-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcal4.mod
253 lines (196 loc) · 6.4 KB
/
cal4.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
:Modified from NEURON implementation of Fink et al., 2000
NEURON {
SUFFIX cal4
USEION ca READ cao, ica WRITE cai, ica
:USEION ip3 READ ip3i VALENCE 1
RANGE ica_pmp,ca1, ca2,alpha,beta,ca3,gamma,ip3ca, DCa,jip3, cip3, sites
GLOBAL vrat, TBufs, KDs, TBufs, TBufm, KDm, KDBAPTA, TBufBAPTA
}
DEFINE Nannuli 4
UNITS {
(mol) = (1)
(molar) = (1/liter)
(uM) = (micromolar)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
ip3i = 10e-3 (mM):10e-3 for cal wave 0.16 baseline 16 for noND
cai0 = 50e-6(mM)
:caoc = 2 (mM)
cath = 0.2e-3 (mM) : threshold for ca pump activity
gamma = 8 (um/s) : ca pump flux density
jmax = 3.5e-3 (mM/ms) :3.5e-3
caer = 0.400 (mM)
Kip3 = 0.8e-3 (mM)
Kact = 0.7e-3 (mM)
kon = 2.7 (/mM-ms) :2.7
Kinh = 0.6e-3 (mM)
sites=3
alpha = 1 (1) : relative abundance of ER mechanisms : alpha only specific for ip3 receptor,
beta = 1(1) :introducing beta to take care of other ER mechanisms(SERCA and leak channel density)
vmax =1e-4 (mM/ms) :1e-4 revised
Kp = 0.27e-3 (mM) :0.27e-3
DCa = 0.22 (um2/ms) :Fink et al 2000
TBufs = 0.45 (mM)
kfs = 1000 (/mM-ms) : try these for now
KDs = 10 (uM)
TBufBAPTA = 0 (mM) :10 uM for concentration of BAPTA
kfBAPTA = 500 (/mM-ms) : try these for now
KDBAPTA = 0.2 (uM) :KD is 0.2uM
TBufm = 0.075 (mM)
kfm = 1000 (/mM-ms) : try these for now
KDm = 0.24 (uM)
DBufm = 0.050 (um2/ms)
}
ASSIGNED {
diam (um)
cip3 (mA/cm2)
ica (mA/cm2)
cai (mM)
jip3 (mM/ms)
ca1 (mM)
ca2 (mM)
ca3 (mM)
ica_pmp (mA/cm2)
ica_pmp_last (mA/cm2)
parea (um) :pump area peer unit length
sump (mM)
cao (mM)
:ip3i (mM)
jchnl (mM/ms)
vrat[Nannuli] (1)
L[Nannuli] (mM/ms) adjusted so that
: jchnl + jpump + jleak = 0 when ca = 0.05 uM and h = Kinh/(ca + Kinh)
bufs_0 (mM)
bufm_0 (mM)
bapta_0 (mM)
ip3ca (mM)
}
CONSTANT { volo = 1e10 (um2) }
STATE {
ca[Nannuli] (mM) <1e-7>
hc[Nannuli]
ho[Nannuli]
bufs[Nannuli] (mM) <1e-3>
cabufs[Nannuli] (mM) <1e-7>
bufm[Nannuli] (mM) <1e-4>
cabufm[Nannuli] (mM) <1e-8>
bapta[Nannuli] (mM) <1e-3>
cabapta[Nannuli] (mM) <1e-7>
ip3cas [Nannuli] (mM)
}
BREAKPOINT {
SOLVE state METHOD sparse
ica_pmp_last = ica_pmp
ica = ica_pmp
}
LOCAL factors_done, jx
INITIAL {
if (factors_done==0) {
factors_done= 1
factors()
}
cai = cai0
jip3=0
bufs_0 = KDs*TBufs/(KDs + (1000)*cai0)
bufm_0 = KDm*TBufm/(KDm + (1000)*cai0)
bapta_0 = KDBAPTA*TBufBAPTA/(KDBAPTA + (1000)*cai0)
FROM i=0 TO Nannuli-1 {
ca[i] = cai
bufs[i] = bufs_0
cabufs[i] = TBufs - bufs_0
bapta[i] = bapta_0
cabapta[i] = TBufBAPTA - bapta_0
bufm[i] = bufm_0
cabufm[i] = TBufm - bufm_0
}
ica=0
ica_pmp = 0
ica_pmp_last = 0
FROM i=0 TO Nannuli-1 {
ho[i] = Kinh/(ca[i]+Kinh)
hc[i] = 1-ho[i]
jx = (-vmax*ca[i]^2 / (ca[i]^2 + Kp^2))
jx = jx + jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^sites
L[i] = -jx/(1 - (ca[i]/caer))
}
sump = cath
parea = PI*diam
}
LOCAL frat[Nannuli]
PROCEDURE factors() {
LOCAL r, dr2
r = 1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
: half thickness of all other annuli
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus
: div by distance between centers
r = r - dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
}
}
LOCAL dsq, dsqvol
KINETIC state {
COMPARTMENT i, diam*diam*vrat[i] {ca bufs cabufs bufm cabufm sump}
COMPARTMENT volo {cao}
LONGITUDINAL_DIFFUSION i, DCa*diam*diam*vrat[i] {ca}
LONGITUDINAL_DIFFUSION i, DBufm*diam*diam*vrat[i] {bufm cabufm}
:cell membrane ca pump
~ ca[0] <-> sump ((0.001)*parea*gamma*u(ca[0]/(1 (mM)), cath/(1 (mM))), (0.001)*parea*gamma*u(ca[0]/(1 (mM)), cath/(1 (mM))))
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea
: all currents except cell membrane ca pump
~ ca[0] << (-(ica - ica_pmp_last)*PI*diam/(2*FARADAY)) : ica is Ca efflux
: radial diffusion
FROM i=0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
}
: buffering
dsq = diam*diam
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
~ ca[i] + bufs[i] <-> cabufs[i] (kfs*dsqvol, (0.001)*KDs*kfs*dsqvol)
~ ca[i] + bapta[i] <-> cabapta[i] (kfBAPTA*dsqvol, (0.001)*KDBAPTA*kfBAPTA*dsqvol)
:~ ca[i] + bufm[i] <-> cabufm[i] (kfm*dsqvol, (0.001)*KDm*kfm*dsqvol) :to simulate high affinity dyes, used only for the simplified 3 cylinder model in the paper
}
:SERCA pump, channel
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
: pump
~ ca[i] << (-dsqvol*beta*vmax*ca[i]^2 / (ca[i]^2 + Kp^2))
: channel
~ hc[i] <-> ho[i] (kon*Kinh, kon*ca[i])
~ ca[i] << ( dsqvol*alpha*jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^sites )
: leak
~ ca[i] << (dsqvol*beta*L[i]*(1 - (ca[i]/caer)))
~ ip3cas[i] << (dsqvol*alpha*jmax*(1-(ca[i]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[i]/(ca[i]+Kact)) * ho[i] )^sites )
}
jip3 = (jmax*(1-(ca[0]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[0]/(ca[0]+Kact)) * ho[0] )^sites )
: turn this into a current ican can read
:make the diam small assuming its only being released into certain parts
cip3 = ( dsqvol*alpha*jmax*(1-(ca[0]/caer)) * ( (ip3i/(ip3i+Kip3)) * (ca[0]/(ca[0]+Kact)) * ho[0] )^sites )*(2*FARADAY)/(PI*(diam))
: ip3ca=0
: FROM i=0 TO Nannuli-1 {
: ip3ca=ip3ca+ip3cas[i]
: }
ip3ca=ip3cas[0]
cai = ca[0]
ca1 = ca[1]
ca2 = ca[2]
ca3 = ca[3]
}
FUNCTION u (x, th) {
if (x>th) {
u = 1
} else {
u = 0
}
}