-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBJ_22a.ode
441 lines (310 loc) · 8.33 KB
/
BJ_22a.ode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
% BJ_22a.ode
# IOM2.ode
#
% Computer code for the publication "Slow Oscillations Persist in Pancreatic
% Beta Cells Lacking Phosphofructokinase M", by I. Marinelli, V. Parekh,
% P. Fletcher, B. Thompson, J. ren, X. Tang, T. L. Saunders, J. Ha,
% A. Sherman, R. Bertram, and L. S. Satin. Published in Biophysical
% Journal, 121:692-704, 2022.
% Variables:
% v -- cellular membrane potential (mV)
% n -- activation of delayed rectifier
% c -- free cytosolic calcium concentration (muM)
% adp -- cytosolic ADP concentration (muM)
% cer -- concentration of free calcium in the endoplasmic reticulum (muM)
% cam -- mitocondrial calcium concentration (muM)
% f6p -- fructose 6-phosphate concentration (muM)
% fbp -- fructose 1,6-bisphosphate concentration (muM)
% adpm -- mitocondrial ADP concentration (muM)
% nadhm -- mitocondrial NADH concentration (muM)
% psim -- mitocondrial membrane potential (mV)
# Units:
# time: ms
# volume: l
# conductance: pS
# V: mV
# I: fA
# J: muM/ms
# alpha: mumol/fA/ms
# Initial conditions
v(0)=-45
n(0)=0
c(0)=0.1
cer(0)=320
cam(0)=1
adp(0)=970
f6p(0)=14
fbp(0)=84
adpm(0)=14200
nadhm(0)=4150
psim(0)=170
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Electrical and Calcium Model %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ca2+ current, ica
num gca = 1000, vca = 25,
num nim = -20, sm = 12,
minf = 1/(1+exp((nim-v)/sm))
ica=gca*minf*(v-vca)
% Delayed-rectifying K+ current, ik
num gk=2700, vk=-75,
num taun=20, nin=-16, sn=5,
ninf=1/(1+exp((nin-v)/sn))
ik=gk*n*(v-vk)
% Ca2+-activated K+ current, ikca
num kd=0.5,
par gkca=150,
qinf=c^2/(kd^2+c^2)
ikca=-gkca*qinf*(vk-v)
% K-atp channel current, ikatp
num kdd=17, ktd=26, ktt=1,
num atot=3000,
num gkatpbar=19700,
rad=sqrt(-4*adp^2+(atot-adp)^2)
atp=(atot+rad-adp)/2
mgadp=0.165*adp
adp3m=0.135*adp
atp4m=0.05*atp
topo=0.08+0.89*mgadp^2/kdd^2+0.16*mgadp/kdd
bottomo=(1+mgadp/kdd)^2*(1+atp4m/ktt +adp3m/ktd)
katpo=topo/bottomo
ikatp=gkatpbar*katpo*(v-vk)
% Ca2+ fluxes across the plasma membrane (L- and R-type)
num alpha=5.18E-18, vcyt=1.15E-12, kpmca=0.2
Jmem=-(alpha/vcyt*ica + kpmca*c)
% Ca2+ fluxes into ER
num kserca=0.4, pleak=2.0E-4,
Jer=kserca*c - pleak*(cer-c)
# Uniporter [uM/ms]
num p21=0.013, p22=1.6
Juni=(p21*psim-p22)*c^2
# Na/Ca exchanger [uM/ms]
num p23=0.0015 p24=0.016
JNaCa=p23*(cam-c)*exp(p24*psim)
# Ca2+ fluxes into the mitochondria
Jm=Juni-JNaCa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Metabolic Model %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Glucokinase reaction rate
num Jgk=0.001
% PFK reaction rate, Jpfk_m
amp=adp^2/atp
% Parameters
% k1--Kd for AMP binding
% k2--Kd for FBP binding
% k3--Kd for F6P binding
% k4--Kd for atp binding
% alpha=1 -- AMP bound
% beta=1 -- FBP bound
% gamma=1 -- F6P bound
% delta=1 -- atp bound
num k1M=30, k2M=1, k3M=50000, k4M=1000,
num fampM=0.02, fatpM=20, ffbpM=0.2, fbtM=20, fmtM=20,
num kpfkM =0.06,
par vpfkM=0.01,
% (alpha,beta,gamma,delta)
% (0,0,0,0)
weight1M=1
topa1M=0
bottom1M=1
% (0,0,0,1)
weight2M=atp^2/k4M
topa2M=topa1M
bottom2M=bottom1M+weight2M
% (0,0,1,0)
weight3M=f6p^2/k3M
topa3M=topa2M+weight3M
bottom3M=bottom2M+weight3M
% (0,0,1,1)
weight4M=(f6p*atp)^2/(fatpM*k3M*k4M)
topa4M=topa3M+weight4M
bottom4M=bottom3M+weight4M
% (0,1,0,0)
weight5M=fbp/k2M
topa5M=topa4M
bottom5M=bottom4M+weight5M
% (0,1,0,1)
weight6M=(fbp*atp^2)/(k2M*k4M*fbtM)
topa6M=topa5M
bottom6M=bottom5M+weight6M
% (0,1,1,0)
weight7M=(fbp*f6p^2)/(k2M*k3M*ffbpM)
topa7M=topa6M+weight7M
bottom7M=bottom6M+weight7M
% (0,1,1,1)
weight8M=(fbp*f6p^2*atp^2)/(k2M*k3M*k4M*ffbpM*fbtM*fatpM)
topa8M=topa7M+weight8M
bottom8M=bottom7M+weight8M
% (1,0,0,0)
weight9M=amp/k1M
topa9M=topa8M
bottom9M=bottom8M+weight9M
% (1,0,0,1)
weight10M=(amp*atp^2)/(k1M*k4M*fmtM)
topa10M=topa9M
bottom10M=bottom9M+weight10M
% (1,0,1,0)
weight11M=(amp*f6p^2)/(k1M*k3M*fampM)
topa11M=topa10M+weight11M
bottom11M=bottom10M+weight11M
% (1,0,1,1)
weight12M=(amp*f6p^2*atp^2)/(k1M*k3M*k4M*fampM*fmtM*fatpM)
topa12M=topa11M+weight12M
bottom12M=bottom11M+weight12M
% (1,1,0,0)
weight13M=(amp*fbp)/(k1M*k2M)
topa13M=topa12M
bottom13M=bottom12M+weight13M
% (1,1,0,1)
weight14M=(amp*fbp*atp^2)/(k1M*k2M*k4M*fbtM*fmtM)
topa14M=topa13M
bottom14M=bottom13M+weight14M
% (1,1,1,0)
weight15M=(amp*fbp*f6p^2)/(k1M*k2M*k3M*ffbpM*fampM)
topa15M=topa14M
topbM=weight15M
bottom15M=bottom14M+weight15M
% (1,1,1,1)
weight16M=(amp*fbp*f6p^2*atp^2)/(k1M*k2M*k3M*k4M*ffbpM*fampM*fbtM*fmtM*fatpM)
topa16M=topa15M+weight16M
bottom16M=bottom15M+weight16M
Jpfk_m= vpfkM*(topbM + kpfkM*topa16M)/bottom16M
% PFK reaction rate, Jpfk C
num k1C=30, k2C=2, k3C=50000, k4C=100,
num fampC=0.02, fatpC=20, ffbpC=0.2, fbtC=20, fmtC=20,
num kpfkC =0.06,
par vpfkC=0.01,
% (alpha,beta,gamma,delta)
% (0,0,0,0)
weight1C=1
topa1C=0
bottom1C=1
% (0,0,0,1)
weight2C=atp^2/k4C
topa2C=topa1C
bottom2C=bottom1C+weight2C
% (0,0,1,0)
weight3C=f6p^2/k3C
topa3C=topa2C+weight3C
bottom3C=bottom2C+weight3C
% (0,0,1,1)
weight4C=(f6p*atp)^2/(fatpC*k3C*k4C)
topa4C=topa3C+weight4C
bottom4C=bottom3C+weight4C
% (0,1,0,0)
weight5C=fbp/k2C
topa5C=topa4C
bottom5C=bottom4C+weight5C
% (0,1,0,1)
weight6C=(fbp*atp^2)/(k2C*k4C*fbtC)
topa6C=topa5C
bottom6C=bottom5C+weight6C
% (0,1,1,0)
weight7C=(fbp*f6p^2)/(k2C*k3C*ffbpC)
topa7C=topa6C+weight7C
bottom7C=bottom6C+weight7C
% (0,1,1,1)
weight8C=(fbp*f6p^2*atp^2)/(k2C*k3C*k4C*ffbpC*fbtC*fatpC)
topa8C=topa7C+weight8C
bottom8C=bottom7C+weight8C
% (1,0,0,0)
weight9C=amp/k1C
topa9C=topa8C
bottom9C=bottom8C+weight9C
% (1,0,0,1)
weight10C=(amp*atp^2)/(k1C*k4C*fmtC)
topa10C=topa9C
bottom10C=bottom9C+weight10C
% (1,0,1,0)
weight11C=(amp*f6p^2)/(k1C*k3C*fampC)
topa11C=topa10C+weight11C
bottom11C=bottom10C+weight11C
% (1,0,1,1)
weight12C=(amp*f6p^2*atp^2)/(k1C*k3C*k4C*fampC*fmtC*fatpC)
topa12C=topa11C+weight12C
bottom12C=bottom11C+weight12C
% (1,1,0,0)
weight13C=(amp*fbp)/(k1C*k2C)
topa13C=topa12C
bottom13C=bottom12C+weight13C
% (1,1,0,1)
weight14C=(amp*fbp*atp^2)/(k1C*k2C*k4C*fbtC*fmtC)
topa14C=topa13C
bottom14C=bottom13C+weight14C
% (1,1,1,0) -- the most active state of the enzyme
weight15C=(amp*fbp*f6p^2)/(k1C*k2C*k3C*ffbpC*fampC)
topa15C=topa14C
topbC=weight15C
bottom15C=bottom14C+weight15C
% (1,1,1,1)
weight16C=(amp*fbp*f6p^2*atp^2)/(k1C*k2C*k3C*k4C*ffbpC*fampC*fbtC*fmtC*fatpC)
topa16C=topa15C+weight16C
bottom16C=bottom15C+weight16C
Jpfk_c= vpfkC*(topbC + kpfkC*topa16C)/bottom16C
Jpfk=Jpfk_m+Jpfk_c
% PDH reaction rate, Jgpdh
num kCaPDH=1.5,
sinfty= cam/(cam+kCaPDH)
Jgpdh=sinfty*sqrt(fbp)
% Adenine nucleotide translocator, Jant
num amtot=15000,
num p19=0.6, p20=2,
num FRT=.037,
atpm = amtot-adpm
Jant = p19/(1+p20*adpm/atpm)*exp(FRT/2* psim)
% Hydrolysis, Jhyd
num khyd=1.864e-06, khydbas=6.48e-7,
Jhyd = (khyd*c+khydbas)*atp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Mitochondria Model %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Phosphorylation. In uM/ms.
num p13=10000, p14=190, p15=8.5, p16=4,
b2=(p16*p13)/(p13+atpm)
JF1F0=b2/(1+exp((p14-psim)/p15))
% Respiration (uM/ms)
num p4=5.28, p5=250, p6=165, p7=5,
JO=p4*nadhm/(p5+nadhm)/(1+exp((psim-p6)/p7))
% Pyruvate dehydrogenase (PDH) (uM/ms)
num nadmtot=10000, KNADHmPDH =1.3,
par vpdh=.4
nadm=nadmtot-nadhm
Jpdh=vpdh*Jgpdh/(KNADHmPDH +nadhm/nadm)
% Other dehydrogenase (DH) (uM/ms)
num vdh=1.1, kCaDH=0.08, KNADHmDH =1.3,
Jdh = vdh*cam/(cam+kCaDH)/(KNADHmDH +nadhm/nadm)
% H+ leakage through mitochondrial inner membrane (uM/ms)
num p17=0.0014, p18=0.02,
JHleak=p17*psim-p18
% Proton pumping due to respiration (uM/ms)
num p8=7.4, p9=100, p10=165, p11=5,
JHres=p8*nadhm/(p9+nadhm)/(1+exp((psim-p10)/p11))
% Proton flux due to atpase (uM/ms)
JHatp=3*JF1F0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Vector fields %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The vector field (Electrical and Calcium Model)
num Cm=5300, fca=0.01, sigmam=290, sigmaer=31,
v'=-(ica + ik + ikca + ikatp)/Cm
n'=-(n-ninf)/taun
c'= fca*(Jmem - Jm/sigmam - Jer)
cer'=fca*sigmaer*Jer
cam'=fca*Jm
% The vector field (Metabolic Model)
num Cmito=180
adp'= Jhyd - Jant/sigmam
f6p'=0.3*(Jgk-Jpfk)
fbp'=(Jpfk-Jpdh/2/sigmam)
adpm'= Jant-JF1F0
nadhm' = Jpdh+ Jdh -JO
psim' = (JHres-JHatp-Jant-JHleak-JNaCa-2*Juni)/Cmito
############################################
# XPP: numerical details #
############################################
@ meth=cvode, toler=1.0e-10, atoler=1.0e-10, dt=10,
@ total=900000, maxstor=20000,bounds=10000000
@ xp=tmin, yp=v,xlo=0, xhi=15, ylo=-70, yhi=-10
aux tmin=t/60000
done