIww7dgyZh4d1s5rpOFpUVERCQoKVWsjX15fo6Gg0Gg0nTpyQ7O0AISEhREdHt6p2/i3R0NBATk4OCQkJZFnmet0HtFoV5eUeODup8XCooMFQiaV216ahgaBr1whOS6PbjRvYmBdj3N1btrEdPcqtL75g7WOPWak7e/TowfTp00VCt6ICQkKaWi5//lm0906cCPv2cW7iROJMi6Nubm48//zzGI1Gjhw5wqlTpxAEAVtbW8aOHUvfvn2RVVaS+oc/sK1TJ3RqNS46HXPi4vAxq9/s7WHNGvjiC4iPp9rRkV+eeIIKV1eUOh16lUpabFDo9SwB/N5//4H2ZTtZ1I7fK9rJona04+HjNyOLzLXi//nPfwDxhMzf358//OEPbTYjWKoSACIjIwkPD7dqRnj55Zd55ZVXANHS5e3t3aIZ4ezZswwYMACAvXv3MnHiRKkZYfPmzcybN4/GxkbpBD02NpapU6fS2Nh4T5amh0EWgXVOEEBMTIz0vi1hNBo5cOCAVDceHBzMhAkT2L17N9euXQPEyvRx48a1mZ0gCAI7d+7k0qVL2NnZ8dRTT9114n3hwgV27dqFIAiEhYUxffr0B8qnuBMuXrxIXFwcBoMBNzc35syZ0yqZaEZ1dTV79+6V9plarZYII3t7e7Fhq0eP+yJ6zGHYSUlJ0uTAzc2NqKioewrDvhO0Wi2XLl3i5MmT0uqpSqWiX79+REZGSvXLlZWVJCcnc+7cOasa2OaQyWR07dqV0NBQAgMD0el0bTa6mbMo7gRLC1tgYCCCIJCRkUFNRQX/8+WXHJPLaRw1ioToaGzr6zm3YQPn6up4vJmSxc/Pj+eee45vvvmGuXPnsmrVKkpKSrh8+TLHjx8nISGBf332Gct++omvZs7kWW9v1N99B0YjswEZsEGp5E8LStn/6ynsmMAljMhlMrx8fIiLi6Nv376tbkNjY6NVblNubi5hYWEPhywCePll+Pzzpt/fegt9RSXrKyu42a0b2loVew4+y7ZHY0lL3MApi3pMudHA+E57CI0K43Lp45w8lkhtM/uhUqeja0YGnbKzOREdTYNGQ2SXLoz761/BIgtLQnQ0vPwsdHoR/lEBOwCNGuITRCVUc1Rsh4zZcFgHb8pAJ4iTyvXrxTBdEHNT/vY3MIWPArBoEeWffcaGrVspLCxELpczceLEFsHBZtTV1XHo0CGJdFfq9Sj0emmyFX71qkjoLl0qZif9XmA0wscfw7vvYjAa2T1xIhdM+6BXShKTq3egGq2HUQMoMXQhNUtHWo4XeZXWE247VS31OlGhMC48lcg+DhYtbT1A1VFSlV28eJGdO3cCrYc1m/Hzzz/z3HPPERMTg6+vL6dOnSIlJYUXX3wRJydHenRVMrbHCRyNB0HQkXgZhj0NH/3BlgGDxvHBsgqOxh/nmWeewdvbGz+djuPff09CaSlfajQkLFjA1bw8dsfFMXvOHKYNGEDYoEG8+8UXPP7444SFhZGdnc2zzz5L79692WzZ6HcHPEyyCODkyZPs379f3LcWWUWnT59m7969AJJVra1jQ0VFBevXr6ewsCnPysPDg+rqaqvxJSIiglGjRkknTJavcaf/1cOCob6efe+8w1mTUiYkLY1p27ZhY36PDg7cfvRRTvTqxTWLDKyuXbsyZMgQjEYjJ06cIDs7GxCPAT179iQ6OvqOx97fEpmZmcTGxkrHvrCwMMaOHUtdXR0FBQVkZeVz7VohdXUFKBS6Fo9vJsi0go2NDV5eXgR4euJbU4N3djbOV66IYdrp6U02XAvcCAxkw9y5IgFjwoCePZkwfbp43lhXJ5JKZqLtvffgnXfg/ffhnXe41a0bvy5ciCAIyOVynn/+eSoqKti1a5d0HtCjRw/Gjx+Pg4MDQlISR997j2O9egEQoNMx85tv0JgVV6GhsGEDPPUUnD5Ng60ty5csocjbG3Vjo2hBs9gRU9LT6bt69QOPs+1kUTt+r2gni9rRjoeP34Qs0mq1aDQaNm/ezDQLCezixYupqKhgx44dLR5jqUow4+9//zvbt2/n8uXLZGRkEBgYyMWLF61UNMOHDyc8PJyvvvqKX375hZdfftlqsq3X67G1tWXTpk1Mnz6dzMxMQkJC+Pbbb3n88cepqanhqaeeoqKiQjrZvBseFlkEIhG0e/duSWFzJ0vW5cuXiY2NlSqu58yZw9WrVzl69Cgg7sNZs2ZZWe4sodfrWb58OXl5efj4+PDEE0/clQhJSUlh69atGAwGunbtypw5c9oMyX5Q5OXlsXHjRiorK1GpVEyZMkVSk7WF9PR0du/eLdkHLIOeu3fvTkxMzD2vcpvRVhh2REQEAwcOfOAwbGiyvyUkJEg2EplMho+PDwaD4a5tMp06dSI8PJzg4OB7fh8Gg6HVrCTL67a+1lVVVXz++ecsfeIJ/P39QSajU3Y2ew8fJrmkhJVBQZQs6cYt2zHk5olS+n/84x9Mnz6dPn36YDQasbe3x2Aw8Omnn/LSSy+RlZXFL7/8wq2RI/G/eFGqjjaTRbPeusDT//SnP51RUcdbERHYffMNPy1fzs6dOzl79myroebvvvsu7733XovbHxpZpNOJDWInTjTdtm0bjevXs8LZmXxfX2rLNPyy5jlW/zEF//1/Ydvw4Rju8D2RVBxAr6tJjN+9B01dHdeCglj32GMALOzZk66zZ4tkBTQpgcx1zj1DYXYW7K6HU4CnE5y+JAa+Nkflbrj5KBxvhFfloDVCTAxs3iypEACxUevRR8GsagsORrt7NzvOn5cI2gEDBjB+/Pg2ienc3Fzi4uIki4VdfT31JsWfpraW8amp9Hz7bWR3sCT/n8NoFLNHNmwQbXs1NdTY27Nxzhxud+oEgsAYzVmionaTr+tMWt1LpGWrKDHb+Uzw72BLcMda8ouqSM4WyfmYXrEM6Hy+5WvKHcA2jJtl/Vh72AejEYYO7sWoMdNA1vqkr0+fPtjZ2TFhwgTT2xatogMHDmTo0KHS/Tp38iMswMgnn3xMY20OX7/VkXVn5qE3qvnxxx/x8fHho79NY9SYqfSJnMes0aPx8/IiV69HrdXy7+XL6e3nx46kJGx0OjHPa/x48dK/P5u2bmXBggXU1tbe04LCwyaLQLSemYshpkyZIpHLlsqj8PBwJk+e3KZK1qxg3bNnj7RwoFKp8PDwsLItq1QqIiIiiIyMxNHRkUOHDnHixAlkMhmzZs0i9B6y1f5bXPzPf4grLMSgVOJRXs6c8nLKr13jRGgot8z2MUEgrKyMwd27Ux0RwYmrVyXLqFwup0+fPkRHR//XmX0Pivr6evbv3y9lRzk6OhITE0NwcDCFhaIDb+tWOHQI9HqQyYy4uZURGXmNvn2vYWtbgF7feOcXaQW2trZimLaHBz46Hd6FhXilpKCMjSXFzo4tM2ditBjfhh85wvD4eGQdOkCvXmK9mtkO+sQToqro0CEYO5YqBwe+/+tfqTeN22PHjqWwsJArV64AYsNaTEyMFNLcuG4dW3fv5popuzGyqoqxX37ZlE+0aBF88IGYe3blCjqlktULF3Krc2ds6utpNI2t5mNK/5QUJi1bBvd5/mOJdrKoHb9XtJNF7WjHw8dvQhbl5eXh5+dHYmIiUVFR0u2vvvoq8fHxnD59usVj1Go1K1asYN68edJt3377Le+99x6FhYUkJiYyZMgQ8vLyrCaMs2fPRiaTsWHDBj788ENWrFhBukWbCIghne+99x7PPfccAPHx8cyePZvS0lIMBgNRUVHs3r1bUnk0R3PlQlVV1cOzuSCeoFpmLAwaNIhx48a1Shjl5uayYcMGqqurpYBog8HAtm3baGxsxNHRkdmzZ7d5gK+srGTZsmXU1dXRq1cvpk+fflcVTkZGBuvXr5cacKRgx4eIuro6tmzZItntIiMjGTt27B2tb42NjRw+fJgzZ84A1i1karWaUaNGERERcd/2OXPg86lTp6RVQHMYdmRkpFSv/CCorq7m+PHjJCUl3aEmuwmdO3dmxowZdw2pvl/U19dLDSP+/v706NGDwwcPotXrcaiqQlFXx8s//MCs2bOtJj5mG5rl99TW1ha1Ws17771HZGSk1Xf++PHjXL16leeeew7Pkyd5Yd8+LgYFEW5SxAEMBwLCh7Ph6kHe1Q/iTS5Q3qULTufPg2kS0717d5YuXdqqKvE3VxaBWG3dr1+T5cDJCRISqHn5ZX4ODaXC1ZXSfDcOHR/FjAlXcVJfprZZpbZa3siAgCv0HDgflwNlHN69m3MRESCToamt5ZF9++h95QpxMTGcj4jAUafjWT8/NJYqrvBwGDNGDKo2Zyn5AEagCOjuC6eSpP1mhaqDcGMKnKyHl+XQaBTzirZvF1u6zLh1S3wNsz1To0HYupUTGg2HTe1ddwvYNxqNXLhwgUOHDkmfc9v6ehpME5vAGzeI0Whw/eADMFWD/5/DaISTJ2HTJpFEM02qAfI7dGD9ggVU2dtjo1YQ3e0Y1XVK0grDqKpv+m7K5XK6du1KSEiIROzu2LGDK1euIJPJmDJ5IuEhNs2CtVOg4Rqgp6DKm+WJT6DV29DL7wrTw7ciU2jANtSqma1K14W4A1eZv2ABsy2+ox4eHhw+fJj6+nr+9re/kZKSIpEDAJ9//jljx46ld+9eki3uePw+crLOk7ZJVGg+/ZEjRy7aM2XaY7i6unDjhtg8tnHGDKYmJcHVq9b7zd2dnwIDeSM1leLr18Hb+667+rcgiwRBkMKtZTIZM2bMkKzdV65cYfv27QiCQM+ePZk2bdodG8yaH4+gZfMkgEKhoHfv3kRFRUlZdQqFggULFtxzBuJ/g5wDB9h44ADVFpk1AHJBoE9GBlF79lDo48PxoUMpMv1flEC/4GAGT5hw3wsqDwuCIJCSksKePXukBsABAwYQHDyGuDgbtm4VywbNn1GZTCA6OpdRo9JwdEyjpqbU6vk6dOiAl5cXtra2VFVVPVAOkkwQcKiuptrR0UqmNCE3l4FHjjSpiJrDxkbMLbp2TVyQe+kl8kwLdl5eXtTU1Ei5VwMHDmTUqFHY2NiAXk/Jm2+yoa6OEk9PFAYDk1NS6LNli/i8CgUsWwbjxonWwvR0jHI5G+bM4VpwMOqGBnS2tgggNZ/5377N4pdeQnGXxba7oZ0sasfvFe1kUTva8fBxr9+rh+s9+j9EQUEBTz31FIsXL2bevHlUV1fzzjvvMHPmTCnEszk++uijVpULDwsymYyRI0ei0WjYu3cvp0+fpr6+nilTprQ4ofXz8+Opp55i48aN5OTksHbtWsaMGcOTTz7Jhg0bKCkp4ddff2XChAmtyuGdnZ2ZNWsWK1euJCkpCV9f31brhS3RtWtXFi1axNq1a8nNzeXXX39lwYIFD28ijqjgmT9/PocPHyYhIYFTp06Rn5/PzJkz21RK2djYMGHCBHr16sWuXbsk+4D5pH7v3r0kJSUxZcqU+5LXq9VqyUZpGYZ97tw5zp07R2hoKFFRUaLi5h5QV1dHamoqycnJZGVltanmsYRSqWTq1Kl3VVg9CARBYPv27VRUVODq6sqcOXPYsGEDWr0er8JClv70E2qdjm9dXMjMzCTCz48xBw9SrdHw77Q0xvYMxttdTmWtmoaGBunSsWNHMjMzrcii9PR06WSzdMAAnE6c4Culkpd69cK9rAx5RQWn6+u5nPks7+rfIgzRwiRfv96K8JDL5S1a4MywsbERT75NaCus9r+Cr6+oMhk1SiQVqqrgsccwbt5M+Ntvc9zREfcOZcyeLdpwarFBaTRiW1srBl8DWqMNV28F0dP3ZeymPk7MPjm9f/6ZXdOnU+TuzvZHH+VyeDjj9u4lKyCAUg8PdpWUMGvpUmQ//yy+j0uXYMIEkdD57jv48ksoMFnVZMD1PBgfCceTxEmMJZzGQPc9IIuBr2rhL3I4cEBUGMXGiu06AJ06QVISLFkC69ZBXR2y8eMZ+uabeC9cyJZt28jOzmbZsmXMnTu3VbWXXC5nwIABhIaGcvDgQS5dukSDnR1KvR6jTMbNbt34Vqdj+Ny5RE2bhuK555pCt/83YTRCYqJIEG3ZYkUQIZOBIJDUty87p01DLwjYqGVgrOFQSlNLpEqlkhrMunfvLh1IDQYDW7ZsISUlBZlMxqOPPtr0fbbrZf0+BB1VxVdYu3IvWr2eLt61TBl0E5lODcY6qDsPdecxGuWczhrIkbSRlFY0IggCDg4OyGUwMsqHqMFDyc7KJP7YcQYPHszgwYOprKyUMo5qTASjeQhSq9X06tWbK1eugtNoqD7M0tldOXNDJJbkcjkymYx/vDmPqW//D6i8xdDlfftEFdqBA5SUlvJ+aSlPg1jn3a+f+BkdPx4iI0GpbEHomt/Hw4RMJmPs2LFotVrOnz/P1q1bUalUBAUF0bt3b5RKJVu2bOHq1avo9XpmzJjRpgpKo9GwcOFC0tPTpYWY5kSRp6cnxcXFXLx4kYsXLxISEkLnzp3Jzs5m/fr1PP744/j4+Dz07TRDp9OR7+KCzNsbampEokgQ8DcamfaHP5Cdk8P6Pn0oM+1rdWMjEWfOEHXqFPa1tdCzp2hHnT5dJKH/l1oLKysrrSz0Tk4e1NdP4d13/c3lbwAoFAYeeSSTqKg01Op0GhrE7aipaSJlg4ODCQ4ObnUxpaGhQWpgM1+Ki4tbP44IAoJMZtV4ZsaxoCCuDRuGt4sL3uvX47N/Px6lpcjt7MQvUl0dXLmCAMRNmSIRRXILxbCXrS2TR4ygY0SEaA0rLuba88+ztVs3Gj09cdLrmbN9O75mItbLSxybHR1F23FWFgIQO3ky14KDUeh0YGODYH7vCgUO1dXMGjXqvyaK2tGOdrSjHe14EPw/Y0N7++232bt3L2fPnpXuY15FOXnyZKvESVvKoszMzIe+enjlyhV27NiB0Wike/fuzJo1q1WrWPPq3969ezN27Fh2794ttZr069ePCRMmtHpCbM5ZuJ9mm6KiIlavXk11dTUuLi4sWLDgv1LZtIXU1FSp8e1uSikzDAYDJ0+eJD4+Hr1eL01yDAYDcrmcIUOGMGzYsAfKXLpbGHZQUFAL9VJ9fT1paWkkJyeTkZFxV4KoORni7OzMkCFDrBrUHhaOHz/O4cOHUSgULF26lMuXL3P69GlsGhp4atky3MvKSAsJ4e2ePdm2bRufODszsayML4GNQNq2KLynJrBo8WK8vb1ZsGABcXFx3Lx5k19//ZV58+bh5+fH6dOnOX68KQ8FxNDZEydOMG3aNFxdXTl8+DCFhUU8Ne9P9Kq5iayoiBdPnGBAZCQvv/wynp6erF+/nq+//pqzZ8/Sp0+fu27fQw24bgbhk0/I+/e/uRYUxLWgIApaIUoqylzZtXsC1VVdiH/03xRf3cahUaOk/AiFTM/U8O308nKDaakYiktJfPFFjjk7o1coUOp0hF+8yPn+/REUCqZ27kz4l1+KVdFmHD4MI0eKdrHly+HTDyHbgujo5gOHz0BrhGZNIlyfABeq4E8KqDWIbUq7d4uKKUv89BM8+2xTrkd0NMW//sr63bspKyu7Z1Lz9u3b7N69W7JgWuZseBcUMCklhY4ffAAW1qnfDEajGOZtJojy8pr+5ugohtZeuECdWs2OBQu41krYr52NnuCQcEJCe9K1a9cW31G9Xs/mzZtJT09HoVAwc+ZMQkJC2nxLDQ0NLF++nKKiIjw9PVmyZIkY1i/ooTEDGlK4nXWVuGO1FJaLZJTZKvqn52fz97n7cdVUAPDq13LiL9pwevsUKzXSoYQcHhk3genTp9OrVxNZdebMGeLj4/n666/x6+DFF1/9m3PnzjN+3GgcndyQ1x5l5ZY0tn0GY0YOBJdJ4DwZ7PpQVVbG2KFDcWtsZKezM6qLF603zNkZxozhXa2W92JjW2z3b6FcEASBbdu2kZSUhEKhYP78+dLx7dq1a2zcuBGDwUC3bt2YPXv2XcdXrVZLXFycZCMyw8bGhhkzZnD+/HkrNbN5scLe3p6lS5feUyj//aChoYGzZ89y+vRpSZVjZ2eHa00NeabFJaXBgN70s52dHYMGDWJgx47Y7d0L27bB0aPWWT2dO4utatOni+TEHVRXDwqj0ci5c+c4dOgQWq0WQZCTkjKUrVujMRjE47KNTSOTJ9+gb9804Do6XdN5l1qtlkjZbt26PZBqQK/XU1RU1EQg5edTcPs2uvskyhQGA16+vnj7+OATH4/3tm3kdurEQVMbn3Q/vZ7h8fEMTkhAYTSCgwNC164c9/TkSHS0aO/W6Zj1n//gUFkpPmjYMNi5U7S5jRoljU8Hx44lYcgQZEYjblotpba2UkaR3GBgcX09nT777L73SWtoVxa14/eKdmVRO9rx8PGbBlwPHDiQf//734B4otCpUydefPHFNgOu6+rqiLU4oRw8eDC9e/e2Crh+5ZVXePnllwHxZNnLy6tFwPW5c+ckVc3+/fsZP368FHD98ssvc+LECSsrXH5+Pr6+viQkJNyxVt4Mc2bRG2+8QWRkJMOHD3+ocu7r16+zceNG9Ho9/v7+zJs3r9WWL0EQOHv2bIuK6ytXrkh2kY4dOzJ79uwWK29mdcmVK1fQaDQ8/fTT97QNFRUVrFq1irKyMuzt7VmwYMFvsnpaXFzMxo0bKSkpQS6XS0qpu1nmysrK2LVrF5mZmYC1dcDd3Z3Jkyf/V3XAxcXFJCYmthqGHRISQkZGBsnJyS3qsS2hVCqxt7en0nRyaFnP7OPjQ2Vl5X03qN0rMjMzWbVqFYIgMHnyZGxsbKRQ2jnr1hGSnk6NvT3fPf88dfb2FK9bR2x6OgWIjWVfP2nLoG8zQeXDiBEjcHd3p3///uh0Ojp16oRareb1118nPz8fNzc3/typE09mZVExcSI3S0rI6tiRDampnL14kYaGBjp16kRMTAweHh7Se8zNzeXw4cPk5eVhMBjw8vJi4sSJREVFtdro5uzsbEUC5qSuxT9sPpXZG3DqNPu/3mdarZabN29y7do1rl+/Lk3QABAEOqpUBIWFYfP11+wdNgxBLufGtShWr30EuRzWLNpHxNmX2TJxIvUWtq3BgScYXXUZ+QuiMqhs82bijhwgw1MkoOxraqh1cECt1fLMsGG4zZ4tKppADKbOygIzWaXXw8oP4J33wMwZyWWw5An4619Fm4Qlas/C9UfgcgX8UQFVBhg4UFSLNJ/cXroEjzzSFLbt4UHDrl1suXFDalIaMmQIo0aNuqPl0zxZPHz4sPidFAQUej0GU4tPxNmzjHZzw+aTT0Ql18OEwWBNEFnkz+DsDFOnwuTJ1GzdStq1ayT36EFWQICV2sLRppLQDqmE9hxCp/A3kLcxodbpdGzYsIGbN2+iVCqZM2cO3Ux5JK2/NQNr164lIyMDBwcHli5damWJrq+v5+DBgy3aOvV6PR9++CEblz3GjFEyk50tlcVv11FRDTtMmeyCAOvPzeVaYQiff/450dGRfPNeJG5e3UnJtufDz5Zz5swZnnvuOXQ6HR999JHUvubXwYUlEyt45qV/k5NXyt5/N71+tbYD4140onH0YdfuI9hqXEWb5v79sGePeF0q2oUaTRdCQ2HMGNKDgxn44ou/2WTUaDSyadMm0tLSUKlULFy4UFKCZmRksG7dOvR6PV26dGHevHn3lMOXk5PDxo0brYoDXFxceP755ykvL5eOC5bjvrlh8mGQ1tXV1Zw+fZpz585JxzRnZ2cGDx5MWFgYly5d4vjhw2hNp2pyo5Go4GCGzZzZcvvKymDXLtGCundvU0YZgGWz2pgx1plmD4iCgiI2bIiloiIHgFu3/ImNnUxxsSfOzjVMmZJOWFgaOl0mRmMTieXg4EBwcDAhISF06dLl4RZsGI0If/wj+69d49SQJqWgTCbDxsambZv4ndK0LeCp0TBOJqNrSooYpp2cjFYQ2D5tGqlhYQAMOHOG8fv2oTATdyNGwJ//LO7zBQukMTcxOpoDY8YAEJifz03zuG80glzOxJQUItaufWgkXztZ1I7fK/5fIIs+/vhj3njjDf70pz/x5Zdftnk/8/F6xYoV5ObmEhwczCeffML48eOl+1RXV/P222+zbds2ioqK6Nu3L1999RURERFWz5Wamsprr70mLbiHhYWxZcuWVhtw7xXJycm88847nD9/nuzsbL744gsrQciDbvfjjz9ORUUF27dvf+D3ZkZrc8p169Yxd+7cNh9TVlbGH/7wB2JjY5HL5cyYMYOvvvrKygVz5coVXnjhBc6ePYunpyd/+MMfePXVV6W/3+++uVc0NDTw7LPPcv78eVJTU5k0adId91NCQgLDhw+nZ8+ekvikref9TciiDRs2sHjxYn744QcGDhzIl19+ycaNG0lLS8Pb25tFixbh5+fHR6b2ncTERIYPH87HH39MTEwM69ev58MPP+TChQvSqvUnn3zCxx9/zIoVKwgICODtt9/mypUrpKSkSG9+woQJFBYW8v3336PT6ViyZAkDBgxg7dq1ABw+fJgxY8bw7rvvSja0N998k7S0NFJTU++pet1MFr3++uvY2tqiUCjo378/Q4cObdMydb+4desW69ato6GhAS8vLxYsWNBmbk1mZmaLiuvGxka2bt1KQ0MDDg4OzJo1q8WXXqfT8csvv1BQUECHDh1YsmTJPalYampqWLNmDQUFBdjY2DBv3rz/ioBpC42NjezYsUNSSoWHhzNx4sS7vkdBELhy5Qr79u2TSBeVSoXOFAzcr18/xo4d+18dSFoLw74TlEol3bt3p0uXLly8eLFJYWFqc1OpVEyaNInevXvfc4Pa/aKqqoply5ZRW1tLeHg4gwcP5scff0Sn0zHk+HHGHDqEAKyfN49rwcF4FxTw5I8/ojSfyA4C9u4AlymAaDHbtGkTBoOBwMBAZs2axf79+6VJ7bjUVCI3bBADQQsKpBNfQSYjx8+PHYs/5GZ1CS5u1rYxBwcH1Go1BoOB6urqNkm35o9xdnbGxd7A7fMH+cu/NvPJG0/TNdQP784j8PbxwdvbGycnp3tqyquoqODatWtcu3aNrKwsqwpttVpNt+vXCbpwgW7Xr2Ov1cKRI6BScfFPf2KnKWy4rGw8X38tNqM9M+o6HxbPYnPkQPItlCqBnteZeXIrtqvrwcsL4cwZkuZMZ9+wMdTZ20sTE9+iIpZOmoR84sSmN9m5s5grZPl9KNsGf3wU1lhsjEwmhla/9hpYniDUXYJrYyC5FF5QQKUB+vYVJ/kW5B0A5eUioXL8uPi7XI7xP//hcPfuJCQkANCtWzdmzJhx1+9VTU0NBw8e5LJJKaUwGDCYJjmOVVVMOHSI0Pnz4U9/amprexCYCaKNG0WCyBxIC00E0ezZlPXvT9rp06QdPMhtd/cWE8HgDrcYFriXDq5VyLquBpepbb6kVqtl3bp1ZGVloVKpmDdv3h1Vm5YtlSqViiVLlki2PkEQuHz5Mvv375fGMUu4uLiwevVqIiMjmxZlDHo6dfbnxSfH8fqzPamvTOXnODdKq8Xj0o6tq/FxzGD3V03fqcFPQHCgO/2jnyK3WDxhmz9/Pt27dwdE6/OuXbuoqijm8OYlULGLqvz9jHuhHhsV7P4aNHZ2oo3NeZJ4UfuJ+//8eZGM2LMHzpyRwtpTgTDg9sqVdFy4sO3/4X8BvV7PunXryMjIwMbGxsoWlp2dzdq1a9Fqtfj7+/PYY4/d0/HAYDBw8OBBqZkUxPFg7ty5BAQEUFlZycmTJzl//jx6U+uhQqGQ8vMeRCVaVlZGYmIily5dksYhT09PoqOj6dq1K+fOneP06dPSccjexgZ9dTWNajW2DQ3MCAig29NPt/0CdXXid37bNtGOatnGaW8vWgqnTxftqvexKKbXQ3y8nn37jmNrewKFwkhjo5qDB8eQkxPApEnpdO2aTmPjbavHubm5ERISQkhICB07dryvZtN7htGI8ZlniCso4IJFg6SjoyMLFizA09OTmpoa8vPzKdi/n4Ljxynw8aG8rSDwOxBIarUab09PXK5fJ0uvp9rJCZnBwKSDB+l38uRd3+rlvn3ZPlUcc/qkpHDZRDSZc4rCU1KY8s03yJqP2Q+A2tpaCgsLSTp6lGlLl7aTRe343eH3ThadPXuW2bNn4+TkxMiRI+9Imrz22musXr2aH3/8kZCQEPbt28df/vIXEhMTpYIHcxHSd999h6+vL6tXr+aLL74gJSUFP9O56M2bNxk4cCBLly5l3rx5ODk5kZycTGRk5H/VkHn27Fk2btxI//79+fOf/8xrr73WJiFyP9v9sMmi5cuXWxFsLi4ud/zsTJgwgfz8fH744QeJZ4iIiJB4hqqqKoKCghgzZgxvvPEGSUlJPPHEE3z55Zc8bToW38++uR/U1tbyyiuv0K9fP7Zs2YKtrW2b+6miooL+/fvTrVs3CgsL/2/IIoD//Oc/fPbZZxQUFBAeHs7XX3/NIFOt9IgRI+jSpQu//vqrdP9Nmzbxt7/9jaysLLp3786nn37KRIvJkSAI/P3vf5eCeaOjo/n222+lVgkQT6xefPFFK8bv66+/tiJx1q9fz6effsq1a9fQaDRERUXxySef3NEmYInmZJEZKpWKgQMHMmTIkHsine6GwsJCVq9eTU1NDS4uLixcuLDN1pLy8nI2bNhgVXEdEBDAhg0bKCoqQi6XM378eAYMGGB18lVRUcGyZcuor6+nT58+TJ069Z5OzhoaGli3bh23bt1CqVQya9Ysq//Dw4IgCCQkJHD48GFJPTV79ux7Ikxqa2vZv3+/ZB+wJIwcHByYOHHiA7XW6HQ6rl+/TnJyMunp6VZEgiWUSiVBQUGEhYXRvXt3cnJy2LJlC3V1dSiVSmky4eXlxaxZs6zUNSCujicnJ5OYmGjVoNazZ08GDx58X4oug8HAihUruH37tmQdW7FiBSUlJQRkZLBg9WrkRiMX+vUjdsoUFHo9Ty1bhre5pc0eOPMEhInZOUlJSWzbtg1BEAgJCWHatGns2rWLq1evIpPJmFxdTd//+R9wcYHu3cHC9glw88V/0eO7P7LDMJFwr8ukDh5M2pgxFDZrk/L19aVr166Sja2iokJqczM3upn/p2ZUVlbyxRdftPh+gqg08/b2trp4eXmhVCrJzc2VCKLm7XSurq4EBQURFBRE586dUVy9KjZCme2pPj5w4QJcvEj8Z59xdMQIEATc3Gfz17+G0dgIfQKqOOIzkwR3G85bTFBc7cp4bMNaPC6UwIRx8M93qYsezYGxY7lkOuADhN24wczAQGSW+Wlz54q5QpYo+g7eeR5+aOWDMGoUvPGGGJgqk0H9VZEwSiuE5xVQZhDJvQMHWgYVG43w9tvw4YdNt82eTdKrr7Jz7170ej1ubm7MnTsXz3sIrc7Ozmb37t3Svlbo9RhMyoHgtDQmpqbi9OmnoqrpXmEwiK11ZgWRJUHk4gJTpyLMnElh796k3rxJWlpai/+1DBAAB42SxwYsp4PTTVB3gW47W2YNWaChoYE1a9aQk5ODWq1m/vz5d12VMzd4yWQySc0DouU3Li6OW7duWd3f3t6e2tpa1Go1S5cu5ciRI20uymi1WqZOnYq9vT1jxowhqJs/nTwqGDHpr3z82gBiBmtZvzOVD39u5Jt/DCJPOwGFTM9Pv6yivq6O+TMjMaoDyMrKJi4ujnHjxjFt8lg6d+nGm2+9Q2N9Gdu+H4K97gjoRKuMp6tJ3GDXt8mupukvtrmVloq5X7/+yqnr14mqqOA20PGJJ+Bf/xL/Pw8ZWq2WNWvWcOvWLTQaDUuWLJHG2dzcXFavXk1DQwMdOnRgwYIF96zeTEpKYuvWrVa3hYSEMGXKFOzs7KirqyM+Pl4qXwBRJRoZGUlERMQ9TWLy8/NJSEggJSVFsjH7+/sTHR1Nhw4dOHXqFOfOnUOrFYPJ3d3diY6OplevXtTl5rLx66/JcXREZjQyqqGBIe+/j+xu5KtOJxLC27aJqqOcnKa/qVTi+DF9uqg8asWC29goloJt2QJnztxi+PBYPD3FMT0npxP29t74+GTR2Fhs9ThfX1+JIPLw8PhtCCIzDAYMS5eyvaaGqxZ2THd3dxYsWGB9brF/v0iWGY2gUtEQH09Bhw4U3L5NwYoVZNnbU+nqev95T4KAe2kp3oWF+DQ24j1pEj5lZTgePIjs8GGJVL3WvTvr581DkMvpd+4cl8LDMSqVUpi5b24uS2bORHk/YyQikVpcXExhYSGFhYUUFRVRWFgoqWbNx9B2sqgdvzf8nsmimpoa+vXrx7fffssHH3xAeHj4HUkTX19f3nrrLV544QXpthkzZmBnZ8fq1aupr6/H0dGRHTt2EBMTI92nf//+TJgwgQ8++ACAuXPnolKpWLVqVZuvVVFRwSuvvMKOHTtobGxkwIABfPHFF/cUDQHQpUsXXnrppVYJkfvZ7tbaj48cOcKIESNISkriT3/6EydPnkSj0TBjxgw+//zzO4o4ZDIZ27Zts4rMuRPMDqazZ88ywHQev3fvXiZOnCg5mL777jveeustCgoKJFXv66+/zvbt20lLS7vnfWM0Gvnkk09YtmwZBQUFBAUF8fbbbzNz5sx7eq93I9Xmzp1L9+7dUSgUbN++/f+OLPp/FWayaMWKFZLdyRI2NjZERUURGRlpFbz7ICgvL2f16tWS7Wv+/PmtBsqCeGK8Y8cOq4rrUaNGERcXR3JyMiCqc2JiYqzk3BkZGaxevRpBEJgwYQID77HSWqfTsWnTJq5fv45cLmfatGlWWRgPExkZGWzevJn6+nrs7OyYMWMGgYGB9/TYmzdvsmvXLiuVjplgCAkJYeLEiXdtG9Pr9dy8eVMiiMwn6HdDSEgIUVFR3L59m0OHDklNbebH9+3blwkTJtxxxVkQBDIyMkhMTLRq5wkMDGTIkCF06dLlrifX+/bt49SpU9jY2PDUU09x+PBhUlJScKyq4pkffsC+tpYyV1e+f+45dGo1Y/ftY7DlqucvHWFRGijsraqoe/fuTUxMDFu2bOHatWvI5XIe9fGhh3kle/p0ceJhgfoRowhIPcRfCl/lVT5D0GiQnToFvXpRXl5OamoqaWlp3L5tveLs4eFBSEgIoaGhdOjQAZlMhiAI1NfXU1GSQcqut0ko6kNlVVUzskhAITdiMLYt0Tc/l+Xv/v7+BAUFERwcjLu7e8t9vGIFPP540+9Dh8KhQwirVxO3dSvnBwxAAQyMepynn+5MdjbY2xo4M+xlGovi2TVpEkbT91Ata2TGhi0EpVyDL9+FnCz4n1/JDAhgy6OPUmv6fHa6dYtH09NxNql5pPexaJH1e8t5E57/CGIBG2BIFziWIy73gxhC/PrrouJIdx2ujYZreSJhVGwQc3sOHWrdDrZ3L8yYISoSALp2JX/DBjacOEFlZSVqtZpHH32U4ObWt1ZgMBg4e/YsR44cEb8TgoBMEBDkctSNjYw6dIgIX1/kn38ObSl0DAZxgmsmiMyNdSASENOmYZw5k5yQEFJv3CAtLc2qKUlmNNI5KwsbBwfSTatonXxkzOr1GQ42NeAwHAI3g7Ltlfu6ujpWr15Nfn4+tra2LFiwQFq1awuXLl2S8vsmTZpE//790Wq1xMfHc/LkSavPo62tLd26deOqKQB33rx5EjnffFHmq6++QqfTcfjwYZYvX46Liwuff/45o0aNAlouyrz4/OMUFouTRBkCVdU1pF1Yw8WrBZRVgreHLVEDexHcZwIymZzMzExWrFjR6jZlHuxLF5dLiHSbCWUecCIQ9lUinE7jzMCBrOrfn2+++45zXl70LyoCPz+x+clSOfeQ0NDQwMqVK8nPz8fR0ZElS5ZIOUIFBQWsWrWKuro6vLy8WLhw4T2rgw8ePCip6sxQqVTExMTQu3dvZDIZ2dnZrFq1qoUysX///kRGRrawp5nz8U6cOMHNmzel27t3786QIUNwdnYmMTGRCxcuSM/p7e3N0KFDCQ0NtbKB6hsb2f3hh1w03dajsJApb76J+l4n/4IA586JpNG2bWBS+AIiORIZCdOnUzduOruvdWPrVtHZptU2MGbMISIixLRqo1GJSqXCYGhSx8nlcrp06SK1Bj7sbLk2odejW7yYTcB1i8WtDh06MH/+fOt2x7NnYfBgccyUySAuTiSOgLoXXmBvfj5JzSZKfn5+yOVyCgoKWixiAFbjW2uwq6/Hu6AAn4ICVHI5if36YVCp6Hn5MlmBgdQ4OEgqJk1tLU//8APOVVUisd+nj3gJD0fo3RtDt24YZDLKy8slQqi4uJiSkhIqKipaz1EUBByrq9Hn5vLahg3tZFE7fndoMakVBLEk4v8Ccs19EcmLFy/Gzc2NL774ghEjRtyVLHJ3d+fTTz9l6dKl0m0LFizgxIkTZGVlUV1djZOTEwcPHmS0RZ5adHQ0SqWSo0ePYjQacXZ25tVXX+XEiRNcvHiRgIAA3njjDSsCZezYsdjZ2fHOO+/g7OzMDz/8wK+//sq1a9faFDFY4k5k0f1sd01NDUuXLqWqqorly5cDohpVp9PRvXt3oqKieO+99ygqKuLJJ59k2LBhVqKU5pDJZPj6+tLY2EjXrl159tlnWbJkSZtzqnvJRl60aBFVVVVWJM2RI0cYNWoUZWVlLXIM29o3//znP1m9ejVffvkl3bt359ixYzz77LPs27eP4cOHt7lNZtyJLFq+fDnfffcdiYmJfPDBB+1k0W8BM1lUUFCATCYjPj5eImgsodFoGDJkyAPLz81obvuaO3dum8HagiBw/Phxjhw5AogV1zNnzuTy5csSWeHr68vs2bOtMooSExM5cOAAcrmcRYsW3bOtzGAwsGPHDpKSkgDui2y6X1RUVLBx40by8/ORyWSMGjWKIUOG3NMqpE6n4+jRo9IkTKFQYDQaEQQBGxsbxowZ0yITyWAwSBlEaWlpLdpwzFCpVBKJERgYSF5eHidPnpTaXiyhUCgwGAxWtrP7QX5+PomJiSQnJ0sne76+vgwePLjFZMGMlJQUNm3aBIiS1PLycvbv34/cYGDJ8uV0zMnBKJezfMkScvz96ZyVxeIVK5CZv/IzZLDyHGj6cfLkSfbv3w+IZOSYMWPYsGEDmZmZKJVKZkdF0X3qVLGyphWiyOjpwuAupXQ5u5H1zBNv3LABZrfMFqqpqSEtLY20tDQyMzNbBIAHBwcTGhpKJz83snZNY/WloQhyOdXl5fzrq6/YMmoUaZGR6KTVdAF7Obir7ajU66k0EydtQC2X42Vnh7dGg7e9vXSxUavFEwC5HD7/XLRumDFnDvz5zxhXrmRjWRnpISHYADMHjORfH7lwIkGGgIyPBmyhf+4PbJgzhyrzSrYgMOrQIaLPnEC2/h/wx88hpwK9Usmyp5+m2ERkqLRaRh07xsCEBORm+8OZM2IejFwu/i6TwY0n4Im1cAZwB36YBMe6iqHVZqKnWzd49VWYMwSyJ8CNW/CcAgoN4t8OH249JDs7W1T8mD/jtrbUrlrFxupqSQ0zcuRIhg4dek/fz+rqag4cOCCNI3KDAaPJmuaXk8OkffvwWbpUfK92diJBdOyYSBBt3WpNELm6wrRp6GfMILNrV9Ju3CA9Pd0qa0qpUBBYWEjI8eMEZGRw6A9/IMn0OenXvZKJ3b9GITeAxzPg/zXI21Zk1NbWsnLlSoqKiqQWrbup/jIyMlizZg1Go5Ho6GhGjx5NWloae/bsadHm17t3b4KDg9m8eTOCIDB69Giio6PbfC9btmyxWsSYMmWKJElvjpKSEn788UfJCqvT6ejVqxfTp01DZigWc5DqU6AhhZqyG6Rm6UjJ6UR2aWcEmsaaDs55hHVIpkenclzdvKBYgL0ZsDsXLhlBAL1SSVxMDJf69qWoqIhvv/2Wt555hpfjYnHNMYWML3wUPn0b3NxBpgSU4rVMCTKV6TbFfSs56urq+PXXXykuLsbFxYUlS5ZIBEVxcTErV66kpqYGd3d3Fi1adE/khcFgYNmyZS2UaSCSBjNnzsTF1Ci5Zs0aDAYDdnZ2kqVQLpfTp08fBg8ejLu7O+np6SQkJJBjUvNYqkhVKhUnTpzgypUr0jjYsWNHhg4dSvfu3dv8jgmCwPmff2bPrVsYFQq8S0uZ8+ijuI4YcV/7D4D0dHE837ZNHG8scJUebGM6p3sMpNfkVGxtW9om22oN/F+DVkvjggWs12jEPDITAgICmDNnjrSwJwgChpQUjEOGYGhsxKhQYPj8cwyzZmEwGEhdv56EnBwam6nHPT09GTFihPh4vZ7yPXu4nJ8vWdfkgoCxjf+TzPS6rX6uBUFczDD9bG5pdKivRy4IGAQBo1yOXqEQ36tcLpUpPCjalUXt+L2ixaTWUAuXHk48yH0jvAYU9ne/H6Lj5Z///Cdnz57F1tb2nsiixx57jMuXL7N9+3YCAwM5dOgQU6dOxWAwSPOVwYMHo1arWbt2Ld7e3qxbt47FixfTrVs30tPTpRgSjUbDBx98wMiRI9m7dy9vvvkmR44cYfjw4Zw4cYKYmBiKioqsBBDdunXj1VdflaxVd0JbhMiDbHdrJMiPP/7Ia6+9xu3btyXSf/fu3UyePJm8vDzJndAc77//PqNGjUKj0bB//37+/ve/8+mnn/LHP/6x1ft/+OGHrFixwqrUAkSHyHvvvcdzzz3HI488QkBAAD/80CTvT0lJoUePHqSkpLRwtLS2bxobG3Fzc+PgwYNWDdNPPvkkdXV1kuXtTmiLLLp+/TrR0dEcP36coKAg3n333Xay6LeApQ3Nw8MDT09PNBoNJSUlUn27JRwdHRk6dCj9+vVD8YABhA0NDaxfv57s7Ox7atdJT09n69ataLVanJ2dmTt3rjSRqK+vR6PRMGvWLIl0EgSBrVu3cvXq1fsO5RQEgb1790qS+xEjRjBs2LDfRErevAXObIG6VwVXQUEBsbGx5JkaRixVPuaw5erqapKTk0lNTW0zj0itVhMSEkJYWBiBgYGtBm9eu3aNbdu2tXgOBwcH5s2bh+9/EeJbXl7OyZMnuXjxomRnc3V1JSoqyqpBrbS0lGXLlqHVaqXmthUrVogqsrg4BprsYceHDuXw6NGoGxt57ttvcTE3s/gA5z5E8H2d+Ph44uPjAfEANGTIENatWyfZbuZNm0aXGTPEFehBg+DiRbBQYAkKGS/OKePE2mxOEoWGejFH5+OP77q9DQ0NXLt2jbS0NG7cuGG1amuj1NGoU0qtMBO+/56I4mIqAXu5nN0TJnA5PFwMUm4G9+JiAjIzcSsvxyiTUezlRaG3N8WenpIlqjlcysvxLizEq7AQb9PFraxMJG4soFMqWbVoEbc7dcKxqoqlP/0krgJboM7Oji0zZpBhEYAclpzM1O3bUVtsY4OtLd88/zw1Ft/JDnl5TN65kw6WVqu7QYZoCQLJ6iDeLgOVElQ6URRSj3gtl4vqHJWqiSAzX4MYlGtBwhjc3Ng7fjznTKv2YbdvM/X8edTmSY4lmWX5XKbrTDc3dgcHU2I62JvtFjKjkaiTJxlx4gQqe3uorBQtM2aoVODnR2OXLtzo2pU0Fxeu29vTaDHe2hoMBNXXE1JYSODOnagrK6lydWX90qXkOzggFwTGFx9jQPkRZMjAeRTYh7f6Ps3X1TIZK2UySgAHYJFSiadC0eb9kckoNBr5paoKrSDQ09aWUQ4O7K2u5lozMtpdpSLGwwMXtZofb9+m3mikl5MT0/38kLXyGpnV1WzJzKTWNB7IZTJmBwcT7OHR6ntpNBj46cwZSmprsVEqadTr8XJ0ZOnQoaJ0uq1tMJRTU3WNtNuZpOTVkVVui0DTWN+hPI+w8ymEJSfjZlp9q3JyYsOcOeT5+SEzGgk4HsuiIxf585//TFedjqX7fsbuuolg8ATeAlrnw0xQWJBIJiLJilhSNiObVFQ3aFh+eBDlNRo8nOp4fEwq9naATEVZtR0rD3ahslaFq4OORePKcHGSWRBUrT93SaWc7zZWS18llVKGTm8KmJbB8MgOREf4kXazik1xIrHaM8Sbqhott3KaVibVaiVabVPGUd/wUAYPGoBWZ+R4whmSU5qk6wEBAQwdOvSeFKVm3Dp+nI1xcdTa2WFXV8dMf3+6vvjiPT3WjMJC2LFD5GZTD+YSY9jBdLYRoTlDSu8wTg4ZQk0zha6dnR2BgYEEBATg5+eHTCbDaDRiMBgwGAyt/nyvtzX/+x3vo9ejv3GDUpUKvcVxQKFQSPl45sf8P3uqazQiFwQURiNKQK5UolQokNfUoKitRWEwIDcaURgMVFRX88rGje1kUTt+d/g9kkW3b99mwIABHDhwQFpAvhfSpLi4mKeeeorY2FhkMhmBgYGMGTOGX375RVqUuHnzJk888QTHjh1DoVDQr18/goKCpADkvLw8/Pz8mDdvnhUBMWXKFOzt7Vm3bh3ffPMNf/zjH1vEq9TX1/PKK6/wwgsvEGbKUgN48803efPNN63u2xoh8qDb3RoJ8pe//IWLFy9KQgkQSW8XFxfi4+MZNmxYm89niXfeeYfly5e3cDaY8b9FFiUnJ9OzZ09rtSuig6hv376cPn2aHj16kJ2dDcDQoUPZs2eP1X1b208Gg4HIyEiWLl3Ks88+C9BOFv1WaCuz6G5wcnJixIgR9OnT546tQW3Bso5ZJpMxefLkNleMQRxI1q9fb1Vx7efnJ2UbyWQyxo0bx8CBA5HJZGi1Wn755RcKCwvx8/Pj8ccfv+f2EUEQrMiEgQMHMn78+N+EMBIEgQsXLrBnzx4MBgPu7u7MmTPnnnJSQPSBnjlzhsOHD6PT6aT3eLePuFqtJjQ0lLCwMLp27XrHfZOWlsb27dtpbGxELpe3CGnWaDREREQQERHRYjC4H9TW1nL27FnOnDlj1aA2aNAgwsPDWbNmDUVFRXTu3Jnp06fz008/UVNTQ68rV5i+dSsyIN/Hh5+eegqjQsG0bdvoY65olwN7BiKMSeDAwcOcNNnSRo4cSb9+/Vi9ejWFhYWi7Wb+fPxefVXMz/HxESeVlpXkwIZXTvP8/wRyjgEEkAXjxonS/vskUHU6HTdNeTOpyRfQ6pser9Jqcb56lRd37uTHWbMo7dqVBssDXLPVW7VeT+StWwzLyhIbaQQBjEYMQJmdHQWOjhQ6OlLk6EihkxNVbWSaKHU6vIqKJPLIW6fDu7ISysr45bHHKPH0xLO0lCXbtyOvaqCmygiCgAod9rIajo0YwTELWalnURGPrVuDS0Wl5OjJ6tyZFY8/DjIZKq0WnVqNzGgk8tQpRhw5YkUu/V/jfL9+7I6JEdUMBQXMWb8eVwvr151gUCg4PWgQR0eMEFVhFv8zl/JyYnbtopuFRadOoyE9OJi0kBBuBgZakXwO1dWEpKURkppKl6wssb7ahNv+/myYM4daBwc0tbXM2rSJLllZ97yNFc7OrFy8mHI3N5wqK1m0YgXuZWV3fEyVkxM/Pfkk1U5OdMrKIvDmTY4NGyY1wiGTodDrGXbsGIMTEjAolfy8dCnFXl745uby+PLlqJop4oxyOUeHD+f4sGHSflJptTy2Zg1dTCcSzSEAm2bPJjUsDFVjIzobG2waGnhq2bK7bkNz1NrbkxYSQkpYGJkBAVYWG5/8fHxzc0kNC6Neo8G2ro6pO3ZQn5lJP62Wd55+ErlvRzplZ7Pw8GqUej3kmj7wMcDLwEN0KFXUObM88QmqGpzxccpncdQKbFUN0t9WnlpMeZ0bTraVLIpcgbvD3ffFuewBxCVNAsDRtpKOLrdJLegp/d1VU8bMfhvJrejI7qvi/R4J20tFnTMXbg1Ab2wiL5xsKxgZdAQHmypOZQ7hZkkTidzZLZO+/pfxcKzEIKgwohavjSoMggqDoMQoqDEISvFno+laUGIQFNRVq0hOc6faRrQydawvwrOHEkGuxCjIMRgVGIxyjIJMvDbKaNTJqK2TUVcnR6tFIgUFmSAO2/+dgOV3Ayubsvna4jji5OSEvb09Cp0O3Y0bFDs6YlQoUAgCfjk5OFVUIDcakbu5oZg4EYWdHXK5HMXVqxj37aNeo6FWo6HK25tiJyeMdzo/vEsbm1qtxtnZGW97e7potQTdvo3D5ctiI1sb40Fz5AD+0E4WteN3h9+jDW379u1Mnz7dSkxgMBiQyWTI5XIaGxvvKDRoaGigtLQUX19fXn/9dXbt2iVFj5hRW1tLVVWV1JpdU1NDXFwcWq0We3t7/v73v/O3v/1Nuv9rr73GiRMnSEhI4JNPPuHf//43R48ebfHaLi4uuLi4kGVx7uTm5tbCmtYaIfKg2/1bkkVxcXFMmjSJhoaGVkUI/1s2tNOnTxMZGcnRo0dbRBrY2Njg7+9Pdna2tHBuZ2fX4n6t7aeKigpcXV2t9qvZZaNQKNi/f78UWWCJdrLoAWAmi86fP4+3tzfFxcVWl4q7TIqUSiX+/v5069YNLy8vPD0977mlyWg0EhsbKzGAY8aMYYhF7Wtz1NfXs2XLFin/IDo6mujoaOLi4iTLR+/evZk0aRIqlYry8nKWLVtGQ0MDffv2ZfLkyfdF+Jw+fZq9e/dKzztlypQHVlPdDZZVxmq1mqlTp1qx23eCIAikpqayf/9+qcK+NdjY2EgEUUBAwF3JM6PRyNGjRzluao0yE0UqlYpx48ah1+s5deqU9BlRKpX06dOHqKgo3N3d723DW0FrDWrmE1yNRsNTTz3Ftm3buHXrFl4lJSz94QfUOh06pZIfTRan0JQUZm3c2KQReNkW4wdpxB240tRwNm4coaGhrFq1itLSUuzt7Vm4cCHemzfDiy+KxM+AAXD6tNX7y3jmH4T99AaxhgmM5SB07SpmQtyD17kt5F78O79sFzDKFWA0oqmro87BoUXAtU1DA8Hp6QSlpxPYW0POonL2Jk+gtNYdTFurUCgIDw9nzJgxdxwI6+vrpVBQy3BQfRuWNkdHR9xu3SJfo0FrY0MHNzcWP/00+fk2zJwplkX5kM9NTS9yOrqzecYMdKYDlE1DA3O919FldS6cF5//4JgxJERHY1tXR6fKSq6Z8sucKyqIiYuj+8SJ8I9/iKohE/GFNh92j4Y/FkEdMAL4+xDo8jPIbMVU2u3bxcwYMwmjkkGUAOlyKDSCpyf88AN06dL0vJbXaWli5bN57HNw4NY//sHG+npqdTrslEpmde9OgKOj9eNaey6dDpKTqbpwgf0uLiSbso/MKiMQA7A75OWR2b8/t5ydLRNycJPLCVGpCFEo6CiXi3bKxkYxz+jiRQAuxMQQN2AARpkMb0M9c4t/xEVXBgoPcJ4JCpeW78viukwmY6WzM5UKBa56PYtKS3HR6dq8P4JAI7C8UycKbW1x1mpRGo2UNvusBVRWMvrWLZy0WvSCQGy3bmS6uKDRank0NRU7nU60nchkGIFqlYoTXbtSbKHoUOn1RN24gVN9PUbAYLqvUSaTLtkeHmR16GA18QzIzcWptrbpfnK5+FjTzy1uM/+uUIh/N/2sVakwKJXihLeNY4fZhvbe00uQ+fhjlMvxz85m6p49uIaGIj96VHxvHTrA99/ApPEg6E0XnXiNXrpNMOowGnQY9I0YpJ91GAymn4168dqgp6y8jt3xRTQ0GvFwUTJsgAa53IjRYKCmTk/iJR019aBWCfQPMWJnY8BgMGI0GDEYBYxGAYP0MxgMAhkFGmobRKuio20j9jaNFFU5YBTMk34BG5UOwSigNdgg0nUy6W8ifsNQ5/9DyC0UKwq5AbnaiMLGgFxhRCE3oJAZkMuNKGSmv5t+trpNJiCXCyhMF7kcFCa3lUIuHnbkcpnpNhkK00VugIZVxcT7R0i5bwC9u1YwMKQKhUKBQi5HrlCgaDCieCoO+fVSFEYj8ujOFH0yh90n5eSbehc6ZWVR7+RIsZs7CjkYjNCjuwMzxnWEQ1c5+208+4aNwKhQ4NNYy9xvl+FsPr/40yL48BWQm1Rw36yCV/4BiBbNvFEj2BYxkAqVGoVOh0KvR3uPRSmWtvrW4OrqKhY6ODvjU1iIz3ff4Xz6dJufuCyFggCDoZ0sasfvDr/HgOvq6mpJIWLGkiVLCAkJ4bXXXpMawe8GnU5HaGgos2fP5kPLIhILlJeXExAQwKeffirZxwYPHkxgYKBVwPX06dOxs7Nj7dq1HDhwgAkTJnDjxo02I1DuhtYIkQfd7qeffpr8/HxiLSIgHtSG1hz//Oc/+de//kVZG4tm5oDrc+fO0b9/fwD279/P+PHjWwRcFxYWSi6PN998k61bt95zwHV1dTWenp78+OOPLHzAxtjWyCKj0dgiNufbb7/l8OHDbN68mYCAgFYFDO1k0QPAUln02GOPtQh11mq1lJaWUlxcTGZmJtevX7fKy2gNarVasrRZXlxcXFqQNYIgcPDgQRITEwHxiz5mzJg2SR2j0cihQ4ek+3fv3p3p06dz6dIlDhw4gCAI+Pj4MGfOHFxcXLh58yZr1qxBEARiYmKkxPd7xZUrV9i+fTuCIBAUFMTMmTP/q8ymO6G2tpbNmzdLrPbgwYMZPXp0q8otQRDIzc0lOTmZ5ORkqqur7/r85lyee7G5NSfmzPD09GTWrFmS8sloNJKamkpiYqJkhwPRUjd48GD8W8uIuUeYG9QOHjxolX3i7u5OaWkpNno9T337raQe2DtuHKejorCvqeH5b79FY86y6QGGI+vZcVwlkYpTpkyhc+fOrFy5ksrKSpydnVm4cCHuN26I4c46nagW2rfPer8MHkCXG2d5peiv/JX/QbC3R3bypNi69YC4nfQNv24pxChTIDMaeXz5cnwKCvjpySe5YWvbog0tICODoceP0yUzE1lEEPxPDnk6Z3ZdnUF+RVNwsUwmIzg4mAkTJtyzDdNoNIohol99ReGJExR6e1Po7U1Fs9UDS3h7e+Pp6cOJE17s3OlDfaGaS4bBKDW1rJs7lxJTPpHMaGRC590MeP4cskZRdfPzU0+R7+ND15s3GdShA7sNBipNE6EeV68yvmdPHN55x3qi3pAGvw6EF6vBACwBXh0C3eNA4WzeEDF/6aOPmsg+GWAvgxoBvLzg4MG2/2/l5WJOlUldiExG1aefssHZmby8vBZKRivo9XD0aFMGUUkJAqJq5mZ4OPsmTKDMPIa0srLurlLRuVcvOnfujKOjI4IgNFlTcnMxfvYZxpwc9CoVV6ZNI8ukMPJ2MxLmeQSZTMCoDsXo9ChGVFbWFkt7isFgoL6+nuzsbPR6PSqVCh8fH4kUbm6LsbTD1NfXt9mc+P81mMmiP//5z1bZeSB+5pVGI0q9HoVWKyoy7O3BzU0kqFqxJv2/fHoil8tRKhWiZUghF0kQuQyF5c9yUCjMPzeRKWZCpYloARkGim+UkVErWksdamsI8oFytTNFhQZqa0QSRyY3IFcIqB3laFFaKTgtCS6l3EhUaC79u+ahVOhQyHTI5ToUhkbk5yuQHSqHw1VQYEGoK4EIJYxQwnDA0yCSgA8TdVDyNw9WDlhEtcVY/kjYPqK6Nqus1wLPASZRra6XiiN/GcGpW1EIghxboZ6xO/eT1TWApF69Ucp16I0qnGwreXbod6jW6InLncilvv0A6JVzhckrYlHpdKACPgWGikNXZb0LhVu9KTzvRZHpWFHi4d5kD24Os+JQp2Mop7DtL6Oq3pHCSg8KKt2obWydUFLKDSADvaH1xTqbhga8y4rxvp2HT0EBPoWFeBYVcbtTJ1aNGMG7v/zSTha143eH3yNZ1Bpas2MtWrQIPz8/PvroI0BcnM/NzSU8PJzc3FzeffddMjMzuXDhgtTquG/fPgRBIDg4mBs3bvDXv/4VW1tbjh8/Ls3Ltm3bxpw5c/jmm2+kzKKXXnqJo0ePEh0djSAIDBs2jOrqaj799FOCgoLIy8sjLi6O6dOntzlH1Gq1EjExceJE5s+fz/z583FwcKCbRfTC3ba7OT788EN++OEH9u/fj7u7O87Ozuh0Orp168bgwYN59913KS4u5sknn2To0KFtBlzHxsZSWFhIZGQktra2HDhwgFdeeYVXXnlFalw7c+YMixYt4tChQ5JyZ8KECRQWFvL999+j0+lYsmQJAwYMkGx8lZWVBAcH88gjj/Daa69x9epVnnjiCb744guJoLuXffO3v/2N77//nn/9619ER0dTWVlJQkICTk5OLF68uM39k5KSglar5Z133qG6upovvvgCEAuuWkO7De03QnMbWnh4OFOmTLmjAic3N5cjR460IBLuBqVS2SqJ5OrqysmTJzl48CAgfggmT558R3tbUlISO3fuRK/X4+7uzty5c6murmbz5s3U1dVhZ2fHrFmzCAgI4MSJExw6dAi5XM7jjz9+3wTGtWvX2LRpE3q9ns6dOzN37tzfbOA2Go0cPHhQskkFBAQwY8YM7O3tEQSBgoICrl69SnJycpsqIhsbGxwcHCgtLQWwqrZ3cnIiJiZGah9qDQUFBWzYsIGKigoryXqfPn2YOHGiVJ9oCUEQuHXrFomJiVZh2B07dmTw4MEEBwc/kF0xLy+PX375BYPBgJubmxVD7pOXxyP799MlK4vMgABWmQacx9asofv166adAfrEeWy+NoX09HTkcjnTp0/Hy8uLVatWUVNTg5ubG4sWLcJZpxObtW7fhiFDoFk7kOBmz6CAKgLPb2Adj4k3btwIs2bd93aZkXl1Has3p2KUiYqi+atX0zUri42zZ5MeEkJNWRn/8/XXbBk1CrmTE1d695YUKX45OUSfOEHw7Wxk/3CEYUWU1fux6/qfybxdY/U6nTt3ZsKECfe8IoHBAOPHi4SKTEaDWk3R229T+MgjFGZmcishgeI71CzX1mjoVnSTTkXZ3PbzI8/iOxdue5FJb+1CYTBQ4uHB988+i0GpZPSBA/R+8kmOx8ZyvmdPBLkcm4YGogoKCH3pJYze3k3ERc1ljOv/hGGVGIhqnKPAOLwbBu+3MGJvTXZcu4bx4H6M129iMKlGjHI5Ro0G45w5GDw8rAgR6bF6PcaUFIw3bkiP0Xl6UublRZ3JJmlra4tGo0EwGjHW1WGor8fY2NhCqdJWY9D/16BSqVCpVKJtRaFAJpPR0NDQIgtNoVDg4+ODra0tcrlcuigUCulnvV5PWloaer1eCtt3cXGhd+/eosrC4r7yhgYUV64gP3sWeVIScp0OudGIQaGg3s6OOjs76jQa6tzdqfX2pkajoUYup+Ee/m93IoseFiy337xdltdmklcQBOzs7PD29kapVEpj7u3bt6mvr0culxMUFISTk1OL57D8ubi4mPPnzwPi8WP8+PEYjUauXLkihVabYc7KUygUODo6SmpQhUJBjx49sLOzIykpiToTeW+2FkdERLTIjXgQGI1waFUiF1JiadDYYldXR8Emb/6T8yLdu2cwYkQa3t7XEISmoGqlUomfnx/l5eXSQkRgYCAxMTEtZPUtIAiijNLcrNa8EMTUrMbUKdC9K02qMZ2FosxaTWb1N6vb9VBRSf6TX7Kq71DqLVZJp41yoU+I2vqxei08sQoOiMfgm1G92DV9KhV1ooq4h2s549/9haSQnuwfNw4ZgsmOJ7BocBLuX15go+8Ycjt2RCYYGZN4iKgDCTTa2FAU6kvhX7pRKLhRVOlKUZUrjfq2F55kRiNhycmUhrpToPSViCKZ0cj89NUEvpJhJUATBKhpdCS/0oeCKh8KKjtQUOVDeV3ril2FXo/CYECnUrU+vpperz3guh2/V/y/TBaNGDGCLl26SORHfHw8zz33HBkZGTg4ODBx4kQ+/vhjqzzUjRs38sYbb5CTk4ObmxszZszgn//8Z4vj7i+//MJHH31ETk4OwcHBvPfee0ydOlX6e3V1NW+99RZbtmyhuLgYHx8fhg0bxkcffdTm/DArK4uAVlpshw8f3qqlra3tbo7i4mLmz5/PyZMnqamp4ciRI4wYMYKkpCT+9Kc/cfLkSTQaDTNmzODzzz9vs+F07969vPHGG9y4cQNBEOjWrRvPPfccTz31lHQecPToUUaOHElmZqakqiorK+PFF18kNjYWuVzOjBkz+Prrr61e58qVK7zwwgucPXsWDw8P/vCHP/Daa6/d174RBIGvv/6a7777joyMDFxcXOjXrx9vvvnmHW11Xbp0aaHYMj9fa2gni34jtJZZ5OTkxLx58+7agpOTk0N8fDw3btxo8TcvLy86duyIVquVKk7bWolWKBS4u7ujVColdUrzVo/WkJeXx4YNG6iqqsLGxoYZM2bg5eXFhg0bpJaxMWPGEBkZyZYtW0hJScHBwYGnn376rvXyzZGdnc26detobGzEx8eHBQsW/Ff5PHdDcnIyO3bsQKfTYW9vT/fu3cnOzrbyllrCzs6OsLAwwsLC6NKlC3K5nOzsbGJjY1sljXr06MH48eNbDDxXrlwhNjYWvV4vEUVKpZKYmJg2mdzmKC4u5uTJk1y5ckX6n7u5uREZGWkVWH031NfXs2zZMioqKggODmbUqFH8+OOP4jZYKDJ88vOpdHKi3t6e/mfPMikuTnoO7Vd+bHB5n4zMWygUCmbPno29vT1r1qyhvr4eb29vFixYgIOdnVh1vX+/WGteWNjUsgUIcnh+VhknN2STyGAx0Pr110XlygPielIc67eexogCBIEZmzbRIyWFXZMmcWHAADAaqTQx6a+//jrDLl6k95UrnB04kKs9e0oh166lpfS5dImurmXwWCVGVwW1miWcvubPrWbBdk5OTvTo0QM3NzdJXdKCJDHfVluLce1aDHV1IlmiUGAcM0YkbSorqbhwgXyTasjWxgaZXI5Wq21bcWKpohGEJivWb5AF9ruERTuQTWMjmtpaFM7OyL29kZeUoMjNRW40ond2ptjNDb3JD+/rUoyzbaGowHCMRGYbaE2UtEK01NTUcPHiRXQ6HU5OTkRGRqLRaO74GLlczqlTp0i1rB03wdvbm7Fjx9KhQwerx+Tn57NixQr0ej1DhgxhzJgx0mPKysrYvHkz+fn5QNP45OnpyYIFC+6ohtPr9Sxfvpy8vDxsbGxobGzE2dmZp59+Go0pi0uoqKBu2zYq9u6lIjWVSkdHKpydqXRxodLZmQoXFxrv8QRcZjTiWV5OvYMD1aZjkltpKaMOHiRZLmdOcrJIFjk5gUyGjUFLo0LMqAq9fh11bS3Vjo5UeXpSqdGgu8MY6OjoiLu7u9WCipeXl7RdbSErK4s1a9ag1+vp2bMn06dPl04SGxoaWLt2Lbdv30atVvPYY4/dtSV0x44d0gmXRqORyB4QrUBtVZYrlUoiIiKIioqSjrM6nY6LFy+SmJgoLXKo1Wr69+9PZGTkfdfN6/Vw/Ljoxty2TYyU83bO50/zvkbrY9tqrbudnR3BwcF069aNW7ducfbsWYlcGzduHL17936wXMJr15qa1ZpZlgkLE4mj6dPFhYj7ff7ycm7Nncuafv3Qmj6rCoWCWbNmEWyytEoQBHjySfjlF+o0GvZNmcIVU3GIk5MTMSNGEDRzJhnA6oULEWQyqTUwKjiY0P/8hw2RkdQ6OqIyGglOSUGrUlHo7U2lueWyGRR6PR4lJWJJgrc3twMDSa+tRW4w8NjatRSPHc0+H9Nkz2gEuZwxly8y5Jf3wEbRCnnWjFAT9DTU1FJ4JYf86yUUZFZQoFNR7OEpNUxaQmYwoDAYxOBv075uJ4va8XvF/ytkUTva8f9PaCeLHgBmsujatWts3LjRKq8kIiKCkSNH3nX17/bt28THx7eqNOrevTujRo3Cy8uL8vJyKQuppKRE+rmtjBQQLUfmLCTzxUwsgVhJvtHUdAEwevRoBg4cyO7du7lsCjfu2bMn48aNY+XKlRQXF+Pv78/ixYvvO38oPz+f1atXU1dXh7u7OwsWLJDkkQ8bJSUlnD59mgsXLrQIlDZDo9FIBFHnzp1bVe7o9XpOnDjB8ePHMRqNVgHVtra2PPLII4SHh2M0Gtm/f7/UAmeGh4cHs2bNwstECtwPampqOHPmDGfPnpWUA/cahi0IAuvWreP69eu4urqyePFiVq9eTUlJCV1Kipm0dh2nIyO52Lev1AgjNxgYu38//c+fR6XX0zDelrWPfsztvApUKhXz5s1DLpezdu1atFotfn5+zJ8/X/x8v/suvPeeWGXu6QmmynQzNr10hGe/7NUUaD1+POzadd+B1mYkXzzElp3HpMruibt2EXHuHPHDh3N05MgWq6L3G0D/e4cMkJnGBaO5LUsQUOv12Dk5obCzE0kJYxnyW7eRlxtRCAbkQUbkjjbIHSKQK+1bkiYyA/L8XSiSCpHfNDZlkDg6Ih85Enl4OHIL5Yv0uPJyFJ98gjwnR3wMUOjnx4lBg9Da2KCprWXMqVN49u5NzsCBZKlUZGZlSe2EIKpqAgMDCQkJISgoCFtbW2QyGdevX2fPnj0tiGD3khImxcbSJS9PaktLeflltru5odPpcHW2ZW6/n/CyvwEqXwjcDvYRd923t2/fZs2aNTQ2NtKxY0fmz59/189WY2MjGzduJCMjw+p2GxsbRo8eTf/+/VuMP9XV1fz4449UV1cTFBTEnDlzpPskJSWxa9cutFotarUaQRDQ6XT4+voyf/78uxIjO3fu5OLFi5KiSCaT0b9/f4yNjVTeuEFFWRmVSqVVW1Rb0NTW4lxZiUtFBc5VVTgrFJR16sR5Ly+MMhke9vZ0Cw7m7OXLGAwGlHo9Iw4fJvLUKRRGI6m9exN25QpfTZ9OeZ8+TVYbowGDXIFSp2Px8eN0TE6G0lIEhYKaoUMpvnWLEg8Piv39KYmMpBjuaPHWaDR4enpK6lzztaOjo0RyXL9+nfXr12M0Glvk9Gm1WtavX09mZiZKpZK5c+cSGBjY6msJgiApai3J35CQEIYMGYKPjw+JiYkcO3asBTl8pwUZg8FAcnIyCQkJFBUVAaJqqnfv3gwZMgQPD48WjzGjsREOHRIJoh07wLQGgotLBb17pxEZmY5Gk2X1GJVeT3iPHvSIisLf35+MjAzi4uIk9VOvXr0YN27cw1v4yc2FnTtF4ujIEZHVMqNTJ5g2TbwMHQp3K9woKeHm/Pmsj4iQPsd3JPrefBPho4+40rs3+8aPp970HRo4cCCjRo7EZt48yo8e5cdnn6Xe1hYHBwdqampwUCpxzs4m19f3jmSWk5OTmBXk6YnXzp14b9iAe6mYicTixRwbPpwjpuPmo5s34+bmxk+mcFHzwkBYejozP/oIWWvv32CAjAxIToarV5uu09Ot2yIBvUJBkZcXWV26cKtTJ4p8vKl0cm6VQGoni9rxe0U7WdSOdjx8tJNFDwAzWVRZWYlarea7776zyofRaDSMHj2avn373nXV7datW8THx7eYUACEhYUxcuTIFieDgiBQUVFhRSLl5ORQUlLS5uvIZDJcXV2tyKP09HQpbKtHjx5MmTKFS5cusW/fPoxGI97e3owbN46NGzfS0NDAgAEDiImJuZ9dBYj17atWraKyshInJycWLFhwz81ld0NZWZlkMTOfSDeHOby4Z8+edOrU6Z6tXcXFxcTGxkqkmnlFEcDf3x+dTkdBs9ry3r17ExMT06rt7H6g1Wq5ePHifYVhHz9+nMOHD6NUKnniiSc4ceIEKSkpOALPfPYZ9qZJ1fm+fdk1daqVakVTW0vflAtcHxtNUYUMW1tb5s+fT319vUSIdunShblz54rKtb17RVWRIIiB1ufOWb2X7Cf+TNCvnxJnHM8YDkFgoBhofTe7Qhu4eC6e2LgjUhvP0KNHGXX0KBf69SN2yhSr+7ZKFgmCKME3GiUrjV6plFbRZaaAbPu6GpQqAbnGBZnGgSqFgiqt1ipAWS6X4+XlhZeXl2RbaUGUnDuHYtcuMW/FYEDu54f85ZdR2Nggv3qV5P37udG9OzJBYNiIEfj5+SGXy5HJFKxeLWftsjq+NP6JbnY3KOjQgVOm1WvztrQ2QZEJAu6CgHdKCk4VFWQHBJBn8li7lZYyydGRgL/9TST3Ml6Bef+CM4CHHJYboVNHCDoEtq3YLQ21cHMKpB6GZ2VQYLFH/P3h5ZfFFXrzBFKng8OHYe1aWL8eLAigMh8f1i5dSqlKhUwmk+q0zdBoNAQHBxMSEnLH1kG9Xk9CQgLHjx8XJ98W+6XvhQuMOXCA0+PHc6xPHwC6dlQxM+xD7NS1oBkIgdtA7dvqc1siKyuLtWvXotPp6Ny5M/PmzbujelMQBFJSUti1a1cLq1jPnj155JFHWiUFdDodK1asIDc3F09PT5YuXYqNjQ06nY49e/Zw0RTO7enpSXl5uWTxtXw/BoOByspKKisrqaiooKKigsrKSnJyciS15F0hCDhWVzeRQRUVuFRW4lxTg4urK87+/qhDQkQFSGgohsBA9h49yjnTGNC5c2dqa2ooMb1e15s3mbRrF67l5eDhAVu3kurhQVhYGJkyGadnzyYtNLTF51pTW8vS/HzctFrRugoieSCXg7l5Ze5c6j/7jGKjUVpMMV/fqbhArVZL5JGHhwcNDQ0kmCy0gwYNYty4cdKxW6fTsWnTJq5fv96qQsWcQZeQkCApvsyQy+U88cQTZGdnS5J58+vr9foWn/vnn3++TRJGEARu3LhBQkKClcTcTEaZJ/W1tbBnjxj9tWsXiNF8At7ehfTrl0bfvumo1dbHLW9vbxy0WjJKSxHkcjoUFTFl7FhOCgJXrlwBwNnZmZiYGLp3797mfv2vUV4uNmRu2yYeYyyUWbi7w+TJouJo7FhxHLNEURGpixaxOSICo2nMsLe3Z8GCBa0rvr/4gvJ//IO4SZO4acqI8PLyYvLkyWJxyRdfkLdxI0dGjaLO3t66Ea0Z1I2NeBUV4VVWhvdjj+EdEYGXl5e4qKLTwaJF4jhoxgsvcG70aOJM+3b8nj30yczk8z/+EZ2FCtirsJCl06ejHj1aXIxpTgqlpkKzMUYA6uztKXV3p8zNTbwOCqLUxoYyjUZsmGwLRiMymYyKqqp2sqgdv0u0k0XtaMfDRztZ9ACwJIucnJwwGo2sWLGCW82UFb6+vkycOLFFnV1ryM7OJj4+nszMzBZ/69OnD8OHD79rLkBeXh6rV6+mvr4ejUZDQEAAVVVVFBUV0djYeNf3YG9vz+DBg1Gr1Rw5coS6ujpsbW2JioqS6ggnT55Mv3797vpczVFVVcWqVasoKSnBzs6O+fPn39N+aQ0VFRUkJydz9erVFmSNGQ4ODri4uEhZEb6+vsyePfu+8zEEQeD8+fMcPHiQxsZGaQLR/OugVCqZOHEi4eHhDybLbwN3CsOOioqiU6dOAGRkZLB69WoEQWDKlCk0NDSwf/9+5DIZj//8E/63RMKrytGR755/ngY7O4YcP45jdTUnBw+2kswrlUpmz56NVqtl69atGI1GgoKCmDVrljhxz84W7QFlZRAVBSetw0Ib+wfRMTud10pe4RX+JQZanzoF99jo0BynEo+x70BTHWbfc+eYvGsXaSEhbJwzx5o4EQQqTSe6x3r14sj06RIh1O3aNWZv3ChVj+tUKi727UuixfbbNDQQceYMkadPS+SaXqHg7NChHBs8mAaLE22lQsGAiAiio6NbTvAEAebPh3XrJIUPTz4JP/4o/vnXX9kWG0tS796ogMefesrKZ75vHzwzr4q15eMZzEn0cjn7xo3j3KBB0n0Cbt5EpdNxzWSbaBMWk/CORUUMHzmSTpMnoU5bBDM3wQ0gUAU/6cDVG7rvB03vls9jrIebj0LRXnhJBueaHRJcXUUCEcTZqmWbhKMj1UBacDBpoaEtKtbVajXh4eGEhYXh7+9/X1ld5eXl7N271yr3C0S7h8E0aYwsTWPspI3I3Y3gNh86/wjyu2e/3Lx5k/Xr16PX6+natStz5869oyW0rKyM3bt3t1CMurm5MXHixDuqUrZt20ZSUhJ2dnY8+eSTuLm5UVRUxObNmykuLgYgODiY69evYzQa8fT0JDAwkJqaGokcupfQfhAntx3y8kQSyEwGVVTgUlGBU20tSl9fGDgQwsMlUoiuXVsoO2pqati0aZN07PPr0IFcE2Giqa1l3N699EpKEineOXNg+XKws5MaRW6/8Qa+n3zCjqlTuWKhMDLDtayMJ52d0fTrB88/D/n54t/794cLF0SbjqcnfPcdzJhh9d4siybMJFJJSQmlpaV3DcT29PQkLCxMIpRcXFzYsWMHqampyOVyHn30UYKDg7ly5QoJCQlSLpxKpaJfv37IZDJOnToFWNeuOzk5MXjwYPr164dOpyM2NtaqHUWhUDB//vxWswwscfv2bRISEkhPT5dus7XtTHJyNJs2BdLQIEMmM9Kp023690+jR480FIoK6b4ymYxOnToREhJCcHCwdG6Refo0G3fuFMc5i//FoEGDGDVq1H+9CHJfqK+HAwdE4mjnTuvxRKMRlarTp0NMDDQ0cGnpUnZGREjjiouLC4sWLWr1vMm4ciWnfviBIyNHolepkAOdTSfBxcXFlJoC9luD3GAQ1TiCQK+0NEbs349rRQWyXr1En5+lPbChQfzc79zZdNurr5Iyfjybjx5FkMsZGh/PyKNH+fbjjympr5f2u219PU+dOoVbfb2Y8VRjnanXYGtLqbs7pd7elAUHU+rrS5mjI6V6PY13UGDJjEYUej160//SqaKC6NOn8crJIWHSJK57e7cri9rxu0U7WdSOdjx8tJNFD4DmZJEZW7dulZqjLGGu5L4X2XZWVhbx8fFSu5cZZsvAsGHD7pgdVFpayurVq6moqMDBwYGFCxfi6elJTU2NdNJsPnEuKiqivr6+zecy2xVAtFaVlJRIK6UPQvTU1dWxZs0a8vLyUKvVzJ07964nxWZUVVVJBJElaWIJR0dHyWLm7++PTCbjxo0bbN26VSLQZs6cec+vaYnq6mr27NnTavaIQqFg2rRp91xv+SC4Uxh2eHg4hw8fpq6ujvDwcMLDw1mxYgWCIDDh7EkGxontZAKwZsECbnbrRoe8PJb+9BMKo5FSV1eWv7iUWkVTFpPlBKdnz55MmzZNtCA2Nop2gLNnIThYzJ6wGBoEZzURXevpftEi0HrTJpg584G2+Vj8UY7GH5NuC0pLY87GjVzv1o31c+eKKgOL3BpkMjrnnmDJjwepfD+UgpV6Ns6ZI5EG/tnZzF+zBhsLpYtBLiepVy8SoqMpMSnelDod/bIvMDjpOs5XM8FgwCiXc7l3bw6PHk2NxXdQZjTSs7aW4R4euPfsCT16QOfO4qr4oEHWYa4//iiSRoDh449Zm5JCRmAg9goFTzz/PG5uTcGk2dmweHoV/7w4gSGITYZXe/Rg26OPStaBjrdv415czOV+/bCvrmbCnj1UPPUURadOUejqSrFn6zkVAC6OjvjY3MB7TyreNwvw9q7C9cN8ZBoX6L4X7Ae2fJCxETJmQ9FOeFUGCYJoK1SrxcmdJTw8KJ07l7SICNK0WnJyc63/XFKCpmtXbplUmQEBAcycOfOudqoWqK+H558nPTGRvRMmtGih8ywsZN769bjqyuG1KfDaZrgHq1V6erpkKbIiS1uBWeV07NixFhbYoUOHMmzYsDYfC5CQkCCVFUyaNAl7e3uuXr1KSkoKgiBYBVTfDUpBwLm+HpfSUuzLykgPDqbR1hZ1YyNaGxt88vJY+ssvKM3PpVJB794wYYJIcAYFid+ru8Ay/06lVKLU6zF/AvpcusQjBw+iqakRn//f/4ann5bIB4ksun2bjl99hfCvfxE3cSLnI0RLoMxgQDB9br0KCniyb19Us2bBK6/AL7+IL9Khg/i5M6tsZs+G//xHJI/uAIPBQFlZmRWBZP65rf1rVubqdDqJkDOHVINoTx40aBADBw5EEAQSExOl9lHz38eOHUufPn1aWLlv3LjBli1brFRoffr0Yfz48Xc8KSsshM2bi0lJScTd/QoKhfi5Ky93obHRGW/vYmSyJmWOUqm0snS29j2rqKhg+9atZJtz2wSBqNJSxn74IbL7zCx8qNDr4cSJppwjy1w5hYIzkZHsGTtWusnLy4uFCxda5Qs2NDRQVFTEtd27uZiRQd1dzsdUWi06tRqZTIZGpaJWq0Wh02FQqbAxGnl0wwaCzGTds8/Ct99aL1zU1opk1oEDTbe9/z6ZMTGs2bYNg0JBv3PnmLRrFzuWLuWyZUisIPDY2rV0zs6W1EGlnp6UdelCqZcXZRoNFpqrlhAEnI1G3B0ccEtMxK2wEDeFglw3Z072CkevVqPU6Rhx9CgDU1M5ExJC/KhR6JRK5AYDQYcOMTcxsZ0sasfvDu1kUTva8fDRThY9AMxk0caNG5k0aZJVPtHhw4c5fvx4i8fY2NgwcuRIIiIi7mnVPDMzk6NHj7ZQKykUCiLaUjOYUF1dzerVqykqKsLW1pbHHnuszbT62tpaiouLuXXrFqdPn7YK5GwLMpkMf39/fHx8rHKR7mWS19jYyIYNG8jMzEShUDBjxgxCQ0NbvW9NTY1EEDVvkzHD0dGRHj160KNHD/z8/FpV9ZSXl7Nx40YKCgqkAO+oqKj7UgDpdDri4uKkTCczzKSKTCZj0KBBjBw58jdffS0pKSExMdEqDBuQLH4rV66kpqaGXg11TP/4U6k85UxEBHtiYlDqdDzzww94lJRQ4uHByiWLqLZ3wsXFhREjRnD8+HEry0pgYCBDhgyhS5cuyF54QVzFd3YWV/UtlAyCDJ6fUcTJzblNgdZvvAEffnjf2ygIAgf27+ekaXUeoOOtWyxatYrUkBC2PfqoFUFkvu5RlszAZ+bSuccMKivKcNryDLf+cZrVj81HZ7LqeOfns2jlSjTNyA1BJiMtOJgTw4eT16EDAHKjgd4daxnSYxoeuQWQkoKQnExqRQUHQ0MptyB3EAS63rzJiKNH8S8tFdUYfn6iTMhMTqnV4qQnIgIEgcaXXuLXxkYKOnTA1daWpS++aPW9bmiAV5+rZvavE4hGtMkUe3qycuFCakxEtaa2FpVOS6WLK6EpKcyKjUW2ejXMnIlBLqfEw4PCYcO4/uijpKemorvD+KMyaPF2L8TLuQzvwJl4dxqCt7e39cGhoQbWjIdtCbAPsJhfC0olBZ6epIaEkBYaSnGz3K6OPj6EJCQQEheHu0kpkPr++2yTy9HpdLi4uDB37tx7b6DLyBAVJZcugVzOtfffZ5MgNE36TZ8LpU7H8KNHiTp5EkWPHiJ5MXx4m0+bnJwsqepCQ0OZMWNGm3lt5kwXy9ZBEFUmixcvloh1QRCora1tYRHLzc1tkwBvDXKZDHfAta4O5+JiXLKzcc7Px8VkG9PU1iIDjHI5qxYuJCsgAJuGBhptxdarp5ctw0UuFxsJZ8yAESPuiTyzxOXLl4mNjcVgMKAWBLSmsdS1rIxJx4/TNSVFJJY7doTNm0XS1AJWZJGfHzzxBMKvv3Jg/HhORkYCYFNfT6Pp2OqTn8+TMTEoJk8WJ99PP91kRevTB5KSxPHIw0OctD9A26LZ3h0fHy+N8y4uLtTX199RmWtjY4Ovry/Ozs5UVFRw+/btVgPrFy5cSNeuXVt9DrOK01opZMuUKVOsjo+3bolcydatoohFEMDOrp7evS8THX0WB4cyK75CpVIREhJCaGgogYGBbR6bjEYjp0+f5siRI+h0OhQKBR5AoWk7wjMziXn9dZR3UzH+b0AQRFXZtm0IGzdy3MeHI6NHS3/uWFbGOG9vKiIiKJTLKSoqorCwsE1boqWt2NvTE++vv6Y+JYWtM2YgyOV0tbUlo6FBGks8GhqY8+OPeJSWikq7NWtEotISlZUwaZI41psxcyb53t786uSE1saG0JQUZm7axKW+fYmdPNnqOOZSUYHe3p6au3wvHRwccHdxwS0jA/f4eNxKS3FXq3H79FOUJ07ABx8AUDx6NDu7BZLTQVSvds7KYnJsLHV+fuwaMoQi03jbOSuLmF27aPzrX/F/7bV2sqgdvzu0k0XtaMfDRztZ9ACwbENzc3PjkUcesWoFOXfuHHEW7VKOjo7SaqSXlxcTJkyQKvjuBEEQJNLodrOGJpVKRWRkJIMHD271H1dfX8+6deu4ffu2ZCu6W9aATqdj586dXL16FYCgoCC6detGampqq/a45jCHiTa/2Jv8/mbo9Xq2bt1KamoqMpmMyZMn07dvX0Akr1JTU0lKSmpBlJlhbqfq0aMHvr6+90T6NCd7wsLCmDJlyh2zR8ywJJvMsFTeWCqwXFxcmDRpUpt2k4eJmpoa1q9fT66FYsMcxu1hZ8dTf/sbalPGUomHBz888wx6lYrxu3cz6MwZ8n18WL1wIXX29lKb0qVLlyTLobu7O2VlZdJ2+trYMGTVKkLS0pB36tQ0WTNh+x+3s/Tr6KZA6wkTIDb2vgOtjUYjcXFxXLhwQbrNo7iYJb/8wrkBAzgyapR4Ym1qijGfYHcruc7cdxeSX98Df3//JuXfjn9S+MK/WTF/sRRg6lZayuO//opjK7YdAcgMD+dE795kSpM7gdDgQKKHjZbsYoJWy82EBA6eOUNhs9wIn/x8hsfHE5yejqz50KlSidkbfftCSAg1q1bxc0AAFa6u+Lq4sPi551pM6lZ/V03g8+OIQrT8NdrYsH7OHLJM709uMCDIQJArmLJ9O33Ly+DNt+CZZ5qe5B//wPDmmySuX098ejoGhQK5wYB3fS2CQwPFejdJgdUczs7OeAPe2dl4JyTgnZmJW2kpckHAaCPjtk8nUkNDSYuOptJCnSE3GOiSlUWIWk3IggU4jhgh/t/efRfef1+6X+G0aWwYPpzyykpUKhXTpk0jLCys1fciYfduUQlTUYHg6cmZf/2LfZmZCIKAt4ctdkI6WaXWobDeBQVMjo3FLzcX5s6Fzz4TCQ0LXLlyhe3btyMIAr169WLatGmtEvzV1dXs379fGi8toVQqGTBgAFqtViKFKisr70kZZDm2+APq2lpumgjEiNOnmbBnDy1GPJkMvL3F70JxMRiNHBg7lsQhQ5rseILA/MZGuk2dKlrM7sPqZ4bBYODAgQOcNjVYmS05MqORwenpDK+uRrV7t3jnUaPEnJZWlD5WZFHHjqJyZMYMhJ07OTZmDEejowFwrKyk2mQd9igp4en581FFRoqWnLfeEkk/QRDzbBwcmlRGM2fCN9/AA5QMABw6dIgTpon+2LFjKS4uJikpSRrnLUsP2oJarcbe3l4KYbe1teXxxx/Hy8urzWNWYmIiByyVKIC3d1fKy6eydauTFA3n5FRJSEg6Awem4eGRBRamKRsbGwwGg/RZ02g0DBo0iIiIiFaLNwoKCoiNjZUIy86dOzN58mTc3Nw4uW4dB9PTEeRyfAsKmDN2LE6PPnrnnfe/BOHGDXa/9RbnLMYJm4YG9Eplm+OYGR7FxQwCOr39Nu4eHk1E8HvvUfbVV/z49NM02NnRrbGRG2q1pBgKysnh0VWrsGlsFD9bJ0+K9kwQP5MpKXDqFPzzn2CRoWiQy8nq3JlNs2fTaGeHY1UV7iUllLi7i6T/Hc5hNBoNbm5uuLu7W127ublhc+kSLF4sBloDLF0qjq0vvAA7d2JQKEh45hmOuYlju7qxkbEHDhCWnMyhadO4YMreshMEHtmxgz6XLiH7n/8hZ84c/P3928midvzu0E4WtaMdDx/tZNEDwEwWffbZZ1ITS+fOnZk4caLUgJWamsqmTZuaJtq+vpSXl0u2r549ezJ27Nh7qr8VBIGMjAyOHj3aQmFjY2PDkCFDGDRoUIsJplarZdOmTdy4cQO5XM60adPo1avXXV8rISGBQ4cOAWKQ8+zZsyXCpMbCN+/j44OjoyPFxcVSCHNrsLW1bUEgubu7Ex8fL9UMh4WFUVdXR3Z2dqt5Es7OzhJB1KFDhwfKBRIEgXPnzrF3716RUPHwYM6cOXdsk7l58yabN2+2sgi4u7sza9YsKXPCHKxtrrEGMeh63Lhx92+puQ+kpKSwadMmAPr160dycrK0Ai7X6wm/dInBJ0/iUl7OL0uXkufnR9ebN1mwejU5fn6sWbCARltbOvh4MX/BIivrxPDhwxk+fDgVFRWcPHmSixcuoDdNlFxrahh89Ch9Ll2S8n/yFswjYO3K/zrQ2mAwsG3bNpKTkyUSyLGqikW//kr8yJFcNX1+pQp50338S26x4K2JqH1mkJOTY00WAcRvpmzOM6x4bDFVpsmnY2UlS5Yvx7Wtz66TEzmhAZwICCXdYkU9MDCQ6OhoOnfuLH0Ob926xaFDh1oQnM7A0KIi+mzdirKNfC2AUnd3fl66lHqNhm5aLXP79EHRsyd06yaqkYAriTXIRw6lp/aSuK9kMuKHD+f48OFWq9IqbSPPfvc9bn1CITAUfv656YWOHYOhQykrKGDXDz9gpoC9ioqIKYjD7lgthd7eFM7uRaGHnMISb6qE1nO+FIKAjVJPoxEMQtMKuFImo1twMKFqNd3XrcNu8+Ymq+Lw4fDaa2LeyL594qTeNIbWBwSw+ZVXyDDl8wwbNowRI0a0/K4bDPCPf4gXQB8VRdyLL3Lp+nUA+nSXManb+yjketIqZ7H38iCqqi3yPgSBiDNnGH34MDZKJbz9Nrz0EtjYcP78eXbt2gVA3759mTRpkkQU6fV6qqqqKC8v59KlS6SkpNyVMGgNjo6OuLi44GBnR2ZmJg06HV6CQGBJCafc3RHkclzKy3l0yxZSevTgVFQUACMPH2boyZPIgoJE1Vr37qJi7cwZcYJq0X6UHBbGZpPaQQ4YgZEjRjDsDmqqu6Guro5Nv/5Klun/Y4ZfRQWTw8LwXrMG4uPFG19/XSQD25i0tyCLQLQTjh8Px45xatQo9g0bBojEbpkp0N+xpoYl8+fjGh4uPiYhQZwgmyfLYWHizwaDSCB9842o+rjP44UgCGzdurUFEejr60t0dDTBwcHExsZKxy8zbG1tUSgUd2xoU6lU0nHQHLDt6emJq6srcrmcs2fPsXt3nNVj9Ho5J09Goder6N8/HScn6yBtLy8vQkJCCAkJwcfHB71ez8WLFzl58qR0bFar1fTr14+oqCicnJzQ6XQcO3aMhIQEBEHAxsaGsWPHSplLZmScPcvm7dupV6uxr6lhtoMDnd5++4HIxgeFTqejuLiYwsJCUSmUkcHtvDz0bXy+1AYDXnl5uJeWUuzhQZ7pM+ZUWUnMrl0EdekiBmlbKnf270c7eTI/L11Kkbc33lVVFNvZYTTdZ1hiIiMOHBDJ/wEDxAyt9HQpcNqYnU2VszOl5lBpy4BpV9c77y/T2K1uaCCic2e8Bg+WSKFWm3UbG8Um0k8+Ecn3Dh1Ei3NwMEydCikp5HXuzM5Fiyg0EWHdr19jYuwubnXuzP6YGGpNJ/zhgsDYzz5DU1cnErAffCAdQ9vJonb83tBOFrWjHQ8f7WTRA8BMFpWVlZGcnEx8fDx6vR65XE5kZCTDhw9HrVaTkZHB2rVrpdVIb29vfHx8JHWLSqVi2LBhREZG3jHPwgxBELh58yZHjx61UpOAuPo0dOhQBgwYYPVcBoOBHTt2SFlK48ePZ1AzS0BruH79Olu2bKGxsREnJyfmzJmDo6MjmzZtslI5TZkyhb59+6LVaqXsB8tGmubWDEuI7U+yViX7IBJEvXr1IiwsDB8fn4cWHH379m2J+FKr1UyfPp2QZvJ6QRA4ceIEhw8ftrq9Z8+eTJo0yap96OTJk9JnwFIVoNFoGDduHL169XqoodcgZlMtW7YMrVbL4MGD8fX1ZfPmzQC4NdZTZmNn3hDcS0sp9fDApr6e57/9lhIPD9bPm4dOraaTnxNz5z/LoUOHOH/+PACPPPIIUaYJKgBVVdRGR3PG3Z2zUVHUm7ZdU1vLoNOnCa/JJvBW1n8daG3ZOiSulMuwaWhg5qZNHBozhgKTNcysKDITRl5lhTz+5wjsuiwBaJ0sArh4murx41k5a76UTWRXW8uSX3/Fs9kEWIJCAVNGU3TuEgkDhpDUq5cUoNqxY0eio6MJCgqS/r/5+fkcOXLEtA1NsLW1JTIpiYitW9GYLQ29eoGNjdhoU1tLjp8fKx5/HL1KRZ9Ll5i6fTsypVIkBcLCICyMGq+uNPz1b3g05CIA9UoH8jp5sWHePKvKc9+8HJb+9Avyp6dCfJr4GiC+XlYW+PggCAJX9u1j3/Hj1JsCbQcknWV03CFstY1gq4B6A/W2thR5e5MbEsL1/v0p1Giov4NCxqG6Gh9PT7z79xdro2trcf/xRxSrVjURGn36iKRRRARMmSK9P6NKxYGPP+aUSfEVHBzM9OnTmxSApaWimmifmMNV/eKLbOzdm5y8PGQyGf8/9v47rur7fv/H72eyDnuDCioKiOJCFHDvhSPuGVdNkzRt0qZZbTPatGnSYdK0Gca99x444gQXLkABERBR9p4HOOP1++N1zksOS03T9+eb24/rduOGHs55ndd8jut5Pa5rbP88Bnp+I3ID7q9Bx3/QoBO4ePGiNCk2w76ykonHjhGUmgrduhH3zjucNrVtfn5++Pr6UllZKZWMVTcxmG0NdialnpOTE46OjjhaWeFUVoZTTg4O9++jSEnBkJLC1qgoHnTpgmN5Oa7FxWSaEpmCk5OZfPo0p6ZN47bJwH68jw8Dhw4VVVDffy+WWp09a5EyB4BMRtHQoXw3YgQ6xMWE+vp6unfvzty5c39wO5R38iQ7z52jwsrqycTWYGBkYCAD/PyQz5kDublgbw8bN4peLW2gRbIIxPKdYcMgIYGbI0dweMhQkMksCCOVTsfMqVPpbvI3oq5OJKY+/VQkiRwdRZNhcz/1wgvi+XrG0sbs7Gzi4uKaGaaPGjWKqKgo8vLyuHjxooUxNYgLBNOmTUMmk6HT6aQ+MC8vj2vXrj2VWJTJFOj1rjx65I7RWEOXLlltvr9Tp05SamBjr7PGMBqN3L17l7i4OAoKCgCx3+3cuTPFxcVSaVZwcDATJkxo1Q+xrLCQnf/6FwUqFXKDgfGPHxP2z38iaxSM8GPAXApoLh0z/zRWuLYEV1dXevXqJbY3np44OjqSdPUqJ06fRms0giAQfvUqI8+cEf3qnJ3FdsecrFZaitC3L3tGjCA5JARbrZYGuRy96X6fvncvoXfuIABVDg4iCdSEFCp1aV2ZaYZCr6dLRgaehYUkjRpFRUPDk+epvp6fqVS4ffRR2yfp9m0xXc3sjzl/vqiwu3ED5sxBV13N2cmTuRIaiiCTYVNby4TTx/HOyuH4pElkmlTPbkVFTHZ2xu+vfxWVfa++Km5HJmsni9rxk0U7WdSOdvz4aCeLfgCaGlyXl5cTExMj+Q04ODgwfvx4goKCyMnJYfPmzZIRpq2tLWPHjuXGjRsS6eLi4sKECRMIME0WngZzhO65c+eaeV1oNBqGDx9Onz59JGm1IAjExMRw7do1oI0V+yYoLi5mx44dlJSUoFQqiY6OJiQkhJiYGCkmGeDFF19staxOp9NJiTT5+flkZWVRVFQkRdC3BJlMhqurKz4+PhZqJCcnp+dKSWoLTVN8Bg8ezIgRI5DL5dTX13PgwIFmKTUTJkxotupqRmlpKUeOHJHK9RqrjLp27crkyZNx+pEG1g0NDaxdu5bCwkL8/PyYMGECa9euRafTEeXkyKjX3yC7UycuR0ZaKGJcSkoITk7mckQERqWSrt56Zi7+HcePH5fikSdPnkz//v2ffJkgiCvze/aAhwcNFRXc6t3bIkFNr1dRed2OP17+AMeKCvG9TZKJnob6+np27NhBVlYWMowIyFHo9Yz6/nsuDhkilY+ZB9bm8hfnilKW/qwr9sG/lLbVKlkEcO8edUMj2DJlBjmmQbC6ro4Xt27Fp0mppwXmzoCcs5QlGbkUFcWtfn0xKMSJgYeHB4MHDyYkJES6P4uLizl//nwzZYJCr6ffjRtEXL4sKpoOHBBL0h49gthY0v75T3ZMnowglzP4yhVGxcS0uDsilSb+rkGDwUHOhqVLLcydB165wviYGPhkCvzx1BMD6m7dxHIJ08SmtqSEk3//OwmmDsC+spLxx48TnJJCrY8z96I7k+IfzANdNwyN5rt2dnZ4eXlhZ2tLfcUNCourKattedIql8txd3LCs6AAz9hYPB89wrOgAI2Hh6jquXoVtm2T3p/w6qsc9vLCYDDg5ubG3Llzcc3KEu+rhw/BxoacL75gZ1UVVVVVWFurmRl+nq4OJwAldPoK3H/25HwJAjk5OcTExDQj2q3q6jDI5VI60PNAoVDg4+MjteXjAwIYWFkpkl8pKeJ5bsGP6NiECcQPHIhSp0NtNFJrZYUCGOfvT9/Bg9l/4wbJpjLdKZMm0ScnRzRvPn++OUGkUIiphEuXUj9hAt/t3UtJSQk2NjZotVqcnZ1ZuXLl8w+cBQFOnSJp7VoOdu9uMRHu7unJxLlzcdyyBd54Q5xs9ughmuk0ipVvDa2SRQD5+TB4MGRkcGfEMPYPHopRocCxvNwitXFIRATDR49+0ifcugXLlomTaRDv88xMkUBycRHP39y5LaqMzH1qbGyshTowODiY+vp6MjMzUSgUeHp6WvS5wcHB2NvbS33roEGDGDt2bLM+Ij09na1btwJi3zB27FhqarQkJxeTm1uETFaMUvn0EsXG3ztx4kQLA+e2YD6+CxcuWKiTlUolw4YNY7Cp7K8tNDQ0cOiLL7hr8jXsm57OxLfeQvkUtXJrMBtOmwkh878bmt7fJtja2uJua0tFRgbljVJNzSSe+ZyXlZVx9OhRKZHQo7yc6N276ZCTI5YqqlRgKg0EwNoarKyI7dWL70ePFhchjEaxfRQEuqemojQapSj6tqLnFXo9zmVluJaV4TJsGE59+nAzJoYCQcCuuprl69fjXFLC8Q8/5FqTz865d4+gLVtaVyDpdPDXv4qKSr1e9Of65huRDP38c3jzTR506sThWbMoM5Wt9kpMZFTsKW4H9+PikCEYlEqUOh1DLlwgatAgFF9+KZKtCxeKJK/pu9vJonb8VNFOFrWjHT8+2smiH4DW0tDu3btHTEyMJPvu1q0bEyZMoKGhgY0bN0olaHK5nOjoaGQyGadOnZIk64GBgYwbN67FqNeWIAgC9+/f59y5c+TlWcrSHR0dGTlyJD179kQul4vJUhcucO7cOQDCwsKYMGHCU8mXuro69u3bJyklIiIiGD16NLdv3+bIkSNSUs+SJUtaNNHW6XSkpaWRmJhIenp6i6ur1tbWKJXKp67cKxQKSbLf+MfZ2blV89m20NR/o2vXrgwdOpSDBw9aKKJcXFyYNWsWXl5ebW5PEAQSExM5ceKEdK3NSiOVSsWIESMYOHDgf0V4CYLAgQMHSExMRKPRsGTJEnbs2EFxcTH+Xl4seut15JViyVyDSsVXr7xChbPzk7ItEzzVpSx45X2OxZwmNTUVuVzO9OnTmye6ff65OBlUqcS4YtNKtFEu525ID3ZN/BlKG3HgLTMa6SUIRL766rMbFCP6a23dupWcnBwUMj0GQRyk90pM5E4jJY+ZKDJ7sGiqq1g23wnnvr+32F6bZBFAdja68P7sGDNeUnModDoW7tqFfxNFkAUGDoTpdvC3M1TXa7g8aBDXIyNpMO2fs7MzkZGR9OnTR1L3lZeXc/HiRW7dumW5Mm400iM5maiEBHyOHBETqADS0rj5s59xeORIACaGhzNAoRBJh7t3n/xuwaxVr1CwZ9asJwShIDDm5Ekir1+Gj0LhvcQnb160SCwB271bjHWurORB584cmTxZUnDY1Naitba2mLy4OsoI6hlJcHCwpV+YIEDOO9Q//pzC1Z4UJHmK5WyDBlGgULQ6AbSrrsazoACPqio8XVzwionBraAApcFATlQUO6dMoUqrxVomY8aOHQSkpEDXriR+/jmHbt/GYDDg7mrHnD6rsZLlUd7gR4X9h5TXe1t4BZWXl7e6D40h1+txLynBycMDx/79cXR1paKigoSEhGYmxz2USnoUFLDP2RmjXE5kXBxjmvjNSPD2liLob/j7c6RJW+fq6srMmTNxdXVl165dYumwTMbMO3cIPniwOUFkZSUqcH72M9EbzM4OQRDYtWsXqampUlKXUqlk+fLlT227LGA0wv79GD/5hBPu7lwzGU4D2FlZMXHKFII7dUL285+L5r4gxoOvWSNOxp8BbZJFIJI8UVGQn8+94YPZPXg4BqUS25oaixSrrp0780LjBD2dTvSh+ugj8ZzZ2opEkZkgmTZNNOg3nQ+z8iY2NlYqJ1YoFPTu3ZvIyEhcXFy4f/8++/fvl0qRZTIZvXr1YvDgwbibFIrXrl3j+PHjgNi3Tpw4sRlhdOzYMeLj4wGor/flu++WUVwsx9q6jm7d0ujbNwl//yzk8mcnjWxsbPD29pb6RfPvpuEXgiCQkpLCsWPHWiyR8/PzIyoqioCAgDYXkQRB4NKuXXyfnIwgl9MhN5fZw4djP29eq58xGo2UlJQ0I4VaM5xWKBS4u7vj6ekpmk6b1ELKO3fYsXYtDxvdL9HR0fTr10/6nitXrnD27Fn0ej0KhYJhqalEbt+OwmgU74M9e8S28+hR6q5coaSyklJHR9K6dRNLnJ9BeSeTyXBycnriIaTT4fqnP+GSno5jRQVyGxs4fhzj4MHs+sc/uFdbi1VdHUt278YrI4PkxYvZbfY5Mqlkh9y+zcj166G1BaXkZNGbyLxI98IL4n3s4AAvvUTdzp2cGjOGm2FhgEj4Tz5yBJWygaMjJ1NiKrXvmp7OxKNHcZk7F7ZsEQMqoqNh716Lkrx2sqgdP1W0k0XtaMePj3ay6AegNbIIRHLEXPJgNBpRKpUMGTKEwMBAtm3bRqUpJhpE4mXIkCFcuHBBkqkrFAqioqIYPHgwqmdMqBEEgbS0NM6ePStJzc1wdXVl1KhRBAUFIZPJiI+P55jJgDQkJITp06c/lWgxGo2cPXtWMvzs2rUrM2bMIC8vj61bt2I0GpHJZMyaNYvg4GD0ej3p6ekkJCRw//79FsvMnJ2d6dWrFyEhIZLPU+MEIk9PTwIDAykrK3tqrLFcLsfV1bUZieTi4vJM5X1JSUkcOnSoxe2HhIQQHR39TEbYZtTU1HDy5ElJrdPYANvHx4fo6Ojnm7w1gtk8XSaTsXjxYuLj40lOTsbe3p6Xju3F7vsncc1HJ03i+oAB2FdW0v/aNc6NGmUxGDabtMrlcubMmUN3M2FhRlycmJSk14tR8GbzWBNO/uIr5v97Jge7TiUjqlsjM2gICAggMjJSTFBrYwBeXV3N5s2bKSwsRC3X0WAU73mv3FzyTUbSjWGOM7bWalkyyYjnkM+aveepZBFAfj6G/v3YHxHJXdPKuNxgYO7evXRrHHXfFF5esHoJbPwM9hrRWlsTP2IYVyMHU2u6xhqNhkGDBhEWFibdN1VVVVy6dIn4+Phmz0OnoiKiVq6km7lc8do1zv/ud6LJryAwe9YsgkNCnnxAEET1xb/+Ja40A3pkKBCQAZciIjg1dqzkYzTo0iXGnjqFTAO0wMcKQGHPnqROmkSKmxsFTSaTDpWV9Osto0enTbhpipD5vA/eHzafWAkC5H0AuX+C/wAbTC//5S9UvPwy+fn5FpPFxol7jSEzGnErLsazoACn6mpSe/em2NYWmdFIv+JiKgYMIN10L9pay7GSF1NZ54DB+PRn3c7ODkdHRxwcHKioqGhGsvvk5hJ98CBeBQUUBwdzdOZMspq0j05lZUw8ehTHigrWLV9OvbU1IXfuMGPvXmSdO4t+QsHBEjlEUJA0CczKymLz5s0WpHmfPn2YMGECxoYGtn/9Ndm1tagaGpizcyddTeoI8WBtxZKZn/8cRo1qlmB28eJFzpw5Y2G+PH36dEJDQ596XgCRXNm6FT79lNrsbDa++CKFjdqpfv36MWbMGKwfPxYnq0lJoqrp73+HX/3quXyBnkoWASQmwtChUFFB5tBB7Bg8Ep1ajbq+noZG5XCOGg2z5s6VUucASE0VvYzM8fX+/iJhpNeDszO6L77gdmAgl5p4+oSFhTFo0CA0Gg2pqalcvHix2T1iZWXFsmXLpH7LjJs3b3L48GFAvKbR0dHI5XJqauD4cdi/X4e7+9c4O4vk+r173bCxMdCxYxYy2ZP7wd7eXvIf8vX1Zfv27Tx8+BCVSoW3tzePHz9+akmbjY2NRB7Z29uTkZEhKYpcXV2Jjo7G1tZWStU0b8/T05OoqCgLlWRLSL9xg73791OnUqGpqmK2Wk2HP/6Rmrq6ZqRQUVFRm6XmTUkhFxeXZmMS7YULbN6xgzzTIoRcLmfmzJlSUlxeXh6HDx+WrpW/lxeTt2/H/tIlSl1dRVWQhwcljo6Sj1BtK2myZij0ejpmZ+MGuLzwAq7Bwbi6uuLk5PRk/27dEp9Jc1vm6AgnTyIMGMDhr7/mVlERCr2ehceP43/jBmX9+vHvadPE820iirqlpzP3rbeQt6TQMhhg1Sr4/e9FnyInJ1EhN38+5OXB9Oncq6jg6KRJVJn6uv7x8UTFxXF+7HASevQBwK6hgfFHjxKSkIBswQKIiRH3efhw8eZsMvhvJ4va8VPFT5Us+vDDD/moSQlqYGBgs3Lnpti9ezd/+MMfyMrKolu3bnz66adMnDhR+rsgCHzwwQd89913lJeXExUVxddff20RePTnP/+Zo0ePcvv2bdRqdZsetM+Dffv28c0333Djxg1KS0u5desWfcx+g00gCAITJ04kJiaG/fv3M23atFa36+/vz+uvv87rr7/+X+3fuXPnGDFiRLPX8/Ly2pyjJSYm8uqrrxIfH4+7uzuvvfYab731lsV7nnZdQBwHvf3225KNSY8ePdi7dy+dTPYDPwR3797l/fff58aNGzx8+JBVq1a1eZ7++te/8u677/KrX/2Kzz//vNX3tZNFPwBtkUVmFBcXc+zYMaksycXFheHDh3Pu3DkL1UpAQAAzZsygqqqK48ePS+93dHRk3LhxEsnzLBAEgXv37nHu3LlmpJGnpyejR4+ma9euJCcnS6RMly5dmDNnzjPFvd+5c4eDBw+i1+txcXFh7ty51NbWsnHjRkk14ebmRnl5eYvEi7OzM6GhoYSEhEgrsk2RkZHBzp070el0dOjQgfnz52NjY4PRaKS8vLyZJ1JbJW0ymQwXF5cWzbUbE3FGo7GZWalcLmfChAn079//B/t8ZGRkcOTIEanhNU/iZDIZkZGRDBs27JkJQYDc3FzWrVuHwWBgtKn84uTJk6Kyy0pJx7ffk957PyCAbQsXAuLg8YbJ36NP8g3clg3lbHydRbJPnz59iIiIeGL2XVgopnXl5oomy+npFvtSPHsEPrtPclwYxyjOQNeu5B49yqWkJJKTky2M3aOioggKCmo2+SgvL2fz5s2UlpZio2pAW68EuVxSD8iMRgSZTJqEWmu11NnYoGpoYNHgMjqO/0+LE9RnIotA9Kno3ZvjvXoRb/bxMhp5Yd8+erWQcCVBrYbVvwdhFfyxDB6IKq5b8+dzKSSESlOZhrW1NeHh4QwcOFBSPtTW1nL1yhWunD1LQxMi083NjcjISHr16oXi5EmOfPstN/v1QyEILFq6FD8/v2a7wuLFsHkzADVYY0sdMiC9Sxe2LlwoqYL8Hjxg4ZYtKE3XXJDJeOzrS2pwMCk9e1LWqKxDBni7ulKbl0W5WvQw8cnNZXJANd4jtolv8HgDOvyjZYIg78+Q83tYDXxneu3DD+H99y3er9PpxAllbi55sbHkZmVRZGeH7jmI2caQyWSSebSjoyOOjo7Sv82/zc9b09Jci+0Yjfjk5JDj4yOSIY1KH6NiYxly+TJ1PXqwZvx4KtVqOlpbs3j0aJTBwSKh0wrKysr49ttvJYWSUqkketIkQpOTqfn2W7YGB5Pn7Y1VXR3zt26l06NH4uRz4kT4xS9g0KBWS1QyMjLYunUrgiBIJbADBgxoNjhpETU1oiroH/+AR4/I6NKFnfPmoTOdK3t7e2bMmCHef4cPi6q0igrRA2j3bhgy5Onf0QTPRBaBmA8/dizU1fEosh9bh46l3tpaUhdKv+Vyxjdtrw0G0eD63XehthasrKjz8SHe15ergwZRY1JBNU4Ls7Ky4s6dO8TGxlJk8jFTqVT079+fsLAwDhw4wOPHj7Gzs2Pp0qW4mlR4ZiQlJbF//34EQcDOLoS4uOnExCioqwM3tyIGDIgnPDy+2WPj7u4u+Q81Tfg0K5Nzc3NxcHBg4cKFYujArVvSe8yq27q6ulYVOyC29Z6enhYqJBsbG1JTU7l586akvnNyciIiIoK+ffu22EfpdDoy0tI4tmsXVaagAbXB0KxNM0OtVlsQQuZ/P8tkrur779l08CDFpnOtVCqZP38+nf390eXk8P3x41w1lQYqDQZ88/JAr6fUxUUiUFqDXXU19VZWT/zeTASOsqGBn3/zDa6NPReDgkSPo+nTRYPrK1dEQ3bzAqCbm+gnFhrK95s3E5uZicxoZHZsLEFnzmBwcGDVu+9SU18vtSnOpaX8bNAgbFpSZqWnw5Il4qINiArCNWvAxweuXKFm/nyO9+/PXZMa2KW+nsnbtlHm6sLpMWPQ2tiKPnSPHzNq/36sS0th8mSR4MrJEf3ivv9e9BlrgnayqB0/VfyUyaI9e/Zw+vRp6TWlUtlmAM+lS5cYOnQon3zyCZMnT2bbtm18+umn3Lx5U6oS+PTTT/nkk0/YuHEjnTt35g9/+ANJpnG6+fx88MEHODk58fjxY9auXfujkUWbN2/mwYMH+Pj48LOf/axNsmjVqlWcOnWK48eP/5+TRffu3bOYK3h4eLS6WFJZWUn37t0ZPXo07777LklJSSxbtozPP/+clStXAs92XTIyMggPD2f58uXMmzcPBwcH7t69y6BBg5otRD0P4uPj2bVrF/379+eNN97g7bffbvU8xcfHM3v2bBwcHBgxYkQ7WfRj41nIIhAnJHfu3OHkyZNSiVX37t0pLS2luLhYep+rq6voyeHqSkpKCidOnJAUSF26dGHChAltNhgtfW9qaipnz56VBrxmdOjQgdGjR6PX6yVSxtfXl/nz5z9Tcld+fj47duygwhRxHRkZSWZmpoXpdWO4uLhIBNGzHsPjx4/ZunUrdXV1eHh4sHDhwlaNNwVBoKKiQiKOGhNJTctGGsPZ2VnyQcrMzLS4HmaEhYUxfvz4H1TiZoZOp+PcuXNcvnxZKtkzr+K6uLgwefJkOnfu/NTt1NbWsnr1aioqKggKCmLgwIFs2rQJQRCY0Ls34bNngE7cbq2NDV+/8grV9vb4PnpEjqk8MOJSHJG/VrA1axr5+fmoVCqcnJws7pHAwEAiBw6k44oVyM6cEQemTTxX9N3t8Sqp5N2S3/Ab/tnM0LqsrEyazJhJQ3OJVu/evVGpVBQXF7N582YqKyvRWDdQVw16pVqa/NnU1lKnViOYJh921dXUaDTIDQbmhTwkYPaGVpUMz0wWAVRVIfTqxQU/P86ZSr8QBCYdPkzYzZttf/bNl2HeZfjuNqwFdGCwsyPxvfeIs7enxDTRUKlU9OvXj8jISGl/6vPzub5yJXFBQWibrHBrNBoGDhxIv7Q0Dp06xb2gIKyBpS+/3LwTqaqCPn3Esh2gHiVWiOc8tXt3ds6bJ50nu6oqxnx/kkcdOnEvMIjqRs+UQq+na0YGQampdL93D7vaWgQfH2707sTp3sOpt7ZGZjQy6GEKw6ccQO2nA7efQaevQdbC85H/d8j5LawH/gMNajXlb75J+eLFVJhMoxuXiD2reXRzGHGwk+HhHYCvbwe8vb0lg1sLkreyUlSbpKQgJCdzpKaGmybCeuKRI1jX1REzfjy1rZRR+WdlMam2Frff/paG4GDWb9lCfn4+rq6uLFu27KltZ21tLf/5z3+oNRGJnkols06fxjU2lkobGzYvXkyxuzu2NTUsPHwY74gI0cvpGUpjysvLWb16NVqtFmtra+rq6ujQoQNLlixpu+0qKxPJlC++gOJijDIZh+bOJaGR51D//v0ZP348SpkMPvhAjAQHsURs1y6xffgBeGayCESCavp0MBjID+vB5hGTnpDJcjmaqirpXu7duzeTJk2yJDgePKDq1Ve5otNxfcAAUZUEOJaXE3nzJn2XLUM2fz4JiYnExcVJUfdWVlYS2Wsu69JqtWzcuJGCggIcHBxYtmwZjiaitaAADh6Ec+eSCQjYi0JhJCurEzk5vvTsmYajY3MlnbW1NYsXL8bbbN7fCmpqali/fj0lJSW4u7uzdOlSioqK2LdvnwU51KlTJyZNmkRxcTFnzpyR1HtKpRKDwdCqSbRCoZA8AcvLy6UFGBsbG3r37o2Xl5eF8XSrhtOCgItGg5efnwUp5OTk9IMWXcqPH2fDqVNUmM6xCuhfW4u+tJQctZp8V1eEp/TPNno9rvb2uHp64uLnh4ubG64aDc7Dh7Nl9Gipf7TVaqlTqzEqFESfOkW/P/0J0tJg/344c8YibRA3NygvF5VqIJaZnj0LgYFcOXSIEyYiL/r6dfqZ0hU3/O1vPKypaZRa2cAKnQ6Pz5qoY41G0ZD97bdFktPeXlQXLVsGMhnC+vUkffklMWPGoLW1FRefHj6kx7FjnJg4kWzTqrRnfj6T79+nQ0ICFBeLpG5OjthX9OghJmM2ITvNaCeL2vFTxU+ZLDpw4ECzhM22MGfOHGpqaqQEVxB98/r06cM333yDIAj4+Pjwm9/8hjfffBOAiooKPD092bBhA3PnzrXY3oYNG3j99ddbJIvu3LnDb3/7Wy5evIidnR1jx45l1apVzzSvy8rKonPnzq2SRbdv32by5Mlcv34db2/vNsmi4cOHc96cumqCuS/au3cv77//Punp6Xh7e/Paa6/xm9/8ptX9MpNFZWVlz+wp+/XXX/O73/2O/Px8SWTxzjvvWPjcPu26AMydOxeVSsVm02JvSygvL+fNN9/k4MGD1NfXExYWxqpVq+jdu/cz7WtbpFp1dTX9+vXjq6++4uOPP6ZPnz7tZNGPjWcli8yoq6vj7NmzxMfHS/41tra2FoM8KysrZsyYQbdu3aRStkuXLmEwGJDL5QwcOJBhw4Y9VzmU2afg7NmzzcgQf39/QkNDOXXqFFqtFjc3NxYuXCgNfFuD0Wjk3r17HD16tM14YGtra1544QULqePzoLCwkM2bN1NdXY2TkxOLFi1qNfGlJQiCQFVVVTMSqbCwUPKeaAkqlQqNRiNNGNzd3Zk1a1arSqhnRX5+PocPH5bMURuXpvXp04exY8e2HJFrOpZt27aRnp6Os7Mz8+bNY9OmTVRXV9OrRw+m//FtZHdERZoA7J49m5QePUTPGdMkdsSZM/QelMaWju9QXFKOnZ0dixYtwsPDg+zsbC5fviwZtAP4Pn5M5PXrBN29i7zRIFmwgQHd6+iesJdtLBBfbMXQuqamhmvXrhEfHy95ONna2hISEsLdu3epra3FWaNHW9pAndpWGkR75udT4uIiGQ47lJdT6eQEgsAMnxR6/mxbywSFCc9FFoFo8NmjB/GurhybNEmanI86dYrB5lXd1jB6JPzdBTL2wF8AMVAOY2goqX/8I7EFBVJphFwup3fv3kRFRYmKhFu30A0Zwq2QEGKjoqhq8uypVCr6Go1kP3pEvo8PDkoly197rfkxXb0qTt7NqiFE8Q/AibFjuRIZ2eKuW9XV0e3+fYLq6giIjsYqNVX0xkhOfuLxAlRpNMRMmECyqRTOsbycSZeP0K1DOoSGIQz+C9puQVQolRIJVF5eTkXhTcpLsqkod0QrfzoRrVKpRBVQcTGO16/jVF6OY3k5lQ4OnB82DJ2VFVb19eitFBhQNjnSJscmk+HR0IBncTGeGRl4pqbiUViISq/n0JQpJPTpg8xoZMrBg/R5+JCKvn05OmAA91sgfXxzcpi7bRuamhqM3t5sf+MN0mtrsbW1ZcWKFU/1mCstLeW7776T2p3et24x+ehRlHo9pc7ObF68mHJnZxwMBhZNn45b375PPVdm6HQ61q9fT15enmRobWdnx8qVK1u/9/PyxMnn11+DiaTL7d+f7VOmUG3q5q2srFiwYIHoQ1dcLJa9mP2YfvlLsfTsOVSRTfFcZBGI5rtLlgBQ3KsLm8ZME1UjpjbD99Ejcnx9QS7Hy8OD2XPn4uzsTGlpKXFxcSQkJEjtrUdBAVGXLxNSVISxsJAb/fpxadQoqkztja2tLYMGDWLAgAEtDooaEzf29i7IZEs5cEDDxYsglxvo3PkBAwdeJSAg3YLnUygUdO7cmcDAQG7evCm1C3379mXKlClPPQXl5eWsW7eOqqoqOnbsyKJFi5DJZFy4cIHY2FhpwGwmZQRBQK1WM2rUKMLCwhAEQSrrNveH5oWV1kq824Ktra2kUqp8/JjUnByQyej4+DGzBg/G/sUXn2t7giBQkZNDye3blKank/PgAXccHJ6aMAagMhpxA1yrqnC5dQvX0lJcSkpwffVVbN591/LNVVUIvXuzaehQskwLNZ6Fhejlckrc3AjMy2POP/6BrDGJX14Ox46JxNHhw2JJmBkymeiFtXgxiRoN+019xsjERIYcOQINDZx9/30uNFmpnnnnDiHbt0tBA4BY6r1smUhOAYwcCevWiWXgej0Vv/0tR4qKSDeNqzydnZl46BBpwOXISIwKBaqGBkacPcvAykrk1dXiNnv3Fomtu3fFkszYWGhcttkE7WRRO36qaDapFQSRdP1/AVvbZy7P/vDDD/nb3/6Go6Mj1tbWRERE8Mknn7RZktSpUyd+/etfW5ABH3zwAQcOHCAhIYHMzEy6du3ajKQZNmwYffr04YsvvrDYXmtkUXl5Od27d2fFihUsXrwYrVbL22+/jV6vb5YY3RLaIotqa2sJCwvjk08+YerUqchksjbJotLSUnr37s3KlSv52c/EEBMvLy9u3LhBeHg4H374IXPmzOHSpUu88sorfPXVVywxjR2awkwW+fn5UV9fT8+ePfnwww+Jiopq9VgWL15MZWUlBw4ckF47e/YsI0eOpLS0FGdn56deF6PRiKOjI2+99RaxsbHcunWLzp078+6771oc95gxY7CxseH999/H0dGRb7/9lg0bNpCWlvZM8+G2yKIXX3wRFxcXVq1aJYVitZNFPzKelywyIy8vj6NHj0ppPCqVCp1OJ5kgy2QyRo8eTUREBDKZjNLSUk6cOCFF+Go0GsaMGfPcUeyCIJCcnMzZs2eb+YT4+flRXFxMTU0NDg4OLFq0qBlTLAgC2dnZ3Lp1i5SUlBaNYtVqNXZ2dpSVlUnHo1armTZtmuQr8LwoKytj8+bNlJWVodFoWLhw4XMZJ7cEQRCoqanh8uXLktrnWWBra4uXl1ezkrbWCJ6WYDQauXbtGmfOnLG47iB6qUyYMIEePXo0u7YXLlzg7NmzKJVKli5dyokTJ8jOzsbDw4PlmSmo//6l9N6E0FAOvPCCJKcHGBcTQ3fhHpvnvEV5ZX2r17m4uJjLO3eSkJ8vDdCdS0sZdPkyfW7fRqXT8ft5lzm23YpLRGJDHbz33hO1QStoaGjg1q1bXL582YIgtbECeVUFNeonJEmvhATud+tGnWnS7lpURImJqJtkm0DYmztB1vYk9bnJInEnISiIO7a27JsxQzLVjoyNZfTp061QEib4+8OmGWDzDzgCfK6ECr24CvyLX5D5s59x0VQ/bEaPHj0YPHgw3sePw/LlGBQKEnv14uLw4ZQ1WeGQCQKq+noarK3xsLVl6WuviY21Viv6TezeLaZQmZ5LrY0N97p3JzU4mPSuXTE0ndQLAiGGZKZ9sk8qS+MvfxHLdcwwJ3olJyMkXqH6+10k2QURO2SIpITSVFVhVV9Plb29pNZoC9ZarUgAubjgOGSIRYmYk5MTNnV1yBYtEidlgPDSS8QOH86Z1FSQyfDLymLWrl3oVCp2rJxPgZ0nciCsuhrHvDwKDAYKnJwocnfH2IraQKXXozPd24N8fekXGUlaaSnnTDXjrUFdX8+4s2d57O7Orf79URoMLBkxAt8W6t0laLUkf/EF+2prMZjK2UadPi0RkIWhoWyeNo1quRwXFxcWLVr0XImJgiBw6NAhyWegoaFB8jJrMZ0yMxM++ww2bJAmu7q+fTm9eDHXGj2XXbp0Yf78+aIq6fp1kQjOzhYHvmvWQBtmxs+K5yaLQCyTM62OlnXzYdPEWWL6n4kw6nf9OqnBwdTa2aFWqfDy9ubRo0dSG9uxY0cGBwfT7dNPqY+JIT48nCuRkdSa2nD76moiO3ak30svoW7jfk5Lg717KykvX4+tbTmFhW5cvhxBly4PCAq6j0rVXNHq7u7OwoULpfaovLycr776SlLwzJkzh6BGyZWtobCwkPXr11NXV0e3bt2YM2cOCoWCwsJCduzYIS1ygDi+mDFjBoFN0umaGk4XFBSQn59PVVXVU7+/MTQaDR4eHri5ueHm5kZ9eTmxFy5Qr1RiX1nJbKDDX/9qQSoKgkB1dTUlubmU3L1L6cOHlJaWUtLQQKla3SYxpNTrsTUYqFarMZr6yODu3RltCgWRrV4t+nmZ8YtfiL5ujfvTe/eoHzeOzY0URZ0zM3ErKiJ+4EA0RiMvv/1260rBvXvFRD1zWyGXi30tYun3jnnzMCoUDExIYNyVK8jy8siYN48t5mtg6pcjb91izHffgXkRShBEUuiNN0S1qI2N+Ky+8grI5QjFxVx/4w1Od+xIg5UVCkFgWL9+eK5axfHevaUUzMDUVCYcP46jszPY2YnkUJcu4OwMN26InnuxsdC1a5vXtp0sasdPFc0mtTU1zxy88KOjulp8Dp8Bx48fp7q6msDAQPLy8vjoo4/Iycnhzp07rVZWqNVqNm7cyLxGffJXX33FRx99REFBAZcuXSIqKorc3FwL9ers2bORyWTs3LnTYnutkUUff/wxFy9e5MSJE9Jr5jbi3r17zf1Om6Atsuill17CYDCwZs0agKeSRdAyCbJgwQKKioo4efKk9Npbb73F0aNHuXv3bovbMdu2hIWFUV9fz5o1a9i8eTNXr16VghOaYuzYsXTu3Jlvv/1Wei05OZmQkBCSk5MJDg5+6nXJz8/H29sbW1tbPv74Y0aMGEFMTAzvvfceZ8+eZdiwYcTGxjJp0iQKCwstRCIBAQG89dZbUslbW2iNLNqxYwd//vOfiY+Px9ra+kcli56+tNOOp8Lb25vly5dz8+ZNTp8+La00m4kiQRA4deoUBQUFREdH4+Liwrx587h//z4xMTGUlpayf/9+bty4wYQJE57ZJFkmkxESEkKPHj24e/cuZ86ckQaV5gmsSqWisrKSdevWsWDBAnx8fMjJyeHmzZskJye3WNJlNpVOS0ujoaFBMo6trKyUyiF27dplEUv/PHB2dmbZsmVs2bKFgoIC1q9fz/z58/8r8y+DwcDZs2e52ajEyMnJiVmzZkklWeafvLw8cnJyMBqN1NbWkpmZSaap3McMOzu7ZgSSu7s7tiZ5eGPI5XIGDRpEUFAQx44dkxLmFAoFNTU17Nmzh+7duzNx4kRJ4ZWZmcnZs2cBmDhxIklJSWRnZ2NlZcVsf3/Ur7wibb/C0ZFjZo8Sk49E9KFDdCh8zPrXfkF1ZX2bk1K3ykqif/97Ruh0xI8aRXxQEGUuLhyfNIlzI0bgjZJN//HhIkNFomjCBDHG9ylQq9UMHDgQNzc3tm/fLq3wa+sBE1Ek1+sZe+oUsVFRElHkmZdHgamDG2m8Tdhvtj+VKPrBUKshNZWeQUHYbNnC9vnzMSiVXBo8GK2NDdFHjiBrjVjMyoLxX8P6D2DqKhhcCV/YwpFaZF9+Sdf9++n673/zaNQoYmNjSUtLIzk5meTkZAICAhj88sv4ff01fZOS6J2QQPK0aVwcPZpCU3mgIJPRYGqcC2trWf/ZZ6xISUF1+LA4EAIqHRxIDQsjNSCALH9/i+Q7+4oKajQajAqFVOZ3VxlC9W8cWfS3tchkMio//ZTykBAq/PwsS8Sqq6lw7YhhxuvNDrva3t6ilM2uulokgyoqJFWQU0UFjoZ6nJzysTLUw+1G52zzZtETCEQfjRkz4MEDsLam4T//4ZC9PXeTk0EmI6wmh/F7N6GoFSdmyz5fw6GpU7nbsyfXNBr6V1Qw5fhxFEYjhs6dKenbl/yAAAo8PChUq8nXaqmurZWIIoArOTlc2b272XE5OzszceJEampqiImJoa6ujgYrKw6PHy++QRCYsWsXvn/+szg5/dOfxKQlEL18vvwS3bZtnOjalRthYdIxjj1xgojCQnjvPXIWLmTr4cNotVo8PDxYtGjRM8egm3Hjxg1u376NTCaTSIfRo0c3J4oSE0Uj9J07pYktUVFkvPIKB/PzqTIRRTKZjPHjxxMeHi6+Z80aePVVkYQMCBAJyR8Yk/6j4De/gaIi+PRTnDPyWbp3M5unzqPYNOG+GRbGwMuXud23L/VAdnY2IA6uhgwZQqdOnaitreXsL3/Jtf79qTedC6eyMgYnJND74kWRPD1xAlavlpQXgiCewn37RK7g7l3QaOT07duXYcMu4OFRzNSph6Xd1Gg0kv+QQqFgx44dFBUVsXv3bhYsWIC1tTVOTk5MnjyZ/fv3A3Dw4EE6dOjw1HvAw8ODefPmsXnzZu7fv8/hw4cZP348169ftyCKQFSd7dixg+7du+Pr60tpaelzGU57eHjg4OAgJZqmpqZaEErV1dVUV1db9olKJTJBoMrBgXVGI95vv41zQAANtbVUVVVRIgjomhK5SqWkrpEbDNjX1FCp0UhtmIu1NeMnTOCKaaXcfB6io6OfEBl79lgSRTNnikmejfvggwcp+cUv2PLCC5Sbnlf/zEwi4+LYumgRAFMXLWqdKNq0CZYuffIM9e4tkvVpaTzev5/ddnYYFQp6JSYy7sAB8Ty4urLdTBQJAsjldMnMZNR77z0hinJzxVRDE0lOZKRI6JrUQ8VXrnB40yayTcmdHW1tGRUWRvz69ZwZPhwAh8oKJhw9RtC9e+DhDh4ecO2a+NvHRySInJ1FdeBTiKJ2tKMd//eYMGGC9O/Q0FAGDhyIn58fu3btYvny5f8P9wwSEhI4e/Zsi/1TRkYG8fHxvPTSS9Jrx48fZ8gzeBkeOnSIM2fOWPjv/VCkpKQwdepUi9eioqL4/PPPMRgMLZbkBwYGWiymREZGkpGRwapVq9osD/tvYbYimTp1Km+88QYgVphcunSJb775hmHDhpGQkEB1dXUzX0StVktGRgbZ2dn06NFDev29997jvffe42l49OgRv/rVrzh16tT/pEyznSz6kSCTyejfvz9BQUGcPn1aqk9trHBJTEykpKSEOXPmYG9vT7du3ejcuTOXL1/m4sWLZGdns3r1avr378/IkSOfWd0ik8no2bOnBWlkZpDNkw2tVsu6detQKpUtKohcXV3p06cPPXv2lAiH7Oxsdu3aRVFREdbW1igUCurq6vD29iYvL4/Y2Fjy8/N54YUXnkuJA0jx8Nu2bePRo0ds3ryZOXPmEGAaOD0PKisr2bFjh0W6TXBwMFOmTJEeGj8/PwsjYZ1Ox4EDB0g2JWS5urri6OhISUkJFRUV1NTUUFNTQ1ZWlsV3mdNomv5oNBqcnJyYN28eycnJHD9+3KKcLy0tjaysLEaNGkVgYCB79+4FxFIFtVrNlStXAJg6diyuU8dInxNkMvZPmyaRCnKDgen79uFSWsqGny9HW6doe1JaVwezZkF5ORpvb0YcOkTU8ePc7tOHKxERlLm4kAn87I21JCWEoslxxW3btieT/afg3r177N69G4PBQJdODpRkP6CCJ42gUank9KhRUulZh+xsHpsmAoOqEhn8100g/x/Xn6vVkJJC18BAlqxfz6YXX0SnVnOrf3+0NjbM2rMHeWspRLW1MOcj+PBX8MJR+DAdJqjhb86Q9RimTaPj9OnM+/JLCkaOJC4ujjt37pCenk66pycdX3uNwTExdMvMpOf+/YR07EjaK69w8eJFSYloVlAUCgL/8PNjcJ8+GFxcSOvTh9wm18GzrIyghASCUlJwLSkhNiqKCyNGYJTJsK6tpc7Wloe2Hfjz+38AAXFiduuW+NMCZDIZ9ho1TrlpOGWWI5cJPAgMpsK04tEhL5sprjdxH/oKpDwQS9mysiAj48nkqjG2bxcneP36iRPFK1fEMjoHByqGDGFHUhL5Tk7IDQYmHjtG/xs3LC+VTseMPXvwzM/nzKhR3AgLo2jUKGYtWIDG3R0PwOzupNPp2LlzJ9UZGSgUCnr27MmjR48sggYao6ysjK1bt+Lo6Iivry81NTXk5+c/OReCQG6XLgSkp6P86ivYtg0iIkRPpAcPKHJzY8+sWRR6ekrXbBAQceoUaDQ8ePCAHTt20NDQYGHi/zx4/PixFNWuUqloaGggODiYiIiIJ2+6dAk++QQa1c0zfjw1b77JycpKKa0RROXkwoULxdXHujpRlbF2rfjHqVPFMrCnlCj/n+CTT8SyuLVrcSisZsnOjWyZsYB8E6l81Xz8pvMO4sDM2tqaEydOcOPGDamvc3N2ZkhKCj1Xrxafa1dXUVF37BhCSAiZv1jFN3VL2LdfRmYmuLqWEBSUyvLlqXTo8LhZdYGDgwPTp0/Hz8/PYqFg8eLFbNmyhcePH7Np0yYWLlyIra0tvXr1IjU1lZSUFOrq6ti/fz8LFy58qmq4U6dOzJo1ix07dpCQkGCh9u3YsSOOjo6kp6dLi1FpaWmSOtkMtVrdLIXMw8Oj1cFjQEAAEydO5PHjx8TFxVkk9FhbW6NSKqnTatEZDGIoAWKbkuvoSK7ZE89MYAsCNlotjtXVuBuN+NrZ4dqxI649elCclsbO/HyJKPL386NL167sOnwYvV6PQqFg2LBhREZGPhn8nz5tqXYbOtSSiDYY4MMPub9zJ3sWLpT6SM/8fF7Yt4/VL78MwIABA1ofV3zzDZjeB8DAgSJR5OxMkUzGNnt7dEolXR88YGp6OjJBwCiTsWbxYgymY0Ymw6msjBnduyMPDxdf27YNXntN9A+zsoKPPxbVRaYy9Utr1nD+8WMMnp6odTpG9u8P9fVsP3WK+q5dkRmNDIy/yojvz6JuaACNHfTsJZaxaTSij+CZM6K64fhxyVewHe34/xvY2krl1v9PvvsHwsnJie7du5PeJFymMby8vJqFGRUUFEhCAvPvgoICC2VRQUFBq0bTLaG6upro6Gg+/fTTZn/z9vbGaDQy0BwSA5bJpG3gzJkzZGRkNFu8njFjBkOGDOHcuXPPvI8/FsLDw6Xk75bQ2jk3/62t95j/7ubmhlKptCB7QJyPmr+7uroab2/vFs+BWY3f2N/qWW1abty4QWFhoYVyymAwcOHCBf79739TX1//X/n0tpehNcIPLUNrCdnZ2Rw5csTCZNicZqPRaJgzZ46FDLiiooJTp05JsjobGxtGjRpF3759n1u5YzQaSUpK4vTp020azLq5udG3b19CQkJa9TSqrKxk586d5ObmWpRXhYeHc/PmTfR6Pc7OzsyZM+cHlZLpdDp27dpFeno6crmc6dOnS67yz4KsrCx27twpDaDlcjnjxo1jwIABTx2cC4LAtWvXOHnyJEajEQ8PD+bMmYOdnZ1FKpv5301XeBvDysrKgjxycHAgNTWVO6b0rcYG2ObSEi8vL6ZMmcKGDRtoaGggMjKSMZu/hc17pe1eHDyYM6NHA6JZ8axdu7Cuq2P74vnUK63x8fFh4cKFrU9KV66E774TzTSblCPoO1sR6XaT6N7bMXZ4whsHBgYSERFBp06d2jyHjROCggK8KM5KpFgvTuVdi4pwKy7mXlCQNLlT19WhU6kQFAr6FN9lyj+/QaZ6dr+qH1SG1hg1NRAcTFFdHeuWLaPOdM46Z2Qwf9s2UX3QqPygGSaMgU+MoP8e6oDtkfDtNbF0wd5enPD+/OeUVlRw6dIlbt++La30e+bnMzg2lh537yJ/7TWEvDyykpK4GB7Ogy5dxO03mgg3hpubG25aLbbnz1NvY0O5ry/lSqWU+tQW5AaDqAaqr8RxzHCc3DtblInZ29uLHUj+ZoheDNfB6O3I1Xf/xNmCAnQqFXKDgcF51xny+09R+pkUKHV1Yt1OcjJc2g6XDsE9oJXm5qGfH7tmz6bWzg7bmhpm79mFX8ND6AoMGg/hK8Tjf/VVMbEPSOvWjX0zZlBvbY2DIDBn1ix8TP5KDQ0NbN++naysLFQqFWFhYdy+fVvy0DLD19cXX19fysvLKSgoaDNRygxrrZZh588TmpiIbW0tAnC7Tx+OT5yITq1Ghuiq1K1bN+bOnYtcLrcgTTt37szcuXOfKYmyMaqrq1m9ejVVVVXY2tpSW1uLm5sbK1aswEqtFpUxn3wiGtiCeK/MmoXw9tskKhSSWsqMjh07Su0ZDx+KCq8bN8R7/OOPRaPd5+xbnoYfVIZmhl4Ps2ZhOHyYpP79uTgwnFLXJyW1coOB+Vu3UmNnx+HoaImANsPLy4shQ4YQHBwstltHj4qqFJNPV6WNBw7aQgSZjD3eL7A1aCEde+Tg5mbp++fr60tQUBCurq6SAWXXrl2ZO3cuyiblVPn5+WzevJna2loL0l6r1fKf//xHWjCYMGHCE2VXCxAEgfLych4+fMiZM2eeu3TM19eX8ePH4+vr+0yl7A0NDZSWloqlYiUllJaUUJKbS3FpKdpW1ElmKHS6JyWwrbRZIPZ5rq6uWFVW8riuTnqfv58fdfX1ElHr7+/P5MmTLVdar12DESOeeJKEhIgJemYfsdJShAULiKuu5vtRo6Rta6qqWPnttxxbupRUV1fc3NxYuXJly+mkjcofARg2TPQtsrenorycdf/8J5UKBb45OSx2d0f9l78AsO3Pf+a+Ticdu1KnY9natXjn54vqHoVCbBtBTFfbuFE0ngbycnI4tGYNZoo6oLSUAYsWcf7cOXJN94pvcTGT9+/BK8f0LqVSTGc7ckQs/Rs5UmwL1GpRtTRqVJvXqzHay9Da8VPFT9Xguimqq6vp1KkTH374Ib/85S9bfM+cOXOora3l8OEnytbIyEhCQ0MtDK7ffPNNyei5srISDw+P5zK4/t3vfsfevXu5c+dOs77tWdBaGVp+fn4zP91evXrxxRdfEB0d3Wr4T/fu3XnppZcszKtbK0M7duyYNL96FowZMwZ7e3v27dvX4t/NBtcFBQVSf/Hee++xb98+C4Prtq6L+f9du3a1UDBNnz4dGxsbtm3bxqlTp5gwYQLp6ekt2wo8A1oqQ6uqqrKwxABYunQpQUFBvP32263Oq9s9i34AfkyyCERW78qVK5w5c0YiCsyEkUKhIDo6upn7+YMHDzh+/LhEMnl7ezNx4sRn7tiLioq4fv06d+7ckRJ6WkLHjh2ZN2/eM61863Q6jhw5YrFirVQqmTZtGqdPn6a8vByVSsWUKVOei+gxw2AwcODAAenBnzhxIgNMkfCtQRAELl++zCmzOSviCvCcOXPwec4kn+zsbHbv3k11dTVWVla88MILLdbq6nS6FkmkVhNkQGqAW/JN6devHw8fPqSkpAR/f38W2dkgnzVH+vujDh1Yt3w5yGQo9Hrmb92KUS5n59y56FUq/Pz8mDdvXuvm6Bs2iPJ6mUwcZDZSlAlWMKxXAR2vn2ILC3nUqROXXn+de+a4YMQJSGRkJEFBQc0Iy+vXr3P06FEAQoL9eZyeQIVOJBwDU1KYsXs3G5YtI9d035oTjgBU+gbGTBpFn/5DWh7Et4L/miwCcaU3JITy2lrWLV8uRTD7PnrE4s2bxVVcpfKJd0VTeHnB7olgs078f95w+FM1XLsu/n/gQLHUJTSUqqoqLl++zPUrV9CZ7g/n0lKiYmPpmZREZpcu3B04kPv+/jT8wEm7qqEBh8pKypycMSoVdHz4EI+CArFMylSyODg2llHffw/TFLB2K7jMaXlj9/4IEz+ATCC4I+X7T3Fs01ruq8XafNfSYibbKPD3D5ISyEhJgVYSEwGQy7k+cCDHR4/GqFDglZfH3B07cGxM2tjYQHCwOKHy94cDB8DUFhS7urJj3jxK3NxQ6nRM0Wrp9tJLbIuN5dGjR6hUKpydnSk0EUxmODo6MnHixGbPcV1dHQUFBaSnp3P58uVWy3bMsK2qQi4IVJvuE5VSiU6vx83NjeXLl2NtbU1SUhIHDhzAaDQSGBjIzJkzn3vgZTQa2bRpEw8fPpQMrdVqNSuWLcP9/Hmx3MysDlOp4MUX4a23KHV15ciRIzx48MBie+Hh4YwdO1YkAk+eFBUapaWiymb7dhgzpoW9+O/x35BFDQ0N3Lx2jctHj1JpGrSo6+qwqaujwrRCaVNbS+esLFKCgixKMgcMGMD48eOldqq+XhSmHNtRyYDdb7FIv4YsPz8Sg0J5ENTFInpdLpdLBtWBgYEWbYtZ9arT6QgODmbmzJnN2sKioiIpmMDV1ZXFixfj4ODAgwcP2LRpEyCWJL/00ku4u7tL92BBQYGUQlZQUCApo5pCrVbj6+troRiys7PjzJkzFn2ySqVi7Nix9O/fH5lMhl6vp6ysTCSDGpNCRUVUPcUY1ra6GoXBIJW5Atjr9UTY2hLWuzeZVlbsP3+eeoUCu+pqIgwGjNHRFJeXS31ja8fT9Lz36NFD8kiytrYW25TBg8X7FcSywStXwHw/JSTQMHs2B3v3lsz5QVxMWbp+PYUvvcQhoxG5XM6KFSuaJ9IJglhm/eGHT16bMEGsRbSxoba2lvV/+xvFgFtREUs7dcL2ww9BqyXu97/ndJNne/qFC4QqlWJcfeP2xN5eNJCfORNdZCTnz5/n0tWrCDIZNrW1jDQaKR4xgmvx8QiIwQSjUlLof+QwckOjBYtZs0T/OoBJk0QSVKEQFZxt+H+0hHayqB0/VfxUyaI333yT6Oho/Pz8yM3N5YMPPuD27dskJydLATuLFy/G19eXTz75BBAj2ocNG8Zf//pXJk2axI4dO/jLX/5iEdH+6aef8te//pWNGzfSuXNn/vCHP5CYmEhycrJ0frKzsyktLeXQoUP87W9/4+LFi4CoKNVoNOTm5tKnTx+GDRvGW2+9hYuLC+np6ezYsYM1a9a0qkQpLS0lOzub3Nxcaf8CAwPx8vJq1UblWTyLzIFAX331FVZWVri5uXHz5k0GDBggGVxfvnyZl19+uU2D688//5zOnTsTEhJCXV0da9as4csvv+TkyZOMMpHr//73v9m/fz/ff/89IAo2AgMDGTt2LG+//TZ37txh2bJlrFq1SvIRepbrsn//fubMmcN//vMfybPo9ddf59y5cwwePBhBEBg6dChVVVV89tlndO/endzcXI4ePcr06dMJCwtr8ZgaGhqkSpiJEyeyYMECFixYgEajaVU5225w/T/Cj00WmVFRUcGWLVskprWxQiciIoLRo0dbDEANBgPx8fGcO3dO8hTq06cPo0aNarHUqKSkhOvXr5OUlNRikpmrqyteXl5kZWVZ/F0mkxEZGcmQIUOemsZmJmdOnz4t7bujoyOLFy/m6NGjkudAZGQko0aNem41lCAIHDt2jOvXxUn3iBEjGDJkSIurpA0NDRw4cICUlBTpte7duzN9+vQf3IlUVVWxe/duHpkmvkOHDmX48OHPtEqr1+spKSlpRiKVlJRIJGFbUKlUTIyMpOPS+ThnFyA3GqnUaPjyV79Cb1J2vLh+PTX29uyZOROjQkG3gABmzZ7dOtmSkACDBokKECcnMfXFBAH4fNk2Nq0LemJo/bvfwccfi2bYly9bpAw5OztL8ZBqtZq4uDhOnz4NQM8e3UhPS6JOL573ftevM/nIETYsWUK2iTUPSEvjsa8vdXZ2yI0GjHKxA7KzsyM8PJwBAwY8E2n5o5BFAPn5EBpKTU0N65Yto9RkCO5WWMiydeuwqasTSwda8PMCxIH6Z4tg+HYQ6kHVA87Ogj/8U1RvKZUIv/oV1T17Un7mDEVpadzp3p3sTp2eaUW+Nbi5uND9/Hk63L2LU2QkjpcvYJOSjgxI696d7fPnA7Bg02YcqipZt3w59abnoVNWFos3bULxZyMseB06fNbcJ0oQ4MoymLQByoCADgjDx5Oc+5CY4FDJx6jPrVuMOXkS28YqHi8vcLOFtEwwcZIGhYLjK1dyw6Q47OmlYkrln1Fl1sJDDTz2hXsPLEjMllBnZcW+mTO5b/L6sKuupkajQSGXY2jyfMnlciIiIhg6dGiryp6q8nLWfvstFXV1dMzNZeH69VTb25PdsSNXBg4U/bSecm1cXVzw7dABnU4ntUO9evVi6tSpP0jqe+LECa5cuSItJgDMcnGhx5dfgskDDTs7eOkl+PWvMXh5cfnyZc43MfBWKBRMnjxZXOUzGkUl0h/+IF7bsDBxQvxfeMM9DT+ELKqtreXatWtcu3ZNUoZp6uoYdOECYZnpKIpL2bh4MY+b7Lf/gwcYZTKpnQkJ6Y3ROIkDB1QcOQL19Q0EBKQTFJRKj+7JKK2fTOTVDQ0E3L9PUGoq3Tp0wPqbb1o9L5mZmWzbtg2DwUBoaCjTpk1r1i+UlpayadMmKioqcHJykgijQ4cOSYSOWq3G2tqaykaEfEuwsbEhNDSUyspKUlJSkMlkzJ07t8UFjPT0dPbv32+xMGRlZYVaraa6urrNoAeb2lpcS0pwKS0Vf1dW4uroiEunTlj16AE9e6INCCC+oICr165J32Fra0t4eDhdu3ThwLp1lCASNZOTk+nzr3+Bry+CIHD+73/nfKP9ajzuaQ32tra43b+P2+PHuBcX467V4rZhA3b9+onnfNs2yn7zG3ZMn06hpycygwHB9LxNOXYMvz/+kW9MJYmjR49unn4jCPDWW2LqnxkzZohlYybF76a//50cnQ6HigqWeXjguHo1PHjAoxkzWGf29jIZWg+8fZvxH38sBgls2yb+zdFRbNNM9/LDTp04PG0aJaZygh7JyQRERXHOYJDuhZA7dxiXm4v9pUuW+ztnjuhJBjB58pPS040bYfHiNs9lS2gni9rxU8VPlSyaO3cuFy5coKSkBHd3dwYPHsyf//xnujbyGBs+fDj+/v5s2LBBem337t38/ve/Jysri27duvHZZ58x0exdijhn+uCDD1i9ejXl5eUMHjyYr776yqKfWLJkCRs3bmy2T2fPnmW4yRft/v37vP3225w9e5b6+nr8/PwYP348//znP1ud/2zYsIGlS5c2e/2DDz7gw8YkfCM8C1l05coVXnrpJe7du0d9fb3UX+zdu5f333+f+/fv4+3tzWuvvcabjVWhTfDZZ5+xevVqcnJysLW1JTQ0lPfff58RjYJLPvzwQzZs2GBhNZKYmMirr75KfHw8bm5uvPbaa7z99tsW237adQFYt24dn3zyCY8fPyYwMJCPPvrIwnepqqpKUnUVFRXh5eXF0KFD+eSTT8Sk2hZgVnE1xbBhw1ot62sni/5H+F+RRWYcOnSoRcOvgIAAZsyY0exCVVdX8/3330v1i1ZWVgwfPpzw8HAqKiqIj48nKSmpxVIzc4lZaGioRDAZDAYSEhKIiYmxWPVTKpUMGTKEiIiIpyo9MjIy2L17t0RidejQgRdffJFz584RZ0oD6tKlCzNmzGjdULIVCILAuXPnuGAqsxg0aBBjx461aLBKS0vZsmWLVBImk8kYO3YsAwcOfK4kuZZgMBg4ceIE8fHxgHhdfogfU+PtlZaWUlRURFZWFtevX3/qYFmh1+NUVka5s7OYIGMys5YJAoenTEGQy+kR1JkXZi5ofVJaXi5ODDMywM1N9AJphJRfTmfIv1ZznTD8eQgTJ8KhQxY+RTU1NVy7do34+HhpAmdtbY27u7tEqAUFdiMtLRWjIH4u/MoVxp84waZFi8gylVZ1vX+fIg8PKh0d8SnMYe6HvyA5U2uRoKZSqejXrx8RERGtlkPCj0gWgWi43K8f9VotG198kTyTGs2xrIwVa9agqa0BaxtpwN8UBrmcqpGDKP9lLeUGgYp6L8prxlBxK4tyuZzKZ4yGBnFy2LFjR9zc3HCqqCDlyBEedO7cKqEUcP8+kXFx+H/4IbKXfwZa8Vk+OmkS1wcMoKFSxW+//hRbXS3rVqygwLTSY1ddzfK13+H8XQUER4HsM0gvEUvJzCqhlJRm5YoAddbWnB41ihsmxZ9tTQ3jiovptXgxsl694Ntv4fe/F/c5WE7NHBt2Z8/mYSc/MS2sr4Eo34/Fw3EYC513gNJZVHA9MHkh3b0r/jbvT6OSKqNMxslx47g6aJD4QgvnplPHjkyaPBkPDw+awSQ1adi4kQ2uruR5eeFSUsLytWuxra0VVVj9+sHPf07OsGFsazIBVzY0iGVPbZB8NjY2eHl5SV4x5vjxp6mM7ty5I3mYmcmiiIQExppMknF2FmPtX3sNXF3Jycnh8OHDUu28eRJub2/PnDlzRF+B8nJxMmmWS69cCV98Af/jQfbzkEWVlZVcvnzZwm/I2dmZqKgoent5oRw+nEf19VwcNZL7/paDJOeSEn5x8yayuDjioqI4M2oUglxOYaE7iYm96NTpEV26ZKJUPiGI7GxtCSwvJ2jPHjpnZqK0thbvC51OVIH84x+wYkWL1/fevXvs3LkTQRAICwtj4sSJFlH2NTU1ZGRkcOLECbRarbRY0tpigaOjIx4eHuh0OrKzszEajSiVSoYPH05ERARyuRxBEDhw4ACJiYkoFApGjx6NQqGwUAqVl5e3uSChqq/HraTEkhQqL8fVxQWbwECxvKtnT/G3uYSqBeh0Om7fvs2lS5ekUgaVSkXv3r0pTUsj00R6hCcmMua114i7epVz5ue30TPj4ODAqFGjcHBwsFhYKS4ubrP0ztraGvfqaqwyM8ny90evVmNVW4tRqUSnVjMgNZXxX3zBukOHyMnJwc/Pj8WLF1suWhmNomfX118/eW3xYtHDS6nEYDCw/YsvyKiqwqa2lqVKJe7x8XDqFNrAQFYtWoROr5eOxy8ri0XBwSg+/xzy8sQ25J134P33QRCoP3mS0xcvct00/tJUVTH87FnSgoJIM03onEtLmXj0KAHu7qJ6qjFeeAH27xe/b9w4sfQMxOe4lfKVp+HxxYt0HDq0nSxqx08OP1WyqB3t+P8y2smiH4D/NVkEcO3aNcnAtDHMCWlNY89BlMIfP35cMnBu7H/TGG5ubvTr149evXq1mb5iMBjYv39/s9hBtVotkVFtrY43JWy6devG/PnzuXv3LgcPHkSn0+Hk5MScOXOeOdmtMa5cuSJFOfbu3ZspU6ZIviB79uyRVtI1Gg1z5859ZtO1Z0VCQgJHjhxBr9f/V8dhRkNDA2vWrKGoqAg/Pz+8vLy4evVq8zc+g9rE0V5FaJ9BeHh44O7ujqurq+VkVBDEQeaBA+IKZxOPlrpx7tifyCWGcYzijJjMcu2aqD5qAS1NEkBUBTVWqfW9cYNJR4+ybcECMk0rJn6ZmVQ7OFDi5oZbSRFL31mArY9oVGs0Grl79y5xcXEWk95evXoRGRnZov/Vj0oWgUhODByIvr6erfPnSwSXXXU1S9atA5WcCjcPyq2sqXB2ptzRkQpHR8qdnKiyt7cog2kR5qa10TW1rqujY1YWdrW1PPTzo8zk06FSqejfvz8RERHYx8Wxb9067vTsiVwQkJkmMk3hXVBA5Jgx9Jg5E7nRiE6l4tuf/5wSV1dykr35YtcvsaGew5Mnc7N/f5DJkBsMzNq9m6CMVGitSkShAHcF5JsUP1PHw/t/hs72ZH+/iCNX+lNkLxIyXfPymJiZiYu5HHTFCvJ/PZkdhy9QoXXAqr6OF/bspbvjffgn4P+GSdX0FCLNYBB9ds6cgd/9jiqtlvVLl1LWgtmfTW0tY0+epHdiIrLu3cWJr7mkrahI3Ma5cxj1enbMncv97t2xralh+bp1uHTtKhrczpwJJq+ZgwcPcu/ePfHSISrxzOjy8CETTp7kbEQEySbZsY2VFdpWVGgymQw3N7dmpsMODg7IZDIKCwtZs2YNOp0OG0CLqJhZtHkzci8vMSls5UrQaKivr+fMmTNcu3YNwEKF1LFjR2bPni22+4mJYhuQkSEq5L76CpYta/t8/0h4FrKouLiYuLg4EhMTpX7My8uLwYMHS35DDx484OKpU2SZfG1kRiM97t6lxt6OLH/xOe2QnU3FOkcWOG8hPjKcW/36SSVTZjg7OxMUFERQUBAdOnQQyYNr18TzYe7/XFyelDyNGSN6vDUKQzAjKSlJ8jvo2rUrbm5uUhlZayXfKpUKFxcXC1PMefPmodFoOHz4sOTb07lzZ0aMGCEtMDQmhIqLi9tcZFDqdLiUlmJbU0OBpyfaRpHOTlVVTC0owL9z5yfEULduot/ND4DRaCQ5OZnY2FiLdtvD0ZECU/9gX1FBlZn0b9SnhYeHM3LkyJZVzFVV1I0bR3F2NkXu7hS7u1M8fjxFSmWbXoEAaoOB7qGhVJsCKdRqNS+99JKlMaheD8uXi8lnZvz85/Cf/4gR9oLA/m+/JamgAFVDA4vLy+mg0cBnnyHY2vLvjz6itKZGOh6HigpW3ryJ3fnz4rYCA0W1j8kM9v79+xw5ckRSDvW9cQNHvZ64fv0kH7iouDiGXLiAys7uST+tAAyIZXHffy8qlIYPB/PK8UcfiWTU8yIjAz7+mMcbN9JRENrJonb85NBOFrWjHT8+2smiH4D/C7IILI2BG0OlUjFr1iy6mcotQJSrXbt2jcTExBbl6y4uLoSFhREaGioamT4Hbt++zcGDB5u9bm1tzahRo+jXr1+r5WT19fVs3LhRIrDMZq9FRUXs3LmTsrIylEol0dHRhIaGPtd+gUjYHDx4EEEQCAwMxMXFhcuXL0t/79q1KzNmzPjBqp+nIT8/n507d1JeXv5fHYcgCOzfv5+kpCQ0Gg0LFixg69atVFdX4+DgIF1TucHQbKLjWFaGIJdT2YbaRiaT4ezs/MRc+9o13L/8EreyMlSNlBkAgq8cr4Ya3i56j1+zCkGjQXb1qmS+2RqMRiOHDh0iISGhxb/7PXjA/C1b2LFggWTW3CE7G4NSSZ6PjyjnXzkGx6AJzT4rCAKZmZnExcVZ+K4EBAQQFRVlkUD0Y5JF9fX1YpR8fDzln3xCuUbD3ZCQNs91Uyj0eilO3lqrpd7KijJ3Z0odXS0IIreiIoKysgiePBnvnj2RjRgBej1GmYyUHj2IffFF8k2TTYVCQe/evRlUWMjxCxd40KULtkBw//4kJSU9STJsNAlzksOgo8fpe/MmxW5urF2xAqNCQeSBi4y+/T0yILFXLw5Mny4SXILAwMuXGXfuJDJ/IKQf9JkqTiaDg8U4dXk1/DkEPjSZrK75Nyx/FXSFGFLHEbffngu6YRiUSpQ6HcMuXCBi1ixSR47kwIED6PV6XOxKmavZhvubxVADhAfAqRvwnNeuJDeXtd98g9b8fDQ6drnRyNQDBwht5N3SEgRE5dWNAQNQ6vW8qFLR4aWXoBEpmZ2dzd69e6msrEShUDBmzBi8vb3ZsGGDRVutamhAZ5psjzp1isG3bqH73e8omj+fgrIyyYOmoKCgmeG2GWaVXmFBAfUNDVhrtdTZ2GBfWcnKkyfR/OpXsGiRSPYgKluOHTsmtRfmfgqgf//+TJgwQST4t24V47q1WpHw2LsX+vd/rvP936AtsignJ4fY2FiLxC1/f38GDx5MF1O7kZaWZpEUKJfJ6J2UxOAzZ7DT6VFXVbJj4VzSAoIAUTmja6WEul+/fkycOLHlhY+GBrF06M9/FokEa2vxt14PGg3C3/5G+ezZFJjIIDMpVFJS0uJ3yWQyXF1d8fDwwNnZmTt37lBRUYG1tTWLFy8mKytLMuhsTPIpFArs7OzQarVte/yY7nmFTkfvxES8c3NxLS3FpaQEh6oqZP7+EBKCoWdPLnt7c7a8HGOje7Zv376MGTPmR+svBUEgIyODuLg4y8TQFhY8PDw8iI6Obp2cqK8XvXhM3hEA/Pvfotn91avUzpvHgUGDuG+KQnYoL6fOxoaGNkrnzebabm5uuDk7475zJ+5Hj+JaXIxKrxeNrT/7DEyqvJitW7mWkYHcYGDegwcETJwo+g0Be//5T+40Gnsp9HqWbt2K74MH4rG+/rp4H5n8jmJiYkhKSgJE5dCgy5e5OXo0Bab97VRRweQtW3BvFH5iAT8/UQ1cUyOST/Hxoirq9dfhn/98vvLlzExx3zZuBIOBx0BHaCeL2vGTQztZ1I52/PhoJ4t+AP6vyCKwjBxvqhQKDw9HrVaTlJTUYnqPtbW1lHqjUqkYOnQogwYN+kFu9mlpaezatQuDwdDMU8DOzo4xY8YQGhraYomXIAisXbtWGth36NCBefPmIZPJ2LdvnxQNOXDgQMaOHfvcPkaNz5EZMpmM0aNHExER8V+XnT0NWq3W4jgsTGOfEfHx8Rw7dgyZTMaiRYs4d+4c2dnZuLu7s+LFF3kwazJHg/tZGK4CIAh0zszkgUmlEy5LIGDOHykurbKQ79c1IYQaf96pvBz3oiLci4pwKy3inx3+Dsdz2NzwovievXtFBUIb0Ov17Nu3T/LOsLKyEr+zyaRAXVcnRRd75OdjXVdHtr8/tjU1LH0hFLdBC596rnJzc7l06RLJycnSfejj40NUVBRBQUHk5uY+E1kkCAK1tbVUVFSIhFALv1s9b5YbwrmsDLeqYhxLq3AqLsWxuhqnkhIcy8uptrPjXnAwqUFBUqmXGT4uFQSFjiHYYIXbr38tekiBmPATESFOVGUyEAQEFxfSDx4k9v59srOzAfE+DzIpT0rc3HBRqZj/0kvcuXaNqzdvojVNNhsbh1trtQwwmaXGDh2Kur6el775BueyMmRAkZsb65Yvl1LgfA2lLJ70FWqlHpzngN8aUDRSJNY/hF+EwJoaUMrgyGEYNwn0ZfCPAZR8XsbRsZMlgtCutpYaU+lpgL8rM3p8jLW8AO4Ar8mhygjh4RAT8yTV6ClITEzk4MGDzZSUrkVFqORy8k3KrOEPHjB082ZkrZTkxEZF8f2YMSAIzN65k+DUVPH8d+mC0KMHsaGhnFWpEAAXJydmzp6Nk5MTa9asobS0FA8PD+pqa6k0l/wKAl4FBSw5cwYrc/JRQIBYImKqXxcEgaqqqmZmxsXFxS2XDgkCDioVHbp1w8OkQNJoNFy6dEnyRXJwcEAul1NeXo5cLmfixIn0799fJD9+8xtxkg1i2crWraKh9f8hmpJFrZHBQUFBREVF0aFDB0mtcvHiRcmoXKlU0qVLP7KyIknfdJfP08ZS7OdBUo+epHcPeKJcARAE/F1dCb5xg4BDh7gyaBDxJoXHU0uik5KoW7mSgtxcCjw9KejUiUInJwo9PFolI1QqlUTs9OzZk4iICNzd3aUS7rq6OnJzczl8+LB0nVxcXJqlwzSFTBBwqq7GNT8fFxMR5FpSgmtpKar6ejYuXUqxuzuuWi3L9HpszUqh4GAxTr0RSktLOXDggFQyDGKZ5MSJEwkJCflR+86cnBxiL14UScDG2xUEgnNzmfHOOyjMiY9NYTDA3LmiWbMZ774rto+rV1Px3nvsnDGDPB8fZEYj42JiqLGz4+KwYSgFgemzZ2MwGDh+/DharRZra2sMBkPrxJsg4CST4R4QgJtpgSUnNZUbpmd4elISoW+9JSWx3Xj3XY6Y7wNTnzfl4EH63roFnTuLIRJDhyIIAnfu3CEmJoba2lpkgkDYtWvoVSpumaKMbaytGXPnDn22bEGmVIptodmjyKwoagy1Wjw/BgMsWSKWyz3rGOrBgyckkdnTbPx4Hr/yCh2nTGkni9rxk0M7WdSOdvz4aCeLfgD+L8kiEI0zd+zYgU6nk6KSW4O5xKxPnz7Y2NiQn5/PsWPHpMGgi4sL48ePt1AlPSuys7PZvn07dXV1aDQaGhoanigYAHt7e8aPH/8kkrgRjEYj33zzjZTe5uTkJJXTnTt3TnLf9/f3Z+bMmc+lfsrPz2f9+vXSvshkMubNm/eDjvGHwmg0cv78eclHqWPHjsyaNQt7k9lvW8jJyWH9+vUYDAbGjBlDVVUVV65cQa1Ws3LlSly/+AT+9A8yOndm+4IFTzxumhAxERmxjP36L2BnmRAnCALV1dWisXZGBkXffUexnR2Fnp5o21hBdqiowN3eHvfISEmR5Obm1mzVWafTsXPnTjIyMiw8OOSCAaNMgUtxMb45OST16iUNYuUGAy4lJRR7eKCur2dJpAfek19/6rlqjNLSUi5fvszt27elFXgXFxe6dOnC5MmTKS8vRyaTSeSPmQBqTAY9LYkHxMmTOUbesagIp61bcSov535AADdNiQRyvZ5Fmzbh/ygbIzIed+xISlAQ94KCLEqiZEYj/llZBKWmElR9D4fXKiCyA3Q9AOpQWLVKTN/RasVJQPfuYuKXSiV6pvTrB7GxZBcVEXvxIvdNBCWIZSZ6lQqf/HxeXLsWZDKu9+/P5chIyXS6MWmk0Oux0WqptrfHw8kD7ed1/Drr1wiATqlk/fLl5JsSgmwURpYO+QZ3TSFYB0PXfWAd9OQk1dyCWeFwXA8aJZyJg/UbJN8PIRJuTArneN04SRnnVVPO4qHfYeNdA1aBoC+Cu6XwqgIqDNC3L5w61SaRUV1dzeHDh0kzEzEmqBQKhsXGMshU9nZi3DiJGAhOTmbagQNiop0ZGg1JL73EPtN5Gl9RwcDr18USpNJSqjUa9k+fLpVO9kpMZNKRI6h8fdk6bRqZjo44KhQsHTyY448fcy8jw3J/GhqYdOUKvRMSwKw6iY4Wr3cjA0sJt2+j//RTTlZWEh8eLl43meyZ1ALOzs5UVVWh1+uxs7Njzpw5ohlibq6YmGSeeP7hD/DBB636z/wvYSaLHj58SFVVFXFxcRbl06GhoUSa2h2DwUBiYiKxsbGUmsrAlEo1Ot0ADh8eRFKSmq5dMwgKukfPwDsobZ7MplUNDSiNDWitRZIk8OFD5vzxj8g2b4bf/Y7Enj05Eh2NTq3GwcGB2bNn4+XlRUlJSbMUstYMpxV6Pe4lJXj6+eExeDCeJj8qjUbDmTNnpL4tKCgIa2trqXSspZCJluCfmUn3+/dFUqi0FOeyMhTmhREPjydeQqbfFZ06sW7PHiorK/H19WXx4sWtmriD2D/cvn2bmJgYi/68a9euTJ48GadWSo+fF3qdjnV/+hN5rdxvXbOymDtvHsqxY5vuoFgKtnr1k9defFFsW375Sx6eOsWu2bOptbPDtraWWbt2obWxYdccMc1x2rRp9O7dW/KCdHBw4OWXX8bKyorKykqKHj2i6NNPKa6ooNjNjSJ3d7Rt+CiqGxrw7dQJt3PncMvIQBEQwNGgIHHhwmRoHRYfz6SjR8XS1c8+A42GyspKjh49KrVV7iUl9Lx9m2uDBlFjGu/0CQpizL//jW1srJj+GBoKV6+KJJErUAj4+0FV9ZN2pDG8vcXks+nTxbK01rwls7JEkmjDhick0bhxYnsQEdFucN2OnyzayaJ2tOPHRztZ9APwf00WabVaTp061aLptRmhoaGMHz++Rfm4IAgkJSVx6tQpyeQ6MDCQcePG4fyMK/dmFBQUsGXLFqqrq3F0dKRnz57Ex8dbDDKdnJyYNGkSXbt2tSCNampq+Prrr6VBskqlYvr06QQHB5OSksKBAwdoaGh4rmj7mzdvcuTIEUlhYlZfubq6smjRojaNkP8XuHfvHvv376e+vh6NRsOsWbPo1EaqUG1tLatXr6aiooKgoCBCQkIkE9vZs2cTXFkBkRE88OvM9nnz0KnVFskuwJPSAzkMHTaCqKiollVNej2MGgUXLoglPpWV1NjaUuTuTpG7O1mjenAibwjd3e+jtW99sKzRaCTyyMnJidu3b1NYWGihfLOWaakTbHCoqGDBli0cmjqVHPOg0zSgNu97L0eBsT/7bZv+WW2hqcl2RUUFq1at4r333mtzktT4eJycnJ4QQo6O0r+dnJyab2PdOtHXArg2YADHJ04UJ/FGI10yMijw9qam0bEo9Xq6pqcTlJJC97Q0y3QwgAnAG1bQfz24zBNLAl555YlRqZkoUijE1eOAANE/JTWVfFtbYgcPJrlHDwtvJJ+cHJaePIkyOBh9UBC3Hj0irmNHKVq8MWlkRq9evfF5bz+D7m3CgBw5Ro5OnswNk4+RTAbT+5+ml1csyDXgvwGcZzzZQNFRmBANNwRQyUFnUsW8/x4l0SnsOO9DcbU7MkEQiQ/AvqqSCY6pBL+zA/SP4f4oSM4TCaNSA/TqJWabNzGjNhqN3Lhxg9OnT1u0PQDd3dyYkJmJ044dIkFiws1+/Tg6aRJGhQKP6mrm+vvjXFcHX33FQ4OBzYsWYVAqGVRfz7hXXhEjuAWBjJs32X/iBDU6HSpBYMK9e/Q5cwZZYSEx48dzddAgVA0NLNq4kbOjRvGgSxcUej1TMjNJ9Pcno9H945mXx7yEBBzj48VraWUFv/2tqJKwtYWLF8VksuPHSQ8IYOuCBSCToVYoaDClbI0ePZqioiIyMjJISEh4Kung5OSEp0KB54kTeGZk4Flbi/OXXyKPjm7zc/9LJCUlERoaykcffSS13U0N7HU6Hbdu3SIuLk4iagTBhoSEgZw/3xM/v2yCgu7RtWsGKtWTpDdbuZzu168TlJpKl/xslFX1fPfLFeQ5i551gbm5zP70U2QJCVTPmcO9Dh04O3IktaYJe1tpXI6Ojnja2eFx6RKe8fF4FhTgaDRSIZdT6upKSXg4JePHU6rTUVJS0qYZM4Ad4FJbCzU1PHZ1lco/vXJzyTd57KkaGnhlyxac/PwsjaZDQsAUqdwURUVFrF+/Hq1WS9euXZk3b95Tla7V1dUcO3bMIj1UqVQycuRIBg4c+NyK38aoqqzk23/8g5pG2xgyZAg6nY5rV69KpXAKnY5hNjYM+u1vUZmfm9/9TlQQmTF+PPznPwhz53IdiBk/HqNCgVdeHnN27KBBrWbtihU0WFkxsF8/xkdHk5KSwq5duwB48cUX8Tcl41FeLvr+NDKNFr76itrFiyVl7r2UFNIzMp5O1Jr6YbvqagYlJOC5YgXuY8fi4ODAzZs3OXXqFA0NDciBsGvXKHJ1lRTBbm5uTAoPx//FF0XTfmdn6NIFbtwAKxn4CPAA8PIANw9xAcHHRyxBq6gQy2Srq8X/m+HkJCajTZ8uEkF2dqK/21/+IvZhZpJo7FiRJIqMlD76ODOTjl27tpNF7fjJoZ0sakc7fny0k0U/AP8XZFFdXR3Xrl0jISFBWk1tDIVCgaenJ7mNJkMBAQFMmzatVVVOfX0958+f5+rVqxiNRhQKBVFRUQwePPip6WaNUVZWxubNmykrK8POzo65c+eSlZXFhQsXLJQarq6uREdH49fIBDQ3N5e1a9dalFcMGzaMYcOGUVxczM6dOykpKbGMdm4BBoOBgwcPSjX/IMb/9ejRgy1btlBZWYmDgwOLFi1q0Qz8f4mSkhJ27txJUVERcrmcsWPHEh4e3kxtJQgC27ZtIz09HRcXF6ZPn87mzZtpaGggMjKSMZGRENqZNKUzu2bPxqBUYltTQ62d3ZNyLtMAVYaAgLj9Vr0f3noL/va3FuPedcOs0Vws57hxAiM5izYkhKJduyjSai3K2Z4W5wxgJaujXrBGVV/PjL17OTtihBgzDlhptXS/d4+kPn0slFEKhYLQ0FCpVOOHoKGhgVtXrnBs2zb++O23vPPOO9jY2DQjgMz/dnJywsHB4dnLMisrxTS43bvh6FEaFAruBwRwZeBAMa670fW1MtTR/V4aQUkpBDg7o9brRcPc1qABXgbGLoOycZCcIpJF166JpEJrUCggIICS3r2J69aN23K5RCTaqNVMjI6mR48eyCsqMPTpwx1nZ2InT6bY9Lw3JY3c3dwI2x1D2IWjaAUb7KgloVcvDpp9jIB+XXKYHLwGmUwAzzfB95MnRtSb34Aln4MRkMtgx04y+vVjz5491NXVYW9dydywHdRlWXE0ZTKl9qJqKLCwkInLluEQ4gBpI+HeY3hFAcUGsXzm++/FVXMgLy+PI0eOWLR9ABq9nkknThBkSilsCY86dmTnggXUWFtjY2PDzJkzsbe1Zd1331FnNBKcnMys3btFs/CFCzk3fjyxpsmzh4cHM2fOlO7PmxcucPjsWQCmVVVxXRB47OCAqqGBedu309lUTpXp78++mTMlAlFmNDLo2jVGJyUhN5Xm4u4uKqhMPj1lLi6sfvVV6kxeNTU1NXh6erJ8+XJkMhmxsbHExsZiMBhQqVQMGTKEhw8fkmFSNNnb20uKwpagUqnw8PCQzLS9vLzw8PD4n3i7abVaC3+mwsJC7ty5wxdffMEbb7yBl5cX4eHhhIeHY2trS319PdevX+fy5csSEVZbq+HGjT7U1VnRrVs6nTplI5c/GZI4OTlJBtUdO3ZE/uWXoncLgEqGVmHFt796iQobcXHExpRspm2lzFQul+Pt7S2l1rm7u2NlZUV1dbVoKF1cTGliIiWFhVQ4OLRpYm+jUCA3GKjhybXvlZCAS2kpWmtrjk6eTLpJBatuaKBBrUYhCHRQKHho6ic7dOjA0qVLn4uwefz4MZs2bUKn09GrVy+mT5/+TGVl9+7d49ChQxYKZk9PT6ZOnYq36Rl8HiTfvcve3bsxmr5bDSx/+WUpjVCr1XLsyBHu3L0rtaHWej2Dhg5lQGIito2jj8PC4KOP0C9bxrGBA6XSrZ5JSUw5dAi9UsmaFSsodXXF38ODRS+9JC1SabVaoqKiGD16tLitoiLRqNxc+iuTieVYixZJX5eVns6WzZsxyOX0vXOHMb/7HSV791J85AiFXl7cGDyYhkbJZy2hMflobzTimZ7Ogy5dMCiVKBQKhg4dSqSbG8oJEyA7W2zn3N1FA3pbBXQzQALgoIHgEFFp5OwMSqV4DBERogJToRBN+vfvh4MHxb+ZYWUFXl7w+PGT/mT0aFHFGhVlucOPH/M4KoqO2dntZFE7fnJoJ4va0Y4fH+1k0Q+AmSz69NNP0Wg0qFQqlEql9GP+v0KhaPVvLb1mNBpJSUkhLS3NIlHKDDc3N7p3705SUhJVVVU4OTkxbtw4Dh48aOFNNHbsWPr379/qwLCoqIiYmBgyMzMBcbV07NixLZaPtYbq6mq2bNlCQUEBVlZWzJs3Dx8fHy5dukRcXJwFaeTh4cGUKVOkNLKEhAQOHDhgsb2goCCmTZsmGT2bpdoDBgxg3LhxFquiVVVVbNiwQSLRrKysmD9/vqTgqaioYMuWLRQXF2Nra8uCBQueSaX0Y6KhoYFDhw5JSXKhoaFMnjzZgpQ7f/48586dQ6lUsnjxYg4dOkRxcTH+/v4sWrQI+c/nc+fSHfa/8IK0cprv7f1ESaTXM+74cVJG9OSBRoyMbjwwtUiV2b+/Vd8hwR2CNY956cHfeYPPRV+LVgyt6+vrKSoqIjs7m9jY2FaNeVuEwUCHnByRWAGm1KZjveQ9Ll26xOPHj6W3de/encjISDp16vR8nhmVlVT168fngwfz/saN/G3FClbu2YPDP/4BS5c+n+GnGRUVTwiiEyeoVSq5FxhIalAQGV27WsbemycMgsDYmBgiIq/CakTT5qgoURHw7bfNv8P0meeCUgmbN4urxo08Uypzcjj6xz+S5u0tHa+rqytRUVGElpejGDUKI5C6ejUXb90k38PTct9NcC4vJzI2FsfbpXTTZ1Lo7s76ZcskHyMvFwMvDvgb1qo60AyHztth1UZ47z1ROaYAwQBXFr7AqW69EQSBDj4uzOn5FzRq0QxbZ7+CC/u6cqm2FqNCgbq+npFqNQNen4380SRIz4KXFVAgqqnqYmI4m5YmpXw1Pu/hV68y6swZy9IymQyGDYN588TI85UrobqaSgcHds6fT66XFzKZDGtra7RaLR18fVns64vqs88ov3WLfTNm8Mh0r/bv2JFxixZJz292djYbN27EaDQSGRlJRkYGBQUFWFtbs2DKFDqUlYklbMnJkJyMMSWFM927cykqSiIWbKurmb1rF34m/ykzdGFhrHvhBfIbGiSiyMrKipUrV1JVVcWRI0ckX5tu3boxePBgjh07RkFBAXK5nPHjxxMWFoasupralSspvHJF9NmJjKQgMJDC4mKpbLMpHBwcpCQ284+rq+szkRQGg0Eq32pcwtUSwVxYWMhXX33FwYMHGT9+PGq1Gq1WS1zcVa5cuYrBIPZnVVUa8vK8cHCoxMur0GIbXl5eEkHk4eEhtX3l5eXiPmzbRmFqKgWenpS4urb6/Lu5uuL56BFuV65Q6OlJSnAwyOXY2tri4eFBVVUVZWVlbUbPq+vrn8TNFxWJJWNlZbgUF2Or1SLIZByYNo3E3r1R6PXM3bOH4pAQzoSEoJPLUchkDO3Th0HjxnHg4MHm3m/AyJEjGTJkyFOvQ2Okp6ezfft2jEYjAwcOZNy4cc/UptbX13Pq1Clu3LghvSaTyRg4cCAjRox4JsVmbW0tRw4fJqWRUbmLQsHK3/62xaSznJwctq1dS20Tk/h+N24Qcfkyju7usGgRVatWsWvmTB537IjMaGT06dNEXLqE4OTE9kmTSO/WDUelkp+9/jq2trZs3bqVjIwMvLy8WLFihTiWyM0VyRKzikqphB07YMYTpWR+Xh4bvvmGermcoLQ0Zr3yCvLCQqkfPfL3v3OjERkrNxgYmpmJcflyqY98murP2dkZLysr3A4fxi07G3crK9y0WlR374KTGvo0wDlArYLBQ0QyyMZGJItyc8UytXPnmnu7GQxiuemmTbBzJzRVuPXtK/obTZsGjZXPsbEI48dzTxAIrq1tJ4va8ZNDO1nUjnb8+Ggni34AzGTRO++883/WGCkUColYksvlVFdXi74wcjleXl6UlZVZTNzt7Ozo2rUrTk5OrRJZeXl53Lx5UxrQdOzYkREjRuDp6Sm9v61JQl1dHTt27ODhw4colUpmzpxJYGAgOp2O2NhYLl26ZDEp8fHxYcqUKXh6enL8+HGuXbuGQqFAEASMRiPu7u7MnTsXZ2dnzp8/z3lT3GynTp2YNWsWGo2GzMxMtm/fLm3X29ubRYsWNVsRr6mpYdu2beTm5qJWq5k7dy6dO3f+0a7Hs0AQBK5cucKpU6cQBAFPT0/mzJmDs7MzGRkZbNmyBYApU6aQkZHB3bt3sbe3Z+XKlWjOn+HmHz7k8JQpIJMRmJpKRpcu6E2DdFVDA3N37KBLdSbC3S0kPA7h5MmTzcgbBwcHJvXtS/epU0VljFotmtya91EBv5mxg6JdDWxmsfjivn0iCdEKysrK2LRpkwWh6erqjKfyFskF/iAIeOTnU+zh0Sy5rTHUarVUzqZSqcjLy7MgjXx8fIiMjCQ4OPjpk9XycirCwtg0cSIPlEpWrVrFO++8g291NYs2bcIxMlI0/nwW0rAJQVRhY0NqUBCpQUE89POzUBE46/UEX71KUEoKMqORjUuXojcRCkPPn2NEwDnYBNQDTo4gVzyJ324LXdUw/+cQPkZU1jx8KE5kGpPIPj5w+3bzUpT8fC4vX87J8HCLlx0cHIgoLaXfp5+i1mgQDuwlfcVKLg4ZKpEiYBkDb1tTg9e1PF6I34fSYGD9kiVPVGJqOS8OWo+3/AF8ZA1nTSqNJUvQT6rg8E5I7NkbgD493JjU+Q8oZWUgtwejafLi+xmF+WM4vGULj01+QT4lJUSPCcer80eQmY7wsoK7LsGcmDiR6iZeIlZ1dSzYsoWOje4bhg4VzXBnzLAsX3vwQPQJunsXvVLJwSlTuGNKLlSr1bzyyis4OjqSmprKwb17qdPrsaqrI/rQIUKSk0Uz23feoXzAAL5bs4ba2lq6desmedBoNBoWLlyIZ6PkNAtUVFB56xa74uLIMbeLgkBAejqzdu1CrdMhAAenTSOhTx8LM/gZZWU88PLipkkRaGdnx4QJE7CxsWHPnj1otVrs7OyYNWuWqORMTRUntSkpYhnj55+L/ikyGUajkdLS0makTksLFCD2PWYFkvm3vb29hSl3QUEBRUVFFiEDjeHk5GTx+YqKCqKionj06BEqlRO7d1+mqOg6crnYNmm11hiNcuzsnqhbZDIZfn5+BAYGEhQUhJWVlYWnUGFhIYWFhc3KEs2wranBpbiY3I6+GOUiyWsvCHh17055eTllxcXo24qeVypxcXDAVS7HxWwwff8+rrduYZebS6sUjI8PDBmCsWdPdms0pFZUWJD6nTp1Ijo6WlLAGo1GDhw4YKGaNR//ihUrnnvhIzExkf379wPPTzhlZ2dz8OBBC3Wzg4MD0dHRBAQEtPgZQRBITEwkJibGIiDAz9qahb/5TZtKTq1Wy961a8lo4scjNxjoVVZG13PnODluHNX29lhrtczYs4eAjAwYOJDv3dyIHTAApSCw7KWX8Pb25urVq8TExKBUKlm5cqWoCnz4EEaOFMt9QewTDxwQy9FMKC0tZd2//kWNTIbfw4csmDYNVbduotl0dTV3XnqJvV5eT4h+mYxJV68StnMn+TU1HDp0SPLg8nZ2RpGWxmNTOy0HZApFq88KgoBTVQVusiLck4pwKy4WjbYPHcJGrwdfX/EYAgLEstUmoQmAqCD65BNYs+ZJf+/vL5Z/m48bqLWxoXDIEIoGD6ZQr6fw0SOK3N3J1+lYtWpVO1nUjp8c2smidrTjx0c7WfQDYCaL7t69i42NDXq9Hp1Oh16vl36a/r/xT319PSUlJVRWVra6wvv/Fcjl8jaVUQqFgsLCQqncwd/fHy8vL4loevjwIY8ePbJYlXVzcyMiIoJr165RUFCARqPBaDRSW1uLtbU1L7zwAgEBAaSlpUn+P/b29nTp0sUilj0iIoIxY8a0ulJaX1/Pjh07yMrKQqFQMHPmTIKCglp87/8SWVlZ7Nmzh5qaGqytrRk3bhynTp2itraWvn374uHhwYkTJ5DL5SxZsoSONjZcmfsCJ4aMAqDf9evkeXmRZxq0qevqWLh1Kx0fP4JzU2HoAUAkyE6ePEmiKR688YSkZ1IS48+fx65J0k7suzP55SfvEkcUNtTB738Pf/pTq8dSVFTEpk2bLMpbgoO646c+SExiMADDzp7lVr9+FvHynTMyxDQsmQybhjrqrGxa9QVpmvpnZ2dH//79iYiIaLmRKiujfMAANk6eTLmzM1RU8OGqVXzy4YfUA47l5SzeuBEXvV6cNLekMiovlwgi4eRJih0dSQkKIjU4mLwmkzMLRYOLC7KpU+H4cQCKXV35buVKKSFpwNWrTDh+vPlEUi4XFThNEdQZUk1pUO4y+PvvYNEfxf2tqhLVXo2JkYAASEoSI70b4/59zr3+OufDw0EQsLaxkSZuNg0NDIyNJdzaGpvIHggffs5DPz9Ojh1Lnkn9B6ACzPpAuc5Av1s3GHTlCnFRUdwyxazLgIlxxwg7dU38wF/mUrnia3bu3k1ubi4yo5HxMTEM6BuP7GcCaAZD55/wh28AAQAASURBVD1Q9AXkfyJu3Pt9BM/3ufHdd5zOzqbeygqZ0UhETQW9ep/n1N1eZNqYTKAbKaDciopY8d13WDU0wJAhMGeOSBC1NHkyQ6uFl1/GuHkzO+bMEWO2Tdv08fHB3d1damN8fX2Z0bs3zl99BVu2gF5Pg1rNuldfpcDRETc3NxoaGqT+YPHixbg0MjNvhqoq0aT3H/8g2dGRg9OmSWSQQq9n3MWLoFRybMgQZEYjMqMRo1JJUHIyjzt2lEzK+924waj4eBJHjOBk9+4IMhnednbMmTwZx8BAkexdskT0MPHxEROkIiJa3y8T6urqLMgXMwHTGvnSElQqlVTSZlYmeXh4NHtuDx48xbRpY1m+/N94e5ehVIoTZ6NRZlFeplQq6dq1Kz4+Ptja2lJeXt6mYglEcsvV1RUHBwes1Wq4dImG/HwqnZwodXZ+apS6c0kJDqWlFHl4SOc8/PFjxh46hKKwsOUPKhSix0xtLZhLC62twUyWDB2KfvVqzj16RFxcnPSxwYMHM3LkyBYDIY4cOdLMp9DZ2ZmXX375ucrGAa5cucIJkwdadHQ0/UzlW88CvV5PbGwsFy5csGize/bsybhx4yy85srKyjhy5IikWjYjxN6eF15//ZkUasYLFzjz5z8TZ/LQsdZqJUWjGU6lpSzasgWX0lJ4913upqSwx1Sy/kJ0NL369aOwsJDvvvsOvV7PhAkTCA8Ph7Q00bfP3Iba2sLRo6IZtAnV1dWsW7WKMqMRz/x8loSFYT1zpkgUpaVREhrKV1OnigshprajT2IiE//4Ry4WFBAXF4fRaMTKyopgjYZ7jx+LQRKCQFjnzoyaM0c0196xg6KPPqLY2ZmiHj0oVqkocnRs01xbU1uLW0EBbrW1uC9bhntgIG5ubmg0GvEeysmBv/5VbGfMz+2wYdT/4Q8Udu9OYWEhRenpFN6/T2FtLTWtPAsV5eWs+vzzdrKoHT85tJNF7WjHj492sugH4Id4Fun1euLj47l582aL0biurq706dOHAQMGSBJto9HYIulkfq2mpobvv/+esrIylEolYWFh1NbWcufOHYvJtlKpxNvbGzs7Oykutun2GhoaqK+vb1Nq/38NMxml0+ma7Ze3tzf29vZPLfmTyWTcunWL/Px8ZDIZERERBAYGtlkW+GPGBZtRWVnJrl27yDFPJBBJhzFjxrB161aMRiPjx48nfMAALr68hLM+4uQ44tIl5AYDcabVYOvaWl7ctAmv/Hx40xn++gAUlibeGRkZHDly5IlSwDSgtamtZezJk/S+fRsZUPmSF12/TeA6A/AjGyZNEgmTVgb0ubm5bN682WK1eOTIEbjr17PrfCcEmZx+169zLyhI9GcxfW/o7dvc6dULo0LBgLQEJqzbjlGppKSkRExoa+SJ1GpcuAl2dnZ06NBBmti7q1QwYQJbJk+mwskJZ2D0rFmEhISIq+K7dlFSXY2mqopFmzbhYfap+O47cHQUvR1MBFGuhwcppoj7kiY+V506dSLI3Z2ghgacMzPF8qKUFPGnosLivRUODqxeuZJa0yQq5O4dZlQcQ3ahFuqAfv6w75xoYn3sWPODHNgPcu7AY9Ngf0QQfHdETM169Ah694aysifv9/QUJzwmAscM4do1jvz1r9zs3Rul0Uh4VBQpqamUmT6rrq8nTKNh0M612CeKk7v9U6eS2LevxXas6uqoN3cOgkBwSgquRUXEDR0qGVX3vH+XaWP2kefrzc6bS6jWKrGxsWZW9UY6/8lU6vHZIPjNeZCbSljyPoHc98R/e7wBHf5BVXY2MZ9/TrI5galRaV9jgq9LRgbzHj5EOXOmSBA9h9pCEASO/eMfXK+pQanTMerUKc6NGkV9o4lTREQEo0aNelL++ugRwqpV7M7PJyUwEOvaWmRyOVpra9xcXFj04out9wUlJfCvf8GXXz65bh06YPj1rznSsSO3TaWqjY/Xpq4OrbW15FEG4FpXR/TFi/jEx3Nk0iQSe4uqrd63b4vJbHq9pXKwa1f44x/FEsgmnlotnZPGSiEzIVNUVNQqqdsS5HI5bm5ukh+SOUFRqVTy8GEJ584Vk//wOpX1yXz11Ve88cYbzUIIFAoFjo6O2Nra0tDQQElJSasqDI1Gg0ajkcqi6urqqKystGijmkJmNGJXU0O1RiOdE0eDgRlaLb6JiciTkiAvD4NCwcmxY7lmStHrkpHBjL17sfXyapZARmDgE8J23z549VXIzxe3r1Dw0NeXw1OmiOVwiAmLWq0WW1tblixZ0qJPmyAIxMTENCu7DAsLY9KkSc9wNSxx+vRp4uLikMlkzJ49+7kXTgoLCzl48KCFV5iVlRXjxo0jNDSUq1evcvbsWXEBrNHzGu7qyvhXX322fjUhQSwdrajgbkgIB6dORadWo2poQNek9K3To0dEjR6NQ3w866yt0anVRPTowdhZs9Dr9axdu5b8/HwCAgKYP38+sjt3RKLI7OXj4CD6wg0aJG2zrq6OjZ9/Tn59PU5lZSzz8MD+nXdEpe2hQ+hsbFj1i1+gtbN7QjLn5DBqyBCOV1ZKY7suXbpQ/+ABOaZnx7OqismLF9PBpGTku+/EhDejUdynxERxv7p3oGZ2KcVb3ClydaMoPJzi6mqK3dwsFl+awkqtxr2mBpeUFGxqakAQ0Pn5UdmzJ4UGQ5teg05VVbjn5mJdV0etrS2Fnp48FoR2ZVE7fpJoJ4va0Y4fH+1k0Q+AmSwqKSlpcyXZYDBIBFFRY7NBE1xdXenduzcDBw58Jg+AllBfX8/27dulUrA5c+ag0WjYsWMHFU3k7v7+/kyaNKlNw+f79+8TExMjyc59fHwYOnQozs7OraqmdDodOp2O1NRUsk3+G2ZzUIPBIL2voaGB4uLiVk1X/7+CxiV/rflLPcvrTV+Ty+UcOXJEmqx7e3tTWVlJTU0NISEhvPDCC3z/+d+5VCWWkg0/exbP3Fx2zp8PMhnWWi3L167FrbgYgoFrsaCJavEYdDod5/71Ly5XViLI5RZGxp0zM5mYfZTA+FT21MxiBOegWzfRTLmVmOSHDx+ydetWyYvKysqKmTNmYFXxDZsO26CXq+iemkq2n5+4CmwaSAempJAREIBepaLn/bu88NV3yBxaH/SaS2TMJFJhYSGPHj1q21jb9F1qoN+gQahUKkaNGkVGRgYKhYJDe/dSWlWFlVbL5MOHcS8uBoUCI5Dr7c2Dzp150LmzRO6AWCrgC3QuLsYvNRWb9HSor8eiETRNfgS5XCwNKCuT0mi0VlYcmD6dGpMywbekhDHhD5H/6SZoZRDoBJ9vRNhzSCyPazSREgA6+EJPJZzORjAgpostfhHmzIOkJITf/vaJz5F5P2bMEBUljVbhDdeucf7778np0AG1IDBm8mTKy8u5e+UK5aYJuBzocj+NHneTsdVqOTF2LGWurljX1lLXaJVbrdPR0EjR4FRaSpW9PQbTa9ZqaNAZMAoKHG1riApKQyNLg+MgnEWMf373begzwHTZBKiMgcJ18FAG9zsi3K0nXybj+oAB1Dc1WzZPzh4/ZkBKCvL33hMTy6Q/N++iWnrt/v37JCcnAxB25w6G+noSevfGaCqPkclkhIaGinHzjXDv3j3u37+PDJDr9RiUShwqKhiQnIzVkCGiusmmkWKuvFw05o6LQzB7uHl4iF4pYWEIphLcqqoqbt28SZ3ZdL4pQWY04puTg7ezM7r+/UnLzpbKTX2MRlwrKhDKyxGqqzHKZAhyOYJMhtH8WyZDUKkQNBqMdnYYbW1psLKiQaGgQRCkNrytLl6hUCCXy5HJZJI6xGg0Sj+CIDwXqWT2LGqJLGoJZv8etVqNTCajvr6+TUIIxHIpV1dXXFxccFGrcf3sM1wTEnCqqkRZ38CN/v050igRzqWkhEWbNuFkJn8dHaGigqRevTgcHY1OrcbB3p7Zc+ZI/nutoqwMfvMb6rZv59To0dwMCwNAU1XFxMxMunz8MZvi4sjNzcXe3p6lS5e2mEwqCALff/+9hRoJYN68eXTv3v2p563ptg4dOsTt27dRKpUsXLjQInziWWA0Grl+/TqnTp2yUEWr1eonCrRGRNEIb2+G/v/YO++wqM5E/3/mzAxD700RBAVEsBHFhr0iir1g15hYkt3spuxusrvZTbIlu8mmbZrRWGLvFXvvvQsqIKL0oXeYdn5/nOE4Q1Hjzd57c398n4dHGaacOXPOmff9vt8yf/6zPfn9+xKxmZcn35QeGMja6dNla29wcjJOFRXS+WomcgWDAZNKRZCjIzNefx1BEDh06BBnz57F3t6eRYsW4Xj3rtT6VUfWenhILYsWBRoGg4E1X37Jw7IyHCoqeFGvx/2zzyTC9b33AFg2dy6ZrVvL79G+spIQOztu1OWQ2dsT4OdHcnIyJoUCtU7HgNpaevzlLyjrvhf/8Q8p2w1g9Gg4cUJacOgcCnMewO/0oENa1DhyRCKUgoOpzcigICCA/I8+QmtvT3Z2NgVaLZVVVc+Ux6fRaHB1dcXX1xd/f3+8cnKo/NOfSPXze7zAY0ZZSQmfNiuLmvEzRDNZ1Ixm/PRoJoueA3Vk0ZIlS5gzZ46VJNxgMHD58mVZQVR/t7m7u9O5c2d69uz53ARRfej1ejZt2kRqaiqCIDBx4kQCAgLYtGmTTN7UWXsEQaB3797069evSSm7wWDg/PnzcruZQqGga9euDBo06KltOWfOnOHw4cMAREZGMmrUqAbS89raWg4ePMj169cbqEhGjx5NZWUlR48ebbDvPDw8KDRnGbi7u9O1a1dUKlWj5FV9BZVer6eoqEgmqmxsbFAqlfLf/7cd3prqamxrayl1cZHazkwmAh49wq66GpXJgGpUGCqPXk2TVZmZqP/4R8rt7LjYvftjpYy5tt5oVGB/spI3z3yKytYWRROB1iBNrjds2CB/Vl5eXkydOhVD7lJWbCikWrCn1aNHaH180JktRKIgEJiWRk7LltTa2hKclkr83z9E6fd8A0+DwcDVq1e5ePGifAwAjbbQlJaWyplFzYOFZjTjfx+eRBYJgvDM5JNKpcLR0RE3NzdatGiBn7c3HhUVuD98iPrOHaliPDFRIiIaUSweGTSI0/36ydcRZ2BWdDQeUVESWXTsGIwahdbRkY1TplDk4YFSqSQmJuaJJRIAd+7cYe/27VSYicIXrlxh6NGj2FZWgp0dVX/5Cyvt7MjPz8fV1ZW5c+c2qk4TRZGTJ09y/Phx+TZbW1teffVVKwvYs8BkMrFp0ybu3buHRqNh7ty5TWdsPQGlpaXs2rWrgd3Mkugc2aYN3WbNerYnzMmBPn2s8nSyW7RgY3w8ZS4uVosd0WfOEDV9OhdsbTmflCTf7uTkRHR0NG5ubqxfvx6AKVOmEFZQIOUR1S1S+fpKn6uFsspkMrF56VLu5uZiU1vLnKwsWqxYIRH5ZrLr0JAhnO3TR36MwmTC3mCg0jyOa9OmDUVaLSXm12l37x4j+vTB5ZVX6l4E3noLPvtM+n3qVEnZWlUFvV6ABanwyzIoB6J7w5WrmHQ6ijp1QqvToW3Rgvzx49GKIoWFhU2eH3XE7hPHNaKIQhSt8vdsamtpm5qK1tubNBubZmVRM36WaCaLmtGMnx7NZNFzwDLgOiwsjEmTJnHr1i1ZQdQYQVRXC/5TEUT1YTQa2bZtG0lJSSgUCsaMGUOHDh3Yu3cvV69eBZBDSUFqQBsxYgTt2rV74vs8dOgQt2/fBiTp/ODBg4mMjHxi9sDVq1dJSEhAFEXCwsKYMGFCo6GWNTU17Nu3j1u3blnts+DgYKqrq60sWwMHDqRfv36kpKSwbds2ampqcHR0ZNKkSXIL2tMgiiKnT5/m6NGjgCTnHzFihEykPUvu1I/JprL8W01NjSxRV6vVGI3G/1WWv6aUUTU1NVbhpi4uLgQGBiLoH5CUpKUWySpTY2uLyVwRbVIqcS0spMbenho7O3xycxg9czp27Tv8JJa/jOvXOfbllzzw95eJIjc3N5ycnMjOzqawsPAxWaTRoDQaEUwm9Gp1wxVYkwmV0YjKYEBVt1KuUKBQqaSGHJVKCghWqaTbLB7f2LYrTCYpN8Ks2hGBCkdHWX0jiCLOdkqEnHypXl4DtPQF0RZFdjbUqUvqnk8UwcsVKIUiEYzm21xcwGCQlExmMlG0aFUTXVxQ+Poims87U0EBJeYVeCXg7OYmPU96OgaFgmonJ/QW53Tdaj2iiGNFBQonJ2prayVlUd39TCZpfzTYDyJqQY9KKe1PUWEHqBErKsCEtJ0KhazSqlPBmAShUcvZ/9cQRWlix+P9pjCZsDEaEezsUBiNKCoqQBQxqVSITk4YkSa/TQboIh2nar0etU6HWq/HxvyvYDKhEEXp2La3x+DggN7eHr2NDXpBQGcyPTHDSBShtlZNTY0t1dV2GGuVtLF9iNEdjBbffVZkkbPzEz9vtVqNra0tgiCg1+uprq5uchKs0uulQOD8fKsft+JiBFdXSUF5+7Z03tioEHUGdswYx83gzjKR7mBnx8zZsx+TKHl50K8fNQ8fsnPsWO62l7LZOnfuzMiRIxssupSXl7N3717umlvA3N3ciEtPJ/Dzz6UdZGEVLB8wgJWjRlFUUYGnpydz5szBwWw7rI/Tp09z5MgR+XfZXvUjzxW9Xs+aNWt49OgRjo6OvPjii42qmp6E+/fvs3v3bkrrWXABEEUGBgbSb86cZ3uykhLJembO2gO42bEju0ePxqBW41FQwOSNG7keGck5c45R29RUPCorudi5M4LJhI29vaw0q1NTd+zYkfFOTpJ6p06FFhAgEUVt2lhsrkjCunVcTU1FaTAwPSmJoLVrJQXQ++8DcC8sjA3x8fL7szxenZ2dcXNz4+HDh9LvpaWMOHOGsH/9S1IbAuj1MG+e1GAJ8OKLUg6aTgdD+yO+mkrJW1Vold5oO3UiX6lE6+pKgZcXxiZKIjQ1NXhrtXgrFHj164d3nz54+/jIx4/JZKK4qIisCxe4d/kymVVVlNnZPdO1tW7BpZksasbPDT9nsmjAgAF06tQJW1tbvv/+e2xsbFi4cCHvmZWNn376KStWrCAtLQ13d3fi4uL46KOP5EWDlStX8utf/5qNGzfy61//moyMDPr06cOKFStoYS4maUYzngfNZNFzoI4s+sMf/tCkOsfNzU1WEDVWE/ufgMlkYvfu3Vy/fh2AESNGEBUVxeXLl9m3bx+iKMp2sjrSqF27dsTExODahP0IpIDmffv2oTWHe7Zo0YLY2NgnDiLu3LnD1q1bMRqNBAYGEh8f3+R+qK6uJiEhQbaGWKJu4KdUKhk5ciSRkZEUFRWxceNGtFotgiAwYsSIp67yWuLy5cvs2bMHgIiICMaNG/c4m+Q/AJ1Ox/fff09+fj6BgYF07dqVrVu3ApJKR7YoiiJDDxzAoaqK3XFxMsHQ88wZWmVno1epMHSwwbDgTxgUro2TVXo9hnPn0BcVYVCrMSiVGFQqDCoVtTY2VDvaI/L0kNH/Lvxoy19tLbotW0gMCcGgVqMGjPUCsau1Wv75zTd89NJLVDV1jJpM9D15kh6JiYhVVRJZERqK8f33MUVFYRJFmdCrm3g/6f9WtxUUYPr8c0wGA0ZBwCgIJEVEUGK2rKoVCkJ93BCOncBkVGByEzBGhWDShGBKTMKo1crkiVGplP7v6ozRxYCpzIipxny7Uim9d/OP+AQC9/8iFCYTSqMRpcmE4OiIYFYLCoKAIAhW/zeZTGi1WkRRtLLMqFQq/P39cXZ2RpGVhfLwYQSzoi81JKTRNj8fHx+6dOmCjY0NgkKBkJKCcscOhGvXEEwmaXuMRgRRRDlgAMLMmQjt28vbY7ld9+7dk69FdXB1dSUmJobdO3dSWa/dMKKigj5bt1Jka0uejw9aHx/yfHwobsIOLQgCXl5ecth03Y+DgwMKoxEePKDyxg0K7t6lIDubgvJyChQKCtzdKXF1bXJiqTSZcEdArHXmQbYfx26EkpXnS1GRB4JgYvDguwwJO0SlfSlGi4UCBzs79EYjmZmZ1soiUcStvJyWnTrh7u+Ph4eHZCFzdcVeq5XUQbdvw+3bGJOSKNJqyXdxId/LiwIvL+lfT0+r17LaXkHAw9NTyjkDvD7+GK8HD3CvKAWdkTXzZ5DuEyST3ba2tsyYMeOx3cxggLlzEdes4Wx0NEcGD0YUBHx8fJg8eTLu7u6IosiVK1c4fPgwtbW1soq3f//+0mLJ6dPw0ktw7x7mgw8MBkq8vVnx6quUiSK+vr7Mnj27ycHYqVOn5MUOgNjYWKKiohq975NQXV3NypUr0Wq1uLu78+KLLzZJUlmiqqqKAwcOyCUKzs7OBPr5cTMpqcGx0q1bNwYPHvzkCVtVFQwfLu0bwCQIHBoyhPNmUigkOZnxW7diq1bDvn3ccnJi1/btGCxea2KPHoQOHsyNGzc4ePCgbJVWCwIvnD9PrzNncCktlYjCo0etrKsAR3ft4tS1ayhMJiZdvkz7jz+GX/xCIpWA0pYt+ffChdJ3TD2iqHXr1uTm5lJbW4vCZKLHhQsMKCpCs2XL40r6qiqYPBn27EFUKimbP5/8I0fQenqS360r2tYK8osc0asbX0hU63R42dvjXV2N96lTeGVl4a3V4hQRgeL99yW7muW+r6ykfONG7p45w13gQatWVt8NrsXFtLl/Hy+z8r3Qy4tcHx+y/PzkhYBmsqgZP1fUn9SKoihfE/67UZeb+qwYMGAA165d44033mDatGmcO3eOOXPmcODAAYYOHcrnn39O586dCQoKIi0tjVdeeYVBgwbxzTffABJZNH/+fPr378+HH36IIAjMmDGDyMhI1q5d+596m834/wDNZNFzwFJZZLnTXF1d6dy5M7179/6PKYiehvqhmHVVuQ8ePGDz5s1yxXLbtm3lIGyVSkW/fv3o3bt3k6SJyWTi0qVLHDt2jFqz+qFLly4MHjy4SSn8gwcP2LBhAzqdjhYtWjB9+vQnDkjram4tIQgCzs7OclhzVFQUw4cPx2g0snPnTplg6tKlCyNHjnxiLa8lbt++zfbt2zGZTAQHBzNp0qT/yGcmiiLbt2/n1q1bshJq7dq16HQ6evbsiVartZLye+fmUujuLq/Cd7l6lTG7dkl/dAKSl4LvS02/4N//Dn/4g9TOU09ZoJtjR9Cae6xtN5PLI6KsMgpAUp716dOHFi1acPr0aZKTkwHpM+jevTuurq7oKh9x9cJZSnSuKA0GadVToZD+r1KhNBhQiCIGtRqlwYCTvR0mWzsrUus/fSlptqE9hsJkkkgLjQZBpYLKSmrMCh4bpRJnNzeEvDwErRalQoEQ3Bbj3XuUOTtLTVDmgY5Sr8cvKwu32lqUFRUUe3qS7u9vNQlR6nQIYBVEKxgMvHDlCq2ysiQSxUykGFQqbnTuTGpISINJZudWt7FVl3HhgTRhrLPAKpVKypOTObBiOakurgB4FBYwatduAgsKpJDv/v0b7IOKigqWLVtGSUkJtra2sgIhJCSEMWPGWF+T0tIkJUJiIjm+viyfN0/OSwHpOhMXF4egUEBCglRPfe6ceQcoIT5eyiTavNk6vHz4cHj7bWn7zO83PT2dVatWWZ0Pbm5uvPLKK6hUKvLy8vjhhx/kfCLgiaorJ0dHfHx9rUghD7NtymQyUVpaahUkX/dTXY+QsoQd4FlTg6dWi+f9+3hmZ+NVUIBLSQmCxXZXaOw5H9GPB13DyWvhhFFouI0DBgzgwpkzVOv1jdvQRJF+Fy8yIDwcRWGhRA4lJUmT7UY3zk4KlzYHTZvCwykOCCBfpbIKzc/Pz2+ydVQwGnEvKsK9sJDMIH+qNA7ytczGxoapU6cSGBj4+AErVsDLL/PA35+tEydS6eiIRqNh8ODB3L59W7Z9t2zZktGjRze0eNXUSGqVjz+Wrs9qNej1FHp4sGL+fCo1Glq1asXMmTOb/D7au3cvly5dAqTFlIULF+Lt7d34PnoCysvLWb58OSUlJbRo0YLZs2c3uaAjiiI3b97kwIED8vHSvXt31CYTZy5flvalwYC9vT0VFsozBwcHRo4cSVhYWMNJk14vBUebydIqOzu2TpxIWlup3KHvyZMMPHYMRfv2Ur6QeWX89jffsFWrBYUCwWhk4okTtP/8c24qlWzfvh0ADxsbCs3bIRiNdMzIoPfvfod3vVDvCydOsN9s7xt17hxdR4yAd9+VmgsBo5sbX7zzDuVVVVbnnotSidrNTVYLt8zKYtTu3bTo3x+WL0e0s6OyshJtWhr5//gH2ooK8n180LZsSW0TpL7SYMCrrAyvzEy8KyvxevAAb60W16goFGfOPD4PuneXWkvbtoXUVEhJgbt3KUpM5I5Gw922bcmsl7fmnZdH2J07tL9zB5+8PBQCEKZBlyZysmdvzvbrZ3UtbyaLmvFzRf1JrU6n48MPP/wf2ZZ33nnnR80rBgwYgNFo5NSpU/Jt3bt3Z9CgQfzjH/9ocP8tW7awcOFC+Tq0cuVK5s6dS2pqKm3N19FvvvmGDz74gNzc3P/iu2nG/89oJoueA5ZkkZeXF9XV1RgMBry8vJg5cyZO5lDb/ymIosjx48c5efIkANHR0QwePJiSkhI2bNiAVqtFqVTSv39/7t+/L8unPT09iY2NJSgoqMnnrqio4MiRI7J6SaPRMGDAAKKioholmnJyclizZg1VVVW4u7szc+bMRlVMlgPgxlA/qHvSpEnY2dlx9uxZjhw5giiKtGzZkilTpjxzQ11qaiqbNm1Cr9fj7+/P1KlTn5rJ9GNx6dIl9u7di0KhYPr06ezfv5+CggICAgIQRZGMjAzUBj29T53mTJ8+VhNTt6IiFi5ejE3d4HvXIBh1uGkZ+ZEjUohnI/Y2sSOEF93mm6xfMJDjVEdEcPj997lqthha7l9HR0c528nBwYGXXnoJV1dXxNpHbF32BxLzg1Hq9dIqvkKBS0kJpa6u2NTU4FZSQp6vL47l5bwY1AK3V99ssC2WoefPbPfLz6fo+++5HhGBUaXCFjBZKETsqqtxKSmhwNOTwqqqH00WCUiTCqXZiiMIAkpXVwSz/aUxVciT/q9QKFAWFCBs2ybb4ASjkYeBgWSYV5yVgkB0cDCOi79GWVGN0MKIMMcZZdDrCBkKhA8/RFlUJKlU6hQrjo4o3+2N4LUb4aAR5VoQKg3StteRMYBy926E27dR/PGPkuVGrYbf/hZ+8xvS5s1jbXg4JqWSHmFhDB8zBkWvXnD9unT8BDrDki2UOjuzNzaWZIsJlkd+Pl41Ndw1T0Zap6cTdP8+V6KiKDefd+qaGoxqtZUqxzsvj6GHDtEmNZVbg7pzsGt/ueWrDn5+fsTGxpKSeJTjZ+8D0C88mQFjP0ehftwWJZpMJK34nn3JKVTaS4Rnl6tXGXbqFHabNklkjRk6nY4ffviB7Oxsq9y2IUOG0LNnz8ZX/aqrERctYmdxMTfqVYz36d2bQVotin/8QyIzADQayVby1ltW9hZu3ICPPoINGx6fkz16IP7ud1xp1Yq9ZrVnHWxsbOjUqROlpaVkZWVR1RRJIopoamoISU3FT6fD59YtfLRa7AMD0X/2GYWdOlmRQQUFBRQWFjZJmIC00OHp6dngx8HBgcJC2LEDtmwykXwkg3bGRMJJIkxzhxYdiykJdeBBm0ArVY9HQQEGpZJSNzeUBgOj0tPZ37o1tWo1iCJtEhKYdeUKqwYMIM2CQAMIfPCAqevWYVO3GmxjA+3bW7ePdegAgYFNNjda7y6RkpKSBs2L+Tk56JqyApuJAYVCQXh4OKGhoXKzmzo5Gfr3p0ynY9PkyWRZTMzVajWDBg2ie/fuT66Jv3pVOmZu3JB+V6nIc3dn5dy51NjZERQYyLTp05tc/FixYoVMTGk0Gt54443nWuwoLCxk+fLlVFVVERQUxLRp0xq8ZnFxMQkJCfKihre3N3Fxcdy8dIlLZoWRpraW+TExOPXqxfHjxzl79qzVc7Rr147Y2NjH380mE8yeLVmxgDwfHzbEx1Pi5oZap2Psjh2EJyXBzJnw/ffSMQBUXb7M0rVrKXF1xc5kotq8j6MuX+ZGVBQ6UWSAszP93nyTtDZtOBMdzQOLczI0NJTo6GgCAgK4de0a28wLMQPPn6dfba2sJgJArWb1J5+QZmHDRhTxMRrRqtWIoojGYKDP0aO0ys6m4KWX0EZGSvX0+flNnr+C0YiHKOIVVIP3iUt4X9LiVV2Bu4s7wo0b4Ob2OIjbrD4z73ipSKGoSGpnNJnI8/Hhbvv23GnfHm09YrJVTg5hZYW0r03CfXcSmE+nkvbe3J09g1tp5WT7trA+h0QRtU5HQU1NM1nUjJ8lfu5kUUREBF9//bV825gxY/Dw8GD58uUcPnyYDz/8kLt371JWViZHXFRWVmJvb8/KlSt59dVXqTQXrQBs376dCRMm/K+KvWjGzw/NZNFzoI4sysvLw9vbm4KCAlatWkV5eTnu7u7MmjXrmRpe/tOwDJvu1q0bsbGx6HQ6duzYIecp9OjRA19fXw4fPixfYDp27MiwYcOeGJ6ZmZnJ3r17ycnJASQ71YgRIxolmgoLC1m9ejWlpaU4OTkxY8YMeSW0pqaGFStWyBY3W1tboqKiZGbd19e3UUbcxcWF+Ph4fH19uX//Plu3bpVVU5MmTXrmlpeMjAzWrVtHTU0N3t7ezJgx4ycj+7Kysli+fDkmk4mhQ4eSnZ1NYmIijo6O2Nvbo9Vq0ZiMTF+xkmI3N7aPHft44CaK9Dp7lqGHDqEAmOsISx6Cqon2vawsiIyU6nctsmsAREd4Zdhy2m27wa/5Apyc4MIFaN+ehw8fsnv3buvQaDNcXFxYtGgRGo0GUV/M/nW/4GJ6qFXYqFdeHvk+PggGA755eWT7+WFbXc1cpQ7vv336k+xH0tN5FBPD2vHj0Wk02CsUVJnfn4OdHcO3b8f7/n02Tp1Ksbs7lQUFfPzVV/zhrbdQOzril5FB3K5d2NXUUO7kxOW+fbkREiLn+QB0vHGDsTY2CN27w9/+Jg3IVSr43e+klebntZLu2wcjR1p9Hmd69eLwsGGgUKBSKnmpb198xo+BolKIAL5WQfvPwDgBpkwBi1UmQFKw/Gsu9FsL2mr4zAEOVlrfx9tbmpCaTJKlok6dFhwMn37KrSVL2GZuaBrSsyfRAQHQtStUV0sBrO+9A6WSAmfHmDHciIxsaMF48ICpB9ejydFhUCq50aULZ6KjZUuUwmhErEcgqxU69KJ58GR+Po1oYsioOCIjIzl27Jjc/DSo/Tn6tj0AthEQegjU1p77mpwMDn/0O664SrlrDhUVDD98mA5/+QuKUaMwmUxs3LhRVsiBRIpMnDjxqW1W586e5eChQ/LvrTIy5NX60Hv3GLdtG7Y2NrBoEbz+uhSa2xQePIBPPoFly8hydydh1ChyW7Z84uvXQRAEAgIC8PfzQ3fqFFcNBlm5JRgMhD96hIOfH0U5OeS7uDzZOqZU4uHhYUUGeXl54eHh0cBOXVgI27dLAqmjRx/PVzWaWoYMuUf37kkoFKmYTI/Vix4lJUTcuEFwaioHRowgq2VLbGprGZGQwJ64OAw2NiCKjNi7F6dLlwgHMgDR359tY8dSYq6VB+mznOvggEd8vHTMPqNi9MdAFEXK1qwh/4MPyPf0JN/Li+yWLcnz9X1irourqyte7u7Ynj5NuqOjTJIC+Pv7Ex8fj71Fi2CT0OslMvGDD6TsGqWSLF9fVs2ahU6jIbRFCybPm9foIoxOp+OLL76QCQl3d3cWLVr0zMpaS2RnZ/PDDz+g0+kIDw9nwoQJMrF6/vx5jh07hsFgkBeYevXqxc6NG7mdmgqAQ2UlC8aPx8migj47O5tdu3aRZ9FsVtdSGdWtG8Kbb8IXXwCQFB7OjrFj0dvY4FZUxJQNG/ApKIDFi+Hll+XHm0pLWfP22zzw9cWtupp5f/gDp48e5bx54QqgZWkp8774AqFuYtS3L1nLlnHm2jXu3Lkj38/L05OC/HxEhYLuly8Tc/IkirIy6TgzGkEUOfDxx5y3mHQhitgYDHIjpENVFZhMDRS6lvd3LyrCu7QULw8PvA8dwlurxePll1EuBH7xN9gJqFXQNhju3rUmhxp7SoWCzFatuBMWxt327a3spwqTicCqKtqHhtJuqAfONf+G709g/Fwgo5U/KaGhpHTpRL5DI+MbUcSmthadeRJQXlrCJ581t6E14+eHn7sNrUuXLnz++efybWPHjsXV1ZX33nuPsLAwFi1axJQpU3B3d+f06dPMmzeP4uJiXF1d5cyiOicGwI4dOxg3btz/uhKfZvy80EwWPQfqyKLS0lJ5pay4uJhVq1ZRUlKCi4sLs2bNwr2JHIn/Tljm83Tq1IkxY8agUCislEdt2rQhLi6OM2fOcNksKddoNAwaNIhu3bo1uUJqMpm4du0aR44ckaXpERERDB06tAFZVlZWxpo1a8jPz8fW1pZp06YhiiJr1qyRL+StWrVi9uzZKJVKdu/ezbVr17C1tSU+Pp5jx47JCqg6CILAuHHj6NChA8XFxWzcuJG8vDwEQWDYsGF07979mS7UeXl5rFmzhoqKCtzc3Jg5c+aPDvysj6qqKpYsWUJpaSlhYWEEBARw8OBBK1udvUrFjK++IqtVK/aMHCnJ6uuChc3ocu0asdf3oL6xD1yGNP5iej0MGABnzzY62Dzwl7GseXc8qzE302zfDmPHyn83GAwcOHBA/uwtERwczMgRQ0g8/haHbwVb/S0gPZ1HgYEgirTKzCTT3x+1TsesvEe0WrrqpwkpTksjfeRI1o0fj97GRgr6Nf8pKjycQQsXku7tzfZx49BpNLgWF9NvzRpeKCzklr8/u2fMQKfR4JeZyfS1a7EzH6flLVpwdsYMLtrZScHKgF1VFUMOHqSz0YhSFB8rR8LDYfly6NHj+d7DmjXSCrkFrnXuzK6xY6XPXBCY3bs3AVMmQ2ERhANfA62nQYuv4Q9/gU8bId5enggLzgFZcNJOqlzWW3z2kZFw/rykKtq+XSKNzOQukydztqKCQ927AzAuJoZO165J5Ec9C6NerebbV16huO6csCCN7Csr6XH+PN0vXcK2pgaTIHA7IoLTffuS/wzWmIhbt4jZvx+Hz//IgVZduHDhAgDDhg2jVxdXSBkC+mzQtIWQI6CpRwKLeh79MJmE6y3Jd5Ner21qKrE9e3KqVStZAQnStWnUqFFPVZulpKSwbt06+fdhx47R68QJbnbqxK7RozGqVHgC8bNm4dGECtNoNJKfn09eXp78k5mRga6JQatSEPBt0YLa2lpZUt6uXTsGDhxIWVYWBV9+SUFhIfmenmT7+2N8gmrFtroar8JCPPz98erfH88WLfD09MTV1fWJahdLgujIkceHwBMJIldXIh48IHz9ery1Wqpat2bNwoXk1tZia2PD8Bs3SAgJkVRHosjY7dvpfPMmd0Ami1oBBpWKo2PHcq5DB/m5FSYTE4OCCH/WoOTnxddfS+eGGalt27JuxnREhYBDeTmV5sUDtVr95EmH+bywsbGhe/fushrpqerGpCQp/Pj8eQDSg4JYO20aBrWaCEFg/O9+h9DI6nRmZibLli2Tf2/ZsmWDdtZnRVpaGmvXrsVkMtGtWzciIyPZvXu3vFATGBjIqFGjcHd3Z92KFaRmZADgWlrKglmzsLWooK+D0WiUySbLsPWWwOhvv8VLq+XYwIFSGx3Q5v59Jm7ZIql7DxwAM5kNSOTNr37FeQ8P1Ho9L82YIVvKNm/eLNvRXYuLmbZ2LV4FBZL1c9s2MBN3hYWFnDlzhhs3bsir7JqaGmL27qXj7dsow8IgI4Pamhp2/vrX3KlTPj5D4L6Liwve3t54eXlJ2UK//z2eycmo/f2hZ0+ou56MHQveZbDvqHTwPw0aDcaAANJbtuSOlxf3WreW7MFmqIxG2iqVhEVG0m7wAOxqEyD3IyrzU0hdFkJKdQipwcHUNnYMWjTX1b0/m9pafNxF+oyeS7t27ZrJomb87PBzD7huiiyKi4tj6tSp1NTUyN/jf/3rX3n33XebyaJm/MfRTBY9Bxoji0Dyea9evZrCwkKcnJyYNWsWnnWV5f+DuHXrFtu3b2/QTpaUlMSOHTvQ6/W4u7sTHx+PXq9nz549ZGdnA1KY9ciRI5+4El9dXc2xY8e4fPkyoiiiVqvp27cvvXr1slrprK6uZt26dWRmZsorl3Xo27cvgwYNkn83GAysXLmSrKwsfHx8ePHFF6moqGD79u1kZmZavX5gYCAzZ87EaDSya9cuub2tqbaaxlBUVMSaNWsoLi7G0dGRGTNmPFelMEgr1uvWrSM1NRV3d3dGjBjB+vXrMZlM2NnZUV1djZOjIzOX/5tkN38ODx0KINu5fLOzCU9K4tigQYiCQAsXPZPnvNV0CPnrr8Pnn0uqpHpS06IPvBn+592cEvtjS42kkvngA6v73Lt3j02bNjUpU1UKJowm60lmWFISd8PDAWj16BGZAQEIRiPTkq7TdsO2n0YJkJpK2pgxrBs3Tg77BvMx2akTLfv350SvXpwYOBCQ7CuTNm+mqKoKf6AUqGjZkjUzZlBtb493Xh4zV6/Gsa5CGaiOiWFzXBwP6kLGAafSUvqcOUPk1auoQSLfBEHazx98IE8+fhQ++wzeeMPqpnuhoWyMj0cUBBQKBfHduxM6Y4Y0a68jjLwioO022HkN5sx53OpTh95R8BFgewlSgVlK0FlkVfXoASdPSjaO0lL4/e/h229BFBHd3DjQpw8XunZFMJmYNnw4bePiJFUVwIBecPwcDwID2ThlCrVmi2av06dxLynhTHQ0JWYCyaa2lqhLl+h57hwORiNLh6zHP/U7UoaGUGyhGKkPG1MtXc9focLRgVudOgP1Qntr0yB5MOjSQe0PoYfBNtT6SUQjxqTZnFmWwUmHfhhVKitVkyAIxMbG8sILLzyVPNZqtXz33XdymG3c4cO8YFY6AWS3bMnGKVMoc3FBo9Ewfvx4WrRoYUUK5eXlUVBQ8FTZt0qvx6BWE5iWRp9r19g3fjyF5u1zdHSkurr6yY1mFtZRRJG26emMbNEC19OnUZgDg2nTRlJwjBrV6HMUFEgWs02bJAWRJUE0dOg9oqIaIYg8PIgIDyc8ORnvP/wBRVERKBSULVrE6rAwCoqKcAAGJiSwd8QITEolCpOJyRs3EpaZCS+/zJ3oaMInTSJj7FhaHTwo57Fk+/qybto0Kuu+V0WRSCcn4t5447maE58Z770nN18BXHuhC7tGjwXA/9Ej2TrauXNnUlNTZRWuo6MjYk0NlU9Qgzg6OkrB2vV+rNRHRiN89ZV0flZVkRoSwvr4eExKJV0yMhj9+usoIiIaPPfx48c5ceKE/Lu/vz/Tp09/rlKNxMREtmzZYnWbra0tw4YNo0uXLphMJlYuWUKmWQXsU1DAvIULUTeyXZYoKipi165dVos9CpMJ15ISWRnT68wZhhw5gtC1q5Rh5OVl9Rw3P/mE7ebr9qROnQgfNw6QbO7ff/+99N1aVUW1vT02tbWM272bsG++edxGZkZBQQHLvv6aGpDb7wA0oohLaSk1QJmLS5PkkI0o0vLBA3zMqnLvd97Bq00bNGo1ZGTA1q1SZmBNjaTgFUWw+L55JtjZoZ8yhft2dtwpKyO5VStqLOzxGoOBUHt7wnr3JrhXL2xUBsT8ZeTeW0lyliMp2aFklftZN3ciInUqgsJgsFLVgkQwR128gOnFAQyZ8WcyMzPx9/dvJoua8bPD/1Wy6PXXX5f/Vre4/84775CVldVMFjXjP45msug50BRZBFKmz+rVq9Fqtdjb2zNz5kx8n2RR+G/C3bt32bJlC0ajkbZt2zJ58mRsbGzIzc1lw4YNlJaWYmNjw4QJEwgODubKlSscOXJEDrPu2rUrgwcPfmKmT25uLvv27ZOzFNzd3YmJiSEkJES+T2VlJV999ZUcMisIAjNnzrQOETWjrKyMJUuWUFlZSYcOHRg/fjwKhQKtVsuOHTtkC1zd8wwcOJDevXtz4cIFDh06hCiKtGjRgsmTJz+x7a0O5eXlrFmzBq1WK6uf/OsFRT4LTpw4wfHjx1GpVEydOpXt27dTUVGBSqXCYDDg6urKzEv7uZ6j45R5VbVtSgr3Q0JQ6fXM/+47vAoKSAsKYuvsyVRhh52dHRMmTJBD62Rs3iw1rTQC4ySBjgdvcKA0Fn8ypAnjzp3yALl+thVIE3WFQiE3+kg6HuuB8wtXrnC9SxdMSiV+mZlktWoFosjE86eJ2Lbr+ciU+rh3jzvx8WwePVq2vNnY2DBo0CCibGzQR0ezY/Rouca6+/nzDDt4EKXJRKYg4G8yUfrmmzh//TVaZ2dWz5xJhZMT7oWFzFy1ClfLymdB4OxvfsOhese2Q0UFPc+fJ+rSJTR1lfbu7pKlaPbsH6+cevtt+Oc/rW566O/Pqjlz5HyfcV270mnuXGkWH66Crwzg6gSBKyG7HYwZA/fvWz9vC19Y2gN8d8Jx4K16r9uyJaxdK6nPQApknj8fbt9GVCjYOmECiR06YFNby5yVK2mRmyuRSQEBXPL1ZX9MDKIg4FRaSrmLC2qdjoWLF+NaUsLtiAjO9Okj52UoDQYir16loyCwte8UyqrN29rI6ry9jY4qnYViQhQZ0D6E/lOmW2+/LhOSh0DtPVD5SJY0u47W9xFN8GgB+Sd2sDJxDlXmLCOFycS4qCg6NkGWWKK8vJwv//1v9AYDiCLjt26l4+3bEBYGv/kN+tRU8n/4gYcBAZzt3ZuKp2Sj2draolar5eZJtVotN+fVNbIJgOkJygWlwYBHYSGe1dV4Dh+OZ0QEnp6esnXs7NmzHD1yRHoOJNJu5O3bdOzeHcW334KZ9GfkSIlQDg6moMDaYvbMBFFEBOHh4XgXFKBYtOixPbJTJ0o+/5xVt25RXFyMc2Ul0UePsn/kSIkINZmYsXMnbSZOhFdeAXd37ty5Q3h4uDQZbdEC/vpXiawRRYyCQMLIkVx/4QV5v7hWVTE/Kgq7mBh4gj36uSGK8MtfSiojQQEmkeODB3Ci7wAwmWibns59i+wbV1dXRo0aJV+Pqx88ID8+nmzgYo8eTyRI62Bvb9+QRKqqwuFXv0Jx5AhJ7duzZdIkREGgx8WLDI+ORvHb31oR8UajkWXLlll9F7Zq1Yrp06f/6ImSpZ0bJFJ+2rRpODo6YjAY+O7rrykwT0Ja5+Qw6403EEJDn/CMjyGKItc//5wDeXky6Wz+A31On2bwkSPw6qvSMVqPyMg5fJjlx49jUKvpY2PD4HfeAUCv17NkyRIKCgpon5RE7J49bJk0iYfmsUT/U6foP2UKotmmkZ6ezqE9e6gVRVR6vdQi+aQWVIvz0kuhYFRiIgGbNkl/GzpUys26f18KmE5Lg7rviMagUkGwPyjTIdE8lPb1BQuLfY2tLcldunC3bVtSAgOt8gsd9HraubvTfuBAgjp1QqlUUluZQ9r1JSQnJ5KaF0BFrbW9zKmsjFqNBp2ZOLStrEQUBKv9b1dZSe+zZ+l48yo31/6VvnHSgkYzWdSMnyv+r5JFK1eu5LPPPuPjjz+mpKSEfv36MX36dGbNmtVMFjXjP45msug58CSyCCQL0po1a8jJyWlYwfs/iLS0NDZs2CAHOk+bNg1bW1sqKyvZtGmTTPIMHjyY6OhoKisrOXTokFyTa29vz9ChQ+ncuXOTq7yiKHLr1i0OHTokhySHhoYyfPhw9Hp9w3YfYMSIEXQ322Hq4+HDh6xatUrO/eltrtQFiZxav349ZWVl8m0ajYahQ4fi5ubG1q1bqaqqwt7enokTJz4xuLsOluontVrN5MmTCQ4Ofurj6nD//n3WmEM74+LiuHnzJg8fPpRVAJ6ensxwVHB2YwIXzbamnmfOcLl7dwxqNTH79tHDbMUhUkHpvots2nVNVnoNGjSIPn36SPv/7l2Iimp05VIMhlj3BH538WMGcAJCQ+HiRTDbA2tra9m2bZuc56JQKJg0aRLtzeRLeXk52zd+wYOsesoGc7uWSanENztbzl4ZdfI4XTduhp9ASScmJXH4rbc42727PFgPDw8nJiYGpxs3KBozhg3x8eR7e6M0GBiZkEBknd3Izo7MNWvwnzBBOj/VavjTnyhasYLVM2ZQ4uaGc2kpM1etwrNeTtP1qCh2xcYiKhSodTo5G0ZjMND93Dl6njuHfV1oqaurVIM9fTp07vzsxNHs2bBqldVNed7efP/yy/LkYFjHjvRasEAijCIc4csKcAZ83gLHt2H2i48ziOpgYwP/ngbdVsOXRviBho14s2ZJLUze3pJ18V//gg8+wKDXs3bGDNKDgnCoqGDe99/jXF7OnthYrnXtCkCnGzeITUhg/fTpPAwMxE+by4sXLiFcuYKoUJAcGsrpwYPJrLOeNUKA+GZlUeTpjU7zeBIkCCZM9VRrbVu1pPfAwQQFBT2+zui1kDIMqm+A0g1C9oOD9TWjrLSEdav+RV6R9PxytpYoEmUwMPjNN9E0YS+tvnGDf2/dSo1SCaLI8H37cPP0JC8uDq2HB3laLYWFhU0OuGxsbGjbti2+vr44OTmh1Wq5du2aTLbXV1I2BpXRSPC9e7TKzMSzsBCv/HxcS0oQYmOlY6aJba+oqGDLli1Wyg3f7GwmKZW429jAN9+AXo9RZcPGVm+x8NHvKTdJFhuNppZhw+7RrVvjBFF4eDgRERF4e3ujqKmRSJ2PP5aOH3t7eP99CmbMYNXq1ZRXVeFWVES3S5c4ZM7kEoxG5ri54b9ggRWJbEUW1U1Gd+6UiG+dDiIiSA8PZ01oqKwqFIxG4jduJKR1a4n8GjlSyjP6qWAywbRpsHEjKAVEo4mdE8dwo0PDvK5evXoxdOhQ6+9BgwGmTUPcvJmzvXtzZMgQREHA3d2dyMhIqqqq5HBty8F8fdjZ2eFlNOJ5+TI6UeR2Z0lx1/fECQaVl0uNbBZ2vcLCQr799lsrFZqvry8zZ858puykyspKDh48KH/P21gUB0yaNIm2bdvy7ZdfUmpWU4U9fMjkd99F8QzfpzI++QTeeovrnTuze/ToBiRNZycnhi1c2GB7K7OyWPr555Q6OhJcVsbUjz5CMD927549XLp8GcfychZ98w12NTUULVzIwZ49SX7wAJBsZgaNBmNTSiEbG1z0eopra6VMrfoQRQZdvEifo0dRPIkMsoSXl5Rxl5kpWYC//Rbio2FDT1hYCgbka3OFoyN327Xjbvv2PAgKstovLgYDYS1b0n7wYPyDgxEEgcLCQpKTLpBy5wwPc5WYxMf3V2MiMOU+gsHAw9atqTHvS7WpDN+MYjL8/eWFIsFoZODRo/S4eJFaG5Gbu76h96DH+VDNZFEzfq74OZNFzWjG/1Y0k0XPgaeRRSDt2LVr15KZmYmNjQ3Tpk175tDl/yQyMjJYu3YttbW1VnX2RqORffv2ceXKFUAKuY6Li0OtVpOens7evXvJN1t1AgICGDly5BPremtrazl58iTnz5+XG4gsJ0sdO3bE1tZWbkDr378//fv3b5SEunjxIvv27UOhUDBjxgzaWDYOAdeuXSMhIcHq+e3t7YmOjubWrVvk5uaiUCgYOnRo0w1IFtDpdGzatIn79+8jCALjx48n4ilSe5BsiN999x3V1dVERkZia2vLubpabaQB/LSBAzn6x7e5HiFNAGL27uVm585k+/nR5v59ZqxZg0IUQQPc+wxa/xqDwcDevXu5du0aAGFhYYwdOhRNv36QmNgg0Bpb+OqVX2H8VORX/Nsq0BokKf769espMtuNlEolM2bMsFJ3FT1Yw7JVN6ii8VX8unppgMGnT9Bn6XKpnei/iKLz59m0ahV5ZqWKGpg0bZqkTtuzh/uvvcaWSZOosbPDsbycKRs30qrOlujuDidOkOnqir+/v/X5WVBA2cCBrO7fnwIvL+wrK5m5ahW+FgGsIIWtbp0wQSLDcnLQe3pSaJ6sqhUKut66Ra8DB3A2q0UAacI6caL0Y6GGaBSiCCNGSJkcIH92JS4uLF60SM6W6NuuHYN++UuJMOroA1/kSYSRY38IXAefrJTsDvXxejxM2Q+vlsAVwN4Wqiysa25u8I9/PM5ImTMHUlOp0WhYOXcueb6+uBYV4VBTQ1bLlihMJoYcPkyvs2dRAKUuLnz7yivUajT079ePAdu3w5dfApAeEMCOyZMpraf8UCpVKO568Nrat3BUVLFp3FTudrJWJLhoinBLL+WhT2tZSebr60vv3r2JiIiQPPqGYkiNhcrzIDhC8B5wkpR5ycnJbN++XVYstnDOYurJdRxWDOOmebLtVFlJbNeuhE2ZIr+u7vx5Hn77LVtatpTCXUURpdFo1exlCXt7e3ycnfE6dQr7jAxyW7TgXrt2iIKASqVCFMUnWscs4eHhIQfLt2vXjnFjx6LZtk3KjbIgwBk1Ct55ByyI8saQnJzM9m3bqKmb1JpMvHDtFhkpfQi+u59hSIHd9zVBfB/9e+z6Oz6dIKo7lg8ckFRB5kYs4uLgyy/JU6lYvXQplQoFnvn5RNy6JdlCFQpUCgUvzZuHTyMLJY2SRQCHDkm5LlVV0K8f+rVr+f7rr9HWDU5EkYhbtxi/fTuCKEokeB1x1Lev3Jr13NDppPd28CDFHh7sHjlSbtMSjEY6PnzIDfPv3bt3JyYmpuH3yXffwSuv8CAggK0TJ1Lp6IhGo2HcuHG0a9fO/DK6x61sFg1tRZbNW43ApaSEoPR0vF54Aa9Jk/Dy9cXFxYWrV6+SkJBgdV8vLy9mzZrVZFGFKIrcvHmTAwcOyAs43bt3Z+DAgRw6dIirV6+iVCpRCQK15qymF1JSiPvwQ3hWxa0owltvIX72GSf79eO42TLslZdHlb29nAcFEkk2fPhwOnXqhEKhwKjXs+btt0l3dsa9rIyXf/tbbH18pO2+epUd5vfbNjWVGltbtH5+6Ju69prJPpVOR8+rVwmYPh03T08unzrFBbVaIjb1ekz1LetGI51u3yb6zBm8tVqJ5GnTBkJCHv/cuAFLl0r3j4+H9HTp2urgIJH6fSNg/QvwUjboodjVVW4wy/D3t/q+8DIaCQsOpv2gQfj6+WE0Gnn48CEpKSmk3LtNUYl1kYGbYyUhQX4EnM8i+9o1rnTrJn+HGJ2K8UvPo8CpjRUR5lJUxPwlS7CvqaHYVUPKvhV07znV6nmbyaJm/FzRTBY1oxk/PZrJoufAs5BFIA0I169fT3p6umxJqk90/E8gNzeX1atXU1VVhaenJzNnzpTfx6VLl9i/fz8mk4kWLVoQHx+Ps7OzHFZ54sQJ9Ho9giDQs2dP+vfv/8RqyJycHNasWWNVIxsVFcWIESMAOHnyJMePHwekxrYRI0Y0CGEVRZFdu3Zx/fp17OzsmD9/fgNbWUVFBatWrZIJrTo4ODjg4eEhq6Y6dOjA6NGjn5pjZDQa2b59O4mJiQCMHDmSbpaBm43cf8WKFWRlZcmT3G3btsl/9/f3Z8qkSex9+3WSvP1RmEyM2bGDYjc3TgwciG11NYu+/Rbnukniqh4w45zVQPLKlSvs27cPo9GIh07HlKVL8SosbJBTdOfLCD785W9YxRzphh07JPsSkh1x27ZtclCrRqNh5syZVsq3yrxDfP99AiWGx61Wgenp0qSpXiCmd14es2fNwt6iCed5YDAYOL11KycTE+WsGW+Vinm/+Q02NjaIa9Zw7ptvODx0KKIg4JeZyZSNG3GqI238/eH0aQgIkAe6Dc5PUaRy/nzWKJXktmiBbXU109auxb9eBlZKcDCbpkzBoFYTlJZGF1HkfHQ0OWbLgFKhoPPt20QfPox7XcVxHYKCHhNHUVGNE0cmk/S3q1el381ZU1V2dnz96qtUmSd3XYOCGPXWW1LDXecg+FwLTpVSK1ibzXC2UlJiWFrqAIb0gV/lwNz7UADYa6CqFpydH5MQarWkDrFAuZMTS+bPlwNUNTU1TNyyheDqVPBFIp+AWx06sG3iRBQKBXPnzMH90085nJ7O9chIeT9bEZjmfWBr8KLP2jVEZVzi+3kvk9+iYSZYy9wsHEvKSQtpi0EpnaMuLi707NmTF154ARtlLdwfA+XHQGGHMXArhy8JnDeHAwP4eHszLzYTdf7f4VNIu9CGhFGj5HwUD50OVw8PirRaipuw1QqCIDeF2dvbyxbS0tJSCgoKKCkpeaqs293dnbCwMCoqKrh58yYKhQKVSoVer8fJyUm2p8lE+ZEjMHWqRBC6uEDHjnDmzOP92LevZGUcMaJJQjInR8/q1Qeoqroi38Wuqgq/PY944BVFa/9EHrZuaV1z3xRBJD2hlNW1caP0u5+fRA6OHUvW11+zJiuLGltbfHNyCLp/n3PR0VLIs1rNy/PnN5nZ1yRZBNJ7jo2VjtWoKNi/n2NLlnCypuZxsHptLTNXrsTXwn6Fo6NkDxo5Unp8C+v2vGeFqayM8wsWcKxtWwxqNSq9Hlt9DRX2Tnjm5xNZXMwhs/2qS5cuxMXFNQwOv3kT+venzGhk8+TJcpNenz59GDhwYJNB43q9nsLCwsckUn4++WlpFNTUWFecW0CtVuPp6UlFRYV8TNUtzjTVzlpcXExCQgJpZvLP29ubuLg4+bMwmUysW7eO+3WWV1Gkb2Iig/7972ffr1VVMGUKtQcPsmPcuMeW4QsXGHbgAIaBAzn8yitcvnXL6mFBQUGMGjWKi998wwWjEZVOR6+ICKqcneXQ+NomVD51562Xlxe2JhOJt29Tbd5v6tpaXlqxAu+yMtJ8fdkdFydnrtlVVlJdL9DataiIEouSklBPT6JHjCCgbgwnihKJW2ctXrhQsvjeuCGR8vv2QduWiLM6k39FzZ327bkbFkZuvf3nl5dHWO/ehA0fjqeXF+Xl5RI5lJJCWlqarPICEBRGWns8JMRfQUin8ajoxLm//52r3t6yMtXOWECVfwHq9CAMNtbZVW1SU4nfsAG1wYDW246MQxvp2imuwX5sJoua8XNFM1nUjGb89Ggmi54Dz0oWgTT427RpE6mpqSiVSiZPnkzoM/r8/5MoKChg9erVlJWV4erqyqxZs+QGsPT0dDZt2iRX0U+ZMkXO7iktLWX//v3cvXsXAGdnZ2JiYggLC2uwwpqfn8+qVatkO5plIGtQUBAjRozAy8uLS5cusXfvXkBqLBo3blyDumCDwcDy5cvJycnB19eXF198sQHhU1+BYwmNRoNOp0MURXx8fJgyZcpTG89MJhN79+6V1VZWFrB62LdvHxcvXsTW1paJEyeyYcMGDObQ06CgICZMmMCOzz8i1SCgNBiYsGULzuXlLJs3D1EQGL9li5SPAjBKA9segrrhZDorK4tNy5dTZjKh1ukYu2MH4eYmGIDqP9sy7B/7OVQ7HFtq4U9/gvffx2Qycfz4cU5Z1LDb29sza9YsqyBvXel1VixZQm6VdJtKr2f81q2c7tuXbD+/RuvQHRwciI2NpX379s8VQpuWlsaebdsosqgpbmdry+Tf/AZBENB/+SUJx47JCpEu164xcs8eVHWhsh06wPHjYM4JaZIsMqPmyy9Zd/06GQEBqHU64tevp43ZtlCH9NatWT9tGjqNhlYZGUw7cICsf/yDUzqdTDwqRJEOt27R5/RpvMvKJBLIYmBPQABMmCARRz17Wk/29Hpo106qVQfZlqBTq/nmlVcoNR+b7f38mPz730uEUZdw+NoImnuAClp9DFVjYPx4sGj9AqC1P/zSC353FYxgVSNnCYVCytPQ67nVsSM7x4yRiYTAhw+YuWY1gt4Ef46Gzy5BmfT+to0fz61OnbC3t8doNDaYvLXIy2PUzp3Y6HSciYnhZmiorPxT1howalSo9HoEhRpdIyIen5wcPO0qeNCys0w029ra0q1bN7p364RT/lyKss+y9eoksksf19C7uLgwc+ZMKsrLyUv5gbyMK+Sl+JAneDduM7GAq1mRZjQaqaiooLCwUA4ybgwajQYvkwnHW7fI9vWlzILA7tOnD4MGDSIjI4MffvgBk8mEo6MjFRUVKJVKObdo3LhxhLVrJ004//AH6Rh64QUpKDcwEJKTJdvXDz88Jvc6dpRIo8mTQaUiP18qfdq8WToNjEbw9s4lfspG3D1KGt12j8JCwm/fJuLuXbynTEHx3nuyRRWQnmTxYilwuaxMOnZ/9SspCHrvXh7+85+sGzFCPj+8DQaumm1Jtra2LFy4sAFBYYknkkUgEanDhklh7x06wKFDZOzcyQ8ZGVZh9308PRlw+TLKffugnkqQF154rDqKimqSbLFETk4Ou3fvljOAAh88IG5PAqpaHcsWvUSZvQut09PprFazu1UrRFEkPDyc8ePHN6y4r6iAgQMxXrvGwWHDZNtxmzZtGD9+PA515MQzwJiXx95//IOr5mPMLzMTvVpNgafnk3N3kMikbt264e/vj4eHBykpKRw/fhyDwYBSqaR///707t3bavvz8vJY+t13GOuysPR6Fsyahfuzjl3S0iAujqLc3MYtw2+/LVkalUoePXrEjh07KK5PvD8FSoOB4JQUfAMC8A4KwisnB/eUFJQpKZCcjFhRweaJE7ljoQruc/Ik5Y6O3HjhBQA01dXobGwef6eZiaKwO3eYvGkT2ebWzCQLe5y/vz99evUi5JNPUNS10b39tnQSJieDjw/iW2+RdWA/dxQK7oa1p8giw0phMtE6I4OwxETCystx2rePbKWS5ORkUlJS5Aa6Ojhqygn2TiHUO5U2wZ3RBLxFYXVrzuzZw43UVPnz98nJoSywlJratohYjI3q3lNSEhO3bkVpNJLp70jR4Z10Ch1EY2gmi5rxc0UzWdSMZvz0aCaLngM/hiwCicTYunUrd+/e/VG2pv80SkpKWLVqFcXFxTg5OTFz5ky8zC0kxcXFbNiwAa1Wi1KpZOTIkUTWKQeQLA/79u2TsxeCg4MZMWIE7uaVuPrWsNatWzNp0iQuXrzImTNnMBqNCIJAjx496N+/PykpKWzfvh2TyWQVwG2J0tJSlixZQlVVFZ06dWLs2LENyAlRFLl8+bKsjqpvf6sjrJoMjK4HURQ5duyYTLI0llVx+/Zttm7dCsDEiRM5cOCAvMIbGhrK6NGj2fzDSh7mF6DS64nfsIGAR4/4bsECCj096XDrFhPMj8cNSN0F7g1X+wC4eJHKYcPYMnYs6ebJWe8zZ6SA0BgTw5IPsDJ1Hq3IlOwUO3ZQbc4nSk1NlZ/GxcWFWbNmyZ8XgLH6EWuXfsCDYokYrCNSzvXuTWpICJqaGoyCgMHG5nEejAXatWtHbGzsM50TIOUiHTx4UG6vqxvURtrbM+rNNxEEgdL332djdjY5ZkvU8P376X7x4uPI7QEDpPYci8H808giAN2BA2xct460Nm1QGgxM2ryZdvfuWd0ny8+PNTNmUGNnh29ODjNWr8ahdWsevvoqp52dSa2z5ADt7t6l76lT+AUFSZkVBw+CJdHg5/eYOOrdWyKHKislQsBclV5HGBkEgaULFsih0UHe3sx87z0UWi1Edobv24C4XXqM22Tw/hJee1vKMrGEIIAAGJ6clWNSKDgyciRnzco5/5Jish0cMarVRF69StyuXSg0GtiwGsZJYeoP/f1ZPXt2A7uWpqaGQUeO0O3GDQSjUc5MKpk7l1PjxnG1Tk2FVHPd6+xZLnbrT6GPpVXGhLTh4GEoolVkFBlZxVa2Sf9WfmRlPkBvVKJQmBBFAUEQsLe3l8np+lDq9TiVlVHt4NB4lXQTcHZ2xtPT0+rHy8sLjUbD2bNnOXXyJEaTCZVOh2dhoawc6NihA2kPHlBZWSl/X9Shrn3Sy8ZGsgLu2CH94cUXpZDl+tuXlSWF/y5eLGeUlXkEstLjLX6fMpdKUTr+bWxqiYlJplu3REQxBVGs99mbTLyQmkrMsGGod+6Ukq5ByrH66COYOVNSxSxYIGWcgUS0fPWVlJH2+9+TamvLxvh4qcktNxf7Tp1IMjdkOTg4sGDBApws7EWN4alkEUiV8kOGSOqmkBA4fJjKS5dYcfw4hRaKJTc3NyZNmECLnBzpWrBnD5jtzTK8vCRF1siREglVT5mq1+s5fvw4586dQxRFqQWsWze6zJ2LIiMDBAV5nl6sePlFatW2RNy+TURQEFucnDCZTISEhDBp0qSGilVRlFoQP/+cWx06sHv0aPQ2Njg7OzN58uQflWUoiiL7Fy/molaLwmRiovmaVezmRn6PHuTPnk1aVZVVdtWT4ODgQHh4OK1bt5ZVdEozefPDypVSaLoo4lJdTam9PW5ubrz44otN2tpk7N8PU6eS6unJ1gkTqLGzw6msjMkbN+JdWkr+4sVow8PJz89Hq9Wi1Wrl78vG4OTgQEsHB7yqqqi8coVr7dohGAy8vHRpAxuxvK+Ag8OHc75XLzCZCElPJ8VS1S2K2NbUWLWM1X3/eObn89L336MxGKQmwVdeobCoiLNnz3Ljxg3ZZuql1RJ99iwdJk5EuXgxpuxsHoaEcCckhLuhoZRbfPcoDQbaPnpE2M2btMvKQigvJ/WFF0iZP59UrdZKeQ3g51ZAiNctQryTaeFajMLrRfB5k7wSB06fPk3i7dsy9++XkYFGX0Vam7aAdD22zGtDoaDjzZuM3bEDwWTifogrusP7aR/Qo8l93kwWNePnimayqBnN+OnRTBY9B34sWQSSSmXHjh3cunULhULBmDFj6GxWSvxPory8nNWrV5Ofn4+9vT0zZsyghXmyo9Pp2L59u6wi6tGjB8OGDZMl9Hq9nlOnTnHmzBlMJhMqlYpevXpRWFhIkoXapX4eUXFxMQcOHOCeeXLu6OjIkCFDcHBwYNOmTej1evz8/Jg2bVqDwMsHDx6wevVqRFEkJiaGHj0aH/Ckp6ezefNmqqqq0Gg0KBQKOc/EEnVh3k9TxJw7d46DBw8C1taD/Px8li5dil6vJzo6mgcPHshh1GFhYcTGxrJh/Xqyc3LQ1NQwbd06Ah49Ym9sLJe6d8eprIxF336LXXW1pP44Mg0Grm18IwoLpdXyR48wCQJHBg/mbHQ0AIHZD7hd0Z5R6/bSn5OSauXCBfJqati4caPVqq2HhwczZ860WvkXDSVsXfEmidlSRbRNTQ0zV6/mclQUN7p0QanXozIaqbW1JSgtjZh27djfqhUP6ilybGxsGDJkCN26dWtyn5pMJi5fvszRo0clRYrJJClcFAq6Ojgw8s03UQCP3nqLTYJApaMjdlVVTNq0iaD09MdPNGkSrFvXoD3nWcgiAMOVK2z97DPuhoRIrVnbt9Px1i2JeDIP3vO8vVk9axaVjo545uczc9UqKa/I05OcRYs4HRJCkgVp1Ob+ffrcukXgG2+gcHSUFCK7doHlZMjX9zFxFBYmZR7VEUtmS5qoULByzhwemXPOfF1defnvf0fQaqFLF1g/BSrfBQxg2x7svoU/LZVaz+rD3O7UAK6u1KjVbB02jFRzY2Gfdt4MDP4Lye85s6nrFERBoN/x4ww8fhxatqR24jCO38vhfI8e0rZaWBI7REQw7OxZnD77THp+C9tbtZ0da/70J7Jra1EqlZJizKyUcS4pwbZMjzbgcV22RtQh6kS5ycfZUY1vyyByc3OtAu2bgoODA4729qiLizHmZFGl1lDm7NyA4LSEh4cH3t7eeHh44OXlJbeONVZD/ujRI3bv3k2BmegLDghg5JYtuOzdy9noaA4PGfLYMmVvbzUZDAkJYfz48dimpkqqsJQUKWvn66+l0PQmoNVCwupixG++JS7tc7yRLLeZNi3Z1GMh1YMCMSkfNsggatu2LdnZ2WRa2C0dy8oYXVZGyODBklqojij19ZVeyGSSss7ee08iMf/5T8jJ4U5YGFsmTcKkVBLi5ITo4yOT0M7OzixYsOCZQpWfiSwCqW1q8GB4+FBS6h0+jOnRI3YuXsxNi5BngOjoaAYMGIBKpZJURvv2ScTRwYPWGVBKJfTpI6uO0jQaEvbska+RERERxMTESKTI3bvSfQsLQQEPAoNYM3MGJkFJ7zNnCBo6lI06HQaDgcDAQOLj4xuvrd+9GyZOROvqyqbJkyn09EQQBEaMGEHXrl2fWZEpiiK7tm7lemKiFPi9fj0haWnS56VSwR//SEJkJFfM6loHBwdMJlODUonGoFAocHJyenx+mUyMSEwk9JNPWLVzJ8XFxfj4+DBnzpzGB4smE3z4IeK773KyTx+ODxoECgVOZWV4abUUeXtT8oTrsbOtLU6iSHZ1tfV5Kop0v3CBLteusWLePPQ2Ngw9cIDedXmArVpJ19A2bSRF08mTnO7ViyNDhwIw4vRp0qdP504jJJoSSXhZB5vaWl5euhRPUZSkeuaMpTqUZ2dz/t13uezjI1+b7CsrcS0upsjdXQ6VrnuukJQU2qffp21FNWWFhaRERJASGMijgACr96jR2NDWz0CI62FCPK7goKmUgvy9XgXvX5KZp+PUqVNyIQVAYFoaaoOB+8FtMQmSusilpIRSFxcrm2rklSuMSkhAEEWSOnlhc/AIwT712iTroZksasbPFXWT2sDAwCe2NzejGc14dlRXV5Oent5MFv0YPA9ZBNIkOSEhQbZJPS0H578LVVVVrF27luzsbDQaDdOmTSMgQCINRFHkxIkTnDhxApAk9BMnTrS6CBcUFLB3794GxMHTcppSUlLYv3+/rBjw9/ena9eucuBm/TylOpw/f54DBw6gUCiYNWuWVTCzJUpKStiwYQN5eXkIgkCHDh1ISUlpMHBu3bo106ZNe2L2Ekhqqd27dyOKImFhYcTFxbFixQoKCgoIDAxEo9HIBFhoaCixsbGsXbtWIuIqK5mxZg0tcnJIDQ5m7YwZAMxYtYq2dWTDa57w2SMQGvmCMxqlyU1dMLIZieHh7Bw7Fr2NDYpSI/M2LsOvvBwuXiTRaGTnzp3o9XpZUeXr68uMGTOsLRCmWvau/wWXUqVBoaa6mrkrV5IYEcGpfv3AZMKupoZqe3taZmUxy9YWzRdfIAI3btzg4MGDDfapv78/cXFxslKtDtnZ2SQkJMg2D5eSEkrNq/zdnZyIef11FMCVX/yCvR4emJRKfHJzid+wAVfLBqFf/Qo++6zR7JZnJYsATHfusPMvf+Fmu3YgioxMSKDblStSq1t5OdTWUujhwapZsyhzccG1uJhZq1bhVke+2dhQMHs2p3v14mZGhmyzbJWRQR+DgdC//x2Fh4cU3Ltli9T4ZPk+vL2lyfDmzVKbEsh5PyKwccoU7pmzPtwdHVn46aeos7MlwuiLX8DON+BwGdyicZtZU2jTgoJj59mwYweFxcWo9HrG7NhBh9REeAmY2o7L/wplTxepDW3k7t3YV1ezPzaW8kaUBWq1ml/84hc4Ozk9riAH8PCgsqaG1TNnkufri71Gw8w5c3B1deXy5cucPHIKPZK1TV1Ti97WYqItmnCoqKTKweGJJA+AoDBgb1ONXnSiVtf0/dSmWgyo5eezVMi5VlYycuBAgs15ao2hpqaGw4cPy9ZUBwcHYmJiiIiIQGEywZ//DH/7G+vj40kOC2vw+L59+zJw4EAUGzZIxFBVlUSCbNkiKXjqQauV3C2bNsGJE4/jyZxtSvhd7+UEtLpNeqCfdQaRiwvhnTo1yCC6e/cuu3bupNqCNA9OS2NUZCQuV6/CmjWP85Fat5ZyfzZuBPP1+WanTuwYOxZREGjfrh2V1dWyJdPd3Z2XX375mVdyn5ksAqlVasgQidDy8ZHOpepqrr7xBgmDB1sdG+7u7owZM0b+/gIk+97p049VR+bFj2o7Ow4OGyZnbTnb2BA7ahTtOtabSF+6JJEGZkL3RqdO7Bg/HoARe/bg88orrMvJQafT4efnx/Tp0xufpGRmQs+e1BYUsGPsWDnDp3PnzowcOfKpOXp1MJlMbNu2jcTERFQGA9NXrybQggjRv/AC306dSrF5ey3bzQRBYPTo0djb28u5SHU/ltk4llAoFDg7O1NRUSHl5Xl4MHr0aHx9fVEqlRQVFaFNT0e7bBl5paU8CAqSiZTG4KBU4m0y4VVSgndmJt537+KVnIxar2f1rFk8DAzEoaKCWrUag8XzCAYDJpWKwAcPmOXpiWL2bGjbViL3r1yRmiYTE7kWGckuc0ZfxL173O/QgRozMa1UKGRrncJolI4di++QKevXE6ZSSeRe/ba3vDwYOJDatDQSIyK40KMHWm9vq8erdTrCHqbRofAK/scekdk2kOSu3Unx8JC/5+rg6elJSNuWhHpcwF9YjBKz8lDtDz5vIHrM48GjfE6fPv14bCWKtDWTs2lt28rHfmBaGga1Ws7GqkP3CxeI2b8fhShyrUdL3PedoLXb0xsEm8miZvxcYTQaSU5Olhd+mtGMZvzXUVhYiFarJTQ0tKHl3gLNZJEFnpcsArOUfP9+Lpol/sOGDaNXr17/ic38UaitrWX9+vU8fPgQlUpFfHy8lUUrKSmJHTt2oNfrH1soLIiAmzdvsnPnTivLV2hoKKNGjXqiJcFgMHD+/HlOnjwpKw3Cw8N59OgRFRUVuLi4MGPGDKugVFEU2b59O7du3cLe3p758+c3mY+h0+nYtWuXHFTdtWtXPD09OX78uFXOilKpZMyYMXSsP1Goh7t377JlyxaMRiMODg5UVlbi6OhIYGCgbKcKDAxk9OjRrF69WrL4lZUxc/VqvPLzqbKz49tXXqHCyYnuFy4wYt8+6YnbADevgkNk4y/8/vvSKn8jSP4qmFV356D2NKA0GBgeGEixv7/cxFZHFLVq1Yrp06dbT+hEE8d3vMaJm9JnaVtdzbzvv+dBUBB7R40CwKGiQlbWzM3Lw37DBml13oz61ct1EASBvn370qdPHwwGA0ePHpXb7zQqFW1u3eKOecLUy9mZob/+NSa9nn2vv84Vc9NeeGIiY3bswMYyjPmjj+A3v2nyM/oxZBGAmJ7O3t//nsvmpqIhBw8SffasVH8cGAj37lHi4sLqWbMo8vCQPs9Vq/AqLraqpi+JjeXsiBFcLSiQq5p98vPpEx5O+IIFUuWzTgdHjkjkwI4d8kT8SdgVF8c1c8uao0rFK59+il1jj2sNuPlCeo01IVUftpDiH8LW+MnUKtU4OzsTH5xCi/e/lUOsad8O/vYhx1av5mTnztbV4eb/Kw0Gep85Q0poKLktWtCmTRtmzJghWQTnzYMVKyh3cmLVnDkUeHjgWF7OzG3b8L59G9HOjoqKCrKzszl96Cw5OWkYbRpvILP4pIBnU2A4lpXhnZ+PR20tXlFReI4aRVnhIRKO5mEwSZNyhdHInLIyqtu2Ze/Dh5SZr1Md9XqGv/YaDhZtj6IocufOHfbt2yfb3CIjIxk6dGgDYuDmDz+wvU4BZ7HfoqKiiB06VDp2v/hC+vvQoZI6zuL6lpf3OIPIkiB6bDFLAlKsFUTl5YRfvUpEUhLexcUoZs6UXsd8TNehtraWw4cPc/nyZfk2wWCg//Hj9D53DpVGI6vqLHGla1cSRo2SLC0dO6LVaskzW4C8vb2ZN2/eU8l2S/wosggk1mzYMCk82N1dIs3t7MidMoUfRo2ythMhtXoNHjy40W0S798ncft29hcXU2ljA6JI1KVLDD5yBI0gSORtbKxEzteRTocPS7+bCZWTfftybPBgFCYTU7Zuxekf/2BNUhLV1dX4+PgwY8aMxu1aBgOMG4eYkMDZ3r05MmQIoiDg4+PD5MmTrWzBT4LRaGTTpk0kJydjI4rMWrYMv8xMmWi+HxzMmunT5WPPzs4Oe3t7CgsL0Wg0TJ8+Xc4hBGvlrGAwEFZYSHlkJPlFRY0qcp8Fap2OFjk5eJWX411UhHdaGl5aLQ6NHF8Ae8eO5VKXLpK6JzMTdUwMe/LzSal3LQtxcSFu3jxpXKHXw9/+Jv0YDNyLimJjbCyiQmG1EGFJmHnk5yM6OVFk0bCHQkG/EycYaGMjXZvrPjujEc6epXL1au5dv86d0FAeBAVZkbO21dWICoVsbVWKBpxKyil3dLTK11IaDAQ9fEjI4MGEDO+AW823ULQaRDNJZxsBvr9FdIsnOeUBp06dIisrS/pMFAqCs7IwVFeTZjEua3f3LuGJiRwfNIhiNzcEo1HOMIo+fZrBhw+jAM4NCiRgxwn8nCxI1Cfgecmir7/+mo8//pjc3Fw6d+7Ml19+Sffu3Zu8/+bNm3n33XdJT08nJCSEf/7zn8TGxsp/F0WRP//5zyxdupSSkhKio6P59ttvpXZUM4qKivjlL3/J7t27EQSBCRMm8MUXX1idf6Io8sknn7BkyRIePnyIp6cnr7zyCn9orFG0GT975OTkUFJSgre3N/b29s+VpdmMZjRDunZWVVWh1WpxdXWVnUdNoZksssB/hSwCaecfOXKEM2fOADBw4ED69ev3U2/mj0b9MO4JEybQ3jyZB6lFbcOGDZSWlmJjY8OECRMICgpi7969XLcI2HV3d6e4uBhRFLGxsWHgwIF07969yQYYkPbpoUOHZMJFo9GgUqmorKzE3t6e6dOn07Ll4yBbvV7P8uXLyc3NpWXLlsydO1eyHzQCURQ5ffo0R48eBSAgIICJEydy8+ZNOeizDi4uLkycOPGJA6QHDx6wdu1aObsgODhYtmJ4e3szYcIE1q5dK4WHl5cwa/kPuBUXIwJbJk0iKSICz/x85i9Zglqvl2IGbr4H7f/c+AseOCDlbTRyChrfUjB+5TZWlc9m37hY7tVTM9QRRW3atGHKlCkNJk8X9r/D/vMaUCiwra5m/nffkevry6YpU0Ch4MbJkxy9coXKigo6OzjwTUIC3fv2bXQz79+/z1//+ld2795NSUkJHh4eDBkyhK5du2IwGKiurkYURRIvXuTokSOUmUz4+/vz52nTmPWXv1BVXMymDz7gkZsbyffucW33bh5UVGAL9Ad2KBSwahWYVVlN4ceSRQBiTg5H33iD0+b91/fkSQYePSpREz16wIULlDs6smbmTLQ+PpJSbPVqWuTmWjd/ARWdO3Nu9Ggum0zozJMF9+pqoocMofPAgY9Zeb1eSiTevFnKjqnLLmoEhwcP5kyfPvLn9MpXX+FUWQl2dtC5MyTfgCILdZe7qxT9U2+iJYKVTSqAQiaPT8dBt9v8xzj463nIz8egVHL6pZc46eNjlX8BEJSWxsg9e/AoLKTA05PvFi7EoFI9Jr9FkdIpU1jl60uRhwcOFRX0OHeOSkdHtCEh5AUENMjpeF64OjriUFyMVhTRm49vu5pqonxb0H32bBxcXUlMTGTbtm1WZHbcrl28cPUqvPwytX/4A8c+/ZSLrq6IgoBtbS1Dw8KInDmTsrIy9u3bJ6sGPTw8GDVqVKOKxtzcXJYtWyZdUyxb4cz7rVd6OkNWrUIwmaTw6A8+AKVSJog2bYKTJ60JohEjJIJIFFMaWMzkFjMvLxT790t2sZMnpTsoFJLN7e23oZ6CNfvRI7avXEmBxXHrWlxM3O7dtLGwVQKci47moNnSExkZycOHD2U1qJ+fH7Nnz35mVUwdfjRZBFBcLF0HL1yQLHJ79kCrVlTHxrK6b19y6uX/uLq6EhcXZ6VsLS0tZc+ePaSkpADg6e7OaA8P/E+cgL17JfWPJTp0eBySnZ0ttdWZVX8Jo+O4+kJXVHo9c7ZsQb1iBavPnqWioqJRq68VPvsM3nyT9Nat2TJxIpWOjmg0GsaNG0e7egRfUzAYDKxbt44HDx5gq1YzJyEB73PnuNmpEwdiYqi2sETZ2dnx8ssvs2PHDh49eoRarWbatGkEBgZy7NgxTpqPGU11NdPv3qXmL39BW1aGVqslNzeXwsJC+fvuWWBbWUnLnBy88vOtfuycnCTLmGX1fEgI13Jy2GUmMONLSmj32WeQloY4cCAnAwM5PnCglYJHo9EwJDycru+/j8Kcg/Zw9mzWBAZiUCjkIoa6SaIoiqgNBvofPUqkXs+/x4+3WixyLC/nF9u3o7l2TWqKPHSIkt27ufvgAXf9/RvYxjwKCmh/5w7t7t7FEBBA8uTJ3DbWUF5hHfSv1ukISUmh040bBD18iM33f4Jel6BkJ7IU1LEv+P4Ok+NwEpPucPr0abTmDDCVSkWIqytV16/zsO48EUXC7ibS//gp8nx9SYiLw6BSoamuptZMmg44epS+J08iAMfj2tF+00l8bL15VjwPWbRx40ZmzZrF4sWL6dGjB59//jmbN2/m3r17eHs3fO2zZ8/Sr18/PvzwQ0aNGsW6dev45z//ydWrV+lgtpj+85//5MMPP+SHH34gKCiId999l1u3bpGUlCQveo0YMYKcnBy+++479Ho9c+fOJSoqinXr1smv9dprr3Hw4EE++ugjOnbsSFFREUVFRQw1X9ea8X8LoiiSm5srZ6o2oxnN+K/B1dUVX1/fpxKvzWSRBf6rZBFIF7NTp05x7Ngx4HF7zv80A240Gtm2bRtJSUmNZitVVlayefNmOUTTMo9DoVAQGxtLt27dyM3NZc+ePXJOho+PDyNHjrRazWwM6enp7Nu3Tx4sqdVq9Ho9NjY2xMfHE2QhDS8pKWHJkiVUV1fTpUsXRo8e/cT9l5yczNatW9HpdJKaIj4eb29vDh8+bFW9DeDr60tcXJwVQVWHzMxMVqxYYTXxBOTmuA0bNlBVVYWnroqZX34rZdwANzt2ZPuECQhGI/OWLaOlOduITyPg1zdB0QiZ9uiRlFNUWNjgT2I/WCh8w7vH/04rMsmeMoXVkZENVoLbtWvHxIkTG5BpV098xO5jVTIBsfCbbyh1c2PVrFkYVSpSL11i/f79jB86lF9nZLCya1c279r11MHf3LlzsbW15ebNm5w+fZoFCxbg4+ODRqMh/9YtlmzcyKhJk3B1deXm6dPkVFZyZM8edqxcSZm9PSnXr5Owaxf/MJkYBBiA2woFkw8ckJQYT8HzkEUAFBVx+he/4Ih5smYp4Sc8HAoKqCovZ+2MGWT7+aGpqWH62rX4Z2Q8fg5zSDVAtY8PF2NiuODrS7V5EO8sCPQeOpQXuna1nmAbDNIk/y9/kQikRnC2Vy8ODRsGCgVqg4EF336Lh+Vx4eoIA2qhox7WKeG+UdoehQIMBvRqNbtGj+a2WT33wuXLxB7ch/I7I3TSQOBycJ8GxcWkvfcee00mqyBhAESRoYcO0evaNRQW1sPL3bqxZ9QoBEFg+PDhFBcXc+XKFUktaKlKqge1Wo0oilaEbZMwGmmfcYf7bULQmTSoBdCbT0GVXk/na9dwclJxPTyIElFqk1OpVPj5+cnXqzrytHvgRUak74UPkEi12bNh2TKyt21j96lT5Jrl6+46HeX29ugNBgRBIDo6mn79+jVKTFdXV7NkyRKrAapCFJn7/fektGsnWTqBNunpTBw1itLoCbKC6LkIovo193U4e1YijXbtenzb4MESaTR4sBRcvWABplu3ON+jB0cHD7ZSSoQlJTFi/36cKis52b8/x83bHVVayt0WLSg3X+8DAwOZMWPGEyXJTeG5yCKQrKGjR0vniJ2dRLJ26oQ4bBh7/f253EiGXWRkJEOGDOH27dscOXIEnU5npXqUP0tRlMK96+xq588//lBAqkNv2xbMpIZJEFg/fSqpbUOwr6xk3t69sHkzqw4coLS0tNESAStcugSDBlGmULBl0iQyzCqmPn36MHDgwCcurtRBp9OxevVqMjMzsbOzw7OqigzzMeGdl4coiuT7+gIQGhzM+IkT2bRpE2lpaSiVSnx8fOSMPcFoRAXomvg8lSYTXkVFaCoqeBgQAIJAWGIiClGUGscUCitlS2NwdHSU88DqKu4NNTVsWL8eoyAw4N49+q9YIbVEDhxIbVERixctosTNDTc7O4rr250fPSLu5ElMf/wjy9PTsTTSqVQq+boSWlXFiO++w0Wl4vv33iO7sLABmeudl8fQU6fI9vLibkgIOfW++1vk5dH+3j0Ck5MpcncnpX177oeHU2M5NDaZ8MrPx+DkRLEFWRd67x7R4Y8IGHHm8X1dxoDv7zDadefGjRucOXNGJmHVajWhoaGU3rtHpvk9KEwmOty+Sb+Tp3ErLmb/1KlcDpYsZS7FxXKD5tCDB+l19iwK4MDUTkT9cAJ3tWuTn0ljeB6yqEePHkRFRfHVV1+Zd4W0GPTLX/6St99+u8H9p0yZQmVlJQkJCfJtPXv2pEuXLixevBhRFGnZsiVvvvkmb731FiCRvT4+PqxcuZL4+Hj5OnLp0iU50mH//v3ExsaSmZlJy5YtuXPnDp06deL27dvPTMQ24/8GjEaj7FhoRjOa8XxQq9XPPM57LrLo/6ok9acgi+pgKf/u3r07MTEx/+OEkclkYvfu3bJaKDY2liiLPA2j0cjatWutMors7OyYPn26VbuLKIpcvXqVw4cPywRG3cD9SSGoJpOJS5cucezYsQZWsfHjxxMeHi7flpaWxpo1axBFscF2NoaCggI2bNhAYWEhKpWKMWPG0KFDB2pqali5cqVsraiDn58fI0eOlKV3VVVVfPfdd5SVlclV2HUYNmwYJ06coLa2Fl9bNTM++JssuS91ceHbRYuotbVl4NGj9Ktb/e+lguPpYNNIK05tLfTr97iVyBJesPLlGQT9/RH9OcmN4cNJ6NMHg9GIRqOR95tSqWTq1KkNWt9unV/GtgMZgAJNTQ2vfvklNfb2LH/xRWrs7HCoqODz9evx9/FhW20tLfbtw+Tn90yDvx07drBv3z6uXr3K0qVLZeJNFEU+/de/6Nm7N9HR0Qxyd6fTrFl4e3szduRIwjt3xlWr5Z+LF/MXk4l5dU9saytljnTt+sTPtg7PTRYBlJdzadEi9pqvKV2uXSNu925JCeLuDm3bUnvzJuumTeNR69ZSY9yGDQ3UGKjVctW5ztaWK336cLZzZyrMVid7jYae0dFERUVJK6SlpdIEdccO6aeJAc71zp3ZOXasbAN7cdkyWubkSHa506fh9A546TWoMIEH8P0iCP0FpfHxbOzVi5yWLRGMRkbs20e365clJs4bWO8K3fdQQScOHjzIrVu3pBe0mFA5VFZS6eiIS0kJM1etorpPH/Kyssjz8SHPx4fMVq2anCgqjEZQKJ6YPeTk5ISnpyeKh+UIt8+SGhbcsO7cvD0ty7KY9dUPpAcFcapvX7LMExpBEOgUaouvcis3MzuRXfr4vLJU2U0f6YSQPhn26eHPCjCKEB8Pq1Zhqq7m8Icfct7GRt5eZ6WS+BdfpEUj5LG0WSJr1qwhrd5xMHHCBCI++AA2b7bKFzNVaFi86kW0Wol0tbGpJTY2ma5dn5MgagyJiZJlc926x3lYXl6Sgk0UpUBkg4ESV1d2x8VZ2VuUej1+5eU8MhMdvc6e5XqnTlSbv0dDg4OZMnXqMxEajeG5ySKA6mopHH7vXuk827BBakWMjeV2RQXbx49vcBxatmI2lafWAIWFkqpzzx6p4asR66fOxoaV8+aQ49MS98JC5p07h37HDlZv305hYSGOjo7MnDmzUXIdkMiv3r0x3rnDwaFDudizJyBlA44fP946W64JVFVVsXjxYrlRTCkI9E9MpPfmzZQ5O/P1K69gNCvuWru7Izo6kpmZ2WCxQ95XJhMeBQV4a7V4a7V4mf91Ky5GMA8Dr0RFkTBypNXjOt24wajduzGoVBS8/Tb5cXFWmUhPC6a3q66mfadOeNva4vXBB3jdv8+RwYO5ERmJi50dC197jeyLF9m1Zw+lFuMHhUKBIIpyULWCx/FtTk5OjFAoCHvjDRSCwL5vvuGiRTW9Sqejz+XLnOnWTVYlys8rigSYK+7dS0vJ9fYmJSSEzFatrMhvOzsNwYrbhKy7Sdt7qdh37QKnz5HdsiVnoqNJCg+X7+/vlkF0pC2h3V7FoArmypUrnDt3Tt43tra2hISEUJCfT455OwWjkS7XrhF95gzuxcWUenuzZeFCMs1qzxY5OTKxFbtnD1Fmq/eu+T0Y8M1hnJVPaa9rBHXfoUlJSVZjOo1G02iAu06nw97eni1btjB27Fj59tmzZ1NSUsLOnTsbPCYgIIA33niDX//61/Jtf/7zn9mxYwc3btwgLS2Ntm3bcu3aNbp06SLfp3///nTp0oUvvviC5cuX8+abb1oVeBgMBmxtbdm8eTPjxo3jo48+YtmyZcyfP5+vvvoKURQZMmQIH3300TPbPpvRjGY0oxlPx48mi/4vS1J/SrII4NKlS+zduxeAF154gZEjRz73IPynQv1spcGDB8vZM/v375cDXuvg4+PDtGnTGt0flZWVHD58WCaf7OzsGDJkCJGRkU+c+NR/XB3qk0Jnz57l0KFDCILA7NmzrcNNG0FNTQ1bt26VrWPR0dEMGjQIQRC4ePEi++pyhCzg7+9PTEwMR48e5f79+7LiqTH4+/oy7f23sM2RiCRRoWDVrFmkBwXRKiODuStWSOSDPZC6DlpMbXxDf/GLx0HBllBC6oo27JsVyyvCNxwcNYqLL7wASKGZdQ1NdnZ2VFdXo1AoGDx4ML1790ahUJB4eQtb9twGFNjU1vKLf/8bUalk2bx5lLm4YF9ZSZlGw9//9je+bdGC+QcOSHYMnj74mzVrFj4+PvIK6YULF7h27RoLFy6kqKiIf//73yxYsIDOrVsz7ZVXuHDsGPN//Wt8fX15rW1b/LdsoZ9Ox3Lg30CuQkGXvn35+Ouv5etAfdTW1lqRillZWYSHhz//+VlTw42FC9nZurUU5nvvHuM3bUJlNCt1YmLQHzzIxilTuB8cjNJgYJK5xroBzBNyAINKxfUuXTgTHU2JeRVYo1AQlZFBz82bcbCoVrdsZKuPe6GhbIyPRxQEBFFk+rZttLl1S8q9qbOyRXnDX7TgCY90M9l0KoLK6hrsKyuZtGnT40BcATCBqZuCy7/tztHUWGp11pd6T0Gg89GjVKlUXImKksJrm1ILPUFFBNLquHtREV75+XgUFeH17rt4tmmDp6cnGo2Gqqoqdu7cKbf+tE9KwjMzj1NDBkrbWrd7KisZs2MHIa1SYEF7HnRZzqnz90i3aMvzdNBSUNnwu8bPz48+ffrQzjcNRdp4OFwLf1CAQUQ/YQIn58/n7IULmEwmqwBsz6oqRo0eTWtzA6ElEhISGlwTe0dFMXT1aonMAGoEO0q8nNkwdSqlrq6ItSLpWT0IDin7LxFET12USU+HRYskwgPYDLwLpAMhwD99fBiRl0diRAR74+KotrUlPz+fQ4cOSYoskwlPb28mmdWAEbduMSEpCcW//404eDCxsbHs37+f7du3W00Un4T/ElkEUnbQjBmSLEuphBUrYNw4GDeO/GvXWPnii1Q1QrS0aNGCadOmPb3+vT4MBsn+tmcPJCRAHZkKVDg68v1LL1Hq6or/o0fMfPiQ2s2bWb1hA1qtFjs7O2bMmNGoShWQzplFi+C777jVoQO7R49Gb2ODs7MzkyZNeuL+ycnJYdeuXeRaECB2dnaEtWtHyc2b5JeVUfG09yqKhN25Q4fERLy0WjyKilAajZLVr55dDJMJ/vQnSktLWfbyy5Q7OYEo0unGDcbu2CHZdl95Bb76qsF1oLa2loKCApk80mq1PLh/Xw6cfhJCQkIIysjAa9UqXHNzudqrF+caWxgyX38UCgXdu3dnoK0tmqFDwWDgzl//yia93proqaykuv5xIoq0u3uXdnfvkhEQQGpICOX1vkd8fHwICQkhtK0/flfHI8xKhEogKhIuX7eyJRcudOdsj/7cyOiE0SS9toODA3q9Xs5RcnR0pE2bNuTm5j62oOn1vHDlCtFnz+JsJpPSJ01iS+fOVBoM2FZX0yI7mwdt24IoMnrnTiLNY6VNvxnIyH/uxUHxfNXhdWRRffz5z3/mvUayE7Ozs/Hz8+Ps2bNWGZy//e1vOXHiBBcuXGjwGBsbG3744QemTn08/vnmm294//33ycvL4+zZs0RHR5OdnW2VkzF58mQUCgUbN27k73//Oz/88INsEa6Dt7c377//PosWLWLhwoWsXLmSLl268PHHH2M0Gnn99ddxc3OTowma0YxmNKMZ/3X8aLLo/7Ik9acmiwCuX7/Orl27EEWRjh07Mnbs2P8VhNGxY8c4deoUIIVDP3r0iPz8fPk+4eHhPHjwgOrqatmG1ZTV7NGjR+zZs0ceDLVq1YqRI0fia5bJN4XMzEz27t0rN2iBpFCKi4uT1QJbt24lMTERBwcH5s+f//QWLJOJo0ePyrlRwcHBTJgwAVtbWzIzM9m4caOVasgSda9ZB8vMIoVCwbSkEwRvfDwIOdezJwdjYlDrdCxYvBiPuhXqraNg/O7GN3DdOpg+vdE/1Xyr5q03PuEfwjtsnjxZrlcPCAiQ24nq7DL79u2Tybbw8HBCAx3YsfcioECt0/HqV1+h0elYMXcuWh8fbKurqbGzo7y0lE8++4yzX39Nr1dekV+7qcFfeXk5bm5ujB07lo4dO+Lk5MTw4cM5fvw47//hD/xhzhxulpfLK4FOTk4ICgUmUWTTpk14FRRwND+fTaLIVCAA+NTNjcCNG/lkxQoOHjxIcnJyoyuB7733Hu+//36D2/9L56dez51XX2Wrjw9GlYq22dlMWbFCypgCGDgQw717bOvThzvh4ShMJsZt20ZHc+ZWAwiCbGkxCQK3O3TgdJ8+5JuJc5VeT9e0NHrb2+NcWyv5ksyfZWN46O/PqjlzMCmVKEwmJmzZQkRSkvTHuXNh8WIo+Z6rZ1ay51YMJlGJj5cz8Rk7cf3HCavnym7ZkoRRoyxsF1KQtMI86WpKgfA0uLq4ENC6NZ6ennjW1OA5ezbuWq00Ea2Dn59Ui65U8vDhQ7Zu3Up5eTlKpZIh0X1xnfs3Qh8dZu306aSZLReWhJSPcz4DQw8T2rIARdsNZJS24+TJk/L5CKBRVVNrsJOvp3Xvx8PDg16RrnS2WYTqdAUPvgkiYcQoiswWtLCwMGKGDCFjyRL2FxVRaZ50RwoCQ3/1K+zMx9aRI0c4ffo08Pja4OfmzZh/foNX9m30qHiDT1lPPGttpuPRoZBjgwc3IDOeR0H01EWZ+/dhwQIpVB04C/QDPgRGAeuAfwJXBYEOv/oVlb/9Lf/85hv+9a9/ERkZSceOHdFoNGi1Wlq1akVfHx/iPvoIhfk74LNOnTjk7s6+48f/e8kikOyeL78sEUUA334rHfvTppF6/Tobp07F0EiWkr29PTExMXTo0OH5VbwPH8LkybLqM9/Tk+Xz5lFjZ0f7pCQmnj5N7VtvsdbGhqyCAmxsbJg2bRqtzdfqRrF5M0ybhtbdnU2TJ1Po6YkgCMTExNCtWzd5W/V6PdnZ2Zw6dYr79+8/0+aqdTpZOVPXKgaPywsUoshoo5Eubds+Joa8vKwJn1WrYMECHnl7syk+nkp7e5R6PUa1GsFoZNratbSNjJQa9J5Bsp6wdi1XUlPR1NQwRqFA37kz+StXku/qSp6PDyWurk0SzzZqNYJS2Wj4tr29PRMnTiTIxkZSo+bloe3ShcVxcYhKZQNCWw2EtG6NX2got2/cIMc8Pqm//9qkpRHSti0hv/kNzi4uIBrgxDCYeAwKgQ5t4d4DyRtbJ2+aagefvAtei8grrCUhIUG25tehZcuW1NbWUmi2FKt1OqIuXqTXuXM4mhvtRE9Pzr33HocLCxFFEZ/cXJzKykgNDW3w3bPmr3FM/P0WbBXPHjhfHz9WWfS/mSyaP38+S5cu5d69e4SGhgJw9epVunbtyt27d5utac1oRjOa8RPhaTU1VtDpdFy5coV33nlHvk0QBIYMGSI3NNXHuXPneOONN6xuGz58ODt27ACkUOHc3FyGDBki/93FxYUePXpw7tw54uPjOXfuHK6urlZ19EOGDEEQBC5cuMC4cePYvXs3bdq0ISEhgZiYmGeSpNZXLjxNTv086NKlC2q1mm3btnHr1i0MBgMTJkx4rjyInwoKhYJBgwah0Wis6qJBsjeNGzeOiIgIiouL2WBeRf3hhx8YOXIkkZENW70CAgJYsGABFy5c4Pjx42RmZrJkyRJpBXDgwEYHISCRSi+//DJXr15l//79GAwGrl27xsOHD5k5cyaurq6MHj1aXq3ctGkTc+bMaTLwGh4fjz4+PuzatYvU1FS+//574uPjadWqFQsWLGDz5s0y+WIJS6LI09NTnpjWKXk2BvdiYmgm7ZKT0Xp5ccR8zA47cOAxUTTFGcasb3zjEhOlSVAjEBfBr7/4nN96/IslkxdQ7uyMWq0mKChIVmMMGjSIvuYQ6tGjR+Pn58e+fftISkoiKUkiApR6PQsWL8ahqoo1M2ag9fHBprZWbhWK2b+fTwAa+RwtUWcZPHr0KKIoolAo6NGjh/x5Hv/iC/TV1ZKSxmyTkB9r3o+a2lpcS0oQRJE6WuIPvr5MSE4GJydW9OtHq1at2Lx5MwsWLGiwDe+8847VtaNOWfRfglpN+2+/Zerrr7PRyYn7LVuy5he/YOq332JbUwPHjqFq04aJubns1Ou52bkz2yZMQG9jI4UmN9xR8n8Fk4lON2/S8dYt7rVrx6m+fcn28+NCu3ZcMhrpfP06fSoqcLe3l3JZ6nKJLIK0W2dkMP+77/j+5ZcxqNVsmTSJ6oQEul25AitXYszL48DQoVwqlawi4S0SGdN5FzY9ajEFCBT9w4cMdx8uRUVJJJHVpOxxKOzT1ghUej2tTCZsM9JJbd0Gg1qNfaVUd2/IyWF4RAT2dYHo330n5c1YIisL0+TJnHrtNU6cOIEoinh4eDBx7Fh8jxwBuwz2DxtGWnAwgsGAZ3Yh2gAf+eF5ZV5suDwVLyctfR69SfgLk3B0sFag1RqkY9rbuYS+g+LJzivl8uXLFBYWknC4kKN27+CsziR3hvS8TmVljMjOpv1vfwt2dri88w5tk5I4/O9/c7VFC66ZTCR/+CHDoqLI0GjkZjGlUoXRaECsUjPq4/fwqtSSTQvibdbjEevOr7se5aLYz0pBVIdADw+mvPTSM1fP1+HTTz/l5ZdfZu7cuQAsXryYPXv2sHzpUt6urISPP35sQQO+0GiI8fbmNzod5OXxF+AQ8JUg8LWdHXsOHWLbtm2EhIQwevRoeTLu7u6OwmDAMz0d8eRJFN9+y/WvvuKTmze5bGtLC5Cbwv7boFTC999LzVVffgmLFlFTVsaROXO4bD4HLUkSQG6w3LZtG7dv32bkyJHPRyi3bi3ZPseMgX378CooIH7DBlbPnMmd8HAOlpYS88YbzLSxYcO8eaT7+LBm1SriJ02ibb0SAhmTJkHXrnj36sXLS5eyfexY7rVvz969e7l86RKuGg35+fkUW4xF6sOhooIaW1uMKhWuxcWM3rkTv6IiDB4efD1hAlWOjjJRFJaUxOSkJBI++ICrN2+yU6VCHxHR0Mqt08Ebb8DXX3O5Wzf2xcZiEgR8cnOZvGEDR4cMIbFDBzZOm8bsF1/E7xnGLFfOneNKaiqIIuPv3SN03jyYMAFqaxEVCta8/DIlbm54qVT02bGDQicn8n19yQ8Pp9BkQqfXN2nVraqqYt3q1QTfu4dbx47kDxlCanDw42ucOVupg5MT7t27U1VVxf3UVJIOHWrwXHaVlQw7eJAOiYmo/vIXKfcLpOvwtbkw20wUtXaQiFk9slqTST1h1RHKqgycPXyWK1euyBlK9vb26HQ6DAaDnBmlVIh0O3eW/idOY2eRzVT74ovsGjiQJDMx2PHmTaptbUkNDUUwGpm0eTNhd+8CsPKLKUx/bS1qfppxo5OT0zOdH56eniiVygY2/ry8vCYXA319fZ94/7p/8/LyrMiivLw82Zbm6+srLz7WwWAwUFRUJD++RYsWqFQqmSgC5OKWR48eNZNFzWhGM5rxE+FHSVwKCgowGo34+PhY3e7j42Mll7ZEbm7uE+9f9+/T7lPf4qZSqXB3d5fvk5aWxsOHD9m8eTOrVq1i5cqVXLlyhYkTJzb5fj788ENcXFzkn6eFND8vIiIimDx5Mkqlkjt37rBx48b/8XA2g8FAqaU9Bins6qWXXiIiIgIANzc35s2bR/v27TEajezatYv9+/c3qkgQBIFevXrx6quvEh4ejiiKXLhwga+//prExMQmJ6cKhYKuXbvyxhtvyPu/ztZ04sQJBEFgypQp2NrakpWV1aiVrDF07NiRF198EWdnZwoLC/n+++9JTk7G0dGRWbNmPVMGEkCnTp341ajhtEu5h0GtZmN8PNe6dGH7+PEYVSpCkpPpWke2eQNLD0BjWQLl5dKguTELUlf4ovo1JjpsY92c6ZQ7O+Ph4UFwcLBMFI0YMUImiur2W7du3Yju3Q25elwUGXTkCO7FxWwfN46HgYEo9XrJXgTE7N1Lv5deeurgLysri6VLl7J//350Oh2urq507NiRmJgYNBoN4tatnD5+HI2bG4giY8zh5FXm1VIARJEig4G8zp051bcv3uYBffi6dZINAmk1s02bNo0Sd3V/d3Z2ln+czI/7L0OppO0XXzDDZEJTU8MjFxdWvf46VXUKnLQ0hEuXGOvsTLdLl0ChYPfo0Zwz5448DQog7O5dXlq6lBmrVtE6PR2TUsm1rl356rXX2Lp8OXk3bkihutCgDc9Hq+WVr77CprYWFAr2jBrFyf79qbKzY42XF5fM520XbRatcrLYdz2GxScX8PeCP/L1iwvYNXas1CD1tHYDhQIPDw/atWtHdHQ0Y2JiiLl2DcFolMihlBTSgoIxqNUEPHzIom++wTM/nwp7e3YvW4b40ktS3ktcnNT+ZYFyR0fWODpy/PhxRFGkc0QE800mfKOjYc4czru6csG8Uj1qRwILVyym/fHEBtuYX+7N9uvj+eiHaq7fuIFCoSA6OlpWYygwkVvizOZte3n08D5xcXFy7X1VtZ7cMh9AxFuZy7TN62i/YYPUgGU+Vu3Cw4n79lvmtmyJZ1ERlba2bL91SyaKDAYbjEYDGEVeWvctbvoSdkdNZNWfP2TYu6fp0mUbRuNdTCYjHh4e9PX1ZcGqVYzesQOlwUB6YSHL//UvihoJsm8KdYsylgsogiAwJDiYc++/Dx9++Jgo8veHf/2Lc0olQzIyIC9PyuCaO5fhHh6cNRjY8PAhiamppKSkENm+PUuXLuWjjz5i6dKl3LlzB1Gl4pCXF4u/+oq7rVoxrXVrvo6IwLdO3fHaa1KodiPX8NraWsrKyuSfplSbPxqCAF98Ab//PXfbteObvDyZKIqsreX1Tz8lfu1aeepcWVmJq6srCoWC5ORkvvnmG65evfpUUrRRqNWSGsh8fLZ++JCx5sWtC716cb5nTzQGA9OWLiUkORmDycT6tWu5M3cuLF8O5jGJyWSioKCApMREjt+6xeY//pHvX3mFZItJrDY/n+TMTCuiSGkwEHLvHiMTEpi7Zg2/3bGDt1JTWaDTYS8IlLi5cfztt1Hk56NITMRktr4CIIr0OncOxe3bjPrjH+luVjzt3bvXekEvJwcGDcKweDG7R41iz6hRmASBiNu3eXHZMtzLyxm7fTtt8vLQq1Ss27JF/k5sChkZGew9cACAgRcvEjpyJIwdK2X0ARdGjyatZUtURiOTP/+cTpcvM9BgYPSf/kRA586NflY29RaGDKLI3dBQzvXpQ2pIiNU1TqnX46VQcEev5/jx41y8eJHCoiIEo5HABw8YeuAA4+7fx0Gvp9rBgYPDh/OoTRupxa0O99+FWWvgEeAJlFRCNY+JojGjKfpqJ7v2HuaLL77gwoULGAwGfH19iYyMtArfrrtGGUUFV7p25/iAAZS4uEDLluTv3s33L7xA0v37CEYjw/fto8LBgdTQUFR6PVPXryfs7l2MAixbMY+Zr637yYiiHwMbGxu6du3KEbOCEaTj+siRI1ZKI0v06tXL6v4Ahw4dku8fFBSEr6+v1X3Kysq4cOGCfJ9evXpRUlJitZB59OhRTCYTPcxh99HR0RgMBisVXt146YlKv2Y0oxnNaMaPwo+yof1fk6Q2pix67gDdZ8D9+/fZsGEDBoOBoKAg4uPjG1Se/3egqKiIzZs3N0rwtW/fnvHjx1upd0RR5MSJE5w4Idlc2rRpw8SJE7Ezq1UaQ2pqKvv27ZMzbtq0aUNsbCweZitIUzh58qTcJAdSrd+IESMQBIG1a9cCMGrUKLo+YyhyZWUlmzZtkgmJQYMG8f/Ye++wqM6E/f9zptF7F1AUUbAANlQEFRsqdkXsGhPT62ZLdjdbsiV1N8kmmx6Ngl3sYsEu9t4BwYKA9F6nnt8fZzjOABqz5X3f6/vjvi4uZZhyzpnTnvu5S0xMDCaTic8//7wNYdYaISEhjPv2L7hnZLNjyhSuWAQy2jU28uKXX+JYXy8xBKd/BlF/b/smojlkd+PGtn9zhhMfDOZGWjhFAyVZeGhwMKjVZGVlIQgCU6ZMsQqCbMGFc2fYtXsPLURRy42zX2EhRf7+VrksI44cYeSgQfDhhwwePJioqCg+//xzQLr5a1GH9e/fXx4o29raMnr0aD788EOamprYuXMnpg0b2LluHS9fuICvjw/fLVtGdc+eTJ48mejoaGZ07YrWxoYie3s++uijh/a16mp+89VXfPHFFzz9tBRxrdfrCQgI4M9//jPPPvvsY78H+DcDrtuDKFL07rusrqmh0cEBL72ehefP42Qe8ACIc+dyoK6Ok2ZV48jDhxl+9ChWNIy3t0Q+WJJlrXA/MJDjY8eSY5G71SM4mNgPPiDgERa3Bjs7vnj5ZTl7Q2k0YmzHbvFjUBiNUqhteTkeE5vx8r6Dp3Mj7r0/RekxzfrJOh1X585la3i4/FDX/PvMSU5Bo9dT5OfH9888g0mplLI0CguluvCkJElBsXUrud27s3X6dBodHFDrdCRotUQkJ4PZ4pQ5ZAgbx48HJIVoP50KbcJ03JqKOBs2gAMz4tGr2z8valQ6TNhhMBiJiIhgRJQnpw58wsW8XhhN0jlLo9HImSFWgzdM9Mq8SXTGSTp16ybl1FjsRzcyMtm+Zx16G/OgTBQRERAEiLx4kWY7O3J6hmJUPNz27u7u9O7dm169euHj4yMNEHNzYdo0Cmpq2JCURL2TE7ZGI4lz5tDtCZRxba6zx47BU0/xyzt3OAqcASn4/N13obYWfvMbNJWVrALmPv00vP8+eHry2aef8rvf/Y6f/fznNFVV8cE//oFarWbUqFEEBQWh1+v54YcfWLx4MUFBQQDs3LkTt7o6tq5cieP9+whz5rAVmAZSvf0//iFZmcx4lFX037KhmVFXV8eePXvIzMyUtnVFBZNsbOj6wQfw17/C739PpasrK195hTqz6sXe3h5HR0dZldC1a1cmT56MmyWh8qSorJSKCG5IJOaJYcM4MHYsiCKJmzbRa9IkjKWlbDYYyOzeHUwmet28idJkorRTJ8rd3KTjtR3YNDfjXFNDhYeHrAhCFInS6xkVEIBNz54SiREQYBUGX1RUxKpVq9BqtXTp0oXi4mLpHsbinOBSXc0LX32FjVnNc/A3v+GE2bYXFxfHcKUSZs2irr6eTXPmkB8QAKLI6AMHGHbiBIKtLTQ3g78/2mPHSD54kAcPHuDi4sLTTz/dLmlfV1fHt//4B/VGI2E3b5IYHIzw4Ydyg2TJiBF8FxeHEZi4axeDrl+Hd98le/x40vbskUO8W+BQX8+Y3Fy0RUVkhoWR16XLTzrnIYrYNDfjVV5Ol3v38CsuxmvxYtzPnKFx/342JCXxwHyNHLN/P0NjYxGeaYYln0meTifADigFlAowmiiZNInjCxdyIytLJrYCAwPx9PTk1q1bNJjP/05OTgT1syH447dQ3enMiZgY2QosiCKBgYEUlZSg1+txqq1l2pYtHBs5krygINQ6HXPXrqXrvXvoVQKr1r3K0lkfo/hp87qPxL/ShrZhwwYWL17MN998Q1RUFJ9++ikbN24kKysLHx8fFi1ahL+/P++99x4gZU2OGDGC999/n4SEBNavX8+7777bJqf0/ffft8opvXr1apuc0pKSEr7++ms5p3TgwIFyTqnJZGLQoEE4Ojry6aefYjKZeOmll3B2dpbLZTrQgQ50oAP/Pn4SWfR/uRnhD3/4A++++66VYqepqQl7e3vS09OfKOT6v5FZ1Bp5eXmsXbsWnU5HYGAg8+bN+8kWhX8HN2/eZPv27fJgCqQbSG9vb1JTUzEajQQHB5OUlGRdAW5+7bZt29Dr9bi5uTF37tzHNs8YDAZOnDhBRkYGRqMRpVLJsGHDiImJafPelsjOzmbjxo1WCqaQkBA8PDw4ffo0CoWCJUuWPLESzGg0snfvXpkE6d27NwqF4mEz1I9BFAnNymL0gQMcjovjpvmGp9f168xKTZWIg193hb/mgNDO4OCzz+C119o+LkDBaj9WHX4KQ4AGRJERffpQqNWSm5uLQqFg1qxZsrTaEqdPnWJfyw2RKDJj0yYeBAZy2oLEbSGLBp05wwR3d4TkZFAo2tz8ffLJJ6xfv5433ngDhULBli1b6N69O6tWrcLR0VG++Xtv9mxsSkvZrNdzPCODdW+/jdi7N5mZmRw/fpzTR46QYjTSRaHgFTc3bhoMvPjSS6hVKhAE9uzZQ25uLqtWraJ79+589NFH7Ny5k6ysrCcazP3HySIzyj/9lOT8fOqcnXHV61mkVOL25z/LSgoRyIiN5fDo0QAMPXGCsfn5CNnZ7aotHodiX1+OjxnDDYvZ7K55eQw7cgTvsjJKfXx44OtLQWAgJb6+1Dg7t20OexwsBo3eRiPjU1IIunfvIbmlUsGGcOhyERCg05/B9zdWA7FbV66wfssWmWicunUrkVeuyH8/PmwYB8eORa3X8/xXX+FeWQnx8Rg/+IBD77/PSbMdx6e4mFmbNuHZoqrp2pWC119nVV0dBoOBgQMHMnHiRCkPqPABJcOm45t3lgfevmyan0S1i5vV+tiotGgNkkpOECA6ehjR0dHYC3nUXpnClnPDyKsMosVuZ29vz6hRo3B2dubMyf3cvvcwky3o7l2iKypw+CCZzQfdOHQom7CwLdjY6Npsx9bkXLsEUWs0NsILL1C7dSsbk5IoDAhAMJkYO3AgQyZNemymjkwWffEFQ7/5Rqp9B34JHFWrObNhg0QWvfiiVAMPaASBVX/4A3P/8AdAuvY988wzbN++nd/+9rcEqFQs+uUv6dOnD7NmzpTalby8mFJTg87Jibi4OC5fvkx6ejrPPfccTqLIaJOJwR9+yNYZM5i2c6dkD9JoJOvSb38Ljo5tJlyys7OJior6t8giURS5dOkS6enpaLVaBEEg2saGEW+/jdpggGeekbK7vvwSXn0VvVrNhjfe4La5SUuhUNCnTx9u3ryJwWCQCbKoqKifnhdYWAjDhkFeHiZg+9SpXO3XD4XRSPCdOzT4+FBmb4/+EdZotU6HV1kZ3mVleDU14e3igre/PwZBIK2igjtmVWYLYmJiiIuLe+xy5ufnk5ycLJOgiCKjDhzgyqhRVJjJqYjLl2U1lAhkzJjBYTMBHHPiBD1v3mTj3LnUOTpi29TEzM2b6Z6bCw4OEunt6goZGdCnDw0NDaxYsYLKykq8vb1ZsmSJ1USRwWBg1ZdfUlBVhVdpKc8UFaHZtk0+NxqGDOG74cMptbcn5NYt5ubm0vjNN+zJzeXGjVZqQlHEs6wMtcHQpuLes6wMnUZDrYtLu9vFDlA2NNCk0WB8xP2FYDLhXlWFR9eu1NjaUmImFXtfv87U49tRF+tBA3Rygnt1oFRS6OtLxpQpZFuo37t164aLiwtZWVk0ma1lrq6u9B/WlwKHvzF2wh48zV0DInC3Tx+OL1vGXYt7WLvGRsanpXFm6FAeBARg09zM/DVrCMzPp9lGyZptb7F0/J8R+Akk2Y/gXyGLAP75z3/KYfuRkZF89tlnssJn5MiRBAUFsXLlSvn5mzZt4u2335YbkD/88MN2G5C//fZbqquriYmJ4csvv7SylFVWVvLyyy9bNSB/9tlnViH2Dx484JVXXiE9PR0HBwcmTJjA3//+9442tA50oAMd+A/iXwq4bk+V8PLLLz8y4LqxsZGdOx8G/kZHRxMeHm4VcP3zn/+cN998E5BIG29v7zYB1+fPn5cVJenp6YwfP14OuE5PTyc+Pp7c3Fy5TvzKlStERkZaqY0eh/8JsgikC/aaNWtobm7Gz8+PBQsWPLZy/j8Bg8HA/v375RY0kGw+s2bNort54Hrnzh3Wr1+PXq+nc+fOzJ07tw2RVVxczPr166mpqUGj0TBjxowf9YZXVlbKRAFIN1UTJ04kxGKGujXu37/P2rVrrQYiSqUSV1dXubr42Wef/UnWpPPnz7Nnzx4rEsrOzg5BEGi0sId16dKFMWPGkL55I/nVFjOeoihlZVhkMA06e5YJd/YiXL4NNkFtP/TkSRgxwipfpAV3P+rMqrKlCPZg29TElF69OGMykZeXh0qlIikpSf5uHi6CSEZGhpX6avzu3Qw+e5ar4eFsnTHD6vndc3KYV1yMsHu3NNAzw/LmLyAggFGjRhEQEICHhwerV68mNDTU6uZvwyuv8LOVKylpasLD3Z23Zs/GtndvSktLURoMTNy1i22XL/MtUA3EAH9xc+Pm66+Tbz7FGI1GDhw4wLVr1xBFkaFDh/Lpp5/Ktscfw3+LLAKo/vhjkvPyqHJ3x6m2loUpKXhZBL5ja8vpxET2mc8tA86fJyEtDaH16bN3b/jzn2HrVinM3Ng2x8agUpHTvTsnYmIofAK7WGsoDXqC7txFo4G80HAaW4XB2jc0MG7fPsKvX0MICGwbqC0I8OFIiDPvQ26zocsKUDpw8+ZNNm/ejMlkwq2mhioXFxRGI/NXr6bb3bsAmASB5MWLyQsKwh946v33qbO1JXX2bArNA7xBZ88yLj0dlYVdqvLcOZYnJ9PY2EhISAhz5syxHhQ3N1M6/Tm89yZT5uHB9889i07TNu9MIRgxidKgWK1W07NnT0qK8ykrl1SCLnZ1NJvc0WqliQMXFxeGDRuGn3sT545+zfX87pjMlg7H0lquVEQQHCat2yNFW6JIJ42G+HnzCOzS5ckClEURvvkGw+uvs2vCBFmVGOHmxqQXX2w/e81kQrdlC/aJiaRiVvQAODuzuE8fql1d2R4SImX5mExSrs+f/kTnTz6RJ2UaGhpISUlh/fr13Lp1i6+++orz58/z7rvvMmLECD4JCSHi++/BZOJXwHEnJ9J/+IGkH34gLS3Nat1EUUQhCMQOHMgRDw+5eQ1/f/j736UwaIvn/7sB1xUVFezcuVNqa0PKJZkyZYpkkV25Ep5+WlrvuXNh1SpYtw6WLkU0Gjn27LMcsSAYIiMjqayslFWlgYGBTJkyBU9Pz0cvgChCSQkNN25Qmp1NaVERpRUVlOl0lHp5oX3ExI7SYMBGq5XDzSOKixlx5Qquly8jWOTUmNRqTs+Zw+HgYAxIasHhR49S5+DAefPgu2vXrsycOROHdlrfQCKLVq5cKV/HAu7fZ6m3NyWvvsp3338vPz5r3z56W1jPTg4dyv74eODhRIJXaSlJ69dLmXuOjlBfDzY2kJ4uqarMqK6uZvny5dTX1xMYGMjChQtRq9WIosjOLVu4dP06tk1NLDt4EHfzpAwAffuS3rUrp/r3x76hgeddXLg7cSJ709Npam7+UZWkn4cHjg4ONJw9S7GXF6ZHKLUEk4khp08z8vBh1J6e1Li7U6bVUubvT9mMGZTfvUuZre0jvz+QvsPOeXl0amrAM+c2eo2GG716kWdB6PXo0QN7e3syMzPlexMPDw9iYmJo7HuVzF0vsmh2A2rLmK+RI6nfvJnNO3c+bHVstd4arZZFK1fiX1REvYOK1D1/YXHsL/+jRBH862RRBzrQgQ504P+/+Mlk0f/LktT/KbIIJNIlJSWFxsZGvL29Wbhw4U+v/X1CVFVVkZqaKgcugmThmzNnThtFR35+PmvWrEGr1T6SyGpoaGDTpk3yDX2LtetxAyhRFMnMzGTv3r2y5Dw0NJTx48fj8oiZwpKSElavXk19fb2VnUShUGAymQgICGDJkiU/KSy8tc3NspLeEt27dmXG+29S1mDPnvHjKbac5RRFfIqKKPHzA0GgT5At0xb8vO1ylJZC//7S7LTltgDOvhjFXs8JoBDwKS5miq8vaZ068eDBA2xsbJg3bx6dLSxL0seKHDhwgJMnT8qPDcvIYMzBg9zu1o218+djUipRGI3yTbXCaGTShAn0a5UvoNfrycjI4MSJE5hMJlQqFbGxsURHR7cZxBp/+IHNe/eS2asXCqORWF9fztTV0dzcjGNdHbM3bCCwVRMMAD/8gLh4MRcuXODAgQNWxB9IuVLx8fGPHBS1xn+cLMrNlUidrVvh9GnqHBxIWbSIMm9v7BobWaDV0unQIas67Uv9+rFjyhQQBPpevcq027dRvPoqvPGGZAkCSQn0xhuIL71EzfLl5B04wD0fH0p8falyc6PZ1vbHCSKTCbXBIIf4hmRnU+3sTJnZqmvb3ESzrTS731LQA9A/OIgx177CbscZyPqR9Z8XDa+fAYUR7CK52vwx23ZlIIoiffr0YVqfPmz54x+5GRqKRqvlqZ3b8b0uNbPVuLjw1YsvorWxoVdgILfv3EGrVkuk544dhJmtQy1otLdn+ZtvUqlU4ufnx5IlS9q34IoiD/70d7aU51Hh6YlKr8PQypLWPcBEuNdmTtyOoaT2oXVZqVQwIvQiMUHb0BHA+fpPOXX+rmwPEQQHSgq780L8b3lQEMCFkgHtklEtEEwmwouLaVQoyDHneTk3NzNhzBhCzSqzJ8KZM4jTp3Omc2fS4+MRFQo6GY0kvf46zi0z4DqdRC6+/z5kZzMYiAI+VyrhZz/D9Kc/0dnfn5f1et5qsewkJkoWQH9/eVJmzZo1pKSkUF5ezg8//EBISAgxMTEALF++nIiICGni5vZt+NvfmP7tt9iZTKwFinv04FJSEkd1Orns4auvvmL8+PFM9/Rk/q9+hcOdO/D662AmDhk5UlJO9u0L/OtkkdFo5OTJkxw9ehSj0YharSYuLo7BgwdbE4qpqTBvnqRymjJFaujat0+yQWq13Jkxg3X9+8vXCn9/f3r37s2RI0fQ6XQolUpGjBhBdEgIyjt3aMrKouzuXUrLyihtaqJMpaLUw6NNo10LBJMJ94oKGhwcaLa3x6GujqT9+/H/6iuEgQM5lJEhN+jFxsYSN2wYwokTkJZG0cmT7IiIoNh8DAfdvcukixfx0Grh1i2u9enDzilT0Gs0ODs7k5iY2GYb5uTksG7dOskGZTJJx75CwYABA0hISODUqVPsNwc622g0vJibi/OKFdI2VihIWbhQJj9cq6p47quvsNXpHiqKBEHKa5o5s826l5SU8MMPP6DVaunRowdJSUlcvHCBtN27QRSZv3Ur3c0qOAA6deKOjQ0pixcDMCUsjJt5eeS2TMy0QxQpRBEfHx80dnZUVVW1KR0RjMZ2m89a4AIkHDlCyJEjUnbXmjXwm9/ApUuILi7UbUqmzPUqZflHKauxpbzei+IKX3TCo88DIAWo29vbU1lZidE8AeDt7U1sbCy+vRxZJ7xA+It7Gf41D+kdQYD33qNg/nw2btxIXV0dGmDqhg041tWxbv58uXgCwKu0lMhLZ7jz6RIWRL382OX5V9FBFnWgAx3oQAd+Kn4yWQT/70pS/yfJIoCysjKSk5Opr6/Hw8ODRYsW/cc/NzMzk+3bt1sN1MPDw5k0adIjrWBFRUWsXr2axsZGvLy8WLhwYRsFT2trV58+fZgyZcpj7WUg5UQdPXqU06dPI4oiarWaESNGMGTIkHZJn6qqKlJSUqiqqsLW1haVSmUVotq7d+/Hhphb4u7du6SkpMjtXq13/alTp6JQKNi5cycGgwG3ykqS1q/Hu7SUoyNGcDQuzvoNRdF8ZygQEhJCYmLiw/U3GiE+Xq62boFepSJt/iSudI2Uttu1a8QpFKwfOZKysjLs7e1ZsGCBVX6X9FGi1J5jMWsbcfkyU7dto9jPj5VLlqCzsZErjwPy87EFcs1WvQEDBjB+/HhUKhU5OTns2bNHtnV2796diRMntmsFM3z7LamHD5MdGorSYCDc05PLNTVSjXhBAUkbNuDUKm8ChULKgzHn0kDb/JEW2NnZMW7cOCIiIn5UrVFw/TqBfftSU1CAs0Xt7xNDFOHSJYkc2rYNWmcFRUXR2Lcva1QqHvj5YaPVMnfNGrq0UuZcT0hg64ABmBQKQjMzmXnlCoadO7n9ySfcu3ePYl9fqtzdabS3l61cj4Jap8O5thb3igp0ajWFAQEYLEgUhdFIwu40+j+4jLEEvnrhBSparJ+WljN3dyZNmyZZM0URyr+DUy/DQT0c1MCNRzRa9egMK+q5WNqFnVenAAKRkZFMnjwZhUKB4dQpVn/7LXlBQTg2NLB03w7crkrZcZfDw9luoWQLyM9n5ubNuFZXP3x/QUCvVJK8eDEFgYG4aDQ888orjyTGKyoqSElJoaamBqeaWhYnr+JEdDSXWmWUuTlrMOgqqGtuqyzsFVBITNdd+Lg2s/7ibnYcUODndxJXV0l5pNVqCPa+TUmtN3qx1SDRYpvOUavp+etfg9HI7U8+Ia2wkCrzMRIKTHj5ZZx/JINNRlkZzJ3LnTt3pIY7e3sctVpmT55M4KlTEuljQbhuABYrFHzz4YdE9erFp8uWsbGwkCzAp3t3FnXpgv+gQW0mZRISEggICCAnJ4eDBw/y7LPP4uPjg0KhwN3dnTfeeIMvvviCuLg49u7dy+uvv86RuXOJ2bFDJjv1QUEcfe45Tul0/P4PfyApKYmwsDBsmpoY4+BA/5deQvHFF1JmUnOz1F720kvwzjtkFhX9ZLKosLCQnTt3yqH7wcHBJCQkPNqaunu3RGY0N8Po0dKxfO6cRB7V11M7fDgrp02jyrw+dgoFU/R6Tmi1FJgnPjRaLSqD4ZGkEKKIe3MzXoKAt7Mz3v7+eGm1eLz6KqrmZhocHPh+2TNUu7rhX1DA4mvXUB88CA4OHD9+XA7vbWmQtLzm2QoC43JyiNy4EaFV01yplxcbk5Ko8PREoVAwfvx4Bg4ciCAIXL16la1btwLSeWHRqlXULVvGZjN5MXToUMaMGUNycrI8kRPk7MyiP/6RRoOB1MRE7rWoZMz7efiVK0zdtw9FC4Hz+efw8qOJiry8PFavXo3BYKB79+7cyc3FBIw+eJCYjIyHT7SxoUmh4KsXXqDO2ZmAmhqK7O0le1g7RI99QwNOrq6Um0wyGQOgNJkIunOHkJwcsiIjuWdxXXSuqSEhLY39EyZQ3mpf6XP7NvHz5uH4xhuQlQVeHpA8AXy2gcl8/6AOhL3ViG/VUejrx4bFi6m3VB79iOrJ0dERtbeWcvtTjPq+iG43y/AqK5MazxwdEbdv57yTk1wK4imKJH3xBWq9nuRFi6j08MChro6et25xo3dvWfXk7OzM0KFD6d+//38009JoNLJ161YSExM7yKIOdKADHejAE+NfIov+X8X/NFkEEgmWnJxMTU0Nrq6uLFq06F8L42wFo9FIenq6le1MEATGjx/PoEGDfnRgXl5eTnJyMnV1dbi5ubFw4cJ2l8vS2uXn50dSUtIjlUKWKCkpYffu3bJFwMvLi4SEhHZbLOrr61m9ejUlJSXY2NgQGhrK9evX5ZvKbt26kZiY+Njsp7t377J69WpMJhMKhYKRI0dy6NAh+e9du3Zl3rx5qFQqilO/ZcPxm1S7uaHW6Yjfu5dDo0fT6OBAz8xMSr29qWpnkNipUycWLlwoLcfbb0shrBaodnFh49wkinw7Sfkl6emE6vWkLFhAVU0NTk5OLFy4sE0OlMlkYseOHVy5coWW5rPuOTnMWbeOWhcXlj/9NA2Ojqj0egxqNT7FxSzZuhWbI0c4VlLCkSNHAMnS4ejoSE5ODiAFcY4fP56wsLB29wfDl1+y4eRJckNCUOn1BLq6ctes0oi8dImEtLSHNqMWqNVw6hQ8IoA8KyuL3bt3twk07datG5MmTXr0vp+VRcHYsQQWFFATEoJzerqU2/JjMBqlKuwWgsg8iAKk/J6RI6XGnshI6XkbN6K9cYN1c+eSFxSESq8nKSuL7uHh8I9/oK2v517XrlyKjia7c2dpMGEySf8+6pgSRTQaDc4uLniZTARmZOB/6hRe5eXYWVrIBIGsHj3YPGsWBgvS1am2lrBbN7kX3I1SN+827z3y0CFiyspQHjoEliRjwzm4Mwt09+GCGl4VQdvWDnl2cBR7Jkjk/cAuF5g4cRKC98PA8eZVq/jhzBlKfXzwqK9n6fKvaVTakjprFiVmxY1NUxOv3rmD/bPPSvag1aulxRMENiUmktmrF7ZNTSxdsQKv8+ehlWoOpHNCSkoKDQ0NuLu7syg2lpKnXmLjpFEYVSrUWq2VBRTAwaaZqRGp2Km1HC9YRnbeQ4tpsFcu/f3P8/w7X3MuM4r58w8SGHgNsB6gq3RaDBob6Xs0k3sC0Dc8nKFDh8otgfrcXI5++CGnfH0xKZVo9HpG9+nDwNmznywLx2iE3/+eqq++Yv2cOZT6+EhkYFoa/c1NX4D0HX7+Of/My+OjP/2J4poaIoHP1GoG//a38KtfMXL8eKtJmfLyct58803S0tKorq7G19eXESNG0KNHD5RKJfPmzaNbt26sWLGC9957j4KCAnr27Mk777zD1KlToaYGvvlGIq3MxQclPXrge+uWTBa1oFNFBRPHjME/IgLefBM2b5b+4OVF5muv0evtt59oMKrT6Th06BBnz55FFEXs7OyIj48nPDz8x21+R45ILXz19RAeLpFV586hX7uWcmdniv38OB4dTeVjMvVa4Gww4GNjg5eHB95BQXj16oVXp07tT3xs3QqzZoHJRLmHByuWPU2TrT09s7KYXVeHYts2UKk4e/as3NxpGbjep08f4uPjJbK0oUGaTEhLk37MClStjQ3bp04l0xyGHu7ri3evXhwwX69Uej1Pf/89vr/4Bbz5JhcvXpRt/iNHjiQyMpIvvvhCzm8ccvIkmX36UOPsjEarZfqWLejVarbOmIGoUNDrxg1mbNmC8he/kJr2fgTZ2dmsX79e/r3XjRvM2rTJyjAlAhvnzCErNNSqaOFJ4OTkREj37vRYu5auW7ag0es5MXs2ByzC4ZUGA08lJ+P/2msYli3j+M6dHMvKslId2Wq1jN27l37F2Qj/1EEX87nPri94vw47PsT4Qi5Xe4dzfPRoKlsR2C5VVdS6uMjL7ujoiKOjI/X19Y9t/XNoasKjSxcajEYqzHltPfR6pn/0EY0ODiQvXkyNqyuuVVUsSk7GraqK213dOPCPd6m/1SC/t62tLVFRUURFRT2x+vZRKC4uZvv27WRnZ/PJJ590kEUd6EAHOtCBJ0YHWWSB/w2yCKQ8gOTkZKqqqnBycmLRokWPz1V4gvfbtGmTle3MwcGB2bNnt7E2/SeW6969e2zatInGxkYcHBxISkp6ovBpURS5cuUK+/fvlzODIiIiGDt2bJubo+bmZtatW8f9+/dRqVSMHz+e06dPyxayxw00cnJyWL9+vZzlMGHCBPbu3dtGWRQYGMjssaNxHBRCY62KzbNmcael3hzwKinh2W+/RWkycX1Abw4kzaO2wXrgaWdnx4KgIDolJVk9fqdrV1lRoGg0smBjCk6iSPKLL1LX1PRIQs5oNLJlyxZu3rxJC1HUqbCQxatWoVepWPH001R6eMiKIveKCp5avRrHtDS5+vnWrVts2rTpYSAqMGTIEEaOHImNTfvye/1nn7H+/HnuBAej0utxcXCgQqdDEEXi9+4l6syZtmkKdnaSZctim7UHrVbLwYMHOXfunNXjSqWSUaNGMWTIEOvBd3o6zJxJQX09gUANSPadtDRor86+uRn275fIoR07wNJmaGcnKZ6mT5cGmenpUkudhWJLVCqpjo1lU2goRb6+IIrY2tigNxqtZr3bQBTRCALOHh54VlURmJ5O19xcvMrLUWk0kl1Hr5fCznU6qYmroQGMRkTgzJAhpI8bJ9mUCgsJuXWLCwMHUm+p6mtnttuuuZkX/vlPnDp1gsOHwdIyaSiHu/OhNh0OIaUkW+BkdDT7x40DpEHluIJ0hDFA4gIYtgIEacBc+/rrLFcoqHVxwa26mjp7ewwaDfYNDSCKNDo6ElleztSf/xy6dJG2/7PPsq9HD05HR6M0GFiQkkJQXh7Y20N1tUQsmmGZ4+bj48OCBQswmUx898031Dc20jMri4C8PA6NHdtm4Bndq4oxXT9DEETWHJjLjotTCQ3NRqGQjm9bdRM6oz0m0+MvdXb19TQ5OmKnUtFkcax069aN6OhounXrhgCUrFrFrjNnKDCTSP46HZOfegqfVvli7eLuXXj5ZXQHDrBt2jSZEBh09izx6ekoX3xRyrw6cUJSeNy5I70uPh7++U/rmm8zLC3Nnp6eaDQa+dyvUqlYuHDhk5/3m5shORk+/BBu38YkCFwYOpSDY8eiFSxaF0WR/rW1jH7tNexv3YJXX4WsLDKBXkD+wYMEjBr1yI/Jzc1l165dchvlYy2ptbWQk2P1Y8zNpaK4mFJ7e0q9vSnz9pZIfDe3xxITTioV3QMCKG5qosisZPL09GTq1KlPPnj+/ntYtgyQWg6TFy/GqFJJ+XX+/gjffENDYyPr16+nwKwWU6lUzJw5k1Bz+HsbiKIUZL5tG/ztb4j19ZyKjubAmDHS+pi3u0ar5bmvv8b9nXfglVfkl58+fZp95hbH+JEjcUxOZnPLd25+rXtFBXPWr8erogJMJrJCQ9mUmIhJqaRHYSGJH32E6gkmegwGA198/jnVZuXWqP37iT1xAoAmOzuye/TgzJAhst2uNVps5JbrHti5MyEhIYSEhOCj0SBMnAjmdt370dH8MHasvN8hCEzZu5d+a9dC164S4TZtGqV2duycN4+CVtfQLo73mDRwJ56+fcH3l+A0Bv32cVz8uJGTg4bJgdl2jY30un6dgqAgSrwfkvKdi4qImzqVoAkTMGLgAB9zPOevJLzmjKbYizIvL8q9pH9rXF0fud1smpowqNUYVSrs6+sZv3cvQXl5FPsIZB9ZzyT/CRgMBq5cucLJkyflJlmVSkW/fv2Ijo7G9THv3x6MRiMZGRlkZGRgMpnQarW89957HWRRBzrQgQ504InRQRZZ4H+LLALJppOcnEx5eTkODg4sXLgQH4v2jSdFVlYW27dvp9lCsRAYGEhiYuJPCoO2XK6UlJTHWqRAIpbWr19PSUkJCoWCSZMm0a9fvyf6jKamJg4ePMiFCxeAh5Xt/fv3tyIN9Ho9qamp3Lp1S66Uv3DhgnxDDhAQEMDEiRPlZbxx4wabN2+WiaFhw4Zx5swZDAYDgiCwcOFCjEYjqampaLVanHSNJK1cjf+DB5gUCtbNnUuuOYg7ID+fuWvXYt/UBHuWYhr3HZcvX+bgwYNWAdmIIr2vX2fsgQM419RY3fQrK/W8suqfNNrZsfrll2k0GB5p9dPr9WzatMmsBJKIIveKCpauWIFapyN58WIKAwJQGgwYVSqcamtZumIFrqtWSZYMpEH4rl27ZIsHSAqzsWPHMmTIkHZn8HUff8y6q1e517UrKr0ela0tzUYjdgYDiWvW0LUlr8QSbm6QnQ1PMJPfgoKCAnbu3CnXXLfAz8+PyZMnS9/hF19IA1GTiQJ4SBaBpAxavVrKK6mpkcijrVthzx7rGnt3d0mFMH06hIbCrl2wcSOm8+epcnWl1MuL/C5deNCrF5Xu7jSA9WCmHWi0Wpzq6nCoq+NB584YlEp8Hzxg4erV2CckwPLlUFcHCxZIBE5rTJ8OP/wAOh2Gzz4j7eZNLpvbiiIuXyZh1y6u9+nDgbFj21plRJGwmzdxq6zkZEwMCAJqvZ5nv/pKInNbE0aiEYr+JP38A0gB0daGY1GDOWIe0McePUrc4cPWBGBvR5j7GkybC2fPUvjOO/ywcCFGc6ZV0J07zNiyhUoPD1YuWQKCQOK2bfSaMwd+9jPOnD7NXrMaYsbmzfS1bB/s2lXKzREE7t69y7p169Dr9QQEBMgKvx9++IGioiLc3d2xLyunQCmdC2wbG2lulaPWXGvDW9PexU6j5eStEZwtnEGzrtSKELbKdurfHw87O/YfP94maHbh3r0ovvqKUwUF3LhxQ34PX19fhg4dSu/evRGqqrjw5z9z0N4era0tCpOJoT4+jFi2rH1FypUrEgGzYYMcei4KAsdiY+XvoEt1NYmLFuHwl7/Ali3S6/z94dNPJdtVO8dqa5LNZDJRZg5m12g0cobgT4bRKCmG3n8fLl2i1smJvRMnktmqmdGuqYkxPj70e/55hC+/JPN3v6NXUxP5KhUB77wDv/iFFSnY0NDAvn375CZKFxcXJk2aRHcfHylDrBUpZLp9myqDgVIvLytSqMLD45Fhx3aCgPeDB3jl5+Ot1cIrr7D/xg1ZadOSrZiXl0daWpqcaTV48GBGjRr1ZNaf99+HX/8agJu9erEpMREEgTHp6TjGx7PP1lZuyWqxPPfo0YPExMT2g81b49VXET//nHVz5pDTQjCJotRMeO2aNBGQkCD9hIeDIFjl8U3asYNTQ4fKllW1Vsurn32GY0SEVLpgRm737mxISsKgVtPtwQPmzJ2LeuTIRy6WKIrs2L6dy1euyEpWkM5Ztc7O3AsKemIVkW1jI2Pq6gj78EPsW1Q9N2/CpElyJlaDqyv/ePFFKbvNTBQNPH+ehN/8RtoGqakwf75Evo8ejem1OM7/bRcHhsWZVYjSdVOpFIiNHcHAAQO4tPUtTl23p9FeOq861tXR+/p1qtzduWVR1tFCatk3NDB7yxacfjWPr5emEfzPi8z4Fai1rVbotde4sXQpO9LS0Ol0qNVqfGpraWhqkuyrj1DLKTVK/Lz98PLykn88PDx48OABJ06coKioCJD2oz59+jBs2LAnujcsLi5m27Zt8rU/NDSUyMhIQkNDO8iiDnSgAx3owBOjgyyywP8mWQTSjfTq1aspLi6WFCoLFtCpVX3so9DSNHXaXKXcgkGDBhEfH/+TQqBbo7GxkdWrV1NUVPTI8GWQbAXbtm2Tc2mioqKIj49/4rrigoIC0tLSKDbbIDp16kRCQoLVNrC2ZEnh2pcvX6aystIqh2jAgAF4eXmxt6W9Bymb5/79+7IlYP78+XLbWEVFBeu//iflBkniPnnHDjrn5/P188+js7GRQ6Ndq6pIakrH9+srsurCYDBw4cIFDh06JL83SGGorlVVsmXNra6Cpf9YTqWfB2uffhotPDJEXKfTsW7dOu7du4eAiIiAQ309Ty9fjktNDevnzCGnRw95uewaG3nqhx/w+vOf4bnnaGpq4sCBA1w021tsbW2Ji4ujoKBAHqj17t2bKVOmWA2OtB9+yNqsLO536YLKrFYSAZ/6epK+/x43yzyaFgQGSrkQ/0KjX+tgW0tENzQw8tNPUZsHeflAZ6AKcLV8YnCwZC+ztMQFBEj2sunT0QUGUrFjB2UnT1JcX09hp05UenjQ4ODwowMbpUKBsrkZnXkbDQkJYeycOSiuXoW4OKiuptjXl5TFi2m0s8OrtJSFKSk4eXtLg+2ICMne89JLD5vRBAF+9Sv405+oa25mw4YNFBYWIogi4/bvp2tuLrsTErjfYsk0D5IEkwnbpiaazOSRSq/Hv6CAvKAgEASURiNPff89/o6OEmHUmiSo2Q058xGfreaQ+2iOx8YCEHfwIMMt80bsbaBJ+5BZAYp9fdmUmEilh4e8PP2uXWHy5q0IwMHR0vvZNjXxwpdf8mDIEDYMGwbAaCcnYsxNl1aIiyP7yy/ZlJqK0WikW7duJCUloVar2bJlC9evX0etVmM0GqUQdgTi0vcy+PQZzkZFsW/ceATFQ/eYgAKFQo/R9PBc5+rqio1QREmVDSB91/b29sR07cqZM2eocXTEubaWWsvzvSjS+84dYl54AduwME6dOsWlS5dkssHZ2ZkhQ4bQv39/tIcPs3fTJjLN50M3rZaEqVMJHjxY2k7HjknEgsV5iC5dID9fWnC1muxu3dgyYwY6GxtcqquZs349vmVlUpD0H/4AjyD57927x7p169DpdPj5+dHc3CznkNnZ2bF48eJ/acLBCqIIBw5I63DoENk9e7J74sQ29eX+1dUkTJ1KtSjSa9Qo8oEAgH79YMUKxIgIrp47x76DB2nS6RCAqNpaRl28iCYrC7GkhBoXF0q9vSn18pJJoXJPTytLpiU0KhXeXl542dnhvWYN3jk5eNva4rBzJ4KdHYwbJ+WSubvTsHUrq65fl4k0GxsbFi5ciLu7O/v27ZOvJ25ubkyePJmurSrt290ub74p2faAU0OGkG6R0QZSAPKUKVNobGxk48aNGAwGunbtypw5c36UkBJFkQ2ffUa2+XzbMiEAEJORQdyhQyhabt38/WHiRERPTw5cvcrJQYPaVSAOrq1l/McfS794eEBFBdjZcdfHh3Xz5qHXaOhy7x5zXVyw+etfpdBrS1RUcHbdOvaYlUmRly6R26OHtfLxMfDw8KCpvp5GrRb38nKW3r2Lw9atD8nEHTuk8HIzeWcSBL546SUqPT3l9Qm8f5/FAwZICrxvv4Xnn5f+NnkgTC6B1/OhEWoGuZC29FlySqzXoeVaCuBaV0vY9RuUeHlxx0Kx16tXL2JjY7G1tWXD2rUUl5WhMBqJ37eP0LtncS7DGioV4uefczQ0lKNHjwIQ0KkTifv347xpEw86dSJl4UKa7exwraqiZ2YmNW5u5Af60uDkZnWetYRGo8HDwwM7Ozuqq6tlpRFASEgIw4YNo3Pnzm0mfFqriezs7Jg4cSK9e/emsLCwI+C6Ax3oQAc68JPQQRZZ4H+bLAJJZbNmzRoKCwsfS8xYorq6mtTUVAotWreUSiWTJk0i0lzX/O9Cq9Wydu1a7t+/j1qtJikpieB27EaiKHL06FH5pqlbt27MmjULO4vWj8fBZDJx7tw5Dh8+jFarRRAEBg4cyKhRo+RMIlEU2b9/P6fMtcD9+/fn2rVr6PV63N3drW6qWuDq6opWq5Vne6dNm0ZERMTDJ9zLRDuwP1vGTZdnF51qa6lzdqZzXh7jd+9mU1ISVe7uqFRKpkyZSl9zA1AL9M8/T0ZODhkxMXL2iXmB8dSUMub9A6i8jGyYPx+9Uknnzp2ZN29eGytYc3Mza9asoaCgAIVgwiQq0Gi1LF65Er+iInZMmcLl/v3lLAi1TsfiVavwX7oU8Z13uHr1Kunp6e1a+0RR5Ny5c+zbtw+TyYS3tzezZ8/Gw8OD5vfeY83t2xQEBloNTnoVFTH1hx/QtApjBaQWpIsXJZXPv4GKigrS0tK420q15FZZyaRdu+h8/w4XQmBIJpSpwV3fMvQ3b2KgISKC8kmTKI+MpEwUKcrOprypiaYnUAoIgoCjoyOenp74+/sTFBREp06dsLOzQ3zwgH2/+AVnzIH7o3r2JCYpSQqnHTMGjh+n3NOT5EWLqHN2xq2ykkXJybg2Nkp2lTVrJNuVrS1otdLgBigMD2fD3LnUabXY2toyLb4L9y+v5vTd/pgUSqsMnc55eSSkpeFVVsatHj3IiI2lsOVm32g0syUSoTR/9WqClcp2CSOx+Q77Vv+eM4WSWm7cySMMTT/SdoOo1aDQI2rhXFQU6ePGYVSpcK6pYeD58xyOi0NUKBhx5DAjjxzFqFSy/OmnKerUCb+SEsrc3TGo1QyoqyPhV79CSEmRBtcWuNq3L9tmzEAUBEJDQ5k5cyYqlYqMjAyrPDGAsrJg1qxJILzuCocZhUGpJiMmhoxhwxFa8eAOtjr6BZymt99N6u0WsPmYJ83NzaiVWgREdMaH2WYanU4mAmPDsiktFsmuemgVCvH1JXbiRDw9PTl37hxnz56VlSg2NjYMHDiQweHhPPjsM3Y3NcmkU9/GRuJPncKhhYRTKCA6WlLPmMlwZs2SyIZPPqEsJYX1c+ZQ6eGBSq9nqp0dfX772/Z2VUCy1rYQEAEBAdTU1Mg5YA4ODixZsuTfsjK3i7Nn4YMP0KalcTgujjODB1tZgxBFfB484IXvviN/6VIC1q2DpiaqXF1JmzaN2+aMMc+yMgaeO4dJoZDVQmVeXugeYYlVqVR4eXnh7e0t/+vt7Y2zs/PDgfK9e1LY9Z070j5/4AB4e0vKm9OnwcEB07ZtbK+r46q5saslwy8qKoqcnBx27dolt2/179+fsWPHPjYHD5MJlizBtGYNp4YM4eDo0XJmTr9Ll0h44QWUZgLJkthrUc896ppoNBpJSUmRQ6o9yst5+rvvOBIXx1mz7barRsPMs2dx2LcPzNc0gGJvb1YuXSqFJZsVrjf69JGJowUpKQQ3NEj7YHCwdI5YtYr8FStYk5SE1tYW/4IC5h8/jt0330jZYtu3I27bxqXaWnZOmmR9bfsRuLi4MHjwYEJCQtixaRP5paWSAvb8eVzT0sDRUdp//vxniRi1wOa5c7luofRxrKvj2ZoanL75RiIvW46PWQ4wtAF+A2iB6M6w8wCiW3fOnz/Pvn372kxE+JaVoNbqyTefQwWTib7OzsQsWmSVGXhLf4L1W75HzAoC2snqc3Ojaf16tpSVkZubC8Cgfv2I//JLlPv2cb9LF9bOnStt1/x8FqxZg21zM8dG+qNO28MgTRgVFRWUlZVRVlZGeXk5ZWVlVFRU/Ki6FSTiOjw8nIiICNzd3SkpKWH79u2ymigsLIyJEyfKhQIFl44T2D+2gyzqQAc60IEOPDE6yCIL/F8gi0AiZtatW0deXh5qtZq5c+c+cqYzOzubbdu2WdnOXF1dmT17drt2sX8Her2eDRs2cPv2bZRKJbNmzXpkBkNmZiZbt25Fr9fj5ubGnDlz8Pb2bve57aGuro79+/fLKhgHBwfGjRtH3759ZQXRiRMn5NaZbt26ccec79GlSxf5RrsFarVaVgbExsYyyjJPw2SC4YFw4gGiIHA4Lo6M4cMB6Sby2W++wbekhCZ7W7b87Tfklko3cUOGDGHs2LGScio5GcwVwZciItgxbVqbmV3BaARBQFQo6N69O7Nnz25jWbFUlykVJowmBQqjkXlr1hB85w6H4+I4NmKEPEBTGgzMW7uWbiNHUvbee+zes4d79+4BUhZHQkICQe0EQd+/f59NmzZRX1+PjY0NE7VazhQW8sDfX1YrAcRdvUrsli1t84lAUtYcPPjjNfBPCFEUubJ/P+lHjtBkY2M1Ox6ac5n+qXvoodVy180NnZcXZZ6elHt6UuLjQ4Wn5yMHm61hZ2eHh4cHnTp1onPnzvj6+uLm5vZYBZxYXs7R117jqJkwiu7cmTFLlkiD1b/8BX7/e6pdXEhetIgqd3ecamtZlJyMZ0te0sCBkkWupgZmzOCKnR07J0/GqFLh1dzMoOGOHL9aQW2ztWLDrrGRsenpRF65gmBxqhaBu127cjw2lrvdurVsQHnQPjM1lT5arTQYNA8KRFEkLS1NtntO3L2LQWfPg5sGqnQSmWVxHmmytWXHrGlkdZeO8Z7l+UxJ3oR9bS3nBg5k96RJgGR5GXDxIuUeHnz9/PNS4xEQcusWc9avR+HqCh98AEePSrZBQeDcgAHsTkiQGpkqK5n68ccolEquXbvGlhYLFtDQYM/eveO5dq0PGo2eKVNuMaTXcZqNBY9UnAAMDDPiKh7iYNZoRBT4+3kxe/BNbP/6LRtskqyUBGBW+M2dgn3hdEqy73J8Wyw3OveSlWdBQUHExsYSGBjItWvXOHnypBxeq1AoCA8PZ4CDA9e/+44zYWEgCNJ3d+gQkaGhCCUlUo6T9GZS/lBUFPzyl2AOqW6yt2fzjBncNi9bTGMjce+8g6IVYXHz5k02b96MyWSiS5culJSUyOd/Z2dnlixZ8h8pSXgksrLgo48oPHCAXRMmWGXTlJaW8uWXX/LWCy/gq1Ri0GhocHSUc3cUJtMj7WOCIODk5ISzszMuLi7yj4ODA0qlEkEQUCgUCILQ5kehUCBUVCC8+irCnTsIrq4IX3yBoksXhNdfRzh1CkGlQvjkE274+cl2LYCePXsyYcIETCYTx44d4/Lly4AUaDxhwgR69OjR5vNaUJSfz47PP6fYrMKxb2ig0cFBCnNftw6vbdskdRVS69vq1atpbm7G19eXBQsWtMlo0uv1LF++XB7s+xUWsjQ5GVXfvnD+PNf69GHnlCnoNRqcnZ1JHDmSgGXL4MIFboaFsW36dPQajRwGrzQYCK2t5Ya5EdahsZEXP/9csn2dPPkwA+vmTR68/jqr+/Wjyd4e36Ii5qekUOnhQVZYGDd69aLWIi9HMJlQGQySPawd2NnZkZiYSNeuXTEajWxYvZqce/ewbWpiyaFD+KSlSZbl2loYO1YiIi1w/qWXSLMgbQSjkadOnyZw2zb49Rvw2bfSH5YCwcAfAAMwaQJs2kJlYyMnTpzgypUrj82ZE4xGIi9fJmb0aNxfe01+XEsD23mbBwc+Zd5zkOszlAPmvDT/ggJmb9yIs6srRRs3svH0aaqrq1GpVEwaPZqIX/4SMjK4GxzMuqQkSbF19y5z163DRqdj76SueKfupb9Nj0cul9FopLKysg2JVF5e/vjcPDNUKhUDIzrTr4cWD5tbKHXX4NpFCp4pJbCKDrKoAx3oQAc68MToIIss0EIWVVdXP1Gj138TrYmZpKQkQszZOSDdTBw8eFBW17QgODiYGTNmtLE1/adgMBjYsmULmZmZCILAtGnTCDdnrbRGSUkJ69evp7q6Go1Gw4wZM+hpMVP4JLh79y5paWnywCwoKIiJEyfKs38XL15k165diKKIh4eH/LxHoVu3bixYsMBauv3e0/CbFfKvxb6+fLtsmTRLjKRumbNuHd6vdML0mwscPnKE48ePy8szq1cvHEaMQGxuJiM2lsNxcSAI2DQ3yzO8rQmVQYMGMXz4cKsKccvcKo1KRGeQXjN9yxbCr17l/IABpE2eLD9fMJmYtWkTIcHBHHv1VU6ePi3ZdVQqRowYwdChQx9rP6yrq2PTpk3k5+dbvaeoUKBRq5mxZw89zevZBvPmSYqZ/ySOHIFp02gwGNgXH8+1lv3KvP0ay8v58J//5K233nr8jL8ZSqMRD7WaTsHB+PfogY+PD97e3o8M9f5R1NZy8qWX2G8eYA3w9ibh+eelfen0aRg7ljpBIGXhQsq8vbFvaGBhcjK+JSXSLP6mTZgiIti/f79sF+12+zYKo5FcMwllaZOIDA9n7MWL2P/1r7IaqQ1UKgp8fcmIjbXK20AUGXLyJPF37sCRI5g6dbKyb06ZMoV+O96DP24CJRL7ZDGRnR8YyOaZM6lxdUVhMjK2TzqDu55BUE6GSxPh57/hUL9+ZAwfjmAykbR+PYEFBXz54os0mPfppwcNIuDXv5aCe0EKI6+t5bi7OwfHjAFg0JkzTNi7F31wKJ8v+Ad14kn5ULl0KZIjR0YwdmwB/fvfxGjMwWh8aDV0r6yg1/UbhOTksDF6Ng1h7dthIgMukeB/GtXv3MmqM7Fh7lwA7GxEmrQPj0u1Ws2A/n0Z6vMZzlUHqPi1Jyd8o7kSESETHP7+/sTGxhISEkJOTg4nT56UGx1BIshCsrO5MHAgJWYSJSgvj4QdO/CsqZHUVW+/DWvXwltvgdk2xrJl8OabmF58kYNKJSfNFr6Q0lJm/Oxn2JpVnFeuXGH79u2IokjXrl0pKCiQSXA3NzcWL178P3ftKijA9OmnnLx4kSPDhmFUqWSy6I033vhfv4b+N9Fy/ZBvn0QRlcGA0kygmJRKBJMJ+6YmlN7eCCoVCoUCo9FIXV0doiiiVCpxdXVFZf6bKIqUlZXJZIBNUxO+paUoevdG8PZGyM9HuHkTvVrNAz8/KZNHFPEtLsagUlFuviY61tXR5d49CgICqHFzQzAaUev16MznTLfKSnqGhaEIDpbIL1GU3jsri/rbt7kSGopRo2m/xexH6uRbtk18fDxOTk4IgsDZ06e5d/8+SoOBUWfO4POHP6Dw8UHYtg3h668RzMUJLT+Vixax1dZWcmeZP2/E6dOEv/MSwse/R9h3F8FkQlgmIjh5ovioVHrt9OmU//nPnD5/3lwIISHAz5Wg8zu4YdeHKjNpZomewITXX5f310wOsqV8KaPevM/QZPNqA3e6dWPzrFk02dvjUF9Pv0uXOB0biwHp2JsdH4/vwoVw7hw5oaFsmDULo0pFcG4uSRs2oNbr2TonlJCUvfRRtW19fRKYTCaqqqooKyujoKCAW7duydbKR0EhGHE3VeKRVU5zWRlPHTrUQRZ1oAMd6EAHnhgdZJEFWsiiL7/8kqeffvrJgi7/izAYDKSmppKdnY1CoWDmzJn06tWLmpoaUlNTrYKdAWJiYoiLi3vijKB/Fa1zgxISEhg4cGC7z23Ja2hR+owaNYqYmJgfr0a2gMFg4NSpUxw7dgyDwYBCoWDo0KEMHz4cjUZDZmYmqamp7cq2WzevqNVq4uLiiIqKkoiUy4dh8Ci5TdugUvHts89S5u1N0J07VLm7U+PqikavZfrc6YT2HgRIyqlt27ah0+lwbmhg+oYNnBk6lCxzAOyAc+cY03s/X9e9QI1P+7P8KpWKgQMHMmzYMAwGg9w8Z2cj0KSVDssx6ekMO3mSrJ492ZiUZHXzPnnHDhz9/NgzerTcTNOjRw8mTJjwZK0pokjt22/ztcFAkwW56ObkxLyvv8YzJ6f91735Jvztbz/+/j8Fy5fDc889zPUBTsQHcz50EtVmlURNTQ2ffPJJW7LIZMKlpga/oiL8iovxKSnBp6QElwEDEGbPlrKLfoKq7bFoauLCCy+wy5wT1NfFhamvvCLtS/X1MGAAjQUFrF6wgKJOnbBtamL+unUE3L9Pk4sLm3/1K26b7XxBnbzIz3+AUam2GoR5ubqSMG0aXVoyiy5dgrlzpQDxR0GhoMTLiwOjRknEk/m9XKqqSLh4kSvPPMONu3cRBIHp06dLFsorVyBhHBQ+DBgXBYETixdzqHNnRIUC94oKZqam0sneBMvLwdEIduGg/AJx4AR2jB7N5X79UOn1uFdUUOrrKwffeptMLBs7FtWZM/CHPyA2NHBw7FhOmImQmGPHGHXoEHVOTuycPFkmzPR6FQUFg+nZs7ItQeTuTq9evejduzc+N/cjxC8Cg7Tca4fPITfOmozWqFXMcd1F17dPU6Hw4Ltnn0VrY4OXYyll9d7Y25gYOXoSFy9elLPSFAoFEV0LGeaxCY+3qqm558jJuDguDhiAwXwu8fb2JjY8nF67d/NgyxZOhodL4c/m7e5na4vnxYtkdu+OQaNBaTAQ6+HBsJgYVC+/LDc9EREBX30lNxdiNMLvfsfVXbvYOWUKBrUaj8pK5owezb1OnUhLSwOkSYF79+7JxIKnpyeLFy+2Ip//29Dr9Vy4cIGTx49TZ7bmtUcWWWbJtQeFQoFGo5F/1Go1arVafp3lj8lkavNYm78ZjYhlZYg6HaJCgcnNDVGlQqyvR9TrEQUB0cYGUaWyaojswP8PYLkfWlooAZVahVGlRdA1YVcrojSYrEgsQRQxCQJ1bm4YLUPxjUbcPT1R5uaiaGigyd6ecg8PEATsGxrwKS5GIYoUBTji2jcKJ4VdW1VcO2q5Ns8RtQjGCgRjOYKxDFFfRkGphvwqfx7G90vLJWBCIRil/Dbh4T1DyzW0gyzqQAc60IEOPCk6yCILtJBFb731Fk5OTkyYMIHIyMifRGz8p2E0Gtm6dSs3btxAEAQGDx7M5cuXrWxnGo2GadOmEdaqqea/CVEU2bNnj1x/PmbMGIaZB4GtYTQa2bt3L+fN9eS9e/dm6tSp7bcGPQZVVVXs3buXW7duAVIewoQJEwgJCWHNmjWyDa09qFQq3Nzc5Fk4T09PJowZTbfpUZBZJz9v37hxnI6OxqG+nhe+/BIB2JSUyL0ukg1w5MiRDB8+HEEQKCstZf2nn1JpYZlSGgxMTEujv/MlLg6NpPa4C0fHxMnv7+PjY9VMBlK+lFKpRKfT4eigoqFeiygoGXz6NPF791IQGEjyokVWtpuYY8eoCAqSg3WdnZ2ZMGECPXv2fLL9VRSpe+stkhsa5BnpFjjX1DB33Tp8W7JVLPH3v8PPfvbj7/+kMBolK05L8Cpmi9Ug6HYOinx8SFm8mCZ7e/lG96Onn6Z3YSG+ZlKouXMl2bHNxKwEx3JBmpEWLP5VKBBjYmDaNMTJk8HfXx68tgw0W/7/qH+tHtPpyPr979nn5YWoVNLVxobxS5ei3LIF3nkHUa9Hq9Gwa/Jkijt1QqXXE3PyJBcjIqh1dUVpMmFjr6Gx2WCxxtK+0+/iRfrcvIli0SLEp54Cs+JA1Ovhk08Qd++2XjckosTysSJvb46MGiUr41ogAEOGDiWgvh5x61a4dMnq9c1uNpzrPYgycyhyQEEB4ZcvozIapfe2USMu1IBvE6LCEfKGY1qzl3ODBlFuJuMUBgMDz5/ncr9+6Gxs6HzvHj1LSxF79iQTKDQTCME5OXS+f5+CgABuBwdjasm8MpmkYY8FKWpra4unpyeenp6yYlL+PjJPwZ5TiIJAjbMzt3r0xKRqpaYTRToVFlLp5UGzjR02aiNavSSnCva6jaNzJ0T7wdTW1VFWViZnEoGIs00Nnvnl2JZJtp7Kvn2pbG6WP1+t0+FeUYGTKKIPCqJKo5GUI+ZjUGkwoDCZZLtOy/NtDQbEoCDo1En6Dlrvc1VV6O7fp9LVVdo2FoNajUZjFaSvVCpxcXGxImV+dB/+CX9r7zkmk6ldct6SLIoqKiJh1y6cmpoQx4yhZtYsSkSR0m3bKLWzkwKsvb0xPeJ85eTkJOcTtagCvby8nqxNrKFBahzcvx9sbKSw+QkT4Oc/l0Op+eMfMb39Nrv37JGtmSBNaAwxZwMVFhaSlpZGudlO6ujoSH19vfz/UaNGERQUJG2fkhLEuXMRHzygysWFrTNn0mxnR+D9+4wtLkb47DNMajWiKFJXV0d6ejp1dXXY2NhgNBpl4qpbbi4Drl2DX/0KMTzcmiAzGBDXrEE8epRaJydORkebW78kJdKg3Fzs5s+XPufrrzE2NHB5wABqnJys7MWC0Ujn+/epdXamxtX1kdZAGaKIS3U1Gp2OCh8fSxGi1YSMl5cXlZWVGI1GlEqlTGa6VlVh5+qKWF2NqNVKhJ0gYNJoENVqRK0Wk0ZDnbOz9F7m/V1hNKIRtGAQEE0CJoUC0UaDaBIRTSbpff7Lk2P/L6GDLOpABzrQgQ78VHSQRRawJItalAtubm6MGTOG0NDQ/7pi51ForeSxhKenJ0lJSf/5MNMngCiKHDp0SLZkxcbGEhcX90iy4vz58+zZsweTyYSfnx9JSUn/klUhOzubPXv2UFNTAzy8gW+ZhWtvEJOYmEhYWBiXLl2yqrrvdeMG49LTcamp4W5QEMmLF4MgMHftWnqYSSnjqumkey3jrDlXISwsjGnTpqH5/HOurlrF9mnT5JvtsOvXmZmxhcpPnTmxfARXYqS8ioCAAFkJ1q9fP5qbm+XWOEsoRAMmQUXv69eZuXkzFR4erFi6VFL+mG+gg+7epTAgAL159n3IkCGMHDnyyZVwokjtL37BSr3eSpYf6e/P3Rs3qHF1RaXXM2nnTiJaLEQg2c7mzXuyz3gS1NXBnDmwe7f8kF4DpcHgnwnZPXuydfp0tLa22NXXU1Vfz/tff81bb72FXcu6KhSPKpPpQAc68D+MFrLocGoqI2/fhg0bpAD8Fmg0UhB1UxMcOYJRqaS8b19Kf/lLqQmttJSSkhL53N4agiDg4eEhk0gtRJKbm1vb605zs3R+2b5dCuBfswYSE+WMMQBeew0+/phrN26wdetWmRALCQlh9uzZqMzqo82bN5OVlSW/dbdu3Zg9e3ZbS2tuLgwbBqWlFPj7s2rJEgxqNf3Pn2eSjQ3Chg1gvlbU19ezYsUKucEOYFhGBmNOn4Zdu6B1hX1JCcyeDceOcatHD7bMmIHW1hb7+npEhYIme3tsNBqmjx5Nz0WLJCWijw/a6mqSFy3igb8/gtHYhkQG2tjLNAYDnuXlPPDxAUFAo9Xi9+ABeRbZiYIgEBkZSVZWFk1NTQwZMoT4+HjKysr49ttvZfJr9P79xOTlQSslNImJ0KkT/OMf4ODAzi+/5KJFwYFDfT3LrnyLy51auA24OsGONMTNm8nZvZvjsbHkW5R/9OnTBxcXF65duyYHlds1NjLo3Dkim+rQXMvEZCapxEmTMHz6KaevnuL8qYtgUli1TkZkZdH/5EmUJpP0GmdnCn/9a44UFqLValGr1XTu3Jnbt28D4FFWRkB+Plf69QNBoMvduwwwE5B7E3szaOpruIp2rZRxJkR9OaLuAaLuASZdEaKuGFFfgSiCiIDBqKRB50iD1p5GnT0NOldqmx0xGBXQfpIgAEq9XlLVtXzXoohaq6W8qYlP/vGPDrKoAx3oQAc68MToIIss0EIW/fa3v8XR0RGtViv/zd3dnZiYGMLDw/+tGvp/BY+ynYWFhTF16tR/PYPlP4Tjx4/LQdNRUVGMHz/+kYRRXl4eGzdupLGxEQcHB2bPnv2jbW/tQafTceTIEavMppZK2NYICQlhngXJ0dTUxJGUrzlXWI2oUKDS6xl68iSXIyOpc3Gh//nzTN61S3ryeBdIKwGFDRcvXiQtLQ2TyYSXvT1BR45wLioKAJfqamrM1q8Ahzw4KVAQIa3X2NhYokeN4sSJExw4cACQCKMuXbrI+SOWEEwmhp46RcTly6ydP196X/ONrF1jo2wZCwwMJCEh4afVY4si1W+8wQ8KhVx/rQSm9exJnwULaNJo2DJjBrnmfKxBZ84Qn56Ocu9eqfnrP4W8PJg4ESyyJeo8pXt25zKBoyNGcNQ8WPIuKaHBwYEHRmP7NrT/Mlr2ZctwW3n/1usxSA8gmExoFAoE87IJooi+oQGDUtmmNaplYCYAdvb2su0GvV4KQzbneAAIjo7g54dgtitQUYFQVCR/Rsu/glmBIpitNhUeHtah3xafqzSZcHF2xtHdnZqaGnlwrtZq8S0vQdOkQ/AUIKI/wvUCKCqSrRgAgpct9Gqiqt6NkgZf6T31eoxqNTZNTXS7c4cSHx8qPT0RTWYnhMlEQEEBdc7O1Li4tMk+Uel0eJaX415ZiUNjo7Qu7u4QF4fg799m27coaXJzc2XFoHdJCSG3bmFSKMjs1Uu2MLaGl2MpfQOyEBwHIdSfBMGIYNsbwXMhCCoEQaCuro67d25TVFxMy8DMraKC7rm5eNvaYpw5k/tqNbdzc9Gac4M0zc10Lymh66hRCG5u5O/aRa6jo5zjZPkd2BgM9AsPJ7B37zbhyS3rdun8ebLNLUut4ePjw+jRo2WFZnv7Z3v//tS/NTc3c/XqVS5fviwrmlxcXBg0aBBhYWGy0kcQBLKzsxk0aJD1YPTWLYk02rABbtx4uAIajUTimIl7li2Djz4CFxe0Wq1MHJWWlso/TRbNX5ZQq9VyU1qLCsnb2xtHGxtYskTKiFIo4LvvYOlS+PxzePVV6cWLF8P331NWVcXKlSvliQQXFxdmzJjB0aNHZdWqysK6FhwczKRJk9pafi9fhuHDoa6OrNBQNiQlgSAw6sABYvv3h08/BUHgzp07rF69Wj7/K/V6FqWm0nn5colwssTp0zBzJmJRERkjRnB4xAgQBDrn5TF740ZMCgWbEhNl8iQmI4O4I0eocXYmMzSUG71788Df/7F5Qx5GIyE5OYScOYNLTQ0rnn6aRgcH2VZqCb8HD0g4e5ajTz1FTlUV3t7eLFu2DJVKRXZ2NhvWr5dJ/PArV5i2bRuCQvHQZvzhh1Lwvvm6fO2bL9lSVIJMgJhMLN6bTFBhBRTWgZ8fpl27yFyxggyjkRJf8zlHqSQ8PBwHBwcuXbokqwIdlc1E7znCgHMX0IQFw9WHRB/jxiHu2M5Zm82cOP8S415XcqH7ZO61KhFpaeLsqlZz8oMPOHjlCqIo4uvry+zZs3ErKiJ3yRI2jxpFs0Wz3cBz55i4ezeIIh/+YyJLX12Pl0EHTdfMP1fN/94AUz2iCPVaR8rrPeWfigY/yhp8qG189HVOEEU8KivxLi7Gs6wMz/JyPOvq8BAENPfuIQJXw8NJHzeORvP5p0NZ1IEOdKADHfip6CCLLNBaWdReDbuzszPR0dH079//J9uo/hXk5OSwdetWmpqa2mQ/xMXFMdzc2vW/jXPnzrHbrBCJjIxk8uTJj1RiVVdXs379ekpKSlAoFCQkJNC/f/+f9HmWjXHtZWJYPqZQKFi2bBm+5htMqsugbwAlejf2TJhAnkVbmENdHa9+/rlUE+8M5F0E137y3/Pz89mwbh0NFoOWwadPMzY9ndyQEDbPnYEe8wBdFJk0aBADEhLk51oGcrfI9z09XKmsKMOE9f4kB4y2mvW1U6kYM2EC/fr1+2kWSVGk6pVX+N7OTr55dFKrmdu1K34WZJpJEDg6cqTUugYEuruTuGQJTk7tBwj/ZJw8CVOmgEUYeXEIuN8HEzZsnTFDDmt2Ly+n0qyaay+zSNPUxJSdO+ni6QkrlnPQbwN7xb8S/wHEf2SOihalfwVRhMmTEQYNggMHEI4dA6Px4XN69kSYMQOmT0fo3//HW9727oV58yiwt2fNggU029nhYzSy8Je/RK3RsH37dqugVcyf00IsDTl9mpFHjqCZMgW+/x5aVHaiCN9+C6+//rCdzNFRynWaPVv6/ec/lyyBrTFiBM0vvMDaY8fI9/ZGrdXiUF9PtYeH9Da1tRiVSprMLUwKHuZa929oYPwnn6C2s5FsPCbgV8Cr70Cqq6TCsED2sP5sGDsJEQWjDh2kz7XrLH/6aRocHel65w7Ttmzh81dfxaDRIIqgUnpgNLUKoDdvjxbLpdUWt7N7WAv+7LNSo5rFwLy2tpYNGzbw4MEDBEFg7N1zDFm5S34Pk0LBtzOXUdK7bSvktME3iPDaJP3iMh1q0gAdOI2F4K2ALWzbBh98QOXt25yIjuZKZCRGMzHiW1xMzMCBhJWUYHr3XS6HhXEiJoZq8/LZiiJRJ04w+MQJbEWRrF//mpO+vhSaST7LY7q7SsXE557DzUId2rq5rptazR0zIQWg0Wp5pnNnvJ5/vs26/afQ2NjIqVOnOHfunDxx4unpSWxsLH369Gn3/J6ZmUmvXr0ePRi9fl0ijdavl1Q4reHhIR0L06a1+ZMoitTX11sRSCUlJVah0K1hb2+Pj7c33tev433wID6lpXj94hdoXnsNUlLgqackAmPaNFi3Dq0gsHbtWqvQcpBIiREjRjBkyBDOnj3LkSNHMBgMqNVqxowZw6BBg6zPxUePQnw8aLWcjYpiz8SJAEzfvJnwxYu5MX48qampLSuGe0UFlZ6eqJVKkubOJdgcaC6fC155Ba0gsH3mTDLN58ZBZ88Sf/Ikyvfeg1//GmNtLenjxnHWbKHTaLVP1BA5ePBgoqKicK+shMWL0Z87x4qlSyn285Nb1Sy+BIaePMmYAwe4OGAAaZMmoRRFli1ahE+3bty/d4+UlSsxCAJdb9/mbteuoFAw5Px5xu3aheDiAuvWgb+/lNPV2Ej5K2P50mMoIg+vdeMP7GNwZjZUVGLs3p2r//gHJ44fp8K8LGpBIHLgQNRqNZcuXZJJRBcXF4a5ZNLvtRWo6gzQOxhu3H64/NHRVKavYJP4GsG/28eoz0BhAoO7C9cS55Du6ioRPxbHp7OjI7Vm62FkZCQTJ05Efe0ajBsHFRXsnzCBk4MHA9I1O2HXLvpfvMiZ97ozYGYX1E03QV+E0aSgqtGd8npPyuo9qaj3pLzei/J6b7SGR99L2tnZoVYq5WWwbW5m1MGDDDh/HoUogpsbTJ4MnTvDV1/R2NjIhQEDuDBwYBtSvoMs6kAHOtCBDvxUdJBFFmjPhmZnZ0ezOaPC0ptvb2/PkCFDGDRo0H9F5WA0Gjl8+DAnTpwAHuYC2NnZERISwlWzPejHrF//k7Bs6unVqxczZsx4pApLp9Oxbds22YoVFRVFfHz8E1n9GhsbWbNmDQ8ePMDGxoZZs2aRmppqpQQD6ywFBwcHXnzxRSnzZE5f2HAdkNJi9sXHc6YlYBap0Wj83r24b14GI9+3es+SBw9Y99ln1LTMJJpMxO/bx+AzZzA+q+Rrp+epcJIygARg0uTJbYiww4cPc+zYMQBsbWxwEQsp0XniUF+Pc00NRf7+j1z3SEdHxr7wwk9vuzOZqHjpJb5zdZUa2gB/e3vmennh8NRT7b4ku08fts6di1avx9HRkcTExH9JBWaF1aulAZpFsOy9/hB0Ecq8vFg/Zw6VHh4IRiNKk+nhjLYoUlNb276ySBTxLyhg6smTeH33HVeGVbKcefRLrmfhUlC1Hkd6eUnV5XFxsHOnlGeyfz9YDMbp2hVmzICZM2HwYEmV0AKTSbKy/PGP0qBi0CBKJk4kpaGBBkdHXA0GVD4+lFs185mQqBkJw44fZ4y3N2zcKG2Lbt2k/w8Y8PAlNTXSzLuFTY+oKMlW4+0thV5v3Gi1ak12dqxeupQHXl5SuPbq1fgVF7Nq0SLyzYHZbhUVBOTnS21z5vVSiyLDIiKI+ugj7E6dgsAAyC8AFfAtEDMBKt6E0VOgsZHCTp1Y+dRTGNRqIm0vM+X2NoTv4F6nLqxbPA+djc3DwWorslMQBLp26UJhfj5ao5G+V68yfcuW9k0VoaFSVTuAr69kWUlM5H5+Phs3bqShoQE7OztmTZtGt88/l75XABXUuHrw7VNLaXRwaLfEKbqvjtGB76NQmKTQ7uZc0DbCwe6QAtwykxm2tvDUU9RNr+LUg0rO3x6IXinZIN0rKhh2/DgRbm7wz39y/dw5jl+6RLmZNFIbjQzs04ehEybg6OjI/fv3OXXqFNmtwsoVRiOjwsMZOmMGANu3b5fP8UFBQdy7d09+rtJgwKhSYd/QQGJdHUEffywRa/8h1NfXyyRRS9Oat7c3w4cPJyws7LHn6B8li1ogilJw+/r1EnnUipwhOFgiB6dOldRHj4HJZKKysrKNEqn1RI/lZ7sJAt49e+JdXY3P11/jXViIR0QEiq1beVBXx9q1ay2yq2DgwIFMnDhRvs5WVFSwY8cOmVTq3LkzU6ZMwcNMygLScTpjBphMpI8dy6lhw1AYjQw8e5az5uuNIIrM2riRkIoKNv7hD+SWlaFUKpk1axahQUHw8suwfDmVbm6snzePMi8vKRdv9276l5ZCeDhiRgaFLi5khoWRFRpKpeUytIKDgwM6nU7+XgFcXV15XqHA5q23EBsb2TJjBtfDw9sct7bNzTTb2mLT3MykXbvYPnUqBrWacXv3MjQ3l5Lnn2el0UizjQ0ht26RtHkz1+fPZ5v5mjHm8mWGvf++dP4d2A/u3kc3zJZ/THyFRr2D/HnhV64wbe9eDHo9lyZP5mR0NDXm78K2qYn+AQGIPXpw8eJF+ZovK78b16Cc8neoBHr6Q3bhw689IoITRxZx4+TbzHqhCQ/zLmeaMxuFKMCGDdQ7OrJ3/Hhu9OnTZttFREQwZcoUFKdPw4QJiLW1HB07mqPDYgHJilZhzv8LzcwkpOoWlVM9KFdIaqGqRndMYvvHjiAIuLm54enpiYeHh5TRplCgz8hgX0EBZebrfZ9r15iwZw/2bm4SwTl9OvTuTfUvf0nWrVtcjYigyM/P6ntTGgx0z81l0Jkz1FdXE1lV1UEWdaADHehAB54YHWSRBVrIol//+tdtrF0tSpWWxpaWkEsbGxsGDhzIkCFD/mNNNLW1taSmpraxVPn5+TF79mxcXV2tLE1Dhgxh3Lhx/ycIo8zMTDZv3ozRaKR79+7Mnj37kQosURQ5duwYR44cAaBr167MmjXrsURIfX09KSkplJaWYmdnx/z589m+fbtsQ3FwcJBv8lUqFc7OzvKgwdvbm+ecS1Es+KP8fnWOjnz14os02dsTkJ/Pg06dMCmVKEUjQ2NHEBsbK2cB3bhxg+2bNqEXBFyqq/EuKSHHPMvbN/8KFV08eGAKQGkw4KtS0XKbOmDAACZMmIBSqSQrK4vU1FSMRqOV+sm2sZGnV6zAvaKCVYsXc99C7dQCNRBtnt3+SQSlyUTRCy+wwstLJl8i3N2ZLIooW6lFZLi4wO3bVAAbN26ktLQUhULBuHHjiIqK+un7mskEv/sdvPvuw4eA/Ejochkyw8LYNm0aOhsb2c7UGsbCTP783Qbef24S98L74lvWdtbcraKC2KAgvF8fy1eK6bgevc2LU8C+1vyEFhsYSDfbX34Jfn4SMZOWJhFHe/Y8VLSAlKsxfbpEHPXpI9laWgic556TCAwbGyq++YYfcnJoaKPAkgKsbRXNdLpXwp3OEmkTd/Agsd27Ixw6JNnyNBop6PvFF62ZjaNHpXyPlopklUralr/6laReOHoUgAZ7e1IWLaLE1xe7xkYW7tyJ34wZ8NlnmOrrWTdnDrk9rdvCXKurEUWRGrNdS2M0MvDiRYYeOYKjry/cvg1ewGrALwg8V1IS/wYp8aNpcHSke04Oc9ato2qWM863GrmlD+FETAzFvr7tKrNarDtr166lrKyMTp06sSQkBPWYMVZNeFbo3FnafwoKEIELS5awp2tXTKKIj48PSaNG4bZsGZgJWJxVGBpEVr6wlEJPf1yrqqzsaJbBu0EBDszq/REO2lLYZg+rm6DcvH+4usDLr8Arr0jknGiCK0/T+M4GzlZFcXbwYNkS6mRvz9CcHAasXInaYCBz2DAyJk2i2KwMUyqVREZGMmzYMNzc3CgvL+fkyZNcuXTJKizYyWTCrXNn7hcUIAgCAQEBVteBviEhxK1ezabAQIo6dUJhNBJ/7RqDPvoIoXv39rffE6Kuro4TJ05w4cIF2Wrl6+vL8OHDCQ0NfaJj/onJIkuYTFI7XEoKJCdLqrYWODvD/PmQlASxsdak7Y9Ap9NRVlb20MZWUkLJ3bs0POL5CoMBW6ORRvO1X6lUyhkzIJF2c+fOla8Hoihy7tw5Dh48iE6nQ6VSMXLkSIYOHfqQUPvhB1i6FFEQ2DxzphUJoTCZmLd6NcF1dXDgAIZevdiyZQuZmZlSa+GFC/TdsYPbwcGkzppFs50djnV1zN6wgU5FReR16UJmaChZYWHU/4jqs0ePHowYMQI/Pz8qKytZsWKFbLcD6HfxIlN27CB93DhORUdbvdbZ2ZmEhAS6dO7Muu+/J6+iAkEUEQWBbrdvs2D1ampcXFj+9NPUOzkReP8+C48fRx0fD59/zsmhQ9kfHw/AlPhI+v3qRTj2ANEfVvxsKQV1DycgfIuKmL9uHZf79uX0iBE0mLe1Q309/a9cQTtjBpcqK2Wyy8vLi9jYWHr37o0i+0sY9woUAJ3doaBa2rcAQ0gQq7d40OuvF4haL32WIcgf1V8+kCyJLe2E0hfP/nff5WQ7lseudjVM+jQZ1+JKdk9J4EI/qQW2U0EBKoOBIj8/ayVWK6jVajw9PfHy8npICnl64u7uLtk579yBrVsxbN/OERsbTkZHIyoUONTXk3DpEmGDBsH06YgDBlBcUkLWpk1k37pFSTttnx7l5cQcO0bE1asyEV8ABEIHWdSBDnSgAx14YnSQRRZoIYtu377Njh07HhmyCdJNik6nk5+jUqno168f0dHRT1Zb/ghY2s4slTGRkZEkJCRYNcGcPXuWPXv2ABIhkZCQ8H+CMLp9+zbr16/HYDDQuXNn5s2b99hcpczMTLZu3Yper8fNzY05c+bg3c7NT3V1NSkpKVRWVuLo6MjChQvZs2ePPOseEhLC7du3MZlMODs7yyGXlu1B3fJus/CHFEAawq+dP5/ckBD8Hjzg6eXLqXJ1Ze/0idwOkGwAzs7OjBkzhqKiIjkfqdvt28xMTcWuqYkzQ4awb9y4hwoNnY659+8TtHIlGSdOcPjwYUDKF+rTpw979+5FFEXCwsLQl5wht9IZkNpinlqxguMxMZwbPLjdfJsW2NjYMHToUAYPHvzjpJHRSO6LL7LOx0cKuxRFxgUGMrSwEP7wh/Zf4+cHOTlgtirpdDp27tzJ9euSGqtv375Mnjz5yW2YDQ2wcCFs3So/pLOBKn/wuitweNQojsdKs7Ot11dEJN+/hue/2YHf+TsEAjVAXh83FiVPJOFGJ1yvQoN5WVugFEU6d+9M8ZA91Ou28kqCEa975j+a278wmSRb0yefSLklLZ/b0CBZzDZvloJm6x625aFQSK9TqyWi6Zln5D8dPXpUJj5br0tEl/uMnfpL7PHm2Ouvc6RbN0BSGI0WBAQ7O9ixQ3rdrFnWtjR42Br36afyAIjAQImoeuYZ6nQ6khcvptzLC4f6ehatWoV3RYWkflq0CAYNotxoZPkzz9BsJjiUBgPPff01HhUV3OzXj4zBgyk151+p9Hr6XbpEdG4urrduYRpgi+KLZqq1rvxtz89R2xrwLSpi3po15HXpws3evcnpEYJB1f4+odTpMGo0dOrUCQcHB3JycnB0dOTZZ5+V7I3ffy9l1jwGBnt7do8ZwyWzUq+3SsWUoUPRLFgARUXg5AQrV0JYZ3a9/ScuhA/ARt+MKCjRqdREXrjARZ+BKAIe2lNNJhPOJgOJ61YRkGMmZbwFmCfC3FDodwjUftJ3mZICb74J5mYsXTcNF3wGcGroUOqcpePYrrGRwUolUW+8ga2nJ7dv3yYjI0NWoAiCQHh4OMOGDcPLy4v6+nrOHDjAmYsX0bdSYXp5eckkOEg5Z5MmTZLa1X73O3beuiWpw4B+164xceFCVFOnPnYbtoeamhpOnDjBxYsXZRLN39+f4cOHExIS8pOuKf8SWWQJoxG++Qbefhssgp8BibSdPVsijgYP/nGb6CPQ8Le/Ufrll5R4e1M6ciSl3btTXFSEsZ1ihNawsbEhISGBkJAQ+dxbXV3Nrl275LBjPz8/pk6d+jBL7qOPEH/5S3YmJHBp0CDpMVFkztq19KyqksjeXr0Ac5nFN99wpbQURJGwrCyyevZEVCjoVFDAwPPnyQsKIis0VFaItlnGpia6375N0J073OrZU57QCA8PZ9KkSajVakqKi1nxzTfoLF4XmJcnZR615FWJIkOjoxkZFyef6/V6PV9++SXV1dUATDtwgO6XLrFi6VIqPTzwLilhyQ8/YGfR1srSpeyfHs3JCwUIoomkdevpmXeL9I8XcKrsIcFp19hI36tXuRoRIWcAuTQ20v/UKWo9Pbncr5/8Hfn5+TF8+PCH7Z+F22HMNMgCfByg2gBm1VFTgAv7Xqln7HtGHKpBVAjwszcQEiZLys2iIvlaa3J3Yf+fXuZ0ubS+Trb11DW3TAJKpL+UPi0+EXGp1ukYeO4c3YcNw/O113AytxbKEEW4elW6Nm7dClevUuDvz/Zp0+SW0r6CwPgpU7Dp25e8vDyys7PJvn6dGguyrwWCyURoXh5xaWl4mc9TluggizrQgQ50oAM/FR1kkQVayKKamho0Gg1btmwhJyfnsa9RKpVoNBrZM69QKOjbt688GHhSmEwmDh8+LDeLtcx+KxQKJkyYwIABA9q9ab906RI7zINMWSb9f6BK9v79+6xduxatVkunTp2YP3/+YxVDJSUlrF+/nurqajQaDTNmzKCnhQqioqKC5ORkamtrcXV1ZcGCBezfv1+2cwQHB1NaWkpdXR29e/dm+vTpcvNZs+WNKxB24waJmzZxfuBAdk+aJA2av/kGr7IyUIB4ZTnZqmj27dsn3xS3YNjx44w6eFDKCgAaHB1Y/punqdJJrWJ2zc3MW7KEAPOy5+TksHnzZiuLXEREBE5NZzl+ywZMJuyam2myt2+TD6HW6ViwahVV48ZxJDyc6lbkpa2trUwatUvGGQycf+UV0syNNgqjkTk9exJy7pxEMrSHnj3h2jWJDLGAKIqcOXOG9PR0RLOiY/bs2bhbtKm1i8JCSEgAiya/Wi9Q6kGhtWPzzJncbk8RIYrcCm3CpuEqX7xyALsmAwV+fgQWFVHj5YVzWRm1TmqWrBxJWVQY7/8sn0OhfWRCzMr2pBLRBl0nbnMWsbtzsWn5Ljw95YE/8fFSNkhrm51WCwcOwPvvg/nYlOHiApMno506lVXl5RSVlLRZDUE0MSGykEGT/wFKM6FlMnHqj38k3UwODDx7lonXryMsXQp//atkh2vPlgZw756UT2Em7gBqXFxIXrSISg8PnGtqWJScjIelBS4igqtvvUXatWvoNBqZuAFpH3tq+XL8SkoQgVu9epERHU2heSChMBrpffU6w09kUBHuyslpsdyv7IJKMOJcZ0OtTZNV+O2jcrbG7dnD0bg4eYCrVCp56qmn8Le0XL74Inz1VZttCFDn5MTG2bMpCAwEUWT0gQMMO3HioXWtVy/YsgV69nx4TjTXfde4uRGo07L4/Q8QFQo+n/QytZGuANg0N6O1tUVhNDLh3CEGRJ1AmABo7EBsApvuIH4Dr/0FzMQvvXvDnyKgbC38AgyNSq5GRHBi5EgqzaSRRqNhwIABDB06FCcnJ/Ly8sjIyJAJBZAKCmJjY/Hz86Ouro7ln39OjaUV0gLtFQeI27Zx6rPPOBAbi6hQEJCfz2xvb5z+9KcftW4BVFVVcfz4cS5fvixPSnTu3Jnhw4fTrVu3f2ni4d8mi1qg1UpE54cfSuSopSIQIChIIo7mzIHIyJ9OHH37LTz/PA12dqS/+CJXzapg+6Ymgm/dwuTiQklEBBW1tW3y8Frg7OxsFaZdVVXFqVOn0Gq1KBQKYmJiGD58OIIgsPn3v+dmy3FiMoFCgU9xMU/t2oXN6dNSho8owt/+hvjWW+yaOJGLAwfKn+VSVUW9k5OcmdUaXiUl9KipIeTECQJralDs2CEpmnJzOTV0KAfGjkVUKPD29mb2yJF4vPkmhVeusGLpUkztvKdfSQlTX3oJn969rR7Pu3ePlatWyb8LRiOutbVUubnhUl3N0uXLcbYk180QfWDH5KlcDuiHSq9nuKeGQzUW21UUJXuleRt5urgQefQoZaLItfBwudUrMDCQ4cOHExwc/HD/rD4L46PhjBGc1YAdmCeKmtyUFHc30vWc9FRD/z6ovv0BLh+Gl34LWj2iAI32DtzvF8iBiWOo1EnZYTaqZrQGGx7ZOiaK2DU2EpSXh0t1JRkvRfPswGfw8fCmvr6e9evWUV5RgdJgICEtjX4BARLh7OgIp05J5NC2bZKaCDCoVBweNYpTQ4ciCgIOdnbEWyiSc3JyrO9lLM6xKp2OARcuMLTgPi432rastqBAqSTQaOwgizrQgQ50oANPjA6yyAKWZJGzszMmk4kjR46QkZFh9TwbG5s2+TjtISwsjJiYGDp16vSjn7t582Z59rllxtvJyYnZs2f/6EX92rVrcu3vj2UF/U+iqKiI1atX09jYiJeXFwsXLnxsSHJjYyObNm2SlUJxcXHExsZSWlpKSkoKDQ0NeHh4MH/+fNLT0+UqYz8/PzQaDXl5eXh6erJs2TLZKtDQ0MD+/fu5YkFWAIRkZ3OnWzeMajXxe/YwpEWG/uFI+IU0KMzPz2fNmjUPv2uTicFnzjDyyBFstVpqnZ1JfnMRFaIndo2N2Gq1VLm5oVQqSUhIoF8/KRj74MGDMgkI0LuLiht5ks1j0o4deJeWsmrJEquBgE1zM8u+/RaPsDDYvx+jRsOlS5c4evSobIFsgZ2dHUOHDiUqKkomjUS9nv0/+xmnPDxAEFDrdDwTHo737t2S1aM9REdDRsZjZ0zv3btHamoqDQ0N2NraMmPGDELMzWltcP68RBSVlsoPFfcAr9tQ7unDujlzJPuTJbEgijiZavjry/W8+7vjPPetOa9m/HgKPvyQwPBwarKzcX7mGWlZgb+9Gc6HfxzKzt/Uc1LlTa2LCwqjERHa1kSLRoJv3yU0K4ue2dk4+flJBIxOJ93Ef/ABPP/8w22g1UqtSd9+K/0+eLBEFuzeDcXF3OjVi23Tp7dpC1Khx762gVpnVzQGA3MTEwkyq0BacGHVKnbdvQuCQMTly0zZswfFu+9Ktoh79yRb2t//Di+99HD7XL4sEVcbNgBQ5ebGqsWLqXF1xbW6mkUrV+JmQXDq1Gr2TJzIZfO+2KWkhBmrV3MpMpIjo0cDksJoQUoKQXl50iYC7gR140TsMO5aBO3aNTWZbVfmGXYz3Kqq6HL3Lpm9elmpHToX3cOlooZrfSJQGI2E3LpFdlgYACNGjGDkyJHW341OJ9WqtyLl8gMC2JiURL2TE7ZaLTMPHKD7uXPWrw0Jgd//ngfR0axYuxaj0Yi3RkGpzoRjXR3PqjNwCnoK8aWXwWjkzODBpMfHIyoU2Op0NJvPFxE91CQE/wm1Ugs6FawwwCpAj5QL9Pvfw4IFkvKlZdCsAXRSMPzNDz7guJMTJWbiUKlUEhERwbBhw3B3d6ewsJDjx4+3qWGvra2lvLwctVqNQqtF2+oYDOnenREjR1qTawA5OeS+8AKpgwahtbXFqbaWpNxc/L/7TrLOtYOKigqOHz/OFXO7E0gWqxEjRtClS5d/S536HyOLWnDpkpRx1nL+9veHykprm2hIiEQazZkjK3R+DKIocvXrr9l37560T4sigwcNYlRICJoJE6QBvJ8fhj17KPfxoaSkhAsXLrTbtmkJhUKBSqWSlaxOTk7Y2trKCjG7xkYSN25k86xZNDg6Epyby9yrV1G+8Qb86U9w9y6Ffn5sSEqi7jEKZaVSSVe1mh6pqYTk5OAaGipZqTQaSE+HESMkUmrhQli7lntdupCamEiDoyM2Wi3TtmyhW2Ehm559llwnJ6vz7/jdu4n64AOEuDjLDUbzjh18ffIkNfb2hF+5gs7WlizzpIhGq2XZ+vV43rtnTeqpkU4XBilwfkNSklRe8AjlrK/RSHhUFA82beJGUJBEPCNZ1IcPH952/2y6AzN7w55msFWAk4ds19XbACZQ68Fkp0T82UCq420pX11K+XU3yr28KPf0pNzT06rNrDVsBQHPvDz0arXUwtaq2TLy0nnO/TWWd/r8AqVFLp1Wq2Xbtm3ysS4HkiuVVuUO2NpSMG0a2/v0odxs//T398fGxoa8vDyr8Ha1TidtTvP5yq6xkagzZ4i6cgX75iZobue+VKGASZNg7lxudO1KnyFDOsiiDnSgAx3owBOjgyyyQGuyqAU3b95k27Zt6PV6OWdGqVQiCAIGgwEbGxtsbW0faVsLCAhg1KhRBAUFtbkRz83NZevWrTQ2NlplaXTp0oVZs2Y9cQ5SZmYmqampmEwmevToQWJiopVl7X8LZWVlpKSkUFdXh5ubG4sWLXqsTc9oNLJ3717Onz8PSDeJRUVFNDc34+Pjw9y5c0lLS5MVX46OjvTq1YuzZ8+i0WhYtmwZnhatQgDcPELetCWkjU2grNUAKujOHRalpEhNWQPs4Gw5KOy5cuUKu3btwmAw4KLX456fz12zdcihvp6hJ09ybmQUNRpXnGtqWJicjNOKFWxrapJvDqOiorC3t5etSR4eHlRY3CTGHDuGbXMzh+PirDN6RJEp27fTr7kZTpwAC/WOXq/n/PnzZGRktKmRtrOzk5r6+vZl2zvvkGO2Mdk3NPBCVBSOq1dLoavtYdo0SZnxBAPF2tpaNm3aREFBAQAjR46UZ9BlbNokDVTMRJuIlE/U+TJcioxk5+TJbYgcz7Iyrsc3s7dPA5sSDzDwQjmiICD88Y/w9tsUPHhAYGCgdHza2cFvfgN/+xuSZ1uJAAEAAElEQVQAx2J9Sdowhr/tcUN/ooE8s0Io6O5dinx90T5iMOBfUEDPsjJCq6vxPHpUokCGD5dsUTY2kiXs3Dlpu7zzDvz2t6BQUFddzbbkZO60WGUs261yc5hYsgeHyLGsr3TkbmAgKqORxIQEephbc1pw7cABtmZkICoUhN28yYzNm1E9+yw8ePDwu5oxA55+WgpvNttOAcqnTiU5LIw6W1vcKypYtGoVLrW18t9LvL1JTUyk3MsLwWRi+LFjDC8qQmEyQU4OZwcNklqazO1skzfupHvWLZzMqS46tZpTQ4ZwftAg6i3OhwBOyjoiul6ml38+jTa/Yt2eexjN36dNUxPj0tPpd/ky4hjY7DqLm717W20jV1dXnn/++baKuJISSU1VKCV+Xezfn7SEBExKJV6lpcxZvx73ujpJfSUIkoLGrMZptLfn2+eeo8bFBS+NhjKdDgGRxSt+oMv9+xDqCVkPrRnZXXuwNnE+CnsRlUqDwSAN8H29HJktfo7bB3nQwg0M08A3W+F4Pvz61w8tUgsGweJzUiC2mYMV33+f3BkzOH78uJX9rHfv3sTExODj40NpaSnHjx/n+vXrMmEjCAK2trbWx3WrwXTnzp0ZNmyYtT2soYGKV15hvb095eYA5MnHjhHx/vtS45QZZWVlZGRkWH1mcHAww4cP//eD6834j5NFIH2/H3wgkSl6vaTomzdP2ld2737YGAhSpticOZJV7REZTlVVVezatYs7ZkWHd2kpU7Zvxz88XLKeVldLSsNr16SmqT17JJIYuHPnDuvWrZMznVxdXQkKCqKyspKSkpLHTiIpjEZ63bxJQEEBCoOB/ePj0as1RF66xPCjR8kMC+P8oEFUubm1ex5WqVSEh4cTGhpK0M2bqGfOlGx7w4ZJ1wlBkNSIs2ZZv/D77+G556hzcGBTYqJkNQNUooihnc+JVygY8rvfSb+IorT+f/wj2/z9uRIZiWt1Nc/a2LCzVy8y796Vnzdlxw76XboEPgooM2EVxmVuNmxyceFvr7wiqZks9u3AvDz6uLhwNyyMrJbGQCDE35/Y+HgCAwPbblBDBTwdAslVoAR8vaCwDK2NDWWeHlR4SERQRU9Pyrt4UqH1wCQ+fhJNo9EQFhZGYGCglCe0dSv2b7yBUalk8+zZEjnWjjXc2dmZiRMnWqmhqa9H3L2bYxkZHDHfk3TOy2P2xo04iCJMm4Z+6lSOODhw6sKFNiUqLXDV63EoKaHUy0tWHjvX1DD01Cn6X7yIBiSivT0kJSEuX8798nLOnDnDmTNn+PjjjzvIog50oAMd6MATo4MsssCjyCKwtklZBhO3qIzUajWjRo3CaDSSnZ3d7gyko6MjUVFRREdHIwiClWrJMldn8ODBjB079ierg3Jzc9mwYQMGg4Fu3bqRlJQkK2z+N1FVVUVycjLV1dU4OTmxaNGitoROK1y4cIG0tDR5O/v5+ZGUlMT27du5a75BVSqVjB49mvT0dAASExPp1XpmWa+FQV5wpQ6jQkHG8OEcHTHiYS1uTQ3Lvv0WR0MD3D2C0TuG9PR0zp49C0CIrS0z/vhHbJubyQ0OZu+ECVRYLLtzdQ1Lf1iBy89/Dm+/jSiKHD16lKPm0OEWxMXF0dmthuTUc4gK6XtV6fVtFCktFgWVwUBifDw9YmLa3T46nY7Tp09z4sQJeb9pQUv4KEhZSM8NG4bt11/DoUPtb+znn3+k/edRMBgM7Nu3Tyb1evTowfTp07G1sZGawn7/+4erJEBRGLjkObBu7lwetLpJVWu1jD91jMR1PQm98IDVC4/gVtUs1WivWSMN3ICCgoKHZFHL8bllC+KSJQh1dRT72JG0YTRhjj2Y8mEB58z7Qkh2NkH37nFu9GiqZQLVup0MwN1opOeFC4Reu0ZAaSkKpRIaGyWybu1aiI/HZDJx7tw59u/f36au28lQx/ijuwnLyJR1NwYbG1JnziS7Rw8UJhPTR46kj+WMPZB99SqbUlMxKpV0z8lh9saNqPv0kVRZ779v1RyHQgFJSZS++CLJp0/T0NCAl4MDC7/8EifzcSECFwYMYN/48RjUapxqa5lx5AhBhYXSABvQe3dCXfqAq336sHXmTHmWfEjaSbKdYvH0v8PdLv5t90+LgVKX8nxcvMu5aoqkRWkUevMmCbt342ihfqtKcuWLkJcxqlQoDQbsGhupd3YmMjKSqe1l7Jw7h3HECPbGxXE+KgqAsJs3mXrjBjY3bjx83nPPwWefwZdfYnrnHdZMnsyd4GCcamqod3REVCqJv3GDIXt3QZ2ZgFEIMGUqZGZCdjYlbl58Puc11D4GQIFGpUBnMGDb1MSMzZsJqc6FnwP+wAdKuG7+ziMjpWNmyBAo+Tvk/xy+Ab43L9uf/gS/+x15eXkcP36cXIua+B49ehATE4OLiws//PBDG6trC8aOGkXwkSNsKSqSs6Ra4OnpydChQwkPD5cmBUQR7T//yZbTp7nVowcAQ06fZuyECZTNns2xjAxu3rxptQyxsbH/8QHjf4UsasH167B0qUTeAowdK+WNXb4sKe327rVuNBwwQCKNZs+GLl0wmUycOnVKrr1XKpWMGDGC6MZGlNOnS2qlESOkhkS9Xjr+Tp+Wstu2b5dUb0j3CZbfm52dHYsXL8bb25va2lpKS0vJz8/nzJkzbc7NbdBeTV8LTCY6qdU4Bgdz69YtAPr370+CszOK8eMlkiw6Gk6elJ7/2WdSGHtrbNkikc3V1dQ5OPDD0qVUtW5Ms1gOQRB47tln8bl0SbICnj3Ljd69SU1MRBBFFk+fzvWCAs6fP4/CaCT49m1yzPvchII0op4+B/ne8CcVXH8gf0Shvz9rn3uORksyxGRi5OHDFHTuTG6LQlUU6XX3LjFLl+I3YkSr5TSC9g5iwznq3vsl5VttJHVQF0/K7SRyqK7VvZslVHo9nuXleJaX41ZVRd6oUdw3n1979+7NlClTHt4zvfsu/Pa36FUqNs6dS25wMEqDgVmbNlHr4sKBMaPRa6zJ7rDgYCY0NeG0Y4fUsGkmD7N79mTLzJnoNBqca2qYvWEDxUuWcNDFpc2kD4C/qyudb92itqSErNDQh/a8sjKGnThB32vXUD6qEADAxQVjairXvbw4c+YMRWYCrqamhk8++aSDLOpABzrQgQ48MTrIIgs8jiwCaGpqIjU1VZ6RbIGtra3sJW+psm9oaODWrVtcv36de/fuWeUeCIKARqORZyFbiCKVSsWUKVPo27fvv7wO9+7dY+3atej1+icKl/6fQm1tLSkpKZSXl2Nvb8+CBQvw8/N75PNzcnLYsGGDPCC3s7PD0dHRKvB1zJgxHDt2DJ1Ox9ChQxk3blzbN/rlGPjooPxrYadOfP/MM1ZWK6XBwKTOtQTP+QupqamyGmB4jx6MXLwYwWIAkh8QQMriRejV5htKUWRARQWj3nsPe7MKTBRF1qxZI+eT2NraMiV+IDtS99OstsO+vp7GFsWYxU26wmhk5qZNXBk0iFvmTIZp06YR3sq+ZImmpiZOnTrFqVOn5NnuFghGI3G+vgxOTkZj2fZiiXfesSJ2fiouX77Mrl27MBqNuLm6knT5Mj4rV8p/19pCcYAzV0OHc7F/f2uLmygy8Nw5XLwbGPV1ML//8yXe/usl6W9RUZI6yULx0C5ZBHDrltRUdv06BqXAr9+LYt/SwXz9RgmHuoRgVKnwLCsjceNGSqKjOT46jtLKamkbmSSbUoODg1V2h31DAz2zs+l59y7dPvgA9YQJFBYWsnPnTtliZInBXU8T1+MwNq6DoOkvsOOIpFK4dg2j4v9j76/D4joT/n/8NcrM4C4JAZKgIUKIECTE3Yh7ZSvb1a48292udK277Xq3W/e4u3sChCTEDUsIkOCuw+j5/XFmDjNA2nT32efz/V0X7+viajMwM2eOzX2/77fI2btggRhGLAjMNZsZ+eKLYkC1DcX377Nl3TpMcjlhJSWs2Ly5K1vJDrkcXn2VypdeYv2GDej1eoKCgli9ejWuWi387Gd0vv02++fMEZU8QGRhIfP37MG1owP98CSK5FEMuyZKYNrR4oqeuzExbF+6tFf7oavBIDYSyWRMOHWKobdukZ2ayrURI5yUYXLBzMLEfIaUjobv/VSyopiUSr54+mnK+/eXKt89mppo8fQEmaxXgretrY3t//oXZQYDCAITT58mLTNTVP91R3w8vP8+J1payL50CaXJhMpoRO/qSvytWyzcudM5ccQFOPg6JH1ftDdt345RreavGT/EGCta6FxbW8VGO0FgwuAWxu//B7IdgsgvugK/+i788G/OuUA1/4KH34VPADvv+vOfw+9+BzIZlZWVZGdnc8eB7LIrSXU6HWazuQex4O/vT2pqKnEKBVf/8AdOhIWJygKHe4Z9AWLUqFFotVqEnBzO/PGPnLNlXTnda4CYmBjGjx//pffe/wT/VbIIROL0H/8Q2wA7O52to83NYgbMli1w8qRTu17l9OnsS02lyt6CFx7OnDlzuqrus7JEcqilRbz3HD4sWroyMsTMMrVafN2MDNtmmNmxY4eUmSeTyZg/fz7Dhw+nsbGRTz/9VLILezY1YVIqpeOgMhgwq1SSxaoHBAHXjg76DRhAcHw8AQEB1NXVcebMGQRBYGheHvO3b0cxahRcuSJ+zldeEYllRzQ0iOTRpk0IwO0ZM9ifmIjJTgA7nEfjsrO5HxNDjW1/6AwGfvCnP6G0WGgJCOC9l16iUyYjLS0NuVwuLoYIAot37CDuzh2OzpzBxbFJAExN9iZ58jfBKocZMyi9d4/MtLSe2XTds+WsVobeukVqVpaYHwiYE2NomBRD3RB36lxN1DVZqGvzpr7ZFyOPH9e4mjvx7x+Ab0gEftV1+L31Fn4PH+LZ1obMYqEhLIxt3/421R0dyGQypk6dSlJSkqjWEwTx2v3jHzGq1WxeuZKS8HCUJhMrNm9mYHExZf1d2Zb1PiHZ8q5cS9vncensZMqJEyReuYJs4EDxnMnIoCoigs2bN9PS2trzs8tkDBo4kGiFAp9du7hutXI7Pl46R/o9ekRKVhYxBQW93wcd0D5hApd//GMu5+dL56BdlRYaGkpCQkIfWdSHPvShD314YvSRRQ74KrIIxCDqEydOSM1YdtmwSqWS6lwllYUtv8NoNHL79m0uXLjgRHY4QqfTsWjRIgbarE7/CRyzdkJCQli9ejXaL/Hk/1+ho6ODDRs2UFlZiYuLC6tWrepVXn737l127tyJ1WolIiKC1tZW6ro1eyQkJPDo0SNqa2sJCwtj7dq1PYO9z30BE5+W5PAmlYoPXnyRej8/+j18SHm397ZP3tRqNQunTSM6IwMcFGIlYWFsXrkSo4sLPrV1BNZUk2eblGs0GiZNmkRCQgIHDhyQMpJ0Op1YUWwbHMotFimsUwoDBhAEMnbtYlh+PpZDh9jX2srNmzcBmDFjBmO72Ze6I+fcOY6dOtXrKrVrWxsp2dmMunwZlePK+wcfwAsvfOnrPgkqKyvZumkTzW1tqIxG5u7bx9DbtymJ8uVqfAq3hgyHbio577o6luzezb/eSOLD6To2rzjFlJOi9Yhvf1vM6ulGcj6WLAKxweyll8QAUWD3gnBe+mQim/+h4lq7G60eHrh0dpKxaxdRTU3c++B99jfdprW0a5U75NEjtJ2dPOrf3yl7R2k04qZW09TLZw/x7WRO3OcEe1aB33MQ+g7IHdR8RUWwaxfWzZs5FBrKFVto7bQjRxhnsYgk16JFMHgwD+/fZ+Pnn2NQKgkpL2fVhg3o9HoxhyU0FI4e5VH//mx45hkMCgX9+vVj1apV0rVdXl7Ojq1baWptRW6xMPnECcZduOA0uVjPKjaxin+pvk1nlI67cXEURkX1UBCF1NQwZv58Dl6+jMlkIqGwkLmbNgFwfcQIDs2e3eM5fnW1pJovE5+2EMXzv0Ho6GD3woXcGjYMbUcHy7dvZueCxbR4euLe0kKrhwcajYaXXnpJOp7l5eVs3bqV1tZWXASBjM2bibapKgDRgvTWWyLRY/tceTExbFu+XNwGs5k6pRL/mhqe+/hj1CaTWL/e3SKcnghrvwX378Mf/oAgk3Fu/HjO2FRfOpULHSaRrIssLCRj1y604zvhh4CfCwzeC57TnV+z9kMo+yasF8CeH//jH4shzbbrsr6+npMnT5KX13sIrUwmIzIyktLSUmkxwdvbm5TkZCIuX+Z4djb5tkm3o4JQpVIxcuRIkpKSaHv4kINffEGVPR9OEBhUVcXUp58mMCmp1/f938J/nSyyo7BQVMvY863S00W7lZ2QqK2FnTsxbtvGGZWKC0lJYj6VXs+00lJGpKcjW7xYDLm348oVUcVYXw9Dh4rKEC8v0fK2a5dIpn76qdicaENOTo6kbAWIiY7mwb17GGykVP+yMpLOn+fqqFGURERI934n2NSk3UOeu0Muk4kWJZkM/5YWphw7RnBpKW4LFiD74gvne/+hQ2JTY2UlrR4e7Hj5Zcocvh/9q6po9vbGaLvHyiwWJrq6ktnWhslGgg54+JCnvbxYHxPDg/JyQkJCGD58uNTAOuvgQUbn5oIXCP8Ywin/75CVKxLpEyZMILi0lOwzZygLCxPftFs2neP2urW2MvXoUczhPtRF+1Pf6kKdiy+N3t6PJdVkViverQ34V9ZJaiEvs56gv/4TzbRp4nu8/rpILILUZFkwYQK7p07FYDLh6urKkiVLCLNvo9UKL78Mb79Np4sLm1av5mFoKGqDgZUbNxJWVsa9QR5c2vQ6K481IezezR2DgcOzZtHh6upsrfPxYer8+TQ2NVFQUEBRUZE0RrRD3dnJtMuXiZ87l+pjx8jy9JRUWgCD7t0jJSuL8JKSLtJbJhOFnFbnoXt1YCAXXnyRWyqVtMjm7u7O6NGjSUxMRKfTSd+hfWRRH/rQhz704UnRRxY54EnIIjtu3brFvn37JDm7/cvZTh75+fmxfPlyaeXSarVy9uxZzp0796Wv269fP6Kjo4mJicHPz+/fDhutrKxk/fr16PV6AgMDWbNmDa7d6sX/X6Czs5PNmzdTVlaGSqVi+fLlTgTZ9evX2bdvH4IgMGTIECZNmsTGjRtpaGiQ/kan0xEWFkZeXh5ubm68+OKLPbOdWmthWD8o6RqcHZo5k9yxY3FvaeGl997j7PjxXHTI9LBjzOjRTH33XZQHD0qPFUVGsm3pUswqFcENFTz1/ue4aLWUHjzI4Vu3JLWJXWVmVwWFhvjy7tvvYZZ3TQD8qquRyWQ98pOGX7/O7CVLUK1ciSAIHDlyRLLDpaenk56e3uN8sFgsHD14kNxr16TH3JubafP0pPuF7drWRmpWFomXL6Patk1aJf+PceMGHQsWsDMtjWJbILJHSz0t7j49yCuZxcKkU6dIKC4g9cxMtHXN7Fh6ipDyNtDp4KOPxMlZL/hSsgjEgfqHHyJ873vIjEaKBnuweMdUni+OQHe4mYe2cOAJp04x/vx5ZP/4B2fn+XLy9AEUD7pCugeUlDDYaKR59mzu5OXR2Uv2l1wuI31IAakDNiOXySH07+D/nS/NfBKuXePE73/PeZtSLP3MGdLPnBEnAcHB0NpKpbs7G1avpsPVlYDqatasXy9auuLiKM3IYJPVitHFhQHV1axctQqXlBQEQSAnJ4eTJ09itVpxdfWi33UtSzZ+CyVd6gqjSkVRVBTZkxdT66/CbOlSonk3NBBaUsLdoUMlEsiuBBo0aBAr5s2jadIkDsTHUxIRIT1vUFERwRUV5I4dKxFsXo2NJDeU0Nlg5tTo0cisVtasX0/EgwfU+Pvz2bPP0qnV4qLXY9BqiYiIYM2aNdy8eZP9+/djsVjw9fVleWwsfrNnS1YOCStWwPz5sHIldT4+fPT88xhdXAiqqKAqJAS1wcALmzfjW1EhZnmoVCK5pNXAO2+D2eHK6NaylRsziv0Z81C4WNG1t2NQq7GoVHi7KFiaup8g7SX7GQAR28FnofO21X8BJc/CFiv8xfbYd78rElwyGVVVVaxfv56Ojg4n67EdiYmJzJw5E5PJRG5uLhcuXBDJZsSJX3J8PG7btnHM01Oy22gUCjp7s6QIAiqjEZOLCyqjkYyDB4l99VXRlvVfwv8ZWQTixP7dd+GnPxXJYq1WJAe+9z1QKLh//z4HDhyQ7GLxlZVM37ABt3YxkwuFAqZMEa1qGRkiMXTnjvhYVRVERYmqouBgkVT/7DPxeW+9Jb6HDWUFBWzYuhVTt6GUi16PSa3uSRA5EAoKkwmLSiVda2qDgWVbtsBvf0u1reGzpqaGmupqzI+xHWm1WqmRLdDDg4BNmwj45BPURiMX583jeGIiVtu2qYxGph49yuUxY6gJDCSkvBz3lhYpeD78wQOn69tOLKhUKiYnB3PkbCkgY/yZM0w8cwZiPGDnpxC3CICzZ89KGX12yGw184K9ct5ud7Na0Rj16F10X3rfdDEb8aupFX/quoghj9ZG1IaufWKZmIbi4FHxPGhvh6efhh07pN9bZTLOPPMMmTa1amhoKEuWLOkq3bBY4Pnn4bPP6NBq2bB2LZXBwWj0elZv2EC/8nJq/VxQe/rheb/c4QPK6JgwgeNTpnD9MW2G3aFUKiUlcEB1NUqTqcueLQjE3b1LalYWwQ75TYBIfDvk0gkyGYWRkVxMTeWBgwo3JCSEpKQk4uLinOIM+siiPvShD33ow9dFH1nkgK9DFoFNUbF1K83NzU7BhPaBgIuLC4sWLSIoKIhdu3ZJLV+urq602wasjoqk7vDx8ZGIo/79+/dUznwFampqWLduHe3t7fj5+bFmzZon+lz/bZhMJrZu3cr9+/dRKBQsXryYmJgYLl26JK1aJiQkkJyczIYNG2hubu51P8nlcp566qnew1mfHgpfdNWL3xs0iI1r1gCwet06BhUXY1Cp+NdvfkGbsecl4FNfz6xDhxh0/z53hgxh18KFWBUKBprus+LNzSgsFmT798Ps2VitVi5evMiJEyekcyAsLIxZM6ex8b1/0CJzJukkm4sNg+7do3jgQAS5XMpm8vT07JF/1L0+u729ne1bt1LqoH6KKixkycSJtLz5JmeHDuXmsGE9Wmfc1GpSJ00iMTHxPw9B37dPDNHs7ORBeDj7582jySGQ2xEhDx+yZMcOqsaGMXJXIs9/nM9ff3wRpdkKMTGibetL2oy+kiyy4/JlhMWLkZWWotcoeOm9VDrGjWbN61VcHSQqD2Ly8liwezcuq1bRlDKQjtfeIndUCjcdappVZrO0yv64bJFAj1pi4kYSPWwmQUFBX0nuCk1NZH73u5y2KSCSbtxg2u7dTlap2qgo1i9ZQqtKhU99PWvWraPe15ctK1ZgVqmIqKxk+aefogba33yTvQEBFNkyccrL41i3bi4GgwZXWshTxdES5dWrgsjb25s4NzeGvPceQZcvIwPqfH35+PnnJeJHbTTy7SVLuNHaypnTp6VJJ8DYCxeYfuQIMsDg4kLu6NHkjBsnrrA77LNpR44w7sIF6XmlAwawfu1aLEqlpLQbMGCAZP+Miooio7UVzXe/K5I9SqVzbhPAhx9iaG/n43v3qPP3x6+2ljp/fwCWnjtH7F//KmZefec74jkKYmvWq/8D33sJWi3i6nwv337VAQFsXb6cRh8f5BbQuIvqQKVSwZzRxQz3tZEGyGDAR+D/DecXaNgCD1bDLgv80fYeL7zAo5//nI2bN9PZ2YmXl9djs4o8PDzEoPqRIxEEgatXr3L+/HlabZXkOp2OUR4etJ8+zZWYGDGg3EFlZEf//v1JUii4fO4cJTblxPgzZ5gwYgSyP/1JJNH+l/F/ShbZ8eCBqKKxZbK1p6Vx7NlnuWlr9/Pw8GD27NlERUVBaakYAr1lC1y92vUaajXMmCESR0OGiGRkaSmEhYmE0cCBokrs738X//5//kckk/buhePHuRQfz+E5cx5LeqjVasJVKhI//5z+9++zY+lSHkREiMfOYmHq0aMUxsZSEhGBe0sL31i/Hs+9e8WA8sZGrOnpNJaXUzNkCAWhodwaNKh3lZID5IKA1WF7Bt6/z4KdOzkyezZ3hwzBrb2d599/H/fWVnLGjePE1Kmi+srFhc5uBG1SZBGXigZiRUFibi6zDx5EtnAarNsFrq5YLBZu3bpFdna2kwpY29mBQavBKjzZ2MXT1ULUQA/8A8PxCxqCX0B/3NzcRCv4R9+FH30IvWWIu7uL5NDs2RAeLhKiN29K330dWi27Xn6Z+zYl1ZgxY5g2bVoXkWIyiYUMW7fS5urK+rVrqQkMRNfezpr16wmqqup+QEVSMSMDYe5cqgWB/Px8bt68SaM9/N4BjjmXw4cOZWp9PZknTnApJkZSTsnNZkbcuEFydja+DQ09iGy8PaFRVEga1GqujxjBpbFjabAtSMpkMuLi4hg7diz9+/fv9buojyzqQx/60Ic+fF30kUUO+LpkEYgT9h07dkhEkH1Q4LhyZCc6lEolCoUCg8GAi4sLCxcuZNCgQdy8eZOsrCxJPWP/knc8NDqdjqioKKKjoxk0aBCqJxzo19fXs27dOlpaWp6ojez/CmazmV27dpGXl4dMJiM2NlYKYB07diwJCQls2LCBtrY23NzcJO/9sGHDJHuWVqvl6aefJqB7RfTO38Li16R/dmi1vPetb9Hm7s7oixeZdfgwLe7ubP/+MzxSdhEb0kq/AzEQXF5OVXAwglzOEO0tZr96AK3FIGaR/OIXgGgz3Lx5MyUlJU6DQseK8fDiYiILCzkxbZo4OLS9x5gLF5hx5AglP/4x2/390ev16HQ6Fi9eTIRthffixYscOXJE+vzz5s2jtraWLZs20eyQfxCbn8+i1FQUr74qrT7W+vtzeuJE8nohYdzd3UlNTWXkyJFfnzQSBPjLXxBeeYXCyEiy0tJ4ZLf12awSjllM8/fsIf72bf715nR+/mIgHz+fybJttuyvpUtFC4kDgdYbnpgsAtFKsnq1GHoLfPh8DH//42Te/0U7mX79sdisSsu2bBEH5kDJdF+uDxeobVhIRb9+PSZ+CquVaYcOYVUqyR8eQ1nwAASHkGxPT0+J3B0wYMDjA+qLirj4ve9xxGYJSrhyhTm5ucgDA8XgZaORRm9v1q1dS5O3N9r2dowuLliUSiILC1liNKIyGim5eZNdCxfS6uGB2aTg8JEZXLmSiEZjIiOjiOHD72I2FfZQEMXducOQu3cJ2rAB2aRJ4ir8L34B//gHZoWCz59+2smi2VsQ+4TTpxlfVobswQPxuNmIDJNKxdm0NLLT0qT956LXk3TxImMvXkRrC3PNi41l29KlPfbx+ORkJmzdiuyTT8QH5s2DH/1InMg7BMEKwPalS8mLi8O1rQ2DWo1ZrSYlJ4cpR4+KBNOPfiR+rmPHRNLIvkof4A81NjuwVgaLlsL5XLEu3Qa9VsuGxauoGNTfdmy9aW4WJ4Gj4hTMCP81CrlN1RD8Owj5hfMxbtwFD5bDPhP8Fh6EhbN57VpMcjne3t5OE0qlUsmiRYtoaGggJydHutfpdDrGjh3L6NGjUalU3Lhxg+zsbOm5KqUSldFIh8MiglYuJ2jAAEpKS6X7UICnJ275+RTbcoqi8/PJKC/HZfNmsYr+fxH/T8giAEFA+Ogjbn76KUfT09HrdACMHT2aSVOm9F70UFQkBmNv2SIqiuzQamHiRDE4u6ICgoJES5paLSqKjh4FoCoggJzkZApiYjC4uPQkigSBAf36MWfOHPz/+lf461+xKBQcnjlTsqOqOzsx2ojZqPx86v38qPfzI6C6mmf27EFz+LBoy83OhoAA8PeHO3d4NGYMGxcsoNNoxNfHh9GlpTTfukVNQABlAwZgekyxhd36LBMEEi5fJrqoiICaGjybmigNC2PHkiW092hgFVBixoyKuDt3WLRjB7Lf/Ia273+fqqoyblw9T1FxFUbTEwwlBQGfzkaCOlvwu1EiqYSqAgPZZ1O6Tpw4kfHjxzs/rWgbTFiGrMLxW9UGm72sBxQKsFio6NePbS++SLPVilKpZO7cuc45gJ2dsGQJHDhAi5cX61avpt7PD7fWVtauWyflJ5lctajmzIOMDKzTp1Pa2EhBQQH5+fk9mnA9PDxocVAA2RFhtTIwK4srQ4fS5O0tPmizISpMJubt28ewW7dAo3Fu+VMpwWSmycuLi2PGcG3kSInQ12g0jBw5kjFjxuBpa0B9HPrIoj70oQ996MPXRR9Z5IB/hywC0Qrk2KDlSBTZ4SQ7Dghg2bJl+DgoMKxWK3l5eWRmZkqWJrlcjpeXF21tbU52BaXNGhIdHU1UVNRX2suamppYt24djY2NeHh4sHbt2q5gz/+HsFqt7N27VyJ/AMaPH09kZCSbNm1Cr9fj6+tLc3MzZrOZsWPHcvfuXVpbWyUCTq1Wk5GRQUxMjPgCVXkwNB7qxMGjAOxcvJg78fH41tXx4gcfUBEczPYVS2nXuqHRaJgwYYLUbuXV3EyTp6c4qAYp9Le/9iHzf7Mbv44G0bKwYwfI5XR2drJx40YePXqEWq1m3rx5XLx40akNT9fWxqJduygLDeXsxIkSuaMwm1m+eTODR42CTZtoamlh69atVFVV9QjdvHnzJnv27EEQBIKCgqitrRWtj7bXGnLnDhljx6L45S+dJtV2VIaFceoXv+BeeXmP37m7u5OWlkZCQsKTkUZGI9YXX+TOlStkpaZKTU1ysxmlxSLlYNghs1iYdvoUv/hTPyo9rOxedJKogkZxQv/Xv4o2nSewW34tsgjEQfjrryO89hoyQeDKSD+Wb5/K3/YGUvRILuUYLdq5k8iKCvI//5Rd5XcwNXXlSDlul9ZFIEk4xeh3ctGWd9Kh01H40ksUJCRwr6TE6ZrXaDQSuTt48GBxslpYKIbxrl8PJhPXR4xg37x5IhGp05Hxwx+iaG8X80Z27qTl3Dk+XrWKVtsEIKK4mBUbN6KwWtk/cQHXU4eBXIZfbS1jdl9g6+hf4j/OiNlc6LQt3h4exGVnM+T8eYIqK50nWrt3w4IF4sfNzmbXe+9xOzISdWcngkwmVTU77ovpej1Jb74phgsrFGIe0PLloNPRsWMHHz/9NI0+PvjW1SEADbZcGLXBQOLly4zLycG9rY0TkyeLpJINHjot392+A2Vurnjd/f73YnCvXC620a1aJf1tdnIyJ6ZNQ2614iaX02LbP6ubm5ELQpeaKCwM/vUvsTVq3jxx0t0dka5QZLMm2Sdbzc1Y5XKOT53KBZtV1dMqp1ku3lf6B7uzZMgbeGhspJPPMxDxqfPrNh2A4kUUHQxjm0G0sPoYjTQ4TOTVajUrV66UMlPMZjPXr1/n/PnzEimkVqsZNWoU48aNQ6vVcvLkSXJzc52OsZtej16pFC1NViuj4+Kwenhw7do1SZGpsVgwAIJCgX9NDcuPHsXno49EYuR/Cf+vyKLGxkYOHDgglU8EVFczb98++gUGijlDw4d/+Qvcvt1FHDk010nqDrkcqyBQEBXF5dGjeRga2nVtOEDX3s6AkhLy4+Kk62VITQ0ZH3yAXqtl29KlYnW9IDDp5EmS5HIyf/xjsq9dwyoIuHR2IhMEOrVaIoqLWbVzp3hP8PQUVZc5OWLO0vnzVHt4sP7TT2k3GvGrrWXakSPsX7mSVgeSOqKpCa/796kNCKAqKKhnu6ENLkBAWRnejY2UhYb2qg51a20l4sEDGhIHU4cLBtPjlU1OeXw2KIxGXsjOIiB9gtgWCDBokJgbBlwcO5YjM2cCMGfOHBJtIe0tVbtxG7MQec+CWdGS+t57oqrsL3/paoaz4VpCAgfnzMGiUOCt1bJs9WoCQ0K6/qCtDWbNgsxMmry8+OKpp2jy9sazqYm169bh09BAWagbNe+9wbDxa7n/6BH5+fkUFRU5tZjZx2QxMTFERkZSX1/Pzp07eyWM7NC2t5OUm8vQa9c4PHu2lFWUdP48U0+cQG61gkKBYLHwcMAALiQlke+gRPJ1cWHs5MkMHz78iVtv+8iiPvShD33ow9dFH1nkgH+XLLLDsRnKWWHShaioKBYtWvTYL3dBELh37x5ZWVmSLUMmkxEWFoabmxsPHz7ssYoVGhoqKRoeRwI5tpG5ubmxZs2anoqc/2MIgsDhw4fJtVchI2Z23Lp1C6PRSHBwMAaDgYaGBiIiIrBarZSWluLn58eqVavYu3evpOiaOHEiaSkpyOb0hyNdkvFbQ4eya9Ei5BYLz37yCeX9+3N0+nSsCgWBgYEsW7YMb29vrl+5wt4DBwB6Db8GCKyqYtadOww4eBDc3Wlvb2fDhg1UVVWh0WiIj4/n+vXrXZM4QUBtMEgrx47Q6PV0arXIBIEpkyYxLi0NmUyGyWTiwIEDEoE2dOhQ5s6di0qlIj8/n+3bt0tWN/sEftitW8xPSED+61/3tOuAmHNQWAiBgZSVlXH69Glpvzn/mYdEGj1OFWOuquL6yy9zPjCQRtuEQmU04FdbS2VIlxpHZrEw4+BBSgcNkpq5mt2r+PVvvsCjRS8qGrZvF20WT4ivTRbZcewYwsqVyOrrafB24c8/HsoP3inhwIx50sTNr7aWOvv14GhPEgQGFxVRExBAi02Rp1YKJNa3kPTxx3i0tkJ4OKb33qM4IoL8/HwKCwulnBkAhVzOwOZmos+cIbqgQMwgSk+HV17h7oED7PT1xapQEKlSseR//kdSDd66fJndBw9Km+Ki17Nw1y7Op6RQGh4OgPejVnw6GygNC+lpMYuLY8iQIaI9rrhYrHnvFhQPiOTntm2cOHOG7OxsZIKApqMDfXcSWhCYlpDAuFmzRIIhOxsiIqCkBAQByyefsFEQePDoEV7NzTz/wQdo9Hry4uLITEujOihI3B9mMwNKS3k4YEDXNtvO5bEXLjAjNxc2bxar0c1m0Z745ptgy+Uqjohgw5o1CHI5QU1NVHl54aFS8cKbb+La0iJOIJcsEYNqbfdQPD27Qq612p6Eqhz44Y/htddEEuzPf4af/QwsFq4PH86BuXOxKJV4NjWhd3XFqFLhqlGzeNQuwr0ui6/hlgaRp0DeRbjevbyZnYfysAoKvBvqafTpuj9rNBpWr15Nv17UPVarlTt37pCVlUVNTY24iXI5Go1GOrcUCgUajUayNMsA95YWWmzXhp9MxrQlS6iur+fixYuSYklqbdLrWbJjB4Oefx5+8pMnImy/Cv/XZJHVaiUnJ4czZ85I+YHp6ekkP3iA4uWXodFGSr/6qthw9VWTaoNBzE37+GO4fRu9SsW1hARuDRtGTUDAl1q/Jp4+zfizZ2HqVCo/+IAvNm3CYLsfezY1YVYoaHd37yKoZ84UCQ6ViqqqKvZ+9hlVtkUhO9ky7MYNFuzZg2zyZNEOp9PB6dMwbBj88pfUff4569askQhlOwL8/Fi2bx8+tvDteh8fPnrhBQwaDYOKiggrLaVmxgxqfHyoq6vr+k75N6CUm+nn24q2DUrrXSRVV3eyvX9lJU8Dig8+EB/4zW/E8OmdO8VMqMZGTk2aROb48cgEgUUzZ9AZtJeE0W8gt3GyTqqiWbPE9jtBEJWDH30kPq5QYAYOz5nD1YQEAKIKCsjYvRuNTieqFMeNE9Wnf/87NDdT7+vLurVrafH0xLuhgbVffIFXczObVw6FH/4RClu4f/++lE0JorI5OjraSe1tMpk4efw4F21jGre2NnTt7dQEBPS4vgbev8/c/fvxamoS85RWrybTlvkXUVxMxq5dPBg4kAtJSVQ6EFyDKisZu3o1g1NSvnamZR9Z1Ic+9KEPffi66COLHPCfkkUAubm5HD58uFeiCERrwdKlS7vaN74EpaWlZGVlcc9hpTMyMpK4uDiam5spKCigslsAop+fn0Qc9evXz2kw0d7ezvr166murkar1bJmzZr/WoXyV8FqtbJ//36uX78OwKBBg6SqeYABAwag0+nIz8/H3d2d6OhoLl++jFqt5vnnn8fPz08Mdz56VCKbhri0M+9X/xAbkIBmDw/e+9a3MGg0pJ09S4unJzdGjAAgPj6euXPndpF2L7/MoaIicseMQW42O9WoD6wvpELbn07bIHjEiBEkJSWxY8cO6urq0Gg0aLXaHlkF0w8fZsSNG+zOyKAwKkoaLHo2NvKNjz7i1JIlXLdZzYYNG8acOXNQqVQIgsClS5c4evQogiAQGBjIggULOHnypNO5ADDkzh0WRkcjf/1153wDO4KCRGuTg/VQEAQePHjAqVOnKO9FaeTp6UlaWhojRoyQSCODwcDlQ4e4cOECbbb9oGtvZ0B5Hg9DYpysC14NDTz38cfoOjrY+v0U3s0YxeTTniCTE1RZydJHj/D+7DPRUvE18G+TRQBlZQhLliC7dEl66G58ENmTllBhn8B3zyVSGpl/cBMjckqwyOXcGTKE7PkzqVGKn18ukzG8oIDko0fxq6+HZ5+Fv/4Vq4cHjx4+JP/ECfKLimh0bCIUBPp7eREzejTR0dH4+fhw7yc/YatGg1mlIkwmY8Urr3Dq1F0uXRLVMTdvxhPsXYF/aINTqx6C4HSeShYzPz+C3n0XWXd1wOXLMH58r8qzyykpHJw61ekxr4YGtHo9lQ5khk6v55lFi/Dr1w8SEqCmBkaMgOvXOTRnDrmjRqFWq3l27VoCz52D3/waCgoREEPiz40f70TEurW0EFRVxT2HBqDVqSEMSl4NX3whkjZ2e5hOR3NYGB/OmUOHqyvB5eVU9uuHQhB45vnn6XfpkmhpNJtFpdOf/iQSYVeudH2ohQvFFq1nnhG33Q45sHU5LN7c9VhOjvj86mruhw5ix9LFdLprcensRNvRQZOPDzKrlSmmy4wbewhZf0AdBjGXQeXnFNbvrWukscO7az+aTKx54QWCestbc4DFYuHUqVNcunTJSUnk7+/PrFmzCAsLo7i4mMzMTEptGT0IAkqzWSLiRoaGMmHJEu7du8f58+edmyUFgaTz55mm0yH7/HOn+8S/g/9LsqiiooL9+/dTZcuTCQ8PZ86cOV0LJlVV8K1vieo5gPh4UWU0erTzCzU3w+HDsGcPwuHD1Gg0XBk5koLYWJF4c7wnCAK6jg5cTCYa7ftKEJh16JDYDDZrlkh+bNyI/oc/ZN3y5VQ5TPQ9GhtZu20bvm++KWbkOMBisZDzpz9xpqMDi1IpXetp584x6dQpUcW3f7+oLHrqKcjLo2jwYHasWIHRgcQaP2YME379a+leZ1Cr+eS556gNCCC4qor0kydpnDWLuskTqK8uoLauiXZDzwWNr4JKJSd8QH/UGnfuFxbSafvedbdY6FAoxGh922ewk1+RhYUs3bYN5Z//LJK5dtTXw/e/j7BxIwfmzuVqYiIKs5lVm9YTUSye14JKicxkuwbS0kQ7YEuL2CZpVwzKZDR7eLDtueeosNmaJ/r4kHb+PLKDByW7rCNqAgJYt3Yt7W5u+NXWMnffPh6GhpKZPhKDi5/T33p7e0vjq9DQ0K4cybY2SnfuZG9hIY22MYVvXR2NXl7SPVpltWKSO6tWVUYjE27cIKm9HfmZM9yNjWVPRgYmtdpJnaU0mRh28yZjQ0IIeOutHk2hT4o+sqgPfehDH/rwddFHFjngPyGLrFYrmZmZnD17FkEQnBrS7LCHYMvlcmbMmMHo7oPWx6CyspLs7GzuOOQqhIeHk5qaiq+vL4WFhRQUFFBSUuK0Qujm5iZZYQYOHIhSqUSv17NhwwYqKiq+tL7+vwmLxcKuXbu4e/eu1BqmUCjYuXOnRLLZA2/lcjkTJkzglC28dMmSJcR1y9+5cuUKhw4exCoIBFVWsnzLFjxaWli/Zg0PBg4ksLISmSBQFRKCzGpl6vRpJI1L7iLSduyAJUswKZW89f3vS+HT4fXFlPiKTW2JublYZszgen090JVN5Ri87aKUYzSaEeRykrOymHriBI/69+fzp57qUYfs3dLCtIULaVYqJVIoJCSEZcuWSedeSUkJ27dvp6OjQ3o/udUqhpbatt3HYmHN22/j1VtY7uDBcOOGuBrdCwRBoLCwkNOnT0vWR0dFnJeXF2PHjqWtrY0rFy5IjUsezc2MvniRkshg7ofHO9UhJ166xOwjR7CqVazdNoPMEW7sWnIS31odOxYvpsPVFa1Wy6JFixhkW0V9UvxHZFFzszg5278fgLIBA9i6bAEdrj7StjsGgfu3tDB/+UC8276P7gcWuGH7M+DeU0+RlZZG2aNH0nNj8/JIyc6mn9UqEhGnT0NODgJQGxREweLF5EdGUtGNUPTz8yM6KgqvrCyOm0wYXVyQt1ixeoiThNzcUZw5M5HnntuNt7czUQjdMogcLWZ+fqKtZtIk5yccOSKGwDrcJwqiotiyYkWXKkwmY8yYMVTcvcvD1laUJhN+tbXSpFdtNPLUnDmEdHaKIa9WK1fmzePAyJEgCCybPZsY+71NEETS5Rcvob9QxI7Fi6XGPAmCgGt7u0Q46sxtfPvzL9A9slu8fOB738P84ot8tns3FTU1+NTX0+DtDXI5s/fvZ9Qrr4hqor17YfFikTByVBD5+4t16o7w8QF7ThSIhNF7T8MLn3X9zaNHImF0+TJN7p78fekPkIcCVoHgygqJSIu7c4d5+XtxSTfCFB25vp9z6KSYwdYVZi3qItxbW1jzxTr8ExNFIsORTLTBarVy69YtMjMzqbfdc1QqFW5ubk6kdHR0NKmpqfTv35+ysjIyMzN7EMoArlYrM+bOJW7kSO7duydWmjssNLi3tDD30iUGv/02Mhuh/u/g/4IsMhqNnDlzhgsXLiAIAhqNhmnTpjFixIieSgtBEO/v3/62ePzlcjGo+vnnxRyiPXswZWZyPzSU6wkJPBg4sIeNFsDLw4PY69cZtW8fx6dNE21miAqgBbt3izkz7u7i/fbNN+GDD7DI5RybNo1Ltmwy+/ZMjosjZcmSx6pC6mbMYF+/fqLq0YaJJ08yXhBEReIbb2CQy9ny1FOUOOxje+aetrOT2bb7XI2fH9cTE0XS6zEh/Xa4a1qwWOV0GN2k4HmV0YhJpXoy1Zkg4KnX06nRYHCwoEUWFjK6vp5to0ZhVqkY6OLCsh/+sFd1tfXwAQxPLWffpDnkx8bi0tnJU59/TlB7G7JWmzIuIQHOnBEzpxYsEK9RlQpMJooHDmTH6tXo5XK0Wi0Lhw5lcFaWeJ3Zr3MHVAYHs27NGjp1OnRtbWg6OyXbrB0hISESQeTv79913KqrYf9+jPv2cdJq5dKoUSCTiRlvSqW0z0K1WlLT0xn8t79xo6iIY9Om0anVOh2PoMpKUrKyuD9okFiy4FCsMOTOHWYdOoTuT38Sz+P/AH1kUR/60Ic+9OHroo8scsC/Sxa1tbWxe/duKS8hODi4h+LHxcUFQ7eGkZEjRzJr1qzHB+F2Q11dHdnZ2dy8eVMihYKDg0lLSyMmJgaDwUBRUREFBQXcu3fP6f1UKhWDBw8mOjqasLAwdu/eLdXXr1y5knCbreW/DZPJxLZt27h37x4KhYJFixbR2dnJ/v37EQShx75LSUkhNzcXo9FIUlIS06dP7/mi5k5KZ49g2/B5dLi6omtvJ/7WLS4lJaEwmVCZzXRqteg62lm8fBoRCVO6nltYCMOHYzEa2b1wIXfi46VBXIwmj377HnFymqi4GD58OAMHDmTv3r09ZPvR/f0oflCBSaWWrAP1Pj588o1vSIok77o6knNyODdxIq22iXFkZCRDhgzh6NGj6PV6XF1dWbp0qdTwdvXqVQ4cONCjdnjorVuUxcbSrFTi3tLCmvXrpSBOAEaNEldbnyDLQBAE7ty5w5kzZ6SJaW82Sp+6OtKyslAZOtm3YAFGl67VaIXJxJJt24guKqIhPIARZyYTm9/E1lVn8arvAG9vmj/+mG319VRUVAAwadIkUlNTn1hK/2+TRbdvi4qSoiI6PD05/vzzXLftf5nVgiB3vv7kFguLt20jtqYA3oC6sd6UvdnISAfRCaNG8fDDD8kuKKCgoEB6OPzBA1Kzshh4/z4ytVpUsfz4x2KbEuI9psD2nAcPHjidR9Z2UGgsCLb7QVNTOAEBCozG+3SHzGpl8qlTJGdl8aV7LzZWDHpesEBsBwNRsfP00wDciYtj5+LF0gp2yKNHTD15kmNPPUUl4KJUsvLTT+lfUsLOhQu5Gx8PiFayVVOmEHHhAiXvvcf6tWuxKhRMOnmSNJ0ODh4UlRA2VFdXs2X9ZzS1G1AZjczfuxevxkay0tLIt9V2O2JwYSErT+xG9urv4bkXwdWVffv2ce3aNTQqFTQ306nTMeLaNebt3YtMqYS7d8VJ4+LFXWoiNzcxh6akRGywclRVrVkDf/ubaGX55otgsR2LlRPg3T1d+UV6vUgubNyIWaHgrXk/pG24aNHzMSlpVBgR5HL8amtZtnUrBdHRnLCptDx1OpodLIme2mbWaj/H55Vm0FtFMm/fPrBZ/iwWCzdv3iQzM1MihTQaDUlJSYwdOxaNRkNFRQXZ2dlSIQBAREQEqampREREUFVVRVZWltPv7Yj09GTW00/j5eXFo9JSDn7yCVVyuXRfCaipITUujiEvvfS12zfhv08W3b9/nwMHDkhNcvHx8UyfPh23HqHM3VBbK5K4Bw8C0OTpSX5MDLeGDaPSVmDgCJlMRkBAACNGjGDEiBFoNBoMra1s/u1vKbW9l9xqZenWrUQ7XP9S+5ZOx/YlS6Qa+pi7dymMicFqe5+oqCiWLFnSMyPu/ffhpZewymTkjhnDsWnTROubIJBw9SpzDhzgWkICh+fMwWJ7LZVKxaBBgzA8fEhZc7OoSnoM5BYLvrp6/Lzr8HWrw8+tDn9PK75BI8irHcPeU87qRatMJuX2PQ5KqxWr1eqkcnSEVq8nqLISjcFAYWwsFsSmvtWrV+PiQMyVW25w919zGf/zhygMSjasXk1peDiubW1845NP8G5sFBsNz58Xib5nnxVDoLVaBL2e7LQ0Tk2ejAAEm80s3bkTL0eCSKkU7Wd5eZgbG7mclsbx1NQe2y23WAgvKyMGiE5IwGPePNFuC2Ke1d69Ivl0/jylAwawd/58yZLtiEhvb1LnzWNAdrZok7Ods21ubhxZsYI7dsVmLyReUEUFVrmcGpt1Nzk7m8m3biHftk1UVf2b6COL+tCHPvShD18XfWSRA/4dsqikpISdO3fS1taGSqXC19dXksUnJibi7+/PsWPHsFqtvRJGoaGhLF269KsHuw5obm4mJyeHK1euSNYEPz8/UlJSGDp0qKRqKikpkTJUHIMWZTIZoaGhtLW10dDQgFKpZNmyZQy21Xn/t2AwGNi8eTOlpaUolUqWL19OXV2d1PSVkJDAxIkTee+996TwSPtq6YABA1i7dm3vxNqvpsDvTtLk6cnW5cupCg7uoRQJrqhg2WQfPJf+set57e0wfDim0lK2L11KUVQUcouFCWfPcHZyOhZByaSTJ/GIjGRvWJio7LGpw7pDaTZhVqoYdO8eKzZvpkOr5ZNvfINmW+OJe0sLz37yCV6dnRiPHOGc2UxOTg5WqxWFQkFCQgJlZWXU1NQgl8uZNWsW7e3tnD59WtwPJhNGmzrJp76eF+rrMezfz4Y1a6gNCEDb0cGqjRvpV14O06aJIclPSELaYbVaycrKIisrS1JLOcKzsRGl2US9v3PWlU9dHSs3bcK3oYFTS4Yx64tRvPKnG7z2m6ti2HBiori6Hx6O2Wzm8OHDXLXVVkdHR7NgwQI0veQ6dce/RRZt2gTPP4+g13Nt0iROTJqE3v7ZulkkANzb22h1dUNmtTLp5ElSLpyHv/6JE98V6PzdK8z9tcPtsn9/2LmT2osXyb50iVsREVKmSVBlJSnXrxP3ve8hd1DtgLjAvX077N7didl8j+joAiIji9BoeuuEFiGTySQVSc7Zs9wpKkJmtTLvwAFGOFaAA4SGQkODeH7boVDAhAmiZWPBAsyffsrxrCwujR0r7YOpR48Sm5fHptWrqQ0IQKfXs3rWLIIDAiAxEUGv58Ds2Vy1NTnJrFZmJiZyOjcXvVJJ/L17LNy5E5leL2aR2EJs7969y549ezCZTHh5ebC8dR+Bvzoj5ULV+PuTnZrKzaFDnSamiZcuMbv1PLKfvsfVwEj22zLFfH19qa+vJ6iykmc/+QSV3Z7l6ioqpvR6cWJotYo/3t5idg3A0KFitbZNeYGfn2h1Gz0axiRAh+3cCPKFf30gkoz2+8hf/gKvvIIgCOxKXc7NSbHI5QLgh6umnfZOPXKrBauNfPRobqbF01M6z3zc3Fi7aiyeVfPhcgN8Xw4dVkhLw7x3L9fv3ycrK0vKpNPpdIwbN47Ro0c7Tart6G3xICQkhNTUVGJiYqTf37hxw+l5CquVScnJJE2dilwu5+ann7KvuNhJ/ehpNpM0fTojx4x54vBc+O+RRe3t7Rw7dkzKcvP09GTWrFlEOdgXe8BigQsXYM8eLHv38tBoJD86mrwhQ8Tj0g0KhYLQ0FBGjRpFVFSUU+OoYz4diLagFZs2MfDBA1Ht09kJFy8CUBUUxJbly2n28kJtMJCxezcx8+ZR+/LLfL5hg5Q55enpyTPPPNPVYLVtm2ifFASxyXHTJuo8PfnsG9+gwz4+sFi+xn3dipjwI2O0rY3Q+ydNyKdYQaYGn1UQ/AtwGUhjYyPvvf02Jvtw0IHAGFhWhl4up7Lb8ZTL5cyUy0n85S8RVCoyly/njI0Ul14DHqtKUigUREREEBgcQKP+IFF/2cTQc/VisDPQqdHw+dNPUx0UhHdDA89+8glu48ZBTIwYWg+g1dJptbLXptwEGHH1KrMPHUJpNouq2pkzISODzogIil59lQJ/fwqjo0XFlA1qg4HIoiJUlhom3S7HvagbQe/rK34Om4XTqFJxcsoU8f7pAJkgEB8SQsr8+QSaTGIW0+HDXX+g0cAf/4iho4NjOTlcS0iQFgfscGttZe6+fQy+d49TL75Ito0wGnj/Pot370b7+utPXArRHX1kUR/60Ic+9OHroo8scsDXIYsEQSAzM5MzZ86ImRTe3litVpqbm1EoFMyaNYuRI0cCUFZWxrZt22hvb0epVGKxWBAEQVJveHh4sGzZMkIcWzqeAO3t7Vy8eJFLly5JJJSnpyfJyckkJCRIg11BEKisrJQUDXbLUXdMnTqVcePGfe3QxCdBd/vbihUrKC0tlciQpKQkpkyZwqZNmyguLsbNzU0KZFUoFHz729/G214164gLn0PaM2CbL+o1Gt76/vcxOFg7hl2/zhzlLVTbipwsUyxdimHfPrasWEFJRARKk4mlW7cS+dI9zh9P4njSDBAEVi5cSFVzs2SFA7H9JDk5maqHJRQ+EEN05RYLc/btIzY/Xxzk2vKgtB0dPPPpp/jX14ukycKFANTX13PkyBHJNuLu7o6Hh0ePHKH+dXU8sknj7cRGQHU1y7ZuRaPXs2nVKsr790dlNLK8ro6B77//tQeSlZWVPdQICqtVWr221/t2R+zdu8zfswe1xcyP3p3EuoUhbFl9hilHbcHCL74I//iHOEh2wNWrVzl06BAWiwVfX1+WLVuG/1dkGH0tsshoFBU9b79NdWAgB1et4qHtOY6Enz1HQm0wEFSTzZDVJVRtGs61fmITz5Dbt5m3dy/qFSu48/5Cru5cwfJn9ajsXJqdSACaw8PJeeYZrspkmGyv793QQHJbG26rXmNb1gC2bxeFTnZotUYWLiwkNvYMZnP9Yz9O//79GTp0KNHR0bi7u3Ng926u2V5o5uHDjMnN7TpGVqtIgkydKk5Au9lhS8LD2bdkCY02NYu6s5NvfPwxKouFdWvX0uTtjXtLC2vXrcOvrk4MjP7d70TCqLmZk44tZnYytq6OZz74AFVcnGjFAax793La1ZWsrCwABoaHs+jKFXRvvy0+VwU4cJKN3t6cmjSJ2/Fd1kbfmhpG3LzJmYkTsSgU9AsOpryyEo1GwwutrXi//nrPnZWeLuYV/fa3kpIEpVIke77zHXGynZUF3/xmV2X6+PHwPz+C5Yug3SEkft48cWJqt+oePizuj+ZmbsSOYdvc+ah1JkwmV9zdBTo7RSJAJRgwyVy6bI01NaxZtw730FCYPx5GboO2Rkw/UnM1cgTZkybRartGXF1dSU5OZpQt/+mr8FWLBy0tLZw/e5ar16+LShEbvBQKFj/9NP3696fx6lU2b9hArQO5BaBRqxk1Zgxjx459ogWN/22ySBAEbt68KSkvAcaOHcukSZN63zd6PZw8CXv20H7sGPd8fMiLieH+4MG9NoGpDQYiKypImDOH8IyMXhcjmpub+eKLL7ra6WQy1nz0Ef3tNtR588TzzGLhdnw8e+fPF5vv6utZtmULAbW1Yl7SsmUYFi5k44ULUlumfaEm9N496l98kVovL+rS0qhvaqLO05N6W/j9Y/YOXh1N+JXXSRX0fnV1eBib2f2DZ3jYIZJQg4sLWbVuE6wAfuINAd8B/++CSrzfWi0WPvjDH6jptggS4+bG0JkzuZefz40bNyRVlCNcW1t58YMPaI+P58Np05wUWot37CCqoIDasDCqf/97ary8qKmpobKy0qlJzBEKsxm/ujoCq6sJMLXjXlrJycmTafHyIqiykqc//xwX+4KbQkGNry9bly2jwdcXhdnMrEOHGFlSIh6TjAyax46loLSUgsuXKamq6rEv3VtamHXwIIPu3eN3b0/luZc2MsDoJjZWfvqpqFDstsB3f9Agdi1cSIdDAYDCaiVh8GCS58zB29NTDEj/4Q+dCfsZM2j6zW+4+NlnXPPywmC73hVms6QGc1y4iFermf7d71JaWsrePXswmc14NzSwbMsWAqdPF1Voj7GYPw59ZFEf+tCHPvTh66KPLHLAk5JF7e3t7Nq1S7KdhYWFUV5ejtlsxsPDg6VLl/ZouGlpaWHbtm0SEdBdZaRUKpk7dy7Dhg372tttMBjIzc3lwoULUjOOq6srSUlJjBo1qodqo7GxUSKOSktLnexG9lav6OhoIiIintgi92Voa2tj/fr11NTUoNVqWbVqFXfv3uW8reZ2woQJjB8/njNnznDu3DlUKhVjxowh26HmOiwsjBUrVjivsHfUwIj+UNQ14zwwaxZXxoxxev+whw9Y+uZv0Pk6hIq/8w76//kfNtqIFrXBwMpNmwibUIqhQY3LfiMHFi7kyrBhveZP+fv7s2z+HHb+5Q0qvQKljAcAl44ODLZBnMpo5KnPP6dfRYU46eyWOWDPDTpy5IhkrXAkM7QGA3rbZx6fmclAd3d2DBpEm7s7Gr2ehTt3MqCsjK3Ll/Ng4EDJ2hfbi7WnOwRBkELUHcPFo/v1I/XDDwm8fp0zaWnkpKT0WP0EMeB6+pEjRFSVknxyGlq9mb2LTxP8sFnMYXn/fVi79rHvX15ezrZt22hpaUGlUjF//nyG2JrTesMTk0Xl5bBkCcYrVzgzYQIXxo1DkMmcrHWurq4YDAbMZjNeMhnL33+PwMoqiIC2NxTk3F7NBQZgVSgIqK5m+ZYteEdEUPfxL3n097UMX9/qbP9atAjWrRPr4zs6yL1wgQtnM+m0zZ10be1UXAjm/cvfRC5XkJFRxPDhdzEYCrFYusgJFxcXFAqFqD54TMZIcHAwUVFRNNTWcstG7k0+eZLUGzfEwFeFoosgWrNGtG3cv49ep+P4/Plci46WXkvb0cGL77+PwcWF9WvX0ubuLrYByWR4ffQR2C1Ubm4i6fezn0FtLZmpqZya0mXnTG1sZPIHH4gKi7Fj6bxxg53LlnHPZt8YN3QoU/7yF+Q5Ob0fs+EyuCEem8LISDavXNnjs3s2NopKPUFg5ezZRIaHi6q1h906tefOhUuXxEwR6CLQMjJES5qdZDCZxM/061+Ln1OphGWLYPs2MApdrXhubvD733cRTQUF4mS0sJDagCD+vuh7uAQae/lQYkZREJWsydyELlMPRvFYG1UqrkwdzfmEcbSpxIw0d72elOnTGZma6qRqeVJ81eJBZ2cn53fvJvfePSz261kQGBQczKK1a1F0drL397/nru3acuns7JrQKhQMGzaM5ORk/Lplujjif5Msamxs5MCBA9L3bEBAAPPmzevZHtfQAAcPIuzZQ9W1axSGhpIfEyMqTHu5flxdXRkyZAhDOzro98MfIrM35r3wgkgyOqiOamtrWbdunbRwoZXJeOrddwmsrhYbyWxKJ6tMxsnJkzmfmgrA4KIiFu7ahTYmRmSHTSYEoNXDg9qkJLJTUnjwpEOvx9wHAqqqmL9vHyE2Wy8Afr4YDmzgo/M51LeINx+5xULGlf3Ev78KQr4JCjfbywrcz8vjwKZNNDucb/0fPiQlJoa7Awdy+/Zt6Z4ZaLVS3QthpNHrEUBcoLFta0pWFlNOnBBzwY4eFW3RDrhXWsCW9RuwWJS46PV4NzZSH+CPSfnl5717SwvJWVmEVFVR5+vLkZkzManVeLa2ssRiIWTuXGpiYsi32fG7xwF4tLbS6uqKIJczuLCQZdu2IbeY+fUHc/iBzxK89xyHAwckyxggEjLx8bQZDGxLTHTKklIZjYwtLmZsTAxus2eL586zz4pktP3w+fjw8M9/5oLVSv7DhxIZ5FtXx9gLFxh+4wZVQUHsnzePum4LJhqNhqlTpxISEsLWrVtpamoSbbx79jDExQV27RKVkk+IPrKoD33oQx/68HXRRxY54EnIotLSUnbu3ElraytKpZLw8HBJGRIREcGiRYtw7V45bYPZbObgwYNSA5irq6tE7tgxbtw4pkyZ8m/lRZhMJq5fv052drZkZXBxcWH06NEkJSX1ul16vZ6CggLOnDkjPccOtVpNZGQk0dHRREZGPpFVqDuam5tZt24dDQ0NuLm5sXr1anJzc7liyxSZNm0a48aNo6ioiE2bNgEwfvx4srKysFqtjBkzhhs3bmAwGAgJCWHVqlXo7KtpLw6BD7uUMOfHjeP4tGkgk6HR60nOziYrLQ2jiwteXl6sWLGCgIAAuHyZtsmTWb9qFTWBgWg7Oli9YQMhvhVY54L8DyDIZNTv2MGH+fmSJUupVDJx4kTOnz8vqsQsZswKJbr2dp76/HPy4uI4k54uKXBkVivLN20i6t49cZL9hz986bE7ePCgk2VEJggItknCqMuXmV1bCxcv0uruzralS3kUGgqCwKRTp0iaM4fd4eHk5eUhk8mYO3cuCbba4O6wE1RZWVk8sq2Oy2Qy4uPjSVWrCVixAmt7O+fGj+dcenrXarHDpMVxBbTe24jSXMAbP9uL2mgWcyV27hQtP1+B9vZ2du7cyYMHD4AvP/+fiCw6cwZh2TLyfX05MmsWLbawcikgXC4nNDRUao6KiIhg8VR3dEdWwSt6qIUOVwXPfpzOJEUaLbkdtLu6otHrWbx9O4PszVyAWQlKBxEK3/42d1/4B9t3K9m+HQoLjcxKOMS45Bw6vXTSfkOh6LUtcfDgwZSUlGA2m3F1dWXWgAFknT5NZVAQSosF38BAqh2brHAmnVOysphcXIzMYRsBhMRE7sTFcSQw0Km1Tm028+zHH2OWy9m4ejV6nY6A6mpWr1+Pe1sbnD0Lb70lTkjsSEyEykpORUeTmZ7udE4k3bzJtF27qPP3Z8vatTS4u6O0WJg3eDBDv/tdkciyQ6mEVatgdBx85xXxsfnAXvF/bwwbxp6MjF4nyYMLC1m6cycqmUwkpx6H6Gh45x1RZZaRISoEFiwQg78dVSmlpfC974nZQQD+vlBrU3mFqKHCRgSNHg0ffii2vzU1wYoVWI8dc8py6g6FzMKKMRsY5P8A2sBwcwm5t7zI8fKSlAmeTU2kZmcx4uo1lAMHihPNgIBeX+9JYDAYuHz5Mjk5OdL3i06nIykpidGjR2M1Gsl8+20uGQwSwS0DEhMSmDZjBhf+8Q9OdXRIiiiVyUSFA0ETFRVFcnIyAwYM6KFC/d8gi6xWKzk5OZw5cwaz2YxCoSA9PZ3k5OSuxYvSUti7F8P+/RRXVFA0eDAFUVFddq1u8PHxIT4+nri4OAICArq2u7UVfvpTePdd8d/9+8MHH8CsWTx69IgNGzZI15e7XM5T//gHvg0NIgl+7RrcuoVeo2Hn4sXct9m4x2VnM6y4mAa1mrqQEOrnzaOuvZ06vd6ptaw7FBYz/Woe4f+oFp/6eoqioykJD5fUi0GVlbS5u9Pm7i4tTsisVsadP8+EM2dQ+fsgrE9ja5ELBdVRuJlaCC18SJ6NgJ87dy4jR45EEATy8vLIOnWKynpnNePwa9cwDhtGnsN2RkZGkpaWRmhoKIfff59LNhLWURHjiIH377NqwwbkQUFitlC3BYB7dXto/eEaQg+5sO6pp2j18MBbbmbtR28jtMmpjgujRu5OTWAgNYGB1Pn5Sd+DvUELDIiKwmyxUFNTQ2u3xrMBjx4RffcuMldXTiQlYVUoiL17l0U7dyKzWsgbGUzc7QZkjgoif3+REJ4zh46qKo7m5HArPLyrncxsJjU/n7H796Pppjyyw6JQcOeb3+TCkCFUOjQvDrp3j7EXLjD4/n1kDt8DZoWCrBUryIyKwmq1Oi1uhIWFMWXKFE6fPi2Rp6mZmUy8cQP55s1i0cAToI8s6kMf+tCHPnxd9JFFDvgyskgQBLKysjh9+jSCIODj44NWq5WUQsnJyUyePPkrSR5BEMjNzeXIkSMIgtArYTRo0CAWLVqEtpeWnCeBxWLh9u3bZGVlSTXJSqWSkSNHkpyc3JWR0G279u/fz7Vr14Ceyie5XE5YWJjUCtLba3RHfX0969evp7m5GU9PT1atWkVmZia3bt0CYM6cOSQmJtLU1MSHH36IXq9n+PDhFBcX09raypAhQ1i0aBFVVVWsX78evV6Pv78/a9aswf3Mn2H+70AQiZ0z6emcS08HmQxdezvffP993Ftbqfmf6WzuN5OmpibUajUZU6YQtGwZ6+fMocHXF7fWVtasW0dAZy38FSzfVIAMzr/2GmfAKZ8oKiqK5cuX01BXx4dvv4VRoQJBIGPnTobdvs3RqVO5kJLitA+8GhuZ2dlJ1HvvPdYaJggCFy9e5NixY2K7j1pNp9FZqaA0m5m/ezfxNtuMWaHgyMyZXLGt2MbGxjJ37lyOHz8uHcOpU6eSnJwsvYbVauXOnTtkZWVRYxu82vOSkpOT8d6+HV56iSo/P7asXEmzQzU0ggByObr2dgxqtZRvYpELKKzi5/KrrSW9o4Mhf/sbsq9RwW21Wjl58qSkNAsPD2fx4sU9yM0vJYsEAf76VxrfeIPD06dTZMsycVRphYWFoVAopMH22LFjmTbsGvLKnwMCGJKx/lyG/IyoaHvre/HUThxP2FErFUFBYk36iROMO38e4ZmnOfiGKzGL3iEyy64hgcPMYBlbacUDnc7IwoVFDIu/jaEzH2dtmrhq3GkjO/r16yfdSwYOHEhGRgZubm50Zmez+YsvKOvXD5XZzIKZMzFotRQUFHD//n2nOnX7MZhYXs7ggwdRm0w0+fpyyGF/aDs60Ot0yK1WVo4ejSIkhM3792ME+j16xKqNG9E6WkRefBGSkkSy05bXcnvoUHYuWgTAqEuXuDJqlDSJCn/wgPKQEEwuLni2tLBs82aCHVf3dTpRwfHDH3ZZu77/Pfjn2+ADeAAl4sPvv/iiZOWUm81OQbSubW2My8lh1OXLuEREiMGzjvtCoRDDoWw5Jhw5IhJFBgPMny/a87rbmPbuFbNAHJVKMmBJCBxp61Jt/eAH8OtfY1Yq2fn735Nvy0eSWQUEZdck265IlMssTIk9jtGs5uKDJPQmW+C9SkVqcT7DN29C0eFwdqhUojrh6afBlin178C+eHD+/HlJteji4sKoUaNISkpCVV7Okbfe4oa/v3T8FHI5KampBDQ2su/KFYxqNR7NzUw4fZrC8ePJdwjy7devH8nJycTExEjfe/8pWVRRUcH+/fulbKDw8HDmzJmDr4+PaG/cu5f648cpslgojIykJDy8V9UjiAq8+Ph4YmNje7cwO+LsWTGM3qawvP/ii2wJDZWuL2+ZjKf+9jc8m5tFFeGJE+iNRgojIzk2bRodbmLOma69nQ43t8eSGzKs+Fgb8Kupw+9eHZqODnKSkyWSy621lfFnznBi2jSplU2lUDD/1i2GbNtGdUAAnz37LAaNBs+mJuke7dvUwLyxeygWIjhbOBEFFp758BNCKis5+M47XLHd7+Pj46mqqpLGBY5kr1dDA00Oxzc2Npa0tDSCbdcggMlo5INf/Yp629jEUUVr3/6X3n0XXVAQnDghBfsD6IUmrm7IYPgPzuBWD1YZPPj+Ig6EJNLUYcSzqYm1h7bgU1jltM/MCgV1fn7ciY8nKyXlKwO3QVzo8lOpiDhxgv4lJTRERHBizBgEuZyhN2+yYM8eZFarszp04ECRVF6wAEaMoPmTT8g6f56r0dESqSoXBEYPH86UuXPFcPKKCtFy9re/iY2bQLtOx5VRo8gdPZo222KF0mRi2M2bjL1wQbQl9gbbglJNTQ379+93WsixN+ympKRgNBq5cOECYFOw7d6N9rXXxAD/r7hX9JFFfehDH/rQh6+LPrLIAY8ji9rb29m9e7dk1Rk8eDDV1dW0trY+kX2mNzjWoqvVagRBcAoV9vb2Zvny5aIS5t+EIAgUFBSQmZkpNVDJ5XKGDRtGSkpKDzuBIAgcO3ZMGojYg1ULCgqo7TbACQoKkoijwMDAHivM1dXVrF+/nvb2dnx9fVm5ciXHjh2joKAAuVxORkYG8fHxmM1mPvvsMyoqKggODkatVlNaWoqfnx/PPfecZDurra1l/fr1tLa24u3hytp3X8frXhMGFxf2LFggNSqpDQa++9ZbuHV0wEAXKGiiw2hl+/btlJSUAF32Cq/GRtasW4dPUyN8CJ0/cqHKJ5iDy5dT56Ci6tevHxUVFQiCwJTJk+nY8wXn3ftLA22Xzk6GX7/uVJE86uJFCmNipCDVmJgYZsyY0YNkM5vNHDhwQFIUDR04EN2BA1y0VTN3R2pmJhNPnRKDo4Grn3zCoYoKLBYLfn5+LF26VJoggtgml56ezo0bNzh//nxX7oZaLSnO3LRa+NGPMP/rXxyeOZOriYnSoFPd2YnRti/ib91i7r59tHm788rrywiu9Edh7bI62AfU/v7+pKenExcX97Xyr+7evcvevXsxGo292jkfSxa1tGD+xjc4X11N5vjxmFWqHpazlJQUrl+/Tk1NDQqFgtmzppHg/RY0iGo2/F+C0LfAIoNf/Qr+KAahC4BFqeTg7Nlctym14m/dYt6+fdyNXcar49P4Rf1LjNssElJGlYrzQydxbeEKOijHbO66pr1cXQkuLqZBEKi2hZZCF6kgk8mYNGkSKSkpTvvNdP06W//1L+6HhqKwWFg8dSoxaWkYjUaKi4vJz8/n7t27TvcPudWKb10dDT4+WJRKFGYzA+/doygmBoD5e/ag6+xk+/LlmIHwoCCW//73uNhzWLojNBSCgqioqOCzp5/GrFIxLieHaUePUhgZydZly5zInAElJSzdtg1Xu41NqRQnQy+/LFpTHNHZKap2bt+GZDlctHI3Oo7tS5c6/Zm2rY2U7Gxyx46VJskavZ4xtvBeXfcclLAwkTCyk+5Hj4pEkcEgWtW2b4fuwdFtbWLW0d/+1mXlUwDvjIeTgeJzANOgQWz9zne439yMHJCbTGImjsPkW6/3ICzMm5qaUqe38HWtIy02j6HpbyJ3S4SGfPhsIuyqgvO97PdFi8SGt3Hjnmii3B1Wq1VaPLDfx5VKpUgSjxuHet8+dpw7x4PQUGnbVUolw6OjuX/5Mo1aLUqTifl79xIE5PzgB9yw3XNA/K4aN24cI0aM4N69e/8WWWQ0Gjlz5gwXLlwQCXONhmlTpjCiuRnrvn2UXrxIoacnhVFRNNpb/bpBJpMRHh5OXFyclO31tdDRAb/8JXeOHmXnwoUSCeULjN+xg3Z3d+qGDqXOZKLOz88ps6Y7XJQm/Fxr8Cuoxe92HX71dfgtq8N7ViMKuQVaAuDpVijTY9Jp2LJwMcX2ggmHcoaYhgYWv/MOCnsemUxG8YABbFy9WlLIPAwNtZESdsoa5h86xIhLl+AXv8D0q1+xefNmSb0J4n3dtbWVxm62J0lhmpra+9jjb3+j8s9/5qPnn++dpBMEpl+9yth330XmcPzziz9G/s3vEHVcXIBqHOqD9qPtaAYG0DxtPOtTV1Hv54dbaytrv/gC/24KSlxcKBgwgJ1LlzoFU9uhMJvRGAwY3Nwwf8mQVtfWRlRBAYE1NQTW1OAbGIDHrNkiQRQfDy0t1L7zDudv3uRGVJTTZ4wYMIAly5d3LeIZjeL3xO9+BxYL1QEBXExK4ubw4ZLN072lhdG5uSReuYLOoRXRCRqNGLjvoA6yWq1cvnyZkydPYuy2cOTv709sbCznz5/HbDZ3ZWNNmCDmLH1JtlgfWdSHPvShD334uugjixzQG1nU3XY2ZMgQbt26hdVqxdfXl6VLl/7bhE5TUxNbt26VVlEdQ51BnNBnZGQQY5vg/bsQBIEHDx6QmZkpESYAcXFxpKamOq0cCoLA6dOnyczMBCA9PZ309HQaGhqknKOHDx862Wg8PT2Jjo4mOjqasLAwqqqq2LhxI3q9nsDAQJYtWyZlTygUCpYuXSq12Bw8eJDLly+j0WiIi4vj6tWrqNVqnnvuuR6Bx42Njaxbt46mpiY8mpuZs38/x6ZP7/L5CwJPffEF4SUl4gSv8CwMHA+Iaqvdv/kNd2yDOLXBwAsffIBPQwOy16BhrydnIyZxc/hwp/ccPnw48+bN4+rVqxw8eNBpMjjrwAFuDx1KWViY03OmHjtG8vnzGMeM4eyvfsWFq1exWq2oVCrS09NJSkpCoVDQ2trK1q1bKS8vRyaTMWXkSJrXr+eSjSiafuwYVk9PzowYgclhUjvw/n2WbNuG5vhxSEvj0aNHbNu2jdbWVlxcXMjIyKC2tpaTJ08C4sTQvkKu0+kYO3YsY8aMEW2FLS2wZAkPCgvZvnQpetsqsdxiwbWtjVZPT7Ep6/hxknJyKB0SRNKJKYw/V8k/f3CLS6OSuD5ihKRMcFTyBAQEkJ6eTmxs7BOTRrW1tWzdupX6+noUCgUzZ84kMVEMm+6VLLp7lwcvvcTBYcOot5GfjtuQmJjI4MGD2bdvH3q9Hjc3N5ZmTCTU8E3oyAWUMOCfIlkkCHD6tDgBOHFC2iaDWs7P/pTMiJbxlJoUWBUKgiorWbZ1K8VNEbw08ld8a/rv0N0bRFFkJCYHxYqXlxdDhgwhLi6O4OBgLCYTO//6V/KNxh5ZJMHBwUyZMoWIiIge+8tcUMCuN94gLzwcmdXKguRkhk2fLv3earVy+vRpsjIze64uCwLejY00eXkhyOWk37mDn1rN7oEDsSoURDU2suRnP0NZXQ2pqaI1xxG2iWubmxsfvvACrR4eRBYWsnzzZuSCgMHFhY0rV/LQ4TroX1bGqo0buywaCoWo3uimvJNw65ZIGBkM1K4K5+MBKzC6uBDy8CEVNgWSzGplzbp1DCgr49bQoWSlpUnHXGU0knj5Msk5Obg7bv+cOaK9zL5Pjh0TCaPOTvF3O3b0JIzs2/PNb4p5TwBy4J350P85DN//PpvS0ykLC0NhtSIoleL5ZjueYaVlFHlFovY09Iib8dQ2smbsRnzd6kCmgQHvgt8zYKyAoslwJx++KYNGhzZHO0JCuoijlJSv3XZoXzzIysqSVGxyuZyhQ4eSMmQIpj//me06HU0OKhyFQoG7yUST7fpOycpi0rlzdPztb+TGxpJ7+bIUVqzT6QgICODpp5/+WpPR+/fvc+DAAUn9FO/pScqtW1QUFlLUrx/3Bw50uv85QqlUMnjwYGJiYoiKivq31bhGo5H6+nouXbok2cSBx+YFOULT0UHcw7sEDajCb3sdfjV1uCW2IfsDoNLBG66wy7bY8sa34YUfw7QlcPky+PggtLZyITGRY9OmdZGBgsCQ27dZtGuXaFVKTRUtoceOwM9+zo3hw0WbJjDt6FEeJkaR5yfmg6lNJpZu3kzowIFcfu01ci5edBpXAPhXV1MbGCj9W2a1MmL4cFInTMCnlxp4AE6dEkPzrdZeVbSOJQjx8fHMnTsXg6yOvL/PYsSvb6DWg0kjo+m15/D/zt/g2F548Smos9Dm5sa6tWvFFsb2dtZs3UpQWRkNvr7kxcVxJSGBRm/vHsciPDCQ9D17GHD8OHKrVcyFSkigur2dGn9/7gwZQuVXFIe4uroS6O2NrqyMutpaqgICnN7HVacjY+FCBg0a1PWky5dh1SqEoiKKIiO5kJTEAwcVVYi7O0nbtxOXm4vC0l1T6ngg/MXvmsdkVTY3N3Pw4EGKiooAnBZBYmNjKS8vp6WlBbXBwII9e4iVyWDPni5FZTf0kUV96EMf+tCHr4s+ssgBjmSRu7s72dnZnDp1CkEQ8PX1JSAggLy8PODrVX5/GUwmE/v375esWV5eXtKg2Q57APT/RkvZo0ePyMrKoqCgQHps0KBBpKWlOWVQZGZmSu1f48aNY+rUqdLv2tvbKSws7NUKo1arMZvNWK1WQkJCWLJkCbt27eLhw4eoVCpWrFhBhC309ubNm+zevRuAtLQ0iaBavHjxY5VaLR88w/pbriJB1K36fNz580w7dkz8w389Dd/+THrewx072HT5Mp0OIZxBlZUsbdhKkcdgTvtNFn/ngFGjRjFr1ixpgPbF735FqSCqJ8ZlZzPt+HGKBg1i0+rV0uAysqCAlZs3Q0QE5ORAYCA1NTUcPHiQMluQqr+/P6NHj+bcuXO0tbWh0WhYnJxM/jvvcDk2FgSBOYcPk/jgAdTW0uruzvGpU7nlMKB0dXFh7bPPSkRlW1sb27dvl95jwIABVFRUSMdGqVQyadIkRo0a1RWe++ABhlmz2DViBIXR0dJn8Kuups3dnU6dDm1HB0u2byfiwQM2Pj+M5/6RyJ9fvcJ33hKDXZkwgfr33uPMnTvcdqj5ciRsAgMDSU9PJyYm5onOYYPBwJ49e8jPzwcgISGBWbNmUVVV5UQWtW3cyLF9+7hlI9fkMhlW2+0sKCiIWbNmUVFRwdGjRxEEgZCQEJbNjcajZjmYKkHhA4N2gGu6uLL7hz+Iwcgg5grNnYv+xl10DwqxyuCXvxvFtbq5pKs66HTVig1qlZVU9uvntNrt1djIkDt3iC0qIuTNN5EtWwaI1/q2bdu4d++elJ0M4NHURKuHh0S4BQcHk5KSQmxsrJOt1VpWxr5f/pIbAweCIDA7IYFR8+dLvzeZTOzcubPr2rZa8bBaaemWK+LW0iIqEWQy4m/fZsGuXShCQsQsn85OmD7d2dIFmKOi+GLhQh5pNPjV1vKNjz9GYzBQ5+vL1uXLqfP3R242IxMEyaIYUF3N2nXrcLXX2QcHw9Wr4KCqcsI//4nhJz/hoxdeoN7Xl8CqKqoDA7tIE5kMpdHIc598QmB1NVaZjPzYWDLT0sQwY0SFwYjr10nJzsbbpqLje98TJ9p2nDghKos6O2H2bDFfqzcywmoV82u++x2wiOeyfnkKG1JXUFFXh9JkwqxQOKl9oqur8Swu5mpiImYnm9sANJoqOjuNaFR6FibsJTJAPL/xewFC/wmWZiiaAsW34CU5PLKKk8mUFHGi7pj5FBgotiouXiw2ufWSHfM4CIJASUkJWVlZkiUTRPVjslpNxccfcyIhwak9zPF8HVxUxKKdO9EsWYLxn//kemEhOTk5NDU1UVNTw7vvvssvfvELYmNjCQ4OJiQkhODgYNzd3Z2u//b2do4dO8ZNW0i0q8lEeFERDV5eXzrBd3FxkVStgwYNeqLGOPvnbmtro66uTvqpr6+nrq6uR16fIxRmM7719fjV1eHd2Mj9gQOpsm3f2AsXmGY4hvzXAvhGwwU/+PYFMJhhcirsOQSubmIz49/+Jr5geDiUlIBaTZ27O5tXrKDBrvIVBPH7zEYE9nv4kNUbNoikq0oBpi7i4dz48ZyeNAmsVtzb2mj18HBqsFTI5Vhs92APNzfG3bhBZWsrN0eMcNwpjLx/n7Tf/hYv2/dyrygtFTPoWlsxqtW89aMf0eFwzeja21mwaxebV66Utt3DDabveoe48yJRVpveH++M76PMuQyHDvUgpTt0OtatWUN1cDAKkwmPtjaRIHKARqNh9OjR6PV6Ll++DMDihQsZcvKkaMNyuG+dS0vj9OTJACRnZTH8xg3KQwLZ+tOFDCOGuppaSWn7OHh5eREXF0e/fv0ICAjAR6tF/qtfYfzXv7g+YgQXx46lwaZ0k8lkxMbGklRWRv+f/ETMp3tSDB8u3otmzxatpw5EsCAI3Llzh8OHD4vFBw5wdXVFp9NJisG0s2eZePUqsg0bRDK8G/rIoj70oQ996MPXRR9Z5AA7WVRZWcnJkyel4OqYmBiam5ulZo2JEyeSlpb2v1YxLwgCOTk5nDhxAkEQ8PT0pKWlxUm9Exsby4IFC554YPxVqKmpISsry6ntJDQ0lNTUVCIjI5HJZFy4cIGjR48CzsSJI0wmk2SFycvL65FzpFQqMRqNuLi4sHr1ammAUlNTw8cff4zJZGLUqFHcvHkTo9FIUlIS0x0UE064fwJrwjSOj5vKBXsWj20SGVBdzfMffYTSbIZxfpBdI5EfxRcvsmXfPkxqNaFlZYw/e5bdtupbuWDBKhMHZm4qFW02K09ycjJTpkyRPu+Dd//ExspWKdAzoKqKefv388VTTzkpSQCmZWYy7r33nFb37BXQx44dcxrw+fn5sTwpiey//IVrMTEgCMw/eJARhYXOk0OgdMAA9s2f7zQ4nTx5Mim2Fd6Ghga2bt0q5RGBqFZrb29HEAQGDhzIsmXLxHMoO5ubP/gBB6ZOlbZfZTQSnZfHnaFDEeRyUT2zZQvuHW2sWj+RrJQA9i89R0KOzar005+KEnzbPqmurub06dNORKQjaRQUFER6ejrR0dFfee0IguBE1oaEhJCSksKQIUNorKmh6C9/4aRcLrY1Oaz+q9VqJk6cyMiRIzly5IiU3zRs2DDmJLeiKn8BBANohkDYTth9Cd54A2ytYoJGQ8OCb/CF/4/56Hg4Jfl63uY7PMenmFQqtiwbx5Wk8fjUKpxySTwbGxkS6E/TsGvMWLsT9waHD/P66xh/9CO2bN3qZAVRKBRM8/Rk9K9+RbMgkJOSwtXRozHbXtfHx4fk5GSGDx8u5mMAQnU1h3/yE3Jtq9iTIyNJXbmyhzrDPrnv//AhDSEhdCgUYl6RRuNEbrgZjcQ8eEDMpUuEl5Wh+P3vxZDfVau6jgWwd8ECbowYgUaj4bnoaHwPHaIwN5ddM2Zg0Ghwb2lh2ZYtqEwmPn/6afQ2i45XYyNPffEFXnYCPCVFVG/1YiURrFa2/eAH5Pv44NbRgUkmw6DVMio3F3VnJ+fT0gAxr+j5jz4S82NcQNDCPb/BZI4fLzUVyaxWht66RUpWlpgRMmwY/OY3IkmkUIj16nPniiTWrFkiYfQ44v/uXRiTQBsq1q9dS01gICqZDJP9/mw7//za2mhwd5cIy+DycsxWL2pDxX3R3DyQyMEt1NTWAQLpUdmkR55EJhNAN1okLuWuUDgVSq+JhFGpVVQUHTkCZWWiEmrPHue2Jn9/MWtl8WKYMKHXffs4lJeXk52dLS2CAAwMCyOhqIjbxcUUdFe12j6rV2MjKzduxD8oCHbtwjpoEHl5eezatYtf/epX/OAHP+hhuXV1dSU4OJjg4GAMNTXcKCjAYHtNpdnca7W943NjYmKIjY0lPDz8S1s6LRYLjY2NTqSQ/cfwmDDi7vA3VDNp1ykCa2rwbGpCLgjU+/qyxUaMKsxm5hzYz4i5UfDKT0EbB3Lb+XP6tHhutbeL5/vBg+DhId4rX3tN3Ea5nKPTp5M7Zox07/Kpr2fVhg0oLRY++853aLLdl7VWI09t+pjAezVO2ygA++bO5bpNealrbyfm7l2uJyRIllCZTEZiRAT9160jOyqK2m4q6MGlpax47TXk3dSxTtDrISYGysoQgM9/9CPKerH4pRQUMODKFbYsWyYRRi6dncw5vIdIwYJLXonYQNgNFq2GkpB+5MfEkB8dTZujxdi+ICSTMX78eNLT06XFm0O7dnH59m3kViurtm5loO17RwBOTZpE1nhRVTzh1CnGnztHh07Ja9d/wxuRryAvuEfev/5FptncZQl+AhWZwmzGpbOTTq22q/1UpWLkqFGMiY/H61vfErPPvvRFFPDzn4vX6cGDcPGis4LQ1xdmzBCJo+nTJdtuR0cHx48fl5Rvjt+tjouMUQUFZOzaheZnP4Nf/tLpft9HFvWhD33oQx++LvrIIgfYyaJXX30VtVqNTCbDy8uL5uZmrFYrCoWCwYMH4+fnh1KplH5UKtVX/r/jvxUKRa+T5fv377Njxw46OzvRaDTI5XInYiEgIIDly5d/dVjn10BjYyPZ2dlcv35dyqAIDAwkNTWVuLg4rl27xoEDBwAYMWIEc+fO7TXE++7du+zcuROr1Yq3tzeCIPRQSIWEhBAdHU1ERAR79+6lvr6e8PBw2tvbqa2tZcCAAaxdu7b3iYClA/2kUHaFzuSejYRx0eulut7Z+/cz6upV0Mrg4T3wFSfTBXfusH3rViwKBYPu3WPp1q0IMhlHZk/n+vCRgKha8JXJsPfCdCcDqzZ/yuc3izBoNEQWFlIeEkKHm5tTG0zMnTt4trRwcdw4AFJTU5k0aZLTcbZYLBw8eFAiMABclEr8ysspDwwU7UX79zMsP18coHeHToe1sJDs4mIpaB1EwikgIID8/HynQG4AX19fkpOTOXLkCCaTif79+zPPamXvpUuU2weLgsDgwgJUZovUnDP8+nVmHzhAc4ArSWemE17axs6VmXjWtor1wOvWiW0xvaC8vJxTp05JqgWZbbBv37bg4GDS09OJior6StLo/v377Ny5E71ej9Fo5A9/+ANvfetbNNomPXJBwGp7jdjYWGbMmIFcLmfbtm08fPhQtPdNmcy40H3Iav5k2+mz4PQk+Ovb4oo5YHHzIHv4t3m1+vtk3+uyZ+h0JhYtKiI5+AANymYnYlApWDHLxGth6M2bzN23D+WyZVz4SQgDF/2ZQJFrFm1aP/gBDx3ICB8fHxYvXixaQCsr4dvfht276dDpuDh7NrkjRqC3Tazc3NwYO3Yso0aNQqPRIDQ2cvrll8m0EUYBOh01tvuEh4cHs2bNQqvVsvGzz7CnXfgZDEQGBpJjuyZ9GxpocXV1sve4dHYSWVREtFbL4MhINLaJ7flx4zg+fToyq5XVBgMRaWlkbtvG6YgIkMkYUFrKkm3bcLMF9Td6e/P5U0/RYssVcm1rY+0XX3QFuy5ZIgZMd0NWVhYnT55EYTbj2dREg58f/R494unPPkMmCHz83HOSosOvtpZnP/20K4x7HlCso7TFj8zx46VmKoCYvDxSMzPpV1EBgwbB978PzzwjqsjmzBGvtRkzYPfuxxJGzVeusG7dFzT4+KI2GKTwYTsc2wH7CwLpWi2DXn0VmdVK5pQMjiWNRKm00NTkR/wQHx6VFwIQGXCfjJFH0CprQeELAzeDbhQUzYCyS/AtORRbRSXRyZNis5TRKCqNduwQt7nBgZn08RHzV5YsgUmTeoZ4Pwa1tbVkZ2dLFmuAft7ehOfmcjMggNZe2gflFgvTjhxhbH4+fPEFZGRIAdcXL15EEAQqKyuprKyktra21wbAL4OXlxexsbHExMTQv3//Ht87nZ2dvRJCjY2NPe6Ddshk4O2hwM+jA1/XKnxc7nH3UTgP6rssRsOabjD/n3uRO7xGYWQkuxYt6iJG9+6l3zvviJP53nDhAsycKZJ6I0eKZN+PfgTr11McEcGOxYslQlVusTD5xAnGXbiAbPly+OUvMQ9QsmPbpxSUieejzGpl/p49DL95EzQu0CmSXicdSBFHssPb2xuj0dijPEOCIIhtm3I5MTExLFq0SCKknWC1ig2INoLixHe/S7ZDZpSmo4NOh4DrjLtnkN+pFQPwHY5XSlYWk06dQj5oEHh30HmjjnuRkRTED6EoPEIk/W1QG41gtUpZeVqtlmXLlhEWFgbFxSIZs2cP1uxssYlwyBDUBgNPff45wZWVHJ0zh4u24oepR4+SnJODXqPgt3l/5jcNadz68GPOq9XSoovCYkGhVmO0jX9GjRrFuHHjaGpqorq6mupHj3h0/ToNSmVXM2g3aNVqAkpKCHj0iIDqagJragioqcGlOznp7Q3Z2WDLWASgtlY8Pw4eFHPVHMdNcjkkJ3epjuLjKX7wgP3793ctDDgEYAuCIEYk1NWxbMsW/MeNg/Xrxe9s+siiPvShD33ow9dHH1nkADtZ9NOf/vQ/tpd9FR5HLoE4cLeH1XZvJVMqlQwdOpTAwMDHklGPI6rkcvljJ+etra3k5ORw5coVKVDRx8dHCtvdv38/giAwZMgQMjIynAid69evs2/fPun36enpbNq0iaamJlxstfXVtrpdR6hUKoKDgykrK8PNzY0XXnjhsaGk1a/PYWvNIBp9fFCaTEw6eZLTEydKk12F2cyS7duJ/vMzMFes4r516xa7d+5EkMmIyctj4Y4dFEVHc2TGDGny497cTKvDCnj3BrGmQ3v55FQmbe7uhJWUsHrDBoojIti8cqU0MA8vLmb1xo3Igaz33+eULQ9k5MiRzJ49WyL9HEO2R44cScX9+1TZ7Q+CwKQzZ0jLzu5hAbIdDCgqklYZW1pa+Oyzz3oQcmFhYaSlpaHRaNi2bZuYZ6BWk5aWRlZWlnguOUwqdO3tTD94kPPjx1Nta/yafuQIYy5d4tTsQczbMp4fv3WHX/8yV8zOGDFCnKQ65jc8BiUlJZw6dYqHtnYp+2TPPpELCQkhPT1dUrI9Dk1NTWzbuoX8gkL+/ve/89Of/hSdSiWt7Hp5eTFr1iwiIyOpqKhgy5YttLa2otFoWJQxk8HyV6H5ILQBRybAp3fBpr5qcw3gQ+3L/KbuW7Qgngd2gmjYsLsYDIXOIdWtrcTduEFkUR5v/iySccJESiotCHI5wRUVLNu6Fc+ICO5/+jzCy9+nX66KL9aulVq9QFQ5zZo1SwpvB8RjsmOHSBrV1mJ0ceHqD35Ajr8/LTa7hmOTlSuw46c/5a5DrteYMWOYNGkSLi4uWCwWPvnkE0kN6Tipm3ztGql792LWankQHU1+//4UxsTQ5hCMKrdYiNDr8b5zhyujRyPI5cw4dIgR16+zd8EC8mzWv1E1NczYtQtFVZW4Ym6bcLW6u/P5U09J9hqXzk5WbdpEqM0mybRp4ue1Xe/3795l47ZtCDIZ/cvKeDRgALr2dl48ewKPSyK5WufrywcvvijZu0LLylizbh0q+/UyEXjOF3YMp+JSAVkpKeTFxkrn+sD790k7d46w0lJknp5iK1tiokgc6fXixH/Pnh6EUUNDA+vWraO5ublXosiOsJYWxu/eTcSDB8iio+H55+H116GxkZIhw/lo1nLUrgY6OzUEBgyhvf0SZosCb10jS8flEKS9BMgg5Pfg/y24NwceZcO35VBoBT8/0ULnmKtmMolZUNu3i8SRYxGBl5eYz7R4sZg185jtdkRTUxPnz5/n2rVrkoXVVybDs7iYYluNu0wQnFR1frW1zNuzh9CVK8lbs4a4YcPEyWhAAKaTJyk5epS8ykruDBwoEQBfBqVSSVBQEGFhYQQHB+Pm5iZlCjlax7rn8DhCpVLg563E30YK+WkK8dPcxUfXgFIhnqNGs4rtV5Zyr7ZLATqqqYRZb30hVZoLQFZaGqcmTepJjE6bBh9+KAap94br18W/qa0Fd3f0ZjO7MjK4Z8vrAzHba9mWLbjNnSsG64cboOpNaNwOWDm/OYnjrl1ZRgkNDcx54w3kN25wcdcujnQL2VaaTMzevx/jihVkd3bS8pj7amp2Nv2/9S22376NxWJxVp3aYbWKhOPZswAUPf88mxwKB+RmM89s2cKF117jjq38w6O5mZfee4+82Fj2OVhkAfr7+BDTnseDO608iIiQ7t8gtqhFFRQQ9egRZX5+nE9N7XofmYzlFguRe/aAzbJohzkxkU3JyTzw9UXX3k74o0fcjY4GYObBg4zJzQVEwv5yaioXRoyQGspczGZ8vL2ptN1fvby8mDdvnmSTt1gs3Nm0iQsXLlDpoMgKNBgIGDYMs1xOTU0NDfX1PG4Q7dnURGB1NQE1NQS4uxPw1lv49ev3eGWc2SzmpB08KP7Y2k8lhIbCrFmYZs7kjEpFzuXLCILglGVkL0xQGwws2L0bXzc3qn7zGyoVCu7cvMmPfvKTPrKoD33oQx/68MToI4sc4EgWabVa6cvXx8eHkJAQBEHAYrFgtVqxWCw9fr7q8f/Xu1omkyGXy1EoFI/9kclktLe309bWJk3qlUolbm5uEjHh5eVFdHQ0SqWS6upqya7Xr18/wsPDuXz5MgaDAVdXVyZMmIC7uzt6vZ6KigoKCgpo6WavAtGiNGjQIIKDg3uscJZd2s/FwmYsSiWubW2kZGZyLTGR2oAA/Gyrd+WhoSBYGZecQnh4OPfu3SPXNlAMLy4m7vZtriUmUmkb7LrpWxl58QplsbGUOAR9BgQEkJqaiouLC8a8uxw7d45WD088GxuZevw4couF41On0uiQMZF+5oyoWvje92D6dOm9BUEgNDSU2NhYsrKy6OjoQKlUkpycTIjJRPbOnTwMCXFqv4ksLGTE9euoHeX6vr5iPa9GgyAI1NTUcOfOHYkIcISbmxtjxowhODiYzs5OMjMzJVua0mIRM1Zs2z2gtJiI+yXkpKRg1Ghw0etJO3eOwJoaPnwxjmNTgvnln/MYcUls0mP6dJHMeIJJpx12dcH169dpsCkgupNGvr6+DB8+nJCQkN5Jo8qLmN/5I0c6B/P93bv52Suv4KLVIpfLSE5OYfz48ahUKm7evMn+/fsxm82ivS9jHL6Nq6EiDzYrEHaokbWKSpRyZRh/MP8Pn/IsnWjR6UwsXlzE0KG9EES23IohQ4YQrNVifmo1qv2HAPjs6SgerliF9rSeDo0GXXs7S7ZvJ7ylhfLP/simS3l0qLzE/W8yMTs3lxH//CfYJjQ9UFcnNoZt3AiAJSqKW7/9Ldk21QSIkwGdTkerPfPDdv4Md3dn3ssvI5PJ2LNnDzdv3kSpVCJYLFhs956JJSWMf/11eOklMfgZIDwcobSU8n79yJ82jQJPT+q6WYh07e3E37hBUXQ0jb6+yK1WZimVJP7udyJhERMDu3aJ5M+YMVBZSYdWy/o1ayQ1kNJkYtmWLQy2TSwJCIANG2hqa+PDS5fQazSElpbyMCwMmSCwZt06IhxsewCXExM5OHeu9Jlj8vJYsm2b1A7IAOAvKhj+d3hhO7V375KdksLNYcMkVUBoeTmpZ84QWVSETKEQM39ycsQMo2nTRMLIll9WW1vLunXraGtr60Hc2xFx/z7phYWE/eIXYqPW974HdnJ8yRJxgltQQIuPD2+t+h+svgasVhmd+kSC/bNo7tCglJuYM6aY4X6bxed5zoXQd6F0LTw6Dd+RQ55VVCYcOwY25YQTzGY4d04kjnbtwlpbi0WhwKJUYvHwwDJ+PJa0NCzDhmERBMxGIxajEYvJ5PxjNtNhMHCvvZ2Szk7s1LXaFspuJ8sc1VQA2vZ2OktLeW3bNt5euhS1lxc1/v5ShtXj4GmxoBME9DIZzXL5Y2vne4M7An4Y8BOa8bPW4Gcpw89UhDtNyOSIfkwZYkC5DFB5gUt/9KpwNnYMo9zSRY6klpYy6bPPpDp1o1rN3vnzuWtTWybm5jKzowNFWJh4fZpM4nny0kuimkuplBrLkMvFnzt3EJ59livDh3N0xgzJaqcyGpm7dy9D79wRyb8PvgOd66AjE2kDNg+AdWWUhYayYfVqaWHEx8sLd3d3Sm0kPIjtg3V+fnS4uTk1U7q2tRFvMHAtOFhaBHLR63kpMRHPJUsoLi5my5YtmEwmBgwYwIoVK8SFMpNJVLIcPw5A49KlvDNkiHgfsV178/btY8SQWFrOHOGTxWulRZf4W7dYWHyfi+4eHJ00SdzAXixefrW1RBcUEJOfT7+6OvQ6HTtnz6bYthAxurOT5upqCsPCkFssLN6xg9jCQvF6XbBAtPr96U8YPvuMz596SrrPYLUyb98+Eq5fp8bPg1vDRnF59Ggpk9BdrycyJoZ7jY3SWGT06NFMmTIFtVpNe3s7VzIzyc3Kos12vJQmE8Pu3WPs6tUE2LOAjEaYMwfz6dPU+vlRExhIdUAANYGB1DxGjQfi959dDRwQEEBgYCABAQF4enr2/P4rLe0ijk6dEu9Rdri4UDFnDvtHjKDKRtI7kka9obm5mb///e99ZFEf+tCHPvThidFHFjng/1JZ1Ic+9OHrwT7Q/elPf0pEQD3zR+wlcGAG1pA3OHkml/O25qqoqCgWTvHBJXcpfN6CsA9ktjn+HeJ4g5+yheWodbB4sagg6uz8EoIoONh5EG+1Yv3Tm/DzXyC3Wrk+3Je33lnFmP0u1GhdkVmtjD97lotjxtBpW/n3ratj+ZYt+NXVIXh7Idu1W8yXeRwOHoQXXwSbSk146SXyn3uOo+fOOYXxBgQEEJuXxzlvbwS5nFgXF3xGjSI7OxtAshzY4dnUxNpbt/DZtg3ee0/MtBAEUR1RUSFOEvv149GIEWyOixPrwbtN9GRWK0Nu32b05cv0f/gQ+aJFYmWzoyrw6afhiy96NKXJLRYydu8m3haGblYq+fTZZ6kMCcGvsZF6b28EYMrx46TYPgOxsZCfB4Ko9Ni6fLmYpWPbrsTcXGYfPCjNsXEBfgWs+SG8/AB27abJy4vslBSuJSRI1tHAmhrSzp4l9u5dkWyyB2lPnAgbNlDZ2MiGAwfo6OxEpVRi6qb486mrY0ZtJkE5DViaW0RSZtgwLJMnY7lwAcutW1gUCsyurljc3LC0tGBSqbiYNJ7qIFEhqKkzonHT06QRJ9qB7fWENhVjEeRYZWosCm8sVj0WwYrFoMAsV4oEkIuL+F+53PlHoZB+HmeZ+W/CHnDtlFnUnSiwWvFqasKzuRmZINDk7U2Tl9fj82IekyXj0tlJcGUlwRUVhNj+69PYKKmCHocWd3fWr1lDnYNaZPLx46TazzdEK+WW5cupCQxEbrEw69AhEq9ceeL9YEedry/blyyhxiHUPTovj4w9e3palL4Eba6ufPzcczR3s6Dr2tvJ2LGDyv79OT9unKQeVJpMTDl2jIRr1zgxdSq5Y8eKT7DtSxeDganZ2YzMy+NRUBAb58zB4OJCcG0tq48cQVdeLhETJjc3/vXNb9Li5iY9f9SlS8w+dEjajgcREax76inp34Nra2nQ6WhwVD45FFKkZmYy8fRp8ZpVqajw92fb0qU0e3mJRNq+fQy9fRuLXM7uRYu4M2QIMquVjOpqhtqvw3PnoKgIi0LBtmXLKLQptjyamli5eTOXExO57hDU7ltXx5gLF6gMCeH6yJEAeAPzlErClUqqgYtmMzeNRikk3L2lhdG5uSTqdOhmzxZVhzKZaIf7xz96t4vboNdqqQ4OpmbVKpFA0uup1usxPsYiqVYoCHBzI8DNjUB3dwI8PAj09ETr4iISjwYDXLkCmZkYz5+nWhCoDA6mMjiY+4MH02orLegN2o4O4u7cQfXgATPu3u0ji/rQhz70oQ9PjD6yyAGPI4vkcjm+vr7/di3v4/Aku96eyyAIQg9FBohWLnuG0pe9h9VqRRCEr/Vjf57JZMJoND52e+0T6f/PnUr27bEPoAQrSixgEsTJlG31Va1Wo7TVXxsMBvFz2CcoVivura0oLRbadTrJRiGzWPBuaqLF3R2z7fm+vr5SPg+IeVCdtgG3TCbDz88PhcFAY20tBhcXEAR8Ghtxsf2NQa2m2dNTWolXm814BAZiMptpb293ap3T6XS4urpKcnZ7qKu524TWscVI+kxmMzK5XJpMqjs78WhpoVOrpCzUDY9WE/61BgRAUKkQAgJApepxbvR2vnzVY/8JHMkijUZUYwS4VdNm8qJFL1qoUpKTmag+g/xPf0R2VABbedBFxvAHXuWUbgaLltxn6NCvSRD1htOnMSxfjEtNA80eKl7+dCYT7w7lgdVZSRHf3MyAIUWMeOkAKtvbCUolsg8/FC1Qj//AYsPPRx/xqF8/9i9aRI3NhqjVaqXKcoBAk4laudzJ2uHv709tbS0KhYJZs2Zx/uRJ6js6cGttZU1uLgE7doiTj5UrobFRVK2o1Vhra9m4ahXFgwbh2dREzN27YhaXQyuZHTpBICohgZioKAb264cKRMLJZIJNm+BHP8KkVLJt6dIu+40gMOvwYUZdusS++fO5npCAtqMDudVKu5sbUfn5zN+zB2t0NJbSUiwyGZaYKCzFJVgUCtpcXdmzcKFTs2Hc7dsMvnfPiSyxeCiweOiwNIungUWhoNPFhcrgYOr8/KTrX2U04tncjFavx2ojXDo1Gpo8PcVJ2hME3/7/A+QWi5jPYrGgNJul/1cIAgqZDIVcjgLEH/tjgMJ2T2tUq6l2ccFou284KYts+6hXsugJoRIEfKwWAs16AkyN+HVW49dRhnvnI+oVGio0wVRqQqjUBlOtCcQi7/md52IxE9zZQVCnkZAOPcEdHfjq9SKBZLVSr1KxLjqaFrs6UhCYdfYso8+ckV6jeOBAti9ZQqdWi1trK0t37iRUrQZXV9GaZbWKn9dqhfp60dJqP0e8vcHVFXNLC6fGjuVCUpK0j7Tt7SzesYOBDx6AqwvIjGASwM4ZyQC5ouv1Ee/dxYMGkZmWRml4uPOHFQTC79+nsn9/KfPHraWFDldXrAoFSTk5aPV6sTHNhumHD3N76FApry6iuJi5+/djcHFh/Zo1dLi64l9Tw5p163Bva0MANq1c6WSdCy0r46kvvpAq4U1KJcWDBnFy0iRqHVS6INrDPVpaaPTxAUEgpLycCtt7D715kzn793N76FAOzZqFRanEp76eZVu3EuBQ0mCVydg3fz43RowAQRBVQ7bcP7NSyfYlSyiMjkZuNqM0m8XvaIdrNqS8nNSsLJQmEwfmzqXFdl6OuXiRSSdOUBoRwYWkJB7YMuDsz0m6cIG4u3elz/m/AQFo9vTsoUKq8/Nzunc7wrW1Fc+WFlRGIxaFgnY3N5q8vHolgx1VZTKLRbrHAXg1NOB5+zbP2KzhfWRRH/rQhz704UnQRxY5oDeyyLFxIj4+npkzZ6JzCHT8v0B9fT1btmyhrq4OuVxOcHAw5TbFAYhNMcuWLSM0NPS/tg1Wq5W7d+862ZpAJKsmT57MiRMnMJvNhIWFsWLFCtRqNWazGbPZjNFoZMeOHTx69AhPT09cXFyoqanBw8ODiRMnAmA2mzGZTDQ3N1NaWkp1dXUPckFlW/GzKpUiwdHailmpxOTlisnFDZPJ9P8JwsoxaNIRSrkcRUcHBo0GmdVKeGkpXg0NqMxmFGYzcqsVmSBQ3q8fJRERPQaDCoWCfv360b9/f9FeZHsPu83RZDLx4MGDHjlGYGtx0evRu7r+P1Ec/FuwWpFbrQhKBQKyHmRRb1BYLARUVxNUWUlIZSWPKvvxUcs38csY8PUVRE+C8nI6l2agOS9aHl//2QLMLiOkX3s2NfHMp5/iGRHBvVfTCXrpn7g5NqW98gr8+tdi1o+dZDGZRIuDyYSho4NTx49zqa0NZDK0HR1Mf/SIYfPmUQNkV1Zyu7m5ByEot1qxyuWogOUWCxEmE81mM5uUSmo1GjR6PQuOHeP/x95bh8dx5Vn/n2oSY4tZlmRJtmyZJbNjZoqZwvFkJpnJZDK4M5uBncBwaMKJYztmiB0zxSgzSxbLYm4xNNfvj+oudUuyk8zuu7vv+9N5nn7sbnUX3qq699zzPUfbv79UinT7tvSvUsnl9HRykpNRmkxoGxqotQ0AI0pLScjPpz4gQB7gOJYYCRYLXq2teLW14d7eDoIgEzdmlQqdViuXggAoTSbp991J3f/LIFitKK0WlKK0T0obEaOyWlG6uEiftbVJn1ut8t87PD0pDYtEVAmIRgixNlLv4olFUKPGwmBVMQHkoVRaUHkkoxTaUepzUR6xoCy1SOTOCy+gHDoUpUYjrcv+r4sLKldXlK6uKDWaLr86qxWuXpX8onbtkiLc7XBzk0yZlyyRjL978Y+zWCxkZmZy/vx5uSzScWD+bcgipVIpT170ejwFK1oPHYGedQR41RHoWUeQVx1aXxdUngPAbRAWTQp17dFUNrhRVV1HVVUV1dXVckiDIzQaDaGhoXh5eZGbmyv7AQqCwMLcXAZv2SLtBnBp9GiOT5uGqFAQXl7OspwcvLdskbxiHoSiIsmf6tQpAAoTEtg7fz7t9uMnigzPymLGl1+iFq1gsYIX8BYwRAtNy2H1Hqislgip9nZEQSAnMZHzK1ZgKwJGoVAQGBBAjcPz144AYPyePaRkZpI1YAB7lizp8Z0heXks2LkTq9nM5bQ0Tk2ZglmtRi2KTI6MpJ9Wy+aMDFo9PPBraGDd5s3cHTiQU7b4eZCIi2c+/gC10UJe//7cGT2IstB4zL2cygAXF57ysOLyyq85PHqWlPxmtTLk1i1uDxmCqFDg2tkp3xMSCwtZWFWF68CBYPPHspNzotXKQYOB67bzO+vQIYbcvs325csp6tcPpdlMSFWVVI5ug7vBwOL2dsIUCo67uXHTRhD6tbYy68svadRquZyW1pUuarWSnJ1N+qVLRJSXI6SmSomm9smjxkapXPUhaiIZfn5dJtaO5GJ3stH2sggCOg8PSrRaSoKCqPH1pcnT86EJgYLFgntHB1qdjojycuILCogsLeVuairHpk/vItNBvj77ytD60Ic+9KEP3xV9ZJEDvk0Zmlqt5pFHHiE9Pf27Dyz/EzAYDOzdu1eOJY+KiqKsrEzucCsUCubMmcMwm7z6/wSsViv79+/n9u3bvf49KiqKNWvWyEbddpw6dYpz586hVqtJSUnh5s2baDQann76aQIdDHoBbt++zYEDBzCbzfi2NDLo5h0qw8N7GGK6tbdLfgctxcQczODI8RNSpKwoSjPetu9q6+qklKrvWWjb5cGJ0dOoDwpCpVKRlpaGj4+PTGqZ2tu5f/ArygOCnOPYHU1tRREPW2ferNFgdXXF8pCBz/8tEBERrCJKW0dWUKsRVCo5thi6lGOOJNV/Jx5KFold6T7fBE+VioE+Pgz28iJUqUQwm3slar7xM5MJ0WjEajTSmZ/HodQhcpqcYLGgNpsxurjg2tHBpK+/JrC+HpOHO1azGatC2eUn46iGcXjVBQRQ1K+f7FXi29hIUE2NEwljUSox2hRpenuJhMMxUVosiILwwFnr/+1QOipgHIgWpcVCu4cHHR4eXQoXUSSivByf5uau31gsKBUWlJEiyhyT8/K0WsTERMoqKymIjpaSFaHXsim7wfDsWbMYMHCg5PHW2YlychqKW/mSV9LBl2HAG/DZZ/Czn0kpZYIgEQlPPSURg3YFi1oNJhMNERH8c+ULWDw6sVgUhLobEFx01LSEIAgiU0eKjA78vbQ5HmmgCoaa/fAzIAPJP2zvXonk+a4QRUlZtmuX5HNkSy8E23JnzpSIo3nz5DSlrp+K5OTkcO7sWaqqq+XPHcmiYLWamOZmQiaPIyDOnQD3CvxdclCb7iB2ZNLSbqWuNZC6tiDbv4HUtQZiMPf+7BUEAT8/PwIDA51eAQEBqNVqLBYL9fX1VFZWyils1dXVPdSWdgS0tdEvM5OwqioCa2q4OGYMmYMHAzDk5k3mBASgeuedBybkOaG9nfbZszkQGkqOQ9KVb3MzS0sLCdu9H1yBvwHvA3cAdw3s/xKmzIKcHBg+HKteT2ZKCufHjZNj7lUqFcOHD8fDw4NTNkKqO/zr63l8wwa8Zs2CU6fYM2ECdx2M0P1aWlj/u9/hIorw1VewfTsNFy/y1ezZFNsMnSPKyph06hQH5s+nyc8Pt7Y2KbHNfi1YLIy6epWakBBKo6Kc7rU+Pj4kJiYSHBzMgQMH5GfFlJtfM27fGUSNwL7ZkjpIaTYz+vx5MsaPl+5LosigyEgWPfEEwkPu32JzM8deeolLUVHSsW1spMnPr4fCTSsYaVK4YbFa6devH/X19bI3UWpqKi4uLty+cQODrV24dnYy7MYNRly5gm9LC+L48YgbNiBGRkqKWKMR8Y034M9/ltS2gtD16v5eoYCf/Qxx/Xrpbw9RbrdVVFCfk0NdRQW61lbqRZGOB6QXuuj1qE0mRIUCg4sL5gcoyRUKBd5KJR4lJTR7etLWzTepjyzqQx/60Ic+fFf0kUUOcCSL3N3d5cGwl5cXHR0dTrOWGo2GYcOGMWTIEIKCgv5biCNRFDlz5gxnbOkkISEhtLa2OsXjjhw5khkzZjw4beNfhMViYc+ePdy7dw9BEFiwYAElJSVOMfAAiYmJjBs3Tu6I5Ofns8U2c5uWlsbly5cBWLJkCQNtA2v78o8dO8aVK1cASGgtZvG721AbjZjVanITEtj76KMgCKhMpofOuIFUWmUvGdOa6gmsruZ+QBwGNzfZYFKhUGAymSSyyGTC0NraZQDdh38J9jI8u5m6/eVooq5SqVAqlajVaulltaK4nUFTi4Wa4GBZrdLdrFNx/z7//vnnbJg/n+KhQ3sti/rWEEVc9HrcOztx1evRGAyyqbijGuZBRI78ekCn/X89HDx6XPV6NEYjokZDq51wshEkCouF0KoqPNvanAgYhcWCyvF9cDCdS5eia2qirqGhy3zbBp+WFiJLSogqLqawXz9yHa59O+b4+DDw889RZmXJyxQaG51NXd3c5Jl9k1rNh88+S31gIN6dzbS4+aA2Gnnsi82El5Q6L1wBjAXOdVvp+vWIb71F0aef8uX9+7R1U43aB6JKs5klO3eS5OUFL70kkShqNVRXw6gUKNPBYOCrtyHqeSkB62c/gw0bpAUFBsKf/ywpyH76U6e4e6NGw2c/+DXVPtLzRmkUGBBzi7uV0mB/QLwv8/v/ERdFHagCwW0o6I7BL4CzgEYjkT3z53/zeX8QRBFu35aWs3OnlLxoh1otGX8vWYI4fz6tKhW1tbXcuXOH3Nxc2TgZeiqLNAYDgXW1BPrXEzCkngCfOgI96/F1b0QhKMA1CdwGyS/RNYVWgz919fXU1dU5vfSO7aAb7CRSQECA/NJqtSiVSq5evcrJkye/9XEIq6xkQP/+BM6bh5+/v3wfelCprfXoUbJ37uTy8OFd9wOrlcG3bzOoJBdFixFRAeJ6AXFoP0S3BfCP04h37iJqNIg//jHmY8cobmsjJymJDlsqoUqhoF98PCEhIeTl5VHtQMr5NjQQXV5OUXw8rbY2qwCGDR+OtbWVmzk5TgRK/9xcQuP6IU6Z2rXtFRWIly9T3d5OcWQkVpUKwWoluLqaRn//rjj7B9xjXV1d8fb2xsvLS052FEURXX09tfZUPlEksrQUF6MRq0JBTXAw7Q7eR47L9vLyktNQe5ArZjNiSQno9bR5ejopFO3rUZlN4O2Bq9IFk8nUw4y+N/NnwWqVVJmC8H+tsvG7oI8s6kMf+tCHPnxX9JFFDrCTRb/85S+dY62RpPNRUVE0NzfLqU52aLVauZTlv4M4ysnJYe/evRiNRry8vPDw8HDqSEZHR7N06VI8usXq/qswmUzs2LGDgoICFAoFc+fOpbm5WSatHEv17NBqtYSFhZGdnS2nUzU2NmKxWNBqtQQFBclEjcFgoL6+Xi4PUGFFMEiE0P94yZRjR1kUce3sRCWKKAIDpfQbGwwGg1Pn1K58sRqNGM1mWZnw344HkSlWK3pXcDUITuQASNtub/92BZG91M1qtT5wpv7/NL5NGdr/CthUToIoYlWAQFfCk8JiQWUyIahUiFhQGi3yd1EoMHt7yzPeAC4uLri6usp+ZYIgSAFP9fUI9fWIQKO/vxNppVAocBFFOq1Wp3Pv5eWFt8GAsqICOjqoCwyk091d8s5qaqLJ3x+rw+NAYzAQWFuLyrG0x8OjS2nVHUFBcumF2Wymo6WFjsZGDErlA5U6dihNJkJ1OhTDhkmm3mVlUttVqaTltrVBLymKRo2G6pAQiUQ2mzCr1CgsFoJ1taj0ph7fRw04fKx3daUlOBiD42Ow+zUjirh1duLb1ITKfm5cXCAkRHoZjXD3Npit4AMkJSMqbUbELS2SYsdeuuLtDVFREslkL+PC5mUSFEKbi0SUWi3g69FEi94HEFAplWg9daiFVkAApQeY26AMaEba3oQE0Gr/8ypHUcTa0YG5sRFzeztmqxWTSoVFpcJkT/x6AL6LZ5FSoUChVDqRyo4qRidCxsFzz/H/fejD/zQEq1W6J9vKzwWQSudEUVYc9foMFkUUVitKQCUIqFQqVBoNCldXsCXTPuwFDpMz9fUYS0tp6k6k9ZWh9aEPfehDH/6T6COLHGAni6qrq6mtrSU3N5e8vDyZxADp4RwcHExTU1OvM53/HcSRKIrU1NSwfft2mpqaUCgUREREUFraNZvu5ubG2LFj8fDwkP2A5HIr2/9NJpPsdfOg7xiNxi7T5/9piCIaoxGlxYKgBL2bpxNJ1T3KWfqNBVDInSU7yWCxWGTy438M3TpyarUaf39/vL290Wg0qNVqVCqVrMAxGo3k5eXJZKW7uzuCIHQpy0SRlDt3mHbiBGqjkUY/b3YvWU5DQIC8ysTsbDIHxqC2Sh3K0IoK2j09abHF9trPc1paGjNmzOi1/YqiiMVikdvKg9rOQ/+m02E+dRBzbSsmtRqzt4qOpDhqTe6yUkGwWp062v/XkEV96MP/T/GfMbj+H4XNl0ZwUJY+7JmnsJXrWhUKp8kEt44O3Mx6BG8Rob6LNBZEEcHFBSE6Gjw8EEWR9tZW2lta5BJRpdmMj7s7Ln5+tJSV0a5WO5EMSoWC2KIiVJ2dEiEhigiengjjxtFstVJeXt61gTZC1q2tDUEQ6PDwwEWvJ/nePdQmk7Q9tmQyqyDQFBBAg7c3DQEB0j51g2C1knL3LkG+vgipqQgpKdL6791DuHsXITsbwWiUSBNRRO/iwumJE7HYyqoii4sxaTRyvL2LiwsGgwGNwcAjp07R4u3NlbQ0LCoVbm5ujBs3Tuo/1ddj+tnPyPX15d6AARjtRIjVSlBNDbWhoQAEJkcwa+RkLl26RF5enrTN3ZRE4WFhTCouRvv++wgWG0nv74/wz38ipKcjvPqq9H97W3B82fbL8WVWKKgPCqIqJoYqrZbq4GCqQ0J6VT0rLRaCDQZCXV0JDQkhNCmJoOHDUXUrE/tWsFrh/n3IykK8eJHikyc5l5zcZdAtikSWlFAZFiYffzv6yKI+9KEPfejDd0UfWeQAO1nU3NyMt+0hbrFYKCoq4uzZs86dsW8Bb29voqKiCA8Px8PD4xuJmd7InAd99r8BSqUSFxcXlLZZsLa2Npl86U1tZPecsBtAd3R00NHRIf9NpVJh1XdIKTf/E5JwqxUXgwGV2UyHgxG0n06Hf0MDdUFBcpJKcHAw4eHh5OXl0WbrkKemphIaGsrJkycxGo246PUYbGbCj+7aRXhlJfVaLRljxki+FrZ91KpUzF65ktjY2G8kF0VR5O7du3z11VdO7cC7uZm1GzcSoNNhBfISE9m7eDFGFxc8W1qIKyzk9tChADT4NTPzRC43BnfFCtvbvSNSU1OZP3++rGr5L4HJBH/5Hfz+NdBbQQPm9TGcnfU6F67lYbVa0RgMjDt7llZvb244lHY8iCxy1XcSWVJKRHk5vomJCOvWYfJwpbLgMOXl1dS0BiIVaUjw8/PD19cXtVpNe3s7zc3NtLW1/ad2y9fXl/Hjx6Oxd85FEfPxowgbN6G0WKkKcePsqim43VdjUipx0etJz8jA32jk9rQx3Bc85XKngZmZxI8dizBz5kPXefXqVSeC2LexkXFXr+K6bBlMmQKtreg3b+aMRkOrr28PMjUyMpKEhAQuXrhAp10VJ4qk6nTEnzolDUgDA6WSKoCBA6WSsMJC6X1AANTX06PF+vt3lVklJ0tR9F9+SZlCwaUxYwDnMlFHqEwmBty7R3T//rguXw6HDsGOHVK7cXWVXk1NkJoqlU0heYacmTiRuuBgfHU6TC4utHt64tfawKSGc6gvSaS+CFSGh5M1YABNtlQ5x8Qge3KgUqnEYrGgVqsZn5aG+fBhsjs7ZQ8ZrFaiyspIvn8fH7uiUxAQYmKkQRzAIhdY8XfQhHbtXG0tfPQRXLsmvQ8Kgscfh4ICyXfINkhtDgri+KRZWJRGrFaBETFXKG+MorZVMhpPinVhsP8XCIIJFJ6SwmgHcFXaB154AaZOtW2qlba2NlpbW2lpbqa1ro62piZa9Xo6v+HRr9HrEaxWjC4uTqlKiCK+rU0kZOcRUVaGi9EoqY0GJlIYl8icP/2Js6dPo75yhcz8fCrCw3tdvsJsxqelBZfOTswqFS0+Pr22CTvcAH93d/wDAvCPjEQbHIy/vz9eXl5OqiSAM2fOcPXqVfm9WhAIKiuj2ceHtl6Mu+3w8vJy8kJycXHBaDSi0+moKiqiqqoKQ2/3Q1EkuKaG8PpywlKrCf2oiqCKalRPPy21/xdegLo62ry8uPTDH3LV3R2jbRLKX6dj7PnzaHU6MtavJ89hcspfp6NBq0UtCDx54QIhx451rXPePNi8Gby9aW1t5aOPPnIu/xRF1m3fTmBZGZ88/TRNfn6El5fz2MbP0c+bT25JCbmJidzv1w/LQ8qv7WXfKpOJpTt20D8/v6uEzBHR0RAowLViALIGDGDXsmVOX1ECs+fNY+DAgWzcuJHKyko89Xqe+OADLEolO1asoN5WIj4xNBT9nj1cHzKkyzMQcOns5PENGwipqWHDkzMoiRotbadK1aNv5OXlhY+PD+Xl5SisVlZ+8QXxhYXS9n//+1JpqJ2Aam+H731POqbdYFSrqQkOlqPqq0NDqQ0K6tULTmO1EqJUEqLVEhoXR+igQQSEhHx3awBRhNJSyMyErKyu1717iJ2d5PXvz7kJE+RkO4XFQnRREbXBwZK5usP1oDEY6J+Xh+/t20wtKOgji/rQhz70oQ/fGn1kkQPsZNGWLVtQq9U9iBq9Xk9zc3OviSv/U7DLkO3ETG9JMx4eHvj4+PQ66O8u9XcsNXIkf/7HYCsJURuNuLe3Y9Bo0DuU1/mqVITfvInGaERtMqE2m1GZTOgnuHDTMhyjxgWV1YpVpXLaF7VaTbjJSHVHJ3p3d8LKy3ns888RBYH3nnuOZj+pjGTsuXNMtfldiBs3cj4mRjYZtRNiHh4eLFu2jCib8WbWli3syssDQUBjMPDkJ5/Q4e7O+fHjKYqL69p2m0EnwKRJk5gwYcI3kkVVVVVs3bq1hyeMRq9n8tdfM/T6Vc6Pn8i5iRMBiCopYemOHdwY4cNLf17IvENaQIm/TsecrCyurV5NdlkZ0HtnOzExkUcffbSHafm/hCtX4MmlkGUjOIYL3H/lZxwoDpfVUv0KCtAYDOQmJTkPUOmFLBK7kr/GNzcz7p//RGUySaU+r74qdfyNebTnrudeYSeZlYMobYiWl6dQKIiLiyMlJYV+/frR3NxMTU2N0+thPind4erqSmhoKCEhIYSGhhIaGoq2oID2ZQvwLKulw03J799aRERZEjqF5A/i3t4upyb1u5/H/C8P4mMn7X7wA/jHP5zKHe34+uuvOXv2rPw+Uqtl1bZtuF64IH0QESHFend20unmxuY1a6gMD0dlNhMcFkZFL4lKdkw9doyxGRnwhz/Ar34FW7bAs89KpVSxsTBpkmTiDNKx7qU8DG9v+N3vpOStLVuoDQzk42efxaRWExsby/3791FYrcw8eJDC+Hhyk5J6lH5F1NSQmJ5OUlISAT/+sZREBF0D1TnT4OBxAJq9vXnv+9/H4OrKyCtXyBo4kA4PD+IKC1h+bSt5iiTOTpggJ7upjUaCa2oot6Un2Yk0jVqN0WTC3d2dtWvXEhISIq3z4kVK163jXFoaBQkJ8mYm5uQw/tYtwnNyeh6DvwXD83dAHeS0X+zbJ5EH9smHRx+F9eslj6NbtwDodHNj0ws/o8pdOiajYy9IaV33xwIQE+nPkkFv46HIR0RNc7s7uk+0NGRr0Wm16IYORefmRpPN4PxBcG9vR6vTodXp8G5txqB1oT4kkFK/KEwKZ1WCi0ZBakoMj0yZi6u7n0Ry7d4teRxdvw5ANjAAKHvlFSJ+/WsoLqb2+ee54O7O3UGDZLJSaTY7l04CMWYz/aqr8S8tpa21lXpfX+oDAqgLDKT1IQoMjdVKgFJJoLc3/qGh3G9vp9h2TwPwF0XW/eMf+DQ30+rlxdYVK6gKD5dIv/JyVP37U6dW97inOsLTYsGvspIWDw+abUQjgIAVlcWMSdnTmFhhtRIcFkZIaCh+Gg1Vx4+T5+Yme7IF1dQw7tw5PE0mzs+bR5HNq0gABqakEBIUxAnbs2bJzp0MzMrqWvi//Rv8/vegUKDX69nw8cfU6HR4tbTQ6kAUqEwmln/5JT7V1XzyzDPy5EV3zx9/nY6wqgoyB6R0lRlarbgZDHQ6fFdhsbB4924G3rvX9WOlUiLEIoANJ5yW+9njj1MaEyPv1+o1a4izPQM7OzvZsGEDtbW1+FgsPPHmm7jq9exautTpGrOv16pU4tPYyGOff45fUxN7ViQS8dE+rn5+oiuZz4awsDDS09MZEBeH4qWX2FNfT+agQaiNRtadOEHERx/BoEFSuWt2tnRNbt4sEeyurlSHhMjEUFVoKDqttteSeDdBIMTbm9CoKEITEggNC8Pf5nP1rSGKUFnpTAplZsK9e1L5rQOsgsC9gQM5N368fC9Tms346+pp8fbpMum3LTe2qIiRV68SX1BAY2Agm6dN4ycbN/aRRX3oQx/60IdvjT6yyAHfJg3tu0Bl6wx3H4Cr1Wo8PDzw8PBAo9H0SJuykz3d/WIcS3/sKqX/KTJHNie2vezlUmazmaqqqh7f9/Pzo62tzamkD2DQoEEMGzYMzf39qNb+B+r2LsJn15IlFCYkEFJVxeSTJzk4Z45M4iiVSlaMG0f8lCmSLNsBFWvC2Ry1Br3GjZDGRtb86le4+Ptz/fp1jh8/3pPsE0Uiy8pIys7m5pAh1Ns6YUNu3mT+vn3SbP0bb0gpJ6LIgQMHuHHjhrwdq1atop9NAt62bx8bjx+nzpbyJlgsBNTXU2dbpmC1MujuXcaeP0/gli2cUalk76eRI0cya9asXjuavSXRhXV0MHnnTr6eMkWeXbSrmQBGXbrEtGPH+O1vh/LO8wM5/PgNYq7Us33FCpp9fdFoNCxevBiVSsWRI0fkDnd3+X50dDQrV67s4eP1rdHSAr96Gf75kSTd8IGOl+M5nvwrbmVKxJF7ezveTU1SmUI30qB7Gdprv30OA8E9VuNlNrPwyhX62WffR46EDz6AIYOh9m2o+BXNHRoyK4eQWTeF6vqudqNSqejfvz8pKSkkJCSgUqkQRZHW1lZqamooKyvj9u3bcqrOt4VarSYkIADt9StEX75GaFUVex6NpjViLp0m6RirTCbm7d/PgIhQ2vLP41vQgYhN6TJzBsL2HRL5YsPNmzfZv3+//D4uLo5ly5ahyc6Gp5/uUq4AhIfDn/+MoV8/tn7yCSU2wmjauHFczMmhqalJ/qpHezvtNiJ2/LlzPPLsswh2ZcCtW7B4saSccXOD55+XzJvr6npXGYAcA653deWjl1+mQaUiNDSU6upqRFFk5pQppD31FOTlURgby9aVK3uUTdih9fUlsaODpE8+IaKoSCoVcXGBAE+o0AGQmZLC7iVLEIC5lZUcCQjApNE4XRMag4FRly/T4ebGjZEjpYXbSnbsqYeenp6sW7euR1IjV6/CtGlUublxfvJk7iUkyG0ztqiI8VevEpOfL6Xr2bEsEN66CsHRzstqa4Pf/lYiAy0W8PSU3lutEkFnNmNVKDi6YhVX+scDEO1/nyi/UjKKxmERlagE8LK00oorZsWDyVy10SgTQtomHVp0+Lvp0Po3YAlTkBs0jBzFYO43B2Cx9rz3+Pv7M3nyZAYMGPDgQfD9+7B7N9kffcSAvDzKgIihQ+H992HECHjrLRrfeIMLw4dza+hQmSjyaGtDIQi0dvPXi4yIICksjCSFAv+KCgwFBdRXVFDf1ESd2Uy9tzf1AQE0+Ps/1NdOaTbTr7CQkOpqFFYrV9LS6HR3x7WzkyVnzhD3zjswfDgAer2eepuxdm1tLfVlZdSVlND8EBN7d1M7geW1eLW1oRo/BvO1m7SqVNSEh6N/AMGuNhqJKC1F29BAaXS0POhXiCKDb95k3PnzmL73PT5xd8dsNjO2tJSpn34q/VihkMjb5cuhshLTl1/yRUEBJT4+eLS14aLX0xAQgF9zM43e3nL7dBNFOrudu7DKCpJz80jMysK1s5N3XnhBUnbZ7rkzDx9mcFUVx4YO5ZZNlQpSOdY8k4mhLS1w9KizGboNFqWSY9OncyUtzenz/v37s2LFCrkdtbW18dlnn9HQ0ICP1UpIXh65/fs7+WLZiVxtfT3rNm7Eu6WFLU+mYln4S+7fzO1RLhgdHc2aNWtQXbggGdHX12NRKtm6ahWFcXG4WSw8efYsAdeu0Q5U2Yihahsx1OhABjrCs7WV0KoqQiwWQn/wA0IHDcLHVr79rSCKUFPjTAjZ/99N1StDqQR/fyzu7tyOieFC6mAa/LXSn8xmlGZzTzWeKNKvro5lajUuCQkY+/XjbHs7F7OzaWxs7CtD60Mf+tCHPnwn9JFFDrCTRZ9++inu7u69RoXb/VpMJhONjY1OyoPeSq/+O9FdVeTq6uq0fWq1mn79+uHp6dkr0aNWqzEYDJw5c4aOjg48PT2ZPXs2165do6ioCEEQmD9/Pqmpqb12kAwGAx999BE6nU72JACp8/bYY49RVFTEjh07nNJzXF1dGTk0kfRfrMX9Ztcs2rURIzg4dy5Ks5nYoiIK+veX/+bh4cFTa9fil5wMjY1O21AyNpotk1dhVLoQUVnJ6hdfxNUhyriuro7P33+fdtt5cixDcYS/TsfiPXsIq6hAeOEFePNNzBYLBw8e5JZt9l+j0WA0GlGr1SxatIjwe/fYeOYMOq0Wt44OzEqlHHuuMJsZduMGYzIy8GtuhkuXYNQoAK5cucLhw4cBSElJYeHChU6S9YKCAnbv3i2fS5VSydyMDFJtvxEFgVOTJnBh/EQ5Qjy6uJgF+3Yzf98k2r1dOPnoBfyKqkGjof0f/2CnqyslthKmRx55hDFjxnDlyhXOnDnjdH7sCA0NZfXq1d/dNP3LL+EHT0OlNKAXZwvc/f5POXpPS0dHJ4giHm1tUkKOg/eH0myWZ+ABfDWdjDy8hbHnymiKc6Hoh7/laAc9Em8AIk0mlnz6Kd5VVdKg40c/kmbh1TVQ8gy0fg1AvWUKmc3ruZtT7WRa7+LiQnJyMikpKcTGxlJRUcHu3btpbm52InZDQkKIioqirq6O6upqOu0mxt+EbqbpCALh5eUs374dz/Bwmrxb8LtSKRNG1pRkFAcOQ3Q0hYWFbHYok0hOTmZxSAiqP/0JDh7sWoevr1SuBZCeDp9+ikkU2fnXv5IfFeVkMu0CWHpJGBx5+TKzlixBePJJ6YOGBli9Go4ckd4vWQInT/a4Bp12ddAgtn//++TW1ODl5YXVaqW9vZ1BgwaxaNEiiVgZNQpu3aI8IoLNq1fLs+Mqk4ng6mqqwsKcyj08DAYSMzNJyskhtroaVXsr2G67exct4k5qKm5ubiiNRtpsxLDSbGLc+QuMvHyZk1OnctNGENhhJ4p8mppYN3w4/mvW9L5D167BtGnQ1ET9hAlcGDGCOx4e8vZFlJUx7uJF+ufkINifBRoBHnsKfvySbAAu484dSQFnU00Zhg9H95OfoNuwAZ3BQINWS1lkJE2+vg8tzVVYLPg3NKDV6fBv1KGts5FDETo8H2lDiFRCfCxEptBgTianIpScYpGyigefu6ioKCZMmEC/fv2+9YA4OyuLASkplPn4ENHcLG3zc8/BH/8oleE98QStd+9yMT2da2lpkmE24NPYSJirK80xMVTW1DgtMzg4mKSkJJKTkyUfG5BUcwUFmPPzaSgqorKmhtNeXjTbDNsfWsYsini3tREkigR4eBAQGEhgTAwBKSm4x8RIapM//hE++4zKwED2zZ9PrV1hBigEM25qPe1GzweuwkWtRlAqnfsHguBkIO+4PW5qNbH9+xNdUIDfJ59wcO5cmv38iHNxYdWvfoXC8XdjxoDFgvXqVXYsW0ZuUhIuej3x+flkDRqEq0pF/+RkcvPynO+PokhQdbW0L4LAtKNHGXPxIlaFgg+efdZpHwffvs3CvXulY+3qSsGSJXzVvz8tDv2bKVOmMG7sWHj/D/CDV6SJAKDVy4udS5dSZlPaDvbx4Y4DGTJnzhxGjBghbZLFQtbGjey7f98piTQhL4/A6moujhuHqFAgWK3M3b+ffsXFfPrsfNo94+W+liAIpKSkEBMayqETJ7BYrSRUVrLs009lQ3oR0Gm1bF25koaAAFQmE656/QNLEn0bGyViqKqK0OpqQqqq8LKrfCIjJZKs+7XsiPr63kkhna737wsCeHlJ9+TOTrCdN5NazY1hw8gYM0Yuge/hzejQ3j2tVlY9/jihsbGAFIZy5MgRucQ8ICCA559/vo8s6kMf+tCHPnxr9JFFDvivVhY9CHaPn+6KI1dXVwIDAwkJCZE9VRyJnN7IHcfPBEGgo6ODXbt2cd/mnTF48GAKCgpkbyCVSsWyZctI6CbzBsmcdNOmTbS1taHValmxYgVHjhyhsLAQpVLJkiVLSEpK6nWfRFFk165d3Lt3D29vb7y9vWWPJ4VCwfDhw7l+/TpWq5WgoCAGDx7MzZs30dk6T2qjkWE3bjA6IwOzSsUH3/seJo0GpckkkQa2DlFAQADr1q3Da9YssJfc2FAwII7tS1dgFtTE3L/PymXL0Mye7byd+/ezdfs28vsnAuDR2sriPXs4OWUKlb10nrxNJvqnpxMVHc2lS5eorKxEEASmTZtGamqq07G2y/udfFBsHbvQigqe/PRTVAoF3LgBKSlO67l79y5ffvklVquV+Ph4li5dCsD27dspKiqSvxcfEsLS3/wGjd1HBskbYt/ChZg0GtRGIyabOqPT1YLodp8//nwnKr0BYmJg1y4YPhyLxcKRI0e4ZlOhDBgwgAULFmAwGDhx4gR37tzpcSz8/f1Zt27dtzOuLS+H55+DfQek9xHQ+MtkDnr8gMJiScHUvRQFUcSztZU2BxWNUoBJjacY/c8LVBktRCKFP3kDnTExnH7qKa7YlWLdSJjk5mbmvf8+bnq9VJb19tuwYD7UfwzlL4O1FQQNYsi/UyWuJTMrh8zMTKdyFLVaLavh3N3d6ezsRBTFHqSeKIq0t7dTXV1NTU0NtbW1VFdXU1dX963N4RUWC/EFBcSXl+MdoKDfgQzUtnVbgrXUbdrKx5cvy8q4VD8/5u/YgcJ+HQiCVNL0s59JaomPP4aXX4bWVile/ZVXaJw9mw937EBvIzE9DQZefOMN9G5uXH72Wa4GBaF3GGCGlZezZtAg3H74Q+kDiwV+8xt47bWuDVcqpc97wdlHHuHriRNRKpUEBARQU1NDUFAQTz31VJe/k9UKY8fCpUvUBAezce1aOT5cabGwaM8eAHKSkshPTMTgoD5SG40k5OeTmJtLv4ICMlNSODZjhnz9OYafzWg/TYVCS6bbIKe2YieK/BoaWPf55/h2dsD1nteojOvXJcKosRHS02nasIGMnTu5YTDI7Tm4uppx588zICvLeaA/cybmF1+kYcgQdOXl6AoKaKisRFdZiQ4k0vRBsJddWiz0Kymk1c+bGj9pgD+YW8wNP4A6ygx+wAfAJ7afvfIjata/THZOPjk5OdR2K0HsPqkQHx/P+PHj5bLa74Ls7GwGDBhA2c2bRPztb7Bpk/SHkBD4+98lgvGtt+Df/o0OQeDK+PFcHjlSVuF4t7UxLDERzcCB5OfnU1xc7HT9+Pn5ycRRRESE7JW3efNmahxIppjiYmYdPEijnx/nx42j3LYvPe453eDe3k5gXR1+DQ00aLWURkY6qVyGRlxn+shGXHdEYfzTTqlM7le/ou76deoMBqrCw2l92DnslgSotFge6BekMJsZkJ1NRHk5oXV1hOj1aCorAYn82D9/PreGDUNpNpOYnc29QYN6LEOtViOKotzX8GxtJfXWLS6MHw9I5W0FcXHcGjZM/k1IVRVPbtqEeulSWLhQauseHvKz4ZqDcnFQsB+LXvgRgq0rUxIdzc6lS2n39MRFr2fRnj0k5uVxcu5cztsIIpVKxbNPPYVu3z7OZ2VRoZWUMvb2HVRTw6xjx9i+ZAl6NzdUBgNmu6q1GxEYazLx6K1beGRmQkkJhXFxbF2xAotaTWBNDXGFhdQFBVEVFkaHu3vPgyyKaBsaCK2sJLSqSiKIqqtx6078KxRSG7YdfwQBXnpJUgFmZ/csIXtImS8uLlI76KaydoTe1ZUr06ZxIXUwRlVPhZraNqFjf9YLosjo+HimrFqFQqGgqamJw4cPy2bfPj4+zJo1Cw8PDyIjI/vIoj70oQ996MO3Rh9Z5AA7WfTJJ5/g4+PTg5R5GEmTlZXF7du3sVqtqNVqhg8fTmlpKZW2zoW/vz8uLi49SrTc3d3RaDS0tLQ4qZICAgKcUtW+C6xWKydOnOCibbY6NjYWg8EgbwvA5MmTGTdunDxjXFlZyebNm+ns7CQ4OJilS5eyb98+ysrKUKvVrFixQi616g2XLl3i6NGjKBQKBg4cyN27d6USnJAQyhz8I1JSUpg3bx4ajQar1UrOrn/j/MkGqmwpKQqLBY3R6OSpYCdcwsLCWL16Ne6vvy75qTggOzmJXcuWYhWUJOTlsXTQINS/+IXTd8QzZzj65z9xeeQoBIsFr9ZWWnx9nQgWP52OcRkZFMTFUdC/vzzzbYdCoWD06NGMGzcOV1dXrFYre998k8xu5Unu7e2kX7pEfH4+Gx97DL2bG8Nv3mTu3/4GDziOBQUF7NixA5PJhJ+fHy0tLTIx4ObmxtLwcGKfeELuZFoEga8nT5Y7/rFFRTy6axefPTaMnAETCNTZkmhKS5nT3Ezwhx9K5sMOuH79OocOHcJqtRIcHMzy5cvx8/OjtLSUgwcP9hhYenp68thjjxHgkLDmBIsF3nsPfvVzaO0AJVjWKbi04Cd8fddb2p9uHX6FxUJoZSU1wcGYHYiARNdSZn22C59c6diWPzKKyK+v0PzKK3h/+CHYrqXq2FgOr15Nqf1cOSxfEEUGFRbyyFdf4dvcDPPnS6RRiAAl34OWQ9Jv3IZAzGeIbqmUlpZy8+ZN7t6926tSMDExkaVLl34rw1KTycTp06e57EDyqJRKzN/G90wU8W1qIry8HG19PRljx8rHZ2R+PrO2bJHKsTQaeOwxiRhyUOABkkrie9+DQ4cojYxk++rVdHQjwmcePUraE0/AM89gMBi4fv06586dkwkEhcXCaLWa0S+9hMfVq9LycnO7FuDlJR3zbv4aBXFxfLFmDQgCsWFh3K+sxMXFhWeeeQatfYDosK9MmADnz6Pz92fjunW0+PoC0jlccOIEqRcuYFEqKY6JIWfJEnLd3Wl1fHz1othauHAhzTt28LVGI38mYEW0GZ7br/2AujrWbdyIl50o9HSD46ckVVZvuHFDMpFubIS0NDh6lDZB4OKmTVyrqsJoIz88W1qILinBTa+nwd+fBn//b1QJebS1dZWN6XVoy3T41+vQGI3sWfooZRFRCFiZknQCs9WVM/kTEEUICfRi2fCd+KkuYRUFyjZGkZ2XRG5SkuyNBl2JniaTSSbrQSKMx40bR2hoaG+b9a0gk0X2wejXX0vKInt7mTYN/vlP6T7x+ONw6RIGjYbrCxdyMSaGNtuA3t1iIX3sWAaOHElpaSk5OTkUFhY6TbB4enoSExNDcXGxk0F9Yk4OS3btwuDiwo5lyyiNjgZR5JFz5xi/di0dgwdTn51NXVkZ9Q0N1Ov11KvVND8smUoU0TboCG9pIqBdT0BWFgF1dfgvWoSipISiggLOP/IIxTYPLICIiAgCAgKoLiyktqmpVzNkO1RGI26dnRjc3DA+oBRTsFoJqK8ntKqKRl9fymz7hSg6EVDe3t4kJiaSlJREtJ8fliVL2BYezn2bV5BgsRBXWEhB//49lLWuHR2sP3wY3/PnnUpfHVFcXMyOHTtkJWVgbS3rNmzg7uDBHJ8+HVGhIEgQWD5yJP5ffQU7d2JpbOTjp56S09AcSTul2czQlhYSjx1jz/z5dLq7y898P53U7mu6tUnPlhaW7thBhC00wtF4ujIsTH6eO0KhUBCoVuOflUVReDgGNzfCKyp4bMMGmZTvFX5+Eump1UrPjm3bepS+9wqF4pu/FxEBCQnyqy0mhmNtLdwtLweLc9dcZTTSPy+PTjc3KfnMdg/xEwRWPfssASEhWCwWMjIyOHv2LGazGYVCwZgxY5gwYQJqtZry8vI+sqgPfehDH/rwndBHFjmgtzS074La2lq++uorWVETFhZGVFQUV69exWKxoNFomDBhAm5ubuTl5fXo/KrValxdXWlra3OaTQ0ICGDgwIEMGDDgOxFHd+7ckVOz/P39iYyMdPK8sZsXV1ZWsmXLFoxGI+Hh4SxatIjdu3dTVVWFi4sLq1evJtKhE9wdpaWlfP7551itVoYOHcrNmzcBmDVrFjdv3qTalhgkCAKLFi1ikH0GtPE6DBqBWAFFcXGcmTBB6gDbIFgsUhmOUtnlm3PxomSm6bifgwbx5eJFiIKCAVlZLBYElNu2OQ/Ibtzgwss/4cTESQAs3rWLfkVFfLh+vSzvdmtv50fvvINLZycMHIj56685cf06V65c6aEOUSgUREZGItbWUtrR4bQur5YW1n3+OQG2gVh+fDxbVq8GQWDu3LkM71YC44jc3Fy2b9/utL5hQ4cy5+5dFL/+tfxZu5sbex99lMJ4yc9kdEYGj5w6wYotk7k1PJCzSy5T4hrM6UcewWTzxUpPT2fixIk9vIdKS0vZsWMH7e3tEim1dCmxsbFYrVbZ58nRa0qj0fDYY48RZuv4d52IO/Ds03DZlkI0CCp+Opj9LWuore/osa9Kk4nke/eoDgmRfaIAvF1NzL+1jbhtttStUF9452PKR44iMipKuj5dXGDrVvjLX6QIYeDukCEcnzuXtl5II0SRAdnZjD13jrCWFsl8+Yc/hJZtUPYiWBoAFYT8nCL9WvZ+eYC2tjYUCgVeXl49kuICAwNJSUkhJSUF/wd4XFRXV/PVV1/JJG1kZCTz5s0jMDCQ9oYG8n7/S/SX71ATHExu/2j0Hr0vpzvURiPRxcVE19QQNmoUIc88g7ut7KBXiCLX/vlPDtXUyANDjcFA8r17ckLeIzExjF+3TiaPzWYzR+3KM7tZrsXCkOvXpVJKFxdYtw7eeUcqm5AOCgQHQ2Ymjb6+fLh+PXo3N2KKiii2EaTLly9/oDoRkMiZy5dp9vZm47p1NDiQkjPa2kj/619lfyRjUBBfz5/PjcBAp7QkR6hUKhYvWsSRLVtocVAoAqgxYkJDSFUVazZtwqOjZxslKUlSaz36KAwZ4nSdizdu0LZwITqlEt3AgegmTKChvZ06k4lGtfqhXjouer1MCPkbdGh9dGi1OrQhDbi0G+ALoMT25RGBkpwuvw6zUsmhOXO4aVOCDAq/Q4xfJScLF9DRaUCtVhMZ0ES1DjqMXSWjKpOJOEHAb+xYSkpL5UkLQRAYPHgw48aNezAB/B3QgywCqaTmT3+SSrsMBklZ8W//Bj/5Cbz7rqRUMxgw+/lxa+5cLvj7y+SWi0LByDFjSE9PR61WU1BQQE5ODnndS6xsiC4uZvnWrTT6+7N9xQpafHwkhUtGBolvvw2DB3d9uaJCUsh99BEYjdQGBvLVo4soD3G4r4kiAiKi0Pu5FKxWlBaLXMIpWK30NxgY5+dHlVbLhepqmm3EsGtHB4PKygh56imaFQrq6uqoq6tDp9M9UH2oMJvRmEyYVapeI9kdoVKpmDZtGoMHD5aU0TU1MHMm3LqFqNFwevJkzqalyW3Yq6mJVhshC4DVytq9e+n35ZcPnNCww/T5p2z5+gzFsf3k/ba390H+/sxdv75LOWg2Y/zqK87u3s2F+Hh5/UqzmdE3bpCm1+N5+jRYrVwdPZpD06d3+aB1I3/t/6pMJvxMJhrd3DD3QrwqBQErkuLTx8eH+WPHEvX666hsKsXa/v35bNEi9G5uJOTlsXzbNpS9ETteXtLLYaLtOyM01IkQkl9xcWCzO8jLy+PU6a+prXYuwVSazSRlZzMwKwtRoeDAvHmy4bggikwcOpTx8+ahUCi4f/8+hw4dkr0HY2JimD17tpP3Wh9Z1Ic+9KEPffiu6COLHPCfJYtA6pxcu3aNkydPYjAYEASBIUOGUFtbS0VFBSApfebPn4+HhwdFRUXk5uaSl5dHe3u7vBxBEHBzc5PLXuwIDAyUFUc9DFh7QWVlJdu3b6elpQWNRsPIkSO5dOmSrHLw9PREr9djNpuJiYlh7ty5bN++nbq6up6JQL2gvb2dDz74gNbWVuLj4yktLcVoNJKcnExxcTGdnZ24u7sTHBzM/fv3Zd+jIYOTYU04bNUhIpnTHp41i85ePHHcXV14dOky+vn4QFgYOHjqXB8+nANz54IgkHrrFvOLiqSyHMdSgNxc7jz5BHunzwBg+tGjjL54kZz+/dm+cmXX4NFoZOXWrcQajVguXODYvXtcuXIFkIi1UaNGUVRUxL1792js7tMiioSVl9Og1aJ3d8e9vZ1lO3YQXVICAQGc27yZU5cuoVQqefzxx3vtqJ09e5bTp087nW9PT08ev3kT7RdfdJ3TkGB2Ll9Bk58fKpOJ+fv2EVJTSPrFBYzJ6uTTdadQN7dCYCDNGzZwtK2N7OxsQIoSnjlzJsnJyU4+JM3NzWzfvp2qqioEQWDGjBmMGjVKLm08ePAg9xwScBQKBatWrZKSbTo6JE+gv/xFUgx4gOF5DcdTX+B6Xk9PCI1eT9qlS7R5ekreMbbtUAgwwXKWsW+fQdVokQx7fvAM/PEvYCtrjIyMdL4+RVHyj/jLX+DkSQwuLpyeOJHLo0dLKVDdyj4AYu7fZ3RGBgkeHggffABDo6H0eawNezidN4lzBeMBgcDAQOLj42WFXnx8PEqlkoKCAieT9PDwcFJSUhg4cCBeXl6YTCbOnDlDRkYGoiji4uLC1KlTGT58eA/vl/ZNH6Nc/31cO03cj/Jk189/REetCgRBIi1FEUNv5RPd4OrqSlBQEFFRUURFRREaGoqnpycWi4VDhw7JhuwgDexWffEFcVVVnJk3jzM2743RwcFMW7/eaRtzc3LYsXUrVkfDWVFkoNHI2M8/J6Sy0rkMbd06TGo1n6pUVIeGElRTQ4OfH2aNhnFnzzJl4kSJKHiYKis5GXJyaPfwYNOaNU6qgvFJSYz9j//gmrc3F8eMkcu2vJubGZqTg6qlhYKEBEqionqcd8cBp1IhYBEh3K2c1R9twa2gF6LIhk43N3T+/uji4tAlJNDg5ycRRGp1D+WhI5RmM26dnXS6usr+Wy6dnYy8epUxlzNwE/VgX61agIWJ8P0FMGwyKPrBWzskBaVeD2q1lN504wYicHXkSI7MmoWoUODr1oCHSzuVTZE4Psxd1Z30D8ojsSAH02E1F8eMocZ2L1cqlQwdOpSxY8fi60gY/CfRK1lkR0GBFFd+XEqwIzFRUiGGhEgqI9u91jp2LJnu7pxPSKDONjmiUqkYNmwYY8aMwcfHh/v377N169YegQkgKeFEQZCVKavKywn45BNJIQLSwP+11+DDD8FoxKJQcHHJbM4kpmJWdhEygR5GFixZTEjkEBrr66nbu5f6bduo02opi4ujyd394d5INqiMRhIKChiWmUnosGF4JCdDfLy03wUFWI4eJSc/nz1z5mBVqQioq0MQRXRa7UPVSA/zZtJqNITeuUNoaalcYuVqMFDQrx/bV67slXiacPo0jwxOgTfffvA6rVZ45d/hP/4IwIE5c7g+YoS8HYFeXqx5+mn5/txRUcGVjz/mii2Vsfv2P/7ZZ0TbvPOuOLRpp/XZ3z9gfzUGAyE2X6HQfv0I/cUvCAgLk8vqOzs7Ca6rY+2GDXjo9RAdDUVFlEZGsmndOsxqNam3brFg3z5JqfmvQq2WyLn09C5CKD7euS8i77pIRUUF169fJysry7kdW61ElZWRdvEiCQUFGLy82L90KfkOkzOBGg0rnn0Wf62WtrY2jh8/LpeOe3h4MH36dAYNGtTjedNHFvWhD33oQx++K/rIIgf8V5BFdrS2tnL48GF5kO7r60tcXBy3b9/GbDajVquZOnUqI0eORBAErFYrFRUVMnFU5+BJA5Kaw2Qy/UvEUXt7Ozt37qSkRJqqHjVqFLm5uU5qifDwcBYsWMDWrVtpbGzE29ubtWvXPnS22Wq1snnzZu7fv49Wq0UQBOrr6/H19ZVTlkJDQ1m+fDleXl4cOHBAVh3NDq5k5HMfovP359CcOU6R8tq6OhrkqFq7zS9EVVcz7sQJ4gsKEICL6ekcmzkTgBFXrjD74kWEq1elGTs7ysooXPooW6bPxKpUkp6RwYxjxygLD+ezp55CVChQmkyEVVZSFh2N0mxm/ujR3Kyro7i4GICJEycyceJEdDodFy5c4M6dO87lSd06sXaJvWCxMPPiRUbt3Yvo4cHOnTvJzs7Gy8uLZ599Fk9bJ7Kuro4vvvhCPh+CIJCWlkZudjaNzc24t7ezZvNmQququJOSwlcLFmBWq/FtbGT5tm3cGaRi8Z5pfPDHYla/cVraiNGjYccOSeYO5Ofnc/jwYZnkiouLY/bs2U6qGJPJxIEDB+RO55AhQ5gzZ46c6ldcXMy2bducZvTHh4cz+dVXpTQkgMlw56kxHCyegdHkfGtxb2tj0unTuOj1HJ4zx6nUMM6rmrk7t+J7ydYmUxPgoy+kRDMbeiWLHHHzJvz1r7BtG7X+/hyePZtiu+LGYulBUATU1TH64kUGp6fT/stfsufwVkorpdH7sKjrePoP5OwtqWRr3LhxTJ48GUEQ0Ov1ZGdnk5mZyf37952uyeDgYFpbW2WPsOTkZGbNmoXXA4xUAax3b9Pw6GwC8isxqhW8+doqLM2xGJTKrhl7UaRfYSEe7e1UhIfT5Of38IEkklIR6BqI2Nrp9CNHGH33LrS3gyBwcfZsjtmO83AfH2b/8IcoFArJf+O55yguLWXLqlWYXFxwsZXK2BHf3MzYZcuIPn8e4Re/QLRY2Pfkk9yOisK9vR210Uiznx/9CgtZvXmz5N8zZQp88YWkQuoNnZ2Sv1ZtLXpXV75YtUr2nAGJ6LCTdb6NjYw7d44ht2+jtFggsR/kFtHu7s7lUaM4N3HiAwfU/l5uPD5xN16tVzD+Rk1Dvj8NWlv0vMOr8yFknWC14tfYKJtLazt1aFMlY2nvqBaECBGzWsWtg0O40Dy2SzGj1zPyyhXSr1zBQ6ORzMPtmDoVfvxjaeBZUiIlzx2ylUsGBtKm15PTvz83hw2jslt6oFKhxGKVjk1ctD/9vXdzpWgQunbpPq4xGBhhMpH+61/j9W28x74jHkoWgdQGt2+HF1+UlC8Aa9fC669LpT7//u/SZICPD+LEieQWFHBu7Fgqw8MBiaS2l5453oMH3b6Ne0cHt4YOlZPvQCI2Y2JjSUpOJsnfH++335YSEm33sLIZIzkwfCS1mi7FroCViePTGTdxelep6eXLmKdP53ZCAhdmzKDRpprR6PUkeHnhn5JCYWEh1S0tfFOBkltHBwH19QTU1RFYX49nSwvHZ8yg1dubuIICht68SV7//uT27+8chW61Suf6G8y7H9jedTpCq6rwbWggw2Yc7YjQykoe37gBze7dMHtuzwW0tUnlrjZ1TnZSEl8uWiSp+hw9wJRKJioUtOTkcCMysqvEu6GB0RcukJOcTJFNEevd1MSk06c5O2ECTY4KzQfsh1tHB8E1NbR6eaGz9U1S7txh3tWr0nY7PC8oLaX2hz9kY0IC7Z6eBDQ0sO6LL/ByKL3MS0hg28qViAoFoy9cYLqdyOwNWm1PdVBIiORbZJtQAKREyg8+6EFW2wmirKwsMjMznUonARTmTsadv8TY8xfQmM2IGg3X167laEiITO4pRJEp48YxesoURFHk+vXr8sQkwIgRI5g8eTJu3Yk5G/rIoj70oQ996MN3RR9Z5ID/SrLIjpycHA4dOiSb5iYmJtLe3i6XqkVHRzN//vwepSw6nY68vDxyc3MpLS11GpA6Dpbs+CbiyGKxcPToUa5elUqEQkJC5PIwO+wJZn5+fqxbt+4bZ5xPnTrFuXPnUKvVxMTEkJ+fj0qlkkvrhgwZwuzZs+VBqyiKHDlyRFbr9CsooCQmRiJWbINijV4vR8EOrchjzKtvcvHiRW5fu4bF1vkKrqpCq9Nxz2ZAO+b8eaacOoXi0CGYMaNrA+vqqFwwn88nPYLRxYWUu3dZvGcPDb6+vPeDH2BRqVBYLDz90UcE1tWxe9kychIT5Z9rNBoWLVqEt7c358+fl4k/kGavrUolwdXVLN61i4rISHITEymMi+sxa+vv78+kSZOIjo5m06ZN1NfXExUVxZo1azh69CjXr1+XvxsSEsLq1avxrKigfepUvpg9m6qwMDQGA3H5+WTb9jmuoIDFu3fzm98PZvPaBDJW3CLudKa0kB/9SCr76ObbYDKZuHDhAufPn+fixYtkZGTQ3t7OkCFDeOeddxg1ahSiKHLx4kVOnDiBKIpERESwbNkyjhw5wm9+8xuKi4sJCgpi/Pjx9Lf54wRVV7Pi+FZ+H2PhkysinZ0GIiMjmTt3LlqtFp/GRqaeOEFoVRX7FyygKDycjz76iJqaGn78wjM8Zz5Nwof5YAHcNfCHP8IPX4Ruqo1vJIvsKC2Ft95C/PBD7kVFcdQ2ELM1wh4lDq6dnXKZh0ajZu6ocmqrczlfMAGAR8ZEM2Ha472uqq2tjaysLO7cuePkCQZSGWp6ejqJiYldJRkPQksLlU8sJmzPSQCqggL5+Nn1WFUqEEXi8/NZvWULxthQNPersAgCTf7+VKQmU/3s85S3t1NXV+dkVNwbBKsVP1dXQqOj6XfhAjFbt+LX2MjN0aP5ylb+MUijYUFrK8o//xnMZnB3p+LHP2azKKLXaNDW1RHQ2Ehe//6ykiUiIoKx3t60vPcehydORLBaCdfrKXd3x6epiWc//BB3xzKvkBCJMJo8ufcNLSyUDKb1elo8Pdnw5JNOkdZqtZoZ6ekMeeMNlMeOOeygAB4a2lCzae1aOZb8gRBFVBYL5ocohEAqLdU269A26/Cv6kob82tqQullgaHAFaAdGOgBXyyA4FRwTZJeLrFY//gamTt2cX78+C7FjMnE8OvXGZ2RgY9S6Zwsl5gokSpr19Kwfz/ZmzaRExZGeUREr+S0QrQwOfoE1+p+SIsh34lMcVV3kma4RNqfr0jmvY8/Lhmgfwvfre+CbySL7GhqkhRm770nXYt+fvDGG5Iq48knpdQ5gAkTEHU67nd2cm78+C7y1wFTTpxg2PXr7Fq6VPJyAaLKytAnJFDb7XoILy8nKTubWLc2bkyM4YZlqPPf/X1ZsGKV0zPUeOcO13/8Yy4OGSLfR9zb20m7dIlB6encmjWLK1euyNeen0rFqAMHCK6uptHfn7qBA6mPiKDeZKLpmwzMwencunZ00D83lyCdjtMTJ2JWq0m5c4fxBQVsX7eOhrY23Nvb8WppQRcQ8I2lag9dtyDQr6CA1Xu3o/j6gjPxcv++ZHZ95w5WhYJTjzwie+VFl5SQ2tzMgYEDeyWwg6urGXfuHANqaugcPJiilBT2+fg80Ni7t+2KVyiYvWABvrt2IfzhD4jApfT0Lo+kwECWjRyJtqQEbt2CvXsl42mbQmvjunW0+Ph0mdg7TJTdSk1l36JFAEw7dowxOp0UENCdGHLw/eqBbdukdmsvyQ0IgK++QkxLkwmi7OzsHuXMAFaaWLVlP4l5tiALlYraJ5/kS29vqhzaS6inJ0ueeAJ/f38qKys5ePCg/MwJDQ1lzpw5hNtI1QehjyzqQx/60Ic+fFf8S2TRu+++y5///Geqq6tJTU3l7bffZpQtBrw37Ny5Ux5oJiQk8MYbbzDbIaVKFEVeeeUVPvroI5qamhg7dizvvfeeU2JXQ0MDL7zwAl999RUKhYJHH32UN998U1ZnOKKgoIChQ4eiVCplhcu3wf8JsgikeO9Tp07JJImrqysJCQnk5ORgMplQq9VMnjyZtLS0XiOKOzo6yM/PJy8vj4KCAqdoc0EQevgdPIw4unnzJl999ZX8m6CgICcTY41Gw/e+9z38HtYxAvLy8ti6dSsAqampTl5ICoWCmTNnMmLEiB77I5oa2P3ic2QFDZA/C62ooKpbJyf96iWmf/EFgo8/fPIJLT/+MRdHj+baiBHOJsg52SzZuQvVH/8IP/951wJaWmiYO5dP09Jo9/QktqiIVV98gUGj4a0XX8To4oJgtbJm0yb63b8PgsDdDz5gb1WVfGxSU1NpbW11SiOLUaupam3F4OpKaGUlazdtckpOMarVFMXFkTN6NPfi453k5UqlkvDwcCorKzGbzU6kn0qlYvbs2QwdOhQOH4YFC8BkwuDiwherV8sxxABjz50j/eIZJp6eS7BBw55lX+NaVSfJ3T/5BJYte+i5+/jjj3nuuefkzuXNmzfJysoiPz9f9sQqKChg9+7d6PV66uvree+993jttdeYO2cOW37+c14/eJBn168nyFbWcv78Oc6dO8+iRYvw9fXl66+/pr6ykjP+/vQvL+fchAmcHz8eUaHg8OHDNOh05BcUcDVUyYgqG/E5dxq8+zE8IIXpW5NFdjQ3w4cfYnz3Xc7Gx3NxzBhpMONogI2c+IxgtZKi06FMT+dWoeSXNC35GGPiMiBgPUT8CZTO6xVFkTt37nD06FHZ8NVePmqHWq0mMTGRlJQUuZSt20Lg3DlJXXH4MAaNho+feYb6btfuiCtXmHn0KEQEoyzpIqZMfu6o9xyESZPQ6/VcuHCBCxcuIIqitH/fECWusFrxbG3FraOD2uBgRIWChNxclu3ciWrmTMm35513qPH2ZtO6ddIsfV0d82prubN6Nbfu3u1BXsfl51OYkIDSYuGJTz4hvDfPD0GAV16BX/+6V9KiY88eLr77LlfS0nr1JOrXrx/Lly9Hc/gwPPEENDYiCgLl4eHsXLqUVh+fb1XG4ngeNCYj2nod0cXFRJSXo21owL+hAY3RCFrgT0AycCMYvlbBSR00ORASdiKyXz84exYc72uiCM8+gfjJRnIHJnJu2WQqrdL1prBYSL19m7Hnz6M1GhHNZqr9/MhOSiJ34EBquyk8w8vLScrNJSk7G+/mZvYtXMi9gQMBUGHETNc9UqFQMGtkKSMCP4bDwCuAFVi1Cj7/vAcp+5/BtyaL7LhyBdavlwb4ICki33kHjhyB3/5WMvP39YVp07hYWcmxadN6LCKqpIQGPz/avL1RG40svHKFAW+/Db6+NPzlL2RfvUpOQgLlD/HdUwLTpk9nZFqapKoD9Ho9V44d49LFi3TaJjC8NBrGHD5M4t27XFu3jmshIfLzOCAggPFGIykvv4zCTtR5ejoZv5vUaurHj+f+pEkU+PhQWl//zaSJ1SpdxwoFvg0NjD97lvKICG6OGIGLXs9z772HT3MzVkGgyc+PusBA+VUVFkijXyDmXhK1HgS10UhcWTFhi5YQ6udH2NmzuL/xBnR00O7uzu4lS2RSLj0jg6knTlAdEsLRGTOk55RjeIEoEuvvj9LHhyqdzilpsjtcOzqwKJWYbEqlMZUVBFy/wf5580AQGHfuHFNOnnT6TUlUFLuWLqXNywuNwcDCvXtJzsnpsexGX182PvYYTX5++DQ1sW7jRvwd1HwXxozhxPTpACxcuJDU1NRvfbxktLfDokWIx49TER5O1sCBZI8cSXMvBJ6IiFFdw1OfHSKuQCrDQxAwL1jAmeHDuWAyycovpSgyfdo0Ro4ZI/cl7ZN+Li4uTJ48mREjRsjt9mHoI4v60Ic+9KEP3xXfmSzavn0769at4/333yctLY1//OMf7Ny5k9zc3F7NlzMyMpgwYYI00Jw7ly1btvDGG29w48YNUmwqiTfeeIPXXnuNzz//nNjYWH7zm99w9+5d7t27J0fYz5o1i6qqKj744ANMJhNPPPEEI0eOZMuWLU7rM5lMjBkzhsDAQDIyMv5XkEV2lJeXc+DAATniNyIiQpYmA0RFRTF//vyeSUEOMJvNFBcXk5ubS25u7kM7XyARR3Zz7MDAQC5cuMCJEyfkv6vVaiwWi9MstFar5fHHH++ViANoamrigw8+QK/Xk5ycTG5urvx7T09Pli5d2mvscmtLC0ff+RlZJudkE7XBIHUQbZj49ddM/OnjCHMeh5wcGDAARBFRENg/b55TzC9I8faj585l2LBhkoJDr6d9/nw+TUqiQaslpKqKxzdsQGGx8OaLL0o+J6LIo7t2kZKVhSgInHr1Vc7bpNzdB/uCIDBo0CASioo4WFeH3s2N8PJy1mzejGtvSo6xY+H0aawKBRcuXOD06dO9pmrZERERwZo1ayTj6TfeAIcUt8rQULYvXy4nQ2G1MuLaSdZsiuP3n9Xz/M+PIlgs0jHavVsa2H8D0tLSGDFiBN///vc5evQozc3N/P3vf2fevHm89957cttvaGhg69atvPfee5hMJna8+Sapr78OZ86QDkSF+TLw2RcQRQV//etfGT16NGPHjMG3sZGpO3YyvLqKN4KCMK9dS5utDCs/P59TJw6xe4CFMV+3cBMYEqaVSKKFCx+63d+ZLLLDaITt26l//32O9Osnm4I7kgcqUexhlJo+YggzUg5D/QfSB+oIiP4QfGbJx+fgwYMymRgUFMS8efOIiIigtraWzMxMMjMznfytXF1dSU5OZtCgQURHRqI4cEA655cuAdDh4cEnP/g+De6Sd1di1l2qxkTR0iyVDEWVlLB0xw7c3d1Q1NXLy7WqFFg+eJ/jIeHyQCKxtRVjXR33+/XD02xm4qxZVOl0VFZW0tjY2KtBsCMUViuhDQ1E5uWRkJ9PVGwsza+9xsaTJ2kxGvFtbGRdXh7qTz/l3M2bMhnueGxnHTrEqOLih0dJT54sqYxsxGNbWxsZGRlcu3ZNJluDq6sZe+4cRfHx3BrapQbxFQQS29po6ehAB+j8/B4ajY7VSnBDHZ7WTor9I7CoVPi0N+Lir6fW4HxfCqytJTE3l6ScHMIqKyU/EwXwyjj49UlQaCTl1Zkz0rW3dy84qjUVCpg3D1auhNmzJaNcsxnmTIdjXyP6Q9H70zjf9CjFldXy9mkbGjBoNJzKyeHChQu0tbUREhzM00OGMDs2lqS0NLz/+c+uNuPmxqX0dD7y8+P4mTM0NTWh9fdn0tB5TJg/ifp6qX2OSBaZGfsfKE9Z+N4v4QMR/p6ayotXr0p+KzYcPHiQ3//+99y5cwdXV1cmTpzIl19++eBj6oDvTBaBdEzeeUcyum5rk4jDH/8YliyB738f8cYNTk2ZwnmbksV+nCIqKpxUViqTiRnV1Qz/+c8R3n9fUi3Z7+NDfSld681+0zx0nT2Vt15eXgwYMIDk5GT8/f25fPkyV69cwWhrf35tbYxNTyf2Zz/jcv/+3Bg5ErON5AkODmbCuHEkv/8+wrvv9tw/hQJxwgQq5s0jJyaG3Koq2YTYDj9BIPHSJXx1OowLFqAbMID62lpqa2sxPSQ50bWjg7CqKqeytoD6etzb2tD7gAZ3lC2dNPn4UDhvHof69ZO83OCbyVMHuLe349vURL1Wi9HVFZXRyIJ9+3CLjuZ8VBTFjr6GD1uuw9/s6lxwNshWuphZt+ZpovQm+Oorrp05w0HbNT/5xAnGnz/vtMhWT092LV0qpd7hoDT29pbIYltSaYvNNF8XEIBnayvrPv+cQPt5WLWKY6tWcfHaNQRBYMWKFbJy9tvAscQs+/p1mh0miRz3zaIQsQoVPLXhCLGF5V0LSEzk/m9+w747d2h2KHuN8Pdn8Zo1+Pr6cvfuXY4dOyZ7Ww4aNIjp06c/sJ/WG/rIoj70oQ996MN3xXcmi9LS0hg5ciTvvPMOIPnWREZG8sILL/CLblHlIKXftLe3c+DAAfmz9PR0hgwZwvvvv48oioSFhfGTn/yEl19+GZDMdoODg9mwYQMrVqyQO6BXr15lxIgRABw5coTZs2dTXl7ulMr085//nMrKSqZMmcKLL774v4osAqkc7OLFi5w5c0ZWl8TFxVFcXIzRaESlUvHII4+Qnp7+jTNFoihSVVUlE0d2EupBcHd3l71U0tLSKCgokKOTvb290Wg0cidWo9Gwdu3aHh0Ks9nMp59+SlVVFSEhITQ0NMgzq+Hh4bI/kSOsVitXr17l1IkjGM1S52nUlSt4tLVxaupUp+9OP3KE0TFK2Hpe8pXQaqG9HatCwf7587k9ZAiIIjNvHcZSq+TihAm02erz3d3dSRs5ktR33mGHvz+V4eH4Njby5Cef4N7ezj+ff54GrRZEkRlHjpB+9Sp6tZq9P/0pebYBZneiyH6sBmRmskWnw+DqSmRpKau/+AKX3gbbM2ZI/iIO566uro4tW7Y8tC36+fmRWFBA0v79RJaWohBFbg8ezIF58zCr1fjpdATX1JAzQFJkDazKYckH26Qfr1oleSR8i06j0WjE3d2dXbt2sXDhQgwGA6dPn+bnP/85er2exx57jEmTJjFq1CiUSiUGg4Hw8HBGjBjB6NGjSbt4kbjSQn4U4MONvHKee+45GhoaeOutt1i/fr0cux1TVMRrR4/iGxPDrFkSuWIxtvLh229ywGImoANigZsrlzHkg4+lgXQ3GAwGJ0KjoqKCAQMG/OvXpygiHj/OsV27uNTN6wUkHqA7pRfp48PoCeEkqn6JwiSpjSy+a7lUuZbTZ6/I1/DEiRMZM2ZMD9WQKIpUVlZy9+5dsrKynHwqPDs7GXjrFoMyMwmrr6ftySfZEBdHg+074fXVPPXuBwiiyIcvL0DnMQSjIODV0sLybdsIa2hANBtQmEXaPTzYuXQpJTExAEzKzETf2sql0aNRAU8+8wyh3dLrjEYj1RUVFO7cSVluLnW+vrR7ej40xUuj0eDl5UVrUxNGiwWP1lbW3L7N4WXLKK2s7HH9uHR2knblCqNu3sSjt/av0UhkXnAwLZ9+SoZCwfXr1+VS1gCNhvhbt3CpqaFBq6Veq6U2OPjhhJB04KXUJKNRKs1xONerN20ifnAhxaNj2NyyBotKxYimLMY+HUheVSi5BdUU1/pjFbvOpWdrK4k5OSTl5hJz/z6qWQGw+Qr4OJDiVqvkXfLhh7B5s3NstosLTJ8upapNmgQLZsHtbEz9VBS9tZTrzXMoKizCYvtNZmYme/fu5bH0dObU13OgrIy9HR3kAkEAEybQOmgQGWVlXE9JobC6ms8++4w548fTLzmZW9nZXDh/nn8fNB+P1S/Q1nEOgIhgF1wb/sCf3+2grhJ+Crw4f77kb+biwu7du3nmmWd49dVXmTx5MmazmczMTJZ9g1rRjn+JLLKjvFwqu9u9W3ofFYX1b3/jYFYWNxzLsM1mFu/aRVV4eBeB5EBChFZXM+7MGZJzchAGe2B+Ws95/7Gczx+PBVVX2xBFAkNCqNPpnFJJHRFQW8uEe/cI+93vyPjgA27FxckER3hYGBM8PUn4+muELVskZYkdgoB5zhzuz5pFTmAgeaWlTte+YLGAzYQ7LTqamb/7HRQXS4rSXbvg0iU69u3jM7OZel9ffJqaGH71Ko3+/twdPPgby81cOzudCCSfxkYOzZlDh22iBEFg0smTpObmUufjQ0V4OJfS0pw9kr4J34Js6k353K+wEK+ODm7bU1EdljfszjVmnr2EuqGhqywPyBgzhuM25c/MQ4dIcySmAYtCwYlp07g0ejQAMS4uPPrOO3hWVEjKOdv5bfPwYNO6ddQGB+Pe3s7aTZsI+elP4cc/RgT27dvH7du3UalUrFu37qEpsE4EUbcSM6VSidJgwGi7T6lMJqKLs5h0/hIRJQ6EsqsrHa+/zlGdjjsOzw4VMH3WLEaMHIlOp+PQoUPct/kCarVa5syZQ+zDEjAfgD6yqA996EMf+vBd8Z3Iou4DTTsee+wxmpqa2LdvX4/fREVF8dJLL/Hiiy/Kn73yyit8+eWX3L59m6KiIuLi4rh58yZDhgyRvzNx4kSGDBnCm2++yaeffspPfvITpxl6s9mMq6srO3fuZJGt3vzUqVM8/fTT3Lp1iz179vyvJIvs6K5K0Gq1uLi4yDXoERERLFiw4DvFGTc1Nck+R90NQLvDx8eHlpYWp47cgAEDUKvVTiVls2bNcioxPHDgANevX5cVX3afhu5myHZUVFRw8OBBOao5vLycOQcOEFpdze1Bg/jy0Ufl70aWlPD4ga0oypulQWRqKty5g0WpZM/ixdwbOBDBamVR8V4GbbwLfn6YL1/mVnMzGRkZcvsQLBZEpRLXjg6e/uQT/HU6PnnqKSpsHb+x588z9fRp6n182Lp+PQ3d/GRcXFwYPnw4CoWC87ZZTIXZjFWlIrq4mFVbtkhlKd2xdKlk3tqtA93R0cHmzZvlYwDI57X7DDNIJp4e7e1yGVJCXh7zv9zDqs3j8dMPoF+eVCI4+uJFps2bh/D973/rGeLKykrCw8PJyMhgtK1jDfCDH/yAw4cP89hjjwGSSmbOnDlElZSgmTCBnw0YgNphwHjlyhXOnDnDT3/6U3T37vH2jh385KWX8PL2lgcRO3bsQBAEli5dyuiAW/ztl/sY1yrya6B4QAKx9/J7XPeO+O1vf8vvfve7Hp//q9en0Wjk8OHD3LKVvPiYTLQKguwLZD+G/kBIQQG5Nj8tAH8fL9IH1BLEVg5nzaamRZpJj42NZc6cOQ9VA9phbW6m5IMPuHvzJtnR0U4G396enhhMJpkcCw0N5cl16yj77fPEvvEJACenJXN70gpaTSJKs5m5Bw4w5NYtymOi2LnoUVp8fNAYDCz68kv0Li7ss92jlyxZwkBbiZITbt6USoBsSiRGjEAcP57GzZu5nprKpfT0HsemV9j+LggC7u7utLe34+Pjg0KhkK9JlcnEsBs3GJ2R4eQXYlYqKR0wgIzBgymKi5OJKkfVwcPWaYcGIyIiJlxAtIKgwKulRfaYGWEbXF4bNQrP1la+9957ePh6kLXuMXa5eIAgMFmpZPyvfw2iFX3xH8i/uYvcPUnkRyU4lcFpDAYS8vNJbMon4Y3f4TpsQc/ty8qCCRMk42o7IWaD3sODvNmzydGoKYiOkQ2AQbr3uLm68ue//IWwsDDmzJlDzP37jD1zhonFxbzg5sZ6NzcujBnDrSFD5Pb51caNeNbW8nV7O/UxMWxbvIA3tu0kLCiIP6u8+Lr/z3FNuUtdXS2ffPIxO97w4dlflfFiM7xoAWZMw7xzNzHJyfzud7/jqaeeevCxfwj+U2SRHQcPwg9+gLmigj2LF5NtU5YiCKiNRhbv3s31ESMosJWpj7lwgZF5eVxOSeF6aqp8PAMUdfSPySGnagANnc7XZ3JICLNXr8bT05Pq6mqOHj0qBxo4Qm004uHjQ3NHh6zIidFoGF9YSOzOnQg21Yodna6u5C9eTO6cORSUlDiVjLu4uJDQ0UH0oUOcnTiRVm9v+sfGsmL3boT9+yXD92nT4OhRjM3NbFy3joqICLybm3nyk0/wWb2a/RMmcDM3F5/mZh7/9FNavbyoDwykLiCAusBAyhOC0OPzjc8Dr+Zmht28SWBdHQF1dWh1OgRR5MuFC8kcPFj6kigSVFVFm7e3RDJ9CwiCgKurKyqVyln17HC9era2ykrT7ph27BhjMjJ6WzBfr1jBWZun4PyUFIbm5kqKNIfnataAAexfsACjiwteLS0s3bWLSFvamh0dbm5sXruWqrAwXJVK1jzxhOz1Y7FY2L59O/n5+bi6uvLEE084KeYfRhCpVCqCgoKoa2nA1Cb1iywKM2POX2bchQw8HclEQJw5k9uLFnGkuBiDw/0lOiSEhcuX4+HhwdmzZ8nIyMBqtaJSqZgwYQKjR4/u0c/6tugji/rQhz70oQ/fFd/piVNfX4/FYiG4m2locHAwOb3UiQNUV1f3+n27ubL932/6TvcSN5VKhb+/v/wdnU7H448/zubNm7/1QLK7cqGlW8fv/yT8/f1Zs2YNd+/e5ejRo7LCJyYmhsrKSsrLy3n//feZNGkSY8aM+Vb16L6+vowaNYpRo0ah1+spKCggNzeXe/fu9SCOHDs5Xl5etLW1ce/ePYKDg5k6dSonT55EFEUOHz5MaWkpixcv5u7du7IZs9VqlTvCkyZNYuLEiU7L1+v1nDx5kms2o1JX0cCUg8cZdv06ClFE5+fHfjvhKIogipRFR/Pla39ngVKJ8kc/gjt3MKlU7Fy2jPz+/VGazSxp20XSxhxEhQJh2zZUCQmMAIYNHUrmL37BYaVSHoSbNBoupaXR4O8vE0WDb91i6tmz3Ovfnz1Llsim2SApk9LT0xk5cqRMhhkzMrhitWJVqfBsaWHFg4iip56Cjz7q0Um/cOECp06dko+/RqPBaDRSX19P//79ser1NLS1EVBbS0h1NQUJCXS6u8sJTAqLBaNawYJ9jzOurIlXfvAhl4YM4fiMGVwcPZrOiAjmiSKKb0kWPQgeHh4EBgYyf/58jh8/Tm1tLZ999hmDb91CFASK+vUjsZffLdi7l7bbt3kbSM7MpHz06B7HwMPSxtevXqatVeSX7i7wx9dh7lzJNPQh+OUvf8lLL70kv7cri/4V1NbWsnPnTpmcmzBhgpRwl5XFxl27aHPwtWkQBFpiY0lvaoLsbK4PH04DcOiiG/AkAK6qDmYMPEpqSgKC94xe1+mwcnjrLRTvvktsUxOxwJzwcAp+8AMyY2PJKSykxUF1oFAoSEhIoE2vJ/b1j6lNn4DbY88y5Xg2Cdl/Y88Pf0hzh4p9CxdyNyWFkuhoLGo12vp6VmzbRqebG7tsJOyECRN6EkVtbVLq1JtvSuoXb2949lk4cQLh73/HH5hWUcHgnTvZNG8e7Z6e+DU1MXbWLKpNJioqKmhsbOwy07adb1EU5RKJ5uZm3N3d0fr6om9rox24kpbG1ZEj8W9owK2jg2YfH4nM6aXt2okiD0MnWnMH/sZGtNfvo9VJqWN+DQ1cHzGCo7Y0RKPs0SMRRT6tzTR7S6V7oy9cYNrx45hVKopjY6kPDOTAihUs+/RTBr7+F1qXLuXowIGcsljweucdhjz/PK6xrzDIP41BESsxT91LcXAsOUlJ5CYm0ublRVZKClmkoPjyOjEnrpP0yDwSExO7nj0DB8L58/DII1BTQ2tqKjlz5pDb2Mj9gAAnIsy7uZmk6hyS1g0mevpvMJvN/OTll1m7di0KQaA4Npbi2Fgit2xhe2cnxieekEm1qJISxp87xyf377PGxQVBFAm8f5+n3/uQU4OSuFhcwennnmP82b9y/2IqnyoOMnr0GC7VjMagfBVxoQEOAEePc+ORMVRUVKBQKBg6dCjV1dUMGTKEP//5z3LJ+H8L5szBMGYM2//+d+47eIy5dnYy++BBjk+fToNWi8pkYv7Bgwyykb8zSkoYn3may+tHcdkyinpLIPVFtpIz2zI8RJE5ixaRnJpKTU0NR44c4d69e/KkSXRUFAmXL1Op05GXmIhJo6Gps1Nqo1YrkRUVDL5xg5DcXISODnBzo1mjIScxkdykJEpiY7EKAuTnA9KzNTExkaTISGL+7d/g0CE2PvYYrd7eaH19WXT0qEQUgZQOt3kzFqWSHWvXUhERgVtHB2s2b8bnjTfInjiRmzt2ALBgwAB82lrxbW4msrwcEeiI9MR9P5j1ehq0WuoCAqgPDCQrOZn6bv2rVh8fzkya1PWBKOLV1oZrRwceLS20e3mBIFDbTY0ow2rFxWxGodFgEASstuMnimIPZa59+d5NTbR4ezsRRYLVSkRZGWW2ErKTU6fSr72dEIcJK2bPhl27mOTqivHYMS5dusRXmZloLl9moJ0oiomB0lIG3rtHUG0tO5Yvpz4wkA2PPcb0o0cZdeUK9ruMe2cn627c4IvUVMrr6ti4cSOrV68mKioKpVLJ0qVL2bhxI+Xl5WzevJknn3xS7h/du3fPqe+kVqtJSEhAo9GQVZgjT/bpXSz4NOfy3AdH8Gns2a/UpadzIDWV4qoqSXUIqAWBGXPmMGzYMDm91D7ZmZCQwKxZs77RS7IPfehDH/rQh/9q/Nc5W/4P45lnnmHVqlVMmDDhW//mtdde61W58N8FQRAYPHgw8fHxHDt2jNu3b1NcXIyHh4dMhJ08eZLs7GwWLFjQqyfUg2D3RsnOzsZqtSIIArGxsVRVVfXozDnOANbU1KDT6Zg0aRKXLl2is7OTrKwsysvL5YGgIAgyUTR58mTGO3hJiKLYo7Z+cLCBaT99C8826b3dwNduNrx82zZJPbR0KXfLazC9+y6PvvsuVo2GrStXUhwbi8pkYnnnNuLelkqBhNdek8o6bFC8+ip1N2+iHz9e9v3QBQRwzUEVFVFSwrQzZ9iwcqVUrmMbpHp5eTFu3DiGDh0qJ7cBFP7hD9wwGCQ/D1GkzdubA/Pns2jvXimm244f/xj+9jenY9rQ0MAXX3xBg81EUxAEOX795s2bHDhwgLy8PLT19ai9vKgPCiK4pgaVyQRubijMZtz0eto9PSmJjWfCBUAMZsPKlSSKIpPT0/n68mVu3bpFZ2cnjz76qNO2PwgBAQEolcoeJYs1NTWEhIQwdMgQEu/d49j+/dweMIA7Q4bgfuoUDQ4eDADt7e14eXigMRjR2pQTV2NjCXUY+Le3txMeoKVd6cleL2/yhGpcDGZ4+WXphRT1u3r1aj7//PMe2+ri4iL5ONnwr5C5oihy48YNjhw5gtlsxtPTk8WLFxMbG4vJZOL43bu0KRQoFArcLBbabdtvViq5oNUSMHQo6bm5XEpMdFICmaxulDVGE1FxmoC2ARD5JvivdiY+iorgr3+FTz8FO7HSvz/89Kco164l0cUF76oqCktLncpgrFYrZ8+e5ezZs0REREjG2OczKF2zgKg75Tz/i//g/X9/Bh1hcgR1bGEhy3bswODiwobHH8eiUtH/fj4TF3ZTvXz5JbzwglTyA5JPlKentJ2iKJkJv/YaPPMMwWYzTz71FBsDA2n09eXskSOsi49H+9xzIAhUVVXxySefOJtbOygIOjo65LJX+c8KhRx57QiNwUB4dSVRJSVS0phRh//zOlxHO5R6KoG/2f4VIf3SJVq8vLg4ZozDcVfg6emJfTg38fRpJhbmIABqs5lHd+/mo2eeIScqipsvvcSwf/yD9J07aW1vJ2PUKPbX1eG5ZQvxq1aBz0xIvYnq4HziJ90lvqCAOQcPUhEWRm5SEjlJSdQHBlLUCUWHDnHo0CHCwsIkciApCUVgILnvvUfOsWOU2z1dbIP2QEEgKS+PpK+/JrSyUhrIbj0Mw3ZSP2slFouF+fPnM2DAAI4dO0b2vXsoAwKoKymR0p+qq5l15AgxVVXg5ka1KBKs18sG224dHUy9fIPTrtL1c37CBLLr9xCYWc6iVc9TJTbQaXTltnIghjczcXnJSNF1KU3xt6+8wt/+/ndiYmL461//yqRJk8jLy+uR2Ak9J1y6x4H/K2hvb+eLnTupciCKPNraGHvuHAfmzcPo4oJPUxPLt20j1O4R5Q50gFtpB94ZbQhptvuGvT0KAiqFghHjx+Pi5cXWrVvJy8uT19m/f3/GjR2L8MYbnGtpIc+BHPPX6TArlbT4+lIWGUlZZCSIIr4GA1aDgRYfH6ftDwwMJCkpicTERMLCwhDy86XyspwcDs2bR2l0NBqzmRWvvoqro5dXRATiwoV8mZxMYV0daqORVVu2ELh4Ma0eHnxlU62OuXaVmN/+FkeKVQA8yqRjrwaCa2oIrqkhPz6eMw4TOSqDgUdu3UL35JNUNzbS1NREZ2cnItDq5UXrAxQ/dqj1egbdvcvoixfRNjSAIJCXkEDG2LGyZxBIkxyircxO+kBBS29EhyhSlxKNt+BNS0sLVoWCPWPH8kxWFmpPT9i5E2yl6gIwfcIEjOfPc0OlYs+IEahra+n/k59IyYGLFkFpKYH19Tz90UfsX7CAewMHcmT2bMojI5m3fz8akwmWLcP1s89Yq1KxdetWiouL2bx5MytWrKBfv36o1WpWrlwpB668/fbbTpNt9sCC+Ph4GhobuHD1EpYOqT/U4WYmuDaTl/9yDI82273PzU32zrJoNFxIT+fMhAmSatOGflFRzF+8GIAdO3bIk6/e3t7MmjWLxMTEXsNP+tCHPvShD334P43/Z8rQfH19nTqqoihitVpRKpV8+OGHPPnkkz22rTdl0b9koPtfhKKiIg4ePCgTDCEhIbIRrVKpZMKECYwdO7ZnmlIvMJlM7Ny5k/z8fDk9rrGxUTa3Dg8Pl/1UHgQPDw+USuUDB+nDhg1j3rx58vv6+vqetfUTYomdNRdsq+l0deWD9etp9vMDUWTh3r2k3rkD8f7kfnWBnTt3YrFaiS0sxKjRUBEZicZgYFXpFqKPlIAOWL4ctm7tGiC+8w5XNm3isC1hb/6+fQy5eZP98+dLZriOnSzHyHRXV6ZPn87gwYOdj6kokv/737PdFkndPzeXlLt3+XLRIqxKJQl5eSzdsQO12SylOf32t/JPrVYrR48edTL7DQoKYvXq1U5tquz119mu09Hu6YmLXo/BpmQCCKirY9n27bz+0zguTR3Mb/7cQKm3lqpus7x2RZgoikRFRbFy5UpZEfUwpKWlMWrUKN5++215m6Oionh+1Sp+dO8eZ8xmro0YgcVGPu3cuROTycSqVavwbWhg9qFDzG5uxicqinnz5iGYTPz5zTcZM2YMY8aMIUlbyp3yAN74y19ZuHAhk8PCKFIq6TAYEASBlJQUIiMjmTdvHrt27SItLe1bSeK/q8G1Xq/nwIEDZGVlARAfH8/ChQvx8PDAaDSybds27t+/j0qlYsWKFURHR3Ph7FnOnT2LxZ5q5dB2vJqbGXLrFkXx8VQ4pFz1D8pldFwG0TEDEWLeh+wGybR6+/Yu35qRIyXj8gUL5OSvkpIStm7dKt+DVCoVK1eupKmpiczMTPk6AolsjImKIuDaSdK3HOTAvHlyIhFI6pTFu3ZxZPZsqkNDCa6u5slPPwWNFWH7dtQpIySSyK5iiI2VBlebNkFdnfTZunXwpz/JhIYdze+8w6bcXHQBAXi0tTH9+nWM0dGcDAtDr9GgNhoxdfMF+k4QRdza2wmrrCSmopjohlKCcmtxMRlhfQi8NBE8BoBLIjz7Kew5BsHB5Pr5sXPJEqkUq5dSualWK2N//3tJOWXsAL1EyNmTj9QmE+sB7e7diLm57F20iLuDB6M2Gnls4kTC7WS0VQ9bF8Oawz02XafVyqqSssjIhx6DiLIyEpuaSH71VbR289zSUilCfvNm+XuVQDiwe9gwOubPp9D2+bFjxygpKeGZZ54BwK+hgbHnz5N6+zbuFgufe3mx0oH4/yfwO+D48CG8P3QYG7du55dLl7L+q6+4MPpRHj+/g7S0NOZNS2SZ1xaO/7Ce1Qb4IMqHZ28VgF8ABoOBiIgI/uM//oP169f32KcHlYr+q2UuTU1NbN68GZ1OJxsDezc3k5iby1Ub8R9z/z5Ldu7Ew5GI9IHahfEc0EyiLNx5vW5WKwpPT9q7EZcAAwcOZNy4cRj0es5+8AFFtvunYLUyMCuLcefOEVxbi6VfP+6sW8cNf3+qmppkbyk7NEBUfDxpaWnE2w30QUq2XLYM2tq4OWIE++fOBWDF1q0k5uZK30lJgTffRNRoOHL5Mlfa2lBYLKzcupX4ggJEQeCL1aspjI8npKqKpz/+GKXFggh0RnrhOngcihOnJI8/BzR+/jnvFhQ4pa15tLVJAQ+9wK2jA4/WVjp9fGh3cfnG61llMiGC/JwQrFbiCgsZd/YsUWVlCECjjw93U1I4PXkyon07voXXkZvZTOLw4YRHRBAcHExAQABuN27AU09hzcvjS9u1qlQqWa3VEvvjH0v77+IiHwcRuJSezvHp0xEVCgJra1m+fTtak0nyDlu+HNP48Wzfs4fCwkIUCgVTpkyRVUSOCiJBEEhKSmLQoEGEhoZy9fpVLl69jGiQiPJWDyOxpXd4+sNjuBhsyuPISKiokJ4B/v6U/upX7K+tRedgYK0xGJhRVsbgf/6Ty3fucObMGUwmEwqFgvT0dCZOnCiFdvwX4V8tQ/t/NQG5D33oQx/68M34lwyuex1oPv/8Aw2uOzo6+Oqrr+TPxowZw+DBg50Mrl9++WV+8pOfABJpExQU1MPg+tq1awwfPhyQOs4zZ86UDa6zs7OdZrj37dvHG2+8QUZGBuHh4d9Kvvvf6Vn0IJhMJqc6dbVaja+vL3W2AV1oaCgLFizoUbbnCIPBwLZt2yguLkalUrFs2TLKyso4d04yOR0/fjyPPPIIgiDQ2toq+xwVFRX1iMB+ECIjI3nsscdQKpWYTCbOnTtHRkYGFosFlUrF+PHjGZOWiuqJaNgqdbraPDzY8MQTsrJgzPnzTDtxQtK3Fd+H0CgKhw9n65w5cgfUtbOTNec3Ed5UCVnA4MGQkQEeUloUX3zBvVdfZefSpSAIPHLqFBPOnuXG0KF8NX8+CAJKo1FanuPA38uLhQsXEhsb6zxjJ4rkvPIKO5FKYZKys1myaxdKi4X8+Hh2LF+OWa0m5v59VgwciMtPfyr/tKysjG3btslqCqVSyaxZs+Q2C4DFAqtXw/btNHt7s23FCqodSCDBamXFlo2s3DqUMbWe/GPNVygbm8Dfn+bPPiM3JOSBnlSurq7MnDlT9p56ELZv385jjz3GBx98wKhRo/jH3/7G9s2b+fuUKZQNG8buffvw9vZm6tSpgEhpaRkbNmxg6tSpJMTH03j0KDsLC3n+8cfxsRkqnz9/ngsXzvPhHDWph1r5qVnDFXd3vv+DH6BWq/H398ff35+CggJAInJef/11bty4wVCHdKuH4buQRRUVFezevZvGxkZ5EDB69GgEQcBgMLBlyxZKS0vRaDSsWrWKaIdZ8cbGRnZs3Uq1nUSxwa2jg2kXLpB64QLlkZFcnD6dHAcD1DBVBaOvX2LAvqyu6OwZM+DnP5dMjR3aWUFBAdu3b3dSFK1cudIpgae1tZWsrCwyMzPlxERHKM1mJp08ya3hw9EFBMiDa/f2dp758EPZG0gUALUawWiSzF4ffxzu3ZOuI5CS9N55B+LioKAAU34+DUVF6Gpr0bW10SCK1Pr5URUa2jXg6w32QaAoEldcRP+BRrSDGrBSybX7g8irTQS7HsJqAcXDSW/Xzk60Oh0RokjUE08QkpyMn1KJkJZGpkrF3kcfxepYntttEDpv9myG/fCHUmrYsKFw46a0akFg07p1FMfGEl5ezhO3b6McPhzLJ5+wZcUKiuLicO/o4KklS/AfObJr+S/MgneOOG2jVaGgUQv0YgABAABJREFUJCqKnORkspOTZY+kHvui0ZB05w6JN28S5+KC+vhxcFSK/uEP8O//jijAvXEJDD5fwNJly0hOTkawWhlUUsK2Gzfo8PXlp//xH7LqE8CrpYU/vfMOL5vNvGwbmNLUxCtWK18Ct4HfeXvzu5YWyVsKEEQRC9Ig2Nvbm5//9AeE1H3Bk2+WcA4YN9ALTl6F4ETS0tKYOnUqf/zjH3vsV/cJl9zcXEaNGvUvkUW1tbVs3rSJ1rY2uS37NTTg19pKke36HHXpEtOPHUNptYInsBpMp704E5nGxdGjZbWqvR2mZWcTuWoVGbW1PSZGlEol8VotrVVVVDqkcqXevs248+fxammhMC6O3NWrydNonBS5SrMZ/4YGLAoFDd2UcgFaLUmeniTt2kXYwYMIQHl4OBueeAKLSsWkzEwmnj4N9fXg7i49y+rqODd+PKemTAFg0e7dDL57F4DLEydy5JFHUJlMPPvBBwTW12N2EWja908CZnwP8vMRp0yhpbmZqtBQqkJDqQwPpzA+viv5rBt8vb0JdXMjpKOD0H37CL1xg0ZfX3YuW+bUhrW1tTRqtV1lk6KIymzGrFI9kPBRAlqdjoDqarxaWriTmiqXVQOojEYmfv01TX5+ZA8Y8K39kFw7OwmoqyO0uZmAmTPJBMoqKlAbjazbuJGI2lonbzA7SqKi2LV0KW1eXmiMRhbu2UOyTbkjBgRQumIF+yIiaOyWbKpWq4mOjqa0tBSj0Uh0dDTa4ABu3LgJZun+3uylZ0DuDR7/5CQqe98pLU0qPbaR/Z1LlnAiJYUb3bYrrqSEebt30+Try8F586izeRRGRUUxZ86c76Qk/7b4V8ii/5cTkPvQhz70oQ/fjO9MFvUYaP7jH7JsNjg4mHXr1hEeHs5rr70GSA+OiRMn8vrrrzNnzhy2bdvGq6++2uPB8frrrzs9OO7cudPjwVFTU8P7778vPzhGjBjR48Fhx4YNG/5XG1x/E2pqajhw4ADltnIRPz8/Ojo6MBgMKBQKxo8fz/jx43uojDo7O/niiy+oqKhAo9GwcuVKsrOzZaXL1KlTGTt2bK/rNBqNFBYWyj5Hpm6lR47QarWsWLGCpqYmDh06JKu+4uPjmT17tkTO7VwAyyQlQ7OPDxvXrZPSyJDMrJ/47DNp6PjeH+B7v4ZHHqHl+nU+ffJJSXkEBNVU80T5Bly/0oOfL1y7DnZFxYEDlLzwApvWSIlGw69eZc7Bg+QnJLB11Sp5wODYqVUIAiLIHhXh4eGMHz+e/v37IwD3fv1rdiuVWJVKBmRlsXj3bmlgYkNJdDRbVq3C6OJCeHg4q1evRqPRsGvXLiffrpiYGFasWOFURkVbG4wdC3fuAFLk747lyynvlrjS7GliQlM2C/9jj/TBqFGSHD+qK3nJ0ZMqLy/PyUhVpVIRHx9PYmIi/fv3x92ho27HO++8I80UVlUR6efHI/PmEWHbjs8++wx/Px8WLJRk8TH379Nx8CB/0Oup7ezE39+fadOmOREboihy5chBrl+5TrMoMs7Tk9fef5+z1dWy4s/V1ZXx48dz8+ZN8vPzefPNN/nNb37D+vXrZYPRh+HbkEWiKHLp0iVOnDiB1WrF19eXRx99VO4YO14fLi4urFmzxqnTXF9fz4EDBygpKQFAKQhYut0io4uLmXP4MIE1Nei0Wi4uWsTt0BDMSqmswKepifSWTIY++X1cxi7qsY1ZWVns2bPHieybM2eOnPTYGxoaGjh58iT37t1z+lxjMBCXn0dBSjImW1XxgMxMHt2zB8FqdSpVMQf7oxozEfbvxyKKNGm16AYNQufpSQOg8/VFp9X2KKt5EASrFe/ONpo9vPF2a+Op0e9zKnMqt2uHgCgy7tJZ6h4JJlefJP8mObKJ8cPdCfWOxDDvb+RbVVwcO5aqsLCHprDZoVAocFWr6bCXXNkQWFNDXXBwj+t96tChjF29Wrr2Rg2DK9KQrdnbm/efew69mxsTzpzhkTNn4LHHMNy8yYa0NKpDQ/FrbOSpZcvwGDOmawOGD8B0J18iEWweRo4DYbXRSHxhAfFDY1DOWEnR/fvk5eV1+TshKTLia2pIXLOG/iNH4u7ujtViIedHP+Sc2UJ1aCgfffQREeHh/HrECMbu3IlPXR1RwPPAL2JiMC5ezI0RI8ioqqK1tZWdO3di1et5PzycUVeu4KrXM0ahYLAg8L7Fgg4odHPjyMyZVIeEIIgiOz79lLWiiHbpCsz949Dr9fz1L3/iXY3IMx0iJKox7d9NxPin+cMf/sCzzz77jefnXzW4Li8v54tNm9AbjTJRpK2rQ1QqafD3R2k2M+fAAYY234KZwGGgGPITEji0eDFN3VK8AlpaSLl3j3uxsdTaJlZUKhVDU1MJamwkIy+PRocyIMFqZWBmJqMrKqgePZrcmhqK+vVzSh1zc3Ul8f59Es+coV9hIRqzGT7/nLZFi8jNzCTn4kWKmpslzyIbvJub6VdYSG5yMp1ubiRlZ7Nsxw6EbveU68OGcWD+fABmHD5Muk4H775L9Z1bfNLcglmlZtbBg4y6ehWDvxstu/ZTGxRK1Z07VJ08SZVW69QOu8OrpYW0S5cIq6oipKEBNwfVTFlkJCenTJGTFAECa2uZefgwsffvUxkWxqdPPulUNgXg4+VFv/h4PDw8aGpqoq6uDl19PeYHTTiJkjG/Ra1GsFoZee0aKXfv0uLtzdHp02ntft/5FgokOwSLhQH37hFdWkpgbS2BdXVOyrNWT092LV0ql8oN6uzEIzeX7JgYmn19eyxv1KhRTJ06FbVazb1799i1a5dTGEijTwcjb11l1cbTXedyzhwpvfWLL8BiQQwMJOvFFznc2kqHg+LXRaVi5pw5xPfrx4k//pHbtvPm3t7OtNJSUj/6COEbygH/VfwrZNH/ywnIfehDH/rQh2/GdyaLwGGgaTPAfOutt0hLSwMks+OYmBg2bNggf3/nzp38+te/liWpf/rTn3qVpH744Yc0NTUxbtw4/vnPfzoNRhsaGnj++eedJKlvvfVWr5JU+L+fLALpoXz9+nVOnDiB0WhEEAT8/PzkMrXg4GAWLFggx5W3tbWxefNmampqcHNzY9WqVVy/fl1Of5o9ezYjHWfKv2HdW7dulZUg3wQPDw9mz54tzYQLApTvgAHLoRX+P/beMzqO6872/VVH5NTIgQRA5MBMMIE5Z4qZYlJO47EVbFmWZ2w5W/bY8liybGUxJzHnHEEwkyBIoBEJEDnn0KnqfahGoxsAKdn3vrfm3oe9Vi+CQHdV9alTVefss/971/n4sHn9etugTNvRwb99/DHuLS2QGgOXcuC3v6Xxj39k0/r1NPj44NraikmlwujkRFB5OWu2bsV13z45LQbg4kWq1qzhq7VrMTg5yQqgXbu4NWIEx+bN67P0LMjZmZUvv4wkSVy5coXbt2/blFR+fn6El5VxQ6UChYLke/dYvH9/t0LEDuVffMGW2lo6Ojrw8PCgo6PDRqxpNBqWLFlCbGwPO+iCAnnF0WpkXhIWxq4VK2h1d0fb2Ulsdjb3hg61HfeAoiI2bNqE4tVXZT8Ze9KpBywWC5mZmRw7dsyBNAJZOTBgwABiY2OJjY21+Y6U5eVxYuNGSuxXiCUJd6cWWgxugALnzk5mHj/OEGv/yY2JYe/SpQ7JUO7aDqaWHOOM8wxa3d1x6uhgua8vka+/DtZEnI0bN9oM3AFmzJiBJElcvHjRdrzDhg1j2rRpuHYpxvrAt5FF7e3t7N+/nzyruWxCQgILFiywEc5tbW1s2bKFyspKnJ2dWbdune3aMZvNpKWlcenSJSwWC2q1milTpjBy5EiuXbnChfPnMVvbCEFAYbEwLi2NiRcvojabaXNx4ebo0VxPHUu7Ui4b0Ko6GZnkScrkl/HwlMnPO3fucOjQIYeJx/jx460qrr4hiiJnzpzhilUJFFpXR3BuLjnx8X1OdADCCwtZ9s03mFUq6nU66uxe9T4+NHh7PzFtzEkU0akEdO7g42tCF9iIzjWfmqwG9pXMtRn+olCgMpl4vuNzAldWIam92HV9JfrKIIftJSUmMGHiJMeVaIsFxoyBmzfpdHLi5siRXB0zxlYmo7BYUJnNGDWa7zZplCQGPnxIeUgIJrs+OtbDgxlvvomgUoGHM9TLpVr3ExPZs3w5gijyzFdfMaCkBEJCaJ00iS/8/Gj09ia4rIwNSUlYXniBvPx89FlZ5N+/L5fdWeHc3k5sTg5xej2RBQVyeSrA8tHw9VksWi2PHj1Cr9eT8+ABTT1SkXQ6HZ2dnTaPN7XRSOuJw/z5Xiaf/ONDUpJT+MtPfsKuixfRq1QEdHSwHrlU7VchIWSsXMmWjg7++sknTJ8+nYTwcOpOnWLHw4fcBpI0Gjk6XBQxK5UcnTuXOyNG8MEHH7BoYASf6rM4P3kKV8eN5dixY+TqM/labSG21sAf3eGQ2g19XjHefXgW9cS/Qhbl5+eza/t2TKLoQBS1uLtjdHLCvbmZFXt2EvpCGcxWge9aWtQvcfyLU2R1XUd212VUfj7Vfn40Wo9XYzAw6vp1Uh484FFoKJdGjbIRSF37s9+GPby8vIiLiyMuNJSwF15AcfWq/AelEv7+d7mE8+BBuH0bTCY6tVryoqPRx8eTFx3tkHQniCJJmZkkPnjAoMJCVHPmwLJlZHt7s/vOHSRJIvXSJaZVV8MXX9D29r+zKW4Y1YGB+FVVEln4kIrwgVSGDcBop0jsgsJiwa+uDoUkUWGnPPauq+Olzz7DyY6wlID8qCguT5jg4DWkNhqZf+gQgzMzsSiVPJg1i6szZ1LRxzjKw9WFZ194Ea+ue1BxMdK0aZR3dHBs/nzKuib0koTKZML8hHIqF6UShSTR2uN5O/DhQ5Lu36c0NJSy0FDqdLrvRCoDOLe14S9J+HZ04HfjBhJwZ9gwqoMc701qUSQ2L4+4u3fJjY2Vn8OSxCSTiYrwMHIqqhDsRsm6umJe+/ArFCD3l2XL5MCG3/8esrMBaFi9mqPh4eT3eG5HR0czb9488vPzOX36tI1EHp6VxfRDh3Du6JCf9Z9+KpcF/29G1zM0KyvLYYGmpz9gF/4nW0/A/3oCcj/60Y9+9OPb8S+RRf+34n8aWdSF5uZmjh07ZlOuuLq6YjabbSqj1NRUhgwZwrZt26irq8PV1ZU1a9Zw+fJlsrKyEASBRYsWMWTIkO+0P1EUOXbsmC3JTBAE2+TWycnJYZXcHl5eXgwZMoTkuCB0qwfDeSNVAQFsXrdOngBaB+PLd+0iISsLXJRQUQ9ZWdTOn8/m9etp9vTEu76edZs2YVihZbPnetpdXfETBNa/+aZMDt65Q9P8+XyxahUtHh6EPXpEytWrXJowoXsg2JW+YlUoJTs5seDNNx3Ks1pbW7l69So3btxwIFlCSkpYv3GjvHLcE/v2weLFlJTIpVn26pCkpCQWL17c21PqxAlYsACsHg+3Ro7k2Jw5iEolftXVLN+1g9f+NgwfpzgGXveyTUQHu7vzlF0a2LehpaWFzZs3U1NTg1KpxNPT00YsdsHDwwNzWxvtdqu/giQR7F5Go9GTNqO8opl87x6zTpzAua2dVnc39ixb5jCpcNFY6DRKiKhQWCyMvHGD0sHJlLu4IggCM2bMYMyYMQiCQEdHB9u2bbOp5ACSk5OZPHkyFy9eJMOafOPk5GQjaPpK/3sSWVRcXMyePXtoaWlBqVQye/ZsRowYYSsxtG8bV1dX1q9fbyMuHj16xKFDh2xJaVFRUcybN697EoR8DZ7cs4cHPWKYva0eTlFWUtU0YgT33v0e6UXZ1LVYE+0UIsnxEbh6htgIH4VCgSiKJCUlsWTJkseal3Z0dLBnzx4KCmTnmvE3bzL1yBEUXl5Ir79OhkrFQYOh7wnUt6zMqyQJnUqJzl2Jjy/oAtvQuRaj09zHWcpCwFFZWN/mzWeXX6LT5IxreyttLjKpM+r6deYePUrxrOlcXLSEQnvTXmDUjRvMeeEFBLvJhg0Wi0yiWlMWzSoVd4cM4cr48TRYJ/tqo5HY0lLaLRYKvyVB73EIaW9nyu7dBDk54aLPlmfLwL6nnuLekCF4NTXxyscfo7WWVNXNmMEXw4bR4eKCc3s7nU5ODm3s2dhIrF5PvF7PgEeP+iSVAYjXwYFLEB0PyAsjVTdu8OA3v+HeoEG9VFwuzs4MzrhL8rnz7DFU8F8aDZX1dC/KJCfDiRNMfuUVwhsa+NpKUosKBR8MGsQf6uqoa2rCx8eH2dOmsbqpiXFXruBppySRgJujRjEzN5fRY8YwZ2Asz+z4mrLQUPYuXMjRCxfIvJcBHR2MESX+EgiJe5fC6E2geLx6Bf55suj+vXvs27sXURAcSs8avL1BEAh79IgV6btw+9oCwa8h+n6fGxkVnD17Vr5n2/Vxj8ZGzBoN7ValhnN7O2Nu3GD4rVvkR0RwecIEWwm0WhQJUCrpqKnp03Bd19nJxJUrSR4yBKGgAObMAfuFE6up/5Ngiolh18KF5PexoKURRaKSktDpdLby7SF37jDq0SMqZs2k8sEDcmJiHxsxr7RYCKyoILCigqCKCoIqK/GvrqY0JISNzzxjaxOV0ciLn3+Ov/WaFBUKHiQkkJaaSlWX6boVA4qLWbVjB6IgcGvkSG6MHUurVbGlUigIKiqixE7dCnIp36pVq4gSRaRp03jg5cXRefPosH5OYbGwyuq9VBzmg8k3lAaVlmujR/cq33scPIxGIjw90bW14XPjBoqHD2lzdaUyKIjy4GCqAgKeSHz3CWu/UalUTJ48mcFxcbhduQK7drFLFNHbLVQCuLSVElZeRU60XFI+9exZJgwcKIdbbN0KH3wAooglKIirL73EOYvFwUvNSaNh9ty5+Pn5cfToUVtZcWBgIPPmzSM0JETe1l//Kn8GZCL96FH435iA1vUM7Ymf//znvGfnvdiF8vJyQkLk59bYsWNtv3/77be5cOEC165d6/UZjUbDxo0bWb16te13H3/8Mb/4xS+oqqriypUrjB8/nvLycttiDcCKFSsQBIGdO3fy29/+lo0bN5LT5etlhb+/P7/4xS949dVXqaurY9iwYWzZsoWJEyf+SwvE/ehHP/rRj29HP1lkh/+pZFEXsrOzOXbsmC29rOtYoXvy6enpyerVqzl9+jT5+fkolUqWLl1KfHz8d9pHe3s7u3fvpqioCJAn8CqV6p9OufFobCSisBB9QgIGJydZfq5SMTgjg6f27ZPfdHQXTJhDVVwcm1evps3NDd+aGtZv2oT7qBbIgBrBl80vv0yL1fdmfWoqmoUL+WrhQmr8/XFvbkZjMFBnrfcHQJLwqa2l3s8PQRSZDox9772+J+SiyPW33+aYm5vDxNqtpYWx6emMuHkTrdEoryQfPQozZ3L16lVOnTrlQBS5uLjw3HPPobOW2dnwxz8ivf02AvJE+OjcudwZPhyAhAcPmHj+KKOvzee3h1Ssfmsntd7ebHruOdsgfcyYMcya9S3R7Hbo6Ohg+/btlJSUoFKpmDNnDgaDgdu3b9vIEPt28lI24OLeTnmTPLHzampi/sGDRBYUICoUXJw4kcsTJtgG42oFzB50jmEbL9B4w5tjc+aQZx1Ye3p64uPjYzNmHjJkCPPnz0elUmE0Gtm1a5eN9AB5oLxixQpaWlo4duwYldZko4CAAObMmePgIwR9k0WiKHLp0iUuXLiAJEn4+vqybNkyB0+vpqYmNm3aRH19Pe7u7qxfvx5fX186Ozs5ffo0t6xEhaurK7NnzyYxMbF3X6mqgv/+bx4eOsSxiROp6eHVkHj/PrOOH8e9tRUEAWn1anJfGU56RjbFdY6Dc5VKhdlsZuDAgaxduxZVj/IOANraqL5zhx2XLtFgNKKyWJh49izejY2yOkino9rPj8rAQPiWlXZBFPGuryespISQsjJ86+rwEuvw+JUKZUL94z+ocJFNpZ3iMKli+eKQlqpaA4EB/jTUN2DoKlOVJHwaGqi3kjsK5HOv1Wi4euMGAGPT05mxfj3C00/33k9nJwwfbluVB9lXKDshgctPPUVlX+1jseDj4kK9wYAginh2dNDi5ORg5vs4uBg6CSwpJaiyEp+6Os5PmUKLhwdDmppI3bQJfXw8+rg4ynqQHb41NcQPGED8mjUEXr6MsGrVk3ckIDMz7krY+DU8tRaDwcDNmzdJv3yZNivprjGZcPXxocHOnBrkEqbY+hziNvgwcMIXKFU9lBlGI5w5A3v2yCl3dXVIgkBuTAyXJk+mzDoRU4gig60+PDo7hV9ReDi7ly+n3dUVl9Y25u88gG9HvS12XIGF2RePM/LsDYQQ4Os4mHAYtIMe+5X/GbLo+oULHDt3zqFc2L252eaZM/zWLeZ0nkb19U/B/zUqamTDepv3kFXZprBYUAoCJut14N7czNj0dIbcvUtWYiJp48fTaJ1wK81mlBaLgzpSIUmEBwURdPQoNa6u5MbE2J4F4aWlTDh7lojCQvqkXRUKCA6Wy48yM+VjiouDI0e41dBgK8VZtWwZmh//mGxRJGfwYJp7lM0J1vSwvq5llclEcHm5TApZCSLf2lqH8miAZnd3Pvre9xxUdct27SIxKwuTVsvd5GSu2LWFvapq4vnzxGVnc2P0aO4NHiwTHYCbmxspKSmMGDEClytXOP3++6SlpsqftabMAYy+e5cmrRa93ThDZTSydssWBj56RKurCtc2s60NxZQUDv/wh9yxltWOGzcOfxcXanfupLq2loJBg2zH0GezWyyyL1JtLT61tQjArREj6HB1RWE2IykU/zSBrlYoQKnAZHJcJEpJT2fOiROAbJh9YvZsABbExzP8P/4DrErWsvXrORQURFWPcxsTE8OMGTO4efMm169fR5IkNBoNU6ZMISUlxXFhJDtb9rkrKZH/r9HIBFIf5vL/Cv5ZZdH/ZLJoyZIlxMTE8Pvf/x7416oJ+tGPfvSjH9+OfrLIDv/TySKQDUXPnDnDDeskrGvi2YXhw4dTU1NjIwtWrVrFoEGPH9zbo6Kigp07d9oIKKVSSWBgoM3fxd7I1MvLixkzZrBv3z7b/rsIq57oGpS6trTwvY8+wslggJVTYftpykaMYMvMmXQ6OxNYUcHazZtx0bUjuANZwOAk6o8eZ9Pu3fJ5aWnBpaWFyuDgvksIJAmnjg46XVxw6uhgaXMzUX/7W98DRFHk5g9/yBHr6v7wmzfxq6khfdw424q/U0cHKTdvMvqddzCMGMHWrVttJVWCIDB8+HAePnxIfX09rq6urFu3TiYqRFE2st6xA4BmDw92rVhBWWgogigy7cwZLOSz4tA80l8pJmLXGfmYVqyg48MP+WTbNtt5GDFiBPPmzfvO0bn2SXggD97slVOyl42IqLAbjEsSuro6xl++TIw+h1p/P5spqPUNJA+oZV7e52g/NEAroFAg/eAH5Kxbx7Hz522pef7+/tTU1Ni8CVauXImHhwcWi4V9+/bZ0skAnJ2dWbp0KREREdy6dYuzZ8/alGvJycnMmDEDd+sx9CSLWlpa2Lt3r43YHDp0KHPmzHFIj2loaGDTpk00Njbi6enJhg0b8PLyshGvXSTosGHDmDFjBs49BvoUFMB//Rd89ZUtZccSF8f1Z57hXFsbJjtDXY3JxLSTJxl58yYKSQKtFukHL7A3VuB+ieMqulKpZNakSQx3cUFZWAj5+Zjz82koL6e+qYmsgADuJycjKpWO/fwxcG9uxre2Fl1dHV4NDbS6unJv6FDae5T1BVZUkJSZSdL9+3gamuW4rDlB4BTX+6UOBUGBJEns37+fe/fu4eLigouLC7W1tei8vemoqLD5cQiiyPBbt0hNS8NrwAD48kuuGY0cP3kSkCf/8+bPR9GX901DAyQny+lBdhCVSnb94Q/k9CBSNAYDRq0WtSTx9L59hN+7h7R6NfXXr1Pu7ExFcDBFAwdSERT0rWQa8NhJpK6mhnpr6UvqpUtMO3MGUlPhiy/gd78Du3LrJ6Hd2Znrb77KNXd/W//2dHVl3KlTDDt7FnVkJB3HjpHX2operyc/NxeTnfpPqxaJiR1MbFwcUVFRvSd2ZjNcuiQTR3v3IlVU8NCqprGl5kkSiVlZpF66RKCVmG309GTH6tVUBQaisFiYdeQYg+/f4+DixWQnJAAwJPcu83YdRu1rhk/dYMI28FpAX/guZJEkSVzYtYsLXR5vXeqLjg46nZ1RWCzMOXqUkYPd4LOjGMxKzp07Z5to218P9j9719czPi2NhPv3yRg2jLTx47vvXz3Or8ZgIDovj9jCQqIBp7t3bcmFtTodaePHc2/IEBtJHlxWxoRLl4jNyUGIiJDLoTdsgBEj4K23ZIN4kFO2vv6akoYGm/J0woQJRBw7RkVaGpUDBlCRnExtX6pV63FqDQbMSiUWtZqE+/dZtmePfO+XpG7VSQ+YnZz4x6uvUmenVBt/+TKp3t7crKhwKO/UdHYiKRSYNBr5+XbtGiUDBjikKwb7+zMmNZWEhAQHpay0aRN7Dx7kfnKyXFomCLJpvt3xIwhoOzpYt2ULIWVlWARQdh22s7NcYrV2LZIkceLECRvhMC09ndQTJ0ChwPTWW3wYEECL3SKVe2MjzgYDDd7eDuV9T4IAuAkCKpOJFkHA/M8qkLr23dzMoIIC/GpqKA0OJjspCUSRlbt2EdHSwpn167nRVS7b1Z+1WubMnYsgCJw8edL2rElMTGTWrFm251ovSBL85Cfwxz92p2kOGwbHjzua4v8L+Gc9i/4nl6H9KwnI/ehHP/rRj38e/WSRHf5PIIu6UFpayt69e20PU/tSMZCTPNauXcuAHrLxxyEjI4PDhw87EE8xMTHk5uY6vC8iIoLy8nIMBgNubm4sXLiQo0eP2lZz3NqbCSitpCA6us/Jl2trK3EPcxn70Se0/uhHbAsLw6jVElpSwpqtW9GKnQjTkA1MvT3g5h2IjKTp4UO+/vhjGntI+l1aWxEVCjpdXKBrImEt71pVXo7Prl3QVzKYKHLtzTc5bl1lHZ2ezqwTJxAAi1LJvcGDSRs/3lai0JMI0+l0rF27Fi8vLwcvHCcnJ9YsXUrokiXySjOyKfbu5ctpc3OTCaxvvmHzWk/uLB/N7mWn0Orz5QH3n/4kx5sLAmazmY8++shGGMXExLB06dLvFKNrNBq5cuUKly5dcjhmbWcn4x9mEjk7g+NNMyltlPuGwmJxlPF39SPr+fNxEVnu9wWBH5TBPet7RgyDTz+XFSHWfV64cIGrV6/aBmyC9Xu4ubmxYsUKwsLCEEWRo0eP2tQ8XZg+fTrjxo2jo6ODs2fP2v6u0WiYOHEiY8aMoaKiwkYWVVVVsX//ftrb29FoNMybN4/Bgwc7bLOuro6NGzfS0tIiq9KsHhDHjh2zrVjqdDrmz59PuJ25KwB37sD778vG4l1tOHo0vPMOLFwICgUtLS2c3riRe3ZqDYDg5mbmb9tGQFUVhxYs4K61jbxN9TSofRwmrmqjEY/mZsxKJc2enk8khVwsFnQ+Pvj4e1HTXE95VQsak5FnvviSoMpKGAo4A+ny+0VB4PTS6aQnje8+r3bX5IDiYpLu38d7cTxRP/n6sSvu169f59ixYwiCQEREBIWFhQ7Xg0IUbalkE00mJv/jHwh1dbIa74c/5M7ixRw6fhxJEEi+d49F48ej7Ku8sqREjhG3ko6iIDi0H1gVGAqF7VgDKiuZmp9P9JkzstHsD38If/6z7Zy1Ozuzef16Ku1WsL8L+WZr89ZWXNrbqbVO0sanpTH57FlUajX88pfwyScyoWgPJWDleVrc3EgfO5abo0bZJrg6Ly9SJ00iOTkZZXExTJkCjx5BdDScOwchIZjNZgr37SNnyxZyYmIc4s6VSiURERE2H7Jek05RhGvXZOJozx5KzWYuTZhArp2PWnR+PhMuXCCspASjWs3BRYt4YA2cGHn9OjOPH+fGmDGcnj4dSaEgsLaCFVt34a1ugI+BMT+F4F+A4Dj5/jaySJIkjv35z9zooVRVmk1YVGpcW1tZsWsXA9Y8jfTr36DPyXFQ03apiez7sl91NamXLhGdl0faihXciIjA2EdfdmtpsXlLhT982J1e5fAmNzCZwGCgydOTK2PHcnvECJvRtZ+3N6mTJ5OUlISivh5WrJDPGcCvfkXrv/0bhbducSQ9HaMoopYkTE8g+bWdncQ/eIBFpaIqMNDmpdQF/8pKErKyiNfr8auu7lY3DRwom7bX1cGYMXzz0ksOJbIDi4oIUSq5FRiIwXrsHo2NBFVUkBsbi6RQ4N7cjMJisYVJCKJIfG4uY374Q0KHD3/s4oT5d79jS24uxeHhNsWwPZza29mwcSOBVVVI0H3Ms2fLfdLOiFsqL+f8L3/JRev1marXM/WNNxBSUigvL+fzzz7DfoDq1NHBzOPHGVhURG5cHPq4OMqDgx3UVI+Ds7Mznp6eaFUqpJwcGsxmWcXWx/cURBGlxfLE1Df5C3SbdtsjLi6OsWPHcuHCBQoLCwHw8fFh7ty533nxjoICmDkTrJ9HpYI//EEuV/sX8a8aXP/fmoDcj370ox/9+Hb0k0V2+D+JLCouLmbbtm29DI27IAgCY8aMYcqUKU+MUbdYLJw8edKWltY1CRwwYACP7Aafvr6+zJs3j/DwcOrr69mxYwc1NTUoFArmzJlDQUEe+uwch5W1gQ8fUhYcjFmr7Xvl3vq74NJSNmzahNpoRFgLbAFJISAcPwEzZtBWVUX6W2+RHhHRncgiioy7fJnCqCiH6HmAuOxsFhcXoz19Wo4l7v2lSX/jDU5aS8bGXb7M9NOne5UZiO7uXP7sMy7k5jqQLiEhISxZssRmFg1yOtnWrVspLS1FbTSyets2wouKuJ6SwslZsxCVSgIqK3nqm50s/2Y8q8uCeeXFLQjt7RASArt2gX3qEnJJ2YcffmiLbPb392f16tUOXjo933/hwgVu3rzpMIjqwlgxE1VUPWkPUxElJRqziamnTjPy+nXKg4M5N2UKDwcN6nWeAoyVxF7VE5edQ2BLE8Jvfw+vvSaTAT1QXV3N0aNHu9PElEosFgtKpZJ58+YxbNgwJEni3LlzXLp0yeGziYmJLFy4EI1GQ3l5OceOHbP5HOl0OoYOHcqECRPYu3cv96yJcoGBgSxbtqxX+V91dTWbNm2ira0NX19f1q5di16vt3mdKBQKxo8fz8SJE7vLwCQJzp6VSaJTp7o3Nnu2TBJNnNhnHy6+fp2jBw5QbT9hkSS5pMbTEyQJ5/Z2Olxd/6mEn5CyMkZev46f0ojPz+Jwjq2ETj3XMqM5XjgXJImnt20jujYPxgLngXZAAe2pfqhu1qFpF0kfP4yzMxZiRsC5vR2vhgYqgoNtxyGIIsGd1YxY8TwJSckOqpVHjx6xceNGRFEkJCTE5rUBMiE9cuRIxg0bxp133+WsdfIx2tWVWTdvIuzcKb8xJoYHv/0tezMzEQWBWL2eZXFxqH72s95tce8ejBqFxWxm35IlMoFhbTNnJyecTSbqLRaUZjOSINhITv+aGsZfukRifj7KF16QSzcUChBFjBoN21evpigios92tk0Mn3CfdIAo4l9TQ0BVFQEqFQH37hFQVoZbS4t8D3GHRm8v0pLHc2fYMNtkOqCykgkXLxLfXI5iz3FIkUMhePhQJoyKix0IIwA2bUJ85hnKQkPRb4glx3cKdY2OXlIhISHExcURGxuLr6+v4yRfkmTic+9eqk6f5nJoKA8SE21k2cCiIiZcvEhEYSFpqalydLsgMLCoiOW7dlHt78831lI1p84OluzZS3R9nkwYDZ0BkdtA1a2aexJZZKmtZf9//if3AwMdr4Ou50BZGSt37sTjRz+i8Xvfk822rYsV9oRkF4LLykhNS8MlNJTzQ4dS7OzcKypeV1NDvF5PrF5PSHm5YwpZbKzsQ9QXadT1HAPaBgzg6h//yI3CQpu61lOjYcTFi/g8ekR1UBCV0dFUeHjQ8phEMq+GBoIqKvCtq+N+cjINXl54NTTw3BdfyKWrVlwbPZrjc+Z0q4jsvrNPXR1x2dnEx8URUlSEcPgwhIVx/ZNPOGZ9fgOoDQYsSqXtWelXXU3KtWsURkaSnZgot6fdAoG2s5MRt24x6vp1vL7+GvryFrODJEncev55joaFyf1IkmQS17o/hcXC0t27SehSjnl6ws6dcnlV90ZkVd6bb0JjI2mpqZy2mvynpKQwe8oUhDff5NL9+3Kf7PpMlxeTyeRwvaqBmMREoqKiEEWREydOYDQacXJyQqvV2hZdHvOFUBuNmFUqJDulaF9QmkxoTKZeHmYO77FYcDKZaNdqkQQBhSAwcvBgps2d+50We3oeG7/4BfzqV92LFgkJssqoD++hb8O/Qhb935yA3I9+9KMf/fh29JNFdvg/hSwqKChgx44dmM1mwsPDGTt2LLt377apguzLjnQ6HQsXLuxTYdTa2sru3bttpJCbmxutra24uLjQbo2dFQSBqVOnMnbsWAc5usFg4MCBA2RbfUZGhrTRduKhPBi1DrR1NTXU+fvjV13Nuk2byImL486cGZQre68Cajs7iTAUMP6bK4SWlMEf/kDjiy9y5dIl7ty40S0flyRc2ttpd3XtrYgBJp0/z6TSUoS0tL4l22Yzl994gzNWxdCECxeYcu5cL6LIrNOx/w9/4EGXd0CPdhUEgcTERFJTU23+OMajR9mxaxcPIyJQmM0MePSIIqu0PykzkxE3TjHlylMc/l0LiX/bK2902jTYtu2x8vLKyko+//xzG/nj4uLC8uXLHZQwzc3NnDlzhvv37zuQWl4NDUw/eZK68UmcC0102G5Mbi5zDx/GvbmFan8/dq5aZUsPQpLw9+xE01ZLmSnEYVDs4epKbEICsbGxhIeH9zbzRp5M3Lt3j1OnTtkSnrqQkpLCzJkzUSqVpKenc9JaotQFf39/Vq5ciY+PD5IkkZGRwenTp2lra6OpqYkPPviAd955BycnJ1JSUpgxY0Yvz5+Kigo2b95MR0cHAQEBzJ49m9OnT9uIjtDQUBYsWNCdzGWxyMbl778PVlN3lEpYuRLefhsGD4bKSnliaffqLCqirqGBOicn6nx9yYuOpuI7eAgpzWa8DY14+9YhuQlUtUbQ0tE98REkkUnnzjPp4kUYB/wK8AQkKDwUyRbWIikUzDh5knHuVfCoE7LLuhpYTmkaPpy87AsIS5cRlV1LWVAg2156nnZBjcpkYuaJE5jUau4nJ8vEkRUqpZLomBiSk5MJDAzkyy+/pLW1FbVabUv8UyqVjBkzhrFjx3an15lMXP/+9zlmNc0d6urKgqgoFK+9BhUVIAjkvv46uzw8sAgCkQUFrAwIQPOHP/SamJlPnWL3V1/JSpguL5umJlSSRIOXF25OTqw7cADn+/e5OmYMN0eNkhPTkI2nx+bmMlypxHz6NLmDB6MPDycvKqrX6r/aaGRG5h2GHTuFymymJDSUjRs2YFGr8ff3x2g0/lMTD6f2dnzq6zFqNNT5+SIJcj8Ie/SICZcuEZWXJ39VCdn8668fwMuykpCiIpkwKiqCqCiZMOqazP3qV/Czn8lmUH9SUrt4P/pSL/R6vQN5B/L9PjY2lri4OEJCQnobxWdlUffNN6Q9fEhGWFivMitBFG2Jh56NjSzbsQOP9nZbCS2SxKQLF5h09wLCxxIkDYDIb8BVTtnskyxqbcX4+9+y61EJBYOiutVBdhhy9y7zDx9G+M1vuDp+PBcuXMBkMiFIkqwssesjYcXFxJWUUO/uzv2YGAz2paOShE9dHUPv3CGhvFwmkevqZELuu6CrlKir5NrPD+nf/5365mYe1dVx19mZUp3u8YbKdqlsY+/fZ1BmJoGlpTh3dmJWqdiydi3F4eG4trby3Jdf4l1fT4svNEwciFv9QD4bMw6DkxOTLRZGvv02ubm5ZB84QKEoOih43Jubic3LQ7d2LSezsrpJMjuiI7S0lNRLl/Cuq2Pbiy/S1GPRRldby+hr1xiSkYGma9HJywuOHZPNlftAS0sLRz7/nByr+s/+Gazp6MDo5GTbfkp6OrN1OoSvv3ZU9xYXw0svQde9f8QI+PJLbhqNHDlyBIChpaUs+OILJEHg05df7qW46vquQdXVpKamEr18ucOiWGVlJRs3bqSzs5PIyEgWLlzItWvXuH73JpYOqym8IKEQJRAef792cnJCMJvpNBq/1QNJaTIhKhQy4dQHlGYzvu3t+AkCfm5u+AUG4hcVhU9yMgp//ycvIhQXy2Rbl4ePUgnvvQc//el3XnygqIjSH/+YsF27/imyCP7vTUDuRz/60Y9+fDv6ySI7/J9AFmVnZ7Nnzx4sFgtRUVFMmzaN7du309zcjIuLC6Io2jwx7Cd4o0ePZtq0abYBVWlpKbt27aKlpQWNRkNYWBgFBQUO5WzOzs48//zzvU2brZAkiUuXLnGuS4ZvhQOJI4q8+NlnBFdUQJQf97YfZf+hQ0gKBS6trXRqtYg9JnEqUcTJw6NPU+3ZR48y5N49Pvze92i3GzSojEaW7N1LfF0dpKdDX1Jvs5kLr7/OeasZ9uSzZ+UJeQ/oR49m34IFtnhitVrN4sWLSUhI4NGjR1y+fNnmBwRyHO6E4mJC330Xi0rF9lWrKIyKAmTVwoyTJykPrOSvf5nPsRWXcbl+V/7gT38qrxp+i49CZmYme/fu7W5fhYLZs2cTERHByZMnHY4FZAXDrOPHCTcb6HwniJPOodwt6S7lCS0pYf3XXyMpFBxasID7ycm2Aaenk8jy6C2E/KMQTkG7iwu5Y0aTs2Ah+W1tDmWKWq2W6OhoYmNjiY6O7uWj0lVS1pWq14Xw8HCWL1+Oi4sLd+/e5eDBg0iSZFMhOTk5sXTpUqKsbdjZ2cmFCxc4efIkf/7zn3nvvfdYuXIlcXFxvdqqtLSUrVu30tnZSVBQEAMGDODGjRuIoohGo2H69OmMHDlSVl8YDLBpk+wN0dWGGo2s8IqJgdpaTIWFNNTXU+fq6hA9X6fTOZQGfRcMzrzH5DNn8Wxqkj2NACaAfmkse5qXYhYdV53DDUWMnVJBdKQPQqmOul9f4/MRU+l0dmZIURGLGhoQDh6UJyxeXnJ08wsvOPSnxtZqMl6cw6Qdt+lwduar156jxl3u/+MuX2bamTM0+PiQmZTE/eTkPpOh7OHr68uzzz6LS18KCouFu2+9xUFrOV2CWs2Sl15C+eMfw5dfAvBwzBi2z5yJSaEg7NEjntZqcfroIxt5YDQa2bFjh2ySbp2IedXXIykUNHl54dHczPpXXkHXlR706ad0ODlxc8oUriUm2s6JQhQRwYGU8GhsRG0yOZjhO3V08PTe3YTlyaUet0aM4PCCBSgVCl548UU8PT2prKykQq+n/Phxcl1dv1PJiw2SiK62jsCqKlmJZH15NDXJBPW6pfDJZtnLpbgYJk+WCaNBg2TCKCxMbofnn5d9s5yAz13hqSvgMpiWlhZycnLIycnh4cOHDopCV1dXYmJiiIuLIzIyshep2nTvHumHDnHL6pEDsgplcEYGd4YPp16nQ2UysWj/fiL0+ZyfPZ2bo2RSKDo3l6dO7MP5gw5I1EDYR+D7Atl6fTdZ5OUFH/2F9g/+zLaFS2W/NovFYTItiCIzT5xg9LVrlP761xwWRaqthHfPcsGAigrcW1ooDQ2Vy47toDGbSTaZmBgaikdSEsTHdxPwmZkwd24vP6zuD2tg0iS4dg2xtZVaX18qgoKoCAqiMjCQiqAgB0Ps7nPrqHQJtKaRIUms2brVlpAIsvfW7vXr0Q8ciMZg4JmvvsLNXMnXJ4KZkfwVMc9tZpNKRXF4OKFKJc+++64czf766/Dhhxg0GvL/8z/J9vAgr7Ky7+OxIqqwkFS9npBbtzg1YwY3Ro92UFxFFhQw5upVovLzHZVWXXBygkOHwKr0kb+qRGZmJscOHKBTFFFYLIy6d4/MqCjarWWQ8VlZDLt1i12rVtlUPyEhIaxdu1ZWi4iiTGS/845cQqfVyqWcb75p8z26t307+/V6JIUCXV0dJqWS5h5KWvemJjRGo+06HjhwIAsWLOg1TiktLWXjxo2YzWYEpYBkkb9rq6sZjamA1z8+hU95PQ0+PtQGBlLj5UWNnx+FgwZ9t3v7ExRIgiji1dCAS0cHnVotjV5evcjqLijNZnQNDfgZjfip1fh5eeEXFoZPbCzK6GjZQL2r9PL99+E//qNbDRcVJauMnlTaVlYGv/kNfP45pSYTYfBPk0X96Ec/+tGP//+inyyyw/90sigjI4MDBw4gSRIJCQmMGzeObdu20d7ejq+vL+vWrUOpVHLy5ElbmY49YeTt7c2iRYuora3l2LFjWCwWfH19iYuL4/Llyw77cnJy4tVXX/3WdpDMjex5+xUeeMopKJrOTuYeOsT+pUttEzX35mae/+pz8nd+w+G0NBAEhty9y8KDBxFEkcIh4VxPGcNDv8jexpV2/jnjL11i+pkznJo+nSupqQ7vmX/oECNycuD8eRg5svdxGo2ce+MNLlknENNOnya1x3fu1GrZ8cwzFNv5m8TFxbFkyZJepXyVlZVcvnzZwax5YFERUXl5pI0f3z2ZkSQaPbLwSwrhnac3o6irk6NwN2+GefOe2Lb2OHnyJOnp6b28qewxsLSUWYcPE1RVhfTCNO7PbOJ43mTajbL6IzI/n+LwcCwqFb7V1TR5ednaWwlMScxk3K29CB9JNgNrXn9dJrTc3DCZTBQWFpKTk0Nubq6DakihUDj4qNj3m7KyMo4cOUJFRYXtd25ubqxZs4bAwED0ej3ffPMNFovFwUh96tSppKamysROfT1333uPYR9+yKNXXiHs2Wdh1CiHwbp9aaafnx8mk8m2yhgXF8ecGTPwaGqCjAzYuFEuNWtrQ1QoaPTykskgKxFUbyWGmjw9n7hy6+bkhM7PDx9fX9zdnMi8l0FDUztqpYRTWystTt1+MipMTC46x5hNV1Fa04QuTJzIhSlT5PNXUsSksxe4O2ok9xMS6dKI+UoSI0+e5Mbw4dT5+RHa3s6Gr79G1RVRv2GD7GXxGHWaKFk48dFrTH/zc5QWiX3L53M/QfaBGJSfz9I9e3Du6EAEKkJCOD1jCkXhUb22o9VqWb58OZGRkY83W5cksn/yE77RaBCVSqKAFT/5Cerz52U1QXExpaGhbN2wgU61Wja17+jA9Ysv6DSb2bZtGyV2aj6/qio6nZ1p8fDAu76e9Rs34tXZCVeuyH5ZO3dS88476ENDyU5MlA2t7SCIIsFlZUxqbiZq924QBI7NmcONlBTbe9QmEyt27CCqoABJgJ0rV5ETF4efnx8vvviiw7Vv+uYbNp48SVlICE4dHQRUVlIREmJTNn1XOHV0EFBVhX9VFQFqiYB338N/2DA0lZUyYfTwIURGyoTRgAGyj87cOXD6DOiAzQEw7QZouktRDAYD+fn5tuvTPpBArVYTFRVFbGwsMTExDkbubW1tXD15khsZGRjsYui1RqMt9S/10iUmnT3LvSGDOTZvPma1Gq+GBlbu2kng6kpYDfg+R3bb90hIGk7JO28S+uk/aDar2LxunZyuZjbLpVFdZYXt7SzfvZvAigpOz5rF7WHD5AOyVx5JEs4dHRjV6j4n2z5eXkydPp2EhITuPtnl2bR/v/zq4bvXBbNSSbW/fzcxFBREVUBAn+WIKouFgJoaAktKbKlkuro6shITuZyaSr0dUTGgqopld+/inp4uJyP+9a8crqritkqF0mxmzZYtCL5F3LjyAxaafop2+TNcbm7mzPTpaASBl7/3PXw8PODFF7sN1D/6SDbVHjUKU1sbF3/wA9Lc3XuV3aksFiJKS1G1tpIfHW27vwuiSFJBAakFGfhfve/45f70J9lA+bnnZKIS5Pb/8kvYsIGWlhYOHz5sKwkMKi9nws2bHJk6lTY3NzwaG2nx8EBSKJh44QLD7t1m449/QmO7vGjl7OzMhkmTCPjRj2QTdoDx42WTeKuPliSKlP/+9zy4cIGMIUMcjPlVRiMB1dU2ZRuCwLJHj2h75hlOX7qEyWRCpVIxZcoUxowZg0KhoK2tjStX00m/dhXJJBMrRrWIxpzN6x+dwrOm0XqyBsjk1bp1MnH1xz8CcD8hgYOLFmHSatF0duIG1Gu1313F0wNd6W3uzc2ozWZEV1daXF2pc3fH9BgSqeszfvX1+Fos+Lm44O/nh4+3N6pPP5XJ5a5z9eMfw69/7ajYq66WyaWPP5YTJ4HS1FTCLl/uJ4v60Y9+9KMf3xn9ZJEd/ieTRTdu3ODo0aOAnPo0dOhQtm/fjsFgICgoiLVr1zqs9hcUFHDkyBGbAXbP1DSQJ9AeHh42v6IuCILAhg0bekWX94QkSZz46BWu1ctlLC5tbfIgr2sy0NZGh4sLCIItRRpg1PXrzDl2DEGSEJVQ/FQEl1wmOKSxKCRJnizbDc4EiwW31lbZB8YKp/Z2Ol1cUJrNrEhIIMYurtV2nAYDp998kyvWic/MEycYm57u8J7ro0ZxYvZsmyLKxcWFlStXPtkgvL2duqlTSfP3J2PoUIfSBK/6egLLS9EnDXbc54gR8M030NNQ+VtgsVj47LPPqKqq6vW3qLo65mzdik99PQxOpOEnwRypD6CgRp7w+9XXM3/fPgaUlHAvOZl9Tz3lMBmLCuhgieeHOP++AzKtGx05UjbvtTMXtocoipSVlaHX68nJybElxHUhKCjIVg7j7+8v+1zcusWpU6ds5KVCoWD+/PkMGzaMhw8fsmPHDlv6SlcZZHxkJItyctD+9a+UtrQQBjQBHiCrf9auhbVrKZQkduzYgclkws3JiVbr4NhdFJlTUEDcjRu01NRQ5+nZrRCy/tvg7f34shJAq1aj8/WVXz4+6LzU6Nwa8XEuQSvmQqee5vpHbL48mdpWP1w0bcxLPszBjEUYzE7dk2QrfJWdzD56ghsDY8mxqqNGXbvGrBMnUCpEeM6D5rc+5dqFZm4VFWGwIyI0JhPPf/op/jU1kJgoTwQmTnzssdsjLX0L4ctfJaSslVvDB3Ns4VNYEPCur2fZ7t2UhYSQlppKk91KvpOTk02p2AVPT08SExNJTk4mICCgN3EkSeT/+tfsNBgwq9UMNJtZ/dOfojWZ5JSfv/2NyoAANm/YQLuLC741NSyvq2P/pElU2PXvoKAgmktKaFOp8K2pYd2mTXi0tCAJAuUhIWS/9RZ6lcqx70kSoeXleNfVUREURK1VfaCwWEg2mxn/+ef41tRwdupULtu1m0IUeWrvXpLu36fNxYW/v/YabdbY8Dlz5jh8vfaHD/nkb3+j2d5YWhQZVF5OSH4+re7uVAQFUe3v33f89xMUCT4+PgS4uxNw4AABej0BajVeBw8ihIfLxt+p4yDzAUQAW+IgJR1UXr22Y7FYKC4utl2fXUmFIN/fBwYFETdgALHBwXhptWA00tnezo3MTK7m59sS7tQGg01JFZ2by5I9e2jw9mbXypU0enujMpmYf/gwQ/IzYAhke3iScLyJEsBJp2PLunU0eXl1GyFbv3tAZSUrd+ygJCyMk7Nm9VZy9DDZ74kBAwYwadIkIiIiZIVWebnsi3PoENy4AT3KX41qNVVWlVDXq8bPr8/rXmMwEFRdTWBZmY0Y8q2tRdEz6TM8HBITaUxK4h8uLhjshlJKs5mhd+8yPiiIWw11pCUNRhBFlu/ejbNvMdLpE0S0JcL8+VQ8fMjnL7yAqFSycOFChiUkyEmae/bIKsGvvoLFi7GMGcN9tZq0yZOp6WHe69LSgqBW02Y9b/bwrqtjRXY2geYaOJ+Bw8MY5PvIqVPg4SETJ9ZkNwm499ZbHPfzo7OzE4XFwqTz5xlUWcnWp56iw8WFgMpK1m3eTE5sLIcWLgRgwcGDDK7NZvd7H5L7SPacE0SRRQcOMCQ/X1ZAvvaafB2Xl/Pgzh2yrlyRy+S62s9kQlQqkRQKBhQXs3rnDg7Nm0+W1XOpazFLFEUOHTpkM5EOCAhA5+9LVnY2mOXz1eJmwr1FCYKC4bduMf/QIYSoKHj3Xfn5YU/WfP21rM60WKj19WXzunW2ZFS5URyv3cclwH4XKCwWfOvq8NVqcQkIQHBxwdDcTF1HBzUKBcbHPJMEUcSnvh6/mhr5VV2NX00Nvp2dqF5+WSb+zp+HLVu6r4PUVPj1rykdNOif9izqRz/60Y9+/P8b/WSRHf6nkkVpaWmcPn0agFGjRhEbG8vOnTsxmUyEhYXx9NNP20wB7WEymbhw4QJXrlzppUbRaDQ4OzvbjB81Gg0mkwlJkpgxYwbjepgt94Qoihza+QF3c+VSsTlHjzI4I4Mvnn/elhw05PZtgioqOD53rm2AFVJSwnNffIEgCOhjY0lbmEqZizxoEYDBQ4YwPjMTxX//N589/zwGKxFkUSp7TRy0HR2MvnqVstBQCqKjbXXtCdbIZwCps5MTb77JNavnwZyjR0mxI8caPT3ZumaN7ZjBarA5e/aTo+oLCmRlS0MDRrWavUuWkBMf7/CWNg8zCcWNFHvLpT2TWlqY9KtfIfSMZ38CJEniwYMHnD59updJZ9eY37OxkVX79uH/7ETS4ys4nzMas6hGKVqYeO48463n/8ScOdwcMcKxNEfbzHO5X+C5qUlOcHJ3g9/89rEG1o9DbW2tbWLaZUrdBS8vL5viSKfTceLECbKysmx/j4mJYeXKlVRWVrJ161ba29txc3Ghva0NURDwq65m5c6ddPgoCMuroWnuUDzO6m2rpbnR0exauRKLSuWgXggqL8ejuZlGb2/qfXyeGLesUirx0enQ6XT4+Pig03mjc+9E51KJi5CPYMiBTr38sjQ4fLa+zYdNV9fT1OGFh1MLS8ZlsffaCJrbVAwIdmXp1NFc+OQQt63EqT2UZjPzjhxh2J07cnt3lReoADMYtFp2rF9PUZfhMXLJy1BnZ8a+8AI+fXl5PAGFNVlUPb2AsacLZcLmxedoV/UwoLf+HJudbevTqamptLS0kJ2d7WCq7+vrS1JSEklJSb3KQB79+c9sq6nB4OREsNHImnfewcXdXVYXPP88tfX1bF6/nmZPz17+Y2FhYdTW1sq+Uy0tPP3JJ9T6+5MdF0dOXJycYmSFQqEgMjycuAcPiP3b33CzlrhIBgMFgwaRNnWqQ/vF6vWMv3yZRwMHcnrGjO4DliTmHj3KqBs3yIuKYtvatQCsWbOGqKgoJFFE/+ABl9LSHEgtt5YW1m3ciH9trVxOZjWktyiV1Pj5UREZScXiuVS0lFEp+vRtpP0EAkljMBBgNOJvMBDQ2EjAlSsElJWhVRkgwg1Ug8BoktVHRqP8r93PktFIpZ8femt6VE//l8CKCmL1euJycgiorMSsVnN7+HCujBvXPVG2Hp9PXR1Pb9uGS1sb+5YsIc/qMTLy+nVmnzhBrsVCAnDT35+zGzbQ7uray4w48f59Ui9e5OSsWbKh/hPQk6wc5OvLBK2WgaWl8OAB3L4tp+iZuk2/O5ycqAwKoiIwUP43KIhaX98+29e5vZ2gigoCraRQUEUFPg0NfZdnaTRy2t6iRbLJsJsbZrOZr7/+mrKyMvz9/ZmckkL6V19R0lXqaKeSmn/oEIMox/XcPdQtRpg1C1NODp+++iq1Pj7Ex8ezfN48hKVL4cQJeX87dmCaO5fbL79Mure3A5Fra6O2NgIaGym26+O9IEmElZQQp9cTl52NT0ODnOR2+bJMtA0aBGfOyClrly7RsmoVhydNsiXoBZWXs3j/fgyenmxdulS+psvKWLtlC84dHVQM9CI7NoVL48YhiCKrt20jSqrgyvA5nE5ItLX9sKgohk2cSHZ2NllZWQ7PNLXRSExhIQkZGUTn51MeFMS2NWswarWElJby1KlTfP3ii7RaF70iIyNZa71GL1++zPkL5xEt3cRNtW8nUSWZvPbhafIjotizdCmSQsEYb29mvvYaQk8i99AhePllqKig1c2N47Nn2xIC7RETE4PRaKTIqsLqKgv39/dn69atmEwmfH198fPzo66ujtra2u9MKAmShJeTEyFRUfj6+aFRqbDU1VFfVkZNfT01JpNN/dfrs6KId0NDN4lUU4NfQwO+fn6ohw+H6GhKvb0Je+mlfrKoH/3oRz/68Z3RTxbZ4X8aWdQzNSo1NZWQkBBbyc6gQYNYsWLFtyZs3Llzh8OHDz92wKLValGr1bS2tpKQkMCyZcueSJRYLBb2frOFLH0Rgiiy8MABhmZkUBkQwGcvveQw6fNsaqTJ08vh8z61tSgkybbqrzKZGObszLh/+ze8tm2j5cc/5svnn6fR25vgsjI2bNzIjWHDOD17tkPamj3slVOLFi1i6NChSB0dHH3rLW5aJ0fzDh1ipDWSXRIETk+dSvr48TZfDG9vb55++ml8v8W3haNHkRYvRjCZaPD2ZufKlVQFBqKwWJh89izXU4Jo0SUimOVj1HZ2YrCSeWPGjGHmzJlPJqKsbXz79m3Onz9vU9mAbC4sWixIwMgbNyiMjKRep0MpWHB3aqaxQ15xHljyiAX7D+BTV0dOTAwHnnqKTitJpUBiRGQJOQ89aZY88WhqYu3mzfhNnAj//d/dxrr/IlpbW8nNzSUnJ4eCggIHHxUnJydiYmLw8vLi+vXrtomgs7OzTHp2drJ5yxaaBQFXq2dVm5sbWrGTcUd3MunmQ2pUKsy+vtTpdOhjYx08l54EQRTx7uhAFxSET3w8Op0OnZcTOrd6PNRFjoSQIR8k0+O2BJoIcIqjqj2BLSc9aG0X8fH2ZOXK1ezbv5/Kykp0Oh3PPfecTfFXfvQo35w9S4OdIkXd2cn8o0dJvndPVkh4ekJzk23lP2PIYPY/tQSAlKtXKRk8mAo7BWF8fDxjx44l7J9Ixmm1tHH8vdUEn6klbfz4Xt5fZo2GAcXFVAQGYtJqia29w9z3/4KHSzgmk4m8vDzu379Pbm6uw7kNDg4mKSmJxMRE2/2z4pNP2FJQQLurK36dnax76y056r25GX79ax7t38/GDRvke4b1uo709qaspQWD2YyPkxOBTk4UVlXRaac80BgMROflEafXE93ZiXbZMpmoycqCAwdsRGIXSkNDSRs/Hn1cnK2vDCwqIqCqiuspKQ79Z/K5c0y8cEEuVxs9GtfWViZeusSNkSNt9yy10UhcdjY5cXEYtVris7JYtnt3txfVYyAqFNTpdA4Klyd64sBj+7ZXQ0O3D1JlJQFVVXg3NHzrMTR4e6OPjSUnPp5HXYlWVni2thJbWkpcRQWhDwvJ1PmS1qPMSmk2s+jAAZLu35fLKCdPBkEgtKSEwTt2kNLWxo//7d9w9vNzJIokialnzmBUq0lLTe3bCFiSCHJywiJJVNuRkrEFBUw4c4aQ8nKHt7e6utpKyCqCgqgIDaXxMc9u9+bmbmKospKgiopu76gu2KWg4eYmKzPs23PSJPj8c4iKQpIkDh48yN27d3FycuKlF1/E+7XXkHbupDg8nGOzZ1NtNXwHiHlUzMTX3yDE2VkuKSsq4uiyZdxISsLNzY1X16zBZflymcBxcaFj926ud3Rw/dYt2q39w6m9nU4nJwdlqK1/iKL8syDgW1PDzBMnqHrmGfTGdsoUjmME/44O4mfNIs7dnYAVKxAePoTQUKTTp8no6ODE8eN0GgwozWYmnZcXHB5FRLBt5UpM1vvD09u2oTUYuDs5ipijN3EuLOXAz35GxuDBqI1Gnv3qK4IqKiiKj2frypU46pplqI1GYnJzSSgpIfrOHdQ90l3Lg4PZsnYtHS4u+Ht5MWHaNPbs2WP7+9ixY6lraSDngR6hR7f3q65i0f4Dcp8ZPpw7r73GQetCxqRJk5g8ebL8xro6+MEPYOtWJEHg1owZnB45UlZ02l+D1ra2LwXvUhaFhYWxatXTlJSUs2vXVkRRJClpJOPGzcVolGhsbKC+vpaGhhqammppaqqhpaUGUXzcM8YRCoUbSqU/CsUAJMkfUVRgMdejMhajMJchKeoxOj1mHChJeDc04NXYSIXZzDvWUt9+sqgf/ehHP/rxXdBPFtmhiyz69NNPGTFiBHFxcX0buf5/AEmSOHHiBNeuXQNg2rRpeHp6sm/fPiRJIi4ujqVLl/YyLe25jRs3bnDixAlEUeyzpAS6Bzw6nY4XX3yxl1GxPUwmE7t27SI/Px+FxcKyb74hPjsbs1LJZy+9RHVAALF6PckZGexdtsxGHA2/cYOcuDja7CbKKqOBMdeuMyZQh+vmHbB9O4bnnuPrZ56hMigIn7o6nvvyS+4lJnJyzhzbgG32kSO0e3iQmZREg7d3n5Op0KAgnB48IN/HBySJhQcPyuoNoDwoiB2rV9vUCQpBYMrUqYwfP/5bSRx+8xuk//gPBCB/0CD2LFtGp7Mzrq2tLNu9i5/8PpqX6hMY+/aX3BoyhPQJE2jroSRKTk5m8eLFvZOKrO175coVrly54qDg0Gq1pI4Ywejdu8m6do39S2QCYYGXkQsGA80dcruqLGbmHj7C0Dt3aHNxYcfq1ZR1EQmSxECdkeXhH+L6YStN1zzYYvUTcVYqWfPss4Q8aXX6X4DRaKSgoMDmo9JhVV2ATHw5Ozt3G5lLEsMzMhhz6RI7V6+mztcXZ7Edj4YmqnRBvdLQHgf3piZ86+rwqa9HV1cnvxKi8HpxCsoRarAnhUwVj90OChdwiuv90kaBwpmysjK2bNlCZ2cnAQEBPP300xw6dIj8/HxcXFx44YUX8LaWi0iSxOXLlzl79ixAL6PfMEli0ccfo6upkX/h6kxpoI6vVz+DRaViwsWLTG2qQ3r/TxSFh5Oenk5eQYHt86H+/oyLjyfW3x+FxeKoMrH719DZyfWaGq7W19NuJY89GhvxbqinOEIuA1WZTLg1N9Oo0zGwqIj1mzbR4QPChEm4qHxt2+sURfSentz386PQx6ebdJAkBlZWkpyXR3xuLm3A5hUrun2HNm3Cq7GROh8fNm3Y4FDmobASvqJK1Ss1y6WtTVbA6PVEPnyIytzX9PPJqPX1JW3cOO4NGWK7N3k2NtLk4eGwr5Rr15h09iwff+97DvcsbWcnKdeuMfraNVzb23k4aBBbV6/GolLJ5bVHj/ZKVrTB1RVGjwZlHeTeg2L50SsJAvXe3g7eORXBwXQ8RoGoAB6nU1Arlfi7u+Pv5UWgTkeAry/+/v44u7nJShW1uvslCLS3t9uI3fz8fIdSZScnJ2Lc3Yj56hNMZiVpE8ZTq7MqZiSJkJISlu7ZQ62/P3uXLJG9pYqL+dNXX/HGG2/g4+Ji8xlSd3YSnZdHTlxcn95D2s5OEh48oMHHh6KICNs+Eh88YMKlS/hXVdHs6dnLeLrlMcRQV1S9PTnkZh+YYE8KQfe572tBRaGQTZ/tSHvc3LieksKxiRMRRJE1R48ySK+XjZuB/Kgotq9ejahU4l1XR4OPj+05FVlYSOrFi5i0WrZby6bXnjzJoFu3wGCg2dOT9ClTuJWQYFNDetfXM/L2bS6NH28j/bug6ezEs6mJGuuiSHxWFosOHkQbFAQmA5SW0+zhgT42Fn18PEXh4Q4EoXdbG3H37xNWWMjtUaPItwYLBFdXs+ibb/CvriZ/0CB2Wo2rIwsKWLFjB1qTiSZfV9yTRqJQqkAQsJSXs3XkSB5GRuLc3k58VhYFMdE0eXg6HLPCYmHq2bOkXL+OUqFEMHQ6XDcS2P7/KCqRHcsW0+GkxqPNgH9dO/kDHMvwADwaHzH2ylVc2xUcnzOHdldXBFEk9n4ZodlmBLNEcbQnuSky8RlxvZ4h1x8QV5+GVuyk0s+PAwuXUBkm+54pTSZbX43OzaXBy6tbgSxKuF1oR/3QRONqDyRnBcoyMy5bWjFHqulYJqtINec60VwwIiEgWb9R188SILkLiL5K8ANn33aUgRY6/FwcE/76gCSB0Cnh3NDOoIp8YgpzCSovp95LR4OfDzV+ftT4+VHpH4TRpXs81/UM7SeL+tGPfvSjH98V/WSRHbrIoq7JqEKhIDIykoSEBOLi4hxMQf/fhCiKHD58mDtWcmPOnDkolUoOHz4MwODBg1m0aFGfZEMXTCYTR44cISMjA8DBB6Yv/yKQPYwWLVr02Im4wWBg+/btFBcXozKZWGk1hQU4NWMGV8aPx6WtjVf+/nfOTJ9OxtCh3SuffaiBBIuFRbeuMmT3fjh/HstTT7F11SoeRkbi2trKs198wY2RI7k2bpxtG0u++YbkwkK51GPxYto2buTOvXtkZGRQW1vb+6AlicCKCsZfuUL4w4ecnDWLTDslSnBgIKvXrHlsHKv9dli2DMmaSpaWmsqZadNAEAgpLWXuoT1sOLWE7e/X4rv1gPyZJUswf/opdwoLuXLlikOka5cheZcCo6OjgwsXLnDr1i2Hc+Pq6sqUyZMZlpeH4o03wFr+cuytN7nu7oHjsFpGbHY2PvX1XB071jYpcFZILEk5RtT56/Ah0AYolbS//jrboqMpq6xErVazcuVKBn1Laci/ClEUKSkpsZWrdflp9YSToYMpxtOkk0qju7et79iTRc4ajWzuaj2PXuoqgtzPkvqPQoKz+litDQZmA3OBcOTZthkwAUIgKAaBMhIU4aAYCIoBIHqB2dIn6fKwqYkdZWUYJYlQlYrVLi6caW/nttmMCnjGbCbEYACTCaPJxAE3N7Ks948RN28y+exZLkyZ4lAWKIgiqZcuMfHSJdpdXPjsxRdpdXcnVq9n5c6dvUpjavz8SB87lnuDB9u8cbzr6xmbns7Qu3dR25XmdDo5cW30aK6OGWObbHrX1zPh0iUGZ2RwqUshYnedurS28urf/45bD/+XvtDm6sqDhATuJydTYufzpbBYGFRQQERBAddHj6bRxwf35mbmHT7MoYULHbxqepaiAXi1tRFXUUFcTQ1h9fUobt3qe0IP8nFPmCD7gqlUsslxH2mHAM3Ll3N1yBButbV1q3p63KN6lk/FRUSwaNYsnLqIF5U8Qb6/cyd79HoAphUXk3rwoKxW6As6newlMikU/jYTfloBxh7vUYAkQpOfjoqfvUdFWBiVR45Q7un52JQmpWRGVKh43NPcw8ODgIAAh5dOp3N4hnQZ2Ov1enJzcx0VjRYzEQWFeDU3kjVqBO1SV9qlRHLmPYZkZHBq5kwyFQo+/vhjfvj97+Pm4yN/1mSS+6f9/b9LpWE2M/jePRp0Oh51eeSJInF6PQMePaLVzc2mGuroa+FGkvCtrXUoJQusrMS5j0WR/50oHjiQTevXIyqVzDh5knFXrtj+VhoSwqYNGzBpNCRlZrJk715qdTrSUlO5N3iw7Z7c1d9Trl5lzvHj8nvGj3cgMgMqKxl/+TJura3sWrHCIQVO29HB2PR0shMSqAoMRBBFpp8+zdgrVx5PWALtzs7kxsSgj4+nYNCgXmWRgigy5O5d5h49itpsRh8byzfLl2NRqYjOzWXFrl19ErUSUB4SQkZyMrdGjXK4ltVGI9F5ebS4ulJi9esTRJE5x44x6saNb23veh8fNq1f7+h/1dUOnZ2s3byZULu0u3YXF47Pnk3mYNkz0KeujoUHDjDw0SMuTZjA2WnTAFltPMR6/0sbPx5RqZRLma1l766trYSUlJAXG4ukUKAyGnFrbaXR2rfHpaWRcP8+W9etc/BwepCQwDFrgMW8w4cZ2SMR9NvQ6eREra8vNb6+lIeEUB4URL1OJ6vKnhAuoLT6Oupqa3FtaZGT/exUp2JpKb/8/PN+sqgf/ehHP/rxndFPFtmhJ1lkD4VCwaBBg2zE0ZOUDf8rsFgs7Nu3jwcPHiAIAgsXLqS9vZ1Tp04BMHLkSObOnftEBUxjYyO7du2ypU91yabVajVjxozhzp07tLa29mnO6OHhwfz584mOjnb4fXt7O1u3bqW8vBytsZOnt2xjwKNHABQNHMjGZ54BQWD5zp08SEqSjSglSZ4o2JXJRRQUEC3mcmrQLNugeWhQEPNff539c+dyPzkZtdHI2s2bSRs/nly7ePT5Bw8yIjdXXr0dNw5On5ZLT6xoa2sj48YNzp49K3sc9YR91LEoMn/BAob0kZzWC21tsuGzXo9Bo+HgokU2o81ht24R8iidjV8/z5/XHECVpZe9Z95/X44Etu5PFEXu37/PmTNnbGazgiCQnJyM0WgkNzfX4Vx4e3szffp04p2dEf7t3+DYMfkPcXG0/OE1jlXeJrs8HACFaGHZrt0YnJw4NH++g5myIEmMialguvAZit9J3QbWo0bJBtbDhmE0Gtm5cyeFhYUoFAqWLFlCovX7/b8FqaaGmg8+QH/9OjmRkZR/q6JJQmFo5We/+5Pj9SlJBFRWMubqVWJzc3Hu6JC5Mzdk359O60uy31JPeu2fQ05MDLtXrMCiUhFRWMiqHTu4lpLC2enTEUSRlTt3EpuTA8glPztWraI6IACFxcKco0dtpZAAlQEBHFq40OH7uzU3ozEaqff1xb+qiue++AKtsSej0I1WNzeujx3LzeHDbWoU585ORubkkPzoEZlRUVyPisJgnRTq2tuZWFZGUlMTCo2Ge54u7BsoqwkG5eZSYPWhURmNLNm3j/jsbFubmbRQ8sJIwke8gkKt7Var2P3baDbzoLaWzIoKquyMlVWCgLKzE4NW2yd5bA/BYmHeyZMM/+MfESZM6P7DrVuyOseu/K0X1qyBTz8FFxfZ6HX+/G6jV3tfqN/9jo5Fi7jx2mtcGzXKIYHJdswmE+EFBeTHxaFWqXj5lVd6eTMBXP3HPzhhJXIXWywMqaiQy5Ueh2eegT++B+nPwYtnobdvfTeeew5++lOYM4eW8nIqBg+m4kc/otJgoEKvp+kxH+tSnfa1MACyss/f378XieTi4mIjdnNyctDr9Y7EriThJhpoVTo5/M6zsZHCzk4+/OQT3njjDTw9PXvv1O68+1VVgVZLjdWHRwBcTGaMktinv5jCYsG/uppAawlZUEUFAVVVKJRq2oJjMbjr0N07h1I0U5E0g6vr/saYL14gKPcinS7eHHlmN5F39zHsyt9s27wXv5IT43+JyaIgsPIOy879Gx6dNZhRobIWTllQokTuM2cDV/HIJ5KaeSbaXV1JyLzP1P3n0FlkcvBRhC9fP/sckugiJw1u38276g/Qmtv5hfkndHi5sn/cQopGRiJYeTr3+ibc21vke4C1bQYUFTPsyk0EJ4HzYybTGOzj0Ba66mqmnznD3sVLMDlrcWlrY9nu3bQXOfMLfk6EUMjvhHdR2D3eq/Hle3xEO67W9pZw8mknYlkxrsEd9IS2sxP/qipKraWKCQ8esGTvXpTW6+cuSXzGS/gF1zIkMZNHCQNotDfetp5rv+pqnv3yS3LdogivfUTuyBiOzZ1re/4nZmby1P79KC0WTChQI9IpOLPP+zkeuiahUIgwwIBhRDN4WTeNJJPn1kYck57OrBMnKPdKICdsOo2eA1EqocXPRHG0AZNWfgAEVSoZc0tPpVcd6ePHgCTh0t5Bu6tMwqmNRlvf8++AFjV0WB+nsfkFzD14ANfWVs5Mn0661dcx1CQyrtPCEVcVbQoBnSiyptPIXbWSi2o1SBLLDQYSLBa5TbqG3N/lZ7MZHj2CvDwoLMQM1Ol0lISGUjxwIFWBgTR7e2PoScbaQ5JQiCIezc045eXxytGj/WRRP/rRj3704zujnyyyQxdZ9Itf/AKVSmVLbeoJhUJBVFQUCQkJxMbG/m8jjkwmE7t37yYvL882aa+uruaidXV8/PjxTJs27YlE0cOHD9m9ezcdHR0OtfWxsbHMnDmTQ4cOUVRUhLe3N62trQ7f0f79Q4cOZebMmTg7O9PS0sLmzZupqanBRexg7WebCLISUZ1aLf949VWavLwYcucOTZ6eFNmlmgH4Vlfj3dBAntUsc1B+PmOvpLHrmWcxWgkS57Y2OlxdUVgsLNy/nyupqQ5GrJPPnmXS3buy10lcHKSlgY/jANrS2Mjed98lKyCgV/xyXwMpX19f2zkMCgrqu11zc5FSUhCamqj18WHXqlXUWEt95hw9ytUxnQyYuIgFz/8VobUVgoLkVB77Ca4dJEni/PnztnPaEwEBAcyePZvw0FD4y1/g5z+Xyx80GqR3f8ytFAOnbyswmJ0QJBG10YRRqyUqJweLSiUnylm/h4DE0uS9JB7IhK1YDazd4be/hVdfdTCwNpvN7N+/nwcPHgAwd+5cRo0a1ecx/i+htlaOav7wQ2hro9HTE/3kodxPiqJMGeIY/dsDPcvQeipRBFEkvKhINnHV6/GwIyq+CySNGjRahK4ynT6IkMwBA9hnVQfE1tezrKiILF9f9lnVNHMaGkgxGECtpsDZmW+cnekUBFzb2lixYwcDqqth8WLIyYG7d+X9entzLyaG45MnO5SYKCWJZ7/6ipBHj0CrhWdHwYR0OGWBAwI0WG/dHh7w8ssYX32VuzU1XL16tU/Vlr+/PxMmTCAhIcGmKKmvr+fTTz/FYDDg5NyOoc0JSaHAs6mBJk954jfhwgWmnD9vUzaJCkj7SzKj/j0NJ9x77cceNTU13L9/n8zMzMcqyewRGRGBlJ/PQ6VSTjjctYuYFSvgF7/o7hsHDsht2BNKpXzdSxIMGQJ798rx8xUVkJQE9fXy+9TqbkPkV16h9fXXufzGG9wcPtyxRMp63wgqK0NlNlMycCDBwcE899xzKPsgo0++/z7p1tSo1QEBRA0eDOvXd8eR90RgIPz97xB1Fzb8Am4/oWGGD4W/fyJvLydH9hU7fx4iI2l/4QUqzp+nYkAQlfODKVeOoKGpb2WNWq1GqVRiNBof62Hn5uZGYGCgjUjyt5be5ObkkH36AJWqPkggK6qrq/n44497k0VdBJ1SiWA2o7BIWLR9R4aDTNIFVFU5GE+7VreSa4nlAYk8IJH7JPGAREoII55sLjEBHfWcYCYLOMhnvMQGNtGGC1M5w2p28Dr/bdvHn3mDt/gTILCOTXzKSzhh4D6JLGI/Q8ngr3yfELp9kkwqFf947hXqg33xrqjn1S//blPwVYR58NHLr6ExOxFSWsraTZtYb9yMK218zgsoEdnPIn43/B3mLjyBJIIC0aEkzK+yCvGCEpeADhpGeNHq3vv6cmlpYXBmJlfHjrUpW1fs2sVN90X8Y/inhHXk8H7aKFQd3c/2Vq0P76/JpMM7GJUKVCoJtfoucAIwAEpc1OMYd/oTGlzb0cfFOajYBFEkOjeX+OxsYnJzqff2JisxkezERBrtTLdVgoLQgfFERiYQuP0LvvHSYtRqScrM5Km9e2U/rQEDKDeZ2LR+va3cSldby4aNG3FvaZHNw/fvRxw0iAcPHnDq8jlaquV7h0kpISksaEwqB2IHYO2YMQyaNatXe3V2dnLq1Clu35YvMM/GRqadPMmFmTOpsx67ymTCbCVcXF1d8fDwsC22eXt7M2fOHKJDQ+Xgh6+/BiArIYEDTz2FUa3G3d2dmTNncurUKZqbm/H29mbdunWkpaVx69YtlEola9asIaKrxLIvSCJIxu6XaJD/tXTC/mPwyw8hp6jPjxoSB3Bh0RxuuwRiMDsGFdijvwytH/3oRz/68c+inyyyQ1/KIrVajUKhwGAw9PkZhUJBdHS0jXR4kt/Pk2A0Gtm+fTtFRUWoVCqWL19OYWGhzbNo6tSpTHgMAQEyCZGens7p06cdks88PT2ZM2cOsbGxnDlzhsuXL6NWq/Hw8KCuro6wsDCmTZvGkSNHqOnyS7HCzc2NyZMnk5aWRkNDA+4aM+v+/A/87Mq99i9eTMbQobg3NSEqlQ4DzJDSUlIvXSI2NxdBkshcksTB+EWY1Wq8BVg4dRpHdu+m1o70Sb57l/zoaDrsVvmH3bzJwgsXoKVFJmPS0+XUFjtYGhr45qc/RW9VcCzftYuMIUPQ2yWjCRaLPDDvgxRyc3OzJXZFRETIq/IHDyItXYpgNpMbHc1eawqMW0sLy3bt5Nd/Gs4vrvgQ/Jev5Y1Mngzbt8uTwMegvLyc48ePU1JS0uff4+PjSfX2Jvjtt21kApMmUfPLlzh0L52SOtl8O7imkgV79mNWKPjy+ecd/G80iLi4tNLY7oFCtDD76DFG3bwJS5fKBtaPUfGIosixY8e4aZXMT548mYkTJ367j9N3QU2NTBJ99BE1zs5kx8ejH55IhbdjWwWWl+PS0UZhZNRjB7rvvPMOEXV1rNq+nXY3N7KHJqMfPJhqF8eJVXB9GXH+NUSmTMAY4k25Jp+6pgzcj91i0L5KBthNzjvd4PZSuLFWQdOUeEKVwwhlCGEMJZQhuOPHzZs3OXLkCCCXgi5cuJCSkhI2b96MKIqMHTuWmTNn9roWQ8rKWLFjBx6hoXKS0kcfyeo4lUqOvb9+HVpbMWi1bN6wgbLgYNtxqRQKZuTmMmrrVpmsiYuEd51gUBYcA7a5QKG1XEilomXtWtKmTuVGUVEvMiA6Oppx48YxcOBABEHAaDTyxRdfUF1dTXBwMI2NjbS3txNemMXaLd9wYvZMbqSMASAmJ4en9u7Fye4+eP17PkR8kI6fKqbPU26xWCgqKrKVHba0tDyxi0RFRbFq1SokSWLPJ5+gr61FYbHIkfbWZCisqic++EBW7vWEs7OsKKqrAy8v2LYN5syRE5/i4uR7CIBCQaO7O1fGj+fOiBGYrdePf2Ul/lVVZCUlORCR2s5ORMDk5MSECROYOnVqr11LksS+n/+cTKUStdHIM4MHE7x4sZw6dfCg45vtPXNWrYL3lsJ/rofdvRUeKJGJXh8v+PBv8KtfgV4vE0bnzsn3wrlz4PQZ0AGbPOgce57KJm8qKipsrz7LdJGfcRqNBovF0qenne2QJUku/XwC+iSLvkVFpjEYHLyFfCtqqKr1I1tMIkuZRI4ykTxtIuXqcJRqBWo1VsJD5v3CxGI2FY4nwFTGA7fRvDXkNOtLf8vTxb/DIij5fcpeRlcdZHrRF7Z9Hhr+M46Pfg+N0sLiK28z6fYHAOhjF3FoxWZEV3fUanA2tzDu+H+SfP5DBElk/+LF3Bs6FOf2dl769FO8rKXF7c7OfPXcc9T6+aGrreW5L7+k8QfvozR2EPCntwFoW/Esj/7zN+zZ9wUW0U4ZJ4ooRdGhtKoLLmo1HUZjd7tbLISWlVFqJadHXr/OrJMnUf3qV/DjH0NxMYxJhio7fyYXF7hzx3btNDU1cfjwYfLz8wEICQlh0fTp+G3YYCvbvD5qlK2MSmMwOBqw9zifaqORmJISElauJHrmTNR2huYF69axLTISUalk/KVLTD9zxva5dhcXNq1bR1VQkG07a4qLCf3oIzIKCzmddp6Oevl6NWhEqgKqeHlXOskX89i6Zg1loaEOfdLd3Z1XXnmlt8+kJMHWrTz84x85MGUKTX2on7oQ6OdGTV0bFlFCqRQYP9yH1BHuqJVmmbwRDbDxEvzHATCL1Pr6snPVSmp9/VAIEhOS67lb4E5TmwYPFwNrp9zjXMZAskv90ahMPDPpHEFe1d1EkGQEyQCiEXpagEtAGvB3IMf6O3dgPbAAuAkd55y5YRnFtVGjbcpI5452Uq5dZ9T160hAUWQkhRERlAcHU6RS8f7f/tZPFvWjH/3oRz++M/rJIjt0kUVHjx6lpaWFgoICB5NhhUKBWq1+LHGkVCqJiooiMTGRmJiY70wcdXR0sG3bNkpLS9FoNKxatYrMzEwHz6KUlJTHft5oNHLgwAGHOHJBEBg7diyTJk1Co9GQk5PDjh07ABgwYACPHj3C1dWVl19+GXd3dywWC2lpaVy8eNEh4agLXu4a1n/0B7wfNtp+lx0fz66VK3sNuIIqK5lx4gThDx/ayn3EUFC0QaU2kB3PPUuTRovaZGLYrVtcHzOme0c9thWdk8PqAwcQ2ttlVcylS7JqwA7m2lp2/fzn5Pn7y1Hkhw6RPm6czfCzC8Pa25ny7rvoc3PJzMx8LGGjVquJMpmI2beP6Lw8bo4axXlr4k/Yo0fMOrqPP+5dzx9/eBX1FZnM48c/hl//Wp7B9IAkSTx8+JATJ05QXV3t8LeuUkCtVuvQrwbl55N69y4h3/8elwMquXzXgigpUVuMTD15hpTr16kMCGDXqlXdccqSRJR/C6sj/oLlLwoOuS20eTaM8PVlziuv9KmI6Hms9sqnlJQUZs+e/a8TRjU1SH/6E+XffEN2eDj6+Hjq7NPmJImBxcVWj5I8Hj47j1rnaPStrXQ6OXqE9WVwHVJaSmxeHjEKBarJk8lxc0NfUUaJq7tDP/LVtBA3NJm4wdMJDg7GIpiozTmOeeuXeG05j9vD7mKehmC48TRcWwul1q7me3kOmjOjARg40ptZc2eiqPXi6y830tnZaUsRNJvNHDx4kPv37wMw9M4d5h05gmrSJJkwu3dP3mByMhgMkJsr/3/0aPQ/+xk7rf4dHg0NNNtNanRqNcs2bybQ6o3DqhR44R54dMIVLU0HYkhzDuP28OG2SWewqysJY8dSWlqKvutzQFBQEGPHjiUnJ4cHDx7g6uqKp6cn5eXlBAQEMGTpCBpfWsOc/XlkDB7MocWLsCiU6GprWbljhwNZnD1HjXLHHmI8FgDyvSg/P9/me/O4e6WAXObWs9zIy8uLpKQkEhISSD97lsz8fJAkFhw8yPAHD2Si5M035evse9+Dv/2t98Z1OggPl0vWBEFWJf30p7IaccoUar28bP4xXYRQSGUlE0aNIuYHP0BobaXe25svn3vOwdza/t707LPPMsDOm6kLFrOZrf/xHzx0dsa1rY3nZs3CZ9o0Of3q9Ok+GsJKGvn6wge/hPz/gl8V9naw7nK1FgR46y04cgSys2Xi99w58PeHCamQeR8igY3BkHIdNN3EsNFopKqqioqKCspLSykrLqauuZn/pQFAj/v1Y5VF9l/ZYiG0tJShd+8ysLgY74YGxJAwzAuWIq3fgHJIEiqt8kkiw27U1EBqqnwdxcfLz4ft2+Hf/13++yefwIULMmnYhT/8AX70I1lptmoVWEu8+dnPZCVnXzu+fZurv/kNJwYPRhBF1m3eTMTDh0iASa1m06uvUmb143ruiy/wWrxYPid//CMA5h/9iLuLF3P81Cm6nq5Kk4nhd+4QNGQI9yIjKbLz3AFQI18n9gWoXQpcldnM/EOHGJKfL3tgLV4sqzbHJkG+XU2jSiX3+5QUJEnizp07nDx5EoPBgFKpZMqUKYyNi0MxZQpkyjXK6WPHctKq0EnIzMSzuZn7ycmPNRMPKi8n4cED4ouK0L317/DaMyBY4EEmrHyVuy4eHHjqKaC3f4+oVHB4zlzu2JWDq9UiJpP1HGgNBDnfZ+GOqwRetS5mqQQMSyPYMXo+Rc0+2BcWx4c8YnnKOQSsZExVJ/ymHS6K1Ol0HFqygOKQ8O6Dd+i/3duJ8C1kXtIRdG6P8R67B/wIqAOjRsPBhQt5kJQEQGxANjUtftS3++KmbeHplK2czJpFUV0ErppWnhv/JT6u9X1vtwvXkUmirrJxFwHWucN6HXg40fTIlXR9NLebIzEJMjnn2djI2CtXGHbnDprHqOJLgTDoJ4v60Y9+9KMf3xn9ZJEd7JVFCQkJjB49GkEQyMvLIycnx+Y10wWNRuNAJtlDqVQSHR1tI44eF2/f1tbG5s2bqaqqwsnJidWrV3P9+nUHz6KhQ4c+9pjr6+vZsmWLQ4lHWFgY8+fPt5UPNDQ08Omnn9LZ2cnAgQMpLi5GEATWr19PuNVssgt1dXUcPnyYoh6lE86mNhbuOUScXo8EZMXHO6SdgewpsSAjg6E9VtEtGlCGA7lA0gDa95xi91/+QpEdmePa0uI4MQMCy8p4futWVO3t8hLy8ePQY0XfVFPDzvfeo8DfH6XJRJxeT1Ziok3a79HYyLDbt7k4ZQqSIDiYg7e2tpKdnc39+/d5ZPVf6gW7wWTSvXsMLLpE/q+/x8oNHyHU1MhR55s2wcKFfXxUIisri9OnTzuYWysUCoYMGcLUqVNpb29n8+bNtLa24tHSQnBpKTlWM00AlcKCWZTbOPphHvP2H8a1tZU9S5eij4+3HZuzQqRDVKCVOnnxi8/QldYhKZVcefttTltJywEDBrBixQpc+/Bm6Ylr165x/PhxQE5vW7Ro0bcSTfYQq6oo/stf0D94gD4qyiHxSmkxE1lQSJxeT+ijRzyKCCNr1hRKlO6Y7SaeGoMBhSjS6eyMIIo0NjfzwV/+8tg0NKeODkLKyojJyWFAeTmlkRHoB4bzMCLCoZ96uDsRG5dMfHw8AwcORCEIcOUK0pbNSDt3oGjoJo4qkjXsWzmBGrOs6mtJvUTL1DMoWt3w++JFlE2eOIUZGbU+BF1rHFd26qmurEEhisw6doxRt24hjB0LV67IfcnLSy6JunxZ3oG3N/z+91QtWMCXX3+N0Whk1KhRzAkM5P7Pf86RpCQMdt91eFsbs/7yF3kyoPOm4a1ILgcGcbdkGKLVdDjs0SMmXrjAoIIChMGD4Yc/pG7GDK7eusXdu3cdPGwEQSA6Oprc3Fy0Wi0vvfQSPj4+VEqN7P2vNbz8zjGqAgLZvm4NrS5uaAwGntq7l7icHNvUqmC4C7fffxtzTQyFhYW9DNr9/Pwc7idarZbk5GSbgg2Q/c2USix2aig/Pz/UgkC5lWCddewYY65dkw2sv/wSBg+WVUPWfuqA8HCYMgW++kr+/4IFVP7pT1zatYssk8l23UQUFjLh0qVuYvv11+XPNDXR4u7O5nXrqPH3721+rVSyZOlS4uLiehGphtZWvv7lL6l0dcWnsZHnNmzAdcgQmdip6CN9T6WSvUkAFi2AeRK8fRgae7/VhmnToLRULkkLDpYJIxcXGJMCZRUwFMQfR9Ek/Cf1ZbXU1dZS19pKvShSr9HQ4O7uUP70XSFYX49LY/suZJFHWwup7Q0M03iiOneuW0EJcmLcU0/B00/D9Onyff9xaGmRz/GtWzBggEyKXLsGy5fL5+tnP4OMDLlssQt/+5tcSvTggazyKyiQ223TJll52RckiYeffsrm8nIkhYKZx48z9upVJEBUKNixejX50dE4dXTw7Jdf4m+n0DVoNNx+913SgRa77Y24cQMvlYo7kydTb+dhF5uXh09lJQ9Gj6apD+NpSaHAq6mJldu3E6gS4JuPIDkSWhthznq4bbcAIgiw4y2YGkdTcweHzjVRUCr3s1B/iUUTOvFtrYG526ChEwm4OHEi563PWG1np8O9Ry2aiCnIZUBuEQatlry4GEpCHQlTv+pq4uqziQ/RE/hxBUIH4AMXkidxfsoU2dNtxw5ic3NtBGint5YDby1Eb06gi6xRCiYmq86Tsv0GmvvWMZYGWARsAALBZFGx+9YK8qq7lI3yHWnRkP0MDb0Lh4E/g7ldSdqEVC5NmIBFqUJpNqOSzBjUfdkHSExNfEBqwkMEhRYEDSg0IFh/FjTQ9fsaE/zbSbhehgRcGz2aU7NmISoU6LyUSAjUN5pxcVKyckEkx86XUVnTjrenM889PQ43d8/ubQpaeT9XbsN7v4VzF+TD0Wrl6yAuDkpLqaqo4EpAAJnx8bbrN7CignFpaSRmZaGwu3/25c1X6uJCWHt7P1nUj370ox/9+M7oJ4vs0FcZmouLCxEREURHRyNJElVVVRQXF9vq2bugVCr7VOR0/S06OpqkpCSio6NtxFFzczObNm2irq4OV1dXVq9ezYULF2yeRUuXLiXBroyqJ+7fv8/+/ftt+9VoNMyePZuhQ4faJjBms5kvv/ySiooK/Pz8qK2tRZIkZsyYwTirQWNPFBcXs2XLFrtJX/ewY0BxMQaNxiYd75pEObe3s0GfRcDBww7bkgBhAnAJ8NLCxRvw/POUl5byxfPPO5gx95yQeTQ2sn7zZnR1dfLKsDVmuAvGykp2/PrXPPTzQ2kyoTEabeVrgiiSevEiUy5cQPiP/+D+8uXs3bcPSZJISEhgyZIlDuRHa2sr2Xfv8mDrVor9/R/rneOJhaS0q8RmZxOi06HYswd6pIdZLBZu377N+fPnHRKFVCoVKSkpTJgwoZvsKCuj/oc/ZFNgIE1eXni0tjJn2DBO1xRQ19g98PNsbGTa6dN0ajScnDPHlmCjFi3MG3WHpOZjbEzfQInvAPyqq3n+zh20H38MQ4eSm5vL3r17MRgMeHp6smrVKgKfUCrXhczMTPbv348oikRFRbF8+fLHkp4g97XCO3fIPniQHKPRIb1ILRmJfpRH/I1sdLW1FEZGoo+PozQ0zOGcezY2EpuTQ6xez8DiYixKJQcWLyYrMdGmLPpozRoMAQGPXenugtJsxqOpiYDKSgSg2dOTqoAAh/QfZ0Egxt+fuCFDGDRiBGpJks3EN29GOnyYo9Onc9Oq6htXeBe3KY1cmd9Ow97hqCsCMfvUUfP856irAvD+ZjnKdldc2ttYvnMXIY2VCCoNqjrrNHHMGHly30XsPvMM/OEPtLu68tlnn9HY2Eh4eDhr166V+6bZjPHDDzl17hw3hw+3tZNWqWTKjRtUCgIZQ4bYJg3huodMjLlCuMdChO1G+OLLbmPnkBD4wQ9oX7eO09ev21SL9li4cCHDhg2z/d+EhX+c/wXLV/0X7q0KdqxaSWmYPDkcnZ6OZ2MjOXFxPBo40DGK29ubuLg44uLiqKmpsaU4Ajg7O5OQkMAtq8n3hBEjaN63jwyrSmdoUBAdHh7k5+f3eT8dd/ky00+fRlCp4N135dfw4WCnqrRh8GB47TVK/vAHLo0ZQ15XCRsQq9eTmpFBaG5ub7PslBRZqdLYSLuLC1vXrqU8ONg2Wbe/TwUEBDB+/HgSExMdksVaqqr48s9/ptHFheCaGjb88Ido3N3lEtXHGE7bVEZeXvDGPPmel9PH41lAvrH6+yEh0NLZSV1wMHVDh1JvsVCvVFKn09Hg7d1naVMX1EYjPm1t6CwWPNRqjJ6e1Gm1lJlMmO0mnUpJQpSkJ5JLCrMZpcVCWUMDH//jH48hi0QUSIjI911njYmRQweQGpSC5ptv5O/78GH32/385BK+p58Gqz+PDZ2dMG8enD0rq7LS0uSkyBkzZMXec8/JxsBdai5BkEnADRtk8mjtWrkUNDwc9u+D5HjHkqCunwsKaPzh+3yWLJf5xBRn4DpjH7N/oEZda5bL0oYMQWUysX7jRsJ8Jahqpq3JwvXRo7mektLtQ2btN1F5eZSED8Cglkl8rdrE8LBCUv5yGq/bNZCo5syr07hca6e4tcKzsZFV27YRGFANfwR8kauX3kIuWbLHL0CaC7cfDedk9iyMZi0qhYkpsWcZE3kVxWkJfipb5ZQFB3N8zhzK7JKzuvpITEUuCdeyiM7Lk/2ZBgA/A/yh5Ydu5HjEoU+O4+GACESh+5nq2dhIXJme+OvZhD56xJEFC7gzfDhqo5ENX3+NV2MjV2encn3YKIyWrnuyiMwiyZ9/5quv8DK1w/oUeGUyBPo6EDYWUc3eU5Vk5XUT/BqVgpevXcTn0GmKBwzg8OLFtlJ3j6Ym28KFVqvFZDL1Ktd1dnbmmWeesS22PREmk6wq/kAuY3w0YAC7V66k1dUVjUaDi4sLjY2NODk5sWTJEo4dO0ZDQwMBAQE888wzOCkUUFgoKwU/+0x+PvSABBSHh5M2fjz5dsEjEYWFjL98mcjCQhspZFYoUYk97meurrbnQL+yqB/96Ec/+vHPop8sssOT0tDsIQgC7u7uNhPs1tZWejajvVm0PbqIo4iICNLS0mhubsbDw4NVq1Zx4sQJOZZepWLlypVERUX1uX9RFNm9e7dDaUliYiJz587tVa9/6NAhbt++jbOzM0qlktbWVuLj41m+fHmfpUUFBQXs3LkTk8lEaGgoHupqsh5aV/Z6ek9Y/+/R1MT6y2fQ3bjX+2CnAWeQx38HD8Cf/5uG27f58vnnaXV37zMuW7BYbB48SpOJJW5uJLzzjsN7DGVlbP/d7yj280Mwm+X3W4/Nv7KSp7dtw7O5GX73O7B+Vq/X880332CxWIiOjmbFihW2xCCyspDGjkVobubO0KEcmTdPNrt9gt+Gq4sL0TExxMXFEWk19U5PTyctLc1BcabVaklNTWX06NHdfg6iCP/4h3xsLS00eXuz6d//nXqFAntyLqCqggYvH0fPCGvbJ/s3szDxv1F9IcI2aHV249OXX6bF3Z34uDiWr1hhO8c1NTXs2LGD+vp61Go1ixcvfiIR2YW8vDx27dqF2WwmNDSUp59+Gmc7E2aDwUBeXh76u3fJy8/HaNdWzoZ2YskhNl2P9mEnBdHR5MTGUuvn57CPoPJyYnJyiMvJsRE7Dl8VuJyayr5Ro/jggw/45Q9/yIQ7dxh68yYGJyfqfHyo8fOjeOBAqv39aXd1/VbVhNJkQlIoHPqeymwmsq6ORCAqOJgTTk7ca2sDSWLekSOMvHlTVhI8/TR5UVE4qxSkvBBK3sNCyk8qQRIIKi9n5c6dqIQmXBvl7dYNAKObgqAseVLSnhRK68e/QjdhDVgUbNmyxWY6/8ILL/T23Cgupvatt9ij01Fp52fUhUH5+UxMS2PAHCU8nQ9OgPMw8PwLbL4i+1RVVgLQEhjIJy+9RJtCgZ+fn4NPmUKhICkpibFjxzqQiXsqDuO/8iWi8iSOzJvXa0IJ8up2dL6e6g0dzFl7AE8hkKtXr3LixAnbezw8PBg0aJCNqJo2bRqpqalITU0cf+strlu3Oy0sjBGrV6PX68nMzKSoqMjRh62xkYkXLhCfnY3zoEGySfSyZWBX4ikBhZGRXFqwgGJrOZ8giiTq9aROnUrAn/4kJwyNHSuXBnaRahoNGI0yYSOK0NyMQatl++rVFIeHdxvn97gveHl5MW7cOIYOHWq7xmvz8vjyyy/pcHIiqrKSVb/+NcqMDFkV9DjYexkNiYOOQqRcI22urtTpdNTrdNT5+Mj/6nTU+/j0ij63h9JsxsfYgo/KFR83N3S+vujCwvCJiUEVEEBeRgZZt25RUF+P/RTTq6GBmJwcVCYT+rg46n19e937hT4IJHtlUYBGg191NRZvb2q9vTBaHqdHknB3gbBgHQHGNvzvZOJ/9DJehSWyITJAmA88NQSeSoRBnvDybjiWC65q2D4XNCKsOA7NJpjkB81GuGMlEBTAH0NhhhY+rYWPrL8fqYDfK8CrD/LODGwF05dqvlz7HJVBQQSZy3l2zpeovzAjfQkn5s7iWspYBFFk9fbtROfl0ejpSfq4cdwePtx2Xrzq6+lwccbg5OzQb3SutYyOuMaQkAw0vzTKHmTekPfrKLZVr+nzWQty+mVy6APGx97Cz70F3muHgz28pn40kMZVcRy6EU9hpRcAoX4dLBpfh69gQnr9POU5JrISE8lKSHBIMVOYzcTr9SRkZeEZqyHkYiHU2amqX18Pv34TlFqoaoYFz0BmNh3+fuQNH47ew5O86GiHfunS1kZMTg5VgYFUBAejsvowdRnK1/ia0EiFvPGPdE6OmUap9V6gkiRWLFhA9IgRj+k78nho//79ZGZm2n4XXFqKf00Nd63kt1NHBwqVinbr/pydnenokP3B/Pz8EEWRurrukjMXFxeef/55fHqEaDwW27fD889DRwetbm58s3w5xVZfRXc3N1paW9EolSxwdeV4YyNtCgUDq6pY+/nnqB5TMiYKAvqxY0lLSaG8KzFQFEnIymJcWhrB1gXLngoiSatFmDYNFiyQCdWwMJk43bWL0s2bCbt3r58s6kc/+tGPfnxn9JNFdugii/Lz8xFFkdraWnJycigtLX2sauh/FWq1mqlTp5KZmUl5eTkajYann36agT0MnLtQWlrKtm3bbAMdJycnVqxY0WfKxt27dzlgleAHBARQVVWFTqfjxRdf7NNPKTs7mz179mCxWIiKiuKpOYO5/9ILXIiYSLudcbU9PBsbeWb7ZrxqGuSJlB3EwaB4gGzO+pufwo0HtJ88yRfPP0+9TmcbAGs7OmypKEgSs48epSgyUi6zsmLMmDHMmDFDNhsvLWXr++9T4uvrMIhWms3MOnaMkbduyYOn//5v+P73HY4pPz+fnTt3YjabiYyMZOXKlWgOHkRatQpEkXOTJ3Np0iQABhYVMeHccU7+9Hmcb9dRHBDwWOKoi5Sxv5zc3NyYMmUKQ4cOdVAdkJkJL70EV6/K/x89moY//5mDWRcoKpNJJkEUmXv4MMPv3GHvU0/xIDnZYd8umjZSFZcZ8bdbaEqsxNSyZZS++y5fHT6MKIq9TNE7OjrYs2cPBQUFAEycOJHJkyd/qx9RSUkJ27Zto7OzE39/f5566inKy8vR6/UUFhQ4lA65NzcTV6UnOiAH8x0Vee6x5MbEOBifKySR8MKHxOr1xObkyKTekzBmDPzwh1zU6Zg0ZYqNzFUJAkOamhi7fz+6wkLb2yVBoGjAAO4NGULhoEEOJXDfGV39SpIYkpFBSkkJPp2dnI6L41ZyMiqTiTWbN3N33Dgy4uIAGJyRwfxDh1BJIoJFxKJRUD5CS/C1DpQidLrCoV/A2e+DqAYlagIPP410KwKlBmY+P5JE/3G44t3rcKoqK7m4bRtZzc0O/UAAxpeXM+Xzz+UShAh/eLsdRrUCKgj8Mfi8DTv3YvnTn/h69GhKw8Lwq67G7OVFg0ZDYGAgWq2W4uJi23YjIyMZO3asze8sIzuTtgY7g2pr+7i2trJkzx4i7RQhx3/rgWn8J9w+171KrtPpCAkJ4Z7Vs2n27NmMHj26e3NtbZx74w0uWc3Xx/v6Mu211xAEgdbWVh48eED6lSs02fUVhcVCdF4eSQ8eEJOaiubrr5E6O8mJjeXShAlyFDmgEEWGJCYyfvNmdF0qp/XrYdcuWaHy+utyzH2r1RTYbiUerRYMBkwqFbtXrJDVSfYTd0FAo9XajKFdXV0ZPXo0o0aNwsnJidIbN9h44ABmtZqhFRUs/NOfEN5+Gz7+uNc5bnd27pMMqtPpepPFdlBYLHg1NaGrrZWVQosX49PUhO699/BoakLxEwlSN0DOUNrv3EHf0kK2tzeFISEOZKmutpbwhw9Rm0yUhIbKpKB9XxNFAuvrcW9ooN7Tk9oeyguVyUR1bS1//eQTTryUxLQCPcqzZpDkCW3zUE+qF/tRHeNPVVsAj+oG0tTpSe9iGev2MOHbVov/w2r8Kqrxr6nBr7oaL7EJoVkCFfAREAo8D1QBCcjPmxzbRuC/gBHAe8gLFwArgDetf++JBwr4jYSUK7FvyRIyBw/GWdXG6pk7CbmtQPFKEZdTUzkzfToAi/fuJaiigivjx5OZnGxr08DycgZUl5MZHe8Q2BAZqmHMUG+iwr3kUqd/HIN3PwOlkoa/vMPHlTgQLRqDgaXffIPaZOLys89QaDdiizcbSf3iKxtxACC9+Sa3n36akydPYjQaUalUTJ06lZRRo6jcvJms3bvJiolxjLm3YtitW8w5fhy1yURTQgSeWdbrOjlZDnD48EP5/9//vqymUShkpeSECXJpH4CLCyZnLQV+Aejj4siJjXVIebS/fvwrKhhZdoXoe5V4PZKJa0mn48T3v881u2fphAkTmDJlymOfVVJREbv+9Cf09n54VvjW19uURfbWAU5OTkybNo3hw4cjSRJXrlzh/PnzNqWRs7MzL730El52aW9PxJUrshKurAyLQsGZ6dNJt6q3nTo66HR2RmUyMev4cU7PmIHByYm47GyW79olk6Lh4bBgAaaUFDJaWkgvK6Pe2g9UJhND79xhbHo6Pn2kSrb6B+K0YD6qhQtkMvoxpealpaWEhYX1k0X96Ec/+tGP74x+ssgOXWRRU1MTHnYlLmazmYyMDNLT022rTwqFgrCwMIKDgzGbzTQ3N9PU1ERTU5ONyPlnIQgCQ4YMYeTIkeh0OrRarW1wZDQaOXbsGHft/B3i4+NZunRpn14yVVVVfP7555jNZpuhtVqt5oUXXuhTXp2RkcGBAweQJMkaJR/AjfMnaEMe5Lm0tuJbW8ujgQMdJhBOHR3MPXuWpBs3HIb8Zh8BlSjJvhvLJoNbOMatW9m0YQNldoMU/8pKqrtUDHar9pPPnUOZmMgZO1+j0NBQFo0fz56//53KHit+EYWFLN+9G+eutv/sM3jhhT7buaioiG3btmEymRggiqx+/30QBPYuWWIrVRl99Soh5bdRv/gicW/9EYxGWhMSyPrVr8hqbnaYWPcFnU7H4MGDif9/2DvL8LjOA23fg2IaacTMZFtGkW3F7BhjtuM43KQp79dtyrClbbvlNmkYzOwYY4pRsmRGocWMI4bB8/04o6MZgWNv96ee69KlxNKMzhx83+d9ICEBHx8f8Tj294sBvf/zP6IVxc0Ny29+Q97EKM5fzsNkVqAQTLh09dLl4SGuOAoCJqv1S2E2ExPYQp3OmW6jeH469fUxo7iY1JdewmnlSgBu3rwpWX82b95sp1CzWCycOXOGPCtRFR8fz6pVqx5pLwNRcbZv375RA4u9W1uJLywkzFJJz1Q3StrjKPOLsgsvdjCbidE1EHcxj+iHD+1atcbEqlXwn/8J1gH34EA3NzeXe/fu2VlB47y9yaiqImTnTmT19XZv0+7lRXFsLCVxcVSFh2OxIe5UBgNu3d3IzGZ63V0YcPzyPCcEgeCaGjo9Pel2d0dmsTD33Dkys7OHroGkJDF816p26Vszj/y/LKY8pIYa7lDLXWTXY/A8sQwBAd2mXehjxbBrDaFSE5tbQyw1lwxUFA1lkcQODCAvKxOb/qzXootCwZrPPiPCau9ieQh8vUa0qTgmQvhHnLjYxvXr13EwmQiorqYyMhKPjg5eKyjA+TvfoW7CBK7k5lJYWDimKtLs3M2C/efwbW7n8Kpn6HF1w2FggFUHDxJXUoIAfDFvHjk2JKW/vz8+Pj5S6Pfy5cuZMmXKyP1qMJDz7W9z1no/mObmxpL/+A+7CWL2pUt8ce7cCNJWZTDg195Ol4MDXTZ12FNv3iT9yhU8NmwQCZqf/hR+9zvxRQkJYki0TAZ//7sYnD24yu/oKBJJIJGGZrmcz1at4sGECXYTXi8vL1JTU8nNzaWzU1StqOVypjo7k97VRX1FBXsiIhDkcjFb5MGDEWSQTqOxs22OgCDg2dmBpk2Hd1sbmrY2vHU6NG1teHZ0oLBYhlRRjo5i/XhpKXR10ePqSmF8PIWJiVSGh9tXtTc1EdDQADIZNWFhtI8yMXY0GPBqaUHn5YXeZhtlFguhTU3EuLoSu2IFPikyij5fQuLGHmqOQ7Afou9lJ3AEGBS/aIFNaljjgsnVkdyHyeSVp9BnEK89ucyMAAjC6BlpKoMBbUsLvs3NaB0M+JbXoi2pwt1bjUyhGAp4dlTBnp9BeAhs/iU8KAeVEv76Y3h541BWzGAuTY8BfvZrhH/+E5nFwoV56VyctQhBZmHh86lkyJNh8mRuhYVx1HqvnZGXR6evL8VWZSlAaGUlmvZ2SqOj6RnM4RMEYktKmPfFF/g+/TT8+c+g0YhZUwsWgNmM4ZVX+Jerqx2J49bVxUsff4yXXi8GWa9aRV1dHdnZ2XbK4qjSUmZdvox7VhbH5s2j3EreBgcHk56eTl1REQXXrtFhQ9qoDAac+/rEggSLhZVHjpBiHV+YHR1QDOjFzKgf/xh++EPx/PrXv8TMJxCtfu++KxJI3/veSDunFQ3+/pxetIjK8PCRiy2CQFRpKUkFBcTpdDh/85vw+uvg6kpBQQEHDhyQyJvw8HA2bdpk/6yyWMRtePNNdEol773+ut3Ck6PFwoB1fKRUKiVr/aRJk1iwYMGI/L6WlhYOHTokPVuUSiUvvPDCELFiMIi2sZIS0TJm+72pieEoSEzk8MqVGBwcUJjNmBUKFGYzWRcucDErC7NSyRSdjmVf+QoDPT1c37OHa2o1vdbrzKmvj+nXxGYzVxtLO8DdhCn0LVnO5PXLcJw2ZUzrvC3GyaJxjGMc4xjHk2KcLLLBWGTRIARBoLi4mCtXrtg1acXGxpKRkUFoaKhUST1IHDU0NFBVVUVTUxM9gyvXjwmlUomnpycqlYqWlhZpoKNQKHj66adJSUkZlSgaGBjg/fffR6fT4e/vT6PVgrJmzRqSrY0dtrh+/TonTpwAwNfXl46ODmn1zbO9nYwrV0i5fZtTixZxc/r0Ubc1vrCQpceP49rTg1khQxEpwEMgUQtzN2B5+212PPss5TbERXxBwVBIsyCwfu9eymNjuWGVjifExjIhJYVDhw5hHJzEDRJKVjgMDLDq0CHiBr3+crkYVrp58yP3bW1VFds/+AC9Uom2qQmjSkWHRoPSaGTZ0aPUTHNgrikK561igxwrVsCnn4KnJ21tbRw/fpwK23yNR8DLy4s4JyfiPv6Y0KtXRQXIqlXU/+xnHM05SWOrSJyENVaybN9RBEHgg9dfH1ITCAKxjl2szXoL1WcGTO8quBc5kZyZM0WFFqJCbdq0aaSnp+Pm5ibZDx0dHfnKV74yQk5/584djh07htlsxtfXl40bN+I1bKW5paWFwsJCioqKRmR0yc1mpty8SWxJCU0TfHmYGEeNIsRuIure2UmcfoD4ynuEncpD8TjqPEdHcRLyH/8Bw2yYgwPdzs5O3NzcqKqqIjc3l5LBRjHEGuj04GASzp5F/sEH0Nlp9x4Djo6URkdTnJTEw/h49DaTF7nJhMpkQu/oiAILfv6+dHT12eVOPQouPT1odOJk3kunEyfzvb1oMjJwWLpUDCmNjQVXV8orytm+bTuCIBA4D0wzRQKpFfGcUtUG4XYpC8eHInkpIKBMaiJolopovwlEZ4PqP95j/7RpNNlYxiINBtb+5S8iaeruDN9SwIpu7tan8NmdZwCYOHEi9+7dQ2Gx8PJHH+HT3MzD6GiKU1MpCQ9HP8ojwdHRkbS0NKalTued6o9ZuOanRFQY2Lt+PTVWFeRT58/T4+zMDRvFkGuQkWD3CRQVFiGTyXjmmWeYaG3oGxVmMzf+3//juJcXyGRMVKtZ+f3v2ynzHty7x6GDB7HIZGhaW+n38qLf9j4oCPg1NpJ18SJxxcVDVqYf/Qh+8xs4eFDMrunpGVIRaTTihPh737PfHquyaBAWmYzjS5dyy6a9CSCipYVnDxygwNeX7JkzxVBsRELFS6fDrFDYV3aPATejEe/6ejQtLRIZ5N3Whld7O0o54Gi2SUoeG13u7hQmJFCYkCDaYWzOc9/OTrwBo4cHNQoF+jGuS7VVUSXY7FvH/n6idTpiY2OJXrcOp2EK2MIHN0mcMI2a0ksEB4cOhQO398D7W+Gfbw+FfLu4iNad73wHc7Avd6+8x+VrdXT0iQSLo6qf2BAZHn7Tae8WaC4ooNVoHGFbHoSDXo+2uRltczO+nZ1ov/c9fFUqXDdvRtbWBn5+4rEfLavv+HGEN95AZn2uH/9KJNeDn0MmyFmweD4Zk6fD7NkUdXayd8MGBKv9WlItCgIR5eWoHRwo8/fHNGhvtj6vUru7WWw2i2pXQRC35Ze/hJ/8RGyMnDiRncnJlNrkannqdLzx9tuo/f3hyBGwyRNjz06av/kdcmbO5P6ECdJ9d9D+rlAoCAkJoV2ns1PjqQwGYktKiC8tJT82lqLERGQWC6sPHiT5wQN7S9O0aWKQ/IQJ9vtq61Z46SXxs4WEwOBYKCXFLqy8NiiIy7NnUxIXJ/1bdEkJDpZmFEY37idNsHteyBAIDQsnISGB+Ph4PDw8aG1t5dNPP5XGTq6urrzwwgv4+PiIpM0rr2C+dIm89HQuPPWUqMgaZhG1jQTQarUsXbp0TOU2gMVs5uLx41wazHUTBObU1THz4kXk5eVjkmIABARATIx4T7ES960+PuzZuJFWGyW0zGwmrbmZvIAABCCooYFmb29pgcWjo4P03Fyx2cw6FjPJFWSnzOTYkmeJXbOU5yYG4fyEGfXjZNE4xjGOcYzjSTFOFtngy8giW9TU1HDlyhW71b2goCAyMjKIj4+3tx0hKjN2796NyWTC2dkZo9E4RID8G3Bzc8PDw0P6cnd358GDB9TW1uLi4oLRaMRgMJCamsrixYtHvD47O5svvhC1+XaDqvZmZp7PJunBAxQWCzenTOHY8uUgk+HV1iY2jGVliaoX6wDIsb+fxZ9/zkSne8iuAp5KeOVbCH/6M3s3bJBsZQqjkYwrV8ieNUsaLC49epRppaXQ2cmt5cs5Pn06FosFrVbL4sWL+ezAAbptJ+2CQPL9+yw/enSoJlaphN27x261GUR7O0ybRkN/P5+8+KJEyrh3drJu927u/b+FPL3tNrJ790Ty6be/he99j4amJj7//HM7ohDE1duwsDBqa2u/VHHkNDBAlL8/Az4elJZWAjIczf0sOHaaSbdvc2rxYm7MmDFsEG1hjf8Bkv6RD1alP6mpWN55hwKlkuzsbJqsq5oKhYKUlBRSU1M5fPgwdXV1+Pr68sorr4xQD9XW1rJnzx56enpwcnJi7dq1ODg4UFRURGFhoV2GA0CY2Ux4Tg53k5Pp0GiQCRYEmf157t/QIE5GPFzxf3gNWf7I1dZRodWK1oY33hCrz0eBLVlke322traSm5vL3bt3Jbuop6cnaWlpTHZxQf3GG6JFYJhN0iyXUx0eTvH8+RSGh9M1rNkwoL2euCgFqkkrOXM+b9RtkptMyC0WSf01Flx6ekRFiE6Ho0LBrcREDEolSWo1a6ZPR5aQAIGBPKwp5NylL2gss1YrywQGkvPpmnUBk7bV7j1Vehlrfu+N12eBfL54qXQeK2Qy5j54QPq+fciAhqcS+GjOakyCigkh5dyvEVUQkyZNol+no6y6GrPN5Mq1t5c4NzciFi1Cp9dz7do1abKmVquZPHkyXROVmH7wDTbsLOXUokVct4aAA9L9IKa4GL0LVAfHIZfLWbt2LQk21tIxYbFw/wc/4JCTE4JcTrxMxpof/hCljTUn/8EDDuzfj2DbUGaxIDca7Sxbbl1dJOXnk3z/PoH19cj+9CdRQVRYCKtXQ1HRUE7QlCniRG/PHvuGMrnc7twRgNMLF5I3jHRw7u1FbjbT8yXPDgQBH5mM4PBwNB98gLdVJeSl06FWqeAXv4AdO8QmrydAh6cnBQkJFCYmSpkvg/BtasK9v4veRBca+wOxfeorAdMjstm8dTpiLRZiZ80iZNkyFI9QQBUWFpKYmDj2ZNRgEPNd/vQnqaoduVxUEX73u5inT+X+1U+5nFeCrke0rjqp+kijlhm/PIDKaET361/Tsnw5zX/7Gy2dnTT7+tLm7T1mTpljfz++fX1oMzLwjYxEq9Xi6+srqkoaG+Hb3xYtiUBLBGz7qyfdRV+DfjWTJk1i5cqVyL7zHSqOHGH7li12ZJXMbCa8ogKjszO1NnligW1tGE0mWvz8CKiv55UPP0Tx5puwaJF4jyssHNpAd3dOpaaSl5kp/ZNbZyff+Mc/UE+ZIgZy2xYSnDsHi+eDUTyIVaGhHNi0iW5bq5cNBgmixAIxpFrm6Mi+ZcsoiYtDYTKxdt8+u3ZDHB1FIus//kO8DkbD3/8u7jcQz5v4WCgU36MyIoLLs2ZRMai2EgS8W8pJvXWN6XlD1tTypCR2rF6NRaHAuadnhNU9ICCAhIQEoqKiOHv2rLQ4I5fLWePkROLPf06tlxfHVqygyapA9mtspNvfn+H0vlKp5KmnniItLW1oga2ra3SFUEkJ9PZSER7Ojueek0LiA+rqeOazz/Dt7xdJ/9hYiIsb+h4TA7bX/vHjYjh7VxcGtZojK1aQb7tYZ7Hg1d5Ou83zzq+xkcycHBLz80W1IFAWFMmfn/0PTqx+mW9FOPO6licmiQYxThaNYxzjGMc4nhTjZJENnoQsGkRbWxu5ubncuXNHmqhqNBrS0tKksFPbYOXo6GiysrLYtWsXfX19ODo64ujoaFet/ig4OjqiVCrp6+sb0eIxFpRKJaGhoXh6etqRSjdu3KBgWItQUJA/M++8S9zbd5BZT43i2Fh2b9oEMhnOPT186+9/x8FgoNPDgxNLltitHALEFhez9MQx3Lc8C/98l73r1lGYlASAS3c388+c4diKFdIgbNaFC8y9dUscvIWEQG4uNRYLe/fupaenB7lMJn7WYZOZ5Hv3hsgitRoOHYIlSx69M+7cQZg1E6G3j3Pz5pEzc6b0Iw9dG7NCnZj6y3fEbfHzQ9i1i8rwcE6ePEmzTYCuTCYjLi6OhQsX2ilyuru7KSwspCA/n6rqars/LRcELMM+g2tvN2lX8nDp6uLUkiVStoPcbCYroJxWWT/3myYis1hYfvQok8vKxNDu118H66BXEARKS0u5fPmyRGQNbl9VVRX9/f0kJSWxZs2aEZkPHR0dbN++fQQxBOKgPDIoiNiHD3E4c4bKwEBK4uLs8ocGVRxTbt8mtrgYz4lxUF0MVZ0j3m9UxMWJao7Nm8VJyiMwFlk0iJ6eHq5fv87169ftMr2mTZvGjGnTcPvLX8RJ6jCFX4eHB9uefx6dtzdqiwUvYz9NaucR55tarcJgEIlJ985O+pyc7Egix/5+/BsbcXNwAE9POnp6aHNxoW+M/IhBuHR349LbS5+rKz3WfSsDJnh4MDstDc/JE2hyqJTsa+L3O3QjZnz4FcOmryop9ljK3ZQUabudZAOs2bGfY08vpcPLi+CBOhqdtJgENcNjUTUeHsT39hJ/4ADBd6zXvlX5Yf7mN7nf00Nubq50DchkMoITI6hqPMr3v3eIHc+9SL3N5CO2sBCjWk1FVBRKkxFNynlWr/kEP4bafB4JQaD4v/6LfWYzZqWSSLOZDT/+MRZB4Nq1a+Tl5dnZfT11Ol6WyXBZupTKn/+cB1othQkJdlkpmrY2kh48YEJKCtqoKHFSeOAA1NWNuglmuZwOT08pR2gwYFqn0dDh4fFI24eTkxMajUa6tw+/vuRmM89XVBBWWQnZ2Y+3T0ZBm0ZDYWIiBYmJNNiGnwsC2pYWHE0mOiMi6Bpm+/Q2GzD3DtDh6jric8jMZsJbWojRaol9+mm809LGJJKG40vJIpvt44svxOvx5Mmhf09Ph+9+F8vy5dy/dYDLV+7S1i0eQ8f+ftL0RaT+4A0cf3UU3npLtEm5umLu6qLN25tmPz+afXxo8fWlRatFp9GMSSI5y+Voq6rwbWjAp7WZqjkt5H27F//D36SvSSAwMJCXXnoJDhzg0rvv2i1uKAwGQmpr6fDykmxjMpmMhLg4Uj//nLriYk4vXozSaOT1d9/Fp9VK9EZHwyefiISRlSw7n5XFpaeekvaxemCAN955B885c8SGONv74p07MHMG9BqxyGR8MXcueRkZY6qtXLu7mX3xIlNu30ZhNmPw9GTP8uWUR0WhNBrZsHs30dYMO0DMHvrgA5EAGQv794vKIpv7qCCTURIby+VZsySbudxsZuK9e8SV3iG6vBFlv/UctCFi7y9dykGrWjnr/HkcLHqKVj9Ndaf9sFSj0eDs7Extba30b76NjTRbcwQd+/rw0+uHwuyHFYwEODnxikyGYpAMKi4e1TYmQaGAyEiaJk3iw6QkjDYZZVlZWWTOnDmqqltCe7t4bv/5z6L9HPGOezU1ldOLFo1+TgoCqw8cYILVrntmxjz+33/8mZaEiXzfn3+LJBrEOFk0jnGMYxzjeFKMk0U2+N+QRYPo7e3l2rVrdhNVZ2dnQkNDKS4uRhAEEhISSE1NZffu3QwMDODv789zzz2Hs7MzbW1tFBcXc+/ePTtSYizI5XICAwOJi4vD09OT7u5uampqKLSuWMrl8scmk0Bs7PL39ydg4Bqen9zCo7MTj85OmrRaDj/zDMjlKEwmvvXXv+Le0yOtxgtAYWIiJ55+mt7BfAbAwWxi0bHj5CckUGYdePo0N7Ps2DF2bt4srf6n3LzJivPnkfX0iA1EOTli3gZQUlLCnt27sQyeolZioikgQPo73i0tbDp0CO+tWx/dMgSwcyfCli30OzhwcM0ayqw2p8k3b1IcH0ufixteOh3Pb92KR3IyBb/9LWdu3pRySAb366RJk5g7dy6uY4R+U1ICX/0q3TduUJiQQP6MGVQPD94cayVfEAg0dvLc0o9wutaF5Q8yjk8dsr0sSksjbdGiMT9iVVUV2dnZlJaWjvjZggULyMjIECvuy8spLCykuLh4RMaWp6cnGUlJcPYs5dXVlEVE2OcPGQaIfFhGh6cnDUFBIpF1/yaTr5yFpsfIIgIxLPV734PFix8rawG+nCwahNFo5M6dO+Tl5aHTiQoduVzOxIkTSU9Px/f8ebGFrrKSVm9vtj3/PF0eHnh0dPD81q1odDp6JkzgfkIk52KSMKnsVUMKk4nY4mKiKytRaLVUqNWUxMbaZc6oVCpiYmKId3Eh9OJFek+dos1s5mJWFm1aLXKzGbXZzMCXKJJcu7tF1YnRiLejIxpvbzRhYXglJaJP8qHau4Za7lBruYP244tM+bWRI0s3So1zAgIyZMhNJizDVAL+nq3EJ0wiIWUFWq1WJBINBlFZ88c/ii1h4s6DtWsR/vM/KddouHLlCuW2geIqAZnR/lwerJlXGQxs2rWLkNoK9r3rxKSXDpPIgkd+ZluU/8//sLujA6NajZvZzICjo6TI9PLyIjExkes5ORiAwLo6Njc347xsGXz8MaarVymNjubBhAkUx8XZhQb7NTaSfP8+ifn5yMGeDPLzo83dnQ5PzzEn4SDatBz7+6WMpEGE+fnxbFQU6qoqKCuD8nKam5q44ufHvbg4ydYls1iYf/o0aVevDlnlhsPdXSREbMimFq1WUhDZWhBlFgvebW0ozGbaNBo7IlMhCARXV6PS66kPCBBVHDb3H/XAAHEdHcQlJxO1ciWO/8uJ5GOTRbbIzxcn1du3i+cfQGQkfOc7WKKiyP/Jj7mUkSmd0w6WAVIv5ZF29SpOCsUQaREUJBIZr78unbsmpZJWHx+atVpaYmJoTk6mxdGRdr3+kQSYXC4nMTERk05HRXk5eithIzObCayvp1Wrlf7NwcGBKVOmMGPCBDxfeYWmmzd5/7XXMCuVLFm0iOmXL4tZWcMIO4tczvElS+wtjRYLW7ZvJ3LePDGLx3YbKyoQUifRoHLj5pQp3Js0ye6cViqVxHp5Eb1/PzrgxowZElnq3tnJjNu3KY6MpCY0FJXBwLM7dxJeWQmA2UGN4k9/Fkmsse7HJpN43/zTn8T/nzgRS/4D8hMSyZ41SyRuELPCJt+6RWpeLt7tHUOvT0kR90NWlphF98knAFyeM4dzWVmiFX3PHhJaiug59THFTBBLFMrL7ccyw56dodXVtIeGjnBnKk2mITsgEFFWxqZdu1ANKgZBVGwNVwjFxornn3Xf1tfX8+mnn9o1nPr5+bFy5UoCbMYiAHR3i1bD//kfccEJQC7HIggUx8eTk5lpl9kofYbKSqrDw5GbzQQV1vCXtf+PlvgJ/MAfXvs/IIkGMU4WjWMc4xjHOJ4U42SRDf4dsmgQBoOB27dvk5eXZ6cW8vb2ZubMmZw4cUKqpd+8eTOO1gFnb28vZ8+etQuwflzI5XL8/f3R6XQMDAwQEBBAQ0ODlBHi6upKZ2cnlZWVlJWV0TvY9POE8GtoILChAY+uLjw6OiRCyb2ri343FRfnzOPmxGmjvjaopoZnPvuMj15+WWqGiS4pYdOhQ8j7+8VskLNnYeZMDAYDx48fl5qTbJF8/z6xxcUcWblSGigr5XJWP8riIgjwn/+J8Oc/0+Tnx56NG+nw8kJlMLD8yBGIdiKo14PtCYm0azQ4WCzInZ3pHwy4RRyIz5gxg1mzZknHbAQMBvj978VcFL0enJwQfvELbj31FGe+OI3eYEaqBvqSlXqPgQ5i7xYTV1xMmCBw7s03ybWuhD711FPMnj37kS1mDQ0NZGdnj1CO+fr60t7ebmeBdHJyIjY2Fr1eP2SrHDYgdzd3EltWTHxeEeFVVWJYp1zOsec3cSdcVIvMP3OGzJycsT+UXA4bNogThdECjr8Ej0sWDcJisVBSUjIiYyw6Opr09HScHj5k+8WL9Dk44NPSwpZt23C3DvANKhWfvPQSDYGBEvGhMJlQGQwMDAv5DampIdbXF5eVK6lvb6e4uJgu29YuuZyI8HDQ6Sjr6EBhMjHviy/IT0oaWoUH/N3ccJfJ6Onups1kss/hGQVuXV1ourvRgFiL7ueHm7c7Xec+55bcXSRDh50jcrOZmZcukeRyB9+vd4IfFGtCqAx5Fj9lOiGkoCEUmYB4Pf7xj3D69NAbWCd6jVOmkJObK4VWDyKsvJz6oCCMDg4gCEy9eZOlx45JGqbPfwiqX/+JefL/QDZGC5YtOjs7Of3uuxT09Q1VjsvlZBkMJFVUIK+upqGnh+3z59Pn4oK2uZktW7fiZqt6AHQaDXdTUiiOjaXZ1/exCUrlIElnMqHJyREtY9aAaZfeXmTA3YkTOfzMM3ZqgaDaWp7duRPnYXlXnR4eZGdmcnPaNOn3PdrbmZmTQ8qdOyhtJ7I//Sn88pcIgkDT2bMUfPQRhd7eEmkC4vnn2d6ORS4fkYnk1tWFf0MDMkGg0c+PrmE/VxkNxBoMTE9NI2TpUuRfoux7HPyvyKJBNDaKaqF//cuOHAOwLFhA4X+/ycUTp2mxiM8PtV7PjKtXSc/NxTnAH/7+D/jqV6G2Fjw8RCufUimqcw4etFPCGFQqmvx9OPeSL0UZQQS2zaSvRi612o2KwaGS9Tx0NxpJW7yYqTNmoB4YgOXLMV25wvuvvUazry8xMTFs2rRJvE9XVYkk1qlTAPS4uLBv/XqxMMIGC06fJkMuh0uXpL8jCAINBQXk/+In5AeFjTjOfn5+zJo8mZi330a9dav073pPT24mJpKbnj4UtI14Tm/ctYsoK+E7kJKM42fH4BE5PjQ2wsaNcPEiAObUGdw1msjJzJRy89R6PdOuXyc9N1e6NuywZQt8+KFEwnDyJLz2GkJNDceXLePmtGkojUZe+PRTgpV1cPk0BM9n4O5dHv7Xf3Hf0ZHSmJgxlWKDzyy52UzGlStMvnWL97/yFbv7dbggsCk6GvVgftxjjvOqq6vZtm0bJpNJWoiTyWRkZGTw1FNPoTQY4J//hF//WiSMrDApldydNIkrGRnSflIajSQ9eECLVmunxlT3DmBwccSoUOG58gW+lvTkmURfhnGyaBzjGMc4xvGkGCeLbPB/QRYNwjYLaDgCAwN54YUXUKvVCILA7du3OXv27AiFR2RkJCtXrqS5uZmSkpIRk9Avw7x588jMzKSoqIjs7Gzqh7VEzZ8/n5SUFDGMu62Czj9+j85GN7o8PKgPDKTD0/Ox7Qcu/T146DpRyc00evlKq64AWCzMO3uW6zNmSKvwAXV1vLhjB+rBSeD+/bB6NcXFxRw6dMiudcuxr4/UvDwuZ2VhUSjwb2hg3tmzHFu5kk6b45SRkcG8efPs86IMBlG9cv489ydM4MiKFZhUKrx0Otbt2UP/hrlE7jmHsa2N8wsXkmubvYK4ajxr1ixSU1NRjpXfAKKV5LXXhrIoFi2i5b//m6O3b1JTI9pcAjrrWb7rCB2enny2atWoddhOQh96i4OdosFBrSbKqoIaJH/S09NZsGDBIwmj3t5ebt68yY0bN+jutl93dXR0JDk5Ga1WS2dnJw8LC2kZVskrN5uYbLjD5Es3CcxtkAb/AiCLC4CaRoQ+gbPz53PFaudLz8lhwZkz9hMFJydxxfrb34bQ0LH34ZfgScmi4a/NHdb0NWhV8NdoeO7sWVyOHQOLBYtczp4NG0R7pXUCom1uZuPu3Xi1t9MQEEBxXBzFcXF2yg4QSeHY2Fi8vb1ptxJHrYMWFCsUCoVkWVUajUy7cYOMK1dw6+uDhQvFSdXKlfTLZOja2tBVVNBWVkZ7YyNtvb3oBIF+G0XBl8KG+HM29/Piv95H26rD5ALyr4J8PXQ6wK5QuO0FzngSzCTrVwqRd53w+9NR5Lv2SvaRgQkT2LFxI7Vj5K7JzGZJQZNQUMAzn30mBbXeXAsFnz7HRucPUOEg5gE1NUF1tfhVVUVbbS05ZjN3NRqpvU5uNmNRKEYQewDNPj5sfeEFet3ccOnpIaG6mt64OHQqFbqBATtl3KPg0dlJeHk5CQUFBPj54ZaTI15j8+eLQb7FxSOyrwCK4uPZu369OJG17m+flhae27YNj8HtVKvFCWpyMm2xsXxoNNJvcw9w6ekhLS+Padev46DX0xAYSMHPf06hXi8p5ADkFgtuXV3oHRzsK8kRM8M829vROzhQFxSEYRQCyKutjTnnzzMh9QG8uQCij4lB1P8H+LfIokH09YnKjF/9aihMWKWC2bMRLlygMDaWS09l0eQnXntqo57psrukv5WNS3uXqA45csTeSnXuHDz//KiWQ+PsVKrXPMuOjg4EQUCGeI8DxlaA2sDDzQ3f0lK0Dx/SFBREWUQEzs7OvPHGG/bq07IySEykxteXfevX0z3sHpb44AFr9+8X//78+TT89rfkd3RQ8OABHaM8931cXFjz3HP4X7okElG2VvYZM+DaNQA6fXz4aMuWoTBuxGKIadevkzQpjoA//vPRnzEnB9atg4YGjJ6e3MxIJzcuXno/J+vzeca1azjZkm1z5ogB3vX18OKL4rFcsUJULg6el11d8P3vY3nvPXZv3MjD2Fice3t55cMP0Ti2g38iljuFXJs+nfNz52JwcEBmseDe0SGSZsO229loJNNkYkpYGI7x8RSq1ew9e9bud4KDg3n22WdxGiPjaSyUlZWxa9cuzGazNE4E8DaZWLFzJ6E2ast+R0duTJvG1bQ0ybbtaDAwvb2d1J07censxCKXc3bePHJtsqpkrh4IPZ04Ozvz0ksviUHe/4cYJ4vGMY5xjGMcT4pxssgG/xdkkSAIXLhwgUuXLgGQmZmJTCYje1guRVhYGImJidy7d4866wBWrVZLUufMzEzmzp1rR3wIgkBTUxPFxcWUlJSMIH9Gg+3E1LYpZd26dcQNZg0JFnh3CrwhBqrmpqVx2iYM20OnY+mJE/S6uNDp4UGnhwdd1u8dnp52UvjHgXpggGk3b+LT2iqqk771LRQvvMDRo0ft7C0grrq/9PHHeHR1URUWxt716+lzccGpv5/lTz3FtaYmKq1S+sH9unbtWnGQ3tSEMH06Ql0dZ+bPlwJpo0pLWXrsEIpN61F/uocLs2ZxY/p0KUNpECqVihdeeIGgoKCxP0x7uyjNf+898f99fTH9+c9cDgwkO/syFouASjAw9+wXTLxxh/3r14vBn1Ybn3+XjsSJ+ZQ2hVHdH2o3+HVxcMAoCHbyd9sshqSkJFavXm13jnR2dkoNZtXV1Xa5DcNzHIb/v9xsJqyqiqCBGh7ETaRD4YXSaOSZQ4dIGlQoRXhBXTvYZ0FzJSODMwsXApBy+zbLjx5FrtWKVrNXXxVX+v9N/Dtk0SB0Oh2nTp2ya1Bzc3MjLS2NKXFxOPzwhxxrbuaWTfNQQkEBKz/7DIdhAdgg5h2VTI+jZM5TVJhd7ewSTk5OxMTE4OTkxLVr10ato/fx8iJxYICE06fx++KLIZLN1VUMan/uOXHSNUxl1NHRwf2bNynJz6ehowPzk9zGBQGX3l5iiovxaWvDS9GBzzOteGXquO9jZmeoQPewS1qOkpjaKOb/XUHYpw3sWrXezg46Lz2dvHv37FSLcpMJQS5HkMvxbWpig5VskwHdPtAR50pgow+KmnrJftTk50f2zJnkJyVJCoLwigqxFlyvZ+uGDXS7u+PU30+ykxP9bm60yWTo+vvRP6IwQGYNk9XYNIx563SogZqNG8mXyai3uf4VJhMxDx+KSsaSEnvryhgoiYlh16ZNomrJSjK4y2RsSUzEZ8oUUblhcxw76uv54J//pNemVntwvw228kn7Ui7HycmJ/v5+u3NMZTAQXFuL48AAne7u1AcF2U+gbciO0Koq5ly6RPjy5fDXv4o//ynw0vMQ/sljLww8Cv8nZFF9PWRmQmUlRESIDVNXrtj9iiCTURwXx8VF82n0EifUKoOBafU3yPhmAq7Jb4I6UGxD/OEPRbUS0OULn/0GHC3OLNoVhvvFIkqio9m3YYPd/d+ts5NeV1eJtFcYjUSVl+Pf0MDAnDm0hIfT3Nz8SJWul5cXvr6+YqC2XI7PK69Q5evLmYULR9gbfZqbefXsWdpefJH8S5coiIuTspDA/lpSGQzMi4pixrx5yF57zV75FxAg5vZ9+CEA3d7ebN0o2lIHych7EydKbX1KpZIpU6aQkZGBx/B7tCDAP/4B3/0uA0ol1xYt5GpcPH1WpY5rdzcZV64w9eZNiQiW4O8vkkyDIdfHjomE08CAeD975x2RuBvMEMrJwXDvHp9s2UJDYCBeOh2vfPABXe7uHFu+XDyvERXKriYTxRERY+53sObtRUYSHx9PRUUF+fn5dj/38/Njy5YtYsj5E6CoqIi9e/ciCALR9fU0uLmJ9ntBYIa14v7m1KncmjpVWgzyUChICwtjypEjqPfvF3ctQ4lxBYmJHFizRjonHB0dGRgYwMPDg5dffvnfXri0xThZNI5xjGMc43hSjJNFNvh3ySJBEDh16hRXr14FYO7cubi4uHD06FEAaeL44MEDuwG/XC5HrVYzMDCASqVi5cqVJFkDoR+F7u5uLl26xI0bNx57GxUKBevXryfWdtW19HeQ+EMEI1yaPZsLc+cO/cxi4dUPPyRojBBY0wQwlDrR4eXB1cxZ3EtIkCweSoMBi1w+IivlS2Gd4Dj39DDn3DkCmprw6OzEpbeXLjc39mzZQoM1Y2X+/Pl0dXVJ+xzEet31SUkEr1lNHzL2r1tHpXVwOfPSJVJK7qKanM4XCqVYO2wzcPfy8uKpp54iLy+PhoYGHBwc2Lx5MyHD2oUQBLFB59vfHgrKfPVVKr/1LY5duECbVQkQW1fM03tP8CA5mfNz5w4NCAcGeEaTQ1zaZXgP2AVdzm4UTplCwcKFVA+b+Lq5uSEIgtRKNQgHBwcSExNRKBTU1tbS2Nho9/OAgACioqJQqVRUV1dTZhtmaoXKYCAxP595dV/gltaD+QswVDhyYO1aKddp1q1c5hw/jcw89u3idkoKR1esQJDLiXNxYc3XvobqEc1JT4r/C7KosLCQAwcOYDab0Wg0DAwM0Ge1CqnVarRarUTeIgjMOXeOWdnZUti7hGGV6gB6DwdK1y+hZOYKHjY2j1AKgnitDw7Sa2pq7AgkTxcX4ru7iT91ipBr14ZybAID4dln6V23jmKlUsrxGCSBQTzn4+LiiI6O5uzZs7S1teHl4ECvXo8B8XwzyOVYvkRh497bicbcjrOLDGOAnI7IZqoSC+gIqAKlCXm3Gz4fP4+yXbRCyU0mlpw4Qc6smbR7aXARzKQO9HPTYqTTxUvaj8hkqPV61u3dax+oa0VtSAiX58+nxMYK469QEOjlhcnZGZ3BQFtn56j71G773d3p7+nBaLGg1uuZV1BA1Pz5eN6/j+L994esRKNAp9FwPzmZBxMm2Fm91Ho98UVFJN+/T2R5udRSNBruTJokZrzJZJJdxdnZmc2bNxNoG0BtRX1+Ph/v3o1JqZSUUxIEQSSRht0/3Y1G/KurwWikyc9vhC3Jqa+PAUdHO7It68IFwgebGmUyUW35+eegAP4KrPoRBP1mzM/1uPi3yaL2dpg9Gx48EMOgs7NF+9j06eLPbOHkhBARQYnJxKWsLIlQUMqNTAu/RWa3gOuvb0GDmAGY/TIc+B9I0Kxng/B3OqoHuHTsGOU2yj+3zk56XVyGnlmCwLTr15lz4YJoKfzXv0SrG0BFBX1Ll9LS10dtfDwXZ87EaDajVCoxfRm5aEPiKQ0GJty/T0VkpB1BpDIYCKuspMPTk1YruRNWWcmK9HQ0AwPw/e+L5Msgvv51cHYWVVlAh7c3Wzdvpl2jwb2zk+e3bsW7rY0BBwX5O7ZyS9crLTgNZrrNnDkTb29vsfr9K1+h9/Bh8tLSuJaehsGa3eal05GZk8OkO3dQ2tbIp6aKSqL/+A8oLRWJq7/9DYxGUZGXnQ0XLoyqzBtEj6srH77yCh1eXrh2d9Pj4gJyOQ4DA0yoqaE4OZnuYffd2NhYKioqJGu17QLZIGwzHAf/29vbm+eff/7xniVGI5w4AX/7G/d0Og5Zr/HU3FwGHBy4O2irtjmuvlotmaGhJH38MYqDBwGwyGTsnb+e3734A759+H1e2vs2AK0+Pnzy4ouSCmnwHPL19eXFF198YhXUWBgni8YxjnGMYxxPinGyyAb/DllksVg4duwYt2/fBuDpp5/GbDZz2rrqN3XqVJYsWUJxcTEnTpwYMekHUYmwadOmkcTEGGhvb+fdd99Fr9fj5+cn1ac/Dry9vZk0aRKpE11Rp09BKISzCxZwxSqJVhqNmFQqsi5c4KkLF0Z9D4OfAnWLGaNCxZE1q3gQnzj0/q2tPP/JJxx+5hnKrYSDLVy7u3FXqWhycRkxsBsLCpMJ974+3KOj6TIaabdOHiIjIwkNDeXSpUvSgFBmNpOem0t+cjKdnp6oDAaeOXQIhwAPrkYk8TAoyC63xN/fn0WLFhEeHg6AXq9n586dVFdXo1Kp2LRpExGDq5mVlfC1r4mTLYC4OPrfeoszvb3S8Xc1d/P0wc/xaNOxd+NGyX4ns1iY2vqQp9ftRn5HgN/LoNF6Ca5fL674BwTQ1dVFYWEh+fn5dnk7IAZQ6/X6MSfOWq2WmJgYFAoF1dXVIxRGgwPaoJoaOry8pAGq80AP6dmiDcZRrxdl8ssXkjs5TfyYRUWsOnhwVIUNAHPmUPTGG+wvLsZsNhMWFsbGjRvHznh6Qvy7ZNGdO3c4cuQIgiCQmJjI6tWrEQSB+/fvk5ubS0tLi/S7MouFhadOkXbz5lCF+mgIDYH2FugemrSZ5XLuZGVyYfZcesZQa/j7+xMREYFKpaKxsZHy8nK7CaaLWk1sRwchOTn0CQIlcXHUhITY5XVoNBri4+NJSEiQ1G8HDhwgPz8fV1dXvL29qaqqQqPR8JWXXsLx/ffp+P3vObRkCdWhoZK6TWkyITObMT7qOAkCrgP99KvVmBXiRFpuMjL74gVuTZtBl4cHnu3tvPDpp3h2dCAAVeHhXMnI4KEtMS0ITLh3jyXHj9Ph5UX+hHjynpqEyaQZ+28Pg6uDA/ruboxqNUqTiaf8/Ig1mfCqrkZZVkZvbS3bU1Np9PPDsb+fzdu3EzwG2T3qR0VUOD2YMIEH1vvHIJyNRhIiI5mQmkrokSPIfvSjEa8/uXAhV60qxsGJq1qtZuPGjURERGCxWKisrKSgoICioiI7dYpMEJBZLCNII8eBAfwbGgCoDQ62D682mQiprsasUFAXHCy9NqK8nKyLFwmrqkLyVtl6rOLixEm8M/A+sOBfoP3qY++n0fBvkUV9fbBggagiCggQlSkuLpCRIVq4bKFQDFnUAGHdOkrf/B4Xb1ygrkkkf5VGI1Nu3mRaVQ6n/9jN3SUBbBLewrkkkZyzZ6mxIYkGc8lsITeb2bRzp0huymRinfyPfyz+d0GBuK319QiRkez/6U8pqKrC29ub1157DaPRSHNzM80nTlB7/jzFcXGPZYWUWSz4tLcTmZKC4koO1/38MarVqAwG5p85w/T0dGTZ2XDr1tCLIiNh61bYt08kZwCdjw9bn3uOTk9PPNvbef7TT/Hq6KDXTY359Enc0+YgCAIVFRVcvnzZTp2bFBpKyrZtlDo4cHPqVEk5rG1uZublyyTn5yO3JXxcXOA73xELKkpKxJa3Gzcefd8E0ZY5axZMnCiei3I5/O1v3HB05MTSpdLxiC0sROGloNDfvqEtICCApUuXEhQURHd3N59++qnUOqhWq5k4cSL19fWjKrAHr0tPT0+2bNmCRjPK/cdgEO2Mf/0r5OXZnW83p07l2PLlAHh3ddE27HkUpdWy5tw5nA4cAIZIol+9+lPa45P4gT98xQectn0qko8DAxjUaj594QWJ9BxU/oaEhLBlyxZUT6jgHg3jZNE4xjGOcYzjSTFOFtngf0sWmc1mPvvsMx48eIBMJmP58uV0dnZy0RoGmZGRwdSpUzl58iQPHz4EwMPDA61WO6K1Sq1WM2XKFNLS0kbKwm1gMpn48MMPaWxslGTLg/Dw8CApKQm9Xs+dO3ceTcYIAp7t7Tj199NgHaR4t7bS5uNDYF0dL3/44agr6UaVApWzmU482P3sJhr9/CUSwrW7m5c+/JAvFiygwKqQkpnNhFZVUTUoSx8GB6USS28vRgcH3Lq6iC8spN/ZWbK9dbu5jR1sOezzDLdTuHR3Mz03l8KMdJpc7FuAwsPDWbx4MX7WJhdbGAwG9uzZQ3l5OUqlkg1r1xJ97Bj87GfixEatRvjRj8hfsYKTX3whTfqmFtxg9okLnFi2jOK4uKGVxtYWNiYexiu8Fv4InJM2At5+G55+etSP1NXVRX5+Pnfu3HmsprzR4OftTVxdHXG7dlLtH8Cpp59GZrGwqWsHreUarkZmSpNih4EBZty7TuqFXFz6+rg7aRJHly/HrFSibW5m065deA2u8stksGmTOImytthVVlaye/du9Ho9/v7+bN68eezmuCfAv0MWXb16lZPWiu6UlBSWL19uZ987+8475DQ2jjh3wisqSL99m5jZs5Hl5ICVDByB2BhMyl7uOAeQkznTTiGgNJlY09ND28SJlFgs1NTV2ZF3bm5uREdH4+rqik6n4+HDh3bWQ1v4NTSQWFBAfHEx2uRkZFu2wOrV4O5Obm4up0+fRi6XM2HCBO7evYtSqeTVV18dOr+rquDrX6fu1i2RxLTeY2SCwKT8fFKuXqXDywud1hudl4Y2jVgVr/8Swk9uNhNYX4tfYzManQ5vnQ6DVzu3VsvokYeiLJlEY0DQiP07FlxcXNBoNHi7uKCxWPDu7kbT3IymogJ1WRn9lZXsWLCAuuBg1Ho9z+7cKZIiVgw4OrJj82ZqQ0JQ6/Vs2rVLan4aE0olLFsmtjbFx8P27QjHj1MTHs6DhATyk5Los7GtuLu7k1RdzYQ9e8Qgaeu/CzIZH778MnVW0n9wYiqXywkLC6OxsdGO6B2tudJhYADvtja63N3twoml/dPTQ5zJRGBcHLUaDfeKiqTWyIjycrIuXCCsutr+RQoZDFcGenqKWTda4GMZZB4Cz5WP3k+PwP+aLDIaYeVKkYD39ITLl8X74pw5IvFgi9RUkazp7rYnjRwdEaZNo6y9nYtpadQO7n+5ickht/Dy8uDOw0Raeq2/b7HYLRjIZDK8+/tpdXQEQWDdvn0kDisIIDwc5s6FQ4dEpVNiInffeovPLl5ELpfzyiuviAoysxl+8ANKjhzh4OrV6B0dcbRYEAyGL72WhkOl1xNRUUFQXR2+LS34Njfj2d6OXCYT1UU//rGocLVaz1q0WrY+/zw9bm7ios3Wrbh3ddHt6Yj87Be4TM0Y8TdqamrIzs62s+cOIrCujlmXLxNXXDxSYfk4UChEa9zs2WKOlFIp5vvV1Yn788QJ2L2b7r//nZM2Y4bBZ7nSYBDJ0UGFolrNvHnzmDZtmt093Gw2c+jQIclyJpPJePrpp4mNjaWoqIjc3Fy7ZlNp/6pULF++nOTkZGQGg3hs//hH8V4/ythHkMkomj2bU/Pm0Wnz8/j4eORdXRTU1YFMhltXF08fP86dsMn86tWf0hGXOEQS2Q5lbt8W7+GVlQjAZ6tWcW/iRLt7ZWxsLBs2bLDPY/xfYJwsGsc4xjGOcTwpxskiG/xvyCKTycS+ffsoKSlBLpezevVqamtrycvLAyArKwuFQsGlS5ekJo3p06dTX18vKUZmzZqFRqMhNzdXIgPkcjnJycmkp6fjPyxEF2D//v0jfPhOTk4sXryY5ORkOjo62Lp1K52dnbi6ujJ58mTq6uqoqKgYNTsFEFUGRiMmtRq50cgb77yDz7BWGgALIA+HKmEoQ0hhMmFWKnEYGOCFjz/mxvTpdpXAqw4cYGJlJbmJiZxZtMiO+HFUqbB0dWFwcsK/oYEtW7fiPEw1Y54wge4DB+hUq8VAbutXQ0MDDQ0NY3+mMT6ns5MToeHhaLVaPDw87L7UNivAdsfXYmHt3r0kFBVBVhbtf/wjJ4qLJcLPZ6CFZTuP0uTry+lFizBbVwJVBgPLdNlM3HQJjgL/kkOvRRxE/+d/iuTTKHatR1XcD88behRkgkBwbS1xhYXEFRfjHdjGZ0tXcc9xEs69vbz23nu4dnfzYMIEsmfPpNVbtOAMrsxnXLlCt7s7ezZsoMfNDae+PtYdPkzE8uXw3e+K+RTD0NDQwI4dO+jt7UWj0fDcc8/hNcwu86T435BFgiBw+fJlzp8/D0BqaiqLFi2SgsHN1dUc+fOfuWfdNtfublbv28ftadN4kJwsnac+Pj6kp6cz0cMD5Te+IeaEWCcKJqWSW1OmkJOZKZEvKr0eozWMdcu2bURUVIgb5O5O3/LlPJw1i2JXV0qrquya6b4MCiCytZX4K1eIKy7GpbcXHB2p3LSJrWFhCIgqxps3bwKwKiuLiSqVFBwtfb9/H2pruZSZycU5c4bskf39PHPwIHFWUhugMcCXrc+/SL+TeI6qjEb8W1qo8/N7ZLX8Y0EQcOzvJzE/HweXKmRhctIqwnErrYby8qH66VGgV6vZvWkTlRERKI1G1p85Q0xRkfQag1rN7o0bqYiMFH++dy8xjY1iuK6NiswObm6iVWbKFNGKk5oqVrsHBWFpaKAiIoIHEyZQOG0aehvlhHdrK8n37zPhwQO829rodHfn7a99bdSAaRj9+nXS66XAa8e+PrsWp8F9ZWtxcXZxoaqqSnqfyPBwsioqCP3tb0XyZTTIEW/gtlAqRRVIFPChI0w9B67po7/+S/C/IossFjHUfedOMQz/7FnRdrZihdiYZYuJE8VzVxBg5kzYvVskln79a/E4WdHjBdt+E0mbciHmevv7k8xkQiaTSeeuUqlk+vTpONy+zQXrosuSY8eYfuOGmLX2y1/CzZsjGtVwcqL9e9/jHQcHDEYjc+bMYfbs2dDejmXTJi4YDFzOygKwy6QahGtXF4va24l5+20G9Hqampq4deQIJd3ddkHpo0FpMuGj0eAbGor23Dl8z55F29LCgIMD27dsoc/FBd+mJrZs3Yprby9d3s6ovriI06TR20qb6uu5+NY/KVKqRizKhFZWMuvyZaLKykbvL3RxEUmg4RX0fn6webN4fJyd4fBhMSgeRHXuggVQWoqgVHIzJYWz8+ejd3QU1bf37tEYH0/tsOtnQl0JC9/8L1xHUSsP4vr165w4cUL6/6SkJFatWgXA+++/P6YC22lggKT790koLCSssnLEIplJrebuK6+QGxtLm5V0sr2OV1RXM/mjj6gODeXwihXorOHUpcHJTJu/mNdCXOxJIlu0tcGzz0r5U5dmzeL83Ll2xz8lJYUVK1Y8stTiyzBOFo1jHOMYxzieFONkkQ2elCwyGAzs3r2biooKlEola9eupaSkhFtWifj06dOpqKiQ2pDCw8OZOnUqp0+fpru7G7VazerVq6WgaUEQKCsr48qVK1QMTi6BqKgoMjIyiIiIoKWlhaNHj1JbW2u3LT4+Prz++usolUqam5vZtm0bPT09aDQann/+eUmlNDAwQFlZGcUPLlJ8pxqD49heeJfubuKLiphx7RralhZpoGhOgltO0zj59NNYFAqce3slwmjz9u2UR0WRPWuW9D7zT59mWlERJ2bP5t6kSWMOgN07Onjt3XdxGW6vmjJFHERZq2eHoz0/n93vvEOzj8+j22seo9kGRNJtkDhyd3LC/coVitraRKWAxcJKjYa+adO4cPEiRqMRBSZmXblE7N1i9q9fL1XkIggklxWxcv5BlEoj/FYGBdbLLS0N3n1XnPzYQK/X8/DhQ4qKikYoTJycnIiKisLFxYWOjg7KysrGzMbw9fLCrbmZ7vZ2sSrcBpquVmLzH1ISE4POx4eA+npe2vURqm6TuGoaF0f2rFmSHF5uNjPx3j0m3b7NmaVLqffzQyaTsXjxYqZPnz7m4LWtrY3t27fT0dGBq6srzz333KgKrsfFk5JFgiBw5swZcnNzAZG4zcrKErfXZKL3H/9gT2EhNdbP6dbZyTf++U/URiNERdH5pz9x1cmJmzdvSsfBxcWFGTNmMC0+HtWPf8yNoiKupKZK6g+3ri5iSkq4NXUqyGQsOXOc6TnXxQ1SAFZRg0mhoCImhvynnqLI3x/7FI4hBAYGEhgYiMlkoqqqSrJegkgChjQ3E15QwPXUVPqdnYkrKaEiLAyDgwMzrl7l6UGr5CPQ7+jI3g0bqAwPl66PoNZW1n/yCd3u7mx98XkManHS5ugAIaHRlJWVj1DD/DuQWSwE1tUx6e5dIior8WpvR2FVjJj8vJD7+CF3chUVG93dYpV3Tw9GpZL969ZREheH3Gxm9YEDYhh7QAAkJGBKSGCfVksJ4nm8+vx5kt59V2zns5YQjNwYGfzXf4nB9eXlInHR3S2qI06eBIsFk6MjD7dv54HFQklRESabfeGp0+Gg19Oq1Y7IG7KDIBDc2IibTke/kxM1ISESwQxiHlRMaSkxJSXEPnyIWaHgwqJF3EtMtCOafHx8WLJkyZBNtrBQbMe6fPnJD8QM4J8amJALjrFf+uvD8cRkkSCIqph//EMkrY4cEfOUXnxRtFbZIjJSPB4gfr6//10kmn79a/jd78BsxqwEuRkGHBy5PmMGeRkZ9D9CyRPir+C5579OyamLHLhzB2Qynjp/nqyLF8HXV6yKj48Xf/nwYdEqbDCATIYF+OSll6gJDSWko4MX4+KQTZxIxfe/z9EpU+gYzdpkhVdbG69fuIBDTg64uaHT6Th8+DDVVjVYeEUFy48cQSYItPj60uzrS4tWS7OvL60+PmOXSlifcU59fcy4epWgujoczb34HjmOQ/JkkUSsqBDthyUl1JaXcxGBUt+h+3JMSQkT796lIjKSOykpEqkWUF/PzMuXSXj4ENkrr8CGDSIxFBg49nO1rw9WrRKf32q1aJVbsULMWnrzTZr37OHYsmXUWFsyA+vqSFapuBwaSr9tHhMw+8IF5ly4AK5q+Od7YrvdGH+3rq6Obdu2Sa2qGo2GF198EYPBwDvvvCM9NwNbWmh3caF/GDHr2N9PbEkJ8YWFBDc1cferX+Wqlxc91nw7R0dHpk+fznQnJ65s306ery8yi4VVBw5wP3gi//3SD4kyNzG59Iq4OOXsLC3kjUn2mM3w85/Db8TssLsTJ/LZqlV2nzEjI4MFCxaM/vrHwDhZNI5xjGMc43hSjJNFNngSsqi/v5+dO3dSW1uLWq1m/fr13LlzhwcPHgBiPesgoePi4sLChQsxGo18/vnnmM1mfHx82LBhw5jVqPX19eTm5pKfny9NDBwcHOwq5Qfb01xcXHjttddwd3enrq6OHTt20N/fj6+vL1u2bBlpATLpMD4bzl71CkpjYpBZLDj19ND3iM/s2NdHbEkJExpuUeA7idtTpwLg19go1Yev2bePLnd3zixaJL0uNS+P0IYGjixejN4a0iiTyZg1axYeLS0czc+3zw5qaGDN/v1Diqb0dFGmbpMbYocLFxAWLaIyIIAdzz1nN9kaDdOmTSMpKYnu7m47hdLgl14/1rR9dLjoe4h9UEyTn59dE5GXTsdGy1F8V1fAh8AuxBV9Dw9xYvPaa9Ln7u3tpbi4eNTgYjc3NynbpqWlZUQospubG3Fxcbi5uZGTkzPSviQIBLbX4eHcSU+XC3XeISPyUJDJCK+oYOPOnThYFQkCUB4ZSfasWVI4OEB8XBxmi0WyU06ePJmlS5eiGENh0t3dzfbt22lubsbR0ZFnn332sTO5huNJyCKLxcLx48cl4nbhwoWkp1vVEjdu0PDmm+xOSZGUQC7d3bzxr3/hYjTCj34k2jus5+vAwAC3bt3i6tWrdFlVK3K5HLlcLk06PLq6yLx0ieDaWj556SUMDg5MvXGDpWdOI4vTQFkjepMDD2NiKJqQwMOIGAw2CjbH/n5iWlvxDwmhPzaWsu5uGqwZNYPwMpsJ6ehA3tNDo5MTjcNIQKXRiFqvp8/VleDqal789FMUgiASJ9HREBoqfoWFDf13aCjcuoXw+uvky+UcW7ZMuk6BxyJYlUolGjc3vOVyNHq9aEMrK8OtuJj7Gg3Xpkyhz3oPUphMOPX3M6BWY7KpjR/lAOLW04lPSxvebaKtTdPWhkanw6ujA4XZLCogIiKwREXxmVbLA+u9bHl0NJO3bJHeymw289muXTwoK0NmsbDi/HlS/vAHUc0yzAZsh5QU+PhjMS9n7Vrx3375S5FIMpvF6/fDD+lavZrLf/sbhdYGrbHayIb/v3NPj7RfBuHW1YVKoUDn4oJar+fF7GwCLl+m3cuLS7NmcTclRVJ+2NrXXF1dSUtLY9q0aTg4OIgkyocfwptv2leq22I0lRHAEuC/wyEhF1QjVYOPwhOTRb/6laisBNixQ1RX/OhH8N//bf97Wq2oBlMqRWLpq18VFWCvvQbWe9GdlbD792543V6MuSAOozVba1D1OhICk4LvEO7cwtHCeVgUCqZfu8bTJ04gCwkRM5MG71UHDoh2W6NRtAu/9x6X9+7lXHc3Kr2e1QcOUBMayr2JE+mxuTfJTSbCqqqoiIiwK354fccOfE6dQoiN5erVq3zxxReYTCZUBgMLTp9m2s2bIy1fMhn85jdYIiNp//GPaVGpaNZqafH1pTYoSLS+jnGtOphMaNvb0dbUoG1uxiKXUxwXR81goLwgkJSfT3p2NkE2JQld7u7kpqdzc+pUKXPJx82NzLlzmTBhwpj3fTvo9eK+O3RIVNP+4hcY9+zhkq8vVzIzsSgUqPV6Zl6+TMOCBRTaNnTK5QT291Pr4IDCZOL5rVsJHbRXLl4sLrhYiabh6O3tZdu2bZKSSKVS8azZTOvFixyfNUu6FpceOcL9SZOoDgtDbjajMhjs74E2cHNzIyMjg8kKBQ6/+Q0cPowAHFu+nFtTp2JBxqm0jWyeHMtXfEDXWM+RI0ekbYiNjWXp0qWPfn4dPizem7q7KY2KYuezz9qVcGRlZfHUU099+X4fBeNk0TjGMY5xjONJMU4W2eBxyaLe3l62b98u5QVt3LiRK1euUFJSgkwmQ6lUStaSqVOnkpWVxYULF6SJa0JCAitXrhQH9Y+AIAjcu3ePc+fOSZPUQQzWKMtkMp5//nnCw8OprKxk165dGAwGgoKC2Lx588gWDUFAv2sBu08HS/aNjbt3UxkaSnZWFkqjEd+mJuoDA+1InFE2jpDKSmqsRMKizz/HQa/nyDPPSL8SW1SESa2m3CanyM/Pj/Xr19Nz6RI7rl3D4OCAh05Ht7u71EAjM5uZc/48mUol8qNHxRrx0fC3vyF85zvcmDqVE0uWjKgXl5nNJN+/z8PERAZsJubh4eGsXbt21NrcgYEBukpL6fzTn+h88EDMTAoMpGPSJJoMhjGzZIbDUd6PB514lHfh3tyBR2cnHomJeLzxBh6RkVgsFokgGh5ArdFoCA4ORiaTUVdXJynTbPdhXFwccXFxBAQEiCuV9fW0/eEPbJPL6fTwwLG/H099B42eQ/XmCALBNTV4t7aid3KkMjyCAZvzQ242E1VWRlxxMbHFxbj19EBaGjU/+QnZXV12eRbe3t5SmGhoaCjr168fs4a4v7+fXbt2UVNTg1KpZP369cTExDzWfrTF45JFttkVgxlikydPFu1JP/kJ9y5e5Ojy5dLqvEN/P1/54AO8p0yBt96CMbatt7eXEydOUFhYaHe8/P39Wbx4MdoLF/jg3j3a3d0Jq6xky9at9Ds5URwXR1FCAhWRkXZWFLeebuLaW0goKiMsN3eE7aHL3Z2S2FiK4+KoiIiwm/A69vcTWlVFq68vOo1mBCnh0dFBYn4+CUVFBNfWIsvIQNi8mb7ly2mzWNDpdLS1tdl9f6QdThBw7e6m19UVQS7He6CFhSX38SvtwL2wEJnNawccHLg+fTp56elSxo9rby8ZxcVMzc1F3dKCAHS4u/P5smVSALbSaMSkVH65+k+woFR1oPfVYQzqxk3jhL+DD47v9fDQPxyARRERpD3/vPQSi8XCsQMHuG3NoHn6/HlmfO97ojrB2lw4KhQKUWHU3S0qWdzd4a9/ZeBrX6M4Lo7ChARK4+IwP441ZFhGzuB+DdTpiHN3J3bmTPzmz8cM7PzVr6iQy3Hq6yO8tpai6GiJJIoqLSXL2Rm/v/+dm7dukZeXJz0fHBwcmDZtGmlpaeIiQWOj2E61e/fo2zQWYfQs8JOpEHsBFI+fN/ZEZNG//iUWBYC4b7/5TfjnP8XvtnBxES2BPj4iaZOcLJJg1oyezgAZ2/6kodZpJs53JyFgJdNs2uUUJhMT7t6l08eHirAwFHI55sHrzXrtRJeUsGnXLuQRIXD1pvj3AD75BF55RTx+69bB9u3UtbTw4YcfIggCzo6O9A1TwagMBrLOnycpP58PXntNKhEA2LhrF3G//z1tM2dy5MgRSU0UUVPFigOH8BxO7g0L8yYlRbxGrPlp5ZGR7N64EaNaTVBtLTOuXkWn0dBiVSO1eXuPbRcVBFx6ewmqqyKyvArfpmZ8W1pEe6sN+pydydu8mWsREeitz0APDw+ROJk8+cvDl00m8VrbtYvyyEiOLVtGu1V5FV9URFRbG2enTrXLc4qKimLp0qV4uLiw9803Kfbywqmvj5c//HBoMcnNTWx/+8pXRh2vWNrbOfo//8OdwbGWIDDv7FmqQ0N5aFV0q41GXr18mdMhIZTGxCA3m/E1mWhycGD44FgGRHR1EX/pEvFFRbj09rJr0SZ+8/KPmNJVTEztfRQKBZs3b5aUfmazmezsbKmAw8HBgYULFzJ58uSxVUbFxWKOUUEBVaGhbN+yxU5NNmvWLObattY+JsbJonGMYxzjGMeTYpwsssHjkEVdXV1s27aN1tZWXFxc2LhxI+fOnbOzjYE4gRxcQdq3b5+kMpo7dy4zZ858pO9cEASKiorIzs62a/IYriwCkfhYs2YNDQ0N7N27F5PJRHh4OBs3bhyVjOove5edv79ObZAY/Prsjh0oLBY+evllBLmctXv3klRQQJ+zMw9jYiiMj6csOnps2Tui7SKhoIDcjAxpwObV2kqXp6c0wVXIZCxesoSpU6dStWcPO+/fx6hWE15RwaadO+lzdubwypVU2hBLPt7erN+wAa1NjTUgDpy3bKHn8GG2Pv88LcMyc5z0eowyGSa1GleLhSVr13IxJ8cuq8DNzY1169bZq1wsFnGl8gc/EIkFa6ZQyebNnPjiCykc07OrjQ73YZY4QUBt0CNXCwzInrzm1tnZGS8vL+RyOa2trSPyicLDw4mNjSUuLs4++6euDuF3v4P3/4VMb6bT3Z1tX3meNjcfXPq7Wb3vEE2+vhQkJUmBr4PbG1JdTUBDA3VBQVIYry2CvL2JnTiR+Ph4tFotzc3N5OTk8ODBA4ksGcxscHNzY9OmTQQEBIx4HwCj0ci+fft4+PAhcrmclStXMnGYBe/L8Dhk0fC/s3r1apISE+HAASzf+Q5nk5LE89QKucnEi599RsjPfiaqR0a5Lvv7+8nLy+Pq1avS9efu7o6Tk5PdOTV4fbo5ODDl1i3K3dyoCQmxe0/v1lbii4qILywkqL7+8QJjlUoM4eGUZWRQEhtLCdA3zH7o6uoqNSwOD0xWGo2oDQaMKtUjG5lkMhmeCgUOzc00enqOnHxZyY6YkhLW792L0nYb1Gp64+O5mprKtYAA9NbXegoCmV1dpNy/j7KgAIY1EwnA9enTObV4MRaFAp+WFgLq6ihMShoi8wYG8OzowCKT0eHl9ehWKRvSzNW5E80sDSHe0URrJhPsEcUXJ06QZ51kz710iVmbN4uExZcpCuPj6XN1pchspjA1lXJ//1E5FhBJ6pDaWhz0elp8fEZXfNhsZ1xcHGvWrLGbcDc2NPDpv/7FgM0kP/rhQ7IuXiR40IL8z3/C17+O2Wzm/v375OTkSMSyQqEgJSWFjIwMsenp889F651NCPiX4nngJ4sh+gjIHq+J6bHJor17YeNGcT/87GeiWmvfPtHmZYtBoiQlRVSm5OWJtjVrtt/RbwZwdfpMVOWJYDVK2zabuTo7M33qVKaWlXHz1CnOT5iAwmTixa1b6Vi4kENBQVhkQ6+bUH6fWZuz8YlbAH7fhw8uiH8PEF5+mYb/+i/u5+dz7do1u2tMZjZL6o/ohw9ZfeAADnq9ZFMbxOwLF8jKzOTq0qWcO3cOk8mEWqViwYWzTD1zfmQm0Jw5Yh19UZEYZD2MSCqJiWHvhg2YlUqiHz5k/Z49qEwmkeQIC0OWlIQxNpZrwcFcMQ7Qp7des4P3nTHGIc69vfg2N6NtaUHb3Izv4sVov/99FCoV169fJy8vTyp0cHFxIS0tTcx9GmsBLCeH3jfe4HR0tGhFR1TRzSktpXDxYh7aFDe4dHezLCKCuK99TRonGTs7+fTnP6fOywvP9nZe+eADXOmFQU5rzhz44APRqlhTI+6zw4fB+sy+M3EiR1aulI5RZFsb9d7eDFJ8IVVVZF24wGebN9NjQ8qHhYWRkJBAT2kpxffv0zJMddnq7ENp5GQWT0rg1XAPjh7YR3FxMSqVii1bttiNL5qbmzly5Ah11mbGiIgIli9fPnaWX3c3vPwy7N9PXVAQn27ZYtdYOWXKFJYtW/ZEGUbjZNE4xjGOcYzjSTFOFtngy8ii9vZ2tm7dSkdHB+7u7qxfv54TJ07YETpqtZo5c+YwY8YMampq2LdvH729vTg6OrJmzRqiHxHMONqgX6lUMmXKFBwcHLh8+TJyuRylUmmncLENWYyNjWXdunUoR5Hd97YXsv1Xf6PRIwDH/n6e27YNbWsr777+Ojpvbybcu8fqgwdHvO5WSgrHly/HolDYDYrHgsxkQrD5+5FqNc984xu4ublR/vHH7Corw6RSEVVayoY9e1DZWJ/yk5I4umoVhkGVkdWylpWVJTaBdHbSPWcOn0dHU5iYaDfY9dLpWHTlCrE3bqALDmbP175Gi8GAQqFg0aJFUl217X6Tcnfy80VLgzXfhhkz6Pn73zlZUyMFiXuYOnh63wlKomPE8G7r31br9Tx3cy8hb5RBDug/cKJL5UqHlxfV69ZRFRZGc1vbE1vc5HI5rq6u+Pj44OXlZR/E3d+Py1t/R/H+e8j11lXnFDBlQHuuJwdSN9Lk749TXx+bt28nqKGeTjd3ChITRyWOnHp76Xd1RWmx4OPrS+MwNZOnp6ekZnJ1deXq1asjmvbkcjmrVq0iOTl51M9jNps5cuQI9+7dA2Dx4sWkpqY+9v74MrJIr9eza9cuqqqqhhRMSiV84xv0nT/PgbVrKY+Ksvvc6zo6SPzVr8QV6mHo7e0lNzeX69evS9ebVqtlVkYGSe7uyGtqaC4t5UptLXcfYdcKrKuTCCLtsP1qV2XuroKVS2D9qyKpkpMDx4+L4aeDUKuxzJvHjXnzONnb+2TB7tbPrDIa8dLpCGpoQGsw4N3VhXd5OZ7NzRQkJnJo1Sppsh1YU0Ozv/8QWSwIZOTkMPfcORQyC2RBV4Y7V2TruSULxGh9nba5mZnZ2SQ/eGBfsw1iIHpCAmY/P2oqbxJy7SG1IWHsW7eOXldXnPr6WH7kCM2+vlxLTZXUSWoZTO0fILmkBGNdHW1GIzovL3TeYmObTqN5NJEksyB306OUqTF0ivewhIIC5iUn4/WLX4zcTqDHxYWilBQKIiOpjIgYs5HRqbeX4Lo6FCYTbd7etAzL5lINDIgTvdHURYCvry8vvPACAwMDXLp0iXv37tkdW21rK6+++66YpzUIpRLOnRPrxxEXGYqLi8nJyZEWJ2QyGYmJiWRmZhLg7g6/+AX85S/2SpVH4Rngzy9C+EePlff2WGTR6dNi65zRKBJ1//wnnD8vBh6PloO1fr243f/5n3DiBAJwKyuCk8/MxNQZNfL3gQBfX9IyM0lKSkKhUFBSUsKuXbsAWP7wIdFHjvDRK6/Q6emJT3MzHp2dlEmKQoHkwAfMvnsJn7daaAgIIP+FFyjw96djGFkT2dhIu0pFuzWnbk5eHrNOnUImCJxatow8m5KH6JISFp06xZH166mxnh8RoaGs+Nuf8bz7wP4DyOWi9a61dcxjVZCQwIG1a7EoFMQXFrJm/36UZjNmhRz5xx9jeXYzd+/e5YucC/TpugEwKM0kP7jN8qPncdDrxXN1WCZS+yPsbK6urmi1Wry9vRkYGKCiokIijQZzfNLS0nAezADq7UX4yU+4c+ECZxYuFLOBBIFp164R0NDAyZUrMdr8rbSuLub885+oDQb4859FVZwVvbW1fPiXv9Du7k5gXR0vfPIJ6kgzVClhwCDuM4Vi9HB3Z2ealizh0ylT6Lfey0ezgQ7H0gkTmPbpp2KWFtDs48OeFRspiYvFp99ekejr60tsbCwVFRXU1dXh4ODAiy++aFdQYrFYuHr1qkQUqlQq5s6dy4wZM0ZvOhME+NOf4Pvfp9HXl0+3bGHARsEbERHBxo0b7Uo5HoVxsmgc4xjHOMbxpBgni2zwKLKopaWFrVu3SqHRq1evZt++fXZVrImJiSxatAg3NzeuX7/OqVOnsFgs+Pr6smHDBnGFdxQYjUZu3bplV+3q4ODAjBkzSE1NpbW1lU8//RRBECT7j7e3N1lZWZw/f94u9DYmJobMzExCQ0PtVpy6OtvZ9tdf0oonLj09bNm2Db+mJo4tW8bNadNw7+zkjX/9C0cbOb1FLufM/PnkWZUYscXFPHX+PFtfeIEBJycUBgPmRw1SLBYmyeU89e1v4+npSelbb7G7sRGzUjm6OgFg0yb633mHE2fOSPlPAF5eXixKTubmxx/zMDLSbsLl1dbGigvnCc8vECcbViWJPiKCzz77jKKiIkDMK3Jzc5OasQYxwWxm2R//iLq/H9zcEH7zG26lpXHmiy/Q6/XIEEi7cwW/skY+X7pUksrbrmCne1xhwfvnEIosVIeGUjhnDkXx8XQNq8gOCQnB2dmZzs5OO5IRRGJQpVJhsVgei1iSWSy4dXfjYerE1aUTt8pevMva8OjsxHFggNMLF1JvrRbftHMn4Taqgk4PD5E4Sky0J44QCc/09HRUKhXV1dWUlZXZkUKOjo7ExMQQEhJCa2srt2/ftrMwxcTEsH79+lEJS0EQOHXqFFevXgVEOf2cOXMea3X0UWRRX18fO3bsoL6+HrVazbPr1xO2bx/88pc0ubuze+NGOry87PJLFiYmkr5u3Yi/01Nfz5ULF7hRVobROnn1GxhgdnExCdeuIauvxwLUhIZSGB/PvYkT6R/FgqcyGplcW8us7m5ci4pEa8FoEz8XJVhMMHiqBDrDD/4T48tvouvsRJebS9uNG7TV1qJTqWjz9raztTwKSosF9/5+VH19dLq42DVsKUwmosrKiC8sJK6khMKEBI4tWyZNFCdZLIQWFnJ0kJS1zdvp7WXe6dPUhYaOCMGddekS8cXFyCIjISFh6Cs+Xvw+LH/sUOPnmL/9Leadamb/+g3UBwUhs1jE7JYbN7g/cSLnFqXT6yAqDKWmyJQU/Lu6RNVFURFCURHdlZW06dq4OWEi+RMmAGLemlGlenSemWBBo2tHo9Ph2t2N3sGBVh8fWnx9x5w4a5ua8GltxaRUUhscbHcOyCwWQmpriSkuJrakBE1bGx+/8gr1QUH4W6u1GwMDH3nsYmJimBQfz/EDB+hXq4kpK2Pjjh32pJafn9jUZQ1pB/Eaq66uJjs7W2pqBNHWk5mZSXhHB7LXXhtZST8WpgPbvg9xv/vSX/1SsigvD+bNE4OPN2wQc4ru3hVb54Y/C2QyMSPK2Rl++lOE/n7yk+M5uWomvfKgwQ8rHR8ZkBAbS2pmJiEhIdI9pbW1lQ8++AC9Xs+0adOYO3cuH//jH7T09+Pd2spLH32ES18f9TNmcOmZZygeXIixEqu2BKRCoZDuhU/l5nJt4kT6XFxwVCpZc+YM0RcvApC/cCH7bRSMHjodU/LzuZyWhkmlQq3Xs/D0aabcvDl6w5gtnJ3FnLHyckkBd2/iRD575hkEuZzk+/d55tAhFBYLZqUCs0zOrSlTyF4wn16leM73OVnoc6ri1z89gEdnz9h/SybDqFTS4uNDS2Iiza+8Qosg0NzcPGrt/CBs1YwKhYKEhASynJzgJz/h+MSJUu6dX2Mj89rbyYmJocrm+eDv78+qVavw1WpFi+Ef/yj+4Kc/FVVn1mPZdu8eH+7cSb+TE7HFxWzYswe5YGGEXwxEy+iKFfDb34rZU/X1DPz3f7N9YIC6wXNzGMkfFxfH/PnzuXrsGDesz8sFp0+TmpfHrkWb+PUrP6EnJp4f+sN6dRcVJUUUFRVRWVlpR+4OnicODg68/PLL+A7Ll9PpdBw5coQq698ICQlhxYoVY2ZYcu4cbNhAi0zGJ88/T5/N4oaXlxfPPvvs2K+1wThZNI5xjGMc43hSjJNFNhiLLGpoaGD79u309fXh6+vLnDlzOHjwoDRBdnd3Z/ny5URHR2M0Gjl+/Dh3794FIDk5meXLl4+68jMwMCBJuvusLRsuLi6kp6dLQaU9PT28++679PT0oNVqaWlpQaVS8eqrr1JeXs6pU6cApO0eRFBQEJmZmcTFxdHV1cXW9/9Ce58c985Ont+6Fe+2NkpiYti1eTMAz3/66VC9N9Dv5MR+GyXGrIsXmX79Oh+//DLtGg0B9fUsPXqU7c8/b5d7MxZcgV6rKim2qIh1+/ahHD5xfuUV0QZmnXhWVlZy4MAByV4zfGCnMhhYt3cvMT09YjYHiEGa770n5RwJgsClS5e4cOECIMrKp0yZwvHjx0W1iPU9fZuaWK/TYfnJTzh2/bqUI+Hf28icg2e4MHcuDTYTsrCKCtY2HSJ/dQIn658GwKelhT4XF/psJuQqlYrg4GDUajVtbW0j8od8fX2Ji4sjPj5+KH8IsWmvq6trKHy7thZd7kV6GtvodPegy9390U1LVgwSWjKLhaiyMkKqq8X8pM5OPBwccP/+9+lZvZqCwkLu3btHo0246eD+io2NxcnJierqakpKSqRzFYYIMJVKRUVFhTSRUiqVZGVlMWPGjBHn/vA6+6lTp7JkyZLRV1ZtMBZZ1N3dzbZt22hpacHZ2ZnNyckEfu97kJ9PfmIih1etwqhS4drdTZ+TExalkhnBwSx2ckJWUyPVyXe1tJATEMCt5GRJSRNYV8fsS5eILS7GrFRSHhlJUXw8xXFxkuJlED5KJWnh4fS7unKrspJ2qwpBoVAwceJE0qdPR/vOO/C3v0n2CLNCQbuXF20aDW2+Pui8Neg8NLR5e0vh2486tiqDAYOjI869vSw4fRrPjg50Gg3lUVGURkfbZYAojUYCmptRqVS0eXjQaWsZGXZtpdXW4mUw8LnVFjrlxg1mXL3Kvg0baBtlUhJWWcmssstEzi5DNnsLzPwrOI/dBjUc96jl+/f/i7eX7ePulDncTUkBYMK9eyw/cgSl2cyVhTGcWpOJoj5Mel1kZCTp6elERUUNEY4WC1RVcftXv+JoSAiCXE5iRQVP5Vyk1wQ6jYY2jYayqCgxnP9xbRwWC+7d3Tj39mJWKGj18bFTWToMDBBdWkpsSQnRdXU4t7WBlzu0i3lCbd7evPv66xjVauafPo1RrebiGEG1rq6uTJo0ieTkZAzNzWzbtw+TUknK3busOHTInmBISxPDnkexADU2NnLlyhU762hgYCAzMzKIO3MG+Y9+BMPbJ0dDELDrFzDr54/8tUeSRQUFogpKp4OFC+HoUbGZa9KkkTZANzcx/HrbNsx37nBv4kQuzMuky9V67tmcrw4yGVNmzGBGWhqew4hIvV7PBx98QGtrK6GhoWzatImd27dTU1eHW1cXL3/0EZ6AIJPR4OhIflLSiJBqADfHTiaH3OJ6VTr9BkdCqqupDQ5GkMsJ0GhYt3s3XleuANCycCHvpqZK+WQKoxGf1laarBbdyLIyVhw5gsdo5Iu3N6xZA5MnD9XRFxfD0qXSPro5ZQrHli8HmYyU27dZfuQIckGgz8mJG7/+NVc629HLxWeDc28PNcFNfHXfNRKzi8c+cGolGGzIuoULxZwrG4uUXq+ntbWV5uZmmpubaWlpoaWlZUSeoh2sx0luNhNfXo7n9Olc7e4eek4YDDx94gST09KQvfWWuAgkCGLA+Y9/LL7HN78Jf/2reM/cu5eaTz5h67x5mFQqpl6/ztLjx0cSbiqVeP5897vQ3g6//z289RYDgsD1adO4NHcuplEU0t4uLryWnY3q8GG+mD+fnJkzAbivTSIvcw0/DJDxig84DntU9ff3U1JSQmFh4YiWUplMRlJSEpMmTSIiIkIKBRcEgZs3b3LmzBkMVgV0VlYWGRkZoweHV1fD2rW0lZXx6Qsv0G3zfFCpVDzzzDMkJiaOfSwYJ4vGMY5xjGMcT45xssgGo5FF1dXV7Ny5E71eT0BAAAEBAVJQNcD06dNZsGABKpWKjo4O9u7dS0NDAzKZjAULFpCWljZCNdHT00NeXh43btyQFCSenp5kZGSQkpIiZVdYLBa2bt1KVVUV7u7u0qBs1apVtLe3SwRIeno6CxYsoK2tjdzcXO7evSsNxjw8PNAP9DKgN+Gl0/H81q14dnTQ5+zM21/7Gr2urqTl5rLISjoBNPv6snvjRto1GlQGA88cOkRUWRmfvvgiDYGBeLa3s27fPnZt3DhiUO3Q349nRwctfn5Yxpj8u3R1MfH+/aHwXUGAb3xDnETbvKaiooKTJ0/SbJNnMIjgqiqe27EDB1dXcfKhUon2iq99bdTJX3FxMQcPHsRgMODu6sqihw85p1KJE1/rgFahUCAIAhaLBRVm5lw4S4fajetpaZKCyKmvj9WnPyNkYyUPhRiK8hMpCo+zDx92dCQwMBCZTEZTU9MQ2YU4cAwLC5MsXWPmFQyitpbe334Tpw8PIzdYL9XJ0Jchoz/Xn4EmMdB6tK/hZMZYcHNzk+xter3eTo1gi8H8Bk9PT6qrqykuLpZCrm0/+4CNOs3R0ZG0tDRmzJgxImz9xo0bHD9+HBBVeatWrRpVjTS0K0aSRbbWUDcXF7aUlKB9/30sMhnnFiwgx7q6H1JdTYuPDwPOzsQVFbF+zx7k1ltfh4cH2TNncmfyZOk4Bjc0MLuykmAXF0ojIyny9KTUYsFgo+pQq9WYzWbMZjOJiYmsXbtWutYtFgtFRUXk5uZKliAQbWzeGg3GqirampvptAZGjwXH/n407Tq89QNodB00uLhQEh+PymAgMT+fu5Mno9br+cr77+NjS0SqVJgjI6maPZvihASKjUY6h5ECvgoFzv39NAH9wwg9t85OaTIyIzeXxTk51EdGcikxkZLBKnErZILAzEuXmH3pEkpXM3wLWBcJ4R+C21NjfrbhaKeXl/rfYdnX32NCgRenFi0SJ+P19WzYswePzk763OG/TwaiqX+J7ny1RID4+vqSnp5OcnLy0DkkCOT//OccBCwKBbFmM2u/9S1U5eVQVERbURFn+roo9vQZmzD6sjY4QcDRaMS7qYmgujq8IyLwPnsWTWsrHh0d4jmmkINZPG9uTpnCsRUrxDD50lIexsRI9zxbR6IttFot/m5uPCgtRZDLmX3xInOGqSN57TWRaB9r37a3k5uby+3bt6WJrLe3NxkJCUz8wx9Qnj499mcchCPw9pvw0u/H/JUxyaKqKsjMhLo6UUX0xReixSohYSRZFRkJTz2FYedObqakkJOZQa+b9Tljczw0ajWpc+eSMnnyqIsxgiCwZ88eiouLcXNz45VXXuH4sWM8LC3Fsb+fFz7+GIu/PwW/+x0FxcW025A3SqOR0OpqDEFB1NoQrgAqvR6jlZhLUcCSt95BZSXZBxwdefuNN+wm8nKTCYtSiVqvZ1FODpOLi5HZZJ2NgEolNn1t3Ciqxv78Z+lHV1NTOfm0uDgx7do1lnz+OX1OTuSlpXF9xgyJHNar+sm6eJl5X1y1X5RxdBRr623h6gI9NoHWP/yhSLQ8TtMZ4qJXS0uLSCLdvMnDoiLa3d2/lIR1dXUlSRAI3LYN36YmfBYtQvnhh6K9EuDtt8VxgSCI6iqbRYrChAT2rl8PMhnzzpxhZk4O/D4U1p2AN74Lg+MZf3/o7KRLqeRqWho3UlMli7ujoyN6vX6ElXfqjRs8feIEOxZv5tDyVaQ0ibbpaalpLFm08EtVsAaDgbKyMu7fv09RUZHd+zs4OBAbG0t8fDzR0dGo1Wo6Ozs5duyY9Nz19/dn5cqVdvY1m50N3/wmHfv28cmLL9I5bPyQnp7O/Pnzx1x4GSeLxjGOcYxjHE+KcbLIBsPJorKyMvbs2YPRaMTX1xe9Xi+pd1QqFZs2bZIaLyoqKti3bx/9/f04Ozuzdu1a6WeD6OjoICcnh9u3b0tkjq+vL5mZmSQnJ494wJ89e5acnByJPDIajUyfPh2lUkmuNVtnzpw5zJo1y24A09PTw7Vr17h69aqUtSKzWEjLzWVmTg5OfX3s3bCBooQEtM3NvPbee5IdrDAhgUOrVmFUq/HsaGfjzl34tLWx69lnKYuKwrm3lw07d7J340Z6bXNeBIG0GzeYd+oUyqlTEc6epaK5mTMffkijSjXmwFHd30+SUkniCy8QERmJXC6noKCAs2fP2udDjFJBPeX2bZYcP44iMFAMR/2S/JvWlhZ2v/cebSYTSqORRSdPUrxoEaXDJhqeve3MOnORMwsXSrYdmcXClJs3CdA2UJwUT3l3JGa5DUGkUDBgPaa2GVIgkgrR0dHExcURExMzsqFuFAi1NXT+5hXcPzqDfDCeKgV6M5WoznugLmh71MsBMKpUdLm7o/P05OKcOZL03sfHB4vFQmdnp529bCwM/zwgTjSjo6MJDg6mo6ODhw8fUlNTM2aGjlqtllqa3GzOm/z8fA4ePIjFYiEyMpINGzaMmb8gkUVffIG7TkdLRQXbenrolsvx6upiy8cf49XeTr+jIwfXrKHUmkEy7do1SqOj6dBoCKqt5YXt21H5+6OLiyM7KYm7bm5SyG2YVsv0tDT6rWRPRUWFXZCtm5sb8fHxREVFce7cOZqbmwkICODFF1+kr69v1Jax9vZ2u/cYDpXRiHdrK97WanhNWxveOh3ebW049fVJq+aF8fHs3bgRgNSHD7lq/Xzr3N1JDA8Xg11zc+HkSfsgXKUSITCQZq2WYo2GkrCwIRuGLQQB195eelxc7K41985OZIjWxcHfiy0uxuDgINlLAFz6+1l54AAxpaUwGfghMOOrEPx7UDyiKtoGZiz8gqPUf/hnvv+7Gg6vWkufiwvOvb2s27eP8MpKsar6p1D6raXE3PgK927lSypPV1dXUlNTmTp1qnSdPfzd79jb04NJpSLQYCA8K4uCwsIR+TOD8LEG+xrVamqCgtDbKAURBJz6+5GbzQw4OT1S3Sc3m/Fqb8e7vR2v1la8dToUZiPnn5prR7L7NTTQ7OeHIJfjYLGgl8tRqVQEBgZSW1s76jU6/8wZMnNy7P/x/ffh1VcfuX97e3u5evUq169fl0hdNzc30hwcmPrjH+HQ+QiVyCC+vhH+slUkNYZhVLKopQVmzoSSEtEifOmSSBDFx4stZ7aYOpW+7m6uBgZyNTV11ArzSHd3UpcsISY29pET9wsXLnDx4kUUCgUvvvgi13NzuVdQgMJkIjE/n9qwMNptlEhKs5nYoiISCwqIsVhQFxYC0KzVcnjDBuptFXUWCzOzs5l77px0fQoyGds3b6Z8lFzCKB8fliuVePzkJyJJNhzf/a5IbOzcKbWc2UEmIzszky/mzwcgPSeH1KtXyc3I4Mb0aZgV4nmobW5m5uXLJBbkoxDE55btezD8/uzmJgYpg6hM275dDPp/UnR10f/mm5xpaOD2lCmASHQ7GY0icfQYkFksaAwGtAEB+FZXo718Gd/KSrzb2lAMvwbCwshbsoRT1uyn1QcOMKHgPuyeAvNPwitfhUOHaPH25kpmJvcmTpSsslqtVhpztV+8yKdffEHPsGfOhbDZPJwyhx/5w6Tyq5w9dRKAyZMns2zZsi9VwQ6io6ODDz/8kJ6enhHPUaVSSVRUFPHx8cTExFBaWsqpU6fo7+9HLpeTmZnJ7NmzR19A+eADur7/fT7ZvFnKyxraNWGsXbtWbEMchnGyaBzjGMc4xvGkGCeLbGBLFtXX17N//37MZrNd0xCItrNXX30VNzc3BEEgNzeXs2fPIggCAQEBbNiwAQ+blcXBFqn79+9Lg4Xg4GBmzpxJ7BgD3uLiYnZb644Htyk4OBitVstt62By0aJFpKWljfpZ6urq2L59OwMDA3Y5LUqjkZDqaiqiopCbzbz6/vsENDYiyGRcyMriktUWEV5Tzrqd+3AaGOCzNau5lzwBlcHAis8+4+jKlRhsLA8uPT08t28f/lVVYu34lSvg48O9117js4AABLmc2KIi1Ho9ZTEx9Ds5jUkeDW9yUhiNyAQBk1qNU18fCQUF3Jk8WRr4ORuNrF+/nrAva9YqKYGvfpWBK1c4uGaNVNc9aO17FNw7O3Eb6KLeL0iqZQbw7OjAy92dgYAAGoatFCuVSiZam8QiIiIeqZixhbm2gvZfP4fm4ytDJNFk6Ml0xOGcB6qCR6xIjwaZDJYvx/L22xy/dUtSxS1atIjU1FT6+vqGrG42XxUVFXYKoS+Dg4MDHh4eKJVK+vv76ezsHJUgkcvlTJw4kdmzZ0uqqvLycnbv3o3RaCQwMJDNmzcPBaSCqEbYs4faTz4h5P59OoGewEC2P/cc/c7OaJub2bJ1K249PTRrtezZuBGdtzdKo5Glx49zY/586lxd8XJy4pVVq+j38CD7yhW7EOGQkBD8/PxobGy0UwKBSK7Fx8cTFxeHu7s7bW1tnDp1iqamJhQKBR4eHnR1ddlZD4ZDKQi49/djMZvpdHaW7EtunZ2k5eUx9dYtHB6RU9Wq9eH9V7+CwcGBSYX3KUyYgAHISE1lQUgIFBYOfRUUiN9tQvCHoys4mINr1lD1CGWbo0rFgMFgd60qDQbiq6qY3NdH2KlT1Gi1HFy7lm4bAjCispLln32GV08HbAG+GgRx74PH02P+reE4zB3+5/bveeuFS+RlLKcxIACZxcKiU6eYcfUqMqDHCy7+Qkvys4epKTJz7do1uq0TX5VKxZQpU0hNTcVgMHDx448pHBgY9b6jMJnQtLXRqtWKKq9hxLRjfz8xDx8SW1JCVGkpDmYDPb5KXOuNdLu7S7Y226BtnUbzWDZRt64ukvLz0avV3LVmPzkYDOjVaslaotfrefDgARUVFUOTTUFA29xM6tWrJBYW4tTfD2q1SMQ8Rmi8Xq/n5s2b5OXlSfvM0cGBaQUFpB48iOtwEmc4MqbB/iMwrP1wBFnU1QVz54oKmdBQMbQdRNJokKSwonPaNK74+HBz6tQR+VIKi4WJQUGkPfPMiPyX0VBUVMSePXsAWLFiBRXFxdwvLh5xbJVKJbFaLYmffUbM2bOoBzPv2tqk5r5Wb2/+9cYbWGwUa4PvEf3wIVkXLhAsq+P8C89ySRVrtx0OJhMLZ85k8t//juzEidE39utfh3/8Q3xPk0nM7Pnb36SwbwG4MGcOl7KyAJh+9SompVI6XwDqAg0MeNTx9tcO4tpmv19xdYXeHnvZmgxwsFEZBQWJJPMY5QSPgnDyJA9+9ztOTZ8uZalNuXWLKcnJ7Ndq6RjFbufv709ISAhms5nWhgaa6+oYGIOAkZvNeLe1ic1sJhO+3/0uvnFxaDQazvzud+QZjShMJp7bto3wuipwUVHt7s+VzEyKbVSQYS0tZCxZQszTTyO7cUPMQjp+HINazY5Nm6i2Ib5lKge+8Y1voHEXP8/t27c5evQogiCQnJzMM888M7pVbBR0dHTw8ccf09XVhUajISoqitLSUrusycHG04iICGpqanj48CEgPntWrlw5OrFz7Rq9mzfz8aJFtFkbYwdt566urqxbt45QmyY+GCeLxjGOcYxjHE+OcbLIBoNk0ZUrVzhz5gyCIIwgLwICAtiyZQtOTk4YDAaOHDkitWWlpKSwZMkSSQlUW1tLdnY2xcVDWQFRUVHMnDmTsLCwMVdFdTod7733Hnq9Hh8fH1pbW3F2diY4OJiSkhJkMhnLly9n8uTJo76+qqqKnTt3YjAYCK6vYdO2nZRHRnIlM5MGm1BV36YmVhw+jE9rK4dWr5YGVtPv5rH48GnkFgtnFi3kSnoGWCyk3LrFnSlT7Kxi4eXlbNm/H3lfnxi2mpsLERHcefZZDsfGgkzG5Js3WX7smFQT3uHhQU5mJkUzZjBm1KYg4NTXJxJLcjl+jY1s2L0bL4OBbrmcvevXU2szEEpKSuKZZ54ZScoYDPCHP8Cvfy1mPjg5YfnZz9gbFkZxSYn0a8EN1dT5Btk3vY1iQfFubcW1u5tuX190w2xevr6+aLVaioqKMJvNREZGsnHjRrtK7LEwUFNAx6+fxfeTu8NIIjecznugyK995OtHQKGAl14SJx1W4kUQBE6fPk1eXh4wuiptEAaDgQ8++ICWlhb8/f2ZN28ePT09dHZ20tLSQkNDw5cSJF8GDw8Ppk6dSlJSEt3d3ezZs4f+/n58fHx4bsUKPE6fFlfaz58HQaAWCAHup6RwdNkyDEolgXV1bN6+HWejkcKkJD5bsgSDgwMeHR2sO3WKy1/7GsVtbTg5ObFy5UoePHgwIjgdsBu4gzhI12q1ODk5MTAwICmFjKM17VghFwS8envxbm5G09QkKoWsKiH3ri7p/O9zdua61TbSa7WNOABT/fxIjY/H/f33Yf9+iezRq9V88JWv0KrVElJdTZ+TE21aLeEVFWzZtm3UFi9AJA9iYiAwUHyv6mqoqMAil3PomWd4YCVYZYLAzMhICru7R2RqDcJJqcRkMEhtZyCSKLHl5cQUFNDk50fOzJmSpW7Qmjbr8mVUfib4AbD0eQj5CygfL8uomEZeaP8LP3hxH4IiRarcnnTnDsuOHZPUkH0e0PO1dXh/7c88aGsjJyfnSwlgmcVCWEWFWG/v64tuWA6T0mhk8q1bJOXnE1JbO3IfBwUhnD1D//4Pcf7pnxDALjfFIpPR5e5ORUQEN6ZPpz4wcCiI2SYY/1HbJ8jlyGQyUlJSSE5OxsHBgZqaGrLPnqXXtoXQbCa6tJTkBw+I6+pCffWqeC9+DJhMJqmBc9BSqgRSrl8n48oVvIZdF+LGIRIPflrYux9mz5Z+ZEcW+fjAkiXi9avVQna2eE5OmiSSSFa0+PmRM2sW9xISRjRtOhsHSE2exNTly3F5TFttS0sLH3zwAQaDgYCAADp0OvptiFil0UisTkfiw4fEZGejfgQpbtBo+PvLL0skSER5OXO++IKb06dzb+JE6Tj6q+tp1AfYPS8i6upYGRKCx+9+Z2ehssO6dbBrl3i/vndPrEq/eVP6saBScWbOHHKtdlq/xkaafX2lv9uq6aEuoZvfvF9I/L7L0j3miZCVBYcO2eUTPRY6Omh/802O9/dTZlVT+bS0sLSsjPxNm7hhk4Ho6+vL4sWLuXfvHvfu3ZPGVIEdHcw6eZLY4mJ6XVzEVjZfX5q1WvG7vz+GMZ6fCoUCjUaDvrGRLoUClcFA2pUrVERG2o0NElxdyfj4Y4Lz88WxS0QElJUBYJbL2f70c/z65R8zuechSRVDoe+enp5885vflFREtirYuLg41q5d+9iLQK2trXzyySf09nU+HMUAAQAASURBVPYSEhLC5s2b6ejooLCwkKKiIpqGLTZpNBq6u7ul501qaipz584dqbptbqb/uef4KDaWVithpDIYMKrVyOVy5s+fT1xcHE1NTTQ0NFBQUMA3v/nNcbJoHOMYxzjG8dgYJ4tsMEgW/eAHP8BxWE4BQHh4OBs3bsTBwQGdTseePXtobm5GLpezePFipllrcsvLy8nOzqayslJ6bUJCAjNnziTwSxpwjEYjH330EY2NjXh6ekpWieDgYGpra5HL5axevZqkpKRRX19aWsqePXswmUxEtFew8V+7xBpawCyT8d7rr9M8zAsvDS5MJhaf+ZzpV8XB6tX0VE4uEtUAthkm0mfKz2fd4cPIDAZx9fLiRZg8mZtr1nDMOrGbdv06S06cGDGIHfjHP7gQHc3169cfadEBQBDwbWpi0oMHJDx4gJdcDjt2cC8wkGPHjkkDKgcHB9asWUPMYAVyTo6Y5VFQIP7/okV0/OEPHL9/fyiXZ5AQGqPSGgRcjT14NnbQ7ulpZ70bK3+ooqKCXbt2YTQaCQsLY9OmTTiMEj4L0FFzjd5fPUfAJw+RD/IQU6An0xvnL9yQF1Q+et8Mh6OjuDL9058OZT/Y7Ur7wO/BvKvRCKO2tjbef/999Ho9U6dOZdmyZSN+p729nbt371JQUDBigq5Wq5HJZI/V7Abi8TPq9VgAtV7PjGvXCKyvF8O4Y2PRzZtH6E9/yk9+9COUajVhlZVs2rkTtZsbFyZMGFLFVVSwprycy9/8JtcKCqQQ7iqbNjilUjmC6FKr1VgslkcTYDYEYmRZGbHFxXhbrWOenZ0jm6oiIyEqyv57ZCT4+2OyWLh37x65ubkSSSOXy0nWakkfGMB/xw6E27fZv3o1BUlJuHV1EVBfT0l8PG5dXbz+7ru49PaKk/egIJidBRMnDrWPRUSMOAfMFRXs3bWLEus1ozAaeXbHDu6lpIih0rbtUqPYD93d3HA0Guns6UFv896DisVODw874sWlt5flR44QW1yMbCHwpg9MeRe8Vo+9j23QzQAvWz4m6vefsOKonLMLFiLI5QTW1bF+zx48rKSDIJNRHhXBtdVrqXRzwzCKdUthtfu1+vhgGTYBlZvNhOt0+Gq13BEEBqyh91u2bcO1ZwxKOzpaJEB++lPRAubkJJJyZjMtWi1nVy+hJCCcQRopvrCQ2Rcv4tfURJe7OycXL6Y4IQGlwUDY4L7z8hpSsIwChUKBl5cXfW1t9AnCiPuWymAgTqcj+RvfIDo+/rHVD4IgUFRURE5ODnV1dYBIWCXl55OZk4P/sOB75IAFkeT4wx/EinOZbIgsqqgg+P/9P5GEcHMTCSN3d5g2TSKKaoODuTxrFiVxcSO2R6NvI332HCYvWPH4n6Gri8q8PPZevcrAKM8U38ZGZl++TExJCerhpK9CAXPmiGHhcXEQHU3Pvn28LwhS0Pz0uDgWv/UW8uxsQAxKvzxzJncnT0YYZpHOunSBrOpryMoeER4+dy4Mqo1+8xsx1Nnm3iOo1ZyYP58bM2aMeGlMSQkzL18mtKbG/gceHmIQtEwm2gSHqwttbWcgtqydPy/eK54A5qNHyX37bS5OnYpJpUJhMjE7L4/gp5/mgMlEnzWHSqFQ8PTTTzN1wgRR9Xb0KJ2nT3MlPJxb1teC1T6XnU3ygweidtdigalTEU6epEulEjORbt2i5cABmj08aPH1xfjIdkMBjTvEJqUTERGBtrAQzzfeQNbQIP4YOJG5hO98968MRMXwowB42RvOnz4pNXWKu9ODr371q9J4sKSkhL1792I2m5+4tr6xsZFPP/2UgYEBIiIiePbZZyWySafTUVQkNqvVDD+mVri5ufHMM88QaS0dkGAyMfCjH/FBby9tVtWdWq+3U38PorOzk7/85S/jZNE4xjGOcYzjsTFOFtlgOFmkUCiwWCwIgkBsbCzr1q1DqVTy8OFDDh48yMDAAC4uLqxfv56QkBCKiorIzs6WKtEHLTeZmZmPVWsKcOTIEW7fvo2joyMGgwGLxYKXlxft7e0olUrWr18/RIYMQ2FhIfv378disRCjamT9zz+wq6a/kpHBmYULURkMrN27l7z0dCoiI6XJoUd7O1kXLzLh/n2KE+PZv3rtiMrswf+OeviQTXv3ojAaxQnpiRMwbx7Xli3jc6sNIjUvj0UnT9qtuPe4unLmZz/jwcCAHUmk0WjIys2lvq2NGzNmPNLC4eniQvLkySQlJeHl5cXBgwcpsVEJRYWFsSE3F9V774n/oNVi+etfyQsP58KFCxiNRmTIiC96QHVQqH32ks1nZIReAFRKJdExMVL+kJ1dygY1NTXs2LEDvV5PUFAQmzdvtssqqq8+ifmXrxK0tU4iiYSp0JsZiMtZR2QF5WN+/tF3iif87nciOfYY7U65ubmctobaPqqNrKSkhF27dvH/2Xvv6Kiuu+v/c6er995Rb/QqJDoYMB3Tm3EhceLyxLGTPH7iJE5xifMkduK4YTDd9G6MKaYJ0QUIdVADod771Pv7445GMyoYJ3nfd63f0l5rlsrcuXPruefss797A8yePZuhZj+K3tDQ0EB2djZZWVmWe6ATHh4eFu8elUqFg4NDn6VqfaGluZm//O//8qtf/YqBJSU89c03GHU6Dsydaxlwjrp8manh4VxdupQTp08/9rq7w7m5GY/qaosyyL22FqNMxoGFCzEolYy5eJFpZ89KgyxrEsj6976UECaTpPIxl42JOTncra7mkpcXxVYd+AEFBbg0NnJz6FBkRiPDrl3j2ujRyIxG1n75JYHdyuVwt4fXfgkvvWpJA7SGXq/nq6++osg8469SqVjm5cWJe/cot7o2Ne3tjEpPZ5SrKx1PPEF+WBh5paWUlJTYnC+1SoWTyURbaytt1gMTkwmZKFpKZEBSZMw6ehR3XR28CDyzEEL/CcrvV8CIiPyZbzlx5p/8+ed3OT11Lu329ti3tDDi2jWKQ0MpDQrq0WbIjEZc6+sxyOU0ubr2el8o9XomOzszeMkS1CFSylpVVRVbP/+cFqMR99paVm/Z0ntyFcDgwfDNN1JaVXo6VUlJnI+IICsszPJ9McHBjPv6KH779tt8VKtWsOHZdVR7exOdm8uSnTsRBYF7ERHsX7gQrUaDXK+3lGR9ryKpe1qkUklISAiDBg0iNjb2sUgXURQpKSkhNTWVArP6AqRyq7EXLxJSXNzVIlo7ci9aBBs2kFNaKpFFS5YQuGuXpCQ6fhy8vWHMGMTmZgoiIjifksKDkBCb7xZMJrz1dxk4byJjRjzXu/JWr4fiYqmsOC8PMT+f8ocPyVYoyAoOpsG9S7UmMxika1AQGHXpEtO//Va6P2fNAk9P+PRTqcTVzw9OnOgqwWps5P6Pf8zO4GDaze170pAhTP3ssy5yx4wyPz82PPtsD4IvtKiIcefOEdp5vLq7lw8eLE2u5OZKaiKzOrkTRrWar556igLrZ70oEp+VhUdDLoMq2nDP7OMZYW8vfV9rH2omkK4TmQyMRqmteP996dnxfV48dXWU/uIXHFUqpSRB875Oa2vj7PTp5FsRHWGBgSyVyVAdOybdI91KG1sdHLg8apSNMberqytjg4IY/JOfoKislM7JyZOSnxNIbebUqYhlZVT5+nJp5Ehy4uJ6JUa6Q6nT4WVu0/0qKvCsrqZ2ymyGvPd7NE5SWy2KItu3b7e59tVqNWvXrsXHrNYrKipi586d6HQ6goKCWL58ea+Ti72htLSUrVu3otPpiIqKYvHixT3uy5aWFgtx1N0zD6TS+fHjx+Pg4EBlZSUVFRVUVFRQXVmJsY/uvEIQiBRF7O7dY862bf1kUT/60Y9+9OOx0U8WWcGaLBowYIBlwNtZoy6TyWwivwMDA1mwYAElJSVcvHjRog5QKBQMHTqUpKQkG++i78PNmzc5fPgwAPb29rS1tVnSpVQqFcuXLyekWwe7ExkZGRw8eBBRFIkLlLPgp79Dru2aXa/08WH9889jVCiYdfgwHRoNp6dMkerbm5rQqdWWDpddWxsdGk3PgYl5MOL/8CFrNm+2KJbYsgWWLOHSrFmcGDsWkAw4p548aRlY1Lm6cnzGDO52m0X28/Nj+qhRBD0xjSJ7B/YuWkS7vT12ra3EZWVxPzSUai+vPgkQOzs7YmNj8fT05Pz58xafHYVez9yDB0kYPZqy117jyLlzllh4TXsHerkMo/WMoM1AqxtJZH7PxcWFZcuWWTqN34eysjK2bdtGe3s7vr6+rFi5grLa/ajeepWQLbUIZh5PHAYdY8PRnBQQcnpPIusTAQFSasycOT/sc0B6ejpHjhwBIDExkblz5/Y6oDx//jxnzpxBLpezdu1aAgICvnfd9fX1ZGdnk52d3YM4ApAJAjNaWvA9fpwTw4ZJA8c+zrES0IsijU1N/O1vf2PLnDksP3+eermcr5Yto87TU4pmzs9HPXIkBYLw6DhnMxxaWvCsqelhKu1WV4eyk2T18IABA2iJiuLziAiaBYFId3eWzp6NLCjo0YlBOh3cu2frJ5STI0Vh91GWUubvz6WpU8kKDbVRKwwICqLowQNEYObRo4y4fr3XzwPgZg8//wW8/KqkJEAqK9yyZYtFNWJnZ8fAgQO5fv26xUBZI5eT0tDAsH37UFupIpHLITmZjjlzuDd4MPlmQ3NrTyuZTIaLyYS+0yC7FwgmE2NTUxl34QLKaD382hmm/BPcVzwWwXmSbF4t+YDXf13Gg5DBFlWCNZRaLd5VVdi3tFDt42NDHnRug6VUzvy7fUcHq1atwtcqdrquro4tn35Ko16PS0MDq7dswb2urneT4ORkqv78Z85/9BFZkZGWfYnNzmbcuXP4NjdL6VJ//atETlih3NeXL55/HpNczqzDhxlm9hSr9vRk6+rVNDs7o25vtxg9D7p5k4TMTOrd3anw9ubOoEHoVarvT21DOufe3t74+/vj4eGBu7s7Hh4eODk59UrMlJeXk5aaSlZWluVaDCgtZWxqKjF5eT1LnmJjyfnzn4mbPZsHQKBMJpVTBgdjmjCB7JAQzo8fT3U3zyGVVou7/DpuawYwJ+IvaEQHqKyU7pP8fAsxRH4+FBQgGgyU+/mRHR9Pdlwc9d3PsSgytKqK2+7uGJRKBt26xdxDhxCeeEIiLfLyYMoUKC2F0FA4dUoikQAxP5+rr73GCSs/oJigIJb87/9KClWNBkwmTAYDF//7v/lOobA57t4VFdR4eVk+G1xSwvi0s4TlFXU9UQaEwsnT8Mkn0jVhMlkUP6IgkBsXx5Enn7QQVYLJxKDbtxmbmoo9euxrzW2bXA4LF0JVFZiVor1CIQcEG9USCgW88AJcuwbmsmTGj4cvvpAUc72gY+9evvvqK64lJoIgYNfWxrTLlxFWruRoVZVFkakGnrpxgwjzs6X3bVLAyJHw4ot0zJrFtVu3uHz5Mm3mdtFRo2HMmTMMP3MGVXCwdI6Cg+HAAZrfeovL3t7cGD7cQjI5OToyMDaWm6mptKnV+JaVEZ2bS62XF9VeXtR4evY5AaXW6fDy8MArIgJvb2+cnJz4+uuvae+W0jd37lwGDx4MSKTP9u3b6ejowNfXl5UrVz52mWRxcTHbt2/HYDCQkJDA/Pnz+zTMbm9v586dO9y+fZvy8vI+AyQs+yIIGHU6S9sYdvcu1T4+tDg7o9JqGbVnD5Pv3esni/rRj370ox+PjX6yyAqdZNHOnTvJzc0FutIv9Ho9Bw8etPm/l5cXV65csSSkqdVqRo4cyahRox6749CJiooKNmzYgMFgsCiJ5HI5RqMROzs7Vq5c2WcJ240bNzh69CgAgxNCmf3GWmT5XafVIJezft06qnx8iMjPR9PRYfErGZKezsyvv0anUXBz0DDSxo59ZOS6e20tz2zYgEPnYPfdd+HFF7k4Zw6nzN4VyefPW1Jiyn18OD5zJveDg2061aGhocyYMQPvrCxMU6dyedQoTpnJK0tUdksLGI20enqS+bvfcVMu71Hbbw2l0YhdU5ONisDBwYHWzhnNnkIhQDLtNXSTkqu0WgIePqQkLAyTIFi8q9RqNfPmzSOmW3x4X6isrGTr1q20trbioqvhmY8349wglQGYhoNubDyaEx2QU/A9a+qG2FjYsAHGjPlhn+uGzMxMDhw48EgfBlEU2b17N7m5uTg5ObFu3bpek1b6QidxlHXjBuXdPFAcmpuJKSzEOTSUwuBg7jc19d4hFkVa6+p4/x//4P3nnkNpb0+Dm9tjkQwyoxH3ujoCHzxgQGGhhSBS63TSgCskpG91kIsLBoOBzZs3U1paiqenJ88++6ztTHJzs6QQsCaEcnMloqivtDmlEqKiukrGOl9RUWBvz4MHD9iyZUuPkjhfX19WjRmD/X/9l1Q+8ii42sGrv6Bj3QtsOnDAcu90lk3orEpUhg8fzhNPPCGde1GUfFMOHZJed+7YrjchAeO8eTxITiZPFMnLz+/h+eTU0YHQ0SGV8HQ7R0qtlnHnz5N0+SKyZcBrT0DsF6DqffDS2trK5cuXycrK6vE9nXAwK8HKAwIsseYgmVeHFRUR+eABUSNHYvfLX3Lz3j0uX75sabcB5EYj8ydPJt5sIgxSycbWTz+ltqMDx+ZmVm3dindVlaS+MM/2V3l7c278eLLj4mxJoilT8P3nP+H27a6NHDwYbt3qse0WxafJxI/++U88zN5B9a6ubFu1ijoPD1QdHejM11xQdQYzjx/Eu9BEo4srG599lhYnJwIePCDl/HkaXV2p9fDgYUAANX5+aM3qmr6gUChwd3e3eXWSSU5OTtTX13Np61Zu1tRYBtye1dUkXbzIwDt3pKQqs3ImR6EgzmCQyKIvvsAQGcnNX/6SC0lJNHdLxXJpqMdLloYmppyJ5U/gntfeRQ51I3tF6CKI4uOpt/LXUQgCvi4ulJpLtif6+JBWUoJWoyEqL4/Fu3YhDwqS7sfMTJg2TUpoi4mRVCvmQbPu2DGObt3KHau23UWt5oUPP0RdUSGpW2QyqvR6Dq1ZQ1m3NjC4uJg1W7bQ7OjIxeRk0ocOtRyvoPv3GX/uHAPqChBed4TPVVBcJ31w2DBM6elkxcdzYVwK1d7myQhRJOLePWYdPWqrbFOpJD+6devgjTe6YuKDgqRExB+CyEh44gnYuFEisO3spJK4l1+2EOFiVRU5b7zBcRcXyzkcdOsWo/39ORwXR3mnz5kokpiRwdxDh5D3phhVqaQyv5dfhnnzehDter2e9PR00tLSLGS/RqtlVFoao+7dozUoiDRvbzIGDrQcV6+qKpJu3iTx/feRjx3Lw1272HTnDgalkiHp6cw+fBhxAKz8y1bueE/nOXkVCR3V1NdUU1VYSG1rK6bHTDYDbMgd62e7p6cnq1atwvkxk9/u3r3Lzp07MZlMDBkyhNmzZwNS6XenUqjz1fp9ZvNIk2NhhYUkZmQQXljIxmefpdbTE0SREVeuUOXrS0loaH8ZWj/60Y9+9OMHo58sskL3MrSBAwcyb948amtr2bVrFzU1NcjlciIiInjw4IFlFszBwYExY8YwfPjwPr1pHoWOjg4+//xz6uvrLURRJxwdHVm1alWfCTDW5UQjhg9lxqkfIXxQbrPMySlTSEtORtPWhnNTE1W+vsiMRp44fpwR165hUoJMD1dGjODbGTP6lKLbtbXx/Pr1uDU2SoOlF1+EN9/k/NKlnDEPssafOcP4c+coDgnh+MyZVFmpcARBICYmhmnTpuHq6gp//CPa3/+eI3PnkmUuARh06xZPHj3apeyIjoZ9+8Ds0dTS0kJ2dja3bt2ivNx2P/8dCJgIrnqIc3kd2XFxGJVK3B0cGDd1KidPnqS1tdXG7Hzs2LFMmjTpkRG67TRyvfiPOP1pG985L6fZ2Rm3ujpW3tyC47BIVN/UQt4PLDcbMwa+/FI6Lv8hPMqHQRRFjEYjzc3NbN26lfr6ery9vZk4cSJ6vR6dTodWq7W8Ov+2/L+1FW19PTqtFq1cblOa9EPR2dHt4SnWi9+UYDQy6NYtRty4gV9rK0JfZFBwcK/eTp0QRZFDhw5x+/ZtNGo1zw0ahEdJiS0x1L0czBqOjj0JodhY6bv7+F6DwcCXX35JWVkZ3t7edHR02CillEolQ4YMYXR0NG6/+Q3s3i2V5/SCVnt7Nj7/HHVuvZtKy+Vyli5dSkQfagIAioq6iKMLF2wJsIAAxDlzqJk6lTx3d/ILCnp4bmja2xFBUgFYkRYyg4H47GyGFN8kZGUlspV/A8/nQRCorKzk8uXL3L17t+dgSRRxbmrCpb6eejc3KYbear0OLS2EleRTP+ouk6sHEPblNUl9AZKny49+hOnFF8lubOTid99R0dneiiJBXl5MmT2boKAgBEGgpaWFbZ99RmVLC3Ztbazctg3/sjIqfX05n5JCtpV3XGxTE+Pt7PD505+kUqDDh2H5cum75XLpuCkUksJDqbScM1EQ2LJ6NcVhYfgbjTzzpz9ZBtstjo5sXbWKKh8flFotBqVSUkP51dG87AjykiK8rvrSULAWvUpNfGYmC/fts1H96BUKMgYO5E5iYq/leo9CJ5Hk4eGBQ1sbDRcuUOLjYyHknJqaGHPpEkNv3ECt05EDxAEFv/oVD6OjuZiba1FFdSK4uJjh6RdJuHOvb0NmmQwxNJSKIUPIiowk296eeisCQqFQEBUVRVxcHK6urmzevBm9Xs9ge3vuVVbS4uRE0P37rNq6FaVCIRkaFxVJhtuNjTBkiESyeHmBKFL3/vvsKi6myscHQRQtSqq1mzcTXFQEw4djcnTkotHIuQkTMMrlNmouh+ZmXvj0U8lDTC4HjYYmmYyLY8faePMENJcx/vAZIu7eRfAGY3Ist4vtuDh2LHVWEeiCycTcAwcYZE3UajTw4x/Da69BRYWkKiopkf6vUUNDt1JJLy+JFLOGq6u0fHcPqnnzoKZG8uACidTZsIHGW7c49u235Jt9ctxra5mZnk7JhAmkKhSW4+TY3MyyHTvw7/5MVqth7Fh45RWp/O8xiBmj0UhGRgapqanU1dVZjoe10jnY35+xw4YR+dJLCGlp0j4lJMD16+RFR7NryRJEmYyJ333HuPPn0b+qRnzrCirHQbbfVV9P7ZtvUn32rGSuHRJCVUwMdVptnyoeQRAICAjAz88POzs7rl+/TltbG66urqxevdriXfgoGAwGLl++zGlzqbSjoyNarbbXAAUB8NDr8auuxufePbwePCAvMpL04cNBJutxbOQmE2EyGWUGA21m8n/shQuIcjnfJCT0k0X96Ec/+tGPH4R+ssgKvRlcu7i40NLSgtFo7GGA6+rqytixYxk8ePBjp2J0h7Vqo7P0rBOurq6sWrUKd/eeA73uRsVjx45lsmwXwuQvbJYrCQlh09NPgyCg7uhAq9Fg39rKoj17CC0uRi+T0erszP5583gQGmr5nF1bm0UGb43wggKSUlMJGzoU3n6bsy+8wHmzomji6dN41tRwcto0SfVhhkwQGDxkCJMnT5Y8fvR6xKlTqc/IYNfSpVT5+NiQV5Zh3+LFkiy+u6eQGc0XL5Lz17+S4e7Ow4CAx1KZWEOh0xEp3CO6ppDIbdnYt7aBqyvlf/oTu3Q6GhsbUalUPPHEE9y4caNHOVVYWBgLFy7soSKr4wHXCn9N9O+2EfKVCcEgqQS2rFtDg70bzq0trNmwUSpreVzMmiWVLTxmB89gMNiSNt3InO5/19XVcf/+fURRRKlUYm9vb3nvh/gKPS5USiUIgo26xQJRxLmxEZVOR6OLi2Vg2idZZPU5BAG36mp+fPgwqvBwyVB3xAhITJSIIblcGrB0vgTB9rrp5ieU9uABJ11dEUwmVm7bxoDCPsg9b+/eSaF/4bo8cuQI6enp2NnZERkZSUZGBhqNhpSUFDIyMiwKIUEQiI2NZczw4QSuXw8ffWRjXtvk5MT655+XyBQrKBUK9AYDarWa5cuX94hXfiTq6uDrryXi6PhxWx8SJyeYMYPWJ58kPzyc/NJSCgoKbAZAffnuaNrb8WsrQxviQY3WA53eVpElmEy4NDTg2NxMo6trD7P9zvXatbWxZOdOQu7fp9kL3rgH41Q/ZeG2RGR/+ZtUggQSabN8OeKrr1LQ1saBw4dps7qmAgICSEpKIiYmBq1Wy/bPP+dhQwNKnQ7/sjJKrNrKuKwsybi6qkoazN+9C6dPSyqxv/4V5s6ViKLo6K7vB7DTQLtUytfo7MynL7xAh50dKXo9k/70J8ti7XZ2bF+xgoeBgSj0ekRBwKhQEKTRMO/lNdTY5ZN96wJ39msxyeWMunSJJ8xqEwGoC4SqKPDJA4cqJfnR0dxJTOReRIQNeevS0ICLXo/M3p4me3vqBYFHdg6syBK5wcCAggKcL11idnExr730Eo5W5IfMaCQxI4OkS5ckdVYnlErJ28vBAeztER0cqPDxISswkGxPT+qtiCaF0SilmNXUEFlXh8popF2h4IshQ6izsyO4spIWhYI6Dw+8Kyt5+ssvsevokEzfRVHyBTKZJKPthAQLgZen13Ng8mTp2djejkGpRKdQkHLuHJPOnAEPD6p8fDiYnGxJExWMRktym2A08tyGDfiXlUn3wIABUFQITdK92OzoSNrYsVwfPtxCGvlWluNXXca9oAjLtSwzGjHJ5Sh0OpZ+9RXhZm8xERC8vKQ2RqmUSJ2HD6V96iQhu8PODqzLqOztpTTQvpSOILWHjo7Q0oJJFLk6ahTfTZokhV8YjYxNTSXk/n0OzZnTdf+ZTIy+fJmpJ08i6+xKCoJE3ri4SNth7Xdofe084ndRqyXX05PTEydKChkzBJOJ6OJipl29iltzs7SP9fVdnwPaVRqujhjJuamTAJh34ACDbt8GB8DeHZD3LCXV6aS20/x/g50dFSEh7J41i+ZOBdljlHrKDQbi8vIIKS3Fu7YWr5oaRKDC25sKHx8qvLyo8PGh2sOj13ZQodfjU1mJb0WF9Covx6eqCmUvJNLDgAAOz5ljmZBzr63FJJPZ9L0s2yyKjLp8GfW9e0wyE/r9ZFE/+tGPfvTjcdBPFlmhkyzaunUrMpmMu3fv9rqch4cH48aNIyEh4ZHKksfBxYsXOXXqFDKZDJlMZiGiHiVrFkWRU6dOkZaWBpgj0GO1CDHTwIp/0KrVfPLCCzS6ulo6Db7l5SzZuRPXxkb0MhnXRo7k9JQpXQadokhkfj73IiK6YoyNRkIePOB+cHBXVLCTE87XrpFvluzHZGXxICTEEjEMknnsqKgoUqwTQ0pKMA0dQqG7B/sWLqTDzg6HlhYW7d5NyP370jIKBfzlL5JcvbfOWUsLvPkmNdu3kxMdTW5iImWP6SOEKCIYjcTU5DHB4yzeG9qgwjzgXb5cGtz5+NDa2srevXstiXZjx46lqamJO+aZ3s6kKCcnJxYvXkxgYCD3uUn6vTcY+tZxgnZi8SQyjlQgJE2i5btitoybRq2nJ47NzazesgUvq5lfg1yOTq1Gq1ajVanQ2tmhmzED7apV0t/dyJ6+fv8/RfAolUrkcrnFq8bT0xMPDw/UajUqhQL1gweoMzNR3b6NurUVtU6HWqtFFRmJevp01LNnow4MRKXVIuzfD1u28DA/n51Ll9Li5IRCr8e5sdE2xtxkwr2ujiYXF2rb2noni7p14lVaLdF5ecRmZxNx716XSu1R6MWL5m5EBF8tX44okzH92DFGXb0qDagUCmnQplRKpRVqtfS/7iSU9d+Pelktm+7nx5GoKBBFksrLSTMPTpcVFBDV3Iwok1Hk5ESalxcFVvdacHs7Y5qaiL59G+HWLQp8fflq2TKLOTKAX2kpHfb21Lu7Y6fTsbK9HX+1+l/aTos57t27UuT37du2pUMyGcTGYhgxgqKBA8kzGMivq6P5MY1gQRo8uzQ0oOnooNrLy6ZUVKHXM6CmBi8XJXsTS5myP49q3wkW4nnGN98w7Pp1THL450HQDE9hBZ/hcDpd8vgyt50ATJ6MYfVqdly+TJGPj8315ObmxujRo/Hw8GD/7t20dZKbokic2ZPIx5r8AHj1VUntVVoKTz0lebP84hfS9fLzn0ukXmfCmtV1lxUfz95FixCAp7Vagt95x7JKnUrFzpUrKQoORmYwIDeZ0KtUeOv1rHz5ZZy8vblz5gz7z58HYOqJEySlpVkqb8+8bsfOP7ejbgbfPPDNBc9cO4yVsdQoEynzDu1KwTOZCCsqIi4rC7+yMlodHamLiKA2JIR6Dw9qNRoajEbbBDAzqqqq+Pjjj/nZz36Gi4sL6vZ2xly+zPBr17pKl7tBBCr8/MjqxYNIodcTefcu8VlZRN692+WTB5gEga+WL+deZCTODQ3YdXRQ6euLS0MDz2zYgLN16lcvMAkCZydO5IJ5siPo/n0QRR6EhOD/8CHPbNgAwMWxYzk3YQImuRxNeztKnc6GrJx78CCDeykv7I4WBwcujBvH9eHDbUg6TXs7qo4OmtzcUGm1rNi+neDOZ+H/A5T7+XFk9mwLMRZ0/z5TTp7k6qhRFgUwgFttLcu++gqvzjK0/wCMcjkZiYmkjR1riYKXGQyEFhXR5uhIhZ8fIF2jiXfuMDY1Fe/u6ikzOhXVMqORFdu2McBMvv0QlPv6sv755y19IeeGBqnMHUAU8aqqQq9S2RI0jwm7tjb8yssRBUEKGgEmnTxJysWLj70Oo1zOhZQULqSkYJLLpfstLQ0EgdzYWMvx6oTh4UP+uH59P1nUj370ox/9eGz0k0VW6CSLKioqOHbsGPcf0WELCgoiPj6e+Pj4H+TfYo2SkhI2b96MKIo2qqJHGSaKosixY8e4bja4feKJJxg9Ihbm+cNR2874gXnzyDAbMgLEZ2Yy99AhlHo9Zb6+HJw/n2rrMjGTiQnffceF8eNtzGPn7d/PoNxc6u3tufzkk9yMikJvddl0zoh2QtPeTsq1a4x8910UI0Z0bdChQxgXLCAtKYnvJk8GQSCgtJTFu3Z1dez9/WHPHkhK6nXfy3fvJmfXLnL9/S2dyX8H9q2tRJSXM3LePPwXLLAxejUajZw8edISpRsVFUVgYCBnzpxBFMWu+HUBPBJySTlyBtdzanQKiexpj3FAH5mILq8SbasOrVpNm709RQMGoFOrEYxGHFtbMSgU6FSqH1Qe8rhQKpWo1WqJ0FGpLL9b/239//b2dotRuIuLC0899RSenp6oVCoLMXr27FnOnTuHXC7nmYED8T9yRDKyNXuGAJIfyIoVsGyZVPZlNEpqiy1bYP9+m1nvZicndi1ZwsPAQASTiZTz51Hq9WTHx1sGLACNDQ387YMPLGSRQqdjxPXrVHl5URAZidxgQNPRYUtY6nRE5ecTm50tDTb7KNfqjhpPT7547jm0Gg1Dbtxg9pEjvdld/Ufx0N+fL595BqNCwYgrV7g5dCgGpZJxZ88ysRcD20pvby6PGUPGwIGW+8+5oQGVXm9zb9i3tDDz6685N3Ei1d7eOLS0sGrLlp4kx/9hmICcuDiujhjBw77KoR4xe+/Q3ExMXh5R+fmEFRX1mG3XKZUctippHXLjBjOPHUPxKDWF9fbJZByaO5eMQYNAFFHq9ZJ5dC/bJzMaWbh3L3E5Ob2vzKzQAMDdXVJ1tLZKpGJQEJSXg5VBeCcOzpvH7cGDcW1t5Ud796KxGuAaFAr2Ll5MXlQUgtGIWqejw84O14YGVhUU4K5SkebkxEmz6mn+vn0MtCpj0k9MojnCmRZZHS1CLc2yWtpkDZhkoBMcqSeealUiDQ5dg0i5wUDEvXsk3rlDVH6+5Zgb5XIaXF2pc3enxt2dgogISoOCeNDUxMcff8xba9cy78YN4rOyJE+jbvhXCSJrnJ48mdSUFOR6Pb6VlTwMDMS+tZW1GzfiafZ96gttdnbsX7iQAnP55cjLl3FuauKUOS30R599hkEu59C8eZY2KDIvD7nBQK5V6eGwq1eZ1S0hrTe02ttzefRom+SvHul1Wi2rN28msJdAgP8b0KlUnJkwgSujRyPKZKg7Ophy8iSYTJyYMcNyLwgmExPOnCE5NbVLTfRvQqtWc2PYMC6PHm3xRVJ3dDD8+nVGXbmCU3MzInA/JIQLKSmW8wYQk5ND8oULBHQ7bqIgsH/BAjITE1F3dLB248bHa/O6TRykJidzesoUy/kalJHB7YQES0mdR20tDm1tVHh7P1YqWyecGxrwqarCq7qaBjc3yfcMmHn2LCPu3pUmIjonIw0GSf2k10ttiVYr/W1Gpbc3h+fOpcwcPhF+7x6zjhwBQSAjIYFzEydiksv7PYv60Y9+9KMfPxj9ZJEVOsmiN9980yYVKjw8nOHDh9Pc3ExWVhYlJSU2nwsNDSUhIYHY2Ng+o9S7o7m5mc8//5yWlhYbE2Z/f39WrVrVa5mNyWTi8OHD3DabplqizL+cCM+ctVn25qBBHJ4/X/pDFJl8+jRjU1MxKJV8N3Eil0ePtvEPEIxGZh85wrfTp3d1ZoHJJ0+SfPWq1EkJCEB86SUOXrpExpAhPbZPpdUy8bvvGFlcjOz0aYvPECYTvPIKHZ9/zuF588gxd4qG3rjBDOvB3OTJsGOHJLe32uf79++Tc+MGeenpNFoN3gRAqVL1LGWy7oSbTISUlKBXKin7ns6RXC7H3d2dwMBAnJyc0Ol06HQ6KisrLSlScrkctVptUy74n0YnwfM45M73LfevKN9qa2vZsmWL5X5YvXp1VymkKCLevMnOAwfIVyhwbmxk3WefSaoBf3+JHFqxQjLzFQTJUHbLFti2TRog9wGDQsGR2bOlgTpdxutNzs5kx8WRHR9ProMDf/vb3/jNz3/OuOxsRp87x4Vx47gyejRyg4FV168T7OFBqYsL2Xo92S4uNFkRR52D0NjsbKLu3kWt1fa6Le0aDV88/zx1Hh4Et7SwWiZDHhkpmcG6u0vXl8nU9+v73u9l2Vadjs+LimgyGIiws6NGp6PBaCRCo2GZu7s0KOtjvU16Pad0OrKMRrrryUI7Ophz5AjbJk2izsMDp6YmVm/ebDuYlstg4CDpnKnV/5n9am2FykoMtbWUuLqSFR9PbkwM7b2Z5z9GeUcnAisriSkuJqawEI/6esv3iSYTHSYtRoOem0NG8d2UKSAIBD54wOLdu3Fsbn4ssk8UBI7NmMH1kSN7fV9mNOLc1ESDm5vkK3PokFTi8h+CVq3m0x//mAY3Nwbevs38Awds3jfKZBy2IrTs29poc3DAoaWFldu24VNRwbdPPMGVMWMkRcX27X2XTvaBOjc3MhMSyExMtEku61TsJdy5Q3hBQQ8TYxE45+XFxOpq7gNBAJGAE6AHk1ZJpVMoWYHRZIdFUN+p0KAPgkijkcq6nJ27Xi4uoNGQ5ezMXnN7HlBaysPAQFQ6HWs2bZLKwezspOdPZ2pgZCSMGwcKBWUPH7I7IoJGV1eUej2z6+rwamzkiwEDMCoUzDxxgvahQznn4YFJENC0tzPj7FnajUaOz5pl2Wb/0lKe2bsX+Y9/LN03V69KaWtWaHR25tLkSVwfOBCjILXFXlVVJF+4gE9lJVtWr6bNqo3yrqxk3PnzxLlkI6SIoPKBinjYcUW6pzQa6VncnYCLiZF8mToJ1DFj4KWXJHKys9S2UxloXXpbWAgXL5Kfl8exyZMlFTLSxNKw69c5OXUq5Vbplz4VFSzKzMRj5UqplM963d3X39ur2/vN9+5x5dgxrru6diWb6XSMjo5m2OjRkgekIEiG+x98AGblXJmfHxdSUsiJjbPsSmhgIOOysgj929+ke/0Xv8Dwy1+y7cMPKZHJcGpq4rkvvsDZ0ATHU2DkNyBX99xGkCYz3noL3n+fDoWCzc89R4X5XhDMgRfGXkhQwWRCYTCgV6mQGwyMO3cO/4cPaXR1pdrbm+qgIKq8vGjpTkJ3gy8QUVuLV2Eh3rdv41lRgaI3haydnXRfdHRgamnh0qhRnJ04EYNSiVKnY8rJk4y4fp0mR0c++elPqdJq+8mifvSjH/3oxw9CP1lkhe6eRWFhYUyZMqVHClknaZSVlUWplbmtIAiEh4cTHx9PTExM774qSATIli1bKCkpQaPRWMp6/Pz8ePrpp7tKtqxgNBrZv38/2dnZCILA/PnzSUxMhLufQcKPwYovuRcezo4VKxBlMuQGA0t27SLy7l0KwsM5OHduDw8TTCZmHDvG+QkTJFWGefA24soVZpw4gWA0gosLLatWsRGoty4TwlZZJDcaGRgVRdL06Xh6ekJ9PcaJ42koLWPXkiVUe3sjMxqZeewYw27c6FrJ//yP1DmTyzEYDBQWFpKbm0teXp4NMSMzGLCTyWiXyzFZX7omEzKTqaucDmlm0r22FpNajs5NRbvBDq1C1VVe95+E+ZjJRRPuDXU4NDSj6izD0mpRa7VdZVlaLTKTiYvJyVR7e6PQ65nn40P42rWo7O3/7dLG/wQaGxvZsmULdXV1ksn6hAl4f/MNbN8Oubl0qNV88fzz1Hp6EtrRwaqpU5GNHy95aFRWwldfSSTRzZuP/Z0icGnMGE5NnYookxF0/z6L9+/H0axYuuPiwsDGRio0Gnw6Org8ejTfTp8OwMI9e0jIyuqxvrKAALKHDSM7NpYGK/8TuVxORHg4sSEhRLe1ocnJgTt3MN25w/aYGApDQ3FpaOD59esl09pOeHpKHiiJiV0/4+MlT5B/ESaTiW3btlFUVISHhweurq4UFBTg6urKunXrsOtmEGzZP1Hk3r17XLhwoYeptPV+yuVydDodrjodqz//HLe+ykbUSnjxZfjlLyVz3H8Rra2t5Ofnk3PnDoXFxRh7ecSoOzrQtLfT4uhoUyrXGwSTCZVOZ0NiA3h5eRETE0NsbCy+vr4IgsCXXOTXNRv49OkMshOm0GFnh2NzM4t37SKotJR6f/h9Bkxz+h3TTb9AEJEIp5oa2LiR8n37OJeQQF5srOV7PIFhI0eSXVzMg16UCTO+/pqR16713HCZTLo+bt8GDw+pfXv9dWkgumgRLF0Kzz8v+UBZ4X5QEJvWrkWUyVj48CEJVVWSR5QZoiBw7KmnuG4m4x2bm2lxckLd0cGyjAyCJ0xgX2UlWU5OqLRanv7yS/w6DY3d3aUULbVaIhbq6qC2Vtr/2lqoq0Osr0NoldrcSm9vMhMTyUxIsCm10bS3EVGcTfj9OwSW38e1TEShw2Jw/QAIFEAMgIp4P7Ki4sh2i6deZqUgkpuI9HMg3sGfyJoGVLm5Ujx9Tk5PA2YrVEZHs2HxYvRyOT7l5VT6+SEzmaRSo8JCiSB5/nnJ4w0k0uSDD8BoJP2NNzim0WBUKHDXaln8/PN4nDnD5zduUO3tTUhNDdroaCrMZGp0bi5PHj9Og5MTX5rPCYBdays/2boVx4sXJY+iPXskjz0z6tzdSU1O5taQIZZyPfuWamYfPU1UXh4tTk5sWb2aWk9PHJqbic3J4c7AgZZr3MteT0rMSeKPXUP2mSg1Zl6OUN1iezAEAebPhwMHukjX//1f+NnPej94bW3w3Xdw5AgcPUpzUxPHZ8ywGLW7NDQw7fhx7gcHc8VqQklmMDDlzBlGp6VJRMzPfgZ/+MO/3O7V3LlD2pYtZJjPBYBnRwdJyckMnD69a7IuLQ1+9zsptQ7JrH3rjFV411Uy6+IxKr29SXv9F9xpa7UYUgcKAsnbtxOVn4/w4ou0v/MOG999lxqlEu/KStZu3IjGSQvnFkHsThC6nretra22aWRFRdS2tPRacqk0T1J1Kq4Uej1Ld+wgqLSU3WvWUBAYiFwUWeTlRfTw4RAXJ5Gfokh7YSFVN25QXVhIVXU11TodlXZ2vZPpSG2ge2MjXg0NeFdU4FVaind1NR61tT2Ue7UeHhyeM4f7ISEABOuqmHMvB/FWKe9Pe4I/f/RRP1nUj370ox/9eGz0k0VW6CSL/vjHP7JmzZrHepg2NDRYiCPrdK7O1LT4+Hiio6NtCKCTJ0+SlpaGXC63zE55eXmxbt26Xo2y9Xo9e/bs4e7du8jlcp566ikpul1bAiMGwJ2uGd7bAwdyaN48C1H0/Gef4djayvEZM8hMTLQsp9DrLaVmk06dIn3YMMtsuSiTEZeVxcJ9+5CZTNR7efHNihXctY7BFkX8ysqY8c03BDx8SF50NGmTJlFqNRMd5e3NkI8/ok2h4viMGejVajRtbYy5dAnHlhbJn8fFBe28ebT7+VFbW0t9fT2trV0dv87v+qEmwf9p2DvaIfNvpO1hI6ZWKUFn5OXL1Lm7c8+cTNZ5TNUdHcw7cIAYazPbXqALCWHniy9S1NqKQqFgyZIlj06l+r+MluJitm7bRpXRiF1bGyu2bZOk/mo1zJ5N9cKFfFFUhE6nY/Tw4TzR0iIRRN9++2gj1UdBELgXGcneBQvQajQ4NzaydOdO/MrLKUVSKzQCD2Nj2b14MQgCU06eZOyjfB4CAhCnTKFi0SKyNRqys7MtKTsAMpmM8PBwYmNjKS0tJT09HaVCwTMDBuB7964UHZ+RIUVv9+YFJQgQEdGTRBow4LHSfzrbg86Us6tXryKXy3n22Wfx6+Y5ARK5lJuby4ULF6gwD6qtk/oAYmNjqampodrKz2PAgAGMGzWK4A0bED7+uKtMqjuUCnjhJ1Is92N4gYmiSGVlpUQQ3bxJhXU5ohU07e3IjUabMkGQBqhR+fkEl5RI5ssDBz7y+1RaLTql0ubYuri4EBMTQ0xMDNXBJhaJn/LS6+ex0w7rIqi//pph6enolfD+BfActZg1bESNA+Xl5Zw7d468zntWFPGprKTS1xeAkUVFTH/5ZUq9vLh06RI53crPEu7cYd6BAz0jw1UqKXL9/n2YOFEywF6yRHpv926JlJs0qYdf1ncTJ3Jh/Hg07e38uLAQl5AQycet85gD3z31FKnmkjvnxkaaXFxQ6PU8de0a4X/9K9t376ZYJsOhpYVnv/gCt87z4u0tpWIVFkrlLX3B11cy6Y6ORoyMpCDQjetiE4Vlzeit+FOjUxO6qEym7srEb1sZ8cA1Xy8a4gdKMfe9lJjF5WUR1X4Xlb8OghUQnQCJM2DwCgiMk0paO9MGOwmknBzaKyv5fN06GtzccKurk9Ytijy1dy/xnWSxn1+XivGnP4UPPsBQW8ux3/6Wm+b7KRqY9+qraH7/e47fucOVMWNQGo0YlUpMJhMaUWTG/v0k3rlDi6MjH//kJ3R0EiMmE898+SVBn38O06fDuXPSuRVFKr29SU1JISs+3kIsPQjsYP7B08w8KhGKDa6ubFmzhgY3N1waGli9ZQvudXV0aDRcHjWKK6NH02EmiD1qahh3/jwJ9zORNXS7tpwcIWms1N6CpDo6cQJSUmyXe/hQMqU/ckQqBW5vRxQErg8bxukpU9BqNAgmE6MvXcK3ooIT06bRahUqEfjgAfP378fdKqUVkMz7t26V9v0x8eDWLdJ27yZXpbI804Oamxk7aRJRM2Z0lYFfvCiRq1Yk0aZZT/P22jcQw8L4tZeRtW+sQ/7lRumY/uMfpA0YQHp6uqVP5V1ZSfKFC8QPHkzT+++z4aOPaFEqGVBQwLIdO2iOc6b8H89QYZwpEUPl5TT30SY6Njfj0NoqtQfm/sikkycZW1DAkblzuWXVTk9OSmLUhAns37+f3NxcBGC+gwOJd+9KStusLCmRrxe0ODlxcOFCCkJDEUwmPKuraXZ2tlwP3SEzGvGorcWruhqv5iq8/avxTq7CrTmY9MxwTnlFojOrnFLOn6dBq2XelSv9ZFE/+tGPfvTjsdFPFlmhkyyqr6+Xot1/IGpra8nMzCQrK8tmkKZQKIiOjiY+Ph6TycTevXttPufs7MzLL79sU/rWCa1Wy86dOykuLkahULB06VLCw8NBNML/RMM7BYDkt3FqyhQudXr9mEys3biReg8Pjs2Ygc5qVj6opIQHQUEgkzE6LY2CiAiqvb0tRFHg/fvMO3SICm9vzo8fL6VtWJFE9q2tRN29i9xoRKtWo1Op0Lq5oY2NpVWno62trVeJ9n8aCq0eg1LeNWgURbyrqojKy8NB0Yo6To/6qoCqskFS9kydivqNN1AFBKBWq5HJZGRnZ3PgwAGLsfj3opuXSayuFo+cfFIHjQGwJM4BjL1wgUlnziDrPoCMiZFMbidNQm8w9E4E/r9CczMcPCiVA548SbtKZUliUhkMLA8IIGTZMqkcxGQi58ABdmdmArBg3z4SraOeHxed58/qONV4eLBz2TJqPT1R6PXMPXgQ16wsgoBMf38Orl2LQalk+LVrzPz668f3E5LLEYOCqJo8meyBA8kxGqm2NmY2Y9iwYUycONHWN6ytTRq4dpJHnT/7MFjFwUFSHXUnkaxSorKzs9mzZw8AycnJpJqjq+fMmcOQbqWeRqORO3fukJqaSq1Z+aBUKgkPDyc3N9ey3PTp0wkJCWHr1q20tbWh6laq6e/vT9Lo0cSeP4/sj3/sW8WhkMOzz0kz+2bSpBN6vZ6ioiLyc3LIy8qipQ8vKHVHByaZzNb7RxQJrKkhytGRKB8fvB88QDhwAMxm8kVhYRydNcsmShyTCaeWFlocHW1ShBR6PUa53OZ/9vb2BEeFsTe2EOHmdyw44EJerFT6Ouz6dWZ88w0yo5G970PuivGEnFtNUZ6kzBIEgYSEBFKSk/G6do1rH3zAseRkAAbfvMns5mZkr71G3ciRXL5yhRs3blhIOnVHB+POnWNYerptiaO9vTTAbG+HX/1KIlLff1+6Pq5dkwjWd9+VBvtmlalRJmPjs89SFhBAaFERqy9dQpg0CT791Ob4Xpw5k1PmkjmX+noaO8vjjhwhurWVTZMnU+njg3ttLc9u2IB99/JZe3sLIWT5GR0tlW11S5zrOhUmioqKyMzMJCcnB63VvjbWF/O3DzdZDK4BFBiIbLlLXHEmUbfvoirSwaOaW3s5hPtBzBCIHiRtV2QkpogItu/ZQ2FVFXatrRYVxsyvv2ZEb8ouMxo8PdmzYAFl/v4gikzS60mePRvhD3+gIDeXbatX2ywfrdcz68MPcWxpwSiXs+GZZ2xKsZ48coTh8+dLatjMTBg8iFJfPy6MG0e+eeIAID+yg9aABrYv3Y1DhURO13p4sHnNGpqdnXGrq2PN5s24mIkDwwd/RTFsBB1vvcVVrZbLY8ZYEknda2tJOX+egXfuSM+TcEDmCncbpC8LCJBK7nx9pXY0Pd2iHiI93Wb/qvz9OTJjBqVBQQD4P3zIuLNnuZaUREFYmGU5BTD1228ZcfmyROL0FZowZIik4ho1qte3RVHk7o0bXDx8mPtWfZzomhqSZswgeObMroUvXpTam1OngF5IIj9Y7Q4qGdL2/Oxn8Pe/S5/9859peeEFLl++zLVr1yxtnmtdHYkdHTB3LhevXMEkk/XwWbSGe20tfuXl+FRU4GdOJXNUqxFDQtgfE0NmVBQAMpOJ5+bNw2/IEG6lpnL49GlLemBkTQ0L9+7l2JgxlpLR2UeOMLTzXAiC5Gsmk0mkvVV/ySQI7HvqKbLj41Ho9azYuxePigqqPTyo8vKi2tubKm9vqr28eqgtOyE3GHCvrcWuvZ0qX186zMv1exb1ox/96Ec/fij6ySIrdJJFjY2NvaaQ/RBUVVVZiKO6R0Skq9VqXnnllV5LTdrb29mxYwelpaWoVCqWL19OiFlazIXXYfxfQJTMM/csWkSJVUcv7s4dqry9qbFSBih1OrwrKigLDEQ0zzjrVCppIPd/Qb0jMxqxb2tDodejdXGhvVtnTS6Xg8lkW7Yiini7u6MH6s0zm8pGAw6GRhqsBpMetTXM37efgIoymAvUe8NZc8lIeLjUmZ06tdft0ul07Nu3j/z8/K5tUcow6q06x9axwN2g6uhg6PXr3Bg5Er1KZUMYhRUWsnDfPqmUacQI+Oc/pZ9WMBqN7Nu3j5ycHARBYMGCBSRYpc78H4dOJ81Ob98Ohw/bRi6PGIF2+XJ2OjhQXFaGQqFgcXIykadPw8aN8PAhpydNInXcOBR6Pc9u2IDvI0pILJDJ+h58mNGh0bBv4ULuRUYCEH3iBMvS0vj9yy9jcncnKi+PJbt2Wci4zqvmh17F1T4+XJo8mZuRkTbnVxAEQkJCiIuLIyYmBier2XYbVFbakkd37kizx314IuHvD4mJVA8axBcODuhEkaGDBpGTn097eztDhw5l9uzZlsX1ej23bt3i4sWLNJoHlhqNhpEjR+Ls7MzRo0cty86fPx8PDw+2bdtGR0cHfn5+rFy5kra2Ni5fvszt27ctxKiLiwujR49mSFUV6l/+EqwIJxvIZbBiJU2//jV3m5rIv3mTgocP6YsOVmu16BQKm3JPlVZLRGMjkUFBRM6ciUN39ZAoSuqRP/4R9u7FYC7TvJCSYmOErWltJSY3F62bhoKQKHTyrhI2wWRCEEWbQaCoklHi08Dk70opiIgFQSDo/n1pcDxqlGVwLwiQkJDIuHHjpPJZq+26/dJLHDJHXcdlZbFg/37kMTHw2mu0zZvHvr17KTR7moFEGg29cYNRV67g0klEWhte798P//gHnDkjETOpqTBjhjTYt9dAm0QY1Xp48NmPfoRepWLKiROMvXVL8t05ftzm0F0fPpyvn3wSBAHXujoazEqeacePk5CVxYZnn6XR1ZWA0lLWbN7cZQy+fj08++y/1e4bDAbu3btHZmYmeXl5lJWV8fHHH/P6668zfPhw4uLiiIqKQiXXQdM3UL8Xao9AWbtUq1aC9PO++VUOPYy3zDg5dSppY8ci1+ula0IQbM3fHRwkXx9BgGHDQK+noL2dffPm0W5vj11bGwv37SO8QJpgaXZw4KOXXrJMpNgJAjOuXiXBinw+MmsW6cOHW7ZhUHo6cwUBYf9+xLQ0ip5+mtSxYy1pVogi+VGtNMXo+d+/5xO55TiC+dlR5e3NltWraXV0xLO6mtVbtliMm02ffYJ83Y9h0yZ44QXo6EDr5MS1QYNIS0qykEZudXWkVF9n4LHLyBvNB2qMF+z5Cq63SOTQ0aM9CWBHR/Q6HedTUkhLSsIkl6PSaplw5gzasDAuxMTYlHWHhIQwd+5c3B4+hKefljyDQCrx65xY6d6Gh4XBj34k+dYFB0vk9pUrpJ04QbX5GpMZjQwqL2fM3Ll4Wfk/kZoqKYmsSKIvZ6/l7bVvIISG8j/WJJE1RBHefBP+9CcAtL/+NRXPPsuD0lKysrKorKigrw6uYDJ1RdR3xtS3t6OOipL8mOLjpVdCgqTGEwTay8v55JNPaDa3MZ41Naz76iuUtbVU+PiwZc0ay7lyaWhgzaZNXBw/nhtm4n/a8eOMuXy558ZoNF2ErVyOMS+PXXFx3I2MRGU2Pg8oK5MeblHAXBAHCzTnDqYqw5Wqah3Vnp6U+/pS4+XVZ1hGP1nUj370ox/9+KHoJ4us0EkWpaWlMXjw4D69Qn4IRFGkvLycjIwMrl69SvfDPWDAAOLj4/H09ESv11uiz5ubm7l27RotLS3I5XJCQ0ORy+VSTHp7Pdr8IrQKKWbd8D2eH//mDljSQfzKyvCoq5M8eDr9d7y9Ub/0Emp3d9Q1Nch+/jN0LW18+8QTNLi7IxgMBD94wMPAwF63U6PRoNfrbZRISp2O8IcPiUxOpjkykosXL6LX68Ek4FVeTrV/l9JJodcz+dQpRl69iixMhNGOcMgArR1SVPUvfiHNAD/Gucy9l8O+fXswdEjnSDAZiLhbQKOrq6Susj4motijxEhmMCATRQxKJXKDAUQRo1KJs1bLopkzCTQrFHqDyWTi0KFDZGRkIAgCc+bMYbBVkt1/Gv/86CPe/9OfqKiuZhDwD6MRi6VvZGRXkpl5FvWrDRv4+a9+RVV9PR7u7vxOo+EFs0+OSRDYsWwZ60tLuXX9Orq2NsYCnyD52wIUA38AvgMqAH9gJfA/wKOsPk2CwM6ls7gbPczS0f3Vr36FvbsCN2M63jnFDMiqIjanAYe2R6vD+iKTGlxcWL9uHW0ODoTfvUtISQk5cXE2SWwAwe7uxA4fTmxcnEU10ScMBqlsrTuJZE630qrVrDd7PoUUF6NVq6nw88O/vZ21zs4oBg5EGxvL9YoKLl26ZDHAd3BwYMyYMQwfPpzMzEwLUSQIAkuWLEGj0bBjxw50Oh1BQUEsX77cxjuttbWVa9euce3aNYsXmEajYdiwYYxycsLp9dfhwgXpeAkCZX5+5EdFcTcqqsfx6DqwIkqDAX23+9utoYEoUSQqMZGQuXORd/M66xP19ZLPzPbt1Lq78/WsWV2DcTMCSkt54vhxdONcyBu8gLwGI03d1EtyUcRofY+ajAgINiokwWQiquAO6W9eZHb0H0nh+V43KedPf2JfRwdGhYKIggIW79wpkS5+fvDyy1wOC+PbbmSbzGgkITOTMebyHguZ4eIilQstXAilpbBgAbz9NgwdKqnXrHBj6FCOzpmDzGjk+fXr+yRi7yQkcHD+fExyeVd5FpB8/jyJLS18OXEiHXZ2tgSro6OkbPoPKRm1Wi0nTpxgzpw5FBYWEmY1eWEDUxs0HpeIo8YjYLIq/dEBD+kij8yvTEUC+2Y8BWBRwA67do0ne1MVTpyIOG0aqQ8ecMbTE1Emw6++nsWurrhevQonT1Lu6cnmp5+2kPpReXnMPnIER6syJJuQCMC3vJxnz51DfvEi+Z98woXiYh6aB9wyo5HwgizOrPLkjV1lhG45htBJpAgC5b6+bF21inZ7e3wqKli1ZQsObW2IAogbNyBbtgJeeQU++0z6jLu7xctKp1Jxbfhw0saOpc2spnKtryf5wgUGq24jlxnhOja+hajVkmqssRFMJgoHDODorFmW6yImJ4fY1lbOTphAvdU+K5VKpk2bxrBhw7pKwvR6+POfJTJHr5dKKzuVivb2XUldndeBWs2NBQu4HBZGs/meVHd0MOzBA0YvWoTTnDldBGVqqqQkOn1a+qpuJNGv/WC1Byi7nWRRFGlpaaGiooLysjIqT52ivKnJpuSx2wcs3ynX6y0+abMPHWLozZswFfjgS4hdIy3X3i6R11lZXaVjmZlQUkJRWBhb1qyxrHrE1avMPHYMVCraNRq2L1rEQ7NqS6HXs2jnTooHDODS2LEATLh3j3FqNUJsLMTGQmAg3LoFX3wBly5ZyDi9QsGOFSsoDgvDTtfG06pNeEdUwa1wOGOCG0XoVCqKQ0IoCA+nMC6Omm6TnHK53KKObWlpob6+vp8s6kc/+tGPfvwg9JNFVrA2uLazsyMwMJDIyEgiIyPx8fFBFEV0Op2F0LH+/VF/63Q6KioqLEbW/0fRPY5XpyPowQMcWlvJi4pCp9Hg3NCAfXs7FX5+0sygTNbr55yamqjz9ERuMLB41y6i7t61/a6xYyUvBBcX2L8f45LF5EdEcnD+fHRqNSqtFru2NhqtjFH7gkNrK1G5ucTk5RE2bRrVL7/M0TNnLD5QdjWtGJwU6K2iaaPzcnnyyFGcOlpgtgB5npBtLglKTpZKNqxijvtCK/Wc51MumD5k1JU6dDtnke020HI8vJvrmGLIpaxAS1ZwvE1CkGAySeaXfczOK+RyDEYjMpmM6dOnM3z48K5OeDeIosjRo0dJN0vVZ86cyYhuKqR/GxkZ7Pr1r1l95AifAqOAD4A9gkDe88/j/fzz0qy8IEgDg2PHSPvDHxh34wZ/EgTUU6dyoKODi6mpfBUZySKzx8sfFQrelsmYu2ABCS0tXDl6lEwgG9AAx4FdwDIgAsgEngdWAX/pton1ripOTg3k5vQ4VE/MJDlgPO4ZWnZu3cFf/vIX3nnnHV588UUczd43LXRQbKqmouQOLdk3EbKycMguwO/OAwZkV2HX0bsGxgS02anYtuYZKn198S0vZ+3GjajMyot6V1dy4uLIjouzDAo7EVhdTWxbG3H+/rgmJ0sD7qAgyeD7UWhuRrxzhz3nz5Oj1eLc0UFwURGZsbHYt7ay7vPPUep0XB01iiujRlm8KlyMRpJcXRkyfDjKwYNJy8zkpNnPQyaTsWrVKoxGIzt37sRgMBAWFsbSpUt7NcsHSa10+/ZtLl26ZFE+ymQy4uPj8Xd0pPLwYfLt7GySmmwgipKhvNX+CiYTQTU1RLm6EpWcjOeUKQj/DpF94QKsW4eYm0tmYiLfzpxJqzXpK4oMTU9n8rnT2M0IpvKlj8i7cpv8hw8p6zZoEkSxp0mtKBJx7x4zjx3DsbWevx8H/4k/ZTF/Q07P7S744AN2VVejV6kIrq1l+eHDqDuTMR0cuL1sGQf9/UEmw76lxebYhRUWkpSWRnhpKUJHh1SO+F//JZlNG40SUVRfbyETLZsI7Fq6lLyYGDyrq1n32WcoDQZpkN6NWMpPTGTP4sUYjEbcmpqoNx+DodevMzA3l21LlmBQKhly4wazjxyRSJaYGLhyRUpU+g8gJyeHuLi4xx+Mmjqg6YREHDUcAlPPktCKs75sqH8Wg1KJzGjAJFcQl53Fwj17e41u71CrOTh/PnlmEmzIjRvMzMpCYWeHMS+PC8nJnB83zkIaTrp2jeRupFO5nx/rn3vOoo7TtLfzo08/5UFMDKnDh1NlNoBX6PUMSU9nyJ3ryAZG4308rYskAlAoeODry/aVK9FqNPiXlrJy2zbsOjowyQSErVsRklPgqack4g6kiQ1rdSeAqyu6IUO40dHBxbFjLb5fLg0NJKemMvjmTRSORpAhmbqZN6HVwYET06ZZUiadmpqYePEiBQsWkNXtO8LCwpgzZ07fJfgZGZLKqDO0wFotFxBAS2Mjl0eN4vqIERYSzrG5mdHp6QwbNAjNH/4gfQake/utt2xIoo2zn+Gdtf/dgyQSRZHa2lrJVyg/n4qSEiqammildzg3NnaphWpr8XV2xtHVlYzaWi6OGGFLKIkiC/fulcIRkgRwT4HcMsnPqy/lq1LJiUmTuDRmjOVfy7dvJ9LcPxIFgeMLF3LVSh2cHBSEwteXs+ZzPGbIEKY+fIiwYYN0PHt4nQHDQDtfxVbDah7qAnFob+Pp9V+g02goGDCAwvBw7oeEYLImvwWBgIAABgwYQHh4OAEBARZ7A5PJRFZWFgMHDuwni/rRj370ox+PjX+JLPrnP//J+++/T0VFBYMGDeIf//gHI/uIGgbYs2cPb775JsXFxURGRvLee+8x06pOXRRFfvvb37J+/XoaGhoYO3Ysn3zyCZGRkZZl6urqeOmllzhy5AgymYyFCxfy4YcfWgaMZ8+e5W9/+xtXr16lqamJyMhIXn/9dVasWPHY+9VJFv3mN7/5v5ZIJQhCD7VRJxQKBfHx8bi6unbFol/7O6r/TSMnLo5bZmmzV3k51T4+NkoXwWRi3LlzJKemYlAo2LR2LZW+vrjV1hJYWsqdQYO6iCIraNraSL54kaLQUAoiI1Ho9SzZuZMIs3TfgsmTpYQelQrDa6/CRx9zeO5cab3d99FkQimK6PoYSAsmE7HZ2YytrMTznXc409LClStXpOOiA+fWepqsCCenpkbmHjxEeGEhxALhXvB1jUR4ublJfiBr136vuXANRZzmA9INXzD5ehsT3gPVEcAIJcHB7F65jDaVnWUbk1JTmXjuHLXu7mTFx5MdH09Nb6lRjyjpi4mJYcGCBSj7GESLosi3337LlStXAJg6dSpJnT5U/yqKi6V0sh07IDOTUcAI4CNnZ1i4ENPSpQStXctLL73Er375S2nQ8uc/S0RgRwdLgFbgKJLS5+isWfwkPR1fX1/+qVAw8soV/IF1jo6oX34ZvUrFoLNnWXr2LJuApd33EUnd8z6S+uieANdGeHFyegg108cyYMRMZigGEYmtufKNGzcYPnw4RUVFhIaGPtaum0wGau5nU3PnMvJvjuN27jpu98pR6gyIgsCeRYvIiYvDoaWF59evt/iHWG+rQSHQ7OhMXkwsOXFxkt+X1fn1f/iQ2Oxs4nJzcRcEqRxj4ECJqAwPl14DBljUbampqZw+fRq5XM6YMWNITU1FEAQWhoXxsKSE63o9evO161FTQ3JqKokZGRbz5DMTJ3J+/HgAFKLIM6GhNAUGsufyZYxGI5GRkSxatKjPa8xm/0SRmzdvknrhAvV9GFNbLSz9tNp3dUcHkfX1RA0YQMSTT2L3GOTsD4JWK/n5vP027TIZp6dP50Y3xZ26vZ3Jp08z7MYNZAlhsGIdTYmJ5N+4QUZlJaXmEjKb/eh2f3pXVBCTm0vlhBwe/iaOHwm7caSnEur++vXsKCxEq9Hg19bGyvBw7D/6SFKNAdlxcexbuBCTXE5QSQlOLS3kxMZavt+7spIxly6RcOcOikf5upnVnABtTg58su7HtDg5MeLKFWZ2xrM7OUkeY1Yojozkq9Wr0RmNuGq1NJiNhOOysojLzGTfokWIMhnjz55lQmf51rx5sG/fY5mxfx9+MFlkDZMWmk+ZiaODYGyg7Wt71tc9T4ObGzKTAZNMQVhxIcu3bkchM0KnVZa9An63kioxnF3ltdS5uiI3GJh54gRDr14FoNzXl0Pz5llMy0FSXk3+7jubzWibNImPhw+n1crQOiktjdzYWIuPlkqrZcS1a4y+dAnH1m60RWepllJJcUAAO5YvlwjGkhKW79iBWquViKLduxFcXKVUvNpaqX3o6Ohhds6AARIxaFaV6ZVKbgwdysXkZFrMpbFOTU0kp6YyND0dhcGACNxKGcrJpKm029mBKDLi6lWcAwI4HxqK3sqjT6VSMW3aNIYOHdrnRIYFej28846UhGYwgJ0dtc7OpI0cye1Bg7qSzaqrSbp0icTbt7uucwcHSEqCqiopIZCeJNH/eBmYZqikOj9PIoZqaqi0ag+tIZhMeHT6C9XU4KdS4avVYp+aKh3DWbOklDqNRtrWkycxrV5Nlq8vF8aPp7rz2S2KxGVlMfXkSVyt23+5vM+gBoNczvp16yyKY4f2dl746COp3Hz0aNi0iWxzeXmnp1monx/hVVWcNq9z2PXrkjKu83zbA2OA+YASuBQA33VQ2S5jx8qVNLm4WFR11nB1dSU8PJzw8HBCQ0MfqYgvLS0lKCionyzqRz/60Y9+PDZ+MFm0a9cuVq9ezaeffsqoUaP44IMP2LNnD3l5eXhbKS46kZaWxrhx43jnnXeYNWsWO3bs4L333iM9Pd3iy/Lee+/xzjvvsHnzZsLCwnjzzTe5c+cO2dnZlhKKGTNmUF5ezmeffYZer2ft2rWMGDGCHTt2APD222/T3t7OjBkz8PHx4ejRo7z66qscOnSIWda18Y+AtbKor9j7TshkMtRqNfb29jg4OKBSqSQyx/yz89Xa2srFbklNvr6+LF++HDs7OxQKBUajkaKiIm7cuGFjVAtSRyA+Pp6EhAR82s6hG7qag9Pnk2uOdo7Iy6MgIsLGH8Tv4UPmHTyId3U1ermcHStXUhwWhkNLC5F5edwaNqzHgMmpqYlJp04Rl5PDrqVLKQwPR6nTseyrrwjrNtvNk09KviI1NeQ/9wy59o5kxcfbxNYLRiNyoxGDlbJBEASCgoKIjogg6uxZmrdtI23ECIsnDWCTEOdU00izu1NXfK/RSPLFC6ScT0UhN8ATarhqBxUN0odXrpRig3u5Dq1RzDVO8Bfu6vfw5DWR5D+D4ihYTFhSgiAKDMfLOT5kOjc6lTZIs5ZP7dlDUGkpIpIPRVZ8PNkJCdRaG/J22xdrCIJAREQE48ePJ8DKOLUToijy3XffWcyOJ0yYwLhx476/I2+Nmhqpo7x9u2QaaoZOqcTeYGDv668z73e/sxAYaxYupOH6dQ41N0sKBysEA68C/9W5fcCq8HBOtbTwwgsvEH30KMuuX+cmoIyPZ++iRQAc/fOfSWpr48NeNq/Cx47nve240mJk1dV3meA5hknE4IC6l6UBfRWluTsJGvgKjUVf4Bw4FxSPWdbUHaIIt25xdvduzmk0yIxGnt60iaA+4uctHwO0Khllfu7cjYziQUg0ZQFBNp133/JyiTjKycGze0S9jw+Fo0axzRynnezuzqX6eoyiSEBAABUVFZbrxdfXl+TRo4kFZJmZkJGBeOcOxx0cLDPW6o4Onlu/ngpfXw4sWIBJLie2rIyFHR3IrQ21fX1t7nWTycTDhw/Jv3aN/Oxsqh5FWvRCrHjU1BCVn09Ufj5B9+9LJNbIkZIHzvckmf3LyMmR/FAuXOBBYCBHFy+mqpsaxre8nJlff01QaSmlAQGce/JJ7nWWzokibo2NdKhUFk+RvuDQXk/z+IfMif8JQwLH95g4KN+xg223b9Nmb49XWxur1q7F6fhxqYwkK4t7ERHsMqt4QouKmPn116QPG0b60KHozMpIx+ZmRl65wvCaGuz0eigokNQ9GzdKJXjl5fxTJvC+SaQCiFarGblqFYGBgSzfto3Ie/ekjbHyjdkDvIlU8unm48OkyZMZHhNDq06HThBI37+fnMJCHhgMqNVqxqlUrK+rwx8kr6j/+R/y8/N5/fXXuXjxIjqdjoEDB/KHP/yBiY+ZePVvkUXWMOkwvfcy23LbKRowAJloxCTI8assY83GzagVWizSEifgH3CnLoEjtXPQK1W4NDexeOII/FNmYly0iPN6PanJyZjkckkRJ5MRVFLC05s22aiTTDIZm9as4UGnNyCgam9HZ24n7draGHX5MiOvXsXue5TC1tdBWEEBS3fuRKXXY5LLkO3aDXl5kt+OySSd+16M9q1JQ8vfCQlQV4e+qoqbQ4aQmpxMs/lecGpqYlBtMSU+rjywDwbAp6KCURk3uDp3ARXttj5q4eHhzJ49+/vLarvj1i1Kf/Yz0ry9yYmNtbQRgQ8eMPbiRaLz8iQSxMVFSvu7cgXKyiwfF4GbMYP5fNHzyN0cGdTyEIO2lZpuZvWdUOj1+FRW4ltZiS/g6+6Oz4ABKDu9hcLDJZLOZJL8CV95RSJ6AgLA01PyY7PykBMFgZzoaA7Pm2dRQQlGIwPv3GFsaipe1m23o6NULhYTI/00vyodHfl840YLGRSlUrH07bcRWlqkMsDf/57q8ePZ/M03tJqPj2NzMyOuXuXMpEkgCCTmZDCv/SCy2SZoA9J80J3XUeLoSUF4OAXh4b1OSIWHhxMdHU14eDhubm6P3TfoJ4v60Y9+9KMfPxQ/mCwaNWoUI0aM4KOPPgKkgUdQUJCkSvjVr3osv2TJElpbW21MWEePHs3gwYP59NNPEUURf39/fv7zn/Paa68Bkgmfj48PmzZtYunSpZYO6LVr1xhuNps8fvw4M2fOpLS0FP8+vDSefPJJfHx82Lhx42PtWydZdPbsWTw8PCzkj0KhoKqqigcPHlBUVERDtxl4d3d3S7laSEgICjNp0tzczN///nebpC0HBwfWrVvXw0C7srKSrVu30trairOzM/7+/hQUFEhePWa4ttajQ0WbgwMygwGfigrKrR74Cr2eqSdPMvzaNWSiiEkQ2L9wIVkJCSi1WlwaG6npRqQ4tLQw5/BhIvPz0atUfLVsGcVhYSh1OlZs305IZ5mFGdrFi7n3xhvkpqWR/+CBZfADgChK5R7WaUUyGRFRUURHRxMZGYnDrVvSoK8z5njaNIp+8xsOXbtmMe8Feqiegh8UM/fAYdzr6mAQ4OAPaebOZ0SE1EGcMqXX8wpgwkQmxzjB+9TozjP3Coz8C8i/poskSg6AyA44VguVXZ8tDQhg95Illg45osigmzeZ/u23aBQKeO01xF/8gsqmJtLS0sjMzOxTLdYdSqWSwMBAhg8fTkxMjM3A9Pz585w5cwaApKQkpkyZ8uhOYWurpPbasUMyrO687gRBijdevpyypCQC4uJIS0tjTEyM5JWyYwe/KCvjHHCll9WqgM1IJWSd+CfwplLJK//zP9y/f5+NGzfyEMmL6OSUKaQlJ7N3504GFBVxSKtFrxC4ONaXE9ODqZw+Bnf7eD4d8Sr/+5e/sO75dT2/VDSgrTuPtvobSW3QdouH1RC3CBrPgrOjAPbDwPkJ6eU4GoTHL3nKysqypBLOSUpiSFYWHDgglUdYDx7t7TDJZMhb27pmgK3Q4uBAdmwMtwcnUu4fbHPte1VVEZedTVx2Nl5VVTS6uPD5j35Eu709iRkZFIaG0ursbEPIBLW1kaJQEBEaihARIQ2CAgMRBYGDBw+SkZEBgL1SyTp7e4qKizns6oooCCRmZDDv4MGe6XuennQMHkxBYiL59vbclclszeW7E0K9EERyo5EBosgEjQb/Lz+Dgj6ItYQE6V58hD/XvwyTSSJTXn8dY1MTV8aM4eyUKei7batTU5PlXhVMJgbdvk1KVhbuKSmYgoN5WFJCbnk5d8PDbUpKgR77rnJQkBA9kJjwcMIMBhQFBZCXR/WVK2wdMMCSarVqy5auaHqgJCSEHcuXo1OrCXzwgOXbtyMAN4YN48qoUZbtU+p0DAkPZ/TGjbhdvCiRbr/9LbuefJLV0FUqKsBXcgU//q//wsfenhc+/BAHq/YyDRgHvAPMAtY7OPD3jg7WrVtHeHAwjbW1bN+/nymhoYzo6OBybCzHv/kG19paMjsH0ceOEfXKK0RGRvLOO+9gZ2fHBx98wKZNmygoKMC3WyJeb/iPkEWiCL/5Dd9evcrlpCTLOXFvrOeZz7/AQdkKnYfaFYz/lHEyaxpXVKMBGFBRwMKZ+7CnjfI/hnJw2AyLAsRTp6PGHELw408/xdX6WZ6YyLdxcVw2T8RYw7G5maS0NIbduIFKp7N9MzFRIiwOHpSUQYJAbnQ0exYtwiSXE5WXx6I9e1BYJ25ak0DWptGPgr29VJ7WrR0yhIVxc+RIUgMDabIy4ZcZDIy9eJGWeAdueg5D0nNKuk61Ws20adMYMmTID5qEEEWRu3fvknbxIiX371v+H52bS1JaGsHV1V0ldK6u0NCACDS5uFDu60u5rx8V/n5U+vjQ2Ee5m11bG34VFfhotfg5OOAbGIhHXByyhATJT68zkOPhw56eQtnZ0nPwMdGuVvP5j39Mg3WpvCgSqy0gefh0/EeNlwinPo7RpUuXOHHihOXvWWPGMOx3v5O8h8zQmvtVnQEkMqOREY1XuOY+ChNyousLGPtNKsXeAVJpWXCwbXmvubQsICCAzMxMWltb8fb2Zs2aNdh/D/HdHf1kUT/60Y9+9OOH4geRRTqdDnt7e/bu3cu8efMs/1+zZg0NDQ0cOnSox2eCg4N59dVX+a//+i/L/377299y8OBBbt++TWFhIeHh4dy8edPG0Hf8+PEMHjyYDz/8kI0bN/Lzn//ckoYFUgqLRqNhz549zLcyobRGcnIyo0eP5i9/6e6KIqHTW6gTTU1NBAUFPTINrbN+/u7du9y9e5eSkhLLzBJIg/8BAwYQEhLC+fPnbXyKBEFg1apVPYw/Hz58aEkv8vX1ZdWqVdjb26PX68nPzycrK4v8nEyMWA3wupEpvmVlLN21y1JGYwJOTJ/OldGjpWWtfXXMne+BN28y33zOtGo121es4EFwMOqODlZs325RWrTZ25MXHU3ulCkUODvbqmV6GVg6tLQQ1dhI9DPPMGDYMKkcpqEB/vu/u6KfvbwQ//pXbsbGcvLUKek4iaDQaTFYE1AmE4mZmcz4+mvsFFpIdoULHVJikFIJv/wlvPFGnwbWejq4wjZO8r+IHbnMvQJD/hdkx7BSEvnBgEb4pg2qel0NBrmc05Mnc3nMGMv+aoDZCxYQl5hos2xDQwPbtm2zxJt3R1+lhzKZDG9vbwYNGsTgwYPRaDRcvnyZb7/9FoARI0YwY8YM2869Xg8nT0oKooMHbX1Mhg6VjKqXLJE6vEBZQQEBERGkBQQwxirB6Rfwg8iij4G3gINjxvBFbCwbN25k8+TJrPruO0Rg+8qVvHvjBjKMjHgrDtW0qUx2HslUYml9WM/48eOZMGECX3zxRddKdaXQdFwyv20+xe8+buSt9T23p/FKHM7y7G4HzwmcJoGLmTxSD+j5QTPKy8vZuHEjBoOB0aNH88QTT3S9WV0tRU4fPCiZEFsnmrm5Saq1+nqplKIb2uztyY2OJicujsIBA2w6/C71tRgUKlqdnPCorqa9mx/QgIICUs6fJ6SkpIdhr6hSsWv1avLMnXtnQWDdwIFkKxQcM6cUDRkyhFlxcZIKyWyoXVdURJ5Kxd3ISEpCQmyjor+HILJrayOstRWZvz/Fcjkt5nZMpVIxZMgQRjs64vr6T+Dynd4Pcng4fPihpEL8T6OiQvL72bWLBhcXvlm4kPzgYNtlRJGAhw+Zl/YNng8aodnKRNneHiZOpMHPhZsPbmM0+HJ11CgpFbLbOmyII62WyLt3icnJIfLuXdrt7dmyejX17u44NTezKjMTrwEDpFQjZ2cefvgh26ZPp8POTjI13roVh9ZWjHI5mYmJXBo92lISJQCx+fkknTtHwOzZjDp4kBEVFXykVoNWiwkIEmDEqNEMmT6daF9flnzxBcL16wA2paKdaqPhcjnqoUOZ9uST2NvZYWppoUMux7O6Gu+KCk66u7N+/Xou+foyuqKCGicnvJqbOX/+PCkpKYA04eHs7MzJkyeZ8ggyvhP/NllkNMJPf0rGpUscWLDA8m/H9nae+ewz3FRKqDL70rkKNH/kwJ5bi3ngKJ3/lLLzTFh9FlOuE+f3DSV1RAqiTIa9qZXRly5zZsxERJmM+fv3MzAjo8sfKCmJ9Oee44gVAQJmI+nUVGLysnFo6eYj1Acy4+PZv3AhokxGbFYWC/fvR240IsoEhMAgePCgZ6lZd1ibSHeHIEgTJCtXStHxTk6UFBZyZNMmaruXevfyfI7wusescQpcwl8FO9tnV18wGo1kZmZy8eJFqqul4y8zGhmYkUFSRgZe7e1QUYFJJqMmLo4KmYxyX18qfX2p8PXtU83nWl9vSSLzrajATybD6YknEH7yE0u4AlVVtoRQ589uJcOPBZlMKhOOiJDaybIyGr282PD88zSrVNi3tlpMxAHCB4SSMm4CwcHBvZJqoiiydetWiszqa6Vez48+/RSPbs9+0Rm+e3YSqS4pdEYs+FSUU+Xt06uSysXFxVJaFhYWZiktq6ur48svv6SlpQV/f39Wr16NWt2HGrcX9JNF/ehHP/rRjx+KH0QWlZWVERAQIKkSrMz9fvGLX3Du3DmLz4o1VCoVmzdvZtmyrqHmxx9/zFtvvUVlZSVpaWmMHTuWsrIy/Pz8LMssXrwYQRDYtWsXb7/9Nps3bybPbKbbCW9vb9566y1eeOGFHt+7e/duVq1aRXp6OvF9+Gj87ne/46233urx/0eRRd2h1WopLCwkPz+fe/fu0WKVLNIdkydPJrnbjHtJSYklvSgwMJAVK1bYlMCJosilXX/gZI5R6ugYjT1MdFUdHYw7d46ErCxcmpoQgW+nTeNKb143ZpJp0K1bzD14EAEponz7ihWUBgWhaW9n5bZtODY3kxsTQ25sLCUhITYdGpnBYFNyBuBeU0Nsbi7ReXkELF2K7O23pRlTUYS9e+Hll7vifJ95hpr//m+OXLjAfXPnXNmiRW+v7CLARBGlXodeJXWEVHotw+7lMPqb73BuaoKUFCk5ppdZYIAWajnHJ5zhH7i2VTH3MiR8AII1SZTsDaF1cMLQJ0nUHeUJCexZupR6q5ng8PBw5syZY3PN6PV6jhw5wh2zl4mXlxeNjY3oehkA9EUeubq6Ehsbi0ajsSiMBg8ezOxZs5BdviwpiHbvlkrOujYGli+XXp0pR+3tUonQZ5+hy87GHtgLzLP6rjVIk/U96d6eZWgAvzEvexs4FB/PvKwsfvSjH5GgaOVeRBEVk0ZxecF+fD19ePGlF1m+bDkymYyysjImTJjA6NGj2bTxM2RtaV0EUUemzfdqjW5o1ZPBZQo4TeJhlYG4uDjp/tS0QPNJaPxW+mnoVvKljjCrjqaB00SQSzPuLS0trF+/nqamJsLDw1m+fHnf/mQtLZJC68ABKY7aenDi4CCRAjqdVCJlTaBqNLSrVOSHhZEdF0dBeHifUcaBxYVMP3FKikXuBoNcAFFg+8qVFJvTwNxrali3fj03hg7lpJnkGpmVxfTqakzh4TwICSHfYCDfYKC2G/nRm9+FNbyqqoi6e5eolhYCIyKQDR8OiYkY4uPJLCvj0qVLVJlJMkEQiIuLIyk8HP+3XoEjF3qPPPf3lzxOVq36tyLae8WxYzz43e84Gx1NYUREr4t4V1Yy8+wxQsbHgDBAOo9W5YYi0OJmh0kvcnTuQktJrNxgsD1n3QbdcmCAgwOh9vak5+VR6+6OfUcHK5cswa9z0qOhgcrp09makkKroyMeNTWs3rJFar8AUSajMDSUS0lJFFhtv39hIS9s28ae4GDmFxeDSgE6A2uASo2a5Ndex6hQMGvGDIadOwe//jXBOp3tPSqX81ujkf0yGS/8/vdUmydX5DodrSYTzo2NlGVm8peTJ3nrlVf4yfbteNTUEKtWk7JsGR989BFqtZoPPviA999/n9zcXNx6CSroPuGSl5fHyJEj/7XBqFYLK1dSfvEiG555xpJYpdbrWfvFF/jodNKkgyiCqyslO79i79mztGjsUHd0MN94gOjFeZR97cehqnlUeUtqoriybKbsPsG2Vauo8/Ag4c4dFny9HyHMHXJqaYyI4ORrPyervKLrHJtMPPHttwzMzkAtVyJv6FYitmiR5DV05Ahs3Wq5/28NHszhOXMQZTIG3r7N3EOHeir9/lUoFBAaClOnSuWecXG0h4Vx8tQpbpqfow4tLYy+dIn0ceOo70YiyI1GnnDPYPjYQwidzYDzTPD9JTim9Hp/arVa0tPTuXz5Mk3m61al1TL8+nWG5uTQNn48FX5+VLS0UCGKVHl69pp6KjMa8aquxrdTMTRhAr7jx6OJiIDvvpMmO77+2lZh5eIiHddH9Kn6RGcUvbe3pBbt6JD+PnlSCiIASYG0cCF8+y0VAQF8uXYtOoWCyPx8NO3tZCYmWtrLoKAgUlJSiIiIkEgjvV7a7k8/penSJT5++mm0ZkLH/+FDntm4AXmgSTIcL5LKv0uiwriRMEQyXu/lWNtpNIxNTiYmJgZ3d/c+FV/V1dV8+eWXtLe3ExISwooVKx7Lnw76yaJ+9KMf/ejHD8f/L8miM2fOMGvWLD755BNWr17d5/78K8qiR0EURQoKCti7d6/Nejuh0WiIiIggMjKSiIgIysrK2LVrV5/pRXq9nqP7t5GRa57t7MWQuvsgxqu8nCZXV0vHxXoZQa9HVCoJv3ePZTt2IDeZaLezY9vKlZQFBKBub2dgRgYPAwMp6+alIxMETL1cKiFFRTz59ddSjb9GAzt3wty50pslJfDTn0qdQIDoaAyffEKqIJCamioplAygMNqqiXyqypm7/xDe1dXcGZVIWtI4qh2lBBOZ0UiCkxNJK1fiY3W9dKKaAk7xAWlsJLi5jblXIOrvgA1J5AGhtfAtUN1jFb0jLEzyQ5o3D6PJxLlz50hNTbWQPHK5nKlTpzJixAgL+SCKIpcvX+bkyZOIooivry8BAQHcMKtBusPFxQWDwWCJSbeGSqWyEE3xhYXM37bNYniMt7c0cFm+XCpjEQSpg71zJ/zzn1IsrxVGASOBf5j/NiERQi8CPQtJJdVCG3CYrtj5JGAg8HKsK988EcibXxaQPDqFsWOSCI0OZ/a0mfj7+zN37lzi4uJINneCJ05IZliCB9ve9UXedkaK0bZABg4jwXk6uMyQysyELmK0s6Pb4/4UTdCWDk3fSq+WS4B1yYcSHJIwOExjyzeOPCirx8PDg+eee+57vcks0Ong3DlJcXTwoI3/BgqFRFrKZJIPiZWaUHR35+t587jRXflihktDg+RxlJ2N/8OHaB2UmBBxaNFjksvZuHYtZeZOvW9ZGSs3f8mF8clcSZIMrkdduoRfWRn3oqK4FxFhSU8DwGSSykL7MpY3GhlQVkZkbS1R9+/jlpVlq6Syhp8f4sCBFAwezCV3dwqtkpRCQkJIGjyYyM9+h7DpMHT08khxc5P8WV56STpe/ybu37/PuXPnKCwsBMztwp07yBQKbick0H0LEjMymHrxO5wMAtTW91whko/JuXHjOGf25/GpqCCgtJTC8HDbMpVeoNLp0KlUqHQ6VsyaRXDn87G4mNpp09gyaxZNLi641tezassW3Lv5glX6+HDpJz/hjijS0NTEX//6V1798Y9ZdusWg65fR2kwWNR/f0tK4uS0aSjlcn70wgt41Naiiolhsyjaqv9kMt4ymSiyt2f7L39JmSiiUqnQKBTUNjay6Ysv8HN2ZtaKFbg0NPDshg00Njczz82N9IYGi9Lx66+/Zog5TKE7+ppw+cGD0eZmmD+f1kuX+PxHP6LJ7KGjMJlYuWkTITU10n1lMiHa23PlH//gZEkJJpkM75oaFk+ZjEuyG+ffXU+qfbikJupoZeY3XxN/O5sjs2eTPmwYzo2N/PjKZ9hFtFF31J3UlGRuDRmEiK3qbuWWLYRVVCDrnkoGsHolbNoimYIvXy4RB3I514YO5ZhZSTf0xg1mHT0q3X/QQy342NBoJAVtNyNzEbiTmMi306dblDCD09NRKRRcHziwV94WJMXg6Ht5jBpRiXr8ZUk2CuAwWiKNXOaAIKPFHDJx/do1OsxtgqatjYCHD1Hp9VR5e0sefb0QGiqtVvIXKi9H1aolvKSIoIcPkBuNCJ0TXhoNzJ8PPj5S6Vhmpm2b+rhwd+/VT4jg4K5JtYwMiWCrqpLeO3nSorRFp5MUWnv2UBARwY7lyzHJZCRfuMDQ9HQuPpHErbjhGE1mNZBGQ8qtW8QePIjMqp3Piotj7+LFlr5Wsut54kpyKCiNocA+mAdBQX2Sz0qlEkEQ0Ol0+Pn5sXLlyu8tLysvL2fz5s1otVoiIiJYsmSJxf7gUegni/rRj370ox8/FP+/K0M7d+4cTz75JH/9619Zt64XL5RHoNOz6F8li+rr69m8ebPFe8fOzo729nZUKhWCIPRKIIF0jFauXGkzO9TY2MiuXTspL6/oQQhp2trosLdHMJlYtn079W5uXBs5UjJC7FZaIphMiHI5Sp0OvUqFX1kZT2/ahEqno9Xeni/XrqXWy6un6qAX/yG5Xo9MFNGrVCh0OuYeOiRFzoIk6z5+XFK2GAzw97/Db34jzd4plfDGG5SsWMHREyeoMSthVG0d6Oy7ButKnZZpF04yNPWGZDo6TAOl9oiVddyLjCRt/nyKrTpR4eHhJCUlERYWRrFwlRP8hZviPuKbROZchpB/YksSjXWG0CYpx733CrGeiI+Hf/xD8vzphoqKCvbt22fZH5CMiefNm4ePT1eSV2FhIXv37qW9vR0HBwdSUlI4d+4c7e3tFoNz69tQpVLh4eFBe3t7D3+sTti3tTG9qYmYOXNQTp0qDcCbmmD/fskz5tq1PksddiEpiT5DIo0+AHYDuYAPsBoIAN5GGuSkAeOBd4FxDgr+EuTA3rtNjD62inHT5vEkiVx4bw/vvv0us2bNwsXFhStXrlBXV8eeXdv4+ptTNDU1sXfnJ0QGtrP5dyDvvKwUXviGPykRRM5TQGFrEm6NPsmi7jA2QfMZiThq/BZ0hYgiHM6Yy60HQ1ArtDz3ZBmeQZMk5ZHy+71YbGAywfXrkuLo4EHJPNUaUVGI9vbkCgKnk5KoNRuUCkZJHSgKAu5qNc1arSXMCSSvnU7iyLe8nA3PP2/x1AkqKWbFtm2cHz+BNLM60aW+niYXF9t71CClvJn6IIjsWluJNptTDygtRR0U1JXYFhraVZZTWSkN4jIyesS5A1T4+HBp7FgyExIs0c2eGg2jBw5k0I09KP66Bep7Mc62t5dKyN54Q1Jn/UD0IIkEgUE+PqSUlOC2YQNUVVHu68vXs2bxsHMwZG4/VVot48+dY9Tly8i9vSWlgb+/VLpZVIQpMxOZyURudDQHFixAp1bj3NjI4p07URqN5EVHkx8VRWlg4KNVUqLIwJAQkmbOxNvbG+HaNRpnz2bLkiXUeXjg2NzM6i1b8KruyVQ3HTrEsT17WLZtG88++yxBQUHYt7Yy4vp1Dl24QJrBwGV7OVufWkHRgAH4+/ryzHPPYWdnx+YlS1i2c6dFndFZKlqJVGb81S9/SYn5XO3du5eamhqeX7ECV5OJZhcXvMvLObZ+PUaTif/56U+xe+YZvvjiCw4fPsy1a9dsJnM68R9RFtXUwMyZGG/cYNvTT1NsJlYFUWTJzp1EFxRI59BoRGdnx5Ff/YpMc9uWWFLCrF/8ghq5nIMbNlBtJkvj7+Yz48BBHNrayI2JZtfSZSCKrDZtxt6tjQsXU8iOj+9VaTflxAnGpqX1vq0zpsKhryVV5zPPWCZw0kaN6lL6Xb7M9OPH/3WCqDs0Gune9PYGe3vqlEqOBQRQYC5h9KqqIjEjg+sjRlhIts7nuUavZ1pDAzIXFy6YTNSayXFNezuj72QwKqYezcx0sNdBCdQURXO2eRo5SjfLfS0YjX0Szo4dHfhWV+NbXIxveTkeNbUcSJ6HQa7gJ3s/Ri6KiI6OCC4uksfQvwulEoYMgQULJJLH3//xFIv5+VKCa2mpNPFz+rT0EyTy6sc/hi++4NbgwRwy922fPHKE4Tdu0BzlxKWRU7geHGspVXWvrSU5NZWB2RnIE42wAHbLF5HTblax91L+59LaSnhuLuEFBQSqVBx57jnuWfUdOieEvLy8WLVqFU5W/lO94f79+2zbtg29Xk9sbCxPPfXU96b49pNF/ehHP/rRjx+Kf8ngeuTIkfzjH5IuwWQyERwczIsvvtinwXVbWxtHjhyx/C8pKYmBAwfaGFy/9tpr/PznPwck0sbb27uHwfX169cZNmwYACdOnGD69Ok2Btdnz55l1qxZvPfee/z0pz/9wQfj3yGLqqur2bp1K83mGUCNRkNHRwdKpZLnnnsOT09PSktLyc/P586dOxZJdyccHR0tJtkqlYr9+/fT1tZm2+kQRYakp5MdF4fWzo6Us2dxbmri7KRJtFr5n/SAeR32LS08vXEjbU5OZCQmcmvIkJ4+JmDrXWI0EH07A01HB9dHjMCgVOJWV8eSnTvx6fRtWbwYNm2SBprp6fD889JPgJQU2v/xD07dv0965/90JlBgo5JKvJvBtIPfSjHEnkBQINwsld60MrAuKysjLS2N7OxsC8Ei+DVRN+YEsX7ZzLlmwu9j4BusSCJ7CG37YSTRiBHSd5qvt75gNBpJTU3l3LlzXdsjCIwZM4YJEyZYCMD6+np27txJVVUVMpmM8ePHk5OTQ0VFBYIg4ObmRl1dXY/1qzs68KmooEOjocbTs0f5nyAI+CgUDLp9m4Rjx3B8TMn+R0jR9RXAYODvSIojEZgIhAKbzMveGOrJX0IcOXy9ho7Kdnwjg3nnz++yeuZiy/pEUeS3v/0tn3zyCQ0NDQQFBfHcygm8+uRezuUl8cl+Ta9kcudnHwePTRZ1R8c9Ll84yLdprQiYWD5yOxHeBV3v2w3qKllzTAbZ43tAABJZdPAgHDiA8fp1MhMSSE1JsUmxcW1oQKbXU+flRdD9+6zZswfT9OncmzKFHGdn8oqKbEoUBVFENN+H4Xl5jLp6ldNTplDZy4Bd3dGBTqXqs8TMq7ICn8pi7NpKsWuvJeR+C8H3W1AYH3HcZTJpdj48XPppZycNqurrpQFXdjY0NNDk7MyVkSO5MXy4JVXIobWVEeXljKjKw/5aeu+kkVIJzz4Lb731vemFNDdz//Jlzt66RZHZk0tmMjH4zh1SzpyxNSk2wyQI3Bg+nNNTpqBVq23aUc/qamZcO8WAX/8SZq/t+lB9PTXHdpP91V+JvlrHniVLqfX0RKHXM+vIEQZlZCACrY6O5EdGkh8TQ0FEBIZHeEG5ubkRExNDbGUlrj/5CdtWraLKxwe7tjZWbd2KX3m57YYLAro33sD+T3/iT5GRqBcupNF8XA/u24e6qoqvDQaUcvhk7XN02NmRkpLC008/LU3KzJsHM2ZAbi6/BQ4Ct83+N3qFgq9+9jPeOXKE+vp6Xn31Vdrb25EZDCj1enLKy9m6dSs1goC7yQSnTsHkyURGRvLss8/2+nzvjh/sWXT/PkybBnl5fDN/PlcHDbK8NefgQYbcumWJMK/18GDXc89RbWeHzGhkWlkZQ997j/PnznHx9m1EmQyHlhZmHjtGXHY2yGS02NvzyQsv0ObgQIJnPjqdSH5TdNf56ailXtNFUMdkZ7N4924ERyQTKOtbZNRQOH0eNm+WFLNIarTzKSmcnTQJgLEXLjD59OkuoqjTyNoqta4HuieeJSZCSAjcuyel5JlDLowyGZeSkjg3fjwGpRK5wcDIK1eo8fHhrrmMUW40YjRfj1F5ecw6ehQnc5/EJAhkJSRwfvx4ajylJEmVVktoUREyk4mSkBDJW6gP8sVdr8fP0REff3/8AN+tW3E8dQoAnULBmeETyQ2JJabmAWMKMnAqKew1FKBPyOWST1GnOqhTLSSKcPiwVKpmJokBKeVs8WJJ3ZWU9P2kUXGxFIJRUCCRTKdOdZWxi6Lkf/j++5wdP55zEycimEws3bmTqPx8ANrs7Lg6ciRXRo+2KDjthVa8Wqto1TpS49YttUwUiVCpiBwxgvChQ6XSsoMH4YUXoLISURBI/cUv+M5KDapUKtHr9bi5ubF69Wpc+zAB70RhYSE7duzAaDQycOBA5s2b90jD8n6yqB/96Ec/+vFD8YPJol27drFmzRo+++wzRo4cyQcffMDu3bvJzc3Fx8eH1atXExAQwDvvvANAWloa48eP59133+XJJ59k586dvP3226Snp5NgjoB+7733ePfdd9m8eTNhYWG8+eabZGRkkJ2dbSkTmTFjBpWVlXz66afo9XrWrl3L8OHD2bFjB9BVevbKK6/w8ssvW7ZXpVLh7u7+WPv2r5JFZWVlbNu2jXazZN06Mn3BggUkWhkg37hxw5IMFxgYiL29PUVFRTapZ73Bs7qaOYcOcXbiRArDw3FqbESnVlsGaIBloBJw/z71bm60OTn1qhj6vuQjj5oaot3dCT79DeGXbnB66lTJ2BmIuHuXBfv2SbHBggAffQQ/+YlU9vSb30imtiYTuLoi/vnPZI0ezfFvv7WUVil0OgxWpXZu9XXMOXWY0Kxi6R9D3SC3vcvA+le/klQIVvupo50z9V+SdikV4eYABINEyLhq6xl95jJD0m9KiTVJKgjVScRR75UnPTFxomTC3Wmu+Zioqqpi//79VFZ2xai5uLgwZ84cBpj9ZnQ6HYcOHSI7WzJnHjRoEHq93vJ3gEbDw/Z2EATsWluRiaINCahRqwkIDKSpro7q+t53yKWhgbisLAbdvo13VdX3zm73ViJR7anhxLRAjk8PpGDaEEb5jOZJEkkhAjW9eCMYGqD5tMV7qLQKtl9dQYfeDl/ncpaPPcf+m/MprlDj7u7K88//6PHLv6zwr5JF9+7dY8eOHYiiyLSpkxmTaOwqWWtLt11YZg+OE6yMsqMea+baYDBw69YtLp47R4OZsOuckXevrcW3vJzshAQcOzpYt3MnTsXFXR9WKjFMnUrB9OnccXMjq6DAduXd71GTCbv2djrs7HoliGQGA2GFhZKC6O5di+k9gF4hIzvOlYxEdx4EO9LgokKUgW9FO+EFTeZXM/bt35PO5OUleX84O4Ncjrajg3RXV65ERlpSjhR6PYNv3WL0pUt49EKEShsrg6eekkgjhUIq48vLk5QAeXmUNDVxLiGBIvM9JDMaGXzrFikXLkgkUadhbXS0dM9GR0teJ+vXw5kzNDs6cmLRIjLNUegCIqL5io/LymKaqRSXv+8G/66BUwd6Xq/5jBVPvk1hxETumtuCUZcuMe3kSWQmEwYFKAygVygoGjCAvPh48uPjaXmEz5GjIBCens6DoCDqPD1Rd3SwfPt2gq08lDoxSi5npMnEh4JA9muvcbG5mde3bWPkyJGkJCcTnZeHX1kZZydNQgCumY2ujxw5In3vG2+Q9O67DERKVEOhQG8wsAhI9/Bg6TPP4ODggJ+fH+Xl5QgmE/k5OezYu5ctc+aw4vBhBDs7yMoi+oknWLNmDW+88cajrwl+IFmUkyMRRaWl3Jo4kUPjx1vemnzyJMkXL1qIlNzoaA4uXIhWpcKxuZlF9vbI163j0M6dVJufLQmZmcw4dgx7M6EoAtvXrqUgJASFSolBp7ecl5gHWYQ23Of4wJmW73SvreVHn3+K6il32FVpU8lKKLA9Ho75wZ9OWdZ/evJkLprNwCeePs24CxcAMMnlyIy9kKTWcHKSJiW++076WyaTJiisFdEGA9y/T+mNGxy5fZsq8+RDaFERvuXllgkcwUxEiTIZmvZ2ZnzzDYlFRQhOTmAyoTUaqXByosLLi3JfX4pDQ6X7tJe2TTCZcK+rI/j+fXztKvFdMhSfqb9CrfGXFFXvvSeRxYAJAQQkJfDjQi6X+gid90fnZ4cOlSadugVGWCCKcPWqRBrt2mUbMhAaCsuWSYEOfXhUAlBeLpWkZWVJZNPJkzB4sORjtmkTfPghYm0th+fO5daQISh1Op7etAn/sjLEEIGKn/uQ1xbFnYZB1Knde/Sl3Ds6qLMifwYNGmSjwgegrg5efVUiHYGiMWP4asYM9OZz2Nl/dHJyYvXq1Xiaib2+kJuby+7duxFFkeHDhzNz5sw+CaN+sqgf/ehHP/rxQ/GDySKAjz76iPfff5+KigoGDx7M3//+d0aNGgXAhAkTCA0NZdOmTZbl9+zZw69//WuKi4uJjIzkz3/+MzNndnXSOlUJn3/+OQ0NDSQnJ/Pxxx8TZTVgr6ur48UXX+TIkSPIZDIWLlzI3//+dxzNg+mnn36azeaHrzXGjx/P2bNnH2u//hWyqKSkhK+++spGit85OzRixAib/bSOWbVOtjIYDBQWFnLixIleE7Q0bW0k3LmDUS7n5vDhPQchzc3SjLeTE55VVRgVCurd3buImV4IIRuIIoEPHhCTl0d0bi7uixdh+HIDermKvU89RbFZrp18/jwTz5yROoaurpKUe+hQyZPoJz+RZokBli6l4fe/59i1a9y9excAmc6ASdU1kJIbDIy/dZakby4hNxrBVw52XlBkNsHuxcC6hRrO8jFn+QitsZrkGhifZkfesRFcdRtl8W7Q6NsZ0XSNkXuv4Fj+GDG6ggCzZ8PHH3d5GfwLMJlMpKWlcebMGZuEvMTERJ544gkcHBwQRZGLFy9y+vRpAAIdHAgtLSXV3HH3rqykxdGRNgcHVEDysGE0y2TkZGXRYpV0pu7oQKdUIsrlCAYDYi9+BZr2diLv3mXQrVuElpRIx5meBJFRJnBpjDfHpwfx3fRQXIYmMUM2iJkkEEEvqg/RBG03JXKo6bjZI8hqYCRoqDTMZOvZQbS2i3h4ePDUU0/x1Vdf0dTURFRUFEuXLv1Bkc3wr5FFtbW1rF+/Hq1Wy+DBg5kzZ063NLkqaD4llas1nQBDhe0KVCFWRtmTQeFq87ZOp+P69etcunTJYm5vb2+Pp6cn9+/fRyUIjKysJNXbG8FkYs2mTYTcvy+RLCEhFqWOCBSFhvLV8uU2ZGoP9HEv27W2El1cTMzdu4RlZaH6HvK5O6oCXbg92JOrg5y5OcidMn8H5EaRAUXNViSS9PKq6ehzPSaZjOzBg0kbM4byTmWVKBKTm8uYtDSCHjx4rPKckpAQzk6YYGl7ZEYjg8vLSREEXCMiusih8HApOao7RFEyf3/5Zaiq4l54OMeWLaO+8z4xH0elTkfK5VTGzBqH4uXfWXxOREQ+N3yH8eVXiMn15oKZyAgrLOSpvXsthASAqFIi6PSIgkCZnx+5w4dzPS6OjkcRoubyJblez1N79hCTn29R0EDPUtG/xcezKyeH9+bMoXLwYPbv34+zszNzxoyhzcGB2poaPvn0U9tJmT/9iXS5nARzueNTQDqS99idp58mw0NS1ERERFBZWUlrayv//OgjQkJDecnVlcmXLrFeo+FDo5Fr164xyEr10xcemyy6ehVmzoTaWh6OHcvGJ56wtJmjL11i2rffIiCpYc5MmkSqmZAJfvCAeRMncsPHh7SLFxGRTJ2f/PprYnNyLMdQFASOvvIK6dbKDNHE4Fu3GXzzCnYGWP/0M5Z7TanT8ePPPsH99Xr4HWB9ifso4G8GWA+cMa8KOD59OldHjwZgyv/H3l+Hx3Xl2d745xSqVGKWhRaTGSXLHLNjx3EMATsd6kBz90zfHujp7nunGTJNcbhjJ3EMMcQxxRSjJDOIWRZbZLFUeN4/dlWpSmBI98zvvu9P63nOU1LVqUN1YO+113etY18wK0vEpcuSdH9FzQ9/CBcuiAlEeeaxYzBrlsts/f39nDx2jCvXrolBhN5eJl+9StG0aY6SMg1g1yQmVFQw7+RJutzdaQwJEebTISHcfcABM5XJxPSLF8nIykLvnKypYHgD+3shMFAQN8nJQpm4a5dQJQKsWiWSJ+0R83bllVoN//ZvIjn1XvdBs1mQbNu3i9JrZ0+n8eOF2ujJJ4UqcjBaWmDpUrh6VazDx2dIuqVFoeCTp56iPC4ObX8/0ZWV1ERGuiSlgXjGWrVajDbSXqvVEhgYSK19P4Ennnhi+JCVI0cEMVhbS6enJ1u//W3abGSgPfTC3d2dTZs2ERJy71Lp3Nxc9u7dCwjl/iOPPDLs83WULBrFKEYxilE8LL4SWfT/VTwsWVRWVuYwqHZ+uPf29hIeHs7XvvY1lEolsixz9uxZB2k1a9YsFi5c6HiYd3V18be//c3FkwlA29cnyktG8AvwbW3lkePHOT97Ng1hYXi2t4Mk0eXtfX8F0TCx0ElFRSRoVSTt3sud4GB2bthAp7c3GoOBx/bvF41xEKVZx48Lw9HvfAd27xbvR0djfeMNLvr48OWXXwq1lFUW5ILTPsTdLmX5sUP41rWLRmhqMOQ1iW3y84Pf/ha+9jVHmdodSjnJ62TxASpzH/OaYfFlCfe3ZaEasooR/puPTyA7LoM2jegEKc1mJty8SXpWFgHDxdgrlaJB+cc/ivX+g9Dc3Mz+/fupdzLs1Gq1LFu2jPHjxiFdukTp7t3s0WoxaLV4dnaSnpXFmQULMGg0eLq54e7t7VApZebnM3fPHmojIshPTaUwJWVI2aG2r4/YsjIaQkO5O4zxqNJsJrK6mgk3bpBQWkqrn4KjS8M5ujSC4oWpZPpOYzlpLCAJPcOUYZmaBZnSeVQocsyD/Fbckmy+Q0vBcw4odLS2trJt2zbHdbV06VI+/fRTLBYLc+fOZd68eQ91XB+WLOrv7+fdd9+ltbWViIgINm/efG8TUFmGvls21dEx6D4HsnN6nRL0M8BrCX2a+VzKM3Px0mWHotDLy4uMjAzc3NzYv38/APPnz+fMmTNYrVaWhIczMytLlFS0tGBSqagaO5bixESKk5LoHvSbenZ00KvXj5ikhtVKkMXChOhopq1bh9rmV0Jzs1Bt5OcLBYD91Un19iAweuioGx9J8YQgLk/05dQELRfHeaI2WYmp6BxCIsWWdxJZ3Y1CFp3p21FRZGdkUJI4UPYTXlNDelYWSUVFw6oRqqKiOONMEskyk7RaMjMy8Jk69eF9ju7eFeUl77yDSaXi3LJlXJgyBSuuKiO/1laWFV8m7pd/hMnTHV/Plss48sevs+HtRg489hhGrRbv9nY27NhBaGPjUGWerdMrSxIHHn2UG5Mng22eER+0ssyYujqmXrlCYnk57raO71+8vPhtZ+dAqWhQEDOammgJDWW+0Yg6LIzVTvHy9fX1fPnll9y+fXtgUGbhQhg3jqrSUsaOsPpnn32WOXPmUFNTQ11dHadOnaK+vh7JaGS8xcJ/uLuzLCdnZMWHEx6ILDp+XJgb9/TQnZnJlkcfpdd2DY3Ly2PNnj1IskyPuzt7166lIjYWgJl5eaS8+iqfFxbSbPN6GXfrFkuPHMHd9n2rQkF+ZiYnly2hw2Av35IxK6v5X7/Zi1dHByaNhjdfflncJ23H/+mPPybuyWj440nodPqltEAMwtDN9rZVkji0ciXXbCXKy48cZNpFoey6r5m1VisGJf7934XKBQShcf78QEoXYgCtsLCQI3v30m0jEFPz8rCq1RTarieV2YxZoQCFApXJhF9rKz0eHiOWpHv29uLW20uHhwdGG9GkNhiYcvUqgc3NXJ4+nUZbmavaaGTa5cuCNBomcMGxnbZ9koKDIT5e+AnNmSNIr8HP1L4+oT7+/e/FvTY0FDZsEGlyg5/P48bB++/D1Kn3OpoDyz14UCiODh92lO0BYtDpqadEep2fH1y/Lgah9u51TRG1wRThxe2VIZR7jKW0N87hN2eHxmAguqaKWD89sfNX4LdsGbJaTV5eHufPn6d5GB8yNzc3Xn311eGfWZ2dgjh86y3MSiX7nn6aApuK0vn7Tz/99H3JHWfV+vz585kzZ86QeUbJolGMYhSjGMXDYpQscsLDkEUFBQXs2bMHq9XqMCbU6/X09PTg7u7Oyy+/jJeXF7Isc+LECbJshpnz589n9uzZDqIoLy+Pffv2uShR1EYji44dI7a0lMMrV4pY5RFUGHbjasliESUp91Br2EvS9F1dPPvBB5i0WvJSU8lPS3MYY9qXaVapkBUK/Fpa2Lhz54AZ67e/LRp7774rSsQ6OgTp8v3v0/DKK3x+4gQNtkbwYMWLR3cXy68cIul0kWhQh2mh330gnWjzZvjd78SIJFBONsf4LTfZj4dJZmETLLwsoXlHFv5D9kOWAUQAR8DaJVGcmEjWrFnU2hvfskxicTEZFy6Ikg+NBl58Ucjp7+X19HfAarWSk5PDqVOnHCWJANENDTy6ezd+bW20+vmx45lnaPHzQylJzJ0/n5tXrtDa2YnKbCaqspJyW5R3THk5j+/Zg763F6skcTsqinzbb+ecgKXr7SWhpARtXx81ERE0jhkzpFRJRqYnSIHPuHAWJqczwz8JaXAXRzZDz0URad95FHqv4tLdVXgIQ2qvpbZyrehhj0NHRwfbtm2jra0NDw8Ppk+fzilb2cXGjRtJdCIS7oeHIYusVivbt2+nvLwcLy8vXnrpJYcK8YFh6YHuMwNG2YZiug16sivSuVI1DaNFkGp+3ioyZ6UzfvJcWltbeffddx3KwsLCQrq7u0lNTWXt2rV0l5dTcugQJWVlVHh7D42ZlmVHstbga1myWAhua0Pr5UWLpyc9Th5HGo2GhIQEkpOTiY+PHz5KubXVlTyyvzY2Dp13BMgKBf1xUTRPjKUuyptGL7gr96BuuENoaRMJRXeJrO11+U5zQADZ6encmjDBQXz5trUxMyeHidevozGZqIqO5vS8edyOjgaEkmjStWvMPn/epYyOuDihHBg/XnQox4+HmJihKZGDcfasGMUvLqY5IIBDmzdz23YOKWQrVluWeGJREUuDtPj8/C+Oe0MjHfzXge/w6je/4MBj62jz90dlMrHqs88Yl5eHLEF9qkRIhQZl74DCVAZOz5vHWRspmlhbiyYhgVKzmX6jkWFhtRJdXU1SYSFJRUV4/+AH8PrrgvRyhkKiW+fO5WnTuDhzpqMcWa1WO3wFXQxy16wRvlpOkIHz69dzKiUFEEEL1XZ1qA2Pf/op4/LyRIngm28KU+d7PGPuSxbt2iWMiU0mLIsX8+5jj9FoU3XEVFXx1LZtKK1W6saMYZdtsEJtNLKirIymp58m+8YNZFlG393NyoMHSSoqAqUSM3BrwgTOLl9Kh2pAkXLXx4x3QDU/fWabg7DbuWEDxU6K1XmnTjE3MlIoZQd7SA2CVaHgs9WruTVhApLVyqrPPmPizZv3/I4D4eHwv/+3MFO2//5z5wqiw35vkmU6Sko4fOgQJTbS0K+1lZiyMm5OnIjJ5r+lsFpHNLGXgABvb0IiIggJDcXb25va0lJu5OfTbzM/1/f0MDM7m6lXruBmS/WSgZKEBM7Mm0eDzQdSZTIx9fJlZmVloe/uFj+91jbzCMGJgCgFTU6GlBTX16goyMkRg0E21TFPPinaEB99ZNsBJ5+nf/5n+MlPhDLpQXD3rkip274dTp929WFUKh3m73bIkkRjcDAVcbGUz4ulWhmJRXItJVVaLFhUKoIaG3n+/ffRGo2wxRO+dkkMkjhmlSkuLubcuXMuA0UgLAeef/75kdW0J08Kr8fKSi5Om8bR5ctdrjO1Ws2TTz7J2LEjUb4Czur1JUuWMNOmfLNjlCwaxShGMYpRPCxGySInPChZdOPGDQ4cOIAsy/j4+NDe3u4gjCRJYtOmTYwdOxZZljl8+DBXbH4Szg9vs9nMp59+SnFxscuy42tKmP5lDmfnzqUmMtKlwSBZLKz4/HOag4MpTE4WBM99Snn8W1qIvH2b4sREej088G9pYfPWrXg5ybatKhUVMVGUxCVyfeJElzIYfXc3KQUFpBUWEvGb3yAlJ4tOlz0tZupUjFu28GVrKxcvXhRmxRYZlE7bbbUyszCbeV+cQdNpBDUQFQJltk5qfLzoiCxYgBULNznAcX5HOVn4GWDxHZh9VUL17jAkUSRwEBjk6ywDNZGRZGVkUJw00KALt1rJeOIJElNT75sc8nejro7W7dvZX1NDrX0UG5EqN7ejg4ylSzHPncu+7dsptnVSJl+5QqeXF2W2Esz44mIqx47FrNGIZKZduwhzSpWxKhTcHD+eI8uXO5Ja7ND29SBLd6iIViNpgxlTq0EaxkbD09OTlJQUUuIDCPe8gaLrC+g6DpYO1xl1E8Hbph7Sp4PiHmUCTuju7ubDDz+kqakJnU5HTEwM+fn5aDQaXnrppft6MtjxMGTRF198QU5ODiqViueff37YJKeHQXt7O1nnvuD6zSLMtmMY7NlIZvw5UkILUEgy/coJvPvlKlo7lURHRWKVRWKNj05Hanc3FV1dNAwyLNX19dHn5jbydSzLRFVXM+vCBaIrKlDbOjtyZCQ1TzxBQUoKhR0ddDpdz2q1mvj4eJKTk0lISEBzr3IOEB4ag0mk/PyHIpEGw+ClpzEljMpEf/ISPbicoCE/woOomgCSi3xRm0WHTGExoevvpUcvyGql2cyk69fJHEwS3QtubgPEkZ1EGjdOeJK4bJQBfvlL+OUvkY1Gbk6fzrEVK+izPwJtakuVyUTmjUtkfO0F1E9sAMCImT9e/Q1PrP0dWZnLKbORuOlZWTxy4gQKq5WbK8Hw3BNMO+yF9PlBR2lLVnq6Iylr6uXLLD15kprHHqO4t5fiqKgBhcswCKmvJzk9neSf/5yAsjLR2Rz0yDZp1excu45yp7JtpVLJuHHjSE9PJ8huIP797wviaRAuLV/OkelCTRU5Zgw1tbUOglmyWHjmo4+IsSfiPfOM8NUZgXi9J1m0ZYswhpZlWL+efevWccuWphnS0sJzb72FxmTi6uTJHFm+HItKhV9rK/NUKs7GxNBiU5841ET9/RhVKq5NnsyFOXPotqnOTCoZtVnCooEXblwhatdBxyacz8zk5COPOP6PKynhqawspJYW4bvnDJUKAnyhUQyUWJRK9qxdS2FKCpLVyuN79gykgdoxkoRs8TyYPBN+9auB955/XhAltmvOWlDARbWaU+npmDUaJKsVn7t36fLyGkoq26BUKAgJCSEkNFS8engQ3NSEOj+ftmvXyDIauREZ6SBp/VtayMjKYvytW6gGEScAuLkhA2UREZyZO9eRKKgymZhy9SqzLlxwGGa7HisluOtFKVlPz4hJnOh0wrg6Pl6UpNnbEWPGwPe+B3/7m8MPyYGEBKEyGlSiNyKMRmFe/frrcOaMq9II6PL0pDw1noqZMZT7jaXX6qpW9OroILasjFijkbGhoXR/+SXvP/kkBjc3UvPyWLtnD5JChu3B8NhV0LiWrsuyTGVlJYcPH3axFQgODuaxxx4buaSsu1uU4P35z9SOGcNHmzcLc34blEol69evd7FnGA6nT5/mzJkzADz66KNMtqkbYZQsGsUoRjGKUTw8RskiJzwIWXTx4kWOHj0KDIzESpKEJElYrVYWLlxIZmYmVquVAwcOcNM26uj80K6srGTnzp0uPkc6nY7pjRco6BtDs1NjQrKVNCBJJBUU0BoQ4IjTBkb2I5Jlgu/cIaqqitxx4+jT6wlobmbz1q14OjWKZaUS2WKh18OD3evWUW0zgg2tq6Pd11eko9jgJcukXLxI2q1bjOnsRPr5zyldsoRDR47QYe/Y2bw47Airr+HRawcJvmIrgQn3hFYT9NkMrP/lX+Bf/gWjm5VstnKCP9BEGcH9sLxRwfSrVhTvAV8wQBLNAsYAhxGJNfdBS3Q0WS+8wC1wqHz8/PxIT09nwoQJw6swviqGGdm0ShKX0tM5+cgjomzAhsDeXlbt309YaSln5szhzPz5AERWVRHa0MBFm6l4xO3bdHt4cNffH4XFwtIjR5hqIyDtv3ybry8ffO1Zurx9sGLGrJbQmAZGnvV6PcnJyfj6+lJfX09paalL+pYdaqWB+KBSUkMLiA1pRes/30YQLQb1Vydc+vr6+Pjjj6mrq0Oj0eDj40NTUxMBAQG8+OKLaJ0axSPhQcmiGzduOJLXRvSLeEC0tLRw4cIFbt265VD/hYeHMzszg/gxbUhdx6DzGHL3JXZeWU/xnSS8NB0EGJupIG7Y8s+gri4Ubm60qlSYBhOWTiPZaqORpz76iGi72iM4WIzYV1eLElD7VwIDqVu3joLx4yns66PdiWRRqVTExcU5iKNhjcX7+0XykpOxNCUlIuVtBCP1B4JKJZRA06bB9Ol0TUigfPwYSnS9lJ66junqHSSzePzIyEieXaxr30/K2xUi7/3vha+vUDRMnSpKZ8eNE+qGigp4+WU4d45ed3eOb9zIDZu3iQIrVsRv4nP3Lktbqkn4+etItvvinprPiFv5Ii2BExw+OjHl5az99FPc+/poiYbDZxezfsxO3C4WwGefwf79XPX05ODKlSBJjL95k9WffYbCakUGWgIC+GzVKuqG81dxgl9rK8mFhST19hKWne3ii2NxU/H+M1+jPjwcrVbr8myJi4sjPT2dsWPHIv3nf4pSoEG4mZnJZ4sWIcsy4d7eNLS2OggGtcHA83/7GyF28jAhAT79dNiytGHJIlkG5/W++io5zzzDF8ePA+DV08Mrf/kLKpOJwytWcGPSJLGa4mJ8Jk3icl8fsizj0dXFioMHSSoupt/dnctTppAzc6bDR6bLw0JhUj/TruiRgPW7dpHsRDxUrFnDh+PGOZ5P3nfv8uqWLUIpMhgvfx1qakVZE2BWqdi1fj2lCQkozWbhMzVooGdYSMAzwFXAmQPR65F7eujw9qYxJITS+HjyU1Mx3ENB48xDhYWEsDgqivDqahRZWXDjBlRWQmcndWPGkDVrFgUpKY57T1htLbPOnyexuFiUfyqVgrSZNw/S0qC3V5hGX7oEQL9Gy1trvs721U8zrSWPwDbhwaM0m5l87RqZ58/jpTCAygBt3NvPSK0W9wKDYeREODuiokRZXk6OK8kjSfCtb8HPfz48UdnbC59/LgadsrIGlFuASa3mdnQ05WkJVIRF0hQQ7Lp5RiNjKyuJKS8ntrwc//nzkX7xC0FoAVy9SuULL/DRqlVYlUrSL1xg8fHjQmG1Lx4WXQSV75BNkmWZ9957jzqnwR2A+Ph4MjMziRzpej9/Hl54gZ66OrZt2kSTc3tQkli7du09n2myLHP8+HGybX5Qa9eudYTJjJJFoxjFKEYxiofFKFnkhHuRRbIsc+7cOb78Ujhcjhs3jvz8fKxWq6NxnpSUxPr167FarezZs4fCwkIkSWLNmjWMGzeOvr4+jh49yq1bt1yWHRUVxd26CjrNA517pdlMTHk5tyMjMQ5uQA5HEMmyKEVTqdD297umpCHKOlLy80kuLCS2ogKtwYBVIaGwytSGh7Nr/Xq6vLzQ9vezZu9eEktKsCgUVD76KHmLFlFUX4/BSaHg7eGB2s2NFnvdv8UKyoGOr7a/j8X5x5h09AaSSQatBP4BUG8rZ5szB956i84kP87wBqf5K920ENkDKxvVjL9hQhpMEmVgI4kk6H2A0zYoSDQuX3gBJInu7m4uXrzIlStX6Ld1tt3d3Zk+fTrTpk3D3YkYeyj09QmTb7tngnPnIzNTeCasWUPbwYN8lpdHta9Tw1KWmXbpEgtPnaIyOpp9jz/u8EWZeuWKIybZt60Nn7t3qbT5d4y/eZOVBw9SkOzJ0aURfLEknNvjYtm4IxBNmwV3D3cWzl9ITU0NRUVFjv0F8HBXkBLeQKD2Ok2d3hQ0ptFjcCpZsUGSJCIiIkhNTSUxMRFvp1LFrwKDwcCOHTuoqqpCpVKhVqvp6+tzXDf3M7x+ELKopqaGrVu3YrFYmDNnDvNtBNzDorGxkXPnzjmS6gDGjh3L7NmziY6Odt1Wi4VjW98ju6ZBXJtWV48ujdFASO8dDDoP7qq8MCoHeRDJMr69vYzX6yn08qKpsxM3NzeeWbGCsIsXYd8+MVLuRADg7S3Io/p6F0WE7OVFw9q1FEyZQqHZTJtTrLxSoSDG25sUk4nE6mp09uSx27dHVgKA8FKxJ40lJAgTeFkWRFJhIeTmwq1bwivpHpCByrFjOfPII1TbjOQVgLtOR7fNcwYgKLyXBW77SHi9FOnq0OVYJShO8KYl0I2gpn7GVnahMT2g+64kCcVRXJwoR718GXp7uR0dzcFNm2ix/W5KqxmLQvxO8eVlLE1Lxu/7PwSViptdBbRuXEVwlZbPHnsMk0aDz927bNixg5A7dzC6wa59USxZeopAbP4jhYXk/ud/sj82FqtSSWJREU98+qlD3SEDJx95hAuZmYBIv+zw9h6iFrRD399P8q1bJBcVEVVVhdJqpdXPj7deeQWTRsPUqVPp6emh0O4zB4SEhJCenk7qsWMo//mfhyyzaNw4Pl23DovVyhigxWDAaCNx3bu7eendd0UCHQjvnb/+dUhZ2hCyyGqF734X/vxnMcN//AcVzz7Lhx9+KBZjMvHan/+MVaFg1/r1NIwZg2S1MuXqVSoyM2mznfPjb95k6dGjWBUKcmbM4PL06Y5nXJuvmexZPSy2+uD3mYEutYaJ166x+sABsU6FgvYf/IAtSqXDq0dpMvHKm28O72X3wnNw4KDjfDaq1ezcuJGK2FhUJhNrd+8kqaRsYP6RzJ8lCTzU0GXEqlDQEhBAY0gIDSEh3AkJoTEkxGUwxuWrTimmXjodnbbrw91gYPnx46TaBgvskIHyuDguzJrl8PsCiC8vZ9b580RWVoqBhcRE8Uy0e12dPAk//anDaLtfo+Wtx1/m18/+LzzCx/DjUNjoK1NTVcmZM2ccZYpKs5mJ16+LMlE/JSzph7G90AjUukHDGLhtgBpXomQIVCpxjtyPRLLD31+UpW3eLO5Bu3eLkvirVx3m8LIkcSc4mPKEeMonJlLtF4IF19KyMfX1xNrIofDaWhH+oNcLVRQIH0OnVF2Kirj1yivssz1Plh0+zPRLl8ALODQdMk6DYijR193dzRtvvOHwtXNGVFQUmZmZxMbGDn329fXBT3+K9fe/5/OVKx0Eqh2DFUODIcsyhw4d4urVqygUCtavX09iYuJXJov++te/OkJtJkyYwJ///GemT58+4vy7d+/mxz/+sSPU5te//vWwoTbvvPMO7e3tzJo1iy1bthBvJ+gQoTbf+ta3XEJt/vjHPzrKyU+fPs3rr7/OpUuX6OzsJD4+nn/+53/m6aeffuD9GsUoRjGKUdwfo2SRE0Yiiwb7Ds2aNYv8/Hza29sdhtZ+fn689NJLKJVKdu/eTWlpKUqlkieeeILExETy8/M5dOiQS6ddo9GgUChc3lOZTPg3N9Pp7U2fs5nrMASRR2cn3V5eIMu49fXR7+5ORHU1m7Ztozoykl0bNmDUal0aniCIo8jbt4kvLcWkVnN2zhysKhUBzc1s2LFjoAH93e+KDuHWrZhVKsqmTSNv/XqKurtdfHgGY2LhNRbdPIF7kc27JMwH6jsGDKx/9zvufC2DE9LrZLMVk9xPfDesatSRcKsPhlMSBQFHJeh7gNM1MlL4Kj3xxLAfG41Grl27Rk5OjkMRpVarmThxIunp6fj6Dh0lHAKLxTWNpbNz4LO0NBHhu2SJIJE++USoNGwqscvTpnHikUdcOoIenZ2sOHwY/9ZWdmzc6PBFmX3mDNemTqXDxweNwUBsWRGFKeNAUtDqZ+Dq027M9RvHcsYxk7H0d/exbds2mpubRZLK0+sIdMujouhLCkqaKawLw2AeIBI93bpJGWthTEQirX2R5OWX0TZCzLm/vz8pKSkkJiYyZsyYh04zAzCZTI7rw14GaLVaRzTkdMb9yKKOjg7eeecdenp6SE5OZt26dQ+9jTU1NZw7d86R4geQmJhIZmamS+Pa2thI3eefU3LrFrlqNR3DEGnepl40cj9tSk8syqHeREgSEjLPP7YKn9gEl99t8+bNBAc7jYB3dcHRo8J35tAh4RVmh04nCJzWVhclkKxScScpiYLYWAojImhxKstSWCyMrawkpaCApKIi3FUq0ZF0jqBPTBSkyoOaSnd0iBKSggLIy4MrV6CgALmtjcqYGM7MnetQLirNZiZfvUrmhQt4dXZSExND9rx5FEZEOO5zIb5m0gMPk7rtBsovrMOW95xbEsvP/ymFwjg9sRUDyW2Jxe2kFLQTWd2Nrv8+EeY2WJRKsjIzOTtnDmalUhhgyzJICpRmMxmlhcz+9vdRZ2TQam7nwncfZcbuEnZu3CjSJ00mVu/fT1p+PjJw/N/diPzfB0mSFjrWUfL737OrvR2LSkVMXR0bPvoIjVNH8tzs2ZxaKOafnp1NbHk5pYmJFCcm0jUCQarp7yexuJjkwkK6PD05smIFCquVF6dPRztzJjkXL3Ljxg0ROIAwYp9hMDD5pz/FzZmABCpiYtjx7LOYZJngri46FQrHc8inrY2X3nnHYSYNiPvcm2861B4uZFFwsPCm2b5dzPunP9G+aRN/+ctfsFgsKK1WXn7jDTq8vdm7di197u7oenqIrqqi0Kac8OjpYeWBA4Q0NJA1axbXJk92lGQ1B5jInt3LOoMf3/5lDkclLbnjx+Pb1sbLb77pUAyZPDx4Z/NmF0Xuhk8+IamvbyDB0w6VysXXxqDVsv2pp6iOihLeSZ/vZkLuwL2BYcoCjWo1d4KDHUlkjSEh3AkOHsGofsASO6CpCUmWabZd994dHUhWK+2251Fabi5LjxxxSSmzKBTkT5jAhdmzabIZSiuAcRYLGTt3ElRSImZMSRF+SWvWiG0+cUKQRLY2zXAk0ZN+oHIRRcpUVVVx5swZbt++LdZlsThIIx+FCZ5QweMdEAAo9KD/GnSvgqpuoVYsKRFeRSUlQxLI/h50eXhQERtLeUI8FQmx9KhdiRuvjg4HOTS2rg73OXNg9WqRSnnw4NBENYDFi+Htt4XaCeD2bc595zucmjQJZJkNO3cKz6xg4MgymHgApKG/cVFRETt37nT8HxgYSGtrq0OpGhoaSmZmJsnJyUOfV5cvw3PPcV2l4sDq1S6q7UWLFpGRkTHiMZFlmX379pGbm4tSqeSpp55Co9E8NFm0c+dONm/ezJtvvsmMGTP4r//6L3bv3k1xcfFAiasTsrKymDNnDr/85S9ZuXIl27dv59e//jXXrl1zKJx+/etf88tf/pKtW7cyduxYfvzjH5Obm0tBQYFD/bps2TIaGhp46623MJlMPPfcc0ybNo3ttvvJL37xC/r6+li2bBnBwcEcPHiQ73//+3z22WesXLnygfZtFKMYxShGcX+MkkVOGI4sslqtHD58mKtXxRD3okWLqK6upri42KEoUqlUvPjii/j4+LgoJzZu3EhAQAAHDx6krKzMZV0KhcLF1FppNoMsY7lHSZRnRwfdnp7ICgXh1dXU2mTMHl1ddHt6EtDczPPvv89dHx8+3LyZfp2OMXV1bPzkE5qCgiiNj6c0IYG2YTwyfNvaWHTsGPFlZahkWRBFH3wgOqCSBK+9RssPfsBBp4bicASWb08rk3Ouk5qbh6+xC9R66BBEirx5M5W/e4Kjge9xC+H5lNYJaxo8CM/vHp4kCgCOKsDwACOPiYnwl7+AkyfFvWC1WsnPzycrK4tGW4mFJEmkpKSQkZHBGJvJpwOyLDrAH38sJPvOni4REcJ/YupUQSIdOCBUHyPgro8PB1avdhkFBkgqLGT+yZMcX7LE4YsSUZVLdVQokhSAjEzbRB0BJWbkXjNarZY1a9YMGEXLMr1tN/hox0EaWqy4qft4ZvpHhPmKEV6zRUtFzwoKGidSVKXAYBzoGHl5eZGSkkJUVBTt7e3k5eUNkdDbodPpSE5OJjExkbFjxz5UKZ/FYmHfvn3kD/L7ePLJJ+/px3AvsshoNPK3v/2NxsZGgoODef755+/v1WODLMtUVFRw7tw5x7ktSRKpqalkZmYK0sZioT8ri/ITJyitq6PUz29IjLLObMasVGKydyAHlZ+5GQ14Wbto0gUAEmqlkVfmbEGp0rEtZzNtXW54eujY/Ozz9/Zx6u6GHTtEueOFC0M7OSOgOTCQgmnTKEhNpclp2yVJIjo6mpSUFJKSkh7eCHwE2I/rmVOnqLFdC0pZZkpVFbNOnMBrmHOrzdeXnJkzuTFpkoNM9ertZkZ7FpNLruJ23gDDWK0YJ6ZR/qMXuLJ2CuWqdipooYJmKuRmjK1NgkQq62DS9RYm3mwlrqyT4Dt9uPcNJZLu+vpyePmAL5E9RADAu72dxU2NJH/ne1jHp3H4rW+x4F8+Yd/atSKIAMg4f56FJ0+ikGWK58GdA79ltucPHCbylW++ySc1NZg0GiJ6enhq4kTcfvpTh+HvxRkzOLpsGQCTrl5l5cGDSLJMY2goxYsXU+zjQ+MIhLbCbEbX10ePpyd+LS28cvky6u9/n96lS7ly4waXLl2ix6ae0ABTsrKYkZODtxPZXRMezvavfY1+lYqAtjb6VSoxKAEENzbywnvvoXYuEUpIEAqP8eMHyKLiYsK/+10RD65SiQGH9ev5wx/+IFQWssymDz6gNiqKL+fPB0kioLkZs1JJu430mHDjBtMvXuTKtGncnDDBYejc5tPL2SVmXmz15cWfn0V75Di5aWnsfeIJJKuV599/n3BbdLkM7FuzhtwJExybm3n2LAvr6oSq7h7o0+n46JlnqA8LQ9vfz/pPPibmdo3LPD16vYtaqCE0lNZh0igBNEoDwT49+Gt8udNooEEWnWLv9nbCamspSk7GqlSiNJkIr6ujOjJSBFJ0d7Pi0CGSq6qESXZKCsbp07kWHk5OczMdNmWhRqNhslLJzHffxdtOdsfGws9+Bhs3CqJhGJLozbWv8JvNP8QjfAz/EQobB5FEw6GqqoqzZ89SafOyUlitTLhxg9nnzuHb0wUrvWBDG8QCqMDvSQj5IejSBhbS0SHOeTt5VFoqBlVyc13VucPApFZzOzKS8thYKmJjaXIm1nEqLauoEKVlhn6kR1cJsmzp0qGlbPZEte3bRTmb82CYPVHtiSeQzWYO/vCHXLOpzJ7dulWca3HA589C4t+G/e0PHDjA9evXHf+vWbOG+vp6rl275iBxAwICyMzMJC0tDaWzebnBAL/4BY3vvsvWZ56h30mNlp6ezqJFi0YcFLFarezevZuioiLUajWPPPIIM2bMeCiyaMaMGUybNo2//OUvjmVGRETwrW99ix/96EdD5t+wYQM9PT2OZDaAmTNnMnHiRN58801kWWbMmDH84Ac/4J/+6Z8AMdATHBzMBx98wMaNGx33kcuXLzPVloh39OhRli9fTm1t7dC2mQ0rVqwgODiY999//4H2bRSjGMUoRnF/jJJFThhMFlksFj777DNyc3MBIf3t7e3l5MmTLmTPmjVriI+PZ/v27dTW1qLRaHjyySdpbGzk5MmTmIczknTg3mG7Hl1dzMjJIaC5mf2PP47BzY3QujoabGUc3u3tdPj44NnZyQvvvUeXhwcfbdqEwc2N8Joanv7ooyGjx9UREex9/HE6fH2HdGpVJhMx7e3EX7xIfGkp3pGRmN98k/NGI+fPnxeKokHfUVgs+HW30erph6wYaOSE1daSmp9PSk8Pd15fw94FX1BJDpIMU+7CmkYvAgo74V0ESWQ/EzMBH+C4EgwPoAqYNEnE4U6bdv95h4HdkDIrK4vy8nLH+9HR0WRkZBBntSJ98oloSDopTvDzE43PmBjhsfDll0NNUu+1Xkni6pQpHF+0SJR72A12jQY8O29RmhBMQJsgBE1j3QnzCabpumicx8XF0dvb60hdyZwayPyUGyi6joKphn6TGx9feprauxFoVEaeWtRJVMJC8FwAStHxM5vNlJeXU1BQQFFRkYuHkbe3NykpKcTGxtLZ2Ul+fj6VlZUuBKcdSqWSmJgYkpKSSEhIeCCywWq1cvDgQZcGtFar5aWXXsJ/BMPfkcgiWZb59NNPKSgowN3dnZdeegmfQUbSw2G49BqFQsGECRPIzMzEz2Kh7eBBSq5cocRg4PaYMS4JRBqTCVQqjJKEQpYFxzmIIPI0GEhwdydj0SJu9fVx5uxZANw0Eq8+WoKlI4utF1bT0eeDt66dzTO34ucXAJ6LoGca1AdBWbWrn1Bl5YOXbfj4iG0a5D3UsnAhhQsWUODhQeOgz6KiokhOTiY5Ofm+RuLDwUESnTlDTY3oXCuVSqZMmUJmZuZASldXlyhju3FDkF7Xr0NVFXR10avTcWXqVC7NmOGIAtfYYr5nXM7Bu71zeCPhiAgRRf3ccw5FVC9GqmihklZBINHiIJMaehuIKG5i9rk7pF9oZMHpeoKahNKzICWFo8uW0W3bXmfSKKa8nKVHjhBgNtHr44669g5n5y1wlJHFlJXxxJ496Pr66AiB0yfXsiJlOyrE92s//JCP8/Pp1+kI6enhme9/H/3zzwtyRZK4PmECn69ahaxQkJaby2P79qG0/+bjx9PR1ERJeDglU6dSERg4YjKWZ0cHmefPk9TTg9fLL2PevJlbFRVkZ2c7SogVFgup+fmkZ2URaiPAG4OD+WjzZnr0enza2pAlSTwvEJ5qz27bhsL5HNRq4c9/pnDWLFJSU6mZPJnwa9eE6m3PHuSlS9myZYuIFpdllh0+THlcHCU2kjuosVF0+CUJj+5uZp89S01EBPmpqQ5VrFnRyqENar5T48tTPz+O+ktxLXV4e7Pl1VcxuLkx9/Rp5p0+LbbJ15eLy5Zx1ImAHltezqYdO5AGmR4DLiqhHr2eDzdt4k5ICLreXp758EPc+vtd1EKNISEjqr08uroIaWwUk+kOIZ31+Jbf5WrSVE4uXIjBzQ3JaiWxqIiG0FDHsY2orqbbU89dX3EPHGepYunUINzTn4fARHp6erh48SKXL192KJL1ej0zVCqmbtmCzq4kiowUHlGbNwuy7vhxQRLZfGz6tG689fjL/GbzD/G0l5s9AEk0GNXV1Zw5c4aKigpxCK1WJty8Sea5c/i3tcFsP0EazUA0c7xXQPD/Ao/Me5r685e/iLRVm4pKBlFaZiOHbkdFuSq1bKVldt+hCHtpmcuP4iF8muzJbPaUtrFjxTGy4+5d4Wm2e7fr91UqWLoU66pV7Lh2jdKQENx7enjhvffwa2uDycDef4GoXwzZJaPRyJtvvsld273Ww8ODV199FVmWuXjxIpcuXXL4jHl7ezNr1iwmTpzoOghz8yZ9X/86H44fT4MT0XM/Fa3ZbGbHjh2Ul5fT39/Pr371KwoKCggLGzDm1mq1w/oGGo1G3N3d+fTTT3nssccc7z/77LO0t7c7vAGdERkZyfe//32++93vOt77yU9+wv79+7l58yYVFRXExsZy/fp1Jk6c6Jhn7ty5TJw4kT/+8Y+8//77/OAHP3AcL/t+uLm5sXv3btasWTPsvmZmZjJz5kx+97vfDfv5KEYxilGM4uExShY5wZkssj8gi4uLUSgUrFmzBg8PD7Zt24Ysy6hUKsxmM9OmTWPu3Ll89NFHNDY2otPpWLp0KTk5OY4I+YeB0mRC199Pt31k+M036XV3570XX6TLy4uApiZaAwKQFQp829q46+eHtr+f595/H4NWy8fPPINRqyXy9m2e2r4d7WCiKDKSXevX0+PhgVtfHys/+wylLFOakEBpUhJdg9QSPt7eGIzGYWvuARJLClnWeBTvUx306XQUTkgjPzGFyqgol9I3Q+RtDCl5jAst4fFOGa/iYUiiWYCXCk7KYHwAkmjWLOFX4JR29vfizp07ZGVlkZebi9V2aQTduUN6Vhbj8vJQajSwcCGEhorO7fXrrqOQXwEtft58/MwTtPtFuLyvCvdkfMo4cr+8jMlkwsfHhwkTJnDu3DmsVitBvhDqXc/NKjHKFhNQzuOT9qB3s4DnPIy6JXxy3I2q6iZUKhVPPvkkMTExw26D2WymrKyMgoICiouLXYgjHx8fUlJSSEhIcPigFBcXO0ZEByM0NJSkpCQSExMJCgoasREryzJffPEFFy9edLwXGBjIiy++OKwqaCSy6MyZM5w+fRqFQsGzzz47snGoDVarlby8PM6fPy86rwgj6CmTJzPDzY2OM2coqaykxMuL1kEKH3+DgWCdjl6rlRqrFcswBtVeJhMTAgOZ+fjjuNu25ejRo4791Ov1vPbaa/T29rLtgw/o6unBT2Fgc9N+vEuK4LYM1cDwl5yAh4erj5D9VZZFx3DfPlHC4IyQENHhsaku7GhLT6dwyRIKfH2pH0QcRUREkJycTEpKyn09q2RZpry8nDNnzlBrW4dKpWLKlCnMmjXLNcr9XrCTSOfOYc7KIrenh+z4eJptv4WD3MjOJnSke6xOJ6Ko//3fITBw5G1GpokuKp0IJMvVKzz50jskXK+jX6vl80cXU5A62ZGUZlEokJVKFBYLM7OzmXP2rKPkKS81lQOrV2PSaPBta2PDjh0ENzVhVcDNrweT8NRb6GOnQWgod/bt48PsbHo8PPDv6WHTCy/gvWED3LwJajX58fHsXbt2WI8jZ2LDEBVFhbs7xbZytf4RTJKDGxpIKy8nafp0/L/xDcp6esjKyqKqqsoxz9iKCtKzsogrK6PNz48PN28WgxEdHajNZocqNbakhKc//1yQLk5l1IXLlpFy5Ag1QLivryiZTE/nk08+oaSkBGSZCdevUx0dzV0/P5RmM279/Q5CML6kBKskUe7kXeLfcpvDG7W82BHO6v/Yi/LqNcdnVkli27PPcjs6mrDaWp7bvRtlRwckJ1P9L//CB2VljueQZ2cnr73xhiMqfiS0e3uz9dlnaffzQ2U0EtDSwl0/vyE+gHb4tbYSeucOwUolodeuEVJXh8egQYM7QUEcfPRRaiPEPT64sRFdby9Vtvuxp9xNWKAXxa1WZBk83PpYkbafpBChfmrr8SO7eg03qiIcaYx+fn5kqNVM+OMfURUViTdDQsQ5/+KLwpPr2DGhLHIiid58/BV+8+wP8QoL/cok0WDU1NRw9uxZh4JakmXG5eYy+8wZUdae5A0bO2AJIg1Vnw4h/wu8HwVJMaDa3bJFqHJbW0VpWUyMKC+LjXWcI3bYS8tiysuJqazE3ak876Gg0Yh7p51Esr+ePQvf/KaYx89PpEbaYPT25oOnn6YhKAi/1lZeeO89sf6FwMd/hOBvD1lNbW0t7733nuN/Z68+g8HA5cuXycnJcSj/9Ho96enpTJ06dYDIMZmw/va3HM3K4rLT4FhoSAgvvvTSiAmvJpOJjz76iNzcXF4fJhHxJz/5CT/96U+HvF9fX09YWBhZWVmk2wI3AH74wx9y5swZl2f3wOHUsHXrVp588knHe2+88QY/+9nPHO2rWbNmUV9f75JSaj8WO3fu5Be/+AVbt24dkhYcFBTEz372M1599dUh6921axebNm3i2rVrf1eoxShGMYpRjMIVo2SRE+xkUXNzM4cPH6ayshKVSsW6desIDQ3lrbfeoqenBzc3N/r7+wkPD+fxxx9n+/bttLS0oNfriY+P58aNGw+1Xl1PD4klJSQWF9Pj7s7BVatQWCy8+O67+Ny9y9+ef57moCC829vp0esxq9X4tbTQFhCA0mzmmY8+QpJlPn76aUwaDdGVlTz5ySdonDr8MnBl2jSOLl2KVakk6M4dNuzYgZ+9c+jnh9zWxp3gYEqXL6d48mTqhjP/tMGzs5MVRQdJvFoykFzk6w13hZdK9SMJfPjtYHpa4tBWRzm+J2Elur2KtLN5JBcWouvrEySRhw5OGcH0AMTL0qXCSyAi4v7zPgw6OoR3wfbtdFy5wsXp07k6ZYrD5NXTYGDGjRtMOXVqiFrrYVEVqefI8kiOLo3g1IIx+HmEsPZ6JL7H2rAaBpRokiQxceJEKivKaO/oQq2ykhl3iUuVafQYPNCpe5kSdYWLlRmYLCq8PDWsX7eesAhhhG0ymdi1axdlZWUPHL1rMplciCNnUsjHx4fU1FSSkpIwGAwUFRVRUFBA7wgNdS8vLwdxFBUV5SqvRxAMZ86ccUT9wsgjpcORRYWFhezatQu4v+mn2Wzm5s2bXLhwwTFiqdVomKjTEVBSwu2ODsoiIlw62wqrlQhZxkun425fHw0Ib5tBOyFeJYklCxcy06YusWP/3r3ctKkTvSWJ1+rquFtby7Zx4+jV6QhsamLztm1DOpgoEYbuUUCk7TXGB9LmQ9xj4L0E1K7lF4MOmCONi9OnXbxY8PUVhFNdnYtKqX38eApXrKAwOJgaJ3NsgLCwMAdx5Ozr9Q8jie4BWZYpy8sj+9QpKp22a2xlBekXBLkxYn/XzU2QaenpsGCBKCuxqVhGhNkMf/wj8n/8B1JvL7VRkex+7mk6EfcCN1Mf/TZfFM/OThYdO0ZaXh4SQpWzc+NG2n19URuNPLZ/PymD4sCtOjfkmBjax4TxYVoaHd7eeHd3s3n6dPy+8x1oaACVitKxY9m1fj1mtZqxFRVs3LHD5b4+GFZJojY8nOLUJK5OnDIiweHd3k6aJJGyZg1yTAw527aR39/vIFYCm5pIz8oi8vZtPnn6aVoDAnDv7kbX10erjXxLzs9nvc2LDVtJaSGQAtQEBRF+8iSkpXH8+HGH319wfT2tgYGY1Wo0/f3i3ipJ6Hp78ero4I698yjLJBQXUDDDxFJzCOl/2I+ioXHwbnAhI4MTixejlmVeqa7G729/A19fup5+mi06ncNvSWE28/JbbxE0yITdoNW6KIXqwsJoDgwc9txQms0ENTUJtVBDAyGNjQTfuTN8mpoNJq2WM4sXkz1pElaFAo3BwNjKSspjYjBrNCgkC6lj8qhrD6etRxBx46MaWLp4PjqfcdSX7ePC5WoKa0OQbSl9YT61zDIVkfheCYoim++Pv79Q4rz2miBKjx0TSqKcHGAoSWQvN1P+nSTRYNTV1XH27FlBDALIMmmFhcz58ksCm5shyB3WGeBxC3gAeZHwWRB8WYSpr5/qqCjKbeTQcKVl0VVVDu8h/5aWodf8I48IVWFLi6s/khMh+sBQKATRfMfWwElNFerls2ehooJuDw/effFFOnx8CK+pYfPWrajNZlgPbNkBfhuGLNI51h6GPrNMJhPXr18nKyvL4afo5ubG9OnTmTFjxkAIR2Eh+f/yL+yZMMFxzerd3PjGt7+NbgSyuL+/nz/+8Y/86Ec/emBl0f9byKIvv/ySlStXsmXLFjZv3jzs/o9iFKMYxSi+GkbJIifYyaI///nPtLa2OsrJIiIi2LZtG9XV1Q6iyN3dnQ0bNrBv3z6H0bVSqaTrAf1D/MxdJF7KJbGoiIiaGhSyTLu3N1teew2jVsuCkyeZmZ3NR5s2UR0VhXt3N2a1GqNWS0BzMy2BgSDLPLF7N7q+Pj556inMajUx5eVs3LEDtcnkKHAzq1QccookTs3LY9Vnn4kyGmcEBiL/4Q/kT5zI0aNHHSNcw0KWCaurI760lPiaKkIrq5FkmX5/Lbt/Z+H8s2bcLbCi2Y9JVWpKbo4lvyyNOs8B+bTCaiG2/Tap526SVFA0RAXlAoUC1q4VI48jlCl9JfT3i9KPjz8WngXO2xAbS7+vL1c9PMiZMsVRjqIxGJhy5QozL17Ey9nY+h4wqCROPhLG0WWRHF0aTmW8L5lSPMtJYznjSCEUCYnOzk4+//zzIR5XPro2dJp+GjqEimha9DXqOhOpb9MjSRIZGRkUFhbS1taGQqFg2bJlTJkyBUmSMJvN7Nmzh6KiIhQKBY8//vgDj7yZTCZKS0spKCigpKTEhTjy9fUlNTWVlJQULBYLxcXF5Ofnu0jHnaHRaIiPjychIYH4+HiXRm1WVhbHbVHaAAsWLGC2LZrcjsFkUWNjI++//z4mk4np06ezzObzMhhGo5GrV6+SnZ3tuD7dgLDmZgz9/dSFhbmo4HRmM5Hu7mgUCho7OmhWq12MRQFHyWBCaCg17e309fUxMSGBVWPGINmNXIuL2REURLGN1AxobuaVLVtoDAnho02b6NfpCK2v55mjR3GPihqqFBo7FuQa6PxCTF2nwDromtRNBK8l4LUYPGaBYmiDHxClFYcOCcXR0aOO8g5AlGv5+YlOkVPHtzM2lsLHHqMwLIzbg87z0NBQkpOT0ev1XLt2zeFtpVKpmDp1KhkZGf8Qkmg4NDQ0kJ2dTV5eHvbHV6DURHpRNuP230I1jA/REKhUQoWRkAAzZogI8fHjh5JIVVWiA37kCFaFgksrV/LltGkYLRYkrGiMBgwacR6HN9Th69nC1D2nCGg0sueJJ6iwpRdmnjvH/FOnRGz5IHR4e7Nt82ba/P3x6OrimY8+JKipGck2b1V0NJ88+SRGrZaI6mqe2r79vuoYAJO/ni1PPc9df3/Hc2s46EwmkiMiiO7qov7ECa5NnuwgyD26uph4/TolCQk0hYSg7evDo7vbQRiNu3WLx729hTrjrbcGyKLwcMIDAriakMDB5GSQJBHCYLvmnUv63Ht6HP5fCouF8bduEdaQTxQaAq6VIA0u49ZqwWCgMSSEd77+dawKBY9WVTH5gw8AQea+9/zzjlJtgLW7dhFVU0ODnRgKDaUxNJS7I3g/SVYrY+rqCK+tJdRGDgW0tAyUAt4Lnp7wb/9G+fz5HLpwgbu2ayfy9m269XrabAq58PBw/H3cuZlXDEh4aLtYOf5zEoJKKG+OJatiNpUt0Y7Fxkeqyej7kqi/nkCyc48ewLNe8NpGCFsPWX3ws/8EWye+T+vGlrWv8tvN//zfShINRn19PWfPnnXp7KeWlzPniy8IamoChSRUfYHBDnJoSGkZMqHGBmJLy4m9XE54TQ0qu4pXq4FnvwbTp8MvfgG2MjhAJEX+6U+wadPAtdzfL+Zx9keyl/U2DiUh7wt/f3B3p1mWef/pp+nX6UgqLGTdrl3iGt8IvHUcvFz9Ey0WC3/7298c90u1Ws0rr7yCn82ny3m+3Nxczp8/T6tt0E6tVjNlyhTS09PFYInFQvMf/sB7bW0OUlgJfP3llwkKCRl2s+0lYA/qWfT/hjK0M2fOsGLFCv7whz/w9a9//b77NIpRjGIUo3g4jJJFTrCTRT/60Y/w8fHhmWeeISwsjGPHjpGdne0oPZMkiVWrVnHq1Cm6uroc798P4eHhJCYmkth4lIB1P3cZFZMlia02OX1EdTWbt25lzxNPUJScjNpgQGWx0Ofujn9Li6M0ZumRI/i3tLBz40bMajVxpaVs2LkTldnsIIo6vLzYtWED9WFhSFYrC0+cICMrS6zbOcnl+edp//d/53B2tksSlDOCGxoIk+uoV4XRGBTq8pm+uxtvuZTSJ0qxppaztsOP6c3tKMv6RLnZcUAW5rH5y1PJC5nAHc+B8hCl2Ux8aSlpeXnEl5QMEFkqFTz7rIiyfdBUpvvBYoEzZ4QH0aefuiZLBQSIjk9Dg0vKjVmpJHfcOLIzMhypOgqLhXG5uaRnZRE8TLJLRZQH+9aO5YslEZybHYK3zs9GDqWxiBS8GTQCaKyDzi+QO45yM7+WL/Lm0G/S4exrFehjpbldEBexsbHodDry8vIAGDduHAaDwTGqO2HCBFasWIFarcZisbB//37y8vKQJInVq1czwcn09UFgNBpdiCPnc97Pz4/U1FRSU1NRKBQUFxdTUFAwYimmJElERkaSkJBAYmIi/v7+XL161cUUc7DhtTNZpFQqeeedd+jo6CAmJoann356iAS/v7+fS5cukZOdTZ+to6w2GlGZzUMiqwOtVoK9vbH09lLT00P3MIoMldVKhE5Ho8VCn9lMEtDZ10e9TkdIUxPPv/22GFlGeLRve/ZZbtsMzMc0NPBCTg61EyfycXQ0Rkki3MeHpzduxC34HuogZ1iN0JNlI4+OQe81188VevCcZyOPloA2fnj1TF+fKFXbv99R8uGARgNBQeI9p9LT7rAwCtesoTA6mqqeHgY/NhQKBWlpaSxatOgfZpB9P3R0dHDx4kWuXr3qKJvUa7uZ7nORqe9cwf3aver4RoBGI0yEU1NFmeuUKaIs5exZ+M53oKmJTi8vjr76KoU24kNLHyaLGqtShWS1Mr2ri/juGsa+t5cTCxeSPWsWAHGlpTy+Zw+6YUibbr2ej5w8cp7+6CPCnAzya8PC+PiZZ4THUUMDz3z44UAq1qAEL2c0Bgfz7ksvYVGpWLx4MXq9nsLCQspKSjAPQ3yorVZiiopwMxioSEyky3adqI1GtAYD3Z6eqIxGvDo7HaTHuFu3WLNsGZK3N4XPP09Kdzc1QH9sLB8/84xI/bNYkO2KPBvRqrBYHF5LKpOJSdeuMSsrC2/n+7EzlEpHya9JpeLtl1+mJTCQpMJC1u/c6Xiefr5yJddsprgA3nfvYtJohhjS2+HV0YFfWxt1Y8Zg0mrxaWvjax984GL6PSxmzBDH3RZ+AcDcufR8+CFfXLpEru2+7NHVRUBzs6PkzN3dncmTJ1NQUOBInpw4cSIL56RReeMNLtwwcqfTVnIpWRgXlku64SLB7/fCVdux0WthczRsqAZ9H2QDbwNilRi1Gt5a+3V+vvnf8AkL4T/GwAbf/36SaDAaGxs5e+oUhU5tijF1dei7u6kPCxtaWqboIKa9nNgr5cRccSotUypg7hxISRPG/vbnyre/DT/+sWgf/OpXrtfB4sXwzjvCv+le6OqCsjJXIqm4WEyD1JXD4XZkJB9u3oxFpWJGTg5Ljx4VH3gCj6+G1/5VKJJs9+LW1lbefPNNx/MzLCyM5557bojqFkTJdFFREefPn3c8SxUKBRMnTmTWrFn4+flhKCzkvffeo9lOzssya9LTGb9kyZDl2Z+hD2twPX36dP785z87tikyMpJvfvObIxpc9/b28vnnnzvey8jIYPz48S4G1//0T//ED37wA0C0vYOCgoYYXF+5coUpU6YAcOzYMZYuXepicH369GlWrlzJr3/9a77xjW880P6MYhSjGMUoHg6jZJET7GTR//k//4eXXnqJ4OBglzIXu6n1tGnTuHXrlsOQcCRIkkRcXJwgiBITRSeq6SYkToR213mz0tM5vmQJaqORl7dsIScjgyvTprmk2/i2tXHXxwcUCjLOnyequppd69djUalIKC5m3a5dqCwWB7VQFR3N7nXr6NXr0fX28sSnnxLjPAIHkJCA9c03uejmxqlTX2I2m4YYWOt6e1ly9Rjju24gXbIdqyB/ysKjKI2PpzwuBpN6QNGgkCxE6qqJLygl/lApAc3NoiGfCRAKWY1glWkJCCAvNZX8tDShlLJBbTSSWFZGalQUcT/9KapBHfuvBFkW/kIffyySpJyTyuzLfwDPA1mSKI2LI2vWLG5HRzvejystZXpOFuXRBvZsiOWLJRHURnoyg2iWM47lpDGJCBQ4ERpWA3RfgM6jYurLdVlXlzGcgwUbKKl1VWhoNBrMZjNWqxU/Pz+Sk5PJyspClmXCwsKIiYnh/PnzyLJMcHAw69evx8/Pb4ip9IoVKxxJIw8Lo9FISUkJBQUFlJaWuhBH/v7+DuLIzc2N4uJiCgsLqaqqGkIyOH8nMTERlUrFWZsJtEKh4JVXXiHQdm7YG7ptbW3s37+f6upq/Pz8ePHFF11USj1dXWR/9hmXystx6KAGndNKq5UINze83N3pbWnhtixjGibRTWM2k9DZyaSaGiKuXuXjBQu4HR1NQHMzEdXVXJ8yBbe+Pr7+9tv4trdDdDTWhATemTaNRtso+djQUDa98AKVt2+zY8cOTCYT0dHRPPnkkw+c2DYsTE3QeXyAPDLfcf1cEy0UR15LwGshKIfxHDKbhbn0vn2CPLInHYJQUwUHi85UdzcyUBYfz8lHHuHOCARXQEAAKSkppKSk3NOv6h+J/v5+rl27xsWLF+m0dfDVSiMT/a8zc/dF/L5sG/6LOp0oUevouL9huJubKHu1WBwqhpKpUzn82GN02M59D2Mn3RpRHqnv6SGzq41pb71PQVoaB1atEuXDra1s2LGDoOZmrBJULPHDTZuMR24F2vq7bH/6aWojItAYDDz5ySdEO5XP3AkO5sNNm+jx8CCguZlN27bhNUjJOlxcguPZYjLxssWC/+rVWKZMoaq6msKcHApLSugdxutEMpsJ6O3FYLXSaTeMt11HktmMV1eXw5g5JT+fJ6KiKDIaSfnTn7jy7LMcjo7G6pQMKFmtLgo+ECrNaZcvMzM7G497KVkH4ciyZVyaMQN9Vxdr9u2j3ceHxtBQymNjuTtIpeHYH6uVgJaWAePphgZC7tyh08uLDzdtolevJ+jOHTZt23bvbVEqBVGUlwdOhJI8fjzXV63iuEJBv0L48ERXVtIQGopBpwNZZpIkoQDs9JInsBToQvA9dppMLctMMVQws+ILvC80gT04UAmkSDAtHAIzodoCp09AQ5vT58B4MLsr6VXF4qlPQnJLAMV9nqMP0xS837x9fZCfjyk3l2qtllvjxlGclCSOgxNUJpNILSsvJ7ainIBmp9IyBTA2CpLHQXy8uF5BqH9PnBDeXiBM/FeuFM/xI0egximxTqUSpWkTJty77HSkfevrE6rMtjZxb8zPH3bf81JT2bNuHQCLjx4l3Vb+5wK9XngdhoVxLT6ez8PDHdfGXKORec5K70HrkIFypZLzGg23baSSJMukms1kGo0EWSzs6e8n36mEckptLSs8PZGcrrnari4i3n77ociinTt38uyzz/LWW28xffp0/uu//otdu3ZRVFREcHAwmzdvJiwsjF/+8peAUAnPnTuXX/3qV6xYsYIdO3bwi1/8gmvXrpGWJtLwfv3rX/OrX/2KrVu3MnbsWH784x9z69YtCgoKcLMN1Cxbtow7d+7w5ptvYjKZeO6555g6dSrbt28HBkrPvvOd7/Dtbw94RGk0miFKrVGMYhSjGMVXxyhZ5AQ7WVRZWUl0dDStra288847GAwGNBqNQ5I7kj+LHaGhocyePZvY2FjXzqBshqVBcMy1TOdOUBDvfP3rWFQqVh44QI9ez5cLFwqz3M5OOr298Wpvp9fdHbNGw/ibN0kqLOTTdeuwKpUkFxSwds8elDaiCET88rElS5AVCkIaGtiwcyc+zqNkKhX867/S8PzzfP7FFyMqQCZfv8ojlhPovuyDHpAVICsUKMxWTBo4+q9w6xtuzC2dRnepnrK6OFqNrqbAPn3txDfVEX/+BtGVlQ71heOwAE3BweSlpZE/bpwgxGzQarUkJSWRmppKTEzMsKNv90R5uVAQffyxa1SySiU6iA+aKjUM6saM4fS82ZTFJwqTTuBOqBlLRiCZKVNZqhhHIINKcQwV0GEjh4aUFUmgnw5eS8Wkn4aMgtzcXI4ePTrEZFypVGKxWNBoNGRkZJCTk0N/fz8eHh7Mnj2bs2fP0tPTg1arZc2aNSQmJiLLMkePHuXSJcH6LV682MWL4KvArmayE0cWJ8PvwMBAUlJSSE1NxcPDg9LSUoqKioYQTM6wX2sAaqWSb8fH41FQQG1ODhHHjrHj61+naMwYtAoFL8yfT+C0adDbS/vBg5y8eZMCd/dh06H0skyEry8ai4WWpibqtdqh5WUIcjSloIBxublEVFc7Soe+WLKEnPR0NEYjmVVVnLKpnp6KjiZ+6lSIjcWiVrNlyxZH6UBSUhIbNmygpKSEXbt2YbFYiIuLY/369a5JN38vZCv03RKkUecX0H0eZGcvFSXoZwqfI6/F4D4VpGG8l27cEKTRvn0iwhpxfZbGx3Nm0SLqbao6lcnEtEuXmJSbS92iRRSkpFBuMrmk5fn5+ZGSkkJycjKhoaH/7cSRxWIhPz+f7OxsGm2lJRJWknyLyDiVTfiBmuET1AIChM9JYqIo37lyRdw3HqDE1KhWc2bRInKmTcMqSahkE5p+A706oZgIb2lh0cH9qPvN7Ni4kU4fHzQGA6v37yelsBCAvPVeBH1wgSBzFMaTJ9lx+DCVYWGoTCae2PMpiUUD960Wf38+3LyZTm9vfO7eZfPWrfi2t98zU1OWJD7ctInKmBjG1NXx/HvvoQAkvR48PZF1Opq8vCgKCCA3IcFRYuYCqxWN0YjRWXEny6K0zEa2xxcXM/6TTxgH/PAb38DdViqNE2Fkh663lxk5OUy/dGlYpdVw6NPpaAwJIS8tjWs2tcFwBJQdjpI2WylZUFMT6kGl13VhYXxkU2yF1tfzzIcf4j5CmMO90BIQwMGVKx0DCP4tLSgsFpptpGpIQwNTrlwhOyPDYRKedusWXp2dXJ882aF01Hd3M/3iRaZdvvzAx+X/Jtif5eU2Y+rbUVGYB93n3Hp7RTmi7XxIKC5m7pkzjHEewPl/Iez+Wcgy63bvHuJT5gwZ2LlxI8W2cA7JauW5998nYlD4wHCojozkfGYmpU6q24TiYmafO0dVZCQnFy1yHNuQujo2f/ih41yqBSLgocgigL/85S/89re/pbGxkYkTJ/KnP/2JGTNmADBv3jyio6P5wFYGCrB7927+/d//naqqKuLj4/nNb37D8uXLB/ZflvnJT37C22+/TXt7O5mZmbzxxhsuSuK2tja++c1v8vnnn6NQKFi7di1/+tOfHMrVr33ta2zdunXIts6dO5fT9kTEUYxiFKMYxd+NUbLICc5paDqdjnfeeYfm5maHouh+UKvVbNiwgVibT8UQ/OUJ+NYel7fMSiXvvvQSd0JCSCguJqmwkAO22nDv9nY6fHzQd3djUSjod3cnprycidevs3/NGqxKJWm5uazetw+VbftMajWfP/oouePHA6JE4NHPP3dtJGdmYvzrXznd2Eh2dg7D9aCCGxtZWXyQ8Lu1cEO8Z3FToOwX6ymeB9l/8GCJVwQh7UVI5bIoNzsBbb5+lMbHUzotkSrfKBdDYPtIYnxpKfElJfjYSw58feFnP0P+xjeob2ggLy+PgoICh1IAQKfTkZycTFpaGlFRUSMmf3DnDuzcKUgiZwNG57K7rwgrUBHjybsvJvH+84k0B7uT0RbOwhxf1Nfbsdqianx8fJg5cyaTJiSiMWRDxxFBEBkGlfipgsHbRg55LQLV8H5M3d3dHDp0iCJ76s0wmDFjBhUVFTQ3N6NUKlm4cCEFBQUO0+HZs2czb948JEni5MmTXLhwAYD58+czZ86cv+u42GEwGBzeReXl5S7EUVBQkIM48vb2pqKigqKiIoqKikb0UwFhTrvg1Cl8c3NJ7eriRz/6EW5aLU9t387Yykpu2soDWwMChoweB7e3E9TdjcVopM7Pjw4nItIZHl1dpOXmklJQQHhdHZJSKUiEoCAICSE3Npa9to7fYn9/TrW1YZZl5oaEMC8sDFQqjJLEX69fp9OmOJwUHs6qKVPIb2xk76VLWGWZpMhI1i5YgEqrFYTl4EmpfPAR8HvB0gPdp6HDpjoyuBqFovQTfhp2vyPN0I6DXFZG6Z49nLlzh3pbEpraaGTa5ctk5OejNxhcStj6dTpKHn2UgvHjKZNll9/ex8fHYY4dFhb230ocybJMVVUVWVlZLt5fEZ7VpF/PIfGTIhSWYe7nOp3wJ/rud0UpWmurUC9cuQLnzom/a2uHvYfcCQri0MqV1NhKXjw7O+nV6bCo1UhWK1OuXmFmVjafr1rlKE2cfeYM80+fRpJlTFqwRoahtWgxGwzsnjuXkoQEFBYLj+/dS6rNQBqg3ceHbZs3c9fPD8/OTjZt20ZgS8s9j0mnlxdbXn2Vfp2O2WfPsuDUqRHn7fLwoCQhgVsTJlAbHj4s8epM/jgTNuqbN/m3ffv43ve+N2x6nr6ri1lZWUy5enVEo27Z25sOf38aNRoX8+mRrl1dby9BTU3UjRmD2T44Y7Hw8ttvE3LnzrDfAVE+tP3ppzFqtYRXV/P0xx/fO7hArwe12qU0yaxUcn7uXM5nZGBRqVAbjYQ0NFATEQE2Q+s5Z87Q6e3NpenTQZLw6OoitL6eypgYB5Hi19pKelYWE27eHDKY4gKlQgxwOJ+C7oAXWDVg0ehR6YKR3PxAaQKpHWgFqRtUDExaX9BHgz4WtEH3v+eM9HlHB91lZVRYLJSHhVERE+Pw9rPDs7eH2O47xDbkMfZWEfqqXlp8Azg7Zw55aWmOcye+ro45J04QXlkpvqiWIFaGRNs+qiNAP1W82rfHYBAlonZixsdHlJ/5+Ylr1um6QaGAzEyYOFHcZx8Ug/e9tVWUr/f0iPU98QR4eSFLEkc0Gi5rtSjNZjZv3UqkXeWkk6Afl3tHj7s7W157zVGK59vWxstvvjlgmK7TCf+lwEAYM0aoPP38xDkINCgUXFCryXd6ZkRbLESbzZzRaJBt77n19vLszZuEpKVR29NDxJtvPjRZNIpRjGIUo/j/X4ySRU6wk0UnT57k+vXrdA9OJ7oHgoOD2bBhg0tKkAvy98OkNeA6sMmJRx7hQmYm7j09LDl6lP1r1iArFHjfvUuHry+63l7URiOdPj6ENDQw7eJFDq5ahaxQMP7mTVZ99pnDdLPdx4edGzbQGBqKZLWy+IsvmHHx4sCIs14Pr79O6dy5HDx0mM5OJ28IW+NfbTCwIOs0070uojhuhX6hJkIGSYZuf7j6nz6MWxCCX1cRlOMgiRwN2EwvaPGColqMajWVMTGCPIqPp3NQByKwrY34mBjiV68mIiLCRTkkyzI1NTUO4sjZcFuv15OSkkJaWhoRERFIXV1CEfHxx8KP5R94WlsUcHVyAH/9ZiofPhOPXqljEcksZxzLSCUM8Zv39vZy+dIlLl3KobdPdDrc1H1Mi77E9OhLeGh7AJUwIrYTRLrxDlXS/SDLMvn5+Rw5cmREdVt8fDySJDl8i6ZNm4Ysy1y5cgWAmJgY1q5di06n4+zZs44RuMzMTBYsWPAP7cT39/e7EEfOhGuwVktKby+pRUX4Xr5MNVCYlERhcjJdI0S0d3R08Prrr/OjH/2ISeXl9Lm7czsqykVZIFmthDQ0ENjURK9ez+2oKEzDpLyA8DJJy8sjpbCQ0Pr6EZUZd4KCeO/FFzFpNMzMyqIoOZl2X1/iS0p48pNPkGSZHp2ON775TeGLIsukZ2Wx+Phxbk6YwGerVyMrFKTl5vLYvn33N8lVKIYnkh5mUipd/1cYQG4G6x2QG0BhEiUr9knrD+4x4B6PrI+hRKnljNVKg+06UgPT7t4l48IF9DduuHqDuLkJrx8nYteg0VA6bx6FkydTotNhdroevfR6kqOjSYmLIyIsDEmtfnDCzGIRZrX9/aJE5D6vTd3dZHd2kms0YrEt06+/lZk3cph48sYQpYkDer3YL7NZLOsB0g9lSeLapEmcWLRIKCdkGb+2NoeSxL2nh/knT9ISFMTFmTMBoQhYs3fvEJLColDw2WOPkTt+PJLVysrPP2eyrXwUBKHz4ebNNAcF4d7TwzMffkjoPYx6ZaAgJYVP169Hslr52gcfEFldfd99MqnVVMTEcGv8eErj4ka8luxoamrijTfeGEIW6Xp7mXT9OgnFxajNZhRWKwqrFWSZ9vBwWubNoyU5mebaWpoNhiHlSnbYjbHde3pY8fnnhNfXo+/uZuuzz1ITNZC6uWbPHsbnupb1Og8WVMTE8MmTT2JWq4dNDx3yvV/+Ei5dEmmZNlRNn87BdetotT2Xghsa6PL0pNfW+U8NCyPFz48TJSXctf2+vgoFd52u/zFGI7NaW0kqL0eRl+dqtmw/1n9n8uZ9IQF6Deg9wNNPpCTq9eLV+W+9HvR6TF1dVJeXU2E2Ux4ezp1BZspqk4ko2UhsdD+xNccJOF6EdBlw9p2PCIQ162ld/ijnenq45WRWH6vRMPfgQSJsCXqoJFgEPC1DEqCbBCE/BN8nQLIZYh8+DC+9JMrLJQm+/334P/8Hrl2D558XXkR2TJgAn3wCyclf/ZiVl8PChaI0LTISTp6EuDisViu7Pv6Y4ooKdL29PP/eewS0top6wz0zIPDP8M4HQrnZ0EBpfDzbn37asdiJ16+zehjTaBd4ekJYmDDnnzqVlilTuNDTw62iIsczNiAggLbWVqz2+67VyuoTJwi4e5eIwsJRsmgUoxjFKEbxwBgli5zgbHDtNkLksB1ardbhWZSSksLq1atH9h8xdMDEIChybYzejozkg+eeA0nikWPHODNvHiaNxqEo0hgMeHV00BIUhM/du8zMyeELW2nZxGvXWPn55yidGr+fPvEEfe7uuPf0sG73bhe/C1atovv11zl67Tr5+XnDbmZKfj5L2o/iVdslMpABi1oMUAJUPeVN4DcD0GvKRyCJAqBOA5XDy8lloCkoiNKEBErT0qgJCXEZINVqtcTGxhIfH09cXJyLUa7VaqWqqor8/HwKCwtdSrK8TCZSr14l7date3b6HwYmpcTpeaH81/fGcXRpBPHKUFbYvIcyiUOLk7Te0gmdJx3eQ6a+em7WTiS7PJ22XtFRVCpkJqT4kzH7UfyDov+ubevp6eHw4cMU2EZTJUly8QLy9/cnNjbWUWoWHR1Namoqx44dw2Qy4eXlxfr16x2RuPYUsunTp7N06dJ/HGF0964oZbp5k77cXIpbWsj38KAiOtpFrRDS0EBKfj6pBQX4trXREBpKUVISRcnJDjNxcCWLBl+fHp2dhDQ20uvuTn1Y2Ihkg39LC6kFBaTU1hKkUiEFBorRWh8f4XlhsQiCwDb1W628ExVFm1ZLTGcnCouFMl9ffPr6+LqthKZTqeSNuXMxqNUgy8y/eZM5N29yJTaWQ5mZAEzKy2PlsWMonJb995RA/ndABkoSEzkzdy4NNgNRtdHI9EuXSM/KGjBUfkgY1WrK4uIoTEmhJCHBkbQFQtGVXFBASkEBkU4lf8DQ3/DveFR1eXhwafp0rkyb5kjk0vX2Mu3yZaZduvRQfjlIkiDH1GrRoVerBaHU0QGyTI9ez7ElS7hlU3fqentRmUwOEjSstpb40lLOZ2ZiVqvxb2lhw44dBLa0IAPN0wPwe/bHKBJSOPTpp1yzxUsvOXuWmadOic5iVxe97u589MwzNIwZg7a/n6e3byeiuvqeCsr9jz3GzYkT8W5v55UtW9CYTcOrrGwwqiU0JrEsWZKoDQvjypQplCQk0D+MYfRIZNE/BE4lbWqTCaXFgkKSMCqVLqVO2r4+vLq6HITU4KlPp6MxOBgUCvTd3URUV6OyWByfS7IVhcU2v1KJYvFiFBcuoGhuRmG1YlEoKJ8wgQa72s5gQNvfT7ftf727O+PGj6e5uZny8nKAIerksLAwJkyYwBiFAuV776HYtw+FyYRCllE88giK738fRUoKipMnUfz610jXrqGwWjGoNHy68An2LFhLiIeWZzXdZNCN4m4hNB6Bu4XQa4JehJKlF+iXwOAFBh/xd3c3dHdC3wjk2ODDjnhul8fGjlhaFlpfL3yHysuJcE4tc4ZWDYFBEBEpkgg9PR0kVJtezzmVipu2cA6AGGDO+fNEnTgxsIzJCthkhVmAWwwE/wACngOFTjxvvvc9sJcmJSbCBx8Ik/rXXxdG2HZCUKkU///rvzqUOg+Nmhrhh1RSIvbn+HFIS8NkMrH1nXeoa27G5+5dXnj3XXF/CQAOLIeZBwCFIB+3b+dQXR1Xxo1znN/rjhwhRZLEud7YKMy8H6AkscPXl6zMTK6NH+/4fQaXaUacP88LJ06MkkWjGMUoRjGKB8YoWeSEByGLFAoFXl5etNuk6AsWLCAzM/PeHexvT4E/uyYXGbRa3nzlFdp9fUkqKOB2dDR97u54dnTQ5e2N0mwm6M4dGsLCcO/pYUZODl8uWACSxJQrV1h+6BAKWUYGsjIyOPnII8gKBWPq6li/c+dAkotGg7xjB9ejojh69Bgm09BRSt+2NpZnHSEutBSOAGaQlSDZ2ns9cW6o/80Pzbh6KAPew5UkSg+F2xaoH5oINgRJSSKhJDOTvr4+ysvLKS0tpaysbIhaZsyYMcTHxxMfH8+YMWPEMbZasZw5Q8XOneS3tlIYH+/S+fRtayM1L4+0/HyC7tx5KOLIpJI4vCyCLa+mcP6RKGarU1jBOJaRRixOPh6yFfpuDngPdWeJg2aHpAXPuVg9llDcNI6sy7epratzfJyUlERGRgYRtkj1r4qCggIOHTo0rMpIrVYzc+ZMLl68iNFoxMfHh8WLF3PixAna2tpQKpUsXbqUKVOmcOXKFQ4fPgzA5MmTWbFixcglfsPBYhEJMjdvwq1bYrp509Vo1Al9Oh1FSUnkp6ZSERPj0pgNvXOHlNxcUvPz8b17lxY/P3Zt2EBzcPBQskiW8ezowKpQ0OPlNeLmBRuNJDc2knLzJoG5uS7x8C5wc4OoKIiOhuho5MhIdmg0lPT04K3VkurvT1Z9PSqFgufT0gjV62nt7eWt3FxMto7gsqgopgcHk93YyDGbcmN6UBBLIyLE+et8u7VYBGFkJ47sRJXFMjAN/sz+t/1/k0koD+yT0eg6mUzi1WweeDWZXAgx2WSkOCyYM5On0hgoVAJqo5Hp1y6ScTEb955eIS+0Iq75v4PkMqlUlMfGUpiSQnFioiPyGYRfS1JRESkFBURXVQnlyT8YRrWaG5MmkZ2eTrtNBao0mxl/8ybp2dn3Led6GFSMHcuhlSsdyiL/5mY6vbyEOkeWSSoqoi4sjC4vLzQGA2v27iWp2LVcUAZOLFpEli1Rbe6XXzL3zBnHfa1fq+WTp56iOioKtdHIxk8+IcZexjMMnJ8742/eZM2+fcPOJ0sS7d7etAQG0hQYSEtgIM22yXgPdZEzWRSiVqMymzFqNJhVKlGOPNxzUpaRnK6LkTyIRuEESUKpUCBJEgqFwnWSzCisnSjoEX9LVsckSaBQe6LQjEGh9kMhW1EYW1AYG1EYmlBYjCgsViwmBT29HnSZvOl00w+U99mgMRjwa2/Hr6cb/45m3Do7UfRbUJitgvAahqSTRiDvnOfv1uu5PmkSxUlJjgGF8OpqMrKyiLp923V+NyuSjxXJXQneYeAbBx4+okwwJ0cEVkgSzJ0La9eKe+b774vnkx2RkfC3v8HMmaLs62EHSu7cEWVvt26JQYcvvoCpU+np6eG9LVu429PDmLo6nv3gA5HwGgEcfA7GvedYl6mvj7f+9CdabYSQrreXV7ZsEeb148bB00/DokXCWP/UKUEy3b4tyOlhlJE9ej05M2Zwefp0l/srDAy4jJJFoxjFKEYxigfFKFnkhPuRRaGhoXR2dtLT04NGo2Ht2rUuhnzD4otfw9Kh8aKfrV7NjUmT8GpvFxH3Pj7ou7ro8fREslqJun2bqrFjhUfIpUtk2RQK0y9eZMmRIygQHZ8Dq1eTb0uYmHj9OisOHUJlLxGZOJGW/fs5cPIUNTVDSw6UZjOzsi6QqT+HOt8MtqA0qwIUVrBqJOQXvVA+0wHVDCiJ7JgeAeU90DpC2pAzJk8WjTLbaPtgWK1W6uvrKS0tpbS0dIjhtl6rJa61lfjTp4nNy8PN1rAyq1SUxcWRl5ZGSUICJqdGbUBzM2l5eaTm5Qkp+DAwKyUOroxk2+YE8pdP5BG3iSxnHPNJxB2nBrK5RSRPdRwVBsKDk6e0CQOlZZ5zXZJn7OV0WVlZFDt1BiMiIsjIyCAxMfErq3l6e3s5cuQIebaY5sEj2JMmTaKqqoq7d++iVqtZvnw5xcXFDu+jCRMmsGLFCvLz8zlw4ACyLDNu3Dgee+yx4QmjtrYBMshODOXlPdDIpwMajVDx9PXRq1BQlJxMfmoqlWPHunQUx9TVkZKfT0JxMbvXr6fMzc1BFunU6oEobhhioDumro7kwkKSCwrwb3uA83MYnJkzh9MLFqA0m1l07BhHly0DSWL1vn1MvHmT+pAQ3n/xRSwqlYgr3ruX8bm5nJ09WxjUA7POn2fhiRP/ELXbPxoyUJyUxJm5c2m0qVc0BoNQEmVnD8RW/zfBrFRSERNDYUoKRUlJDsUPiA6TnTgaW1mJcjilwt8BqyRRlJxMVkYGdU6dpoTiYtJtHdN/xG9mVqk4P2sW52fPxqJSoTSZCGhp4Y7teLv19uLe1+cglOaePi3IIGfyBDjndE7NzMpi8bFjju0zqtXs2rCB8rg4lGYz63btItG57GYQqiMi+OC555AVCh7/9FPC6uocRFBzUBDNgYG0BAS43EudobBY8GtrI7C5mcCmJgKbm7kTEsL5zEyampvvqSzy6OpyTSNrbMTv7t2B/ZUk5PBw5LQ0rDNmYJ07F3NKCh/u20djYyPhd++yZutWpLg4ml55hV2VlVhtKgpNfz9PfPopGqMRq1KBVVJgVYhJViiojI4WvkEKBWE1NUy4cQMJHPO4fCctDTkkBOvZs1gVCnp1OipiYhypcGqDAVmSHCSK3t2dwKAg2traXHz2xC5JuLu74+7ujmSxYG1pwdrejlWSxLrc3LB6eGBVKrEajVhNJmRZdmz3KO6NEUkoh1JsePJq2MlGuEkKhVCV2SeVCoVKhaRSoVCrByaNBgWgyMpC0dIi5l2zBkVcHH2yTNa1a5isVoIbGkjPzhZquBArin9/HMWYzY71tbW1cejQIcc+hbW1sXLXLpT2ks37EXB+fkgeHkhWqyDJurroBy5Pm0b2zJn02VSAo2TRKEYxilGM4mExShY5YSSySKFQkJCQQElJCVarFX9/fzZu3EhAQMA9lga0lkJiAgziKYqSkti5caPwtGhtpS0gAF1vryMRJa6khLKEBCSrlUnXrnHNFm8+MyuLRceOoQDafH3ZuXEjTcHBKCwWlh49ytTLlx0dCPNPf8qFefM4c+Yssjx0hH5sRQXLcg8ROKZVqImsQjwg2WaVp2mQ/pdRCGYGk0STo6CsDTq7hix3CObMEaN5I5l+j4Curi7Kzp6l9PRpytVql9FsyWolsrraYZId2NyMhOg0lSQkkJ+WRml8vOjE2xDS0EBqXh6p+fl4dXZwYuEYPn42kdZVC5nvOZXlpJFMKJL9CMoW6LkklEMdR6H3Mi6uogo9eC60EURLQBvzQPvV3NxMdnY2t27dchgA+/v7k56ezoQJE1A5bfPDoKioiIMHD7r4OtkRHByMTqejylaWOHv2bDQaDadOnUKWZYKDg1m/fj319fXs27cPq9VKclISa1NTUeblDRBDN2+Ck0LqgeDpKYic3t77KlJ63N0dxFFVdLRLRym4oYEKlYrf/vWvI5K54TU1oqSpsBCf7m5BSmm1YhpMLDlPNu8UZ7VNaXQ02zdscJSInp89m36djimXL7Py0CGqoqL4cPNmrEolktXKhh07SCgp4dTChZyfPRuAeadOMefs2f85okihuPekVIKtA1oUG8uZKVO4YyMpNCYT00tKSC8pwd1sdppfQsQgdiKCvftEpLV9UilBHQCqQFAHiXIQO2nX1SVG3hsaxCi4M9TqAWUVwqOnKi6OgsmTKYqJodeJqHCzWEjs7CSls5OYnh5crhD7upzJ1sHv3eMzGahx05LtqabIc8DoN7S1gYwzWaTk5Q+vcFKrIS0NUlJcFQn2V5NJGGPbfHNaQ0I4tGEDlTY1k3fPXRT9Vu7a/Yy6ux1eN4lFRazZtw/tIK+aizNmCMISmHT1KisPHnSU7ZmVSvY88QRFyckoLBbW7NtHWt5AubFVoeCur6+DFMpLS6MpOHgIyeoMhcVCQGsrgU1NBDQ3E9TcTGBzM35tbcOSd/kpKbw5Zw5/efNNvve97xFjMg0QQ7bJw9kHUKkU5wCIa3UExd/pefM4M28eWoOBV994A2+jkb6f/5w3a2vptCsKrVZeevddkaglMSSz4eqUKRxcuRIkiYnXr/PogQOuJY92SJIoTbpxAw4dwqJQkJWRwdm5czGr1SjNZvza2hzlsZ4aDUszMkCWOZCVhcFJ6aHTaJiZnMy0+Hh0RiO8954oi7LfoydMgO98B2bMgDNn4K9/dRgy92l1fLJ4I1tXbMIn0I+X/azM8xAlcrIsY7VaxTTc387vWe3zm7H2FmHtPo+1rwKLDB0mbxr7Q7jTHUyr0h+r0vXZ49HZiV/7XXysnXj6dYAKrM0S1lYFVpMTEadSYPXzwhochjUgSJBesuyYZBjYJvvfw022z2Snvy1WK/9Ymvj/21BYrSgsliEEmVmlwqDV0tHZOUoWjWIUoxjFKB4Ko2SREx6kDE2lUhEeHk5gYCD+/v4EBATg7++Pt7e3qzpElmFlGBx2Vch06/Vsee01evX6AW+i/n5HJHFiYSHFNuPFlLw8CmyqoVnnzrHg5EkUQFlcHHvWrqVfp0Pf3c36XbsGzErVam5/9hn7isvo6BiqqNB3d7P4xBeMi8tFygYG9f1lHwnpu7YEkneBk04fpkZBRZMwkL0fli+Hd98F2wj6A+P6dfjFL+DoUeGtAFiUSqojIx0m2S2Dop2929sdxNHYqirUJhP9Wi3FSUnkpaVRERPj4pFjClYRMSGBlalzCfMa8MTBWC9UQ51HhYrIctd123TjhXLIeynoZ4FiBI+qB0BXVxeXLl3iypUrjiQwvV7P9OnTmTZtGroRDF7vhb6+Po4ePcotm8zeWWWkUqmIj4+n0BbXnZCQwOTJkzlw4AC9vb1olUoe12qRKyvZHRCARakkvqSEdbt23Tudxw43N2FObC9/+jvRo9dTaCOO7CbWw5WhRd2+TXJBAclFRXg9QNT5g+Cury9vf/3r9Ot0TLp6lYYxY2gMDSWstpav/e1vlMfGsnPjRmSFAoXFwqYPPySqqoqjS5dyyWZcvOj4cTJu3BAKKg8P4Ymk1wtiwc1t6Otw7z3Mq0YjCJ57QJZlioqKOHPmDHdsKVEajYbp06eTnp6Ou7v7Pb8PgLFOpKt1fmG7RgbdY7QJIl3Nawl4zgOlzXespgY++0yY0J8+PUASgDg+suzoRFsVCm7Hx1PwyCMUhoTQ4zSvRqMhMTGR5ORk4uLiUH9Vv5Fh0NpcT86Zbdwo7MFsFR1nb0snM85dZnLWxYGUImeoVMJA94c/HJ4Qv3pVGO9ev44M5K5fz7FJE+gxCFIhrK2GZvdAx/3f7jES0NzMhh07HIrIjnEBeHnEcdNo4sCKFcgKBal5eazZu9dhmG5VKNi/ejW5EyaALJNYXIzaZHIohSz3IKKDAwII9PUl0M+PQB8fAn188PP0RAHCNHjfPti1Sxj73gNZ3t7M6uigXKUi5kHuG/dBTXg4f3v+eYcKalxeHrIk8dHTT1MRF+eY79HPPnMxAHdGzowZfGEj2aZdusSyI0dclFv3WvfBRx8VpBoisazT0xOzRoNktTIjJ4eUvDw+f+wxF281j85O5pw9y8QbNx7s3vk/hB69noqYGMpjYymPjR2aWtbZSWx5OTEVFcRUVKB/GB+v/2Z0eHpyITOTa1OmOM7jMXV1zMzOJur2bWS7SmvQJA/znmN62O98hXXIkkSHl5fwgJMkfNva8OzqGnH+Di8vLPZ7miw7COPB6/vKx3FUWTSKUYxiFKN4SIySRU4YTBYFBgbS399PV9f9FTQqlQo/Pz8CAgLE6819+P9hPwGtrY6SKRnY8eSTlCQm4tbXR79Oh9JkwqpUIisUJBUUUJScDJLE2PJyKm2djzmnTzPPllp1fvZsTtm8i8Jrali3a5eobQf6x47l2C9/xfWiwqEbKMtMu3yZBc2ncPPth2O2t53URDxqm3biShLFRUBVg2sC0nCQJFi3Dt56S3SOHwRmM5w4IQiiixcfiGi46+vrII4qx4516QSpTCaiq6oc5FH9GImjL87BPHExHjUqWqsaXcygo8K8SY1sJiXgOHr5suuKlD62jq9NPaQZ82D79BAwGAxcv36dnJwcOmzqC7VazaRJk5g5c+bI6Xr3QElJCQcPHhz2vA3386Ph7l0sskxAby8rT5zgxKRJ1Nr8k2afPUvE7dvs2rgRs1rN2IoKNu7YMZAUpFAIgsJiEb/V/8Dto9vDg8LkZM5FR/OD3bt5c+NGppSVkVRU5KpU+KrQ6YTfRFgYprFjeS8hgTtKJWFKJf4aDbf6+nBXKnk5LY3K3l72l5YCoJQknnN3J7SqikNWK9dsncrlhw4x7fLloesZM0aoUVJTB1QpycmCLLFaBxRO9r8H//8V/5YtFgrr6jhTWEiTjVDTqFTMiIpiZlQU7irVV1u+1QJ9ZdBzDXpuQF8JWGVxo5MRxmeaeHBLA20KKMcAklAc2ZVqBQWuvhv2NDR7J0mSqImMpGDmTApjY+lyUhypZZkEi4Vki4V4kwnNV9qHoZ/1YuWyl8SloGh6NaJ8Q2vsZ8qVa8zIznbcb4fAzw/CwwUpOHgdd+4I0kWW6dPpOLliBVdtAwG6/l4CGpuoiY4Wy7GpfbT9/azZu9dRUmZVSUie3hRGRvHpqlXISiUh9fXElZXR5u9Pc2Agrf7+w0fdI+6NgTZ1UEBzM279/RxbvBizRsMjx48z68KFe18nD4BCIAWoAf7erqhBo+GtV17hrp8f427d4nFbEtmp+fM5N3euY74J16/z2AgJUuczMzn5yCMApF+4wKLjx++r9Ot3c+PkwoVcmTrV8TtoDAaHQXl4TQ0zcnK4MnUqt6OjHcos9+5uFh87xrjc3OFVS//DMKtUVEdEOIypGwcN3NiflXZjartC9/9mdHl4kDVrFlemTnWYOI+pq2PumTPEl5T8X7v9OTNn8sXSpQAO0nM43PXxYcurrzpSB4Pu3OGld94ZsBbAdmv9iiRWtSyTUV8/ShaNYhSjGMUoHhijZJETnMmiOXPmUFZWRltbGyqVitWrVxMTE0NLSwutra2OqaWlhba2NhefmMFw7+khwJZ0UxMVJToPCgVYLCgAq1JJQlERZXFxWFUqQuvrHWlE822lLAaNhs8ee4zClBQAJl+5wrIjR1BZLCIWef16DkyYgtE0VPUTWl/PipMHCZtej3wCpOZBM0QDm4ALwCnbexIQMQZqG+9vaKtUitH1P/5RdLzvh5YWIcd/+20xUv13GNka1Wqqxo6lJD6e0oQEOgf5ZPgG+JEUn0h8fDyRkZH0tRdTcPMI+UWNVDcPpK1JWBkbUElqdA/JyWnogpaCftpANO9/MywWCwUFBWRlZdFoi0+WJImUlBQyMjIYM+bhiKr+mhq+OHiQG03CdFySZWRbp0bb14fSaqVXr0fb38/je/dSFhvL5RkzAIgpL2f6xYvsXbsWo1ZLRHU1T3388ZB47/8xuLmBXk+tRkNEQwMdoaF4mUwDEer/oNF7Gdi/Zg23JkxA393NzIsXOblwIZLVyqbDh2ny9+fozJkgSahNJl7auxf/9nb2z59Prq1sdNWJE0zMzXVNPLMTEv/DkCWJwuRkzsyd61BHaAwGZuTkkJ6Tg+5BFIL/F8GexlWQkkJhSgodToS0ymQivrSU5IICEkpLh5RwfRWYVCpujR9PTnq6Q82osFhIy8sjPSuLkDt37rOEe2OwciWkoQGzUkmLk0oFhBomvLqaFiej6VZ//xEVBmqjEY3BQI9NOZJ28ybzT5/Gp719CIlxbfJkPl+1CoXFwovvvEOoc3Q7CCLEqYTR8SpJA6bqThiWLLInOz3ofd7NDfz8OPDII1yPicG7o4NXtmzBbcwYiqZMYWdqqmPWoDt3+Prbbw8pi5OB0/Pnc9ZGKs09fZq5p08PTyZMmACRkciff05BSgpHly1zqG78WlsdflJuZjMT9XoazGZuO61PBSzQ6Zip1SKZzWLQ49ixgdJLf39YsgQmTRLk6PHjUFsLgEGt4cL4WZyZPAcPLw8We8qM04HCuY7O/pvJw7zn9LdstdIMlMsyFVYrVbKMeVCJYUhDg4McimxrQ5WYCAmR0JgPxRVQZxBG9nboEe2DKCAI0MWALg00caBwA0s/GMrBUAL95SAbB34ASQuaGHCLF6+SkwrwXvt0n/1ElumWJLLc3Lji5obJXjpqNjOnuZnECxeQiooGngs6IN62HwpvuKmFSlsYh58fzJsHAQGiVPrkSVE2a0dYGNgG5+joEFN7+8BrZ6erSnI4eHpCSAhH09O5GBOD0mzmmQ8/JPr27YHtc/eBzh4wmbg5YQL716xxkMYzs7JYcuzY8MvWasX1aDC4Xl9qNXh7i3WrVOI5aTBQ29dHRFfXKFk0ilGMYhSjeGCMkkVOsJNFn3zyCZWVlRiNRry9vdm4cSMhISEjfs9qtdLe3i4IpDsNtLz1e1qVvrT6+9N1j5Qme2PAvacHg0aDRa12pKEBjtHeFn9/dm7cSEtgIEqzmWWHDzPlmkhXa/f25rNvfIsqjWrIcrX9/Sw4eZKp+iui8Xna9rEEkgxogNVAM47PkICgILjzAMlmKhV897tCFXSvchBZhnPnYMsW0Yj+iobD90JboDv5mxZiXfc8CksA5aVlVFdXu6iINCoTsQGlxAeXEB9YhkVWkN84g/zGKdS3unpUxcbGkpaWRmJiItp7pP/8oyHLMpWVlWRlZTlilwGio6PJyMggLi7OtdzRaISiItcUslu3ROQuomTx80cfHUKigZNPiizzyMmTeHR0cOjRRzFpNHi3tzP3yy85tnQp/TodofX1PPPhh7j/dxEM7u4DUcpqtWjot7SIBrkNtYgwmQ7gHlfVV8al6dM5snw5ktXKssOH+WLpUiwqFY8cP45JpeLMvHmO6+rlLVvw6u5mz9q1FKakCJ+YvXtJs3mO/LfC3oG3vw76W5YkChITOTtjBk02XzWtwcCM3Fxm5uejM5lcv3uPZf1df8t9YG0FSwtYWkW8ogJxj5EAtQ+oQ0AbCppg8WZLi+hIV1cPeLvY4eRrIwP1Y8ZQMGUKhcnJ3HUqoVPKMrGyTAqQKEm4/Z37I1v7KO28QlavhttSpGM9MVWVpJ87T2x5+fAkRHAwPPkkzJ8/UCYoSQP+NO3tWBQKLj7/PF+Gh2NGlKF5t7fT4eWFfB//MjVgtpWtebW3szgnh7DCQpGEKcuctRm0A2RcuMAjw6hqZGDXhg0UJScT0NLC1z/+GPW9OsBarYgkT0kRCrnGRrEvAFFRFN6+/XDKIg8PMcAgy6K82fabFyYlscvm6/fsBx8Qffs2Lf7+vPXyyw5TaW1fH9/861+HqAtl4PjixWRnZACw0PYcHVF1otPRrtFweMUKSm2BFfrubkwqlaM8MDooiF5E2psz0tLSePTRR9EoFPDRR/Czn4HNG46ICPiP/4DNm0VZ9U9/KsqsgW6dnj9v+Ba/f+YHBIcE8JNQeMLXZhH2EOjp6aGiooLy8nIqKiqGqEk9urqItZFDYysq8AgKgqeegvlT4MI2OHAKrnW6ejzFusPKGbAsBcKzoH+48j6l8OzzexJ8VoHKD6wG6DoF7fuh/TPXEAhJC16PgM9j4L1K+Jv9A9DT00N2djaXLl3CZFMoBgcHM3fyZJKOHUP6618dz0LcEe2dJ4FSP/hDHL35AACBs0lEQVSFEVq7BQH6r/8qpqYmEcTxq189eGiDRgNxcSLpNTFRvCYkCI+qd98V86xciTUoiE81GgpDQnDr6+P5998nsHnwyJ34KT5dt44CJ1J000cfEaPTCcJx0iSYOFFMdsLcbBbn2DvviDaW87Y7eYPZn6GjZNEoRjGKUYziQTFKFjlhcBlaVFQU69atQ29Lkngg/NNs+P15x79GjYbmgAD2rl3rGKEE7mksCiKpLKipCY3RSG1YGBa1Gvfubp749FPGVlVhlSQuzpzJicVLsA6zmLTcXBZf+QLP2d3In4PUYRvss8+QCngAF23/S4CPL9y9O3Rhg6HRiEbwv/zLyD4pra2CHNqzR6Rl/Z3qD5dtt6HXU0vt4/Px+c6PCJo4RxxPWYb+Iug8Sl/LcSoq6ym9M5bSpnh6ja6/Y2iwN/EJ44lPSECn01FQUEB+fr7DzwUGvH5SU1NJSEj4h3qk3A+NjY1kZ2eTl5fnUK4F6XRkWCykFRaivHkTCguHjc91hkGr5diiRQ6jdOdzT2k2O8r40nJzmZGdzT7buao0m0m/cIFrU6fSq9cTdOcOm7Ztw+OrelnYvXu8vIR6wGoVxGFt7b1VBxERkJhIbVgYEVu30vH73+Ol1z94x7+vT5AQzc1iamoamBobwWCgOiKCrV/7GlalknmnTnFtyhQ6vb1JKizEs6ODyzYvIl1PD6/99a9ojUZ2r19PaUKCSKD67DMSTSaYMkU04hMThYeNTnfv7bt7F0pKoLhYkH6FhWIaiVBVKkXHxF7OZi9pi49HVqkoKCjgzJkzNNs6IVqtlhkzZjBz5syv5IP1D4PVCD1Zwuuo4wvoG9QBVejBc74o9/RaAppYYTK8f7/wyxlctuHlJTzNrFZkoDEkhIJZsyhMTaXV6Z6kUCiIiYkhJSWFxMTEB/NlGgnmVurzfk/2lQry6xORZbGeoJYW0s+dY1xe3vCpbX5+wtPolVcw6nS0tLTQXFlJ8969NDc00BwYyF1f3/vGdqtMJqbn5BBTVUVgczPdK2KQV/yAj2/l0ufuLq7PY8fwcCKZnctfply+zIrDh4f49fR6uLPl5Vfp9vRk2qVLLD98eOBDjUYoFGR5xKhuZxSGhJDS2CjIoshIodIwmcR1sGiR+N1KS8U5P8KzpsvTky2vvkqfuzuzzp/nkZMnMURE8Nbq1Q5DcKxWnnv/fSJtCh07ZEni8PLlXJk2DYClhw8z49KloStRKMDHB2t7OxdnzODL+fMxaTQoLBY8ursd5LpHXx+4udE96Lfx9vZmzZo1REVEwO7d8JOfiGsYICQE/u3f4MUXRZT6z342LEkUEhLAT8bAWp8HJ4nMZjM1NTWUl5dTXl7uUKHaoTKZiLp920EQBTY3IyUnw7PPwuQ4OPE3OPAlFA66h4/zgEfnwYZ/gvFzXT8z1kLbLmh9H/qHI8OV4tr12wg+q0EVYAuIuGgjjvaBocxpfgk8ZgniyGfNA4dD3Au9vb0O0shoI5SDgoKYk5FBytWrSK+/PnAPUQBTgWTgnAIqbM8ee/thJKhUMHWqiLO3k0KJiRAZKYIf8vOFcsx5GvSsNKlUfLh5MzWRkXi3t/PCu+/iObiU2t2dvqlT2TJ3Ll22klJPDw9efe01dG5u4nlpf2bYp5ISQVLepzlfK0lE2NJZR8miUYxiFKMYxYNglCxygjNZNHv2bJYsWYJyBP+HYXFyCzzy2pC3z82ezamFCx2ddLXRiEmjIbihgX6tlg4/P5Qmk4ux4b06DvrubowazbDRxn6trSw/dIjYlApoAXIGzeCJGPK12xpJgN7DYSZ9T7i7w29+A6+9NnT7ZBkOHxYjW+fPC7LoH4DBJJFJq6Z90Sx8fvgT1JlzxXZYOsWIZsdRYU5tvO26EHUEstcy6vvmUNLgT1l5DfX19YN2zZ24uDji4+Px8fGhrKyMvLw8Wp32Q61Wk5iYSFpaGrGxsV85uey+MBgEcWBTCXUUFpKj0XAtOdmRCufZ2cnMnBymXL36wCU3FTExHFi1yqV8xwHbORfS0MCavXv5csEC4Z+FMF2vCw+n29MT/5YWNm/bNryZtCSJzqCvr5jshE5bm2jI3otk8vQUDW/nKSEB4uOxuuupN0FORS3rkiP4oq6DSYFeBKju27++P2SZrupq3v7kE7oNBlIUCnr7+qjSavHv7CSkupp8m7eMZ0cHr77xBkpZZsfGjVTGxKAymdi4YwexIxn/enkJX6IFC0RHIy1NkEj3uq/IsiCy8vPFlJc38LeT0soOqyRRMG4cZxcupNnWydUqFMxMSWHGkiXoPDyGfOf/5zDdEQbZnV8Iw2zzICWjJnqAOPJaAJXNgjjavx+yslw7RXq9uGbMZmSgOSiIghkzKJgwgWana1SSJMaOHUtKSgpJSUkPNwgwaNvbS39DzpUirldPwGixXZPd3UzPyWHKlSsoZJnmgABH+lhLYCBNQUHDX3s26Hp70UsSHR7umCxi/yKrqujW62mzlcFJVivzT51i9nkxINGe7E3fD3/H9rwiuj098WttZdMXX+Bj8zkCW6nZo4/y/7T33uFRnWfe/+dMV+8NSah3UUTv4IoxLrhijGvsdeLdeJN437wb593E3t288eb3bnaTjZPYTmzHBZe4YWxwwWB6MyCakFBBQhKoV9Smnt8fz8zojDQSEmCD4+dzXeeamTPnnHlm5jznnOd77vt7oyhMPnyYmz/4wLfCmwKVWVmsuXs1AHe3tpK1d6+o5OYvukJRRNpOYOBgBKD7GDRiGlpyMmRlQVra4BQZKdZvaRECUkUFank5a6ZOpSotjfiGBh7+85/ROZ28tXKlt/ADwLING5g1RARyKQof3nQTh4qKQFW58cMPmeaOwB2G2cyZ6Gg+Wr7cm/Id0t3N2eBg0OnQORzoXS7vOdZjPI6qMqeqiitVFaNOJyJmPZFEUVHwz/8szo+ff+4jEp0NDOZ3Kx/jv1Y/Pi6RSFVVWlpavJFDNTU1OIbcePGmlp08ycTaWgyqKqJPHnoIUqNg/Z/ho+1Qo4kK1QEzQ+HGq+Cun0DGrNEb4sFaBe1vQdtfwFrhZwGdMLaPuFMIQcZY9w2c44PCUd8B31UCJg0KRwFTL+ig3t/fz549e9i7dy9W9z4Zo9ezqKOD/C1b0B0/fu6IoehomDdPHLcDA0XknCeiTKeDu+4Sx3GPIFRaOnLRDz8pmH2Bgbzw0EO0R0UR39DAgy+9NOgJuCQMPqkGq56qnTt5TbOP558+ze1r1qD09Y3c9nMIXjKySCKRSCTjRYpFGjxi0datW1m0aNH4Vu6og+xUaPWNkGhISOBPDz+M6h4cGq1W7GYzMc3NmAcGqJ84EYPNJkLrVZUbPvyQ3NJS3r7zTk6lpQEQ3dyMZWCAtqgo+kcZ4CguF1HdbUQbWok61kpUYxvRbW1EtbaK9KF4wHMjUgFM5mGeE34JCYE//AFWr/a9kDt5Ep59Fj78UFzsnyt3f4wMFYhcBj3W2dMJ+PFP4YYbxAVb/+HBsvY9OwHNBbRihpDFbmPq68CSO+wCtKenh8rKSioqKqiqqvJeWIIYVCYnJ5OZmUlkZCQNDQ2UlJTQqRmom81m8vLyKCgoIC0tbXyioveLqiKyxZM65kkj0/otaBiwWNg/fTp758zxemqYBwaYfuAAs/fsGdl4V4PVZOLzq69m/yzN4MAjTmrSIu946y3qk5PZfNVVojpTczNWi4WzoaGEd3Vx35YtRFgsQgzR60WUwKlTwsR3JPR6MUgcKgrl5GCNiaPGrlBlZdh00gpWFWiqh+XJsKULgkMJ10OWGbItkG2GLM1j6Bj/DqfTySuvvEJtbS0xMTFkZGSwZ88ejEYjCQkJ1LqrDEYEBPDdhATU2lpe7+mhzmLBZLNx95o1pHi8J8ZDaKiIELr6ali0CCZPFubIow2UVFX8vm7hyHXsGMfb29mWlESLJ91sYIA5u3czZ+9eYaxvNotBjzYKqaAAUlPPWT3ta0N1Qf8Rt3D0KfTsAFUbwaKH4Llu4eha6E6EjzaIiKNNm3xN8T0Ra+55LdHRlE6fzvFp02jSpJMqikJKSopXOAoZUhlqTNhO01nxH+z8soajpwuwOtyRW2MQ+2MUhehJk4jJySE2PJyYNWsIfPppFLsda3g4W378T+y1O1ARaY9pVVWU5+Z6zatjmpq4e80awru7sQbraPvXn/N2XSed4eGEdnVx70cfEV0xOJg/VljI+7fcgkuvJ7e0lNveeQeD9ngdouPj+deyb84cgiwWHv3+9wkym8Vx/dAhcVw6dEhMI3k1BQRQ2t8/KBZ5oujOdV4IDBT7Y2oqe/Py+CQkBIPdziPPPUfM5MnsCAlhU1GRd/H8o0e54913fTbh1Ol4/9ZbKSksRHG5WPH++0w+elT8HWjOJ0YjNkVh8xVXsG/2bFSdDqPNhs7pxOqOvPMKQ4DJbsfmvokT1dbGzWvXklxXN/w7mEyiD0dECAHhtCgzqhWJEtwi0a3ho4tEntQyT3rZsNSynh4yKitJd1cuC+7tFam78+aJaKZQPXzwPHy0G5o153cjMD8cbr4W7vgJJBZxQfSXQPub0PYK2Gv9LKCD4EUQcQdE3AJGt8G2rU6kqXW+D2e3Apr9wzRxUDgKXnBuz8D+frGPlpWJyR2hOXDqFHsKC9k7Zw4D7v81uqWFhdu2UVhSgs5o9C3QEIm4keY5lGenwfceEz5GJSWwefPI+z2IY2lgoIiiO9c11bRptP/v/80LVVX02e1kVlSw6o03BgVcowJ20a5Pli5l79y53mPKze+/z9TDh0ffPohzbUKCOKd4ppAQ6o8dI/n996VYJJFIJJIxI8UiDR6xqKuri9DRvIb8cXMarKvxmWU3GHj2e9+j3T2Q8whF4R0dxDQ3U5GTg87hwGUwgKpy8wcfkHj6NG+tXElbdDR6h4MbPvqIqYcOUZ6VxdoVK/yKRSarFadeP2pp5IC+PqLa2ohubSWyo4PolhaiWluJbG/3HTRoiYiAl1+GG2/0/EBigPbqq8LE82JUonIzVCBSFQW1sADdY/8oQuh1Z92RCJ+INBbHECNWc5a7rP0yIRTpxp5u4nQ6qauro7y8nIqKClpbW33eDw0NJTMzk6ioKDo7OykrK/O5gA8ICCA/P5+CggJSUlLQ+RuEDwyIO5BaYejQofOKwHLo9RydNInd8+Z5SzbrnE4mHT3KvF27iB3iq+GP6tRU1t18M50jVFtTXC6uLy4mymjknfx8+gwGzA4HRrudnoAAQrq7ue/ll72lvX2IjvYrCHWnpFOlmnyEoEr3Y53N1zZjKAYgqbOemquTSdrVxWlT6KjLxxmGi0jZFsgwg0Xz93z88cfs27cPs9nMlVdeyccffwxAVFSUN6osNjaWv/u7v8Nms/Haa6/R0NCAxWLhnnvuITE+Xgg41dVCPN27F/bvF9EGnZ3jT78MChJRGNOnCxHpyiuFqKTB5XJRUlLCtm3bvPuqxWRiTnQ0s9vbsRw/PpgSMdId78DAQd8ZbUpbcvJFCNe6QJw90LNV9PPuT4V5rhZ9JIReI8Qj5sKmwyLiaP16UWnNg9E4aP4KtEVGUjplCqWzZnFmSErexIkTycvLIy8vjzA//l79/f20tLTQ3NxMS0uLSCVraRm9UqaqEtTbS0pNDWnu1LGYlhYCtZEBixcLL5vFi8Xx4bvfFZGZQMMVV/DRdVdwpl8MIuPOnMFmNntTsRSXi4Vbt7Jwxw4MTidn/uFO3ldiaY2OJrC3l3vfe494TcTbiexs3r7zTpwGAxmVlax86y2MmrQy+8QI/nTDKlpiY8nOzOSuu+/29Ufz4BG4tQLSiRPgcg1GFi1fTtILL4hjgad/+JtOn/YO2JtjYnj+u9/FaTCwbP16Zn35JVUZGby2erVX2IxqaeF7zz7rc85y6PW8c8cdnMjNRed0cts775Bf6qciaHAwJ3Jz2bBw4WCa2dmzgyXkNSJfRFsb/YGBDAQEoLhczNm9myu++ALj0P5sMIzax5vDozmZM5moqZPImF6IbpK7r2nESW1q2cmTJ2nQGiwDBqeTlOpqrzF1bHOzOFcGBAg/rIcfBkc3vPs8fPoldGqE1kBgcQSsWAa3/gSiJ43Y1vNGVaHvIHS8CW1rwNHgZyF36lnEHRB+G5gS3V++HbrWC+Go6xPhc+ZBHwXhN0LYzdA7CSpqfQQhTpwQNyhGuoTV6xnIzWXf/PnsTkhgwP3fRoaFsXDJEiaHh6N7+mlYs2Yw6lVh9BPRWNDpRIqax1vIfdOP118Hd0U/zGZOx8Twl/vvx2E0UnTgADd++OGwVHuHwcDzjzziPc+brFa+96c/EREc7CsEDZ3i4sS+OYT6+nqSk5OlWCSRSCSSMSPFIg3nLRa98I/w8O+Gzf5w+XIOur0TPNFDQe67gkemTvVWRfPcCTU6HKxdsQKb2UxoVxcr33qLkK4u1q1YQWVW1rDth3R3s/STT8jXHYcpCl2fhdEaGkVbVBRt0dG0RUXRGh3t19zYg+JyEdbVRXRrK1FtbWJyOIh++mlCrrgCZe9eeOUVYZ44xB/iQhkmEAGkpqJ85zvwox8Ax4U41P0J9O7D5ypOFwQhV7oFoqVgzrho7ero6KCiooLKykqqq6t9wv71ej0pKSlER0fT399PVVUVfZrBX3BwMPkpKRS6XCRVVaEcPSqEobKyixZ55UFVFCoyM9k1f74o4ewms6KCeTt3klpTM2opYVtEBJuuv5592n1rSFRE0cGDLNy2jfduu4365GRA+Pb0BwURNDDAvbW1xKWkQE4OanYOTenZVAZF+o0Qaj2HbhKkE2KOv2miCRpPiwvdrq4ujMGhVFmhfAAq3I/lVqgYgKZRPkdBbCvbDIWnjxC27X0AZl67nMNbNmKz2QgMDPT+p0lJSTzwwAP09/fz6quv0tzcTGBgIPfee++opvde7HYxoPnsM5GacvSo8HHp6xtfhTSjEVd0NCXz5rEtP59Wd4SJxWxmzty5zJ49G4vF4ruO0ylEK20q27FjYl/URuNoCQ0VItJQT6T4+EsnIllrBqOOujeBa0gKpKVACEeWK+BLJ3ywAT74wDcSQK8X4pE7BaUjPJzSwkJK58yhfkiaXkxMDFFRUZhMJrq7u2lpaaF3lBTKkJAQYmNjiY4wEmPYhq37IOVN2dS0DXqxTDx1inm7dpFdWYni7ziQmyvSlm65RVSK/PGPoasLl8HAgR/+gE0WM1aDCcXlIuHMac4kDkahhXV0cMP69WRWVtJwxSTW5cynMT4e88AAq//6V5JPnvR+zMm0NN5ctQq7ycTEU6dY9frrPlUOGzNS+fOqe3AaDCxfvpwZHp+zc9HfD8eOUfrpp+T/7GdjH4xarVBbi6Oqij8fOECTw0FmRQV3v/MOnTExPHfPPVjd+7XRauX7v/+9Twqs3WjkrZUrqcrMRO9wsPKtt8iqGJ4e1R0SwifLlnmriVr6+7GaTN6IXw+pNhtKQADV7v8o2mjk5qYmkt57b9znP38+e575rYWFVM2cSVVSEqcMBuxDjgVxnZ1klJSIqmW1tYOl00NDYdkycQOluRbe/TNsKoY+zT4VDlwVBStugBv/N4Tlj6vdF4Tqgt7dIuKo/Q1hbO+PoHkQcTtE3CaiiQD62uHQa3DofTi+F072i0ifU8BoNnkREb7m0p7H9HQR8WW1Yj1+nH27d7O7uZl+jyDY0cHCbduYfPgw+tE88wyAqgPnCMvo9SKqKzlZ7M9tbUIEbW4WN9RGOe+fyMnhrZUrUXU6rti0iUXbtw++GRMI936PxokT+VNnp7dIXXJSEg88+KD/m1LnQIpFEolEIhkvUizScF5iUeVuKJwHQyKPT2Rl8eZq4QHhiR4yDwwwpbiYfXPnepdTXC5uffddmuLi2OFOfUutrua2t9+mpKCAjUuXDkYMuQfyisvFrH37uGL3F5hXWIVJddnITbQbjbRFRnoFJI+I1BYV5b0Q94fRZhsUkNzpbNHu5+dbmtqFsEvwoAJKTAzccQc88QhYit0C0WfgHGKAGjBpMLUseD7ovvoqZXa7nZqaGm/UUZenHLKbyMBA4lQVe1cX9YrCgMYAO6yzk/ySEgqPHSOhoWFU4eZCOZ2YyK558yjNy/OmUCScOcO8PXvIb29Hl50tvHIsFnEB29goTDGrqzmVlMS7t98+WLnPLWJ6iOntZXVfHzsTE/nSLTLojCZcdhuqOYDyK+/hWPAETlqh9xzVsWMMviJQpuZ57Dk8iDwXuufqn11OIRoNFZHKreI9gLjuRh7e8QJGl4MdGfPIbq4g9mwLDp0Bg0sMzExJ6cy6bTVJjh4+e/MV2tvaCA4O5r777iPG7SFzQVitsG2biIrZvVtEJrkrWWlxKQrHCgvZtngxbe4oRUt/P3N372bW3r1YVFVUMMzNFearHm+Y1FRISRERCFocDqiq8vVCOnZM7A8jRUlERAyPQioshIvxO4wH1S6EY49Rdt+X+IjIikVEFgZfA2XxsOGQ+H0rBw12VaA3OpqWkBBaYmI4nZhIXXIyXeHhuEYZgIWFhRETE+MzRUdHDxfp+kuh4SmaTm1l98m5HD09CZcqRImo1lbm7N7NlOPHMfqL+oqLE+bI118vqjP99a8AnM3N5dNrr6QkUkQYBPb2YjcafXzrcktLWfrppxCm8N7Vt1KXnIzRZuOuN98kXSMY1SUns2b1aqwWi6hy+Nprg9FOZtg1bS4bly7FoNPx3UcfJdq9z42F0tJS8vPzxz0Y3bhxI7t27SKwt5dH//IXzH/6E3/euJFmz/6lqYrmwWoy8eaqVdSkpYnv+cYbpFdX+2zXpSjsX7KETXPmYDObUVwuDHY7dm1KostFQUkJE06fZueCBfQGB6O4XMzbtYslW7YMCjU6nYj2e/RRcfx85hmRAgXYDEYqkzLpN1tIaT1DdJtvylJfYCAn09OpysigKiNjWJXUoJ4eryl1+smTvhXeYmLg5puFV075UXj3Rdh2zJuqBEAccE003HIzXPtPEJzHJUd1wNktQjjqeFuIvCrQDtQgRKAaoD4MTumhrnPkQgc6IBFIAVIVyMmGydfBtPtEOp2iCCH4xIlBLyFPdGVlpVewsZlMfDlzJrvmzaPPHaUd3tPDgspKplZVoa+vH7nIhx6IDQdTKFhtwmtrPDeA9Hoh9gUGihsGLhfk5LDv8cf52B1NtuK995hy5MjgOjMnwudH2XXsGBs3bvTOXrJkCYsXLx76CedEikUSiUQiGS9SLNIwbrHIYYNp0XDUNxWhLyCA/378cRxGo9f/wGC3M3fnTrYvWeJdTud0ctPatRybPNkbOTRn926KDh7k7TvvpNXPQCyxvp7lH31EQlojTATeBs4xQB8JFegNCqItPZ3WwkLazp6lLSSEtqgoOiIivP4Y/gg+e9YrIEW1DXojRXR2+pqnupunMOQua3AwXHct/O8bIUFUL6N/SC6+PtydbnKdu0JS4vl90QtFVaG+HvXwYVoPH6a8vp5KVaU2NtbnNzJarcQ1NYGi0Bwb6zWjBmE8XuAWjsaSJjZuAgMhOZn2vDx2Z2RwKDgYh1t5Ce/sZM6uXRQVF2PyV80oOBh7fj4b5s/nkCYKTdHpUV3iYtipN7B59kp6+vq44ciHGF0OHIoeg+pkwGBmzay7qYuciA4RueMvOijdPHYvIX+MVSwaCVWFFgcc7+pn56t/wtHdwdmEDDr1ZpLrj+NCQecWHo7H5/H29DsI6+/k/j2vENHXSV9gGPXX3EdKTKQ3rS3LzMUx2tbS2gr79uHavJljJ0+yLTmZtshIwC0S7drF7H37xi7YRkeLVDatuXBqqnhMThZ330FEG5WXDzfWrqwceRAXEzNcQCooEOLS14GjDbo/F+Jy96dgP+19S1XhrDObFsdVtNQl03Kin9a2Tprd6UUjEdDXBwYD/UMKCMTFxZGfn09+fv7YBJS+w3DmSc42bWZv9Sz2n5qJ1SGEpcDeXmbu28fMw4cJ8mNaTlAQ/OAHIsrriSfA7ZNTed1SNmTn0OHeH8z9/cJrx30jQW+3s3DHDoqKv+SDm2/jZEYGeoeD299+m1xPtS6gIT6e1+67j77AQGKam7n3lVe8VZnUCQG8evUdVKenMyE2lu888siYPdnORyyqrq7mlVdeAWDlG2+Q88//zPvbtnFUEy151WefsWDXLu/rAYuFNatXU5+cjMlqZfWaNUys9fXNaYqL48Mbb+S0ux2ewhIe9A4H0w8dYkpTE7uLijjmNrqO6eri5nXrSBzJtF6DU6ejNCWXj+cvo71wKtdMz2bJ9GxcRgN1hw5RVVbGyeZmGmw2n4OEp2rZsNSykdD7iWyZCCyNhttuh0X/CAGXgUDkwWYTxw1PuljpcSj9Ek6chLOjVNQL0UNmAuTPhIKZg2nME3qgf4NIV+s4KkSmk0A1cCoMqvVwqnPk41RIiLhZEhkJioKtp4f9ISHsmjqVXndkYVhnJwt27GBqcbEwCR8t2mg0YmPFcTA7G6ZMgZkzxfE3NHRwH/jiC5He39sL8+ax8Ykn2HXgADqnk9WvveYrek6eiPr5fl7ZsIEat5m6oig89NBDJCaO75pIikUSiUQiGS9SLNIwbrHon6+F/2+jzywV+N0//qO4mHdfwOucThZv2cKWJUu8Ye96h4NrPv2UvXPn0hEZicFuZ/lHH3FmwgS+nDVr8KLCvQ1Lfz9Xff4506sOotypwqcMmjGeL6P4LTh1OjojImiNGp7W1jtKdSWd00lER8cwESm6rY1Amw1l/gz4/iyYUgNnN4FL63ukQOAMCHNHDwXNOrfB5cXGY2h54ADs3AkHD4qLXj9pOwNmM1UZGVRmZVGRlTXsdwlvb8fgcNARGenjJxXT3EzBsWMUlpQQNV7PIpNJlOpNTBQigNks0m1OnPBJk+gLDGTfzJl8OWuW9w5qgNXKjNZWZgWHoGZmU5eaTdnEHI5FJFBlE+bS/XUnWbr3LcxO8X0HDCbMDpvXyqE4aSrF6bO58+DbhPS0e1MtdAYji29fxZysNExfkW/yhYpFIKoLvfHGG1RUVBAeHk5RURFffPGFzzKWvCKa5txIbWsbGZ+/QmD/WdoCI3ll7n10BQxP6QzXD/dGyhqn0bYWl8vF0aNH2b59u9c3KSAggLnZ2czq7cW8Y4fwRqqs9PXoOR90OrEvecQjz6PneVKSSKUrKxtemU0TrTKMhIRB4cjzmJ8vBkwXGVVVRbpYczMtDcdoaSilpbWNlk6TV5zxsxaR/f3E1NYR3dxMrNtPKOrsWUy9vaCq9AYFUZaby/GZM6mOi0PVDPZjYmK8wlFMTIx/bx8PvfvhzM+xtm+iuLaIvdVz6ewPB4RoMOXwYeYePEhUU9PwSAWDAVauFP3+5ZfB5cIeHs72mTPZOWcOLr0exekclk4V3tHBNZ9+ytHJkynLzx9m+gzC/PvV++/nbEgIEe3t3PfKK4S7havuzET+eNs9DAQEsGDBAq666qox/RfjFYv6+/t59ne/o7u/n2kHDnBjTg57Ozv5RLNuTmkpK996yyum9AUG8uq999KYkIClv597Xn2VRI2xvt1oZOv/+T/sdrlw6XTi9/GYbbt/8znHjjH38885NXEi65cv90YTzd+5k8Vbtw5GExkMIgVTpxNpRe40Rn8p1K3R0VRlZHAyI4OatDTsmihTgDiTifSmJjK2bmXisWPD/Y9CQsTU1yciDMciVuh0ok/FxwtBYtIkEWGYkiLOE0lJIv3yq0BVhbA91EeorEz4UY0UdaMokBIrooQSWyDFBamI11EM/rCuSdC2AOonQkXHYMRQdfXIKbwhOsiKg+gUIFT4xjU1iUgeP+dwu9HIgWnT2Llggde7KrSri/k7djCtuHhwPxhKIDBDB7PmwKLvwZr18NZbg+9PmQLr1on/YCT27BEphZ2dqEVFvPtP/0RJZSXmgQEefPFF4rQ3lbKT6PpgI394/31s7u8RGRnJd7/7XUx+quKOhBSLJBKJRDJepFikYVxi0bZXYcl9w8wQ37rzTsry830qTF25aRPbFy70hr7rHQ7m7trF3jlzsJtMhHd0MG/HDr646ir6A93GzBrvmCmHDnHNxo0ELeiFIOC9i/zFx8mA2ewjIGnT2hyjXJhajDaigpqJCmojKriNqKBWosNUIhNmYoxaCiHXgPFrSmtRVXFRu3GjuGgrLobaWnGhfj6bUxTOJCRQkZVFRXY2Z4bc8TMNDGCxWukJDvaJRopvaKDw2DEKSkq8AzUvMTEwYQKEh4sL77Y2MUAfLaIkKgpycnBl59CVmUN1ShZfGow0nD6J0iO279DpOZQ0hd3p82gLjhq2CYPDxoP71jChvdYtEikoej04xYVzSEgIt99+O7t27eKEJlpBr9ezcuVKsvz4a10MLoZYtGXLFrZu3YrBYGDZsmWsX78el2ZQNmfOHJYuXUpTUxOvvvoqvb29RMfEsPDOe6k3hgxLa6sdwfrHQ7xhuIjkz2gbBkWibdu20d7eDrhForlzmTVrFmZNpJqXnh4h4Bw+LMp4f/mlGEz5iyA7HwwGEX3kT0iKi4P2dmHMrBWRhkR4+DBx4vAopLw8EUlzDlRVpaura5jJdEtLi3cANRRFgchQJzFBDcQEniQmpIWYEHEMMpqCwLEA9sTAxjOwcbuvIbjRKPqdy0VfQAAncnM5Pm0aJ5OScGnEoaioKK9wFBcXN7Jw1LMLzvwMV9cWShvz2FU1nzNdEzxfjpwTJ5h78CAT6+pQ/KWozZ0rjgHlwvC7JSGB9UuXDvqVaW5OeI4xmeXl6J1OUXZeVVn+0UfMODBYurwjIoJXHniAzrAwUUXtlVeEab0eSvIKeef22wF44IEHSElJOed/NB6xSFVV3n3jDUoqKohsa+O7J07QMG8ef9GkwYa3t/P3f/iDV1jpCQ7mlfvuoyU2Vph4v/IKcU1NXn2hKjeXj1avptMjVGjOo3qHgzlhYSz+x3/EZrfz8fr1lLiNsGN7erj59deZ4BGdzOeuFNoXGEh5fgGnsjI5mZRE95B92JNa5qlaFuKvIERCAixfLjxvSg7D2r9ClcYgWkHUOo8wgxohUrhaO89d/t27viIiXTz91iMipaQMPj9XJUC7XaStDhWEyspGTtkCsd2hPkI5OSJN1pO66eyGujdh/8twdDecVAcjhvz5ZHsICxPnxmALWFuhqw26+qAHn8KoY8VuMFA8bRo7FizwpgiGDAwwv6+PaRMnYkxKgq1b4aWXBn97BbgGeNQAU++Bphvg9h8O3rTR6eCf/xn+7d/8mk0D4rh9zTXQ0oKjoIDXHnuMU42NhHZ18dALL/j4czExnmMvvMq7O3d6Z02bNo0bPQVIxoAUiyQSiUQyXqRYpGHMYlF3C2QlQLPvnbMd8+ez6ZprfOYt2byZfbNm0eeOOtHb7eScOMHxwkIAJrrDjWs9FTM0RLe0sHz9elKtNXAL8D6jX0CdLybTyIa358ClgIKCoqqoikJ3SAht0dG0Zk6kbXo8bQkm2voj3HfSR777HhYWRlRUlHeKjo4mKiqKsLCw0e/an4vOTmEqvHWr8IUpKRF3Gsd6sX2e9AQFUZmZSUV2NlUZGb7eUC4XFqsVq9ns9RcCSGptpaC6mvxDhwg9fdrPVt2YTJCZiTM7h47MHOrTcjiRksPBpGyOBkZRZYUaG9i0Vi6qi9zGMuZX7SKpU2xbBVoTc3FOnkdycrJPyliEAXbt2sXnn3+O5xAREBBAv2YQO3fuXCwWi09kjk6n47bbbiM//+Kbql6oWFReXs4bb7wBwHXXXcfWrVt9vo/HB+LMmTO89tpr9Pf3Ex8fzz333EPQCGJGvwuv0bZWRCofgOYxGm1nm1yk1B7BWbwda+egSDRv3jxmzpzpXyQaDVUVBqtHjojByN69QkRqaBifqfZYMJvFoFMrJMXGiqiIri4hHB0/LsSkhhEOXooi1nMLSK78fDrT0mgJC6Ols9MrCLW2tmIfQQTT6XRERUV5fYQ8nkJRUVEYPAM1W707Xe0zUVnR2e67EVcmHMqGL6zwabEQwjx4BF6nk36LhfKcHI5PnUpVaipOzfEpIiKCvLw88vPzmTBhgv9j19kv4PTPUHt2Utuewu6qBZxoHhRYE+vrmXvgAHk1Nej8DcYnTBCikdWKqigcnjKFz669dvBGA0IYcSkKql6PzuEgrqmJBreAffXGjczXDDi7Q0J49YEHaI2KIqinh3tefZX4piaIMrB24Q0cnjqVsKAgvvf97w/3ZxrCeMSiI4cO8f4HH6C4XHxnwwZCH3uMZ0tKvN9Db7fz/WeeIdztE9cVGsor999Pe1QUId3d3PvqK0S3tKIgjref3XILRz2VAzUikeJyMbWykuW/+AX6tDRKSkrYsGEDfX19KKrKgp07WfTFF6LC2nXXiep0dXXw5JNi3wX6TWYO5k7jVEoq+gCFzqgwGmNjfVLL9A4HKadOeb2HYjUi1rhQgARgejDceA0s/i5kXD24D4I4fx09KjzP9u8X7Tx1SvS58RIRIfpwfLwQbfV6sf2ODlHJ7tSpkb3MFEUITrm5w0WhhATf/NzOzsHoIK2n0GjG4WYgAOFZNACc370c/wQGilQxTcVOR0YGxTYbO/bvp9st1AQHBzNv3jxmzJiBUVXhscfgz3/2jfxaBNwLLFwOf46E/1oz+P6ECfD220IQ9MeJE3D11VBfT39uLi8+8git3d3ENTby4Esv+aYbx0bx3i9/xVHNb7Zy5Upyc3PH9JWlWCSRSCSS8SLFIg1jFotWZMMHvhVXSnNz+evKlT4XR/O3b+d4fr631LHBZiOmtZUGtzdCWlUVtSkpwwysDXY7i7ZuZd7u3ehXOMUF0scX8YuaTOJCyZ9XxhhwKaAoooqbD2FmWGaE1T3iYteDMQlH0DLa1SW0DmTT1tFPW1sbbW1ttLa2MjCKcGMwGIiMjPSKR1oxyWKxuI1oWkRKTkWFuHDeu1fcCe3quugVyM4Hp05HXXKyiDrKyaFliBeV3uHAqdf7pB6mnDpFQX09WYoO28R0TqcLQag4OYcvo1OocOg5bR+9yq9RgbSh/kEmlbCWWur276KyYrAkeXJyMvPmzSMnJ8dngNvU1MTLL7/sFVX0ej0ul8srIIWFhTF79my2b9/uXUZRFFasWMHkyZMvwq83yIWIRe3t7fzpT39iYGCA6dOnU1dXR7MmzH/p0qXMmTOH2tpaXn/9daxWK4mJiaxevZqAUfxtRsNjtD1URCofgG4X6FwuJp8+wqKKbUT2CVGgzxjAnsx5tGXNJD3E7I1E8kQlJRovwB/JahUDkyNHxLRvnyh7Pt4BpsFt0uRwnFt8CgwcFJLi40VEgd0OnZ24zpyho7GRFoOBlpgY79QaHT1ihKLeIwrFxvoYTUdGRo7ZVwcA1Ql9BwaNsnv3AJpjhdMIZYWwLQA+PQn1jYPvKYoYUDscWM1myrOyKJ0yhYqMDBwa8TcsLMwrHCUlJfkKR6oqRKszP4O+L2ntiWZ31UIO103C6S4BEN7RwZyDBymqq8Pk9irxwWLxit59gYFsvOYaDhUV+XxGZFsb7W5/JfPAgFe0XrhtG1ds3uwVM3oDA3ntvvtojI/H0t/P6jVrSKqvx5oZx7PL76IzIoLJhYXccttto/6sYxWLOjs7efY3v8GqKCzZvp35//APvPjppzQkJHjbfs+rr5LhTnXsCA/nlfvvpzMigrDOTu5b8zKRLR2oisLBoiI+u/56bH6iN9IrK7nFZCL4z3+mt6+PDRs2cNwtAMU1N3Pz+++T0NAAixeLCJDmZlGV7tgxVKBmYgqv3Ho/1enpJHedxuD0FSvjQkNJ1+vJOHqUiZ98gvH06YsvyIIwqc/KEuKG59EzRUUNHhS6uoQAc/SomA4eFKLM+YhIWhRF+AzGxAhhKTcXpk0T0W5ZWYO+ZyBEVq0Y5Hk+klgMIgrnfD2CRm03MEEPKU6R5pYCpOihYAHk3AURN4MxYdhqDoeDw4cPs337dm9Ri6CgIK9oZGpqgttuEyK8lnxgNTCtCH7QAuUaIWzlSnj2WREpPJSaGrjqKjh5ks6cHP58//302mykV1Vx95o1PtXaBuJiePZH/0SXu+8HBATw6KOPEnKuCDGkWCSRSCSS8SPFIg1jEov+8gQ8+B8+s2qTk3n5gQdE6L9b8Jm5dy+1yck0uYUhg80m0pBCQjDYbJhttkGPG81d0OwTJ7ju44+JiOqEZcDLwAXaknhD0RVFXAyfx0WZC1Dc/hg+mBSYr8J9QCFuJ2sTBC8e9B6y5I04wlVVlf7+flpbW70CkkdEam9v90kRGkpgfz/RLS1efySPN1JERwf6y0AkwmgU/+2Qu7Kd4eFUuKOOqtPSRk3dcykK1VFpHJtQSGl8LgMmX+EiROdbUUw7JZlAP4qw0NLSwu7duzly5AhO9+8VFRXF3LlzmTJlijciY2BggDfeeINaTXqRXq/3rgNQUFBAW1sbjY2Dg+pxld4eA+crFtlsNl544QWam5tJSkoiICCACk157ZtuuomioiKqq6t54403sNvtpKSksGrVqvFH9YwBp9PFzkNH2LNjG/2dQiRymAMpzZ7HZ0kzOasf2YMiUOf2QxoiImVbIEp/nkJSa+vg4PLIkcFIhfGmspnNYlBrMIh13YMsp05He2TkoBgUE0NzbCxtUVE+Xl5a9A4H0a2txDY3E+32E4ppaSGyo0OUjM7OHu6JlJExcrrHuXB0ioif7k/FZKsZfE8FKiJhVyJ83gFlQyIhjEaw27GZTFRkZlI6aRLl2dnYNeJVSEiIVzhKTk4eLHutqtD1IZz5OfQfptcaxJc1C/mycgZ9qvgulv5+Zhw5wqyGBkIOHx4uRrjTnQFOpaTw4U030BY1KEgnnD5Nb1AQ3UMGqbP27uW6Tz5Bca87YLHw+t13UzdxIkabjVWvv05aTQ11OZm8tPJuVHfUYKE7KtYfYxGLXC4XL//619T29ZFUV8eDc+bw0datFHuigoDFmzezZNs2AFqjonjl/vs5GxpKZFsb977+CuFtXTTFxPDOCIUgwtvbWfHRR6T88peod94poonWr6d/YACd08nC7dtZuH07+hkzhEjU2Qn//u/0nTzJybQ0ynLzKMkrAINvhwoKCiIjI4P0+HjS9+8n5KWXRPTe0PNUUBAsXAhXXCEic7ZuEUKtY5zVs/R60ZdGu0wLD/cVj7KyhDDrdIoIqbIy0a9LSkTE4VjPjXr92JcNCBD7od1+YSmwWq/G8RAGpJohOwsKFkHhlULQysgAswn69gtz7M61MDCkdGzQHAi/BcJXgCXb5y2n0+kVjTrdN9cCAwOZO3cuM2fMwLxmjTCi7+313WY8cBdADPy+Hezu3zE4GP74R1i9evjB+swZkZJ2/Dhn8vP5y113YXe5mHLoEDevXesTpVaTk8PLq1Z5X2dmZnL33XefMwpbikUSiUQiGS9SLNJwTrGoqhiyp/lUH2uJieGFhx7ySTOafOgQZ4ODqXZf/OrtdlAUnAYDpoEBUSVryEk9tKuLZR9/TE5VGcrdwFHg4AV8mZAQYW7Z3S0uEM8DFcBoRBl68acAkxF30BYCRsCcJYShsOuEUKQ/tweJDw6HuKiuqhJRQpWVuE6coLO+njarldaICB+fpKGlh32a53IJk20/1dqCe3q+0hL2/lB1OuwpqXRlZHM6LYeK1BwOJ+ewMzGH/cExxLedIrupgqzmCiL6O0fdjpKUSVxOAYW5OeSEmC9KJa6zZ8+yb98+9u/f743yCgoKYtasWcycOZOAgABUVWXz5s3s2LHDu55Op/MR8wICAoiPj6daU8nlyiuvZOHChRfWQDfnIxapqsr777/P0aNHvQO9I5rSxHfccQf5+flUVFTw1ltv4XQ6ycjIYOXKlRgvsjGs0+nkyJEjbN++nQ53elFgYKA33cxkMuFSod7uG4lU4X48afWJfRlGhN6/iJRlFkWGxtlY4Y/liUI6elSYvo/iR+TU62mLivKJEmqJiaEtKmrEyooGu90rBGmn8I4OdKoqzHtDQ4UIZLWKqIWRvGTMZjFAHOqJlJbm9cAZE6oK1opB4ejsF+DS5L/UAjsTYStw4IzvwNYtHNmNRiozMigtLOREbq5P1EtQUJBXOEpJSRHCkeqCznfhzJMwUIrdaeRw/Tx2H59Pu1OIhzqnk8mlpcxtayN2584RU4edej3bFi9gx/xF3t89qKeHvJISiqdPFwKd+wZF4ZEj3LJ2rbeCpc1o5M1Vq6hOT8dgt3PHX/9K9ukKvph9BdsWL8ZsMPDo979PmKZqopaxiEU73nuPTUePYrJa+e7AADVdXXyoMQLOqKxk9WuvoQBNsbG8et999AYHE9PczOo1r2AasPPebbeJCqJDCkEYbDaWbN3KnJMn0X/+OT0TJ7J+3TrK3OJwXGMjK9auJT4uDv7t33D291P3xz9SpddzMiODMxMm+BxQFb2e1IkpZGSkkxEeTtwHH6C88orwjRp66RQRATfcAHffLfrJ++/Bpk1g19wsiAOuAK6MgryboWcGNFhEZEl19eB05sy5BZPzjcaxWAZTr+LjRVTQwIBIz/Z4EY0k+Hj60flGAVksop96hKW+vrELQ0YjZE6EVCMkNENS+2C0UPiQZU0pEHE7hN/uLpSh6f8DZUI06lwLvXuHtC9vUDgKnOHdF5xOp9dPznPs9vrJTZiA+e//Hj77TGxDWzgkCFgKlBqhVPObzp4Nr70mTMm1tLbC0qVw8CAVU6fyxooVqMDiLVtYsmWLz6Ibr72WXZrUtmXLljFr1qxRf0IpFkkkEolkvEixSMOoYpHDAYnB0Dw4UOkODeWFhx6iW3PhnF1WhtFqpWTKFAB0Dgcu90BBazzqubhVXC7m7N7Nkq1bMeXbIAthYH0+gTGei8D6euFpcR6oAGYzir8BWQpwByLiKSIQQq5yC0RLwZxx7o0PDIgL4crKQVGookJceNfWjusC1GYyCWPtIdXa2qKifErWD8VktQrxqLWVSI2IFNXW5r+s/DhwREbSlZHDmfQcKidmc3hiDrsSc9gRl0G/eWSvDz2QYhIpYtkDrSQ2VWCqq6D3TC3qCL+JXq8nOzubwsJCsrKyLoqwYbVaOXjwIHv27PH6NRiNRoqKipg7dy7h4eGUlpby3nvv4RjJwwKIjY2lpaXFm6o2Y8YMli9ffsHtOx+xaO/evXzyyScoikJBQQHHjh3zvrd69WoyMzM5fvw47777Li6Xi5ycHG6//fZBn5uLgEck2rZtm8/d6fnz54uUhjFWs7GrUGMdLiKVD0DdOXbdeMNwESnbDOl+jLZHpacHx+HDtB0+THNVFS1tbbQ6HLSEh9MWFeXjwaXFaLP5CkLNzcT09RFusaBMmCAiH81mUd3tzBlxnNB6Bo2ExTLosTJSFERgoDDR1gpIBQXCa2UsSqvLCr27RLpa96fQf2jwvVZguxm2h8JuTQQBeAeNDoOBk+npHM/P50RBAQOavhoYGEhubi75+fmkpqai1wHtb0DDv4K1ElVVONEym92HllBrGzyGZFRXM6+7m7RNm1C0JrgaWqKjWLviFs64B4WKy8W8nTtpiY2lPCfHu1xifT33v/QSRvfv5zAYeOf22zmRm4vO6eTWd98lt6eel669k9NJSaQkJnLfd74zGB2l4VxiUUNFBX9+7TVcOh03lZURm5PDiy6X97wY0tXF9595BpPdzpmEBF679176AwOJb2jgtrffZueCBRyeOnVwP9NE5eaWlrL0k08Iz8tDXbeOY3V1fPzRR/SrKjqnk0XbtjG/pYXOn/yEqp4eqg4doiY6GvuQ/tcVFktmRgbX5KaTiorxhRfgzTfFzYyhxMeLdKQVK4Qv13vvws5dvueyVIRAdE0MzL8bIldC0GxfAWMoVqv4vOpqEeVXXCxEHM+5/Tw9Bn3wVNWMihJ9xGoV225sFMJRT8/4InyMRhFh5PE96u8X0YWjnCv8YrGI3zU1VfTb6dNFultOzqBvk6pC/xHoeBPa3/SNBBzWriQhHEXcDkFzfX932xno+kAIR92b8XHHNiYK0Sh8BYQsBsXot1KlxWJhzpw5zC4rw/LjH4tjmMEAURHQ1CK2pUekqJ0APH+dXg9PPAH/8i/i2Oehq0uYnu/cyYG5c/lo6VIAbvrgA4qKi8UyiihU8cLDD9PoTt00GAw88sgjxPiJtPMgxSKJRCKRjBcpFmkYVSy6uhA2lXhfDlgsvPTggzTHxXnnJdXVMaGujn3uuz2KyzX8olZzcZtcW8vyjz4irrcZrgQ+1wnH3PESHCwuzM4z9UoFlIAA30pAHiKAm4CbgZxJQhwKvQ6C54NuhOpMmugg7/Py8vOOcBoPKtATEiJEpCHV2jrDw0cczAKEdHcT7Ulp06S1hXV2iigHwGU00p2WSUN6DpUpORxJzmZ3Yg57knNoC48ecduBOv+pYhlmYXRs9DNmHRgY4OTJk1RUVFBRUUHv0FB3NwaDgdzcXAoLC8nIyLhgocPpdFJSUsKuXbtoamoC8Iot8+bNQ6/X8+abb3rvsPpDr9ejKIpXVMrKyuKuu+7yO8AcK+MVi06dOsUrr7yCy+UiLS3NJ+LpvvvuIy0tjSNHjrB27VpUVaWwsJAVK1aMz/tmFPylMPj4Xoyj5PG56NMYbWtFpArruY22U0zDRaQsC0xQ7HS2DVYc80wdHR2MdNowAzH9/UQ3NhJTUUGMuyx9aHe3N93pnAQFiQpsOTnizrsnfaqlZXAAXV0tBmUXQnDw8CikwsLhxrxDsTcKg2yPWbbD7X3VA+wEtgfBDhv0aBQ8d0qPU6+nOi2N4/n5lBUW0q/ZBywWi1c4SktNxtD1OjT8G9iESFHfVcTu/ddS2mdBdbcvrrmZeT09FHzxBfq6umFNdQH7Z8zg02XLvIJMwpkzzNqzh8+vuYZet8+Jpa+Pe157zVuC3qnTsfaWWzg2aRKKy8WN69YxsaeD5+5cjd1k4uqrr2b+/PnDPm80schutfL8k0/SGhBAXnU11y9ZwnNHj9Lj7ss6h4N/+P3viezooC45mTWrV2O1WIhrbCCuoZGjkyejDrnZAsLbadnHH5NdXg4PPMDZX/6S9S+/zAn3DY+4xkYm1dfTtmQJVQMDdA8RL1SnSllCLn0pedw7KY3bu+pQfv8MvP++EE2GkpoKd90FV14p/PHefw8OFvsuk4cQiK6OhumrIPJOCJo3skDkdIobJv7K0GtSe4dhNAofoaAg8Xv09wvB5zyreo76OaGhQlgKCRGvBwZEm8ci6g5FUQYFkrEWm4iP963i5nmcOBGiW8D1EXS+DXatN5KCj7OfMQHCb4OIO8Q1jKI51js6oXuDEI66NoBLc77Vh0PYDUI4Cr0OlxJASUkJ27Zto7W1FQCz2cyc3FxmP/ssAZ9+KtYrKICQYNijiWAKBbT6bnIyvPyySFn00NsrBMjPP2fTtdeyY948FJeLu9esIbOqyt0maImM4blHHsHpFqDj4+N56KGHRrwGkGKRRCKRSMaLFIs0jCgWPfEP8B9/8L50GAy8ds89omSx+6I1vKODKcXFbL3ySrGQH3HIQ0BfH9ds3MjUQ4dQYlRRDvc8yr2OBZVRapAFBQ3PtQcwAVcDtwbBousgYhmELgWT++Kivd1XCPI8r6gQnkiXIwYDTkWhPSzMKyJpBaW+0Up3qzCgt9AcEkNdZDItodG0BUXTGhxFv2mwAlG0wb8YlGmGuAtMF1NVlYaGBioqKigvL+eMp8TzEIxGIzk5OUyZMoW0tLQLEj5UVeXkyZPs2rWLk26jWYC0tDSmT59OcXExVZ4LVw2KonjFBK23UUxMDA8//PB5iyTjEYvOnj3Lc889R29vL5GRkd5S9AD33nsv6enpHDhwgI8++giAqVOncuONN16QmOVhJJHIE0l0sdPbzkWnQ4hGQ0Ukj9G2yWEjuqeVmJ4WYs66p54WIvo6Rjx2WCwWH4NpzxQSEjLom2GzDfqleFLZDh8e3eh2NCwWMbAqLBRpHGlpIiKiv1+ISJ5UHs+jP/F7LAQHDxr4akWk2Njhy6ou6D+sMcreCapdRA98CWxRYJsB2jTCkSe1RVE4lZrK8fx8SgsL6dOkMpvNZnJycsjLzSIzfBuGlv8LdtHnO6yT2LPneoo7jNjdg8KQs2eZ3dvL9P37sezfP6yZ3UFBvPLAA7S5ow50DgdXb9xIY3w8R6ZO9Z6rZnz5JVdt2oTFasWlKKy/4QYOTp8OwHUbNmB0OPjwppvQAQ8/8ggJHkNqN6OJRev/9V/ZDwSfPcsj06fz9qZN1CUnu39HlbveeIOc8nKqU1N54+67sZtMBPb00BcY6JtG6HKBTofO6WTezp0s2r4do8OB+stfciQkhE9On2bAbEZxuQju6+OsxxvQjd7hYEL9aU5FpPD6lXcTnJrBbxr2segvz6BsWD+88IOiiP3hvvtgyhRRgey998QNEA86YCpCILoqCgpWQsTK4YLE2bNCBNKWnz9xQmxrpPRKEAJmTo7wJJowQQg3ZrMQWs6cERFHnun06fFH84wVg0F8rssl+vf53KCyWCA/HyZPFv0qN1cIXv39QnyqrRX9+dSpwedj6cshIUJASgyGmG6IrIa4fuEflABEA9rDuyEOIm4VqWohi0DRCCyuATi7yZ2u9gE4WgbfUywQeg2Er8AVspzjFS1s27aNlhaxjNlsZpbBwJz/+A8C29pEtNVjj8HpenjrrUHfqiE6FnfdBb/97eBxZmAA7roL9YMPeP+22zg6aRImq5UHX3qJeI+AaIK9U2fxyfXXe681582bxzVDqvJ6kGKRRCKRSMaLFIs0+BWL1rwC99zvXcalKLx7++0cLyjwnpxNVitXbNrEp8uW+ReINK+LDh7k6s8/J/Bi3/nTMKpAFOwWiIb+6wowA1iZDjfdDrr5cCYUqmqGi0KjRJRccnQ6b6Wic4XQO41G2hMmUpFdyJdZUzg6YSKtkVFYA8yE2s4S1dtGVG8bBtfIF8R6SwChkVEkREcTHz1YtS0yMvKipjINpbe3l8rKSsrLy6msrMTmJy3BaDSSlZXFjBkzBr1RzpPGxkZ27drFsWPHvEJQbGwsYWFhPmbRWoaaYIPweXj44YeJjIwcdxvGKhY5nU5efvll6urqsFgsPtX2PAa9e/bs4VP33d+ZM2eybNmyc5qDngun08mhQ4eGVdC5VCLRUKxW65AooVYaW5rpGaVSUp8xgOaQWFpComkJjqElJIaW4BhcAcFkWRSfSKRsj9H2uXb7trZBM22tkDTWCIOhGI1CRCoogFmzBgegISFi8KwVkDyPp06NP5UnMFAMRvPzYeZMkRpTWAjafdnZA2e3DPodWStESvFRhMfRFh3UDYke1elwqSq1Eyd6haMejXhtMpnIzkonL7GWLNNvMCJEo34K2b/rRvadUelxC00mm41pfX3Mrqoi/MMPfT5GBT675hr2zJvnPR/FnznD5MOH+fzaa72RR4E9PVy7cSOTDx8G4LNrrxXrAFds2kTDhAmU5eURHRbGI//wDz779UhiUcWrr/K6W3C+JyyM8p072acxyp63YwfXfP45FZmZvHXXXX6Nz7Vp3KnV1Vz/8cfENDejBgVR+w//wHqbjRZ/laaA2KYm0quqiD/TyHvzb+WZO/6BO6oP8uR7vyd+2yaUoTdNdDooKoIHHxSRK599BmvX+pZ5NwKzGPQgSr9DRBAFLoD6M8MFobIyIeyMhMk0WDUwIkKIKqoqhJKmJvHZDQ0XXjVMpxPfKTlZRAoZjaIvNDWJvtHcfH4V3RRF9Lm0NNE3Jk0S8zo6xPc/dkyk1I3UzyMiRH+aNEk8eqbwcOHl409E8jy6o3tGxYDwjPKIR/Ga50kRkHMLJNwFIUtA0RyrVSf07hbCUcf7YDup2agOgheght1MadM0tu4q9VbZNBkMzDp5krlvvimu9xYvhl/+Ej74AJ7/A3T2DG9jUAD812/g4YfF/2S3wwMP4HzrLV675x5q0tIIPnuWh//8Z8Lcx201WGHNitVUafyPPJGzQ5FikUQikUjGixSLNAwTiz7/HK69xiusqMDHy5bx5ezZPp5D13z8MZ9df/3w0BGNSBTb1MTyjz5iop9UgYvB6BFEFui3gsvPX52gQFEyxGVBhwVO1glBaISUp8sGT/lql2vUi2cVsAYF0xiXzNGMAjYXzOVI9hROpORwJmbCsLQ0syJ8XDxRQelGF8m2biJ6WjF2t9HVPlitrXsErxDRPIWwsDCveOSZoqOjfaMvLgIul4u6ujrKy8s5fvy4N5pFi8FgIC0tjTlz5pCWlnben9/V1cWePXs4ePCgV6AKCAjAarXicrmGmV6HhoYO+510Oh133HEHubm54/rssYpFGzZs4MsvvxzWliuuuIJFixaxfft2Nm/eDMC8efO4+uqrL+j/uNxEooGBgWGpYy0tLaPur0FBQT4RQlHRMdjDY6jVBVJhVQajkqxQPQajbX9pbaMabWsNtbVCkp/ItTGj1wtPlsJCESVUUCA8ULKzRXREQ8NwIckjjI9nUG42i8iI1FTxWbNmiZSSlBThpdL9qTtlbRM4u6EK2OKehhRmQqdDVVXqkpK8wlG3piS20WggK9lFXuR6sqKLMRtsOIyTObbrRnZV9NPi7heKy0VBfz9zW1uZ8Je/+Az+T6al8eaqVYNePS4XU44coTQ3F5smuim5tpbrN2wgrrGRrUuWsHXJEgBm79nDsYICekNCmDljBtdr/Mj8iUW9hw/zxzVr6A0KYnZfH4knT/KeRiiaWFPDfS+/zOarrmLX/PnDTKu16dxBPT1c++mnZNbUUJ2cTGVBAScyM+kf4lMXoChk1tSQfvAgGSdP4lR1/Pauf6QyOZPvb3iZGcU70duGRPIYjTBnDjz0kIi63bAB1q3z9f8LBOYDS4CZEWBbAk25UKOH8gohCJWXjx4JExYmBMbAQPFdBwZENNNYBA8Q63iqj43m1WU0imik/HwxFRQMGiqfPDkY0VRSItp9oWmdoxERIfpDTo4QqoxGkbJ++rT4/IqKkb+Hpw9rRaS8PPH7eejtFZXfhopJnuf19WOLgooEEvQwMRnSiyBrAaRmDKa9hYeDtWRQOOr3TT9ULVMo61zBtiPhNDaLc4ERmLl3L/O2bSMI4Fe/gnvvhb/8Bf77/4MaP+n5RRnw0tswpUi0+9FHGXj1VV78zndoiY0lprmZ77z4Iha38HZ2Ygh/vOtR+t2/SWhICN979FECAnyrp0qxSCKRSCTjRYpFGnzEotJSWLwIrIN3n3csWMCmq6/2WWfujh3snjdveLUd94Wu0WZjyZYtzN6zB/2F3hHUbt49jRgrEmSCATs4/fy9OgDFv3h0OeIRhUbZVVWgNyiE0zGJHE0vYNfkuXwx40pK0/KwDjGXDtePnC42wQi6MeoGdrudtrY2n6m1tZW2tjaso6QUGI1GHwHJIyJFRUVdlFLtXV1dnDhxgiNHjnDmzJlh/jIGg4GkpCRmzZpFbm7ueQkl/f39HDhwgL1799LTM/wOqTYVLSgoCEVRhi23YMECrrjiijFHPI1FLDp8+DBr164dNr+goIBbb72VLVu2sH37dgAWL17M4sWLz1socjqdFBcXs2PHDq9IFBwczPz585k+ffpXLhL19/fT3NzsFYNaW4W/0NlRBn3BwcF+08cCtQOvc2BXhWDk449kFRXczmW0nWAcLiJlu/uf2d9u0NMjBpNDU9n8CKJjRlFEWk9BAUydKgbSeXli8uxXDocYYHqEpIoK8bkeIWksA2tFESltsbGQng6F+TAlAiachvADoCuGBlVEHH0BFONTadMjHJ2eMEEIRwUFdGoiZwx6yIipJD/+CNlxJzCH5FO19yZ2H2zlpMbkNtVqZW5FBVnvvuv1jeoMC+ONu+/28dwL7u7GqdfTHxTkI9TM2L+fKzZvprioiI1us93ssjLK3WLv3XffTVZWFjBcLFK7u3nrf/0vTiQmEtPTw819fbwUGemNHArs6WHh9u3sWLiQXk+6mOYmi+J0Cp8iVSWnrIzIjg5OpaQMq1oGYFZVikJCmPLuu8Tt2YOiqnQEh7Fl+hKSmk9TVH4Ig3NIelZAACxZAg88IKJr1q2Djz8W+52HUKAAEYGiM0FDNJyyQ30LI6LTCTFDrxfbHWtKpNEIcXGDFQBtNlHRtKVl5AplniqAHlEoLw+io4WQ5BGFPJFNp06NPWooOFgIq7NmwaJFwmg6M1Nsd2j1Nk+hirq68fklKYoQkhITRZ8MCxPzWltFXxup+qKiiLZ4xCOPkJSVJX63oTgcIqqrthaqy6B8I1TuFa8bVWgAxvIXBQcPCkcpKTAhBKIbIfwYhB6CGBXE7kp52yK2ViyioU20x+B0MmPvXubv2kXwzJnw4osiuuv99+FX/w77j/h+lgJ87yr41ZsQHAX/63/R9cILvPDQQ5wNDSW1uprVr70mIp9VKF2Qx1+vXuntPwW5udx2550+5zcpFkkkEolkvEixSINXLNqzh9Cl10LX4J34w1OmsPaWW3yWT6uspDo93VcoGlKd5bpPPvGGC18oKqAqoBvpHzPqwOnyHXB8k/Ck8J2DfpOZM9ETKE3LY8+kOXw6dykHcqcPmp8iRJ/MEQylI7+67DBAeP309vb6iEeeqaOjwyfaZSjBwcF+RaSIiIjzSiNzOBxUVVVx4MABTp06NSxdTafTER8fz7Rp05gyZcq4U+ccDgdHjx5l165dXqNPD2az2Sua6fV6MjIyKNf6fACpqanccccdYxIrziUWNTQ08OKLLw6r1BYbG8tDDz3E5s2b2btXGI2OZNA7FhwOhzeSyBOt81WKRL29vX4jhUYyPAcR0RUTE0N0dDQxMTHExsYSHR097E7zxabPBZV+RKRyK7SMYqOiQxi9+0trSzGBXqsLqKqISNBGIB09KlJcztPk30tMjBCRJk3yFZFiYnzFCZtNDDRLSmDPnsEoqMZGISSN5caAxQIxIZBsgNRuiOqFNqAcOMJg1SQQwpHLRWNCAsfz8zleUEC7Jv1Nr3OQHn2S/ITj5KQG01VyHbu3nuJYfLw3dSu6v5+5mzczubgYg8OB3WDgoxtv5Ii7cqcHo82G3WTCYLfjcO/Lgb29XPX557h0OtbfcAMoCtEtLbTGxBBkMvHoP/4jQUFBvmLRhAkceOQRPkpORu90ck9gIO83NdHtEbxcLiz9/Qz48YvzikSAeWAAl043rGqZJ+JIp6osDglhwQsvoCstBaDXZOFscBgxHc3oh55TQkPhuutg9Wrxf33wgYgi1h4bLe6pFxhNAB3jOQsQwlRSkpgmTBBikqqKqJjWViFOVlaOLApZLINV/fLzRbqXySTWr6wcjBQqLx9/ZHBiohCDZs4UAmpRkWjj+QjpHR2DIlJNDZSWir556pRIcRurn5JOJ8SjiAjxn3lMtU+fHtlU22QSwpk2CmnSpJErHzo6oPN9aHsD6jcJ4agRIR416qDBJV43Irwlz4VBD/FmiO2HeBU1ASoSsthmuZLTDnfVMrud6QcOML+4mJCnnoLvfle0bdcueOJ/wbbdvtsMBX69Cu5/Bv7v/9D43HO89OCD2MxmJh05wi3vvSe+mgof3Hczh9KLvNeht1x3HZNnz/ZuSopFEolEIhkvUizS4BWL4uII1VRBqczM5PVVq3zEiMCzZ4Upsp8BfFhnJ9dv2CCqs1wg54wg+hunJTyaspQc9hbOZvOMKzmQP4PmqDiMCqSa/ItB6WYIuEx/MKfTSWdn5zARqbW1ddTBv06nIyIiwm9aW2Bg4JiiY1RVpampiT179lBZWen386KjoyksLKSoqGjM5ek9266oqGDnzp3Uau4GG41G7JrBT2ZmJq2trT6pckFBQdx9991MmDBh1M8YTSzq7+/nueee80b4eLBYLDzyyCPs3LmTAwcOALBs2TJmzZo15u/mweFweCOJtCLRggULmDZt2gWJRB6B0SMENTc3eyOF+ka5Ux8WFjYsSig6OhqLJp3ocsFjtD00Iql8AM6Ooq0YFdGvh4pIWe5IQO+urzXU1gpJo/nEjJXw8MFUHq2IlJzsfxB65gx88YUQko4eFREezc2jmxgPJRCRw9KLbwEEd9Rec1ycEI7y82nVRBLpFCdp0dXkp9hJ7JrGkc+OcyAhAat7nwjq7WXW3r1M//JLAvv72TNnDhuvvVakeg1J/TINDBDY10enW5hKrK8n68QJtl5xhfd9m8VCdno6d91zD2VlZV6xKODll3mur09UTwsI4OTRo5zU+KqMiJ+iECAEq+TaWjoiI70RUYkGAzevW0fMvn0AOBUdOtU1PCU7Ohpuukn4xuzZAxs3CnHvYl3+BAeLfcEjBnmmuDghjnR0CLHEI5xUVIwsmgQFiX0rP18IH1FRIkKpo2MwgufEifMzitfrxbaLiganqVMHKw5+1ajqoDdSVZXon8eOif7R2CiiqMbyn+h0QnwLChICkec3Hql/hYQMisBaEUlbZt7eBB3vQMeb0LNDs7ICikmk8nuEoyYzdGRCa7QQlGrrRVTVCP+pClRlZLB1yRLq3abueoeDaQcOsODMGUIffVQIdRMniv/1vnvh0GHfjaQp8Ny9cDCFqj+9zprVq1F1OhZs28ZVmzeDAlajied+8CgdQREAmO12vved7xCeng5IsUgikUgk40eKRRq8YhHiZg7A6QkT+MsDD+DQ3tV0OsXFyhBvBZ3Tybxdu1i0bRvGke4OjgEXIgL54rnaXP44dHoqkzL4Mn8m+wpnU5xbRFXOFOIiQ3zSxDzPk4dGG/wNMDAwMGJa29BoGS0Wi8VvWltkZOSoAkZ3dze7du2irKxsmMgCQgjJzc1l0qRJJCUljStd7OOPP/ap2KZNSwsJCWHixImUlJT4rHf99dczY8aMEYWvkcQil8vFK6+8wqlTp4ats2rVKkpKSjhyRIT433TTTRQVFY3pe3jwJxKFhIR4I4nGE42lqipnz571Gyk0MIrBc0REhE+kkGc638pylxOqCs0O/2ltFVawjnKGCtIJ0WioiORjtK011PY8Hjt2ccqLBwYODuw9IpIn6sPfftHSIqKRDhyAfftEO2pqLrgtLTExXuFIm1qmKC5SY7vJNk5gYOtRDkVF0eUWBgx2O1MPHWLO7t10h4Xx9h130B8Y6GMkDWC0Wpl66BCHp07FZjaDqpJeVUVNaioug8FbnWz58uUEBQWRn59PzV/+wmc7d3ImMZE0l4vw4mKK3VXVvD/d2bP0afyYhopEeoeDifX1pNfUkF5WRkNiIp9dey02sxkDcMWXXzJnwwZ0I1zCqKFhKAnx4nzd2OibWjYewsP9C0HayWgUAs7x42IqKRGPlZUjR5mFhAzuMykpQvhQVbGPVFSI7VVVjRxpBKOnaAcGiopjWmGosFBEKF2ueNI/Kyth/36R+llRIaKJRhODtCiK+D88577+/pH/g9jY4X5IBQVg7oSOv0L7m9CnrS6oA8UMqiZnTRcIYcsh5FboK4LTbUO8k2qguhRqT6P22qlOT2fr4sXUpqQAYj8vKi5mwY4dIgrdY6QfFCSOD0PPC5OBK6dSvFVh3c03A3DDhx8y/cABUKAuKZkXv/MgKOJ8PbG5mfv/+Z/RTZwoxSKJRCKRjBspFmnwiEWdQBjQHhnJCw89NHpZdTcpNTUsX7+emJZRfAxGYFRz6m8wI32vswFBFOcUcSiniJN5RXROLkLJzyc1xOQTIRRzgeXm/1ZQVZXu7m6/aW3+zKy1hIWF+U1rCwsL8xFl+vr62LdvH0ePHvUpM+/BYDCQkZFBfn4+mZmZY0obKy0t5f333/eJLNJSWFhISUmJj6dSZmYmd955p1+RaySxaP369ez3Uy588eLFtLS0cPz4cRRF4ZZbbmHSpEnnbLcHh8PBwYMH2bFjh9cHKCQkxBtJNJpI5PnP/IlCI/lZKYriFYV8zKajov4mRKHzwaVCnc1/Wtu5jLYj9f5FpCwzBOM21B6aynaxok1MJuH3oo1Cys8fNNfWoqpCzCgpEdOxY2KQfPz4eRUaaIuK4nheHqX5+TT4ROupTFRcRNQ10GAw0Bwf7/383BMnmHT4MNsXLaIxIQHF5ULvcHhvkihOJ8s//JDatDRv2prJasWh1wvBCNC7XFy5dCnz58/nrSVLKF2yBJPTSVhrKy0aAUtvt6N3OLD5SYnUOxxknzhBUXExKc3NmLq76QwL48ObbuJkRgYAyadPc9N77xGtNZ7Gt8DnmE8bgUBsiPCUyp4Fyam+IlBiohi0e+jtFdFrHlHIIwydPDnyfhMWJv77nBwR4WQ2D1Yf8/gJjXYcNxiEgOB0jrw/REUNjxbKzhZi0t8SAwPi99q1C4qLxfPaWiGw9fWNPSpJUUZPWfWY1RcWQk4MJJ+EyE3g0jrSG0BnBpfmP1EsELYMIu4QApJeEwGrqkLwKv8U9fhaaqqq2GqdxKmQVNEsp5OpxcUs3LGD8LF4splhy1xhPK+4XKx64w2y3JVJN19xBdsXL/YKsFfu38/C//xP6vV6krOypFgkkUgkkjEjxSIN2sgiXVAQLz70EB3nKPEd2NvLtZ99xuTDh/8mBZ+x4FKUEe/uNkTFcyJ3Kg2FRZydXIRSVERUdjoZATrSR6uOJBkTDoeD9vZ2v2lto0WqGAwGIiMj/aa1OZ1ODh8+THFx8TAfIg8JCQnk5uaSlZVFfHz8iNFAPT09vPnmm5w+7afiCxAeHk5vb6+PoBQQEMB9991HvGcw68afWLR7924+++wzn+/lcDjIdKe7VFZWotfruf3228dcfW08IpGqqnR1dXmNpj2pYy0tLcP8oTwoikJkZKRfUejrrpz2TcbmghrbcBGpfADqx2C0PVREyjZDur0Hc2nJ8FS2jo6L02idTggTQ0Wk3FwRaaJFVUWUhVZE8jwfYyRSR0SEVzg6PWRwGNPSgqqqtMbGeudNqK/H4HR6ox7C29u9KWioKnN27ya3rIyPr7+eJnf/1FYrczU08G/PPcePfvhDwsaS2uSJynU4mLtnD1d88QV69yBeBQ5Mn85GTzSR3c6VmzYxe+/eEc83IxIBZAMLgRwzZF4FOfdA3M0iMmQoPT0iZcwTIeSZampGFiQiIsR/mZIiBCK9XvxP9fWDosZo7Y6OFulsLpfY30YyUZ840VcYKioSwpa8syJ+4x07RFRSSYn4v5qaxu4jNhp6PWSliAPGxEZI64AMYAJgMItUNZfmP1PMEHIthNwClmvAYRGRUVarEL2sVuiqoKZmO9tKBqgOFv1T53Qy5cxhFrYdIKLVAGfN0HxWCMpD9h8VWHfzzRwqKsJos/HASy8xoaEBp07Hiw89xJnERO82H3rhBVxnzpAMUiySSCQSyZiRYpEGj1jUYjTy3oMPiruyI/gnoKpMP3CAqzZtImCslU6+wbgUBavRjN7lxOTwPxI7k5JJS8FU+qcUYZxWROSMIpJS4jHKa9ivHVVV6e/v9ysitbe3j2qyHRgY6BWRgoOD6enpoaamho4RBsxBQUFkZ2eTlZVFenr6sIpuTqeTTz/9lC+//BIYFHS0DPU2Apg/fz5XXXWVV4gaKhYdPXqU9957z6cdvb29hIeHExYWxqlTpzAYDKxcudIrHo2Gw+HgwIED7Ny50ysShYaGsmDBAqZMmUJPT8+wKKHW1tYRI6d0Oh1RUVHe9LHY2FhiYmKIjIwct5G4ZHx4jLaHikgVYzDaTjENiUQyqeS1nyGp7Aj6o5oopNLSsZv1joWkpOEikqeylRaXS6S4eASko8Vw7EsoOyUUtBHoDAuj1C0c1U2c6PNeYG8v/RaL15cvoK+Pfnd59qjWVrpDQrC7+3VsUxN3/PWvnMzIYPOVV3q9kACam5v5wx/+wI9+9CPCwsKGnz/9nE+zystZtmEDEZpoio7wcD686SZRQAKYeOoUN33wAVGaqEcVcJlM6EwmlIEB3/8iQIH5KlyBKHUfYhGRHhF3uiM+3NFCXV2DPkJaYWikKlwgfG6ys4UfkUfc6eoS65SXj175LCxMpLSFhAxGmoxUQUynEyLi0Iihc9zAkiB+W60wMzAgfueDB+HQIfE/1dcLY/GxRiSNhtE96RFhbS6EMbqdMRccqZ04ka2LF3sj6BSXiymHD7Nw+3YiRzL0Bpw6Ha+vXs3JjAyCenp46M9/JqKzk7aoKJ797ne90YFRra0s/+MfSXc6pVgkkUgkkjEjxSINHrHo+Tvv5Ex+/ohCUdDZs9z11lsk1ddfglZ+tfSZA+gNEBfS4Wc7MQ4tNQw4jEa6cgqwT5lKwLQiQmcUoUydMlh2WnJZ43K56Ozs9JvWNlrZdUVRsFgsOJ3OUaNmUlNTycrKIisri6ioKK/Yc/DgQTZs2IDT6SQ4OBir1Tqi0OIhMjKSe+65h4iICB+xqK6ujnfeece7XGxsLM3NzRgMBqKjo2lsbMRkMrFq1SpSU1NH/Qy73c7Bgwd9RKKAgACSk5MxGo3e32kk3yi9Xu8VhbRTZGQk+r+1NJC/ATrcRttDRaRzGW2bFGGe74lIylFsTKktI7P8KOElR1A8QtLFMNTWEh3tX0RKTPQ9PzmdIo3u0EbY/QFs/RIqOsGPVU93SAhleXkcz8/nVEqKz3a0kUKec2Bgby+W/n7a3cKVzulk8ZYtTD10iC+uuIJD06YBfsSiUQjt6mLZxx+TU1bmjcpVFYX9M2aw8ZprvBXZrv78c2bu20e/ycKWooWcTc/iyqZKYvbuRNH6EIXpYZFTCESzgAAzhF0vBCLXfDhRO9xTaISIR0D42aSnixQvk0mkjrW3i5QzTQGMYRiNkJEhfKvCw8VvqBWT/B3zLJZBfyFPNbJJk0T62TcJh2N49MzQx/N9bzzrj3B+uuToARNgNoIlCALCwBIoUhMtFjCZqHM42JaeTqX7BoeiupjUdZSFXduIVtqgzwjbjHBmUGC0ms289OCDNMXHE93SwndefJGA/n72T5/O+htv9PbjlG3beHDzZikWSSQSiWTMSLFIg0cs+slPfoLFbPYrFCWdOsUDL7+M/kJDmi8mnio2Y/wrnTod7SERdIaEYzeYCOvpIr6tYXiJYcAZHIw6ZSqGoqmDdzfz84f7bkj+JrDZbH5FpLa2thEFotEIDw/3Rh2lpqbS0NDAX//6V3p6ejCZTCQkJPg1ptYaYiuKwpIlS0hNTSUlJYWdO3eyceNG77JpaWlUV1d7P6+zsxOLxcLq1atHvCB2Op00Nzezd+9eSktLx/TdPELUUKPpyMjIMZt/Sy5fVBWaHP5FpMoxGm1nW2ByXxszqo6SU36E+LKjWI6dw1Bbpzu/FJmQkEEBSSsipaUNetW4rNCwEV79H1i7Gw73wJDs1J7gYMpyczmen09NauqgUOTnB4prbKQpIcE7K7qlhRs++gi908m6G2+kRFH4wx/+wFMPPijSsfyguFzM3bWLxVu3YtIIJx0REay76SZq0tIA4QN43Ufr+XzaVeyZPI+79n3C3D2fo9f21TgDLHbAlcBUoNcITbPgdDacMkFppRCFRqscFhcnorrCw8V/0dcnUn5OnRo9ciwhQUQY5eSI5yDSnWprRfRKZaX/9cLDh6eR5eT4N0QfC6oqxJGLKbac7zKj+QBdSszmQUFG++hvnvY9o1FEivX0iCiwpibhj9TRMXoE2WgYEKaYCUAaMC0HrrwTZnwXAkXaGKWlnP7BD9gaE0NFdjYACiqFSZUszPiUmMBW+Cvwe7z9uTskhBcefpjusDAmnjrFva++it7h4M1VqyjPyQGgq6uL//7v/5ZikUQikUjGjBSLNPiIRX4qhmSUl7P6jTdQLtVPZjCgulzg8lMa2A/9JjPNEbE0RsXTGxhM4EA/aU2niGsZ4cI5Ls73zmZRkbhDKgfC33pUVaWnp8dvWltnZydjOYx40rISExOpr6+ntbUVRVHIz8+ntLR01NQ4EBE8P/vZz3z6Z05ODqdOnWJgYICAgAD6+/sJDAzknnvuISEhwevppE0da25upq2tbcQ2G43GYVXHYmJiCA8Pl6LQtxSnCvW24SJSuRVqxmC0nWNyMa/pJLNPHiG//AiJZUcIPX4U3WiG2nr9+Q2+zWYhPmgFpLw8yMoCtRU2/RHWvgcfl8Fp38/uDQzkhFs4qk5L86mK5sFotXpT0jxMLS7mqo0b+SI+nptOnvSNLNJE6Ea1tHDn228T29zsXVdVFL6cOZPPr74au8mE0WZjwdatdBJGRG83847s8r05k2qC2TZIReSiVeugNhxOOqCle+TfJS4O4uOFYbUndez0aVGufSQCAwcFoZwcyMwUIl13t0hfO3hQmJGPFGkUHS2ikyZOFIJUQoL4/JFEl/MVaS5HdLqRhZixijUXY32T6avxczp7VgiC5eWiYpvHT+zkyfMypgfAooPocEjPgcIiaGrizN69bFuwgBMaz72CNAeLMj4htnU//AJw13doio3lpe98B6vFQsGxY9z27rv0Bgbyx7//e/qCgqRYJJFIJJJxI8UiDaOJRRNrarj31VcxfMV3zlRFQTUahSDkcJxTFFIRqWMN0QlUJabTER1PsB5Sm+pILz9KYOcIue4ZGb6iUFHR4N1RiWQcOJ1Or8l2TU0NNTU1tLW14RxHXwkLC8NqtY5qyu250PX0z8zMTM6ePUtTUxN6vR6n04nZbKawsJC+vj5aWlpGFYVACFAJCQnk5OR4PYXCw8NHNOyWSIZic0G1bbiIVDEGo+1Mew9X15Ywt/oohRVHmFh2hIjjR9CPZKit1wvx5XwikfR6cdz3iEg5OcBpOPgZ6sZ9uMptuBQFl06HS6ejLzCQiqwsyrOzRcTROVIqzQMDBO/Zw2NbtgxPQ1NVZu3Zw3WffupzTmuPiGDdzTdzyp0qmnzqFHO27Sa/qsxn28QbIdIu/F/OAKPoO0RECEFHrxcRN2fPji4IgfAeCg4W4pDZPCgw9PeLdXt7hTBjt1+canlfJSbTVyO6jPe9b6svm6pCW5sQkMrLxVRWAscPQNVpsJ/f/tMYH8+2RYsozc/3zssPMrAotZG4fWvh9/XQB9Vpabx2zz249Hrm7dzJNRs3ciI7mzfvvluKRRKJRCIZN9/Ss/n4iGlqYtUbb1x0oUgFVJ0ORRMppKgqip+UGBfQbw6gMSqeyqxCWjLzsYSHkNZUS8rxQ6SVHiXz9MnhH2IwQEGBrzA0ZYow2pRILgJ6vd4bfZOXlweISKT6+noOHz7M8ePH6T9HyH5XV9e4PjM8PJyuri5aWloAvMKU1WrlwIEDPsuazWYsFgu9vb1e36GQkBAWLVpEUVGR9BX6lqCqKi6Xy2ca67yxLJvqcjHR5eJKzbwBp4tmm4tmm0qLzUWrw0W7zUW73cWAU0WnuqhSXVQnJKGLn4BuwVJ0LhfB/T0knm0jpqeD8J4uAnu6MPT2oGrEHJdON/har/cKPUOX8TtPUVArKsTzyCtg5RUX/PtaLRbq8vNhyxaf+YrTye3vvEN+aengf6Eo7J09m01XXYXDaMRos3HNZ58x48ABFFXFM5z2CkuNdmgcY0M6OsZfva6nR0wXQkDA1y/I+IuikdGPlxZFERFl0dEwd67vey4X1JXBwZfh2EdwohRqVagCGoBRdKT4xkbu/OtfaYqLY9uiRRzPz+d4r4PjJdHk1s5nUdxeEloaSKuu5qYPPmDtrbeya/58wjo7mfXll0zfv5/NWVlf5TeXSCQSyd8gUiw6ByFdXdzz2mtYzjPUe9hFrwYF4d8wdPkBk5n2yFjqcyZxZvZCDBlppDXXk1RSTNqRYjK2r4etHw7fYFCQEIW0wlBBgfQXknztKIpCcnIyycnJXH/99dTW1nLs2DFKS0vp03i36HQ6VFUdUxqblk5N5SQPZrPZGx0UExNDREQEp0+f5sCBA14xKjw8nIULFzJlypS/OZHI8zteiCjydc+7UAFnPJ9xORDpnsZKvxH6I0IgIuSratLoaPqlJ/1aBTEgVpSRq4W6Mdps3L1mDakaX7K2yEjW3XwztW5Po7STJ7lp3TrCNX36guL6jAqYFQjUiSnUAKF6CDaAWSe+QI8Tup3C7bzNDp0jeBMF6CAlENKDITMYckIhIxiCjGAygNkAZj0Y9KDoRMs9j0Ofo3P/Vu7nKKDYAAfQdx7rup87FDH1nce6/paX617guqOg00FKPqT8Cm75FThaoeNdaH8DOrcKwegUUAvUhw7muXYObiKuqYk73n6b5pgYti9axLHCQsry8ijLyyOnrIxF27Yx5cgRusLC+OKqq/hk2TJCu7u59tNPORgTM3r7JBKJRCIZghSLRsFotXLvq68SOkqFqHMx0qWDCjj0Bs5GRNOWmUvbFVejnzeP5P4uYkoOk3iomMTiYti6wf8GYmKGm2RmZsq7ipLLDp1OR2pqKqmpqSxbtozq6mpKSkooLS3FqhFhtabW59qeFqPRSF5eHsHBwej1elwuFxUVFdTV1XmrrVksFtLT05kwYQJWq5V9+/b5/Vztoz/xxel0oqoqTqfzgoSLkeYNfe7vtXb+0LZKJBcVzeBX9TcQHmVwbB4Y4J7XXvNWDXW5o4k2u6OJTFYr1372GdMOHBDnSQNiTK4iSo6PRigQC8QB8Qiz4Anu10YV9CroXNAO1NqgBjgJVAOtI2wzBsgBst2POUCiC5Qe/JaUA6HzjOKBLbkwVFXBpSqoqs73Ed2o7/mdr31EQR31vXNsY6RlvPN1g48Mea3qNOt75iejqvfgUkE1qbgyFNR0BddC9/d06lCtOlw2BXVAQT2r4HKIiMGwzk76AwOxmUycyM3lRG4ueocDg92O3uHAaTDw1l13oXc6OXuudEyJRCKRSIYgxaIRUJxO7nntNWJah19ZjhYt5A+XojAQGk5vWia2+QsIXHoN4YnxGMtKiSwuJrK4mKzn/xue/hf/G0hP9+8vJH1VJN8w9Ho9mZmZZGZmsnz5cqqqqigpKaGsrMwr7HgwGAx+y9UPjRKx2+0cOXJk1M8dGBjg+PHjHD9+/MK/hOQbhaIoI046nQ6dTnfOZUZ7/2Iuc671QOGsqtDhUmh3iqnVqdDm1NHuVER6GQoqENndTkJLAwmtDSQ2nya5uZ6Y9mZ0qirSnV0u8aiqIi7CYEBxOlHs9sH52mVUdXBdd/XNo5Mnc2D6dHEu0vRLc38/97/5JgnuKmStUVF8sGIF9cnJAKRXVXHjunWEa9NPxyO6dLunEQqOnQ/ODlD3g6sYVAO43JPqnlz6wfmqfnCe06DgMupwGRT3pBPzDDpcRgWXXodq0OHSK6gGPS69gsugR9WJZVSdmKfqdah6sZxLrwe9O4VQp6DqdGLSux8V8R7u52IZ93IMLiMq2yniueJ+RPtc7FOqqoCqcwsog0IKLmXIPAXVpV0OsZz7tWvosprJpdm+y7NdtO+Lz9Q+l/jBBESNvojTYMCp9YxSFDHvbyyaViKRSCRfPVIsGoHb3n2XiXV1ft8bTaJRAWdYOOqMGRhvuxWuvhpdZyeBxcUEFhfD/l3w4rP+y64aDMJ4dKi/UHj4RfhGEsnF5/e//z3/7//9PxobG5kyZQq/+93vmDVr1ojLv/322/zsZz+jpqaGrKwsfvWrX3Hrrbdit9upqKjg2LFjnDhxApfL5RWKdDrdZZNGdLnjT2DQCiLax7FMer1+xOeeabTXBoPB5z3Pa39t+irEmG8TNhectAljbY/BdrkVNgzAabcOG9jfS0FVCZMrjzC54giTKo8yufIIUV3+CyGoRiOKxSLOV36E25TaWrJPnOC9227DarF4U9Vm79tHW1QUzTExVGRlUZqXh8tgQG+3k19aSmJ9PWV5ebh0Ck6LHlugEXuAAYdZj9Osx2F0iyuqAqoCKu7noLoUFDsoDlCcYkL1CCBDfJsUIaC4dAouRaQJad/XPvqbd65H9auK5HW5J8k5cIGigjL4qCqqeK4T81Tto873UdUNLofOhYoKOvf2hj5qtjl0vuL+TEXnfq4DRVFFtqbO/ah57clu03nmKaBzZ7L5zNNBsMNB/EAf8f29BLvs6FBRFBcuBfp0BgI22LF84EDncKELUum+N5j9MdOpbsz0Cm4Guw2H0UToOL0BJRKJRCK5rKuhXYyB6PXXXz/mz/NUQ1u3cCE3bt8+6rIqGtFIpxNGhg89BBMmiPKpxcViKivzX/44MFAIQdpooYICYVIpkXwDeOutt7jvvvt49tlnmT17Nr/5zW94++23OXHiBLGxscOW37VrF4sWLeLpp5/mhhtu4PXXX+dXv/oVBw8epLCw0Luc1Wpl+/bt7N6920ck0lZDS0xM5JprrqGqqoojR45409lCQ0OZNWsWeXl5GAyG8xIXPOlmF3O6mNvUbuubjFZEOp9pqEj1VU1/C8JTrxMqrb4ikqd6W6tdZULLGSEcVRzxCkm5NWWYHOfKBxO0RUby5qpVHFdV/vCHPwyvhvYtRiRGuZ1tVPDG86giBswbrYVv5JbOHdWlU10oLhVFdXnnKS73c5cLndP96HIOPne633eKeTqnE8XpEtt3jf/RG1U23nXP8/PGsq4nIu5CcRhFtJhTE03mHOFx2HPj6MuMuJ573fGs59RDpAuy+iBzAMJUQA8YoP806J8H0yn3l5oHHX8Xwfa+BRxunYpLFRFFshqaRCKRSMbLZSsWfVUD0dHwiEVdCEsEHwwGYeapHaBlZUF2tphfUgIaE08foqP9+wvJkGDJN5jZs2czc+ZMnnnmGUCILMnJyTz22GP85Cc/Gbb8ypUr6e3t5aOPPvLOmzNnDlOnTuXZZ58dtnxHRwdvvPGGt+KZ50L317/+NdOnT2fv3r3eKmsREREsWrSIyZMnD/M0+lvF41t0uQpZQ6dvMpebsKXT6XjxxRf53e9+R1NTE5MnT+a3v/0tc+bMGVHYGulmSrtDiEavv/MeH734LPVHDmDrbCfk1X2kGC2DEUhuISmp+bTf7VtNJv4yezbf276dp77zHUhKAp0OxekkpqWFsGAd+qnTUYzBfqPKdH19KG1tKK2t6FpaUJqb0XV3+xcMgoJQEhLQTZiAkpiILikJJSYGZYQoutEex7Ps+ax7WeFyiQgx7WS3D5831ulC1v06P9s+NtHzb5HOsDB2LFxIcVERHT09UiySSCQSybi4bMWir3og6o9hYlGQHkwh0NE5uJDZLCKJRioFnpY23F9owgTpLyT5m8JmsxEYGMg777zDihUrvPPvv/9+Ojs7+eCDD4atM3HiRB5//HF++MMfeuc9+eSTrF27lsOHD4/4OevWraOkpMQrFj311FPe9yMjI1m4cOG3SiT6JnI+wtbFjvAaz/Yud44dO8b777/PDTfcQGJiInv27OH48eN8//vfJywsbJi4dOrUKf7nf/6HFStWMHXqVPbt28fHH3/ML37xC1JSUtDr9ezYsYOWlhaio6N55plneOaZ35OYlU2nS087etpcelpcerp6BzA0NLDoyy+Ye2Q3RqcTvXuqsNtZVlvrjSzKKi9n+fr1hD31FPzgB+I86HTCiROD0bfFxXDoELT7T4UjI8P3fDp1qvDsk0jGg1Yo+6aIXGNd394Lth6w94NNFcX1hlzZd4WG8vrChfz9+vVSLJJIJBLJmLksPYtsNhsHDhzgiSee8M7T6XRcffXV7N692+86u3fv5vHHH/eZt3TpUtauXXv+Del1Qm+n7zxP9Sa9HvLyhl/ESn8hybeA1tZWnE4ncXFxPvPj4uIoKyvzu05jY6Pf5RsbG/0ub7VasVqtXHPNNYSGhnoFqIGBASZMmMCiRYuYNGmSFIm+ASiK4hUuLnfGImx9XdFYI0179uxhxowZFBUVAXDDDTdQUVFBcXExCxcuHCZ4bdy4kYyMDCZPnozL5WLGjBkUFxfzzjvvcOONNwIQFRVFVFQUHR0dABw9eoTW1hbvNkxAonsCaMxO5P3s230+p7m5Gf7wB8xWKyvef5/JVVUo//qvEBAAjz4qRKEjR0b27CsoGO7ZJ9PZJBcDnQ5MJjH9reKywdmN0LAG/vMd+IsdnEAEhP00gBunWvn79Ze6kRKJRCL5JnFZikVfx0AUBgejHrpHKisaGAiTJ/sKQ4WF0l9IIvkKefrpp/nXf/3XYfNvuOEG5s6dK0UiyVfC5S5s2Ww2fvrTn/K73/2Om2++2Ss2VVVV0dHRwY9+9KNh4tLzzz/PQw89xD333OOd19jYyObNm7nxxht9lq2vr+e3v/0tU6dOJS0t7dyiVnc3zpISnKqK3X0Ovf/ll8m12UQ0xz/90/AvERTk37PPbP6af02J5G8InQnClovp+Rdg1f/A934Jld3w4yZY0nSpWyiRSCSSbxiXpVj0dTHSYJT0dLj2Wli0SFzEZmVJfyGJREN0dDR6vZ6mJt+Lz6amJuLj4/2uEx8fP67ln3jiCZ9owdOnT5Ofny+jiSTfarQ3U7TC1oQJE6ioqCA0dJjjHi0tLeTl5ZGRkeGdN2nSJN577z2mTZvms2xNTQ0wmMY9Gt4bLo2NMG8eJ9ra+L9AcG/v4EIxMb7Rt9KzTyL56tEFwFX/DEd/AE/+H/jP/4Ytl6XrhEQikUguYy7LEdfXMRAFMRjt6uryTnV1deKN4mL44x9h1SrIzZUXtRLJEEwmE9OnT2fTpk3eeS6Xi02bNjF37ly/68ydO9dneRDpMSMtbzabCQ0N9U4hISEX7wtIJJIL5umnnyYsLIywnBzC2trw1ir94Q/hww+hvh6amuDTT+E//gPuugtycuQ5VSL5urBY4Fe/hl27xY1QiUQikUjGwWUpFn0dA1EYPhj1d0dWIpH45/HHH+dPf/oTL7/8MqWlpTz66KP09vby4IMPAnDffff5+I794Ac/4JNPPuHXv/41ZWVlPPXUU+zfv5/vf//7l+orSCTfOL6umyljYegNl3379ok3/umf4IYbIDFRFneQSC4HZs+Gzz671K2QSCQSyTeMy1IsAjkQlUgud1auXMl//ud/8vOf/5ypU6dy6NAhPvnkE693WG1tLQ0NDd7l582bx+uvv87zzz/PlClTeOedd1i7di2FhYWX6itIJN84vq6bKWNh6A2X4ODgC9qeRCL5CpGeYBKJRCIZJ5etZ9HKlStpaWnh5z//OY2NjUydOnXYQFTrW+IZiP7Lv/wLP/3pT8nKypIDUYnkK+b73//+iILsli1bhs274447uOOOO77iVkkkf9s8/vjj3H///cyYMYNZs2bxm9/8ZtjNlMTERJ5++mlA3ExZvHgxv/71r1m+fDlvvvkm+/fv5/nnn/dus729ndraWs6cOQPAiRMnABGVdKERSBKJRCKRSCSSbx6XrVgEciAqkUgkEslQvoqbKevWrfOKTQB33XUXAE8++SRPPfXU1/PFJBKJRCKRSCSXDYqqqrI8gpvu7m7CwsLo6uqS/kUSyWVGfX09ycnJsn9KJJcppaWl5OfnU1dXR1JS0qVujkQi0eA5h8r+KZFIJJKxctl6FkkkEolEIpFIJBKJRCKRSL5+pFgkkUgkEolEIpFIJBKJRCLxIsUiiUQikUgkEolEIpFIJBKJFykWSSQSiUQikUgkEolEIpFIvEixSCKRSCQSiUQikUgkEolE4kWKRRKJRCKRSCQSiUQikUgkEi9SLJJIJBKJRCKRSCQSiUQikXiRYpFEIpFIJBKJRCKRSCQSicSLFIskEolEIpFIJBKJRCKRSCRepFgkkUgkEolEIpFIJBKJRCLxIsUiiUQikUgkEolEIpFIJBKJFykWSSQSiUQikUgkkmH8/ve/JzU1FYvFwuzZs9m3b9+oy7/99tvk5uZisViYNGkSGzZs+JpaKpFIJJKLjRSLJBKJRCKRSCQSiQ9vvfUWjz/+OE8++SQHDx5kypQpLF26lObmZr/L79q1i1WrVvHQQw9RXFzMihUrWLFiBceOHfuaWy6RSCSSi4EUiyQSiUQikUgkEokP//Vf/8Xf/d3f8eCDD5Kfn8+zzz5LYGAgL774ot/lf/vb33Ldddfx4x//mLy8PP793/+dadOm8cwzz3zNLZdIJBLJxcBwqRtwOaGqKgDd3d2XuCUSiWQonn4p+6dEcnni6ZsNDQ2XuCUSiWQonn7Z1dVFaGiod77ZbMZsNg9b3mazceDAAZ544gnvPJ1Ox9VXX83u3bv9fsbu3bt5/PHHfeYtXbqUtWvXXoRvIJFIJJKvGykWaWhrawMgOTn5ErdEIpGMhOyfEsnlzaxZsy51EyQSyQgUFhb6vH7yySd56qmnhi3X2tqK0+kkLi7OZ35cXBxlZWV+t93Y2Oh3+cbGxgtrtEQikUguCVIs0hAZGQlAbW0tYWFhl7g1EolES0dHB6mpqdTU1BAREXGpmyORSIbQ1tZGeno6R44ckX1UIrnM6OrqorCwkOrqau/1LuA3qkgikUgkEpBikQ86nbBwCgsL8wnRlUgklw8RERGyf0oklzEpKSmyj0oklxmePhkZGTmm/hkdHY1er6epqclnflNTE/Hx8X7XiY+PH9fyEolEIrm8kQbXEolEIpFIJBKJxIvJZGL69Ols2rTJO8/lcrFp0ybmzp3rd525c+f6LA+wcePGEZeXSCQSyeWNjCySSCQSiUQikUgkPjz++OPcf//9zJgxg1mzZvGb3/yG3t5eHnzwQQDuu+8+EhMTefrppwH4wQ9+wOLFi/n1r3/N8uXLefPNN9m/fz/PP//8pfwaEolEIjlPpFikwWw28+STT8r8bYnkMkT2T4nk8kb2UYnk8uV8+ufKlStpaWnh5z//OY2NjUydOpVPPvnEa2JdW1vrtXAAmDdvHq+//jr/8i//wk9/+lOysrJYu3btMFNtiUQikXwzUFRPvXiJRCKRSCQSiUQikUgkEsm3HulZJJFIJBKJRCKRSCQSiUQi8SLFIolEIpFIJBKJRCKRSCQSiRcpFkkkEolEIpFIJBKJRCKRSLx868SiJUuW8MMf/vBSN0MikYwB2V8lkssP2S8lkssX2T8lEolEcrH41olFo/HUU0+hKAqKomAwGIiOjmbRokX85je/wWq1XurmSSQSDU899RRTp0691M2QSCQatOdR7fT5559f6qZJJN96hl7npqam8qMf/Yienp5L3TSJRCKRXIYYLnUDLjcKCgr4/PPPcblctLW1sWXLFn7xi1/w6quvsmXLFkJCQi51EyUSiUQiuWzxnEe1REZGXqLWSCQSLZ7+6XA42LlzJ9/5znfo6+vjueeeu9RNk0gkEsllxrc+smj9+vWEhYWxZs0aAAwGA/Hx8UyYMIFJkybx2GOPsXXrVo4dO8avfvWrS9xaieTbzdD+KpFILj0jnUe1k8lkusStlEi+nYzUP5OSkli5ciWrV69m3bp1l7iVEolEIrkc+VaLRa+//jqrVq1izZo1rF69esTlcnNzWbZsGe+9997X2DqJRKJlrP1VIpF8fch+KZFcvoylfwYEBGCz2b7mlkkkEonkm8C3Viz6/e9/z9///d/z4YcfcsMNN5xz+dzcXGpqar76hkkkkmGMt79KJJKvnpH65dGjRwkODvZOs2bNuoStlEi+nYzlvHngwAFef/11rrzyyq+5dRKJRCL5JvCt9Cx65513aG5uZufOncycOXNM66iqiqIoX3HLJBLJUM6nv0okkq+W0fplTk6OT1qL2Wz+upsnkXyrGa1/esRcp9OJzWZj+fLlPPPMM5eopRKJRCK5nPlWRhYVFRURExPDiy++iKqqY1qntLSUtLS0r7hlEolkKOfTXyUSyVfLaP3SZDKRmZnpnZKTky9RKyWSbyej9c+cnBwOHTpEaWkp/f39rFu3jri4uEvUUolEIpFcznwrxaKMjAy++OILPvjgAx577LFzLl9WVsYnn3zCbbfd9jW0TiKRaBlvf5VIJF89sl9KJJcvo/VPj5ibmpoqjeclEolEMirfyjQ0gOzsbL744guWLFmCwWDgN7/5DQAOh4PGxkZcLhdtbW1s2bKFX/ziF0ydOpUf//jHl7bREsm3lJH6q0QiuXTIfimRXL7I/imRSCSSC+VbKxaBCMXdvHkzS5YsQa/XExISQklJCQkJCej1esLCwsjPz+eJJ57g0Ucflb4LEsklxF9/lUgklxbZLyWSyxfZPyUSiURyISiqNAGRSCQSiUQikUgkEolEIpG4+VZ6FkkkEolEIpFIJBKJRCKRSPwjxSKJRCKRSCQSiUQikUgkEokXKRZJJBKJRCKRSCQSiUQikUi8SLFIIpFIJBKJRCKRSCQSiUTiRYpFEolEIpFIJBKJRCKRSCQSL1IskkgkEolEIpFIJBKJRCKReJFikUQikUgkEolEIpFIJBKJxIsUiyQSiUQikUgkEolEIpFIJF6kWCSRSCQSiUQikUgkEolEIvEixSKJRCKRSCQSiUQikUgkEokXKRZJJBKJRCKRSCQSiUQikUi8SLFIIpFIJBKJRCKRSCQSiUTi5f8HTpoVo0xTZRoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from controlSBML.parallel_coordinates import ParallelCoordinates\n", + "import pandas as pd\n", + "df = pd.read_csv(\"designs.csv\")\n", + "df = df.loc[range(200), :]\n", + "ParallelCoordinates.plotParallelCoordinates(df, num_category=7, value_column=\"score\", columns=[\"kD\", \"kI\", \"kF\", \"kP\"],\n", + " round_digit=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "23151360-eaaf-4c50-b5c1-cea90bfdcae9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHEAAAHDCAYAAACj0oaYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTSRcH4F8ooQsqHVFRUcSCHbFhW8HeC6LYFiuKuhbcteLau2JfRVyxIfaCq2LB3gAL2BAUkGKlSgvz/TEf0UiAoEBAz/s8eUhuJnfm3hBITmbOETDGGAghhBBCCCGEEEJIqaYg7wEQQgghhBBCCCGEkIJREIcQQgghhBBCCCGkDKAgDiGEEEIIIYQQQkgZQEEcQgghhBBCCCGEkDKAgjiEEEIIIYQQQgghZQAFcQghhBBCCCGEEELKAAriEEIIIYQQQgghhJQBFMQhhBBCCCGEEEIIKQMoiEMIIYQQQgghhBBSBlAQhxBCCCHFLiIiAgKBALt27ZL3UKSqWrUqunXrJu9hEEIIIYTki4I4hBBCCJHQo0cPqKurIykpKc82jo6OEAqFeP/+fQmOjPyMFi9ejKNHj8p7GIQQQkiZQEEcQgghhEhwdHTE58+fceTIEan3p6am4tixY7C3t0fFihVLeHTkZ0NBHEIIIUR2FMQhhBBCiIQePXpAS0sLe/fulXr/sWPHkJKSAkdHxxIeGflRaWlpyM7OlvcwyqSUlBR5D4EQQgihIA4hhBBCJKmpqaFPnz64cOEC4uPjc92/d+9eaGlpoUePHvjw4QOmTZuGevXqQVNTE+XKlUPnzp0RHBxcYD9t27ZF27Ztc20fPnw4qlatKrEtOzsba9euRZ06daCqqgoDAwOMGTMGHz9+lGh39+5d2NnZQVdXF2pqajAzM8PIkSNlPvb//vsPDRo0gKqqKiwtLXH48GHxfS9fvoRAIMCaNWtyPe769esQCATYt29fvvvfsGED6tSpA3V1dZQvXx5NmjTJFSyLjo7GqFGjYGxsDBUVFZiZmWHcuHHIyMiQGEv//v1RoUIFqKuro3nz5jh16pTEfi5dugSBQID9+/dj9uzZMDExgbq6OhITEwEAt27dgr29PbS1taGurg5bW1tcu3ZNpvOUlpaG+fPno2bNmlBVVYWRkRH69OmDsLAwcZuVK1eiRYsWqFixItTU1NC4cWMcOnRIYj8CgQApKSnw8vKCQCCAQCDA8OHDJc7FyJEjYWBgABUVFdSpUwc7d+7MNZ5Xr16hR48e0NDQgL6+PqZMmYKzZ89CIBDg0qVLEm19fHzQuHFjqKmpQVdXF0OGDEF0dLREm+HDh0NTUxNhYWHo0qULtLS04OjoiHnz5kFZWRlv377NNYbRo0dDR0cHaWlpMp1DQggh5HsoyXsAhBBCCCl9HB0d4eXlhYMHD8LFxUW8/cOHDzh79iwcHBygpqaGx48f4+jRo+jfvz/MzMwQFxeHrVu3wtbWFiEhITA2Ni6S8YwZMwa7du3CiBEjMGnSJISHh8PDwwOBgYG4du0alJWVER8fj06dOkFPTw9ubm7Q0dFBRESERCAmP8+fP8fAgQMxduxYDBs2DJ6enujfvz/8/Pzw22+/oVq1amjZsiW8vb0xZcoUicd6e3tDS0sLPXv2zHP/27dvx6RJk9CvXz+4uroiLS0NDx48wK1btzB48GAAwJs3b9CsWTN8+vQJo0ePhoWFBaKjo3Ho0CGkpqZCKBQiLi4OLVq0QGpqKiZNmoSKFSvCy8sLPXr0wKFDh9C7d2+JfhcuXAihUIhp06YhPT0dQqEQ/v7+6Ny5Mxo3box58+ZBQUEBnp6eaN++PQICAtCsWbM8j0MkEqFbt264cOECBg0aBFdXVyQlJeHcuXN49OgRqlevDgBYt24devToAUdHR2RkZGD//v3o378/Tp48ia5duwIA/v33X/z+++9o1qwZRo8eDQDix8fFxaF58+YQCARwcXGBnp4ezpw5g1GjRiExMRGTJ08GwGfItG/fHjExMXB1dYWhoSH27t2Lixcv5hp7zu9Q06ZNsWTJEsTFxWHdunW4du0aAgMDoaOjI26blZUFOzs7tGrVCitXroS6ujpsbGzg7u6OAwcOSLwuMjIycOjQIfTt2xeqqqp5njtCCCHkhzFCCCGEkG9kZWUxIyMjZmNjI7F9y5YtDAA7e/YsY4yxtLQ0JhKJJNqEh4czFRUV5u7uLrENAPP09BRvs7W1Zba2trn6HjZsGKtSpYr4dkBAAAPAvL29Jdr5+flJbD9y5AgDwO7cuVPo461SpQoDwHx9fcXbEhISmJGREWvYsKF429atWxkAFhoaKt6WkZHBdHV12bBhw/Lto2fPnqxOnTr5tnFycmIKCgpSjyE7O5sxxtjkyZMZABYQECC+LykpiZmZmbGqVauKn4+LFy8yAKxatWosNTVVYj/m5ubMzs5OvE/GGEtNTWVmZmbst99+y3eMO3fuZADY6tWr8xxjzv6+lpGRwerWrcvat28vsV1DQ0PquRs1ahQzMjJi7969k9g+aNAgpq2tLd7/qlWrGAB29OhRcZvPnz8zCwsLBoBdvHhR3L++vj6rW7cu+/z5s7jtyZMnGQA2d+5c8bZhw4YxAMzNzS3XuGxsbJi1tbXEtsOHD0v0RQghhBQXWk5FCCGEkFwUFRUxaNAg3LhxAxEREeLte/fuhYGBATp06AAAUFFRgYICfzshEonw/v17aGpqolatWrh//36RjMXHxwfa2tr47bff8O7dO/GlcePG0NTUFM+4yJlFcfLkSWRmZha6H2NjY4lZLOXKlYOTkxMCAwMRGxsLABgwYABUVVXh7e0tbnf27Fm8e/cOQ4YMyXf/Ojo6iIqKwp07d6Ten52djaNHj6J79+5o0qRJrvsFAgEA4PTp02jWrBlatWolvk9TUxOjR49GREQEQkJCJB43bNgwqKmpiW8HBQXh+fPnGDx4MN6/fy8+nykpKejQoQOuXLmSb94cX19f6OrqYuLEiXmOEYBEnx8/fkRCQgJat24t0+8FYwy+vr7o3r07GGMSz7udnR0SEhLE+/Hz84OJiQl69OghfryqqiqcnZ0l9nn37l3Ex8dj/PjxErNlunbtCgsLi1zL0QBg3LhxubY5OTnh1q1bEkvHvL29YWpqCltb2wKPjRBCCPkRFMQhhBBCiFQ5iYtzcrZERUUhICAAgwYNgqKiIgAeeFizZg3Mzc2hoqICXV1d6Onp4cGDB0hISCiScTx//hwJCQnQ19eHnp6exCU5OVmct8fW1hZ9+/bFggULoKuri549e8LT0xPp6eky9VOjRg2JIAQA1KxZEwDEgSwdHR10795dIo+Nt7c3TExM0L59+3z3P3PmTGhqaqJZs2YwNzfHhAkTJHLQvH37FomJiahbt26++3n16hVq1aqVa3vt2rXF93/NzMxM4vbz588B8ODOt+fzn3/+QXp6er7PXVhYGGrVqgUlpfxX5Z88eRLNmzeHqqoqKlSoAD09PWzevFmm34u3b9/i06dP2LZtW64xjhgxAgDEz/urV69QvXr1XM9djRo1JG7nnBdp587CwiLXeVNSUkKlSpVytR04cCBUVFTEgbyEhAScPHkSjo6OucZACCGEFDXKiUMIIYQQqRo3bgwLCwvs27cPf/75J/bt2wfGmERVqsWLF2POnDkYOXIkFi5ciAoVKkBBQQGTJ08usAqSQCAAYyzXdpFIJHE7Ozsb+vr6ErNfvqanpyfe36FDh3Dz5k2cOHECZ8+exciRI7Fq1SrcvHkTmpqahT0FUjk5OcHHxwfXr19HvXr1cPz4cYwfP148IykvtWvXxtOnT3Hy5En4+fnB19cXmzZtwty5c7FgwYIiGZs0X8+IASB+XlasWIEGDRpIfcyPnquAgAD06NEDbdq0waZNm2BkZARlZWV4enrmWfVM2hiHDBmCYcOGSW1Tv379HxpjQb6eZfa18uXLo1u3bvD29sbcuXNx6NAhpKenFzgTixBCCCkKFMQhhBBCSJ4cHR0xZ84cPHjwAHv37oW5uTmaNm0qvv/QoUNo164dduzYIfG4T58+QVdXN999ly9fHi9fvsy1/dsZEdWrV8f58+fRsmXLXAEJaZo3b47mzZtj0aJF2Lt3LxwdHbF//378/vvv+T7uxYsXYIxJzKZ49uwZAEhUy7K3t4eenh68vb1hbW2N1NRUDB06tMBxAYCGhgYGDhyIgQMHIiMjA3369MGiRYswa9Ys6OnpoVy5cnj06FG++6hSpQqePn2aa/uTJ0/E9+cnJ3FwuXLl0LFjR5nG/e3jb926hczMTCgrK0tt4+vrC1VVVZw9exYqKiri7Z6enrnaSpu9oqenBy0tLYhEogLHWKVKFYSEhOR67l68eJGrHQA8ffo016ypp0+fFnjevubk5ISePXvizp078Pb2RsOGDVGnTh2ZH08IIYR8L1pORQghhJA85cy6mTt3LoKCgiRm4QA8d863s2l8fHxylWyWpnr16njy5IlEuebg4OBcZa4HDBgAkUiEhQsX5tpHVlYWPn36BIDnXfl2LDkzTWRZUvXmzRscOXJEfDsxMRG7d+9GgwYNYGhoKN6upKQEBwcHHDx4ELt27UK9evVkmhXy/v17idtCoRCWlpZgjCEzMxMKCgro1asXTpw4gbt37+Z6fM6xdenSBbdv38aNGzfE96WkpGDbtm2oWrUqLC0t8x1H48aNUb16daxcuRLJycm57pdWPvtrffv2xbt37+Dh4ZHnGBUVFSEQCCRmVUVERODo0aO5HqOhoSF+DnMoKiqib9++8PX1lRrU+nqMdnZ2iI6OxvHjx8Xb0tLSsH37donHNGnSBPr6+tiyZYvE78OZM2cQGhoqrpgli86dO0NXVxfLli3D5cuXaRYOIYSQEiNg0uYxE0IIIYT8X8uWLXH9+nUAPJ/K17lG5s2bB3d3dwwfPhwtWrTAw4cP4e3tDR0dHZiamuLSpUsA+Ad4MzMzeHp6Yvjw4QCA0NBQ1K1bF1ZWVhg1ahTi4+OxZcsWGBgYIDExUSKh8tixY7F161Z07twZnTp1grKyMp4/fw4fHx+sW7cO/fr1w9q1a7Fp0yb07t0b1atXR1JSErZv346YmBgEBQXlyg3ztapVq0JFRQXx8fEYO3YsDAwMsHPnTjx+/BinT5+GnZ2dRPt79+6Jkw8vW7YMM2bMKPA8Nm7cGIaGhmjZsiUMDAwQGhoKDw8PdOrUSRyAiI6ORpMmTZCYmIjRo0ejdu3aiImJgY+PD65evQodHR3ExcXBysoKaWlpmDRpEipUqAAvLy8EBwfD19dXnJz50qVLaNeuHXx8fNCvXz+JsVy6dAmdO3eGvr4+RowYARMTE0RHR+PixYsoV64cTpw4kedx5MyOuXTpEgYNGoTWrVsjJSUF58+fx/jx49GzZ0/4+/ujQ4cOaN26NQYPHoz4+Hhs3LgRhoaGePDggUSwrWvXrrh8+TLc3d1hbGwMMzMzWFtbIy4uDtbW1nj79i2cnZ1haWmJDx8+4P79+zh//jw+fPgAAEhOTka9evUQFxcHV1dXGBkZwdvbGxkZGQgKCsKlS5fECYdzSoxbW1vDwcFBXGJcX19fosT48OHDcejQIalBrhwTJ06Eh4cHFBUVERkZCSMjowJ/BwghhJAfJo+SWIQQQggpOzZu3MgAsGbNmuW6Ly0tjf3xxx/MyMiIqampsZYtW7IbN27kKh8urcQ4Y4zt2bOHVatWjQmFQtagQQN29uzZXCXGc2zbto01btyYqampMS0tLVavXj02Y8YM9ubNG8YYY/fv32cODg6scuXKTEVFhenr67Nu3bqxu3fvFniMVapUYV27dmVnz55l9evXZyoqKszCwoL5+Pjk+Zg6deowBQUFFhUVVeD+GePlydu0acMqVqzIVFRUWPXq1dn06dNZQkKCRLtXr14xJycnpqenx1RUVFi1atXYhAkTWHp6urhNWFgY69evH9PR0WGqqqqsWbNm7OTJkxL7ySkxntcxBAYGsj59+ojHU6VKFTZgwAB24cKFAo8lNTWV/fXXX8zMzIwpKyszQ0ND1q9fPxYWFiZus2PHDmZubi4+l56enmzevHns27efT548YW3atGFqamoMgES58bi4ODZhwgRmamoq7qdDhw5s27ZtEvt4+fIl69q1K1NTU2N6enrsjz/+YL6+vgwAu3nzpkTbAwcOsIYNGzIVFRVWoUIF5ujomOs5HDZsGNPQ0Mj3HNy+fZsBYJ06dSrwfBFCCCFFhWbiEEIIIYR8h4YNG6JChQq4cOGCvIdCpFi7di2mTJmCqKgomJiYFPn+g4OD0aBBA+zevVvmnEiEEELIj6KcOIQQQgghhXT37l0EBQXByclJ3kMhAD5//ixxOy0tDVu3boW5uXmxBHAAYPv27dDU1ESfPn2KZf+EEEKINFSdihBCCCFERo8ePcK9e/ewatUqGBkZYeDAgfIeEgHQp08fVK5cGQ0aNEBCQgL27NmDJ0+e5FmW/kecOHECISEh2LZtG1xcXKChoVHkfRBCCCF5oSAOIYQQQoiMDh06BHd3d9SqVQv79u2DqqqqvIdEwCtU/fPPP/D29oZIJIKlpSX2799fLEG2iRMnIi4uDl26dMGCBQuKfP+EEEJIfignDiGEEEIIIYQQQkgZQDlxCCGEEEIIIYQQQsoACuIQQgghhBBCCCGElAFlIidOdnY23rx5Ay0tLQgEAnkPhxDyFZFIhBcvXqBGjRpQVFSU93AIId/IzMzEjRs3ULduXSgplYl/+4T8MrKzsxEXF4eGDRvS65OUSSKRCJmZmfIeBiFlnrKyssyfpcrEf4s3b97A1NRU3sMghBBCCCGkyN2+fRtNmzaVuf3GjRuxYsUKxMbGwsrKChs2bECzZs3ybO/j44M5c+YgIiIC5ubmWLZsGbp06SK+nzGGefPmYfv27fj06RNatmyJzZs3w9zcXNzmw4cPmDhxIk6cOAEFBQX07dsX69atg6amprjNwYMHsXjxYjx79gx6enpwcXHB9OnTC3k2SFnAGENsbCw+ffok76EQ8tPQ0dGBoaFhgRNXykQQR0tLCwAQGRmJcuXKyXk0hJCvRUVFoU6dOvT6JKSUCg0NRfPmzXH79m0YGRnJeziEkK/ExMSgWbNmMDAwkPkxBw4cwNSpU7FlyxZYW1tj7dq1sLOzw9OnT6Gvr5+r/fXr1+Hg4IAlS5agW7du2Lt3L3r16oX79++jbt26AIDly5dj/fr18PLygpmZGebMmQM7OzuEhISIK7A5OjoiJiYG586dQ2ZmJkaMGIHRo0dj7969AIAzZ87A0dERGzZsQKdOnRAaGgpnZ2eoqanBxcWlCM4WKU1yAjj6+vpQV1en1RKE/ADGGFJTUxEfHw8ABb5fKxPVqRITE6GtrY2EhAT6kEhIKRMVFQVTU1N6fRJSSoWGhsLS0hKRkZGoVKmSvIdDCPlKzv/Qwrw+ra2t0bRpU3h4eADgS7JMTU0xceJEuLm55Wo/cOBApKSk4OTJk+JtzZs3R4MGDbBlyxYwxmBsbIw//vgD06ZNAwAkJCTAwMAAu3btwqBBg8R/R+7cuYMmTZoAAPz8/NClSxdERUXB2NgYgwcPRmZmJnx8fMT9bNiwAcuXL8fr16/pQ/5PRCQS4dmzZ9DX10fFihXlPRxCfhrv379HfHw8atasme/SKkpsTAghhBBCSBmQkZGBe/fuoWPHjuJtCgoK6NixI27cuCH1MTdu3JBoDwB2dnbi9uHh4YiNjZVoo62tDWtra3GbGzduQEdHRxzAAYCOHTtCQUEBt27dAgCkp6eLZ+3kUFNTQ1RUFF69evUDR01Km5wcOOrq6nIeCSE/l5zXVEF5piiIQwghhBBCiBwlJSUhMTFRfElPT5fa7t27dxCJRLmWXxkYGCA2NlbqY2JjY/Ntn/OzoDbfLtVSUlJChQoVxG3s7Oxw+PBhXLhwAdnZ2Xj27BlWrVoFgC8bIz8fml1FSNGS9TVFQRxCCCGEEELkyNLSEtra2uLLkiVL5D2kQnN2doaLiwu6desGoVCI5s2bY9CgQQD4bCFCCCFFg/6iEkIIIYQQIkchISFISEgQX2bNmiW1na6uLhQVFREXFyexPS4uDoaGhlIfY2homG/7nJ8FtclJuJkjKysLHz58ELcRCARYtmwZkpOT8erVK8TGxoorZlWrVq3Ac0AIIUQ2FMQhhBBCCCFEjrS0tFCuXDnxRUVFRWo7oVCIxo0b48KFC+Jt2dnZuHDhAmxsbKQ+xsbGRqI9AJw7d07c3szMDIaGhhJtEhMTcevWLXEbGxsbfPr0Cffu3RO38ff3R3Z2NqytrSX2raioCBMTEwiFQuzbtw82NjbQ09MrxNkgpGQsXboUAoEAkydPzrddZmYm3N3dUb16daiqqsLKygp+fn4SbapWrQqBQJDrMmHCBHGbMWPGoHr16lBTU4Oenh569uyJJ0+e/PBxHD58GJ06dULFihUhEAgQFBSUZ1vGGDp37gyBQICjR4/mu9+qVati7dq1Pzy+r127dg1KSkpo0KBBgW0PHjyIBg0aQF1dHVWqVMGKFSsk7h8+fLjUc16nTh2JYyjoefkejx8/Rt++fcX7L+g8yfq7JisK4hBCCCGEEFJGTJ06Fdu3b4eXlxdCQ0Mxbtw4pKSkYMSIEQAAJycniZk8rq6u8PPzw6pVq/DkyRPMnz8fd+/eFZf9zvlg8ffff+P48eN4+PAhnJycYGxsjF69egEAateuDXt7ezg7O+P27du4du0aXFxcMGjQIBgbGwPg+Xq2bNmCJ0+eICgoCK6urvDx8SnyD4GEFIU7d+5g69atqF+/foFtZ8+eja1bt2LDhg0ICQnB2LFj0bt3bwQGBkrsLyYmRnw5d+4cAKB///7iNo0bN4anpydCQ0Nx9uxZMMbQqVMniESiHzqWlJQUtGrVCsuWLSuw7dq1a+WWy+jTp09wcnJChw4dCmx75swZODo6YuzYsXj06BE2bdqENWvWiKvyAcC6deskznlkZCQqVKggcc5leV6+R2pqKqpVq4alS5fmOQvy6zHI+rsmM1YGJCQkMAAsISFB3kMhhHwjMjKSXp+ElGIhISEMAIuMjJT3UAgh38j5H1rY1+eGDRtY5cqVmVAoZM2aNWM3b94U32dra8uGDRsm0f7gwYOsZs2aTCgUsjp16rBTp05J3J+dnc3mzJnDDAwMmIqKCuvQoQN7+vSpRJv3798zBwcHpqmpycqVK8dGjBjBkpKSxPe/ffuWNW/enGloaDB1dXXWoUMHiXGRn8fnz59ZSEgI+/z5s7yH8l2SkpKYubk5O3fuHLO1tWWurq75tjcyMmIeHh4S2/r06cMcHR3zfIyrqyurXr06y87OzrNNcHAwA8BevHgh3vbw4UNmb2/PNDQ0mL6+PhsyZAh7+/atTMcVHh7OALDAwECp9wcGBjITExMWExPDALAjR47kuS9bW1sGQOKS49ChQ8zS0pIJhUJWpUoVtnLlSpnGN3DgQDZ79mw2b948ZmVllW9bBwcH1q9fP4lt69evZ5UqVcrznB45coQJBAIWERGR536lPS8fP35ko0aNYrq6ukxLS4u1a9eOBQUFyXRMjDFWpUoVtmbNGqn3FfZ3TdbXllLRhYMIIYQQQgghxc3FxUU8k+Zbly5dyrWtf//++X7zLBAI4O7uDnd39zzbVKhQAXv37s3zfl1d3TzLnJOfH2NAaqp8+lZXBwozuWTChAno2rUrOnbsiL///rvA9unp6VBVVZXYpqamhqtXr0ptn5GRgT179mDq1Kl5znpJSUmBp6cnzMzMYGpqCoDPVGnfvj1+//13rFmzBp8/f8bMmTMxYMAA+Pv7y36AUqSmpmLw4MHYuHFjgTNHAL5Ey8rKCqNHj4azs7N4+7179zBgwADMnz8fAwcOxPXr1zF+/HhUrFgRw4cPz3N/np6eePnyJfbs2SPzOf+2hL2amhqioqLw6tUrVK1aNddjduzYgY4dO6JKlSpS95nX89K/f3+oqanhzJkz0NbWxtatW9GhQwc8e/YMFSpUKHCs+Sns75qsKIhDCCGEEEIIIeS7paYCmpry6Ts5GdDQkK3t/v37cf/+fdy5c0fm/dvZ2WH16tVo06YNqlevjgsXLuDw4cN5LoM6evQoPn36JDWosWnTJsyYMQMpKSmoVasWzp07B6FQCADw8PBAw4YNsXjxYnH7nTt3wtTUFM+ePUPNmjVlHvO3pkyZghYtWqBnz54yta9QoQIUFRWhpaUlEfRZvXo1OnTogDlz5gAAatasiZCQEKxYsSLPIM7z58/h5uaGgIAAKCnJFn6ws7PDlClTMHz4cLRr1w4vXrzAqlWrAAAxMTG5gjhv3rzBmTNn8g00S3terl69itu3byM+Pl6ci2zlypU4evQoDh06hNGjR8s0Xmm+53dNVpQThxBCCCGEEELITy0yMhKurq7w9vbONbMmP+vWrYO5uTksLCwgFArh4uKCESNGQEFB+kfpHTt2oHPnzuJ8UV9zdHREYGAgLl++jJo1a2LAgAFIS0sDAAQHB+PixYvQ1NQUXywsLAAAYWFh8Pb2lrgvICBApvEfP34c/v7+RZKfKjQ0FC1btpTY1rJlSzx//lxqUEskEmHw4MFYsGBBoYJQzs7OcHFxQbdu3SAUCtG8eXMMGjQIAKSedy8vL+jo6IjzeEkj7XkJDg5GcnIyKlasKHFuw8PDERYWhtevX0ts/zrAlp/v/V2TFc3EIaSM2bhxI1asWIHY2FhYWVlhw4YN4hKe0vj4+GDOnDmIiIiAubk5li1bhi5duojvP3z4MLZs2YJ79+7hw4cPCAwMlCljPCGEEEIIIQBf0pScLL++ZXHv3j3Ex8ejUaNG4m0ikQhXrlyBh4cH0tPToaiomOtxenp6OHr0KNLS0vD+/XsYGxvDzc0N1apVy9X21atXOH/+PA4fPix1DNra2tDW1oa5uTmaN2+O8uXL48iRI3BwcEBycjK6d+8uNUGxkZFRrmpwJiYmMh23v78/wsLCoKOjI7G9b9++aN26tdQlmEUlKSkJd+/eRWBgoHgJaHZ2NhhjUFJSwn///Yf27dvnepxAIMCyZcuwePFixMbGQk9PT1xB79vzzhjDzp07MXToUPGspm/l9bwkJyfDyMhI6jnQ0dGBjo6ORLUvWZdXfe/vmqwoiENIGXLgwAFMnToVW7ZsgbW1NdauXQs7Ozs8ffoU+vr6udpfv34dDg4OWLJkCbp164a9e/eiV69euH//PurWrQvgS0b7AQMGSKx5JYQQQgghRBYCgexLmuSlQ4cOePjwocS2ESNGwMLCAjNnzizwQ7WqqipMTEyQmZkJX19fDBgwIFcbT09P6Ovro2vXrgWOhzEGxhjS09MBAI0aNYKvry+qVq2a57IjLS2tAvf7LTc3N/z+++8S2+rVq4c1a9age/fueT5OKBTmml1Tu3ZtXLt2TWLbtWvXULNmTannr1y5crnO+aZNm+Dv749Dhw7BzMws37ErKiqKg1X79u2DjY0N9PT0JNpcvnwZL168wKhRo/LcT17PS6NGjRAbGwslJSWpeXYAoEaNGvmOUZof/V0rCAVxCClDVq9eDWdnZ3EZ0S1btuDUqVPYuXMn3NzccrVft24d7O3tMX36dADAwoULce7cOXh4eGDLli0AgKFDhwIAIiIiSuYgCCGEEEIIKWFaWlriLzFzaGhooGLFihLbnZycYGJigiVLlgAAbt26hejoaDRo0ADR0dGYP38+srOzMWPGDIl9ZWdnw9PTE8OGDcsVhHn58iUOHDiATp06QU9PD1FRUVi6dCnU1NTEM+QnTJiA7du3w8HBATNmzECFChXw4sUL7N+/H//880+eH/w/fPiA169f482bNwCAp0+fAgAMDQ0lLt+qXLlyvkGUqlWr4sqVKxg0aBBUVFSgq6uLP/74A02bNsXChQsxcOBA3LhxAx4eHti0aZPUfSgoKOQ65/r6+lBVVZXY7uHhgSNHjohn27x79w6HDh1C27ZtkZaWBk9PT/j4+ODy5cu5+tixYwesra1z9ZMjv+elY8eOsLGxQa9evbB8+XLUrFkTb968walTp9C7d280adJE6j4zMjIQEhIivh4dHY2goCBoamqiRo0aMv+ufS/KiUNIGZGRkYF79+6hY8eO4m0KCgro2LFjntUgbty4IdEe4InCirR6RGJi0e2LEEIIIYQQOXr9+jViYmLEt9PS0jB79mxYWlqid+/eMDExwdWrV3MtTzp//jxev36NkSNH5tqnqqoqAgIC0KVLF9SoUQMDBw6ElpYWrl+/Lp5Nb2xsjGvXrkEkEqFTp06oV68eJk+eDB0dnTzz7wA8503Dhg3Fs0wGDRqEhg0bir+w/V7u7u6IiIhA9erVxbNfGjVqhIMHD2L//v2oW7cu5s6dC3d393wrU8ni3bt3CAsLk9jm5eWFJk2aoGXLlnj8+DEuXbqUK4VEQkICfH19852Fk9/zIhAIcPr0abRp0wYjRoxAzZo1MWjQILx69QoGBgZ57vPNmzdo2LAhGjZsiJiYGKxcuRINGzbMNeOpuAgYY6xEevoBiYmJ0NbWRkJCAsqVKyfv4RAiF2/evIGJiQmuX78OGxsb8fYZM2bg8uXLuHXrVq7HCIVCeHl5wcHBQbxt06ZNWLBgAeLi4iTaRkREwMzMrMCcOOnp6eJpn/jwAdHW1rCMj0eClxfKOTn92EESQopcaGgoLC0tERkZiUqVKsl7OISQr0RFRcHU1JRen6RMSUtLQ3h4OMzMzIolaSshvypZX1s0E4cQUihLliwRJ2XTNjODZXw8v2PECCCfsn6E/Ao2btyIqlWrQlVVFdbW1rh9+3a+7X18fGBhYQFVVVXUq1cPp0+flrhfIBBIvaxYsaI4D4MQQgghhJRSFMQhpIzQ1dWFoqJirhk0cXFxUte5AnwtbGHay2LWrFlISEhAgqcnEgCE5NyRnQ0MGQJ4eX33vgkpy3ISj8+bNw/379+HlZUV7OzsEJ8T6PxGTuLxUaNGITAwEL169UKvXr3w6NEjcZuYmBiJy86dOyEQCNC3b9+SOixCCCGEEFKKUBCHkDJCKBSicePG4oRfAE/UdeHCBYnlVV+zsbGRaA8A586dy7O9LFRUVFAuNRXlpk1DOQBarq78jhEjAMb4z+3bv3v/hJRVXycet7S0xJYtW6Curo6dO3dKbf914vHatWtj4cKFaNSoETw8PMRtvk1KeOzYMbRr105qWdO8lP5F04QQQgghRFZUnYqQMmTq1KkYNmwYmjRpgmbNmmHt2rVISUkRV6v6Npu+q6srbG1tsWrVKnTt2hX79+/H3bt3sW3bNvE+C8ponwtjwJgxwPv3QIMGgKsrsG4dsGYNoKkJbNgAjB4NZGQAEyYU7wkhpJTISTw+a9Ys8TZZEo9PnTpVYpudnR2OHj0qtX1cXBxOnToFrwJmu32dt2rPHmDGjGQAQPXqgKoqIBQCKir8Z84lv9uFafsjj/3BapuEEEIIIb8ECuIQUoYMHDgQb9++xdy5cxEbG4sGDRrAz89PnD399evXEtnrW7Rogb1792L27Nn4888/YW5ujqNHj0qUtjt+/Lg4CATwjPYAMG/ePMyfPz/3IP79Fzh+HFBW5kunlJX5doGAB3OEQmDVKsDFBUhPB775kErIz+jdu3cQiUS5KhkYGBjgyZMnUh8TGxsrtX1sbKzU9l5eXtDS0kKfPn3yHcuSJUuwYMGCXNszMviltFJQkE/wqDCPzac4CCGEEEJIiaAgDiFljIuLC1xcXKTed+nSpVzb+vfvj/79++e5v+HDh8teFjAqCpg0iV+fPx+oX59vyyEQACtW8E89ixcDf/zBPzW6ucm2f0JInnbu3AlHR8cCK4HMnDkL799PRc6qrCFDnmLPnma4eROoWJHHVnMCOhkZ+d8uzraZmZLjzs4GPn/ml9JKUbF0B5qUlSnQRAghhPzsKIhDCJENY8CoUUBCAtCsGTBjhvR2AgHw99/8U8W8ecCsWfxT25w5/D5CfkLFnXg8ICAAT58+xYEDB/IdR2YmMG6cCry8VAAAK1cCXbpoYs8ewMQEKE0VjBnj4y3K4FBRB6GysiTHLBIBqan8UlopKZWO5XF5PVZZmf4VEEIIIT+CgjiEENls2wb89x9PquHlxT8p5EUgAObO5e/YZ83iwZz0dB7coXfv5Cf0deLxXr16AfiSeDyvmXM5iccnT54s3pZX4vEdO3agcePGsLKyynMMnz8DAwYAJ0/yGSM7dgDDhgGhoT90aMVGIPjyAV9TU96jkS47W3qgqTTMZsq5LRJJjjkri19SUuRzzmShrCz/WUv53VZSon9VhBBCSi8K4hBCCvbyJV8aBfBlUhYWsj3OzY2/I546lT8uPZ0vt6J3x+QnVByJxwEgMTERPj4+WLVqVZ59f/oEdO8OXL3K46wHD/Lb5Mfk5OlRUQG0tOQ9GulEIh5oKg2BJWn3pafnrpCWmZl7OV1pU1LBo6QkeR8pIYSQsoaCOISQ/GVn87LhKSlAmza8GlVhTJnC36m6uPCExxkZPAEyBXLIT6Y4Eo8DwP79+8EYg4ODg9R+Y2IAe3vgwQNAWxs4cQJo3br4jpOULoqK/FJAqiS5EolKV2BJWqDpWzn3E0IIIaWNgLFvvx8pfRITE6GtrY2EhASUK1dO3sMh5Neydi0PxGho8E+J1apJ3B0VFQVTU9OCX5/bt/PS5IzxEuSbN1MGTkJ+UFgY0KkTnyxnaAj4+QHfrrgKDQ2FpaUlIiMjUak0JcUhpJRgjAea5JF/KSwsCi9fmtLrk5QpaWlpCA8Ph5mZWYHJ9kuzpUuXYtasWXB1dcXatWvzbJeZmYklS5bAy8sL0dHRqFWrFpYtWwZ7e3txG5FIhPnz52PPnj2IjY2FsbExhg8fjtmzZ0PwA19cxsTE4I8//sDdu3fx4sULTJo0Kd+x7t+/Hw4ODujZsyeOHj2aZ7v58+fj6NGjCAoK+u6xfSs9PR3W1tYIDg5GYGAgGjRokGfbsLAwTJs2DVevXkV6ejrs7e2xYcMGiaqdz549w/Tp03Ht2jVkZGSgfv36WLhwIdq1a5drf+/fv4eVlRWio6Px8eNH6Ojo/NCxLFq0CKdOnUJQUBCEQiE+ffqUZ9ui7FvW1xbNxCGE5O3pU57TBuAZUr8J4BSKszOfkTNyJM+vk5EB/PMP/wqZEFJoQUF8Bk5cHH9pnjv3Yy9RQn5VAgHPg6OkxL+vKEmPHwPfTL4jhJSAO3fuYOvWrahfv36BbWfPno09e/Zg+/btsLCwwNmzZ9G7d29cv34dDRs2BAAsW7YMmzdvhpeXF+rUqYO7d+9ixIgR0NbWxqScyq7fIT09HXp6epg9ezbWrFmTb9uIiAhMmzYNreU0HXfGjBkwNjZGcHBwvu1SUlLQqVMnWFlZwd/fHwAwZ84cdO/eHTdv3hTPWu7WrRvMzc3h7+8PNTU1rF27Ft26dUNYWFiuIhCjRo1C/fr1ER0dXSTHkpGRgf79+8PGxgY7duzIt21R9y0L+hqcECJdVhbPipqWBvz2G59F86OGDQP+/ZcHbnbtApyccpd/IYQU6PJlwNaWB3CsrIBr1yiAQ0hZpK0t7xEQ8utJTk6Go6Mjtm/fjvLlyxfY/t9//8Wff/6JLl26oFq1ahg3bhy6dOkikavu+vXr6NmzJ7p27YqqVauiX79+6NSpE27fvi1uk56ejmnTpsHExAQaGhqwtrbGpUuX8u27atWqWLduHZycnKCdzx8MkUgER0dHLFiwANUKeEOwa9cuLFiwAMHBwRAIBBAIBNi1axcAvvS7Z8+e0NTURLly5TBgwIBclTSlOXPmDP777z+sXLmywLbXrl1DREQEdu3ahXr16qFevXrw8vLC3bt3xUGdd+/e4fnz53Bzc0P9+vVhbm6OpUuXIjU1FY8ePZLY3+bNm/Hp0ydMmzZNan/Hjh1Do0aNoKqqimrVqmHBggXIKuDzx4IFCzBlyhTUq1cv33YF9V1cKIhDCJFu5Urg1i2gXDle5qaoctgMHgzs38+/8ty7l98u7RkuCSlFjh0D7OyAxESepurSJb6UihBCCJEXxoAUkXwuhU0OMmHCBHTt2hUdO3aUqX16enqupS1qamq4evWq+HaLFi1w4cIFPHv2DAAQHByMq1evonPnzuI2Li4uuHHjBvbv348HDx6gf//+sLe3x/Pnzwt3AFK4u7tDX18fo0aNKrDtwIED8ccff6BOnTqIiYlBTEwMBg4ciOzsbPTs2RMfPnzA5cuXce7cObx8+RIDBw7Md39xcXFwdnbGv//+C3V19QL7T09Ph0AggIqKinibqqoqFBQUxOe0YsWKqFWrFnbv3o2UlBRkZWVh69at0NfXR+PGjcWPCwkJgbu7O3bv3i2RdzBHQEAAnJyc4OrqipCQEGzduhW7du3CokWLChxnQQrquzjRcipCSG4PH/IS4QCwfj1galq0++/Xj9eY7d8f8PHhS6sOHODlOgghefL0BH7/necb79GDx0PV1OQ9KkIIIb+61GxAM0g+fSc3ADRkXJ2/f/9+3L9/H3fu3JF5/3Z2dli9ejXatGmD6tWr48KFCzh8+DBEIpG4jZubGxITE2FhYQFFRUWIRCIsWrQIjo6OAPgMF09PT7x+/RrGxsYAgGnTpsHPzw+enp5YvHixzOP51tWrV7Fjxw6Z89uoqalBU1MTSkpKEsuSzp07h4cPHyI8PBym/3/vv3v3btSpUwd37txB06ZNc+2LMYbhw4dj7NixaNKkCSIiIgrsv3nz5tDQ0MDMmTOxePFiMMbg5uYGkUiEmJgYAIBAIMD58+fRq1cvaGlpQUFBAfr6+vDz8xPPnkpPT4eDgwNWrFiBypUr4+XLl7n6WrBgAdzc3DBs2DAAQLVq1bBw4ULMmDED8+bNk+l8SSNL38WJZuIQQiRlZPBlTpmZvEaxk1Px9NOzJ59SoKLCf/bpw5duEUKkWrGCp5TKKRjn60sBHEIIIURWkZGRcHV1hbe3d6ESMq9btw7m5uawsLCAUCiEi4sLRowYITH74uDBg/D29sbevXtx//59eHl5YeXKlfDy8gIAPHz4ECKRCDVr1oSmpqb4cvnyZYSFhQGAxPaxY8fKNLakpCQMHToU27dvh66ubiHORm6hoaEwNTUVB3AAwNLSEjo6OggNDZX6mA0bNiApKQmzcnJoykBPTw8+Pj44ceIENDU1oa2tjU+fPqFRo0bic8oYw4QJE6Cvr4+AgADcvn0bvXr1Qvfu3cWBnlmzZqF27doYMmRInn0FBwfD3d1d4tw6OzsjJiYGqampGDt2rMR9spKl7+JEM3EIIZIWLeIZUytU4AmIi7MUeOfOwMmTfErB6dP859GjgAxTMQn5VTAGzJjBVzgCwPTpwLJlxfvSJIQQQgpDXYHPiJFX37K4d+8e4uPj0ahRI/E2kUiEK1euwMPDA+np6VCUUnBDT08PR48eRVpaGt6/fw9jY2O4ublJ5J6ZPn063NzcMGjQIABAvXr18OrVKyxZsgTDhg1DcnIyFBUVce/evVx95AQPvp5JI2tF5rCwMERERKB79+7ibdnZ2QAAJSUlPH36FNWrV5dpX9/D398fN27ckFgaBQBNmjSBo6OjOIj1rU6dOiEsLAzv3r2DkpISdHR0YGhoKD6n/v7+OHnyJD5+/Cg+F5s2bcK5c+fg5eUFNzc3+Pv74+HDhzh06BAAHvgBAF1dXfz1119YsGABkpOTsWDBAvTp0yfXGFRVVeHu7v5d+Wxk6bs4URCHEPLF3bs8iAMAmzaVTKKNjh2BM2eArl15eZ2uXYETJ4BCRMMJ+VllZfHCbv/PN4jly3kQhxBCCClNBALZlzTJS4cOHfDw4UOJbSNGjICFhQVmzpwpNYDzNVVVVZiYmCAzMxO+vr4YMGCA+L7U1NRceVEUFRXFAZWGDRtCJBIhPj4+z+pRNWrUKPQxWVhY5Dqm2bNnIykpCevWrZOYVfM1oVAosRwMAGrXro3IyEhERkaKHxcSEoJPnz7B0tJS6n7Wr1+Pv//+W3z7zZs3sLOzw4EDB2BtbV3g+HNmD/n7+yM+Ph49evQAwM8ngFznVEFBQXxOfX198fnzZ/F9d+7cwciRIxEQECAOXDVq1AhPnz7N89zq6+tDX1+/wHF+S5a+ixMFcQghXFoarx4lEgEDBgAFJDErUra2wNmzfGbOpUu8bvLp0zypMiG/qM+fgUGDgOPHeUG37dv5MipCCCGEFJ6Wlhbq1q0rsU1DQwMVK1aU2O7k5AQTExMsWbIEAHDr1i1ER0ejQYMGiI6Oxvz585GdnY0ZM2aIH9O9e3csWrQIlStXRp06dRAYGIjVq1dj5MiRAICaNWvC0dERTk5OWLVqFRo2bIi3b9/iwoULqF+/Prp27ZrnuHNm6CQnJ+Pt27cICgqCUCiEpaUlVFVVcx2Tjo4OAOTa/rWqVasiPDwcQUFBqFSpErS0tNCxY0fUq1cPjo6OWLt2LbKysjB+/HjY2tqiSZMmUvdTuXJlids5s4qqV6+OSpUqAQCio6PRoUMH7N69G82aNQMAeHp6onbt2tDT08ONGzfg6uqKKVOmoFatWgAAGxsblC9fHsOGDcPcuXOhpqaG7du3Izw8XHyuvg2WvHv3DgAPRuWcg7lz56Jbt26oXLky+vXrBwUFBQQHB+PRo0cSwadvvX79Gh8+fMDr168hEonEz0GNGjWgqakpU9/FiXLiEEK4uXOBkBDAwADYuLHk+2/ZEjh/HtDR4fWSO3UCPn0q+XEQUgokJPBY5vHjPG3U4cMUwCGEEEJKwuvXr8V5VwAgLS0Ns2fPhqWlJXr37g0TExNcvXpV4sP6hg0b0K9fP4wfPx61a9fGtGnTMGbMGCxcuFDcxtPTE05OTvjjjz9Qq1Yt9OrVC3fu3MkVCPlWw4YN0bBhQ9y7dw979+5Fw4YN0aVLlx86xr59+8Le3h7t2rWDnp4e9u3bB4FAgGPHjqF8+fJo06YNOnbsiGrVquHAgQM/1FdmZiaePn0qnl0DAE+fPkWvXr1Qu3ZtuLu746+//pIoT66rqws/Pz8kJyejffv2aNKkCa5evYpjx47ByspK5r7t7Oxw8uRJ/Pfff2jatCmaN2+ONWvWoEqVKvk+bu7cuWjYsCHmzZuH5ORk8XNw9+7dwp+AYiBgrLBF2UpeYmIitLW1kZCQIPP6QEJIIVy/DrRqxZNvHDvGc9PIKCoqCqampkX3+rx/H/jtN+DDB6BRI+C//4CKFX98v4SUEbGxPIATHMwno504wUuJf6/Q0FBYWloiMjJS/K0YIaR0yPkfSq9PUpakpaUhPDwcZmZmhUoQTAjJn6yvLZqJQ8ivLiWFL6NijP8sRACnWDRqBFy8COjp8YBO+/ZAfLx8x0RICQkL45PSgoP5pLjLl38sgEMIIYQQQn4uFMQh5Ffn5ga8eAGYmABr18p7NFz9+jw3jqEh8OAB0K4dn55AyE8sOJgHcF6+BKpV46sKGzSQ96gIIYQQQkhpQkEcQn5l/v6Ahwe/vnMnz0dTWlha8mkIJiY8V4+tLRAdLe9REVIsAgL4r3hcHI9hXr0KlEBxA0IIIYQQUsZQEIeQX1Vi4pdMqWPG8ETCpU3NmjyQU7ky8OwZ/5T7+rW8R0VIkTpxgr/8EhKA1q35r7yRkbxHRQghhBBCSiMK4hDyq/rjDx4QMTMDVqyQ92jyVr06cOUKX18SFsYThLx8Ke9REVIkdu0CevcG0tKA7t2Bs2dL14Q4QgghhBBSulAQh5Bf0enTwD//AAIB4OkJaGnJe0T5q1KFT0+oWRN49YrPyHn+XN6jIuSHrFzJJ8OJRDyn+OHDgJqavEdFCCGEEEJKMwriEPKr+fAB+P13ft3VlQdEyoJKlXiyY0tLICqKz8gJDZX3qAgpNMaAmTOB6dP57T/+4CmplJTkOy5CCCGEEFL6URCHkF/NpElATAxQqxaweLG8R1M4Rka8/Hi9erxala0t8PChvEdFiMyysngMdflyfnvZMj4jR4H+GxNCCCGEEBnQ20ZCfiWHDwPe3vwTo5dX2Vy7oa/PAzkNGwJv3/Ly44GB8h4VIQX6/Bno14/PulFQAHbsAGbMkPeoCCGEEEJIWUJBHEJ+FfHxwNix/PrMmYC1tXzH8yMqVgQuXACaNQPevwfatwdu35b3qAjJU0ICYG8PHDsGqKgAvr7AyJHyHhUhhBBCCClrKIhDyK+AMWDcOD5zpV49YN48eY/ox5UvD5w7B7RoAXz6BHTsCFy/Lu9REZJLXBzQti0vslauHK9A1auXvEdFCCGE/NqWLl0KgUCAyZMn59suMzMT7u7uqF69OlRVVWFlZQU/Pz+JNiKRCHPmzIGZmRnU1NRQvXp1LFy4EIwxcRuBQCD1suIHq8ReuXIF3bt3h7GxMQQCAY4ePZpv+7Fjx0IgEGDt2rX5tmvbtm2B56awXrx4AS0tLejIUIrzwoULaNGiBbS0tGBoaIiZM2ciKytLos3BgwfRoEEDqKuro0qVKrnOZUxMDAYPHoyaNWtCQUGhSI9n0qRJaNy4MVRUVNCgQYN82xbmuGVBQRxCfgX79vGlVEpKwO7dfCrAzyDnE7GtLZCUBHTqxD8pE1JKvHwJtGwJBAXxlYCXLpWdXOKEEELIz+rOnTvYunUr6tevX2Db2bNnY+vWrdiwYQNCQkIwduxY9O7dG4FfLedftmwZNm/eDA8PD4SGhmLZsmVYvnw5NmzYIG4TExMjcdm5cycEAgH69u37Q8eSkpICKysrbNy4scC2R44cwc2bN2FsbPxDfX6PzMxMODg4oHXr1gW2DQ4ORpcuXWBvb4/AwEAcOHAAx48fh5ubm7jNmTNn4OjoiLFjx+LRo0fYtGkT1qxZAw8PD3Gb9PR06OnpYfbs2bCysiryYxo5ciQGDhyYb5vCHLfMWBmQkJDAALCEhAR5D4WQsic6mjEdHcYAxtzdi3z3kZGR8n99pqQw1rEjP0Y1NcbOn5ffWAj5v+BgxgwN+a+lmRljz5/LZxwhISEMAIuMjJTPAAghecr5H0qvT1KWfP78mYWEhLDPnz/LeyjfJSkpiZmbm7Nz584xW1tb5urqmm97IyMj5uHhIbGtT58+zNHRUXy7a9eubOTIkfm2+VbPnj1Z+/btJba9fv2a9e/fn2lra7Py5cuzHj16sPDwcNkOjDEGgB05ckTqfVFRUczExIQ9evSIValSha1ZsybP/QwbNowBkLjkjOPSpUusadOmTCgUMkNDQzZz5kyWmZlZ4NhmzJjBhgwZwjw9PZm2tna+bWfNmsWaNGkise348eNMVVWVJSYmMsYYc3BwYP369ZNos379elapUiWWnZ2da5/5Pdfbt29nFhYWTEVFhdWqVYtt3LixwOPJMW/ePGZlZZXn/YU5bllfWzQTh5CfGWO8FM6nT0DjxsBX0eufiro6cOIE0Lkzzx7brRvwzTRXQkrS1atAmza8iFq9esC1a0CNGvIeFSGEEFI8GBjSkSKXCwMreIBfmTBhArp27YqOHTvK1D49PR2qqqoS29TU1HD16lXx7RYtWuDChQt49uwZAD6T5OrVq+jcubPUfcbFxeHUqVMYNWqUeFtmZibs7OygpaWFgIAAXLt2DZqamrC3t0dGRkahjvFb2dnZGDp0KKZPn446deoU2H7dunWwsbGBs7OzeOaQqakpoqOj0aVLFzRt2hTBwcHYvHkzduzYgb///jvf/fn7+8PHx0em2UJA3uc8LS0N9+7dy7dNVFQUXr16JVM/AODt7Y25c+di0aJFCA0NxeLFizFnzhx4eXnJvI+8FPa4ZaVUpHsjhJQuO3cCZ87w5VNeXoCysrxHVHxUVYEjR4CBA3n22J49gUOHgO7d5T0y8os5eRLo3x9IS+NLqU6c4CmcCCGEkJ9VBlIxCZpy6Xs9kqECDZna7t+/H/fv38edO3dk3r+dnR1Wr16NNm3aoHr16rhw4QIOHz4MkUgkbuPm5obExERYWFhAUVERIpEIixYtgqOjo9R9enl5QUtLC3369BFvO3DgALKzs/HPP/9AIBAAADw9PaGjo4NLly6hU6dOMo/5W8uWLYOSkhImTZokU3ttbW0IhUKoq6vD0NBQvH3Tpk0wNTWFh4cHBAIBLCws8ObNG8ycORNz586FgkLuOSLv37/H8OHDsWfPHpQrV06m/u3s7LB27Vrs27cPAwYMQGxsLNzd3QHwZWk5baZMmYLhw4ejXbt2ePHiBVatWiVuU7VqVZn6mjdvHlatWiV+LszMzBASEoKtW7di2LBhMu1Dmu85blnRTBxCflavXgFTpvDrCxcCMkTdyzwVFcDHh9dxzsgA+vThZYAIKSG7d/OkxWlpQNeuwH//UQCHEEIIKQ0iIyPh6uoKb2/vXDM48rNu3TqYm5vDwsICQqEQLi4uGDFihETA4uDBg/D29sbevXtx//59eHl5YeXKlXnO5ti5cyccHR0lxhEcHCxOgKupqQlNTU1UqFABaWlpCAsLQ0BAgHi7pqYmvL29ZRr/vXv3sG7dOuzatUscHPpeoaGhsLGxkdhPy5YtkZycjKioKKmPcXZ2xuDBg9GmTRuZ++nUqRNWrFiBsWPHQkVFBTVr1kSXLl0AQHzenZ2d4eLigm7dukEoFKJ58+YYNGiQRJuCpKSkICwsDKNGjZI4t3///TfCwsIAAJ07dxZvl2UW048ct6xoJg4hP6PsbF6/OCmJV2+aOlXeIyo5yso8kbNQCOzdy2fm/Psv4OAg75GRn9zq1cAff/DrTk7AP//83JPfCCGEkBxCqGM9kuXWtyzu3buH+Ph4NGrUSLxNJBLhypUr8PDwQHp6OhQVFXM9Tk9PD0ePHkVaWhrev38PY2NjuLm5oVq1auI206dPh5ubmziIUK9ePbx69QpLlizJNZsjICAAT58+xYEDByS2Jycno3HjxlKDM3p6ehAKhQgKChJvMzAwkOm4AwICEB8fj8qVK0sc9x9//IG1a9ciIiJCpv18L39/fxw/fhwrV64EADDGkJ2dDSUlJWzbtg0jR46U+ripU6diypQpiImJQfny5REREYFZs2aJz7tAIMCyZcuwePFixMbGQk9PDxcuXAAAiecmP8nJ/Hd2+/btsLa2lrgv53fhn3/+wefPnwEAyoV4Y/e9xy0LCuIQ8jPatAnw9+e5Yry8ACn/kH5qOVW4lJX58Q8Zwmfm/MCUSELywhjw55/A0qX89tSpwIoVgIxfAhFCCCFlngACmZc0yUuHDh3w8OFDiW0jRoyAhYUFZs6cKTWA8zVVVVWYmJggMzMTvr6+GDBggPi+1NTUXLM/FBUVkZ2dnWs/O3bsQOPGjXNVS2rUqBEOHDgAfX39PJff1PiOBHtDhw7Nlf/Hzs4OQ4cOxYgRI/J8nFAolFgyBgC1a9eGr68vGGPi2TjXrl2DlpYWKlWqJHU/N27ckNjPsWPHsGzZMly/fh0mJib5jl0gEIgrae3btw+mpqYSQTiAn+ec/ezbtw82NjbQ09PLd785DAwMYGxsjJcvX+a59K2gMeblR467IBTEIeRn8/w5MHMmv75s2a+bTVVRkecEEgqB7duBESOAzEye6JmQIpKVBYwdC+zYwW8vXQrMmAH84GxlQgghhBQxLS0t1K1bV2KbhoYGKlasKLHdyckJJiYmWLJkCQDg1q1biI6ORoMGDRAdHY358+cjOzsbM2bMED+me/fuWLRoESpXrow6deogMDAQq1evzjXbIjExET4+PuLcLV9zdHTEihUr0LNnT7i7u6NSpUp49eoVDh8+jBkzZuQZJElOTsaLFy/Et8PDwxEUFIQKFSqgcuXKqFixIipWrCjxGGVlZRgaGqJWrVp5nq+qVavi1q1biIiIEC/tGj9+PNauXYuJEyfCxcUFT58+xbx58zB16tQ8lzDVrl1b4vbdu3ehoKAgcc6PHDmCWbNm4cmTJ+JtK1asgL29PRQUFHD48GEsXboUBw8eFAfb3r17h0OHDqFt27ZIS0uDp6cnfHx8cPnyZYn+cmYvJScn4+3btwgKCoJQKISlpSUAYMGCBZg0aRK0tbVhb2+P9PR03L17Fx8/fsTUfFYzvHjxAsnJyYiNjcXnz5/F/VhaWkIoFMp03N9N5tpZckQlxgmRUVYWYy1a8JrG7dszJhIVe5elosR4fkQixiZM4OcEYKwQJQMJyc/nz4z16sV/rRQUGPvnH3mPSDoqMU5I6UUlxklZVNZLjH9NWtlpW1tbNmzYMPHtS5cusdq1azMVFRVWsWJFNnToUBYdHS3xmMTERObq6soqV67MVFVVWbVq1dhff/3F0tPTJdpt3bqVqampsU+fPkkdT0xMDHNycmK6urpMRUWFVatWjTk7O+f7PvvixYu5yoEDkDiGbxVUYpwxxp4+fcqaN2/O1NTUiqTEeA5ppbY9PT3Zt6GJdu3aMW1tbaaqqsqsra3Z6dOnJe5/+/Yta968OdPQ0GDq6uqsQ4cO7ObNm7n6k3ZuqlSpItHG29ubNWjQgAmFQla+fHnWpk0bdvjw4XyPw9bWVuq+8yoJX5QlxgX/P7BSLTExEdra2khISCjyzM6E/FRWrODTALS0gIcPgSpVir3LqKgomJqalu7XJ2PAtGk8aQkArFkDTJ4s1yGRsi0xkRdAu3SJ59Petw/o3Vveo5IuNDQUlpaWiIyMzPNbPEKIfOT8D6XXJylL0tLSEB4eDjMzs0IlCCaE5E/W1xYtpyLkZ/H4MTB7Nr++Zk2JBHDKDIEAWLmSf9pesoRX7UpP/7LsjJBCiIsDOncGAgN5vPT4caBtW3mPihBCCCGE/Aoo7SIhP4PMTJ60NyMD6NKFV6YikgQCYNEiYP58ftvNjZdeJ6QQwsOBVq14AEdPj8/EoQAOIYQQQggpKRTEIeRnsHQpcO8eUL48T+JLWVWlEwiAefOAxYv57blz+eyl0r+qlJQCDx8CLVsCL14AVasC164B3xRIIIQQQgghpFhREIeQsi4wEHB359c9PID/l+Ej+Zg1iy+vAvjsnBkzKJBD8nXtGtCmDRATA9Sty2+bm8t7VIQQQggh5FdDQRxCyrL0dMDJidc57tMHcHCQ94jKjj/+ANav59dXruSJjimQQ6Q4dQr47Tfg0yegRQvgyhWKlRJCCCGEEPmgIA4hZdmCBcCjRzw5x+bNtIyqsCZOBLZu5dfXrwfGjQOys+U7JlKq/Psvr0L1+TNPN3XuHF+1SAghhBBCiDxQEIeQsurmTWDZMn59yxZAX1++4ymrRo8Gdu7kAbCtW4HffwdEInmPipQCa9bwiW4iETBkCHD0KKCuLu9REUIIIYSQXxkFcQgpi1JTeTWq7GzA0ZEvpSLfb8QIPuVCQQHw9ASGD+dL1MgviTHgzz+BqVP57SlTAC8vQFlZvuMihPyE4uPlPQJCCCFlDAVxCCmL/voLePaMJ+bYsEFuwxCJ+AdcAPD1LeMrkRwdgf37ASUlYM8efjszU96jIiVMJALGjAGWLOG3Fy8GVq3i8T1CCClSL18CHTrIexSEEELKGHpbSkhZc/kysG4dv/7PP3JN0DFvHnDoEL8+ciRQvz5w8GAZDub0788PSFmZH8jAgUBGhrxHRUpIWhowYACwfTsP2mzbxguZUaopQkiRS0kBevXiGdMJIYSQQqAgDiFlSVISX/rDGM/d0rmz3IZy/Divzp2jXDng8WMe96hfH/DxKaPBnJ49efITFRXgyBG+VC0tTd6jIsUsMZEnLj58GBAK+e+vs7O8R0UI+Skxxr/5ePgQqFhR3qMh5Je1dOlSCAQCTJ48Od92mZmZcHd3R/Xq1aGqqgorKyv4+flJtElKSsLkyZNRpUoVqKmpoUWLFrhz545Em8OHD6NTp06oWLEiBAIBgoKCiuQ4Hj9+jL59+6Jq1aoQCARYu3Ztvu1lPe7hw4ejV69eRTLGHO/fv0elSpUgEAjwqYAg9v379/Hbb79BR0cHFStWxOjRo5GcnCzR5sKFC2jRogW0tLRgaGiImTNnIiuPlAgvXryAlpYWdHR0iuRYJk2ahMaNG0NFRQUNGjTIt21R901BHELKkunTgfBwoHJlvsZDTl684AlfAR5TAvh70XnzvgRzBgwArKz4xJYyF8zp0gU4cQJQU+P1pXv25HmIyE8pPh5o1w64eBHQ1ATOnKE0U4SQYrR8OZ/tqaTEp/wRQkrcnTt3sHXrVtSvX7/AtrNnz8bWrVuxYcMGhISEYOzYsejduzcCAwPFbX7//XecO3cO//77Lx4+fIhOnTqhY8eOiI6OFrdJSUlBq1atsCynMEkRSU1NRbVq1bB06VIYGhrm27Ywx10cRo0aJVPfb968QceOHVGjRg3cunULfn5+ePz4MYYPHy5uExwcjC5dusDe3h6BgYE4cOAAjh8/Djc3t1z7y8zMhIODA1q3bl2Uh4ORI0di4MCB+bYplr5ZGZCQkMAAsISEBHkPhRD58fNjjH9/x9iFC3IbRkoKY/Xr82HY2DD28mWkxOvzwwfG5s5lrFy5L8OtV4+xQ4cYE4nkNuzvc/EiYxoa/CDatWMsOVneIyJFLDycMXNz/hTr6TF29668R1T0QkJCGAAWGRkp76EQQs6cYUwg4H90Nm9mkZGR9PokZc7nz59ZSEgI+/z5s7yH8l2SkpKYubk5O3fuHLO1tWWurq75tjcyMmIeHh4S2/r06cMcHR0ZY4ylpqYyRUVFdvLkSYk2jRo1Yn/99Veu/YWHhzMALDAwMNd9Hz9+ZKNGjWK6urpMS0uLtWvXjgUFBcl8bFWqVGFr1qyRel9hjnvevHkMgMTl4sWLjDHGHjx4wNq1a8dUVVVZhQoVmLOzM0tKSipwbJs2bWK2trbswoULDAD7+PFjnm23bt3K9PX1meirDw8PHjxgANjz588ZY4zNmjWLNWnSROJxx48fZ6qqqiwxMVFi+4wZM9iQIUOYp6cn09bWztXf9u3bmYWFBVNRUWG1atViGzduLPB4csybN49ZWVnleX9BfX9N1tcWzcQhpCz49AkYNYpfd3EB2reXyzAYA8aOBR484BXNfXxyV+wpXx5YsACIiADmzAG0tPgsnX79gIYN+QqlMjMzp21bwM+PH8TFi4C9PV93Q34Kjx4BLVsCz58DVaoAV68CjRvLe1SEkJ/WixeAg8OXJdFjxsh7RIQUHcYAUYp8LowVaqgTJkxA165d0bFjR5nap6enQ1VVVWKbmpoarl69CgDIysqCSCTKt42s+vfvj/j4eJw5cwb37t1Do0aN0KFDB3z48KFQ+5GmMMc9bdo0DBgwAPb29oiJiUFMTAxatGiBlJQU2NnZoXz58rhz5w58fHxw/vx5uLi45Lu/kJAQuLu7Y/fu3VCQoVpEeno6hEKhRFs1NTUAEJ/TvJ6XtLQ03Lt3T7zN398fPj4+2Lhxo9S+vL29MXfuXCxatAihoaFYvHgx5syZAy8vrwLHWZCC+v5eSkW6N0JI8Zg8GYiOBmrUAJYuldswtmzhlbgVFYEDBwATEyAqSnrb8uUBd3c+9DVreC7mBw/4MpUGDfjSq549y0DS2FatgHPnADs7/infzo6vtymiNa1EPq5fB7p1Az5+BOrUAc6e5b/PhBBSLJKTvyQybt4c8PAoA/8ACSmE7FQgSFM+fTdIBhQ1ZGq6f/9+3L9/P1e+mvzY2dlh9erVaNOmDapXr44LFy7g8OHDEIlEAAAtLS3Y2Nhg4cKFqF27NgwMDLBv3z7cuHEDNWrUkLmfq1ev4vbt24iPj4eKigoAYOXKlTh69CgOHTqE0aNHy7yvbxX2uDU1NaGmpob09HSJJVpeXl5IS0vD7t27oaHBz7mHhwe6d++OZcuWwcDAINe+0tPT4eDggBUrVqBy5cp4+fJlgf23b98eU6dOxYoVK+Dq6oqUlBTxMqmYmBgA/HlZu3Yt9u3bhwEDBiA2Nhbu7u4Sbd6/f4/hw4djz549KFeunNS+5s2bh1WrVqHP/9fSm5mZISQkBFu3bsWwYcNkOl/SyNL396KZOISUdsePA15evFyOlxegIds/qaJ26xbg6sqvL1nCJ6nIokIFYOFCPjPnr794zpGgIKB3b6BRI+DYsUJ/gVLyrK2BCxf4wdy8CXTsCBTBNyJEPk6f5k/hx4+AjQ1w5QoFcAghxYgxYPhwnjDO0BDw9eXJ8wkhJSoyMhKurq7w9vbONYMjP+vWrYO5uTksLCwgFArh4uKCESNGSMwS+ffff8EYg4mJCVRUVLB+/Xo4ODjINOskR3BwMJKTk1GxYkVoamqKL+Hh4QgLC8Pr168lti9evLhYj1ua0NBQWFlZiQM4ANCyZUtkZ2fj6dOnUh8za9Ys1K5dG0OGDJG5nzp16sDLywurVq2Curo6DA0NYWZmBgMDA/E57dSpE1asWIGxY8dCRUUFNWvWRJcuXQBA3MbZ2RmDBw9GmzZtpPaTkpKCsLAwjBo1SuLc/v333wgLCwMAdO7cWby9Tp06Mh9DQX3/CJqJQ0hp9u4dkBN1/+MPoEULuQzj7Vu+HCozk8+kmTat8PuoUAH4+29gyhRg9Wpg/XoezOnViy+zmj8f6N69FH8x2bgx4O/PP/3fu8eXtJ07B+jpyXtkpBC8vflnqawsXtzt0CFAXV3eoyKE/NSWLOGBG2Vl/tPYWN4jIqToKajzGTHy6lsG9+7dQ3x8PBo1aiTeJhKJcOXKFXh4eCA9PR2Kioq5Hqenp4ejR48iLS0N79+/h7GxMdzc3FCtWjVxm+rVq+Py5ctISUlBYmIijIyMMHDgQIk2BUlOToaRkREuXbqU6z4dHR3o6OhIVLSqUKFCsR53UfH398fDhw9x6NAhAAD7/7e3urq6+Ouvv7BgwQKpjxs8eDAGDx6MuLg4aGhoQCAQYPXq1RLndOrUqZgyZQpiYmJQvnx5REREYNasWeI2/v7+OH78OFauXCnuOzs7G0pKSti2bRu6du0KANi+fTusra0l+s85J//88w8+f/4MAFD+No9EAcedX98jR46UeV/fopk4hJRmEyYAcXGApSVfmyQHIhFfwh8VBdSsCXh6/ligpWJFXpo8IgKYNYvPzAkM5EurmjThRaFK7cwcKyvg0iXAwAAIDuYljWJj5T0qIqN164AhQ3gAx9GRzwKjAA4hpFidPg3Mns2ve3gU2ZcxGzduRNWqVaGqqgpra2vcvn073/Y+Pj6wsLCAqqoq6tWrh9OnT0vczxjD3LlzYWRkBDU1NXTs2BHPnz+XaPPhwwc4OjqiXLly0NHRwahRoyTK/c6fPx8CgSDXRUNOM4hJCRMI+JImeVxkfGPaoUMHPHz4EEFBQeJLkyZN4OjoiKCgoAIDGaqqqjAxMUFWVhZ8fX3Rs2fPXG00NDRgZGSEjx8/4uzZs1Lb5KVRo0aIjY2FkpISatSoIXHR1dXNtV3WIM73HrdQKBQvGctRu3ZtBAcHIyUlRbzt2rVrUFBQQK1ataTux9fXF8HBweK+//nnHwBAQEAAJkyYUOD4DQwMoKmpiQMHDkBVVRW//fabxP0CgQDGxsZQU1PDvn37YGpqKg5Y3bhxQ+K43d3doaWlhaCgIPTu3RsGBgYwNjbGy5cvc51zMzMzAICJiYl4W5UqVQocb46C+v4hMqddliOqTkV+Sfv38+oViopyLZkzaxYfhro6Y48e5b4/p7LG974+375lzM3tSxEogLHGjRk7cYKx7OwfHHxxefKEMWNjPthatRiLipL3iEg+srMZ++uvL79frq5lsFLaD6DqVITIybNnjGlr8z88Y8ZIbfI91an279/PhEIh27lzJ3v8+DFzdnZmOjo6LC4uTmr7a9euMUVFRbZ8+XIWEhLCZs+ezZSVldnDhw/FbZYuXcq0tbXZ0aNHWXBwMOvRowczMzOTqJBib2/PrKys2M2bN1lAQACrUaMGc3BwEN+flJTEYmJiJC6WlpZs2LBhMh8bKRvKenWqr0mr0jR06FDm5uYmvn3z5k3m6+vLwsLC2JUrV1j79u2ZmZmZRHUlPz8/dubMGfby5Uv233//MSsrK2Ztbc0yMjLEbd6/f88CAwPZqVOnGAC2f/9+FhgYyGJiYhhjjGVnZ7NWrVoxKysrdvbsWRYeHs6uXbvG/vzzT3bnzp08jyE9PZ0FBgaywMBAZmRkxKZNm8YCAwPFVZxkPe5vLVq0iFWuXJk9efKEvX37lmVkZLCUlBRmZGTE+vbtyx4+fMj8/f1ZtWrVCvU6v3jxYq7qVLdu3WK1atViUV+9p96wYQO7d+8ee/r0KfPw8GBqamps3bp1Evtavnw5e/DgAXv06BFzd3dnysrK7MiRI3n2La1C1Pbt28X7fvr0KXvw4AHbuXMnW7VqVb7H8fz5cxYYGMjGjBnDatasKX4O0tPTZe77W7K+tiiIQ0hpFBPDWIUK/I3f3LlyG8bRo18++O7bJ73NjwZxcrx9y9jMmZLBnCZNGDt5spQGc168YKxyZT7Q6tUZe/VK3iMiUmRl8c9OOb9Tf/9dSn+fihEFcQiRg8RExiwt+R+eFi0Yy+NN/fcEcZo1a8YmTJggvi0SiZixsTFbsmSJ1PYDBgxgXbt2ldhmbW3Nxvw/sJSdnc0MDQ3ZihUrxPd/+vSJqaiosH3//+ef83fk6w+SZ86cYQKBgEVHR0vtNygoiAFgV65ckfnYSNnwswdxbG1tJYISly5dYrVr12YqKiqsYsWKbOjQobl+7w8cOMCqVavGhEIhMzQ0ZBMmTGCfPn2SaOPp6ZmrbDcANm/ePHGbxMRENnHiRGZsbMyUlZWZqakpc3R0ZK9fv87zGHJKln97sbW1LdRxfys+Pp799ttvTFNTs0hKjOeQFsTJ2RYeHi7eNnToUFahQgUmFApZ/fr12e7du3Ptq127dkxbW5upqqoya2trdvr06Xz7ziuQ4u3tzRo0aMCEQiErX748a9OmDTt8+HC++7K1tZV63r8+Bln6/hoFcQgpq7KzGevenb/xa9gwzzd+xe3ZM8bKlfsycyEvRRXEyREfz9iMGXzmT84H76ZNGTt1qhR++A4PZ8zMjA+yalXGXr6U94jIV9LSGOvXjz89AgFjW7bIe0TyQUEcQkqYSMRYr178j4+xMWNv3uTZNOd/aEhICEtISBBf0tLSpLZPT09nioqKub5pdnJyYj169JD6GFNTU7ZmzRqJbXPnzmX169dnjDEWFhbGALDAwECJNm3atGGTJk1ijDG2Y8cOpqOjI3F/ZmYmU1RUzPODjouLC6tZs6bU+0jZ9jMFcQgpTWR9bVFOHEJKiMzr13fvBk6cgI+iIiw+foRquXLfvX792bNn6NmzJ3R1dVGuXDm0atUKFy9eFN8fHBwMBwcHmJqaQk1NDbVr18a6deuQkgL07QskJgItWwIrVhT56ciTnh6wbBnPmTN9Os9ZcucO0LUrr8p65kwpyplTtSpw+TJgbs4H3KYN8M1zQOQjKQno0oUnLhYKgYMHgTFj5D0qQsgvYdEi4OhR/sfH1xcwMirwIZaWltDW1hZflixZIrXdu3fvIBKJcpXxNTAwQGweOdpiY2PzbZ/zs6A2+vr6EvcrKSmhQoUKUvtNS0uDt7c3Ro0aldchE0II+U4UxCGkBBw4cABTp07FvHnzcP/+fVhZWcHOzg7x8fGSDSMjgUmTcB2AA2MYNX48AgMD0atXL/Tq1QuPHj0SN12+fDnWr1+PLVu24NatW9DQ0ICdnR3S0tLEbbp164asrCz4+/vj3r17sLKyQrdu3cRvuO7duwd9fX3s2bMHjx8/xl9//YVZs2ahXTsPPHzI8/cePMgLapQ0PT1g+XIgPJxXw1JTA27f5h/MbWwAP79SEswxNeWBHAsLnv3Z1hZ48kTeo/qlvX3Lc077+/PE2adP8+pqhBBS7E6eBObN49c3beLfPsggJCQECQkJ4susWbOKcZDF78iRI0hKSsKwYcPkPRRCCPnpUBCHkBKwevVqODs7Y8SIEbC0tMSWLVugrq6OnTt3fmnEGDBqFJCYiHUVKsDe3h7Tp09H7dq1sXDhQjRq1AgeHh7/b8qwdu1azJ49Gz179kT9+vWxe/duvHnzBkePHgXAv617/vw53NzcUL9+fZibm2Pp0qVITU0VB4NGjhyJdevWwdbWFtWqVcOQIUPQpMkI3LlzGIqKwIED8q+Eqq/PZwKFh/Mq62pqwK1bvDx0ixbA2bOlIJhjZMSrVtWtC8TE8EDOVwE3UnJevQJateJV4HV1gYsXgQ4d5D0qQsgv4elTXvqOMWDcOP4/XUZaWlooV66c+KKioiK1na6uLhQVFREXFyexPS4uDoaGhlIfY2homG/7nJ8Ftfn2i6esrCx8+PBBar///PMPunXrlmt2DyGEkB9HQRxCillGRgbu3buHjh07ircpKCigY8eOuHHjxpeGW7cC584Bqqq4oaKCjt+Uz7OzsxO3Dw8PR2xsrMQ+tbW1YW1tLW5TsWJF1KpVC7t370ZKSgqysrKwdetW6Ovro3HjxlLHevMmcPVqAoAKWLaMxyK+lZ6ejsTERPElKSnpO89M4RgYACtX8mDO1KmAqiofr709X/L1339yDuYYGPCIQYMGQHw80LYtEBQkxwH9eh4/5oG9Z8+AypWBq1d52XpCCCl2iYlAr178Z6tWwNq1xdKNUChE48aNceHCBfG27OxsXLhwATY2NlIfY2NjI9EeAM6dOydub2ZmBkNDQ4k2iYmJuHXrlriNjY0NPn36hHv37onb+Pv7Izs7G9bW1hL7Dg8Px8WLF2kpFSGEFBMK4hBSzGRav/7yJV8zBABLliD23bsfXr8uEAhw/vx5BAYGQktLC6qqqli9ejX8/PxQvnz5XOOMjwe6d78Oxg6gVavRmDpV+vEsWbJEYt2+paVloc7HjzIwAFat4sGcKVN4MOfGDcDOjr9vPndOjsEcXV2+hqdpU+D9e6B9e+DuXTkN5tdy4wbQujXw5g1gaQlcvw7UqiXvURFCfgnZ2cDQoXwprYnJl2RcxWTq1KnYvn07vLy8EBoainHjxiElJQUjRowAADg5OUksx3J1dYWfnx9WrVqFJ0+eYP78+bh79y5cXFwA8PcLkydPxt9//43jx4/j4cOHcHJygrGxMXr16gUAqF27Nuzt7eHs7Izbt2/j2rVrcHFxwaBBg2D8zZTdnTt3wsjICJ07dy62c0AIIb8yCuIQIm/Z2cDw4UBKCp/6MmlSkeyWMYYJEyZAX18fAQEBuH37Nnr16oXu3bsjJiZGom1WFtCt2yO8e9cTurrzcPp0JwgE0vc7a9YsiXX7ISEhRTLewjI0BFav5vGvyZN5MOf6daBTJ/5h/vx5OQVzypfnkaQWLYCPH/lanq9nXJEi5+cHdOzIT3fz5kBAAP8cVdRkTk7+fz4+PrCwsICqqqrU5OTDhw+HQCCQuNjb20u0KSg5OSGkFFi4EDh+HFBRAQ4f5t82FKOBAwdi5cqVmDt3Lho0aICgoCD4+fmJv9h5/fq1xP/5Fi1aYO/evdi2bRusrKxw6NAhHD16FHXr1hW3mTFjBiZOnIjRo0ejadOmSE5Ohp+fH1RVVcVtvL29YWFhgQ4dOqBLly5o1aoVtm3bJjG27Oxs7Nq1C8OHD4eiomKxngdCCPlllUSprB9FJcZJWVZgOdDVq3kZUg0NcYnqoigHev78eaagoJDrdVOjRg22ZMkSiW2jRj1mgD5TVv6TPX5cuOMr6hLj3+vNG14KXUXlS2nyVq0YO39eTqXJExMZa9OGD0RTk7HLl+UwiJ+ftzdjSkr8NNvbM5acXDz97N+/nwmFQrZz5072+PFj5uzszHR0dFhcXJzU9teuXWOKiops+fLlLCQkhM2ePZspKyuzhw8fitsMGzaM2dvbs5iYGPHlw4cPEvsxNzdnXbp0YcHBwezZs2ds/PjxTF1dncXExMg8dioxTkgxOnr0yz+dnTsL/fCc/6H0+iRlCZUYJ6R4UIlxQkqJfNev16gB/Pkn37hqFWBmBqBo1q+npqYC4Pl3vqagoIDs7Gzx7fXrH2PHjnYAhmHPnkUo4dVRRcbIiKcgePmST2ZSUeE5UTp25BOc/P1LeGaOlhYvi9ShA5CczDMxf/Ockh+zYQPPIZqVBTg4AMeOARoaxdOXTMnJv7Ju3bp8k5PnUFFRgaGhofjy9VJHWZKTE0Lk6MkTvowKAFxcgP8vZyKEEEKKEwVxCCkBea5fv3gRSEuDk5ERZoWHi9sXxfp1GxsblC9fHsOGDUNwcDCePXuG6dOnIzw8HF27dgUAnDz5CJMntwPQCc7OU9GmTSxiY2Px9u3bkj5FRcbYGFi3DggLAyZO5MGcgAAeS2nblheRKjEaGsCJEzz7cmoq0K0bL6dFfghjwNy5X1YeTpwI7NlTfCkoZE5O/pUbN25ItAckk5PnuHTpEvT19VGrVi2MGzcO79+/F9/3PcnJgdzJx5OTk7/nsAkh+UlIAHr2BJKSgDZt+PpeQgghpARQEIeQEiB1/fqgQTAIDAS0tfG6ShXE5CQ5RtGsX9fV1YWfnx+Sk5PRvn17NGnSBFevXsWxY8dgZWWFlBRg5MhDYOwtgD3Yvt0IRkb80rRp05I+RUXOxARYv54Hc1xc+Af8K1eAdu14MOfy5RIaiJoacPQo0L07kJYG9OjBAzvku4hEwPjxPAUFALi786CdQjH+N5MpOfk3YmNjC2xvb2+P3bt348KFC1i2bBkuX76Mzp07QyQSASh8cvIc3yYfb9as2fceOiFEmuxsYMgQXgqvUiXAxwdQVpb3qAghhPwqSmh51w+hnDjkpxMczJiyMl9D7+VV4t1nZzM2eDDv3tCQ55P5XqUlJ05BIiMZmzCBMaHwS/qCtm1LMFVNejpjffvyjpWUGPP1LaGOfx5paYz1789PoUDA2KZNJdNvdHQ0A8CuX78usX369OmsWbNmUh+jrKzM9u7dK7Ft48aNTF9fP89+cnJdnT9/njHGWHZ2NuvRowfr3Lkzu3r1Krt37x4bN24cMzExYW/yedGmpaWxhIQE8eX27duUc4OQojRnDv9DpKLC2J07P7QryolDyqKfJSfOkiVLGADm6uqab7uMjAy2YMECVq1aNaaiosLq16/Pzpw5I9EmMTGRubq6ssqVKzNVVVVmY2PDbt++nec+x4wZwwDkyoH5PS5fvsy6devGjIyMGIBceTi/t29bW9sCz01hPX/+nGlqajJtbe0C254/f57Z2NgwTU1NZmBgwGbMmMEyMzMl2hw4cIBZWVkxNTU1VrlyZbZ8+fJc+9mzZw+rX78+U1NTY4aGhmzEiBHs3bt3P3wsEydOZI0aNWJCoZBZWVnl21bW46acOISUVhkZgJMTkJnJZ2XkrKcvQRs3Anv3AoqKwMGDPJ/Mz65SJcDDA3jxgs/kEAr50ipbW14JPCCgmAcgFAL79wODBvEkLgMGAAcOFHOnP4+kJL4aLecL7/37gXHjSqZvXV1dKCoqIi4uTmJ7XFwcDA0NpT7G0NCwUO0BoFq1atDV1cWLFy8AAP7+/jh58iT279+Pli1bolGjRti0aRPU1NTg5eWV535UVFRQrlw58UVTU1PWQyWEFOTIkS9TAbdtA5o0ke94CCHf5c6dO9i6dSvq169fYNvZs2dj69at2LBhA0JCQjB27Fj07t0bgYGB4ja///47zp07h3///RcPHz5Ep06d0LFjR0RHR+fa35EjR3Dz5k0YGxsXybGkpKTAysoKGzduLLBtUfddGJmZmXBwcEDr1q0LbBscHIwuXbrA3t4egYGBOHDgAI4fPw43NzdxmzNnzsDR0RFjx47Fo0ePsGnTJqxZs0Yi/+C1a9fg5OSEUaNG4fHjx/Dx8cHt27fh7OxcJMc0cuRIDBw4MN82hTlumRUy4CQXNBOH/FRyvsGrWJGxQlSYKSrXrn2p5rNq1Y/vr6zMxPnW69eMjRv3ZUIUwFj79owFBBRzx1lZjDk58Q4VFBjbvbuYOyz74uMZa9LkSxG3c+dKfgzNmjVjLi4u4tsikYiZmJjkqvSWY8CAAaxbt24S22xsbNiYMWPy7CMyMpIJBAJ27Ngxxhhjx48fZwoKCiwpKUmiXc2aNdmiRYtkHjtVpyKkiDx+zKsNArwcYhGgmTikLCrrM3GSkpKYubk5O3funEyzTYyMjJiHh4fEtj59+jBHR0fGGGOpqalMUVGRnTx5UqJNo0aN2F9//SWxLSoqipmYmLBHjx6xKlWq5JoN8/r1a9a/f3+mra3Nypcvz3r06MHCw8NlPjbkMxOnoL6/NmzYMAZA4pIzjkuXLrGmTZsyoVDIDA0N2cyZM3PNkJFmxowZbMiQIczT07PAGSmzZs1iTZo0kdh2/PhxpqqqyhITExljjDk4OLB+/fpJtFm/fj2rVKkSy/5/adoVK1awatWq5WpjYmIisW379u3MwsKCqaiosFq1arGNGzcWeDw55s2bl+9MnMIcN83EIaQ0unMHWLyYX9+8GcjnW/niEBcH9O/PJ4L07w9MmVKi3ZcqpqbApk18Zs7YsXx2h78/0Lo1r2h17VoxdayoCHh6Ar//zvMqDBsG5FHhiACvX/Pn5O5dQFcXuHiRPz8lLc/k5P+vRuPk5IRZs2aJ2xeUnDw5ORnTp0/HzZs3ERERgQsXLqBnz56oUaMG7OzsAMiWnJwQUkI+fQJ69eLVBtu2BVaskPOACCllGANSUuRzKWT50QkTJqBr1665ChDkJT09XZxzMoeamhquXr0KAMjKyoJIJMq3DcCr0w4dOhTTp09HnTp1cvWTmZkJOzs7aGlpISAgANeuXYOmpibs7e2RkZFRqGP8VkF9f2vdunWwsbGBs7MzYmJiEBMTA1NTU0RHR6NLly5o2rQpgoODsXnzZuzYsQN///13vvvz9/eHj4+PTLOFgLzPeVpaGu7du5dvm6ioKLx69QoAfy8VGRmJ06dPgzGGuLg4HDp0CF26dBE/xtvbG3PnzsWiRYsQGhqKxYsXY86cOfnOepZVYY9bZjKHmOSIZuKQn8Lnz4zVrs2/wRs4sMS7z8zkOWAAxiwsGPt/EPuHldWZON+KiGBszBjJmTkdO/KZS8VCJGJs/PgvnZVUgpcy5PFjxkxM+OkxNWUsNFS+49mwYQOrXLkyEwqFrFmzZuzmzZvi+2xtbdmwYcMk2h88eJDVrFmTCYVCVqdOHXbq1CnxfampqaxTp05MT0+PKSsrsypVqjBnZ2cWGxsrsY87d+6wTp06sQoVKjAtLS3WvHlzdvr06UKNm2biEPKDsrIY69yZ/zGqXJlPDywiNBOHlEVSZwskJ395T1PSl+Rkmce+b98+VrduXfHYZZmJ4+DgwCwtLdmzZ8+YSCRi//33H1NTU2NCoVDcxsbGhtna2rLo6GiWlZXF/v33X6agoMBq1qwpbrN48WL222+/iWeJfDsb5t9//2W1atUS388YY+np6UxNTY2dPXtWpuNDHjNxCupbGmnn5s8//8w1xo0bNzJNTU0mEomk7ufdu3fM1NSUXf5/IkpZZqScPXuWKSgosL1797KsrCwWFRXFWrduzQCIcw5u3bqVqaurs/PnzzORSMSePn3KLCwscuUxPHjwINPU1GRKSkoMAOvevTvLyMgQ31+9evVceQwXLlzIbGxs8h1jjrxm4nzPccs6E4eCOISUlGnT+D8aAwPGiiCZVmHNmMG719RkLCSk6Pb7swRxckREMDZ69JclZwBjv/3G2Dc5bYtGdjZjU6Z86Wjt2mLopGy6cYOxChX4aaldmyemJt+HgjiE/KA//+R/jFRVGbt3r0h3TUEcUhaV1SDO69evmb6+PgsODhZvkyWIEx8fz3r27MkUFBSYoqIiq1mzJhs/fjxTVVUVt3nx4gVr06YNA8AUFRVZ06ZNmaOjI7OwsGCMMXb37l1mYGDAoqOjxY/5NpAybdo0pqioyDQ0NCQuAoGAbdq0iV25ckVi+549e3KNVVoQR5a+pZF2bnr37s2GDx8usS0oKIgBYK9evZK6n969e7OZM2eKb8sSzGCMsVWrVrFy5coxRUVFpq6uLk5EvX//fsYYLwAxY8YMpqqqyhQVFVn58uXZ/PnzGQDxF22PHz9mRkZGbPny5Sw4OJj5+fmxevXqsZEjRzLGGEtOTmYAmJqamsS5VVFRERejsLe3F2+3tLTMNc68gjjfc9wUxCGkNAkI4OV0AMaOHy/x7n19v/yfO3iwaPf9swVxcoSHM+bsLBnM6dSpGII52dmMzZz5pZNly4q4g7LHz48xdXV+Oqyt5RLz/KlQEIeQH3Do0Je/z1I+MP0oCuKQskjqB83sbB5Mkcflq1kh+Tly5Ig4yJJzAcAEAgFTVFRkWVlZBR53VFSUOHgg7QN9cnKyuILkgAEDWJcuXRhjjK1Zs0bcz9d9KygosCpVqjDGGBs7dixr1qwZe/78ea7Lp0+fWGpqqsS2RCnT6qUFcWTpW5qiCuJoa2tL9K2goCB+Hnbs2JFn/4zxQE10dDRLTU0Vv5/5tupXzkyd9PR0dvr0aQaAxf9/xuSQIUNy5c0JCAhgANibN29YbGwsA8D27NmT65y/fPmSMcZzCeVsi4iIyDXGvII433PcsgZxlIp2cRYhJJeUFGD4cP4WcPhwoHv3Eu3+6VPeLQBMncpz4ZCCVa3KC4/MmsXTGO3aBfz3H7/Y2QHz5wPNmxdBRwIBsGQJoKICuLsDM2cC6enAnDlFsPOyZ//+L8XbOnUCfH0BKq5ECJGLR4943jKAJ5FzdJTveAgpzQQCQEND3qPIV4cOHfDw4UOJbSNGjICFhQVmzpwJRUXFfB+vqqoKExMTZGZmwtfXFwMGDMjVRkNDAxoaGvj48SPOnj2L5cuXAwCGDh2aKwePnZ0dhg4dKs6v16hRIxw4cAD6+vooV66c1DHUqFFD5uPNIUvf0giFQohEIolttWvXhq+vLxhjEAgEAHgFKC0tLVSqVEnqfm7cuCGxn2PHjmHZsmW4fv06TExM8h27QCAQV9Lat28fTE1N0ahRI4k2ioqK4v3s27cPNjY20NPTAwCkpqZCSUkpV3sAYIzBwMAAxsbGePnyJRzz+Btf0Bjz8iPHXaB8QzylBM3EIWXahAlfknp8+lSiXSclMVanDu++dWvGvlr+WWR+1pk43woLY2zUKMYUFb98KWtvz9hXaVF+3N9/f9n57Nkyf7P0s/Dw+DJhbdAgxtLT5T2inwPNxCHkO3z4wFj16l9KF8pQeeV70EwcUhaV9epUX5M222To0KHMzc1NfPvmzZvM19eXhYWFsStXrrD27dszMzMz9vHjR3EbPz8/dubMGfby5Uv233//MSsrK2ZtbS2Re+Vb3y5pSklJYebm5qxt27bsypUr7OXLl+zixYts4sSJ+f6NSEpKYoGBgSwwMJABYKtXr2aBgYF5zoyR1rc0zs7OrGnTpiw8PJy9ffuWiUQiFhUVxdTV1dmECRNYaGgoO3r0KNPV1WXz5s3Ld19fk7as6PDhw6xWrVoS25YvX84ePHjAHj16xNzd3ZmysrLELKO3b9+yzZs3s9DQUBYYGMgmTZrEVFVV2a1btyT6UlJSYps2bWJhYWHs6tWrrEmTJqxZs2biNtu3b2dqamps3bp17OnTp+zBgwds586dbFUBZXyfP3/OAgMD2ZgxY1jNmjXFz0F6Hm9gaTkVIWXF+fNfPpT/91+Jdp2dzT8IA4wZGRVfNfNfJYiTIyyMsREjJIM5nTsz9tX/ix+zYsWXHc+Y8UsEcrKzGZs798thT5jA8z6TokFBHEIKKSuLMTs7/gepShXG3r4ttq4oiEPKop89iPNtsYJLly6x2rVrMxUVFVaxYkU2dOhQifwyjDF24MABVq1aNXHZ7QkTJrBPBXx5Ky2QEhMTw5ycnJiuri5TUVFh1apVY87Ozvm+z7548SIDkOvybcGFgvr+1tOnT1nz5s2ZmpoaA368xHgOacEMT09P9u38knbt2jFtbW2mqqrKrK2tcxV2ePv2LWvevDnT0NBg6urqrEOHDhJFJ3KsX7+eWVpaMjU1NWZkZMQcHR1ZVFSURBtvb2/WoEEDJhQKWfny5VmbNm3Y4cOH8z0OW1tbqec9r5LwRRnEETBWyJpscpCYmAhtbW0kJCTkObWMkFInIQGoX5/XSB43jtezLkHr1wOuroCSEi/L3KpV8fQTFRUFU1PTX+71GRYG/P038O+/QM5Mya5dgXnzgKZNf3DnOU8ewH+uWcOnKf+ERCJg4kRg82Z+e/58YO7cn/Zw5SI0NBSWlpaIjIzMc6ozIeQrs2YBS5cCamrA9etAgwbF1lXO/1B6fZKyJC0tDeHh4TAzM8tV4pkQ8v1kfW0plOCYCPm1TJ3KAzjVqgH/Xw9bUq5dA/74g19fsaL4Aji/surVAU9P4MkTnjJBQQE4dQpo1oynPbp79wd2PmkSsGULv75uHTBhApCdXSTjLk3S04HBg3kARyAANm7kQTAK4BBC5ObgQR7AAYAdO4o1gEMIIYR8DwriEFIcTp0Cdu7kn0Y9PUs0M2tsLDBgAJCVBQwc+GVCBykeNWrwpMdPnvCEvAoKwMmTfDZOjx7AvXvfueMxY778Dm3eDIwe/WXKz08gORno1o1/XlJW5gmNx4+X96gIIb+0Bw+AnCSf06YBDg7yHQ8hhBAiBQVxCClqHz4Av//Or0+eDLRpU2JdZ2UBgwYBb94AtWsD//xDsxpKirk54OXFgzlDh/JgzokTQJMmQM+ewP3737HTESOA3bv5znbs4Lezsop87CXt3TugfXvg/HleyOLUKR54JIQQufnwAejVC0hNBTp25FUDS8AjnCmRfgghhPw8KIhDSFGbOJFPh6lVC1i0qES7njULuHyZT/w5fJhKM8uDuTmPu4SGAkOG8PjL8eNA48b880FgYCF3OGQIsG8foKjIE/AMGcLrb5dRr18DrVsDd+4AFSsC/v7Ab7/Je1SEkF9azjcg4eGAmRmfGvhNSdricBv78C9GF3s/hBBCfi4UxCGkKPn6Anv38k/uu3fzpIgl2PXKlfy6pydgYVFiXRMpatbkMZeQEMDRkf9KHDsGNGoE9O4NBAUVYmcDBgA+Pnzd0YEDfJ1cRkZxDb3YhIYCLVvy2UqVKgEBATyHECGEyNWffwLnzgHq6sDRozzCXMxC8B92YRgUSn15EULyVgbq4xBSpsj6mqIgDiFFJT4eGDuWX3dzK9FPp0+eAMOH8+vTpgH9+pVY16QAtWoBe/YAjx/zJL4CAf+M0LAh0KcPEBws44569+bTq4RC4MgRoG9fIC2tOIdepG7f5jNwoqJ4gPH6db7kjxBC5Gr/fl4BAODfgNSvX+xdRuAOtrDeqP8xE7OfqBR7f4QUNWVlZQBAamqqnEdCyM8l5zWV8xrLS/HPFSXkV8AYT0T77h1/Azh3bol1nZzMgwHJyYCtbYkt4yeFZGEBeHsDs2cDCxfyzw1HjvBLnz68KlOBnx26deOJdnr25NmTe/XiOyjBGV/f49w5HoNKSeGxzVOnAF1deY+KEPLLCwoCRo7k12fOLJHkXHF4Du90Ozi/TkW9RCAqM73Y+ySkqCkqKkJHRwfx8fEAAHV1dQgoCSMh340xhtTUVMTHx0NHRweKior5thewMjAPLjExEdra2khISEC5cuXkPRxCctuzh2ezVVLiyT5KqCQpY7x4xoEDgJERT55raFgiXYtFRUXB1NSUXp+FFBoKuLvz5y7nr3Dfvjz+V2Awx9+f1zFPTeUZgo8f5xmCS6EDB/hLIzOT576hXE0lLzQ0FJaWloiMjESlSpXkPRxCSof373nm+YgIwM6OR5cLeNP8oxKyI3AnriHaxHyCkAFMoIzo7HEwbbqeXp+kzGGMITY2Fp8+fZL3UAj5aejo6MDQ0LDAoCgFcQj5UdHRQN26wKdPfIrF7Nkl1vXatcCUKTx2dOkSzzdS0iiI82NCQngw5+DBL8Gcfv14MKdevXweGBAAdOnCp2C1bs0/gGhplciYZbVpE+Diwo9rwACeJkqFVg6UOAriEPKNrCzA3h64cAGoVo1/+VKhQrF2mZ54DMmvB6JiOp95k6XVGkqVtyPqnQZMTU3p9UnKLJFIhMwyXHCBkNJCWVm5wBk4OWg5FSE/gjFeTvzTJ/6NnptbiXV99SowfTq/vmqVfAI45MdZWvKlVXPm8GCOjw9w6BC/9O/Pgzl160p5YOvWfJ2SvT0P6NjZAWfOANraJX4M32IMWLCAXwBg/Hhg/fpi/5KbEEJkM3MmD+BoaPAkZcUZwMmMQXakK1Q++kAFQKKSAmC6GuXKT+JJ0hBVfH0TUgIUFRVl/uBJCCkalNiYkB+xYwfg58enF3h5lUhJUoBXMB8wgH+Z6ODAq5qTsq1OHb706MEDHrwBeECnfn1ejOrxYykPat6cfxApXx64cQPo2BH48KFEx/2t7Gz++5gTwJk/H/DwoAAOIaSU2LsXWL2aX9+1q4Apjz+AZQHx68Ee1YLCRx9kA7isr4yEuhdRroLr/wM4hBBCSOFREIeQ7xURwdcyAcCiRXxKRQnIzOQf6mNieJfbttF7wZ9J3bp8adWDB3xZFWP8dr16wKBBfPmVhMaNgYsXeabgu3eBDh14gm05yMjgFbg2buS/kx4ePGEz/X4SQkqF+/eBUaP49Vmziq+UY8otILQZEOkKQXYSwtWB5bWVYGDqB1PFNsXTJyGEkF8GBXEI+R7Z2byiRXIyX8c0eXKJde3mBly5wtOfUJLYn1e9enwmzoMHPOExY3ymTt26fPZVaOhXja2seFIkAwNebaVtWyAurkTHm5zMcy0fOAAoK/MvuydMKNEhEEJI3t6+5WXy0tKAzp15DruilvUBeDUWeGIDfA5EhqIq9lQGllsAv6nvhQXaF32fhBBCfjkUxCHke2zcyGc/qKvz6dgltFbEx0dyFnitWiXSLZGjevV4fpzgYF6KnDGeQ6dOHT7r5cmT/zesU4cHcoyM+Nqrtm2BN29KZIzv3/OVXP/9x18SJ0/yWUOEEFIqZGXxKayvXwM1avAoc1H+32YMeO8FPLYA3m0FwBBbsTn+rJOGAD1ggMADjdG/6PojhBDyS6MgDiGF9ewZT4oIAMuX8zeEJSA0lE/+AXhC4z59SqRbUkrUrw/4+gKBgfzLZMaAffv4kjpHR+DpUwAWFnyalqkpj+7Y2gKRkcU6rshInmP51i2eG9TfH+jUqVi7JISQwpk+nX/xoqnJExnr6BTdvj8/Bp7ZAhHDgay3gKolntVciPlVbyNJGeiC2WgHmpZICCGk6FAQh5DCEImA4cOBz5957pFx40qk26QkHrRJTuYTLBYvLpFuSSnUoAFfRnf/PtCrFw/m7N3LgzlDhgBPRTV4IKdqVeDFCx7IiYgolrE8ecJXE4aGApUq8SJZ1tbF0hUhhHyff/8F1q7l1728+KzFoiBKBqJmACENgOQAQEEdMFmGZ5YbsE7rbzBkoxV+Rw+4F01/hBBCyP9REIeQwli1ilcB0tICdu4EFIr/JcQYz8P45AlgbMyX0pRQESxSijVsCBw5woM5PXvyNE3e3jyYM3ROVbzcdYXPEgsPB9q04QGdInT7NtCqFZ+JU6sWcO1aieX2JoQQ2dy7B4weza/Pnl00U1gZAz4eAR5bAnErAGQBOr2BOqGIMrTHJkEfZCEdVuiJwdgMASizOyGEkKJFQRxCZPX4MTBnDr++di1QuXKJdLt2Lc+Fo6TEfxoYlEi3pIxo2JCvDrh3D+jRgwdz9uwBzNubYpLVZWRUs+CRFlvbrxLo/Jhz54D27XkunCZN+AycEno5EEKIbOLjvyQy7toVWLDgx/eZHg6EdQde9gEyIwFhVaD6CaD6YbwTZmM97PEZCaiBVvgd+6AI+saFEEJI0aMgDiGyyMwEnJx4DeWuXYERI0qk24AAvpQf4AmNW7QokW5JGdSoEXDsGK8y3r07D+Zs8DVGlfBLiNSpy5Mct20LPHr0Q/0cPMhfAikpPJmxvz+gp1c0x0AIIUUiMxPo358HsGvW5JHtH5k5m50OxCzis28STgECZcDwL6DOY0CnG5LwFuthhwTEwBh1MR7HIYRa0R0PIYQQ8hUK4hAii8WL+bqV8uWB7dsBQfFPj46JAQYM4Gl4Bg8GXFyKvUvyE2jcGDh+HLhzB+jWDYhlBmj46SIC0QCIi4OoTTte6uo7bN7Mq07lfD46eZKvLCSEkFLljz94bjAtrR9PZJzoD4RYAW9mAywN0GoPWD4ATP4GFNSRhmR4oCvi8AwVUBmT4AcNlC+qIyGEEEJyoSAOIQW5fx/4+29+feNGXsK5mGVm8gBObCxQty6wbVuJxI3IT6RJE+DECZ67pnlXXXTABdxBEyh+fIfkZu0QdfSuzPtiDHB3B8aP59fHjuWVsVRUivEACCHke+zaBWzYwK//+y9Qu/b37SczFgh3BJ53ANKfAkoGgJk3YH4eULUAAGQhA1vRDxG4Aw1UhCvOojxMiuY4CCGEkDxQEIeQ/KSn82VUWVlA3758GkIJmDkTuHoVKFeOl5XW0CiRbslPqGlTPmPG71YFLP/tPG6gOTQzPkKrdwf83e0mXr7M//HZ2cCkScC8efz23LnApk2AomLxj50QQgrlzh0eZQb4H62ePQu/DyYC4j2AR7WAD3sBKAB6LkCdJ0CFweJvVLKRjd0YhRCchRDqmIhTMIRF0R0LIYQQkgcK4hCSn/nzeUJjPT2+lqQEpsMcPAisWcOv79rFl/MT8qOaNQN8/tOG0oX/8Kh8a2gjEa6nfsNI8wCMGsWLWH0rI4OXLffw4LfXr+e5QWlWGCGk1ImL44mM09N5lve5cwu/j5Q7wJNmQOREIDsRUG8KWNwGKm8AlHQkmh7GDNzCHihAEWNwCGawLprjIIQQQgpAQRxC8nLzJrB8Ob++bVuJZG8NCQFGjuTXZ87k70cJKUpN22uhbuQZJDRuDy0k41S2PV7uvIiaNYHff/8SzElJ4Z+D9u3jldH27gUmTpTv2AkhRKqMDKBfPyA6GqhViy+jKkwi46yPwOvxwBNrIPU+oKgNVN4EWNwANBrnav4fVuIcVgEAnLATddG5qI6EEEIIKRAFcQiRJjUVGDaMryUZMgTo1avYu0xMBPr04R+e27X7koaHkCKnoQHtgJOAnR00kAo/hS5ol/UfduzgM7+cnIBWrYCzZwF1dZ5bx8FB3oMmhJA8TJnyZQ3ysWP8pywYA97vBh7XAt5uBsCACkOBOk8BvXGAIPe60RvYDV/wspF9sQI2cCrCAyGEEEIKRkEcQqT580/g2TPA2JivISlmjPEZOE+fAiYmwP79fPYDIcVGTY1XbenWDSrZafBT7o7ZDU8hK4t/iR0UBAiF/Lq9vbwHSwghedi5kyfqAngp8Vq1ZHvc5xDgWTsgYhiQ9RZQrQ3UvASY7QaUDaQ+5CFOYzf4dNnf8Ac6YVoRHAAhhBBSOBTEIeRbly4B69bx6zt28LLixWz1ap7AWFkZOHQI0Ncv9i4JAVRV+S9enz5QyMyA+6PeGK59RHx3RgbP5T12LPD6tRzHSQgh0ty6BYwbx68vWAB0717wY0QpQJQbLxuefBkQqAEmS4HaQYCWbZ4Pe4mb2Ib+yIYI1hiCPlheNMdACCGEFBIFcQj5WlISMGIEv+7sXCJTEK5c4flvAJ7QuHnzYu+SkC+EQmD/frzvNAiCzExsT+gPV6OD8PEBOnbk5e63bgVq1OCflSiYQwgpFWJj+RrkjAy+5Hn27IIf8+kYEGIJxC0DkAVo9wTqhAKGMwEFYd5d4Qk80BUZSIUl7DAMO6FAb6EJIYTICf0HIuRr06YBERFAlSrAqlXF3t2bN8CAAYBIBDg6AuPHF3uXhORy/rIyql/7F7sxFEoQYU2cA/ql7cG5czzI2KEDD+Zs2cKDOePHA5GR8h41IeSXlZPI+M0boHZtYPfu/BMZp0cAL3oAYb2AjNeAsApQ/ThQ4yigUiXfrj4iGutghxR8QFU0xRgcgiKUi/JoCCGEkEKhIA4hOc6e5VWoAMDTE9DSKtbuMjN5ACcuDqhXj892oNLNpKQdOgR07QokpChhT3tPZAwdCUF2Ns9uvHMnWrcGzp8HLl8G2rfnv7ebN/NgzoQJQFSUvI+AEPLLcXUFrl0DtLV5bq+8/l9nZwAxi4HHlkDCCUCgDBjOAuqEADoFL71KwUeshz0+4DUMUBMuOAVVaBbtsRBCCCGFREEcQgDg0ydg1Ch+fdIkXh6qmE2fzt+DlivH05JoaBR7l4RI2LqVBxJzvtQ+cVoRwl3b+bopxvhrYssWAECbNsCFCzxlVNu2/DGbNgHVqwMuLhTMIYSUkO3b+d8lgQDw9uYl9aRJugiEWgFv/gLYZ0CzLVA7GDBZDCioF9hNBj5jE3rgDR5BG0aYhLPQgl7RHgshhBDyHSiIQwjAv9WLjgbMzYElS4q9u/37v+RO3r2bd0tISWGMl7AfO5ZfHzOG/06qqIAvSdi4kb8mAB7Q+apCm60tcPEiv7Rpw4M5GzfyYM7EifxlREqRtDTg3Dl+/fx5/sTdugU8egSEh/OpgMnJfE0nIaXdjRt8CiAALFzIpxF+KzMWCB8CPGsPpD0BlPSBqnuAmv6AWm2ZuhEhC/9gEF7gKtSgjUnwgy6qFt1xEEIIIT+AihgTcvTol/X0u3YB6gV/Q/cjHj/+Muln1iygZ89i7Y4QCdnZwJQpX+Iys2cD7u7fLOUTCHiWbRUVYPlyHtDJyOA5o/6vbVu+xOriRWDePCAgAPDw4F+Sjx4NuLkBxsYlemjkW6dP85mFYWH8dk7S9ryoqvIpgerqkj+LapuiYvEfM/l5vXkD9O3L13T26QP8+afk/UwEvN3CZ96IEgAIAL1xgPEiQElH5m4YGPZiHIJxHEpQwXgcRyXUL9JDIYQQQn4EBXHIr+3dOz4NAeAfUFu0KNbuEhP5e8/UVJ4sduHCYu2OEAmZmfxzvLc3v71uHf+ML5VAACxdygM5Cxfy9X/p6cBff0k0a9eOB3RygjlXrwIbNvD0UmPG8MprFMwpYRERwOTJwLFj/HaFCsCHD0D9+kBWFpCSwi+pqfySIy2NX96/L55xCYVFGxT6dpsyJZv9aaWn8wBOTAxQpw7/wuXryHPKXeD1WCD1Hr+t3hiovAXQaFLoro5jLq7iHwigAGfs/x975xkeRdmF4XvTQ0ISegiE3nuvKqgoYEEUQYogRZo0PxCkSRNEkCZNVKrSkSJKbxa6NCmhEyCUhBJSSd19vx+HJAQDpOxmU977uvbKzuzMO2c2O7szz5zzHMrwknn2QaPRaDQaM6FFHE32RSkpFblzR04Kx461+Oa6dIELF6BwYVixQt+Y1qQf4eHQujVs2QJ2dnIN1KHDc1YyGCRNx8EBvvhC0naio2HMmEQXUAaDmB6//DLs3i1izr59ku3zuJhTsKAl91BDZCRMmQITJshzOzsRcz74AGrXhk2b5MvncUwmWfZxYefxv+aYp5RsKzpaHg8eWGb/7e3Nnz30+Dx7e+0+by369YODB8HDI7GRcWyQZN7c/Q5QYOsOXl9Bvp5gSPkP7B5ms5nxALTnO6rR0kw7oNFoNBqN+dAijib7smqVtOaxs4MlS6SUwIJMmQLr1sl1wC+/QD7tj6hJJwID4a23xE7C2VmMtJs3T8EAI0dKRs6QISLqREWJd9QTF7QGg2SYvfKKmCCPHg3790vGz/ffiwfPkCFazLEIW7fKhe6lSzLduLHUt1WsCGfPPn09GxsRKnLksMyXklIiEllCHIp7bjLJtmJiIDhYHpbA1tYyZWZxfx0dtUiUFN9/L3WaBoPc/ShVSj5XgcvgxiCIvSPL5f4QCk8B+wKp2swRVrMKSU18m7G8RA9z7YFGo9FoNGZFizia7Mnt2wnmiCNGQM2aFt3cH3+IRwjIBW3duhbdnEYTz82b0LSpeDHlyiXJGPXrp2KgwYMlI+fTT2HSJBFypk1L8qLTYIAmTUTQ2blTxJwDB2DGDGkq07u3iDmenmndOw3XronJ0fr1Ml2wIEydCm3bZgxBwGAQ5dDZGfLkMf/4Skl2j6WyiMLDpQQNxPw5JEQeliBOULOUUOTsnDE+Eylh3z4RJwG++gqaNYOIs3D9Ewj7Q+Y7lYMicyFn6rtKnmM3i+iIQtGI3rzJF2mPXaPRaDQaC6FFHE32QylxXg0MhOrV/+PxYW5u3pRqBpMJOnaUbASNJj24cAFeew2uXxdfmu3bJTEj1QwYIELOJ5+IIhMdLQY4Nkk3OjQYZPtNmkiDpNGjpSJi+vTEYk6B1N04z95ERYlYM348RERIlsiAAfImu7lZO7r0w2CQDBZHR/H+sQQxMZYtN4uOlu2YTNIpLCzMMvthMCRkXVlCKHJ2fup3Qaq4eTPByLh1axjcD24Og4CpoGLA4AwFv4ACg8DGIdWbuc5xvqMlsURTg1a0ZRYGMpnYpdFoNJpshRZxNNmPxYvh99/lYvSnnyxqhhkdDW3aiO1OlSpy4ZrZboRqMidHj8pN63v3pIX99u1QrJgZBu7dW46d7t1h7lz5kH///TMv3gwGeP11EXS2bxed4dAhSeT57jvRhIYMgfz5zRBfdmDbNslOuHhRphs1ktKpSpWsG1dWxd5evFg8PCwzfmys+bOHHp8XFSXbUSph3t27ltkXZ+fniz3JEYjs7CRbNiAAypWDcW/CqQpgvC7bcX8bvGeCY7E0hXuXy8yiOZGEUobGdGUpNmizOo1Go9FkbLSIo8leXL8u5SAg3h4Wvuj57DPxBHF3Fx8SC3cv12gAMRd+5x25oV+jhpgZm1Ug6dZNhJzOnWH+fBFyFi58rlO3wSClXa+/LjrEmDEi5kydmiDmDB6sxZyncv06DBwoXyYg9WhTpkD79lodzszY2Un2lKUyqIzGhE5klhCKIiISthURkXjaHJw7B+U7y3NHA+RwBdcTkKNZmjKJwlwi+dmlM+QIoIRLJT7J8Qv2dpb1xtNoNBqNxhxoEUeTfVBKLj5DQqBePVFYLMiKFVJpAvDzz+LFqNFYmrVr5Zo+OloMhtevt9C1YceOIuR06CAZbdHR8kG3e/7PisEgWUJNm4of75gxcPiw6BFz58oN+MGDtfl3PNHRkrb05Zdy4WxrK5k4Y8aIQqzRPAtbW+nmFNfRydyYTCLcmEsU8vMDf38Z2wGIAR41OCNKQVQoPAhNc9iuwMD4qdNAXvlOs0Rns7jnFsz81Wg0Gk32QYs4muzDvHnisursLN2oLNjf+/Rp+PhjeT58OLz9tsU2pdHE8+OP4rlkMsF778GyZRZuuvbBB3JR0rYtrFwp3hXLl8uFUDIwGKRLVrNmki00Zgz88w988w3MmQN9+4rWmq3FnB07RLA5f16mX3xR3pzKla0bl0YTh41NgliRVv7+G155ZFDcD/gIcHkJ8k0DVdQsQpEKDyMk/DI8jMQx3IBjOBjUI5UoOloeDx6kfV+Sws7uv8KOOX2ENBqNRpMtMCgV98uVcQkJCcHd3Z3g4GDcspNho8Z8XL4spjQPH0p7qP79Lbap4GCoXVvsKpo0kUwDC+pFVufGjRt4e3vr49OKKCUdv+M8urt3l/KkdPvc/f67GJBGR4tiuWaNGM2mEKVg82YRc44ckXkuLgliTt685g07Q3PjhpROrVkj0wUKSKpShw4pLp06e/YsFSpUwM/Pj8KFC1sgWI3GDFw5BnUawv1IeA2YnBe8p0nrcDOVC5owMZ92HGU1jrgwkD8opmqKb5AlO5wZjU+N6QbgDfr41Gg0Gk2y0SKOJutjNMLLL8sdvsaNYdcui935UkquZdevB29vOHYs6194ahHHuphMMGiQNIsCyfwaP94KFinbtkHLlhAZKak169ZJ1lsqUEpaoY8ZIwbNIGJOv36yr1n6mIqOln/muHFy8WdjIzs+dmyqS6e0iKPJ0Cgj3JgDzQfCGSOUBjZ+DKUmg10u820GxSoGsIdZ2GJPXzZRgdfMNv7TN6ye2eHsxrVrePfooY9PjUaj0SQbncOpyfp8+60IOK6uYr5qwdTlb74RAcfBAX75JYtfbGqsTkwMfPRRgoAzfTpMmGAlj9umTUV5yZFD0s/eflsuVFKBwQBvvSWlVRs3ijlzeDh8/TUULy5C1f37Zo4/I7BrF1StCp9/LjvcsKEowTNmaO8bTdYk/CicrQefDBABx91WfkTL/WhWAQdgK1+zBzGq68yS9BFwQL7QHBwgVy4oXBjKlIHq1eX4fv11qSnVaDQajSYFaBFHk7U5e1au+EBa4BQvbrFN7d4Nw4bJ82+/hTp1LLYpjYaHDyXxZelSsVn4+eeExmtW45VXRMBxdRVB4o03IDT1BqQGg2hBR47Ar7/KdU9YmJSOFSsm5WOBgeYL32rcvCn+Qk2aSCee/PnFt+vvv0XU0WiyGrFBcL0fnKsDi47A74CNAdZsgootzb65vSxgA3Iu0IYZ1KGd2beh0Wg0Gk16oUUcTdYlNlbSFKKiJEuge3eLberGDfF2NZlkkz17WmxTGg2BgfDaa+If4+wsAseHH1o7qke8+CJs3y4tsf76S4694OA0DWkwQIsWUlq1YQNUqyZizldfiZgzcmQmFXOioyV9r2xZWL06oXTq/Hno1Em3DddkPZSC+8vgTDm4OxuOmmD6o8/55G/gtaZm3+S/bGQpPQBoxlBeZYDZt6HRaDQaTXqiRRxN1mXSJKnHcHeH+fMtdkEUHQ2tW8Pdu3LTfO7cpDc1Z84cihUrhpOTE3Xr1uXw4cPPHHfNmjWUK1cOJycnKleuzObNmxO9rpRi1KhRFCxYEGdnZ5o0acLFixf/M86mTZuoW7cuzs7O5MqVi5YtWya5vfv371O4cGEMBgNBQUHJ3X1NOnPzJjRqBPv3g4eHNC964w1rR/UE9etLJzgPDzhwQBQnM3R7MRjgnXekwmj9ejneQkOlhKxYMfjiC8s1lTE7u3eLGjVkiJRONWggKtXMmfK+aTRZjchzcPFVuPohxAZAYAkY4QFGBe3bi5G3mbnEPn7kAxQmGtCFlnxl9m1oNBqNRpPeaBFHkzX5918xAgWYNUvq0C3EoEFw8KBoRWvXiiXIk6xatYqBAwcyevRojh07RtWqVWnatCl37txJcsz9+/fTrl07unXrxvHjx2nZsiUtW7bk9OnT8ctMnjyZmTNnMm/ePA4dOoSLiwtNmzYlMjIyfpm1a9fSsWNHunTpwr///su+ffto3759ktvs1q0bVapUSdubobEoFy+KjcLp01CwoCS6NGxo7aieQu3asGcP5MkjYuorr8C9e2YZ2mCQUrJjx8Q/uUoVEXPGjxcxZ9SoDCzm3LwJ7drBq69KuWe+fLBokZROVatm7eg0GvNjegg3R4BPFQjdAwYnyDUGhrrDvSD53P/4o9lvtNziDHN4ixgiqcxbfMgPGNDZbRqNRqPJAqhMQHBwsAJUcHCwtUPRZAaiopSqUkUpUKplS6VMJottaulS2Qwo9dtvT1+uTp06qk+fPvHTRqNReXl5qYkTJya5fJs2bdSbb76ZaF7dunVVz549lVJKmUwm5enpqb755pv414OCgpSjo6NasWKFUkqpmJgYVahQITV//vzn7sfcuXNVo0aN1K5duxSgHjx48Nx14vDz89PHZzpw9KhS+fLJZ61UKaV8fa0dUTI5dUqp/Pkl8MqVlQoIMPsmjEal1q6V4eOORzc3pUaNUioFH2XLEh2t1JQpSrm6SoA2Nkr16aNUYKDFN+3j46MA5efnZ/FtaTSJePCbUieLKXUEeVx8U6mIy0p17CjHQZ48Fvkyu6+uqSGqkOqhUF+r+ipKhZt9G+Yi7jdUH58ajUajSS46E0eT9fjySzh5UjIA5s2zWBnVqVMJNjsjR0o3naSIjo7m6NGjNGnSJH6ejY0NTZo04cCBA0muc+DAgUTLAzRt2jR+eV9fX/z9/RMt4+7uTt26deOXOXbsGDdv3sTGxobq1atTsGBBmjdvniibB8DHx4dx48bx008/YZOMzl1RUVGEhITEP0LTYFyrSR579kDjxlKyV7067NsnGSeZgkqV4M8/JXXo1CnZkdu3zboJGxt47z04cUK6wlWqBCEh0qW7WDFpVW7VCsE//pBsg88+EzOfevUkO2n2bOlYo9FkNaKvw+V34fLbEH0V7L2h5Hoo+Rt8/5s4sdvaiheUmb/MwrjPTJoRxE0KUp4+/IYDSaTIajQajUaTSdEijiZrcfiwtK4BEXAKFLDIZoKD5aIxIkI6hI4Z8/Rl7927h9FopMATsRQoUAB/f/8k1/H393/m8nF/n7XMlStXABgzZgwjR47k999/J1euXDRu3JjARy6wUVFRtGvXjm+++YYiRYoka98nTpyIu7t7/KNChQrJWk+TOtatg2bNpFyocWPRA/Lnt3ZUKaRcORFyCheWEqJGjcQN3MzY2ECrVlJNuWaNiDnBwVJZWayY/E2jx3LKuH0bOnSAl18GHx/ImxcWLBAVrkaNdAxEo0knVAz4T4Yz5SFoA2AHBYZAxbPg0VK+wAYNkmWnTJEySzMSRTizeYvbnCUXhenPNlzJY9ZtZBSs4bMXGBhIhw4dcHNzw8PDg27duhEWFhb/+tWrVzEYDP95HDx40Hw7rtFoNBot4miyEBER0hrKaJRWUe+/b5HNxHWgunQJihSBZcvkhmJGw2QyATBixAhatWpFzZo1WbRoEQaDgTVr1gAwbNgwypcvz4cpaG00bNgwgoOD4x8+Pj4WiV8jNhGtW4t59rvvwpYt0vQpU1K6tJj4FCsm5j4vvQRXr1pkUzY2cvj/+6/c6K9YUcSbMWNk8+PGpU7MSfZFU0wMTJ/OmhIlKLd8OU5A5dy52Tx7NnTtKgE+Qa9evTAYDMyYMeM/ryXXnFyjsSqhf4FPNbj5ufjguL4IFY5D4Ulg6wLXrkGbNvIb/eGHMMC8XaKMxPAjH+DLQXKQi/5sJTfeZt1GRsFaPnsdOnTgzJkz7Nixg99//52//vqLHj16/Gd7O3fu5Pbt2/GPmjVrmv9N0Gg0muyMteu5koP2xNEki0GDpMbe01Ope/cstpmJE2UzDg5KHT78/OWjoqKUra2tWr9+faL5nTp1Ui1atEhyHW9vbzV9+vRE80aNGqWqVKmilFLq8uXLClDHjx9PtMxLL72k+vfvr5RSavfu3QpQf//9d6Jl6tSpo4YPH66UUqpq1arKxsZG2draKltbW2VjY6MAZWtrq0aNGvX8nVPaE8cSmExKffVVgr9Lt25KxcRYOyozce2aUiVLyo4VKaLUpUsW36TRqNSqVUpVqJDwnubKpdSXXyqV3I/typUrlYODg1q4cKE6c+aM6t69u/Lw8FABT3r8/PmnUpUqqX2gbEFN9vZWPmvWqJEjRyp7e3t16tSp/4y9bt06VbVqVeXl5fWf4/6XX35RuXLlUt999506f/68OnPmjFq1alWK9l974mgsSnSAUlc6JfjenMin1L0lif3owsOVql5dDr4aNZR6+NCsIZiUSS1SH6keCtVHOatLap9Zx7ckqfHEsYbPXtz3yD///BO/zJYtW5TBYFA3b95USinl6+ub5LmJRqPRaMyLFnE0WYO//lLKYHi+w3Aa2blT/EhBqe+/T/56derUUX379o2fNhqNqlChQs884XrrrbcSzatfv/5/TrimTJkS/3pwcHCiE6646ceNjaOjo1X+/PnV94+Cv3Tpkjp16lT8Y+HChQpQ+/fv/+/F6VPQIo55MRqV+t//EsSGYcMs6s1tHW7cUKpsWdlBLy+lzp1Ll83Gxiq1cqVS5csnFnPGj3++mPPci6bbt5X68MP4gds4OKg3K1eWf+gjHr9oiuPGjRuqUKFC6vTp06po0aKJRJyUmJM/Cy3iaCyCyajUne+UOu7xSMAxKHW1p1Ix959YzqRU+/ZybOTLJ0KumVmrPlc9FKqXslUn1Eazj29J4n5DfXx8VHBwcPwjMjIyyeWtdWNowYIFysPDI9HrMTExytbWVq1bt04plSDieHt7q3z58qmGDRuqX3/9NTlvg0aj0WhSgC6n0mR+wsKgc2e5dOrS5ekOw2nEz086A5tMsrk4U+PkMHDgQH788UeWLFnC2bNn6d27N+Hh4XTp0gWATp06MWzYsPjlBwwYwNatW5k6dSrnzp1jzJgxHDlyhL59+wJgMBj49NNPGT9+PBs3buTUqVN06tQJLy+v+FILNzc3evXqxejRo9m+fTvnz5+nd+/eALRu3RqAkiVLUqlSpfhH8eLFAShfvjz5M53xSuYnJkY+W9Ony/S0afDVVxbz5rYehQqJN0aFCnDrlnjknDlj8c3a2sIHH4i/8ooVYtXz4IEYkxcvLu91Uj7dzzQn378fvv0WypaFpUvln9WzJwfy5aPJE6VTj5uTg5Q8duzYkcGDB1OxYsX/bDe55uRP8qT5+OOeFRqNWXh4DM7Vh+u9wRgEztWh3AEoOg/scidedvp0WL48wcg4mf5ryWUn09nGJAA+5Eeq8rZZx08vKlSokMhvbmKcv98TWMtnz9/f/z/nBXZ2duTOnTt+GVdXV6ZOncqaNWvYtGkTL7zwAi1btmTjxo3JeQs0Go1Gk0zsrB2ARpNmPv8crlwBb++Eq18zExUl3iR370qTmblzU3Zh/cEHH3D37l1GjRqFv78/1apVY+vWrfEnTNevX0/UGapBgwYsX76ckSNHMnz4cEqXLs2GDRuoVKlS/DJDhgwhPDycHj16EBQUxAsvvMDWrVtxcnKKX+abb77Bzs6Ojh07EhERQd26ddm9eze5dEecDMfDh2IXsWmTXOssXAidOlk7Kgvi6SlCzmuviXlN48awcydUrWrxTdvaim1W69ZyTTluHJw7ByNGwNSp0kSqb1/ImVOWf+pFU0wM53buhN9+kxm1asmXQ+3a+Ds4PPcia9KkSdjZ2dG/f/8k43zcnHzatGkUK1aMqVOn0rhxYy5cuEDu3LmTXG/ixImMHTs2NW+NRvNsjMFw8wu4OwcwgY0bFBoP+XqDIYlTyp07YfBgeT5tmhznZuQwy1nDQABa8hUN6WLW8dMTHx8fChUqFD/t6OhoxWhSR968eRk4cGD8dO3atbl16xbffPMNLVq0sGJkGo1Gk7XQmTiazM3OnXLRBHLV6+5ukc0MHAiHDoGHB6xdC87OKR+jb9++XLt2jaioKA4dOkTdunXjX/vjjz9YvHhxouVbt27N+fPniYqK4vTp07zxxhuJXjcYDIwbNw5/f38iIyPZuXMnZcqUSbSMvb09U6ZMISAggJCQEHbs2JHkHf84GjdujFIKDw+PlO+gJtU8eCBdzjZtAicn2LAhiws4ceTLB7t3Q82acO+edHE6ejTdNm9rK9l1p0+LQXnZshAYCMOHS2bO118nnZlDQIC4m69YIYbquXPD99/DwYNQu3aytn306FG+/fZbFi9ejOEpinByzMmT4knz8ed1rdFonotSELgCTpeDu7MAE+RqB5XOQf5+SQs4vr6S+hbXDaBfP7OG5MN2FtMZgFfoTzOGmnX89CZnzpy4ubnFP54m4uTNmxdbW1sCAgISzQ8ICMDT0zPJdTw9PZ+5fNzf5y3zpHFybGwsgYGBT90uQN26dbl06dJTX9doNBpNytEijibzEhwsnV4APvkEHit1MCc//5ygEy1dCiVKWGQzmmxKXDXRvn0iEu7YYbGKwIxJ7twixtarJ2rWq6+KYpqO2NpC+/ZS0bV0KZQpA/fvw7BhIuYsWvToounWLZg1Sxb46ScCAM+iReHCBejRI1GbuuddNP3999/cuXOHIkWKYGdnh52dHdeuXWPQoEEUK1YMgIIFCwJSZhGHo6MjJUqU4Pr160/dH0dHx0QXg66urmZ6pzTZksjzcPE18G0Psf7gWAZK74ASy8G+YNLrPHwoLfUCAyVDbd48s9aFXuUf5vEeRmKoxQe0ZjoGslrdadI4ODhQs2ZNdu3aFT/PZDKxa9cu6tevn+Q69evXT7Q8wI4dO+KXL168OJ6enomWCQkJ4dChQ/HL1K9fn6CgII4+JrTv3r0bk8mU6KbUk5w4cSL+u0yj0Wg0ZsLapjzJQRsba5KkSxcxSixRQqnQUIts4t9/lXJ2ls0ks1lTtkMbG6eeixeVKlZMPl8FC8rnLdsSEqLUCy/Im5Ezp1JPdFVLT2JilPr5Z6VKl04wQHa3La+65sgTP8NYo4YqlC9fqs3J7927l8hU/NSpU8rLy0t9/vnn6twjo+fkmJMnB21srEkVxodK3Rip1FEHMS4+6qTUrS+VMiZtuBuPyaRU27ZyrOTPr9T162YNy1+dVwNVXtVDoaarJipaPSeeDE5qulOtXLlSOTo6qsWLFysfHx/Vo0cP5eHhofz9/ZVSSnXs2FENHTo0fvl9+/YpOzs7NWXKFHX27Fk1evTo/3TL+/rrr5WHh4f69ddf1cmTJ9U777yjihcvriIiIuKXadasmapevbo6dOiQ2rt3rypdurRq165d/OuLFy9Wy5cvV2fPnlVnz55VEyZMUDY2NmrhwoVpeYs0Go1G8wRaxNFkTn77TU4QDQbpTGUBHjxI6ITctKl0ttH8Fy3ipI5jx+T6BuRzduWKtSPKAISFKfXyy/KmuLgotWePVcOJiVFq9ewA9UvOzmolKEdQc8ihfnx1lOrSuXuaL5qe5MnuVEopNWDAAFWoUCG1bds2de7cOdWtWzeVP39+FRgYmOz90CKOJsUEbVLqZPGEtuEX3lAq8nLy1p08WY5hOzul/vzTvGGpW2qYKqZ6KNR4VVNFqBCzjm8NUiPiKKXUrFmzVJEiRZSDg4OqU6eOOnjwYPxrjRo1Uh999FGi5VevXq3KlCmjHBwcVMWKFdWmTZsSvW4ymdQXX3yhChQooBwdHdWrr76qzp8/n2iZ+/fvq3bt2ilXV1fl5uamunTpokIfu4m2ePFiVb58eZUjRw7l5uam6tSpo9asWZOi/dJoNBrN89Eijibzce+eUp6ecpI4aJBFNmE0KtWihWyiaFHZpCZptIiTcvbskWQTUKpaNaUe6QAapZQKD1fq9dflzXF2Vmr7duvEEROj1KxZSrm7x2ffdHasr2worMBB2dnVUf36HVRhYbJ4ai6aniQpESc6OloNGjRI5c+fX+XMmVM1adJEnT59OkW7okUcTbKJuq7UpXcTxJt/CysVuE6ya5LD9u1K2djIMTN7tllDe6iC1DhVRfVQqJGqlApWAWYd31qkVsTRaDQaTfbFoJRS1inkSj4hISG4u7sTHByMm5ubtcPRWJv27RP6Ax87ljqX4ecwcaKYmzo6wt69UtKvSZobN27g7e2tj89ksmGDdEaKihIvnF9/tZgfd+YlMhLef1+cnh0dYd06eMLY26IcOCA+WydOyHSNGjBnDrG16rF0KXz5pTTEA8ifH4YMgd69IUeO9AsxJZw9e5YKFSrg5+dH4cKFrR2OJiOiYiBgBtweC6ZwwA4K/A8KjgLbZHoqXbkiP5YPHkCXLrBggdl8cGKIZCbNuMCfuFGAIewnH1nDoC7uN1QfnxqNRqNJLtrYWJO5WLNGBBxbW1iyxCICzs6dMHKkPJ89Wws4GvOxYAG0aiUCTsuWsHWrFnCSxMlJhJuWLRPerA0bLL/du3ehWzdo0EAEHA8PcTU/fBjq1cPODjp3lnbkCxeKyfmdO9KSvHhx6aD88KHlw9RozEro3+BTHW4OEQHH9QWocBwKT06+gBMeLsfpgwdQp44cN2YScEwYWUAHLvAnTuSkH1uyjICj0Wg0Gk1q0CKOJvMQECC3uwGGDpUTRTPj5ycth00maXz18cdm34QmG6IUTJoknyeTSXSCNWtEq9A8BQcHWL0a2rSBmBho3VreNEtgNMJ330nXqYULZV7XrtJ1qnfvRF2nAOztJdHg3DkR5ooXFzFn0CARdqZP12KOJhMQcxeudoELL0HkGbDLC0UXQZm/wLlS8sdRSo6XU6egQAERYM305aZQrKAvx1mHHQ70ZgNFqG6WsTUajUajyaxoEUeTOVAKevWSvr9VqsCoUWbfRFSUVHDcuwfVq0sWjkaTVkwmGDxYdEeAzz+HH38EOzvrxpUpsLeHZcvgww8hNlbq0JYtM+82Dh0SQfiTTyAoCKpVg/37RZ3Jl++54XXtCufPw/z5UKyYaM0DB0LJkjBjBkREmDdcjSbNKBPc/QHOlIX7i2Ve3h5Q8Rzk7ZzyDJrJk0VwtbODX36BQoXMFuomvuQv5mHAQFeWUo5XzDa2RqPRaDSZFS3iaDIHS5dKOYW9Pfz0k9ylNzOffipVE7lywdq1FqnU0mQzYmLkIn/qVJmeMgW+/tpsVQbZAzs7WLxYUl9MJujYUabTyt27khpVr554a7m7i3J75AjUr5+ioeztJbvqwgUR6IoWBX9/+N//JDPn22+1mKPJIDw8DucbwPWeYHwAztWg7AEo+j3Y5Un5eFu3wrBh8nzWLHjhBbOF+hff8xujAWjLbGrS2mxjazQajUaTmdEijibjc+MG9Osnz0ePhqpVzb6Jn36CefPk4nrZMimP0GjSQkQEvPeeWDfZ2oruMGiQtaPKpNjaSqpLr16SldelC/zwQ+rGMhrlYC9bVrJtQIxuLlyAPn3+UzqVEuztRRe6cEHCixNzPv1UMnNmzhTPZo0m3TGGgN+ncLYWhB8Cm5xQeAaU/wdc66VuzEuXpP5YKfng9+xptnCPsY7lfALAm3xB40fPNRqNRqPRaBFHk9GJOzkMDobataUWxcycOJFw7jlqFDRvbvZNaLIZQUHw+uvw++9iDbF+PXz0kbWjyuTY2IhZav/+Mt2zZ8prHh8ZFNO7txiwVq0q7ecWLZI2U2bCwQG6dxcx5/vvoUgRuH0bBgwQMWfWLC3maNIJpSBwFZwpB3e+BUyQ6wMpnSowAAyprOsMCxMj46AgOaZmzzZbiuEF/mQB7VGYeIHuvM1Ys4yr0Wg0Gk1WQYs4mozNjz/Ctm3SZnjJErMbiTx4IN2CIiNFvLGA1Y4mm3H7trQO37tXKnS2b4e337Z2VFkEg0GMZgYPlul+/RJq1Z7FvXvQo4dcbB45Am5ukhZz5Ag0bGixcB0cZLMXL0ryj7c33LolOlTJknLdq8UcjcWIvAAXXwffthBzGxxLQ+ntUGIlOHilflylJHvtzBnw9JT6Y0dHs4Tsx7/MoQWxRFGNlrRnLgZ0/alGo9FoNI+jRRxNxsXXN6H+5KuvoHx5sw5vMkGnTnDlihiSLl0qN/s1mtRy6ZJoAidPyrXNn3/Ciy9aO6oshsEgrb5GjJDpzz6T74ekMJmkrqlsWRGElZKD/sIFEYDSyV3awUEShy5elCZYcWJOv35QqhTMmSPG6hqNWTBFwK1R4FMZQneCwRG8xkGFk+D2WtrHnzhRhBt7e/nrlQZB6DHu4ctMmhFJCKV4kW4sxxbtAK/RaDQazZPoS1ZNxsRkEt+LsDAxShwwwOybmDhRyl0cHeU8NHdus29Ck404cUI+qr6+Yma7b59F7Js0IELO+PEwbpxMjxgBY8aISBPHP/9I5k3PnhAYCJUrw19/SUZfgQJWCdvRUWx9Ll6UyrDCheHmTejbV8ScuXO1mKNJI8Fb4EwluP0lqGhwawYVz0DBL8DGDG2/N2+GkSPl+ezZ0KBB2scEQrnLtzQlBH+8qEQfNuKA7i6g0Wg0Gk1SaBFHkzGZPVvSGHLkEEfYNJiNJsX27fDFF/J8zhyoUcOsw2uyGX/+KSVUAQEi3OzbJ0KOxsJ88YW0+wIYOxaGD5fSqV69oG5dEXLc3KQE69ixDJMW5egotjyXLsn3T6FC4t/ep4+IOd99p8UcTQqJ9oPL78OlNyD6CtgXghK/QKnN4FjSPNu4eBHatxextGdPqRU0A5GEMZs3ucNFclOE/mwlBx5mGVuj0Wg0mqyIFnE0GY8LF2DoUHk+ZYqYR5iRa9cSzkM//lhaA2s0qeXXX6FpUwgJgZdeEkHH09PaUWUjPv8cpk2T519/LbVK338vB/iHH8K5c5LJl06lUynB0RE++QQuXxbdOk7M+eQTKF1afHSio60dpSZDo2IgYCqcKQ9BawFbKDAIKp6FXK3MZjZMaKgYGQcHS/bNzJlmGTaWaL6nFVf5BxfyMIBt5KKQWcbWaDQajSarokUcTcbCaJQ2PhER0KSJ3FE3I1FR0Lo13L8PNWtKlxiNJrUsWiRtxKOioEUL2LpVzIw16cxLL4mxFYhTcO7csGcP/PwzFCxo1dCSg6OjZOFcuiTfSV5e4Ocn2TqlS4smpcUczX8I2wdna8KNz8AUDi4NoPwxKDwFbHOabztxBnI+PvLh/OUXMXpK67CYWEJXfNiOAznoxyY8KWeGgDUajUajydpoEUeTsZgyBQ4elBKIBQvMdxfxEQMGSIVF7txyHupkBosATfbkm2+ga9cE+6a1a8FZWzikL4GBkrZSuzZcvZpwQAcGwvLl8s/JRDg5iT/O5cuS6FCwIFy/Llp26dLi0azFHA2x9+BqVzj/AkScAts8UHQhlP0bclQx//YmTIANG0S4WbvWLMKoQvELn3GYZdhgR0/WUpy6aY9Vo9FoNJpsgBZxNBmH06cTenzPmAFFiph1+MWL5Y62wQDLliXcuNdoUoJS0uF6yBCZHjxY9MYMWK2TdTGZYOFC6Tr13XfyT2nfXlrNLVkibeZ+/FFUNqPR2tGmGCcn6Vx15Qp8+22CmNOzJ5QpI7sWE2PtKDXpjjLB3R/hdFm4v0jm5f0YKp2HvF3AYIFTut9/h9Gj5fncuWIWbga2M4VdTAfgIxZSiWZmGVej0Wg0muyAFnE0GYOYGEnXjo6Gt96Czp3NOvyJE1KaANLEppk+X9SkgthY0QWmTJHpyZPlYeaEMc2zOHZM+rh36yYmxhUqSOnUsmWidnTqJM9tbUXQ6dRJ/nGZECcn6N9fMnNmzBCvpWvXxE+2TBmYP1+LOdmGh/9K5s31HmAMBOeqUHY/FP0R7PJYZpvnz0OHDiKS9u5tNgO5AyxhHaKCv88U6tHRLONqNBqNRpNd0CKOJmMwYQIcPw65cknNgBmvih88EN+SyEh4442E7qgaTUqIiIBWrRKapS1cKFk4mnTiwQOpNapdW0ouXV1FTTtxAho3Trxs27awapWkRy1fDu3aZWq1w9lZSkGvXIHp06VD+tWr0L27iDkLFmTq3dM8C2MI+P0PztaA8ANg4wqFp0P5I+Ba33LbDQkRI+OQEHjhBVERzcApNvMTIga9xiBeY5BZxtVoNBqNJjuhRRyN9Tl6VEQckHRtMxqRmkzQsSP4+kLx4uJzaqM/9ZoUEhQkHag2bhQT2nXrxAdHkw6YTKKclS0r/bhNJhFpzp2DQYPA3j7p9Vq1kn+Ug4MYYL3/fqbv2+3sDJ9+KmLOtGkJYs7HH0O5cmK0rcWcLIJSELhauk7dmQGYIFdrqHgOCnwKBgvWb8b9cJ47Jy3TzGRkfIWD/EBrTBipy4e8x2QzBKvRaDQaTfZDX85qrEtUlHSjio2VtlEffGDW4SdMgE2bpCxh7VoxNNZoUoK/vyR6/P23+G1v3y6dqDTpwIkT8OKLopjdvQvly8Pu3bBihVxcPo+335Ye8I6OosC9+66kVGVycuSA//1PxJypUyF/fnnetau8RYsXZ9oKMg1A5EW41Ax8P4CYW+BYCkpthRKrwSEd2m9/+WVixbpAgTQPeZuzzOZNonlIRZrxEQux0aegGo1Go9GkCv0LqrEuo0fDmTNyFTJ3rlnLqLZtS+zHWL262YbWZBMuXxb7lX//leuYP/+UbtYaCxMUJGYwNWvC/v3g4iLtwE6cgJdfTtlYzZqJkuvsDFu2iAL38KElok53cuSAgQNFwJkyBfLlk89sly6SmbNkiRZzMhWmSLg1BnwqQ8h2MDhCwTFQ4RS4N02fGH79VYzjQEzD69RJ85APuMG3NCWcQIpRhx6swZanZNBpNBqNRqN5LlrE0ViP/fvlwgykbVTevGYb+upVaVajlPhG6NIXTUr5918RcK5cgRIlYN8+qFbN2lFlcZSCn36S0qlZs6Ss44MPpKzjs89SX9Lx6qsi4Li4wM6dYo4VFmbe2K2Ii4tUlvn6yldqnJjTubNk5vz6q7Uj1DyX4G3gUwlujwUVBW5NocJp8BoNNk7pE8O5c1JGBeI/ZYYfznAeMJNmPMCPApSlH5twwjXN42o0Go1Gk53RIo7GOjx8KFcYcbX3LVuabejISLG/CAyEWrVg5kyzDa3JJvz9NzRqBAEBUKUK7N0LJUtaO6oszr//SprTRx/BnTuSSrJzJ6xcCYULp338Ro2kFs7NTVKqmjUT09YshIuLaF2+vtI1LW9euHQJhg2T1998UwySV60CPz/rxqp5RPRNuNxayqeiLoO9l5RNldoCTqXSL47gYHjnHQgNleNw2rQ0DxlNBHN4m1ucwQMvBrANV8x3s0aj0Wg0muyKFnE01mHYMLh4UXwtvv3WrEP37y9eyblzix+jUzrdxNRkDX77DV5/Xa5pXnxRrvfN6LWteZLgYFEWatQQtSxHDpg0SUSdV18177YaNBBhyMNDUqtee026XmUxXFykc5qvr7yV+fPL/JMnRdRu2xaKFBFtrE0baTx06BBER1s17OyFioWAaXCmHAT9AthC/oFiXJyrtVlLi5+LyQQffggXLsiHYs2apxuGJxMjscynLZfZhzPu9GcreShqpoA1Go1Go8neWLC9gUbzFPbsSUiPWbBA2oqbiYUL4ccf5fx3xQooqs8ZLUokYWxEjIeC8ccNNytHlDYWL5ZOP0ajeOKuWiVWKhoLoBQsXSpqQ0CAzGvdWpx6vb0tt93atcUc+bXX4PBhEYp27IA8eSy3TSvh6gpDhsBbb0HFijB7Npw/L5WsJ07AzZtyvb5mjSzv5CTZiw0aQP368jCDp63mScL2w/XeEHFSpl3qQ5HvIEdV68QzZgz8/rsYGa9fn6D6pRKFYhm9+JeN2OHIJ2ykEJXNE2sW5CanrR2CRqPRaDIZWsTRpC+hoQl19j16SN9mM3HsGHzyiTwfN06yKTSW4zrHmE87LnMBgMk0pDfLqcBrVo4sdUyZInoCSEXP/Plgp78hLcOpU9Cnj9StAZQpIwrDa+n02aleXcTkJk3g+HExS965M80XrxmVuKSOd95JqEwLD4cjR0TQiXsEBkoy1N69CeuWLCmiTpywU6kS2Nqm/z5kCWLvw43P4f4CmbbNDYUnQ54uYLBSYvT69dKNCuCHH0TFSyMbGcU+FmDAhu6spAzaDf5JFIqL/MVmJvAPO6wdjkaj0WgyGfoSRZO+DBoE165BsWJy1WwmAgOhVSvpWP7WWzB8uNmG1jyBCRO7+ZZ1fI6RGNwoAAQQxj1m0pRmDOdtxmCbSb5elIKhQ8VDBOQjOnky2OhiU/MTEiIt42bNknSnHDngiy+kX7ajY/rGUrky/PEHvPKKiEqNG8OuXdmmds7FRWyCGjWSaaWkwvVxUcfHRwySL1+Gn3+W5XLmhLp1E0SdevWkOk3zDJQJ7i8SAcd4X+bl6QaFvwY7K3rE+PhAp07yfMCAhOdpYA+z2cx4ANrzHdVomeYxsxIKxRm2spkJXGYfADYYAGXdwDQajUaTqTAopTL8L0dISAju7u4EBwfj5pa5yzWyNVu2SFcYkLvgjRubZViTSUpfNm+WLkJHjpi1QkvzGCEEsJjOnGErAA2iX6fRoSiKv/Qna26/zQ7P3wAozUt8zAo88LJmuM8lNlYSwhYtkulJk6T8RGNmlILly8V1199f5rVqJeapRYpYN7YLF0TIuXkTSpeWUitzGClnIM6ePUuFChXw8/OjcAr2LShIvHLiRJ2DB//b1MtggAoVEkSdBg0ksSo9LV0yNA9PSulU+H6Zdq4spVOuDa0bV1CQtA+/eFF+i7dvT7MPzhFWM5+2KBQtGMebfGGWULMCJkycYD1b+IrrHAPADkca0pVKNzpS1btBio9PjUaj0WRftIijSR8ePJA8/Fu35I7fjBlmG3rcOLm57+QEBw7oNtCWwoftLKITIQRgjxO9HnSk4rVfuHnrAd5vQvCfdgSV/YCp+TcQaQgnJ/nows9UxHwlc+YkIgLatZP2yzY24qXUtau1o8qCnD4tpVN//SXTpUtLJo4ZSynTzJUrIuRcuyZK8O7dWcpQK7UizpMYjXDmTOJsncuX/7tcnjwJnjoNGogNkYtLGnYgM2IMhVuj4c5MwAg2ruA1FvL3B4OVsxTjTL+2bBER9cgR6UufBs6yi1k0x0gMjfiEdszGgFbyjMTyDyvYykRucxYAB3LQiN68xiDcKciNGzfw9vbWIo5Go9Foko0WcTTpQ8eOYmJaurQ4aubIYZZht26V5B6lxJT2o4/MMqzmMWKJZgMj2IGUvxU1lmOAXwVc7q8D4EZIZbxfOUXwH+DmClE5GzK3+APO2fsA0JzhvM3YDFVeFRwMLVqIruDoKF2szdjlXgNSOjV2rHSfMxrFIXrkSKlXS+/SqeRw7ZoIOVeuyIXt7t1Zpq+8uUScpLhzR8TzOFHnyBGIjEy8jK2tiOtxok6DBvIWZ8lsHaUgaC34fQoxN2Wex/vgPR0cMsgF+ogR8NVXcudj3z7pDJcGrnOMqTQmklBq8D7dWYkN2ds4KYYoDrCYbUziHr4AOOPOy/TjVQYkarWuRRyNRqPRpBQt4mgsz/r18N57ku6wd6+cyZuBq1fl3PPBA+jZE+bNM8uwmscI4CLzacd1jgLwbngrmvr+iyHqEmAAz8+5YeyBd9ESBF+ejlvQcFARKLu8/FmsDivcNwNQihf5mOXkwvonqAEB0KyZaIlubrBxY4IviMYMKCWq2KBBcPu2zHv3XZg+PeNnt9y8KULOhQtQqJAIOWXKWDuqNGNJEedJoqPl2Nq/X8SdffvkbX0SL6/Eok716hlT20sRkZfAry+EbJNpx5LgPRvcm1k3rsdZuxbef1+eL10KHTqkabi7XGYSDQjlDmV5mX5swZ7M/o9MPVGE8zc/sIMpBHELgJzk41X+R2M+wRn3/6yjRRyNRqPRpBQt4mgsy9270tv27l1xj5040SzDRkZCw4bSkap2bWlyk+kvADIQCsVBfmYFnxBFOC7Kg88C3sLr5kogFuwLQ/GfIWfj+BPQ4OBg3OxvgG+7+Na5AfmaMbnwXsJswnAhD135mUo0t9p+XbkiXcsuX5ZGRFu3ysWjxkz4+Ejp1B9/yHTJklI61dx6//MU4+8vbcd9fMDTU8yOK1SwdlRpIj1FnKTw80vI1DlwQBqCxcYmXsbREWrWTNwJy9Mz3UNNHaZI8J8E/hNBRYHBATyHysPG2drRJXD6tDhRh4eLmfi0aWkaLoQAJtGAe1zBm2oM4o8kRYrsQATB7GE2u5hBGPcA8KAQrzOYF+mOA0/PPtYijkaj0WhSihZxNJZDKWjdWu78VaokefZmUlo+/hgWLBDvhWPHrO+NmpWIIITl9OYwywGoEV2Hrr622IcdkAU83oei34NdboDEIo6bm1zQ3BwGd2YAEOtclvnFDRx3PgdAM4bSgi/Tvbzq5EmxYfH3h+LFxcezVKl0DSHrEhoq5lQzZsjVuZOTlGx89pk8z2zcvSvtx0+eFK+QnTuhShVrR5VqrC3iPMnDhwntzeNKse7d++9yJUokztapVAnsMk5VphCyHa73gahLMp3zNSgyB5xKWzeuJ3nwQO54XL4s2WbbtqXpzYwghKk0xo/j5KU4Q9iPO5lFdTMfodxlFzPYw2wiCQEgLyVoxlDq0SlZWUlaxNFoNBpNStEijsZyrFgB7dvLieKhQ2muu49jwQIRcQwGOQ997TWzDKsBfDnEfNpzjyvYYMvHD96nxrXtGIwPwMYFvGdBns6JzCz+I+LEEbwZrnaG2LsogxNHCtdhfr6/wAAlacjHrCA33umyX3v3Suv54GDpLL1tW7bpJG1ZlILVq2HgQDEtB3jnHRFzihWzZmRp5/59Sds6dgxy54YdO8z2HZbeZDQR50mUgkuXEos6p0/L/MdxdZWGSnGiTr16VuxEGH0TbgyEB6tl2r4gFJ4BuVpnPLMfoxHefFO++IoWFQUtb+pbm8cQxWze5By7yEk+BrOPAmQw0crCPOAmO5jC3/xANA8BKEgFmjOcWnyQopsUWsTRaDQaTUrJaPe0NFmFW7ekrALEzNRMFz9HjyYM++WXWsAxFyZMbGcyv/IFJmIpaPRmoF9V3O6vkgVy1Ibiy1J2d9n9DahwEq52xhCyjdp+f1E6pBaTi53jst0+xlOdLvxEZd6wzE494rffoE2bhBK8337TLejNwtmz0Lev+MaApE3MnCkXi1mBPHmklKpZMxGhX31VLoLr1LF2ZFkOg0E870uXTjCnDw6Wtz1O1Dl4ULyyd+9O+MgBlC+fIOrEtTe3sbFgsCoW7syGW1+AKQywkY5TXmPBNoPeZBo5Uj67zs6wYUOaBBwTJhbRiXPswhFX+rElWwk49/BlG5PYzyJiiQagCDV5gxFU5R1ssOSHT6PRaDQaQWfiaMyPUtK+dNMmEW8OHgR7+zQPe/8+1KolhsZvvy3nohY9Wc8mBHGLhXTkPHJl1Cy8Ce/4XsEm6gpiXjwMvMaAIen/4VMzceJQJmmze/NzUNEY7fOzspgbf7lJ+cHrDKYlE7Al7Z+RJ1myBLp1S7gRvXq12RqjZV/CwkRBnTYtoXRq2DAYMiRzlk49j5AQaYG3bx/kzCltmRs2tHZUKSKjZ+IkB6NRbIoe74R18eJ/l8uVK3EJVu3aksFjFsIOwPXeEPGvTLvUgyLfQY5qZtqABVi9Gj74QJ4vXw7t2qV6KIViJf35g9nYYk9fNlGB7HEn5TZn2cpEDrMcE0ZADPvfYAQVeD1N7dR1Jo5Go9FoUooWcTTmZ+FCuXJ2cJBShIoV0zyk0SjlMFu3ilfqkSPg4ZH2ULM7J/mdxXQmnPs4KmcG+jen6K2NGIgFe+9H5sXPbt30XBEnjofH4Uo7iDqPwsDZAtWZ7XUMow2UoD7dWUluzGduNHWqWLIAdOoE8+ebRUvMvigFv/wihqhx7YZatJDSqeLFrRqaxQkLE+X4jz/AxQV+/x0aN7Z2VMkmK4g4SXH3rtwjiBN1Dh/+b3tzGxuoWjWxYXKxYimseIq9DzeHwr35Mm2bCwpNgrzdwJCB7yScPCk7/PChfBl+802ahtvMV/zKCAA+ZgW1aWuOKDM01znOFiZwnHUo5HS5Ak15gxGU5kWzbEOLOBqNRqNJKVrE0ZiXa9fEdCQ0FCZNkrvzZmDMGBg7VrLBDxyQk3JN6okhkrUMYQ+zAKgYXYFevi44hP0jC+RqA0Xmgd3z646SLeIAGMPFR+LeDwCE5yjJ9OIB+DmF4UJuOrOEKryVpn1TShJDJk2S6YED5dpFZ22lgXPnoF8/MfgFEW1mzhRlNbvw8CG0bCneOM7O0pu+SRNrR5UssqqI8yQxMfDvvwmizv790hnrSTw9E5dg1ajxFM99ZYL7i+HGEDDel3l5uoiAY5/PkruSdgIDJXXV11c+p1u2pMnIeC/z+ZnuAHzAt7xCf3NFmiG5xD62MIHTbImfV413ac5wilHLrNvSIo5Go9FoUooWcTTmw2QSI9Bdu+Tu399/g61tmofdvFmuFZWS8phOncwQazbmNmeZT1tuIG3APwp8g/rX92MwBoGNKxSZDbk7JftWdYpEnDgerIVr3cH4AGWTg9+98/N7nqtggNf4jHf5KlXlVbGx0KuXmF8DfP216IgZzWc00xAeDuPHS1pTTIxc6Q4dCp9/LkJGdiMyElq1ki8lR0dYvz5TtE/PLiJOUty4kbgE69ix/7Y3d3BIaG8eV4pV0OMUXOsN4ftkIadKUPQ7cH0h/XcipcTGSgngjh0iuP7zj3g8pZJ/2ch3vIvCRDOG8S5fmTHYjINCcZadbGECF/gTAAM21KYdzRmGF2nPKk4KLeJoNBqNJqVoEUdjPubOFddhZ2e5HVo67WaHvr5ycv3gAfTuLZvQpA6FYi/zWcUAYoggrzEPg/yqk/v+o+yKHHUemRenrO92qkQcgGg/8O0IYXKyfC1XGaYXuUCEHRSnHt1ZSR6KJnu4yEixe4jzSvrhB6nq06QCpWDtWkljiktlePNN+PZbqWfMzkRFicfIr7/K1f+aNVJWloHJziLOk0REiEH+49k6d+8mvO6aI5TR3cfyafsZ2NkaiTa6cMd2LJ5V+mOXWeoxhwyR9MMcOUTBqlIl1UNdYh8zaEIMkTSgC51YkCb/l4yICRMn+Y0tTOAqko1qiz316UwzPicflv3O0yKORqPRaFKKFnE05uHSJalxevhQyiz69UvzkBER4h96/Lg0hPnrr6ekvGueSzgPWEp3jrEWgMbhtWnjexfbqKuIefFw8Br9VPPiZ5FqEQdAGcF/EtwaBRiJcsjHvOIP8XENJwe56MxiqvL8C+SQEOls/ccf8hlZsQLefTfFu6IBuHBBjt/t22W6WDE5pt9+26phZShiYqBDBxFw7OzkA/f++9aO6qloEefpKAVXrsD+/YqIW+t4p8YACuQWz6e1u9/j06kzuBHgTY4cULduQrZO/frSeT7DsXJlgnnxqlXSmi+V3OIM3/ACDwmiMm/Rm/Upap2d0TFh5Air2cJX3OI0APY48yLdeY3PyI13usShRRyNRqPRpJSs82ussR5GI3TuLALOyy8n9ABPA0rJMMePSzfUX37RAk5qucRe5tOeB/hhq2z5n38TSt3aiQEjOBSBYj9DzpesE5zBFgoOh5yvgG97HKN96X/ehr0FvVhe8BZzDe/QhIG8y0TscEhyiIAAqWg5flyaB23cmKk8ZzMO4eHw1VdyBz+udOrzz6V8KjuWTj0Le3vp9OPgAMuWQdu28NNP0L69tSPTpBCDAUoWvkzJev0gRPxPTPYl+DdwFmci3qBiNQg9KC3P9+yRRxzlyiUuwSpXzsreWydOQNeu8vzzz9Mk4ARynW9pykOCKEF9erAqywg4sURzkJ/ZxtfcQbokOpGTxvThVf6HG/mtHKFGo9FoNM8ma/wia6zLjBnSftfVVTpTmeEsdv58WLRIhlq5ErzT54ZYlsJILJuZwCbGoTBRKroI/Xxz4xS2TRbI9cEj82IPq8YJgGs9qHACrvfBELiUF2/folyoF9OK3WKn4zQusZfurCIvxRKt5usrNkyXLkG+fNK9rEYNq+xB5kUp8Xb59NOE0qnmzSX7plTKSuuyFXZ2YtJlbw+LF8OHH4r49dFH1o5Mk1xMURAwGW5/BSoSDA7g+Tk2nsOobuNM9caPFjPB2bMJ5VcHDsD58+L3fe6c/OyBdEyMy9Jp0EAySHPmTKd9uX9f0g8jIqBpU5gwIdVDhXGfb2lKEDcpSHn68jsO5DBjsNYhmgj2Mp/tfMMD5LvOhdy8yqc0pi8uPN/IX6PRaDSajIAWcTRpw8cHRkjLUaZPl9KLNHLkCPTtK8/Hj4dXX03zkNmOQK6zgA5cYi8A7QJfpNH1kxiM1x+ZF8+B3B0zluOvrZu0NHdrCtc/IV/YLcafzcHSIrA/92EmUJ2PWEw13gHg1Cm5Vrl9Wz5227ebxYYpe3HxopRObXsk7BUtKr43LVpkrM9GRsXWVly0HRzEhKlLF4iOhu7drR2Z5nmE7ITrn0DURZnO+SoUmQtOZf6zqI0NVKwoj7h/7b17Ce3NDxyQ9uZBQdIEasuWhPWqVEmcrVO8uAUOrdhY8Wm6ehVKlJAssVQ2FYginNm8iT/nyEVh+rMNFzJi3VjyiSCEP/mOnUwjlDsAuOHJ63zGi/TECVcrR6jRaDQaTcrQIo4m9cTGyl3nqCi5c28GF9n798VaIjpariM//9wMcWYzjrGWn/mYhwThZnRhyPXq5Av8W150qQfFl4JjBjanzfMhuDYA3/bYhh/iI1+oHpKP+d53+c62Ja8wAM99k2n5lgNBQVCpkmgQXl7WDjwT8fBhQulUdLSIEEOGSG/2HJn/jnu6YmMD8+bJezh7NvToIe+pGcpKNRYg+hbcGAgPVsm0nSd4T5fMxBSoK3nzStfEt96S6ZgYOHkyQdTZvx+uXZMKpxMnEkz5CxRIEHQaNBDjfienNO7T559LV0gXF3F2T6VZj5EYfqANvhwiB7noz7Z084WxBOEEspuZ7OZbHhIEQB6K0pTPaUAX7EnrG6/RaDQajXXQIo4m9Xz9taTNeHjAjz+m+fai0SheodeuSRXHkiVW9hfIZETzkNX8j7/5AYAG4eX58EoYttF7ARsoOAIKfpEq8+J0x7EElP0bbo0F/6+ocv8uE8JyMav4A3a7fMs9x/0YPVbRoEJxfv8dcuks+OShlHRV+vRTOdBA0plmzdJpTGnBYJDyM0dHacfet6+I2wMHWjsyTRwqFu7MgVtfgCkUsIH8fcFrHNi6p3l4e3sRZGrWTPD1v3kzQdA5cEC6YgUEiM6yYUPi9R4XdlIkSC9fDtOmyfPFi6Fy5VTFr1D8xMecZjP2ONOXTXhRIVVjWZtg/NnJNP7kO6IIA6AAZWnOMOrQHlsywW+gRqPRaDTPQHen0qSOEyegdm3Jxvn5Z/GDSCOjRsGXX4qH6sGDaeqKmu24wUnm05bbnMWgoJ//i1S4tT/BvLj4MnB9wTLbTkt3quQQ+if4fggxNzAqO37Jbc+e4hEYw93pZr+Ieo66DVWyuHQJBgyAzZtlukgR8bNq2VKXTpkLpWDkSMlyAvk7bJh1Y0J3pyLsIFzvDREnZNqlLhT5DnJUT9cwIiNFyIkTdvbvF1HnSYoWTSzqVKkiYs9/OHZMWjhGRsrnLO5zlwrW8jnbmYwNtvRmA1V4K9VjWYv7XGM737CX+cQSBUBhqvIGI6jOe9iQuhIzS6O7U2k0Go0mpehMHE3KiYqSMqrYWDFS7NAhzUNu2iQCDoi1hBZwkodC8Qdz+IXPiCWKIlH5+N/VAuQIe1Q+laud+DxkBPPi1JKzEVT4l4s7u1M63zo+eBBL5RA3FlcIZpHDe1yjP+8xGXt0+7IkefhQsuYmTZIyH3t7GDwYhg+X8guN+TAYxMjL0RFGj5b3ODpaFGotlKU/sYFwcxjc+xFQYJsLCn0NeT8GQ/qneTo5iebSsKFMKyXm7I+LOidPSpLctWti6g9S4Vi7doKoU68e5FV35fc3MlLKmeN+QFPBTqaznckAfMiPmU7ACeACW/mag/yMiVgASlCfNxhBJd7AgD72NBqNRpO10CKOJuWMGydnmnnzihdEGi9OrlxJSOT55BOzJPVkC8K4xxK6cpLfAHgvsDqvX7+MwXgabHKKeJO7Q6a/eFQKRozKzcSJv/Bxy/nMGTqACoTwpY8z84tFsNtjJpfYRw9Wk48S1g43Y7Fxo2TfXL0q06+9Jr4tZf5r3qoxEwaDiDYODpIdMWaMCDnjx2f6YzHToBTcXwI3B0PsPZmXpzMUmgT2Gad9tMEgPsQlSiTcCwkNhX/+SdwJKygI/vxTHgC2xLLX+QPqRVwnOH8pbn2xnLIGW1IjSx1iGWuQsr93mUhDuphl39KDG5xkC19xlDUoTACU41XeYARlaKzFG41Go9FkWbSIo0kZhw7JXX2A776D/Gk7IY6IgFat5CS1Xj1pcKV5PufYzUI+JJjbuBrt+ex6NQoG/iMvutR/ZF6c+QUNoxF69xbLJTBQok537Ku8CL7tcIw4QZ/LsDefIysLH2W8TXU+YiE1aGXtsK3P5csi3mzaJNOFC0vp1HvvaSEhvRg6VDJyBg6UMpeoKDGS1u+/ZYk4LaVTYdKZD6eKUjqV80XrxpVMcuaEV16RB0h783PnEmfr9Dg3mHoRewjFlQZ3NuDTwAN3d/kNjcvWqVMHnlfd6sN2FtMZgFcYQFMyRycBXw6xmQnxNzAAqvA2zRlOCepZMTKNRqPRaNIHLeJokk9EhJRRmUzQvr20kUoDSknmzYkTkC8frFkjN681T8dIDBsZzTa+RqGoFVaULr6x2EX/g5gXfwEFR4Ih8x/akZFyd3rduoQGQNLetxyUOwg3h8OdabxwN4qyoc7MLRHC987v05i+vM+U7FleFREhZVNffy2igb09DBokPi26dCr9+d//5Eutb18xPI6OlhbuWsgxP8YwuD0WAqYDRrDJAQXHQIFPM4eZ+1OwsYEKFeTRrRviQddpBgC/tVpCgcCKXD0EwcHSpW/bNlnPYBCP4zhRp359KFky4aN3lX+Yx3uYiKU27WjNtAyduaJQXOAPNjOBc+wCwICBGrSmOcPxpqqVI9RoNBqNJv3I/Fd6mvRj5Eg4fx4KFpRuNmnkxx+lmYaNjdT+az+/Z3OXKyygPb4cwkZBr9s1qHr730fmxcUk+8a1obXDNAshIeK3u2ePXAOvWCFJJPHYOIL3VHB7Ha5+RL7IAEaetWV1YSN/5JvNFcP+R+VVGbiVurn5/Xfo319MNgCaNJHjtFw568aV3enTRz7EPXvK/yMqSrIYdes986AUBG0AvwEQ4yfzPN4F7xli6p6VOHpUWtgDjBxJ+y/foz1iT3fqVEKmzv79UkF58qQ85s2TVfLlE0Gn1psXuNP5DaLswylPEzqzGJtUFWNZHoXiNJvZzASucAAAG+yoR0ea8jmelLVyhBqNRqPRpD9axNEkj7/+Sqh1+vFHyJ07TcP9809CG9avvkpIHdckzWFWsIyeRBJKoaicDPT1wjX8mLyYuwMUmWOWNrkZgTt3xKfz2DFwdZWO2E/9fLg3hQon4WpnbEO20M4PqoTYs7DoMcbb16AT86lJ63SNP93x9ZXSqd8elRYUKiTH6vvv64yPjEL37pIV1bWrOLdHR8P8+WCbMbvlZBqirsD1fhDyqOOaQ3EoMgvc37RuXJbgzp0EI+M334SxY+NfsrOD6tXl0aePzLt9O3EJ1tGjcPcu7Dh8ixwzXien/T3uHa3Jqs/Wca2aQ3y2Tka5mWLCyHHWsYWv8OMEAHY40pBuNGUIeShq3QA1Go1Go7EiGfPWiyZjERYGnTvLHc+uXeUEMg3cuyc+ONHRkm0xZIhZoszwzJkzh2LFiuHk5ETdunU5fPjwM5dfs2YNZcuVwd7JlmaV23NhcyhvBZZmpA+4hp9HGVwZtaIlBRvswtnVkyZNmnDx4sUkx4qKiqJatWoYDAZOnDgRP3/MmDEYDIb/PFysVHpz9ap0bjl2TO4a//FHMgQ++/xQahN4fwsGByoGxzDWx57iISH8QBuW04cYItMh+nQmMlJMxitUEAHHzk4OpnPnoHVrLeBkNDp3hqVLRbhZvBg6dZIUCk3KMUXB7fFwpqIIOAZ78BwBFU9nTQEnJkaOaT8/MSVfuvS5mVwFC0r24pQpIuKEhMAfh4LpeqI5OYtdI+xKKTY338zBP3IyYwa0aQPe3lCkCLRtCzNnys2WmJj02cU4jMRwgCWMpRI/0AY/TuCIC6/xGV/hS3vmaAFHo9FoNNkeLeJons+QIXK3v0iRNDsPG41ip+PnB6VLy7VMdrjWXLVqFQMHDmT06NEcO3aMqlWr0rRpU+7cuZPk8vv376ddu3Z4d3vAu8dNlG4Bu1oaKL7jIjamUHBpwOQtnzBz/h7mzZvHoUOHcHFxoWnTpkRG/lewGDJkCF5eXv+Z/9lnn3H79u1EjwoVKtC6dfpnr5w+Lan+ly5B0aKwdy/UrJnMlQ0GyN8fyh0Gp/K4xsbw6UVodQP2muYyiQYEkLTAlSnZvBkqVpQ21pGRonSdPCl+OK6u1o5O8zTat5faUTs7WL5cptP7KjmzE7ILfKrArS9ARULOV6DCKSg0XnxwsiKDBkk2bM6csGEDeHikeAgbx0iO1HmH6PwncaMA04tv4+zh/CxbJtk7NWqIvujnB6tWSXJfnTrg7g6NGkmjtY0bJZvHEsQQyZ98xxeUYTGd8eccOfDgTUbxFdd4n29wp6BlNq7RaDQaTWZDZQKCg4MVoIKDg60dSvZj+3alJAdHqZ070zzcyJEyVI4cSp08aYb4Mgl16tRRffr0iZ82Go3Ky8tLTZw48T/LGpVRNWpTVRV906B6KNSc0Hwq+qSnqlsJ1fM9lLo5RpmM0crT01N988038esFBQUpR0dHtWLFikTjbd68WZUrV06dOXNGAer48eNPjfPEiRMKUH/99Vey983Pzy/Nx+e+fUp5eMhno2JFpW7cSPVQShnDlbraS6kjKHUEdd3HVo2MQPVXOdVhtTINA2cAfH2VeuedhGPSy0uplSuVMpmsHZkmJWzYoJS9vfwP33lHqchIi27Ox8dHAcrPz8+i27Eo0beUutwu/rhWJzyVur8863/2Fy1KON43bEjVEEYVq75T76keSr4Hr6vjSS4XGqrU7t1KjR+v1JtvKpUrV8KmH3+ULq3URx8pNW+e/I7HxqZ671SkClPb1VQ1WBVUPRSqh0INUvnVFvW1eqiyxzlf3G9opj4+NRqNRpOuaE8czdMJDpbyKZBbda++mqbhfvsNxo+X5z/+KJ0zsgPR0dEcPXqUYcOGxc+zsbGhSZMmHDhwINGywfizmI84cuBfqv4PPr5Vjlq3L2DARNOGHmzYlxe8RuN75Qr+/v40adIkfl13d3fq1q3LgQMHaNu2LQABAQF0796dDRs2kCPH8+9Sz58/nzJlyvDii+nXjnfzZrFviYiQTJzffkuj5ZJNDij6nfjlXO2G98NAvjhrwwrvUObnacsFwx+0YTr2OJltHyxOZKTURUyYIM/t7KTz0RdfyN15TebinXfE7Ondd+Xve+/B2rXglIk+k+mFMsLduXBzJJhCABvI1wcKfZllfMCeyj//QK9e8nz0aPncpBCFYgV9OM467HDgE37Fm2pJLuvqCi+/LA+QRpQXLkg5Vpy/jo8PXLwojyVLZDk3N2lvXr++fIfXrSsZPM/iIUHsYTa7mEE49wHIRWFeZwgv0A0HsmhWlUaj0Wg0ZkCLOJqn8+mncOOG9CWdNClNQ12+DB07yvO+faWKILtw7949jEYjBQoUSDS/QIECnDt3Ln76NFtZzEeEcocIf+hqyk/t249ez92RApWq4r9+MgD+/v7xYzw5ZtxrSik6d+5Mr169qFWrFlevXn1mnJGRkSxbtoyhQ4c+c7moqCiioqLip0NDQ5+5/LNYtkysQmJjxcz4l18gGVpT8vBoCRVqw9WOOITu4aNrUCkElhaZxxW7A/RgNQUoY6aNWZCtW8UF/NIlmW7cGObMES8cTealeXPpKNaihSiZLVpIqYzZDoAsQPhhuNYLIo7LdI7aUOQ7cElunWUmJiBARL6oKPlsjBqVqmF+Zxx/8T0GDHRlGWV5Odnr2thIc7ty5RLu5zx4AAcPJog6hw6J38727fIAqW6tVClB1GnQAEqVkvmh3GUn0/mDOUQSAkB+StGUodSjI3Y4pGo/NRqNRqPJTmhPHE3S/PZbgmHNkiWQBqPbhw/FyDg4WE7qpk41X5hZgRiiWMMgZtGcUO7Q9H5hbBXkiLwDNm5QfDkU/wlsnFM07qxZswgNDU2UAfQs1q9fT2hoKB999NEzl5s4cSLu7u7xjwqpFBO+/RY+/FAEnA4dJCHB7NevDoWg9A4oNBGwo+YDGHXWBqfQf5lATQ6zwswbNCPXrkmGRvPmIuAULCg+Krt3awEnq9CkCWzZIt+vO3aIaXxYmLWjsj6xD0S8OVdPBBxbDxFvyh3IHgJOdLSkJ968CWXLws8/p6ol/Z/M43fGANCOOdTk/TSHliuXfCWNGwc7d4qoc/w4zJ0r3+clSkjR1alT0oitc2fxYi5a9QYfbvyUwTFF2cpEIgnBi0p0YzljOMsLdNMCjkaj0Wg0yUSLOJr/cv++tMQFMVRs2DDVQykFvXvDv/9C/vywejU4ZLPztLx582Jra0tAQECi+QEBAeTydGUyDdjJNJyMMMy3NO9dvYFnHggIKw4V/oXc7eKX9/T0BIj/m9SYca/t3r2bAwcO4OjoiJ2dHaVKlQKgVq1aSQo18+fP56233vpPds+TDBs2jODg4PiHj49Pit4PpWDkSEn0AjHQ/Okn6cBsEQy24DkUyu0Dx5LkijYx6AK8fiuMRao9S+lJNBEW2ngqiIqCr76C8uVh/XpxGx04ULpOtWuXPZzAMyip6TBXrlw5nJycqFy5Mps3b070+pgxYyjXsycuRiO5gCZ//MGhhg0lteEJntZhLkuhFNxfAmfKwr3vAQW5O0HF85CvlxzL2YH//U+c3d3cRN12c0vxEMdYywo+AeBNRtGI3uaOEpDKzmrV5Hf+558l6/b2bVi3DgYPhsatL9N4fg9eP1IClxbfouwjuHO4Njvf28Cmuv+ybEA7flllh5+fRcLTaDQajSZrYm1TnuSgjY3TmQ8+EPfC8uWViohI01DffSdD2diIYWJ2pU6dOqpv377x07HGWJWvUC5Vf6K96qFQ34bmVFEn8z0y7bRVbd6upN56681EY9SvX1/17NlTKaWUyWRSnp6easqUKfGvBwcHJzI2vnbtmjp16lT8Y9u2bQpQv/zyy38MFK9cuaIMBoP67bffUrxvKTE2jo1VqmfPBIPM8ePT2Zc0NkSpK53izVEvnUUNi0SNU1XUbXUuHQN5Clu3imto3BvUqJFSp05ZOyqNUmrlypXKwcFBLVy4UJ05c0Z1795deXh4qICAgCSX37dvn7K1tVWTJ09WPj4+auTIkcre3l6deuz/uWzZMrVjxw51+fJldXrFCtXN3l65gbpTo4ZSDx4kGq9///6qefPmzzUnT4pMYWz88LRS515KMC4+XUGpkD+sHVX6s2BBwvG/cWOqhjin9qhPlIPqoVA/qx7KpNLf/PmmOq3mqw6qp7KJNywe4PeSajtum/LyMiVpmFy4sFKtWys1fbpShw4pFRWV7mFbBW1srNFoNJqUokUcTWJWrZKzKVtbpQ4fTtNQhw4p5eAgw02aZKb4MikrV65Ujo6OavHixeqYzyH1Uo+SysED1ek2av/NoqrjG6ihnVHqZHGlQverffv2KTs7OzVlyhR19uxZNXr06P9cAH799dfKw8ND/frrr+rkyZPqnXfeUcWLF1cRTxHefH19n3oBOHLkSOXl5aViU9FmJLkiTmSkUq1ayefBYJDOJlbj/jKljrkpdQT18JhB/Xgf1U+5qINqqXXiuXYt4c0BpTw9lVq2LOt33slEpKTDnFJKtWnTRr35ZmIhtm7duvFCbFIE//mnAtROUKpGDaXu3VNKpazDXFJkaBEnNkwpvyFKHbET8eZYDqVuT1LKmE2u4B/n4MGEH82xY1M1xHV1QvVXbqqHQs1VLZVRpaF1VCq4qo6ouerdeOGmh0LNVM3VRfV3/DImk1JXryq1YoVS/fopVbOmnHI8Keo4OSn1wgtKDRkijbmeopdmerSIo9FoNJqUoo2NNQkEBMAnkn7N8OFQu3aqh7p7V0r6o6PFm3HwYDPFmEn54IMPuHv3LsNHDSXA35/c1aDDRgNTgwqTK/waw/zBxrkkVDgGtm40aADLly9n5MiRDB8+nNKlS7NhwwYqVaoUP+aQIUMIDw+nR48eBAUF8cILL7B161acUtjhxmQysXjxYjp37oytrWXKFUJDoWVLsXNxcBBD4/fTbs+QenK3B5f64NsB5/ADfOwL+0PCWeb9IRds/+ADZuJAyjyIUkV0NEybBl9+KeZRtrbQvz+MGZOqEgqNZUhJh7k4Dhw4wMCBAxPNa9q0KRs2bHjqNn44fBj3nDmp6uAAx47BK68QsGxZijrMwX/Nx8Myos+OUhD8K1zvDzGPamnc3wHvb8GxqHVjswb+/uKBFR0tX5YjR6Z4iHv4MpNmRBJCKV6kG8uxIX1K0C7yN5uZgA/b4udV5z2aM5yiJPYxMhigaFF5PGqkSHg4HDkiZslxj8BAqSrbuzdh3ZIlE8ySGzSAihXla1Oj0Wg0muyEFnE0glLQo4f44VSrlqoTyDiMRuk+5ecnhoZx/sjZGRNGSvQNoUXfu5gUvBqYl/evP8Qm3A9s3fljxzzI3TbROq1bt6Z169ZPHdNgMDBu3DjGjRuXrBiKFSuGUuo/821sbPCzoCHBnTvwxhtw9Ki0sN2wIc3d6s2DY3Eo+xfc/hJ1ezwN7psoFQYLis/na5dD9GA1npSz3PZ37JCuU+fPy/SLL0rXqcqVLbdNTapIboe5x/H3939m97g4fv/9d9q2bcvDhw8pWLAgO3btIq+LC7z6KurkSTrXq0evPn2S1WEujokTJzJ27Njk72B6E+ULfv0h+HeZdigG3jPB422rhmU14oyMb90SL6yffkqxkXEod/mWpoTgTyEq04eNFheiFQoftrOZCVzibwBssKU27WjGMLxIvgG7iws0aiQPkFOSixcTizo+PuK5c/my+O8A5MwpLc3jRJ26dcHDw8w7qtFoNBpNBkOLOBrh559h40Zxl12yJE3uw6NGSdeKHDnE3DC7JxQ84CaL6Mh59uAcC32vF6HUg+vyousLUGxplr3zfO0avP46XLgAefNKI55atawd1WMY7MBrLIacTcC3A/mj/BhyDn4tdIqJBWrSzjCPenQ07zb9/MSo+JdfZLpAAZgyRVp0ZXe1Mxvy8ssvc+LECe7du8ePP/5ImzZtOHToEPn//JNZdeoQGhzMsPXrJUMrmQwbNixRFtD58+epU6eOJcJPGaYoCJgKt8eDigCDPRQYDAVHgE02bq0+YADs2wfu7qJy58yZotUjCWMWb3CHi+ShKP3ZSg48LBIqgAkT//IrW/iKaxwBwA4H6tOZpnxOPkqkeRsGg9wEKlNGOlwBBAVJS/M4UefQIcny3LlTHnHrVaiQIOrUry9j6K9WjUaj0WQltIijgRs3Ei4QxoyBKlVSPdTGjdJYB2D+fEl1zs78y0aW0IVwAikf5kQvXxecoq8DtuA1BjyHZdmOK2fOiIBz6xYUKSKJJ2XKWDuqp5DzRekEdq0HtkG/8N5NqBDykEXFOnHB4Q/aMgsH0niRGR0N06dLb96HD+VOe79+MHasXLxpMizP6jAX1w3uSTw9PZO1vIuLC6VKlaJUqVLUq1eP0qVLs2DBAoYNG8bu2rU5sHMnjhcvQuHC8XUjtWrVokOHDixZsiTJbTs6OuLo6Bg/7erqmuJ9Njshu+H6JxD1KPMs58vgPQecy1s3Lmvz448wb56oDMuWpfhLMpZovqcV1ziCC3nozzY88LJIqEZiOcpqtvAVtzgDgD3OvERPXuMzclHIItuNw8MDmjaVB0jW75kzCaLOgQNw6ZLMO3NG3lqAPHlEzIkTdWrXlswfjUaj0WgyK7rFeHZHKejWDYKDoU4dGDIk1UNdugQdHyUt9O8v3ZCzK9FEsIK+zOUdIlQgH94swIDz0ThF3weHEtLuuuDILCvgHDgg1UG3bsld0f37M7CAE4ddLiixGoouQNnkoFwofOEDYUELmUgdbpGyVuqJ2LULqlaFoUNFwGnYUDxPZszQAk4mwMHBgZo1a7Jr1674eSaTiV27dlG/fv0k16lfv36i5QF27Njx1OUfHzfOz2bmggX8u20bJwoX5gSwOU8eAFatWsWECRNSv0PpSYw/+H4IF18VAceugGQflt6lBZwDB6BPH3n+5Zfw5pspWt2EiSV0wYftOJCDfmzGk7JmDzOWaPYyn9GUYwEduMUZnHCjOcOZyDXaMN3iAk5S2NrKPadevaQC7eJFsfbbsEFOZV54AZycpEr899/F6u/ll+Urt1YtOU9ZuVIyRpOoNM7wzJkzh2LFiuHk5ETdunU5fPjwM5dfs2YN5cqVw8nJicqVK7N58+ZEryulGDVqFAULFsTZ2ZkmTZpw8eLFRMsEBgbSoUMH3Nzc8PDwoFu3bk/13Lp06RI5c+bEQ9e3aTQajfmxtrNyctDdqSzIvHkJbSDOnk31MOHhSlWpIkM1aJB9WoMmxU11Ro1VlVUPhRoeibp31jOhba7vR9LmOgvxZHeqLVuUypFDPgv16il1/76VA0wNEeeU8qkR/3/74yrqf0ZntV8tSdk4fn5KtWmT0G4lf36llizRXacyIY93mPPx8VE9evRQHh4eyt/fXymlVMeOHdXQoUPjl39eh7mwsDA1bNgwdeDAAXX16lV15MgR1aVLF+Xo6KhOnz6deON+fkqVKaN8QbpTbdiQotit0p3KFKtUwKz4LnDqiEGpa32UinmQfjFkZG7eVKpgQfleeO+9FH8nmJRJrVKfqh4K1UvZqVNqi9lDjFLhapf6Vn2uCsd3mvqfyqM2qfEqXD0w+/YsQVSUdMqcPl2+igsV+m8XLFDKy0up999Xato0pQ4ckG6K6UVqulOtXLlSOTg4qIULF6ozZ86o7t27Kw8PDxXwlBZe+/btU7a2tmry5MnKx8dHjRw5MsmOl+7u7mrDhg3q33//VS1atPhPx8tmzZqpqlWrqoMHD6q///5blSpVSrVr1+4/24uOjla1atVSzZs3V+7u7sl/MzQajUaTLLSIk525fFkpFxc5g5k2LdXDmExKdeyYcI1644YZY8xEmJRJ/anmqT7KSfUwoVbcy6lijznLBcxxd6Xur7R2iBbhcRFn2TKl7Ozks9CsmVJhYdaOLg0Yo5Ty+yxeyLl5GjU2HLVIdVaR6jk7FhWl1OTJCceXjY300n3wIF1C11iGWbNmqSJFiigHBwdVp04ddfDgwfjXGjVqpD766KNEy69evVqVKVNGOTg4qIoVK6pNmzbFvxYREaHeffdd5eXlpRwcHFTBggVVixYt1OHDh5Pe+K1byrdkSRFx8uRRyscn2XGnu4gTdjiRCKp8aikVdiR9tp0ZiIwUhRuUqlhRqZCUC/tb1aR4YeWA+tms4T1UwWqLmqgGqXzx2xiivNQONe35332ZgOvXlVq5Uqn+/ZWqXTvhN+vxh6OjUg0bKjV4sFLr1in1SKu1CKkRcerUqaP69OkTP200GpWXl5eaOHFiksu3adNGvfnmm4nm1a1bV/Xs2VMppZTJZFKenp7qm2++iX89KChIOTo6qhUrViilEr5H/vnnn/hltmzZogwGg7p582aisYcMGaI+/PBDtWjRIi3iaDQajQXQIk52xWhUqlEjOVt56SWZTiVz58owtrZK7dljtggzFWHqvvpOvad6KNSAGNS5y49l35x7Samoa9YO0WLEnYBOmhQcfwLcrl0WysYK3q5MJ+T/GX0UtSIANdpUXt1Up5NeftcupcqXT7gaaNBAqePH0zVkTRYlIECpypXlc5Uvn1InTyZrtXQTcWIClbrWW7Ju4sTrO3MlK0eTQPfu8j/08FDq4sUUr75fLY4XV7arKWYLK1TdU7+qL9SnyiN+/OGquPpTzVPRKh1TU9KZ8HCl/vxTqYkTlWrRQqm8eZPO1ilRQqkPP1Rqzhz5So+JMc/2435DfXx8VHBwcPwj8inpQFFRUcrW1latX78+0fxOnTqpFi1aJLmOt7e3mj59eqJ5o0aNUlWqVFFKKXX58mURiJ/4rXrppZdU//79lVJKLViwQHl4eCR6PSYmRtna2qp169bFz9u1a5cqXry4Cg4O1iKORqPRWAhtbJxdmTUL/vxT3P0WLUpxO9M4Dh6UxhoAX38NjRubL8TMwgX+YiEdeMANyoba0vtqTpyj/RHz4nHg+XmW9b6BBC+Bzz+Xv/36idVLKj9SGQ+31zBUOAnXumIf/Dtt/eBU8FlmFqtFC/vvaEBnWe7mTfjsMzFZAMiXDyZPhk6dstCbobEq+fPDnj3w2mtw/LgYfOzYAdWrWzcupSBwKdz4DGLvyLzcHaHwN2Bf4NnrZje+/14cdw0GWLECSpVK0eqn2MRPdAPgNT7jNQalOaRgbrODqfzFPKIIB8CTcjRnOLVph20W74GRIwe89JI8QD7Oly4lmCXv3w+nT8OVK/JYulSWc3WVluZxpsn16kGuXKmPo0KFxC3ZR48ezZgxY/6z3L179zAajRQokPjYKlCgAOfOnUtybH9//ySX9/f3j389bt6zlsmfP3+i1+3s7MidO3f8Mvfv36dz584sXboUt+zemlSj0WgsSNb+ZdYkzfnzYrAK0tq4ROragd69C61bQ0wMtGoFg9J+LpmpMBLLJr5kM+MxKBPtbuWikX8wBoLAsSQUXw4uGaCtrwXx908Q8UAaL40cmQXbudrng5Ib4e5c1I1BVA6JYphPJIuLdeFCjl18OLMCdmO+grAwEWx69xaj0rSc0Ws0SZEnjxhlN2sGhw/DK6/Atm1iTG8NInyk61TYnzLtVB6KzIWcja0TT0Zm3z5RuUHaODZrlqLVr3CQ72mNCSP16Mh7TEpTOPe4ynYms4+FxCJm2t5UpznDqc572GTT3hcGA5QuLY+PPpJ5wcHS0jxO1Dl4EEJC5FB83L88rr15nLBTtuyzfw9vRsOIm/Lcx8eHQoUSDKIf7zCXWejevTvt27fnpThFTKPRaDQWQYs42Y3YWDkriYyUu7k9e6Z6mLZtpTt52bKwcGEWvHB/Bve5xgI6cJl95IuEAb55yffwnryYpwt4fwu2Oa0bpAUJDRX9b+pUCJcbt0ydCgMHWjcui2IwQP4+GHK+hLrSDvfIMwxYCWFTl2IX18CjXj2YMwdq1LBqqJosTq5ckoHTvLlcUTZpAlu3ylVjemEMh9tfQsBUIBYMzuA1CvIPBBuH9Isjs3DzptztiImRux9xqYvJ5DZnmc2bxBBBJZrTiQWpFln8Oc9WJnKIZZiIBaAkDWjOCCrRHAPZ6Mc8mbi7w+uvywOkvbmPT4Kos3+/dMfy8ZHH/PmyXO7cIujEiTq1a0sGT4gRJvvDtACIuC/L5syZM1nZK3nz5sXW1paAgIBE8wMCAvD09ExyHU9Pz2cuH/c3ICCAggULJlqmWrVq8cvcuXMn0RixsbEEBgbGr7979242btzIlClTAOl4ZTKZsLOz44cffqBr167P3T+NRqPRPB8t4mQ3pkyR20lubrBgQaqVly++gN27pRpr3ToZLrtwlDX8THciVDAv3XeirR/Ymu6BrQcU/QFytbZ2iBYjOhp++EEybu7elXnVqsGJE/Dxx9aMLB1xrozBYyP0aQa/XsQVMOaCTRPtyN29Kw1tqutLII3lcXOTDJy33pLS2Ndfh82bE2pCLEnQRvDrD9HXZNq9hQjXjsUsv+3MSGQkvPee9L+uXDnFdz0ecINvaUo4gRSjDj1Ygy32KQ7DjxNs4SuO8QsKqYMtTxOaM4IyNNLiTQqwtZV/ZeXK0KOHzLt7VzJ04kSdw4chMBA2bZIHiL5ZqC/cexcinGVezRxwNAXbdnBwoGbNmuzatYuWLVsCYDKZ2LVrF3379k1ynfr167Nr1y4+/fTT+Hk7duygfv36ABQvXhxPT0927doVL9qEhIRw6NAhevfuHT9GUFAQR48epWbNmoCINiaTibp16wJw4MABjEZj/DZ+/fVXJk2axP79+xNlGWk0Go0mjVjblCc5aGNjM3HypFL29uLQt2hRqofZsCHB6G9l1my4lCSRKkz9pLqrHgr1aQzK53Lux8yLGykVdd3aIVoMk0mpVauUKlky4X9furRSa9Yodf26X/Y5PqOjpZNbzpzyJhgMytTaUaldqMhjqCV3UQtMHVSECrV2pJrsQni4Uk2ayOfR2VmpnTv/s4jZjI0jfZW6+HbC997JIko9+DVtY2Z1TCalunaV/0+uXEpdupSi1cPUfTVaVVA9FOoLVVaFqrspDuGS2q9mqTfjzYp7KNQc1UJdUYdSPJYm+URHK/XPP0p9+61SbT5QKk9rpVirFEcePdYqRWOl8uZLXYtxR0dHtXjxYuXj46N69OihPDw8lP+jNlodO3ZUQ4cOjV9+3759ys7OTk2ZMkWdPXtWjR49OskW4x4eHurXX39VJ0+eVO+8806SLcarV6+uDh06pPbu3atKly6dZIvxOLSxsUaj0VgGnYmTXYiOljKqmBh4++2EQu8UcvGi+LSCeKF88IEZY8zA+PEv82mLP+coEwq9fd3IERMI2EGhL6HA4CxrXrxnj2T+//OPTBcoAKNHS+aNvb2U1GUL/voL+vQRh0sQR8s5czBULoi62gnH0F10ugZHg5cxveghOtmtoxCVrRuzJuuTIwf89ptkemzZIpk569en2G/lmZiipWzq9pegIgA78PwMPEeCrYv5tpMV+e47ybyxsRHT85Ilk71qNBHMoQW38cEDLwawDVfyJmtdheI8e9jMeM6zBwADNtSiDc0Zrr+b0gF7e6hVC6LLwcrX4f6j0mP3WKhxFEJ/hhNH4F5sysf+4IMPuHv3LqNGjcLf359q1aqxdevWeGPi69evY/OYoX6DBg1Yvnw5I0eOZPjw4ZQuXZoNGzZQqVKl+GWGDBlCeHg4PXr0ICgoiBdeeIGtW7fi5OQUv8yyZcvo27cvr776KjY2NrRq1YqZM2em7g3SaDQaTaoxKBXXWybjEhISgru7O8HBwdrtPrWMHi01MLlzw5kz8JS66WcRHi6WH6dPQ8OGcnFvn/KM7kyFQrGHWaxlMCYVzfu3XHjF/yEGFDiWemReXNvaYVqEkyfF/3rLFpl2cYHBg8XA2tU1YbkbN27g7e2ddY9Pf3/Z8biWJHnySCu2rl0Tuk4pEwRMRd0chgEjgfbwU3EHauWcQ0O66TIFjeWJihJV/ddfwcEBfvlFBHvg7NmzVKhQAT8/PwoXLpyycUP3iHFx5KOuN66NocgccK7wzNU0wN9/i/F0bCxMmgRDhiR7VSOxfE8r/mUjzrgzmL+TJbwoFKfYxGYm4MtBAGywoz6daMpQClA61bujSRkXImHYTVgXJNM5bGBQARhcAHI+uucTEQGbN9/g/fe9U3d8ajQajSZbojNxsgNHj8KECfJ87txUCThKiQfy6dOSibFmTdYXcEK5yxK6cIpN5I+Evr7uFHgYLC/m6frIvNj12YNkQq5fh1Gj4Kef5P9uZyc1/6NGyf8+2xAbKybFo0ZJGxKDQd6ICRNEyHkcgw14DsaQ82VMvm3IHeVL/wvRbPHsziKvXbQ3/IATWdfoWpMBcHSUL+b27UXAee89yfxo1Sp148UESMvwwEfipV1+KDwVcnfIXi72qcXPD95/X75HPvhAhOBkolAsoxf/shE7HOnDb88VcEwYOcZatvAVN/gXAHucaMjHNGUwuSmSpt3RJJ87MTD2Nnx/F4yADdA1L4wtCF5PeH47O0tSp0aj0Wg0KUGLOFmdyEipfzIaoU2bVNc/zZ0Ly5aJmd/q1fBY84IsyVl2sYiOBKvbvHjfjrZ+NtiZgsE21yPz4vetHaLZefBAut7OmiU39UGaqEyYIK1WsxV//y2lU6dOyXTt2nIQ1Kr17PVcamFT/iTKrx829xfzpj9cCV3Jd8UP8r7jBrypavnYNdkXe3tYsSLh7wcfwM8/i/t4clFGuPs93BoOxmDAAPl6g9d4sMtlqcizFpGRIp7duQNVqqS4icCvfME+FmDAhu6spDQvPnVZIzEcYhlbmUgAFwBwxJVGfEIT/oc7Kb9po0kd4UaYfgcm+UOYSea95Q5fF4KKztaNTaPRaDRZCy3iZHVGjZJ+l/nzS1ZBKjhwAP73P3k+eXL6ND+xFkZi+JUv2M5knGMV/a/lpGJQqLzo2hiK/wQO3laN0dxERMDs2SLgBAXJvEaN5H9dp45VQ0t/AgKk5OGnn2Q6d24pnerWLaF06nnYumIotgjcmmG8/jElwsPo5XOVVUVqUSLPHF6kuy6v0lgOOzsRbhwcYMkS+PBDGD8+eeuGH4HrveHhEZnOUROKfJdlS0YtglLQq5eYiOXODRs2SC1qMtnNLLYgmbMdmEc1Wia5XAyR7GMh25nMfaRLWA5y8QoDeIV+uJA7rXuiSSZGBYvvw6hbcCtG5tXMAd8Uhpd1AqZGo9FoLIAWcbIy+/dLS3GAH3+EvMkzRHycO3ckGyMmRjLD48ScrMhdLjOf9lzlMGVCoZevCy4xoYh58Xgo8FmWMi82GuVab9QoyfwHqFRJrBuaN89mFROxsWJAOnJkQulU9+6ibD1ZOpVccn+ArUs9jL5tcA4/TOersRwM6clPRbbTxnYhzmRB/yBNxsDWVsx0HRzku3/4cJkfGAhJeW7EBsGtEXD3O0CBrTt4TYB8vbLUd166MHu2iGc2NrBqFRQvnuxV/2EVqxkAQAu+5EW6/2eZSML4i3nsYCoh+APgRgGaMIhG9NJlm+mIUrA5BD6/AWciZV4xB5hYCNrkApvs9Buq0Wg0mnRFizhZlfBw6UCllPxt0SLFQ8TGQtu2cPMmlCsn1wRZ9cL+EMtYTm9iTKG0vu3Iq/7RGAgHxzKPzItrWjtEs6GUmBUPHZpQLVS4MHz5JXTsKNd/2Yp9++CTT8TJGaRkas4c86QhORbFtuw+TLfHY7g9jnqBipJha/mpxGHecNmIN9XSvg2NJilsbGDePPHKmT1b5tWrB/37izt5vnzyZRC4DG4Mgtg7skzuDlB4CtjrMpwU8+efidNWmzRJ9qpn2ckiOqJQNKYPbzAi0evhPGAPs9jNt4QTCEAuvGnKEBrSDQd0vU56ciQchtyEPY8SdXPZwhcF4ZN84JjMpE2NRqPRaFKLFnGyKsOGwaVLUKgQzJiRqiFGjpQOVK6usG4d5MyCN/giCWUFfTjIz+SPhE98XSn4MExezPsxFJ6RpVroHj4s7cL/+EOmPTzkJn3fvmKwmK24c0dKp5YskelcuWDiROmdbk4ly2CHjdcYcHuNGN/3yRftz8fn/NjkVYsrnjN5ydBbl1dpLIONDcycCWXLQr9+Ujs5aZIYX/VsC63Pg8M+WdapHBSZCzlftm7MmZXr1yVt1WgUc+mBA5O/Ksf4jncxEkMN3ucDvo3/TgghgJ1M50/mEokoBvkpTTOGUZcO2OHwrKE1ZsY3CkbchBUPZNrRAAPyw1BPyKXPqDUajUaTTuifnKzI7t1ykg6SPuPhkeIh1q+Xc/24IcqXN194GYWrHGEB7bijLtHwvoH2fnbYmcIemRf/CLlS2dUlA3Lpkog1a9bItKOjXNMNGya2DdmK2FjJUBg5EoIfdRv7+GMRcFJRcphsXBtiX/4sMde7YP9gAy1uGTkf0oflxbfwnsMyXV6lsQwGA7z6qjxfuBDmzIKjx2H6QvgOeN9OOieVHwM2WhBIFRER8O67cPeumEj/+GOy01bvcpmZNCeKMMryMl1Zig22BOLHdr5hLz8Sg9TqFKIyzRlBTd7HhuyWMmldAmNh/G2YcxeiFRiAD3PDl15Q1NHa0Wk0Go0mu6FFnKxGSAh06SLPe/aE119P8RAXLkgFFkhmeOvWZowvA2DCxA6msoHhOMXG0veaM5WDIoAYyPkKFFsCDkn4RmRCAgKkTOr770W7MBikWdm4cVAkO3acPXBASqdOnJDpGjWkdKpevfTZvp0H9sXXodwWY/TrRdmwaAr7/M76omV4IdcWilA9feLQZE/qADXvwx7gB8AHWBoLa2dAr0jJTPPUZVQpQin5rT12TPyz1q+HHDmStWoIAczgdUK5gzfV6M16HuDHVr7mID9hRFxyi1GHNxhBZd7CBl2rk55EmmDWHfjKH4KMMq9JTphcGKon79+s0Wg0Go3Z0WcDWY1BgyStu3hx+OabFK8eHi6dUUND4YUXErJxsgrB3GYmzVjHEEqHxPKlzyMBx2APhSZD6R1ZQsAJC4OxY6FUKdEoYmPFrPjECVi8OBsKOHfvSoepBg3kTfDwkJbhhw+nn4ATh8GAIW8X7MqfJjJHeVyM0P5KANev1eIv43QUKn3j0WR9om/J32tdIeY6vFIE9q6HTZugbl3JJJk+XX43Pv0Ubt+2ariZipkzxSHe1hZWr4ZixZK1WgQhzKQ597hCXorTmuksozejKMs+FmAkhjI05lN2MJSDVKWFFnDSEZOCpfeh7BnxvgkyQmVnfu5tRAAAlZBJREFU2FoKtpfWAo5Go9ForIvOxMlKbN4M8+fL80WLUmxioxT06AGnT8vN2NWrwd7eAnFaiVNsZgmdeWi6y/u37GgSYMRARJYyL46JkY/A2LGShQNQu7aIcS9nR6sLo1HSkEaMSOif3rWrtA3Pl8+qoeFUGqeyJ4i+NRj7gJm8cM/E7bCBrC2+mTdz/IIz7taNT5PxUSaIvQcxtyHG/9Hf2xDrn3jepSuPVrCBAoOh4Bfi9fUGou5u3y5fGgcOwLffSrlhjx5ioFWokDX3MGOzZ4/cOAHpBPnKK8laLYYovuNd/DhODnKRlxJMI+ELuhJv8AYjKEkDS0SteQ47Q2DIDTgeIdOF7GG8F3TMA7bavkyj0Wg0GQCDUirD3/YNCQnB3d2d4OBg3Ny0b0SSBAZKf+jbt+VO6vTpKR5i1ixpXGJrK+emL75o/jCtQQxRrGcou5hBgUjo5euM18NHZ2d5u0Ph6ZnevFgpWLtWfG8uXpR5JUtKh+zWrS3bVezGjRt4e3tnvOPz4EHo00fKHEC8KubOhfr1rRpWUqiQnURfbYVjTAgxBtheKDeV8m+lqKG2tUPTWANTJMQEJCHKPCHWxAQAxucOd9YXKrQGv4u7KFzqKUKDUrBzp4g5+x6ZHTs6QvfuIuYk1Zo8O3PtmnSyu3cPPvwQfvopWV+0JozMpx1HWYMNtpge/f8MGKhOK5ozXJdVWomTD+Hzm7A1RKbdbGBYQTEudrZgElTcb6ifnx+F9XGm0Wg0mmSgRZyswocfwrJl0oXk+PEUtxravx8aNZKym2nTErqkZnb8Oc982uKnTvDCPWh3ww47UyzY5oai8yHXu9YOMc389ZdYWRw6JNP58sGoUXIj3SEdfEoznIhz9644Ni9YINPu7jBhAvTqlbH7p8feI/zqe7gE/w3AGTcDD4qNp6H9MN29KiugFBiDnyPMPPprfJCyse3ygX1BaQtuX1AedgnPz16JoEK1psm7SFRKzPHHjIG9e2Weg4OYfw8dCt7eqdr9LMXDh1JvfPy4+Grt3Zus31wTJubSklP8Fj/PBlvq0IFmDKUgWbCDQCbgRjR8cQuW3AeFpKh/kh9GekK+dMhG1iKORqPRaFKKLqfKCqxbJwKOjY20S06hgBMQINkasbHQpo0k8mR2FIr9LGIl/bCPfUifaw5UCYoGYiHnq4/MizN3mcDp06JV/P67TLu4SGb/oEGQEbSUdMdolK4ww4fDg0cXwZ07Sy1Z/vxWDS1Z2OXFpeSfRN2bhq3fECqGmAjxGcHmYpt42X0TOfCwdoSapFCxEHPnGdkyjwk0KjL54xocninMJMzPL55ez8LhbAq2+6ib1SuvSErm2LGiFM+dK8dXt27yxZPtjLUeoZRkJx0/Lor5+vXP/c01YeIEG1hJP4IRfyIbbHmB7jRlCHkpnh6Ra54g2AiT/GF6AEQ+up3ZOhd85QWlnKwbm0aj0Wg0z0KLOJmdO3ckwwAk5b1u3RStHhsLbdvCrVvSRnzBAsuW3qQHDwliGb04wirKhUD3qw64xkTLhY7XV1BgIBgyr0HkjRuSabNkCZhMklzSvTuMHp2NG8scPixdp44elemqVcXRuWFD68aVUgwGHPMNQrk2JdT3ddwibvPmpf3sy1+UwoU2U9Qmk+1PZsYY/l9vmaSex96BlJhR27o/R5R59Nw2l3W/jA0GEXJeeQX++EPEnD/+EL+cBQukC+Lw4VC0qPVitAbTp8Py5QlGxs8Qs4zE8g8r2cpEbuMTP78MjenGMjzwSo+INU8QbYLv78G423AvVua94ApTCkPdzF1ZrdFoNJpsghZxMjNKQe/eUj5SubJcxaeQ4cPlvNzVVRJ6XF3NH2Z6cpn9LKA9QaZrtLpl4LUAMBANjmWhxHLIUcPaIaaaoCCYOFGaoUQ+uqHfqpVUCpUta9XQrMe9e/Ihnj9fjgc3Nxg/Xo4Lu8z79WZwrkTOclcIufERbndX0/BOCH6hL3Cw+DDqOk/Q5VWpRSkw3n++MBNzG0yhKRjYBuwLPFuUiftrk7JMyQxB48by+OsvEXN274YffoCFCyXbbfhw6WyV1dm5EwYPlufTpsl7kgQxRHGAJWxjEve4kui1VxlAG2ZYNk5NkigFvwTBsJtwOUrmlXWESYWhhXvmv4Gl0Wg0muxD5r3K0cCKFaK82NlJWoajY4pWX7s2oQv5okVQrpwFYkwnTBjZwkR+Zwz5Io2MvOKAV0S0vJi3J3hPA5vM2RM0MlKSSiZMSKgSevFFmDw5/btjZxiMRskGGDZMTL0BOnWSN6VAAevGZi5snHArsopIt3dR1z7COyKaAmcn8pf3Fmrl3YWLIbe1I8w4mKIhNuA55Uy3ZRkVk/xxDc6PCTHPEGbs8oEhA/stmYuXXoJdu+Dvv0XM2bVLBNTFi+X4GzECSpSwdpSWwdcXPvhA0h8/+gj69fvPIlGE8zc/soMpBHETAGfciSIcE7E0pCutSXnTAU3a2RsGn92AQ+EyXcAOxnpBt7xgp8UbjUaj0WQytIiTWbl1SzrvAHzxBVRPWTeL8+clGx7EQ+X9980cXzrygBss5EMuqD958R609bPFTkWDbR4oNh88Wlo7xFRhNErW/siRcP26zKtQQbpjv/VWNr5r+M8/8tn/5x+ZrlxZVK6s0k7tCZw82qJcXiLQ9xVyh56n0fUTnAnxxrXoBoravWbt8CyHUpIN8zTz30RGwPdTNrZtnmeIMo89t8mZjQ+0Z/Dii5KVsm+fiDk7dkhWzpIlCWJOyZLWjtJ8PHwI774rgnGtWlJS9tjnIoJg9jCHXUwnjHsAeOBFHT7kb37ARCyVeYsOfK+z6NKZc5Ew9Ab8GizTLjbwWQF5uGYD3VWj0Wg0WRMt4mRG4owVg4KgZk3JRkgBYWHw3nsQGio3Vr/+2jJhpgcn2MBPdIPYQD65ZkvVICNghJxNHpkXZz7PAaVg2zaxODp5UuYVKgTjxskN4IzcYMmi3L8vF4c//JBQOjVunAg6mbh0KjkY7L3IXdqHwDsDcbv5LRWDHvIg/HWOFv+EGjlnZ64LQ2WE2LvPL2eK9QfTwxQMbPd8Uca+INgVAJt0aNuWHWjYELZvhwMHRMzZtk3SOn/6STomjhgBpUtbO8q0oZSYOf/7rxikr1sHTuJ6G8Y9djKDP5hNBKIS5KUETfmcsjRmGi8TQRAlaUAPVmGrT7nSDf8YGHsLfrwHRsAW+DgvjPaCgunQcUqj0Wg0GkuizygyIwsXwubNUj61ZAnYJ/+MJE7/8fGBggVh1arMef0bTQS/8Bl/MpdyIfDxVXtyxsSIeXGhiZD/f5nSvPjoUWkXvnu3TLu7S1ff/v0hR+asBks7JpN85ocOFSEHoGNHKZ3KTk7OBhtyF5hBRM53CbvyFrmiwqh+YS7HPHdQzmsvLgYrd+AyRTy9K1OittoBgCn549rkfH45k31BsM2dKY/5LEH9+rB1Kxw6JGLOli3y2/Tzz9Chg6QTlilj7ShTx5QpsHKl/FCuWQPe3gRxi+1M4W++JxoRGgtSnmYMpzZtiSCIybxAELcoSAX68BsOZNcv8PQlzAhTA+CbAAh/9DXTwh2+LgTlM6EdlUaj0Wg0SZEJL9+zOdeuwf/+J8+//BIqVkzR6rNmJZyPrl6dOa+Bb3Ka+bTjjuk0rW7B6wEAMeBUDoqvgBzVrBxhyrl8Wa5zVq6UaQcH6NtX/ELz5LFubFbl6FHpOnX4sExXqiSlUy+9ZN24rIhzjkY4lb/FLb+meN0/QE3/i/iFeBNYYjnejq3MuzGlwPjgOT4zcSVNwSkY2AB2+Z+fOWPnCba6XUymoW5ducFw+LBkyW3aJELOsmXQrp18yWUm87UdO0Q8Bpgxg3svebONXuxnEbGI51oRatCcEVSjJTbYEEU4s3mLAM6TC28GsA0XtH+VpYlVsPAejL4F/o86TtXJAd8UhpdyWjc2jUaj0WjMjRZxMhMmE3TtKnVQDRrAwIEpWn3fPvG/Abm5+MILFojRgigUfzGPNQwkT0Qkw33tKBTx6GwtX28oPCXTmRffvSta3Lx5EBMjNgsdOsi8YsWsHZ0VCQyUC75580RIyJlT7vD37ZuizLOsisE2J17F9nPXfRKu14bj/TCaSJ/3OV2kHRVzL8XwvIwUFQMxd54tysTNV9EpCMwxGeVMnmCfHwz65yfLUqcO/P47HDkiYs5vv4mQs3w5tG0rPm7ly1s7ymdz5Uq8kfHDLu+x6pNDHGYAJowAlOIFmjOCijSNL2c0EsMPtMaXQ+QgFwPYRi4KW3MvsjxKwe/B8PlNOPuoa2MJB5hYCFrn0pZWGo1Go8ma6LPozMTcuVJn4+ws3UBSYI7i7w+tW0NsrJyX9u9vuTAtQRj3+ZmPOaE28NI9aONng72KBbu8UHQBeLSwdogpIjxcOtR+841ocgBNm4o/UbVqVg3NuphM8tn+/HNpHw6ian3zjdT/aRKRL9fnRLq8yW3flykYdo9KV1fg+2A3nvm+xdloSEKYifObuQeo5G/INtezs2Xi5tnqPr2ax6hVCzZuhGPHRMz59VfpqrhyJbRpI2JOCrNJ04XwcGjZEh48IKBOLr6cu46YRx/rCrxOc0ZQhsTZgArFT3zMabZgjzN92URBMrhQlck5HA6Db8BfYTKdxxZGeUGvvOCgKys1Go1Gk4XRIk5m4eJFubAF8QJJgVlkTIwIN7dvS3ej+fMz13XWBf5kAR2Iib3JJ1cNVA1WgAlyvgbFl8jFYyYhNlY6Y48ZI8IaQI0a8i999VWrhmZ9jh0Tk+KDB2W6YkUpnWrUyLpxWRtlEtHlKdkyTjH+eMZ4YDI8wEYZKR4cAMFtkzGwLdgXeEa2TNz8AmDjZPHd1GRhatSADRvg+HERczZsEEO21aulNeKoUVIqmRFQirCuLXA9dYrgAjBt3QNinKAaLWnOcIpRO8nV1jGUg/yEDbb0YDUlqZ/OgWcfLkfBiJuw6oFMOxng0wLweQHw0Ge1Go1Go8kG6J+7zIDRCJ07S5vTV14Rj5AUMGwY/PWXVKSsWweurpYJ09wYiWUT49jMeMqFKLr52pIz1ggGByj0NeQfkGmMTJWS65Zhw6S9O0Dx4jBhgghsNpljNyzDgwdyR/677yQTx9VVSqf69cvapVOmqMSdmJ7aqSkAiH3mUIZHD5D8GsOjv2FOBXDN2RqDvVcSGTR5M83xo8kiVK8O69dLp6dx4+QHac0aecSJOZUrWyU0heIcu7g7uScvrb6C0Q5++MVAmULtaMYwCvF0kWkH09jOZAA6Mp8qvJVeYWcr7sfCl7dh7l2IUfI91ykPfOkF3rrhnEaj0WiyEVrEyQxMnw7794sKs3Bhiq74f/kFpk6V54sWQdmyForRzNzjKgvpwDXTflrdhNfuABjBqTwUX56pzIv37pWOUwcOyHTevKJZ9OolBsbZFpNJWhEPGSLmQCDmp1OmgFfmaw0PPDICDk6GMHNbDINTgl2+p2TLJC5xiiSIm9deoNSD6+SMDOCm3XI8PHfj4lDVMvus0aSUqlVh7Vo4eVIMwH75JeHx3nsi5lRNn8+rQnGS39jMBFy2HqbvMJn/z6yGfPTCYvJT6pnrH2IZvyBmc+/yNQ3obOGIsx8RJph5Byb6Q7BYEtHUDSYVgqqZywZPo9FoNBqzoEWcjM6ZMzBihDyfPh2KFk32qufOQZcu8vyzz6CVmRvXWIp/WMUyeuIREcwwXxsKRzzqE5rvEyj8TaYxL/bxkcybjRtl2tlZvKiHDAE3N+vGZnVOnJDSqf37Zbp8eSmdevllq4b1VFQsxN59tigTbwQcmfxxDQ5Je8v8x3umABiSl5XkTE5KFvflnHs3il1fTKGwQCJ8quNf9Es8c41I5Rug0ViAKlUkC+f0aRFz1qyR7Jx168STZtQoyd6xACaMHGUNW/iKm5wi3yUY0A5sFER+3JZ6PZeTkN+WNGfYxuJHos2rfEpThlgk1uyKUcGyQBh5E/xiZF5VZ+k49Vp2/w3VaDQaTbbGoJRKgbuldQgJCcHd3Z3g4GDcstPVb0wM1K8vbZbfeEO6fSTTzCYsTBqEnD0LjRtLp1S7DC7ZRRHOKvqzTy2k0V1ofcOAvVKPzIsXgUfmSFG/eVM8bxYulGQTW1vo1g1Gj868CSbP4saNG3h7eyfv+AwKkjSkuXPlzXFxkTerf3/rpCWZHiZPmIm9C5iSP67t/9u77/AmqzaO49+ku6WDUmhpKVAE2dgCMlygooAgoijDgeDAVwVRlClTVAQcoCgoguBAhiIiKgoIDkAUKHvIaKGFttC9Z877x+luWlpomxTuz3Xlgjx5kpwU0jz5Pefct/slQpm8QsBV2z7lfMYP5Jx+CP/UDADC69yIr/8WjDbSc/dacvToUVq1akVYWBgNGlhxt6TDh+H113W9nLxDk3799C/P9u0r5SmyyWQXX7KRt7jACQDckmsxuYsj7oejoUsX2LYNHBzKfJwQ/uE97iCDFG5kCE/wJUZkeWJl+TURxoXD/jR93d8O3vCDRzzBWINq+pVH3meo1b8/hRBCWA0r/1p/jXvrLR3g1K4NixeX+8ueUjo0OHpUhwYrV1p/gHOWYD5lCClZx3nuDNyQAKDArSc0Xqa/+Fq5hASYPRvmzYO03APP/v1h1ixo0cKSI7MCShUsnbpwQW8bNEgvnarsg1alICem7FAm7++mpAo8sBFs65Udytj56IuVzBbzdbiX9Bbn2Xf+VtpFHqFBzL/EJdfHocn3ODtf65W0hdVp3Vp3r5o6VYc5K1fqqYzr10PfvjrM6djxsh46kzS2s4RfmEMcYQC44Mkd6gV6DduD7eEfwMdHL/O6RIATxX8soA8ZpNCSuxjGMglwKsn+VBh3Toc4AO42MMkHRtUDJ/kRCyGEEICEONYrr4sHwAcfVGgKx/z5uumHra2ene7tXUVjrAQKxRbm8x3juT4hk7GhRlyzTbnFi2dDvResvvhqRoaeWPL66xAbq7fdfLPuOHXTTZYdm1XYvx9GjtTFgUAnWgsWVLwdlykTsqPMhDHFZ81Egsoq/+ManMoIZgrXoKkLBpuKjdkKOBo8ucHvEAfdXsE/5F1qZ6SQfawH0X7P41Xvfat/f4lrUMuW8NVXBWHOihV6JuqGDXpW6rRpeqppOaSTxO8sZDPvkkgUAG74cBcvcxv/w3HW+/DtD7qI+rffXvKzNp7zzOdukommIR34H99iy7Vc3KxyhGXqZVNfxOqi7HYGGFkXXq0PdeRIVQghhChCPhqtUUYGPP647kf9wAPw8MPlvuuff8LYsfrv775r3SFCIhdYznCOmX7i/nPQ4wKACRxbQcDX4NzO0kMsk8mkTxpPngyhoXpbixZ6AlW/fjWrjXuVSEjQX8IWLChYOjV1Krz4YsHSKaX0bJhLLWfKitCzayrCxvPSy5nsfMDodtX/Yxkw0M71Hc63uo+IM/fQKj4Fr/APiU78Fc/G2zDaXYXr/ETN17w5fPGFXoL5+us62PnpJ33p1UuHOV26mL1rCrH8xgf8xnxS0UXEPWlIT8ZzM09gh6N+nMmT9R0WLLjkB2Yq8XxAb2I4Qz2aMoqfcESWJl6J+Gx4KxLmXYCM3BV0g2vrpVNNyp4QJYQQQlyzJMSxRjNmwMGDULeubrtczi+YEREwcKDOfoYM0ZMfrNURNvEZj+GSFsXEEAMN0nKP3uqOhAZzwOhk2QFewqZNMH68njAF+uTtjBm6E7y1L12rckrBF5/DuLEQldt1ql9HmHI71AuDsEcKAprsSF2XptxsC5YslRXQ2HqDUb4BFOdrexueTc7zV/RddAr7B6/EE6QeCYDGn+HsXv6wWIhqdf31ejnmlCnwxhvw5ZewcaO+9Oypw5yuXQFIJIpNvMvvfEQGyQB4cz29mEhnHsGG3ALhJ07oEyRKwTPPwIgRZQ4hi3Q+4j7COYAbPozmV9yoV6Uv+2qWaYKFF3XL8JjcjlPdaumixTe6WHZsQgghhLWTwsbWZtcufTbQZNJTux94oFx3y8rSq1P+/FOXFdi1S098sDbZZPI9k/lVzaX7RXgwv3hxXWj8Gbj3sfQQy7R3L0yYoEMc0F2mxo/Xk0ucraMMSvXKSSD80EL8AyeSsPcu3M6Gw2unYG+mvr0hMA4wf7K8gNG1HMuZfMC2jiz/qQQKxd601/EOmZYfoMbXHYBHgy/B6Gjh0YnKVmMKG5fXqVM6zPn8c8jRCUDWXbeybVo9vr/5R7LQHeIa0I7evEp7BmCk0FLIpCQ9g+fIEf15u3VrmYXVTeTwMQ+xj+9wxI1X+B1/AqvyFV61lILVcTDpHJzO/Zho6Qhz/KCP+1U/KdIsKWwshBCioq71OQPWJTUVhg7VAc4jj5Q7wAEdLPz5J7i66u6s1hjgXOAknzKE2KzdPH8G2uUXL+6tAxw76y3eExKiZ92vWKGv29nBc8/pbV5elh1btVMKUnZA9KcQtxoicmfSvLkJvgNyAEfgKWBoXXDxLX3mjG3urBqbWpZ7PdcgAwY6OE3hXIve7Dx3N10vxOFx8VsSk/+iVsAmjE5tLT1EIUp33XW6/d/kyaS9OR6H5d9it+lP7toEDe6EPdNa0e7W2bSlD4bibcJNJv05e+SInkL5zTdlBjgKxQqeYx/fYYs9z/G9BDiX6fckGBsO/+Z+ZPjYwmu+MNwLbK/B8EYIIYS4XBLiWJNXX4X//oP69XUx43JavVrXvwFYvlzPPLc2f/MFK3iOpgnJjAw14JatwOCgl07VHWW1p9+io3Upho8+0rOdQM/AnzkTmjSx7NiqXXY0xHyuw5v0o3pbPPCLFxAN3+Tud98d8PZbcF0gGOwsMlRRPn7GjtTxP8uvbvfRJfQ33NKiyD4aSIb/LJy8xlrt+1KIcxzk5yZvsvvTtXi+qug9C276zEDLLYqWW47A7e/CNFfo1q3oHd94A9at08HNt9/qz9sybGAGf/IJBgw8yQqa073KXtPV6kgaTDgHPyTo67WMMM4HxtQDl5pXK14IIYSwOFmXYC1+/123lQL49FPdVrwcjh6FJ57Qfx83Du6/v4rGd5nSSGQpj/GFaSj3hSXzwkl0gOPYGlr+m9t9yvq+KKamwptv6hO+8+frAKdHD93x/auvrqEAR5kgcTOcHgQHfCH8ZbhwFH6whzF+0NMG3o/W+zZpomtUrNsCTW+UAKeGcKQWd7lv5lir9zjiZsRWmXA6O57kU7fq4E4IKxLCP3zEfbxGO/5lJQoTvgF98ftkJzYnQ3R9Gzs7vUSqe3d92bZN33nDBl0/B3QyX0pR5Dy/s4gNzABgCB/SngFV9rquRhFZMOIMtD2iAxwb4Nm6cLINTKkvAY4QQghxuaQmjjVIToZ27fSanaeegsWLy3W3pCTdZfXYMbj9dvj1V+sqqhvCP3zKEOzTTvNkCDRIy72h7ihoMNsqixdnZ8OyZfo4//x5vS0wULcLv+suS46smmWeg5hlEL0EMkMgGfgd+M0ddiRDVk7+ruGtW+N/+DAJFy7gVreupUYsKsF5dZADF+7iznNR2ClIt3PFvvE3GN3utvTQxBWo6TVxFIr/+J2feYOjbAb0ksD2PEhvJpVc3nT2rG4T+OmnBVMoO3bUS6hSU+HZZ3WIU4a9fMsnPIRC0Yep9MsNc8SlJeXA21H6kmrS2/p7wFt+0FxKbpUgNXGEEEJUlBV95b+GjR2rA5yGDeGdd8p1F6XgySd1gOPnp1tdW0uAY8LEr8zle/Uqt13M4cFwsFOAbb3c4sX3WHqIJSgF69fDxIl6dhNA48Z6KdWQIWC8FuasqWxI+Ekvl0r4UR99/wFstoWdCjJygNz58G3bwqBB8NBDuqKzvz84SDeoms7X0JY63qf42XUwN4ZsoH56EupETzK8R+Lg+w4YS68dIkRlUygO8TM/8wan2AGAERs68yi9mIAPLczfsWFDHdJMnFgQ5uzerW9zc4N779W/9EuZBXqcbSzhYRSKWxnBvUyvgld39clSsCQapp+HqGy9rYuL7jh1i5Q9E0IIISqNlXztv4b9+issWqT//tln+gCzHN57D9as0bPG16wBbyupCZxABJ8xlPCszTwXCm0Tc29wuwcaL7XK4sU7duilaNu36+uenrpg8XPPXSO5RMZpPeMm5jNIioC/gF+B7UbIMAG5R+MtWujgZtAgaNmy4P7h4RYYtKgqDrjQz/kH/m7xMafCR3JLdDYOUQtIS9qEU8AP4NjM0kMUVzkTJoJZy8+8SRjBANjiwM08wd2Mw4vG5Xsgf39dX+7EiYKWgomJcM89uivVtGl6imWhMCeM/XzEfWSTSSD38zAflSyOLIpQCr5PgAnhcDxDb2vqALP8YICHVa6YFkIIIWo0CXEsKT5eT6cBGDkS7rijXHf74w8dOoAuaNy1a9UMr6IO8iPLGEbjhGimhoJbNiiDA4YGb0Pd563uSO7YMX2idt06fd3JSbcKHz8e3N0tObJqYMqA+HUQvRiit8AOdHDzJ+R25wVM0LRpQXDTpo3V/RuKqtPF5hnON7qVVW496XsmHJfU42QfbYOx4SKMnsPk/4KodDlk8Q9fs5FZRHIM0KHibfyPu3gZd8ouQmzWzJk6wHFw0IWMf/0VPv5Yp/c9e+q6ONOmQc+eRBtCeZ9epJNIM27jKVYUbU0uSvg7Gcaeg7+S9XUvW5hWH0Z4gf21MINVCCGEsAAJcSzpxRf1LIamTfWU73KIiNDfp3NydBfy55+v2iGWRxYZrGU8f5jmMyAc7riYe4NTWwwBK8CpjUXHV1xEBEyfDkuW6J+j0QjDh8OMGXpp2lUt7YheLhWxHLbHwib0kqmUQvsEBMDAgfo/WmCgfFm/hvnSiv61j7HeZTjtQtbQPDkTQp8gM2E99g0/A1sPSw9RXAWyyGAny9jIW8QQCoAzHtzOKO5gNLWoc3kP/P33+pc9wMKF0KePvkyYoAudLVoEf/8NvXuT3bk9P02NILF3JH6GtjzH99ghBVxKczIdJp6Db+L1dUcDjPHWXafcJfcSQgghqpQUNraU9evhvvv0F+Q//4Sbb77kXbKydAHj7dv1pIi//wYXl2oYaxkiOMqnDMGUtp+nToNf3iyOeqPB7y0wWs9BcGKiPm5/7z1d2xKgXz+YNQtatbLs2KpUTgrErYaIT2Dr3zq42YYuVpzH378guOnYsULBTV5Rxqvq/SlK2KmWER05gnvOZ2EDZNl7YxfwLdS69O8uYVnWWtg4gxT+5BM28Tbx6EryrtSlB2PoxnM4cQW/T44d05X/k5L0TNcPPii5T2QkzJ2LWrgQQ5quvB92oz21py2m1j2PSYBtxsUsmBkBCy/qhbYGYHgdmOELDaRk1mWRwsZCCCEqSmbiWEJ0NIwYof/+yivlCnCgoG6LmxusXWvZAEeh2M4SVqpR3HIxnQH5xYu9c4sX97bc4IrJzNQnXGfO1D960EvQZs+GW2+17NiqVMoeiPwYfv0SfknTwU1Codt9fXVh4kGDoHPna6R6s7hcXQ3DiKjfmc/c+nDf6RDqZkahjt+Kqj8FY/0pYJCPE1E+qcSzjQ/ZwjyS0b+Ua9OAuxnLLTyFPc5X9gQJCfokSVIS3HabXndsjo8P2e/MYum43TR++w+6fQT+/2ZC38eh4wcwdSr07SthDrrO/fwoeCsSEnM7TvV2g9kNoK31NZoUQgghrmpy1G0Jzz8PUVF6+sdrr5XrLqtXw7x5+u+ffw7NLFhbNJV4vmQE/2Wt4X+h0CaveLF7H2i0FOzqWW5whZhM+uf26qtw+rTe1ry5nnnTv/9VelyeHQ8Xv4SN82HDSfgNiC90u3ddeDB3xs3NN0twIyqkPi0Z6nKIb1v9j4CzX9AlVmGIeI3spI3YNl4NDo0sPURhxZK4yBbmsZUFpKM/OOpyHb2YQBeGYkslTOUwmeDRR+G//6BBg4IOAOZ2xcQyhrHH+w8OznWm+dhvafT2b/Dhh7qbVb9+0L69DnP69btKPzTKlqPg8xiYch7O5XZrb+8Mc/zgTpl4KYQQQliEhDjVbdUqnSzY2Og0xvHSy42OHIEnntB/nzBBn2C0lJNsZwkP45twlmmh4JoNyuCYW7z4Oas5yN2yRRco3rNHX/fx0aURnnzSelqxVxqlIOlP+PlN+G4zbM6BmEK313GHAYNg8GB9VtpGChaIy2ePM0NsPufvgLv53O0pHjqbgVPyP+QcbY1Nw6XgOdDSQxRWJo5zbOJt/uQTMtFrWX1pTW8m0YGB2FTmocj06bBhgy5k/N13UM/8SQWF4hte5l++xogtz/Atjer1gjm9YOxYeOcdWLAA9u7VqX9goA5z7rvvmgi/lYJfEmHcOTioV5rRyB7e8IUhnmC0jo96IYQQ4pp09R+JWJPISN23GvT0kA4dLnmXxER44AFISdHNq2bOrOIxlsJEDj8yk/mmW7n77FlGndQBDk7tMLTcDfWso/vU/v3Qqxf06KEDnFq19GSnkyfhmWcsG+B8+OGHNG7cGEdHRzp37sw///xT5v5r1qyhRYsWODo60rZtW3766acit6uMKKYO6UR9Fxuc3LvRY/AvnFiVG+B4OBP64H082bMnAa61cfr8c6576immvfYamZmZRR5n9erVBAYG4uzsTKNGjZg7d25lv3RxFerCo9xdZx+LWzXntAvY5KRAyCBU6HDISb70A4ir3kVO8yXPMJkmbGEemaTSiI48y3dM4QCdeLhyA5zvviv4kPzkE13fqxS/MpctzAPgcT6jDb0KbqxbVzcbCA3VLQxr1YJ9+/SHcVCQ7nJlMlXeuK1McCrcdQJ6n9QBjocNvN0AjrWGR+pIgCOEEEJYnKoBEhISFKASEhIsPZTLZzIpde+9SoFSgYFKZWSU6y4DBui7+PkpFRVVDeM0I0adVXPVbWpGCir8EErtzr2cfUmpnDTLDKqY0FClHn1UKYNB/7zs7JQaNcpyP7PiVq5cqezt7dXSpUvV4cOH1dNPP608PDxUVCkD3L59u7KxsVFz5sxRR44cUZMnT1Z2dnbq4P59Sv32vlJPXa/eqoVyB7UO1H5Q/WwNKsDFSaV9951SGRnq559/VsOGDVO//PKLOnXqlPr+++9VvXr11Msvv5z/PD/99JOytbVVCxcuVKdOnVIbNmxQ9evXVx988EG5X1tYWFjNf3+Ky5ahUtUXpifVhnBUTu7vhuyDAUol/2vpoYlcR44cUYAKCwurluc7pw6rJepR9T9lo0Yo1AiFmqNuVYfURmVSpqp50sOHlapVS38AjB5d5q7b1Wf54/pVvXPpx46OVurVV5VyddWPD0q1bavU6tVK5eRUzvitQGi6Uo+eVord+mK/R6mXw5SKybL0yK5ueZ+h1fX+FEIIUfNJiFNdli0rSBcOHCjXXd5+u+AuO3dW8fhKsUd9q14yeaiVkajMPbnhzT5vpeI3WmZAxURHKzVmjFL29gXH1oMGKXXypKVHVlSnTp3U888/n389JydH+fr6qlmzZpndf+DAgapPnz76ismk1K6fVWdvV/WMi06pTKB8QM21Myg1oLNS361U8VFRysHBQX399deljmPOnDkqICAg//qQIUPUgw8+WGSf999/XzVo0ECZTOX7siUhjlBKqV3qKzU/0UnF7Ne/J0x7bJWKmKOU6er5kltTVVeIc0btUQvVA+oZZcgPSearXuo/9UeVPq+Ki1OqWTP9AdC9u1KZmaXuekBtyA+XvlFjK/Y8MTFKTZmilJtbwQdO69ZKrVypVHb2lb0GC4rNUuqVMB3a5AU4D59WKiTd0iO7NkiII4QQoqJkOVV1CAuDF17Qf58xA9q2veRdfv9d13QBXdC4S5eqG545maTyFf/j66wBPHkynkF53afc+0Krg+Des3oHVExamp7tft11uvFIZqZebvbvv7Bypd5uLTIzM9mzZw89evTI32Y0GunRowc7d+40e5+dO3fSo1ULGDsQmrhC5970jEpiZ4oCRwi5ozGRQI8/dsA3f0P/QbjXq0fnzp1LfUyAhIQEPD09869nZGTgWKwuk5OTE+Hh4Zw5c+bKXri4pnTiYQa57mNJq9bs9QCDyoZz41An7oLM85YenqhCJ/mL9+nNG3QgmLUoFIHczyR28wI/04wqbAOYkwMPPwwnTkDDhrrmXCmFjE+xk495CBM5dGEo9/NWxZ7L01Ovzw0NhWnTwN0dDh/W9cbattUfPjk5V/6aqkmGCd6NgusOwdtRkKngdlfY3QK+CoDGDpYeoRBCCCHMkRCnqimlq+kmJuo2zmPHXvIu58/r5kE5ObrJxrPPVsM4CznHQd7kRuLiP2bqEWidqIsX0/AjuG492NWt3gEVkpMDS5fq7lwTJ+pOsu3awc8/w+bNZZZAsJjo6GhycnLw9vYust3b25vIyMiiOx87BlNGExkWhvfcd+DtNRCaAg7g3cKFSFcnuHCRyJlf6cdo1OjSj5nr5MmTfPDBBzzzzDP523r27MnatWvZsmULJpOJ//77j3feeQeAiIgIs4+TkZFBYmJi/iUpKalCPw9x9fLmekbb/svRJiP4vBFkGMGQ9BumI20g/gdLD09UIoXiCL/yNt2Yy60cZiMGjHTiEaZxiGdZSyMuXfftik2dqj8AHB11TZy65j+fznOEBfQhizTa0JuhfIrxcg+BatfWBZRDQ/WfHh5w9CgMGQJt2sCKFVYd5pgUfB0LLQ7Dy+EQlwOtHeHHprClGXRwsfQIhRBCCFEWCXGq2scfw6ZN+gBz+fJLVtbNzISHHtIdyNu103evrnrBCsVWPmSuqSPdzx5h5Km84sU3YGi5B+o+a7HixUrBDz/ADTfoTOzcOX3S9fPPdfOQXr2soq7y5Tl5El6fAa0bQsuW8Pr7ersN0N0e3u8DYXtg1BxwcgVXrwo/xblz5+jVqxcPPfQQTz/9dP72p59+mpEjR9K3b1/s7e3p0qULgwcPBvRsIXNmzZqFu7t7/qVVq1YVHo+4etnjxCOGj2np9TVzWzpz1gmMOXFwqh+cHQmmNEsPUVwBEyb2sY636Mx8enKCP7DBjlt4mpn8x5N8iS+tq2cw334Lb76p//7pp7oduBlxhPM+PUkljgA6M4I12GB+tk6FeHjoGTmhoXqGTu3aOoh/5BFo3Rq+/BKys6/8eSrR1iTodAweDoHQTPC1gyWNYH8ruMe9Bn+OCiGEENcQCXGq0unT8Mor+u+zZkHz5pe8y9ixsGOHnqX97bfg7FzFY8yVTDQL6c9fqSMZdzST7hdzb6g3BlrsAifLfVH/+2/o1g369dMz12vXhrffhuPH4bHHrL9jtpeXFzY2NkRFRRVsDAkhassWfI4d0dOKpkyHI2FgC9wCPu52RE16GLYkwagNULc9UVFR+Pj4AOT/WeQxc6/n3Zbn/Pnz3H777dx000188sknRW4zGAzMnj2b5ORkzpw5Q2RkJJ06dQKgSZMmZl/PxIkTSUhIyL8cOXLkCn464mp1I4N52nEfX7Zoy6a8Ls8XP0QdvRHSDlp0bJerMjvMZWVlMX78eNq2bYuLiwu+vr4MHTqU8+cLlp6Fhoby5JNPEhAQgJOTE9dddx3Tpk0r0WGuOpjI4R++ZiY3sJD7CeVf7HDiDkbzBqd5jE+oSzWuYz10CB5/XP/9pZd0cGJGCrHMpydxhONNc0ayAQcqeaqJuztMmaLDnNdf18uu8j6gWrXSZxssHOYcToO+J+GO/2BPKrga4XVf+K81POEFNhLeCCGEEDWGhDhVxWSCYcN0b/Bu3Qpq4pTh66/h/dxJGJ9/Dk2bVu0Q8xxnK6+rdnhFrWfCMfBNB2XrA81+Af93wGiZhfH//QcPPghdu8Kff4KDA4wbB6dOwcsv68lNNYG9vT0dOnRgy/ffwzvvwI0dMTVpwpa9e+mamKxn3HQFpteG/eNgcyhde97PluBEMNrnP86mTZvo2rUrAAEBAfj4+LBly5b82xMTE9m1a1f+PqBn4HTv3p0OHTrw2WeflTq7xsbGBj8/P+zt7fn666/p2rUrdUtZluDg4ICbm1v+xdXV9cp/SOKq5E0zxhr/4aL/s8xvCgm2YEg/rIOcCwv0FLsaYtWqVYwZM4Zp06axd+9ebrjhBnr27MmFCxfM7r9jxw6GDBnCk08+SXBwMP3796d///4cOnQIgNTUVPbu3cuUKVPYu3cva9eu5fjx4/Tr1y//MY4dO4bJZOLjjz/m8OHDvPfeeyxatIhJkyZVy2sGyCaTv1jCNFqwhIc5zyEccaMXE3mTUAYxj9o0qLbxABAXB/3768/XO+6AOXPM7pZJKh/SjwiO4IEvo/mFWlR8JmO5ubnBq6/qMOfNN6FOHV2r5/HH9SzLZcuqPcw5nwlPhUK7I/Bjgj5P8HxdONkGXq0PLlZ+EkQIIYQQZli6snJ51MjuVO++qztXuLgoderUJXc/dEgpZ2d9l0mTqmF8Sqlslam+U5PU2EzUof8KtQ4/0U+prIvVMwgzIiKU+t//lLKx0T8Po1Gp4cOVOnvWYkO6fOfOKTVvnlrZrJlyALUM1BFQI0B52KAiXzAo9c896rFBd6gJ48fl32379u3K1tZWvf322+ro0aNq2rRpusX4wYP5+7z11lvKw8NDff/99+rAgQPqvvvuUwEBASotTbd9Dw8PV02bNlV33nmnCg8PVxEREfmXPBcvXlQLFy5UR48eVcHBweqFF15Qjo6OateuXeV+idKdSpTHv2qVmpTpog4U+V3TV6nMC5YeWrlcUYe5XJ07d1bPPPNMqc/xzz//KECdOXOm1H2Kd5grj8vpTpWhUtUW9b4ar/zzO029pOqoDWqmSlFxFXr+SpWdrVTPnvrDoVEjpS6a/6zKVllqgbpXjVCoF5WHClcHze5XpRITlXrrLaW8vAq6WTVpotSSJWV20KoMCdlKTQ5XyqlQx6kBJ5U6nlalTysug3SnEkIIUVES4lSFo0eVcnTUB2yLFl1y94QEpa6/Xu/eo0f1dCq9qE6rWaqLWhCHStyX1xLYSakLC3VLawtITFRq6lSde+Ud7/btq9RBCxx7X5HISKUWLFDq1luVMhjyX8wHoBrao+xtUJ1a2Ku/f3xOqUwdqHTr1k09/vjjRR5m9erV6vrrr1f29vaqdevW6scffyxyu8lkUlOmTFHe3t7KwcFB3Xnnner48eP5t3/22WcKMHvJc/HiRdWlSxfl4uKinJ2d1Z133qn+/vvvCr1cCXFEeUWpE2qmKVB9HYXK3JP7e2efj1IJv1p6aGXKyMhQNjY26rvvviuyfejQoapfv35m7+Pv76/ee++9ItumTp2q2rVrV+rzbNq0SRkMhjLfS6+++qrq0KFDuceuVMVCnFSVoH5Wb6mXVb388Gasqq9+Ve+oNJVUoeetEhMm6N+pTk5KBQeb3cWkTGq5ekKNUKjnlWPVtzi/lKQkpWbPVqpu3YIPt4AApRYvrvQwJ9Ok1IdRStXdVxDe3HRUqR1W8E8nzJMQRwghREVJiFPZsrKU6tRJH6TdffclAxGTSakHHtC7+/srdaEaTkr/o75WL+e4qm2hhc6IHw5UKvVI1T+5GRkZSn3wQdHj206dlNq2zSLDuTwXL+rA7o479NShvBcCSrVDqVdQaqO9UqcfUSpxq8WCsqogIY6oiEyVplao59WMFNS5Q4V+B4W9olROhqWHZ9a5c+cUoHbs2FFk+9ixY1WnTp3M3sfOzk6tWLGiyLYPP/xQ1atXz+z+aWlpqn379urhhx8udRwnTpxQbm5u6pNPPilzvOnp6SohISH/kjfDp6wviUkqWn2vpqoXlUd+eDNRNVbb1EKVqaxk+saqVQW/V4v9bAv7Tk1SIxTqGWVUwWpdNQ7wEpKTlZo7V6l69QpeR6NGSn3yif4gvAImk1LfxirV7GBBeHP9QaXWxl5VHzdXJQlxhBBCVFTZrZJExc2dC//8owsdLllyyVYPb78Na9eCnR2sWVNqd9RKkU4yq3iBs6mfMSZE174BwPtl8H2j2mvfKKVf86RJus4N6Bq/b74JAwbUgC4ZsbG6pe3q1bBlS9GWsq2Bu4AeQEBb8HoaPB8BW08LDVYI62CHI0NYwB7n7rzb8gnuDUuiWzQQ9TYk/QYBX4Pj9ZYeZrXKyspi4MCBKKVYuHCh2X1K6zBnzqxZs5gxY0a5njuBSDbxDn+wkAxSAPChBb2YSCeGVE4Xp8pw4AAMH67//sorup23Gb/xPj+jO1Y9yscEcl91jfDSXFz02J97DhYt0rV8zpyBESN0QeRJk/RrtLe/9GMVsiMZxobDDv3PRz1bmO4LT3mBnbV/jgohhBCiwiTEqUwHDuh2o6ArFDcou9jj1q0wYULB7p07V93QzrKXJWowbS6cYOI5sFWg7OpjaPw5uPWouicuxbZtukjxv//q697e+kf31FM60LJaCQmwbp0Obn79tWiRyhbo4OYuoIELeA7R4Y3zjTUgkRKienXgQRoag/ik0UAOu+9laCjUSt2LOhqEwf8DqDPcat43ZjvMYb4bXB4fH59y7Z8X4Jw5c4bffvsNNze3Eo9VVoc5cyZOnMiYMWPyrx8/fjy/61yeGM7wC3PYzhKyyQDAn0B6M4kgHsCIFVW8jY3VhYxTU6FHD93t0Yx/WcVqXgSgHzO5haeqb4wV4ewMY8bA//4Hn3wCs2fD2bP6+htvwMSJ8MQTupp/Gf5Lh4nnYG187sMa4WVvGOsNrlb0zyeEEEKIyiXdqSpLZiYMHQpZWboX9mOPlbn7uXMweLBuYjV0KDzzTNUMy4SJTbzLwszODDpxgofCdYCD+30YWh2o9gDnwAG45x64/XYd4Li4wPTpcPIkPPuslQY4SUnw1Vdw331Qr57uOvbTTzrAud4OngO+A74EnusMXRdDuwhotBhcOlnNF1EhrE1drmMcO/D0GMXMVnDMFQymVDjzJIQMhuw4Sw8RKNRhrlA3OJPJxJYtW4p0gyusa9euRfaHoh3moCDAOXHiBJs3b6ZOnTolHqe8HeYKK95BrlatWvm3RXKcZQxnMk35nY/IJoMmdGUkP/Iqe+nAQ9YV4GRn6w/LkBAICICVK8G25Pmno2zmMx5DoejO89zDqxYYbAU5O8OLL8Lp0zB/PtSvD2FheqZO06bw4YeQnl7ibheyYORZaH1YBzhG9KybE63hNV8JcIQQQoirnqXXc5VHjaiJM2WKXt9ep45ur1SGjAylunbNLZfSTqmUlKoZUoKKVPNVL/VhHCopuHDx4o+rfZH8mTNKPf54QZ1fW1ulnntO1wC2SsnJSq1cqQsW5RWpzrs0raXUMwalvsmt5RFcW6mzLyiVst/So7YIqYkjKsMe9a160eSmvo1AZefVyTnQUKlECxelzbVy5Url4OCgli1bpo4cOaJGjBihPDw8VGTuL7HHHntMTZgwIX//S3WYy8zMVP369VMNGjRQ+/btK9I9LiO3Pkp5OsyVR15h47fC+qpnlCG/5s276k51TP2mTMqKi6aMHat/7zo7K7Xf/O/YM2qPGqVqqREK9bF6SOWoaugOUBXS0nSBOD+/gs8bX1+l3n9fqbQ0lZKj1OvnlXLdW1D3pu8JpQ6lWnrg4kpITRwhhBAVJcupKsO//+pCLgAffQSlTK/P88orsHOnLpuzdq0+GVfZjvArX5oeo2fYBV1vAlBOQRiarADHFpX/hKWIi9M/mg8+gAw9Y5+HHtIzxps1q7ZhlE9aGvz8M6xaBRs26Kn7eZp4Qo8MuCMFmibrbbW6Q92nweN+MDpZZMhCXC3a8wD+hkAW+wziuOtungyBehlnUf91x1B/MtSfAgbLfWQNGjSIixcvMnXqVCIjIwkMDGTjxo14e3sDcPbs2SKzZG666SZWrFjB5MmTmTRpEs2aNWPdunW0adMG0DNs1q9fD0BgYGCR59q6dSvdu3dn06ZNnDx5kpMnT9Kg2PJcpVT+302YSCWOZKJzLxcL/T2aPfwNwAE2UAtox73cw6sEUIVreCvDypW6zhzAZ59Bu3YldrnASd6nNxkk05w7GM4X1jWTqCIcHWHkSL2ueOlSvWwsPBxeeIGUN2Yx+/HxzO03gnRHJzo4w9wGcLurpQcthBBCiOpmUIWPBK1UYmIi7u7uJCQkmK0XYFHp6dC+PRw9CoMG6YPOMqxYAY88ov/+ww/Qt2/lDiebTNbxKsdS3+ap0+CTG5zgPRZ8Z1Zb8eK0NFiwQAc48fF6W7duuo5jsdIMlpWRAb/8ooOb9eshObngtsb14G5H6HYWrgcMgK031BkGXk+Co7WlUJYRHh6Ov7+/db4/RY2TRQZrGc/2nPkMDoObYnJvcOkKASvAobElh1flFIoMkouEMMlEk1QsmCkc1qQQi8JU6mPGHYU1rWB22L083OB1GlAyDLE6+/bBTTfpD5Px4+Gtt0rskkAkc7iZaE7jTyAv8ztOXD2/g1R6Boc+WorX3FnUjwwD4IKXD+EvjiPwxWcwulTBGSBR7fI+Q8PCwkqEtUIIIYQ5EuJcqbFjdYspb284fBjM1DTIc+iQLl6cmgqvvqqbUVSmKE7wqRpM86i99D9fuHjxF+B2Z+U+WSlycuCLL2DqVL20H6BNG123sXdvKykPk5kJmzfr4GbdOkhMLLitoS/09oFbT0DzJB3cYAC3XrpIsUdfMFhj4R7LkRBHVIVgvmM5w2kTm8AjZ8DJBBjdoNHH4DnY0sMrtywyzIQvJWfLFL7kFRquKCfcqYVXsUtd4o4qRrR6p+Z8SYyJgY4dITQUevaEH38Em6Kza9JI5B26EcY+vGjCOLbjTtmzYGuS3Skw7hxsTQL7zAye+3EZM5a9idu5s3oHb2/dHeB//6ua6byi2kiII4QQoqIkxLkS27fDrbfqlevr18O995a6a0IC3HgjnDgBd92lV+3YVNKMb4Xibz7np8xneTg0jZZJuTd43K+L69qWHixVFqX0a5owAQ4e1NsaNICZM3WN58p6rZctK0u3A1u1SrcFjytUMNXPF+5tBd3OQ9MjucENYN8Q6jwBXk+Avb9Fhl0TSIgjqko0ISxmEEkZ//JkCFyX20KZOo+D/wdgU71rSUzkkEKs2eAliYukmNmeTtKlH9gMOxypRd0SoYyrmW218MKFOthivjX10aNHadWqVc34kpidDb16wZYt0KSJXq7s6Vlklywy+IDeHGcrrtRjHNupR1MLDbhyhWTAq+fg69yPKAcDvFAPJvpAbVMmLF+up7iGhuod6tXTJ5OefVZ3ChA1joQ4QgghKkpq4lyulBR4/HGdXgwbVmaAk7fLiRPQsKFeUlVZoUYaiazgWTLiVzA+FGrlgDI6YWgwH7yeqpapL//+q08Ibtumr3t4wKRJemm/kyVLxeTkwO+/6+Dm22/12d08Pj7Q/za4MxUCtgKbc2+wBY/79M/O7S4wWDp9EuLa5UUAY/mLtQ4TeLv5e/SJgHsiwBizHJL/0surXC5vfaZCkU5SmbNiii9hSiUWRcXPexixKSV4KT2UceAa/UI+frwOcFxc9EzJYgGOiRw+4zGOsxUHavECP18VAU5sNrwRAQsuQmbuf7HHPGGmLzTKXwVtD08/rQ8oPv9cF5cLCdEhzpw5uuDec89BoW5kQgghhLj6SIhzucaPh1On9HSTefPK3HXOHH0sam8P33wDXl6VM4QQdrE8ZxB3hJ/htrzixc7tMQSsAMfmlfMkZTh5Uoc1a9bo6w4OMGoUTJxY4ri7+phM8NdfOrj55hu4cKHgtrp14f4+0MsVmm6FzNUFtzlcr4ObOkPBzrv6xy2EMMsWewbyLtcburHcdxhHXeN5KsRA7YxTcOxm8JsJ3uPIMmReon5MybAmh6zLGpMzHvlLlcwFMMW3O+GOkUu3Br/mrVgB776r/75sGbRtW+RmhWIVo9nDGmyw41m+oyHtq3+clSjdBAsuwBuREJ+jt93pqosWB5W2SsrODp58EoYOhS+/1GHOqVP6uGTuXHj5ZXj+eXCVqsdCCCHE1UiWU12OLVugRw/9919+gbvvLnXX337Ty6dMJli0CJ555sqf3oSJX5nD3tTJPHE6B58MUBgw5BcvNj+lvrJERellUh9/rGe+Gwz6WPK11/RMo2pnMsHff+vgZs0aiIgouM3TE+6/H/q1hJZ7IGktqNx6EwZHqP2grnVT61YrKdhT88hyKlHZcsgutmxJhy8XOMEuviI7O5JHzkLH3CUnx12NLG1sIv4yfvXZ41xq+GJuCZMLnthQs+pi1YjlVHv3ws0362YBEycWdHws5Cfe4HsmY8DAk3zNjQyywEArh0nBilh49TyczdTb2jrBXD+4262CH0fZ2fDVV/qD+dQpvc3TU4c5I0eC/F62ape7nOrDDz9k7ty5REZGcsMNN/DBBx/QqYzOEWvWrGHKlCmEhobSrFkzZs+ezT333JN/u1KKadOmsXjxYuLj47n55ptZuHAhzQq1Eo2NjWXUqFH88MMPGI1GBgwYwPz586mVO/tr27ZtvPfee/zzzz8kJibSrFkzxo4dyyN5HT2EEEJUCglxKj4YfXbw7FldUHDhwlJ3DQ/XjasuXtSzn5cuvfKcIJ7zLFWP0ihqK/flFi822flibPwFuN1xZQ9+CcnJ8M47uo5zXhOn3r110xAznV+rllJ6HVdecJNXRRl07/b774cBd8MNIZCwDDJOFNzu1E4HN56PgG3tah741UdCHFEWhSKNhFKXKqWY2ZZKXHkemJtiYHAYOJgg2Qa+bGzklEe9S9aPKQhr6mDP1V8U1upDnIsXdSHjs2f1h8oPP5RYc/wXn/IFTwMwiPe5g1GWGGml2JIIY8MhOE1f97OD133hsTpgcyXHCNnZejbT66/r9dugw5yXXoIXXpAwx0pdToizatUqhg4dyqJFi+jcuTPz5s1jzZo1HD9+nHr16pXYf8eOHdx2223MmjWLvn37smLFCmbPns3evXtp06YNALNnz2bWrFksX76cgIAApkyZwsGDBzly5AiOjo4A9O7dm4iICD7++GOysrIYPnw4N954IytWrADgzTffJC0tjd69e+Pt7c2GDRsYM2YM33//PX0rux2rEEJcwyTEqainnoIlSyAgAA4cKHXteWambqn9998QGAg7dlx5fZj9/MC6zKEMCo2nRW6tTOXxAIZGn1Rp8eKsLPj0U5gxQ8/CAX28PWcO3H57lT1tSUpBcLAOblavLijsCHra+H33wcAHobMBkpZB/A9Atr7dWAs8H9ZLppw7yqybSiQhzrUlkzSzNWRKX8IUjSnvfVhBLniWGsDEEc52luCRnszTIUb8U3NbbHv9D/zfAePVH86Ul1WHONnZejbr1q3QtKkO5z08iuyyj+9ZxAMoTPRmEv15wzJjvUIH02BcOGzMbYjoZoSJ9WF0PXCqzNV22dmwcqUOc44f19s8PHSYM3q0PtEhrMblhDidO3fmxhtvZMGCBQCYTCb8/f0ZNWoUEyZMKLH/oEGDSElJYcOGDfnbunTpQmBgIIsWLUIpha+vLy+//DKvvPIKAAkJCXh7e7Ns2TIGDx6c/3vk33//pWPHjgBs3LiRe+65h/DwcHx9fc2OtU+fPnh7e7N06dIK/VyEEEKUTmriVMSPP+oAx2DQ6/XLKB44ZowOcDw8dE3dKwlwskjnW8YRH/cBr5wBlxwwGZ0w+n+Aoc4TVRZIKKXHPmlSwUm9667Ts9wfeqiachCldLurvODm5MmC21xcdEHpQYPgjlaQvAKiRxWdlePSRc+6qT0QbKTYoxCF5ZBFCrHlriGTTDSZpF7WczngUspypdK6LXlic4mPqLsYwyeOg5jV/G/uOw89o4DoRZD8BwR8Dc7VPUVQVNjYsTrAqVVLF48rFuCc4E8+ZTAKEzfzBPfxukWGeSXCM2HqeVgWAwp94PVcPZjsA3WrYmWerS08+igMGaI/O2fOhGPHYNo0eO89ePFFHeYU+1kLy0pKSiIxMTH/uoODAw4ODiX2y8zMZM+ePUycODF/m9FopEePHuzcudPsY+/cuZMxY8YU2dazZ0/WrVsHQEhICJGRkfTIKxUAuLu707lzZ3bu3MngwYPZuXMnHh4e+QEOQI8ePTAajezatYv777/f7HMnJCTQsmXLS/8AhBBClJuEOOUVG6u7QoA+ALrttlJ3/eor+PBD/fcvv9RdUi/XeY7wec4gbg4/xODc4sUm5/YYA74Gx+sv/4Ev4Y8/dMepXbv09bp1YepUGDFCF2iuckeOFAQ3x44VbHdygj59dHDT+y7I3ALRH8OJXyCva4yNJ9R5TM+6cWpTDYMVwvJMmAotWyq721LeEqZU4i/ruWywy1+u5HKJGjJ57a/tqfxWdZ40ZCx/sM74KmsbzOWoGzwVYkut9CNwrBM0mAN1R8nMO2v1xRcFjQGWL4fWrYvcfI6DfEQ/skinHffyCB9joOb8WybkwJxIeC8K0nI/nh6qDW/6QlPHahiAjQ08/LD+vFyzRoc5R47A9Ok6zBk9Wh/P1JZlxdagVatWRa5PmzaN6dOnl9gvOjqanJwcvL2LNmHw9vbmWOHjpUIiIyPN7h8ZGZl/e962svYpvlTL1tYWT0/P/H2KW716Nf/++y8ff/yx2duFEEJcHglxymvUKF0wt3lz3QmiFAcOFGQ9U6bovOFyKBR/8Sk7U0YxLCSjoHixz3iM9WdUWfHiQ4d0Tcm8GbfOzro24iuvVMNy+v/+06HNqlV6IHkcHHSdhEGDoG9fsD0P0Uvg5POQXaj7lOsdOrjxuB+M1XGELETVUCgySS11uVKK2W0xmMip8HMZMOCcu2zp0jVk9MURV6v5Mm2DHQOYw/V04zO3oUxrFcvwM7a0SciAsNGQ8As0/gzsStaJEBa0Z48+KwAweTI88ECRm2M4w/v0IpV4ruNmnmblJWdmWYtME3wcDa9FQHTuSsJbasHbDaCzJTrH29jA4MEwcKDu2vjaa3D4sP5z3jxdL+ellyzYVlIAHDlyBD8/v/zr5mbh1CRbt25l+PDhLF68mNbFAlohhBBXpmYcEVnat9/qYoFGoz5bWMraqPh4GDAA0tL0Ev9p0y7v6VKI4yv1FF5Ra3n5HNgAJrv6GAO+AteqKUITHq5n2ixfrps92djoMGraNPDxqZKn1E6fLghu9u0r2G5nBz176uCmXz+oZQdx38K5vpD8e8F+tj7gNRzqPAGOTatwoEJcvmwySSGmnDVk9PYs0i/ruRxxveRypcJhjTO1MWJz6Qe2cm3pw2T28andYD64bgfdL8LAcBtsEn+CI+2g8XJw72npYQqACxd08fn0dH2mY8aMIjcnE818ehLPeerTiudZXyMKUCsF38bDxHNwMrcJYnMHmN0A+rlbwYQwo1EHOQ8+CGvX6hDn4EFdO2f+fH2yaswYqFN1NfZE6VxdXctVV87LywsbGxui8ooU5oqKisKnlAM2Hx+fMvfP+zMqKor69esX2ScwMDB/nwsXLhR5jOzsbGJjY0s87++//869997Le++9x9ChQy/5moQQQlSMhDiXcuGC7kIFMGECdO5sdjeTSXegOnlSt9lesaJEc41yOclfrM4cyICQCJrndoBSHgMwNvoEbCv/LFl8PMyaBe+/r4+nQQdRb7yhJx1ViTNn9NTuVatg9+6C7ba2unX7oEG6SHHt2pB6AKJfhdNfQk587o5GcO+ta9243wOGmtXuV9RsJkykEleu+jF5YU06iZd+YDNssTcTwpTeBtuFOthRs8/eXglP/HmZbawzTObXenP4zzWHZ087Ui89Ck72gnpjwO9NMF67PyOLy8rSRdXCwuD66/WaY2NBVd8MUlhAX6I4Tm38Gc0vuGD9M0T+StYdp/5O0de9bWGGLzzpBbaWDm+KMxp1kPPAA7oO0YwZehrxm2/qg4GRI/UUXC8vS49UmGFvb0+HDh3YsmUL/fv3B3Rh4y1btjBy5Eiz9+natStbtmzhxRdfzN+2adMmunbtCkBAQAA+Pj5s2bIlP7RJTExk165dPPvss/mPER8fz549e+jQoQMAv/32GyaTic6Fjo23bdtG3759mT17NiPyZtsJIYSoVBLilEUpHeBER+se2lOnlrrrnDnw/fe6Xsy331b8RFYO2fzE65yPe43RZ1Sh4sUfYqgzrNJP4aWn67o9b7wBcbndfG+9Vb+OLl0q9am08HA9jXvVKl3xOY/RCHfcoYOb++/XP7icJIhdCUcXQ+q/BfvaNwKvJ6HOcLC3sg4r1yKTSVe83rxZX9+3T4ecNWgKuEKRQUq5ui0VtMKOQWGq8HMZMFKLOrk1YkqvH1M4rHHAxWqWLdUUennVbL28ymkor7WMYWC4HbddzIIL70LSb9Dka3BsYemhXpteflkXXXN1LVHIOIcsPuEhQtiFC56M5hdqY92/64+l65k36+L1dWcjjPWGl73B1donuBmNOsjp318fwLz2mv49/tZb8MEHBWFO3bqWHqkoZsyYMTz++ON07NiRTp06MW/ePFJSUhg+fDgAQ4cOxc/Pj1mzZgEwevRounXrxjvvvEOfPn1YuXIlu3fv5pNPPgHAYDDw4osv8vrrr9OsWbP8FuO+vr75QVHLli3p1asXTz/9NIsWLSIrK4uRI0cyePDg/M5UW7dupW/fvowePZoBAwbk18qxt7fHU5brCSFEpZEW42X56ivd4cHWVrc9zT07UdyWLXr5lMkEn3xSUBOnvGI5y+c5g+kYtpNbYvQ2Xbx4JTg2u7LXUIzJpF/W5Mlw9qze1qqVPmbr27eSs6LIyILg5q+/CrYbDLr/+qBB+gCyXj0dmKXsguhPIW4lmHJPZxrswP0+qPs0uPYAQ2X2YRXllpGh6xQFB+vLvn2wfz+kpBAO+AMJgJutrf4PFRgIQUH6z8DAauuCkkUGKcRUqNtSNhmX9VyOuJW7hkzBsiX5/1ud4ghnMYM5xXbaxcOToY445qTr9uP+86HOk1awxqXqWU2L8WXLIPdLJuvW6RmXuUyYWM4w/uYL7HDiJbZwHV0tMszyiMyCGedhcTTkAEbgKS+Y7gv1a+rkUKVg/Xo9Myc4WG9zdobnn9eF8epJXamqcDktxgEWLFjA3LlziYyMJDAwkPfffz9/Rkz37t1p3Lgxy5Yty99/zZo1TJ48mdDQUJo1a8acOXO455578m9XSjFt2jQ++eQT4uPjueWWW/joo4+4/vqCJhqxsbGMHDmSH374AaPRyIABA3j//fepldutddiwYSxfvrzEWLt168a2bdsq+JMRQghRGglxSnPuHLRpo9cbzZypUw8zwsKgfXs9WWf48IIO5OW1l2/ZljKMR0KS8c4vXjwBfGdU6jIhpeCXX/SKsP379TY/P33i7fHHL2/pl1kXL+qpSKtWwe+/6yfOc/PNOrh58EHIW3OdHQsxX+jwJr1wMePmukhxnaFSkLS6JSbqkCYvsAkO1h1NsrNL7uvkRHiLFvgHB5Pg4YFbfLz5x2zcuGioExQEDRqU+WYxkZO/bKm8oUw6SZf1km1xyA1kSl+qVLzbki3V0aZNXKkcslnPVDYyC/dMeDa0FgFJuWtVPQZAFS1VtSZWEeL8+6+e7pmRoYutFeu68y3j+JW5GLHhOb6nLZfZFaCKJefAu1EwJwpScifk9XOHt/ygZeU3YLMMpXR3gxkzdAFq0GHOs8/qlvDFOhiJK3O5IY4QQohrl4Q45igF99wDGzdCx46wc6eejVNMRoaeULJrl/5Oun17qTWPS8gklTVqNM6Rn9LvvC5enGPng03ASnDtVqkvZ88e3S78t9/0dXd3Hea88II+LrtiMTHw3Xc6uNm6FXIKdcjp3FkHNw89pL+0AyiTLk58cTHErwWVOxPC4Ai1B+rwptYt18QZcouLjCwa1gQHw6lT5vf19NT/0Qtfrr+e8IgI/P39SYiPxy0hoWCmTl4QdOaM2YfLqlOLxMD6xAbWJirImfBAI2HN00myjcltfx2LouK/nozY4JK7bKlw+FLWEiZ7nGXZ0lXuEBv5jMdIUdH0jnLg3nPZGMkBuwYQ8GWl/961JhYPcaKioEMHfXKkXz/9eVGoDs4m3uEbXgFgGMvoyuPVP8ZLyFawNBqmnYfI3Dy7kzPMbQC3uVp2bFVGKfjpJx3m/Ju7tNnJSS8zHzeuirseXDskxBFCCFFREuKY8+mnek2UgwPs3auXh5jx/PPw0Ue6/u6ePRAQUL6HD2M/azIfpE/IyfzixabaAzA2XAy2tSvpRejv4pMnw8qV+rq9vV7iPmlSJTSfiI/X0+FXrdI1UQrP0ujQoSC4ady4YHtWBMQs17NuMgoFBU6Bukix58Ng63GFAxNmKaU7gRUPbHLXq5fg718ysPH3LxGspZHAnvBt3Orfn/UJs1FuKSXqyGTHRVF7XzS++3LwDwb/fVD/CNiY6Yad6Qjn2kJ4IJwN0n/GtnPH3qVufghzqSVMTrjLsiVhVhzn+JQhnORPGqXAyBB33DISAAP4vAq+U6/KQukWDXEyM+HOO/WS2ubN4Z9/oNDn+N98yWc8BsADzKYn46p3fJegFGxIgPHn4Ghu8f8m9jDLDx6qfY2ca1BKn9SaMUOftQJwdIRnnoHx4wtm1orLIiGOEEKIipIQp7jQUGjbFpKTYe5cvQ7cjC++gKFD9QHchg164s6lKBRbWcDpuDEMOZOdW7zYEaP/QqjzeKUdDV68qFeALVqkG4EYDPDII3pb4UylwhIT9Xr5Vav02qysrILbbrhBBzcDB8J11xVsVzmQuFEHN/E/oKsHAEZXHdp4PQ3O7a+RI+FqkpUFR48WDWv27dP/fsUZDPqLVeGwJjCwRFeSDFKI4CjnOcR5Duf/GUcYyeGwwh+GJYD9Jd6e9jhTCy/c0z1pdNiRBvsUPsFp1NkXj9v+KGyTzdSnMRh0F5viy7GkPoO4DDlk8wPT2cib2OcongirTWBMbnV3ly4Q8BU4NLHsICuZRUOcvLMdbm46wCnU9vAQG/mQezGRzZ28yEO8a1Uz4v5N0R2nfs892VLHBqb6wv+8wP5azImVgl9/1WHOzp16m4MDjBihwxw/P8uOr4aSEEcIIURFSYhTmMmkW1xv3arrt/z+u9liMQcO6A5OaWlml/ablUw0K3KG0jrsZ27OLV6c49wem4BV4Ni0UoafkgLvvac7TCXllgbp2VMXLS6lJvOlJSfrlGrVKvj5Z72GLE/r1gXBTfF+5BlnIGYJRH8GWeEF211u0sulag8EG5fLHJTIl5Ki/0MWDmwOHSr675TH3l4HlIUDm3btwKXg3yGLdCI5XiKsiSGk1KVNxnBvFvlH8V7CfdR1q1/mbBl7yli/ZzLp6WPFl2OVNluofv2CYCfvzyZNiizTEKI0R/iVpTxKEhfpEuvAY2dtsM1J1QFzw4VQ5xFLD7HSWCzEWboUnnxS/339erj33vybQviH97iDDFK4kSE8wZdWM4PudAZMOgercrM9RwO86A3jvcFDenrqMGfzZn3ws2OH3ubgAE89pddqSxBRIRLiCCGEqCgJcQr74IOCQjH790PTkuFKfLwuk3PqFPTqBT/+eOnvjMf4jU0pAxkUEkO93OLF+EzE4Du9UqbuZ2frgsrTpxd8323fXoc5d955GQ+YmqrXwa9erQOctLSC25o3LwhuWrcuej9TJiSsh+jFkLgJ8r7029TRBYq9ngSnYvcR5RcTU3I51PHjRYtH53FzKwg38i4tW4Kd/v+WQxZRnCCCw5zjUH5Yc4ETpbbPdqUevrTBl9b40gY/2lCfVsSGJ+uaOFX1/oyMLBrq7NunW5ube92urnpWWOFgp3XrGtX2XFSfeM6zhIf5j9/xzICXQryplxKlb/R8DBouAJtq7IhYRSwS4uzaBbfdppdTzZgBU6fm3xTJceZyC8lE05K7GMkGqygUHpMNr0fAhxchS4EBGFoHZvqCv+WHZ32U0u05Z8wo6EBpb18Q5vj7W3Z8NYSEOEIIISpKQpw8J07oL39pabBggZ4CXozJBP37ww8/QKNGug5OWbVlcshivZqCMXI2fXOLF2fb+WAbsApcb7viISuly9JMnKi/y4Ouy/PGGzpnqdCEhPR0veZ99Wp9xjQlpeC2664rCG7atSu59Cn9uF4uFbMcsi8WbHe9Uy+X8ugPRvkSXW5K6bZnxQObsDDz+/v4lKxfExAARiMmcrjI6fywJu/PKI6TQ5bZh3OmdpGwRv/ZGlfqmt0/7wC0WrvHJScXzEDKC3gOHjQ/Aymv7XnhWTs33FBtbc+Fdcshmw3M4GfewKAUgyO8uS3iIgZMYN8EmqwAl86WHuYVqfYQJzJS10Y7f15/aH77bf4HUjznmcNNxHCGRnRkDL/hiGUrA6eZ4P0LMCsSEnJX/PZ0g9l+cENlFP+/2imlZzDPmAF//KG32dnpWVgTJ0LDhpYdn5WTEEcIIURFSYgDupvSrbfqNd533qnXfJtJQN58E159VZ/U375dH6OW5iKnWZM5gB4h+7g+dz19Tu0HsGn4aaUUL/7rL90cIm9ZupcXTJmi6wyWe9JBZqZ+ratXw/ffF62Z0qhRQXDT3kzNGlMqxH2rZ90k/1mw3a4+1BmuZ91cZXUlqkROjk7giteviY01v3/TpkVr1wQFgY8PJkzEcrZEWBPJUbJIN/tQDtQqEdb40QY3fCpUl8IiIY45WVkFP8vCs3bi4szvHxBQtMZOYOAl256Lq9cRNuUur7pAi2RHnguphUNmNGADvq+Bz3gwlFxeWxNUa4iTmQl33KE/JFu21DNyXHVIk0o8b3Mb5zhIPZoxlr9ww3K1rUwKvoyFyecgLDfTvsFJd5y6q+ZPwLKMbdt0mLNtm75uZwfDh+uOCo0aWXJkVktCHCGEEBUlIQ7odUfjx+sDzUOHzJ412rRJL58ymXTzqrxl/ub8wwoOxz7JwLPpuORAjtERm4aLwHPoFX9BPHJEn9hav15fd3KCMWN0oFOuH01Wlp7+vHq1bvMaH19wW4MGOrQZOBA6dTI/1tR9etZN7JeQk5C70QjufXStG/d7wCBFA8xKT9ezRQoHNgcOFF2ulsfWVi8DKjy75oYbUG6uJBDBeQ4VCWsiOEIGyWaf1g4n6tOyRGDjScNKKSJqNSGOOUrB2bMll2OV0vacOnWKhjqBgXoJoa38n74WJBDBpzzMf2zDKRtePNuExnGn9Y21ukPAF2Bf875kVWuI8+yzuqq+u7suZHz99QBkksZ8enKSP3HDh/HswItytnSsApsSddHi/bm/fv3t4A0/eMQTjJLjXrnff9dhztat+rqtLQwbpsOc8rbyvEZIiCOEEKKiJMQ5fFjPNMnM1IVlnniixC5nz+pdYmJ0ePPpp+YfKp0kvsn5H03CVnBTbvHiLJdA7AK+AYfrzN+pnM6d0zVvli7VQZKNjR7LtGng63uJO2dn67Niq1fD2rX6heSpX1+3Ah84ELp2Nb8GKycRYr/W4U3q7oLt9o11cFNnGNhLV4oi4uMLQoO8y9GjeuZNcS4uenlP4cCmdWuSHBJLFBg+zyFSiTf7lDbY4UOLEmGNFwEYqboZBFYd4pQmNlbXvSq8HOvIEfP/Po6OBQWh8wKetm2LFIQWVw8TOfzITH7kNZRS9I71o9/ZOIymVLCpDY0+hdoPWHqYFVJtIc7ixbpTkcGg1x336QPon+nHPMg+1uGIG6/wB/7cUHXjKMP+VBh3Dn7NnXjqbgOTfGBUPXCyjrrKV5c//9RhzpYt+rqtrW7t+eqruhC9kBBHCCFEhV3bIU5Wlm4ztXev7hG+YUOJ2ScZGXql1b//6iBn+3b9na64M+xhY0p/HjgdTt1MXbxY1Z+Esf60KypenJAAs2fDvHkFEzb694dZs6BFizLumJOj11ytWqXrEVy4UHBb3brw4IN6udQtt5jtwIVSkPK3Xi4Vt0ovnwL9Wjzu17VuXO8AwzV+1KsURESUrF8TEmJ+fy+vEvVrUprWIcLmGOcLLYU6zyGSuGj2IYzYUI9mJcKaejTFhisvlF1RNTLEMSc9XYe6hZdj7d9ftD5UnrzW7MWXY0nb86vGUbawlEdIJIoG6U68FOJDrdTc97XXCGjwbo3psFctIc7OndCtm/5cff11/SUdUCi+4n/8ySfYYs8L/EJzulfNGMoQlglTzsPnMbrkvp0Bnq8Lk+tDHZloV/W2b9dhzqZN+rqNDTz2mP5/YqaJxLVEQhwhhBAVdW2HOK+9pqey1K6tl1GZmdKSNzPc01MXMm7cuOjtJkxsUe+QFjmBPudN2ABZ9t7YNV4Drrde9tAyMmDhQn0snDdx5uab9cqvm24q5U4mkz6QXrUKvvlGhwt56tSBBx7QwU23bqUvD8mOgZgv9Kyb9MMF2x1b6ODG8zGwM1/g9qpXuAV24UvhgKywRo2KhDXpQdcT4RfPeUPRsCae82bvbsCAF02KFRhugzfNscN6CkVfNSGOOSYTnDxZcjlWaW3PfX1LLseStuc1VgKRLOERjvMbNiZ47nxbWkcdwoDSvxMDvgbnQEsP85KqPMQ5f163bYyI0J8z33yTf0LkB6azgRkYMDCCNbRnQOU/fxkScmBWBMy/AOm5RzuDa+ulU02s59fotWPnTh3m/PKLvm5jA48+qsOcZs0sOzYLkRBHCCFERV27Ic7evdC5s15qtGIFDBlSYpfly/USboNBd9zu1avo7QlE8m3GQG4N/ZNmueVIsms/gG3DJWDrcVnDMpng669h8mQIDdXbWrSAt96Cfv3MlKlRStcdWLUK1qyB8PCC2zw84P77dXBzxx357aVLUCZI2qqDm/i1oDL1doMTeA7U4Y3LTddWwdfMTL28pnBYs38/JCWV3Ndo1P9IuWFNVlArogKdCPcMK7IUKobQUp/Ok4Ylwpr6tMQe62+NclWHOKXJa3teeDnWpdqeF16O1aqVtD2vIfTyqtf5kRkoFDcnNuKR0FRssi6CwR783oJ6o616VmKVhjgZGdC9O/z9t67jtXNnfiHj31nICp4D4GEW0o3/Ve5zlyHTBAsvwswIiMldJXlbLV20uFPNmEB1dfv7b30i7eef9XWjER55RB/85NZRulZIiCOEEKKirs0QJyNDnzU8dAgGDNDhR7GAYt8+XSImPV3Xopk2rehDHOJn9sUO5oGziTjnQLbREZuGH2PwfOyyw45Nm3R95eBgfb1+fX3CavjwYhNnlNIh1KpVus5N4SKtrq56vdWgQXDXXWBvX/oTZkVA9GcQvQQyTxdsd26va914Pgw27pf1WmqUpKSi9VGCg/X/jSwzLbgL1UfJCWpLTJAnYW2zCHc+mR/WXOQUCpPZp3LDBz/aFAtrWuFEzQ0/rskQx5ykpILC1YX/H5XW9rx166LLsaTtuVU7zlY+5WESiaR2thPjQlvgmZD7y9qtFzReBnbeFh1jaao0xBkxQtfC8fDQ645zl8bs4RsWMxCFoi/TuJfplfu8pVAKVsfBpHNwOvd8REtHmOMHfdyvrXMRNcI//+gw58cf9XWjUZ9Umzz5EmvGrx4S4gghhKioazPEmThRT22pW1fXwKhbdHlQXJzOeE6fht69damcvNUQWWSwIedlfM5+SNfcLtCZLjdgH7D2sltqBwfr8CZvqbibm74+enSh2qlK6U5GecHNqVMFD+DioqfpDBoEPXuaL9qTR2VDwkZd6ybhRyD3FKXRDeo8osMb5/aX9TpqhAsXSi6HOnnS/AwKDw8IDMQUdAOJQb6cD7IjpEU852yPcp7DRPEfJrLNPo0LdfCjDfVz23bXpzW+tKYWdar29VmAhDhlyMqCY8dKLse6VNvzwrN2/Pzkm6eVSCSKpTzKUTaDgmHRXegStg+DSgfbejrIce9t6WGWUGUhzscfw//+V2K66nG28T49ySaT23iGh1lYKZ3wLuWPJHglHP7NLeHmYwuv+cJwL7CVt5B1271bhzk//KCvGwwweDBMmaJb1V/FJMQRQghRUddeiPP337q4jMmkOzXdf3+Rm00muO8+Hdw0bqzr4Hh66tui+I+fku+lb8h/1M0EEwZU/YnY1J9xWW21Q0L0yaYVK/R1Ozt47jm9zcsrd6fDhwuCm+PHC+7s5AR9++rg5p579PWyZIRA9FKI+QyyzhVsd7kZ6j4NHg/WmCKd5aKUXo9WPLA5b77+DH5+qKBAUoMCuBDkypmgbE41Osd5w2EiOUY2ZmZTAI64lQhr/GiDK/Wq5UuLNZAQp4IKtz0vvByrrLbnhWvsBAXp5QbS9twiTOTwM2/yA9NRmGiX1oQRITbYpZ3QO9QbrZdYGcsI06tZlYQ427fD7bfroHLWLJgwAYAw9vE23UgnkSAeYASrq7Q7HsDRNBh/Dn5I0NdrGWGcD4ypBy5V+9Sisu3Zo8Oc9ev1dYNBd8+cMkXPXrwKSYgjhBCioq6tECc1VX8B+u8/XUjviy9K7PL66/pYwcEBduzQHakUip1qKfERz9IzIgsbINO+np59U+vmCg8jOlo/z0cfFazYefhhmDkzt+Pm8eMFwc3hQsWFHRx0YDNokG7dWqtW2U9kyoD473Wtm6TN6J4cgE0dqPO4nnXjdBWc4crO1rMdCoc1+/bpNt/FGQyoZs3IDGpOXJAX54JsOBGYxOl6p4jgCJmkmn0Ke5ypT6siy6D8aIMHftdMWFMaCXEqSfG252W1pXd0hHbtis7akbbn1eo421jCwyQQgZPJkfHht1D/4mZ9o9MNuuixlfx+rfQQ59w56NABoqLgoYf055XBwEVOM4ebSSSSZtzGaH7BjqoLsyKyYPp5+DQaTIANMKIuTKsP3tXfqE9UpuBgHeasW6evGwy6q+bUqdCmjUWHVtkkxBFCCFFR11aI8+KLMH++7iBz6JDuSlXIr7/q2eBKwZIl8MQTkEYC32c8SseQDTTN7TSc4dkfh4bLKlwvJjVVtwqfPRsSE/W2Hj309fbupwqCm/37C+5kZ6cHNWgQ3HuvXmt1KWlHdXAT+zlkRxdsd71LBzce94GxhhZVTU0tqDuSdzl4UBcvKkbZ2WFq05ykoAZEBbkQEpTJ0XZRhLoeI51Esw9viwM+tCjRvrsOjTFivYVLLUlCnCqUnq5/VxWetVNa23OjUc/QKb4cq+412k2uGiRyIXd5lV4L+2DCHfQI3Y8hO0YXhvd/T7cjt/ByuEoNcdLTdYfDf/7RweGOHVCrFolcYC43c4GTNKAdL/M7znhUyviLS86Bt6P0JSW3/Fh/D3jLD5pbzwQoURn279dhztq1BdsGDNBhTrt2lhtXJZIQRwghREVdOyHOtm166jfobgjFWk2dOaNPLMbEwNNPwyefwGn+5t/Ye+l3JhonE2QZHbBp+AnGOkMr9NTZ2bBsmS6OnLeaJzAQ5r8Uym2Rq3Vws2dPwR1sbXVR4kGD9Nqu8hQ7NaVC3Bq4uBhSthdst/OFOk+A1xPgEFChcVtcbGzBl9e8y7Fjes1bMaqWC2mBTYgNqkN4kIH/ghI52CqERPtYsw9txBZvri8R1tTlOmyQZSoVISFONcvJ0TWxCgc7wcF6VoQ5vr4ll2MFBEjb80piwsRG3mI9U1CYaJrVlFEhdXFM2ql38LgfGi0GW8vVw6q0EEcpeOopWLpUnwT591+47jrSSeJd7uAMu6lDI8axAw98K+8F5MpWetbN9PMQlVuOrIuL7jh1yyUmpooa7sABPV35m28Ktj3wgA5zbrjBcuOqBBLiCCGEqKhrI8RJStJnbEJDCxKaQtLT4dZbdV29Dh3gj79y+MtuOu5n36BzrP7xpLu0wTFgfYWCEKX0su6JE/WqCICuDcL44LY1tD+1GsOuXQU729joNuCDBunuUnXKecCfGqyLFMd8Baa82SU24N5HtwZ373VZ9XqqlVJ6en7x+jWl1AjJrlebpCBfIoKcCAnK4FBQBCHXRaPMfCc1YKAuTUuENd5cjy1ldO4S5SYhjpWIjCxaYyc4WLc9N8fVtWioExgobc+v0H/8wRKGEM957JUjYy7cS+Nz6zCoLLDzg4AvwPV2i4yt0kKcjz6C55/XAeDPP8Pdd5NNJgvoy1E2UQsvxrEdbyq3RbRSsD4BxofD8dzyZE0dYJYfDPCw+EQnUZ0OHdJhzpo1BQ0J+vfXYU5QkEWHdrkkxBFCCFFR10aI88wzOrhp1EgvvXF1NXuzpyf8vv8cBz3upUdIcH7x4pz647GrP7NCYciOHTBunK796EMEw5zXMNJ7NX4hhWbJGAzQvbsObh54oPzLHnISIPZrHd6k7i3Ybh+gl0vVGQb2lX8WtFKYTPqLZfHAJjra7O7pAXWJDvIgLAiOBcVxNCiahPpgrgxNHRoXCWp8aYMPLbDnEkWfxRWREMeKJSXpM9iFZ+0cPAiZmSX3tbPTQU7hYCcwENwrtmz0WpbERZbyGEf4BYB7Untz7+kTGDNOAgbwmQC+M8BQvQVbKiXE+fNPfaIhO1uvAR43DhMmlvIo//I1DrjwEr8RQKdKHfuuFBgbDn8m6+tetrrmzQgvsJfJZNeuw4d1ccFVqwrCnH79dJjToYNlx1ZBEuIIIYSoqKs/xPnll4KlU7/9VrCkKteyZTB8uM5Tlv77HT71H+GuiDRsgHR7LxwC1mGoQPHiY8dg0iT467sLDOBbhhhXcYvpD4x5RYUNBrjlFt1t4cEHwcenfA+sFKTs0LVu4lbr5VMABnvweECHN663g8GKjmozMvRZs8LFhkup56FsjCS2qkNkoAOngtI4FhTD2UBI8yj5sB74lQhr6tMSR1xL7iyqnIQ4NUzhtueFl2OZKwQOeulV8eVY0va8VCZM/MJs1jMFEzk0yGnGmPC2uETn1vRw7gRNVoDDddU2pisOccLCoGNHuHBBn3T4+muUAVbzEr8xHyO2jGQDrelZaWM+mQ6TzsOaOH3d0QBjvHXXKXfpOCXyHD2qw5yvvy4Ic/r21evXO3a07NjKSUIcIYQQFXV1hzjx8bqLwblzMGoUvP9+kZuDg+GmmyCLNKb/8QyDXb/IL16c5tkPp4afl7t4cUQEzJ0QTcoX3/GQWsXtbMWGQrVbunbVwc1DD+kvQOWVHQ0xn+vwJv1owXbHVnq5VJ1Hwdar9PtXl8TEkvVrjhzRZ22LyXGyJfoGN84EmfgvKIGzQYpzbSC7WEFKV+rmBjS6bbf+eytcqF3iMYXlSIhzFchre158OdbZs+b39/IquRyreXO9LFQAcJK/WMxg4jmHHY48H/c4Lc6swpATD8Za0PAj8Hy0WsKwKwpx0tPhttt0/Zt27fQ0UxcXNjKb79BtxZ/gSzrzSKWMNTobZkbAwouQpfSky2F14DVfaCArYEVpjh0rCHPy6ubdc48OczpV7uywyiYhjhBCiIq6ukOcxx+Hzz+HZs30lxJn5/yb4uL0jNt4p8O8tbYXj6WG5xYvtsfQ6BNsPR8v39jOxLF55Dpcf1rF7abN2FKoHfCNNxYEN40alX/cygRJv+nlUvHfgcrtQ250htqDdHjj0sVyZ8Lzam8Uvpw6ZXbXdE97zgfZcSoojTNBJsKCIOp6UIW+6znjUaJmTX1a40a9anpB4kpIiHMVyysuXnjWTmltz52cdLeiwrN22rUr8nv3WpNMNJ8xlEP8DMDtmfcxMOQixuQdegfPh3WYU8FOhxV12SGOUnqq6vLler3x7t0QEMB2PuNzngDgId6lBy9d8RjTTDAvCt6KhMTc7+C93WB2A2grK2JFef33nw5zvvqqIMzp1UuHOV26WHZspZAQRwghREVdvSHO99/rYndGo17Lf9NN+TeZTHDvvYqLTebx/uhX6JKgP+hTXFrhEvAjODQu+7ETEsheu56wt1fhd+RX7MnKvym5WRC1nhiow5smTSr2QjPPQcwyiF4CmSEF25076ODGcwjYVOOXZKXg9OmSgU1kpNndE/ztOBOUkx/WnA2COH/y69c4UCs3qCm6FMqd+hjMFbkRNYKEONeYtDRdj6Iibc8LtzwPDLym2p6bMPErc/meVzGRg49qxpjIu3E/vwjI0bXMAr6CWl2rbAyXHeJ88AG88IL+d/zlF+jRgwNsYCH9MZHD3YxjALOvaGw5Cr6IgSnnITz3ozTISXeculN+nYjLdeIEvPEGfPllQeh89906zCl0PGgNJMQRQghRUVdniBMdDa1b6/X748bpIoyFzJgbS1yr+5nc8A+8cosXZ9Z/Bcf6b5ZevDg5GX74AbVyFaafN2KTlZF/03H7tmQPGEiraQMxNK9gVw6VDQk/6eVSCT9C3hIsG3fwfETXunGuho4LWVn6DHvhsGbfPr1MqviQDRDV3MjZQmFNWCCk5K7qssMRH1riV2gpVH1a40lDjFhRzR5RKSTEEfltz4svxypP2/O8P6/ytucn2c6nDCaOcGxx4Knk0QSGrMaQGQrYgO908JkIhspfknZZIc7vv8Odd+p/27ffhpdf5hQ7eY87ySKNLgxlGMsuO4BXCn5JhHHn4GCa3tbIHt7whSGeYJRcX1SGkyfhzTf1rOy8MOeuu3SYc3P56x1WJQlxhBBCVNTVF+IopWfBfPONDnJ27wbHgmIrX+36DUe3/tyfmoQRSLX3xDFgPUZzxYtTU+HHH3X3gx9/1LUBch2lBT+6DML/5YEMmNIK24p28c44rWfcxHwGWREF22vdqoOb2g/q5VNVISVFd6wpHNgcOqQLEReTbQ/n2uYGNbmX8HaQ6QI22OFN8xJhTV2aYERqY1wrJMQRpSrc9jzvz9Lanru5wQ03FF2O1bo12F89hVCSiWYZwzjIjwDclPMAj5y1wTZ2jd6h1q0Q8CXYN6zU561wiHP2rC4Ke/EiPPwwfPkl5w1HmcstpBJHG3rzHN9jw+V12QpO1R2ntiTp6x42MLk+PF8XHK/eHE9Y0unTOsxZvrygVt+dd+ow59ZbLTo0CXGEEEJU1NUX4qxcCUOG6AKbu3blt5rMIZvvL47hhugPuC63sVOy5z3Uavh10SVK6enw8886uPnhBx3k5DpBU1YxiB+cBtF3QhvGvGzAxaUCL8SUAfHrdK2bpC0F223rQp3HwetJcGxRgQcsh+joEgWH1fHjGMz8s6e56Rk1+bNrgiCiJSg7I/VoViKs8abZZR/Ei6uHhDiiQi6n7XnhWTs33FCj256bMLGZd/mOCZjIoZ66jtGxj+N1dg6YksHGAxot1kF+JalQiJOWpjso7t2rf+bbtxPrHMMcbiKOcALozEtswYGKfPhpZzJg8nn4MlZftzfAqHowyQc8K3oiRIjLERICs2bBZ58VhDm3367DnG7dLDIkCXGEEEJU1NUV4kRE6G5UsbH6A3n6dABiVCg7Yu6mR9gJnEyQYrLD0PBjnL2H6/tlZMCvv+rgZv16/SUj10WXxixNGcRKBnHIJpBnnzMweTLUq0jN3bQjerlUzOeQE5O70QBud+laN+79wHiFZ5sLd5fJC2uC92IIP2d29wSforNrzgZBTADUMTYpUbPGh+bY4Wj2cYSQEEdcsby258WXY5Wn7XnenzWs7fkpdrCYwcQRhi0ODM2YRKfTP2JI/Ufv4PUUNJgHNhUPS4ord4ijlG4I8MUXUKcO7N5NSmM35nIrERzBhxaM5S9qUadCzx+XDbMi4f0LkJF7xPGwp1461djhCl6YEJfrzBkd5ixdqn//gA5xpk+H7t2rdSgS4gghhKioqyfEUQr69YMNG/RB/a5dYGfHvuxl5JwdQYc4/SG9N6I53q1/wa+BL2zerIObdesgISH/oXL8/PnTZyCT9g9iZ3ZHwMCgQbpG3nXXlXPQOSkQt1qHNyk7Crbb+YHXE1DniUsXUC71sXPg+PH8sMYUvAe1Lxib2ASzu0c1LQhr8mba2Pj4lwhr6tPyss6uimubhDiiShRve57356XanhdejmXlbc+TicldXrUBgI7qQYadb4Rd5LuAAofrocnX4Nz+ip6n3CHO/Pnw4ov6Z/brr2Te0YV53MUpduCBH+PZgSflX+qVYYIPL8LrERCXW47kdleY6wcd5KNGWIOzZ3WYs2RJQZhz2236RODtt1dLMCwhjhBCiIq6ekKcZct0K1R7e9i9m4y2TdiaPJiOIRvwytQdMGateJFedXvS8dQ38N13esZOHl9fsu9/iBU5gxi9ojPxiXph/h136LrIHTuWc7Ape/RyqdgVYMqb0WMD7n2h7tPg1rP04snmpKfrpQbBwZiCd5MdvAubA8ewSSu59CDHFs63LrocKuGGutRxa1eshXcrnKi5yxGEdZEQR1SrmBjdDavwrJ3ytj0PCtLXrajtuUKxmXdZywRMZFOX6xiVNA7vkNcg6xwY7MBvFtR7CQyXVzCmXCHO1q264GtODrz3HjkvjmQh93OQDTjjwSv8iR9tyvV8JgWr4mDSOQjN/ahq7QhzGui24TVowpS4VoSFwVtvwaefFiztvOUWHebceWeV/qeVEEcIIURFXR0hTliYXkaVmAhvvUXYuB6ciujJbRExGHPg4k4X/prZg7vTtuOSGl1wP29vePBBch4cxPKTNzN1upFzuauP2rXT4U3PnuX47M6O16FN9KeQFlyw3b6JnhLvNQzs6l/6hcbHw759mIL3kBH8JwQH43A0HGOOqcSu6S4QfkPBDJuLQW4YW7fD26FtocCmNbXwuvTzCnEFJMQRFpfX9rzwrJ39+4vUNMtnNOoZOsVn7Vi47flp/mYxg4jlLLbYMyR7Jjef2Ykhfp3ewe1uaLwc7Hwq/NiXDHHOnNFnKqKj4dFHUZ8v53PDU+zgM+xw5EU20ZRbyvVc25J00eLduT96XzuY6QuP1wEbCW+EtQsP1wd/ixcXNHu46SYd5tx1V5WEORLiCCGEqKiaH+IoBXffDZs3o7p04e8td+Id+gZNdgCbIP0XexwTCs1a8fKCAQNg4EDUbd34caMNEybo43+Ahg3h9dd1Q44yZ+ErBSnb4eJiiFsDKrdHqsEePAbo8Ma1u/kzp0pBRASm4D2kBW8jK3gn9sHHcA6JM/tUSV4FYU1EkCNZQS1watqe+jbt8mfXuOF92a1ehbgSEuIIq5STo9sLF66xExwMFy6Y39/Pr2iwExSka+9U47SRFGJZznD2sx6A9moAw6NvxT5sov6Msa0LjT8D9z4VetwyQ5zUVD3jIDgY2reHv/7iO6eZbGQWBow8y3fcQL9LPsfhNBh/Dn7MXdXraoTxPvBiPXCx3hVtQph37hzMmQMff1wQ5nTposOccp3dKz8JcYQQQlRUzQ9xFi6E555DOTpy8ANvWm09g+1moNBxeryxNk6PPIDDowP1+ihbW/7+G8aPhz/+0PvUrg2vvgrPP1+kI3lJWRch9nM96yb9WMF2x9a6SHGdR8G2UNFHkwl16iQpwVtIC96GIXg/LsFncLqQXvKxgehGOqw5F2RLalAjCArC3e9G/Ax6hk1tGkhYI6yKhDiiRomIKFpjpyJtz4OCdLesKmx7rlBsYR7fMg4T2XjRhOfSZuMX8jqk7dc71R0FDeaAsXwF50sNcZSCRx+FFSv0TKTdu/mt4TpWMRqAx1jMLTxV5mOfz4RpEbA0GkyALfBMXZhaH+pJ80JR00VE6DBn0SK9vB2gc2eYOhV6966UMEdCHCGEEBVVs0Ockyf1MqqMDLLdwDax4KYMB1e+zniAdXYDmbG9BzfcqA+6//sPJk2Cb7/V+zk4wOjRMGGCDnLMUiZI2qyDm/h1oHKL3xmdofZgHd64dEZlZZJy5C+Sgn8hO3gXDsH/4b7/Ig5JJWs1mIwQ2QLCg4wkBHmTFdQSu8Cu1PPshC+tqUMARi6v/oEQ1UlCHFHj5bU9L7wc69Ch0tuet25ddNZOFbQ9D2EXixlEDGewxZ6Bpre47dwZDBfm6x2c2kLA1+DU+pKPVWqI8+678PLLetrp5s382z2SJTyMQnEfr3MPr5b6mEk5MCcS3omCtNyjiAEe8KYfXC/NDMXVJjKyIMxJy515feONOszp0+eKwhwJcYQQQlRUzQtxXF31QfbKlaj338eQXjCjRTlDVq/mHGz7FjfP6E0GDixfDkOH6s/fGTP0MuecHP15O2yY3ubvX8oTZ4ZDzGcQvQQyzxRsd76RDMf7iT5rR+qBfzDuO0St4DDqHErGNsvMwzjC+bYQHeRBWlATCGpPrba3U9+5PXVpig0VKHQshJWREEdclbKydMHkwsux9u0rve15kyYll2P5+l7Rl7sU4nKXV30PQBAPMCxhMI6hIyH7Ahgcwf9d8Ppfmc9jNsTZvFkvCzGZYP58jr7Qig+4hxyy6M5IBvO+2VmfWQoWX4TpEXAxW2+7yQXmNoCbal32SxWiZoiKgrlz4aOPCsKcDh30Mqu+fS/r/S4hjhBCiIqqWSHO2LG4rVtXZOq7Agy3QNoAJ2wf/Z7wpLvo0AHi4uB//9MnTt5+G955B1JS9H369tUdJduYa7ShsiDhJ91hKuFnwASxkHPCgbiztUk+mYnLgQTqnMzBaOYnl+IBUYFOJAb5khPUGoegW6jdogf1bFthh0Pl/3CEsDAJccQ1QyldBLj4cqzytj0PCoLrr69Q23OF4jfe51vGkkMWXgTwTNZCGobOg8SNeif3ftB4CdiaL2RfIsQJCdGFjGNj4fHHOfPZSN4x3E4GyXRgIE+xAiNFx6gUrIuHCefgv9wSIc0cYLYf9PeQjlPiGnPhgj64/PDDggLq7dvrmTn9+lXoDSEhjhBCiIqqWSEO4AaYHGwxZGZjUMArEPP87dTx/570LFduvhn27tWzXB9+WIc1eXUsO3XSoU63biWfIzPjEGkX38HpwLfYH06C48BxyP4PbEupg5ngZ0NsUB3Sg67DGNSRWoF3UbfxHdgbXKrmByFqtA8//JC5c+cSGRnJDTfcwAcffECnTp1K3X/NmjVMmTKF0NBQmjVrxuzZs7nnnnvyb1dKMW3aNBYvXkx8fDw333wzCxcupFmzZvn7vPHGG/z444/s27cPe3t74s3MInjhhRfYvn07hw4domXLluzbt69Cr0tCHHHNK972PDgYjh0rve15u3ZFw51ytD0P5V8+YSAxhGKDHQPUbO64AIZzE0Bl6g6Ijb8AtztL3LdIiOPpqbvt7N8PHTsS9ednzHW8gyQu0pw7GMVPJU447EjWHad25J4IqWsL0+vD03XBTsIbcS27eFGfJVywoOBMYWCgDnPuu093w7sECXGEEEJUVI0KcWJ730VU3xCu/+AkxmOQc5OBtPUfUKvO8wA89RQsWQKurrq+Td7J0WbN4M03dVOqbEMGURznfPYBUo78htf2rfj/E4bHwRz4D0gq+fwmA8Q3cyY5qAE5QW1xCroNj8C+ONZrUn0/BFGjrVq1iqFDh7Jo0SI6d+7MvHnzWLNmDcePH6devXol9t+xYwe33XYbs2bNom/fvqxYsYLZs2ezd+9e2uROIZs9ezazZs1i+fLlBAQEMGXKFA4ePMiRI0dwzK3OPW3aNDw8PAgPD2fJkiWlhjjNmzdn165dHDhwQEIcISpDWpquq1N4OVZF2p4HBemZPIWkEs/nPEkwawEIpD/DUl/CKeSZ3EL7BvAeB76vgbGg+HJ+iHP2LA3GjYOVK6FePRJ3/8Rs/4eIJgR/gniZbThR8B4+kQ4Tz8G38fq6sxFe9oax3uAqHaeEKBAdrWtMffABJCfrbe3a6TDn/vvLDHMkxBFCCFFRNSrE2bHPha4fp8BCMLkaUPv+xKbJzQB8+ik8/XTBfQw22QR0OcGTkw/T9uZgso/sxDb4CB7BF2iyR+FzCGwySj6Xyc5AQps6pAddj21QJ2oF3Y1Tu1t0MiTEZercuTM33ngjCxYsAMBkMuHv78+oUaOYMGFCif0HDRpESkoKGzZsyN/WpUsXAgMDWbRoEUopfH19efnll3nllVcASEhIwNvbm2XLljF48OAij7ds2TJefPFFsyFOnunTp7Nu3ToJcYSoKoXbnheetVNW2/O8UCc32FEBjdlq+JBveJkcsqhDY0bkLKNx+AqI/kTfz7kjBKwARz0rLz/EmTSJBm++Cba2ZGxZz9zbJhHGPrxownh24IY3ABey4LUI+PgiZANG4AkvmFEffKuuMZcQNV9MDLz3Hrz/vi6YDnrt/tSp+kyimTBHQhwhhBAVVaMq6rbenYJaDAbAuOAzaHIzJkws3xDCGz8eInDiYRo13kOQcR+t4s7QcH8O/i+DzzEwmsw8oDOYmtuQEdQUOg/CqdP9GFu1onYVto8V157MzEz27NnDxIkT87cZjUZ69OjBzp07zd5n586djBkzpsi2nj17sm7dOjJNcPxUCJGRkQR260FYJmQqyLR3p82NnVn3x04a9h2stynINMGeFF2Q9IsY8rdn5d6Wd31LIpzPgtFhRbdnKYo8VnpGBhkZGfnbU6L0gepNx8DZFRyM4GjQfzoYci/Ggj9Lu83RWGzfct5mlOUcoqawsdEzbpo3h0GDCrYXb3seHKzDnnPn9KVQmGtwc+OOwEA6Bj7Ar0FbOBoYyjutenBfo7nc6fYNhjNPQ+puOBoEDT8Ez6EFz/PmmwDkzHubD2+bSxj7cKUeo/kFN7xJNcF7UTA7EpJyPzP7usNbftDaqep/PELUeHXqwOuvw5gxMG8ezJ+vZ+QNHKi72k2ZAg8+WKG6WEIIIURxNSrEyZkFhmyIuq81Pz26mdhT7+Cw/zgND2WyFvBfAV5nzN9XeYKhOdAcVHMjhhvvhPYvYPTojZNBPkyvVabiIYWZcKNIkFFGuFFiW+72uMhocnJy+NTkzTchBfscsPcmOvQY3Y6XfKywiEhmZngza3/B9vQMb0zhkTgEA/sjAbgr1hsOFnpBjt7sORnJquPFXuhFwARDQ8v4YSQD2fB+KZMC8n08CxbPKLH5cBpggbeSnaFiYVFlB0mFH8veIAVexWWoX19fevcu2JaUpJdfFQ53Dh2CxET44w/c/oAHc3fNtsvmfOuXOBboz3VtR2Bf7xfw3wehwyBhI4Q+lP+wavgwPn3uT46zFQdq8QI/U0c1ZUkMTD2vg1yADs6649TtMglViIrz9ITXXoOXXioIcw4fhsGDoWVLHeYMHKjDHGXuLKMQQghRuhoV4ticgkwniI87zIPeh3GNNr9fZkA9jK3qYNMkDsN1kdAcDF6AY1PwegpDncfBzqdax36tyKlAuGE2PLnMoKTEtnKGMWbKjla+GP3HjwlAbKHtGUAO/JFs/m6x2ei1DJeQFx7YGyDFoGdr+zoUbLMzQJwDhBrgTreCbXm32xv1n3tc4LQtjPAp2F5kv9wLMyZimDwm/3ESIs/x+I2tWHsd2NaCDAUZJkjP/TNDFWy71G3ppmL7mrkts9gC0Kzcf9dkqKZ/0LLZlxLwVFeQVPg2OwmVai5XV7jlFn3JU7jteW6wo/btwzY+nob7gH1hwOyC/f2A5ivh+CoAVMvahI7fQdsz/9EOAy3VTSRnvc8PKWBjgjeAWkYd4DS2VxiigVI+Z0uq6Mpsa9sf3YKrSp/D2vZHXnOVPEex/R8D7usKy0/DshD9Hn74YZg8Ap5vBjfIL2khhBAVU6NCHAD7NGj+h/57tsHIcbum7MvpxO0vBuF7hw347cA+Zz2o3OkEBgeoPQC8noZa3WrUNxqVGzJYIty43Meq6eeTDBQKRcyEGHaGosFHaYFI4W02nl7MtrHhYaIIalCwfXlGFOn+PkxoUvI5Bvr48KhdFMNaFWx7/7sofvXzYUcgnHP3oTWwt14UQUH188ffLSOKwMBA5rcp+rqW7YIXjbCxGaWa7g7r7OB1v0v9lBxyL1o4iYAOiKqjJI7K/b9mNvwpZ1hUmbdlFTtez3svJFnBmyHv/3NlLl+raJBU+DbbmvPr97JVdhe6tWvXsmjRIvbs2UNsbCzBwcEEDh0KQ/UyKUNu2/OLwd9wcN+beO6Lo2EweIYB53IvuV8qDRPjCEiOIyA5b9uveABFqnCYyE1EhRCVaijwALASWAGcToaXg6G2ZYclhBCi5qlRIU6soTZfqsEEE0SUTyCbItvg6pLEz18ux7fhx5DxX8HMBcc2UPdp8HwUbD0B/eUv20LhxuXONLmMc0xWxYayZ3XYFQtELjcoqaznsKmSL5n2bOnQAY+9WxgzvD+gCxu/tn0LI0eO5CEzB3DdburK8T+30Gbci/nbdv22iVtv6oq7DbhdF4CPjw+//baFoKBAQBcA37VrF88++2xVvAirYcgLB8Aiy7eKM+W+V0sLksoKmaoigCo8eUuh9023ghlKoAvkVkdYVN7bKvv9vmrVKsaMGVOkC13Pnj3L7EI3ZMiQIl3o+vfvX6QLXUpKCrfccgsDBw7k6cLV+/MYDNC4MXUbv0LX+5/mC55mIWtwiYFu+7rQa+8dsH0jfL+Xn9pAnfqQnXofu+N0UwBb4JZaetmUc4maqxX8AVX4JElV718NzyGvufIf/2p/zTOBcWmweAss2gRxKRV8bCGEENe6GtWdqvaLIaQ3akyz5jk0iNnM8HqLuc/ze+wM+mtLKi78aDOElcan+Fd1IhNDiVCkprOlYiGGJQORqgtFap5Vq1bx+OOP8/HHH9OpUyfmzZvH6tWrOXbsGN7e3gwdOhQ/Pz9mzZoF6C933bp146233qJPnz6sXLmSN998s0SL8bfeeqtIi/EDBw4UaTF+9uxZYmNjWb9+PXPnzuXPP/8EoGnTptSqVQuAkydPkpyczKJFi9i6dSurVumlF61atcK+HEW+pTuVdcmpxCCpMkImK5iQVCobKjdIWnBPZwKCbmT4nAV6ORsmRrTx5/4Roxj2yoQS9xv1yCDSU1P4/ocN2Bt0ke7CXegKCw0NJSAgQM/ECQws9TUpFH+wiNW8SDaZ1MafJkcH8EyreTwcBqdsXmXX+dcBeMwTZvpCI4dSH04IUZWSkgifMwf/11+X7lRCCCHKrUbNxHHqn8rIWq/xJEtoVO9s/vZddGIxT7OKQSTnuFaoLoZd8SCiEkOMyg5K7AzSiaemGjRoEBcvXmTq1Km6q1RgIBs3bsTbW7f0PXv2LMZCrUdvuukmVqxYweTJk5k0aRLNmjVj3bp1+QEOwLhx40hJSWHEiBHEx8dzyy23sHHjxvwAB2Dq1KksX748/3pQUBAAW7dupXv37gA89dRT/P777yX2CQkJoXHjxpX+sxBVy8YAzgZzsyosI7tY2FOi7lE5bqvMAKpwlp8DpJggJe/KlcjKhAN7OPPIRLaF5m00QvsefLp1J5/ea+Y+f+6ER8bgFKyv2hmAdj3Z/ds6fjhQNEgiQu/z7BnwqlXWrCMDjoZn8bPvQoT7QOJsT7KZeQCcjB3EP1kzudNVFy0Ocr7C1yyEuDKurvDMM7qjlRBCCFFONWomTtw2Ax619HDj0j0IdX2MqHpPkebQ7rJCFyn6KcSVk5k4oqZQSi83u5wg6VIhU1zkedZ29eOW1TtwCeyaf9upOeNI3P07fit2lXzMzvYwfTn0GlIwyDUf6e5vv0YVHfz5UOgXAF8FQ/PAsl9oZgZkZmBrTORm/9HUvriWdZ2g+ZYQ5ndozN1u8tknhLXI+wyVmThCCCHK67Jm4lR24cbyMqLYurs7S79/iidefoDbb3a6nOELIYS4BhkMYAfY2UBld84+bw9rgTkNoGuhAuLjvOB3J9jVpuR97A3waWPoH1gQ7CzZDh/Ywq8ti4ZFZ+1gBHr5k0+jskOmne/OYt/8GWQDvxd6vl+a2dLIvZJfuBBCCCGEqFYVDnGqonBjeXUatpfjoUHMmgW331nRkQshhBBVw8vLCxsbG6Kiis6giYqKwsfHx+x9fHx8iL0YhZsN+UW6TTFR+Pn40L7YUqfQ3ElufT0g0KvssWTMnkjGa2Pyrx8/fpxOnTpJjTIhhBBCiKtAhasmvPvuuzz99NMMHz6cVq1asWjRIpydnVm6dKnZ/efPn0+vXr0YO3YsLVu2ZObMmbRv354FCxZUeLDHQ6/jvvtg/PgK31UIIYSoMvb29nTo0IEtW7bkbzOZTGzZsoWuXbuavU/Xrl2L7A+wadOmUvcvLwcHB9zc3PIveUXMhRBCCCFEzVehECczM5M9e/bQo0ePggcwGunRowc7d+40e5+dO3cW2R+gZ8+epe5fliZNYPlyWcsvhBDC+owZM4bFixezfPlyjh49yrPPPktKSgrDhw8HYOjQoUycODF//9GjR7Nx40beeecdjh07xvTp09m9ezcjR47M3yc2NpZ9+/Zx5MgRQM+q2bdvH5GRkdX74oQQQgghhFWo0HKq6OhocnJy8jvq5PH29ubYsWNm7xMZGWl2/7IOQDMyMsjIyMi/npiYCMCXX4K7rOcXQghhhaqiC9369evzQyCAwYMHAzBt2jSmT59ePS9MCCGEEEJYDatsMT5r1ixmzJhRYnvr1hYYjBBCCFFOI0eOLDKTprBt27aV2PbQQw/x0EMPlfp4w4YNY9iwYZU0OiGEEEIIUdNVaDnV5RZurMj+ABMnTiQhISH/EhYWVpFhCiGEEEIIIYQQQlx1KhTiVFfhxuJFGd3c3CoyTCGEEEIIIYQQQoirToWXU40ZM4bHH3+cjh070qlTJ+bNm1eicKOfnx+zZs0CdOHGbt268c4779CnTx9WrlzJ7t27+eSTTyr3lQghhBBCCCGEEEJcxSoc4lRF4UYhhBBCCCGEEEIIUTaDUkpZehCXkpiYiLu7OwkJCbK0SggrEx4ejr+/v7w/hbBSR48epVWrVoSFhdGgQQNLD0cIUUjeZ6i8P4UQQpRXhWriCCGEEEIIIYQQQgjLkBBHCCGEEEIIIYQQogaQEEcIIYQQQgghhBCiBpAQRwghhBBCCCGEEKIGkBBHCCGEEEIIIYQQogaQEEcIIYQQQgghhBCiBpAQRwghhBBCCCGEEKIGkBBHCCGEEEKIGuTDDz+kcePGODo60rlzZ/75558y91+zZg0tWrTA0dGRtm3b8tNPP1XTSIUQQlQ2CXGEEEIIIYSoIVatWsWYMWOYNm0ae/fu5YYbbqBnz55cuHDB7P47duxgyJAhPPnkkwQHB9O/f3/69+/PoUOHqnnkQgghKoOEOEIIIYQQQtQQ7777Lk8//TTDhw+nVatWLFq0CGdnZ5YuXWp2//nz59OrVy/Gjh1Ly5YtmTlzJu3bt2fBggXVPHIhhBCVwdbSAygPpRQAiYmJFh6JEKK4vPelvD+FsE55782IiAgLj0QIUVze+zIhIQE3N7f87Q4ODjg4OJTYPzMzkz179jBx4sT8bUajkR49erBz506zz7Fz507GjBlTZFvPnj1Zt25dJbwCIYQQ1a1GhDgxMTEA+Pv7W3gkQojSyPtTCOvWqVMnSw9BCFGKNm3aFLk+bdo0pk+fXmK/6OhocnJy8Pb2LrLd29ubY8eOmX3syMhIs/tHRkZe2aCFEEJYRI0IcTw9PQE4e/Ys7u7uFh6NEKKwuLg4GjduTGhoKLVr17b0cIQQxcTExNCkSRMOHDgg71EhrExCQgJt2rQhJCQk/3gXMDsLRwghhIAaEuIYjbp0j7u7e5GppkII61G7dm15fwphxRo1aiTvUSGsTN570tPTs1zvTy8vL2xsbIiKiiqyPSoqCh8fH7P38fHxqdD+QgghrJsUNhZCCCGEEKIGsLe3p0OHDmzZsiV/m8lkYsuWLXTt2tXsfbp27Vpkf4BNmzaVur8QQgjrViNm4gghhBBCCCFgzJgxPP7443Ts2JFOnToxb948UlJSGD58OABDhw7Fz8+PWbNmATB69Gi6devGO++8Q58+fVi5ciW7d+/mk08+seTLEEIIcZlqRIjj4ODAtGnTZH2wEFZI3p9CWDd5jwphvS7n/Tlo0CAuXrzI1KlTiYyMJDAwkI0bN+YXLz579mx+KQKAm266iRUrVjB58mQmTZpEs2bNWLduXYliykIIIWoGg8rr3y2EEEIIIYQQQgghrJbUxBFCCCGEEEIIIYSoASTEEUIIIYQQQgghhKgBJMQRQgghhBBCCCGEqAGsIsTp3r07L774oqWHIYQoB3m/CmGd5L0phPWS96cQQojKYhUhTlmmT5+OwWDAYDBga2uLl5cXt912G/PmzSMjI8PSwxNCFDJ9+nQCAwMtPQwhRDGFP0sLXzZv3mzpoQlxzSt+rNu4cWNeeuklkpOTLT00IYQQVqhGtBhv3bo1mzdvxmQyERMTw7Zt23j99df54osv2LZtG66urpYeohBCCGHV8j5LC/P09LTQaIQQheW9P7Ozs9m+fTtPPPEEqampfPzxx5YemhBCCCtjlTNxfvzxR9zd3fnqq68AsLW1xcfHB19fX9q2bcuoUaP4/fffOXToELNnz7bwaIW4thV/vwohrENpn6WFL/b29hYepRDXptLenw0aNGDQoEE88sgjrF+/3sKjFEIIYY2sLsRZsWIFQ4YM4auvvuKRRx4pdb8WLVrQu3dv1q5dW42jE0IUVt73qxCiesl7UwjrVZ73p5OTE5mZmdU8MiGEEDWBVYU4H374Ic899xw//PADffv2veT+LVq0IDQ0tOoHJoQooaLvVyFE9SjtvXnw4EFq1aqVf+nUqZMFRynEtak8n5179uxhxYoV3HHHHdU8OiGEEDWB1dTE+eabb7hw4QLbt2/nxhtvLNd9lFIYDIYqHpkQorjLeb8KIapeWe/N5s2bF1me4eDgUN3DE+KaVtb7My9kzcnJITMzkz59+rBgwQILjVQIIYQ1s5qZOEFBQdStW5elS5eilCrXfY4ePUpAQEAVj0wIUdzlvF+FEFWvrPemvb09TZs2zb/4+/tbaJRCXJvKen82b96cffv2cfToUdLS0li/fj3e3t4WGqkQQghrZjUhznXXXcfWrVv5/vvvGTVq1CX3P3bsGBs3bmTAgAHVMDohRGEVfb8KIaqHvDeFsF5lvT/zQtbGjRtLwXEhhBBlsprlVADXX389W7dupXv37tja2jJv3jwAsrOziYyMLNFiPDAwkLFjx1p20EJco0p7vwohLEvem0JYL3l/CiGEuFJWFeKAnk7622+/0b17d2xsbHB1deXw4cPUr18fGxsb3N3dadWqFRMnTuTZZ5+VNf1CWJC596sQwvLkvSmE9ZL3pxBCiCthUFLQQgghhBBCCCGEEMLqWU1NHCGEEEIIIYQQQghROglxhBBCCCGEEEIIIWoACXGEEEIIIYQQQgghagAJcYQQQgghhBBCCCFqAAlxhBBCCCGEEEIIIWoACXGEEEIIIYQQQgghagAJcYQQQgghhBBCCCFqAAlxhBBCCCGEEEIIIWoACXGEEEIIIYQQQgghagAJcYQQQgghhBBCCCFqAAlxhBBCCCGEEEIIIWoACXGEEEIIIYQQQgghaoD/A9EPOBuMu6vYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df = pd.read_csv(\"designs.csv\")\n", + "df = df.loc[range(10), :]\n", + "ParallelCoordinates.plotParallelCoordinates(df, num_category=7, value_column=\"score\", columns=[\"kD\", \"kI\", \"kF\", \"kP\"],\n", + " round_digit=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5f33ca25-7cd3-4777-9c01-1c4b9102e039", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/1 [00:00pd.DataFrame: + """ + Creates a dataframe that in which each column is scaled between 0 and 1. + + Returns: + pd.DataFrame + """ + scaled_df = self.unscaled_df.copy() + scaled_df = self._fixupDF(scaled_df) + # Adjust the value ranges + for column in self.columns: + ser = self.unscaled_df[column] + min_val, range_val = ser.min(), np.ptp(ser) + if range_val > 0: + values = (ser - min_val)/range_val + else: + values = 0 + scaled_df[column] = values + np.random.normal(0, self.noise_std, len(ser)) + # + return scaled_df + + def _fixupDF(self, df)->pd.DataFrame: + """Cleans_ up the dataframe""" + df = df.reset_index(drop=False) + for column in [C_INDEX, C_UNNAMED]: + if column in df.columns: + del df[column] + return df + + def _setAxisTicks(self, column:str, ax, num_tick:int=6): + """ + Set the tick positions and labels on y axis for each plot + Tick positions based on normalised data + Tick labels are based on original data + + Args: + column: str + ax (matplotlib.Axis): _description_ + num_tick (int): Number of ticks + """ + def min_step(ser): + min_val = ser.min() + range_val = np.ptp(ser) + step = range_val/float(num_tick-1) + return min_val, step + # + scaled_min, scaled_step = min_step(self.scaled_df[column]) + unscaled_min, unscaled_step = min_step(self.unscaled_df[column]) + if self.round_digit is None: + tick_labels = [unscaled_min + unscaled_step * i for i in range(num_tick)] + ticks = [scaled_min + scaled_step * i for i in range(num_tick)] + else: + tick_labels = [np.round(unscaled_min + unscaled_step * i, self.round_digit) for i in range(num_tick)] + ticks = [np.round(scaled_min + scaled_step * i, self.round_digit) for i in range(num_tick)] + is_ticks = [l != tick_labels[0] for l in tick_labels] + is_ticks[0] = True + ticks = [t for i, t in enumerate(ticks) if is_ticks[i]] + tick_labels = [t for i, t in enumerate(tick_labels) if is_ticks[i]] + ax.yaxis.set_ticks(ticks) + ax.set_yticklabels(tick_labels) + + def _makeCategoriesAndLabels(self)->Tuple[np.array, np.array, np.array]: + """ + Create the categories for each row. + + Returns: + np.array - categories for rows + np.array - untrimmed labels for each categories + np.array - trimmed labels for each categories + """ + NAN_CATEGORY = self.num_category - 1 + # Construct the categories for each row + classify_vals = self.unscaled_df[self.value_column] + nan_idx = np.array([np.isnan(v) or np.isinf(v) for v in classify_vals]) + classify_arr = np.array(classify_vals) + classify_arr[nan_idx] = np.mean(classify_arr[~nan_idx]) + # Make the categories accounting for the nans + categories = pd.cut(classify_arr, self.num_category-1, + labels=range(self.num_category-1)).tolist() + categories = np.array(categories) + categories[nan_idx] = NAN_CATEGORY + # Create the categories and labels + category_intervals = pd.cut(classify_arr, self.num_category) + trimmed_category_labels = list(np.repeat("", self.num_category)) + untrimmed_category_labels = list(np.repeat("", self.num_category)) + for idx, category in enumerate(categories): + left_value = category_intervals[idx].left + right_value = category_intervals[idx].right + label = f"{left_value} to {right_value}" + untrimmed_category_labels[category] = label + # + if self.round_digit is not None: + left_value = np.round(left_value, self.round_digit) + right_value = np.round(right_value, self.round_digit) + label = f"{left_value} to {right_value}" + trimmed_category_labels[category] = label + else: + trimmed_category_labels[category] = untrimmed_category_labels[category] + untrimmed_category_labels[NAN_CATEGORY] = LABEL_NAN + trimmed_category_labels[NAN_CATEGORY] = LABEL_NAN + # + return categories, untrimmed_category_labels, trimmed_category_labels + + def plot(self): + """ + Plot the parallel coordinates + """ + categories, untrimmed_labels, trimmed_labels = self._makeCategoriesAndLabels() + + # Create the colors for the categories + red = Color("red") + colors = list(red.range_to(Color("blue"), self.num_category-1)) + colors.reverse() + colors.append("grey") + + # Create sublots along x axis + _, axes = plt.subplots(1, len(self.columns), sharey=False, figsize=self.figsize) + + # Plot each row + x_vals = list(range(len(self.columns))) + for i, ax in enumerate(axes): + for idx in self.scaled_df.index: + category = categories[idx] + ax.plot(x_vals, self.scaled_df.loc[idx, self.columns], c=str(colors[category])) + ax.set_xlim([x_vals[i], x_vals[i] + 1]) + + # Set the ticks for each axis + for idx, ax in enumerate(axes): + column = self.columns[idx] + ax.xaxis.set_major_locator(ticker.FixedLocator([idx])) + self._setAxisTicks(column, ax) + ax.set_xticklabels([column]) + + # Move the final axis' ticks to the right-hand side + axes[-1].remove() # Remove the dummy + axes = axes[:-1] + x_vals = x_vals[:-1] + columns = self.columns[:-1] + ax = plt.twinx(axes[-2]) + idx = len(axes) - 1 + ax.xaxis.set_major_locator(ticker.FixedLocator([x_vals[-2], x_vals[-1]])) + self._setAxisTicks(columns[idx], ax) + ax.set_xticklabels([columns[-2], columns[-1]]) + + # Remove space between subplots + plt.subplots_adjust(wspace=0) + axes[-1].remove() + + # Add legend to plot + valid_idxs = np.array([v for v in range(self.num_category) if v in categories]) + trimmed_category_arr = np.array(untrimmed_labels)[valid_idxs] + plt.legend( + [plt.Line2D((0,1),(0,0), color=str(colors[v])) for v in range(self.num_category) + if v in categories], + trimmed_category_arr, + bbox_to_anchor=(1.75, 1), loc=2, borderaxespad=0.) + + # Add title + if self.title is None: + value_column_str = str(self.value_column) + title = f"Values by {value_column_str} category" + else: + title = f"{self.title}" + plt.title(title) + if self.is_plot: + plt.show() + + @classmethod + def plotParallelCoordinates(cls, df, value_column=None, num_category=10, columns=None, + figsize=(15,5), round_digit=None, title=None, is_plot=True): + """ + Does a parallel coordinate plots for with lines colored based on categorizing + the value_column. One category is for nans. + + Args: + df (pd.DataFrame): contains parameters to plot and the value_column + value_column (object, optional): Column of dataframe that has the values to + categorize. Defaults to first column. + columns (str, optional): Columns in order + num_category (int, optional): Number of categories to split the value_column, + including the nan category + title (str, optional): Title of the plot + figsize (tuple, optional): Size of the plot + """ + plotter = cls(df, value_column=value_column, num_category=num_category, columns=columns, + figsize=figsize, round_digit=round_digit, title=title, is_plot=is_plot) + plotter.plot() \ No newline at end of file diff --git a/src/controlSBML/plot_parallel_coordinates.py b/src/controlSBML/plot_parallel_coordinates.py deleted file mode 100644 index 36b89d2..0000000 --- a/src/controlSBML/plot_parallel_coordinates.py +++ /dev/null @@ -1,154 +0,0 @@ -"""Does parallel coordinate plots for a dataframe.""" - -from colour import Color # type: ignore -from matplotlib import ticker # type: ignore -import numpy as np -import matplotlib.pyplot as plt # type: ignore -import pandas as pd # type: ignore - - -def plotParallelCoordinates(df, value_column=None, num_category=10, columns=None, - figsize=(15,5), round_digit=None, - title=None, is_plot=True): - """ - Does a parallel coordinate plots for with lines colored based on categorizing - the value_column. One category is for nans. - - Args: - df (pd.DataFrame): contains parameters to plot and the value_column - value_column (object, optional): Column of dataframe that has the values to - categorize. Defaults to first column. - columns (str, optional): Columns in order - num_category (int, optional): Number of categories to split the value_column, - including the nan category - title (str, optional): Title of the plot - figsize (tuple, optional): Size of the plot - """ - def fixupDF(df): - """Cleans_ up the dataframe""" - ser = df[value_column] - for column in ["index", value_column, "Unnamed: 0"]: - if column in df.columns: - del df[column] - df[C_DUMMY] = ser - return df - # - C_DUMMY = "dummy" - df = df.copy() - if columns is None: - columns = list(df.columns) - columns = list(columns) - if not value_column in columns: - columns.append(value_column) - df = df[columns] - df[value_column] = df[value_column] - scaled_df = df.copy() - scaled_df = scaled_df.reset_index(drop=False) - # Construct the categories for each row - if value_column is None: - value_column = columns[0] - classify_vals = scaled_df[value_column] - nan_idx = classify_vals.isnull() - classify_arr = np.array(classify_vals) - classify_arr[nan_idx] = np.mean(classify_arr[~nan_idx]) - value_column_str = str(value_column) - - # Create the categories and labels - category_intervals = pd.cut(classify_arr, num_category) - categories = pd.cut(classify_arr, num_category-1, - labels=range(num_category-1)).tolist() - categories = np.array(categories) - category_labels = list(range(num_category)) - - # Add category for nans - for idx, category in enumerate(categories): - label = f"{category_intervals[idx].left} to {category_intervals[idx].right}" - category_labels[category] = label - category_labels[-1] = f"nan" - categories[nan_idx] = num_category - 1 - - # Create the colors for the categories - red = Color("red") - colors = list(red.range_to(Color("blue"),num_category-1)) - colors.reverse() - colors.append("grey") - - # Final fixups - scaled_df = fixupDF(scaled_df) - df = fixupDF(df) - columns = list(scaled_df.columns) - x_vals = list(range(len(columns))) - - # Create sublots along x axis - _, axes = plt.subplots(1, len(columns), sharey=False, figsize=figsize) - - # Get min, max and range for each column - # Normalize the data for each column - min_max_range = {} - for column in columns: - min_max_range[column] = [df[column].min(), df[column].max(), - np.ptp(df[column])] - denom = np.ptp(df[column]) - if denom > 0: - scaled_df[column] = np.true_divide(df[column] - df[column].min(), denom) - else: - scaled_df[column] = 0 - - # Plot each row - for i, ax in enumerate(axes): - for idx in scaled_df.index: - category = categories[idx] - ax.plot(x_vals, scaled_df.loc[idx, columns], c=str(colors[category])) - ax.set_xlim([x_vals[i], x_vals[i] + 1]) - - # Set the tick positions and labels on y axis for each plot - # Tick positions based on normalised data - # Tick labels are based on original data - def set_ticks_for_axis(dim, ax, ticks): - min_val, max_val, val_range = min_max_range[columns[dim]] - step = val_range / float(ticks-1) - if round_digit is None: - tick_labels = [min_val + step * i for i in range(ticks)] - else: - tick_labels = [np.round(min_val + step * i, round_digit) for i in range(ticks)] - norm_min = scaled_df[columns[dim]].min() - norm_range = np.ptp(scaled_df[columns[dim]]) - norm_step = norm_range / float(ticks-1) - ticks = [round(norm_min + norm_step * i, 2) for i in range(ticks)] - ax.yaxis.set_ticks(ticks) - ax.set_yticklabels(tick_labels) - - for dim, ax in enumerate(axes): - ax.xaxis.set_major_locator(ticker.FixedLocator([dim])) - set_ticks_for_axis(dim, ax, ticks=6) - ax.set_xticklabels([columns[dim]]) - - # Move the final axis' ticks to the right-hand side - axes[-1].remove() # Remove the dummy - axes = axes[:-1] - x_vals = x_vals[:-1] - columns = columns[:-1] - ax = plt.twinx(axes[-2]) - dim = len(axes) - 1 - ax.xaxis.set_major_locator(ticker.FixedLocator([x_vals[-2], x_vals[-1]])) - set_ticks_for_axis(dim, ax, ticks=6) - ax.set_xticklabels([columns[-2], columns[-1]]) - - # Remove space between subplots - plt.subplots_adjust(wspace=0) - axes[-1].remove() - - # Add legend to plot - plt.legend( - [plt.Line2D((0,1),(0,0), color=str(colors[v])) for v in range(num_category)], - category_labels, - bbox_to_anchor=(1.2, 1), loc=2, borderaxespad=0.) - - # Add title - if title is None: - title = f"Values by {value_column_str} category" - else: - title = f"{title}" - plt.title(title) - if is_plot: - plt.show() \ No newline at end of file diff --git a/tests/test_control_sbml.py b/tests/test_control_sbml.py index 76b3951..8a24e47 100644 --- a/tests/test_control_sbml.py +++ b/tests/test_control_sbml.py @@ -142,6 +142,20 @@ def testPlotDesign(self): times=np.linspace(0, 100, 1000)) self.assertTrue(isinstance(result.timeseries, Timeseries)) self.assertTrue(isinstance(result.antimony_builder, AntimonyBuilder)) + + def testPlotAllDesignResults(self): + if IGNORE_TEST: + return + ctlsb = CTLSB.copy() + setpoint = 5 + ctlsb.setSystem(input_name="S1", output_name="S3") + _ = ctlsb.plotDesign(setpoint=setpoint, kP_spec=True, kI_spec=True, kD_spec=True, + figsize=FIGSIZE, is_plot=False, + min_parameter_value=0.001, max_parameter_value=10, + num_restart=1, + num_coordinate=3, + ) + ctlsb.plotAllDesignResults(is_plot=IS_PLOT, columns=["kD", "kI", "kP"]) def testPlotDesignNoiseDisturbance(self): if IGNORE_TEST: @@ -227,8 +241,8 @@ def testFullAPI(self): _ = CTLSB._plotClosedLoop(setpoint=150, kP=1, is_plot=IS_PLOT) def testPlotDesignResult(self): - if IGNORE_TEST: - return + #if IGNORE_TEST: + # return setpoint = 5 ctlsb = ControlSBML(LINEAR_MDL, final_value=10, input_name="S1", output_name="S3") _ = ctlsb.plotDesign(setpoint=setpoint, kP_spec=True, kI_spec=True, kD_spec=True, is_plot=False, diff --git a/tests/test_parallel_coordinates.py b/tests/test_parallel_coordinates.py new file mode 100644 index 0000000..f380e18 --- /dev/null +++ b/tests/test_parallel_coordinates.py @@ -0,0 +1,84 @@ +from controlSBML.parallel_coordinates import ParallelCoordinates # type: ignore + +import pandas as pd # type: ignore +import matplotlib.pyplot as plt # type: ignore +import numpy as np +import unittest + + +IGNORE_TEST = False +IS_PLOT = False +# Create data +columns = ['mpg', 'displacement', 'cylinders', 'horsepower', 'weight', 'acceleration'] +dct = {} +factor = 1 +# Make it easy to distinguish the columns +for column in columns: + factor *= 10 + dct[column] = factor*np.random.rand(10) +DF = pd.DataFrame(dct) +NAN_IDXS = [2, 9] +for idx in NAN_IDXS: + DF.loc[idx, 'mpg'] = np.nan +DF1 = pd.read_csv("tests/plot_parallel_coordinates.csv") +del DF1['Unnamed: 0'] +NUM_CATEGORY = 5 + + +############################# +# Tests +############################# +class TestParallelCoordinates(unittest.TestCase): + + def setUp(self): + self.df = DF.copy() + self.parallel = ParallelCoordinates(self.df, value_column='mpg', num_category=NUM_CATEGORY, + is_plot=IS_PLOT, round_digit=4) + + def testConstructor(self): + if IGNORE_TEST: + return + self.assertTrue("ParallelCoordinates" in str(type(self.parallel))) + for column in self.parallel.columns: + if column == "mpg": + continue + ser = self.parallel.scaled_df[column] + self.assertTrue(column in self.parallel.columns) + self.assertLessEqual(ser.min(), ser.max()) + + def testSetAxisTicks(self): + if IGNORE_TEST: + return + _, ax = plt.subplots(1) + self.parallel._setAxisTicks("displacement", ax) + + def testMakeCategoriesAndLabels(self): + if IGNORE_TEST: + return + categories, untrimmed_labels, trimmed_labels = self.parallel._makeCategoriesAndLabels() + for idx in NAN_IDXS: + self.assertEqual(categories[idx], NUM_CATEGORY-1) + self.assertEqual(untrimmed_labels[-1], "nan") + self.assertEqual(trimmed_labels[-1], "nan") + + def testPlot(self): + if IGNORE_TEST: + return + self.parallel.plot() + + def testPlotParallelCoordinates(self): + if IGNORE_TEST: + return + ParallelCoordinates.plotParallelCoordinates(self.df, value_column='mpg', num_category=NUM_CATEGORY, + is_plot=IS_PLOT, round_digit=4) + + def testPlotParallelCoordinates1(self): + #if IGNORE_TEST: + # return + ParallelCoordinates.plotParallelCoordinates(DF1, value_column='score', num_category=NUM_CATEGORY, + round_digit=4, is_plot=IS_PLOT) + + + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/tests/test_plot_parallel_coordinates.py b/tests/test_plot_parallel_coordinates.py deleted file mode 100644 index 11862be..0000000 --- a/tests/test_plot_parallel_coordinates.py +++ /dev/null @@ -1,46 +0,0 @@ -from controlSBML.plot_parallel_coordinates import plotParallelCoordinates # type: ignore - -import pandas as pd # type: ignore -import numpy as np -import unittest - - -IGNORE_TEST = False -IS_PLOT = False -# Create data -columns = ['mpg', 'displacement', 'cylinders', 'horsepower', 'weight', 'acceleration'] -dct = {} -for column in columns: - dct[column] = np.random.rand(10) -DF = 10*pd.DataFrame(dct) -DF.loc[9, 'mpg'] = np.nan -DF.loc[2, 'mpg'] = np.nan -DF1 = pd.read_csv("tests/plot_parallel_coordinates.csv") -del DF1['Unnamed: 0'] - - -############################# -# Tests -############################# -class TestFunction(unittest.TestCase): - - def setUp(self): - self.df = DF.copy() - - def testPlotParallelCoordinates(self): - if IGNORE_TEST: - return - plotParallelCoordinates(self.df, value_column='mpg', num_category=3, - is_plot=IS_PLOT) - - def testPlotParallelCoordinates1(self): - if IGNORE_TEST: - return - columns = ["kD", "kP", "kI", "kF"] - plotParallelCoordinates(DF1, value_column='score', num_category=10, columns=columns, - is_plot=IS_PLOT, round_digit=4) - - - -if __name__ == '__main__': - unittest.main()